Update README.md
Browse files
README.md
CHANGED
@@ -5,4 +5,129 @@ task_categories:
|
|
5 |
- feature-extraction
|
6 |
language:
|
7 |
- en
|
8 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
- feature-extraction
|
6 |
language:
|
7 |
- en
|
8 |
+
---
|
9 |
+
|
10 |
+
# **Office-Home-LDS Dataset**
|
11 |
+
|
12 |
+
The Office-Home-LDS dataset is constructed by introducing label skew on top of the domain skew present in the original Office-Home dataset. <br>
|
13 |
+
The goal is to create a more challenging and realistic dataset that simultaneously exhibits both label skew and domain skew.
|
14 |
+
|
15 |
+
## 📂 **Huggingface Dataset Structure**
|
16 |
+
The dataset is organized as follows:
|
17 |
+
|
18 |
+
```text
|
19 |
+
Office-Home-LDS/
|
20 |
+
├── data/
|
21 |
+
│ └── Office-Home.zip # Original raw dataset (compressed)
|
22 |
+
├── new_dataset/ # Processed datasets based on different settings
|
23 |
+
│ ├── Office-Home-0.1.zip # Split with Dirichlet α = 0.1 (compressed)
|
24 |
+
│ ├── Office-Home-0.5.zip # Split with Dirichlet α = 0.5 (compressed)
|
25 |
+
│ └── Office-Home-0.05.zip # Split with Dirichlet α = 0.05 (compressed)
|
26 |
+
├── Dataset-Office-Home-LDS.py # Python script for processing and splitting Original raw dataset
|
27 |
+
└── README.md # Project documentation
|
28 |
+
```
|
29 |
+
|
30 |
+
## 📥 **Extract Files**
|
31 |
+
After downloading the dataset, you can extract it using the following commands:
|
32 |
+
|
33 |
+
### 🔹 Linux/macOS:
|
34 |
+
```bash
|
35 |
+
unzip data/Office-Home.zip -d ./data/Office-Home
|
36 |
+
unzip new_dataset/Office-Home-0.1.zip -d ./new_dataset/Office-Home-0.1
|
37 |
+
unzip new_dataset/Office-Home-0.5.zip -d ./new_dataset/Office-Home-0.5
|
38 |
+
unzip new_dataset/Office-Home-0.05.zip -d ./new_dataset/Office-Home-0.05
|
39 |
+
```
|
40 |
+
|
41 |
+
### 🔹 Windows:
|
42 |
+
#### 🟦 PowerShell Method:
|
43 |
+
```bash
|
44 |
+
# Extract the original dataset
|
45 |
+
Expand-Archive -Path data/Office-Home.zip -DestinationPath ./data/Office-Home
|
46 |
+
|
47 |
+
# Extract processed datasets
|
48 |
+
Expand-Archive -Path new_dataset/Office-Home-0.1.zip -DestinationPath ./new_dataset/Office-Home-0.1
|
49 |
+
Expand-Archive -Path new_dataset/Office-Home-0.5.zip -DestinationPath ./new_dataset/Office-Home-0.5
|
50 |
+
Expand-Archive -Path new_dataset/Office-Home-0.05.zip -DestinationPath ./new_dataset/Office-Home-0.05
|
51 |
+
```
|
52 |
+
#### 🟦 Python Method:
|
53 |
+
```bash
|
54 |
+
import zipfile
|
55 |
+
import os
|
56 |
+
|
57 |
+
# Create target directories if they don't exist
|
58 |
+
os.makedirs('./data/Office-Home', exist_ok=True)
|
59 |
+
os.makedirs('./new_dataset/Office-Home-0.1', exist_ok=True)
|
60 |
+
os.makedirs('./new_dataset/Office-Home-0.5', exist_ok=True)
|
61 |
+
os.makedirs('./new_dataset/Office-Home-0.05', exist_ok=True)
|
62 |
+
|
63 |
+
# Extract zip files
|
64 |
+
with zipfile.ZipFile('data/Office-Home.zip', 'r') as zip_ref:
|
65 |
+
zip_ref.extractall('./data/Office-Home')
|
66 |
+
|
67 |
+
