ZTWHHH commited on
Commit
e3c673c
·
verified ·
1 Parent(s): e0e47d0

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/__init__.py +71 -0
  2. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/__init__.cpython-310.pyc +0 -0
  3. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/configuration_bert_generation.cpython-310.pyc +0 -0
  4. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/modeling_bert_generation.cpython-310.pyc +0 -0
  5. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/tokenization_bert_generation.cpython-310.pyc +0 -0
  6. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/configuration_bert_generation.py +124 -0
  7. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/modeling_bert_generation.py +1008 -0
  8. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/tokenization_bert_generation.py +185 -0
  9. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__init__.py +138 -0
  10. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/__init__.cpython-310.pyc +0 -0
  11. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/configuration_blenderbot_small.cpython-310.pyc +0 -0
  12. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/modeling_blenderbot_small.cpython-310.pyc +0 -0
  13. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/modeling_flax_blenderbot_small.cpython-310.pyc +0 -0
  14. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/modeling_tf_blenderbot_small.cpython-310.pyc +0 -0
  15. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/tokenization_blenderbot_small.cpython-310.pyc +0 -0
  16. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/tokenization_blenderbot_small_fast.cpython-310.pyc +0 -0
  17. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/configuration_blenderbot_small.py +392 -0
  18. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_blenderbot_small.py +1570 -0
  19. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_flax_blenderbot_small.py +1522 -0
  20. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py +1529 -0
  21. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/tokenization_blenderbot_small.py +258 -0
  22. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/tokenization_blenderbot_small_fast.py +140 -0
  23. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/__init__.cpython-310.pyc +0 -0
  24. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/tokenization_byt5.cpython-310.pyc +0 -0
  25. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/byt5/convert_byt5_original_tf_checkpoint_to_pytorch.py +60 -0
  26. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__init__.py +88 -0
  27. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/configuration_chinese_clip.cpython-310.pyc +0 -0
  28. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/convert_chinese_clip_original_pytorch_to_hf.cpython-310.pyc +0 -0
  29. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/feature_extraction_chinese_clip.cpython-310.pyc +0 -0
  30. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/image_processing_chinese_clip.cpython-310.pyc +0 -0
  31. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/modeling_chinese_clip.cpython-310.pyc +0 -0
  32. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/processing_chinese_clip.cpython-310.pyc +0 -0
  33. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/configuration_chinese_clip.py +472 -0
  34. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/image_processing_chinese_clip.py +312 -0
  35. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/modeling_chinese_clip.py +1564 -0
  36. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/processing_chinese_clip.py +142 -0
  37. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/configuration_efficientformer.cpython-310.pyc +0 -0
  38. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/modeling_efficientformer.cpython-310.pyc +0 -0
  39. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/efficientformer/configuration_efficientformer.py +173 -0
  40. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/__init__.py +57 -0
  41. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/__init__.cpython-310.pyc +0 -0
  42. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/collating_graphormer.cpython-310.pyc +0 -0
  43. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/configuration_graphormer.cpython-310.pyc +0 -0
  44. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/algos_graphormer.pyx +107 -0
  45. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/collating_graphormer.py +134 -0
  46. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/configuration_graphormer.py +221 -0
  47. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/roc_bert/__pycache__/configuration_roc_bert.cpython-310.pyc +0 -0
  48. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/__pycache__/__init__.cpython-310.pyc +0 -0
  49. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/__pycache__/configuration_vitmatte.cpython-310.pyc +0 -0
  50. evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/__pycache__/convert_vitmatte_to_hf.cpython-310.pyc +0 -0
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/__init__.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import TYPE_CHECKING
16
+
17
+ from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available
18
+
19
+
20
+ _import_structure = {"configuration_bert_generation": ["BertGenerationConfig"]}
21
+
22
+ try:
23
+ if not is_sentencepiece_available():
24
+ raise OptionalDependencyNotAvailable()
25
+ except OptionalDependencyNotAvailable:
26
+ pass
27
+ else:
28
+ _import_structure["tokenization_bert_generation"] = ["BertGenerationTokenizer"]
29
+
30
+ try:
31
+ if not is_torch_available():
32
+ raise OptionalDependencyNotAvailable()
33
+ except OptionalDependencyNotAvailable:
34
+ pass
35
+ else:
36
+ _import_structure["modeling_bert_generation"] = [
37
+ "BertGenerationDecoder",
38
+ "BertGenerationEncoder",
39
+ "BertGenerationPreTrainedModel",
40
+ "load_tf_weights_in_bert_generation",
41
+ ]
42
+
43
+
44
+ if TYPE_CHECKING:
45
+ from .configuration_bert_generation import BertGenerationConfig
46
+
47
+ try:
48
+ if not is_sentencepiece_available():
49
+ raise OptionalDependencyNotAvailable()
50
+ except OptionalDependencyNotAvailable:
51
+ pass
52
+ else:
53
+ from .tokenization_bert_generation import BertGenerationTokenizer
54
+
55
+ try:
56
+ if not is_torch_available():
57
+ raise OptionalDependencyNotAvailable()
58
+ except OptionalDependencyNotAvailable:
59
+ pass
60
+ else:
61
+ from .modeling_bert_generation import (
62
+ BertGenerationDecoder,
63
+ BertGenerationEncoder,
64
+ BertGenerationPreTrainedModel,
65
+ load_tf_weights_in_bert_generation,
66
+ )
67
+
68
+ else:
69
+ import sys
70
+
71
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.14 kB). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/configuration_bert_generation.cpython-310.pyc ADDED
Binary file (5.65 kB). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/modeling_bert_generation.cpython-310.pyc ADDED
Binary file (31.7 kB). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/tokenization_bert_generation.cpython-310.pyc ADDED
Binary file (7.18 kB). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/configuration_bert_generation.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ BertGeneration model configuration"""
16
+
17
+ from ...configuration_utils import PretrainedConfig
18
+
19
+
20
+ class BertGenerationConfig(PretrainedConfig):
21
+ r"""
22
+ This is the configuration class to store the configuration of a [`BertGenerationPreTrainedModel`]. It is used to
23
+ instantiate a BertGeneration model according to the specified arguments, defining the model architecture.
24
+ Instantiating a configuration with the defaults will yield a similar configuration to that of the BertGeneration
25
+ [google/bert_for_seq_generation_L-24_bbc_encoder](https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder)
26
+ architecture.
27
+
28
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
29
+ documentation from [`PretrainedConfig`] for more information.
30
+
31
+ Args:
32
+ vocab_size (`int`, *optional*, defaults to 50358):
33
+ Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
34
+ `inputs_ids` passed when calling [`BertGeneration`].
35
+ hidden_size (`int`, *optional*, defaults to 1024):
36
+ Dimensionality of the encoder layers and the pooler layer.
37
+ num_hidden_layers (`int`, *optional*, defaults to 24):
38
+ Number of hidden layers in the Transformer encoder.
39
+ num_attention_heads (`int`, *optional*, defaults to 16):
40
+ Number of attention heads for each attention layer in the Transformer encoder.
41
+ intermediate_size (`int`, *optional*, defaults to 4096):
42
+ Dimensionality of the "intermediate" (often called feed-forward) layer in the Transformer encoder.
43
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
44
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
45
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
46
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
47
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
48
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
49
+ The dropout ratio for the attention probabilities.
50
+ max_position_embeddings (`int`, *optional*, defaults to 512):
51
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
52
+ just in case (e.g., 512 or 1024 or 2048).
53
+ initializer_range (`float`, *optional*, defaults to 0.02):
54
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
55
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
56
+ The epsilon used by the layer normalization layers.
57
+ pad_token_id (`int`, *optional*, defaults to 0):
58
+ Padding token id.
59
+ bos_token_id (`int`, *optional*, defaults to 2):
60
+ Beginning of stream token id.
61
+ eos_token_id (`int`, *optional*, defaults to 1):
62
+ End of stream token id.
63
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
64
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
65
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
66
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
67
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
68
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
69
+ use_cache (`bool`, *optional*, defaults to `True`):
70
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
71
+ relevant if `config.is_decoder=True`.
72
+
73
+ Examples:
74
+
75
+ ```python
76
+ >>> from transformers import BertGenerationConfig, BertGenerationEncoder
77
+
78
+ >>> # Initializing a BertGeneration config
79
+ >>> configuration = BertGenerationConfig()
80
+
81
+ >>> # Initializing a model (with random weights) from the config
82
+ >>> model = BertGenerationEncoder(configuration)
83
+
84
+ >>> # Accessing the model configuration
85
+ >>> configuration = model.config
86
+ ```"""
87
+
88
+ model_type = "bert-generation"
89
+
90
+ def __init__(
91
+ self,
92
+ vocab_size=50358,
93
+ hidden_size=1024,
94
+ num_hidden_layers=24,
95
+ num_attention_heads=16,
96
+ intermediate_size=4096,
97
+ hidden_act="gelu",
98
+ hidden_dropout_prob=0.1,
99
+ attention_probs_dropout_prob=0.1,
100
+ max_position_embeddings=512,
101
+ initializer_range=0.02,
102
+ layer_norm_eps=1e-12,
103
+ pad_token_id=0,
104
+ bos_token_id=2,
105
+ eos_token_id=1,
106
+ position_embedding_type="absolute",
107
+ use_cache=True,
108
+ **kwargs,
109
+ ):
110
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
111
+
112
+ self.vocab_size = vocab_size
113
+ self.hidden_size = hidden_size
114
+ self.num_hidden_layers = num_hidden_layers
115
+ self.num_attention_heads = num_attention_heads
116
+ self.hidden_act = hidden_act
117
+ self.intermediate_size = intermediate_size
118
+ self.hidden_dropout_prob = hidden_dropout_prob
119
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
120
+ self.max_position_embeddings = max_position_embeddings
121
+ self.initializer_range = initializer_range
122
+ self.layer_norm_eps = layer_norm_eps
123
+ self.position_embedding_type = position_embedding_type
124
+ self.use_cache = use_cache
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/modeling_bert_generation.py ADDED
@@ -0,0 +1,1008 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """PyTorch BERT model specific for generation."""
16
+
17
+ import math
18
+ from typing import Optional, Tuple, Union
19
+
20
+ import torch
21
+ import torch.utils.checkpoint
22
+ from torch import nn
23
+ from torch.nn import CrossEntropyLoss
24
+
25
+ from ...activations import ACT2FN
26
+ from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions
27
+ from ...modeling_utils import PreTrainedModel
28
+ from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
29
+ from ...utils import (
30
+ add_code_sample_docstrings,
31
+ add_start_docstrings,
32
+ add_start_docstrings_to_model_forward,
33
+ logging,
34
+ replace_return_docstrings,
35
+ )
36
+ from .configuration_bert_generation import BertGenerationConfig
37
+
38
+
39
+ logger = logging.get_logger(__name__)
40
+
41
+ _CHECKPOINT_FOR_DOC = "google/bert_for_seq_generation_L-24_bbc_encoder"
42
+ _CONFIG_FOR_DOC = "BertGenerationConfig"
43
+
44
+
45
+ # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->BertGeneration
46
+ class BertGenerationSelfOutput(nn.Module):
47
+ def __init__(self, config):
48
+ super().__init__()
49
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
50
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
51
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
52
+
53
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
54
+ hidden_states = self.dense(hidden_states)
55
+ hidden_states = self.dropout(hidden_states)
56
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
57
+ return hidden_states
58
+
59
+
60
+ # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->BertGeneration
61
+ class BertGenerationSelfAttention(nn.Module):
62
+ def __init__(self, config, position_embedding_type=None):
63
+ super().__init__()
64
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
65
+ raise ValueError(
66
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
67
+ f"heads ({config.num_attention_heads})"
68
+ )
69
+
70
+ self.num_attention_heads = config.num_attention_heads
71
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
72
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
73
+
74
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
75
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
76
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
77
+
78
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
79
+ self.position_embedding_type = position_embedding_type or getattr(
80
+ config, "position_embedding_type", "absolute"
81
+ )
82
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
83
+ self.max_position_embeddings = config.max_position_embeddings
84
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
85
+
86
+ self.is_decoder = config.is_decoder
87
+
88
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
89
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
90
+ x = x.view(new_x_shape)
91
+ return x.permute(0, 2, 1, 3)
92
+
93
+ def forward(
94
+ self,
95
+ hidden_states: torch.Tensor,
96
+ attention_mask: Optional[torch.FloatTensor] = None,
97
+ head_mask: Optional[torch.FloatTensor] = None,
98
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
99
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
100
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
101
+ output_attentions: Optional[bool] = False,
102
+ ) -> Tuple[torch.Tensor]:
103
+ mixed_query_layer = self.query(hidden_states)
104
+
105
+ # If this is instantiated as a cross-attention module, the keys
106
+ # and values come from an encoder; the attention mask needs to be
107
+ # such that the encoder's padding tokens are not attended to.
108
+ is_cross_attention = encoder_hidden_states is not None
109
+
110
+ if is_cross_attention and past_key_value is not None:
111
+ # reuse k,v, cross_attentions
112
+ key_layer = past_key_value[0]
113
+ value_layer = past_key_value[1]
114
+ attention_mask = encoder_attention_mask
115
+ elif is_cross_attention:
116
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
117
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
118
+ attention_mask = encoder_attention_mask
119
+ elif past_key_value is not None:
120
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
121
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
122
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
123
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
124
+ else:
125
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
126
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
127
+
128
+ query_layer = self.transpose_for_scores(mixed_query_layer)
129
+
130
+ use_cache = past_key_value is not None
131
+ if self.is_decoder:
132
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
133
+ # Further calls to cross_attention layer can then reuse all cross-attention
134
+ # key/value_states (first "if" case)
135
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
136
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
137
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
138
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
139
+ past_key_value = (key_layer, value_layer)
140
+
141
+ # Take the dot product between "query" and "key" to get the raw attention scores.
142
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
143
+
144
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
145
+ query_length, key_length = query_layer.shape[2], key_layer.shape[2]
146
+ if use_cache:
147
+ position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
148
+ -1, 1
149
+ )
150
+ else:
151
+ position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
152
+ position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
153
+ distance = position_ids_l - position_ids_r
154
+
155
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
156
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
157
+
158
+ if self.position_embedding_type == "relative_key":
159
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
160
+ attention_scores = attention_scores + relative_position_scores
161
+ elif self.position_embedding_type == "relative_key_query":
162
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
163
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
164
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
165
+
166
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
167
+ if attention_mask is not None:
168
+ # Apply the attention mask is (precomputed for all layers in BertGenerationModel forward() function)
169
+ attention_scores = attention_scores + attention_mask
170
+
171
+ # Normalize the attention scores to probabilities.
172
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
173
+
174
+ # This is actually dropping out entire tokens to attend to, which might
175
+ # seem a bit unusual, but is taken from the original Transformer paper.
176
+ attention_probs = self.dropout(attention_probs)
177
+
178
+ # Mask heads if we want to
179
+ if head_mask is not None:
180
+ attention_probs = attention_probs * head_mask
181
+
182
+ context_layer = torch.matmul(attention_probs, value_layer)
183
+
184
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
185
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
186
+ context_layer = context_layer.view(new_context_layer_shape)
187
+
188
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
189
+
190
+ if self.is_decoder:
191
+ outputs = outputs + (past_key_value,)
192
+ return outputs
193
+
194
+
195
+ # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->BertGeneration
196
+ class BertGenerationAttention(nn.Module):
197
+ def __init__(self, config, position_embedding_type=None):
198
+ super().__init__()
199
+ self.self = BertGenerationSelfAttention(config, position_embedding_type=position_embedding_type)
200
+ self.output = BertGenerationSelfOutput(config)
201
+ self.pruned_heads = set()
202
+
203
+ def prune_heads(self, heads):
204
+ if len(heads) == 0:
205
+ return
206
+ heads, index = find_pruneable_heads_and_indices(
207
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
208
+ )
209
+
210
+ # Prune linear layers
211
+ self.self.query = prune_linear_layer(self.self.query, index)
212
+ self.self.key = prune_linear_layer(self.self.key, index)
213
+ self.self.value = prune_linear_layer(self.self.value, index)
214
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
215
+
216
+ # Update hyper params and store pruned heads
217
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
218
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
219
+ self.pruned_heads = self.pruned_heads.union(heads)
220
+
221
+ def forward(
222
+ self,
223
+ hidden_states: torch.Tensor,
224
+ attention_mask: Optional[torch.FloatTensor] = None,
225
+ head_mask: Optional[torch.FloatTensor] = None,
226
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
227
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
228
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
229
+ output_attentions: Optional[bool] = False,
230
+ ) -> Tuple[torch.Tensor]:
231
+ self_outputs = self.self(
232
+ hidden_states,
233
+ attention_mask,
234
+ head_mask,
235
+ encoder_hidden_states,
236
+ encoder_attention_mask,
237
+ past_key_value,
238
+ output_attentions,
239
+ )
240
+ attention_output = self.output(self_outputs[0], hidden_states)
241
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
242
+ return outputs
243
+
244
+
245
+ # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->BertGeneration
246
+ class BertGenerationIntermediate(nn.Module):
247
+ def __init__(self, config):
248
+ super().__init__()
249
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
250
+ if isinstance(config.hidden_act, str):
251
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
252
+ else:
253
+ self.intermediate_act_fn = config.hidden_act
254
+
255
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
256
+ hidden_states = self.dense(hidden_states)
257
+ hidden_states = self.intermediate_act_fn(hidden_states)
258
+ return hidden_states
259
+
260
+
261
+ # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->BertGeneration
262
+ class BertGenerationOutput(nn.Module):
263
+ def __init__(self, config):
264
+ super().__init__()
265
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
266
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
267
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
268
+
269
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
270
+ hidden_states = self.dense(hidden_states)
271
+ hidden_states = self.dropout(hidden_states)
272
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
273
+ return hidden_states
274
+
275
+
276
+ # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->BertGeneration
277
+ class BertGenerationLayer(nn.Module):
278
+ def __init__(self, config):
279
+ super().__init__()
280
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
281
+ self.seq_len_dim = 1
282
+ self.attention = BertGenerationAttention(config)
283
+ self.is_decoder = config.is_decoder
284
+ self.add_cross_attention = config.add_cross_attention
285
+ if self.add_cross_attention:
286
+ if not self.is_decoder:
287
+ raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
288
+ self.crossattention = BertGenerationAttention(config, position_embedding_type="absolute")
289
+ self.intermediate = BertGenerationIntermediate(config)
290
+ self.output = BertGenerationOutput(config)
291
+
292
+ def forward(
293
+ self,
294
+ hidden_states: torch.Tensor,
295
+ attention_mask: Optional[torch.FloatTensor] = None,
296
+ head_mask: Optional[torch.FloatTensor] = None,
297
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
298
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
299
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
300
+ output_attentions: Optional[bool] = False,
301
+ ) -> Tuple[torch.Tensor]:
302
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
303
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
304
+ self_attention_outputs = self.attention(
305
+ hidden_states,
306
+ attention_mask,
307
+ head_mask,
308
+ output_attentions=output_attentions,
309
+ past_key_value=self_attn_past_key_value,
310
+ )
311
+ attention_output = self_attention_outputs[0]
312
+
313
+ # if decoder, the last output is tuple of self-attn cache
314
+ if self.is_decoder:
315
+ outputs = self_attention_outputs[1:-1]
316
+ present_key_value = self_attention_outputs[-1]
317
+ else:
318
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
319
+
320
+ cross_attn_present_key_value = None
321
+ if self.is_decoder and encoder_hidden_states is not None:
322
+ if not hasattr(self, "crossattention"):
323
+ raise ValueError(
324
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
325
+ " by setting `config.add_cross_attention=True`"
326
+ )
327
+
328
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
329
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
330
+ cross_attention_outputs = self.crossattention(
331
+ attention_output,
332
+ attention_mask,
333
+ head_mask,
334
+ encoder_hidden_states,
335
+ encoder_attention_mask,
336
+ cross_attn_past_key_value,
337
+ output_attentions,
338
+ )
339
+ attention_output = cross_attention_outputs[0]
340
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
341
+
342
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
343
+ cross_attn_present_key_value = cross_attention_outputs[-1]
344
+ present_key_value = present_key_value + cross_attn_present_key_value
345
+
346
+ layer_output = apply_chunking_to_forward(
347
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
348
+ )
349
+ outputs = (layer_output,) + outputs
350
+
351
+ # if decoder, return the attn key/values as the last output
352
+ if self.is_decoder:
353
+ outputs = outputs + (present_key_value,)
354
+
355
+ return outputs
356
+
357
+ def feed_forward_chunk(self, attention_output):
358
+ intermediate_output = self.intermediate(attention_output)
359
+ layer_output = self.output(intermediate_output, attention_output)
360
+ return layer_output
361
+
362
+
363
+ # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->BertGeneration
364
+ class BertEncoder(nn.Module):
365
+ def __init__(self, config):
366
+ super().__init__()
367
+ self.config = config
368
+ self.layer = nn.ModuleList([BertGenerationLayer(config) for _ in range(config.num_hidden_layers)])
369
+ self.gradient_checkpointing = False
370
+
371
+ def forward(
372
+ self,
373
+ hidden_states: torch.Tensor,
374
+ attention_mask: Optional[torch.FloatTensor] = None,
375
+ head_mask: Optional[torch.FloatTensor] = None,
376
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
377
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
378
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
379
+ use_cache: Optional[bool] = None,
380
+ output_attentions: Optional[bool] = False,
381
+ output_hidden_states: Optional[bool] = False,
382
+ return_dict: Optional[bool] = True,
383
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
384
+ all_hidden_states = () if output_hidden_states else None
385
+ all_self_attentions = () if output_attentions else None
386
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
387
+
388
+ if self.gradient_checkpointing and self.training:
389
+ if use_cache:
390
+ logger.warning_once(
391
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
392
+ )
393
+ use_cache = False
394
+
395
+ next_decoder_cache = () if use_cache else None
396
+ for i, layer_module in enumerate(self.layer):
397
+ if output_hidden_states:
398
+ all_hidden_states = all_hidden_states + (hidden_states,)
399
+
400
+ layer_head_mask = head_mask[i] if head_mask is not None else None
401
+ past_key_value = past_key_values[i] if past_key_values is not None else None
402
+
403
+ if self.gradient_checkpointing and self.training:
404
+ layer_outputs = self._gradient_checkpointing_func(
405
+ layer_module.__call__,
406
+ hidden_states,
407
+ attention_mask,
408
+ layer_head_mask,
409
+ encoder_hidden_states,
410
+ encoder_attention_mask,
411
+ past_key_value,
412
+ output_attentions,
413
+ )
414
+ else:
415
+ layer_outputs = layer_module(
416
+ hidden_states,
417
+ attention_mask,
418
+ layer_head_mask,
419
+ encoder_hidden_states,
420
+ encoder_attention_mask,
421
+ past_key_value,
422
+ output_attentions,
423
+ )
424
+
425
+ hidden_states = layer_outputs[0]
426
+ if use_cache:
427
+ next_decoder_cache += (layer_outputs[-1],)
428
+ if output_attentions:
429
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
430
+ if self.config.add_cross_attention:
431
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
432
+
433
+ if output_hidden_states:
434
+ all_hidden_states = all_hidden_states + (hidden_states,)
435
+
436
+ if not return_dict:
437
+ return tuple(
438
+ v
439
+ for v in [
440
+ hidden_states,
441
+ next_decoder_cache,
442
+ all_hidden_states,
443
+ all_self_attentions,
444
+ all_cross_attentions,
445
+ ]
446
+ if v is not None
447
+ )
448
+ return BaseModelOutputWithPastAndCrossAttentions(
449
+ last_hidden_state=hidden_states,
450
+ past_key_values=next_decoder_cache,
451
+ hidden_states=all_hidden_states,
452
+ attentions=all_self_attentions,
453
+ cross_attentions=all_cross_attentions,
454
+ )
455
+
456
+
457
+ def load_tf_weights_in_bert_generation(
458
+ model, tf_hub_path, model_class, is_encoder_named_decoder=False, is_encoder=False
459
+ ):
460
+ try:
461
+ import numpy as np
462
+ import tensorflow.compat.v1 as tf
463
+ import tensorflow_hub as hub
464
+ import tensorflow_text # noqa: F401
465
+
466
+ tf.disable_eager_execution()
467
+ except ImportError:
468
+ logger.error(
469
+ "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
470
+ "https://www.tensorflow.org/install/ for installation instructions."
471
+ )
472
+ raise
473
+ tf_model = hub.Module(tf_hub_path)
474
+ init = tf.global_variables_initializer()
475
+ with tf.Session() as sess:
476
+ init.run()
477
+ all_variables = tf_model.variable_map
478
+ keep_track_variables = all_variables.copy()
479
+ for key in list(all_variables.keys()):
480
+ if "global" in key:
481
+ logger.info(f"Skipping {key}...")
482
+ continue
483
+ if not is_encoder:
484
+ model_pointer = getattr(model, model_class)
485
+ else:
486
+ model_pointer = model
487
+ is_embedding = False
488
+ logger.info(f"Trying to match {key}...")
489
+ # remove start_string = "module/bert/"
490
+ sub_layers = key.split("/")[2:]
491
+ if is_encoder_named_decoder and sub_layers[0] == "encoder":
492
+ logger.info(f"Skipping encoder layer {key} for decoder")
493
+ continue
494
+ if is_encoder and sub_layers[0] == "decoder":
495
+ logger.info(f"Skipping decoder layer {key} for encoder")
496
+ continue
497
+ for i, sub_layer in enumerate(sub_layers):
498
+ if sub_layer == "embeddings":
499
+ is_embedding = True
500
+ elif sub_layer == "LayerNorm":
501
+ is_embedding = False
502
+ if "layer" in sub_layer:
503
+ model_pointer = model_pointer.layer[int(sub_layer.split("_")[-1])]
504
+ elif sub_layer in ["kernel", "gamma"]:
505
+ model_pointer = model_pointer.weight
506
+ elif sub_layer == "beta":
507
+ model_pointer = model_pointer.bias
508
+ elif sub_layer == "encdec":
509
+ model_pointer = model_pointer.crossattention.self
510
+ elif sub_layer == "encdec_output":
511
+ model_pointer = model_pointer.crossattention.output
512
+ elif is_encoder_named_decoder and sub_layer == "decoder":
513
+ model_pointer = model_pointer.encoder
514
+ else:
515
+ if sub_layer == "attention" and "encdec" in sub_layers[i + 1]:
516
+ continue
517
+ try:
518
+ model_pointer = getattr(model_pointer, sub_layer)
519
+ except AttributeError:
520
+ logger.info(f"Skipping to initialize {key} at {sub_layer}...")
521
+ raise AttributeError
522
+
523
+ array = np.asarray(sess.run(all_variables[key]))
524
+ if not is_embedding:
525
+ logger.info(f"Transposing numpy weight of shape {array.shape} for {key}")
526
+ array = np.transpose(array)
527
+ else:
528
+ model_pointer = model_pointer.weight
529
+
530
+ if model_pointer.shape != array.shape:
531
+ raise ValueError(f"Pointer shape {model_pointer.shape} and array shape {array.shape} mismatched")
532
+ logger.info(f"Initialize PyTorch weight {key}")
533
+
534
+ model_pointer.data = torch.from_numpy(array.astype(np.float32))
535
+ keep_track_variables.pop(key, None)
536
+
537
+ logger.info(f"Weights not copied to PyTorch model: {', '.join(keep_track_variables.keys())}")
538
+ return model
539
+
540
+
541
+ class BertGenerationEmbeddings(nn.Module):
542
+ """Construct the embeddings from word and position embeddings."""
543
+
544
+ def __init__(self, config):
545
+ super().__init__()
546
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
547
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
548
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
549
+ # any TensorFlow checkpoint file
550
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
551
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
552
+
553
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
554
+ self.register_buffer(
555
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
556
+ )
557
+
558
+ def forward(self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0):
559
+ if input_ids is not None:
560
+ input_shape = input_ids.size()
561
+ else:
562
+ input_shape = inputs_embeds.size()[:-1]
563
+
564
+ seq_length = input_shape[1]
565
+
566
+ if position_ids is None:
567
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
568
+
569
+ if inputs_embeds is None:
570
+ inputs_embeds = self.word_embeddings(input_ids)
571
+ position_embeddings = self.position_embeddings(position_ids)
572
+
573
+ embeddings = inputs_embeds + position_embeddings
574
+ embeddings = self.LayerNorm(embeddings)
575
+ embeddings = self.dropout(embeddings)
576
+ return embeddings
577
+
578
+
579
+ class BertGenerationPreTrainedModel(PreTrainedModel):
580
+ """
581
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
582
+ models.
583
+ """
584
+
585
+ config_class = BertGenerationConfig
586
+ base_model_prefix = "bert"
587
+ supports_gradient_checkpointing = True
588
+
589
+ def _init_weights(self, module):
590
+ """Initialize the weights"""
591
+ if isinstance(module, nn.Linear):
592
+ # Slightly different from the TF version which uses truncated_normal for initialization
593
+ # cf https://github.com/pytorch/pytorch/pull/5617
594
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
595
+ if module.bias is not None:
596
+ module.bias.data.zero_()
597
+ elif isinstance(module, nn.Embedding):
598
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
599
+ if module.padding_idx is not None:
600
+ module.weight.data[module.padding_idx].zero_()
601
+ elif isinstance(module, nn.LayerNorm):
602
+ module.bias.data.zero_()
603
+ module.weight.data.fill_(1.0)
604
+
605
+
606
+ BERT_GENERATION_START_DOCSTRING = r"""
607
+
608
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
609
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
610
+ etc.)
611
+
612
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
613
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
614
+ and behavior.
615
+
616
+ Parameters:
617
+ config ([`BertGenerationConfig`]): Model configuration class with all the parameters of the model.
618
+ Initializing with a config file does not load the weights associated with the model, only the
619
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
620
+ """
621
+
622
+ BERT_GENERATION_INPUTS_DOCSTRING = r"""
623
+ Args:
624
+ input_ids (`torch.LongTensor` of shape `({0})`):
625
+ Indices of input sequence tokens in the vocabulary.
626
+
627
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
628
+ [`PreTrainedTokenizer.encode`] for details.
629
+
630
+ [What are input IDs?](../glossary#input-ids)
631
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
632
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
633
+
634
+ - 1 for tokens that are **not masked**,
635
+ - 0 for tokens that are **masked**.
636
+
637
+ [What are attention masks?](../glossary#attention-mask)
638
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
639
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
640
+ config.max_position_embeddings - 1]`.
641
+
642
+ [What are position IDs?](../glossary#position-ids)
643
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
644
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
645
+
646
+ - 1 indicates the head is **not masked**,
647
+ - 0 indicates the head is **masked**.
648
+
649
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
650
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
651
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
652
+ model's internal embedding lookup matrix.
653
+ output_attentions (`bool`, *optional*):
654
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
655
+ tensors for more detail.
656
+ output_hidden_states (`bool`, *optional*):
657
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
658
+ more detail.
659
+ return_dict (`bool`, *optional*):
660
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
661
+ """
662
+
663
+
664
+ @add_start_docstrings(
665
+ "The bare BertGeneration model transformer outputting raw hidden-states without any specific head on top.",
666
+ BERT_GENERATION_START_DOCSTRING,
667
+ )
668
+ class BertGenerationEncoder(BertGenerationPreTrainedModel):
669
+ """
670
+
671
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
672
+ cross-attention is added between the self-attention layers, following the architecture described in [Attention is
673
+ all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
674
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
675
+
676
+ This model should be used when leveraging Bert or Roberta checkpoints for the [`EncoderDecoderModel`] class as
677
+ described in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461)
678
+ by Sascha Rothe, Shashi Narayan, and Aliaksei Severyn.
679
+
680
+ To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
681
+ to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
682
+ `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
683
+ """
684
+
685
+ def __init__(self, config):
686
+ super().__init__(config)
687
+ self.config = config
688
+
689
+ self.embeddings = BertGenerationEmbeddings(config)
690
+ self.encoder = BertEncoder(config)
691
+
692
+ # Initialize weights and apply final processing
693
+ self.post_init()
694
+
695
+ def get_input_embeddings(self):
696
+ return self.embeddings.word_embeddings
697
+
698
+ def set_input_embeddings(self, value):
699
+ self.embeddings.word_embeddings = value
700
+
701
+ def _prune_heads(self, heads_to_prune):
702
+ """
703
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
704
+ class PreTrainedModel
705
+ """
706
+ for layer, heads in heads_to_prune.items():
707
+ self.encoder.layer[layer].attention.prune_heads(heads)
708
+
709
+ @add_start_docstrings_to_model_forward(BERT_GENERATION_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
710
+ @add_code_sample_docstrings(
711
+ checkpoint=_CHECKPOINT_FOR_DOC,
712
+ output_type=BaseModelOutputWithPastAndCrossAttentions,
713
+ config_class=_CONFIG_FOR_DOC,
714
+ )
715
+ def forward(
716
+ self,
717
+ input_ids: Optional[torch.Tensor] = None,
718
+ attention_mask: Optional[torch.Tensor] = None,
719
+ position_ids: Optional[torch.Tensor] = None,
720
+ head_mask: Optional[torch.Tensor] = None,
721
+ inputs_embeds: Optional[torch.Tensor] = None,
722
+ encoder_hidden_states: Optional[torch.Tensor] = None,
723
+ encoder_attention_mask: Optional[torch.Tensor] = None,
724
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
725
+ use_cache: Optional[bool] = None,
726
+ output_attentions: Optional[bool] = None,
727
+ output_hidden_states: Optional[bool] = None,
728
+ return_dict: Optional[bool] = None,
729
+ ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
730
+ r"""
731
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
732
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
733
+ the model is configured as a decoder.
734
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
735
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
736
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: `1` for
737
+ tokens that are NOT MASKED, `0` for MASKED tokens.
738
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
739
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
740
+
741
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
742
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
743
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
744
+ use_cache (`bool`, *optional*):
745
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
746
+ `past_key_values`).
747
+ """
748
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
749
+ output_hidden_states = (
750
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
751
+ )
752
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
753
+
754
+ if self.config.is_decoder:
755
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
756
+ else:
757
+ use_cache = False
758
+
759
+ if input_ids is not None and inputs_embeds is not None:
760
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
761
+ elif input_ids is not None:
762
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
763
+ input_shape = input_ids.size()
764
+ elif inputs_embeds is not None:
765
+ input_shape = inputs_embeds.size()[:-1]
766
+ else:
767
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
768
+
769
+ batch_size, seq_length = input_shape
770
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
771
+
772
+ # past_key_values_length
773
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
774
+
775
+ if attention_mask is None:
776
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
777
+
778
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
779
+ # ourselves in which case we just need to make it broadcastable to all heads.
780
+ extended_attention_mask = None
781
+ if not use_cache:
782
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
783
+
784
+ # If a 2D or 3D attention mask is provided for the cross-attention
785
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
786
+ if self.config.is_decoder and encoder_hidden_states is not None:
787
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
788
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
789
+ if encoder_attention_mask is None:
790
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
791
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
792
+ else:
793
+ encoder_extended_attention_mask = None
794
+
795
+ # Prepare head mask if needed
796
+ # 1.0 in head_mask indicate we keep the head
797
+ # attention_probs has shape bsz x n_heads x N x N
798
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
799
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
800
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
801
+
802
+ embedding_output = self.embeddings(
803
+ input_ids=input_ids,
804
+ position_ids=position_ids,
805
+ inputs_embeds=inputs_embeds,
806
+ past_key_values_length=past_key_values_length,
807
+ )
808
+
809
+ encoder_outputs = self.encoder(
810
+ embedding_output,
811
+ attention_mask=extended_attention_mask,
812
+ head_mask=head_mask,
813
+ encoder_hidden_states=encoder_hidden_states,
814
+ encoder_attention_mask=encoder_extended_attention_mask,
815
+ past_key_values=past_key_values,
816
+ use_cache=use_cache,
817
+ output_attentions=output_attentions,
818
+ output_hidden_states=output_hidden_states,
819
+ return_dict=return_dict,
820
+ )
821
+ sequence_output = encoder_outputs[0]
822
+
823
+ if not return_dict:
824
+ return (sequence_output,) + encoder_outputs[1:]
825
+
826
+ return BaseModelOutputWithPastAndCrossAttentions(
827
+ last_hidden_state=sequence_output,
828
+ past_key_values=encoder_outputs.past_key_values,
829
+ hidden_states=encoder_outputs.hidden_states,
830
+ attentions=encoder_outputs.attentions,
831
+ cross_attentions=encoder_outputs.cross_attentions,
832
+ )
833
+
834
+
835
+ class BertGenerationOnlyLMHead(nn.Module):
836
+ def __init__(self, config):
837
+ super().__init__()
838
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
839
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
840
+ self.decoder.bias = self.bias
841
+
842
+ def forward(self, hidden_states):
843
+ logits = self.decoder(hidden_states)
844
+ return logits
845
+
846
+ def _tie_weights(self):
847
+ # To tie those two weights if they get disconnected (on TPU or when the bias is resized)
848
+ self.bias = self.decoder.bias
849
+
850
+
851
+ @add_start_docstrings(
852
+ """BertGeneration Model with a `language modeling` head on top for CLM fine-tuning.""",
853
+ BERT_GENERATION_START_DOCSTRING,
854
+ )
855
+ class BertGenerationDecoder(BertGenerationPreTrainedModel):
856
+ _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
857
+
858
+ def __init__(self, config):
859
+ super().__init__(config)
860
+
861
+ if not config.is_decoder:
862
+ logger.warning("If you want to use `BertGenerationDecoder` as a standalone, add `is_decoder=True.`")
863
+
864
+ self.bert = BertGenerationEncoder(config)
865
+ self.lm_head = BertGenerationOnlyLMHead(config)
866
+
867
+ # Initialize weights and apply final processing
868
+ self.post_init()
869
+
870
+ def get_output_embeddings(self):
871
+ return self.lm_head.decoder
872
+
873
+ def set_output_embeddings(self, new_embeddings):
874
+ self.lm_head.decoder = new_embeddings
875
+
876
+ @add_start_docstrings_to_model_forward(BERT_GENERATION_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
877
+ @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
878
+ def forward(
879
+ self,
880
+ input_ids: Optional[torch.Tensor] = None,
881
+ attention_mask: Optional[torch.Tensor] = None,
882
+ position_ids: Optional[torch.Tensor] = None,
883
+ head_mask: Optional[torch.Tensor] = None,
884
+ inputs_embeds: Optional[torch.Tensor] = None,
885
+ encoder_hidden_states: Optional[torch.Tensor] = None,
886
+ encoder_attention_mask: Optional[torch.Tensor] = None,
887
+ labels: Optional[torch.Tensor] = None,
888
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
889
+ use_cache: Optional[bool] = None,
890
+ output_attentions: Optional[bool] = None,
891
+ output_hidden_states: Optional[bool] = None,
892
+ return_dict: Optional[bool] = None,
893
+ ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
894
+ r"""
895
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
896
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
897
+ the model is configured as a decoder.
898
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
899
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
900
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
901
+
902
+ - 1 for tokens that are **not masked**,
903
+ - 0 for tokens that are **masked**.
904
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
905
+ Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
906
+ `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
907
+ ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
908
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
909
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
910
+
911
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
912
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
913
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
914
+ use_cache (`bool`, *optional*):
915
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
916
+ `past_key_values`).
917
+
918
+ Returns:
919
+
920
+ Example:
921
+
922
+ ```python
923
+ >>> from transformers import AutoTokenizer, BertGenerationDecoder, BertGenerationConfig
924
+ >>> import torch
925
+
926
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
927
+ >>> config = BertGenerationConfig.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
928
+ >>> config.is_decoder = True
929
+ >>> model = BertGenerationDecoder.from_pretrained(
930
+ ... "google/bert_for_seq_generation_L-24_bbc_encoder", config=config
931
+ ... )
932
+
933
+ >>> inputs = tokenizer("Hello, my dog is cute", return_token_type_ids=False, return_tensors="pt")
934
+ >>> outputs = model(**inputs)
935
+
936
+ >>> prediction_logits = outputs.logits
937
+ ```"""
938
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
939
+ if labels is not None:
940
+ use_cache = False
941
+
942
+ outputs = self.bert(
943
+ input_ids,
944
+ attention_mask=attention_mask,
945
+ position_ids=position_ids,
946
+ head_mask=head_mask,
947
+ inputs_embeds=inputs_embeds,
948
+ encoder_hidden_states=encoder_hidden_states,
949
+ encoder_attention_mask=encoder_attention_mask,
950
+ past_key_values=past_key_values,
951
+ use_cache=use_cache,
952
+ output_attentions=output_attentions,
953
+ output_hidden_states=output_hidden_states,
954
+ return_dict=return_dict,
955
+ )
956
+
957
+ sequence_output = outputs[0]
958
+ prediction_scores = self.lm_head(sequence_output)
959
+
960
+ lm_loss = None
961
+ if labels is not None:
962
+ # we are doing next-token prediction; shift prediction scores and input ids by one
963
+ shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
964
+ labels = labels[:, 1:].contiguous()
965
+ loss_fct = CrossEntropyLoss()
966
+ lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
967
+
968
+ if not return_dict:
969
+ output = (prediction_scores,) + outputs[1:]
970
+ return ((lm_loss,) + output) if lm_loss is not None else output
971
+
972
+ return CausalLMOutputWithCrossAttentions(
973
+ loss=lm_loss,
974
+ logits=prediction_scores,
975
+ past_key_values=outputs.past_key_values,
976
+ hidden_states=outputs.hidden_states,
977
+ attentions=outputs.attentions,
978
+ cross_attentions=outputs.cross_attentions,
979
+ )
980
+
981
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
982
+ input_shape = input_ids.shape
983
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
984
+ if attention_mask is None:
985
+ attention_mask = input_ids.new_ones(input_shape)
986
+
987
+ # cut decoder_input_ids if past_key_values is used
988
+ if past_key_values is not None:
989
+ past_length = past_key_values[0][0].shape[2]
990
+
991
+ # Some generation methods already pass only the last input ID
992
+ if input_ids.shape[1] > past_length:
993
+ remove_prefix_length = past_length
994
+ else:
995
+ # Default to old behavior: keep only final ID
996
+ remove_prefix_length = input_ids.shape[1] - 1
997
+
998
+ input_ids = input_ids[:, remove_prefix_length:]
999
+
1000
+ return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
1001
+
1002
+ def _reorder_cache(self, past_key_values, beam_idx):
1003
+ reordered_past = ()
1004
+ for layer_past in past_key_values:
1005
+ reordered_past += (
1006
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1007
+ )
1008
+ return reordered_past
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/tokenization_bert_generation.py ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Tokenization class for model BertGeneration."""
