The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: JobManagerCrashedError
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
image
image | label
class label |
---|---|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
0Alarm_Clock
|
|
1Backpack
|
|
1Backpack
|
|
1Backpack
|
|
1Backpack
|
|
1Backpack
|
|
1Backpack
|
|
1Backpack
|
|
1Backpack
|
|
1Backpack
|
|
1Backpack
|
|
1Backpack
|
|
1Backpack
|
|
1Backpack
|
|
1Backpack
|
|
1Backpack
|
|
1Backpack
|
|
1Backpack
|
|
1Backpack
|
|
1Backpack
|
|
1Backpack
|
|
1Backpack
|
|
1Backpack
|
|
1Backpack
|
|
1Backpack
|
|
1Backpack
|
|
1Backpack
|
Office-Home-LDS Dataset
Paper: βGeometric Knowledge-Guided Localized Global Distribution Alignment for Federated Learningβ
Github: 2025CVPR_GGEUR
The Office-Home-LDS dataset is constructed by introducing label skew on top of the domain skew present in the Office-Home dataset.
The goal is to create a more challenging and realistic dataset that simultaneously exhibits both label skew and domain skew.
π Citation
The article has been accepted by 2025CVPR, if you use this work, please cite:
π Huggingface Dataset Structure
The dataset is organized as follows:
Office-Home-LDS/
βββ data/
β βββ Office-Home.zip # Original raw dataset (compressed)
βββ new_dataset/ # Processed datasets based on different settings
β βββ Office-Home-0.1.zip # Split with Dirichlet Ξ± = 0.1 (compressed)
β βββ Office-Home-0.5.zip # Split with Dirichlet Ξ± = 0.5 (compressed)
β βββ Office-Home-0.05.zip # Split with Dirichlet Ξ± = 0.05 (compressed)
βββ Dataset-Office-Home-LDS.py # Python script for processing and splitting Original raw dataset
βββ README.md # Project documentation
π₯ Extract Files
After downloading the dataset, you can extract it using the following commands:
πΉ Linux/macOS:
unzip data/Office-Home.zip -d ./data/Office-Home
unzip new_dataset/Office-Home-0.1.zip -d ./new_dataset/Office-Home-0.1
unzip new_dataset/Office-Home-0.5.zip -d ./new_dataset/Office-Home-0.5
unzip new_dataset/Office-Home-0.05.zip -d ./new_dataset/Office-Home-0.05
πΉ Windows:
π¦ PowerShell Method:
# Extract the original dataset
Expand-Archive -Path data/Office-Home.zip -DestinationPath ./data/Office-Home
# Extract processed datasets
Expand-Archive -Path new_dataset/Office-Home-0.1.zip -DestinationPath ./new_dataset/Office-Home-0.1
Expand-Archive -Path new_dataset/Office-Home-0.5.zip -DestinationPath ./new_dataset/Office-Home-0.5
Expand-Archive -Path new_dataset/Office-Home-0.05.zip -DestinationPath ./new_dataset/Office-Home-0.05
π¦ Python Method:
import zipfile
import os
# Create target directories if they don't exist
os.makedirs('./data/Office-Home', exist_ok=True)
os.makedirs('./new_dataset/Office-Home-0.1', exist_ok=True)
os.makedirs('./new_dataset/Office-Home-0.5', exist_ok=True)
os.makedirs('./new_dataset/Office-Home-0.05', exist_ok=True)
# Extract zip files
with zipfile.ZipFile('data/Office-Home.zip', 'r') as zip_ref:
zip_ref.extractall('./data/Office-Home')
with zipfile.ZipFile('new_dataset/Office-Home-0.1.zip', 'r') as zip_ref:
zip_ref.extractall('./new_dataset/Office-Home-0.1')
with zipfile.ZipFile('new_dataset/Office-Home-0.5.zip', 'r') as zip_ref:
zip_ref.extractall('./new_dataset/Office-Home-0.5')
with zipfile.ZipFile('new_dataset/Office-Home-0.05.zip', 'r') as zip_ref:
zip_ref.extractall('./new_dataset/Office-Home-0.05')
π Extracted File Structure
The dataset is organized as follows:
Office-Home-LDS/
βββ data/
β βββ Office-Home/ # Original dataset
β βββ Art/
β βββ Clipart/
β βββ Product/
β βββ Real World/
βββ new_dataset/
β βββ Office-Home-0.1/ # Split with Ξ± = 0.1
β β βββ Art/ # Domain: Art
β β β βββ client/ # Client-level split images
β β β βββ train/ # Train set images
β β β βββ test/ # Test set images
β β βββ Clipart/ # Domain: Clipart
β β β βββ client/ # Client-level split
β β β βββ train/ # Train set images
β β β βββ test/ # Test set images
β β βββ Product/ # Domain: Product
β β β βββ client/ # Client-level split
β β β βββ train/ # Train set images
β β β βββ test/ # Test set images
β β βββ Real World/ # Domain: Real_World
β β β βββ client/ # Client-level split
β β β βββ train/ # Train set images
β β β βββ test/ # Test set images
β β βββ output_indices/ # Split information and indices
β β β βββ Art/ # Indices for Art domain
