Add files using upload-large-folder tool
Browse files- .gitattributes +1 -0
- chatunivi/lib/libcrypto.a +3 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/__pycache__/__init__.cpython-310.pyc +0 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/__init__.py +87 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/__pycache__/__init__.cpython-310.pyc +0 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/base.cpython-310-x86_64-linux-gnu.so +0 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/ccalendar.pyi +12 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/conversion.pyi +14 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/dtypes.pyi +83 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/fields.pyi +62 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/nattype.pyi +141 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/np_datetime.pyi +27 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/offsets.pyi +287 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/parsing.pyi +33 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/period.pyi +135 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/strptime.pyi +14 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/timedeltas.pyi +174 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/timestamps.pyi +241 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/timezones.pyi +21 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/vectorized.pyi +43 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/window/__init__.py +0 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/window/__pycache__/__init__.cpython-310.pyc +0 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/window/aggregations.pyi +127 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/window/indexers.pyi +12 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/arrays/__init__.py +53 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/arrays/__pycache__/__init__.cpython-310.pyc +0 -0
- infer_4_30_0/lib/python3.10/site-packages/pandas/errors/__init__.py +850 -0
.gitattributes
CHANGED
@@ -2133,3 +2133,4 @@ infer_4_30_0/lib/python3.10/site-packages/nvidia/cufft/lib/libcufftw.so.11 filte
|
|
2133 |
infer_4_30_0/lib/python3.10/site-packages/nvidia/cufft/lib/libcufftw.so.10 filter=lfs diff=lfs merge=lfs -text
|
2134 |
infer_4_30_0/lib/python3.10/site-packages/nvidia/cusolver/lib/libcusolverMg.so.11 filter=lfs diff=lfs merge=lfs -text
|
2135 |
infer_4_30_0/lib/python3.10/site-packages/freetype/libfreetype.so filter=lfs diff=lfs merge=lfs -text
|
|
|
|
2133 |
infer_4_30_0/lib/python3.10/site-packages/nvidia/cufft/lib/libcufftw.so.10 filter=lfs diff=lfs merge=lfs -text
|
2134 |
infer_4_30_0/lib/python3.10/site-packages/nvidia/cusolver/lib/libcusolverMg.so.11 filter=lfs diff=lfs merge=lfs -text
|
2135 |
infer_4_30_0/lib/python3.10/site-packages/freetype/libfreetype.so filter=lfs diff=lfs merge=lfs -text
|
2136 |
+
chatunivi/lib/libcrypto.a filter=lfs diff=lfs merge=lfs -text
|
chatunivi/lib/libcrypto.a
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01243b4048aad14af6904f0721b341e86ecbd5cddb724305263ede73a5bc1f53
|
3 |
+
size 11086938
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (538 Bytes). View file
|
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/__init__.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__all__ = [
|
2 |
+
"dtypes",
|
3 |
+
"localize_pydatetime",
|
4 |
+
"NaT",
|
5 |
+
"NaTType",
|
6 |
+
"iNaT",
|
7 |
+
"nat_strings",
|
8 |
+
"OutOfBoundsDatetime",
|
9 |
+
"OutOfBoundsTimedelta",
|
10 |
+
"IncompatibleFrequency",
|
11 |
+
"Period",
|
12 |
+
"Resolution",
|
13 |
+
"Timedelta",
|
14 |
+
"normalize_i8_timestamps",
|
15 |
+
"is_date_array_normalized",
|
16 |
+
"dt64arr_to_periodarr",
|
17 |
+
"delta_to_nanoseconds",
|
18 |
+
"ints_to_pydatetime",
|
19 |
+
"ints_to_pytimedelta",
|
20 |
+
"get_resolution",
|
21 |
+
"Timestamp",
|
22 |
+
"tz_convert_from_utc_single",
|
23 |
+
"tz_convert_from_utc",
|
24 |
+
"to_offset",
|
25 |
+
"Tick",
|
26 |
+
"BaseOffset",
|
27 |
+
"tz_compare",
|
28 |
+
"is_unitless",
|
29 |
+
"astype_overflowsafe",
|
30 |
+
"get_unit_from_dtype",
|
31 |
+
"periods_per_day",
|
32 |
+
"periods_per_second",
|
33 |
+
"guess_datetime_format",
|
34 |
+
"add_overflowsafe",
|
35 |
+
"get_supported_dtype",
|
36 |
+
"is_supported_dtype",
|
37 |
+
]
|
38 |
+
|
39 |
+
from pandas._libs.tslibs import dtypes # pylint: disable=import-self
|
40 |
+
from pandas._libs.tslibs.conversion import localize_pydatetime
|
41 |
+
from pandas._libs.tslibs.dtypes import (
|
42 |
+
Resolution,
|
43 |
+
periods_per_day,
|
44 |
+
periods_per_second,
|
45 |
+
)
|
46 |
+
from pandas._libs.tslibs.nattype import (
|
47 |
+
NaT,
|
48 |
+
NaTType,
|
49 |
+
iNaT,
|
50 |
+
nat_strings,
|
51 |
+
)
|
52 |
+
from pandas._libs.tslibs.np_datetime import (
|
53 |
+
OutOfBoundsDatetime,
|
54 |
+
OutOfBoundsTimedelta,
|
55 |
+
add_overflowsafe,
|
56 |
+
astype_overflowsafe,
|
57 |
+
get_supported_dtype,
|
58 |
+
is_supported_dtype,
|
59 |
+
is_unitless,
|
60 |
+
py_get_unit_from_dtype as get_unit_from_dtype,
|
61 |
+
)
|
62 |
+
from pandas._libs.tslibs.offsets import (
|
63 |
+
BaseOffset,
|
64 |
+
Tick,
|
65 |
+
to_offset,
|
66 |
+
)
|
67 |
+
from pandas._libs.tslibs.parsing import guess_datetime_format
|
68 |
+
from pandas._libs.tslibs.period import (
|
69 |
+
IncompatibleFrequency,
|
70 |
+
Period,
|
71 |
+
)
|
72 |
+
from pandas._libs.tslibs.timedeltas import (
|
73 |
+
Timedelta,
|
74 |
+
delta_to_nanoseconds,
|
75 |
+
ints_to_pytimedelta,
|
76 |
+
)
|
77 |
+
from pandas._libs.tslibs.timestamps import Timestamp
|
78 |
+
from pandas._libs.tslibs.timezones import tz_compare
|
79 |
+
from pandas._libs.tslibs.tzconversion import tz_convert_from_utc_single
|
80 |
+
from pandas._libs.tslibs.vectorized import (
|
81 |
+
dt64arr_to_periodarr,
|
82 |
+
get_resolution,
|
83 |
+
ints_to_pydatetime,
|
84 |
+
is_date_array_normalized,
|
85 |
+
normalize_i8_timestamps,
|
86 |
+
tz_convert_from_utc,
|
87 |
+
)
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.84 kB). View file
|
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/base.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (62.3 kB). View file
|
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/ccalendar.pyi
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DAYS: list[str]
|
2 |
+
MONTH_ALIASES: dict[int, str]
|
3 |
+
MONTH_NUMBERS: dict[str, int]
|
4 |
+
MONTHS: list[str]
|
5 |
+
int_to_weekday: dict[int, str]
|
6 |
+
|
7 |
+
def get_firstbday(year: int, month: int) -> int: ...
|
8 |
+
def get_lastbday(year: int, month: int) -> int: ...
|
9 |
+
def get_day_of_year(year: int, month: int, day: int) -> int: ...
|
10 |
+
def get_iso_calendar(year: int, month: int, day: int) -> tuple[int, int, int]: ...
|
11 |
+
def get_week_of_year(year: int, month: int, day: int) -> int: ...
|
12 |
+
def get_days_in_month(year: int, month: int) -> int: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/conversion.pyi
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import (
|
2 |
+
datetime,
|
3 |
+
tzinfo,
|
4 |
+
)
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
DT64NS_DTYPE: np.dtype
|
9 |
+
TD64NS_DTYPE: np.dtype
|
10 |
+
|
11 |
+
def localize_pydatetime(dt: datetime, tz: tzinfo | None) -> datetime: ...
|
12 |
+
def cast_from_unit_vectorized(
|
13 |
+
values: np.ndarray, unit: str, out_unit: str = ...
|
14 |
+
) -> np.ndarray: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/dtypes.pyi
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
|
3 |
+
OFFSET_TO_PERIOD_FREQSTR: dict[str, str]
|
4 |
+
|
5 |
+
def periods_per_day(reso: int = ...) -> int: ...
|
6 |
+
def periods_per_second(reso: int) -> int: ...
|
7 |
+
def abbrev_to_npy_unit(abbrev: str | None) -> int: ...
|
8 |
+
def freq_to_period_freqstr(freq_n: int, freq_name: str) -> str: ...
|
9 |
+
|
10 |
+
class PeriodDtypeBase:
|
11 |
+
_dtype_code: int # PeriodDtypeCode
|
12 |
+
_n: int
|
13 |
+
|
14 |
+
# actually __cinit__
|
15 |
+
def __new__(cls, code: int, n: int): ...
|
16 |
+
@property
|
17 |
+
def _freq_group_code(self) -> int: ...
|
18 |
+
@property
|
19 |
+
def _resolution_obj(self) -> Resolution: ...
|
20 |
+
def _get_to_timestamp_base(self) -> int: ...
|
21 |
+
@property
|
22 |
+
def _freqstr(self) -> str: ...
|
23 |
+
def __hash__(self) -> int: ...
|
24 |
+
def _is_tick_like(self) -> bool: ...
|
25 |
+
@property
|
26 |
+
def _creso(self) -> int: ...
|
27 |
+
@property
|
28 |
+
def _td64_unit(self) -> str: ...
|
29 |
+
|
30 |
+
class FreqGroup(Enum):
|
31 |
+
FR_ANN: int
|
32 |
+
FR_QTR: int
|
33 |
+
FR_MTH: int
|
34 |
+
FR_WK: int
|
35 |
+
FR_BUS: int
|
36 |
+
FR_DAY: int
|
37 |
+
FR_HR: int
|
38 |
+
FR_MIN: int
|
39 |
+
FR_SEC: int
|
40 |
+
FR_MS: int
|
41 |
+
FR_US: int
|
42 |
+
FR_NS: int
|
43 |
+
FR_UND: int
|
44 |
+
@staticmethod
|
45 |
+
def from_period_dtype_code(code: int) -> FreqGroup: ...
|
46 |
+
|
47 |
+
class Resolution(Enum):
|
48 |
+
RESO_NS: int
|
49 |
+
RESO_US: int
|
50 |
+
RESO_MS: int
|
51 |
+
RESO_SEC: int
|
52 |
+
RESO_MIN: int
|
53 |
+
RESO_HR: int
|
54 |
+
RESO_DAY: int
|
55 |
+
RESO_MTH: int
|
56 |
+
RESO_QTR: int
|
57 |
+
RESO_YR: int
|
58 |
+
def __lt__(self, other: Resolution) -> bool: ...
|
59 |
+
def __ge__(self, other: Resolution) -> bool: ...
|
60 |
+
@property
|
61 |
+
def attrname(self) -> str: ...
|
62 |
+
@classmethod
|
63 |
+
def from_attrname(cls, attrname: str) -> Resolution: ...
|
64 |
+
@classmethod
|
65 |
+
def get_reso_from_freqstr(cls, freq: str) -> Resolution: ...
|
66 |
+
@property
|
67 |
+
def attr_abbrev(self) -> str: ...
|
68 |
+
|
69 |
+
class NpyDatetimeUnit(Enum):
|
70 |
+
NPY_FR_Y: int
|
71 |
+
NPY_FR_M: int
|
72 |
+
NPY_FR_W: int
|
73 |
+
NPY_FR_D: int
|
74 |
+
NPY_FR_h: int
|
75 |
+
NPY_FR_m: int
|
76 |
+
NPY_FR_s: int
|
77 |
+
NPY_FR_ms: int
|
78 |
+
NPY_FR_us: int
|
79 |
+
NPY_FR_ns: int
|
80 |
+
NPY_FR_ps: int
|
81 |
+
NPY_FR_fs: int
|
82 |
+
NPY_FR_as: int
|
83 |
+
NPY_FR_GENERIC: int
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/fields.pyi
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from pandas._typing import npt
|
4 |
+
|
5 |
+
def build_field_sarray(
|
6 |
+
dtindex: npt.NDArray[np.int64], # const int64_t[:]
|
7 |
+
reso: int, # NPY_DATETIMEUNIT
|
8 |
+
) -> np.ndarray: ...
|
9 |
+
def month_position_check(fields, weekdays) -> str | None: ...
|
10 |
+
def get_date_name_field(
|
11 |
+
dtindex: npt.NDArray[np.int64], # const int64_t[:]
|
12 |
+
field: str,
|
13 |
+
locale: str | None = ...,
|
14 |
+
reso: int = ..., # NPY_DATETIMEUNIT
|
15 |
+
) -> npt.NDArray[np.object_]: ...
|
16 |
+
def get_start_end_field(
|
17 |
+
dtindex: npt.NDArray[np.int64],
|
18 |
+
field: str,
|
19 |
+
freqstr: str | None = ...,
|
20 |
+
month_kw: int = ...,
|
21 |
+
reso: int = ..., # NPY_DATETIMEUNIT
|
22 |
+
) -> npt.NDArray[np.bool_]: ...
|
23 |
+
def get_date_field(
|
24 |
+
dtindex: npt.NDArray[np.int64], # const int64_t[:]
|
25 |
+
field: str,
|
26 |
+
reso: int = ..., # NPY_DATETIMEUNIT
|
27 |
+
) -> npt.NDArray[np.int32]: ...
|
28 |
+
def get_timedelta_field(
|
29 |
+
tdindex: npt.NDArray[np.int64], # const int64_t[:]
|
30 |
+
field: str,
|
31 |
+
reso: int = ..., # NPY_DATETIMEUNIT
|
32 |
+
) -> npt.NDArray[np.int32]: ...
|
33 |
+
def get_timedelta_days(
|
34 |
+
tdindex: npt.NDArray[np.int64], # const int64_t[:]
|
35 |
+
reso: int = ..., # NPY_DATETIMEUNIT
|
36 |
+
) -> npt.NDArray[np.int64]: ...
|
37 |
+
def isleapyear_arr(
|
38 |
+
years: np.ndarray,
|
39 |
+
) -> npt.NDArray[np.bool_]: ...
|
40 |
+
def build_isocalendar_sarray(
|
41 |
+
dtindex: npt.NDArray[np.int64], # const int64_t[:]
|
42 |
+
reso: int, # NPY_DATETIMEUNIT
|
43 |
+
) -> np.ndarray: ...
|
44 |
+
def _get_locale_names(name_type: str, locale: str | None = ...): ...
|
45 |
+
|
46 |
+
class RoundTo:
|
47 |
+
@property
|
48 |
+
def MINUS_INFTY(self) -> int: ...
|
49 |
+
@property
|
50 |
+
def PLUS_INFTY(self) -> int: ...
|
51 |
+
@property
|
52 |
+
def NEAREST_HALF_EVEN(self) -> int: ...
|
53 |
+
@property
|
54 |
+
def NEAREST_HALF_PLUS_INFTY(self) -> int: ...
|
55 |
+
@property
|
56 |
+
def NEAREST_HALF_MINUS_INFTY(self) -> int: ...