16
+
17
+
18
+ import os
19
+ from shutil import copyfile
20
+ from typing import Any, Dict, List, Optional, Tuple
21
+
22
+ import sentencepiece as spm
23
+
24
+ from ...tokenization_utils import PreTrainedTokenizer
25
+ from ...utils import logging
26
+
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+ VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
31
+
32
+ PRETRAINED_VOCAB_FILES_MAP = {
33
+ "vocab_file": {
34
+ "bert_for_seq_generation": (
35
+ "https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model"
36
+ ),
37
+ }
38
+ }
39
+
40
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"bert_for_seq_generation": 512}
41
+
42
+
43
+ class BertGenerationTokenizer(PreTrainedTokenizer):
44
+ """
45
+ Construct a BertGeneration tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
46
+
47
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
48
+ this superclass for more information regarding those methods.
49
+
50
+ Args:
51
+ vocab_file (`str`):
52
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
53
+ contains the vocabulary necessary to instantiate a tokenizer.
54
+ bos_token (`str`, *optional*, defaults to `"<s>"`):
55
+ The begin of sequence token.
56
+ eos_token (`str`, *optional*, defaults to `"</s>"`):
57
+ The end of sequence token.
58
+ unk_token (`str`, *optional*, defaults to `"<unk>"`):
59
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
60
+ token instead.
61
+ pad_token (`str`, *optional*, defaults to `"<pad>"`):
62
+ The token used for padding, for example when batching sequences of different lengths.
63
+ sep_token (`str`, *optional*, defaults to `"<::::>"`):
64
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
65
+ sequence classification or for a text and a question for question answering. It is also used as the last
66
+ token of a sequence built with special tokens.
67
+ sp_model_kwargs (`dict`, *optional*):
68
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
69
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
70
+ to set:
71
+
72
+ - `enable_sampling`: Enable subword regularization.
73
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
74
+
75
+ - `nbest_size = {0,1}`: No sampling is performed.
76
+ - `nbest_size > 1`: samples from the nbest_size results.
77
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
78
+ using forward-filtering-and-backward-sampling algorithm.
79
+
80
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
81
+ BPE-dropout.
82
+ """
83
+
84
+ vocab_files_names = VOCAB_FILES_NAMES
85
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
86
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
87
+ prefix_tokens: List[int] = []
88
+ model_input_names = ["input_ids", "attention_mask"]
89
+
90
+ def __init__(
91
+ self,
92
+ vocab_file,
93
+ bos_token="<s>",
94
+ eos_token="</s>",
95
+ unk_token="<unk>",
96
+ pad_token="<pad>",
97
+ sep_token="<::::>",
98
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
99
+ **kwargs,
100
+ ) -> None:
101
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
102
+
103
+ self.vocab_file = vocab_file
104
+
105
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
106
+ self.sp_model.Load(vocab_file)
107
+
108
+ # Add extra_ids to the special token list
109
+ super().__init__(
110
+ bos_token=bos_token,
111
+ eos_token=eos_token,
112
+ unk_token=unk_token,
113
+ pad_token=pad_token,
114
+ sep_token=sep_token,
115
+ sp_model_kwargs=self.sp_model_kwargs,
116
+ **kwargs,
117
+ )
118
+
119
+ @property
120
+ def vocab_size(self):
121
+ return self.sp_model.get_piece_size()
122
+
123
+ def get_vocab(self):
124
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
125
+ vocab.update(self.added_tokens_encoder)
126
+ return vocab
127
+
128
+ def __getstate__(self):
129
+ state = self.__dict__.copy()
130
+ state["sp_model"] = None
131
+ return state
132
+
133
+ def __setstate__(self, d):
134
+ self.__dict__ = d
135
+
136
+ # for backward compatibility
137
+ if not hasattr(self, "sp_model_kwargs"):
138
+ self.sp_model_kwargs = {}
139
+
140
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
141
+ self.sp_model.Load(self.vocab_file)
142
+
143
+ def _tokenize(self, text: str) -> List[str]:
144
+ """Take as input a string and return a list of strings (tokens) for words/sub-words"""
145
+ return self.sp_model.encode(text, out_type=str)
146
+
147
+ def _convert_token_to_id(self, token):
148
+ """Converts a token (str) in an id using the vocab."""
149
+ return self.sp_model.piece_to_id(token)
150
+
151
+ def _convert_id_to_token(self, index):
152
+ """Converts an index (integer) in a token (str) using the vocab."""
153
+ token = self.sp_model.IdToPiece(index)
154
+ return token
155
+
156
+ def convert_tokens_to_string(self, tokens):
157
+ """Converts a sequence of tokens (string) in a single string."""
158
+ current_sub_tokens = []
159
+ out_string = ""
160
+ for token in tokens:
161
+ # make sure that special tokens are not decoded using sentencepiece model
162
+ if token in self.all_special_tokens:
163
+ out_string += self.sp_model.decode(current_sub_tokens) + token
164
+ current_sub_tokens = []
165
+ else:
166
+ current_sub_tokens.append(token)
167
+ out_string += self.sp_model.decode(current_sub_tokens)
168
+ return out_string.strip()
169
+
170
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
171
+ if not os.path.isdir(save_directory):
172
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
173
+ return
174
+ out_vocab_file = os.path.join(
175
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
176
+ )
177
+
178
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
179
+ copyfile(self.vocab_file, out_vocab_file)
180
+ elif not os.path.isfile(self.vocab_file):
181
+ with open(out_vocab_file, "wb") as fi:
182
+ content_spiece_model = self.sp_model.serialized_model_proto()
183
+ fi.write(content_spiece_model)
184
+
185
+ return (out_vocab_file,)
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__init__.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ...utils import (
17
+ OptionalDependencyNotAvailable,
18
+ _LazyModule,
19
+ is_flax_available,
20
+ is_tf_available,
21
+ is_tokenizers_available,
22
+ is_torch_available,
23
+ )
24
+
25
+
26
+ _import_structure = {
27
+ "configuration_blenderbot_small": [
28
+ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
29
+ "BlenderbotSmallConfig",
30
+ "BlenderbotSmallOnnxConfig",
31
+ ],
32
+ "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"],
33
+ }
34
+
35
+ try:
36
+ if not is_tokenizers_available():
37
+ raise OptionalDependencyNotAvailable()
38
+ except OptionalDependencyNotAvailable:
39
+ pass
40
+ else:
41
+ _import_structure["tokenization_blenderbot_small_fast"] = ["BlenderbotSmallTokenizerFast"]
42
+
43
+ try:
44
+ if not is_torch_available():
45
+ raise OptionalDependencyNotAvailable()
46
+ except OptionalDependencyNotAvailable:
47
+ pass
48
+ else:
49
+ _import_structure["modeling_blenderbot_small"] = [
50
+ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST",
51
+ "BlenderbotSmallForCausalLM",
52
+ "BlenderbotSmallForConditionalGeneration",
53
+ "BlenderbotSmallModel",
54
+ "BlenderbotSmallPreTrainedModel",
55
+ ]
56
+
57
+ try:
58
+ if not is_tf_available():
59
+ raise OptionalDependencyNotAvailable()
60
+ except OptionalDependencyNotAvailable:
61
+ pass
62
+ else:
63
+ _import_structure["modeling_tf_blenderbot_small"] = [
64
+ "TFBlenderbotSmallForConditionalGeneration",
65
+ "TFBlenderbotSmallModel",
66
+ "TFBlenderbotSmallPreTrainedModel",
67
+ ]
68
+
69
+ try:
70
+ if not is_flax_available():
71
+ raise OptionalDependencyNotAvailable()
72
+ except OptionalDependencyNotAvailable:
73
+ pass
74
+ else:
75
+ _import_structure["modeling_flax_blenderbot_small"] = [
76
+ "FlaxBlenderbotSmallForConditionalGeneration",
77
+ "FlaxBlenderbotSmallModel",
78
+ "FlaxBlenderbotSmallPreTrainedModel",
79
+ ]
80
+
81
+ if TYPE_CHECKING:
82
+ from .configuration_blenderbot_small import (
83
+ BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
84
+ BlenderbotSmallConfig,
85
+ BlenderbotSmallOnnxConfig,
86
+ )
87
+ from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
88
+
89
+ try:
90
+ if not is_tokenizers_available():
91
+ raise OptionalDependencyNotAvailable()
92
+ except OptionalDependencyNotAvailable:
93
+ pass
94
+ else:
95
+ from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast
96
+
97
+ try:
98
+ if not is_torch_available():
99
+ raise OptionalDependencyNotAvailable()
100
+ except OptionalDependencyNotAvailable:
101
+ pass
102
+ else:
103
+ from .modeling_blenderbot_small import (
104
+ BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
105
+ BlenderbotSmallForCausalLM,
106
+ BlenderbotSmallForConditionalGeneration,
107
+ BlenderbotSmallModel,
108
+ BlenderbotSmallPreTrainedModel,
109
+ )
110
+
111
+ try:
112
+ if not is_tf_available():
113
+ raise OptionalDependencyNotAvailable()
114
+ except OptionalDependencyNotAvailable:
115
+ pass
116
+ else:
117
+ from .modeling_tf_blenderbot_small import (
118
+ TFBlenderbotSmallForConditionalGeneration,
119
+ TFBlenderbotSmallModel,
120
+ TFBlenderbotSmallPreTrainedModel,
121
+ )
122
+
123
+ try:
124
+ if not is_flax_available():
125
+ raise OptionalDependencyNotAvailable()
126
+ except OptionalDependencyNotAvailable:
127
+ pass
128
+ else:
129
+ from .modeling_flax_blenderbot_small import (
130
+ FlaxBlenderbotSmallForConditionalGeneration,
131
+ FlaxBlenderbotSmallModel,
132
+ FlaxBlenderbotSmallPreTrainedModel,
133
+ )
134
+
135
+ else:
136
+ import sys
137
+
138
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (2.05 kB). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/configuration_blenderbot_small.cpython-310.pyc ADDED
Binary file (12.5 kB). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/modeling_blenderbot_small.cpython-310.pyc ADDED
Binary file (52.5 kB). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/modeling_flax_blenderbot_small.cpython-310.pyc ADDED
Binary file (43.2 kB). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/modeling_tf_blenderbot_small.cpython-310.pyc ADDED
Binary file (49.3 kB). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/tokenization_blenderbot_small.cpython-310.pyc ADDED
Binary file (8.73 kB). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/tokenization_blenderbot_small_fast.cpython-310.pyc ADDED
Binary file (4.14 kB). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/configuration_blenderbot_small.py ADDED
@@ -0,0 +1,392 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ BlenderbotSmall model configuration"""
16
+
17
+ from collections import OrderedDict
18
+ from typing import Any, Mapping, Optional
19
+
20
+ from ... import PreTrainedTokenizer
21
+ from ...configuration_utils import PretrainedConfig
22
+ from ...file_utils import TensorType, is_torch_available
23
+ from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast
24
+ from ...onnx.utils import compute_effective_axis_dimension
25
+ from ...utils import logging
26
+
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+ BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
31
+ "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json",
32
+ # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
33
+ }
34
+
35
+
36
+ class BlenderbotSmallConfig(PretrainedConfig):
37
+ r"""
38
+ This is the configuration class to store the configuration of a [`BlenderbotSmallModel`]. It is used to instantiate
39
+ an BlenderbotSmall model according to the specified arguments, defining the model architecture. Instantiating a
40
+ configuration with the defaults will yield a similar configuration to that of the BlenderbotSmall
41
+ [facebook/blenderbot_small-90M](https://huggingface.co/facebook/blenderbot_small-90M) architecture.
42
+
43
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
44
+ documentation from [`PretrainedConfig`] for more information.
45
+
46
+
47
+ Args:
48
+ vocab_size (`int`, *optional*, defaults to 50265):
49
+ Vocabulary size of the BlenderbotSmall model. Defines the number of different tokens that can be
50
+ represented by the `inputs_ids` passed when calling [`BlenderbotSmallModel`] or [`TFBlenderbotSmallModel`].
51
+ d_model (`int`, *optional*, defaults to 512):
52
+ Dimensionality of the layers and the pooler layer.
53
+ encoder_layers (`int`, *optional*, defaults to 8):
54
+ Number of encoder layers.
55
+ decoder_layers (`int`, *optional*, defaults to 8):
56
+ Number of decoder layers.
57
+ encoder_attention_heads (`int`, *optional*, defaults to 16):
58
+ Number of attention heads for each attention layer in the Transformer encoder.
59
+ decoder_attention_heads (`int`, *optional*, defaults to 16):
60
+ Number of attention heads for each attention layer in the Transformer decoder.
61
+ decoder_ffn_dim (`int`, *optional*, defaults to 2048):
62
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
63
+ encoder_ffn_dim (`int`, *optional*, defaults to 2048):
64
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
65
+ activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
66
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
67
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
68
+ dropout (`float`, *optional*, defaults to 0.1):
69
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
70
+ attention_dropout (`float`, *optional*, defaults to 0.0):
71
+ The dropout ratio for the attention probabilities.
72
+ activation_dropout (`float`, *optional*, defaults to 0.0):
73
+ The dropout ratio for activations inside the fully connected layer.
74
+ max_position_embeddings (`int`, *optional*, defaults to 512):
75
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
76
+ just in case (e.g., 512 or 1024 or 2048).
77
+ init_std (`float`, *optional*, defaults to 0.02):
78
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
79
+ encoder_layerdrop (`float`, *optional*, defaults to 0.0):
80
+ The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
81
+ for more details.
82
+ decoder_layerdrop (`float`, *optional*, defaults to 0.0):
83
+ The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
84
+ for more details.
85
+ scale_embedding (`bool`, *optional*, defaults to `False`):
86
+ Scale embeddings by diving by sqrt(d_model).
87
+ use_cache (`bool`, *optional*, defaults to `True`):
88
+ Whether or not the model should return the last key/values attentions (not used by all models)
89
+ forced_eos_token_id (`int`, *optional*, defaults to 2):
90
+ The id of the token to force as the last generated token when `max_length` is reached. Usually set to
91
+ `eos_token_id`.
92
+
93
+ Example:
94
+
95
+ ```python
96
+ >>> from transformers import BlenderbotSmallConfig, BlenderbotSmallModel
97
+
98
+ >>> # Initializing a BlenderbotSmall facebook/blenderbot_small-90M style configuration
99
+ >>> configuration = BlenderbotSmallConfig()
100
+
101
+ >>> # Initializing a model (with random weights) from the facebook/blenderbot_small-90M style configuration
102
+ >>> model = BlenderbotSmallModel(configuration)
103
+
104
+ >>> # Accessing the model configuration
105
+ >>> configuration = model.config
106
+ ```"""
107
+
108
+ model_type = "blenderbot-small"
109
+ keys_to_ignore_at_inference = ["past_key_values"]
110
+ attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
111
+
112
+ def __init__(
113
+ self,
114
+ vocab_size=50265,
115
+ max_position_embeddings=512,
116
+ encoder_layers=8,
117
+ encoder_ffn_dim=2048,
118
+ encoder_attention_heads=16,
119
+ decoder_layers=8,
120
+ decoder_ffn_dim=2048,
121
+ decoder_attention_heads=16,
122
+ encoder_layerdrop=0.0,
123
+ decoder_layerdrop=0.0,
124
+ use_cache=True,
125
+ is_encoder_decoder=True,
126
+ activation_function="gelu",
127
+ d_model=512,
128
+ dropout=0.1,
129
+ attention_dropout=0.0,
130
+ activation_dropout=0.0,
131
+ init_std=0.02,
132
+ decoder_start_token_id=1,
133
+ scale_embedding=False,
134
+ pad_token_id=0,
135
+ bos_token_id=1,
136
+ eos_token_id=2,
137
+ forced_eos_token_id=2,
138
+ **kwargs,
139
+ ):
140
+ self.vocab_size = vocab_size
141
+ self.max_position_embeddings = max_position_embeddings
142
+ self.d_model = d_model
143
+ self.encoder_ffn_dim = encoder_ffn_dim
144
+ self.encoder_layers = encoder_layers
145
+ self.encoder_attention_heads = encoder_attention_heads
146
+ self.decoder_ffn_dim = decoder_ffn_dim
147
+ self.decoder_layers = decoder_layers
148
+ self.decoder_attention_heads = decoder_attention_heads
149
+ self.dropout = dropout
150
+ self.attention_dropout = attention_dropout
151
+ self.activation_dropout = activation_dropout
152
+ self.activation_function = activation_function
153
+ self.init_std = init_std
154
+ self.encoder_layerdrop = encoder_layerdrop
155
+ self.decoder_layerdrop = decoder_layerdrop
156
+ self.use_cache = use_cache
157
+ self.num_hidden_layers = encoder_layers
158
+ self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
159
+
160
+ super().__init__(
161
+ pad_token_id=pad_token_id,
162
+ bos_token_id=bos_token_id,
163
+ eos_token_id=eos_token_id,
164
+ is_encoder_decoder=is_encoder_decoder,
165
+ decoder_start_token_id=decoder_start_token_id,
166
+ forced_eos_token_id=forced_eos_token_id,
167
+ **kwargs,
168
+ )
169
+
170
+
171
+ # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig
172
+ class BlenderbotSmallOnnxConfig(OnnxSeq2SeqConfigWithPast):
173
+ @property
174
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
175
+ if self.task in ["default", "seq2seq-lm"]:
176
+ common_inputs = OrderedDict(
177
+ [
178
+ ("input_ids", {0: "batch", 1: "encoder_sequence"}),
179
+ ("attention_mask", {0: "batch", 1: "encoder_sequence"}),
180
+ ]
181
+ )
182
+
183
+ if self.use_past:
184
+ common_inputs["decoder_input_ids"] = {0: "batch"}
185
+ common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
186
+ else:
187
+ common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
188
+ common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
189
+
190
+ if self.use_past:
191
+ self.fill_with_past_key_values_(common_inputs, direction="inputs")
192
+ elif self.task == "causal-lm":
193
+ # TODO: figure this case out.
194
+ common_inputs = OrderedDict(
195
+ [
196
+ ("input_ids", {0: "batch", 1: "encoder_sequence"}),
197
+ ("attention_mask", {0: "batch", 1: "encoder_sequence"}),
198
+ ]
199
+ )
200
+ if self.use_past:
201
+ num_encoder_layers, _ = self.num_layers
202
+ for i in range(num_encoder_layers):
203
+ common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
204
+ common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
205
+ else:
206
+ common_inputs = OrderedDict(
207
+ [
208
+ ("input_ids", {0: "batch", 1: "encoder_sequence"}),
209
+ ("attention_mask", {0: "batch", 1: "encoder_sequence"}),
210
+ ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
211
+ ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
212
+ ]
213
+ )
214
+
215
+ return common_inputs
216
+
217
+ @property
218
+ def outputs(self) -> Mapping[str, Mapping[int, str]]:
219
+ if self.task in ["default", "seq2seq-lm"]:
220
+ common_outputs = super().outputs
221
+ else:
222
+ common_outputs = super(OnnxConfigWithPast, self).outputs
223
+ if self.use_past:
224
+ num_encoder_layers, _ = self.num_layers
225
+ for i in range(num_encoder_layers):
226
+ common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
227
+ common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
228
+ return common_outputs
229
+
230
+ def _generate_dummy_inputs_for_default_and_seq2seq_lm(
231
+ self,
232
+ tokenizer: PreTrainedTokenizer,
233
+ batch_size: int = -1,
234
+ seq_length: int = -1,
235
+ is_pair: bool = False,
236
+ framework: Optional[TensorType] = None,
237
+ ) -> Mapping[str, Any]:
238
+ encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
239
+ tokenizer, batch_size, seq_length, is_pair, framework
240
+ )
241
+
242
+ # Generate decoder inputs
243
+ decoder_seq_length = seq_length if not self.use_past else 1
244
+ decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
245
+ tokenizer, batch_size, decoder_seq_length, is_pair, framework
246
+ )
247
+ decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
248
+ common_inputs = dict(**encoder_inputs, **decoder_inputs)
249
+
250
+ if self.use_past:
251
+ if not is_torch_available():
252
+ raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
253
+ else:
254
+ import torch
255
+ batch, encoder_seq_length = common_inputs["input_ids"].shape
256
+ decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
257
+ num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
258
+ encoder_shape = (
259
+ batch,
260
+ num_encoder_attention_heads,
261
+ encoder_seq_length,
262
+ self._config.hidden_size // num_encoder_attention_heads,
263
+ )
264
+ decoder_past_length = decoder_seq_length + 3
265
+ decoder_shape = (
266
+ batch,
267
+ num_decoder_attention_heads,
268
+ decoder_past_length,
269
+ self._config.hidden_size // num_decoder_attention_heads,
270
+ )
271
+
272
+ common_inputs["decoder_attention_mask"] = torch.cat(
273
+ [common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1
274
+ )
275
+
276
+ common_inputs["past_key_values"] = []
277
+ # If the number of encoder and decoder layers are present in the model configuration, both are considered
278
+ num_encoder_layers, num_decoder_layers = self.num_layers
279
+ min_num_layers = min(num_encoder_layers, num_decoder_layers)
280
+ max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers
281
+ remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
282
+
283
+ for _ in range(min_num_layers):
284
+ common_inputs["past_key_values"].append(
285
+ (
286
+ torch.zeros(decoder_shape),
287
+ torch.zeros(decoder_shape),
288
+ torch.zeros(encoder_shape),
289
+ torch.zeros(encoder_shape),
290
+ )
291
+ )
292
+ # TODO: test this.
293
+ shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
294
+ for _ in range(min_num_layers, max_num_layers):
295
+ common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape)))
296
+ return common_inputs
297
+
298
+ def _generate_dummy_inputs_for_causal_lm(
299
+ self,
300
+ tokenizer: PreTrainedTokenizer,
301
+ batch_size: int = -1,
302
+ seq_length: int = -1,
303
+ is_pair: bool = False,
304
+ framework: Optional[TensorType] = None,
305
+ ) -> Mapping[str, Any]:
306
+ common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
307
+ tokenizer, batch_size, seq_length, is_pair, framework
308
+ )
309
+
310
+ if self.use_past:
311
+ if not is_torch_available():
312
+ raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
313
+ else:
314
+ import torch
315
+ batch, seqlen = common_inputs["input_ids"].shape
316
+ # Not using the same length for past_key_values
317
+ past_key_values_length = seqlen + 2
318
+ num_encoder_layers, _ = self.num_layers
319
+ num_encoder_attention_heads, _ = self.num_attention_heads
320
+ past_shape = (
321
+ batch,
322
+ num_encoder_attention_heads,
323
+ past_key_values_length,
324
+ self._config.hidden_size // num_encoder_attention_heads,
325
+ )
326
+
327
+ mask_dtype = common_inputs["attention_mask"].dtype
328
+ common_inputs["attention_mask"] = torch.cat(
329
+ [common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
330
+ )
331
+ common_inputs["past_key_values"] = [
332
+ (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers)
333
+ ]
334
+ return common_inputs
335
+
336
+ def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
337
+ self,
338
+ tokenizer: PreTrainedTokenizer,
339
+ batch_size: int = -1,
340
+ seq_length: int = -1,
341
+ is_pair: bool = False,
342
+ framework: Optional[TensorType] = None,
343
+ ) -> Mapping[str, Any]:
344
+ # Copied from OnnxConfig.generate_dummy_inputs
345
+ # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
346
+ # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
347
+ batch_size = compute_effective_axis_dimension(
348
+ batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
349
+ )
350
+
351
+ # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
352
+ token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
353
+ seq_length = compute_effective_axis_dimension(
354
+ seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
355
+ )
356
+
357
+ # Generate dummy inputs according to compute batch and sequence
358
+ dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
359
+ common_inputs = dict(tokenizer(dummy_input, return_tensors=framework))
360
+ return common_inputs
361
+
362
+ def generate_dummy_inputs(
363
+ self,
364
+ tokenizer: PreTrainedTokenizer,
365
+ batch_size: int = -1,
366
+ seq_length: int = -1,
367
+ is_pair: bool = False,
368
+ framework: Optional[TensorType] = None,
369
+ ) -> Mapping[str, Any]:
370
+ if self.task in ["default", "seq2seq-lm"]:
371
+ common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm(
372
+ tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
373
+ )
374
+
375
+ elif self.task == "causal-lm":
376
+ common_inputs = self._generate_dummy_inputs_for_causal_lm(
377
+ tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
378
+ )
379
+ else:
380
+ common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
381
+ tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
382
+ )
383
+
384
+ return common_inputs
385
+
386
+ def _flatten_past_key_values_(self, flattened_output, name, idx, t):
387
+ if self.task in ["default", "seq2seq-lm"]:
388
+ flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t)
389
+ else:
390
+ flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_(
391
+ flattened_output, name, idx, t
392
+ )
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_blenderbot_small.py ADDED
@@ -0,0 +1,1570 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch BlenderbotSmall model."""
16
+
17
+
18
+ import copy
19
+ import math
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.utils.checkpoint
24
+ from torch import nn
25
+ from torch.nn import CrossEntropyLoss
26
+
27
+ from ...activations import ACT2FN
28
+ from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
29
+ from ...modeling_outputs import (
30
+ BaseModelOutput,
31
+ BaseModelOutputWithPastAndCrossAttentions,
32
+ CausalLMOutputWithCrossAttentions,
33
+ Seq2SeqLMOutput,
34
+ Seq2SeqModelOutput,
35
+ )
36
+ from ...modeling_utils import PreTrainedModel
37
+ from ...utils import (
38
+ add_end_docstrings,
39
+ add_start_docstrings,
40
+ add_start_docstrings_to_model_forward,
41
+ logging,
42
+ replace_return_docstrings,
43
+ )
44
+ from .configuration_blenderbot_small import BlenderbotSmallConfig
45
+
46
+
47
+ logger = logging.get_logger(__name__)
48
+
49
+ _CONFIG_FOR_DOC = "BlenderbotSmallConfig"
50
+
51
+
52
+ BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST = [
53
+ "facebook/blenderbot_small-90M",
54
+ # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
55
+ ]
56
+
57
+
58
+ # Copied from transformers.models.bart.modeling_bart.shift_tokens_right
59
+ def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
60
+ """
61
+ Shift input ids one token to the right.
62
+ """
63
+ shifted_input_ids = input_ids.new_zeros(input_ids.shape)
64
+ shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
65
+ shifted_input_ids[:, 0] = decoder_start_token_id
66
+
67
+ if pad_token_id is None:
68
+ raise ValueError("self.model.config.pad_token_id has to be defined.")
69
+ # replace possible -100 values in labels by `pad_token_id`
70
+ shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
71
+
72
+ return shifted_input_ids
73
+
74
+
75
+ # Copied from transformers.models.blenderbot.modeling_blenderbot.BlenderbotLearnedPositionalEmbedding with Blenderbot->BlenderbotSmall
76
+ class BlenderbotSmallLearnedPositionalEmbedding(nn.Embedding):
77
+ """
78
+ This module learns positional embeddings up to a fixed maximum size.
79
+ """
80
+
81
+ def __init__(self, num_embeddings: int, embedding_dim: int):
82
+ super().__init__(num_embeddings, embedding_dim)
83
+
84
+ def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0):
85
+ """`input_ids_shape` is expected to be [bsz x seqlen]."""
86
+ bsz, seq_len = input_ids_shape[:2]
87
+ positions = torch.arange(
88
+ past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
89
+ )
90
+ return super().forward(positions)
91
+
92
+
93
+ # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->BlenderbotSmall
94
+ class BlenderbotSmallAttention(nn.Module):
95
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
96
+
97
+ def __init__(
98
+ self,
99
+ embed_dim: int,
100
+ num_heads: int,
101
+ dropout: float = 0.0,
102
+ is_decoder: bool = False,
103
+ bias: bool = True,
104
+ is_causal: bool = False,
105
+ config: Optional[BlenderbotSmallConfig] = None,
106
+ ):
107
+ super().__init__()
108
+ self.embed_dim = embed_dim
109
+ self.num_heads = num_heads
110
+ self.dropout = dropout
111
+ self.head_dim = embed_dim // num_heads
112
+ self.config = config
113
+
114
+ if (self.head_dim * num_heads) != self.embed_dim:
115
+ raise ValueError(
116
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
117
+ f" and `num_heads`: {num_heads})."
118
+ )
119
+ self.scaling = self.head_dim**-0.5
120
+ self.is_decoder = is_decoder
121
+ self.is_causal = is_causal
122
+
123
+ self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
124
+ self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
125
+ self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
126
+ self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
127
+
128
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
129
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
130
+
131
+ def forward(
132
+ self,
133
+ hidden_states: torch.Tensor,
134
+ key_value_states: Optional[torch.Tensor] = None,
135
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
136
+ attention_mask: Optional[torch.Tensor] = None,
137
+ layer_head_mask: Optional[torch.Tensor] = None,
138
+ output_attentions: bool = False,
139
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
140
+ """Input shape: Batch x Time x Channel"""
141
+
142
+ # if key_value_states are provided this layer is used as a cross-attention layer
143
+ # for the decoder
144
+ is_cross_attention = key_value_states is not None
145
+
146
+ bsz, tgt_len, _ = hidden_states.size()
147
+
148
+ # get query proj
149
+ query_states = self.q_proj(hidden_states) * self.scaling
150
+ # get key, value proj
151
+ # `past_key_value[0].shape[2] == key_value_states.shape[1]`
152
+ # is checking that the `sequence_length` of the `past_key_value` is the same as
153
+ # the provided `key_value_states` to support prefix tuning
154
+ if (
155
+ is_cross_attention
156
+ and past_key_value is not None
157
+ and past_key_value[0].shape[2] == key_value_states.shape[1]
158
+ ):
159
+ # reuse k,v, cross_attentions
160
+ key_states = past_key_value[0]
161
+ value_states = past_key_value[1]
162
+ elif is_cross_attention:
163
+ # cross_attentions
164
+ key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
165
+ value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
166
+ elif past_key_value is not None:
167
+ # reuse k, v, self_attention
168
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
169
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
170
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
171
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
172
+ else:
173
+ # self_attention
174
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
175
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
176
+
177
+ if self.is_decoder:
178
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
179
+ # Further calls to cross_attention layer can then reuse all cross-attention
180
+ # key/value_states (first "if" case)
181
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
182
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
183
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
184
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
185
+ past_key_value = (key_states, value_states)
186
+
187
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
188
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
189
+ key_states = key_states.reshape(*proj_shape)
190
+ value_states = value_states.reshape(*proj_shape)
191
+
192
+ src_len = key_states.size(1)
193
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
194
+
195
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
196
+ raise ValueError(
197
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
198
+ f" {attn_weights.size()}"
199
+ )
200
+
201
+ if attention_mask is not None:
202
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
203
+ raise ValueError(
204
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
205
+ )
206
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
207
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
208
+
209
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
210
+
211
+ if layer_head_mask is not None:
212
+ if layer_head_mask.size() != (self.num_heads,):
213
+ raise ValueError(
214
+ f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
215
+ f" {layer_head_mask.size()}"
216
+ )
217
+ attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
218
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
219
+
220
+ if output_attentions:
221
+ # this operation is a bit awkward, but it's required to
222
+ # make sure that attn_weights keeps its gradient.
223
+ # In order to do so, attn_weights have to be reshaped
224
+ # twice and have to be reused in the following
225
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
226
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
227
+ else:
228
+ attn_weights_reshaped = None
229
+
230
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
231
+
232
+ attn_output = torch.bmm(attn_probs, value_states)
233
+
234
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
235
+ raise ValueError(
236
+ f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
237
+ f" {attn_output.size()}"
238
+ )
239
+
240
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
241
+ attn_output = attn_output.transpose(1, 2)
242
+
243
+ # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
244
+ # partitioned across GPUs when using tensor-parallelism.
245
+ attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
246
+
247
+ attn_output = self.out_proj(attn_output)
248
+
249
+ return attn_output, attn_weights_reshaped, past_key_value
250
+
251
+
252
+ # Copied from transformers.models.bart.modeling_bart.BartEncoderLayer with Bart->BlenderbotSmall, BART->BLENDERBOT_SMALL
253
+ class BlenderbotSmallEncoderLayer(nn.Module):
254
+ def __init__(self, config: BlenderbotSmallConfig):
255
+ super().__init__()
256
+ self.embed_dim = config.d_model
257
+
258
+ self.self_attn = BLENDERBOT_SMALL_ATTENTION_CLASSES[config._attn_implementation](
259
+ embed_dim=self.embed_dim,
260
+ num_heads=config.encoder_attention_heads,
261
+ dropout=config.attention_dropout,
262
+ config=config,
263
+ )
264
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
265
+ self.dropout = config.dropout
266
+ self.activation_fn = ACT2FN[config.activation_function]
267
+ self.activation_dropout = config.activation_dropout
268
+ self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
269
+ self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
270
+ self.final_layer_norm = nn.LayerNorm(self.embed_dim)
271
+
272
+ def forward(
273
+ self,
274
+ hidden_states: torch.FloatTensor,
275
+ attention_mask: torch.FloatTensor,
276
+ layer_head_mask: torch.FloatTensor,
277
+ output_attentions: Optional[bool] = False,
278
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
279
+ """
280
+ Args:
281
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
282
+ attention_mask (`torch.FloatTensor`): attention mask of size
283
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
284
+ layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
285
+ `(encoder_attention_heads,)`.
286
+ output_attentions (`bool`, *optional*):
287
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
288
+ returned tensors for more detail.
289
+ """
290
+ residual = hidden_states
291
+ hidden_states, attn_weights, _ = self.self_attn(
292
+ hidden_states=hidden_states,
293
+ attention_mask=attention_mask,
294
+ layer_head_mask=layer_head_mask,
295
+ output_attentions=output_attentions,
296
+ )
297
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
298
+ hidden_states = residual + hidden_states
299
+ hidden_states = self.self_attn_layer_norm(hidden_states)
300
+
301
+ residual = hidden_states
302
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
303
+ hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
304
+ hidden_states = self.fc2(hidden_states)
305
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
306
+ hidden_states = residual + hidden_states
307
+ hidden_states = self.final_layer_norm(hidden_states)
308
+
309
+ if hidden_states.dtype == torch.float16 and (
310
+ torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
311
+ ):
312
+ clamp_value = torch.finfo(hidden_states.dtype).max - 1000
313
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
314
+
315
+ outputs = (hidden_states,)
316
+
317
+ if output_attentions:
318
+ outputs += (attn_weights,)
319
+
320
+ return outputs
321
+
322
+
323
+ # TODO: Implement attention with SDPA for TimeSeriesTransformer.
324
+ BLENDERBOT_SMALL_ATTENTION_CLASSES = {
325
+ "eager": BlenderbotSmallAttention,
326
+ }
327
+
328
+
329
+ # Copied from transformers.models.bart.modeling_bart.BartDecoderLayer with Bart->BlenderbotSmall, BART->BLENDERBOT_SMALL
330
+ class BlenderbotSmallDecoderLayer(nn.Module):
331
+ def __init__(self, config: BlenderbotSmallConfig):
332
+ super().__init__()
333
+ self.embed_dim = config.d_model
334
+
335
+ self.self_attn = BLENDERBOT_SMALL_ATTENTION_CLASSES[config._attn_implementation](
336
+ embed_dim=self.embed_dim,
337
+ num_heads=config.decoder_attention_heads,
338
+ dropout=config.attention_dropout,
339
+ is_decoder=True,
340
+ is_causal=True,
341
+ config=config,
342
+ )
343
+ self.dropout = config.dropout
344
+ self.activation_fn = ACT2FN[config.activation_function]
345
+ self.activation_dropout = config.activation_dropout
346
+
347
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
348
+ self.encoder_attn = BLENDERBOT_SMALL_ATTENTION_CLASSES[config._attn_implementation](
349
+ self.embed_dim,
350
+ config.decoder_attention_heads,
351
+ dropout=config.attention_dropout,
352
+ is_decoder=True,
353
+ config=config,
354
+ )
355
+ self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
356
+ self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
357
+ self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
358
+ self.final_layer_norm = nn.LayerNorm(self.embed_dim)
359
+
360
+ def forward(
361
+ self,
362
+ hidden_states: torch.Tensor,
363
+ attention_mask: Optional[torch.Tensor] = None,
364
+ encoder_hidden_states: Optional[torch.Tensor] = None,
365
+ encoder_attention_mask: Optional[torch.Tensor] = None,
366
+ layer_head_mask: Optional[torch.Tensor] = None,
367
+ cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
368
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
369
+ output_attentions: Optional[bool] = False,
370
+ use_cache: Optional[bool] = True,
371
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
372
+ """
373
+ Args:
374
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
375
+ attention_mask (`torch.FloatTensor`): attention mask of size
376
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
377
+ encoder_hidden_states (`torch.FloatTensor`):
378
+ cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
379
+ encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
380
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
381
+ layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
382
+ `(encoder_attention_heads,)`.
383
+ cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
384
+ size `(decoder_attention_heads,)`.
385
+ past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
386
+ output_attentions (`bool`, *optional*):
387
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
388
+ returned tensors for more detail.
389
+ """
390
+ residual = hidden_states
391
+
392
+ # Self Attention
393
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
394
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
395
+ # add present self-attn cache to positions 1,2 of present_key_value tuple
396
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
397
+ hidden_states=hidden_states,
398
+ past_key_value=self_attn_past_key_value,
399
+ attention_mask=attention_mask,
400
+ layer_head_mask=layer_head_mask,
401
+ output_attentions=output_attentions,
402
+ )
403
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
404
+ hidden_states = residual + hidden_states
405
+ hidden_states = self.self_attn_layer_norm(hidden_states)
406
+
407
+ # Cross-Attention Block
408
+ cross_attn_present_key_value = None
409
+ cross_attn_weights = None
410
+ if encoder_hidden_states is not None:
411
+ residual = hidden_states
412
+
413
+ # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
414
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
415
+ hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
416
+ hidden_states=hidden_states,
417
+ key_value_states=encoder_hidden_states,
418
+ attention_mask=encoder_attention_mask,
419
+ layer_head_mask=cross_attn_layer_head_mask,
420
+ past_key_value=cross_attn_past_key_value,
421
+ output_attentions=output_attentions,
422
+ )
423
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
424
+ hidden_states = residual + hidden_states
425
+ hidden_states = self.encoder_attn_layer_norm(hidden_states)
426
+
427
+ # add cross-attn to positions 3,4 of present_key_value tuple
428
+ present_key_value = present_key_value + cross_attn_present_key_value
429
+
430
+ # Fully Connected
431
+ residual = hidden_states
432
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
433
+ hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
434
+ hidden_states = self.fc2(hidden_states)
435
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
436
+ hidden_states = residual + hidden_states
437
+ hidden_states = self.final_layer_norm(hidden_states)
438
+
439
+ outputs = (hidden_states,)
440
+
441
+ if output_attentions:
442
+ outputs += (self_attn_weights, cross_attn_weights)
443
+
444
+ if use_cache:
445
+ outputs += (present_key_value,)
446
+
447
+ return outputs
448
+
449
+
450
+ class BlenderbotSmallPreTrainedModel(PreTrainedModel):
451
+ config_class = BlenderbotSmallConfig
452
+ base_model_prefix = "model"
453
+ supports_gradient_checkpointing = True
454
+
455
+ def _init_weights(self, module):
456
+ std = self.config.init_std
457
+ if isinstance(module, nn.Linear):
458
+ module.weight.data.normal_(mean=0.0, std=std)
459
+ if module.bias is not None:
460
+ module.bias.data.zero_()
461
+ elif isinstance(module, nn.Embedding):
462
+ module.weight.data.normal_(mean=0.0, std=std)
463
+ if module.padding_idx is not None:
464
+ module.weight.data[module.padding_idx].zero_()
465
+
466
+ @property
467
+ def dummy_inputs(self):
468
+ pad_token = self.config.pad_token_id
469
+ input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
470
+ dummy_inputs = {
471
+ "attention_mask": input_ids.ne(pad_token),
472
+ "input_ids": input_ids,
473
+ "decoder_input_ids": input_ids,
474
+ }
475
+ return dummy_inputs
476
+
477
+
478
+ BLENDERBOT_SMALL_START_DOCSTRING = r"""
479
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
480
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
481
+ etc.)
482
+
483
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
484
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
485
+ and behavior.
486
+
487
+ Parameters:
488
+ config ([`BlenderbotSmallConfig`]):
489
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
490
+ load the weights associated with the model, only the configuration. Check out the
491
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
492
+ """
493
+
494
+ BLENDERBOT_SMALL_GENERATION_EXAMPLE = r"""
495
+ Conversation example:
496
+
497
+ ```python
498
+ >>> from transformers import AutoTokenizer, BlenderbotSmallForConditionalGeneration
499
+
500
+ >>> mname = "facebook/blenderbot_small-90M"
501
+ >>> model = BlenderbotSmallForConditionalGeneration.from_pretrained(mname)
502
+ >>> tokenizer = AutoTokenizer.from_pretrained(mname)
503
+ >>> UTTERANCE = "My friends are cool but they eat too many carbs."
504
+ >>> print("Human: ", UTTERANCE)
505
+ Human: My friends are cool but they eat too many carbs.
506
+
507
+ >>> inputs = tokenizer([UTTERANCE], return_tensors="pt")
508
+ >>> reply_ids = model.generate(**inputs)
509
+ >>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0])
510
+ Bot: what kind of carbs do they eat? i don't know much about carbs.
511
+
512
+ >>> REPLY = "I'm not sure"
513
+ >>> print("Human: ", REPLY)
514
+ Human: I'm not sure
515
+
516
+ >>> NEXT_UTTERANCE = (
517
+ ... "My friends are cool but they eat too many carbs.__end__ __start__what kind of carbs do they eat? "
518
+ ... "i don't know much about carbs__end__ "
519
+ ... "__start__ I'm not sure."
520
+ ... )
521
+ >>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors="pt")
522
+ >>> next_reply_ids = model.generate(**inputs)
523
+ >>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0])
524
+ Bot: they eat a lot of carbs. carbs are high in fat, protein, and fats.
525
+ ```
526
+ """
527
+
528
+ BLENDERBOT_SMALL_INPUTS_DOCSTRING = r"""
529
+ Args:
530
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
531
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
532
+ it.
533
+
534
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
535
+ [`PreTrainedTokenizer.__call__`] for details.
536
+
537
+ [What are input IDs?](../glossary#input-ids)
538
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
539
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
540
+
541
+ - 1 for tokens that are **not masked**,
542
+ - 0 for tokens that are **masked**.
543
+
544
+ [What are attention masks?](../glossary#attention-mask)
545
+ decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
546
+ Indices of decoder input sequence tokens in the vocabulary.
547
+
548
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
549
+ [`PreTrainedTokenizer.__call__`] for details.
550
+
551
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
552
+
553
+ BlenderbotSmall uses the `bos_token_id` as the starting token for `decoder_input_ids` generation. If
554
+ `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
555
+ `past_key_values`).
556
+ decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
557
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
558
+ be used by default.
559
+ head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
560
+ Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
561
+
562
+ - 1 indicates the head is **not masked**,
563
+ - 0 indicates the head is **masked**.
564
+
565
+ decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
566
+ Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
567
+
568
+ - 1 indicates the head is **not masked**,
569
+ - 0 indicates the head is **masked**.