β β β β βββ class_indices.npy # Class-level indices
β β β β βββ client_client_indices.npy # Client split indices
β β β β βββ test_test_indices.npy # Test set indices
β β β β βββ train_train_indices.npy # Train set indices
β β β βββ Clipart/ # Indices for Clipart domain
β β β β βββ class_indices.npy
β β β β βββ client_client_indices.npy
β β β β βββ test_test_indices.npy
β β β β βββ train_train_indices.npy
β β β βββ Product/ # Indices for Product domain
β β β β βββ class_indices.npy
β β β β βββ client_client_indices.npy
β β β β βββ test_test_indices.npy
β β β β βββ train_train_indices.npy
β β β βββ Real World/ # Indices for Real_World domain
β β β β βββ class_indices.npy
β β β β βββ client_client_indices.npy
β β β β βββ test_test_indices.npy
β β β β βββ train_train_indices.npy
β β β βββ combined_class_allocation.txt # Global class allocation info
β βββ Office-Home-0.5/ # Split with Ξ± = 0.5 (similar structure)
β βββ Office-Home-0.05/ # Split with Ξ± = 0.05 (similar structure)
βββ Dataset-Office-Home-LDS.py # Python script for processing and splitting Original raw dataset
βββ README.md # Project documentation
π Dataset-Office-Home-LDS.py
1οΈβ£ ImageFolder_Custom Class
- Loads the original dataset from
./data/Office-Home
- Index the dataset for each domain, each domain is processed separatelyοΌ
- Generates training and testing splits for each domain, each domain is processed separatelyοΌ
# ImageFolder_Custom class loads a dataset of a single domain
class ImageFolder_Custom(ImageFolder):
def __init__(self, data_name, root, transform=None, target_transform=None, subset_train_ratio=0.7):
super().__init__(os.path.join(root, 'Office-Home', data_name), transform=transform,
target_transform=target_transform)
self.train_index_list = []
self.test_index_list = []
# Calculate the proportion of the training set
total_samples = len(self.samples)
train_samples = int(subset_train_ratio * total_samples)
# Randomly shuffle the index
shuffled_indices = np.random.permutation(total_samples)
# The scrambled index, with the first train_stamples used as the training set and the rest used as the testing set
self.train_index_list = shuffled_indices[:train_samples].tolist()
self.test_index_list = shuffled_indices[train_samples:].tolist()
2οΈβ£ generate_dirichlet_matrix Function
- Generates a 4 Γ 65 Dirichlet matrix based on the specified coefficient (
alpha
) - Each row represents one of the four domains
- Each column represents one of the 65 classes
- The sum of each column equals 1, representing the class distribution across the four domains
from numpy.random import dirichlet
# Generate a 4x65 Dirichlet distribution matrix to partition the proportion of 65 classes among 4 clients
def generate_dirichlet_matrix(alpha):
return dirichlet([alpha] * 4, 65).T # Generate a 4x65 matrix
3οΈβ£ split_samples_for_domain Function
- Applies the generated Dirichlet matrix to distribute class number across the four domains
- Ensures label skew for each domain
# Partition samples to the client based on a column of the Dirichlet matrix
def split_samples_for_domain(class_train_indices, dirichlet_column):
client_indices = []
class_proportions = {}
for class_label, indices in class_train_indices.items():
num_samples = len(indices)
if num_samples == 0:
continue
# Obtain the Dirichlet ratio of the current class
proportion = dirichlet_column[class_label]
class_proportions[class_label] = proportion
# Calculate the number of allocated samples
num_to_allocate = int(proportion * num_samples)
# Allocate samples
allocated_indices = indices[:num_to_allocate]
client_indices.extend(allocated_indices)
return client_indices, class_proportions
4οΈβ£ construct_new_dataset, copy_images Functions
- Creates a new dataset structure based on computed indices
- Copies images from the original dataset to the new partitioned folders
- Renames files to prevent overwriting
# Copy the image according to the index and rename it
def copy_images(dataset, indices, target_dir):
os.makedirs(target_dir, exist_ok=True)
for idx in tqdm(indices, desc=f"Copy to {target_dir}"):
source_path, label = dataset.samples[idx]
# Generate a unique file name (based on class label and index)
new_filename = f"class_{label}_index_{idx}.jpg"
target_path = os.path.join(target_dir, new_filename)