|
57 |
+
|
58 |
+
def round_nsint64(
|
59 |
+
values: npt.NDArray[np.int64],
|
60 |
+
mode: RoundTo,
|
61 |
+
nanos: int,
|
62 |
+
) -> npt.NDArray[np.int64]: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/nattype.pyi
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import (
|
2 |
+
datetime,
|
3 |
+
timedelta,
|
4 |
+
tzinfo as _tzinfo,
|
5 |
+
)
|
6 |
+
import typing
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
from pandas._libs.tslibs.period import Period
|
11 |
+
from pandas._typing import Self
|
12 |
+
|
13 |
+
NaT: NaTType
|
14 |
+
iNaT: int
|
15 |
+
nat_strings: set[str]
|
16 |
+
|
17 |
+
_NaTComparisonTypes: typing.TypeAlias = (
|
18 |
+
datetime | timedelta | Period | np.datetime64 | np.timedelta64
|
19 |
+
)
|
20 |
+
|
21 |
+
class _NatComparison:
|
22 |
+
def __call__(self, other: _NaTComparisonTypes) -> bool: ...
|
23 |
+
|
24 |
+
class NaTType:
|
25 |
+
_value: np.int64
|
26 |
+
@property
|
27 |
+
def value(self) -> int: ...
|
28 |
+
@property
|
29 |
+
def asm8(self) -> np.datetime64: ...
|
30 |
+
def to_datetime64(self) -> np.datetime64: ...
|
31 |
+
def to_numpy(
|
32 |
+
self, dtype: np.dtype | str | None = ..., copy: bool = ...
|
33 |
+
) -> np.datetime64 | np.timedelta64: ...
|
34 |
+
@property
|
35 |
+
def is_leap_year(self) -> bool: ...
|
36 |
+
@property
|
37 |
+
def is_month_start(self) -> bool: ...
|
38 |
+
@property
|
39 |
+
def is_quarter_start(self) -> bool: ...
|
40 |
+
@property
|
41 |
+
def is_year_start(self) -> bool: ...
|
42 |
+
@property
|
43 |
+
def is_month_end(self) -> bool: ...
|
44 |
+
@property
|
45 |
+
def is_quarter_end(self) -> bool: ...
|
46 |
+
@property
|
47 |
+
def is_year_end(self) -> bool: ...
|
48 |
+
@property
|
49 |
+
def day_of_year(self) -> float: ...
|
50 |
+
@property
|
51 |
+
def dayofyear(self) -> float: ...
|
52 |
+
@property
|
53 |
+
def days_in_month(self) -> float: ...
|
54 |
+
@property
|
55 |
+
def daysinmonth(self) -> float: ...
|
56 |
+
@property
|
57 |
+
def day_of_week(self) -> float: ...
|
58 |
+
@property
|
59 |
+
def dayofweek(self) -> float: ...
|
60 |
+
@property
|
61 |
+
def week(self) -> float: ...
|
62 |
+
@property
|
63 |
+
def weekofyear(self) -> float: ...
|
64 |
+
def day_name(self) -> float: ...
|
65 |
+
def month_name(self) -> float: ...
|
66 |
+
def weekday(self) -> float: ...
|
67 |
+
def isoweekday(self) -> float: ...
|
68 |
+
def total_seconds(self) -> float: ...
|
69 |
+
def today(self, *args, **kwargs) -> NaTType: ...
|
70 |
+
def now(self, *args, **kwargs) -> NaTType: ...
|
71 |
+
def to_pydatetime(self) -> NaTType: ...
|
72 |
+
def date(self) -> NaTType: ...
|
73 |
+
def round(self) -> NaTType: ...
|
74 |
+
def floor(self) -> NaTType: ...
|
75 |
+
def ceil(self) -> NaTType: ...
|
76 |
+
@property
|
77 |
+
def tzinfo(self) -> None: ...
|
78 |
+
@property
|
79 |
+
def tz(self) -> None: ...
|
80 |
+
def tz_convert(self, tz: _tzinfo | str | None) -> NaTType: ...
|
81 |
+
def tz_localize(
|
82 |
+
self,
|
83 |
+
tz: _tzinfo | str | None,
|
84 |
+
ambiguous: str = ...,
|
85 |
+
nonexistent: str = ...,
|
86 |
+
) -> NaTType: ...
|
87 |
+
def replace(
|
88 |
+
self,
|
89 |
+
year: int | None = ...,
|
90 |
+
month: int | None = ...,
|
91 |
+
day: int | None = ...,
|
92 |
+
hour: int | None = ...,
|
93 |
+
minute: int | None = ...,
|
94 |
+
second: int | None = ...,
|
95 |
+
microsecond: int | None = ...,
|
96 |
+
nanosecond: int | None = ...,
|
97 |
+
tzinfo: _tzinfo | None = ...,
|
98 |
+
fold: int | None = ...,
|
99 |
+
) -> NaTType: ...
|
100 |
+
@property
|
101 |
+
def year(self) -> float: ...
|
102 |
+
@property
|
103 |
+
def quarter(self) -> float: ...
|
104 |
+
@property
|
105 |
+
def month(self) -> float: ...
|
106 |
+
@property
|
107 |
+
def day(self) -> float: ...
|
108 |
+
@property
|
109 |
+
def hour(self) -> float: ...
|
110 |
+
@property
|
111 |
+
def minute(self) -> float: ...
|
112 |
+
@property
|
113 |
+
def second(self) -> float: ...
|
114 |
+
@property
|
115 |
+
def millisecond(self) -> float: ...
|
116 |
+
@property
|
117 |
+
def microsecond(self) -> float: ...
|
118 |
+
@property
|
119 |
+
def nanosecond(self) -> float: ...
|
120 |
+
# inject Timedelta properties
|
121 |
+
@property
|
122 |
+
def days(self) -> float: ...
|
123 |
+
@property
|
124 |
+
def microseconds(self) -> float: ...
|
125 |
+
@property
|
126 |
+
def nanoseconds(self) -> float: ...
|
127 |
+
# inject Period properties
|
128 |
+
@property
|
129 |
+
def qyear(self) -> float: ...
|
130 |
+
def __eq__(self, other: object) -> bool: ...
|
131 |
+
def __ne__(self, other: object) -> bool: ...
|
132 |
+
__lt__: _NatComparison
|
133 |
+
__le__: _NatComparison
|
134 |
+
__gt__: _NatComparison
|
135 |
+
__ge__: _NatComparison
|
136 |
+
def __sub__(self, other: Self | timedelta | datetime) -> Self: ...
|
137 |
+
def __rsub__(self, other: Self | timedelta | datetime) -> Self: ...
|
138 |
+
def __add__(self, other: Self | timedelta | datetime) -> Self: ...
|
139 |
+
def __radd__(self, other: Self | timedelta | datetime) -> Self: ...
|
140 |
+
def __hash__(self) -> int: ...
|
141 |
+
def as_unit(self, unit: str, round_ok: bool = ...) -> NaTType: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/np_datetime.pyi
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from pandas._typing import npt
|
4 |
+
|
5 |
+
class OutOfBoundsDatetime(ValueError): ...
|
6 |
+
class OutOfBoundsTimedelta(ValueError): ...
|
7 |
+
|
8 |
+
# only exposed for testing
|
9 |
+
def py_get_unit_from_dtype(dtype: np.dtype): ...
|
10 |
+
def py_td64_to_tdstruct(td64: int, unit: int) -> dict: ...
|
11 |
+
def astype_overflowsafe(
|
12 |
+
values: np.ndarray,
|
13 |
+
dtype: np.dtype,
|
14 |
+
copy: bool = ...,
|
15 |
+
round_ok: bool = ...,
|
16 |
+
is_coerce: bool = ...,
|
17 |
+
) -> np.ndarray: ...
|
18 |
+
def is_unitless(dtype: np.dtype) -> bool: ...
|
19 |
+
def compare_mismatched_resolutions(
|
20 |
+
left: np.ndarray, right: np.ndarray, op
|
21 |
+
) -> npt.NDArray[np.bool_]: ...
|
22 |
+
def add_overflowsafe(
|
23 |
+
left: npt.NDArray[np.int64],
|
24 |
+
right: npt.NDArray[np.int64],
|
25 |
+
) -> npt.NDArray[np.int64]: ...
|
26 |
+
def get_supported_dtype(dtype: np.dtype) -> np.dtype: ...
|
27 |
+
def is_supported_dtype(dtype: np.dtype) -> bool: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/offsets.pyi
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import (
|
2 |
+
datetime,
|
3 |
+
time,
|
4 |
+
timedelta,
|
5 |
+
)
|
6 |
+
from typing import (
|
7 |
+
Any,
|
8 |
+
Collection,
|
9 |
+
Literal,
|
10 |
+
TypeVar,
|
11 |
+
overload,
|
12 |
+
)
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
from pandas._libs.tslibs.nattype import NaTType
|
17 |
+
from pandas._typing import (
|
18 |
+
OffsetCalendar,
|
19 |
+
Self,
|
20 |
+
npt,
|
21 |
+
)
|
22 |
+
|
23 |
+
from .timedeltas import Timedelta
|
24 |
+
|
25 |
+
_BaseOffsetT = TypeVar("_BaseOffsetT", bound=BaseOffset)
|
26 |
+
_DatetimeT = TypeVar("_DatetimeT", bound=datetime)
|
27 |
+
_TimedeltaT = TypeVar("_TimedeltaT", bound=timedelta)
|
28 |
+
|
29 |
+
_relativedelta_kwds: set[str]
|
30 |
+
prefix_mapping: dict[str, type]
|
31 |
+
|
32 |
+
class ApplyTypeError(TypeError): ...
|
33 |
+
|
34 |
+
class BaseOffset:
|
35 |
+
n: int
|
36 |
+
normalize: bool
|
37 |
+
def __init__(self, n: int = ..., normalize: bool = ...) -> None: ...
|
38 |
+
def __eq__(self, other) -> bool: ...
|
39 |
+
def __ne__(self, other) -> bool: ...
|
40 |
+
def __hash__(self) -> int: ...
|
41 |
+
@property
|
42 |
+
def kwds(self) -> dict: ...
|
43 |
+
@property
|
44 |
+
def base(self) -> BaseOffset: ...
|
45 |
+
@overload
|
46 |
+
def __add__(self, other: npt.NDArray[np.object_]) -> npt.NDArray[np.object_]: ...
|
47 |
+
@overload
|
48 |
+
def __add__(self, other: BaseOffset) -> Self: ...
|
49 |
+
@overload
|
50 |
+
def __add__(self, other: _DatetimeT) -> _DatetimeT: ...
|
51 |
+
@overload
|
52 |
+
def __add__(self, other: _TimedeltaT) -> _TimedeltaT: ...
|
53 |
+
@overload
|
54 |
+
def __radd__(self, other: npt.NDArray[np.object_]) -> npt.NDArray[np.object_]: ...
|
55 |
+
@overload
|
56 |
+
def __radd__(self, other: BaseOffset) -> Self: ...
|
57 |
+
@overload
|
58 |
+
def __radd__(self, other: _DatetimeT) -> _DatetimeT: ...
|
59 |
+
@overload
|
60 |
+
def __radd__(self, other: _TimedeltaT) -> _TimedeltaT: ...
|
61 |
+
@overload
|
62 |
+
def __radd__(self, other: NaTType) -> NaTType: ...
|
63 |
+
def __sub__(self, other: BaseOffset) -> Self: ...
|
64 |
+
@overload
|
65 |
+
def __rsub__(self, other: npt.NDArray[np.object_]) -> npt.NDArray[np.object_]: ...
|
66 |
+
@overload
|
67 |
+
def __rsub__(self, other: BaseOffset): ...
|
68 |
+
@overload
|
69 |
+
def __rsub__(self, other: _DatetimeT) -> _DatetimeT: ...
|
70 |
+
@overload
|
71 |
+
def __rsub__(self, other: _TimedeltaT) -> _TimedeltaT: ...
|
72 |
+
@overload
|
73 |
+
def __mul__(self, other: np.ndarray) -> np.ndarray: ...
|
74 |
+
@overload
|
75 |
+
def __mul__(self, other: int): ...
|
76 |
+
@overload
|
77 |
+
def __rmul__(self, other: np.ndarray) -> np.ndarray: ...
|
78 |
+
@overload
|
79 |
+
def __rmul__(self, other: int) -> Self: ...
|
80 |
+
def __neg__(self) -> Self: ...
|
81 |
+
def copy(self) -> Self: ...
|
82 |
+
@property
|
83 |
+
def name(self) -> str: ...
|
84 |
+
@property
|
85 |
+
def rule_code(self) -> str: ...
|
86 |
+
@property
|
87 |
+
def freqstr(self) -> str: ...
|
88 |
+
def _apply(self, other): ...
|
89 |
+
def _apply_array(self, dtarr: np.ndarray) -> np.ndarray: ...
|
90 |
+
def rollback(self, dt: datetime) -> datetime: ...
|
91 |
+
def rollforward(self, dt: datetime) -> datetime: ...
|
92 |
+
def is_on_offset(self, dt: datetime) -> bool: ...
|
93 |
+
def __setstate__(self, state) -> None: ...
|
94 |
+
def __getstate__(self): ...
|
95 |
+
@property
|
96 |
+
def nanos(self) -> int: ...
|
97 |
+
def is_anchored(self) -> bool: ...
|
98 |
+
|
99 |
+
def _get_offset(name: str) -> BaseOffset: ...
|
100 |
+
|
101 |
+
class SingleConstructorOffset(BaseOffset):
|
102 |
+
@classmethod
|
103 |
+
def _from_name(cls, suffix: None = ...): ...
|
104 |
+
def __reduce__(self): ...
|
105 |
+
|
106 |
+
@overload
|
107 |
+
def to_offset(freq: None, is_period: bool = ...) -> None: ...
|
108 |
+
@overload
|
109 |
+
def to_offset(freq: _BaseOffsetT, is_period: bool = ...) -> _BaseOffsetT: ...
|
110 |
+
@overload
|
111 |
+
def to_offset(freq: timedelta | str, is_period: bool = ...) -> BaseOffset: ...
|
112 |
+
|
113 |
+
class Tick(SingleConstructorOffset):
|
114 |
+
_creso: int
|
115 |
+
_prefix: str
|
116 |
+
def __init__(self, n: int = ..., normalize: bool = ...) -> None: ...
|
117 |
+
@property
|
118 |
+
def delta(self) -> Timedelta: ...
|
119 |
+
@property
|
120 |
+
def nanos(self) -> int: ...
|
121 |
+
|
122 |
+
def delta_to_tick(delta: timedelta) -> Tick: ...
|
123 |
+
|
124 |
+
class Day(Tick): ...
|
125 |
+
class Hour(Tick): ...
|
126 |
+
class Minute(Tick): ...
|
127 |
+
class Second(Tick): ...
|
128 |
+
class Milli(Tick): ...
|
129 |
+
class Micro(Tick): ...
|
130 |
+
class Nano(Tick): ...
|
131 |
+
|
132 |
+
class RelativeDeltaOffset(BaseOffset):
|
133 |
+
def __init__(self, n: int = ..., normalize: bool = ..., **kwds: Any) -> None: ...
|
134 |
+
|
135 |
+
class BusinessMixin(SingleConstructorOffset):
|
136 |
+
def __init__(
|
137 |
+
self, n: int = ..., normalize: bool = ..., offset: timedelta = ...
|
138 |
+
) -> None: ...
|
139 |
+
|
140 |
+
class BusinessDay(BusinessMixin): ...