570
+
571
+ cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
572
+ Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
573
+ 1]`:
574
+
575
+ - 1 indicates the head is **not masked**,
576
+ - 0 indicates the head is **masked**.
577
+
578
+ encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
579
+ Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
580
+ `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
581
+ hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
582
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
583
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
584
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
585
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
586
+
587
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
588
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
589
+
590
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
591
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
592
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
593
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
594
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
595
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
596
+ than the model's internal embedding lookup matrix.
597
+ decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
598
+ Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
599
+ representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
600
+ input (see `past_key_values`). This is useful if you want more control over how to convert
601
+ `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
602
+
603
+ If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
604
+ of `inputs_embeds`.
605
+ use_cache (`bool`, *optional*):
606
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
607
+ `past_key_values`).
608
+ output_attentions (`bool`, *optional*):
609
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
610
+ tensors for more detail.
611
+ output_hidden_states (`bool`, *optional*):
612
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
613
+ more detail.
614
+ return_dict (`bool`, *optional*):
615
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
616
+ """
617
+
618
+
619
+ class BlenderbotSmallEncoder(BlenderbotSmallPreTrainedModel):
620
+ """
621
+ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
622
+ [`BlenderbotSmallEncoderLayer`].
623
+
624
+ Args:
625
+ config: BlenderbotSmallConfig
626
+ embed_tokens (nn.Embedding): output embedding
627
+ """
628
+
629
+ def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[nn.Embedding] = None):
630
+ super().__init__(config)
631
+
632
+ self.dropout = config.dropout
633
+ self.layerdrop = config.encoder_layerdrop
634
+
635
+ embed_dim = config.d_model
636
+ self.padding_idx = config.pad_token_id
637
+ self.max_source_positions = config.max_position_embeddings
638
+ self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
639
+
640
+ if embed_tokens is not None:
641
+ self.embed_tokens = embed_tokens
642
+ else:
643
+ self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
644
+
645
+ self.embed_positions = BlenderbotSmallLearnedPositionalEmbedding(
646
+ config.max_position_embeddings,
647
+ embed_dim,
648
+ )
649
+ self.layers = nn.ModuleList([BlenderbotSmallEncoderLayer(config) for _ in range(config.encoder_layers)])
650
+ self.layernorm_embedding = nn.LayerNorm(embed_dim)
651
+
652
+ self.gradient_checkpointing = False
653
+ # Initialize weights and apply final processing
654
+ self.post_init()
655
+
656
+ def forward(
657
+ self,
658
+ input_ids=None,
659
+ attention_mask=None,
660
+ head_mask=None,
661
+ inputs_embeds=None,
662
+ output_attentions=None,
663
+ output_hidden_states=None,
664
+ return_dict=None,
665
+ ):
666
+ r"""
667
+ Args:
668
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
669
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
670
+ provide it.
671
+
672
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
673
+ [`PreTrainedTokenizer.__call__`] for details.
674
+
675
+ [What are input IDs?](../glossary#input-ids)
676
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
677
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
678
+
679
+ - 1 for tokens that are **not masked**,
680
+ - 0 for tokens that are **masked**.
681
+
682
+ [What are attention masks?](../glossary#attention-mask)
683
+ head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
684
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
685
+
686
+ - 1 indicates the head is **not masked**,
687
+ - 0 indicates the head is **masked**.
688
+
689
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
690
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
691
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
692
+ than the model's internal embedding lookup matrix.
693
+ output_attentions (`bool`, *optional*):
694
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
695
+ returned tensors for more detail.
696
+ output_hidden_states (`bool`, *optional*):
697
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
698
+ for more detail.
699
+ return_dict (`bool`, *optional*):
700
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
701
+ """
702
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
703
+ output_hidden_states = (
704
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
705
+ )
706
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
707
+
708
+ # retrieve input_ids and inputs_embeds
709
+ if input_ids is not None and inputs_embeds is not None:
710
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
711
+ elif input_ids is not None:
712
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
713
+ input_shape = input_ids.size()
714
+ input_ids = input_ids.view(-1, input_shape[-1])
715
+ elif inputs_embeds is not None:
716
+ input_shape = inputs_embeds.size()[:-1]
717
+ else:
718
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
719
+
720
+ if inputs_embeds is None:
721
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
722
+
723
+ embed_pos = self.embed_positions(input_shape)
724
+
725
+ hidden_states = inputs_embeds + embed_pos
726
+ hidden_states = self.layernorm_embedding(hidden_states)
727
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
728
+
729
+ # expand attention_mask
730
+ if attention_mask is not None:
731
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
732
+ attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
733
+
734
+ encoder_states = () if output_hidden_states else None
735
+ all_attentions = () if output_attentions else None
736
+
737
+ # check if head_mask has a correct number of layers specified if desired
738
+ if head_mask is not None:
739
+ if head_mask.size()[0] != len(self.layers):
740
+ raise ValueError(
741
+ f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
742
+ f" {head_mask.size()[0]}."
743
+ )
744
+ for idx, encoder_layer in enumerate(self.layers):
745
+ if output_hidden_states:
746
+ encoder_states = encoder_states + (hidden_states,)
747
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
748
+ to_drop = False
749
+ if self.training:
750
+ dropout_probability = torch.rand([])
751
+ if dropout_probability < self.layerdrop: # skip the layer
752
+ to_drop = True
753
+
754
+ if to_drop:
755
+ layer_outputs = (None, None)
756
+ else:
757
+ if self.gradient_checkpointing and self.training:
758
+ layer_outputs = self._gradient_checkpointing_func(
759
+ encoder_layer.__call__,
760
+ hidden_states,
761
+ attention_mask,
762
+ (head_mask[idx] if head_mask is not None else None),
763
+ output_attentions,
764
+ )
765
+ else:
766
+ layer_outputs = encoder_layer(
767
+ hidden_states,
768
+ attention_mask,
769
+ layer_head_mask=(head_mask[idx] if head_mask is not None else None),
770
+ output_attentions=output_attentions,
771
+ )
772
+
773
+ hidden_states = layer_outputs[0]
774
+
775
+ if output_attentions:
776
+ all_attentions = all_attentions + (layer_outputs[1],)
777
+
778
+ if output_hidden_states:
779
+ encoder_states = encoder_states + (hidden_states,)
780
+
781
+ if not return_dict:
782
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
783
+ return BaseModelOutput(
784
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
785
+ )
786
+
787
+
788
+ class BlenderbotSmallDecoder(BlenderbotSmallPreTrainedModel):
789
+ """
790
+ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`BlenderbotSmallDecoderLayer`]
791
+
792
+ Args:
793
+ config: BlenderbotSmallConfig
794
+ embed_tokens (nn.Embedding): output embedding
795
+ """
796
+
797
+ def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[nn.Embedding] = None):
798
+ super().__init__(config)
799
+ self.dropout = config.dropout
800
+ self.layerdrop = config.decoder_layerdrop
801
+ self.padding_idx = config.pad_token_id
802
+ self.max_target_positions = config.max_position_embeddings
803
+ self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
804
+
805
+ if embed_tokens is not None:
806
+ self.embed_tokens = embed_tokens
807
+ else:
808
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
809
+
810
+ self.embed_positions = BlenderbotSmallLearnedPositionalEmbedding(
811
+ config.max_position_embeddings,
812
+ config.d_model,
813
+ )
814
+ self.layers = nn.ModuleList([BlenderbotSmallDecoderLayer(config) for _ in range(config.decoder_layers)])
815
+ self.layernorm_embedding = nn.LayerNorm(config.d_model)
816
+
817
+ self.gradient_checkpointing = False
818
+ # Initialize weights and apply final processing
819
+ self.post_init()
820
+
821
+ def get_input_embeddings(self):
822
+ return self.embed_tokens
823
+
824
+ def set_input_embeddings(self, value):
825
+ self.embed_tokens = value
826
+
827
+ def forward(
828
+ self,
829
+ input_ids=None,
830
+ attention_mask=None,
831
+ encoder_hidden_states=None,
832
+ encoder_attention_mask=None,
833
+ head_mask=None,
834
+ cross_attn_head_mask=None,
835
+ past_key_values=None,
836
+ inputs_embeds=None,
837
+ use_cache=None,
838
+ output_attentions=None,
839
+ output_hidden_states=None,
840
+ return_dict=None,
841
+ ):
842
+ r"""
843
+ Args:
844
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
845
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
846
+ provide it.
847
+
848
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
849
+ [`PreTrainedTokenizer.__call__`] for details.
850
+
851
+ [What are input IDs?](../glossary#input-ids)
852
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
853
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
854
+
855
+ - 1 for tokens that are **not masked**,
856
+ - 0 for tokens that are **masked**.
857
+
858
+ [What are attention masks?](../glossary#attention-mask)
859
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
860
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
861
+ of the decoder.
862
+ encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
863
+ Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
864
+ selected in `[0, 1]`:
865
+
866
+ - 1 for tokens that are **not masked**,
867
+ - 0 for tokens that are **masked**.
868
+
869
+ [What are attention masks?](../glossary#attention-mask)
870
+ head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
871
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
872
+
873
+ - 1 indicates the head is **not masked**,
874
+ - 0 indicates the head is **masked**.
875
+
876
+ cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
877
+ Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
878
+ cross-attention on hidden heads. Mask values selected in `[0, 1]`:
879
+
880
+ - 1 indicates the head is **not masked**,
881
+ - 0 indicates the head is **masked**.
882
+
883
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
884
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
885
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
886
+ shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
887
+
888
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
889
+ cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
890
+
891
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
892
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
893
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
894
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
895
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
896
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
897
+ than the model's internal embedding lookup matrix.
898
+ output_attentions (`bool`, *optional*):
899
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
900
+ returned tensors for more detail.
901
+ output_hidden_states (`bool`, *optional*):
902
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
903
+ for more detail.
904
+ return_dict (`bool`, *optional*):
905
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
906
+ """
907
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
908
+ output_hidden_states = (
909
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
910
+ )
911
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
912
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
913
+
914
+ # retrieve input_ids and inputs_embeds
915
+ if input_ids is not None and inputs_embeds is not None:
916
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
917
+ elif input_ids is not None:
918
+ input_shape = input_ids.size()
919
+ input_ids = input_ids.view(-1, input_shape[-1])
920
+ elif inputs_embeds is not None:
921
+ input_shape = inputs_embeds.size()[:-1]
922
+ else:
923
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
924
+
925
+ # past_key_values_length
926
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
927
+
928
+ if inputs_embeds is None:
929
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
930
+
931
+ attention_mask = _prepare_4d_causal_attention_mask(
932
+ attention_mask, input_shape, inputs_embeds, past_key_values_length
933
+ )
934
+
935
+ # expand encoder attention mask
936
+ if encoder_hidden_states is not None and encoder_attention_mask is not None:
937
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
938
+ encoder_attention_mask = _prepare_4d_attention_mask(
939
+ encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
940
+ )
941
+
942
+ # embed positions
943
+ positions = self.embed_positions(input_shape, past_key_values_length)
944
+
945
+ # BlenderbotSmall applies layer norm on hidden_states
946
+ inputs_embeds = self.layernorm_embedding(inputs_embeds)
947
+ hidden_states = inputs_embeds + positions
948
+
949
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
950
+
951
+ if self.gradient_checkpointing and self.training:
952
+ if use_cache:
953
+ logger.warning_once(
954
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
955
+ )
956
+ use_cache = False
957
+
958
+ # decoder layers
959
+ all_hidden_states = () if output_hidden_states else None
960
+ all_self_attns = () if output_attentions else None
961
+ all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
962
+ next_decoder_cache = () if use_cache else None
963
+
964
+ # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
965
+ for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
966
+ if attn_mask is not None:
967
+ if attn_mask.size()[0] != len(self.layers):
968
+ raise ValueError(
969
+ f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
970
+ f" {head_mask.size()[0]}."
971
+ )
972
+ for idx, decoder_layer in enumerate(self.layers):
973
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
974
+ if output_hidden_states:
975
+ all_hidden_states += (hidden_states,)
976
+ if self.training:
977
+ dropout_probability = torch.rand([])
978
+ if dropout_probability < self.layerdrop:
979
+ continue
980
+
981
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
982
+
983
+ if self.gradient_checkpointing and self.training:
984
+ layer_outputs = self._gradient_checkpointing_func(
985
+ decoder_layer.__call__,
986
+ hidden_states,
987
+ attention_mask,
988
+ encoder_hidden_states,
989
+ encoder_attention_mask,
990
+ head_mask[idx] if head_mask is not None else None,
991
+ cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
992
+ None,
993
+ output_attentions,
994
+ use_cache,
995
+ )
996
+ else:
997
+ layer_outputs = decoder_layer(
998
+ hidden_states,
999
+ attention_mask=attention_mask,
1000
+ encoder_hidden_states=encoder_hidden_states,
1001
+ encoder_attention_mask=encoder_attention_mask,
1002
+ layer_head_mask=(head_mask[idx] if head_mask is not None else None),
1003
+ cross_attn_layer_head_mask=(
1004
+ cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
1005
+ ),
1006
+ past_key_value=past_key_value,
1007
+ output_attentions=output_attentions,
1008
+ use_cache=use_cache,
1009
+ )
1010
+ hidden_states = layer_outputs[0]
1011
+
1012
+ if use_cache:
1013
+ next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
1014
+
1015
+ if output_attentions:
1016
+ all_self_attns += (layer_outputs[1],)
1017
+
1018
+ if encoder_hidden_states is not None:
1019
+ all_cross_attentions += (layer_outputs[2],)
1020
+
1021
+ # add hidden states from the last decoder layer
1022
+ if output_hidden_states:
1023
+ all_hidden_states += (hidden_states,)
1024
+
1025
+ next_cache = next_decoder_cache if use_cache else None
1026
+ if not return_dict:
1027
+ return tuple(
1028
+ v
1029
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
1030
+ if v is not None
1031
+ )
1032
+ return BaseModelOutputWithPastAndCrossAttentions(
1033
+ last_hidden_state=hidden_states,
1034
+ past_key_values=next_cache,
1035
+ hidden_states=all_hidden_states,
1036
+ attentions=all_self_attns,
1037
+ cross_attentions=all_cross_attentions,
1038
+ )
1039
+
1040
+
1041
+ @add_start_docstrings(
1042
+ "The bare BlenderbotSmall Model outputting raw hidden-states without any specific head on top.",
1043
+ BLENDERBOT_SMALL_START_DOCSTRING,
1044
+ )
1045
+ class BlenderbotSmallModel(BlenderbotSmallPreTrainedModel):
1046
+ _tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"]
1047
+
1048
+ def __init__(self, config: BlenderbotSmallConfig):
1049
+ super().__init__(config)
1050
+
1051
+ padding_idx, vocab_size = config.pad_token_id, config.vocab_size
1052
+ self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
1053
+
1054
+ self.encoder = BlenderbotSmallEncoder(config, self.shared)
1055
+ self.decoder = BlenderbotSmallDecoder(config, self.shared)
1056
+
1057
+ # Initialize weights and apply final processing
1058
+ self.post_init()
1059
+
1060
+ def get_input_embeddings(self):
1061
+ return self.shared
1062
+
1063
+ def set_input_embeddings(self, value):
1064
+ self.shared = value
1065
+ self.encoder.embed_tokens = self.shared
1066
+ self.decoder.embed_tokens = self.shared
1067
+
1068
+ def get_encoder(self):
1069
+ return self.encoder
1070
+
1071
+ def get_decoder(self):
1072
+ return self.decoder
1073
+
1074
+ @add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING)
1075
+ @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
1076
+ def forward(
1077
+ self,
1078
+ input_ids: Optional[torch.LongTensor] = None,
1079
+ attention_mask: Optional[torch.Tensor] = None,
1080
+ decoder_input_ids: Optional[torch.LongTensor] = None,
1081
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
1082
+ head_mask: Optional[torch.Tensor] = None,
1083
+ decoder_head_mask: Optional[torch.Tensor] = None,
1084
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
1085
+ encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None,
1086
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1087
+ inputs_embeds: Optional[torch.Tensor] = None,
1088
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
1089
+ use_cache: Optional[bool] = None,
1090
+ output_attentions: Optional[bool] = None,
1091
+ output_hidden_states: Optional[bool] = None,
1092
+ return_dict: Optional[bool] = None,
1093
+ ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
1094
+ r"""
1095
+ Returns:
1096
+
1097
+ Example:
1098
+
1099
+ ```python
1100
+ >>> from transformers import AutoTokenizer, BlenderbotSmallModel
1101
+
1102
+ >>> model = BlenderbotSmallModel.from_pretrained("facebook/blenderbot_small-90M")
1103
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
1104
+
1105
+ >>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt")
1106
+ >>> decoder_inputs = tokenizer("Studies show that", return_tensors="pt") # Batch size 1
1107
+ >>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_inputs.input_ids)
1108
+
1109
+ >>> last_hidden_states = outputs.last_hidden_state
1110
+ >>> list(last_hidden_states.shape)
1111
+ [1, 3, 512]
1112
+ ```"""
1113
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1114
+ output_hidden_states = (
1115
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1116
+ )
1117
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1118
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1119
+
1120
+ if encoder_outputs is None:
1121
+ encoder_outputs = self.encoder(
1122
+ input_ids=input_ids,
1123
+ attention_mask=attention_mask,
1124
+ head_mask=head_mask,
1125
+ inputs_embeds=inputs_embeds,
1126
+ output_attentions=output_attentions,
1127
+ output_hidden_states=output_hidden_states,
1128
+ return_dict=return_dict,
1129
+ )
1130
+ # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
1131
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
1132
+ encoder_outputs = BaseModelOutput(
1133
+ last_hidden_state=encoder_outputs[0],
1134
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
1135
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
1136
+ )
1137
+
1138
+ # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
1139
+ decoder_outputs = self.decoder(
1140
+ input_ids=decoder_input_ids,
1141
+ attention_mask=decoder_attention_mask,
1142
+ encoder_hidden_states=encoder_outputs[0],
1143
+ encoder_attention_mask=attention_mask,
1144
+ head_mask=decoder_head_mask,
1145
+ cross_attn_head_mask=cross_attn_head_mask,
1146
+ past_key_values=past_key_values,
1147
+ inputs_embeds=decoder_inputs_embeds,
1148
+ use_cache=use_cache,
1149
+ output_attentions=output_attentions,
1150
+ output_hidden_states=output_hidden_states,
1151
+ return_dict=return_dict,
1152
+ )
1153
+
1154
+ if not return_dict:
1155
+ return decoder_outputs + encoder_outputs
1156
+
1157
+ return Seq2SeqModelOutput(
1158
+ last_hidden_state=decoder_outputs.last_hidden_state,
1159
+ past_key_values=decoder_outputs.past_key_values,
1160
+ decoder_hidden_states=decoder_outputs.hidden_states,
1161
+ decoder_attentions=decoder_outputs.attentions,
1162
+ cross_attentions=decoder_outputs.cross_attentions,
1163
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
1164
+ encoder_hidden_states=encoder_outputs.hidden_states,
1165
+ encoder_attentions=encoder_outputs.attentions,
1166
+ )
1167
+
1168
+
1169
+ @add_start_docstrings(
1170
+ "The BlenderbotSmall Model with a language modeling head. Can be used for summarization.",
1171
+ BLENDERBOT_SMALL_START_DOCSTRING,
1172
+ )
1173
+ class BlenderbotSmallForConditionalGeneration(BlenderbotSmallPreTrainedModel):
1174
+ base_model_prefix = "model"
1175
+ _keys_to_ignore_on_load_missing = ["final_logits_bias"]
1176
+ _tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "lm_head.weight"]
1177
+
1178
+ def __init__(self, config: BlenderbotSmallConfig):
1179
+ super().__init__(config)
1180
+ self.model = BlenderbotSmallModel(config)
1181
+ self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
1182
+ self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
1183
+
1184
+ # Initialize weights and apply final processing
1185
+ self.post_init()
1186
+
1187
+ def get_encoder(self):
1188
+ return self.model.get_encoder()
1189
+
1190
+ def get_decoder(self):
1191
+ return self.model.get_decoder()
1192
+
1193
+ def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding:
1194
+ new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
1195
+ self._resize_final_logits_bias(new_embeddings.weight.shape[0])
1196
+ return new_embeddings
1197
+
1198
+ def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
1199
+ old_num_tokens = self.final_logits_bias.shape[-1]
1200
+ if new_num_tokens <= old_num_tokens:
1201
+ new_bias = self.final_logits_bias[:, :new_num_tokens]
1202
+ else:
1203
+ extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
1204
+ new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
1205
+ self.register_buffer("final_logits_bias", new_bias)
1206
+
1207
+ def get_output_embeddings(self):
1208
+ return self.lm_head
1209
+
1210
+ def set_output_embeddings(self, new_embeddings):
1211
+ self.lm_head = new_embeddings
1212
+
1213
+ @add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING)
1214
+ @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
1215
+ @add_end_docstrings(BLENDERBOT_SMALL_GENERATION_EXAMPLE)
1216
+ def forward(
1217
+ self,
1218
+ input_ids: Optional[torch.LongTensor] = None,
1219
+ attention_mask: Optional[torch.Tensor] = None,
1220
+ decoder_input_ids: Optional[torch.LongTensor] = None,
1221
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
1222
+ head_mask: Optional[torch.Tensor] = None,
1223
+ decoder_head_mask: Optional[torch.Tensor] = None,
1224
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
1225
+ encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None,
1226
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1227
+ inputs_embeds: Optional[torch.Tensor] = None,
1228
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
1229
+ labels: Optional[torch.LongTensor] = None,
1230
+ use_cache: Optional[bool] = None,
1231
+ output_attentions: Optional[bool] = None,
1232
+ output_hidden_states: Optional[bool] = None,
1233
+ return_dict: Optional[bool] = None,
1234
+ ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
1235
+ r"""
1236
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1237
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1238
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1239
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1240
+
1241
+ Returns:
1242
+ """
1243
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1244
+
1245
+ if labels is not None:
1246
+ if use_cache:
1247
+ logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
1248
+ use_cache = False
1249
+ if decoder_input_ids is None and decoder_inputs_embeds is None:
1250
+ decoder_input_ids = shift_tokens_right(
1251
+ labels, self.config.pad_token_id, self.config.decoder_start_token_id
1252
+ )
1253
+
1254
+ outputs = self.model(
1255
+ input_ids,
1256
+ attention_mask=attention_mask,
1257
+ decoder_input_ids=decoder_input_ids,
1258
+ encoder_outputs=encoder_outputs,
1259
+ decoder_attention_mask=decoder_attention_mask,
1260
+ head_mask=head_mask,
1261
+ decoder_head_mask=decoder_head_mask,
1262
+ cross_attn_head_mask=cross_attn_head_mask,
1263
+ past_key_values=past_key_values,
1264
+ inputs_embeds=inputs_embeds,
1265
+ decoder_inputs_embeds=decoder_inputs_embeds,
1266
+ use_cache=use_cache,
1267
+ output_attentions=output_attentions,
1268
+ output_hidden_states=output_hidden_states,
1269
+ return_dict=return_dict,
1270
+ )
1271
+ lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
1272
+
1273
+ masked_lm_loss = None
1274
+ if labels is not None:
1275
+ loss_fct = CrossEntropyLoss()
1276
+ masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
1277
+
1278
+ if not return_dict:
1279
+ output = (lm_logits,) + outputs[1:]
1280
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
1281
+
1282
+ return Seq2SeqLMOutput(
1283
+ loss=masked_lm_loss,
1284
+ logits=lm_logits,
1285
+ past_key_values=outputs.past_key_values,
1286
+ decoder_hidden_states=outputs.decoder_hidden_states,
1287
+ decoder_attentions=outputs.decoder_attentions,
1288
+ cross_attentions=outputs.cross_attentions,
1289
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state,
1290
+ encoder_hidden_states=outputs.encoder_hidden_states,
1291
+ encoder_attentions=outputs.encoder_attentions,
1292
+ )
1293
+
1294
+ def prepare_inputs_for_generation(
1295
+ self,
1296
+ decoder_input_ids,
1297
+ past_key_values=None,
1298
+ attention_mask=None,
1299
+ head_mask=None,
1300
+ decoder_head_mask=None,
1301
+ cross_attn_head_mask=None,
1302
+ use_cache=None,
1303
+ encoder_outputs=None,
1304
+ **kwargs,
1305
+ ):
1306
+ # cut decoder_input_ids if past is used
1307
+ if past_key_values is not None:
1308
+ past_length = past_key_values[0][0].shape[2]
1309
+
1310
+ # Some generation methods already pass only the last input ID
1311
+ if decoder_input_ids.shape[1] > past_length:
1312
+ remove_prefix_length = past_length
1313
+ else:
1314
+ # Default to old behavior: keep only final ID
1315
+ remove_prefix_length = decoder_input_ids.shape[1] - 1
1316
+
1317
+ decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
1318
+
1319
+ return {
1320
+ "input_ids": None, # encoder_outputs is defined. input_ids not needed
1321
+ "encoder_outputs": encoder_outputs,
1322
+ "past_key_values": past_key_values,
1323
+ "decoder_input_ids": decoder_input_ids,
1324
+ "attention_mask": attention_mask,
1325
+ "head_mask": head_mask,
1326
+ "decoder_head_mask": decoder_head_mask,
1327
+ "cross_attn_head_mask": cross_attn_head_mask,
1328
+ "use_cache": use_cache, # change this to avoid caching (presumably for debugging)
1329
+ }
1330
+
1331
+ @staticmethod
1332
+ def _reorder_cache(past_key_values, beam_idx):
1333
+ reordered_past = ()
1334
+ for layer_past in past_key_values:
1335
+ # cached cross_attention states don't have to be reordered -> they are always the same
1336
+ reordered_past += (
1337
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
1338
+ + layer_past[2:],
1339
+ )
1340
+ return reordered_past
1341
+
1342
+
1343
+ # Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->BlenderbotSmall
1344
+ class BlenderbotSmallDecoderWrapper(BlenderbotSmallPreTrainedModel):
1345
+ """
1346
+ This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
1347
+ used in combination with the [`EncoderDecoderModel`] framework.
1348
+ """
1349
+
1350
+ def __init__(self, config):
1351
+ super().__init__(config)
1352
+ self.decoder = BlenderbotSmallDecoder(config)
1353
+
1354
+ def forward(self, *args, **kwargs):
1355
+ return self.decoder(*args, **kwargs)
1356
+
1357
+
1358
+ # Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->BlenderbotSmall, facebook/bart-base->facebook/blenderbot_small-90M
1359
+ class BlenderbotSmallForCausalLM(BlenderbotSmallPreTrainedModel):
1360
+ _tied_weights_keys = ["lm_head.weight"]
1361
+
1362
+ def __init__(self, config):
1363
+ config = copy.deepcopy(config)
1364
+ config.is_decoder = True
1365
+ config.is_encoder_decoder = False
1366
+ super().__init__(config)
1367
+ self.model = BlenderbotSmallDecoderWrapper(config)
1368
+
1369
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1370
+
1371
+ # Initialize weights and apply final processing
1372
+ self.post_init()
1373
+
1374
+ def get_input_embeddings(self):
1375
+ return self.model.decoder.embed_tokens
1376
+
1377
+ def set_input_embeddings(self, value):
1378
+ self.model.decoder.embed_tokens = value
1379
+
1380
+ def get_output_embeddings(self):
1381
+ return self.lm_head
1382
+
1383
+ def set_output_embeddings(self, new_embeddings):
1384
+ self.lm_head = new_embeddings
1385
+
1386
+ def set_decoder(self, decoder):
1387
+ self.model.decoder = decoder
1388
+
1389
+ def get_decoder(self):
1390
+ return self.model.decoder
1391
+
1392
+ @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
1393
+ def forward(
1394
+ self,
1395
+ input_ids: torch.LongTensor = None,
1396
+ attention_mask: Optional[torch.Tensor] = None,
1397
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
1398
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
1399
+ head_mask: Optional[torch.Tensor] = None,
1400
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
1401
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1402
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1403
+ labels: Optional[torch.LongTensor] = None,
1404
+ use_cache: Optional[bool] = None,
1405
+ output_attentions: Optional[bool] = None,
1406
+ output_hidden_states: Optional[bool] = None,
1407
+ return_dict: Optional[bool] = None,
1408
+ ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
1409
+ r"""
1410
+ Args:
1411
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1412
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
1413
+ provide it.
1414
+
1415
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1416
+ [`PreTrainedTokenizer.__call__`] for details.
1417
+
1418
+ [What are input IDs?](../glossary#input-ids)
1419
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1420
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1421
+
1422
+ - 1 for tokens that are **not masked**,
1423
+ - 0 for tokens that are **masked**.
1424
+
1425
+ [What are attention masks?](../glossary#attention-mask)
1426
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1427
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
1428
+ if the model is configured as a decoder.
1429
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
1430
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
1431
+ in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
1432
+ head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
1433
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
1434
+
1435
+ - 1 indicates the head is **not masked**,
1436
+ - 0 indicates the head is **masked**.
1437
+
1438
+ cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
1439
+ Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
1440
+
1441
+ - 1 indicates the head is **not masked**,
1442
+ - 0 indicates the head is **masked**.
1443
+
1444
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
1445
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1446
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
1447
+ shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
1448
+ tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
1449
+
1450
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
1451
+ cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
1452
+
1453
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
1454
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
1455
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1456
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1457
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1458
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1459
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1460
+ use_cache (`bool`, *optional*):
1461
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1462
+ (see `past_key_values`).
1463
+
1464
+ - 1 for tokens that are **not masked**,
1465
+ - 0 for tokens that are **masked**.
1466
+ output_attentions (`bool`, *optional*):
1467
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1468
+ returned tensors for more detail.
1469
+ output_hidden_states (`bool`, *optional*):
1470
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
1471
+ for more detail.
1472
+ return_dict (`bool`, *optional*):
1473
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1474
+
1475
+ Returns:
1476
+
1477
+ Example:
1478
+
1479
+ ```python
1480
+ >>> from transformers import AutoTokenizer, BlenderbotSmallForCausalLM
1481
+
1482
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
1483
+ >>> model = BlenderbotSmallForCausalLM.from_pretrained("facebook/blenderbot_small-90M", add_cross_attention=False)
1484
+ >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
1485
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
1486
+ >>> outputs = model(**inputs)
1487
+
1488
+ >>> logits = outputs.logits
1489
+ >>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
1490
+ >>> list(logits.shape) == expected_shape
1491
+ True
1492
+ ```"""
1493
+
1494
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1495
+ output_hidden_states = (
1496
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1497
+ )
1498
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1499
+
1500
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1501
+ outputs = self.model.decoder(
1502
+ input_ids=input_ids,
1503
+ attention_mask=attention_mask,
1504
+ encoder_hidden_states=encoder_hidden_states,
1505
+ encoder_attention_mask=encoder_attention_mask,
1506
+ head_mask=head_mask,
1507
+ cross_attn_head_mask=cross_attn_head_mask,
1508
+ past_key_values=past_key_values,
1509
+ inputs_embeds=inputs_embeds,
1510
+ use_cache=use_cache,
1511
+ output_attentions=output_attentions,
1512
+ output_hidden_states=output_hidden_states,
1513
+ return_dict=return_dict,
1514
+ )
1515
+
1516
+ logits = self.lm_head(outputs[0])
1517
+
1518
+ loss = None
1519
+ if labels is not None:
1520
+ labels = labels.to(logits.device)
1521
+ loss_fct = CrossEntropyLoss()
1522
+ loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
1523
+
1524
+ if not return_dict:
1525
+ output = (logits,) + outputs[1:]
1526
+ return (loss,) + output if loss is not None else output
1527
+
1528
+ return CausalLMOutputWithCrossAttentions(
1529
+ loss=loss,
1530
+ logits=logits,
1531
+ past_key_values=outputs.past_key_values,
1532
+ hidden_states=outputs.hidden_states,
1533
+ attentions=outputs.attentions,
1534
+ cross_attentions=outputs.cross_attentions,
1535
+ )
1536
+
1537
+ def prepare_inputs_for_generation(
1538
+ self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs
1539
+ ):
1540
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
1541
+ if attention_mask is None:
1542
+ attention_mask = input_ids.new_ones(input_ids.shape)
1543
+
1544
+ if past_key_values:
1545
+ past_length = past_key_values[0][0].shape[2]
1546
+
1547
+ # Some generation methods already pass only the last input ID
1548
+ if input_ids.shape[1] > past_length:
1549
+ remove_prefix_length = past_length
1550
+ else:
1551
+ # Default to old behavior: keep only final ID
1552
+ remove_prefix_length = input_ids.shape[1] - 1
1553
+
1554
+ input_ids = input_ids[:, remove_prefix_length:]
1555
+ # first step, decoder_cached_states are empty
1556
+ return {
1557
+ "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed
1558
+ "attention_mask": attention_mask,
1559
+ "past_key_values": past_key_values,
1560
+ "use_cache": use_cache,
1561
+ }
1562
+
1563
+ @staticmethod
1564
+ def _reorder_cache(past_key_values, beam_idx):
1565
+ reordered_past = ()
1566
+ for layer_past in past_key_values:
1567
+ reordered_past += (
1568
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1569
+ )
1570
+ return reordered_past
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_flax_blenderbot_small.py ADDED
@@ -0,0 +1,1522 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Flax BlenderbotSmall model."""
16
+
17
+
18
+ import math
19
+ import random
20
+ from functools import partial
21
+ from typing import Callable, Optional, Tuple
22
+
23
+ import flax.linen as nn
24
+ import jax
25
+ import jax.numpy as jnp
26
+ from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
27
+ from flax.linen import combine_masks, make_causal_mask
28
+ from flax.linen.attention import dot_product_attention_weights
29
+ from flax.traverse_util import flatten_dict, unflatten_dict
30
+ from jax import lax
31
+ from jax.random import PRNGKey
32
+
33
+ from ...modeling_flax_outputs import (
34
+ FlaxBaseModelOutput,
35
+ FlaxBaseModelOutputWithPastAndCrossAttentions,
36
+ FlaxCausalLMOutputWithCrossAttentions,
37
+ FlaxSeq2SeqLMOutput,
38
+ FlaxSeq2SeqModelOutput,
39
+ )
40
+ from ...modeling_flax_utils import (
41
+ ACT2FN,
42
+ FlaxPreTrainedModel,
43
+ append_call_sample_docstring,
44
+ append_replace_return_docstrings,
45
+ overwrite_call_docstring,
46
+ )
47
+ from ...utils import add_start_docstrings, logging, replace_return_docstrings
48
+ from .configuration_blenderbot_small import BlenderbotSmallConfig
49
+
50
+
51
+ logger = logging.get_logger(__name__)
52
+
53
+ _CHECKPOINT_FOR_DOC = "facebook/blenderbot_small-90M"
54
+ _CONFIG_FOR_DOC = "BlenderbotSmallConfig"
55
+
56
+ BLENDERBOT_SMALL_START_DOCSTRING = r"""
57
+ This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
58
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
59
+ etc.)
60
+
61
+ This model is also a Flax Linen
62
+ [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
63
+ regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
64
+
65
+ Finally, this model supports inherent JAX features such as:
66
+
67
+ - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
68
+ - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
69
+ - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
70
+ - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
71
+
72
+ Parameters:
73
+ config ([`BlenderbotSmallConfig`]): Model configuration class with all the parameters of the model.
74
+ Initializing with a config file does not load the weights associated with the model, only the
75
+ configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
76
+ dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
77
+ The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
78
+ `jax.numpy.bfloat16` (on TPUs).
79
+
80
+ This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
81
+ specified all the computation will be performed with the given `dtype`.
82
+
83
+ **Note that this only specifies the dtype of the computation and does not influence the dtype of model
84
+ parameters.**
85
+
86
+ If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
87
+ [`~FlaxPreTrainedModel.to_bf16`].
88
+ """
89
+
90
+ BLENDERBOT_SMALL_INPUTS_DOCSTRING = r"""
91
+ Args:
92
+ input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
93
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
94
+ it.
95
+
96
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
97
+ [`PreTrainedTokenizer.__call__`] for details.
98
+
99
+ [What are input IDs?](../glossary#input-ids)
100
+ attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
101
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
102
+
103
+ - 1 for tokens that are **not masked**,
104
+ - 0 for tokens that are **masked**.
105
+
106
+ [What are attention masks?](../glossary#attention-mask)
107
+ decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
108
+ Indices of decoder input sequence tokens in the vocabulary.
109
+
110
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
111
+ [`PreTrainedTokenizer.__call__`] for details.
112
+
113
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
114
+
115
+ For translation and summarization training, `decoder_input_ids` should be provided. If no
116
+ `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
117
+ for denoising pre-training following the paper.
118
+ decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
119
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
120
+ be used by default.
121
+
122
+ If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
123
+ paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
124
+ position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
125
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
126
+ config.max_position_embeddings - 1]`.
127
+ decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
128
+ Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
129
+ range `[0, config.max_position_embeddings - 1]`.
130
+ output_attentions (`bool`, *optional*):
131
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
132
+ tensors for more detail.
133
+ output_hidden_states (`bool`, *optional*):
134
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
135
+ more detail.
136
+ return_dict (`bool`, *optional*):
137
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
138
+ """
139
+
140
+
141
+ BLENDERBOT_SMALL_ENCODE_INPUTS_DOCSTRING = r"""
142
+ Args:
143
+ input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
144
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
145
+ it.
146
+
147
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
148
+ [`PreTrainedTokenizer.__call__`] for details.
149
+
150
+ [What are input IDs?](../glossary#input-ids)
151
+ attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
152
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
153
+
154
+ - 1 for tokens that are **not masked**,
155
+ - 0 for tokens that are **masked**.
156
+
157
+ [What are attention masks?](../glossary#attention-mask)
158
+ position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
159
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
160
+ config.max_position_embeddings - 1]`.
161
+ output_attentions (`bool`, *optional*):
162
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
163
+ tensors for more detail.
164
+ output_hidden_states (`bool`, *optional*):
165
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
166
+ more detail.
167
+ return_dict (`bool`, *optional*):
168
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
169
+ """
170
+
171
+ BLENDERBOT_SMALL_DECODE_INPUTS_DOCSTRING = r"""
172
+ Args:
173
+ decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`):
174
+ Indices of decoder input sequence tokens in the vocabulary.
175
+
176
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
177
+ [`PreTrainedTokenizer.__call__`] for details.
178
+
179
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
180
+
181
+ For translation and summarization training, `decoder_input_ids` should be provided. If no
182
+ `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
183
+ for denoising pre-training following the paper.
184
+ encoder_outputs (`tuple(tuple(jnp.ndarray)`):
185
+ Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
186
+ `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
187
+ hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
188
+ encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
189
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
190
+
191
+ - 1 for tokens that are **not masked**,
192
+ - 0 for tokens that are **masked**.
193
+
194
+ [What are attention masks?](../glossary#attention-mask)
195
+ decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
196
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
197
+ be used by default.
198
+
199
+ If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
200
+ paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
201
+ decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
202
+ Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
203
+ range `[0, config.max_position_embeddings - 1]`.
204
+ past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
205
+ Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
206
+ auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
207
+ output_attentions (`bool`, *optional*):
208
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
209
+ tensors for more detail.
210
+ output_hidden_states (`bool`, *optional*):
211
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
212
+ more detail.
213
+ return_dict (`bool`, *optional*):
214
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
215
+ """
216
+
217
+
218
+ # Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right
219
+ def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
220
+ """
221
+ Shift input ids one token to the right.
222
+ """
223
+ shifted_input_ids = jnp.zeros_like(input_ids)
224
+ shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1])
225
+ shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id)
226
+
227
+ shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids)
228
+ return shifted_input_ids
229
+
230
+
231
+ # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->BlenderbotSmall
232
+ class FlaxBlenderbotSmallAttention(nn.Module):
233
+ config: BlenderbotSmallConfig
234
+ embed_dim: int
235
+ num_heads: int
236
+ dropout: float = 0.0
237
+ causal: bool = False
238
+ bias: bool = True
239
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
240
+
241
+ def setup(self) -> None:
242
+ self.head_dim = self.embed_dim // self.num_heads
243
+ if self.head_dim * self.num_heads != self.embed_dim:
244
+ raise ValueError(
245
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
246
+ f" and `num_heads`: {self.num_heads})."
247
+ )
248
+
249
+ dense = partial(
250
+ nn.Dense,
251
+ self.embed_dim,
252
+ use_bias=self.bias,
253
+ dtype=self.dtype,
254
+ kernel_init=jax.nn.initializers.normal(self.config.init_std),
255
+ )
256
+
257
+ self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
258
+ self.out_proj = dense()
259
+
260
+ self.dropout_layer = nn.Dropout(rate=self.dropout)
261
+
262
+ if self.causal:
263
+ self.causal_mask = make_causal_mask(
264
+ jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
265
+ )
266
+
267
+ def _split_heads(self, hidden_states):
268
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
269
+
270
+ def _merge_heads(self, hidden_states):
271
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
272
+
273
+ @nn.compact
274
+ def _concatenate_to_cache(self, key, value, query, attention_mask):
275
+ """
276
+ This function takes projected key, value states from a single input token and concatenates the states to cached
277
+ states from previous steps. This function is slighly adapted from the official Flax repository:
278
+ https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
279
+ """
280
+ # detect if we're initializing by absence of existing cache data.
281
+ is_initialized = self.has_variable("cache", "cached_key")
282
+ cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
283
+ cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
284
+ cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
285
+
286
+ if is_initialized:
287
+ *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
288
+ # update key, value caches with our new 1d spatial slices
289
+ cur_index = cache_index.value
290
+ indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
291
+ key = lax.dynamic_update_slice(cached_key.value, key, indices)
292
+ value = lax.dynamic_update_slice(cached_value.value, value, indices)
293
+ cached_key.value = key
294
+ cached_value.value = value
295
+ num_updated_cache_vectors = query.shape[1]
296
+ cache_index.value = cache_index.value + num_updated_cache_vectors
297
+ # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
298
+ pad_mask = jnp.broadcast_to(
299
+ jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
300
+ tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
301
+ )
302
+ attention_mask = combine_masks(pad_mask, attention_mask)
303
+ return key, value, attention_mask
304
+
305
+ def __call__(
306
+ self,
307
+ hidden_states: jnp.ndarray,
308
+ key_value_states: Optional[jnp.ndarray] = None,
309
+ attention_mask: Optional[jnp.ndarray] = None,
310
+ init_cache: bool = False,
311
+ deterministic: bool = True,
312
+ ) -> Tuple[jnp.ndarray]:
313
+ """Input shape: Batch x Time x Channel"""
314
+
315
+ # if key_value_states are provided this layer is used as a cross-attention layer
316
+ # for the decoder
317
+ is_cross_attention = key_value_states is not None
318
+ batch_size = hidden_states.shape[0]
319
+
320
+ # get query proj
321
+ query_states = self.q_proj(hidden_states)
322
+ # get key, value proj
323
+ if is_cross_attention:
324
+ # cross_attentions
325
+ key_states = self.k_proj(key_value_states)
326
+ value_states = self.v_proj(key_value_states)
327
+ else:
328
+ # self_attention
329
+ key_states = self.k_proj(hidden_states)
330
+ value_states = self.v_proj(hidden_states)
331
+
332
+ query_states = self._split_heads(query_states)
333
+ key_states = self._split_heads(key_states)
334
+ value_states = self._split_heads(value_states)
335
+
336
+ # handle cache prepare causal attention mask
337
+ if self.causal:
338
+ query_length, key_length = query_states.shape[1], key_states.shape[1]
339
+ if self.has_variable("cache", "cached_key"):
340
+ mask_shift = self.variables["cache"]["cache_index"]
341
+ max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
342
+ causal_mask = lax.dynamic_slice(
343
+ self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
344
+ )
345
+ else:
346
+ causal_mask = self.causal_mask[:, :, :query_length, :key_length]
347
+ causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
348
+
349
+ # combine masks if needed
350
+ if attention_mask is not None and self.causal:
351
+ attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
352
+ attention_mask = combine_masks(attention_mask, causal_mask)
353
+ elif self.causal:
354
+ attention_mask = causal_mask
355
+ elif attention_mask is not None:
356
+ attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
357
+
358
+ # During fast autoregressive decoding, we feed one position at a time,
359
+ # and cache the keys and values step by step.