# copy picture
shutil.copy(source_path, target_path)
# Building a new dataset
def construct_new_dataset(dataset, train_indices, test_indices, client_indices, domain, alpha):
base_path = f'./new_dataset/Office-Home-{alpha}/{domain}'
os.makedirs(base_path, exist_ok=True)
# Copy training and testing sets
copy_images(dataset, train_indices, os.path.join(base_path, 'train'))
copy_images(dataset, test_indices, os.path.join(base_path, 'test'))
# Copy client dataset
client_path = os.path.join(base_path, 'client')
copy_images(dataset, client_indices, client_path)
5οΈβ£ get_class_indices, save_class_indices, save_indices, save_class_allocation_combined Functions
get_class_indices
β Retrieves the indices for each classsave_class_indices
β Saves the class indices in.npy
formatsave_indices
β Saves train/test/client indices for each domainsave_class_allocation_combined
β Saves the complete label allocation for all domains
# Obtain the class index of the entire dataset
def get_class_indices(dataset):
class_indices = {i: [] for i in range(65)} # The Office Home dataset has 65 classes
for idx in range(len(dataset)):
label = dataset.targets[idx] # Obtain labels for each sample
class_indices[label].append(idx) # Save the index of the entire dataset to the corresponding class
return class_indices
# Save class index (class index of the entire dataset)
def save_class_indices(class_indices, domain_name, alpha):
output_dir = os.path.join(f'./new_dataset/Office-Home-{alpha}/output_indices', domain_name)
os.makedirs(output_dir, exist_ok=True)
txt_filename = os.path.join(output_dir, 'class_indices.txt')
npy_filename = os.path.join(output_dir, 'class_indices.npy')
with open(txt_filename, 'w') as f:
for class_label, indices in class_indices.items():
f.write(f"Class {class_label} indices: {list(indices)}\n")
np.save(npy_filename, class_indices)
# Save index function
def save_indices(indices_dict, domain_name, file_type, alpha):
output_dir = os.path.join(f'./new_dataset/Office-Home-{alpha}/output_indices', domain_name)
os.makedirs(output_dir, exist_ok=True) # If the output folder does not exist, create it
for key, indices in tqdm(indices_dict.items(), desc=f"Save {file_type} Index"):
txt_filename = os.path.join(output_dir, f"{file_type}_{key}_indices.txt")
npy_filename = os.path.join(output_dir, f"{file_type}_{key}_indices.npy")
# Save as. txt file
with open(txt_filename, 'w') as f:
f.write(f"{file_type.capitalize()} {key} indices: {list(indices)}\n")
# Save as. npy file
np.save(npy_filename, np.array(indices))
# Save the class allocation quantities of all domains to one file
def save_class_allocation_combined(domains, alpha):
output_dir = f'./new_dataset/Office-Home-{alpha}/output_indices'
combined_allocation = []
# Traverse each domain
for domain_name in domains:
domain_output_dir = os.path.join(output_dir, domain_name)
class_indices_path = os.path.join(domain_output_dir, 'class_indices.npy')
client_indices_path = os.path.join(domain_output_dir, 'client_client_indices.npy')
# Ensure that the file exists
if not os.path.exists(class_indices_path) or not os.path.exists(client_indices_path):
print(f"Document loss: {class_indices_path} or {client_indices_path}")
continue
# Load NPY file
class_indices = np.load(class_indices_path, allow_pickle=True).item()
client_indices = np.load(client_indices_path)
# Initialize class allocation for the current domain
domain_class_allocation = {class_label: 0 for class_label in class_indices.keys()}
# Count the sample size of each class
for idx in client_indices:
for class_label, indices in class_indices.items():
if idx in indices:
domain_class_allocation[class_label] += 1
break
# Format the class allocation information for the current domain
allocation_str = f"{domain_name}[" + ",".join(f"{class_label}:{count}" for class_label, count in domain_class_allocation.items()) + "]"
combined_allocation.append(allocation_str)
# Save all domain class assignment information to a txt file
combined_txt_filename = os.path.join(output_dir, 'combined_class_allocation.txt')
with open(combined_txt_filename, 'w') as f:
for allocation in combined_allocation:
f.write(f"{allocation}\n")
print(f"Saved all domain class assignments to {combined_txt_filename}")
- Downloads last month
- 38