|
141 |
+
|
142 |
+
class BusinessHour(BusinessMixin):
|
143 |
+
def __init__(
|
144 |
+
self,
|
145 |
+
n: int = ...,
|
146 |
+
normalize: bool = ...,
|
147 |
+
start: str | time | Collection[str | time] = ...,
|
148 |
+
end: str | time | Collection[str | time] = ...,
|
149 |
+
offset: timedelta = ...,
|
150 |
+
) -> None: ...
|
151 |
+
|
152 |
+
class WeekOfMonthMixin(SingleConstructorOffset):
|
153 |
+
def __init__(
|
154 |
+
self, n: int = ..., normalize: bool = ..., weekday: int = ...
|
155 |
+
) -> None: ...
|
156 |
+
|
157 |
+
class YearOffset(SingleConstructorOffset):
|
158 |
+
def __init__(
|
159 |
+
self, n: int = ..., normalize: bool = ..., month: int | None = ...
|
160 |
+
) -> None: ...
|
161 |
+
|
162 |
+
class BYearEnd(YearOffset): ...
|
163 |
+
class BYearBegin(YearOffset): ...
|
164 |
+
class YearEnd(YearOffset): ...
|
165 |
+
class YearBegin(YearOffset): ...
|
166 |
+
|
167 |
+
class QuarterOffset(SingleConstructorOffset):
|
168 |
+
def __init__(
|
169 |
+
self, n: int = ..., normalize: bool = ..., startingMonth: int | None = ...
|
170 |
+
) -> None: ...
|
171 |
+
|
172 |
+
class BQuarterEnd(QuarterOffset): ...
|
173 |
+
class BQuarterBegin(QuarterOffset): ...
|
174 |
+
class QuarterEnd(QuarterOffset): ...
|
175 |
+
class QuarterBegin(QuarterOffset): ...
|
176 |
+
class MonthOffset(SingleConstructorOffset): ...
|
177 |
+
class MonthEnd(MonthOffset): ...
|
178 |
+
class MonthBegin(MonthOffset): ...
|
179 |
+
class BusinessMonthEnd(MonthOffset): ...
|
180 |
+
class BusinessMonthBegin(MonthOffset): ...
|
181 |
+
|
182 |
+
class SemiMonthOffset(SingleConstructorOffset):
|
183 |
+
def __init__(
|
184 |
+
self, n: int = ..., normalize: bool = ..., day_of_month: int | None = ...
|
185 |
+
) -> None: ...
|
186 |
+
|
187 |
+
class SemiMonthEnd(SemiMonthOffset): ...
|
188 |
+
class SemiMonthBegin(SemiMonthOffset): ...
|
189 |
+
|
190 |
+
class Week(SingleConstructorOffset):
|
191 |
+
def __init__(
|
192 |
+
self, n: int = ..., normalize: bool = ..., weekday: int | None = ...
|
193 |
+
) -> None: ...
|
194 |
+
|
195 |
+
class WeekOfMonth(WeekOfMonthMixin):
|
196 |
+
def __init__(
|
197 |
+
self, n: int = ..., normalize: bool = ..., week: int = ..., weekday: int = ...
|
198 |
+
) -> None: ...
|
199 |
+
|
200 |
+
class LastWeekOfMonth(WeekOfMonthMixin): ...
|
201 |
+
|
202 |
+
class FY5253Mixin(SingleConstructorOffset):
|
203 |
+
def __init__(
|
204 |
+
self,
|
205 |
+
n: int = ...,
|
206 |
+
normalize: bool = ...,
|
207 |
+
weekday: int = ...,
|
208 |
+
startingMonth: int = ...,
|
209 |
+
variation: Literal["nearest", "last"] = ...,
|
210 |
+
) -> None: ...
|
211 |
+
|
212 |
+
class FY5253(FY5253Mixin): ...
|
213 |
+
|
214 |
+
class FY5253Quarter(FY5253Mixin):
|
215 |
+
def __init__(
|
216 |
+
self,
|
217 |
+
n: int = ...,
|
218 |
+
normalize: bool = ...,
|
219 |
+
weekday: int = ...,
|
220 |
+
startingMonth: int = ...,
|
221 |
+
qtr_with_extra_week: int = ...,
|
222 |
+
variation: Literal["nearest", "last"] = ...,
|
223 |
+
) -> None: ...
|
224 |
+
|
225 |
+
class Easter(SingleConstructorOffset): ...
|
226 |
+
|
227 |
+
class _CustomBusinessMonth(BusinessMixin):
|
228 |
+
def __init__(
|
229 |
+
self,
|
230 |
+
n: int = ...,
|
231 |
+
normalize: bool = ...,
|
232 |
+
weekmask: str = ...,
|
233 |
+
holidays: list | None = ...,
|
234 |
+
calendar: OffsetCalendar | None = ...,
|
235 |
+
offset: timedelta = ...,
|
236 |
+
) -> None: ...
|
237 |
+
|
238 |
+
class CustomBusinessDay(BusinessDay):
|
239 |
+
def __init__(
|
240 |
+
self,
|
241 |
+
n: int = ...,
|
242 |
+
normalize: bool = ...,
|
243 |
+
weekmask: str = ...,
|
244 |
+
holidays: list | None = ...,
|
245 |
+
calendar: OffsetCalendar | None = ...,
|
246 |
+
offset: timedelta = ...,
|
247 |
+
) -> None: ...
|
248 |
+
|
249 |
+
class CustomBusinessHour(BusinessHour):
|
250 |
+
def __init__(
|
251 |
+
self,
|
252 |
+
n: int = ...,
|
253 |
+
normalize: bool = ...,
|
254 |
+
weekmask: str = ...,
|
255 |
+
holidays: list | None = ...,
|
256 |
+
calendar: OffsetCalendar | None = ...,
|
257 |
+
start: str | time | Collection[str | time] = ...,
|
258 |
+
end: str | time | Collection[str | time] = ...,
|
259 |
+
offset: timedelta = ...,
|
260 |
+
) -> None: ...
|
261 |
+
|
262 |
+
class CustomBusinessMonthEnd(_CustomBusinessMonth): ...
|
263 |
+
class CustomBusinessMonthBegin(_CustomBusinessMonth): ...
|
264 |
+
class OffsetMeta(type): ...
|
265 |
+
class DateOffset(RelativeDeltaOffset, metaclass=OffsetMeta): ...
|
266 |
+
|
267 |
+
BDay = BusinessDay
|
268 |
+
BMonthEnd = BusinessMonthEnd
|
269 |
+
BMonthBegin = BusinessMonthBegin
|
270 |
+
CBMonthEnd = CustomBusinessMonthEnd
|
271 |
+
CBMonthBegin = CustomBusinessMonthBegin
|
272 |
+
CDay = CustomBusinessDay
|
273 |
+
|
274 |
+
def roll_qtrday(
|
275 |
+
other: datetime, n: int, month: int, day_opt: str, modby: int
|
276 |
+
) -> int: ...
|
277 |
+
|
278 |
+
INVALID_FREQ_ERR_MSG: Literal["Invalid frequency: {0}"]
|
279 |
+
|
280 |
+
def shift_months(
|
281 |
+
dtindex: npt.NDArray[np.int64],
|
282 |
+
months: int,
|
283 |
+
day_opt: str | None = ...,
|
284 |
+
reso: int = ...,
|
285 |
+
) -> npt.NDArray[np.int64]: ...
|
286 |
+
|
287 |
+
_offset_map: dict[str, BaseOffset]
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/parsing.pyi
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from pandas._typing import npt
|
6 |
+
|
7 |
+
class DateParseError(ValueError): ...
|
8 |
+
|
9 |
+
def py_parse_datetime_string(
|
10 |
+
date_string: str,
|
11 |
+
dayfirst: bool = ...,
|
12 |
+
yearfirst: bool = ...,
|
13 |
+
) -> datetime: ...
|
14 |
+
def parse_datetime_string_with_reso(
|
15 |
+
date_string: str,
|
16 |
+
freq: str | None = ...,
|
17 |
+
dayfirst: bool | None = ...,
|
18 |
+
yearfirst: bool | None = ...,
|
19 |
+
) -> tuple[datetime, str]: ...
|
20 |
+
def _does_string_look_like_datetime(py_string: str) -> bool: ...
|
21 |
+
def quarter_to_myear(year: int, quarter: int, freq: str) -> tuple[int, int]: ...
|
22 |
+
def try_parse_dates(
|
23 |
+
values: npt.NDArray[np.object_], # object[:]
|
24 |
+
parser,
|
25 |
+
) -> npt.NDArray[np.object_]: ...
|
26 |
+
def guess_datetime_format(
|
27 |
+
dt_str: str,
|
28 |
+
dayfirst: bool | None = ...,
|
29 |
+
) -> str | None: ...
|
30 |
+
def concat_date_cols(
|
31 |
+
date_cols: tuple,
|
32 |
+
) -> npt.NDArray[np.object_]: ...
|
33 |
+
def get_rule_month(source: str) -> str: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/period.pyi
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import timedelta
|
2 |
+
from typing import Literal
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
from pandas._libs.tslibs.dtypes import PeriodDtypeBase
|
7 |
+
from pandas._libs.tslibs.nattype import NaTType
|
8 |
+
from pandas._libs.tslibs.offsets import BaseOffset
|
9 |
+
from pandas._libs.tslibs.timestamps import Timestamp
|
10 |
+
from pandas._typing import (
|
11 |
+
Frequency,
|
12 |
+
npt,
|
13 |
+
)
|
14 |
+
|
15 |
+
INVALID_FREQ_ERR_MSG: str
|
16 |
+
DIFFERENT_FREQ: str
|
17 |
+
|
18 |
+
class IncompatibleFrequency(ValueError): ...
|
19 |
+
|
20 |
+
def periodarr_to_dt64arr(
|
21 |
+
periodarr: npt.NDArray[np.int64], # const int64_t[:]
|
22 |
+
freq: int,
|
23 |
+
) -> npt.NDArray[np.int64]: ...
|
24 |
+
def period_asfreq_arr(
|
25 |
+
arr: npt.NDArray[np.int64],
|
26 |
+
freq1: int,
|
27 |
+
freq2: int,
|
28 |
+
end: bool,
|
29 |
+
) -> npt.NDArray[np.int64]: ...
|
30 |
+
def get_period_field_arr(
|
31 |
+
field: str,
|
32 |
+
arr: npt.NDArray[np.int64], # const int64_t[:]
|
33 |
+
freq: int,
|
34 |
+
) -> npt.NDArray[np.int64]: ...
|
35 |
+
def from_ordinals(
|
36 |
+
values: npt.NDArray[np.int64], # const int64_t[:]
|
37 |
+
freq: timedelta | BaseOffset | str,
|
38 |
+
) -> npt.NDArray[np.int64]: ...
|
39 |
+
def extract_ordinals(
|
40 |
+
values: npt.NDArray[np.object_],
|
41 |
+
freq: Frequency | int,
|
42 |
+
) -> npt.NDArray[np.int64]: ...
|
43 |
+
def extract_freq(
|
44 |
+
values: npt.NDArray[np.object_],
|
45 |
+
) -> BaseOffset: ...
|
46 |
+
def period_array_strftime(
|
47 |
+
values: npt.NDArray[np.int64],
|
48 |
+
dtype_code: int,
|
49 |
+
na_rep,
|
50 |
+
date_format: str | None,
|
51 |
+
) -> npt.NDArray[np.object_]: ...
|
52 |
+
|
53 |
+
# exposed for tests
|
54 |
+
def period_asfreq(ordinal: int, freq1: int, freq2: int, end: bool) -> int: ...
|
55 |
+
def period_ordinal(
|
56 |
+
y: int, m: int, d: int, h: int, min: int, s: int, us: int, ps: int, freq: int
|
57 |
+
) -> int: ...
|
58 |
+
def freq_to_dtype_code(freq: BaseOffset) -> int: ...
|
59 |
+
def validate_end_alias(how: str) -> Literal["E", "S"]: ...
|
60 |
+
|
61 |
+
class PeriodMixin:
|
62 |
+
@property
|
63 |
+
def end_time(self) -> Timestamp: ...
|
64 |
+
@property
|
65 |
+
def start_time(self) -> Timestamp: ...
|
66 |
+
def _require_matching_freq(self, other: BaseOffset, base: bool = ...) -> None: ...
|
67 |
+
|
68 |
+
class Period(PeriodMixin):
|
69 |
+
ordinal: int # int64_t
|
70 |
+
freq: BaseOffset
|
71 |
+
_dtype: PeriodDtypeBase
|
72 |
+
|
73 |
+
# error: "__new__" must return a class instance (got "Union[Period, NaTType]")
|
74 |
+
def __new__( # type: ignore[misc]
|
75 |
+
cls,
|
76 |
+
value=...,
|
77 |
+
freq: int | str | BaseOffset | None = ...,
|
78 |
+
ordinal: int | None = ...,
|
79 |
+
year: int | None = ...,
|
80 |
+
month: int | None = ...,
|
81 |
+
quarter: int | None = ...,
|
82 |
+
day: int | None = ...,
|
83 |
+
hour: int | None = ...,
|
84 |
+
minute: int | None = ...,
|
85 |
+
second: int | None = ...,
|
86 |
+
) -> Period | NaTType: ...
|
87 |
+
@classmethod
|
88 |
+
def _maybe_convert_freq(cls, freq) -> BaseOffset: ...
|
89 |
+
@classmethod
|
90 |
+
def _from_ordinal(cls, ordinal: int, freq: BaseOffset) -> Period: ...
|
91 |
+
@classmethod
|
92 |
+
def now(cls, freq: Frequency) -> Period: ...
|
93 |
+
def strftime(self, fmt: str | None) -> str: ...
|
94 |
+
def to_timestamp(
|
95 |
+
self,
|
96 |
+
freq: str | BaseOffset | None = ...,
|
97 |
+
how: str = ...,
|
98 |
+
) -> Timestamp: ...
|
99 |
+
def asfreq(self, freq: str | BaseOffset, how: str = ...) -> Period: ...
|
100 |
+
@property
|
101 |
+
def freqstr(self) -> str: ...
|
102 |
+
@property
|
103 |
+
def is_leap_year(self) -> bool: ...
|
104 |
+
@property
|
105 |
+
def daysinmonth(self) -> int: ...
|
106 |
+
@property
|
107 |
+
def days_in_month(self) -> int: ...
|
108 |
+
@property
|
109 |
+
def qyear(self) -> int: ...
|
110 |
+
@property
|
111 |
+
def quarter(self) -> int: ...
|
112 |
+
@property
|
113 |
+
def day_of_year(self) -> int: ...
|
114 |
+
@property
|
115 |
+
def weekday(self) -> int: ...
|
116 |
+
@property
|
117 |
+
def day_of_week(self) -> int: ...
|
118 |
+
@property
|
119 |
+
def week(self) -> int: ...
|
120 |
+
@property
|
121 |
+
def weekofyear(self) -> int: ...
|
122 |
+
@property
|
123 |
+
def second(self) -> int: ...
|
124 |
+
@property
|
125 |
+
def minute(self) -> int: ...
|
126 |
+
@property
|
127 |
+
def hour(self) -> int: ...
|
128 |
+
@property
|
129 |
+
def day(self) -> int: ...
|
130 |
+
@property
|
131 |
+
def month(self) -> int: ...
|
132 |
+
@property
|
133 |
+
def year(self) -> int: ...