360
+ if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
361
+ key_states, value_states, attention_mask = self._concatenate_to_cache(
362
+ key_states, value_states, query_states, attention_mask
363
+ )
364
+
365
+ # Convert the boolean attention mask to an attention bias.
366
+ if attention_mask is not None:
367
+ # attention mask in the form of attention bias
368
+ attention_bias = lax.select(
369
+ attention_mask > 0,
370
+ jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
371
+ jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
372
+ )
373
+ else:
374
+ attention_bias = None
375
+
376
+ dropout_rng = None
377
+ if not deterministic and self.dropout > 0.0:
378
+ dropout_rng = self.make_rng("dropout")
379
+
380
+ attn_weights = dot_product_attention_weights(
381
+ query_states,
382
+ key_states,
383
+ bias=attention_bias,
384
+ dropout_rng=dropout_rng,
385
+ dropout_rate=self.dropout,
386
+ broadcast_dropout=True,
387
+ deterministic=deterministic,
388
+ dtype=self.dtype,
389
+ precision=None,
390
+ )
391
+
392
+ attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
393
+ attn_output = self._merge_heads(attn_output)
394
+ attn_output = self.out_proj(attn_output)
395
+
396
+ return attn_output, attn_weights
397
+
398
+
399
+ # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayer with Bart->BlenderbotSmall
400
+ class FlaxBlenderbotSmallEncoderLayer(nn.Module):
401
+ config: BlenderbotSmallConfig
402
+ dtype: jnp.dtype = jnp.float32
403
+
404
+ def setup(self) -> None:
405
+ self.embed_dim = self.config.d_model
406
+ self.self_attn = FlaxBlenderbotSmallAttention(
407
+ config=self.config,
408
+ embed_dim=self.embed_dim,
409
+ num_heads=self.config.encoder_attention_heads,
410
+ dropout=self.config.attention_dropout,
411
+ dtype=self.dtype,
412
+ )
413
+ self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
414
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
415
+ self.activation_fn = ACT2FN[self.config.activation_function]
416
+ self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
417
+ self.fc1 = nn.Dense(
418
+ self.config.encoder_ffn_dim,
419
+ dtype=self.dtype,
420
+ kernel_init=jax.nn.initializers.normal(self.config.init_std),
421
+ )
422
+ self.fc2 = nn.Dense(
423
+ self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
424
+ )
425
+ self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
426
+
427
+ def __call__(
428
+ self,
429
+ hidden_states: jnp.ndarray,
430
+ attention_mask: jnp.ndarray,
431
+ output_attentions: bool = True,
432
+ deterministic: bool = True,
433
+ ) -> Tuple[jnp.ndarray]:
434
+ residual = hidden_states
435
+ hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask)
436
+
437
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
438
+ hidden_states = residual + hidden_states
439
+ hidden_states = self.self_attn_layer_norm(hidden_states)
440
+
441
+ residual = hidden_states
442
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
443
+ hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
444
+ hidden_states = self.fc2(hidden_states)
445
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
446
+ hidden_states = residual + hidden_states
447
+ hidden_states = self.final_layer_norm(hidden_states)
448
+
449
+ outputs = (hidden_states,)
450
+
451
+ if output_attentions:
452
+ outputs += (attn_weights,)
453
+
454
+ return outputs
455
+
456
+
457
+ # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayerCollection with Bart->BlenderbotSmall
458
+ class FlaxBlenderbotSmallEncoderLayerCollection(nn.Module):
459
+ config: BlenderbotSmallConfig
460
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
461
+
462
+ def setup(self):
463
+ self.layers = [
464
+ FlaxBlenderbotSmallEncoderLayer(self.config, name=str(i), dtype=self.dtype)
465
+ for i in range(self.config.encoder_layers)
466
+ ]
467
+ self.layerdrop = self.config.encoder_layerdrop
468
+
469
+ def __call__(
470
+ self,
471
+ hidden_states,
472
+ attention_mask,
473
+ deterministic: bool = True,
474
+ output_attentions: bool = False,
475
+ output_hidden_states: bool = False,
476
+ return_dict: bool = True,
477
+ ):
478
+ all_attentions = () if output_attentions else None
479
+ all_hidden_states = () if output_hidden_states else None
480
+
481
+ for encoder_layer in self.layers:
482
+ if output_hidden_states:
483
+ all_hidden_states = all_hidden_states + (hidden_states,)
484
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
485
+ dropout_probability = random.uniform(0, 1)
486
+ if not deterministic and (dropout_probability < self.layerdrop): # skip the layer
487
+ layer_outputs = (None, None)
488
+ else:
489
+ layer_outputs = encoder_layer(
490
+ hidden_states,
491
+ attention_mask,
492
+ output_attentions,
493
+ deterministic,
494
+ )
495
+ hidden_states = layer_outputs[0]
496
+ if output_attentions:
497
+ all_attentions = all_attentions + (layer_outputs[1],)
498
+
499
+ if output_hidden_states:
500
+ all_hidden_states += (hidden_states,)
501
+
502
+ outputs = (hidden_states, all_hidden_states, all_attentions)
503
+
504
+ if not return_dict:
505
+ return tuple(v for v in outputs if v is not None)
506
+
507
+ return FlaxBaseModelOutput(
508
+ last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
509
+ )
510
+
511
+
512
+ # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayer with Bart->BlenderbotSmall
513
+ class FlaxBlenderbotSmallDecoderLayer(nn.Module):
514
+ config: BlenderbotSmallConfig
515
+ dtype: jnp.dtype = jnp.float32
516
+
517
+ def setup(self) -> None:
518
+ self.embed_dim = self.config.d_model
519
+ self.self_attn = FlaxBlenderbotSmallAttention(
520
+ config=self.config,
521
+ embed_dim=self.embed_dim,
522
+ num_heads=self.config.decoder_attention_heads,
523
+ dropout=self.config.attention_dropout,
524
+ causal=True,
525
+ dtype=self.dtype,
526
+ )
527
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
528
+ self.activation_fn = ACT2FN[self.config.activation_function]
529
+ self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
530
+
531
+ self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
532
+ self.encoder_attn = FlaxBlenderbotSmallAttention(
533
+ config=self.config,
534
+ embed_dim=self.embed_dim,
535
+ num_heads=self.config.decoder_attention_heads,
536
+ dropout=self.config.attention_dropout,
537
+ dtype=self.dtype,
538
+ )
539
+ self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
540
+ self.fc1 = nn.Dense(
541
+ self.config.decoder_ffn_dim,
542
+ dtype=self.dtype,
543
+ kernel_init=jax.nn.initializers.normal(self.config.init_std),
544
+ )
545
+ self.fc2 = nn.Dense(
546
+ self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
547
+ )
548
+ self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
549
+
550
+ def __call__(
551
+ self,
552
+ hidden_states: jnp.ndarray,
553
+ attention_mask: jnp.ndarray,
554
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
555
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
556
+ init_cache: bool = False,
557
+ output_attentions: bool = True,
558
+ deterministic: bool = True,
559
+ ) -> Tuple[jnp.ndarray]:
560
+ residual = hidden_states
561
+
562
+ # Self Attention
563
+ hidden_states, self_attn_weights = self.self_attn(
564
+ hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache
565
+ )
566
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
567
+ hidden_states = residual + hidden_states
568
+ hidden_states = self.self_attn_layer_norm(hidden_states)
569
+
570
+ # Cross-Attention Block
571
+ cross_attn_weights = None
572
+ if encoder_hidden_states is not None:
573
+ residual = hidden_states
574
+
575
+ hidden_states, cross_attn_weights = self.encoder_attn(
576
+ hidden_states=hidden_states,
577
+ key_value_states=encoder_hidden_states,
578
+ attention_mask=encoder_attention_mask,
579
+ )
580
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
581
+ hidden_states = residual + hidden_states
582
+ hidden_states = self.encoder_attn_layer_norm(hidden_states)
583
+
584
+ # Fully Connected
585
+ residual = hidden_states
586
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
587
+ hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
588
+ hidden_states = self.fc2(hidden_states)
589
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
590
+ hidden_states = residual + hidden_states
591
+ hidden_states = self.final_layer_norm(hidden_states)
592
+
593
+ outputs = (hidden_states,)
594
+
595
+ if output_attentions:
596
+ outputs += (self_attn_weights, cross_attn_weights)
597
+
598
+ return outputs
599
+
600
+
601
+ # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayerCollection with Bart->BlenderbotSmall
602
+ class FlaxBlenderbotSmallDecoderLayerCollection(nn.Module):
603
+ config: BlenderbotSmallConfig
604
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
605
+
606
+ def setup(self):
607
+ self.layers = [
608
+ FlaxBlenderbotSmallDecoderLayer(self.config, name=str(i), dtype=self.dtype)
609
+ for i in range(self.config.decoder_layers)
610
+ ]
611
+ self.layerdrop = self.config.decoder_layerdrop
612
+
613
+ def __call__(
614
+ self,
615
+ hidden_states,
616
+ attention_mask,
617
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
618
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
619
+ deterministic: bool = True,
620
+ init_cache: bool = False,
621
+ output_attentions: bool = False,
622
+ output_hidden_states: bool = False,
623
+ return_dict: bool = True,
624
+ ):
625
+ # decoder layers
626
+ all_hidden_states = () if output_hidden_states else None
627
+ all_self_attns = () if output_attentions else None
628
+ all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
629
+
630
+ for decoder_layer in self.layers:
631
+ if output_hidden_states:
632
+ all_hidden_states += (hidden_states,)
633
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
634
+ dropout_probability = random.uniform(0, 1)
635
+ if not deterministic and (dropout_probability < self.layerdrop):
636
+ layer_outputs = (None, None, None)
637
+ else:
638
+ layer_outputs = decoder_layer(
639
+ hidden_states,
640
+ attention_mask=attention_mask,
641
+ encoder_hidden_states=encoder_hidden_states,
642
+ encoder_attention_mask=encoder_attention_mask,
643
+ init_cache=init_cache,
644
+ output_attentions=output_attentions,
645
+ deterministic=deterministic,
646
+ )
647
+
648
+ hidden_states = layer_outputs[0]
649
+ if output_attentions:
650
+ all_self_attns += (layer_outputs[1],)
651
+
652
+ if encoder_hidden_states is not None:
653
+ all_cross_attentions += (layer_outputs[2],)
654
+
655
+ # add hidden states from the last decoder layer
656
+ if output_hidden_states:
657
+ all_hidden_states += (hidden_states,)
658
+
659
+ outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions]
660
+
661
+ if not return_dict:
662
+ return tuple(v for v in outputs if v is not None)
663
+
664
+ return FlaxBaseModelOutputWithPastAndCrossAttentions(
665
+ last_hidden_state=hidden_states,
666
+ hidden_states=all_hidden_states,
667
+ attentions=all_self_attns,
668
+ cross_attentions=all_cross_attentions,
669
+ )
670
+
671
+
672
+ class FlaxBlenderbotSmallEncoder(nn.Module):
673
+ config: BlenderbotSmallConfig
674
+ embed_tokens: nn.Embed
675
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
676
+
677
+ def setup(self):
678
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
679
+
680
+ embed_dim = self.config.d_model
681
+ self.padding_idx = self.config.pad_token_id
682
+ self.max_source_positions = self.config.max_position_embeddings
683
+ self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
684
+
685
+ self.embed_positions = nn.Embed(
686
+ self.config.max_position_embeddings,
687
+ embed_dim,
688
+ embedding_init=jax.nn.initializers.normal(self.config.init_std),
689
+ )
690
+ self.layers = FlaxBlenderbotSmallEncoderLayerCollection(self.config, self.dtype)
691
+ self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
692
+
693
+ def __call__(
694
+ self,
695
+ input_ids,
696
+ attention_mask,
697
+ position_ids,
698
+ output_attentions: bool = False,
699
+ output_hidden_states: bool = False,
700
+ return_dict: bool = True,
701
+ deterministic: bool = True,
702
+ ):
703
+ input_shape = input_ids.shape
704
+ input_ids = input_ids.reshape(-1, input_shape[-1])
705
+
706
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
707
+
708
+ embed_pos = self.embed_positions(position_ids)
709
+
710
+ hidden_states = inputs_embeds + embed_pos
711
+ hidden_states = self.layernorm_embedding(hidden_states)
712
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
713
+
714
+ outputs = self.layers(
715
+ hidden_states,
716
+ attention_mask,
717
+ deterministic=deterministic,
718
+ output_attentions=output_attentions,
719
+ output_hidden_states=output_hidden_states,
720
+ return_dict=return_dict,
721
+ )
722
+
723
+ if not return_dict:
724
+ return outputs
725
+
726
+ return FlaxBaseModelOutput(
727
+ last_hidden_state=outputs.last_hidden_state,
728
+ hidden_states=outputs.hidden_states,
729
+ attentions=outputs.attentions,
730
+ )
731
+
732
+
733
+ class FlaxBlenderbotSmallDecoder(nn.Module):
734
+ config: BlenderbotSmallConfig
735
+ embed_tokens: nn.Embed
736
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
737
+
738
+ def setup(self):
739
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
740
+
741
+ embed_dim = self.config.d_model
742
+ self.padding_idx = self.config.pad_token_id
743
+ self.max_target_positions = self.config.max_position_embeddings
744
+ self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
745
+
746
+ self.embed_positions = nn.Embed(
747
+ self.config.max_position_embeddings,
748
+ embed_dim,
749
+ embedding_init=jax.nn.initializers.normal(self.config.init_std),
750
+ )
751
+
752
+ self.layers = FlaxBlenderbotSmallDecoderLayerCollection(self.config, self.dtype)
753
+ self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
754
+
755
+ def __call__(
756
+ self,
757
+ input_ids,
758
+ attention_mask,
759
+ position_ids,
760
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
761
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
762
+ init_cache: bool = False,
763
+ output_attentions: bool = False,
764
+ output_hidden_states: bool = False,
765
+ return_dict: bool = True,
766
+ deterministic: bool = True,
767
+ ):
768
+ input_shape = input_ids.shape
769
+ input_ids = input_ids.reshape(-1, input_shape[-1])
770
+
771
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
772
+
773
+ # embed positions
774
+ positions = self.embed_positions(position_ids)
775
+
776
+ # BlenderbotSmall applies layer norm on inputs_embeds in decoder
777
+ inputs_embeds = self.layernorm_embedding(inputs_embeds)
778
+ hidden_states = inputs_embeds + positions
779
+
780
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
781
+
782
+ outputs = self.layers(
783
+ hidden_states,
784
+ attention_mask,
785
+ encoder_hidden_states,
786
+ encoder_attention_mask,
787
+ deterministic=deterministic,
788
+ init_cache=init_cache,
789
+ output_attentions=output_attentions,
790
+ output_hidden_states=output_hidden_states,
791
+ return_dict=return_dict,
792
+ )
793
+
794
+ if not return_dict:
795
+ return outputs
796
+
797
+ return FlaxBaseModelOutputWithPastAndCrossAttentions(
798
+ last_hidden_state=outputs.last_hidden_state,
799
+ hidden_states=outputs.hidden_states,
800
+ attentions=outputs.attentions,
801
+ cross_attentions=outputs.cross_attentions,
802
+ )
803
+
804
+
805
+ # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartModule with Bart->BlenderbotSmall
806
+ class FlaxBlenderbotSmallModule(nn.Module):
807
+ config: BlenderbotSmallConfig
808
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
809
+
810
+ def setup(self):
811
+ self.shared = nn.Embed(
812
+ self.config.vocab_size,
813
+ self.config.d_model,
814
+ embedding_init=jax.nn.initializers.normal(self.config.init_std),
815
+ dtype=self.dtype,
816
+ )
817
+
818
+ self.encoder = FlaxBlenderbotSmallEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
819
+ self.decoder = FlaxBlenderbotSmallDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
820
+
821
+ def _get_encoder_module(self):
822
+ return self.encoder
823
+
824
+ def _get_decoder_module(self):
825
+ return self.decoder
826
+
827
+ def __call__(
828
+ self,
829
+ input_ids,
830
+ attention_mask,
831
+ decoder_input_ids,
832
+ decoder_attention_mask,
833
+ position_ids,
834
+ decoder_position_ids,
835
+ output_attentions: bool = False,
836
+ output_hidden_states: bool = False,
837
+ return_dict: bool = True,
838
+ deterministic: bool = True,
839
+ ):
840
+ encoder_outputs = self.encoder(
841
+ input_ids=input_ids,
842
+ attention_mask=attention_mask,
843
+ position_ids=position_ids,
844
+ output_attentions=output_attentions,
845
+ output_hidden_states=output_hidden_states,
846
+ return_dict=return_dict,
847
+ deterministic=deterministic,
848
+ )
849
+
850
+ decoder_outputs = self.decoder(
851
+ input_ids=decoder_input_ids,
852
+ attention_mask=decoder_attention_mask,
853
+ position_ids=decoder_position_ids,
854
+ encoder_hidden_states=encoder_outputs[0],
855
+ encoder_attention_mask=attention_mask,
856
+ output_attentions=output_attentions,
857
+ output_hidden_states=output_hidden_states,
858
+ return_dict=return_dict,
859
+ deterministic=deterministic,
860
+ )
861
+
862
+ if not return_dict:
863
+ return decoder_outputs + encoder_outputs
864
+
865
+ return FlaxSeq2SeqModelOutput(
866
+ last_hidden_state=decoder_outputs.last_hidden_state,
867
+ decoder_hidden_states=decoder_outputs.hidden_states,
868
+ decoder_attentions=decoder_outputs.attentions,
869
+ cross_attentions=decoder_outputs.cross_attentions,
870
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
871
+ encoder_hidden_states=encoder_outputs.hidden_states,
872
+ encoder_attentions=encoder_outputs.attentions,
873
+ )
874
+
875
+
876
+ class FlaxBlenderbotSmallPreTrainedModel(FlaxPreTrainedModel):
877
+ config_class = BlenderbotSmallConfig
878
+ base_model_prefix: str = "model"
879
+ module_class: nn.Module = None
880
+
881
+ def __init__(
882
+ self,
883
+ config: BlenderbotSmallConfig,
884
+ input_shape: Tuple[int] = (1, 1),
885
+ seed: int = 0,
886
+ dtype: jnp.dtype = jnp.float32,
887
+ _do_init: bool = True,
888
+ **kwargs,
889
+ ):
890
+ module = self.module_class(config=config, dtype=dtype, **kwargs)
891
+ super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
892
+
893
+ def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
894
+ # init input tensors
895
+ input_ids = jnp.zeros(input_shape, dtype="i4")
896
+ # make sure initialization pass will work for FlaxBlenderbotSmallForSequenceClassificationModule
897
+ input_ids = input_ids.at[(..., -1)].set(self.config.eos_token_id)
898
+ attention_mask = jnp.ones_like(input_ids)
899
+ decoder_input_ids = input_ids
900
+ decoder_attention_mask = jnp.ones_like(input_ids)
901
+
902
+ batch_size, sequence_length = input_ids.shape
903
+ position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
904
+ decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
905
+
906
+ params_rng, dropout_rng = jax.random.split(rng)
907
+ rngs = {"params": params_rng, "dropout": dropout_rng}
908
+
909
+ random_params = self.module.init(
910
+ rngs,
911
+ input_ids,
912
+ attention_mask,
913
+ decoder_input_ids,
914
+ decoder_attention_mask,
915
+ position_ids,
916
+ decoder_position_ids,
917
+ )["params"]
918
+
919
+ if params is not None:
920
+ random_params = flatten_dict(unfreeze(random_params))
921
+ params = flatten_dict(unfreeze(params))
922
+ for missing_key in self._missing_keys:
923
+ params[missing_key] = random_params[missing_key]
924
+ self._missing_keys = set()
925
+ return freeze(unflatten_dict(params))
926
+ else:
927
+ return random_params
928
+
929
+ def init_cache(self, batch_size, max_length, encoder_outputs):
930
+ r"""
931
+ Args:
932
+ batch_size (`int`):
933
+ batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
934
+ max_length (`int`):
935
+ maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
936
+ cache.
937
+ encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`):
938
+ `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*:
939
+ `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*)
940
+ is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
941
+ cross-attention of the decoder.
942
+ """
943
+ # init input variables to retrieve cache
944
+ decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
945
+ decoder_attention_mask = jnp.ones_like(decoder_input_ids)
946
+ decoder_position_ids = jnp.broadcast_to(
947
+ jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape
948
+ )
949
+
950
+ def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
951
+ decoder_module = module._get_decoder_module()
952
+ return decoder_module(
953
+ decoder_input_ids,
954
+ decoder_attention_mask,
955
+ decoder_position_ids,
956
+ **kwargs,
957
+ )
958
+
959
+ init_variables = self.module.init(
960
+ jax.random.PRNGKey(0),
961
+ decoder_input_ids=decoder_input_ids,
962
+ decoder_attention_mask=decoder_attention_mask,
963
+ decoder_position_ids=decoder_position_ids,
964
+ encoder_hidden_states=encoder_outputs[0],
965
+ init_cache=True,
966
+ method=_decoder_forward, # we only need to call the decoder to init the cache
967
+ )
968
+ return unfreeze(init_variables["cache"])
969
+
970
+ @add_start_docstrings(BLENDERBOT_SMALL_ENCODE_INPUTS_DOCSTRING)
971
+ @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=BlenderbotSmallConfig)
972
+ def encode(
973
+ self,
974
+ input_ids: jnp.ndarray,
975
+ attention_mask: Optional[jnp.ndarray] = None,
976
+ position_ids: Optional[jnp.ndarray] = None,
977
+ output_attentions: Optional[bool] = None,
978
+ output_hidden_states: Optional[bool] = None,
979
+ return_dict: Optional[bool] = None,
980
+ train: bool = False,
981
+ params: dict = None,
982
+ dropout_rng: PRNGKey = None,
983
+ ):
984
+ r"""
985
+ Returns:
986
+
987
+ Example:
988
+
989
+ ```python
990
+ >>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration
991
+
992
+ >>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M")
993
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
994
+
995
+ >>> text = "My friends are cool but they eat too many carbs."
996
+ >>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
997
+ >>> encoder_outputs = model.encode(**inputs)
998
+ ```"""
999
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1000
+ output_hidden_states = (
1001
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1002
+ )
1003
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
1004
+
1005
+ if attention_mask is None:
1006
+ attention_mask = jnp.ones_like(input_ids)
1007
+ if position_ids is None:
1008
+ batch_size, sequence_length = input_ids.shape
1009
+ position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
1010
+
1011
+ # Handle any PRNG if needed
1012
+ rngs = {}
1013
+ if dropout_rng is not None:
1014
+ rngs["dropout"] = dropout_rng
1015
+
1016
+ def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs):
1017
+ encode_module = module._get_encoder_module()
1018
+ return encode_module(input_ids, attention_mask, position_ids, **kwargs)
1019
+
1020
+ return self.module.apply(
1021
+ {"params": params or self.params},
1022
+ input_ids=jnp.array(input_ids, dtype="i4"),
1023
+ attention_mask=jnp.array(attention_mask, dtype="i4"),
1024
+ position_ids=jnp.array(position_ids, dtype="i4"),
1025
+ output_attentions=output_attentions,
1026
+ output_hidden_states=output_hidden_states,
1027
+ return_dict=return_dict,
1028
+ deterministic=not train,
1029
+ rngs=rngs,
1030
+ method=_encoder_forward,
1031
+ )
1032
+
1033
+ @add_start_docstrings(BLENDERBOT_SMALL_DECODE_INPUTS_DOCSTRING)
1034
+ @replace_return_docstrings(
1035
+ output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=BlenderbotSmallConfig
1036
+ )
1037
+ def decode(
1038
+ self,
1039
+ decoder_input_ids,
1040
+ encoder_outputs,
1041
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
1042
+ decoder_attention_mask: Optional[jnp.ndarray] = None,
1043
+ decoder_position_ids: Optional[jnp.ndarray] = None,
1044
+ past_key_values: dict = None,
1045
+ output_attentions: Optional[bool] = None,
1046
+ output_hidden_states: Optional[bool] = None,
1047
+ return_dict: Optional[bool] = None,
1048
+ train: bool = False,
1049
+ params: dict = None,
1050
+ dropout_rng: PRNGKey = None,
1051
+ ):
1052
+ r"""
1053
+ Returns:
1054
+
1055
+ Example:
1056
+
1057
+ ```python
1058
+ >>> import jax.numpy as jnp
1059
+ >>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration
1060
+
1061
+ >>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M")
1062
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
1063
+
1064
+ >>> text = "My friends are cool but they eat too many carbs."
1065
+ >>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
1066
+ >>> encoder_outputs = model.encode(**inputs)
1067
+
1068
+ >>> decoder_start_token_id = model.config.decoder_start_token_id
1069
+ >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
1070
+
1071
+ >>> outputs = model.decode(decoder_input_ids, encoder_outputs)
1072
+ >>> last_decoder_hidden_states = outputs.last_hidden_state
1073
+ ```"""
1074
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1075
+ output_hidden_states = (
1076
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1077
+ )
1078
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
1079
+
1080
+ encoder_hidden_states = encoder_outputs[0]
1081
+ if encoder_attention_mask is None:
1082
+ batch_size, sequence_length = encoder_hidden_states.shape[:2]
1083
+ encoder_attention_mask = jnp.ones((batch_size, sequence_length))
1084
+
1085
+ batch_size, sequence_length = decoder_input_ids.shape
1086
+ if decoder_attention_mask is None:
1087
+ decoder_attention_mask = jnp.ones((batch_size, sequence_length))
1088
+
1089
+ if decoder_position_ids is None:
1090
+ if past_key_values is not None:
1091
+ raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
1092
+
1093
+ decoder_position_ids = jnp.broadcast_to(
1094
+ jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
1095
+ )
1096
+
1097
+ # Handle any PRNG if needed
1098
+ rngs = {}
1099
+ if dropout_rng is not None:
1100
+ rngs["dropout"] = dropout_rng
1101
+
1102
+ inputs = {"params": params or self.params}
1103
+
1104
+ # if past_key_values are passed then cache is already initialized a private flag init_cache has to be
1105
+ # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
1106
+ # it can be changed by FlaxBlenderbotSmallAttention module
1107
+ if past_key_values:
1108
+ inputs["cache"] = past_key_values
1109
+ mutable = ["cache"]
1110
+ else:
1111
+ mutable = False
1112
+
1113
+ def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
1114
+ decoder_module = module._get_decoder_module()
1115
+ return decoder_module(
1116
+ decoder_input_ids,
1117
+ decoder_attention_mask,
1118
+ decoder_position_ids,
1119
+ **kwargs,
1120
+ )
1121
+
1122
+ outputs = self.module.apply(
1123
+ inputs,
1124
+ decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
1125
+ decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
1126
+ decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
1127
+ encoder_hidden_states=encoder_hidden_states,
1128
+ encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
1129
+ output_attentions=output_attentions,
1130
+ output_hidden_states=output_hidden_states,
1131
+ return_dict=return_dict,
1132
+ deterministic=not train,
1133
+ rngs=rngs,
1134
+ mutable=mutable,
1135
+ method=_decoder_forward,
1136
+ )
1137
+
1138
+ # add updated cache to model output
1139
+ if past_key_values is not None and return_dict:
1140
+ outputs, past = outputs
1141
+ outputs["past_key_values"] = unfreeze(past["cache"])
1142
+ return outputs
1143
+ elif past_key_values is not None and not return_dict:
1144
+ outputs, past = outputs
1145
+ outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
1146
+
1147
+ return outputs
1148
+
1149
+ def __call__(
1150
+ self,
1151
+ input_ids: jnp.ndarray,
1152
+ attention_mask: Optional[jnp.ndarray] = None,
1153
+ decoder_input_ids: Optional[jnp.ndarray] = None,
1154
+ decoder_attention_mask: Optional[jnp.ndarray] = None,
1155
+ position_ids: Optional[jnp.ndarray] = None,
1156
+ decoder_position_ids: Optional[jnp.ndarray] = None,
1157
+ output_attentions: Optional[bool] = None,
1158
+ output_hidden_states: Optional[bool] = None,
1159
+ return_dict: Optional[bool] = None,
1160
+ train: bool = False,
1161
+ params: dict = None,
1162
+ dropout_rng: PRNGKey = None,
1163
+ ):
1164
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1165
+ output_hidden_states = (
1166
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1167
+ )
1168
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
1169
+
1170
+ # prepare encoder inputs
1171
+ if attention_mask is None:
1172
+ attention_mask = jnp.ones_like(input_ids)
1173
+ if position_ids is None:
1174
+ batch_size, sequence_length = input_ids.shape
1175
+ position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
1176
+
1177
+ # prepare decoder inputs
1178
+ if decoder_input_ids is None:
1179
+ decoder_input_ids = shift_tokens_right(
1180
+ input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id
1181
+ )
1182
+ if decoder_attention_mask is None:
1183
+ decoder_attention_mask = jnp.ones_like(decoder_input_ids)
1184
+ if decoder_position_ids is None:
1185
+ batch_size, sequence_length = decoder_input_ids.shape
1186
+ decoder_position_ids = jnp.broadcast_to(
1187
+ jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
1188
+ )
1189
+
1190
+ # Handle any PRNG if needed
1191
+ rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
1192
+
1193
+ return self.module.apply(
1194
+ {"params": params or self.params},
1195
+ input_ids=jnp.array(input_ids, dtype="i4"),
1196
+ attention_mask=jnp.array(attention_mask, dtype="i4"),
1197
+ position_ids=jnp.array(position_ids, dtype="i4"),
1198
+ decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
1199
+ decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
1200
+ decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
1201
+ output_attentions=output_attentions,
1202
+ output_hidden_states=output_hidden_states,
1203
+ return_dict=return_dict,
1204
+ deterministic=not train,
1205
+ rngs=rngs,
1206
+ )
1207
+
1208
+
1209
+ @add_start_docstrings(
1210
+ "The bare BlenderbotSmall Model transformer outputting raw hidden-states without any specific head on top.",
1211
+ BLENDERBOT_SMALL_START_DOCSTRING,
1212
+ )
1213
+ class FlaxBlenderbotSmallModel(FlaxBlenderbotSmallPreTrainedModel):
1214
+ config: BlenderbotSmallConfig
1215
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
1216
+ module_class = FlaxBlenderbotSmallModule
1217
+
1218
+
1219
+ append_call_sample_docstring(FlaxBlenderbotSmallModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC)
1220
+
1221
+
1222
+ # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForConditionalGenerationModule with Bart->BlenderbotSmall
1223
+ class FlaxBlenderbotSmallForConditionalGenerationModule(nn.Module):
1224
+ config: BlenderbotSmallConfig
1225
+ dtype: jnp.dtype = jnp.float32
1226
+ bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros
1227
+
1228
+ def setup(self):
1229
+ self.model = FlaxBlenderbotSmallModule(config=self.config, dtype=self.dtype)
1230
+ self.lm_head = nn.Dense(
1231
+ self.model.shared.num_embeddings,
1232
+ use_bias=False,
1233
+ dtype=self.dtype,
1234
+ kernel_init=jax.nn.initializers.normal(self.config.init_std),
1235
+ )
1236
+ self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings))
1237
+
1238
+ def _get_encoder_module(self):
1239
+ return self.model.encoder
1240
+
1241
+ def _get_decoder_module(self):
1242
+ return self.model.decoder
1243
+
1244
+ def __call__(
1245
+ self,
1246
+ input_ids,
1247
+ attention_mask,
1248
+ decoder_input_ids,
1249
+ decoder_attention_mask,
1250
+ position_ids,
1251
+ decoder_position_ids,
1252
+ output_attentions: bool = False,
1253
+ output_hidden_states: bool = False,
1254
+ return_dict: bool = True,
1255
+ deterministic: bool = True,
1256
+ ):
1257
+ outputs = self.model(
1258
+ input_ids=input_ids,
1259
+ attention_mask=attention_mask,
1260
+ decoder_input_ids=decoder_input_ids,
1261
+ decoder_attention_mask=decoder_attention_mask,
1262
+ position_ids=position_ids,
1263
+ decoder_position_ids=decoder_position_ids,
1264
+ output_attentions=output_attentions,
1265
+ output_hidden_states=output_hidden_states,
1266
+ return_dict=return_dict,
1267
+ deterministic=deterministic,
1268
+ )
1269
+
1270
+ hidden_states = outputs[0]
1271
+
1272
+ if self.config.tie_word_embeddings:
1273
+ shared_embedding = self.model.variables["params"]["shared"]["embedding"]
1274
+ lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
1275
+ else:
1276
+ lm_logits = self.lm_head(hidden_states)
1277
+
1278
+ lm_logits += jax.lax.stop_gradient(self.final_logits_bias.astype(self.dtype))
1279
+
1280
+ if not return_dict:
1281
+ output = (lm_logits,) + outputs[1:]
1282
+ return output
1283
+
1284
+ return FlaxSeq2SeqLMOutput(
1285
+ logits=lm_logits,
1286
+ decoder_hidden_states=outputs.decoder_hidden_states,
1287
+ decoder_attentions=outputs.decoder_attentions,
1288
+ cross_attentions=outputs.cross_attentions,
1289
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state,
1290
+ encoder_hidden_states=outputs.encoder_hidden_states,
1291
+ encoder_attentions=outputs.encoder_attentions,
1292
+ )
1293
+
1294
+
1295
+ @add_start_docstrings(
1296
+ "The BLENDERBOT_SMALL Model with a language modeling head. Can be used for summarization.",
1297
+ BLENDERBOT_SMALL_START_DOCSTRING,
1298
+ )
1299
+ class FlaxBlenderbotSmallForConditionalGeneration(FlaxBlenderbotSmallPreTrainedModel):
1300
+ module_class = FlaxBlenderbotSmallForConditionalGenerationModule
1301
+ dtype: jnp.dtype = jnp.float32
1302
+
1303
+ @add_start_docstrings(BLENDERBOT_SMALL_DECODE_INPUTS_DOCSTRING)
1304
+ @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=BlenderbotSmallConfig)
1305
+ def decode(
1306
+ self,
1307
+ decoder_input_ids,
1308
+ encoder_outputs,
1309
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
1310
+ decoder_attention_mask: Optional[jnp.ndarray] = None,
1311
+ decoder_position_ids: Optional[jnp.ndarray] = None,
1312
+ past_key_values: dict = None,
1313
+ output_attentions: Optional[bool] = None,
1314
+ output_hidden_states: Optional[bool] = None,
1315
+ return_dict: Optional[bool] = None,
1316
+ deterministic: bool = True,
1317
+ params: dict = None,
1318
+ dropout_rng: PRNGKey = None,
1319
+ ):
1320
+ r"""
1321
+ Returns:
1322
+
1323
+ Example:
1324
+
1325
+ ```python
1326
+ >>> import jax.numpy as jnp
1327
+ >>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration
1328
+
1329
+ >>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M")
1330
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
1331
+
1332
+ >>> text = "My friends are cool but they eat too many carbs."
1333
+ >>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
1334
+ >>> encoder_outputs = model.encode(**inputs)
1335
+
1336
+ >>> decoder_start_token_id = model.config.decoder_start_token_id
1337
+ >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
1338
+
1339
+ >>> outputs = model.decode(decoder_input_ids, encoder_outputs)
1340
+ >>> logits = outputs.logits
1341
+ ```"""
1342
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1343
+ output_hidden_states = (
1344
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1345
+ )
1346
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
1347
+
1348
+ encoder_hidden_states = encoder_outputs[0]
1349
+ if encoder_attention_mask is None:
1350
+ batch_size, sequence_length = encoder_hidden_states.shape[:2]
1351
+ encoder_attention_mask = jnp.ones((batch_size, sequence_length))
1352
+
1353
+ batch_size, sequence_length = decoder_input_ids.shape
1354
+ if decoder_attention_mask is None:
1355
+ decoder_attention_mask = jnp.ones((batch_size, sequence_length))
1356
+
1357
+ if decoder_position_ids is None:
1358
+ if past_key_values is not None:
1359
+ raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
1360
+
1361
+ decoder_position_ids = jnp.broadcast_to(
1362
+ jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
1363
+ )
1364
+
1365
+ # Handle any PRNG if needed
1366
+ rngs = {}
1367
+ if dropout_rng is not None:
1368
+ rngs["dropout"] = dropout_rng
1369
+
1370
+ inputs = {"params": params or self.params}
1371
+
1372
+ # if past_key_values are passed then cache is already initialized a private flag init_cache has to be
1373
+ # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
1374
+ # it can be changed by FlaxBlenderbotSmallAttention module
1375
+ if past_key_values:
1376
+ inputs["cache"] = past_key_values
1377
+ mutable = ["cache"]
1378
+ else:
1379
+ mutable = False
1380
+
1381
+ def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
1382
+ decoder_module = module._get_decoder_module()
1383
+ outputs = decoder_module(
1384
+ decoder_input_ids,
1385
+ decoder_attention_mask,
1386
+ decoder_position_ids,
1387
+ **kwargs,
1388
+ )
1389
+ hidden_states = outputs[0]
1390
+
1391
+ if self.config.tie_word_embeddings:
1392
+ shared_embedding = module.model.variables["params"]["shared"]["embedding"]
1393
+ lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
1394
+ else:
1395
+ lm_logits = module.lm_head(hidden_states)
1396
+
1397
+ lm_logits += module.final_logits_bias.astype(self.dtype)
1398
+ return lm_logits, outputs
1399
+
1400
+ outputs = self.module.apply(
1401
+ inputs,
1402
+ decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
1403
+ decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
1404
+ decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
1405
+ encoder_hidden_states=encoder_hidden_states,
1406
+ encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
1407
+ output_attentions=output_attentions,
1408
+ output_hidden_states=output_hidden_states,
1409
+ return_dict=return_dict,
1410
+ deterministic=deterministic,
1411
+ rngs=rngs,
1412
+ mutable=mutable,
1413
+ method=_decoder_forward,
1414
+ )
1415
+
1416
+ if past_key_values is None:
1417
+ lm_logits, decoder_outputs = outputs
1418
+ else:
1419
+ (lm_logits, decoder_outputs), past = outputs
1420
+
1421
+ if return_dict:
1422
+ outputs = FlaxCausalLMOutputWithCrossAttentions(
1423
+ logits=lm_logits,
1424
+ hidden_states=decoder_outputs.hidden_states,
1425
+ attentions=decoder_outputs.attentions,
1426
+ cross_attentions=decoder_outputs.cross_attentions,
1427
+ )
1428
+ else:
1429
+ outputs = (lm_logits,) + decoder_outputs[1:]
1430
+
1431
+ # add updated cache to model output
1432
+ if past_key_values is not None and return_dict:
1433
+ outputs["past_key_values"] = unfreeze(past["cache"])
1434
+ return outputs
1435
+ elif past_key_values is not None and not return_dict:
1436
+ outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
1437
+
1438
+ return outputs
1439
+
1440
+ def prepare_inputs_for_generation(
1441
+ self,
1442
+ decoder_input_ids,
1443
+ max_length,
1444
+ attention_mask: Optional[jax.Array] = None,
1445
+ decoder_attention_mask: Optional[jax.Array] = None,
1446
+ encoder_outputs=None,
1447
+ **kwargs,
1448
+ ):
1449
+ # initializing the cache
1450
+ batch_size, seq_length = decoder_input_ids.shape
1451
+
1452
+ past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
1453
+ # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
1454
+ # But since the decoder uses a causal mask, those positions are masked anyways.
1455
+ # Thus we can create a single static attention_mask here, which is more efficient for compilation
1456
+ extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
1457
+ if decoder_attention_mask is not None:
1458
+ position_ids = decoder_attention_mask.cumsum(axis=-1) - 1
1459
+ extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0))
1460
+ else:
1461
+ position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
1462
+
1463
+ return {
1464
+ "past_key_values": past_key_values,
1465
+ "encoder_outputs": encoder_outputs,
1466
+ "encoder_attention_mask": attention_mask,
1467
+ "decoder_attention_mask": extended_attention_mask,
1468
+ "decoder_position_ids": position_ids,
1469
+ }
1470
+
1471
+ def update_inputs_for_generation(self, model_outputs, model_kwargs):
1472
+ model_kwargs["past_key_values"] = model_outputs.past_key_values
1473
+ model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1
1474
+ return model_kwargs
1475
+
1476
+
1477
+ FLAX_BLENDERBOT_SMALL_CONDITIONAL_GENERATION_DOCSTRING = """
1478
+ Returns:
1479
+
1480
+ Summarization example:
1481
+
1482
+ ```py
1483
+ >>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration
1484
+
1485
+ >>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M")
1486
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
1487
+
1488
+ >>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
1489
+ >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="np")
1490
+
1491
+ >>> # Generate Summary
1492
+ >>> summary_ids = model.generate(inputs["input_ids"]).sequences
1493
+ >>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
1494
+ ```
1495
+
1496
+ Mask filling example:
1497
+
1498
+ ```py
1499
+ >>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration
1500
+
1501
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
1502
+ >>> TXT = "My friends are <mask> but they eat too many carbs."