with zipfile.ZipFile('new_dataset/Office-Home-0.1.zip', 'r') as zip_ref:
|
68 |
+
zip_ref.extractall('./new_dataset/Office-Home-0.1')
|
69 |
+
|
70 |
+
with zipfile.ZipFile('new_dataset/Office-Home-0.5.zip', 'r') as zip_ref:
|
71 |
+
zip_ref.extractall('./new_dataset/Office-Home-0.5')
|
72 |
+
|
73 |
+
with zipfile.ZipFile('new_dataset/Office-Home-0.05.zip', 'r') as zip_ref:
|
74 |
+
zip_ref.extractall('./new_dataset/Office-Home-0.05')
|
75 |
+
```
|
76 |
+
## 📂 **Extracted File Structure**
|
77 |
+
The dataset is organized as follows:
|
78 |
+
|
79 |
+
```text
|
80 |
+
```text
|
81 |
+
Office-Home-LDS/
|
82 |
+
├── data/
|
83 |
+
│ └── Office-Home/ # Original dataset
|
84 |
+
│ ├── Art/
|
85 |
+
│ ├── Clipart/
|
86 |
+
│ ├── Product/
|
87 |
+
│ └── Real World/
|
88 |
+
├── new_dataset/
|
89 |
+
│ ├── Office-Home-0.1/ # Split with α = 0.1
|
90 |
+
│ │ ├── Art/ # Domain: Art
|
91 |
+
│ │ │ ├── client/ # Client-level split images
|
92 |
+
│ │ │ ├── train/ # Train set images
|
93 |
+
│ │ │ └── test/ # Test set images
|
94 |
+
│ │ ├── Clipart/ # Domain: Clipart
|
95 |
+
│ │ │ ├── client/ # Client-level split
|
96 |
+
│ │ │ ├── train/ # Train set images
|
97 |
+
│ │ │ └── test/ # Test set images
|
98 |
+
│ │ ├── Product/ # Domain: Product
|
99 |
+
│ │ │ ├── client/ # Client-level split
|
100 |
+
│ │ │ ├── train/ # Train set images
|
101 |
+
│ │ │ └── test/ # Test set images
|
102 |
+
│ │ ├── Real World/ # Domain: Real_World
|
103 |
+
│ │ │ ├── client/ # Client-level split
|
104 |
+
│ │ │ ├── train/ # Train set images
|
105 |
+
│ │ │ └── test/ # Test set images
|
106 |
+
│ │ ├── output_indices/ # Split information and indices
|
107 |
+
│ │ │ ├── Art/ # Indices for Art domain
|
108 |
+
│ │ │ │ ├── class_indices.npy # Class-level indices
|
109 |
+
│ │ │ │ ├── client_client_indices.npy # Client split indices
|
110 |
+
│ │ │ │ ├── test_test_indices.npy # Test set indices
|
111 |
+
│ │ │ │ └── train_train_indices.npy # Train set indices
|
112 |
+
│ │ │ ├── Clipart/ # Indices for Clipart domain
|
113 |
+
│ │ │ │ ├── class_indices.npy
|
114 |
+
│ │ │ │ ├── client_client_indices.npy
|
115 |
+
│ │ │ │ ├── test_test_indices.npy
|
116 |
+
│ │ │ │ └── train_train_indices.npy
|
117 |
+
│ │ │ ├── Product/ # Indices for Product domain
|
118 |
+
│ │ │ │ ├── class_indices.npy
|
119 |
+
│ │ │ │ ├── client_client_indices.npy
|
120 |
+
│ │ │ │ ├── test_test_indices.npy
|
121 |
+
│ │ │ │ └── train_train_indices.npy
|
122 |
+
│ │ │ ├── Real World/ # Indices for Real_World domain
|
123 |
+
│ │ │ │ ├── class_indices.npy
|
124 |
+
│ │ │ │ ├── client_client_indices.npy
|
125 |
+
│ │ │ │ ├── test_test_indices.npy
|
126 |
+
│ │ │ │ └── train_train_indices.npy
|
127 |
+
│ │ │ └── combined_class_allocation.txt # Global class allocation info
|
128 |
+
│ ├── Office-Home-0.5/ # Split with α = 0.5 (similar structure)
|
129 |
+
│ └── Office-Home-0.05/ # Split with α = 0.05 (similar structure)
|
130 |
+
├── Dataset-Office-Home-LDS.py # Python script for processing and splitting Original raw dataset
|
131 |
+
└── README.md # Project documentation
|
132 |
+
|
133 |
+
```
|