|
134 |
+
def __sub__(self, other) -> Period | BaseOffset: ...
|
135 |
+
def __add__(self, other) -> Period: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/strptime.pyi
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from pandas._typing import npt
|
4 |
+
|
5 |
+
def array_strptime(
|
6 |
+
values: npt.NDArray[np.object_],
|
7 |
+
fmt: str | None,
|
8 |
+
exact: bool = ...,
|
9 |
+
errors: str = ...,
|
10 |
+
utc: bool = ...,
|
11 |
+
creso: int = ..., # NPY_DATETIMEUNIT
|
12 |
+
) -> tuple[np.ndarray, np.ndarray]: ...
|
13 |
+
|
14 |
+
# first ndarray is M8[ns], second is object ndarray of tzinfo | None
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/timedeltas.pyi
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import timedelta
|
2 |
+
from typing import (
|
3 |
+
ClassVar,
|
4 |
+
Literal,
|
5 |
+
TypeAlias,
|
6 |
+
TypeVar,
|
7 |
+
overload,
|
8 |
+
)
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
from pandas._libs.tslibs import (
|
13 |
+
NaTType,
|
14 |
+
Tick,
|
15 |
+
)
|
16 |
+
from pandas._typing import (
|
17 |
+
Frequency,
|
18 |
+
Self,
|
19 |
+
npt,
|
20 |
+
)
|
21 |
+
|
22 |
+
# This should be kept consistent with the keys in the dict timedelta_abbrevs
|
23 |
+
# in pandas/_libs/tslibs/timedeltas.pyx
|
24 |
+
UnitChoices: TypeAlias = Literal[
|
25 |
+
"Y",
|
26 |
+
"y",
|
27 |
+
"M",
|
28 |
+
"W",
|
29 |
+
"w",
|
30 |
+
"D",
|
31 |
+
"d",
|
32 |
+
"days",
|
33 |
+
"day",
|
34 |
+
"hours",
|
35 |
+
"hour",
|
36 |
+
"hr",
|
37 |
+
"h",
|
38 |
+
"m",
|
39 |
+
"minute",
|
40 |
+
"min",
|
41 |
+
"minutes",
|
42 |
+
"T",
|
43 |
+
"t",
|
44 |
+
"s",
|
45 |
+
"seconds",
|
46 |
+
"sec",
|
47 |
+
"second",
|
48 |
+
"ms",
|
49 |
+
"milliseconds",
|
50 |
+
"millisecond",
|
51 |
+
"milli",
|
52 |
+
"millis",
|
53 |
+
"L",
|
54 |
+
"l",
|
55 |
+
"us",
|
56 |
+
"microseconds",
|
57 |
+
"microsecond",
|
58 |
+
"µs",
|
59 |
+
"micro",
|
60 |
+
"micros",
|
61 |
+
"u",
|
62 |
+
"ns",
|
63 |
+
"nanoseconds",
|
64 |
+
"nano",
|
65 |
+
"nanos",
|
66 |
+
"nanosecond",
|
67 |
+
"n",
|
68 |
+
]
|
69 |
+
_S = TypeVar("_S", bound=timedelta)
|
70 |
+
|
71 |
+
def get_unit_for_round(freq, creso: int) -> int: ...
|
72 |
+
def disallow_ambiguous_unit(unit: str | None) -> None: ...
|
73 |
+
def ints_to_pytimedelta(
|
74 |
+
m8values: npt.NDArray[np.timedelta64],
|
75 |
+
box: bool = ...,
|
76 |
+
) -> npt.NDArray[np.object_]: ...
|
77 |
+
def array_to_timedelta64(
|
78 |
+
values: npt.NDArray[np.object_],
|
79 |
+
unit: str | None = ...,
|
80 |
+
errors: str = ...,
|
81 |
+
) -> np.ndarray: ... # np.ndarray[m8ns]
|
82 |
+
def parse_timedelta_unit(unit: str | None) -> UnitChoices: ...
|
83 |
+
def delta_to_nanoseconds(
|
84 |
+
delta: np.timedelta64 | timedelta | Tick,
|
85 |
+
reso: int = ..., # NPY_DATETIMEUNIT
|
86 |
+
round_ok: bool = ...,
|
87 |
+
) -> int: ...
|
88 |
+
def floordiv_object_array(
|
89 |
+
left: np.ndarray, right: npt.NDArray[np.object_]
|
90 |
+
) -> np.ndarray: ...
|
91 |
+
def truediv_object_array(
|
92 |
+
left: np.ndarray, right: npt.NDArray[np.object_]
|
93 |
+
) -> np.ndarray: ...
|
94 |
+
|
95 |
+
class Timedelta(timedelta):
|
96 |
+
_creso: int
|
97 |
+
min: ClassVar[Timedelta]
|
98 |
+
max: ClassVar[Timedelta]
|
99 |
+
resolution: ClassVar[Timedelta]
|
100 |
+
value: int # np.int64
|
101 |
+
_value: int # np.int64
|
102 |
+
# error: "__new__" must return a class instance (got "Union[Timestamp, NaTType]")
|
103 |
+
def __new__( # type: ignore[misc]
|
104 |
+
cls: type[_S],
|
105 |
+
value=...,
|
106 |
+
unit: str | None = ...,
|
107 |
+
**kwargs: float | np.integer | np.floating,
|
108 |
+
) -> _S | NaTType: ...
|
109 |
+
@classmethod
|
110 |
+
def _from_value_and_reso(cls, value: np.int64, reso: int) -> Timedelta: ...
|
111 |
+
@property
|
112 |
+
def days(self) -> int: ...
|
113 |
+
@property
|
114 |
+
def seconds(self) -> int: ...
|
115 |
+
@property
|
116 |
+
def microseconds(self) -> int: ...
|
117 |
+
def total_seconds(self) -> float: ...
|
118 |
+
def to_pytimedelta(self) -> timedelta: ...
|
119 |
+
def to_timedelta64(self) -> np.timedelta64: ...
|
120 |
+
@property
|
121 |
+
def asm8(self) -> np.timedelta64: ...
|
122 |
+
# TODO: round/floor/ceil could return NaT?
|
123 |
+
def round(self, freq: Frequency) -> Self: ...
|
124 |
+
def floor(self, freq: Frequency) -> Self: ...
|
125 |
+
def ceil(self, freq: Frequency) -> Self: ...
|
126 |
+
@property
|
127 |
+
def resolution_string(self) -> str: ...
|
128 |
+
def __add__(self, other: timedelta) -> Timedelta: ...
|
129 |
+
def __radd__(self, other: timedelta) -> Timedelta: ...
|
130 |
+
def __sub__(self, other: timedelta) -> Timedelta: ...
|
131 |
+
def __rsub__(self, other: timedelta) -> Timedelta: ...
|
132 |
+
def __neg__(self) -> Timedelta: ...
|
133 |
+
def __pos__(self) -> Timedelta: ...
|
134 |
+
def __abs__(self) -> Timedelta: ...
|
135 |
+
def __mul__(self, other: float) -> Timedelta: ...
|
136 |
+
def __rmul__(self, other: float) -> Timedelta: ...
|
137 |
+
# error: Signature of "__floordiv__" incompatible with supertype "timedelta"
|
138 |
+
@overload # type: ignore[override]
|
139 |
+
def __floordiv__(self, other: timedelta) -> int: ...
|
140 |
+
@overload
|
141 |
+
def __floordiv__(self, other: float) -> Timedelta: ...
|
142 |
+
@overload
|
143 |
+
def __floordiv__(
|
144 |
+
self, other: npt.NDArray[np.timedelta64]
|
145 |
+
) -> npt.NDArray[np.intp]: ...
|
146 |
+
@overload
|
147 |
+
def __floordiv__(
|
148 |
+
self, other: npt.NDArray[np.number]
|
149 |
+
) -> npt.NDArray[np.timedelta64] | Timedelta: ...
|
150 |
+
@overload
|
151 |
+
def __rfloordiv__(self, other: timedelta | str) -> int: ...
|
152 |
+
@overload
|
153 |
+
def __rfloordiv__(self, other: None | NaTType) -> NaTType: ...
|
154 |
+
@overload
|
155 |
+
def __rfloordiv__(self, other: np.ndarray) -> npt.NDArray[np.timedelta64]: ...
|
156 |
+
@overload
|
157 |
+
def __truediv__(self, other: timedelta) -> float: ...
|
158 |
+
@overload
|
159 |
+
def __truediv__(self, other: float) -> Timedelta: ...
|
160 |
+
def __mod__(self, other: timedelta) -> Timedelta: ...
|
161 |
+
def __divmod__(self, other: timedelta) -> tuple[int, Timedelta]: ...
|
162 |
+
def __le__(self, other: timedelta) -> bool: ...
|
163 |
+
def __lt__(self, other: timedelta) -> bool: ...
|
164 |
+
def __ge__(self, other: timedelta) -> bool: ...
|
165 |
+
def __gt__(self, other: timedelta) -> bool: ...
|
166 |
+
def __hash__(self) -> int: ...
|
167 |
+
def isoformat(self) -> str: ...
|
168 |
+
def to_numpy(
|
169 |
+
self, dtype: npt.DTypeLike = ..., copy: bool = False
|
170 |
+
) -> np.timedelta64: ...
|
171 |
+
def view(self, dtype: npt.DTypeLike) -> object: ...
|
172 |
+
@property
|
173 |
+
def unit(self) -> str: ...
|
174 |
+
def as_unit(self, unit: str, round_ok: bool = ...) -> Timedelta: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/timestamps.pyi
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import (
|
2 |
+
date as _date,
|
3 |
+
datetime,
|
4 |
+
time as _time,
|
5 |
+
timedelta,
|
6 |
+
tzinfo as _tzinfo,
|
7 |
+
)
|
8 |
+
from time import struct_time
|
9 |
+
from typing import (
|
10 |
+
ClassVar,
|
11 |
+
Literal,
|
12 |
+
TypeAlias,
|
13 |
+
overload,
|
14 |
+
)
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
|
18 |
+
from pandas._libs.tslibs import (
|
19 |
+
BaseOffset,
|
20 |
+
NaTType,
|
21 |
+
Period,
|
22 |
+
Tick,
|
23 |
+
Timedelta,
|
24 |
+
)
|
25 |
+
from pandas._typing import (
|
26 |
+
Self,
|
27 |
+
TimestampNonexistent,
|
28 |
+
)
|
29 |
+
|
30 |
+
_TimeZones: TypeAlias = str | _tzinfo | None | int
|
31 |
+
|
32 |
+
def integer_op_not_supported(obj: object) -> TypeError: ...
|
33 |
+
|
34 |
+
class Timestamp(datetime):
|
35 |
+
_creso: int
|
36 |
+
min: ClassVar[Timestamp]
|
37 |
+
max: ClassVar[Timestamp]
|
38 |
+
|
39 |
+
resolution: ClassVar[Timedelta]
|
40 |
+
_value: int # np.int64
|
41 |
+
# error: "__new__" must return a class instance (got "Union[Timestamp, NaTType]")
|
42 |
+
def __new__( # type: ignore[misc]
|
43 |
+
cls: type[Self],
|
44 |
+
ts_input: np.integer | float | str | _date | datetime | np.datetime64 = ...,
|
45 |
+
year: int | None = ...,
|
46 |
+
month: int | None = ...,
|
47 |
+
day: int | None = ...,
|
48 |
+
hour: int | None = ...,
|
49 |
+
minute: int | None = ...,
|
50 |
+
second: int | None = ...,
|
51 |
+
microsecond: int | None = ...,
|
52 |
+
tzinfo: _tzinfo | None = ...,
|
53 |
+
*,
|
54 |
+
nanosecond: int | None = ...,
|
55 |
+
tz: _TimeZones = ...,
|
56 |
+
unit: str | int | None = ...,
|
57 |
+
fold: int | None = ...,
|
58 |
+
) -> Self | NaTType: ...
|
59 |
+
@classmethod
|
60 |
+
def _from_value_and_reso(
|
61 |
+
cls, value: int, reso: int, tz: _TimeZones
|
62 |
+
) -> Timestamp: ...
|
63 |
+
@property
|
64 |
+
def value(self) -> int: ... # np.int64
|
65 |
+
@property
|
66 |
+
def year(self) -> int: ...
|
67 |
+
@property
|
68 |
+
def month(self) -> int: ...
|
69 |
+
@property
|
70 |
+
def day(self) -> int: ...
|
71 |
+
@property
|
72 |
+
def hour(self) -> int: ...
|
73 |
+
@property
|
74 |
+
def minute(self) -> int: ...
|
75 |
+
@property
|
76 |
+
def second(self) -> int: ...
|
77 |
+
@property
|
78 |
+
def microsecond(self) -> int: ...
|
79 |
+
@property
|
80 |
+
def nanosecond(self) -> int: ...
|
81 |
+
@property
|
82 |
+
def tzinfo(self) -> _tzinfo | None: ...
|
83 |
+
@property
|
84 |
+
def tz(self) -> _tzinfo | None: ...
|
85 |
+
@property
|
86 |
+
def fold(self) -> int: ...
|
87 |
+
@classmethod
|
88 |
+
def fromtimestamp(cls, ts: float, tz: _TimeZones = ...) -> Self: ...
|
89 |
+
@classmethod
|
90 |
+
def utcfromtimestamp(cls, ts: float) -> Self: ...
|
91 |
+
@classmethod
|
92 |
+
def today(cls, tz: _TimeZones = ...) -> Self: ...
|
93 |
+
@classmethod
|
94 |
+
def fromordinal(
|
95 |
+
cls,
|
96 |
+
ordinal: int,
|
97 |
+
tz: _TimeZones = ...,
|
98 |
+
) -> Self: ...
|
99 |
+
@classmethod
|
100 |
+
def now(cls, tz: _TimeZones = ...) -> Self: ...
|
101 |
+
@classmethod
|
102 |
+
def utcnow(cls) -> Self: ...
|
103 |
+
# error: Signature of "combine" incompatible with supertype "datetime"
|
104 |
+
@classmethod
|
105 |
+
def combine( # type: ignore[override]
|
106 |
+
cls, date: _date, time: _time
|
107 |
+
) -> datetime: ...
|
108 |
+
@classmethod
|
109 |
+
def fromisoformat(cls, date_string: str) -> Self: ...
|
110 |
+
def strftime(self, format: str) -> str: ...
|
111 |
+
def __format__(self, fmt: str) -> str: ...
|
112 |
+
def toordinal(self) -> int: ...
|
113 |
+
def timetuple(self) -> struct_time: ...
|
114 |
+
def timestamp(self) -> float: ...
|
115 |
+
def utctimetuple(self) -> struct_time: ...
|
116 |
+
def date(self) -> _date: ...
|
117 |
+
def time(self) -> _time: ...
|
118 |
+
def timetz(self) -> _time: ...
|
119 |
+
# LSP violation: nanosecond is not present in datetime.datetime.replace
|
120 |
+
# and has positional args following it
|
121 |
+
def replace( # type: ignore[override]
|
122 |
+
self,
|
123 |
+
year: int | None = ...,
|
124 |
+
month: int | None = ...,
|
125 |
+
day: int | None = ...,
|
126 |
+
hour: int | None = ...,
|
127 |
+
minute: int | None = ...,
|
128 |
+
second: int | None = ...,
|
129 |
+
microsecond: int | None = ...,
|
130 |
+
nanosecond: int | None = ...,
|
131 |
+
tzinfo: _tzinfo | type[object] | None = ...,
|
132 |
+
fold: int | None = ...,
|
133 |
+
) -> Self: ...