1503
+
1504
+ >>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M")
1505
+ >>> input_ids = tokenizer([TXT], return_tensors="np")["input_ids"]
1506
+ >>> logits = model(input_ids).logits
1507
+
1508
+ >>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
1509
+ >>> probs = jax.nn.softmax(logits[0, masked_index], axis=0)
1510
+ >>> values, predictions = jax.lax.top_k(probs)
1511
+
1512
+ >>> tokenizer.decode(predictions).split()
1513
+ ```
1514
+ """
1515
+
1516
+ overwrite_call_docstring(
1517
+ FlaxBlenderbotSmallForConditionalGeneration,
1518
+ BLENDERBOT_SMALL_INPUTS_DOCSTRING + FLAX_BLENDERBOT_SMALL_CONDITIONAL_GENERATION_DOCSTRING,
1519
+ )
1520
+ append_replace_return_docstrings(
1521
+ FlaxBlenderbotSmallForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC
1522
+ )
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py ADDED
@@ -0,0 +1,1529 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The Facebook, Inc and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ TF 2.0 BlenderbotSmall model."""
16
+
17
+
18
+ from __future__ import annotations
19
+
20
+ import random
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import numpy as np
24
+ import tensorflow as tf
25
+
26
+ from ...activations_tf import get_tf_activation
27
+ from ...modeling_tf_outputs import (
28
+ TFBaseModelOutput,
29
+ TFBaseModelOutputWithPastAndCrossAttentions,
30
+ TFSeq2SeqLMOutput,
31
+ TFSeq2SeqModelOutput,
32
+ )
33
+
34
+ # Public API
35
+ from ...modeling_tf_utils import (
36
+ TFCausalLanguageModelingLoss,
37
+ TFPreTrainedModel,
38
+ keras_serializable,
39
+ unpack_inputs,
40
+ )
41
+ from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
42
+ from ...utils import (
43
+ add_code_sample_docstrings,
44
+ add_end_docstrings,
45
+ add_start_docstrings,
46
+ add_start_docstrings_to_model_forward,
47
+ logging,
48
+ replace_return_docstrings,
49
+ )
50
+ from .configuration_blenderbot_small import BlenderbotSmallConfig
51
+
52
+
53
+ logger = logging.get_logger(__name__)
54
+
55
+ _CHECKPOINT_FOR_DOC = "facebook/blenderbot_small-90M"
56
+ _CONFIG_FOR_DOC = "BlenderbotSmallConfig"
57
+
58
+
59
+ LARGE_NEGATIVE = -1e8
60
+
61
+
62
+ # Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right
63
+ def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
64
+ pad_token_id = tf.cast(pad_token_id, input_ids.dtype)
65
+ decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype)
66
+ start_tokens = tf.fill(
67
+ (shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype)
68
+ )
69
+ shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
70
+ # replace possible -100 values in labels by `pad_token_id`
71
+ shifted_input_ids = tf.where(
72
+ shifted_input_ids == -100,
73
+ tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)),
74
+ shifted_input_ids,
75
+ )
76
+
77
+ # "Verify that `labels` has only positive values and -100"
78
+ assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
79
+
80
+ # Make sure the assertion op is called by wrapping the result in an identity no-op
81
+ with tf.control_dependencies([assert_gte0]):
82
+ shifted_input_ids = tf.identity(shifted_input_ids)
83
+
84
+ return shifted_input_ids
85
+
86
+
87
+ # Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask
88
+ def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
89
+ """
90
+ Make causal mask used for bi-directional self-attention.
91
+ """
92
+ bsz = input_ids_shape[0]
93
+ tgt_len = input_ids_shape[1]
94
+ mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE
95
+ mask_cond = tf.range(shape_list(mask)[-1])
96
+
97
+ mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask)
98
+
99
+ if past_key_values_length > 0:
100
+ mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
101
+
102
+ return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
103
+
104
+
105
+ # Copied from transformers.models.bart.modeling_tf_bart._expand_mask
106
+ def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
107
+ """
108
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
109
+ """
110
+ src_len = shape_list(mask)[1]
111
+ tgt_len = tgt_len if tgt_len is not None else src_len
112
+ one_cst = tf.constant(1.0)
113
+ mask = tf.cast(mask, dtype=one_cst.dtype)
114
+ expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
115
+
116
+ return (one_cst - expanded_mask) * LARGE_NEGATIVE
117
+
118
+
119
+ # Copied from transformers.models.blenderbot.modeling_tf_blenderbot.TFBlenderbotLearnedPositionalEmbedding with Blenderbot->BlenderbotSmall
120
+ class TFBlenderbotSmallLearnedPositionalEmbedding(tf.keras.layers.Embedding):
121
+ """
122
+ This module learns positional embeddings up to a fixed maximum size.
123
+ """
124
+
125
+ def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs):
126
+ super().__init__(num_embeddings, embedding_dim, **kwargs)
127
+
128
+ def call(
129
+ self, input_shape: tf.TensorShape, past_key_values_length: int = 0, position_ids: tf.Tensor | None = None
130
+ ):
131
+ """Input is expected to be of size [bsz x seqlen]."""
132
+ if position_ids is None:
133
+ seq_len = input_shape[1]
134
+ position_ids = tf.range(seq_len, delta=1, name="range")
135
+ position_ids += past_key_values_length
136
+
137
+ return super().call(tf.cast(position_ids, dtype=tf.int32))
138
+
139
+
140
+ # Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->BlenderbotSmall
141
+ class TFBlenderbotSmallAttention(tf.keras.layers.Layer):
142
+ """Multi-headed attention from "Attention Is All You Need"""
143
+
144
+ def __init__(
145
+ self,
146
+ embed_dim: int,
147
+ num_heads: int,
148
+ dropout: float = 0.0,
149
+ is_decoder: bool = False,
150
+ bias: bool = True,
151
+ **kwargs,
152
+ ):
153
+ super().__init__(**kwargs)
154
+ self.embed_dim = embed_dim
155
+
156
+ self.num_heads = num_heads
157
+ self.dropout = tf.keras.layers.Dropout(dropout)
158
+ self.head_dim = embed_dim // num_heads
159
+ if (self.head_dim * num_heads) != self.embed_dim:
160
+ raise ValueError(
161
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
162
+ f" and `num_heads`: {num_heads})."
163
+ )
164
+ self.scaling = self.head_dim**-0.5
165
+ self.is_decoder = is_decoder
166
+
167
+ self.k_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
168
+ self.q_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
169
+ self.v_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
170
+ self.out_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
171
+
172
+ def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
173
+ return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
174
+
175
+ def call(
176
+ self,
177
+ hidden_states: tf.Tensor,
178
+ key_value_states: tf.Tensor | None = None,
179
+ past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
180
+ attention_mask: tf.Tensor | None = None,
181
+ layer_head_mask: tf.Tensor | None = None,
182
+ training: Optional[bool] = False,
183
+ ) -> Tuple[tf.Tensor, tf.Tensor | None]:
184
+ """Input shape: Batch x Time x Channel"""
185
+
186
+ # if key_value_states are provided this layer is used as a cross-attention layer
187
+ # for the decoder
188
+ is_cross_attention = key_value_states is not None
189
+ bsz, tgt_len, embed_dim = shape_list(hidden_states)
190
+
191
+ # get query proj
192
+ query_states = self.q_proj(hidden_states) * self.scaling
193
+ # get key, value proj
194
+ if is_cross_attention and past_key_value is not None:
195
+ # reuse k,v, cross_attentions
196
+ key_states = past_key_value[0]
197
+ value_states = past_key_value[1]
198
+ elif is_cross_attention:
199
+ # cross_attentions
200
+ key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
201
+ value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
202
+ elif past_key_value is not None:
203
+ # reuse k, v, self_attention
204
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
205
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
206
+ key_states = tf.concat([past_key_value[0], key_states], axis=2)
207
+ value_states = tf.concat([past_key_value[1], value_states], axis=2)
208
+ else:
209
+ # self_attention
210
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
211
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
212
+
213
+ if self.is_decoder:
214
+ # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
215
+ # Further calls to cross_attention layer can then reuse all cross-attention
216
+ # key/value_states (first "if" case)
217
+ # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
218
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
219
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
220
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
221
+ past_key_value = (key_states, value_states)
222
+
223
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
224
+ query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
225
+ key_states = tf.reshape(key_states, proj_shape)
226
+ value_states = tf.reshape(value_states, proj_shape)
227
+
228
+ src_len = shape_list(key_states)[1]
229
+ attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
230
+
231
+ tf.debugging.assert_equal(
232
+ shape_list(attn_weights),
233
+ [bsz * self.num_heads, tgt_len, src_len],
234
+ message=(
235
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
236
+ f" {shape_list(attn_weights)}"
237
+ ),
238
+ )
239
+
240
+ if attention_mask is not None:
241
+ tf.debugging.assert_equal(
242
+ shape_list(attention_mask),
243
+ [bsz, 1, tgt_len, src_len],
244
+ message=(
245
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
246
+ f" {shape_list(attention_mask)}"
247
+ ),
248
+ )
249
+
250
+ attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
251
+ attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
252
+ attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
253
+
254
+ attn_weights = stable_softmax(attn_weights, axis=-1)
255
+
256
+ if layer_head_mask is not None:
257
+ tf.debugging.assert_equal(
258
+ shape_list(layer_head_mask),
259
+ [self.num_heads],
260
+ message=(
261
+ f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
262
+ f" {shape_list(layer_head_mask)}"
263
+ ),
264
+ )
265
+
266
+ attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
267
+ attn_weights, (bsz, self.num_heads, tgt_len, src_len)
268
+ )
269
+ attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
270
+
271
+ attn_probs = self.dropout(attn_weights, training=training)
272
+ attn_output = tf.matmul(attn_probs, value_states)
273
+
274
+ tf.debugging.assert_equal(
275
+ shape_list(attn_output),
276
+ [bsz * self.num_heads, tgt_len, self.head_dim],
277
+ message=(
278
+ f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
279
+ f" {shape_list(attn_output)}"
280
+ ),
281
+ )
282
+
283
+ attn_output = tf.transpose(
284
+ tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
285
+ )
286
+ attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
287
+
288
+ attn_output = self.out_proj(attn_output)
289
+ attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
290
+
291
+ return attn_output, attn_weights, past_key_value
292
+
293
+ def build(self, input_shape=None):
294
+ if self.built:
295
+ return
296
+ self.built = True
297
+ if getattr(self, "k_proj", None) is not None:
298
+ with tf.name_scope(self.k_proj.name):
299
+ self.k_proj.build([None, None, self.embed_dim])
300
+ if getattr(self, "q_proj", None) is not None:
301
+ with tf.name_scope(self.q_proj.name):
302
+ self.q_proj.build([None, None, self.embed_dim])
303
+ if getattr(self, "v_proj", None) is not None:
304
+ with tf.name_scope(self.v_proj.name):
305
+ self.v_proj.build([None, None, self.embed_dim])
306
+ if getattr(self, "out_proj", None) is not None:
307
+ with tf.name_scope(self.out_proj.name):
308
+ self.out_proj.build([None, None, self.embed_dim])
309
+
310
+
311
+ # Copied from transformers.models.bart.modeling_tf_bart.TFBartEncoderLayer with Bart->BlenderbotSmall
312
+ class TFBlenderbotSmallEncoderLayer(tf.keras.layers.Layer):
313
+ def __init__(self, config: BlenderbotSmallConfig, **kwargs):
314
+ super().__init__(**kwargs)
315
+ self.embed_dim = config.d_model
316
+ self.self_attn = TFBlenderbotSmallAttention(
317
+ self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn"
318
+ )
319
+ self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
320
+ self.dropout = tf.keras.layers.Dropout(config.dropout)
321
+ self.activation_fn = get_tf_activation(config.activation_function)
322
+ self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout)
323
+ self.fc1 = tf.keras.layers.Dense(config.encoder_ffn_dim, name="fc1")
324
+ self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2")
325
+ self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
326
+ self.config = config
327
+
328
+ def call(
329
+ self,
330
+ hidden_states: tf.Tensor,
331
+ attention_mask: np.ndarray | tf.Tensor | None,
332
+ layer_head_mask: tf.Tensor | None,
333
+ training: Optional[bool] = False,
334
+ ) -> tf.Tensor:
335
+ """
336
+ Args:
337
+ hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
338
+ attention_mask (`tf.Tensor`): attention mask of size
339
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
340
+ layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
341
+ `(encoder_attention_heads,)`
342
+ """
343
+ residual = hidden_states
344
+ hidden_states, self_attn_weights, _ = self.self_attn(
345
+ hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask
346
+ )
347
+
348
+ tf.debugging.assert_equal(
349
+ shape_list(hidden_states),
350
+ shape_list(residual),
351
+ message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}",
352
+ )
353
+
354
+ hidden_states = self.dropout(hidden_states, training=training)
355
+ hidden_states = residual + hidden_states
356
+ hidden_states = self.self_attn_layer_norm(hidden_states)
357
+
358
+ residual = hidden_states
359
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
360
+ hidden_states = self.activation_dropout(hidden_states, training=training)
361
+ hidden_states = self.fc2(hidden_states)
362
+ hidden_states = self.dropout(hidden_states, training=training)
363
+ hidden_states = residual + hidden_states
364
+ hidden_states = self.final_layer_norm(hidden_states)
365
+
366
+ return hidden_states, self_attn_weights
367
+
368
+ def build(self, input_shape=None):
369
+ if self.built:
370
+ return
371
+ self.built = True
372
+ if getattr(self, "self_attn", None) is not None:
373
+ with tf.name_scope(self.self_attn.name):
374
+ self.self_attn.build(None)
375
+ if getattr(self, "self_attn_layer_norm", None) is not None:
376
+ with tf.name_scope(self.self_attn_layer_norm.name):
377
+ self.self_attn_layer_norm.build([None, None, self.embed_dim])
378
+ if getattr(self, "fc1", None) is not None:
379
+ with tf.name_scope(self.fc1.name):
380
+ self.fc1.build([None, None, self.embed_dim])
381
+ if getattr(self, "fc2", None) is not None:
382
+ with tf.name_scope(self.fc2.name):
383
+ self.fc2.build([None, None, self.config.encoder_ffn_dim])
384
+ if getattr(self, "final_layer_norm", None) is not None:
385
+ with tf.name_scope(self.final_layer_norm.name):
386
+ self.final_layer_norm.build([None, None, self.embed_dim])
387
+
388
+
389
+ # Copied from transformers.models.bart.modeling_tf_bart.TFBartDecoderLayer with Bart->BlenderbotSmall
390
+ class TFBlenderbotSmallDecoderLayer(tf.keras.layers.Layer):
391
+ def __init__(self, config: BlenderbotSmallConfig, **kwargs):
392
+ super().__init__(**kwargs)
393
+ self.embed_dim = config.d_model
394
+ self.self_attn = TFBlenderbotSmallAttention(
395
+ embed_dim=self.embed_dim,
396
+ num_heads=config.decoder_attention_heads,
397
+ dropout=config.attention_dropout,
398
+ name="self_attn",
399
+ is_decoder=True,
400
+ )
401
+ self.dropout = tf.keras.layers.Dropout(config.dropout)
402
+ self.activation_fn = get_tf_activation(config.activation_function)
403
+ self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout)
404
+
405
+ self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
406
+ self.encoder_attn = TFBlenderbotSmallAttention(
407
+ self.embed_dim,
408
+ config.decoder_attention_heads,
409
+ dropout=config.attention_dropout,
410
+ name="encoder_attn",
411
+ is_decoder=True,
412
+ )
413
+ self.encoder_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm")
414
+ self.fc1 = tf.keras.layers.Dense(config.decoder_ffn_dim, name="fc1")
415
+ self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2")
416
+ self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
417
+ self.config = config
418
+
419
+ def call(
420
+ self,
421
+ hidden_states: tf.Tensor,
422
+ attention_mask: np.ndarray | tf.Tensor | None = None,
423
+ encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
424
+ encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
425
+ layer_head_mask: tf.Tensor | None = None,
426
+ cross_attn_layer_head_mask: tf.Tensor | None = None,
427
+ past_key_value: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
428
+ training: Optional[bool] = False,
429
+ ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
430
+ """
431
+ Args:
432
+ hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
433
+ attention_mask (`tf.Tensor`): attention mask of size
434
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
435
+ encoder_hidden_states (`tf.Tensor`):
436
+ cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
437
+ encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
438
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
439
+ layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
440
+ `(decoder_attention_heads,)`
441
+ cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module.
442
+ `(decoder_attention_heads,)`
443
+ past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states
444
+ """
445
+ residual = hidden_states
446
+
447
+ # Self Attention
448
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
449
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
450
+ # add present self-attn cache to positions 1,2 of present_key_value tuple
451
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
452
+ hidden_states=hidden_states,
453
+ past_key_value=self_attn_past_key_value,
454
+ attention_mask=attention_mask,
455
+ layer_head_mask=layer_head_mask,
456
+ )
457
+ hidden_states = self.dropout(hidden_states, training=training)
458
+ hidden_states = residual + hidden_states
459
+ hidden_states = self.self_attn_layer_norm(hidden_states)
460
+
461
+ # Cross-Attention Block
462
+ cross_attn_present_key_value = None
463
+ cross_attn_weights = None
464
+ if encoder_hidden_states is not None:
465
+ residual = hidden_states
466
+
467
+ # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
468
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
469
+ hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
470
+ hidden_states=hidden_states,
471
+ key_value_states=encoder_hidden_states,
472
+ attention_mask=encoder_attention_mask,
473
+ layer_head_mask=cross_attn_layer_head_mask,
474
+ past_key_value=cross_attn_past_key_value,
475
+ )
476
+ hidden_states = self.dropout(hidden_states, training=training)
477
+ hidden_states = residual + hidden_states
478
+ hidden_states = self.encoder_attn_layer_norm(hidden_states)
479
+
480
+ # add cross-attn to positions 3,4 of present_key_value tuple
481
+ present_key_value = present_key_value + cross_attn_present_key_value
482
+
483
+ # Fully Connected
484
+ residual = hidden_states
485
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
486
+ hidden_states = self.activation_dropout(hidden_states, training=training)
487
+ hidden_states = self.fc2(hidden_states)
488
+ hidden_states = self.dropout(hidden_states, training=training)
489
+ hidden_states = residual + hidden_states
490
+ hidden_states = self.final_layer_norm(hidden_states)
491
+
492
+ return (
493
+ hidden_states,
494
+ self_attn_weights,
495
+ cross_attn_weights,
496
+ present_key_value,
497
+ )
498
+
499
+ def build(self, input_shape=None):
500
+ if self.built:
501
+ return
502
+ self.built = True
503
+ if getattr(self, "self_attn", None) is not None:
504
+ with tf.name_scope(self.self_attn.name):
505
+ self.self_attn.build(None)
506
+ if getattr(self, "self_attn_layer_norm", None) is not None:
507
+ with tf.name_scope(self.self_attn_layer_norm.name):
508
+ self.self_attn_layer_norm.build([None, None, self.embed_dim])
509
+ if getattr(self, "encoder_attn", None) is not None:
510
+ with tf.name_scope(self.encoder_attn.name):
511
+ self.encoder_attn.build(None)
512
+ if getattr(self, "encoder_attn_layer_norm", None) is not None:
513
+ with tf.name_scope(self.encoder_attn_layer_norm.name):
514
+ self.encoder_attn_layer_norm.build([None, None, self.embed_dim])
515
+ if getattr(self, "fc1", None) is not None:
516
+ with tf.name_scope(self.fc1.name):
517
+ self.fc1.build([None, None, self.embed_dim])
518
+ if getattr(self, "fc2", None) is not None:
519
+ with tf.name_scope(self.fc2.name):
520
+ self.fc2.build([None, None, self.config.decoder_ffn_dim])
521
+ if getattr(self, "final_layer_norm", None) is not None:
522
+ with tf.name_scope(self.final_layer_norm.name):
523
+ self.final_layer_norm.build([None, None, self.embed_dim])
524
+
525
+
526
+ class TFBlenderbotSmallPreTrainedModel(TFPreTrainedModel):
527
+ config_class = BlenderbotSmallConfig
528
+ base_model_prefix = "model"
529
+
530
+
531
+ BLENDERBOT_SMALL_START_DOCSTRING = r"""
532
+ This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
533
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
534
+ etc.)
535
+
536
+ This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
537
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
538
+ behavior.
539
+
540
+ <Tip>
541
+
542
+ TensorFlow models and layers in `transformers` accept two formats as input:
543
+
544
+ - having all inputs as keyword arguments (like PyTorch models), or
545
+ - having all inputs as a list, tuple or dict in the first positional argument.
546
+
547
+ The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
548
+ and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
549
+ pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
550
+ format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
551
+ the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
552
+ positional argument:
553
+
554
+ - a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
555
+ - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
556
+ `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
557
+ - a dictionary with one or several input Tensors associated to the input names given in the docstring:
558
+ `model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
559
+
560
+ Note that when creating models and layers with
561
+ [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
562
+ about any of this, as you can just pass inputs like you would to any other Python function!
563
+
564
+ </Tip>
565
+
566
+ Args:
567
+ config ([`BlenderbotSmallConfig`]): Model configuration class with all the parameters of the model.
568
+ Initializing with a config file does not load the weights associated with the model, only the
569
+ configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
570
+ """
571
+
572
+ BLENDERBOT_SMALL_GENERATION_EXAMPLE = r"""
573
+ Conversation example::
574
+
575
+ ```py
576
+ >>> from transformers import AutoTokenizer, TFBlenderbotSmallForConditionalGeneration
577
+
578
+ >>> mname = "facebook/blenderbot_small-90M"
579
+ >>> model = BlenderbotSmallForConditionalGeneration.from_pretrained(mname)
580
+ >>> tokenizer = AutoTokenizer.from_pretrained(mname)
581
+
582
+ >>> UTTERANCE = "My friends are cool but they eat too many carbs."
583
+ >>> print("Human: ", UTTERANCE)
584
+ >>> inputs = tokenizer([UTTERANCE], return_tensors="tf")
585
+
586
+ >>> reply_ids = model.generate(**inputs)
587
+ >>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0])
588
+ what kind of carbs do they eat? i don't know much about carbs.
589
+
590
+ >>> REPLY = "I'm not sure"
591
+ >>> print("Human: ", REPLY)
592
+ >>> NEXT_UTTERANCE = (
593
+ ... "My friends are cool but they eat too many carbs.</s> "
594
+ ... "<s>what kind of carbs do they eat? i don't know much about carbs.</s> "
595
+ ... "<s>I'm not sure."
596
+ ... )
597
+
598
+ >>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors="tf")
599
+ >>> inputs.pop("token_type_ids")
600
+ >>> next_reply_ids = model.generate(**inputs)
601
+ >>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0])
602
+ ```
603
+ """
604
+
605
+ BLENDERBOT_SMALL_INPUTS_DOCSTRING = r"""
606
+ Args:
607
+ input_ids (`tf.Tensor` of shape `({0})`):
608
+ Indices of input sequence tokens in the vocabulary.
609
+
610
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
611
+ [`PreTrainedTokenizer.__call__`] for details.
612
+
613
+ [What are input IDs?](../glossary#input-ids)
614
+ attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
615
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
616
+
617
+ - 1 for tokens that are **not masked**,
618
+ - 0 for tokens that are **masked**.
619
+
620
+ [What are attention masks?](../glossary#attention-mask)
621
+ decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
622
+ Indices of decoder input sequence tokens in the vocabulary.
623
+
624
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
625
+ [`PreTrainedTokenizer.__call__`] for details.
626
+
627
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
628
+
629
+ BlenderbotSmall uses the `bos_token_id` as the starting token for `decoder_input_ids` generation. If
630
+ `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
631
+ `past_key_values`).
632
+ decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
633
+ will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
634
+ decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
635
+ Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
636
+ range `[0, config.max_position_embeddings - 1]`.
637
+ head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
638
+ Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
639
+
640
+ - 1 indicates the head is **not masked**,
641
+ - 0 indicates the head is **masked**.
642
+
643
+ decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
644
+ Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
645
+
646
+ - 1 indicates the head is **not masked**,
647
+ - 0 indicates the head is **masked**.
648
+
649
+ cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
650
+ Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
651
+
652
+ - 1 indicates the head is **not masked**,
653
+ - 0 indicates the head is **masked**.
654
+
655
+ encoder_outputs (`tf.FloatTensor`, *optional*):
656
+ hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
657
+ of shape `(batch_size, sequence_length, hidden_size)` is a sequence of
658
+ past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
659
+ contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
660
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
661
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
662
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
663
+ use_cache (`bool`, *optional*, defaults to `True`):
664
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
665
+ `past_key_values`). Set to `False` during training, `True` during generation
666
+ output_attentions (`bool`, *optional*):
667
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
668
+ tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
669
+ config will be used instead.
670
+ output_hidden_states (`bool`, *optional*):
671
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
672
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
673
+ used instead.
674
+ return_dict (`bool`, *optional*):
675
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
676
+ eager mode, in graph mode the value will always be set to True.
677
+ training (`bool`, *optional*, defaults to `False`):
678
+ Whether or not to use the model in training mode (some modules like dropout modules have different
679
+ behaviors between training and evaluation).
680
+ """
681
+
682
+
683
+ @keras_serializable
684
+ class TFBlenderbotSmallEncoder(tf.keras.layers.Layer):
685
+ config_class = BlenderbotSmallConfig
686
+ """
687
+ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
688
+ [`TFBlenderbotSmallEncoderLayer`].
689
+
690
+ Args:
691
+ config: BlenderbotSmallConfig
692
+ """
693
+
694
+ def __init__(
695
+ self, config: BlenderbotSmallConfig, embed_tokens: Optional[tf.keras.layers.Embedding] = None, **kwargs
696
+ ):
697
+ super().__init__(**kwargs)
698
+ self.config = config
699
+ self.dropout = tf.keras.layers.Dropout(config.dropout)
700
+ self.layerdrop = config.encoder_layerdrop
701
+ self.padding_idx = config.pad_token_id
702
+ self.max_source_positions = config.max_position_embeddings
703
+ self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
704
+
705
+ self.embed_tokens = embed_tokens
706
+ self.embed_positions = TFBlenderbotSmallLearnedPositionalEmbedding(
707
+ config.max_position_embeddings,
708
+ config.d_model,
709
+ name="embed_positions",
710
+ )
711
+ self.layers = [TFBlenderbotSmallEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)]
712
+ self.layernorm_embedding = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding")
713
+ self.embed_dim = config.d_model
714
+
715
+ def get_embed_tokens(self):
716
+ return self.embed_tokens
717
+
718
+ def set_embed_tokens(self, embed_tokens):
719
+ self.embed_tokens = embed_tokens
720
+
721
+ @unpack_inputs
722
+ def call(
723
+ self,
724
+ input_ids=None,
725
+ inputs_embeds=None,
726
+ attention_mask=None,
727
+ head_mask=None,
728
+ output_attentions=None,
729
+ output_hidden_states=None,
730
+ return_dict=None,
731
+ training=False,
732
+ ):
733
+ """
734
+ Args:
735
+ input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
736
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
737
+ provide it.
738
+
739
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
740
+ [`PreTrainedTokenizer.__call__`] for details.
741
+
742
+ [What are input IDs?](../glossary#input-ids)
743
+ attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
744
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
745
+
746
+ - 1 for tokens that are **not masked**,
747
+ - 0 for tokens that are **masked**.
748
+
749
+ [What are attention masks?](../glossary#attention-mask)
750
+ head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional):
751
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
752
+
753
+ - 1 indicates the head is **not masked**,
754
+ - 0 indicates the head is **masked**.
755
+
756
+ inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
757
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
758
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
759
+ than the model's internal embedding lookup matrix.
760
+ output_attentions (`bool`, *optional*):
761
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
762
+ returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value
763
+ in the config will be used instead.
764
+ output_hidden_states (`bool`, *optional*):
765
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
766
+ for more detail. This argument can be used only in eager mode, in graph mode the value in the config
767
+ will be used instead.
768
+ return_dict (`bool`, *optional*):
769
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used
770
+ in eager mode, in graph mode the value will always be set to True.
771
+ training (`bool`, *optional*, defaults to `False`):
772
+ Whether or not to use the model in training mode (some modules like dropout modules have different
773
+ behaviors between training and evaluation).
774
+ """
775
+ if input_ids is not None and inputs_embeds is not None:
776
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
777
+ elif input_ids is not None:
778
+ input_shape = shape_list(input_ids)
779
+ elif inputs_embeds is not None:
780
+ input_shape = shape_list(inputs_embeds)[:-1]
781
+ else:
782
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
783
+
784
+ if inputs_embeds is None:
785
+ check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
786
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
787
+
788
+ embed_pos = self.embed_positions(input_shape)
789
+ hidden_states = inputs_embeds + embed_pos
790
+ hidden_states = self.layernorm_embedding(hidden_states)
791
+ hidden_states = self.dropout(hidden_states, training=training)
792
+
793
+ # check attention mask and invert
794
+ if attention_mask is not None:
795
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
796
+ attention_mask = _expand_mask(attention_mask)
797
+ else:
798
+ attention_mask = None
799
+
800
+ encoder_states = () if output_hidden_states else None
801
+ all_attentions = () if output_attentions else None
802
+
803
+ # check if head_mask has a correct number of layers specified if desired
804
+ if head_mask is not None:
805
+ tf.debugging.assert_equal(
806
+ shape_list(head_mask)[0],
807
+ len(self.layers),
808
+ message=(
809
+ f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
810
+ f" {shape_list(head_mask)[0]}."
811
+ ),
812
+ )
813
+
814
+ # encoder layers
815
+ for idx, encoder_layer in enumerate(self.layers):
816
+ if output_hidden_states:
817
+ encoder_states = encoder_states + (hidden_states,)
818
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
819
+ dropout_probability = random.uniform(0, 1)
820
+ if training and (dropout_probability < self.layerdrop): # skip the layer
821
+ continue
822
+
823
+ hidden_states, attn = encoder_layer(
824
+ hidden_states,
825
+ attention_mask,
826
+ head_mask[idx] if head_mask is not None else None,
827
+ )
828
+
829
+ if output_attentions:
830
+ all_attentions += (attn,)
831
+
832
+ if output_hidden_states:
833
+ encoder_states = encoder_states + (hidden_states,)
834
+
835
+ if not return_dict:
836
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
837
+ return TFBaseModelOutput(
838
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
839
+ )
840
+
841
+ def build(self, input_shape=None):
842
+ if self.built:
843
+ return
844
+ self.built = True
845
+ if getattr(self, "embed_positions", None) is not None:
846
+ with tf.name_scope(self.embed_positions.name):
847
+ self.embed_positions.build(None)
848
+ if getattr(self, "layernorm_embedding", None) is not None:
849
+ with tf.name_scope(self.layernorm_embedding.name):
850
+ self.layernorm_embedding.build([None, None, self.embed_dim])
851
+ if getattr(self, "layers", None) is not None:
852
+ for layer in self.layers:
853
+ with tf.name_scope(layer.name):
854
+ layer.build(None)
855
+
856
+
857
+ @keras_serializable
858
+ class TFBlenderbotSmallDecoder(tf.keras.layers.Layer):
859
+ config_class = BlenderbotSmallConfig
860
+ """
861
+ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFBlenderbotSmallDecoderLayer`]
862
+
863
+ Args:
864
+ config: BlenderbotSmallConfig
865
+ embed_tokens: output embedding
866
+ """
867
+
868
+ def __init__(
869
+ self, config: BlenderbotSmallConfig, embed_tokens: Optional[tf.keras.layers.Embedding] = None, **kwargs
870
+ ):
871
+ super().__init__(**kwargs)
872
+ self.config = config
873
+ self.padding_idx = config.pad_token_id
874
+ self.embed_tokens = embed_tokens
875
+ self.layerdrop = config.decoder_layerdrop
876
+ self.embed_positions = TFBlenderbotSmallLearnedPositionalEmbedding(
877
+ config.max_position_embeddings,
878
+ config.d_model,
879
+ name="embed_positions",
880
+ )
881
+ self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
882
+ self.layers = [TFBlenderbotSmallDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)]
883
+ self.layernorm_embedding = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding")
884
+
885
+ self.dropout = tf.keras.layers.Dropout(config.dropout)
886
+
887
+ def get_embed_tokens(self):
888
+ return self.embed_tokens
889
+
890
+ def set_embed_tokens(self, embed_tokens):
891
+ self.embed_tokens = embed_tokens
892
+
893
+ @unpack_inputs
894
+ def call(
895
+ self,
896
+ input_ids=None,
897
+ inputs_embeds=None,
898
+ attention_mask=None,
899
+ position_ids=None,
900
+ encoder_hidden_states=None,
901
+ encoder_attention_mask=None,
902
+ head_mask=None,
903
+ cross_attn_head_mask=None,
904
+ past_key_values=None,
905
+ use_cache=None,
906
+ output_attentions=None,
907
+ output_hidden_states=None,
908
+ return_dict=None,
909
+ training=False,
910
+ ):
911
+ r"""
912
+ Args:
913
+ input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
914
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
915
+ provide it.
916
+
917
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
918
+ [`PreTrainedTokenizer.__call__`] for details.
919
+
920
+ [What are input IDs?](../glossary#input-ids)
921
+ attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
922
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
923
+
924
+ - 1 for tokens that are **not masked**,
925
+ - 0 for tokens that are **masked**.
926
+
927
+ [What are attention masks?](../glossary#attention-mask)
928
+ position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
929
+ Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
930
+ range `[0, config.max_position_embeddings - 1]`.
931
+ encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
932
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
933
+ of the decoder.
934
+ encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
935
+ Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
936
+ selected in `[0, 1]`:
937
+
938
+ - 1 for tokens that are **not masked**,
939
+ - 0 for tokens that are **masked**.
940
+
941
+ [What are attention masks?](../glossary#attention-mask)
942
+ head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
943
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
944
+
945
+ - 1 indicates the head is **not masked**,
946
+ - 0 indicates the head is **masked**.
947
+
948
+ cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
949
+ Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
950
+
951
+ - 1 indicates the head is **not masked**,
952
+ - 0 indicates the head is **masked**.
953
+
954
+ past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
955
+ Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
956
+ decoding.
957
+
958
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
959
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
960
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
961
+ inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
962
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
963
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
964
+ than the model's internal embedding lookup matrix.
965
+ output_attentions (`bool`, *optional*):
966
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
967
+ returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value
968
+ in the config will be used instead.
969
+ output_hidden_states (`bool`, *optional*):
970
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
971
+ for more detail. This argument can be used only in eager mode, in graph mode the value in the config
972
+ will be used instead.
973
+ return_dict (`bool`, *optional*):
974
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used
975
+ in eager mode, in graph mode the value will always be set to True.
976
+ training (`bool`, *optional*, defaults to `False`):
977
+ Whether or not to use the model in training mode (some modules like dropout modules have different
978
+ behaviors between training and evaluation).
979
+ """
980
+ if input_ids is not None and inputs_embeds is not None:
981
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
982
+ elif input_ids is not None:
983
+ input_shape = shape_list(input_ids)
984
+ elif inputs_embeds is not None:
985
+ input_shape = shape_list(inputs_embeds)[:-1]
986
+ else:
987
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
988
+
989
+ past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0
990
+
991
+ if inputs_embeds is None:
992
+ check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
993
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
994
+
995
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
996
+ if input_shape[-1] > 1:
997
+ combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length)
998
+ else:
999
+ combined_attention_mask = _expand_mask(
1000
+ tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1]
1001
+ )
1002
+
1003
+ if attention_mask is not None:
1004
+ combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1])
1005
+
1006
+ if encoder_hidden_states is not None and encoder_attention_mask is not None:
1007
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
1008
+ encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1])
1009
+
1010
+ # embed positions
1011
+ if position_ids is None:
1012
+ positions = self.embed_positions(input_shape, past_key_values_length)
1013
+ else:
1014
+ positions = self.embed_positions(input_shape, position_ids=position_ids)
1015
+
1016
+ hidden_states = self.layernorm_embedding(inputs_embeds) + positions
1017
+ hidden_states = self.dropout(hidden_states, training=training)
1018
+
1019
+ # decoder layers
1020
+ all_hidden_states = () if output_hidden_states else None
1021
+ all_self_attns = () if output_attentions else None
1022
+ all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None
1023
+ present_key_values = () if use_cache else None
1024
+
1025
+ # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
1026
+ for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
1027
+ if attn_mask is not None:
1028
+ tf.debugging.assert_equal(
1029
+ shape_list(attn_mask)[0],
1030
+ len(self.layers),
1031
+ message=(
1032
+ f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for"
1033
+ f" {shape_list(attn_mask)[0]}."
1034
+ ),
1035
+ )
1036
+
1037
+ for idx, decoder_layer in enumerate(self.layers):
1038
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
1039
+ if output_hidden_states:
1040
+ all_hidden_states += (hidden_states,)
1041
+ dropout_probability = random.uniform(0, 1)
1042
+
1043
+ if training and (dropout_probability < self.layerdrop):
1044
+ continue
1045
+
1046
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
1047
+
1048
+ hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer(
1049
+ hidden_states,
1050
+ attention_mask=combined_attention_mask,
1051
+ encoder_hidden_states=encoder_hidden_states,
1052
+ encoder_attention_mask=encoder_attention_mask,
1053
+ layer_head_mask=head_mask[idx] if head_mask is not None else None,
1054
+ cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
1055
+ past_key_value=past_key_value,
1056
+ )
1057
+
1058
+ if use_cache:
1059
+ present_key_values += (present_key_value,)
1060
+
1061
+ if output_attentions:
1062
+ all_self_attns += (layer_self_attn,)
1063
+
1064
+ if encoder_hidden_states is not None:
1065
+ all_cross_attns += (layer_cross_attn,)
1066
+
1067
+ if output_hidden_states:
1068
+ all_hidden_states += (hidden_states,)
1069
+
1070
+ if not return_dict:
1071
+ return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns
1072
+ else:
1073
+ return TFBaseModelOutputWithPastAndCrossAttentions(
1074
+ last_hidden_state=hidden_states,
1075
+ past_key_values=present_key_values,
1076
+ hidden_states=all_hidden_states,
1077
+ attentions=all_self_attns,
1078
+ cross_attentions=all_cross_attns,
1079
+ )
1080
+
1081
+ def build(self, input_shape=None):
1082
+ if self.built:
1083
+ return
1084
+ self.built = True
1085
+ if getattr(self, "embed_positions", None) is not None:
1086
+ with tf.name_scope(self.embed_positions.name):
1087
+ self.embed_positions.build(None)
1088
+ if getattr(self, "layernorm_embedding", None) is not None:
1089
+ with tf.name_scope(self.layernorm_embedding.name):
1090
+ self.layernorm_embedding.build([None, None, self.config.d_model])
1091
+ if getattr(self, "layers", None) is not None:
1092
+ for layer in self.layers:
1093
+ with tf.name_scope(layer.name):
1094
+ layer.build(None)
1095
+
1096
+
1097
+ @keras_serializable
1098
+ class TFBlenderbotSmallMainLayer(tf.keras.layers.Layer):
1099
+ config_class = BlenderbotSmallConfig
1100
+
1101
+ def __init__(self, config: BlenderbotSmallConfig, **kwargs):
1102
+ super().__init__(**kwargs)
1103
+
1104
+ self.config = config
1105
+ self.shared = tf.keras.layers.Embedding(
1106
+ input_dim=config.vocab_size,
1107
+ output_dim=config.d_model,
1108
+ embeddings_initializer=tf.keras.initializers.TruncatedNormal(stddev=self.config.init_std),
1109
+ name="model.shared",
1110
+ )
1111
+ # Additional attribute to specify the expected name scope of the layer (for loading/storing weights)
1112
+ self.shared.load_weight_prefix = "model.shared"
1113
+
1114
+ self.encoder = TFBlenderbotSmallEncoder(config, self.shared, name="encoder")
1115
+ self.decoder = TFBlenderbotSmallDecoder(config, self.shared, name="decoder")
1116
+
1117
+ def get_input_embeddings(self):
1118
+ return self.shared
1119
+
1120
+ def set_input_embeddings(self, new_embeddings):
1121
+ self.shared = new_embeddings
1122
+ self.encoder.embed_tokens = self.shared
1123
+ self.decoder.embed_tokens = self.shared
1124
+
1125
+ @unpack_inputs
1126
+ def call(
1127
+ self,
1128
+ input_ids=None,
1129
+ attention_mask=None,
1130
+ decoder_input_ids=None,
1131
+ decoder_attention_mask=None,
1132
+ decoder_position_ids=None,
1133
+ head_mask=None,
1134
+ decoder_head_mask=None,
1135
+ cross_attn_head_mask=None,
1136
+ encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
1137
+ past_key_values=None,
1138
+ inputs_embeds=None,
1139
+ decoder_inputs_embeds=None,
1140
+ use_cache=None,
1141
+ output_attentions=None,
1142
+ output_hidden_states=None,
1143
+ return_dict=None,
1144
+ training=False,
1145
+ **kwargs,
1146
+ ):
1147
+ output_hidden_states = (
1148
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1149
+ )
1150
+
1151
+ if encoder_outputs is None:
1152
+ encoder_outputs = self.encoder(
1153
+ input_ids=input_ids,
1154
+ attention_mask=attention_mask,
1155
+ head_mask=head_mask,
1156
+ inputs_embeds=inputs_embeds,
1157
+ output_attentions=output_attentions,
1158
+ output_hidden_states=output_hidden_states,
1159
+ return_dict=return_dict,
1160
+ training=training,
1161
+ )
1162
+ # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True
1163
+ elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput):
1164
+ encoder_outputs = TFBaseModelOutput(
1165
+ last_hidden_state=encoder_outputs[0],
1166
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
1167
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
1168
+ )
1169
+ # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False
1170
+ elif not return_dict and not isinstance(encoder_outputs, tuple):
1171
+ encoder_outputs = encoder_outputs.to_tuple()
1172
+
1173
+ decoder_outputs = self.decoder(
1174
+ decoder_input_ids,
1175
+ attention_mask=decoder_attention_mask,
1176
+ position_ids=decoder_position_ids,
1177
+ encoder_hidden_states=encoder_outputs[0],
1178
+ encoder_attention_mask=attention_mask,
1179
+ head_mask=decoder_head_mask,
1180
+ cross_attn_head_mask=cross_attn_head_mask,
1181
+ past_key_values=past_key_values,
1182
+ inputs_embeds=decoder_inputs_embeds,
1183
+ use_cache=use_cache,
1184
+ output_attentions=output_attentions,
1185
+ output_hidden_states=output_hidden_states,
1186
+ return_dict=return_dict,
1187
+ training=training,
1188
+ )
1189
+
1190
+ if not return_dict:
1191
+ return decoder_outputs + encoder_outputs
1192
+
1193
+ return TFSeq2SeqModelOutput(
1194
+ last_hidden_state=decoder_outputs.last_hidden_state,
1195
+ past_key_values=decoder_outputs.past_key_values,
1196
+ decoder_hidden_states=decoder_outputs.hidden_states,
1197
+ decoder_attentions=decoder_outputs.attentions,
1198
+ cross_attentions=decoder_outputs.cross_attentions,
1199
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
1200
+ encoder_hidden_states=encoder_outputs.hidden_states,
1201
+ encoder_attentions=encoder_outputs.attentions,
1202
+ )
1203
+
1204
+ def build(self, input_shape=None):
1205
+ if self.built:
1206
+ return
1207
+ self.built = True
1208
+ # The shared/tied weights expect to be in the model base namespace
1209
+ # Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than
1210
+ # the current one.