|
134 |
+
# LSP violation: datetime.datetime.astimezone has a default value for tz
|
135 |
+
def astimezone(self, tz: _TimeZones) -> Self: ... # type: ignore[override]
|
136 |
+
def ctime(self) -> str: ...
|
137 |
+
def isoformat(self, sep: str = ..., timespec: str = ...) -> str: ...
|
138 |
+
@classmethod
|
139 |
+
def strptime(
|
140 |
+
# Note: strptime is actually disabled and raises NotImplementedError
|
141 |
+
cls,
|
142 |
+
date_string: str,
|
143 |
+
format: str,
|
144 |
+
) -> Self: ...
|
145 |
+
def utcoffset(self) -> timedelta | None: ...
|
146 |
+
def tzname(self) -> str | None: ...
|
147 |
+
def dst(self) -> timedelta | None: ...
|
148 |
+
def __le__(self, other: datetime) -> bool: ... # type: ignore[override]
|
149 |
+
def __lt__(self, other: datetime) -> bool: ... # type: ignore[override]
|
150 |
+
def __ge__(self, other: datetime) -> bool: ... # type: ignore[override]
|
151 |
+
def __gt__(self, other: datetime) -> bool: ... # type: ignore[override]
|
152 |
+
# error: Signature of "__add__" incompatible with supertype "date"/"datetime"
|
153 |
+
@overload # type: ignore[override]
|
154 |
+
def __add__(self, other: np.ndarray) -> np.ndarray: ...
|
155 |
+
@overload
|
156 |
+
def __add__(self, other: timedelta | np.timedelta64 | Tick) -> Self: ...
|
157 |
+
def __radd__(self, other: timedelta) -> Self: ...
|
158 |
+
@overload # type: ignore[override]
|
159 |
+
def __sub__(self, other: datetime) -> Timedelta: ...
|
160 |
+
@overload
|
161 |
+
def __sub__(self, other: timedelta | np.timedelta64 | Tick) -> Self: ...
|
162 |
+
def __hash__(self) -> int: ...
|
163 |
+
def weekday(self) -> int: ...
|
164 |
+
def isoweekday(self) -> int: ...
|
165 |
+
# Return type "Tuple[int, int, int]" of "isocalendar" incompatible with return
|
166 |
+
# type "_IsoCalendarDate" in supertype "date"
|
167 |
+
def isocalendar(self) -> tuple[int, int, int]: ... # type: ignore[override]
|
168 |
+
@property
|
169 |
+
def is_leap_year(self) -> bool: ...
|
170 |
+
@property
|
171 |
+
def is_month_start(self) -> bool: ...
|
172 |
+
@property
|
173 |
+
def is_quarter_start(self) -> bool: ...
|
174 |
+
@property
|
175 |
+
def is_year_start(self) -> bool: ...
|
176 |
+
@property
|
177 |
+
def is_month_end(self) -> bool: ...
|
178 |
+
@property
|
179 |
+
def is_quarter_end(self) -> bool: ...
|
180 |
+
@property
|
181 |
+
def is_year_end(self) -> bool: ...
|
182 |
+
def to_pydatetime(self, warn: bool = ...) -> datetime: ...
|
183 |
+
def to_datetime64(self) -> np.datetime64: ...
|
184 |
+
def to_period(self, freq: BaseOffset | str | None = None) -> Period: ...
|
185 |
+
def to_julian_date(self) -> np.float64: ...
|
186 |
+
@property
|
187 |
+
def asm8(self) -> np.datetime64: ...
|
188 |
+
def tz_convert(self, tz: _TimeZones) -> Self: ...
|
189 |
+
# TODO: could return NaT?
|
190 |
+
def tz_localize(
|
191 |
+
self,
|
192 |
+
tz: _TimeZones,
|
193 |
+
ambiguous: bool | Literal["raise", "NaT"] = ...,
|
194 |
+
nonexistent: TimestampNonexistent = ...,
|
195 |
+
) -> Self: ...
|
196 |
+
def normalize(self) -> Self: ...
|
197 |
+
# TODO: round/floor/ceil could return NaT?
|
198 |
+
def round(
|
199 |
+
self,
|
200 |
+
freq: str,
|
201 |
+
ambiguous: bool | Literal["raise", "NaT"] = ...,
|
202 |
+
nonexistent: TimestampNonexistent = ...,
|
203 |
+
) -> Self: ...
|
204 |
+
def floor(
|
205 |
+
self,
|
206 |
+
freq: str,
|
207 |
+
ambiguous: bool | Literal["raise", "NaT"] = ...,
|
208 |
+
nonexistent: TimestampNonexistent = ...,
|
209 |
+
) -> Self: ...
|
210 |
+
def ceil(
|
211 |
+
self,
|
212 |
+
freq: str,
|
213 |
+
ambiguous: bool | Literal["raise", "NaT"] = ...,
|
214 |
+
nonexistent: TimestampNonexistent = ...,
|
215 |
+
) -> Self: ...
|
216 |
+
def day_name(self, locale: str | None = ...) -> str: ...
|
217 |
+
def month_name(self, locale: str | None = ...) -> str: ...
|
218 |
+
@property
|
219 |
+
def day_of_week(self) -> int: ...
|
220 |
+
@property
|
221 |
+
def dayofweek(self) -> int: ...
|
222 |
+
@property
|
223 |
+
def day_of_year(self) -> int: ...
|
224 |
+
@property
|
225 |
+
def dayofyear(self) -> int: ...
|
226 |
+
@property
|
227 |
+
def quarter(self) -> int: ...
|
228 |
+
@property
|
229 |
+
def week(self) -> int: ...
|
230 |
+
def to_numpy(
|
231 |
+
self, dtype: np.dtype | None = ..., copy: bool = ...
|
232 |
+
) -> np.datetime64: ...
|
233 |
+
@property
|
234 |
+
def _date_repr(self) -> str: ...
|
235 |
+
@property
|
236 |
+
def days_in_month(self) -> int: ...
|
237 |
+
@property
|
238 |
+
def daysinmonth(self) -> int: ...
|
239 |
+
@property
|
240 |
+
def unit(self) -> str: ...
|
241 |
+
def as_unit(self, unit: str, round_ok: bool = ...) -> Timestamp: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/timezones.pyi
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import (
|
2 |
+
datetime,
|
3 |
+
tzinfo,
|
4 |
+
)
|
5 |
+
from typing import Callable
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
# imported from dateutil.tz
|
10 |
+
dateutil_gettz: Callable[[str], tzinfo]
|
11 |
+
|
12 |
+
def tz_standardize(tz: tzinfo) -> tzinfo: ...
|
13 |
+
def tz_compare(start: tzinfo | None, end: tzinfo | None) -> bool: ...
|
14 |
+
def infer_tzinfo(
|
15 |
+
start: datetime | None,
|
16 |
+
end: datetime | None,
|
17 |
+
) -> tzinfo | None: ...
|
18 |
+
def maybe_get_tz(tz: str | int | np.int64 | tzinfo | None) -> tzinfo | None: ...
|
19 |
+
def get_timezone(tz: tzinfo) -> tzinfo | str: ...
|
20 |
+
def is_utc(tz: tzinfo | None) -> bool: ...
|
21 |
+
def is_fixed_offset(tz: tzinfo) -> bool: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/tslibs/vectorized.pyi
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
For cython types that cannot be represented precisely, closest-available
|
3 |
+
python equivalents are used, and the precise types kept as adjacent comments.
|
4 |
+
"""
|
5 |
+
from datetime import tzinfo
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from pandas._libs.tslibs.dtypes import Resolution
|
10 |
+
from pandas._typing import npt
|
11 |
+
|
12 |
+
def dt64arr_to_periodarr(
|
13 |
+
stamps: npt.NDArray[np.int64],
|
14 |
+
freq: int,
|
15 |
+
tz: tzinfo | None,
|
16 |
+
reso: int = ..., # NPY_DATETIMEUNIT
|
17 |
+
) -> npt.NDArray[np.int64]: ...
|
18 |
+
def is_date_array_normalized(
|
19 |
+
stamps: npt.NDArray[np.int64],
|
20 |
+
tz: tzinfo | None,
|
21 |
+
reso: int, # NPY_DATETIMEUNIT
|
22 |
+
) -> bool: ...
|
23 |
+
def normalize_i8_timestamps(
|
24 |
+
stamps: npt.NDArray[np.int64],
|
25 |
+
tz: tzinfo | None,
|
26 |
+
reso: int, # NPY_DATETIMEUNIT
|
27 |
+
) -> npt.NDArray[np.int64]: ...
|
28 |
+
def get_resolution(
|
29 |
+
stamps: npt.NDArray[np.int64],
|
30 |
+
tz: tzinfo | None = ...,
|
31 |
+
reso: int = ..., # NPY_DATETIMEUNIT
|
32 |
+
) -> Resolution: ...
|
33 |
+
def ints_to_pydatetime(
|
34 |
+
stamps: npt.NDArray[np.int64],
|
35 |
+
tz: tzinfo | None = ...,
|
36 |
+
box: str = ...,
|
37 |
+
reso: int = ..., # NPY_DATETIMEUNIT
|
38 |
+
) -> npt.NDArray[np.object_]: ...
|
39 |
+
def tz_convert_from_utc(
|
40 |
+
stamps: npt.NDArray[np.int64],
|
41 |
+
tz: tzinfo | None,
|
42 |
+
reso: int = ..., # NPY_DATETIMEUNIT
|
43 |
+
) -> npt.NDArray[np.int64]: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/window/__init__.py
ADDED
File without changes
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/window/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (177 Bytes). View file
|
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/window/aggregations.pyi
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import (
|
2 |
+
Any,
|
3 |
+
Callable,
|
4 |
+
Literal,
|
5 |
+
)
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from pandas._typing import (
|
10 |
+
WindowingRankType,
|
11 |
+
npt,
|
12 |
+
)
|
13 |
+
|
14 |
+
def roll_sum(
|
15 |
+
values: np.ndarray, # const float64_t[:]
|
16 |
+
start: np.ndarray, # np.ndarray[np.int64]
|
17 |
+
end: np.ndarray, # np.ndarray[np.int64]
|
18 |
+
minp: int, # int64_t
|
19 |
+
) -> np.ndarray: ... # np.ndarray[float]
|
20 |
+
def roll_mean(
|
21 |
+
values: np.ndarray, # const float64_t[:]
|
22 |
+
start: np.ndarray, # np.ndarray[np.int64]
|
23 |
+
end: np.ndarray, # np.ndarray[np.int64]
|
24 |
+
minp: int, # int64_t
|
25 |
+
) -> np.ndarray: ... # np.ndarray[float]
|
26 |
+
def roll_var(
|
27 |
+
values: np.ndarray, # const float64_t[:]
|
28 |
+
start: np.ndarray, # np.ndarray[np.int64]
|
29 |
+
end: np.ndarray, # np.ndarray[np.int64]
|
30 |
+
minp: int, # int64_t
|
31 |
+
ddof: int = ...,
|
32 |
+
) -> np.ndarray: ... # np.ndarray[float]
|
33 |
+
def roll_skew(
|
34 |
+
values: np.ndarray, # np.ndarray[np.float64]
|
35 |
+
start: np.ndarray, # np.ndarray[np.int64]
|
36 |
+
end: np.ndarray, # np.ndarray[np.int64]
|
37 |
+
minp: int, # int64_t
|
38 |
+
) -> np.ndarray: ... # np.ndarray[float]
|
39 |
+
def roll_kurt(
|
40 |
+
values: np.ndarray, # np.ndarray[np.float64]
|
41 |
+
start: np.ndarray, # np.ndarray[np.int64]
|
42 |
+
end: np.ndarray, # np.ndarray[np.int64]
|
43 |
+
minp: int, # int64_t
|
44 |
+
) -> np.ndarray: ... # np.ndarray[float]
|
45 |
+
def roll_median_c(
|
46 |
+
values: np.ndarray, # np.ndarray[np.float64]
|
47 |
+
start: np.ndarray, # np.ndarray[np.int64]
|
48 |
+
end: np.ndarray, # np.ndarray[np.int64]
|
49 |
+
minp: int, # int64_t
|
50 |
+
) -> np.ndarray: ... # np.ndarray[float]
|
51 |
+
def roll_max(
|
52 |
+
values: np.ndarray, # np.ndarray[np.float64]
|
53 |
+
start: np.ndarray, # np.ndarray[np.int64]
|
54 |
+
end: np.ndarray, # np.ndarray[np.int64]
|
55 |
+
minp: int, # int64_t
|
56 |
+
) -> np.ndarray: ... # np.ndarray[float]
|
57 |
+
def roll_min(
|
58 |
+
values: np.ndarray, # np.ndarray[np.float64]
|
59 |
+
start: np.ndarray, # np.ndarray[np.int64]
|
60 |
+
end: np.ndarray, # np.ndarray[np.int64]
|
61 |
+
minp: int, # int64_t
|
62 |
+
) -> np.ndarray: ... # np.ndarray[float]
|
63 |
+
def roll_quantile(
|
64 |
+
values: np.ndarray, # const float64_t[:]
|
65 |
+
start: np.ndarray, # np.ndarray[np.int64]
|
66 |
+
end: np.ndarray, # np.ndarray[np.int64]
|
67 |
+
minp: int, # int64_t
|
68 |
+
quantile: float, # float64_t
|
69 |
+
interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"],
|
70 |
+
) -> np.ndarray: ... # np.ndarray[float]
|
71 |
+
def roll_rank(
|
72 |
+
values: np.ndarray,
|
73 |
+
start: np.ndarray,
|
74 |
+
end: np.ndarray,
|
75 |
+
minp: int,
|
76 |
+
percentile: bool,
|
77 |
+
method: WindowingRankType,
|
78 |
+
ascending: bool,
|
79 |
+
) -> np.ndarray: ... # np.ndarray[float]
|
80 |
+
def roll_apply(
|
81 |
+
obj: object,
|
82 |
+
start: np.ndarray, # np.ndarray[np.int64]
|
83 |
+
end: np.ndarray, # np.ndarray[np.int64]
|
84 |
+
minp: int, # int64_t
|
85 |
+
function: Callable[..., Any],
|
86 |
+
raw: bool,
|
87 |
+
args: tuple[Any, ...],
|
88 |
+
kwargs: dict[str, Any],
|
89 |
+
) -> npt.NDArray[np.float64]: ...
|
90 |
+
def roll_weighted_sum(
|
91 |
+
values: np.ndarray, # const float64_t[:]
|
92 |
+
weights: np.ndarray, # const float64_t[:]
|
93 |
+
minp: int,
|
94 |
+
) -> np.ndarray: ... # np.ndarray[np.float64]
|
95 |
+
def roll_weighted_mean(
|
96 |
+
values: np.ndarray, # const float64_t[:]
|
97 |
+
weights: np.ndarray, # const float64_t[:]
|
98 |
+
minp: int,
|
99 |
+
) -> np.ndarray: ... # np.ndarray[np.float64]
|
100 |
+
def roll_weighted_var(
|
101 |
+
values: np.ndarray, # const float64_t[:]
|
102 |
+
weights: np.ndarray, # const float64_t[:]
|
103 |
+
minp: int, # int64_t
|
104 |
+
ddof: int, # unsigned int
|
105 |
+
) -> np.ndarray: ... # np.ndarray[np.float64]
|
106 |
+
def ewm(
|
107 |
+
vals: np.ndarray, # const float64_t[:]
|
108 |
+
start: np.ndarray, # const int64_t[:]
|
109 |
+
end: np.ndarray, # const int64_t[:]
|
110 |
+
minp: int,
|
111 |
+
com: float, # float64_t
|
112 |
+
adjust: bool,
|
113 |
+
ignore_na: bool,
|
114 |
+
deltas: np.ndarray | None = None, # const float64_t[:]
|
115 |
+
normalize: bool = True,
|
116 |
+
) -> np.ndarray: ... # np.ndarray[np.float64]
|
117 |
+
def ewmcov(
|
118 |
+
input_x: np.ndarray, # const float64_t[:]
|
119 |
+
start: np.ndarray, # const int64_t[:]
|
120 |
+
end: np.ndarray, # const int64_t[:]
|
121 |
+
minp: int,
|
122 |
+
input_y: np.ndarray, # const float64_t[:]
|
123 |
+
com: float, # float64_t
|
124 |
+
adjust: bool,
|
125 |
+
ignore_na: bool,
|
126 |
+
bias: bool,
|
127 |
+
) -> np.ndarray: ... # np.ndarray[np.float64]
|
infer_4_30_0/lib/python3.10/site-packages/pandas/_libs/window/indexers.pyi
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from pandas._typing import npt
|
4 |
+
|
5 |
+
def calculate_variable_window_bounds(
|
6 |
+
num_values: int, # int64_t
|
7 |
+
window_size: int, # int64_t
|
8 |
+
min_periods,
|
9 |
+
center: bool,
|
10 |
+
closed: str | None,
|
11 |
+
index: np.ndarray, # const int64_t[:]
|
12 |
+
) -> tuple[npt.NDArray[np.int64], npt.NDArray[np.int64]]: ...
|
infer_4_30_0/lib/python3.10/site-packages/pandas/arrays/__init__.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
All of pandas' ExtensionArrays.
|
3 |
+
|
4 |
+
See :ref:`extending.extension-types` for more.
|
5 |
+
"""
|
6 |
+
from pandas.core.arrays import (
|
7 |
+
ArrowExtensionArray,
|
8 |
+
ArrowStringArray,
|
9 |
+
BooleanArray,
|
10 |
+
Categorical,
|
11 |
+
DatetimeArray,
|
12 |
+
FloatingArray,
|
13 |
+
IntegerArray,
|
14 |
+
IntervalArray,
|
15 |
+
NumpyExtensionArray,
|
16 |
+
PeriodArray,
|
17 |
+
SparseArray,
|
18 |
+
StringArray,
|
19 |
+
TimedeltaArray,
|
20 |
+
)
|
21 |
+
|
22 |
+
__all__ = [
|
23 |
+
"ArrowExtensionArray",
|
24 |
+
"ArrowStringArray",
|
25 |
+
"BooleanArray",
|
26 |
+
"Categorical",
|
27 |
+
"DatetimeArray",
|
28 |
+
"FloatingArray",
|
29 |
+
"IntegerArray",
|
30 |
+
"IntervalArray",
|
31 |
+
"NumpyExtensionArray",
|
32 |
+
"PeriodArray",
|
33 |
+
"SparseArray",
|
34 |
+
"StringArray",
|
35 |
+
"TimedeltaArray",
|
36 |
+
]
|
37 |
+
|
38 |
+
|
39 |
+
def __getattr__(name: str) -> type[NumpyExtensionArray]:
|
40 |
+
if name == "PandasArray":
|
41 |
+
# GH#53694
|
42 |
+
import warnings
|
43 |
+
|
44 |
+
from pandas.util._exceptions import find_stack_level
|
45 |
+
|
46 |
+
warnings.warn(
|
47 |
+
"PandasArray has been renamed NumpyExtensionArray. Use that "
|
48 |
+
"instead. This alias will be removed in a future version.",
|
49 |
+
FutureWarning,
|
50 |
+
stacklevel=find_stack_level(),
|
51 |
+
)
|
52 |
+
return NumpyExtensionArray
|
53 |
+
raise AttributeError(f"module 'pandas.arrays' has no attribute '{name}'")
|
infer_4_30_0/lib/python3.10/site-packages/pandas/arrays/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.17 kB). View file
|
|
infer_4_30_0/lib/python3.10/site-packages/pandas/errors/__init__.py
ADDED
@@ -0,0 +1,850 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Expose public exceptions & warnings
|
3 |
+
"""
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
import ctypes
|
7 |
+
|
8 |
+
from pandas._config.config import OptionError
|
9 |
+
|
10 |
+
from pandas._libs.tslibs import (
|
11 |
+
OutOfBoundsDatetime,
|
12 |
+
OutOfBoundsTimedelta,
|
13 |
+
)
|
14 |
+
|
15 |
+
from pandas.util.version import InvalidVersion
|
16 |
+
|
17 |
+
|
18 |
+
class IntCastingNaNError(ValueError):
|
19 |
+
"""
|
20 |
+
Exception raised when converting (``astype``) an array with NaN to an integer type.
|
21 |
+
|
22 |
+
Examples
|
23 |
+
--------
|
24 |
+
>>> pd.DataFrame(np.array([[1, np.nan], [2, 3]]), dtype="i8")
|
25 |
+
Traceback (most recent call last):
|
26 |
+
IntCastingNaNError: Cannot convert non-finite values (NA or inf) to integer
|
27 |
+
"""
|
28 |
+
|
29 |
+
|
30 |
+
class NullFrequencyError(ValueError):
|
31 |
+
"""
|
32 |
+
Exception raised when a ``freq`` cannot be null.
|
33 |
+
|
34 |
+
Particularly ``DatetimeIndex.shift``, ``TimedeltaIndex.shift``,
|
35 |
+
``PeriodIndex.shift``.
|
36 |
+
|
37 |
+
Examples
|
38 |
+
--------
|
39 |
+
>>> df = pd.DatetimeIndex(["2011-01-01 10:00", "2011-01-01"], freq=None)
|
40 |
+
>>> df.shift(2)
|
41 |
+
Traceback (most recent call last):
|
42 |
+
NullFrequencyError: Cannot shift with no freq
|
43 |
+
"""
|
44 |
+
|
45 |
+
|
46 |
+
class PerformanceWarning(Warning):
|
47 |
+
"""
|
48 |
+
Warning raised when there is a possible performance impact.
|
49 |
+
|
50 |
+
Examples
|
51 |
+
--------
|
52 |
+
>>> df = pd.DataFrame({"jim": [0, 0, 1, 1],
|
53 |
+
... "joe": ["x", "x", "z", "y"],
|
54 |
+
... "jolie": [1, 2, 3, 4]})
|
55 |
+
>>> df = df.set_index(["jim", "joe"])
|
56 |
+
>>> df
|
57 |
+
jolie
|
58 |
+
jim joe
|
59 |
+
0 x 1
|
60 |
+
x 2
|
61 |
+
1 z 3
|
62 |
+
y 4
|
63 |
+
>>> df.loc[(1, 'z')] # doctest: +SKIP
|
64 |
+
# PerformanceWarning: indexing past lexsort depth may impact performance.
|
65 |
+
df.loc[(1, 'z')]
|
66 |
+
jolie
|
67 |
+
jim joe
|
68 |
+
1 z 3
|
69 |
+
"""
|
70 |
+
|
71 |
+
|
72 |
+
class UnsupportedFunctionCall(ValueError):
|
73 |
+
"""
|
74 |
+
Exception raised when attempting to call a unsupported numpy function.
|
75 |
+
|
76 |
+
For example, ``np.cumsum(groupby_object)``.
|
77 |
+
|
78 |
+
Examples
|
79 |
+
--------
|
80 |
+
>>> df = pd.DataFrame({"A": [0, 0, 1, 1],
|
81 |
+
... "B": ["x", "x", "z", "y"],
|
82 |
+
... "C": [1, 2, 3, 4]}
|
83 |
+
... )
|
84 |
+
>>> np.cumsum(df.groupby(["A"]))
|
85 |
+
Traceback (most recent call last):
|
86 |
+
UnsupportedFunctionCall: numpy operations are not valid with groupby.
|
87 |
+
Use .groupby(...).cumsum() instead
|
88 |
+
"""
|
89 |
+
|
90 |
+
|
91 |
+
class UnsortedIndexError(KeyError):
|
92 |
+
"""
|
93 |
+
Error raised when slicing a MultiIndex which has not been lexsorted.
|
94 |
+
|
95 |
+
Subclass of `KeyError`.
|
96 |
+
|
97 |
+
Examples
|
98 |
+
--------
|
99 |
+
>>> df = pd.DataFrame({"cat": [0, 0, 1, 1],
|
100 |
+
... "color": ["white", "white", "brown", "black"],
|
101 |
+
... "lives": [4, 4, 3, 7]},
|
102 |
+
... )
|
103 |
+
>>> df = df.set_index(["cat", "color"])
|
104 |
+
>>> df
|
105 |
+
lives
|
106 |
+
cat color
|
107 |
+
0 white 4
|
108 |
+
white 4
|
109 |
+
1 brown 3
|
110 |
+
black 7
|
111 |
+
>>> df.loc[(0, "black"):(1, "white")]
|
112 |
+
Traceback (most recent call last):
|
113 |
+
UnsortedIndexError: 'Key length (2) was greater
|
114 |
+
than MultiIndex lexsort depth (1)'
|
115 |
+
"""
|
116 |
+
|
117 |
+
|
118 |
+
class ParserError(ValueError):
|
119 |
+
"""
|
120 |
+
Exception that is raised by an error encountered in parsing file contents.
|
121 |
+
|
122 |
+
This is a generic error raised for errors encountered when functions like
|
123 |
+
`read_csv` or `read_html` are parsing contents of a file.
|
124 |
+
|
125 |
+
See Also
|
126 |
+
--------
|
127 |
+
read_csv : Read CSV (comma-separated) file into a DataFrame.
|
128 |
+
read_html : Read HTML table into a DataFrame.
|
129 |
+
|
130 |
+
Examples
|
131 |
+
--------
|
132 |
+
>>> data = '''a,b,c
|
133 |
+
... cat,foo,bar
|
134 |
+
... dog,foo,"baz'''
|
135 |
+
>>> from io import StringIO
|
136 |
+
>>> pd.read_csv(StringIO(data), skipfooter=1, engine='python')
|
137 |
+
Traceback (most recent call last):
|
138 |
+
ParserError: ',' expected after '"'. Error could possibly be due
|
139 |
+
to parsing errors in the skipped footer rows
|
140 |
+
"""
|
141 |
+
|
142 |
+
|
143 |
+
class DtypeWarning(Warning):
|
144 |
+
"""
|
145 |
+
Warning raised when reading different dtypes in a column from a file.
|
146 |
+
|
147 |
+
Raised for a dtype incompatibility. This can happen whenever `read_csv`
|
148 |
+
or `read_table` encounter non-uniform dtypes in a column(s) of a given
|
149 |
+
CSV file.
|
150 |
+
|
151 |
+
See Also
|
152 |
+
--------
|
153 |
+
read_csv : Read CSV (comma-separated) file into a DataFrame.
|
154 |
+
read_table : Read general delimited file into a DataFrame.
|
155 |
+
|
156 |
+
Notes
|
157 |
+
-----
|
158 |
+
This warning is issued when dealing with larger files because the dtype
|
159 |
+
checking happens per chunk read.
|
160 |
+
|
161 |
+
Despite the warning, the CSV file is read with mixed types in a single
|
162 |
+
column which will be an object type. See the examples below to better
|
163 |
+
understand this issue.
|
164 |
+
|
165 |
+
Examples
|
166 |
+
--------
|
167 |
+
This example creates and reads a large CSV file with a column that contains
|
168 |
+
`int` and `str`.
|
169 |
+
|
170 |
+
>>> df = pd.DataFrame({'a': (['1'] * 100000 + ['X'] * 100000 +
|
171 |
+
... ['1'] * 100000),
|
172 |
+
... 'b': ['b'] * 300000}) # doctest: +SKIP
|
173 |
+
>>> df.to_csv('test.csv', index=False) # doctest: +SKIP
|
174 |
+
>>> df2 = pd.read_csv('test.csv') # doctest: +SKIP
|
175 |
+
... # DtypeWarning: Columns (0) have mixed types
|
176 |
+
|
177 |
+
Important to notice that ``df2`` will contain both `str` and `int` for the
|
178 |
+
same input, '1'.
|
179 |
+
|
180 |
+
>>> df2.iloc[262140, 0] # doctest: +SKIP
|
181 |
+
'1'
|
182 |
+
>>> type(df2.iloc[262140, 0]) # doctest: +SKIP
|
183 |
+
<class 'str'>
|
184 |
+
>>> df2.iloc[262150, 0] # doctest: +SKIP
|
185 |
+
1
|
186 |
+
>>> type(df2.iloc[262150, 0]) # doctest: +SKIP
|
187 |
+
<class 'int'>
|
188 |
+
|
189 |
+
One way to solve this issue is using the `dtype` parameter in the
|
190 |
+
`read_csv` and `read_table` functions to explicit the conversion:
|
191 |
+
|
192 |
+
>>> df2 = pd.read_csv('test.csv', sep=',', dtype={'a': str}) # doctest: +SKIP
|
193 |
+
|
194 |
+
No warning was issued.
|
195 |
+
"""
|
196 |
+
|
197 |
+
|
198 |
+
class EmptyDataError(ValueError):
|
199 |
+
"""
|
200 |
+
Exception raised in ``pd.read_csv`` when empty data or header is encountered.
|
201 |
+
|
202 |
+
Examples
|
203 |
+
--------
|
204 |
+
>>> from io import StringIO
|
205 |
+
>>> empty = StringIO()
|
206 |
+
>>> pd.read_csv(empty)
|
207 |
+
Traceback (most recent call last):
|
208 |
+
EmptyDataError: No columns to parse from file
|
209 |
+
"""
|
210 |
+
|
211 |
+
|
212 |
+
class ParserWarning(Warning):
|
213 |
+
"""
|
214 |
+
Warning raised when reading a file that doesn't use the default 'c' parser.
|
215 |
+
|
216 |
+
Raised by `pd.read_csv` and `pd.read_table` when it is necessary to change
|
217 |
+
parsers, generally from the default 'c' parser to 'python'.
|
218 |
+
|
219 |
+
It happens due to a lack of support or functionality for parsing a
|
220 |
+
particular attribute of a CSV file with the requested engine.
|
221 |
+
|
222 |
+
Currently, 'c' unsupported options include the following parameters:
|
223 |
+
|
224 |
+
1. `sep` other than a single character (e.g. regex separators)
|
225 |
+
2. `skipfooter` higher than 0
|
226 |
+
3. `sep=None` with `delim_whitespace=False`
|
227 |
+
|
228 |
+
The warning can be avoided by adding `engine='python'` as a parameter in
|
229 |
+
`pd.read_csv` and `pd.read_table` methods.
|
230 |
+
|
231 |
+
See Also
|
232 |
+
--------
|
233 |
+
pd.read_csv : Read CSV (comma-separated) file into DataFrame.
|
234 |
+
pd.read_table : Read general delimited file into DataFrame.