1211
+ with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"):
1212
+ self.shared.build(None)
1213
+ if getattr(self, "encoder", None) is not None:
1214
+ with tf.name_scope(self.encoder.name):
1215
+ self.encoder.build(None)
1216
+ if getattr(self, "decoder", None) is not None:
1217
+ with tf.name_scope(self.decoder.name):
1218
+ self.decoder.build(None)
1219
+
1220
+
1221
+ @add_start_docstrings(
1222
+ "The bare BLENDERBOT_SMALL Model outputting raw hidden-states without any specific head on top.",
1223
+ BLENDERBOT_SMALL_START_DOCSTRING,
1224
+ )
1225
+ class TFBlenderbotSmallModel(TFBlenderbotSmallPreTrainedModel):
1226
+ def __init__(self, config: BlenderbotSmallConfig, *inputs, **kwargs):
1227
+ super().__init__(config, *inputs, **kwargs)
1228
+
1229
+ self.model = TFBlenderbotSmallMainLayer(config, name="model")
1230
+
1231
+ def get_encoder(self):
1232
+ return self.model.encoder
1233
+
1234
+ def get_decoder(self):
1235
+ return self.model.decoder
1236
+
1237
+ @unpack_inputs
1238
+ @add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1239
+ @add_code_sample_docstrings(
1240
+ checkpoint=_CHECKPOINT_FOR_DOC,
1241
+ output_type=TFSeq2SeqModelOutput,
1242
+ config_class=_CONFIG_FOR_DOC,
1243
+ )
1244
+ def call(
1245
+ self,
1246
+ input_ids: tf.Tensor | None = None,
1247
+ attention_mask: tf.Tensor | None = None,
1248
+ decoder_input_ids: tf.Tensor | None = None,
1249
+ decoder_attention_mask: tf.Tensor | None = None,
1250
+ decoder_position_ids: tf.Tensor | None = None,
1251
+ head_mask: tf.Tensor | None = None,
1252
+ decoder_head_mask: tf.Tensor | None = None,
1253
+ cross_attn_head_mask: tf.Tensor | None = None,
1254
+ encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
1255
+ past_key_values: List[tf.Tensor] | None = None,
1256
+ inputs_embeds: tf.Tensor | None = None,
1257
+ decoder_inputs_embeds: tf.Tensor | None = None,
1258
+ use_cache: Optional[bool] = None,
1259
+ output_attentions: Optional[bool] = None,
1260
+ output_hidden_states: Optional[bool] = None,
1261
+ return_dict: Optional[bool] = None,
1262
+ training: Optional[bool] = False,
1263
+ **kwargs,
1264
+ ) -> Union[Tuple[tf.Tensor], TFSeq2SeqModelOutput]:
1265
+ outputs = self.model(
1266
+ input_ids=input_ids,
1267
+ attention_mask=attention_mask,
1268
+ decoder_input_ids=decoder_input_ids,
1269
+ decoder_attention_mask=decoder_attention_mask,
1270
+ decoder_position_ids=decoder_position_ids,
1271
+ head_mask=head_mask,
1272
+ decoder_head_mask=decoder_head_mask,
1273
+ cross_attn_head_mask=cross_attn_head_mask,
1274
+ encoder_outputs=encoder_outputs,
1275
+ past_key_values=past_key_values,
1276
+ inputs_embeds=inputs_embeds,
1277
+ decoder_inputs_embeds=decoder_inputs_embeds,
1278
+ use_cache=use_cache,
1279
+ output_attentions=output_attentions,
1280
+ output_hidden_states=output_hidden_states,
1281
+ return_dict=return_dict,
1282
+ training=training,
1283
+ )
1284
+
1285
+ return outputs
1286
+
1287
+ # Copied from transformers.models.bart.modeling_tf_bart.TFBartModel.serving_output
1288
+ def serving_output(self, output):
1289
+ pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
1290
+ dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
1291
+ dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
1292
+ cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
1293
+ enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
1294
+ enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
1295
+
1296
+ return TFSeq2SeqModelOutput(
1297
+ last_hidden_state=output.last_hidden_state,
1298
+ past_key_values=pkv,
1299
+ decoder_hidden_states=dec_hs,
1300
+ decoder_attentions=dec_attns,
1301
+ cross_attentions=cross_attns,
1302
+ encoder_last_hidden_state=output.encoder_last_hidden_state,
1303
+ encoder_hidden_states=enc_hs,
1304
+ encoder_attentions=enc_attns,
1305
+ )
1306
+
1307
+ def build(self, input_shape=None):
1308
+ if self.built:
1309
+ return
1310
+ self.built = True
1311
+ if getattr(self, "model", None) is not None:
1312
+ with tf.name_scope(self.model.name):
1313
+ self.model.build(None)
1314
+
1315
+
1316
+ # Copied from transformers.models.bart.modeling_tf_bart.BiasLayer
1317
+ class BiasLayer(tf.keras.layers.Layer):
1318
+ """
1319
+ Bias as a layer. It is used for serialization purposes: `tf.keras.Model.save_weights` stores on a per-layer basis,
1320
+ so all weights have to be registered in a layer.
1321
+ """
1322
+
1323
+ def __init__(self, shape, initializer, trainable, name, **kwargs):
1324
+ super().__init__(name=name, **kwargs)
1325
+ # Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of
1326
+ # "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see:
1327
+ # https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214
1328
+ self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable)
1329
+
1330
+ def call(self, x):
1331
+ return x + self.bias
1332
+
1333
+
1334
+ @add_start_docstrings(
1335
+ "The BLENDERBOT_SMALL Model with a language modeling head. Can be used for summarization.",
1336
+ BLENDERBOT_SMALL_START_DOCSTRING,
1337
+ )
1338
+ class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel, TFCausalLanguageModelingLoss):
1339
+ _keys_to_ignore_on_load_unexpected = [
1340
+ r"model.encoder.embed_tokens.weight",
1341
+ r"model.decoder.embed_tokens.weight",
1342
+ ]
1343
+
1344
+ def __init__(self, config, *inputs, **kwargs):
1345
+ super().__init__(config, *inputs, **kwargs)
1346
+ self.model = TFBlenderbotSmallMainLayer(config, name="model")
1347
+ self.use_cache = config.use_cache
1348
+ # final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency.
1349
+ self.bias_layer = BiasLayer(
1350
+ name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False
1351
+ )
1352
+
1353
+ def get_decoder(self):
1354
+ return self.model.decoder
1355
+
1356
+ def get_encoder(self):
1357
+ return self.model.encoder
1358
+
1359
+ def get_output_embeddings(self):
1360
+ return self.get_input_embeddings()
1361
+
1362
+ def set_output_embeddings(self, value):
1363
+ self.set_input_embeddings(value)
1364
+
1365
+ def get_bias(self):
1366
+ return {"final_logits_bias": self.bias_layer.bias}
1367
+
1368
+ def set_bias(self, value):
1369
+ # Replaces the existing layers containing bias for correct (de)serialization.
1370
+ vocab_size = value["final_logits_bias"].shape[-1]
1371
+ self.bias_layer = BiasLayer(
1372
+ name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False
1373
+ )
1374
+ self.bias_layer.bias.assign(value["final_logits_bias"])
1375
+
1376
+ @unpack_inputs
1377
+ @add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING)
1378
+ @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
1379
+ @add_end_docstrings(BLENDERBOT_SMALL_GENERATION_EXAMPLE)
1380
+ def call(
1381
+ self,
1382
+ input_ids: tf.Tensor | None = None,
1383
+ attention_mask: tf.Tensor | None = None,
1384
+ decoder_input_ids: tf.Tensor | None = None,
1385
+ decoder_attention_mask: tf.Tensor | None = None,
1386
+ decoder_position_ids: tf.Tensor | None = None,
1387
+ head_mask: tf.Tensor | None = None,
1388
+ decoder_head_mask: tf.Tensor | None = None,
1389
+ cross_attn_head_mask: tf.Tensor | None = None,
1390
+ encoder_outputs: Optional[TFBaseModelOutput] = None,
1391
+ past_key_values: List[tf.Tensor] | None = None,
1392
+ inputs_embeds: tf.Tensor | None = None,
1393
+ decoder_inputs_embeds: tf.Tensor | None = None,
1394
+ use_cache: Optional[bool] = None,
1395
+ output_attentions: Optional[bool] = None,
1396
+ output_hidden_states: Optional[bool] = None,
1397
+ return_dict: Optional[bool] = None,
1398
+ labels: tf.Tensor | None = None,
1399
+ training: Optional[bool] = False,
1400
+ ) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]:
1401
+ r"""
1402
+ labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):
1403
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1404
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1405
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1406
+
1407
+ Returns:
1408
+
1409
+ """
1410
+
1411
+ if labels is not None:
1412
+ labels = tf.where(
1413
+ labels == self.config.pad_token_id,
1414
+ tf.cast(tf.fill(shape_list(labels), -100), labels.dtype),
1415
+ labels,
1416
+ )
1417
+ use_cache = False
1418
+ if decoder_input_ids is None and decoder_inputs_embeds is None:
1419
+ decoder_input_ids = shift_tokens_right(
1420
+ labels, self.config.pad_token_id, self.config.decoder_start_token_id
1421
+ )
1422
+
1423
+ outputs = self.model(
1424
+ input_ids,
1425
+ attention_mask=attention_mask,
1426
+ decoder_input_ids=decoder_input_ids,
1427
+ decoder_attention_mask=decoder_attention_mask,
1428
+ decoder_position_ids=decoder_position_ids,
1429
+ head_mask=head_mask,
1430
+ decoder_head_mask=decoder_head_mask,
1431
+ cross_attn_head_mask=cross_attn_head_mask,
1432
+ encoder_outputs=encoder_outputs,
1433
+ past_key_values=past_key_values,
1434
+ inputs_embeds=inputs_embeds,
1435
+ decoder_inputs_embeds=decoder_inputs_embeds,
1436
+ use_cache=use_cache,
1437
+ output_attentions=output_attentions,
1438
+ output_hidden_states=output_hidden_states,
1439
+ return_dict=return_dict,
1440
+ training=training,
1441
+ )
1442
+ lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True)
1443
+ lm_logits = self.bias_layer(lm_logits)
1444
+ masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits)
1445
+
1446
+ if not return_dict:
1447
+ output = (lm_logits,) + outputs[1:]
1448
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
1449
+ return TFSeq2SeqLMOutput(
1450
+ loss=masked_lm_loss,
1451
+ logits=lm_logits,
1452
+ past_key_values=outputs.past_key_values, # index 1 of d outputs
1453
+ decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs
1454
+ decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs
1455
+ cross_attentions=outputs.cross_attentions, # index 4 of d outputs
1456
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs
1457
+ encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out
1458
+ encoder_attentions=outputs.encoder_attentions, # 2 of e out
1459
+ )
1460
+
1461
+ # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.serving_output
1462
+ def serving_output(self, output):
1463
+ pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
1464
+ dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
1465
+ dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
1466
+ cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
1467
+ enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
1468
+ enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
1469
+
1470
+ return TFSeq2SeqLMOutput(
1471
+ logits=output.logits,
1472
+ past_key_values=pkv,
1473
+ decoder_hidden_states=dec_hs,
1474
+ decoder_attentions=dec_attns,
1475
+ cross_attentions=cross_attns,
1476
+ encoder_last_hidden_state=output.encoder_last_hidden_state,
1477
+ encoder_hidden_states=enc_hs,
1478
+ encoder_attentions=enc_attns,
1479
+ )
1480
+
1481
+ # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.prepare_inputs_for_generation
1482
+ def prepare_inputs_for_generation(
1483
+ self,
1484
+ decoder_input_ids,
1485
+ past_key_values=None,
1486
+ attention_mask=None,
1487
+ decoder_attention_mask=None,
1488
+ head_mask=None,
1489
+ decoder_head_mask=None,
1490
+ cross_attn_head_mask=None,
1491
+ use_cache=None,
1492
+ encoder_outputs=None,
1493
+ **kwargs,
1494
+ ):
1495
+ # cut decoder_input_ids if past_key_values is used
1496
+ if past_key_values is not None:
1497
+ decoder_input_ids = decoder_input_ids[:, -1:]
1498
+
1499
+ if decoder_attention_mask is not None: # xla
1500
+ decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:]
1501
+ elif past_key_values is not None: # no xla + past_key_values
1502
+ decoder_position_ids = past_key_values[0][0].shape[2]
1503
+ else: # no xla + no past_key_values
1504
+ decoder_position_ids = tf.range(decoder_input_ids.shape[1])
1505
+
1506
+ return {
1507
+ "input_ids": None, # encoder_outputs is defined. input_ids not needed
1508
+ "encoder_outputs": encoder_outputs,
1509
+ "past_key_values": past_key_values,
1510
+ "decoder_input_ids": decoder_input_ids,
1511
+ "attention_mask": attention_mask,
1512
+ "decoder_attention_mask": decoder_attention_mask,
1513
+ "decoder_position_ids": decoder_position_ids,
1514
+ "head_mask": head_mask,
1515
+ "decoder_head_mask": decoder_head_mask,
1516
+ "cross_attn_head_mask": cross_attn_head_mask,
1517
+ "use_cache": use_cache, # change this to avoid caching (presumably for debugging)
1518
+ }
1519
+
1520
+ def build(self, input_shape=None):
1521
+ if self.built:
1522
+ return
1523
+ self.built = True
1524
+ if getattr(self, "model", None) is not None:
1525
+ with tf.name_scope(self.model.name):
1526
+ self.model.build(None)
1527
+ if getattr(self, "bias_layer", None) is not None:
1528
+ with tf.name_scope(self.bias_layer.name):
1529
+ self.bias_layer.build(None)
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/tokenization_blenderbot_small.py ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The Facebook Inc. and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Tokenization class for BlenderbotSmall."""
16
+
17
+ import json
18
+ import os
19
+ from typing import Dict, List, Optional, Tuple
20
+
21
+ import regex as re
22
+
23
+ from ...tokenization_utils import PreTrainedTokenizer
24
+ from ...utils import logging
25
+
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+
30
+ VOCAB_FILES_NAMES = {
31
+ "vocab_file": "vocab.json",
32
+ "merges_file": "merges.txt",
33
+ "tokenizer_config_file": "tokenizer_config.json",
34
+ }
35
+
36
+ PRETRAINED_VOCAB_FILES_MAP = {
37
+ "vocab_file": {
38
+ "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"
39
+ },
40
+ "merges_file": {
41
+ "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"
42
+ },
43
+ "tokenizer_config_file": {
44
+ "facebook/blenderbot_small-90M": (
45
+ "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"
46
+ )
47
+ },
48
+ }
49
+
50
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"facebook/blenderbot_small-90M": 512}
51
+
52
+
53
+ def get_pairs(word):
54
+ """
55
+ Return set of symbol pairs in a word.
56
+
57
+ Word is represented as tuple of symbols (symbols being variable-length strings).
58
+ """
59
+ pairs = set()
60
+ prev_char = word[0]
61
+ for char in word[1:]:
62
+ pairs.add((prev_char, char))
63
+ prev_char = char
64
+
65
+ pairs = set(pairs)
66
+ return pairs
67
+
68
+
69
+ class BlenderbotSmallTokenizer(PreTrainedTokenizer):
70
+ """
71
+ Constructs a Blenderbot-90M tokenizer based on BPE (Byte-Pair-Encoding)
72
+
73
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
74
+ the superclass for more information regarding methods.
75
+
76
+ Args:
77
+ vocab_file (`str`):
78
+ File containing the vocabulary.
79
+ merges_file (`str`):
80
+ Path to the merges file.
81
+ bos_token (`str`, *optional*, defaults to `"__start__"`):
82
+ The beginning of sentence token.
83
+ eos_token (`str`, *optional*, defaults to `"__end__"`):
84
+ The end of sentence token.
85
+ unk_token (`str`, *optional*, defaults to `"__unk__"`):
86
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
87
+ token instead.
88
+ pad_token (`str`, *optional*, defaults to `"__null__"`):
89
+ The token used for padding, for example when batching sequences of different lengths.
90
+ kwargs (*optional*):
91
+ Additional keyword arguments passed along to [`PreTrainedTokenizer`]
92
+ """
93
+
94
+ vocab_files_names = VOCAB_FILES_NAMES
95
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
96
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
97
+ model_input_names = ["input_ids", "attention_mask"]
98
+
99
+ def __init__(
100
+ self,
101
+ vocab_file,
102
+ merges_file,
103
+ bos_token="__start__",
104
+ eos_token="__end__",
105
+ unk_token="__unk__",
106
+ pad_token="__null__",
107
+ **kwargs,
108
+ ):
109
+ with open(vocab_file, encoding="utf-8") as vocab_handle:
110
+ self.encoder = json.load(vocab_handle)
111
+ self.decoder = {v: k for k, v in self.encoder.items()}
112
+ with open(merges_file, encoding="utf-8") as merges_handle:
113
+ merges = merges_handle.read().split("\n")[1:-1]
114
+ merges = [tuple(merge.split()) for merge in merges]
115
+ self.bpe_ranks = dict(zip(merges, range(len(merges))))
116
+ self.cache = {}
117
+ super().__init__(unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, **kwargs)
118
+
119
+ @property
120
+ def vocab_size(self) -> int:
121
+ return len(self.encoder)
122
+
123
+ def get_vocab(self) -> Dict:
124
+ return dict(self.encoder, **self.added_tokens_encoder)
125
+
126
+ def bpe(self, token: str) -> str:
127
+ if token in self.cache:
128
+ return self.cache[token]
129
+ token = re.sub("([.,!?()])", r" \1", token)
130
+ token = re.sub("(')", r" \1 ", token)
131
+ token = re.sub(r"\s{2,}", " ", token)
132
+ if "\n" in token:
133
+ token = token.replace("\n", " __newln__")
134
+
135
+ tokens = token.split(" ")
136
+ words = []
137
+ for token in tokens:
138
+ if not len(token):
139
+ continue
140
+
141
+ token = token.lower()
142
+ word = tuple(token)
143
+ word = tuple(list(word[:-1]) + [word[-1] + "</w>"])
144
+ pairs = get_pairs(word)
145
+
146
+ if not pairs:
147
+ words.append(token)
148
+ continue
149
+
150
+ while True:
151
+ bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
152
+ if bigram not in self.bpe_ranks:
153
+ break
154
+ first, second = bigram
155
+ new_word = []
156
+ i = 0
157
+
158
+ while i < len(word):
159
+ try:
160
+ j = word.index(first, i)
161
+ new_word.extend(word[i:j])
162
+ i = j
163
+ except ValueError:
164
+ new_word.extend(word[i:])
165
+ break
166
+
167
+ if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
168
+ new_word.append(first + second)
169
+ i += 2
170
+ else:
171
+ new_word.append(word[i])
172
+ i += 1
173
+ new_word = tuple(new_word)
174
+ word = new_word
175
+ if len(word) == 1:
176
+ break
177
+ else:
178
+ pairs = get_pairs(word)
179
+ word = "@@ ".join(word)
180
+ word = word[:-4]
181
+
182
+ self.cache[token] = word
183
+ words.append(word)
184
+ return " ".join(words)
185
+
186
+ def _tokenize(self, text: str) -> List[str]:
187
+ """Split a string into tokens using BPE."""
188
+ split_tokens = []
189
+
190
+ words = re.findall(r"\S+\n?", text)
191
+
192
+ for token in words:
193
+ split_tokens.extend(list(self.bpe(token).split(" ")))
194
+ return split_tokens
195
+
196
+ def _convert_token_to_id(self, token: str) -> int:
197
+ """Converts a token to an id using the vocab."""
198
+ token = token.lower()
199
+ return self.encoder.get(token, self.encoder.get(self.unk_token))
200
+
201
+ def _convert_id_to_token(self, index: int) -> str:
202
+ """Converts an index (integer) in a token (str) using the vocab."""
203
+ return self.decoder.get(index, self.unk_token)
204
+
205
+ def convert_tokens_to_string(self, tokens: List[str]) -> str:
206
+ """Converts a sequence of tokens in a single string."""
207
+ out_string = " ".join(tokens).replace("@@ ", "").strip()
208
+ return out_string
209
+
210
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
211
+ if not os.path.isdir(save_directory):
212
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
213
+ return
214
+ vocab_file = os.path.join(
215
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
216
+ )
217
+ merge_file = os.path.join(
218
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
219
+ )
220
+
221
+ with open(vocab_file, "w", encoding="utf-8") as f:
222
+ f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
223
+
224
+ index = 0
225
+ with open(merge_file, "w", encoding="utf-8") as writer:
226
+ writer.write("#version: 0.2\n")
227
+ for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
228
+ if index != token_index:
229
+ logger.warning(
230
+ f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
231
+ " Please check that the tokenizer is not corrupted!"
232
+ )
233
+ index = token_index
234
+ writer.write(" ".join(bpe_tokens) + "\n")
235
+ index += 1
236
+
237
+ return vocab_file, merge_file
238
+
239
+ @property
240
+ # Copied from transformers.models.blenderbot.tokenization_blenderbot.BlenderbotTokenizer.default_chat_template
241
+ def default_chat_template(self):
242
+ """
243
+ A very simple chat template that just adds whitespace between messages.
244
+ """
245
+ logger.warning_once(
246
+ "\nNo chat template is defined for this tokenizer - using the default template "
247
+ f"for the {self.__class__.__name__} class. If the default is not appropriate for "
248
+ "your model, please set `tokenizer.chat_template` to an appropriate template. "
249
+ "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
250
+ )
251
+ return (
252
+ "{% for message in messages %}"
253
+ "{% if message['role'] == 'user' %}{{ ' ' }}{% endif %}"
254
+ "{{ message['content'] }}"
255
+ "{% if not loop.last %}{{ ' ' }}{% endif %}"
256
+ "{% endfor %}"
257
+ "{{ eos_token }}"
258
+ )
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/tokenization_blenderbot_small_fast.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021, The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Fast tokenization class for BlenderbotSmall."""
16
+ from typing import List, Optional
17
+
18
+ from tokenizers import ByteLevelBPETokenizer
19
+
20
+ from ...tokenization_utils_fast import PreTrainedTokenizerFast
21
+ from ...utils import logging
22
+ from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
23
+
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+ VOCAB_FILES_NAMES = {
28
+ "vocab_file": "vocab.json",
29
+ "merges_file": "merges.txt",
30
+ "tokenizer_config_file": "tokenizer_config.json",
31
+ }
32
+
33
+ PRETRAINED_VOCAB_FILES_MAP = {
34
+ "vocab_file": {
35
+ "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"
36
+ },
37
+ "merges_file": {
38
+ "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"
39
+ },
40
+ "tokenizer_config_file": {
41
+ "facebook/blenderbot_small-90M": (
42
+ "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"
43
+ )
44
+ },
45
+ }
46
+
47
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
48
+ "facebook/blenderbot_small-90M": 512,
49
+ }
50
+
51
+
52
+ class BlenderbotSmallTokenizerFast(PreTrainedTokenizerFast):
53
+ """
54
+ Construct a "fast" BlenderbotSmall tokenizer (backed by HuggingFace's *tokenizers* library).
55
+
56
+ Args:
57
+ vocab_file (`str`):
58
+ Path to the vocabulary file.
59
+ """
60
+
61
+ vocab_files_names = VOCAB_FILES_NAMES
62
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
63
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
64
+ slow_tokenizer_class = BlenderbotSmallTokenizer
65
+
66
+ def __init__(
67
+ self,
68
+ vocab_file=None,
69
+ merges_file=None,
70
+ unk_token="<|endoftext|>",
71
+ bos_token="<|endoftext|>",
72
+ eos_token="<|endoftext|>",
73
+ add_prefix_space=False,
74
+ trim_offsets=True,
75
+ **kwargs,
76
+ ):
77
+ super().__init__(
78
+ ByteLevelBPETokenizer(
79
+ vocab=vocab_file,
80
+ merges=merges_file,
81
+ add_prefix_space=add_prefix_space,
82
+ trim_offsets=trim_offsets,
83
+ ),
84
+ bos_token=bos_token,
85
+ eos_token=eos_token,
86
+ unk_token=unk_token,
87
+ **kwargs,
88
+ )
89
+ self.add_prefix_space = add_prefix_space
90
+
91
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
92
+ output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
93
+ if token_ids_1 is None:
94
+ return output
95
+
96
+ return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id]
97
+
98
+ def create_token_type_ids_from_sequences(
99
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
100
+ ) -> List[int]:
101
+ """
102
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. BlenderbotSmall
103
+ does not make use of token type ids, therefore a list of zeros is returned.
104
+
105
+ Args:
106
+ token_ids_0 (`List[int]`):
107
+ List of IDs.
108
+ token_ids_1 (`List[int]`, *optional*):
109
+ Optional second list of IDs for sequence pairs.
110
+
111
+ Returns:
112
+ `List[int]`: List of zeros.
113
+ """
114
+ sep = [self.sep_token_id]
115
+ cls = [self.cls_token_id]
116
+
117
+ if token_ids_1 is None:
118
+ return len(cls + token_ids_0 + sep) * [0]
119
+ return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
120
+
121
+ @property
122
+ # Copied from transformers.models.blenderbot.tokenization_blenderbot.BlenderbotTokenizer.default_chat_template
123
+ def default_chat_template(self):
124
+ """
125
+ A very simple chat template that just adds whitespace between messages.
126
+ """
127
+ logger.warning_once(
128
+ "\nNo chat template is defined for this tokenizer - using the default template "
129
+ f"for the {self.__class__.__name__} class. If the default is not appropriate for "
130
+ "your model, please set `tokenizer.chat_template` to an appropriate template. "
131
+ "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
132
+ )
133
+ return (
134
+ "{% for message in messages %}"
135
+ "{% if message['role'] == 'user' %}{{ ' ' }}{% endif %}"
136
+ "{{ message['content'] }}"
137
+ "{% if not loop.last %}{{ ' ' }}{% endif %}"
138
+ "{% endfor %}"
139
+ "{{ eos_token }}"
140
+ )
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (495 Bytes). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/tokenization_byt5.cpython-310.pyc ADDED
Binary file (9.22 kB). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/byt5/convert_byt5_original_tf_checkpoint_to_pytorch.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The T5 authors and HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Convert T5 checkpoint."""
16
+
17
+
18
+ import argparse
19
+
20
+ from transformers import T5Config, T5ForConditionalGeneration, load_tf_weights_in_t5
21
+ from transformers.utils import logging
22
+
23
+
24
+ logging.set_verbosity_info()
25
+
26
+
27
+ def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path):
28
+ # Initialise PyTorch model
29
+ config = T5Config.from_json_file(config_file)
30
+ print(f"Building PyTorch model from configuration: {config}")
31
+ model = T5ForConditionalGeneration(config)
32
+
33
+ # Load weights from tf checkpoint
34
+ load_tf_weights_in_t5(model, config, tf_checkpoint_path)
35
+
36
+ # Save pytorch-model
37
+ print(f"Save PyTorch model to {pytorch_dump_path}")
38
+ model.save_pretrained(pytorch_dump_path)
39
+
40
+
41
+ if __name__ == "__main__":
42
+ parser = argparse.ArgumentParser()
43
+ # Required parameters
44
+ parser.add_argument(
45
+ "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
46
+ )
47
+ parser.add_argument(
48
+ "--config_file",
49
+ default=None,
50
+ type=str,
51
+ required=True,
52
+ help=(
53
+ "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture."
54
+ ),
55
+ )
56
+ parser.add_argument(
57
+ "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
58
+ )
59
+ args = parser.parse_args()
60
+ convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__init__.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
17
+
18
+
19
+ _import_structure = {
20
+ "configuration_chinese_clip": [
21
+ "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
22
+ "ChineseCLIPConfig",
23
+ "ChineseCLIPOnnxConfig",
24
+ "ChineseCLIPTextConfig",
25
+ "ChineseCLIPVisionConfig",
26
+ ],
27
+ "processing_chinese_clip": ["ChineseCLIPProcessor"],
28
+ }
29
+
30
+ try:
31
+ if not is_vision_available():
32
+ raise OptionalDependencyNotAvailable()
33
+ except OptionalDependencyNotAvailable:
34
+ pass
35
+ else:
36
+ _import_structure["feature_extraction_chinese_clip"] = ["ChineseCLIPFeatureExtractor"]
37
+ _import_structure["image_processing_chinese_clip"] = ["ChineseCLIPImageProcessor"]
38
+
39
+ try:
40
+ if not is_torch_available():
41
+ raise OptionalDependencyNotAvailable()
42
+ except OptionalDependencyNotAvailable:
43
+ pass
44
+ else:
45
+ _import_structure["modeling_chinese_clip"] = [
46
+ "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
47
+ "ChineseCLIPModel",
48
+ "ChineseCLIPPreTrainedModel",
49
+ "ChineseCLIPTextModel",
50
+ "ChineseCLIPVisionModel",
51
+ ]
52
+
53
+ if TYPE_CHECKING:
54
+ from .configuration_chinese_clip import (
55
+ CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
56
+ ChineseCLIPConfig,
57
+ ChineseCLIPOnnxConfig,
58
+ ChineseCLIPTextConfig,
59
+ ChineseCLIPVisionConfig,
60
+ )
61
+ from .processing_chinese_clip import ChineseCLIPProcessor
62
+
63
+ try:
64
+ if not is_vision_available():
65
+ raise OptionalDependencyNotAvailable()
66
+ except OptionalDependencyNotAvailable:
67
+ pass
68
+ else:
69
+ from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor
70
+
71
+ try:
72
+ if not is_torch_available():
73
+ raise OptionalDependencyNotAvailable()
74
+ except OptionalDependencyNotAvailable:
75
+ pass
76
+ else:
77
+ from .modeling_chinese_clip import (
78
+ CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
79
+ ChineseCLIPModel,
80
+ ChineseCLIPPreTrainedModel,
81
+ ChineseCLIPTextModel,
82
+ ChineseCLIPVisionModel,
83
+ )
84
+
85
+ else:
86
+ import sys
87
+
88
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/configuration_chinese_clip.cpython-310.pyc ADDED
Binary file (17.9 kB). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/convert_chinese_clip_original_pytorch_to_hf.cpython-310.pyc ADDED
Binary file (4.04 kB). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/feature_extraction_chinese_clip.cpython-310.pyc ADDED
Binary file (1.06 kB). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/image_processing_chinese_clip.cpython-310.pyc ADDED
Binary file (13.1 kB). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/modeling_chinese_clip.cpython-310.pyc ADDED
Binary file (48.4 kB). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/processing_chinese_clip.cpython-310.pyc ADDED
Binary file (6.12 kB). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/configuration_chinese_clip.py ADDED
@@ -0,0 +1,472 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Chinese-CLIP model configuration"""
16
+
17
+ import os
18
+ from collections import OrderedDict
19
+ from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
20
+
21
+
22
+ if TYPE_CHECKING:
23
+ from ...processing_utils import ProcessorMixin
24
+ from ...utils import TensorType
25
+
26
+ from ...configuration_utils import PretrainedConfig
27
+ from ...onnx import OnnxConfig
28
+ from ...utils import logging
29
+
30
+
31
+ logger = logging.get_logger(__name__)
32
+
33
+ CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = {
34
+ "OFA-Sys/chinese-clip-vit-base-patch16": (
35
+ "https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16/resolve/main/config.json"
36
+ ),
37
+ }
38
+
39
+
40
+ class ChineseCLIPTextConfig(PretrainedConfig):
41
+ r"""
42
+ This is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used to instantiate a
43
+ Chinese CLIP model according to the specified arguments, defining the model architecture. Instantiating a
44
+ configuration with the defaults will yield a similar configuration to that of the Chinese CLIP
45
+ [OFA-Sys/chinese-clip-vit-base-patch16](https:
46
+ //huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) architecture.
47
+
48
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
49
+ documentation from [`PretrainedConfig`] for more information.
50
+
51
+
52
+ Args:
53
+ vocab_size (`int`, *optional*, defaults to 30522):
54
+ Vocabulary size of the CHINESE_CLIP model. Defines the number of different tokens that can be represented
55
+ by the `inputs_ids` passed when calling [`ChineseCLIPModel`].
56
+ hidden_size (`int`, *optional*, defaults to 768):
57
+ Dimensionality of the encoder layers and the pooler layer.
58
+ num_hidden_layers (`int`, *optional*, defaults to 12):
59
+ Number of hidden layers in the Transformer encoder.
60
+ num_attention_heads (`int`, *optional*, defaults to 12):
61
+ Number of attention heads for each attention layer in the Transformer encoder.
62
+ intermediate_size (`int`, *optional*, defaults to 3072):
63
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
64
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
65
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
66
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
67
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
68
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
69
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
70
+ The dropout ratio for the attention probabilities.
71
+ max_position_embeddings (`int`, *optional*, defaults to 512):
72
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
73
+ just in case (e.g., 512 or 1024 or 2048).
74
+ type_vocab_size (`int`, *optional*, defaults to 2):
75
+ The vocabulary size of the `token_type_ids` passed when calling [`ChineseCLIPModel`].
76
+ initializer_range (`float`, *optional*, defaults to 0.02):
77
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
78
+ initializer_factor (`float`, *optional*, defaults to 1.0):
79
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
80
+ testing).
81
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
82
+ The epsilon used by the layer normalization layers.
83
+ pad_token_id (`int`, *optional*, defaults to 0):
84
+ Padding token id.
85
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
86
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
87
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
88
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
89
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
90
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
91
+ use_cache (`bool`, *optional*, defaults to `True`):
92
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
93
+ relevant if `config.is_decoder=True`.
94
+
95
+ Example:
96
+
97
+ ```python
98
+ >>> from transformers import ChineseCLIPTextConfig, ChineseCLIPTextModel
99
+
100
+ >>> # Initializing a ChineseCLIPTextConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
101
+ >>> configuration = ChineseCLIPTextConfig()
102
+
103
+ >>> # Initializing a ChineseCLIPTextModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
104
+ >>> model = ChineseCLIPTextModel(configuration)
105
+
106
+ >>> # Accessing the model configuration
107
+ >>> configuration = model.config
108
+ ```"""
109
+
110
+ model_type = "chinese_clip_text_model"
111
+
112
+ def __init__(
113
+ self,
114
+ vocab_size=30522,
115
+ hidden_size=768,
116
+ num_hidden_layers=12,
117
+ num_attention_heads=12,
118
+ intermediate_size=3072,
119
+ hidden_act="gelu",
120
+ hidden_dropout_prob=0.1,
121
+ attention_probs_dropout_prob=0.1,
122
+ max_position_embeddings=512,
123
+ type_vocab_size=2,
124
+ initializer_range=0.02,
125
+ initializer_factor=1.0,
126
+ layer_norm_eps=1e-12,
127
+ pad_token_id=0,
128
+ position_embedding_type="absolute",
129
+ use_cache=True,
130
+ **kwargs,
131
+ ):
132
+ super().__init__(pad_token_id=pad_token_id, **kwargs)
133
+
134
+ self.vocab_size = vocab_size
135
+ self.hidden_size = hidden_size
136
+ self.num_hidden_layers = num_hidden_layers
137
+ self.num_attention_heads = num_attention_heads
138
+ self.hidden_act = hidden_act
139
+ self.intermediate_size = intermediate_size
140
+ self.hidden_dropout_prob = hidden_dropout_prob
141
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
142
+ self.max_position_embeddings = max_position_embeddings
143
+ self.type_vocab_size = type_vocab_size
144
+ self.initializer_range = initializer_range
145
+ self.initializer_factor = initializer_factor
146
+ self.layer_norm_eps = layer_norm_eps
147
+ self.position_embedding_type = position_embedding_type
148
+ self.use_cache = use_cache
149
+
150
+ @classmethod
151
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
152
+ cls._set_token_in_kwargs(kwargs)
153
+
154
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
155
+
156
+ # get the vision config dict if we are loading from ChineseCLIPConfig
157
+ if config_dict.get("model_type") == "chinese_clip":
158
+ config_dict = config_dict["text_config"]
159
+
160
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
161
+ logger.warning(
162
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
163
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
164
+ )
165
+
166
+ return cls.from_dict(config_dict, **kwargs)
167
+
168
+
169
+ class ChineseCLIPVisionConfig(PretrainedConfig):
170
+ r"""
171
+ This is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used to instantiate an
172
+ ChineseCLIP model according to the specified arguments, defining the model architecture. Instantiating a
173
+ configuration with the defaults will yield a similar configuration to that of the ChineseCLIP
174
+ [OFA-Sys/chinese-clip-vit-base-patch16](https:
175
+ //huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) architecture.
176
+
177
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
178
+ documentation from [`PretrainedConfig`] for more information.
179
+
180
+
181
+ Args:
182
+ hidden_size (`int`, *optional*, defaults to 768):
183
+ Dimensionality of the encoder layers and the pooler layer.
184
+ intermediate_size (`int`, *optional*, defaults to 3072):
185
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
186
+ projection_dim (`int`, *optional*, defaults to 512):
187
+ Dimentionality of text and vision projection layers.
188
+ num_hidden_layers (`int`, *optional*, defaults to 12):
189
+ Number of hidden layers in the Transformer encoder.
190
+ num_attention_heads (`int`, *optional*, defaults to 12):
191
+ Number of attention heads for each attention layer in the Transformer encoder.
192
+ num_channels (`int`, *optional*, defaults to 3):
193
+ The number of input channels.
194
+ image_size (`int`, *optional*, defaults to 224):
195
+ The size (resolution) of each image.
196
+ patch_size (`int`, *optional*, defaults to 32):
197
+ The size (resolution) of each patch.
198
+ hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
199
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
200
+ `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
201
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
202
+ The epsilon used by the layer normalization layers.
203
+ attention_dropout (`float`, *optional*, defaults to 0.0):
204
+ The dropout ratio for the attention probabilities.
205
+ initializer_range (`float`, *optional*, defaults to 0.02):
206
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
207
+ initializer_factor (`float`, *optional*, defaults to 1.0):
208
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
209
+ testing).
210
+ Example:
211
+ ```python
212
+ >>> from transformers import ChineseCLIPVisionConfig, ChineseCLIPVisionModel
213
+
214
+ >>> # Initializing a ChineseCLIPVisionConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
215
+ >>> configuration = ChineseCLIPVisionConfig()
216
+
217
+ >>> # Initializing a ChineseCLIPVisionModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
218
+ >>> model = ChineseCLIPVisionModel(configuration)
219
+
220
+ >>> # Accessing the model configuration
221
+ >>> configuration = model.config
222
+ ```"""
223
+
224
+ model_type = "chinese_clip_vision_model"
225
+
226
+ def __init__(
227
+ self,
228
+ hidden_size=768,
229
+ intermediate_size=3072,
230
+ projection_dim=512,
231
+ num_hidden_layers=12,
232
+ num_attention_heads=12,
233
+ num_channels=3,
234
+ image_size=224,
235
+ patch_size=32,
236
+ hidden_act="quick_gelu",
237
+ layer_norm_eps=1e-5,
238
+ attention_dropout=0.0,
239
+ initializer_range=0.02,
240
+ initializer_factor=1.0,
241
+ **kwargs,
242
+ ):
243
+ super().__init__(**kwargs)
244
+
245
+ self.hidden_size = hidden_size
246
+ self.intermediate_size = intermediate_size
247
+ self.projection_dim = projection_dim
248
+ self.num_hidden_layers = num_hidden_layers
249
+ self.num_attention_heads = num_attention_heads
250
+ self.num_channels = num_channels
251
+ self.patch_size = patch_size
252
+ self.image_size = image_size
253
+ self.initializer_range = initializer_range
254
+ self.initializer_factor = initializer_factor
255
+ self.attention_dropout = attention_dropout
256
+ self.layer_norm_eps = layer_norm_eps
257
+ self.hidden_act = hidden_act
258
+
259
+ @classmethod
260
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
261
+ cls._set_token_in_kwargs(kwargs)
262
+
263
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
264
+
265
+ # get the vision config dict if we are loading from ChineseCLIPConfig
266
+ if config_dict.get("model_type") == "chinese_clip":
267
+ config_dict = config_dict["vision_config"]
268
+
269
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
270
+ logger.warning(
271
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
272
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
273
+ )
274
+
275
+ return cls.from_dict(config_dict, **kwargs)
276
+
277
+
278
+ class ChineseCLIPConfig(PretrainedConfig):
279
+ r"""
280
+ [`ChineseCLIPConfig`] is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used
281
+ to instantiate Chinese-CLIP model according to the specified arguments, defining the text model and vision model
282
+ configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the
283
+ Chinese-CLIP [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16)
284
+ architecture.
285
+
286
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
287
+ documentation from [`PretrainedConfig`] for more information.
288
+
289
+ Args:
290
+ text_config (`dict`, *optional*):
291
+ Dictionary of configuration options used to initialize [`ChineseCLIPTextConfig`].
292
+ vision_config (`dict`, *optional*):
293
+ Dictionary of configuration options used to initialize [`ChineseCLIPVisionConfig`].
294
+ projection_dim (`int`, *optional*, defaults to 512):
295
+ Dimentionality of text and vision projection layers.
296
+ logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
297
+ The inital value of the *logit_scale* paramter. Default is used as per the original ChineseCLIP
298
+ implementation.
299
+ kwargs (*optional*):
300
+ Dictionary of keyword arguments.
301
+
302
+ Example:
303
+
304
+ ```python
305
+ >>> from transformers import ChineseCLIPConfig, ChineseCLIPModel
306
+
307
+ >>> # Initializing a ChineseCLIPConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
308
+ >>> configuration = ChineseCLIPConfig()
309
+
310
+ >>> # Initializing a ChineseCLIPModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
311
+ >>> model = ChineseCLIPModel(configuration)
312
+
313
+ >>> # Accessing the model configuration
314
+ >>> configuration = model.config
315
+
316
+ >>> # We can also initialize a ChineseCLIPConfig from a ChineseCLIPTextConfig and a ChineseCLIPVisionConfig
317
+
318
+ >>> # Initializing a ChineseCLIPTextConfig and ChineseCLIPVisionConfig configuration
319
+ >>> config_text = ChineseCLIPTextConfig()
320
+ >>> config_vision = ChineseCLIPVisionConfig()
321
+
322
+ >>> config = ChineseCLIPConfig.from_text_vision_configs(config_text, config_vision)
323
+ ```"""
324
+
325
+ model_type = "chinese_clip"
326
+
327
+ def __init__(
328
+ self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs
329
+ ):
330
+ # If `_config_dict` exist, we use them for the backward compatibility.
331
+ # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
332
+ # of confusion!).
333
+ text_config_dict = kwargs.pop("text_config_dict", None)
334
+ vision_config_dict = kwargs.pop("vision_config_dict", None)
335
+
336
+ super().__init__(**kwargs)
337
+
338
+ # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
339
+ # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
340
+ # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
341
+ if text_config_dict is not None:
342
+ if text_config is None:
343
+ text_config = {}
344
+
345
+ # This is the complete result when using `text_config_dict`.