|
235 |
+
|
236 |
+
Examples
|
237 |
+
--------
|
238 |
+
Using a `sep` in `pd.read_csv` other than a single character:
|
239 |
+
|
240 |
+
>>> import io
|
241 |
+
>>> csv = '''a;b;c
|
242 |
+
... 1;1,8
|
243 |
+
... 1;2,1'''
|
244 |
+
>>> df = pd.read_csv(io.StringIO(csv), sep='[;,]') # doctest: +SKIP
|
245 |
+
... # ParserWarning: Falling back to the 'python' engine...
|
246 |
+
|
247 |
+
Adding `engine='python'` to `pd.read_csv` removes the Warning:
|
248 |
+
|
249 |
+
>>> df = pd.read_csv(io.StringIO(csv), sep='[;,]', engine='python')
|
250 |
+
"""
|
251 |
+
|
252 |
+
|
253 |
+
class MergeError(ValueError):
|
254 |
+
"""
|
255 |
+
Exception raised when merging data.
|
256 |
+
|
257 |
+
Subclass of ``ValueError``.
|
258 |
+
|
259 |
+
Examples
|
260 |
+
--------
|
261 |
+
>>> left = pd.DataFrame({"a": ["a", "b", "b", "d"],
|
262 |
+
... "b": ["cat", "dog", "weasel", "horse"]},
|
263 |
+
... index=range(4))
|
264 |
+
>>> right = pd.DataFrame({"a": ["a", "b", "c", "d"],
|
265 |
+
... "c": ["meow", "bark", "chirp", "nay"]},
|
266 |
+
... index=range(4)).set_index("a")
|
267 |
+
>>> left.join(right, on="a", validate="one_to_one",)
|
268 |
+
Traceback (most recent call last):
|
269 |
+
MergeError: Merge keys are not unique in left dataset; not a one-to-one merge
|
270 |
+
"""
|
271 |
+
|
272 |
+
|
273 |
+
class AbstractMethodError(NotImplementedError):
|
274 |
+
"""
|
275 |
+
Raise this error instead of NotImplementedError for abstract methods.
|
276 |
+
|
277 |
+
Examples
|
278 |
+
--------
|
279 |
+
>>> class Foo:
|
280 |
+
... @classmethod
|
281 |
+
... def classmethod(cls):
|
282 |
+
... raise pd.errors.AbstractMethodError(cls, methodtype="classmethod")
|
283 |
+
... def method(self):
|
284 |
+
... raise pd.errors.AbstractMethodError(self)
|
285 |
+
>>> test = Foo.classmethod()
|
286 |
+
Traceback (most recent call last):
|
287 |
+
AbstractMethodError: This classmethod must be defined in the concrete class Foo
|
288 |
+
|
289 |
+
>>> test2 = Foo().method()
|
290 |
+
Traceback (most recent call last):
|
291 |
+
AbstractMethodError: This classmethod must be defined in the concrete class Foo
|
292 |
+
"""
|
293 |
+
|
294 |
+
def __init__(self, class_instance, methodtype: str = "method") -> None:
|
295 |
+
types = {"method", "classmethod", "staticmethod", "property"}
|
296 |
+
if methodtype not in types:
|
297 |
+
raise ValueError(
|
298 |
+
f"methodtype must be one of {methodtype}, got {types} instead."
|
299 |
+
)
|
300 |
+
self.methodtype = methodtype
|
301 |
+
self.class_instance = class_instance
|
302 |
+
|
303 |
+
def __str__(self) -> str:
|
304 |
+
if self.methodtype == "classmethod":
|
305 |
+
name = self.class_instance.__name__
|
306 |
+
else:
|
307 |
+
name = type(self.class_instance).__name__
|
308 |
+
return f"This {self.methodtype} must be defined in the concrete class {name}"
|
309 |
+
|
310 |
+
|
311 |
+
class NumbaUtilError(Exception):
|
312 |
+
"""
|
313 |
+
Error raised for unsupported Numba engine routines.
|
314 |
+
|
315 |
+
Examples
|
316 |
+
--------
|
317 |
+
>>> df = pd.DataFrame({"key": ["a", "a", "b", "b"], "data": [1, 2, 3, 4]},
|
318 |
+
... columns=["key", "data"])
|
319 |
+
>>> def incorrect_function(x):
|
320 |
+
... return sum(x) * 2.7
|
321 |
+
>>> df.groupby("key").agg(incorrect_function, engine="numba")
|
322 |
+
Traceback (most recent call last):
|
323 |
+
NumbaUtilError: The first 2 arguments to incorrect_function
|
324 |
+
must be ['values', 'index']
|
325 |
+
"""
|
326 |
+
|
327 |
+
|
328 |
+
class DuplicateLabelError(ValueError):
|
329 |
+
"""
|
330 |
+
Error raised when an operation would introduce duplicate labels.
|
331 |
+
|
332 |
+
Examples
|
333 |
+
--------
|
334 |
+
>>> s = pd.Series([0, 1, 2], index=['a', 'b', 'c']).set_flags(
|
335 |
+
... allows_duplicate_labels=False
|
336 |
+
... )
|
337 |
+
>>> s.reindex(['a', 'a', 'b'])
|
338 |
+
Traceback (most recent call last):
|
339 |
+
...
|
340 |
+
DuplicateLabelError: Index has duplicates.
|
341 |
+
positions
|
342 |
+
label
|
343 |
+
a [0, 1]
|
344 |
+
"""
|
345 |
+
|
346 |
+
|
347 |
+
class InvalidIndexError(Exception):
|
348 |
+
"""
|
349 |
+
Exception raised when attempting to use an invalid index key.
|
350 |
+
|
351 |
+
Examples
|
352 |
+
--------
|
353 |
+
>>> idx = pd.MultiIndex.from_product([["x", "y"], [0, 1]])
|
354 |
+
>>> df = pd.DataFrame([[1, 1, 2, 2],
|
355 |
+
... [3, 3, 4, 4]], columns=idx)
|
356 |
+
>>> df
|
357 |
+
x y
|
358 |
+
0 1 0 1
|
359 |
+
0 1 1 2 2
|
360 |
+
1 3 3 4 4
|
361 |
+
>>> df[:, 0]
|
362 |
+
Traceback (most recent call last):
|
363 |
+
InvalidIndexError: (slice(None, None, None), 0)
|
364 |
+
"""
|
365 |
+
|
366 |
+
|
367 |
+
class DataError(Exception):
|
368 |
+
"""
|
369 |
+
Exceptionn raised when performing an operation on non-numerical data.
|
370 |
+
|
371 |
+
For example, calling ``ohlc`` on a non-numerical column or a function
|
372 |
+
on a rolling window.
|
373 |
+
|
374 |
+
Examples
|
375 |
+
--------
|
376 |
+
>>> ser = pd.Series(['a', 'b', 'c'])
|
377 |
+
>>> ser.rolling(2).sum()
|
378 |
+
Traceback (most recent call last):
|
379 |
+
DataError: No numeric types to aggregate
|
380 |
+
"""
|
381 |
+
|
382 |
+
|
383 |
+
class SpecificationError(Exception):
|
384 |
+
"""
|
385 |
+
Exception raised by ``agg`` when the functions are ill-specified.
|
386 |
+
|
387 |
+
The exception raised in two scenarios.
|
388 |
+
|
389 |
+
The first way is calling ``agg`` on a
|
390 |
+
Dataframe or Series using a nested renamer (dict-of-dict).
|
391 |
+
|
392 |
+
The second way is calling ``agg`` on a Dataframe with duplicated functions
|
393 |
+
names without assigning column name.
|
394 |
+
|
395 |
+
Examples
|
396 |
+
--------
|
397 |
+
>>> df = pd.DataFrame({'A': [1, 1, 1, 2, 2],
|
398 |
+
... 'B': range(5),
|
399 |
+
... 'C': range(5)})
|
400 |
+
>>> df.groupby('A').B.agg({'foo': 'count'}) # doctest: +SKIP
|
401 |
+
... # SpecificationError: nested renamer is not supported
|
402 |
+
|
403 |
+
>>> df.groupby('A').agg({'B': {'foo': ['sum', 'max']}}) # doctest: +SKIP
|
404 |
+
... # SpecificationError: nested renamer is not supported
|
405 |
+
|
406 |
+
>>> df.groupby('A').agg(['min', 'min']) # doctest: +SKIP
|
407 |
+
... # SpecificationError: nested renamer is not supported
|
408 |
+
"""
|
409 |
+
|
410 |
+
|
411 |
+
class SettingWithCopyError(ValueError):
|
412 |
+
"""
|
413 |
+
Exception raised when trying to set on a copied slice from a ``DataFrame``.
|
414 |
+
|
415 |
+
The ``mode.chained_assignment`` needs to be set to set to 'raise.' This can
|
416 |
+
happen unintentionally when chained indexing.
|
417 |
+
|
418 |
+
For more information on evaluation order,
|
419 |
+
see :ref:`the user guide<indexing.evaluation_order>`.
|
420 |
+
|
421 |
+
For more information on view vs. copy,
|
422 |
+
see :ref:`the user guide<indexing.view_versus_copy>`.
|
423 |
+
|
424 |
+
Examples
|
425 |
+
--------
|
426 |
+
>>> pd.options.mode.chained_assignment = 'raise'
|
427 |
+
>>> df = pd.DataFrame({'A': [1, 1, 1, 2, 2]}, columns=['A'])
|
428 |
+
>>> df.loc[0:3]['A'] = 'a' # doctest: +SKIP
|
429 |
+
... # SettingWithCopyError: A value is trying to be set on a copy of a...
|
430 |
+
"""
|
431 |
+
|
432 |
+
|
433 |
+
class SettingWithCopyWarning(Warning):
|
434 |
+
"""
|
435 |
+
Warning raised when trying to set on a copied slice from a ``DataFrame``.
|
436 |
+
|
437 |
+
The ``mode.chained_assignment`` needs to be set to set to 'warn.'
|
438 |
+
'Warn' is the default option. This can happen unintentionally when
|
439 |
+
chained indexing.
|
440 |
+
|
441 |
+
For more information on evaluation order,
|
442 |
+
see :ref:`the user guide<indexing.evaluation_order>`.
|
443 |
+
|
444 |
+
For more information on view vs. copy,
|
445 |
+
see :ref:`the user guide<indexing.view_versus_copy>`.
|
446 |
+
|
447 |
+
Examples
|
448 |
+
--------
|
449 |
+
>>> df = pd.DataFrame({'A': [1, 1, 1, 2, 2]}, columns=['A'])
|
450 |
+
>>> df.loc[0:3]['A'] = 'a' # doctest: +SKIP
|
451 |
+
... # SettingWithCopyWarning: A value is trying to be set on a copy of a...
|
452 |
+
"""
|
453 |
+
|
454 |
+
|
455 |
+
class ChainedAssignmentError(Warning):
|
456 |
+
"""
|
457 |
+
Warning raised when trying to set using chained assignment.
|
458 |
+
|
459 |
+
When the ``mode.copy_on_write`` option is enabled, chained assignment can
|
460 |
+
never work. In such a situation, we are always setting into a temporary
|
461 |
+
object that is the result of an indexing operation (getitem), which under
|
462 |
+
Copy-on-Write always behaves as a copy. Thus, assigning through a chain
|
463 |
+
can never update the original Series or DataFrame.
|
464 |
+
|
465 |
+
For more information on view vs. copy,
|
466 |
+
see :ref:`the user guide<indexing.view_versus_copy>`.
|
467 |
+
|
468 |
+
Examples
|
469 |
+
--------
|
470 |
+
>>> pd.options.mode.copy_on_write = True
|
471 |
+
>>> df = pd.DataFrame({'A': [1, 1, 1, 2, 2]}, columns=['A'])
|
472 |
+
>>> df["A"][0:3] = 10 # doctest: +SKIP
|
473 |
+
... # ChainedAssignmentError: ...
|
474 |
+
>>> pd.options.mode.copy_on_write = False
|
475 |
+
"""
|
476 |
+
|
477 |
+
|
478 |
+
_chained_assignment_msg = (
|
479 |
+
"A value is trying to be set on a copy of a DataFrame or Series "
|
480 |
+
"through chained assignment.\n"
|
481 |
+
"When using the Copy-on-Write mode, such chained assignment never works "
|
482 |
+
"to update the original DataFrame or Series, because the intermediate "
|
483 |
+
"object on which we are setting values always behaves as a copy.\n\n"
|
484 |
+
"Try using '.loc[row_indexer, col_indexer] = value' instead, to perform "
|
485 |
+
"the assignment in a single step.\n\n"
|
486 |
+
"See the caveats in the documentation: "
|
487 |
+
"https://pandas.pydata.org/pandas-docs/stable/user_guide/"
|
488 |
+
"indexing.html#returning-a-view-versus-a-copy"
|
489 |
+
)
|
490 |
+
|
491 |
+
|
492 |
+
_chained_assignment_method_msg = (
|
493 |
+
"A value is trying to be set on a copy of a DataFrame or Series "
|
494 |
+
"through chained assignment using an inplace method.\n"
|
495 |
+
"When using the Copy-on-Write mode, such inplace method never works "
|
496 |
+
"to update the original DataFrame or Series, because the intermediate "
|
497 |
+
"object on which we are setting values always behaves as a copy.\n\n"
|
498 |
+
"For example, when doing 'df[col].method(value, inplace=True)', try "
|
499 |
+
"using 'df.method({col: value}, inplace=True)' instead, to perform "
|
500 |
+
"the operation inplace on the original object.\n\n"
|
501 |
+
)
|
502 |
+
|
503 |
+
|
504 |
+
_chained_assignment_warning_msg = (
|
505 |
+
"ChainedAssignmentError: behaviour will change in pandas 3.0!\n"
|
506 |
+
"You are setting values through chained assignment. Currently this works "
|
507 |
+
"in certain cases, but when using Copy-on-Write (which will become the "
|
508 |
+
"default behaviour in pandas 3.0) this will never work to update the "
|
509 |
+
"original DataFrame or Series, because the intermediate object on which "
|
510 |
+
"we are setting values will behave as a copy.\n"
|
511 |
+
"A typical example is when you are setting values in a column of a "
|
512 |
+
"DataFrame, like:\n\n"
|
513 |
+
'df["col"][row_indexer] = value\n\n'
|
514 |
+
'Use `df.loc[row_indexer, "col"] = values` instead, to perform the '
|
515 |
+
"assignment in a single step and ensure this keeps updating the original `df`.\n\n"
|
516 |
+
"See the caveats in the documentation: "
|
517 |
+
"https://pandas.pydata.org/pandas-docs/stable/user_guide/"
|
518 |
+
"indexing.html#returning-a-view-versus-a-copy\n"
|
519 |
+
)
|
520 |
+
|
521 |
+
|
522 |
+
_chained_assignment_warning_method_msg = (
|
523 |
+
"A value is trying to be set on a copy of a DataFrame or Series "
|
524 |
+
"through chained assignment using an inplace method.\n"
|
525 |
+
"The behavior will change in pandas 3.0. This inplace method will "
|
526 |
+
"never work because the intermediate object on which we are setting "
|
527 |
+
"values always behaves as a copy.\n\n"
|
528 |
+
"For example, when doing 'df[col].method(value, inplace=True)', try "
|
529 |
+
"using 'df.method({col: value}, inplace=True)' or "
|
530 |
+
"df[col] = df[col].method(value) instead, to perform "
|
531 |
+
"the operation inplace on the original object.\n\n"
|
532 |
+
)
|
533 |
+
|
534 |
+
|
535 |
+
def _check_cacher(obj):
|
536 |
+
# This is a mess, selection paths that return a view set the _cacher attribute
|
537 |
+
# on the Series; most of them also set _item_cache which adds 1 to our relevant
|
538 |
+
# reference count, but iloc does not, so we have to check if we are actually
|
539 |
+
# in the item cache
|
540 |
+
if hasattr(obj, "_cacher"):
|
541 |
+
parent = obj._cacher[1]()
|
542 |
+
# parent could be dead
|
543 |
+
if parent is None:
|
544 |
+
return False
|
545 |
+
if hasattr(parent, "_item_cache"):
|
546 |
+
if obj._cacher[0] in parent._item_cache:
|
547 |
+
# Check if we are actually the item from item_cache, iloc creates a
|
548 |
+
# new object
|
549 |
+
return obj is parent._item_cache[obj._cacher[0]]
|
550 |
+
return False
|
551 |
+
|
552 |
+
|
553 |
+
class NumExprClobberingError(NameError):
|
554 |
+
"""
|
555 |
+
Exception raised when trying to use a built-in numexpr name as a variable name.
|
556 |
+
|
557 |
+
``eval`` or ``query`` will throw the error if the engine is set
|
558 |
+
to 'numexpr'. 'numexpr' is the default engine value for these methods if the
|
559 |
+
numexpr package is installed.
|
560 |
+
|
561 |
+
Examples
|
562 |
+
--------
|
563 |
+
>>> df = pd.DataFrame({'abs': [1, 1, 1]})
|
564 |
+
>>> df.query("abs > 2") # doctest: +SKIP
|
565 |
+
... # NumExprClobberingError: Variables in expression "(abs) > (2)" overlap...
|
566 |
+
>>> sin, a = 1, 2
|
567 |
+
>>> pd.eval("sin + a", engine='numexpr') # doctest: +SKIP
|
568 |
+
... # NumExprClobberingError: Variables in expression "(sin) + (a)" overlap...
|
569 |
+
"""
|
570 |
+
|
571 |
+
|
572 |
+
class UndefinedVariableError(NameError):
|
573 |
+
"""
|
574 |
+
Exception raised by ``query`` or ``eval`` when using an undefined variable name.
|
575 |
+
|
576 |
+
It will also specify whether the undefined variable is local or not.
|
577 |
+
|
578 |
+
Examples
|
579 |
+
--------
|
580 |
+
>>> df = pd.DataFrame({'A': [1, 1, 1]})
|
581 |
+
>>> df.query("A > x") # doctest: +SKIP
|
582 |
+
... # UndefinedVariableError: name 'x' is not defined
|
583 |
+
>>> df.query("A > @y") # doctest: +SKIP
|
584 |
+
... # UndefinedVariableError: local variable 'y' is not defined
|
585 |
+
>>> pd.eval('x + 1') # doctest: +SKIP
|
586 |
+
... # UndefinedVariableError: name 'x' is not defined
|
587 |
+
"""
|
588 |
+
|
589 |
+
def __init__(self, name: str, is_local: bool | None = None) -> None:
|
590 |
+
base_msg = f"{repr(name)} is not defined"
|
591 |
+
if is_local:
|
592 |
+
msg = f"local variable {base_msg}"
|
593 |
+
else:
|
594 |
+
msg = f"name {base_msg}"
|
595 |
+
super().__init__(msg)
|
596 |
+
|
597 |
+
|
598 |
+
class IndexingError(Exception):
|
599 |
+
"""
|
600 |
+
Exception is raised when trying to index and there is a mismatch in dimensions.
|
601 |
+
|
602 |
+
Examples
|
603 |
+
--------
|
604 |
+
>>> df = pd.DataFrame({'A': [1, 1, 1]})
|
605 |
+
>>> df.loc[..., ..., 'A'] # doctest: +SKIP
|
606 |
+
... # IndexingError: indexer may only contain one '...' entry
|
607 |
+
>>> df = pd.DataFrame({'A': [1, 1, 1]})
|
608 |
+
>>> df.loc[1, ..., ...] # doctest: +SKIP
|
609 |
+
... # IndexingError: Too many indexers
|
610 |
+
>>> df[pd.Series([True], dtype=bool)] # doctest: +SKIP
|
611 |
+
... # IndexingError: Unalignable boolean Series provided as indexer...
|
612 |
+
>>> s = pd.Series(range(2),
|
613 |
+
... index = pd.MultiIndex.from_product([["a", "b"], ["c"]]))
|
614 |
+
>>> s.loc["a", "c", "d"] # doctest: +SKIP
|
615 |
+
... # IndexingError: Too many indexers
|
616 |
+
"""
|
617 |
+
|
618 |
+
|
619 |
+
class PyperclipException(RuntimeError):
|
620 |
+
"""
|
621 |
+
Exception raised when clipboard functionality is unsupported.
|
622 |
+
|
623 |
+
Raised by ``to_clipboard()`` and ``read_clipboard()``.
|
624 |
+
"""
|
625 |
+
|
626 |
+
|
627 |
+
class PyperclipWindowsException(PyperclipException):
|
628 |
+
"""
|
629 |
+
Exception raised when clipboard functionality is unsupported by Windows.
|
630 |
+
|
631 |
+
Access to the clipboard handle would be denied due to some other
|
632 |
+
window process is accessing it.
|
633 |
+
"""
|
634 |
+
|
635 |
+
def __init__(self, message: str) -> None:
|
636 |
+
# attr only exists on Windows, so typing fails on other platforms
|
637 |
+
message += f" ({ctypes.WinError()})" # type: ignore[attr-defined]
|
638 |
+
super().__init__(message)
|
639 |
+
|
640 |
+
|
641 |
+
class CSSWarning(UserWarning):
|
642 |
+
"""
|
643 |
+
Warning is raised when converting css styling fails.
|
644 |
+
|
645 |
+
This can be due to the styling not having an equivalent value or because the
|
646 |
+
styling isn't properly formatted.
|
647 |
+
|
648 |
+
Examples
|
649 |
+
--------
|
650 |
+
>>> df = pd.DataFrame({'A': [1, 1, 1]})
|
651 |
+
>>> df.style.applymap(
|
652 |
+
... lambda x: 'background-color: blueGreenRed;'
|
653 |
+
... ).to_excel('styled.xlsx') # doctest: +SKIP
|
654 |
+
CSSWarning: Unhandled color format: 'blueGreenRed'
|
655 |
+
>>> df.style.applymap(
|
656 |
+
... lambda x: 'border: 1px solid red red;'
|
657 |
+
... ).to_excel('styled.xlsx') # doctest: +SKIP
|
658 |
+
CSSWarning: Unhandled color format: 'blueGreenRed'
|
659 |
+
"""
|
660 |
+
|
661 |
+
|
662 |
+
class PossibleDataLossError(Exception):
|
663 |
+
"""
|
664 |
+
Exception raised when trying to open a HDFStore file when already opened.
|
665 |
+
|
666 |
+
Examples
|
667 |
+
--------
|
668 |
+
>>> store = pd.HDFStore('my-store', 'a') # doctest: +SKIP
|
669 |
+
>>> store.open("w") # doctest: +SKIP
|
670 |
+
... # PossibleDataLossError: Re-opening the file [my-store] with mode [a]...
|
671 |
+
"""
|
672 |
+
|
673 |
+
|
674 |
+
class ClosedFileError(Exception):
|
675 |
+
"""
|
676 |
+
Exception is raised when trying to perform an operation on a closed HDFStore file.
|
677 |
+
|
678 |
+
Examples
|
679 |
+
--------
|
680 |
+
>>> store = pd.HDFStore('my-store', 'a') # doctest: +SKIP
|
681 |
+
>>> store.close() # doctest: +SKIP
|
682 |
+
>>> store.keys() # doctest: +SKIP
|
683 |
+
... # ClosedFileError: my-store file is not open!
|
684 |
+
"""
|
685 |
+
|
686 |
+
|
687 |
+
class IncompatibilityWarning(Warning):
|
688 |
+
"""
|
689 |
+
Warning raised when trying to use where criteria on an incompatible HDF5 file.
|
690 |
+
"""
|
691 |
+
|
692 |
+
|
693 |
+
class AttributeConflictWarning(Warning):
|
694 |
+
"""
|
695 |
+
Warning raised when index attributes conflict when using HDFStore.
|
696 |
+
|
697 |
+
Occurs when attempting to append an index with a different
|
698 |
+
name than the existing index on an HDFStore or attempting to append an index with a
|
699 |
+
different frequency than the existing index on an HDFStore.
|
700 |
+
|
701 |
+
Examples
|
702 |
+
--------
|
703 |
+
>>> idx1 = pd.Index(['a', 'b'], name='name1')
|
704 |
+
>>> df1 = pd.DataFrame([[1, 2], [3, 4]], index=idx1)
|
705 |
+
>>> df1.to_hdf('file', 'data', 'w', append=True) # doctest: +SKIP
|
706 |
+
>>> idx2 = pd.Index(['c', 'd'], name='name2')
|
707 |
+
>>> df2 = pd.DataFrame([[5, 6], [7, 8]], index=idx2)
|
708 |
+
>>> df2.to_hdf('file', 'data', 'a', append=True) # doctest: +SKIP
|
709 |
+
AttributeConflictWarning: the [index_name] attribute of the existing index is
|
710 |
+
[name1] which conflicts with the new [name2]...
|
711 |
+
"""
|
712 |
+
|
713 |
+
|
714 |
+
class DatabaseError(OSError):
|
715 |
+
"""
|
716 |
+
Error is raised when executing sql with bad syntax or sql that throws an error.
|
717 |
+
|
718 |
+
Examples
|
719 |
+
--------
|
720 |
+
>>> from sqlite3 import connect
|
721 |
+
>>> conn = connect(':memory:')
|
722 |
+
>>> pd.read_sql('select * test', conn) # doctest: +SKIP
|
723 |
+
... # DatabaseError: Execution failed on sql 'test': near "test": syntax error
|
724 |
+
"""
|
725 |
+
|
726 |
+
|
727 |
+
class PossiblePrecisionLoss(Warning):
|
728 |
+
"""
|
729 |
+
Warning raised by to_stata on a column with a value outside or equal to int64.
|
730 |
+
|
731 |
+
When the column value is outside or equal to the int64 value the column is
|
732 |
+
converted to a float64 dtype.
|
733 |
+
|
734 |
+
Examples
|
735 |
+
--------
|
736 |
+
>>> df = pd.DataFrame({"s": pd.Series([1, 2**53], dtype=np.int64)})
|
737 |
+
>>> df.to_stata('test') # doctest: +SKIP
|
738 |
+
... # PossiblePrecisionLoss: Column converted from int64 to float64...
|
739 |
+
"""
|
740 |
+
|
741 |
+
|
742 |
+
class ValueLabelTypeMismatch(Warning):
|
743 |
+
"""
|
744 |
+
Warning raised by to_stata on a category column that contains non-string values.
|
745 |
+
|
746 |
+
Examples
|
747 |
+
--------
|
748 |
+
>>> df = pd.DataFrame({"categories": pd.Series(["a", 2], dtype="category")})
|
749 |
+
>>> df.to_stata('test') # doctest: +SKIP
|
750 |
+
... # ValueLabelTypeMismatch: Stata value labels (pandas categories) must be str...
|
751 |
+
"""
|
752 |
+
|
753 |
+
|
754 |
+
class InvalidColumnName(Warning):
|
755 |
+
"""
|
756 |
+
Warning raised by to_stata the column contains a non-valid stata name.
|
757 |
+
|
758 |
+
Because the column name is an invalid Stata variable, the name needs to be
|
759 |
+
converted.
|
760 |
+
|
761 |
+
Examples
|
762 |
+
--------
|
763 |
+
>>> df = pd.DataFrame({"0categories": pd.Series([2, 2])})
|
764 |
+
>>> df.to_stata('test') # doctest: +SKIP
|
765 |
+
... # InvalidColumnName: Not all pandas column names were valid Stata variable...
|
766 |
+
"""
|
767 |
+
|
768 |
+
|
769 |
+
class CategoricalConversionWarning(Warning):
|
770 |
+
"""
|
771 |
+
Warning is raised when reading a partial labeled Stata file using a iterator.
|
772 |
+
|
773 |
+
Examples
|
774 |
+
--------
|
775 |
+
>>> from pandas.io.stata import StataReader
|
776 |
+
>>> with StataReader('dta_file', chunksize=2) as reader: # doctest: +SKIP
|
777 |
+
... for i, block in enumerate(reader):
|
778 |
+
... print(i, block)
|
779 |
+
... # CategoricalConversionWarning: One or more series with value labels...
|
780 |
+
"""
|
781 |
+
|
782 |
+
|
783 |
+
class LossySetitemError(Exception):
|
784 |
+
"""
|
785 |
+
Raised when trying to do a __setitem__ on an np.ndarray that is not lossless.
|
786 |
+
|
787 |
+
Notes
|
788 |
+
-----
|
789 |
+
This is an internal error.
|
790 |
+
"""
|
791 |
+
|
792 |
+
|
793 |
+
class NoBufferPresent(Exception):
|
794 |
+
"""
|
795 |
+
Exception is raised in _get_data_buffer to signal that there is no requested buffer.
|
796 |
+
"""
|
797 |
+
|
798 |
+
|
799 |
+
class InvalidComparison(Exception):
|
800 |
+
"""
|
801 |
+
Exception is raised by _validate_comparison_value to indicate an invalid comparison.
|
802 |
+
|
803 |
+
Notes
|
804 |
+
-----
|
805 |
+
This is an internal error.
|
806 |
+
"""
|
807 |
+
|
808 |
+
|
809 |
+
__all__ = [
|
810 |
+
"AbstractMethodError",
|
811 |
+
"AttributeConflictWarning",
|
812 |
+
"CategoricalConversionWarning",
|
813 |
+
"ClosedFileError",
|
814 |
+
"CSSWarning",
|
815 |
+
"DatabaseError",
|
816 |
+
"DataError",
|
817 |
+
"DtypeWarning",
|
818 |
+
"DuplicateLabelError",
|
819 |
+
"EmptyDataError",
|
820 |
+
"IncompatibilityWarning",
|
821 |
+
"IntCastingNaNError",
|
822 |
+
"InvalidColumnName",
|
823 |
+
"InvalidComparison",
|
824 |
+
"InvalidIndexError",
|
825 |
+
"InvalidVersion",
|
826 |
+
"IndexingError",
|
827 |
+
"LossySetitemError",
|
828 |
+
"MergeError",
|
829 |
+
"NoBufferPresent",
|
830 |
+
"NullFrequencyError",
|
831 |
+
"NumbaUtilError",
|
832 |
+
"NumExprClobberingError",
|
833 |
+
"OptionError",
|
834 |
+
"OutOfBoundsDatetime",
|
835 |
+
"OutOfBoundsTimedelta",
|
836 |
+
"ParserError",
|
837 |
+
"ParserWarning",
|
838 |
+
"PerformanceWarning",
|
839 |
+
"PossibleDataLossError",
|
840 |
+
"PossiblePrecisionLoss",
|
841 |
+
"PyperclipException",
|
842 |
+
"PyperclipWindowsException",
|
843 |
+
"SettingWithCopyError",
|
844 |
+
"SettingWithCopyWarning",
|
845 |
+
"SpecificationError",
|
846 |
+
"UndefinedVariableError",
|
847 |
+
"UnsortedIndexError",
|
848 |
+
"UnsupportedFunctionCall",
|
849 |
+
"ValueLabelTypeMismatch",
|
850 |
+
]
|