346
+ _text_config_dict = ChineseCLIPTextConfig(**text_config_dict).to_dict()
347
+
348
+ # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
349
+ for key, value in _text_config_dict.items():
350
+ if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
351
+ # If specified in `text_config_dict`
352
+ if key in text_config_dict:
353
+ message = (
354
+ f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
355
+ f'The value `text_config_dict["{key}"]` will be used instead.'
356
+ )
357
+ # If inferred from default argument values (just to be super careful)
358
+ else:
359
+ message = (
360
+ f"`text_config_dict` is provided which will be used to initialize `ChineseCLIPTextConfig`. "
361
+ f'The value `text_config["{key}"]` will be overriden.'
362
+ )
363
+ logger.info(message)
364
+
365
+ # Update all values in `text_config` with the ones in `_text_config_dict`.
366
+ text_config.update(_text_config_dict)
367
+
368
+ if vision_config_dict is not None:
369
+ if vision_config is None:
370
+ vision_config = {}
371
+
372
+ # This is the complete result when using `vision_config_dict`.
373
+ _vision_config_dict = ChineseCLIPVisionConfig(**vision_config_dict).to_dict()
374
+ # convert keys to string instead of integer
375
+ if "id2label" in _vision_config_dict:
376
+ _vision_config_dict["id2label"] = {
377
+ str(key): value for key, value in _vision_config_dict["id2label"].items()
378
+ }
379
+
380
+ # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
381
+ for key, value in _vision_config_dict.items():
382
+ if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
383
+ # If specified in `vision_config_dict`
384
+ if key in vision_config_dict:
385
+ message = (
386
+ f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
387
+ f'values. The value `vision_config_dict["{key}"]` will be used instead.'
388
+ )
389
+ # If inferred from default argument values (just to be super careful)
390
+ else:
391
+ message = (
392
+ f"`vision_config_dict` is provided which will be used to initialize "
393
+ f'`ChineseCLIPVisionConfig`. The value `vision_config["{key}"]` will be overriden.'
394
+ )
395
+ logger.info(message)
396
+
397
+ # Update all values in `vision_config` with the ones in `_vision_config_dict`.
398
+ vision_config.update(_vision_config_dict)
399
+
400
+ if text_config is None:
401
+ text_config = {}
402
+ logger.info("`text_config` is `None`. Initializing the `ChineseCLIPTextConfig` with default values.")
403
+
404
+ if vision_config is None:
405
+ vision_config = {}
406
+ logger.info("`vision_config` is `None`. initializing the `ChineseCLIPVisionConfig` with default values.")
407
+
408
+ self.text_config = ChineseCLIPTextConfig(**text_config)
409
+ self.vision_config = ChineseCLIPVisionConfig(**vision_config)
410
+
411
+ self.projection_dim = projection_dim
412
+ self.logit_scale_init_value = logit_scale_init_value
413
+ self.initializer_factor = 1.0
414
+ self.initializer_range = 0.02
415
+
416
+ @classmethod
417
+ def from_text_vision_configs(
418
+ cls, text_config: ChineseCLIPTextConfig, vision_config: ChineseCLIPVisionConfig, **kwargs
419
+ ):
420
+ r"""
421
+ Instantiate a [`ChineseCLIPConfig`] (or a derived class) from Chinese-CLIP text model configuration and
422
+ Chinese-CLIP vision model configuration. Returns:
423
+ [`ChineseCLIPConfig`]: An instance of a configuration object
424
+ """
425
+
426
+ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
427
+
428
+
429
+ class ChineseCLIPOnnxConfig(OnnxConfig):
430
+ @property
431
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
432
+ return OrderedDict(
433
+ [
434
+ ("input_ids", {0: "batch", 1: "sequence"}),
435
+ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
436
+ ("attention_mask", {0: "batch", 1: "sequence"}),
437
+ ]
438
+ )
439
+
440
+ @property
441
+ def outputs(self) -> Mapping[str, Mapping[int, str]]:
442
+ return OrderedDict(
443
+ [
444
+ ("logits_per_image", {0: "batch"}),
445
+ ("logits_per_text", {0: "batch"}),
446
+ ("text_embeds", {0: "batch"}),
447
+ ("image_embeds", {0: "batch"}),
448
+ ]
449
+ )
450
+
451
+ @property
452
+ def atol_for_validation(self) -> float:
453
+ return 1e-4
454
+
455
+ def generate_dummy_inputs(
456
+ self,
457
+ processor: "ProcessorMixin",
458
+ batch_size: int = -1,
459
+ seq_length: int = -1,
460
+ framework: Optional["TensorType"] = None,
461
+ ) -> Mapping[str, Any]:
462
+ text_input_dict = super().generate_dummy_inputs(
463
+ processor.tokenizer, batch_size=batch_size, seq_length=seq_length, framework=framework
464
+ )
465
+ image_input_dict = super().generate_dummy_inputs(
466
+ processor.image_processor, batch_size=batch_size, framework=framework
467
+ )
468
+ return {**text_input_dict, **image_input_dict}
469
+
470
+ @property
471
+ def default_onnx_opset(self) -> int:
472
+ return 14
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/image_processing_chinese_clip.py ADDED
@@ -0,0 +1,312 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Image processor class for Chinese-CLIP."""
16
+
17
+ from typing import Dict, List, Optional, Union
18
+
19
+ import numpy as np
20
+
21
+ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
22
+ from ...image_transforms import (
23
+ convert_to_rgb,
24
+ get_resize_output_image_size,
25
+ resize,
26
+ to_channel_dimension_format,
27
+ )
28
+ from ...image_utils import (
29
+ OPENAI_CLIP_MEAN,
30
+ OPENAI_CLIP_STD,
31
+ ChannelDimension,
32
+ ImageInput,
33
+ PILImageResampling,
34
+ infer_channel_dimension_format,
35
+ is_scaled_image,
36
+ make_list_of_images,
37
+ to_numpy_array,
38
+ valid_images,
39
+ )
40
+ from ...utils import TensorType, is_vision_available, logging
41
+
42
+
43
+ logger = logging.get_logger(__name__)
44
+
45
+
46
+ if is_vision_available():
47
+ import PIL
48
+
49
+
50
+ class ChineseCLIPImageProcessor(BaseImageProcessor):
51
+ r"""
52
+ Constructs a Chinese-CLIP image processor.
53
+
54
+ Args:
55
+ do_resize (`bool`, *optional*, defaults to `True`):
56
+ Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
57
+ `do_resize` in the `preprocess` method.
58
+ size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
59
+ Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
60
+ the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
61
+ method.
62
+ resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
63
+ Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
64
+ do_center_crop (`bool`, *optional*, defaults to `True`):
65
+ Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
66
+ `preprocess` method.
67
+ crop_size (`Dict[str, int]` *optional*, defaults to 224):
68
+ Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
69
+ method.
70
+ do_rescale (`bool`, *optional*, defaults to `True`):
71
+ Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
72
+ the `preprocess` method.
73
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
74
+ Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
75
+ method.
76
+ do_normalize (`bool`, *optional*, defaults to `True`):
77
+ Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
78
+ image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
79
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
80
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
81
+ image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
82
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
83
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
84
+ Can be overridden by the `image_std` parameter in the `preprocess` method.
85
+ do_convert_rgb (`bool`, *optional*, defaults to `True`):
86
+ Whether to convert the image to RGB.
87
+ """
88
+
89
+ model_input_names = ["pixel_values"]
90
+
91
+ def __init__(
92
+ self,
93
+ do_resize: bool = True,
94
+ size: Dict[str, int] = None,
95
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
96
+ do_center_crop: bool = True,
97
+ crop_size: Dict[str, int] = None,
98
+ do_rescale: bool = True,
99
+ rescale_factor: Union[int, float] = 1 / 255,
100
+ do_normalize: bool = True,
101
+ image_mean: Optional[Union[float, List[float]]] = None,
102
+ image_std: Optional[Union[float, List[float]]] = None,
103
+ do_convert_rgb: bool = True,
104
+ **kwargs,
105
+ ) -> None:
106
+ super().__init__(**kwargs)
107
+ size = size if size is not None else {"shortest_edge": 224}
108
+ size = get_size_dict(size, default_to_square=False)
109
+ crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
110
+ crop_size = get_size_dict(crop_size)
111
+
112
+ self.do_resize = do_resize
113
+ self.size = size
114
+ self.resample = resample
115
+ self.do_center_crop = do_center_crop
116
+ self.crop_size = crop_size
117
+ self.do_rescale = do_rescale
118
+ self.rescale_factor = rescale_factor
119
+ self.do_normalize = do_normalize
120
+ self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
121
+ self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
122
+ self.do_convert_rgb = do_convert_rgb
123
+
124
+ def resize(
125
+ self,
126
+ image: np.ndarray,
127
+ size: Dict[str, int],
128
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
129
+ data_format: Optional[Union[str, ChannelDimension]] = None,
130
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
131
+ **kwargs,
132
+ ) -> np.ndarray:
133
+ """
134
+ Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
135
+ resized to keep the input aspect ratio.
136
+
137
+ Args:
138
+ image (`np.ndarray`):
139
+ Image to resize.
140
+ size (`Dict[str, int]`):
141
+ Size of the output image.
142
+ resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
143
+ Resampling filter to use when resiizing the image.
144
+ data_format (`str` or `ChannelDimension`, *optional*):
145
+ The channel dimension format of the image. If not provided, it will be the same as the input image.
146
+ input_data_format (`ChannelDimension` or `str`, *optional*):
147
+ The channel dimension format of the input image. If not provided, it will be inferred from the input
148
+ image.
149
+ """
150
+ size = get_size_dict(size, default_to_square=False)
151
+ output_size = get_resize_output_image_size(
152
+ image, size=(size["height"], size["width"]), default_to_square=False, input_data_format=input_data_format
153
+ )
154
+ return resize(
155
+ image,
156
+ size=output_size,
157
+ resample=resample,
158
+ data_format=data_format,
159
+ input_data_format=input_data_format,
160
+ **kwargs,
161
+ )
162
+
163
+ def preprocess(
164
+ self,
165
+ images: ImageInput,
166
+ do_resize: bool = None,
167
+ size: Dict[str, int] = None,
168
+ resample: PILImageResampling = None,
169
+ do_center_crop: bool = None,
170
+ crop_size: int = None,
171
+ do_rescale: bool = None,
172
+ rescale_factor: float = None,
173
+ do_normalize: bool = None,
174
+ image_mean: Optional[Union[float, List[float]]] = None,
175
+ image_std: Optional[Union[float, List[float]]] = None,
176
+ do_convert_rgb: bool = None,
177
+ return_tensors: Optional[Union[str, TensorType]] = None,
178
+ data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
179
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
180
+ **kwargs,
181
+ ) -> PIL.Image.Image:
182
+ """
183
+ Preprocess an image or batch of images.
184
+
185
+ Args:
186
+ images (`ImageInput`):
187
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
188
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
189
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
190
+ Whether to resize the image.
191
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
192
+ Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
193
+ the longest edge resized to keep the input aspect ratio.
194
+ resample (`int`, *optional*, defaults to `self.resample`):
195
+ Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
196
+ has an effect if `do_resize` is set to `True`.
197
+ do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
198
+ Whether to center crop the image.
199
+ crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
200
+ Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
201
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
202
+ Whether to rescale the image.
203
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
204
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
205
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
206
+ Whether to normalize the image.
207
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
208
+ Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
209
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
210
+ Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
211
+ `True`.
212
+ do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
213
+ Whether to convert the image to RGB.
214
+ return_tensors (`str` or `TensorType`, *optional*):
215
+ The type of tensors to return. Can be one of:
216
+ - Unset: Return a list of `np.ndarray`.
217
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
218
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
219
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
220
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
221
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
222
+ The channel dimension format for the output image. Can be one of:
223
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
224
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
225
+ - Unset: Use the channel dimension format of the input image.
226
+ input_data_format (`ChannelDimension` or `str`, *optional*):
227
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
228
+ from the input image. Can be one of:
229
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
230
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
231
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
232
+ """
233
+ do_resize = do_resize if do_resize is not None else self.do_resize
234
+ size = size if size is not None else self.size
235
+ size = get_size_dict(size, default_to_square=False)
236
+ resample = resample if resample is not None else self.resample
237
+ do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
238
+ crop_size = crop_size if crop_size is not None else self.crop_size
239
+ crop_size = get_size_dict(crop_size)
240
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
241
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
242
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
243
+ image_mean = image_mean if image_mean is not None else self.image_mean
244
+ image_std = image_std if image_std is not None else self.image_std
245
+ do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
246
+
247
+ images = make_list_of_images(images)
248
+
249
+ if not valid_images(images):
250
+ raise ValueError(
251
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
252
+ "torch.Tensor, tf.Tensor or jax.ndarray."
253
+ )
254
+
255
+ if do_resize and size is None:
256
+ raise ValueError("Size must be specified if do_resize is True.")
257
+
258
+ if do_center_crop and crop_size is None:
259
+ raise ValueError("Crop size must be specified if do_center_crop is True.")
260
+
261
+ if do_rescale and rescale_factor is None:
262
+ raise ValueError("Rescale factor must be specified if do_rescale is True.")
263
+
264
+ if do_normalize and (image_mean is None or image_std is None):
265
+ raise ValueError("Image mean and std must be specified if do_normalize is True.")
266
+
267
+ # PIL RGBA images are converted to RGB
268
+ if do_convert_rgb:
269
+ images = [convert_to_rgb(image) for image in images]
270
+
271
+ # All transformations expect numpy arrays.
272
+ images = [to_numpy_array(image) for image in images]
273
+
274
+ if is_scaled_image(images[0]) and do_rescale:
275
+ logger.warning_once(
276
+ "It looks like you are trying to rescale already rescaled images. If the input"
277
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
278
+ )
279
+
280
+ if input_data_format is None:
281
+ # We assume that all images have the same channel dimension format.
282
+ input_data_format = infer_channel_dimension_format(images[0])
283
+
284
+ if do_resize:
285
+ images = [
286
+ self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
287
+ for image in images
288
+ ]
289
+
290
+ if do_center_crop:
291
+ images = [
292
+ self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
293
+ ]
294
+
295
+ if do_rescale:
296
+ images = [
297
+ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
298
+ for image in images
299
+ ]
300
+
301
+ if do_normalize:
302
+ images = [
303
+ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
304
+ for image in images
305
+ ]
306
+
307
+ images = [
308
+ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
309
+ ]
310
+
311
+ data = {"pixel_values": images}
312
+ return BatchFeature(data=data, tensor_type=return_tensors)
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/modeling_chinese_clip.py ADDED
@@ -0,0 +1,1564 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch Chinese-CLIP model."""
16
+
17
+
18
+ import math
19
+ from dataclasses import dataclass
20
+ from typing import Any, List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.utils.checkpoint
24
+ from torch import nn
25
+
26
+ from ...activations import ACT2FN
27
+ from ...modeling_outputs import (
28
+ BaseModelOutput,
29
+ BaseModelOutputWithPastAndCrossAttentions,
30
+ BaseModelOutputWithPooling,
31
+ BaseModelOutputWithPoolingAndCrossAttentions,
32
+ )
33
+ from ...modeling_utils import PreTrainedModel
34
+ from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
35
+ from ...utils import (
36
+ ModelOutput,
37
+ add_code_sample_docstrings,
38
+ add_start_docstrings,
39
+ add_start_docstrings_to_model_forward,
40
+ logging,
41
+ replace_return_docstrings,
42
+ )
43
+ from .configuration_chinese_clip import ChineseCLIPConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig
44
+
45
+
46
+ logger = logging.get_logger(__name__)
47
+
48
+ _CHECKPOINT_FOR_DOC = "OFA-Sys/chinese-clip-vit-base-patch16"
49
+ _CONFIG_FOR_DOC = "ChineseCLIPConfig"
50
+
51
+ CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
52
+ "OFA-Sys/chinese-clip-vit-base-patch16",
53
+ # See all Chinese-CLIP models at https://huggingface.co/models?filter=chinese_clip
54
+ ]
55
+
56
+
57
+ # https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
58
+ # Copied from transformers.models.clip.modeling_clip.contrastive_loss
59
+ def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
60
+ return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
61
+
62
+
63
+ def chinese_clip_loss(similarity: torch.Tensor) -> torch.Tensor:
64
+ caption_loss = contrastive_loss(similarity)
65
+ image_loss = contrastive_loss(similarity.t())
66
+ return (caption_loss + image_loss) / 2.0
67
+
68
+
69
+ @dataclass
70
+ class ChineseCLIPOutput(ModelOutput):
71
+ """
72
+ Args:
73
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
74
+ Contrastive loss for image-text similarity.
75
+ logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
76
+ The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
77
+ similarity scores.
78
+ logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
79
+ The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
80
+ similarity scores.
81
+ text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
82
+ The text embeddings obtained by applying the projection layer to the pooled output of
83
+ [`ChineseCLIPTextModel`].
84
+ image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
85
+ The image embeddings obtained by applying the projection layer to the pooled output of
86
+ [`ChineseCLIPVisionModel`].
87
+ text_model_output(`BaseModelOutputWithPoolingAndCrossAttentions`):
88
+ The output of the [`ChineseCLIPTextModel`].
89
+ vision_model_output(`BaseModelOutputWithPoolingAndCrossAttentions`):
90
+ The output of the [`ChineseCLIPVisionModel`].
91
+ """
92
+
93
+ loss: Optional[torch.FloatTensor] = None
94
+ logits_per_image: torch.FloatTensor = None
95
+ logits_per_text: torch.FloatTensor = None
96
+ text_embeds: torch.FloatTensor = None
97
+ image_embeds: torch.FloatTensor = None
98
+ text_model_output: BaseModelOutputWithPoolingAndCrossAttentions = None
99
+ vision_model_output: BaseModelOutputWithPoolingAndCrossAttentions = None
100
+
101
+ def to_tuple(self) -> Tuple[Any]:
102
+ return tuple(
103
+ self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
104
+ for k in self.keys()
105
+ )
106
+
107
+
108
+ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings with Bert->ChineseCLIPText
109
+ class ChineseCLIPTextEmbeddings(nn.Module):
110
+ """Construct the embeddings from word, position and token_type embeddings."""
111
+
112
+ def __init__(self, config):
113
+ super().__init__()
114
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
115
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
116
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
117
+
118
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
119
+ # any TensorFlow checkpoint file
120
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
121
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
122
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
123
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
124
+ self.register_buffer(
125
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
126
+ )
127
+ self.register_buffer(
128
+ "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
129
+ )
130
+
131
+ def forward(
132
+ self,
133
+ input_ids: Optional[torch.LongTensor] = None,
134
+ token_type_ids: Optional[torch.LongTensor] = None,
135
+ position_ids: Optional[torch.LongTensor] = None,
136
+ inputs_embeds: Optional[torch.FloatTensor] = None,
137
+ past_key_values_length: int = 0,
138
+ ) -> torch.Tensor:
139
+ if input_ids is not None:
140
+ input_shape = input_ids.size()
141
+ else:
142
+ input_shape = inputs_embeds.size()[:-1]
143
+
144
+ seq_length = input_shape[1]
145
+
146
+ if position_ids is None:
147
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
148
+
149
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
150
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
151
+ # issue #5664
152
+ if token_type_ids is None:
153
+ if hasattr(self, "token_type_ids"):
154
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
155
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
156
+ token_type_ids = buffered_token_type_ids_expanded
157
+ else:
158
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
159
+
160
+ if inputs_embeds is None:
161
+ inputs_embeds = self.word_embeddings(input_ids)
162
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
163
+
164
+ embeddings = inputs_embeds + token_type_embeddings
165
+ if self.position_embedding_type == "absolute":
166
+ position_embeddings = self.position_embeddings(position_ids)
167
+ embeddings += position_embeddings
168
+ embeddings = self.LayerNorm(embeddings)
169
+ embeddings = self.dropout(embeddings)
170
+ return embeddings
171
+
172
+
173
+ # Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->ChineseCLIP
174
+ class ChineseCLIPVisionEmbeddings(nn.Module):
175
+ def __init__(self, config: ChineseCLIPVisionConfig):
176
+ super().__init__()
177
+ self.config = config
178
+ self.embed_dim = config.hidden_size
179
+ self.image_size = config.image_size
180
+ self.patch_size = config.patch_size
181
+
182
+ self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
183
+
184
+ self.patch_embedding = nn.Conv2d(
185
+ in_channels=config.num_channels,
186
+ out_channels=self.embed_dim,
187
+ kernel_size=self.patch_size,
188
+ stride=self.patch_size,
189
+ bias=False,
190
+ )
191
+
192
+ self.num_patches = (self.image_size // self.patch_size) ** 2
193
+ self.num_positions = self.num_patches + 1
194
+ self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
195
+ self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
196
+
197
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
198
+ batch_size = pixel_values.shape[0]
199
+ target_dtype = self.patch_embedding.weight.dtype
200
+ patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
201
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
202
+
203
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1)
204
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
205
+ embeddings = embeddings + self.position_embedding(self.position_ids)
206
+ return embeddings
207
+
208
+
209
+ # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->ChineseCLIPText
210
+ class ChineseCLIPTextSelfAttention(nn.Module):
211
+ def __init__(self, config, position_embedding_type=None):
212
+ super().__init__()
213
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
214
+ raise ValueError(
215
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
216
+ f"heads ({config.num_attention_heads})"
217
+ )
218
+
219
+ self.num_attention_heads = config.num_attention_heads
220
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
221
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
222
+
223
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
224
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
225
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
226
+
227
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
228
+ self.position_embedding_type = position_embedding_type or getattr(
229
+ config, "position_embedding_type", "absolute"
230
+ )
231
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
232
+ self.max_position_embeddings = config.max_position_embeddings
233
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
234
+
235
+ self.is_decoder = config.is_decoder
236
+
237
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
238
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
239
+ x = x.view(new_x_shape)
240
+ return x.permute(0, 2, 1, 3)
241
+
242
+ def forward(
243
+ self,
244
+ hidden_states: torch.Tensor,
245
+ attention_mask: Optional[torch.FloatTensor] = None,
246
+ head_mask: Optional[torch.FloatTensor] = None,
247
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
248
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
249
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
250
+ output_attentions: Optional[bool] = False,
251
+ ) -> Tuple[torch.Tensor]:
252
+ mixed_query_layer = self.query(hidden_states)
253
+
254
+ # If this is instantiated as a cross-attention module, the keys
255
+ # and values come from an encoder; the attention mask needs to be
256
+ # such that the encoder's padding tokens are not attended to.
257
+ is_cross_attention = encoder_hidden_states is not None
258
+
259
+ if is_cross_attention and past_key_value is not None:
260
+ # reuse k,v, cross_attentions
261
+ key_layer = past_key_value[0]
262
+ value_layer = past_key_value[1]
263
+ attention_mask = encoder_attention_mask
264
+ elif is_cross_attention:
265
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
266
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
267
+ attention_mask = encoder_attention_mask
268
+ elif past_key_value is not None:
269
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
270
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
271
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
272
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
273
+ else:
274
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
275
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
276
+
277
+ query_layer = self.transpose_for_scores(mixed_query_layer)
278
+
279
+ use_cache = past_key_value is not None
280
+ if self.is_decoder:
281
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
282
+ # Further calls to cross_attention layer can then reuse all cross-attention
283
+ # key/value_states (first "if" case)
284
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
285
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
286
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
287
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
288
+ past_key_value = (key_layer, value_layer)
289
+
290
+ # Take the dot product between "query" and "key" to get the raw attention scores.
291
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
292
+
293
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
294
+ query_length, key_length = query_layer.shape[2], key_layer.shape[2]
295
+ if use_cache:
296
+ position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
297
+ -1, 1
298
+ )
299
+ else:
300
+ position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
301
+ position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
302
+ distance = position_ids_l - position_ids_r
303
+
304
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
305
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
306
+
307
+ if self.position_embedding_type == "relative_key":
308
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
309
+ attention_scores = attention_scores + relative_position_scores
310
+ elif self.position_embedding_type == "relative_key_query":
311
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
312
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
313
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
314
+
315
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
316
+ if attention_mask is not None:
317
+ # Apply the attention mask is (precomputed for all layers in ChineseCLIPTextModel forward() function)
318
+ attention_scores = attention_scores + attention_mask
319
+
320
+ # Normalize the attention scores to probabilities.
321
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
322
+
323
+ # This is actually dropping out entire tokens to attend to, which might
324
+ # seem a bit unusual, but is taken from the original Transformer paper.
325
+ attention_probs = self.dropout(attention_probs)
326
+
327
+ # Mask heads if we want to
328
+ if head_mask is not None:
329
+ attention_probs = attention_probs * head_mask
330
+
331
+ context_layer = torch.matmul(attention_probs, value_layer)
332
+
333
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
334
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
335
+ context_layer = context_layer.view(new_context_layer_shape)
336
+
337
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
338
+
339
+ if self.is_decoder:
340
+ outputs = outputs + (past_key_value,)
341
+ return outputs
342
+
343
+
344
+ # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->ChineseCLIPText
345
+ class ChineseCLIPTextSelfOutput(nn.Module):
346
+ def __init__(self, config):
347
+ super().__init__()
348
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
349
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
350
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
351
+
352
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
353
+ hidden_states = self.dense(hidden_states)
354
+ hidden_states = self.dropout(hidden_states)
355
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
356
+ return hidden_states
357
+
358
+
359
+ # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->ChineseCLIPText
360
+ class ChineseCLIPTextAttention(nn.Module):
361
+ def __init__(self, config, position_embedding_type=None):
362
+ super().__init__()
363
+ self.self = ChineseCLIPTextSelfAttention(config, position_embedding_type=position_embedding_type)
364
+ self.output = ChineseCLIPTextSelfOutput(config)
365
+ self.pruned_heads = set()
366
+
367
+ def prune_heads(self, heads):
368
+ if len(heads) == 0:
369
+ return
370
+ heads, index = find_pruneable_heads_and_indices(
371
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
372
+ )
373
+
374
+ # Prune linear layers
375
+ self.self.query = prune_linear_layer(self.self.query, index)
376
+ self.self.key = prune_linear_layer(self.self.key, index)
377
+ self.self.value = prune_linear_layer(self.self.value, index)
378
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
379
+
380
+ # Update hyper params and store pruned heads
381
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
382
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
383
+ self.pruned_heads = self.pruned_heads.union(heads)
384
+
385
+ def forward(
386
+ self,
387
+ hidden_states: torch.Tensor,
388
+ attention_mask: Optional[torch.FloatTensor] = None,
389
+ head_mask: Optional[torch.FloatTensor] = None,
390
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
391
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
392
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
393
+ output_attentions: Optional[bool] = False,
394
+ ) -> Tuple[torch.Tensor]:
395
+ self_outputs = self.self(
396
+ hidden_states,
397
+ attention_mask,
398
+ head_mask,
399
+ encoder_hidden_states,
400
+ encoder_attention_mask,
401
+ past_key_value,
402
+ output_attentions,
403
+ )
404
+ attention_output = self.output(self_outputs[0], hidden_states)
405
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
406
+ return outputs
407
+
408
+
409
+ class ChineseCLIPVisionAttention(nn.Module):
410
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
411
+
412
+ def __init__(self, config):
413
+ super().__init__()
414
+ self.config = config
415
+ self.embed_dim = config.hidden_size
416
+ self.num_heads = config.num_attention_heads
417
+ self.head_dim = self.embed_dim // self.num_heads
418
+ if self.head_dim * self.num_heads != self.embed_dim:
419
+ raise ValueError(
420
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
421
+ f" {self.num_heads})."
422
+ )
423
+ self.scale = self.head_dim**-0.5
424
+ self.dropout = config.attention_dropout
425
+
426
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
427
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
428
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
429
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
430
+
431
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
432
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
433
+
434
+ def forward(
435
+ self,
436
+ hidden_states: torch.Tensor,
437
+ output_attentions: Optional[bool] = False,
438
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
439
+ """Input shape: Batch x Time x Channel"""
440
+
441
+ bsz, tgt_len, embed_dim = hidden_states.size()
442
+
443
+ # get query proj
444
+ query_states = self.q_proj(hidden_states) * self.scale
445
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
446
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
447
+
448
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
449
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
450
+ key_states = key_states.view(*proj_shape)
451
+ value_states = value_states.view(*proj_shape)
452
+
453
+ src_len = key_states.size(1)
454
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
455
+
456
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
457
+ raise ValueError(
458
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
459
+ f" {attn_weights.size()}"
460
+ )
461
+
462
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
463
+
464
+ if output_attentions:
465
+ # this operation is a bit akward, but it's required to
466
+ # make sure that attn_weights keeps its gradient.
467
+ # In order to do so, attn_weights have to reshaped
468
+ # twice and have to be reused in the following
469
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
470
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
471
+ else:
472
+ attn_weights_reshaped = None
473
+
474
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
475
+
476
+ attn_output = torch.bmm(attn_probs, value_states)
477
+
478
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
479
+ raise ValueError(
480
+ f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
481
+ f" {attn_output.size()}"
482
+ )
483
+
484
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
485
+ attn_output = attn_output.transpose(1, 2)
486
+ attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
487
+
488
+ attn_output = self.out_proj(attn_output)
489
+
490
+ return attn_output, attn_weights_reshaped
491
+
492
+
493
+ # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->ChineseCLIPText
494
+ class ChineseCLIPTextIntermediate(nn.Module):
495
+ def __init__(self, config):
496
+ super().__init__()
497
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
498
+ if isinstance(config.hidden_act, str):
499
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
500
+ else:
501
+ self.intermediate_act_fn = config.hidden_act
502
+
503
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
504
+ hidden_states = self.dense(hidden_states)
505
+ hidden_states = self.intermediate_act_fn(hidden_states)
506
+ return hidden_states
507
+
508
+
509
+ # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->ChineseCLIPText
510
+ class ChineseCLIPTextOutput(nn.Module):
511
+ def __init__(self, config):
512
+ super().__init__()
513
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
514
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
515
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
516
+
517
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
518
+ hidden_states = self.dense(hidden_states)
519
+ hidden_states = self.dropout(hidden_states)
520
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
521
+ return hidden_states
522
+
523
+
524
+ # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->ChineseCLIPVision
525
+ class ChineseCLIPVisionMLP(nn.Module):
526
+ def __init__(self, config):
527
+ super().__init__()
528
+ self.config = config
529
+ self.activation_fn = ACT2FN[config.hidden_act]
530
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
531
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
532
+
533
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
534
+ hidden_states = self.fc1(hidden_states)
535
+ hidden_states = self.activation_fn(hidden_states)
536
+ hidden_states = self.fc2(hidden_states)
537
+ return hidden_states
538
+
539
+
540
+ # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->ChineseCLIPText
541
+ class ChineseCLIPTextLayer(nn.Module):
542
+ def __init__(self, config):
543
+ super().__init__()
544
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
545
+ self.seq_len_dim = 1
546
+ self.attention = ChineseCLIPTextAttention(config)
547
+ self.is_decoder = config.is_decoder
548
+ self.add_cross_attention = config.add_cross_attention
549
+ if self.add_cross_attention:
550
+ if not self.is_decoder:
551
+ raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
552
+ self.crossattention = ChineseCLIPTextAttention(config, position_embedding_type="absolute")
553
+ self.intermediate = ChineseCLIPTextIntermediate(config)
554
+ self.output = ChineseCLIPTextOutput(config)
555
+
556
+ def forward(
557
+ self,
558
+ hidden_states: torch.Tensor,
559
+ attention_mask: Optional[torch.FloatTensor] = None,
560
+ head_mask: Optional[torch.FloatTensor] = None,
561
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
562
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
563
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
564
+ output_attentions: Optional[bool] = False,
565
+ ) -> Tuple[torch.Tensor]:
566
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
567
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
568
+ self_attention_outputs = self.attention(
569
+ hidden_states,
570
+ attention_mask,
571
+ head_mask,
572
+ output_attentions=output_attentions,
573
+ past_key_value=self_attn_past_key_value,
574
+ )
575
+ attention_output = self_attention_outputs[0]
576
+
577
+ # if decoder, the last output is tuple of self-attn cache
578
+ if self.is_decoder:
579
+ outputs = self_attention_outputs[1:-1]
580
+ present_key_value = self_attention_outputs[-1]
581
+ else:
582
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
583
+
584
+ cross_attn_present_key_value = None
585
+ if self.is_decoder and encoder_hidden_states is not None:
586
+ if not hasattr(self, "crossattention"):
587
+ raise ValueError(
588
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
589
+ " by setting `config.add_cross_attention=True`"
590
+ )
591
+
592
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
593
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
594
+ cross_attention_outputs = self.crossattention(
595
+ attention_output,
596
+ attention_mask,
597
+ head_mask,
598
+ encoder_hidden_states,
599
+ encoder_attention_mask,
600
+ cross_attn_past_key_value,
601
+ output_attentions,
602
+ )
603
+ attention_output = cross_attention_outputs[0]
604
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
605
+
606
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
607
+ cross_attn_present_key_value = cross_attention_outputs[-1]
608
+ present_key_value = present_key_value + cross_attn_present_key_value
609
+
610
+ layer_output = apply_chunking_to_forward(
611
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
612
+ )
613
+ outputs = (layer_output,) + outputs
614
+
615
+ # if decoder, return the attn key/values as the last output
616
+ if self.is_decoder:
617
+ outputs = outputs + (present_key_value,)
618
+
619
+ return outputs
620
+
621
+ def feed_forward_chunk(self, attention_output):
622
+ intermediate_output = self.intermediate(attention_output)
623
+ layer_output = self.output(intermediate_output, attention_output)
624
+ return layer_output
625
+
626
+
627
+ class ChineseCLIPVisionLayer(nn.Module):
628
+ def __init__(self, config: ChineseCLIPConfig):
629
+ super().__init__()
630
+ self.embed_dim = config.hidden_size
631
+ self.self_attn = ChineseCLIPVisionAttention(config)
632
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
633
+ self.mlp = ChineseCLIPVisionMLP(config)
634
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
635
+
636
+ def forward(
637
+ self,
638
+ hidden_states: torch.Tensor,
639
+ output_attentions: Optional[bool] = False,
640
+ ) -> Tuple[torch.FloatTensor]:
641
+ """
642
+ Args:
643
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
644
+ output_attentions (`bool`, *optional*):
645
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
646
+ returned tensors for more detail.
647
+ """
648
+ residual = hidden_states
649
+
650
+ hidden_states = self.layer_norm1(hidden_states)
651
+ hidden_states, attn_weights = self.self_attn(
652
+ hidden_states=hidden_states,
653
+ output_attentions=output_attentions,
654
+ )
655
+ hidden_states = residual + hidden_states
656
+
657
+ residual = hidden_states
658
+ hidden_states = self.layer_norm2(hidden_states)
659
+ hidden_states = self.mlp(hidden_states)
660
+ hidden_states = residual + hidden_states
661
+
662
+ outputs = (hidden_states,)
663
+
664
+ if output_attentions:
665
+ outputs += (attn_weights,)
666
+
667
+ return outputs
668
+
669
+
670
+ # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->ChineseCLIPText
671
+ class ChineseCLIPTextPooler(nn.Module):
672
+ def __init__(self, config):
673
+ super().__init__()
674
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
675
+ self.activation = nn.Tanh()
676
+
677
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
678
+ # We "pool" the model by simply taking the hidden state corresponding
679
+ # to the first token.
680
+ first_token_tensor = hidden_states[:, 0]
681
+ pooled_output = self.dense(first_token_tensor)
682
+ pooled_output = self.activation(pooled_output)
683
+ return pooled_output
684
+
685
+
686
+ class ChineseCLIPPreTrainedModel(PreTrainedModel):
687
+ """
688
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
689
+ models.
690
+ """
691
+
692
+ config_class = ChineseCLIPConfig
693
+ base_model_prefix = "chinese_clip"
694
+ supports_gradient_checkpointing = True
695
+
696
+ def _init_weights(self, module):
697
+ """Initialize the weights"""
698
+ factor = self.config.initializer_factor
699
+ if isinstance(module, ChineseCLIPVisionEmbeddings):
700
+ factor = self.config.initializer_factor
701
+ nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
702
+ nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
703
+ nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
704
+ elif isinstance(module, ChineseCLIPTextEmbeddings):
705
+ nn.init.normal_(module.word_embeddings.weight, mean=0.0, std=self.config.initializer_range)
706
+ nn.init.normal_(module.position_embeddings.weight, mean=0.0, std=self.config.initializer_range)
707
+ nn.init.normal_(module.token_type_embeddings.weight, mean=0.0, std=self.config.initializer_range)
708
+ for embedding in [module.word_embeddings, module.position_embeddings, module.token_type_embeddings]:
709
+ if embedding.padding_idx is not None:
710
+ embedding.weight.data[embedding.padding_idx].zero_()
711
+ elif isinstance(module, ChineseCLIPVisionAttention):
712
+ factor = self.config.initializer_factor
713
+ in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
714
+ out_proj_std = (module.embed_dim**-0.5) * factor
715
+ nn.init.normal_(module.q_proj.weight, std=in_proj_std)
716
+ nn.init.normal_(module.k_proj.weight, std=in_proj_std)
717
+ nn.init.normal_(module.v_proj.weight, std=in_proj_std)
718
+ nn.init.normal_(module.out_proj.weight, std=out_proj_std)
719
+ elif isinstance(module, ChineseCLIPVisionMLP):
720
+ factor = self.config.initializer_factor
721
+ in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
722
+ fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
723
+ nn.init.normal_(module.fc1.weight, std=fc_std)
724
+ nn.init.normal_(module.fc2.weight, std=in_proj_std)
725
+ elif isinstance(module, ChineseCLIPModel):
726
+ nn.init.normal_(
727
+ module.text_projection.weight,
728
+ std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
729
+ )
730
+ nn.init.normal_(
731
+ module.visual_projection.weight,
732
+ std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
733
+ )
734
+
735
+ if isinstance(module, nn.LayerNorm):
736
+ module.bias.data.zero_()
737
+ module.weight.data.fill_(1.0)
738
+ if isinstance(module, nn.Linear):
739
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
740
+ if module.bias is not None:
741
+ module.bias.data.zero_()
742
+
743
+
744
+ CHINESE_CLIP_START_DOCSTRING = r"""
745
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
746
+ as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
747
+ behavior.
748
+
749
+ Parameters:
750
+ config ([`ChineseCLIPConfig`]): Model configuration class with all the parameters of the model.
751
+ Initializing with a config file does not load the weights associated with the model, only the
752
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
753
+ """
754
+
755
+ CHINESE_CLIP_TEXT_INPUTS_DOCSTRING = r"""
756
+ Args:
757
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
758
+ Indices of input sequence tokens in the vocabulary.
759
+
760
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
761
+ [`PreTrainedTokenizer.__call__`] for details.
762
+
763
+ [What are input IDs?](../glossary#input-ids)
764
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
765
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
766
+
767
+ - 1 for tokens that are **not masked**,
768
+ - 0 for tokens that are **masked**.
769
+
770
+ [What are attention masks?](../glossary#attention-mask)
771
+ token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
772
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
773
+ 1]`:
774
+
775
+ - 0 corresponds to a *sentence A* token,
776
+ - 1 corresponds to a *sentence B* token.
777
+
778
+ [What are token type IDs?](../glossary#token-type-ids)
779
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
780
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
781
+ config.max_position_embeddings - 1]`.
782
+
783
+ [What are position IDs?](../glossary#position-ids)
784
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
785
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
786
+
787
+ - 1 indicates the head is **not masked**,
788
+ - 0 indicates the head is **masked**.
789
+
790
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
791
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
792
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
793
+ model's internal embedding lookup matrix.
794
+ output_attentions (`bool`, *optional*):
795
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
796
+ tensors for more detail.
797
+ output_hidden_states (`bool`, *optional*):
798
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
799
+ more detail.
800
+ return_dict (`bool`, *optional*):
801
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
802
+ """
803
+
804
+ CHINESE_CLIP_VISION_INPUTS_DOCSTRING = r"""
805
+ Args:
806
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
807
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
808
+ [`AutoImageProcessor`]. See [`ChineseCLIPImageProcessor.__call__`] for details.
809
+ output_attentions (`bool`, *optional*):
810
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
811
+ tensors for more detail.
812
+ output_hidden_states (`bool`, *optional*):
813
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
814
+ more detail.
815
+ return_dict (`bool`, *optional*):
816
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
817
+ """
818
+
819
+ CHINESE_CLIP_INPUTS_DOCSTRING = r"""
820
+ Args:
821
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
822
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
823
+ it.
824
+
825
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
826
+ [`PreTrainedTokenizer.__call__`] for details.
827
+
828
+ [What are input IDs?](../glossary#input-ids)
829
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
830
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
831
+
832
+ - 1 for tokens that are **not masked**,
833
+ - 0 for tokens that are **masked**.
834
+
835
+ [What are attention masks?](../glossary#attention-mask)
836
+ token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
837
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
838
+ 1]`:
839
+
840
+ - 0 corresponds to a *sentence A* token,
841
+ - 1 corresponds to a *sentence B* token.
842
+
843
+ [What are token type IDs?](../glossary#token-type-ids)
844
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
845
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
846
+ config.max_position_embeddings - 1]`.
847
+
848
+ [What are position IDs?](../glossary#position-ids)
849
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
850
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
851
+ [`AutoImageProcessor`]. See [`ChineseCLIPImageProcessor.__call__`] for details.
852
+ return_loss (`bool`, *optional*):
853
+ Whether or not to return the contrastive loss.
854
+ output_attentions (`bool`, *optional*):
855
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
856
+ tensors for more detail.
857
+ output_hidden_states (`bool`, *optional*):
858
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
859
+ more detail.
860
+ return_dict (`bool`, *optional*):
861
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
862
+ """
863
+
864
+
865
+ # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->ChineseCLIPText
866
+ class ChineseCLIPTextEncoder(nn.Module):
867
+ def __init__(self, config):
868
+ super().__init__()
869
+ self.config = config
870
+ self.layer = nn.ModuleList([ChineseCLIPTextLayer(config) for _ in range(config.num_hidden_layers)])
871
+ self.gradient_checkpointing = False
872
+
873
+ def forward(
874
+ self,
875
+ hidden_states: torch.Tensor,
876
+ attention_mask: Optional[torch.FloatTensor] = None,
877
+ head_mask: Optional[torch.FloatTensor] = None,
878
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
879
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
880
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
881
+ use_cache: Optional[bool] = None,
882
+ output_attentions: Optional[bool] = False,
883
+ output_hidden_states: Optional[bool] = False,
884
+ return_dict: Optional[bool] = True,
885
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
886
+ all_hidden_states = () if output_hidden_states else None
887
+ all_self_attentions = () if output_attentions else None
888
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
889
+
890
+ if self.gradient_checkpointing and self.training:
891
+ if use_cache:
892
+ logger.warning_once(
893
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
894
+ )
895
+ use_cache = False
896
+
897
+ next_decoder_cache = () if use_cache else None
898
+ for i, layer_module in enumerate(self.layer):
899
+ if output_hidden_states:
900
+ all_hidden_states = all_hidden_states + (hidden_states,)
901
+
902
+ layer_head_mask = head_mask[i] if head_mask is not None else None
903
+ past_key_value = past_key_values[i] if past_key_values is not None else None
904
+
905
+ if self.gradient_checkpointing and self.training:
906
+ layer_outputs = self._gradient_checkpointing_func(
907
+ layer_module.__call__,
908
+ hidden_states,
909
+ attention_mask,
910
+ layer_head_mask,
911
+ encoder_hidden_states,
912
+ encoder_attention_mask,
913
+ past_key_value,
914
+ output_attentions,
915
+ )
916
+ else:
917
+ layer_outputs = layer_module(
918
+ hidden_states,
919
+ attention_mask,
920
+ layer_head_mask,
921
+ encoder_hidden_states,
922
+ encoder_attention_mask,
923
+ past_key_value,
924
+ output_attentions,
925
+ )
926
+
927
+ hidden_states = layer_outputs[0]
928
+ if use_cache:
929
+ next_decoder_cache += (layer_outputs[-1],)
930
+ if output_attentions:
931
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
932
+ if self.config.add_cross_attention:
933
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
934
+
935
+ if output_hidden_states:
936
+ all_hidden_states = all_hidden_states + (hidden_states,)
937
+
938
+ if not return_dict:
939
+ return tuple(
940
+ v
941
+ for v in [
942
+ hidden_states,
943
+ next_decoder_cache,
944
+ all_hidden_states,
945
+ all_self_attentions,
946
+ all_cross_attentions,
947
+ ]
948
+ if v is not None
949
+ )
950
+ return BaseModelOutputWithPastAndCrossAttentions(
951
+ last_hidden_state=hidden_states,
952
+ past_key_values=next_decoder_cache,
953
+ hidden_states=all_hidden_states,
954
+ attentions=all_self_attentions,
955
+ cross_attentions=all_cross_attentions,
956
+ )
957
+
958
+
959
+ class ChineseCLIPVisionEncoder(nn.Module):
960
+ """
961
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
962
+ [`ChineseCLIPVisionEncoderLayer`].
963
+
964
+ Args:
965
+ config: ChineseCLIPConfig
966
+ """
967
+
968
+ def __init__(self, config: ChineseCLIPConfig):
969
+ super().__init__()
970
+ self.config = config
971
+ self.layers = nn.ModuleList([ChineseCLIPVisionLayer(config) for _ in range(config.num_hidden_layers)])
972
+ self.gradient_checkpointing = False
973
+
974
+ def forward(
975
+ self,
976
+ inputs_embeds,
977
+ output_attentions: Optional[bool] = None,
978
+ output_hidden_states: Optional[bool] = None,
979
+ return_dict: Optional[bool] = None,
980
+ ) -> Union[Tuple, BaseModelOutput]:
981
+ r"""
982
+ Args:
983
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
984
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
985
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
986
+ than the model's internal embedding lookup matrix.
987
+ output_attentions (`bool`, *optional*):
988
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
989
+ returned tensors for more detail.
990
+ output_hidden_states (`bool`, *optional*):
991
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
992
+ for more detail.
993
+ return_dict (`bool`, *optional*):
994
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
995
+ """
996
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
997
+ output_hidden_states = (
998
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
999
+ )
1000
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1001
+
1002
+ encoder_states = () if output_hidden_states else None
1003
+ all_attentions = () if output_attentions else None
1004
+
1005
+ hidden_states = inputs_embeds
1006
+ for idx, encoder_layer in enumerate(self.layers):
1007
+ if output_hidden_states:
1008
+ encoder_states = encoder_states + (hidden_states,)
1009
+ if self.gradient_checkpointing and self.training:
1010
+ layer_outputs = self._gradient_checkpointing_func(
1011
+ encoder_layer.__call__,
1012
+ hidden_states,
1013
+ output_attentions,
1014
+ )
1015
+ else:
1016
+ layer_outputs = encoder_layer(
1017
+ hidden_states,
1018
+ output_attentions=output_attentions,
1019
+ )
1020
+
1021
+ hidden_states = layer_outputs[0]
1022
+
1023
+ if output_attentions:
1024
+ all_attentions = all_attentions + (layer_outputs[1],)
1025
+
1026
+ if output_hidden_states:
1027
+ encoder_states = encoder_states + (hidden_states,)
1028
+
1029
+ if not return_dict:
1030
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
1031
+ return BaseModelOutput(
1032
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
1033
+ )
1034
+
1035
+
1036
+ class ChineseCLIPVisionTransformer(nn.Module):
1037
+ def __init__(self, config: ChineseCLIPVisionConfig):
1038
+ super().__init__()
1039
+ self.config = config
1040
+ embed_dim = config.hidden_size
1041
+
1042
+ self.embeddings = ChineseCLIPVisionEmbeddings(config)
1043
+ self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
1044
+ self.encoder = ChineseCLIPVisionEncoder(config)
1045
+ self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
1046
+
1047
+ @add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING)
1048
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=ChineseCLIPVisionConfig)
1049
+ def forward(
1050
+ self,
1051
+ pixel_values: Optional[torch.FloatTensor] = None,
1052
+ output_attentions: Optional[bool] = None,
1053
+ output_hidden_states: Optional[bool] = None,
1054
+ return_dict: Optional[bool] = None,
1055
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
1056
+ r"""
1057
+ Returns:
1058
+ """
1059
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1060
+ output_hidden_states = (
1061
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1062
+ )
1063
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1064
+
1065
+ if pixel_values is None:
1066
+ raise ValueError("You have to specify pixel_values")
1067
+
1068
+ hidden_states = self.embeddings(pixel_values)
1069
+ hidden_states = self.pre_layrnorm(hidden_states)
1070
+
1071
+ encoder_outputs = self.encoder(
1072
+ inputs_embeds=hidden_states,
1073
+ output_attentions=output_attentions,
1074
+ output_hidden_states=output_hidden_states,
1075
+ return_dict=return_dict,
1076
+ )
1077
+
1078
+ last_hidden_state = encoder_outputs[0]
1079
+ pooled_output = last_hidden_state[:, 0, :]
1080
+ pooled_output = self.post_layernorm(pooled_output)
1081
+
1082
+ if not return_dict:
1083
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
1084
+
1085
+ return BaseModelOutputWithPooling(
1086
+ last_hidden_state=last_hidden_state,
1087
+ pooler_output=pooled_output,
1088
+ hidden_states=encoder_outputs.hidden_states,
1089
+ attentions=encoder_outputs.attentions,
1090
+ )
1091
+
1092
+
1093
+ @add_start_docstrings(
1094
+ "The text model from CHINESE_CLIP without any head or projection on top.",
1095
+ CHINESE_CLIP_START_DOCSTRING,
1096
+ )
1097
+ class ChineseCLIPTextModel(ChineseCLIPPreTrainedModel):
1098
+ """
1099
+
1100
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
1101
+ cross-attention is added between the self-attention layers, following the architecture described in [Attention is
1102
+ all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
1103
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
1104
+
1105
+ To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
1106
+ to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
1107
+ `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
1108
+ """
1109
+
1110
+ config_class = ChineseCLIPTextConfig
1111
+
1112
+ def __init__(self, config, add_pooling_layer=True):
1113
+ super().__init__(config)
1114
+ self.config = config
1115
+
1116
+ self.embeddings = ChineseCLIPTextEmbeddings(config)
1117
+ self.encoder = ChineseCLIPTextEncoder(config)
1118
+
1119
+ self.pooler = ChineseCLIPTextPooler(config) if add_pooling_layer else None
1120
+
1121
+ # Initialize weights and apply final processing
1122
+ self.post_init()
1123
+
1124
+ def get_input_embeddings(self):
1125
+ return self.embeddings.word_embeddings
1126
+
1127
+ def set_input_embeddings(self, value):
1128
+ self.embeddings.word_embeddings = value
1129
+
1130
+ def _prune_heads(self, heads_to_prune):
1131
+ """
1132
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
1133
+ class PreTrainedModel
1134
+ """
1135
+ for layer, heads in heads_to_prune.items():
1136
+ self.encoder.layer[layer].attention.prune_heads(heads)
1137
+
1138
+ @add_start_docstrings_to_model_forward(CHINESE_CLIP_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1139
+ @add_code_sample_docstrings(
1140
+ checkpoint=_CHECKPOINT_FOR_DOC,
1141
+ output_type=BaseModelOutputWithPoolingAndCrossAttentions,
1142
+ config_class=_CONFIG_FOR_DOC,
1143
+ )
1144
+ def forward(
1145
+ self,
1146
+ input_ids: Optional[torch.Tensor] = None,
1147
+ attention_mask: Optional[torch.Tensor] = None,
1148
+ token_type_ids: Optional[torch.Tensor] = None,
1149
+ position_ids: Optional[torch.Tensor] = None,
1150
+ head_mask: Optional[torch.Tensor] = None,
1151
+ inputs_embeds: Optional[torch.Tensor] = None,
1152
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1153
+ encoder_attention_mask: Optional[torch.Tensor] = None,
1154
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1155
+ use_cache: Optional[bool] = None,
1156
+ output_attentions: Optional[bool] = None,
1157
+ output_hidden_states: Optional[bool] = None,
1158
+ return_dict: Optional[bool] = None,
1159
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
1160
+ r"""
1161
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1162
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
1163
+ the model is configured as a decoder.
1164
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
1165
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
1166
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
1167
+
1168
+ - 1 for tokens that are **not masked**,
1169
+ - 0 for tokens that are **masked**.
1170
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
1171
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
1172
+
1173
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
1174
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
1175
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1176
+ use_cache (`bool`, *optional*):
1177
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1178
+ `past_key_values`).
1179
+ """
1180
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1181
+ output_hidden_states = (
1182
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1183
+ )
1184
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1185
+
1186
+ if self.config.is_decoder:
1187
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1188
+ else:
1189
+ use_cache = False
1190
+
1191
+ if input_ids is not None and inputs_embeds is not None:
1192
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1193
+ elif input_ids is not None:
1194
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
1195
+ input_shape = input_ids.size()
1196
+ elif inputs_embeds is not None:
1197
+ input_shape = inputs_embeds.size()[:-1]
1198
+ else:
1199
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1200
+
1201
+ batch_size, seq_length = input_shape
1202
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1203
+
1204
+ # past_key_values_length
1205
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
1206
+
1207
+ if attention_mask is None:
1208
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
1209
+
1210
+ if token_type_ids is None:
1211
+ if hasattr(self.embeddings, "token_type_ids"):
1212
+ buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
1213
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
1214
+ token_type_ids = buffered_token_type_ids_expanded
1215
+ else:
1216
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
1217
+
1218
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
1219
+ # ourselves in which case we just need to make it broadcastable to all heads.
1220
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
1221
+
1222
+ # If a 2D or 3D attention mask is provided for the cross-attention
1223
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
1224
+ if self.config.is_decoder and encoder_hidden_states is not None:
1225
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
1226
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
1227
+ if encoder_attention_mask is None:
1228
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
1229
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
1230
+ else:
1231
+ encoder_extended_attention_mask = None
1232
+
1233
+ # Prepare head mask if needed
1234
+ # 1.0 in head_mask indicate we keep the head
1235
+ # attention_probs has shape bsz x n_heads x N x N
1236
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
1237
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
1238
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
1239
+
1240
+ embedding_output = self.embeddings(
1241
+ input_ids=input_ids,
1242
+ position_ids=position_ids,
1243
+ token_type_ids=token_type_ids,
1244
+ inputs_embeds=inputs_embeds,
1245
+ past_key_values_length=past_key_values_length,
1246
+ )
1247
+ encoder_outputs = self.encoder(
1248
+ embedding_output,
1249
+ attention_mask=extended_attention_mask,
1250
+ head_mask=head_mask,
1251
+ encoder_hidden_states=encoder_hidden_states,
1252
+ encoder_attention_mask=encoder_extended_attention_mask,
1253
+ past_key_values=past_key_values,
1254
+ use_cache=use_cache,
1255
+ output_attentions=output_attentions,
1256
+ output_hidden_states=output_hidden_states,
1257
+ return_dict=return_dict,
1258
+ )
1259
+ sequence_output = encoder_outputs[0]
1260
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
1261
+
1262
+ if not return_dict:
1263
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
1264
+
1265
+ return BaseModelOutputWithPoolingAndCrossAttentions(
1266
+ last_hidden_state=sequence_output,
1267
+ pooler_output=pooled_output,
1268
+ past_key_values=encoder_outputs.past_key_values,
1269
+ hidden_states=encoder_outputs.hidden_states,
1270
+ attentions=encoder_outputs.attentions,
1271
+ cross_attentions=encoder_outputs.cross_attentions,
1272
+ )
1273
+
1274
+
1275
+ @add_start_docstrings(
1276
+ """The vision model from CHINESE_CLIP without any head or projection on top.""",
1277
+ CHINESE_CLIP_START_DOCSTRING,
1278
+ )
1279
+ class ChineseCLIPVisionModel(ChineseCLIPPreTrainedModel):
1280
+ config_class = ChineseCLIPVisionConfig
1281
+ main_input_name = "pixel_values"
1282
+
1283
+ def __init__(self, config: ChineseCLIPVisionConfig):
1284
+ super().__init__(config)
1285
+ self.vision_model = ChineseCLIPVisionTransformer(config)
1286
+ # Initialize weights and apply final processing
1287
+ self.post_init()
1288
+
1289
+ def get_input_embeddings(self) -> nn.Module:
1290
+ return self.vision_model.embeddings.patch_embedding
1291
+
1292
+ @add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING)
1293
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=ChineseCLIPVisionConfig)
1294
+ def forward(
1295
+ self,
1296
+ pixel_values: Optional[torch.FloatTensor] = None,
1297
+ output_attentions: Optional[bool] = None,
1298
+ output_hidden_states: Optional[bool] = None,
1299
+ return_dict: Optional[bool] = None,
1300
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
1301
+ r"""
1302
+ Returns:
1303
+
1304
+ Examples:
1305
+
1306
+ ```python
1307
+ >>> from PIL import Image
1308
+ >>> import requests
1309
+ >>> from transformers import CLIPProcessor, ChineseCLIPVisionModel
1310
+
1311
+ >>> model = ChineseCLIPVisionModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
1312
+ >>> processor = CLIPProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
1313
+
1314
+ >>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
1315
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1316
+
1317
+ >>> inputs = processor(images=image, return_tensors="pt")
1318
+
1319
+ >>> outputs = model(**inputs)
1320
+ >>> last_hidden_state = outputs.last_hidden_state
1321
+ >>> pooled_output = outputs.pooler_output # pooled CLS states
1322
+ ```"""
1323
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1324
+
1325
+ return self.vision_model(
1326
+ pixel_values=pixel_values,
1327
+ output_attentions=output_attentions,
1328
+ output_hidden_states=output_hidden_states,
1329
+ return_dict=return_dict,
1330
+ )
1331
+
1332
+
1333
+ @add_start_docstrings(CHINESE_CLIP_START_DOCSTRING)
1334
+ class ChineseCLIPModel(ChineseCLIPPreTrainedModel):
1335
+ config_class = ChineseCLIPConfig
1336
+
1337
+ def __init__(self, config: ChineseCLIPConfig):
1338
+ super().__init__(config)
1339
+
1340
+ if not isinstance(config.text_config, ChineseCLIPTextConfig):
1341
+ raise ValueError(
1342
+ "config.text_config is expected to be of type ChineseCLIPTextConfig but is of type"
1343
+ f" {type(config.text_config)}."
1344
+ )
1345
+
1346
+ if not isinstance(config.vision_config, ChineseCLIPVisionConfig):
1347
+ raise ValueError(
1348
+ "config.vision_config is expected to be of type ChineseCLIPVisionConfig but is of type"
1349
+ f" {type(config.vision_config)}."
1350
+ )
1351
+
1352
+ text_config = config.text_config
1353
+ vision_config = config.vision_config
1354
+
1355
+ self.projection_dim = config.projection_dim
1356
+ self.text_embed_dim = text_config.hidden_size
1357
+ self.vision_embed_dim = vision_config.hidden_size
1358
+
1359
+ self.text_model = ChineseCLIPTextModel(text_config, add_pooling_layer=False)
1360
+ self.vision_model = ChineseCLIPVisionTransformer(vision_config)
1361
+
1362
+ self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
1363
+ self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
1364
+ self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
1365
+
1366
+ # Initialize weights and apply final processing
1367
+ self.post_init()
1368
+
1369
+ @add_start_docstrings_to_model_forward(CHINESE_CLIP_TEXT_INPUTS_DOCSTRING)
1370
+ def get_text_features(
1371
+ self,
1372
+ input_ids: Optional[torch.Tensor] = None,
1373
+ attention_mask: Optional[torch.Tensor] = None,
1374
+ token_type_ids: Optional[torch.Tensor] = None,
1375
+ position_ids: Optional[torch.Tensor] = None,
1376
+ output_attentions: Optional[bool] = None,
1377
+ output_hidden_states: Optional[bool] = None,
1378
+ return_dict: Optional[bool] = None,
1379
+ ) -> torch.FloatTensor:
1380
+ r"""
1381
+ Returns:
1382
+ text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
1383
+ applying the projection layer to the final [CLS] hidden state of Text-Transformer.
1384
+
1385
+ Examples:
1386
+
1387
+ ```python
1388
+ >>> from transformers import AutoTokenizer, ChineseCLIPModel
1389
+
1390
+ >>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
1391
+ >>> tokenizer = AutoTokenizer.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
1392
+
1393
+ >>> inputs = tokenizer(["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"], padding=True, return_tensors="pt")
1394
+ >>> text_features = model.get_text_features(**inputs)
1395
+ >>> text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)
1396
+ ```"""
1397
+ # Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components.
1398
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1399
+ output_hidden_states = (
1400
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1401
+ )
1402
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1403
+
1404
+ text_outputs = self.text_model(
1405
+ input_ids=input_ids,
1406
+ attention_mask=attention_mask,
1407
+ token_type_ids=token_type_ids,
1408
+ position_ids=position_ids,
1409
+ output_attentions=output_attentions,
1410
+ output_hidden_states=output_hidden_states,
1411
+ return_dict=return_dict,
1412
+ )
1413
+
1414
+ pooled_output = text_outputs[0][:, 0, :]
1415
+ text_features = self.text_projection(pooled_output)
1416
+
1417
+ return text_features
1418
+
1419
+ @add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING)
1420
+ def get_image_features(
1421
+ self,
1422
+ pixel_values: Optional[torch.FloatTensor] = None,
1423
+ output_attentions: Optional[bool] = None,
1424
+ output_hidden_states: Optional[bool] = None,
1425
+ return_dict: Optional[bool] = None,
1426
+ ) -> torch.FloatTensor:
1427
+ r"""
1428
+ Returns:
1429
+ image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
1430
+ applying the projection layer to the final [CLS] hidden state of Vision-Transformer.
1431
+
1432
+ Examples:
1433
+
1434
+ ```python
1435
+ >>> from PIL import Image
1436
+ >>> import requests
1437
+ >>> from transformers import AutoProcessor, ChineseCLIPModel
1438
+
1439
+ >>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
1440
+ >>> processor = AutoProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
1441
+
1442
+ >>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
1443
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1444
+
1445
+ >>> inputs = processor(images=image, return_tensors="pt")
1446
+
1447
+ >>> image_features = model.get_image_features(**inputs)
1448
+ >>> image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)
1449
+ ```"""
1450
+ # Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components.
1451
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1452
+ output_hidden_states = (
1453
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1454
+ )
1455
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1456
+
1457
+ vision_outputs = self.vision_model(
1458
+ pixel_values=pixel_values,
1459
+ output_attentions=output_attentions,
1460
+ output_hidden_states=output_hidden_states,
1461
+ return_dict=return_dict,
1462
+ )
1463
+
1464
+ pooled_output = vision_outputs[1] # pooled_output
1465
+ image_features = self.visual_projection(pooled_output)
1466
+
1467
+ return image_features
1468
+
1469
+ @add_start_docstrings_to_model_forward(CHINESE_CLIP_INPUTS_DOCSTRING)
1470
+ @replace_return_docstrings(output_type=ChineseCLIPOutput, config_class=ChineseCLIPConfig)
1471
+ def forward(
1472
+ self,
1473
+ input_ids: Optional[torch.LongTensor] = None,
1474
+ pixel_values: Optional[torch.FloatTensor] = None,
1475
+ attention_mask: Optional[torch.Tensor] = None,
1476
+ token_type_ids: Optional[torch.Tensor] = None,
1477
+ position_ids: Optional[torch.LongTensor] = None,
1478
+ return_loss: Optional[bool] = None,
1479
+ output_attentions: Optional[bool] = None,
1480
+ output_hidden_states: Optional[bool] = None,
1481
+ return_dict: Optional[bool] = None,
1482
+ ) -> Union[Tuple, ChineseCLIPOutput]:
1483
+ r"""
1484
+ Returns:
1485
+
1486
+ Examples:
1487
+
1488
+ ```python
1489
+ >>> from PIL import Image
1490
+ >>> import requests
1491
+ >>> from transformers import AutoProcessor, ChineseCLIPModel
1492
+
1493
+ >>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
1494
+ >>> processor = AutoProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
1495
+
1496
+ >>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
1497
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1498
+
1499
+ >>> inputs = processor(text=["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"], images=image, return_tensors="pt", padding=True)
1500
+
1501
+ >>> outputs = model(**inputs)
1502
+ >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
1503
+ >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
1504
+ ```"""
1505
+ # Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components.
1506
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1507
+ output_hidden_states = (
1508
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1509
+ )
1510
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1511
+
1512
+ vision_outputs = self.vision_model(
1513
+ pixel_values=pixel_values,
1514
+ output_attentions=output_attentions,
1515
+ output_hidden_states=output_hidden_states,
1516
+ return_dict=return_dict,
1517
+ )
1518
+
1519
+ text_outputs = self.text_model(
1520
+ input_ids=input_ids,
1521
+ attention_mask=attention_mask,
1522
+ token_type_ids=token_type_ids,
1523
+ position_ids=position_ids,
1524
+ output_attentions=output_attentions,
1525
+ output_hidden_states=output_hidden_states,
1526
+ return_dict=return_dict,
1527
+ )
1528
+
1529
+ image_embeds = vision_outputs[1]
1530
+ image_embeds = self.visual_projection(image_embeds)
1531
+
1532
+ text_embeds = text_outputs[0][:, 0, :]
1533
+ text_embeds = self.text_projection(text_embeds)
1534
+
1535
+ # normalized features
1536
+ image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
1537
+ text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
1538
+
1539
+ # cosine similarity as logits
1540
+ logit_scale = self.logit_scale.exp()
1541
+ logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
1542
+ logits_per_image = logits_per_text.t()
1543
+
1544
+ loss = None
1545
+ if return_loss:
1546
+ loss = chinese_clip_loss(logits_per_text)
1547
+
1548
+ if not return_dict:
1549
+ # fix the None pooled_output of text_outputs to conform with dict_output
1550
+ pooled_output = text_outputs[1]
1551
+ if pooled_output is None:
1552
+ text_outputs = (text_outputs[0],) + text_outputs[2:]
1553
+ output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
1554
+ return ((loss,) + output) if loss is not None else output
1555
+
1556
+ return ChineseCLIPOutput(
1557
+ loss=loss,
1558
+ logits_per_image=logits_per_image,
1559
+ logits_per_text=logits_per_text,
1560
+ text_embeds=text_embeds,
1561
+ image_embeds=image_embeds,
1562
+ text_model_output=text_outputs,
1563
+ vision_model_output=vision_outputs,
1564
+ )
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/processing_chinese_clip.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ Image/Text processor class for Chinese-CLIP
17
+ """
18
+
19
+ import warnings
20
+
21
+ from ...processing_utils import ProcessorMixin
22
+ from ...tokenization_utils_base import BatchEncoding
23
+
24
+
25
+ class ChineseCLIPProcessor(ProcessorMixin):
26
+ r"""
27
+ Constructs a Chinese-CLIP processor which wraps a Chinese-CLIP image processor and a Chinese-CLIP tokenizer into a
28
+ single processor.
29
+
30
+ [`ChineseCLIPProcessor`] offers all the functionalities of [`ChineseCLIPImageProcessor`] and [`BertTokenizerFast`].
31
+ See the [`~ChineseCLIPProcessor.__call__`] and [`~ChineseCLIPProcessor.decode`] for more information.
32
+
33
+ Args:
34
+ image_processor ([`ChineseCLIPImageProcessor`], *optional*):
35
+ The image processor is a required input.
36
+ tokenizer ([`BertTokenizerFast`], *optional*):
37
+ The tokenizer is a required input.
38
+ """
39
+
40
+ attributes = ["image_processor", "tokenizer"]
41
+ image_processor_class = "ChineseCLIPImageProcessor"
42
+ tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
43
+
44
+ def __init__(self, image_processor=None, tokenizer=None, **kwargs):
45
+ feature_extractor = None
46
+ if "feature_extractor" in kwargs:
47
+ warnings.warn(
48
+ "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
49
+ " instead.",
50
+ FutureWarning,
51
+ )
52
+ feature_extractor = kwargs.pop("feature_extractor")
53
+
54
+ image_processor = image_processor if image_processor is not None else feature_extractor
55
+ if image_processor is None:
56
+ raise ValueError("You need to specify an `image_processor`.")
57
+ if tokenizer is None:
58
+ raise ValueError("You need to specify a `tokenizer`.")
59
+
60
+ super().__init__(image_processor, tokenizer)
61
+ self.current_processor = self.image_processor
62
+
63
+ def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
64
+ """
65
+ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
66
+ and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
67
+ the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
68
+ CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
69
+ of the above two methods for more information.
70
+
71
+ Args:
72
+ text (`str`, `List[str]`, `List[List[str]]`):
73
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
74
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
75
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
76
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
77
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
78
+ tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
79
+ number of channels, H and W are image height and width.
80
+
81
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
82
+ If set, will return tensors of a particular framework. Acceptable values are:
83
+
84
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
85
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
86
+ - `'np'`: Return NumPy `np.ndarray` objects.
87
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
88
+
89
+ Returns:
90
+ [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
91
+
92
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
93
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
94
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
95
+ `None`).
96
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
97
+ """
98
+
99
+ if text is None and images is None:
100
+ raise ValueError("You have to specify either text or images. Both cannot be none.")
101
+
102
+ if text is not None:
103
+ encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
104
+
105
+ if images is not None:
106
+ image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs)
107
+
108
+ if text is not None and images is not None:
109
+ encoding["pixel_values"] = image_features.pixel_values
110
+ return encoding
111
+ elif text is not None:
112
+ return encoding
113
+ else:
114
+ return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
115
+
116
+ def batch_decode(self, *args, **kwargs):
117
+ """
118
+ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
119
+ refer to the docstring of this method for more information.
120
+ """
121
+ return self.tokenizer.batch_decode(*args, **kwargs)
122
+
123
+ def decode(self, *args, **kwargs):
124
+ """
125
+ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
126
+ the docstring of this method for more information.
127
+ """
128
+ return self.tokenizer.decode(*args, **kwargs)
129
+
130
+ @property
131
+ def model_input_names(self):
132
+ tokenizer_input_names = self.tokenizer.model_input_names
133
+ image_processor_input_names = self.image_processor.model_input_names
134
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
135
+
136
+ @property
137
+ def feature_extractor_class(self):
138
+ warnings.warn(
139
+ "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
140
+ FutureWarning,
141
+ )
142
+ return self.image_processor_class
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/configuration_efficientformer.cpython-310.pyc ADDED
Binary file (7.02 kB). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/modeling_efficientformer.cpython-310.pyc ADDED
Binary file (27.9 kB). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/efficientformer/configuration_efficientformer.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ EfficientFormer model configuration"""
16
+
17
+ from typing import List
18
+
19
+ from ...configuration_utils import PretrainedConfig
20
+ from ...utils import logging
21
+
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+ EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
26
+ "snap-research/efficientformer-l1-300": (
27
+ "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json"
28
+ ),
29
+ }
30
+
31
+
32
+ class EfficientFormerConfig(PretrainedConfig):
33
+ r"""
34
+ This is the configuration class to store the configuration of an [`EfficientFormerModel`]. It is used to
35
+ instantiate an EfficientFormer model according to the specified arguments, defining the model architecture.
36
+ Instantiating a configuration with the defaults will yield a similar configuration to that of the EfficientFormer
37
+ [snap-research/efficientformer-l1](https://huggingface.co/snap-research/efficientformer-l1) architecture.
38
+
39
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
40
+ documentation from [`PretrainedConfig`] for more information.
41
+
42
+ Args:
43
+ depths (`List(int)`, *optional*, defaults to `[3, 2, 6, 4]`)
44
+ Depth of each stage.
45
+ hidden_sizes (`List(int)`, *optional*, defaults to `[48, 96, 224, 448]`)
46
+ Dimensionality of each stage.
47
+ downsamples (`List(bool)`, *optional*, defaults to `[True, True, True, True]`)
48
+ Whether or not to downsample inputs between two stages.
49
+ dim (`int`, *optional*, defaults to 448):
50
+ Number of channels in Meta3D layers
51
+ key_dim (`int`, *optional*, defaults to 32):
52
+ The size of the key in meta3D block.
53
+ attention_ratio (`int`, *optional*, defaults to 4):
54
+ Ratio of the dimension of the query and value to the dimension of the key in MSHA block
55
+ resolution (`int`, *optional*, defaults to 7)
56
+ Size of each patch
57
+ num_hidden_layers (`int`, *optional*, defaults to 5):
58
+ Number of hidden layers in the Transformer encoder.
59
+ num_attention_heads (`int`, *optional*, defaults to 8):
60
+ Number of attention heads for each attention layer in the 3D MetaBlock.
61
+ mlp_expansion_ratio (`int`, *optional*, defaults to 4):
62
+ Ratio of size of the hidden dimensionality of an MLP to the dimensionality of its input.
63
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
64
+ The dropout probability for all fully connected layers in the embeddings and encoder.
65
+ patch_size (`int`, *optional*, defaults to 16):
66
+ The size (resolution) of each patch.
67
+ num_channels (`int`, *optional*, defaults to 3):
68
+ The number of input channels.
69
+ pool_size (`int`, *optional*, defaults to 3):
70
+ Kernel size of pooling layers.
71
+ downsample_patch_size (`int`, *optional*, defaults to 3):
72
+ The size of patches in downsampling layers.
73
+ downsample_stride (`int`, *optional*, defaults to 2):
74
+ The stride of convolution kernels in downsampling layers.
75
+ downsample_pad (`int`, *optional*, defaults to 1):
76
+ Padding in downsampling layers.
77
+ drop_path_rate (`int`, *optional*, defaults to 0):
78
+ Rate at which to increase dropout probability in DropPath.
79
+ num_meta3d_blocks (`int`, *optional*, defaults to 1):
80
+ The number of 3D MetaBlocks in the last stage.
81
+ distillation (`bool`, *optional*, defaults to `True`):
82
+ Whether to add a distillation head.
83
+ use_layer_scale (`bool`, *optional*, defaults to `True`):
84
+ Whether to scale outputs from token mixers.
85
+ layer_scale_init_value (`float`, *optional*, defaults to 1e-5):
86
+ Factor by which outputs from token mixers are scaled.
87
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
88
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
89
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
90
+ initializer_range (`float`, *optional*, defaults to 0.02):
91
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
92
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
93
+ The epsilon used by the layer normalization layers.
94
+ image_size (`int`, *optional*, defaults to `224`):
95
+ The size (resolution) of each image.
96
+
97
+ Example:
98
+
99
+ ```python
100
+ >>> from transformers import EfficientFormerConfig, EfficientFormerModel
101
+
102
+ >>> # Initializing a EfficientFormer efficientformer-l1 style configuration
103
+ >>> configuration = EfficientFormerConfig()
104
+
105
+ >>> # Initializing a EfficientFormerModel (with random weights) from the efficientformer-l3 style configuration
106
+ >>> model = EfficientFormerModel(configuration)
107
+
108
+ >>> # Accessing the model configuration
109
+ >>> configuration = model.config
110
+ ```"""
111
+
112
+ model_type = "efficientformer"
113
+
114
+ def __init__(
115
+ self,
116
+ depths: List[int] = [3, 2, 6, 4],
117
+ hidden_sizes: List[int] = [48, 96, 224, 448],
118
+ downsamples: List[bool] = [True, True, True, True],
119
+ dim: int = 448,
120
+ key_dim: int = 32,
121
+ attention_ratio: int = 4,
122
+ resolution: int = 7,
123
+ num_hidden_layers: int = 5,
124
+ num_attention_heads: int = 8,
125
+ mlp_expansion_ratio: int = 4,
126
+ hidden_dropout_prob: float = 0.0,
127
+ patch_size: int = 16,
128
+ num_channels: int = 3,
129
+ pool_size: int = 3,
130
+ downsample_patch_size: int = 3,
131
+ downsample_stride: int = 2,
132
+ downsample_pad: int = 1,
133
+ drop_path_rate: float = 0.0,
134
+ num_meta3d_blocks: int = 1,
135
+ distillation: bool = True,
136
+ use_layer_scale: bool = True,
137
+ layer_scale_init_value: float = 1e-5,
138
+ hidden_act: str = "gelu",
139
+ initializer_range: float = 0.02,
140
+ layer_norm_eps: float = 1e-12,
141
+ image_size: int = 224,
142
+ batch_norm_eps: float = 1e-05,
143
+ **kwargs,
144
+ ) -> None:
145
+ super().__init__(**kwargs)
146
+
147
+ self.hidden_act = hidden_act
148
+ self.hidden_dropout_prob = hidden_dropout_prob
149
+ self.hidden_sizes = hidden_sizes
150
+ self.num_hidden_layers = num_hidden_layers
151
+ self.num_attention_heads = num_attention_heads
152
+ self.initializer_range = initializer_range
153
+ self.layer_norm_eps = layer_norm_eps
154
+ self.patch_size = patch_size
155
+ self.num_channels = num_channels
156
+ self.depths = depths
157
+ self.mlp_expansion_ratio = mlp_expansion_ratio
158
+ self.downsamples = downsamples
159
+ self.dim = dim
160
+ self.key_dim = key_dim
161
+ self.attention_ratio = attention_ratio
162
+ self.resolution = resolution
163
+ self.pool_size = pool_size
164
+ self.downsample_patch_size = downsample_patch_size
165
+ self.downsample_stride = downsample_stride
166
+ self.downsample_pad = downsample_pad
167
+ self.drop_path_rate = drop_path_rate
168
+ self.num_meta3d_blocks = num_meta3d_blocks
169
+ self.distillation = distillation
170
+ self.use_layer_scale = use_layer_scale
171
+ self.layer_scale_init_value = layer_scale_init_value
172
+ self.image_size = image_size
173
+ self.batch_norm_eps = batch_norm_eps
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/__init__.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
17
+
18
+
19
+ _import_structure = {
20
+ "configuration_graphormer": ["GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "GraphormerConfig"],
21
+ }
22
+
23
+ try:
24
+ if not is_torch_available():
25
+ raise OptionalDependencyNotAvailable()
26
+ except OptionalDependencyNotAvailable:
27
+ pass
28
+ else:
29
+ _import_structure["modeling_graphormer"] = [
30
+ "GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
31
+ "GraphormerForGraphClassification",
32
+ "GraphormerModel",
33
+ "GraphormerPreTrainedModel",
34
+ ]
35
+
36
+
37
+ if TYPE_CHECKING:
38
+ from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
39
+
40
+ try:
41
+ if not is_torch_available():
42
+ raise OptionalDependencyNotAvailable()
43
+ except OptionalDependencyNotAvailable:
44
+ pass
45
+ else:
46
+ from .modeling_graphormer import (
47
+ GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
48
+ GraphormerForGraphClassification,
49
+ GraphormerModel,
50
+ GraphormerPreTrainedModel,
51
+ )
52
+
53
+
54
+ else:
55
+ import sys
56
+
57
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (985 Bytes). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/collating_graphormer.cpython-310.pyc ADDED
Binary file (4.74 kB). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/configuration_graphormer.cpython-310.pyc ADDED
Binary file (9.19 kB). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/algos_graphormer.pyx ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation and HuggingFace
2
+ # Licensed under the MIT License.
3
+
4
+ import cython
5
+
6
+ cimport numpy
7
+ from cython.parallel cimport parallel, prange
8
+
9
+ import numpy as np
10
+
11
+
12
+ # Reduce this number if matrices are too big for large graphs
13
+ UNREACHABLE_NODE_DISTANCE = 510
14
+
15
+ def floyd_warshall(adjacency_matrix):
16
+ """
17
+ Applies the Floyd-Warshall algorithm to the adjacency matrix, to compute the
18
+ shortest paths distance between all nodes, up to UNREACHABLE_NODE_DISTANCE.
19
+ """
20
+ (nrows, ncols) = adjacency_matrix.shape
21
+ assert nrows == ncols
22
+ cdef unsigned int n = nrows
23
+
24
+ adj_mat_copy = adjacency_matrix.astype(np.int32, order='C', casting='safe', copy=True)
25
+ assert adj_mat_copy.flags['C_CONTIGUOUS']
26
+ cdef numpy.ndarray[numpy.int32_t, ndim=2, mode='c'] M = adj_mat_copy
27
+ cdef numpy.ndarray[numpy.int32_t, ndim=2, mode='c'] path = -1 * np.ones([n, n], dtype=np.int32)
28
+
29
+ cdef unsigned int i, j, k
30
+ cdef numpy.int32_t M_ij, M_ik, cost_ikkj
31
+ cdef numpy.int32_t* M_ptr = &M[0,0]
32
+ cdef numpy.int32_t* M_i_ptr
33
+ cdef numpy.int32_t* M_k_ptr
34
+
35
+ # set unreachable nodes distance to UNREACHABLE_NODE_DISTANCE
36
+ for i in range(n):
37
+ for j in range(n):
38
+ if i == j:
39
+ M[i][j] = 0
40
+ elif M[i][j] == 0:
41
+ M[i][j] = UNREACHABLE_NODE_DISTANCE
42
+
43
+ # floyed algo
44
+ for k in range(n):
45
+ M_k_ptr = M_ptr + n*k
46
+ for i in range(n):
47
+ M_i_ptr = M_ptr + n*i
48
+ M_ik = M_i_ptr[k]
49
+ for j in range(n):
50
+ cost_ikkj = M_ik + M_k_ptr[j]
51
+ M_ij = M_i_ptr[j]
52
+ if M_ij > cost_ikkj:
53
+ M_i_ptr[j] = cost_ikkj
54
+ path[i][j] = k
55
+
56
+ # set unreachable path to UNREACHABLE_NODE_DISTANCE
57
+ for i in range(n):
58
+ for j in range(n):
59
+ if M[i][j] >= UNREACHABLE_NODE_DISTANCE:
60
+ path[i][j] = UNREACHABLE_NODE_DISTANCE
61
+ M[i][j] = UNREACHABLE_NODE_DISTANCE
62
+
63
+ return M, path
64
+
65
+
66
+ def get_all_edges(path, i, j):
67
+ """
68
+ Recursive function to compute all possible paths between two nodes from the graph adjacency matrix.
69
+ """
70
+ cdef int k = path[i][j]
71
+ if k == -1:
72
+ return []
73
+ else:
74
+ return get_all_edges(path, i, k) + [k] + get_all_edges(path, k, j)
75
+
76
+
77
+ def gen_edge_input(max_dist, path, edge_feat):
78
+ """
79
+ Generates the full edge feature and adjacency matrix.
80
+ Shape: num_nodes * num_nodes * max_distance_between_nodes * num_edge_features
81
+ Dim 1 is the input node, dim 2 the output node of the edge, dim 3 the depth of the edge, dim 4 the feature
82
+ """
83
+ (nrows, ncols) = path.shape
84
+ assert nrows == ncols
85
+ cdef unsigned int n = nrows
86
+ cdef unsigned int max_dist_copy = max_dist
87
+
88
+ path_copy = path.astype(long, order='C', casting='safe', copy=True)
89
+ edge_feat_copy = edge_feat.astype(long, order='C', casting='safe', copy=True)
90
+ assert path_copy.flags['C_CONTIGUOUS']
91
+ assert edge_feat_copy.flags['C_CONTIGUOUS']
92
+
93
+ cdef numpy.ndarray[numpy.int32_t, ndim=4, mode='c'] edge_fea_all = -1 * np.ones([n, n, max_dist_copy, edge_feat.shape[-1]], dtype=np.int32)
94
+ cdef unsigned int i, j, k, num_path, cur
95
+
96
+ for i in range(n):
97
+ for j in range(n):
98
+ if i == j:
99
+ continue
100
+ if path_copy[i][j] == UNREACHABLE_NODE_DISTANCE:
101
+ continue
102
+ path = [i] + get_all_edges(path_copy, i, j) + [j]
103
+ num_path = len(path) - 1
104
+ for k in range(num_path):
105
+ edge_fea_all[i, j, k, :] = edge_feat_copy[path[k], path[k+1], :]
106
+
107
+ return edge_fea_all
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/collating_graphormer.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation and HuggingFace
2
+ # Licensed under the MIT License.
3
+
4
+ from typing import Any, Dict, List, Mapping
5
+
6
+ import numpy as np
7
+ import torch
8
+
9
+ from ...utils import is_cython_available, requires_backends
10
+
11
+
12
+ if is_cython_available():
13
+ import pyximport
14
+
15
+ pyximport.install(setup_args={"include_dirs": np.get_include()})
16
+ from . import algos_graphormer # noqa E402
17
+
18
+
19
+ def convert_to_single_emb(x, offset: int = 512):
20
+ feature_num = x.shape[1] if len(x.shape) > 1 else 1
21
+ feature_offset = 1 + np.arange(0, feature_num * offset, offset, dtype=np.int64)
22
+ x = x + feature_offset
23
+ return x
24
+
25
+
26
+ def preprocess_item(item, keep_features=True):
27
+ requires_backends(preprocess_item, ["cython"])
28
+
29
+ if keep_features and "edge_attr" in item.keys(): # edge_attr
30
+ edge_attr = np.asarray(item["edge_attr"], dtype=np.int64)
31
+ else:
32
+ edge_attr = np.ones((len(item["edge_index"][0]), 1), dtype=np.int64) # same embedding for all
33
+
34
+ if keep_features and "node_feat" in item.keys(): # input_nodes
35
+ node_feature = np.asarray(item["node_feat"], dtype=np.int64)
36
+ else:
37
+ node_feature = np.ones((item["num_nodes"], 1), dtype=np.int64) # same embedding for all
38
+
39
+ edge_index = np.asarray(item["edge_index"], dtype=np.int64)
40
+
41
+ input_nodes = convert_to_single_emb(node_feature) + 1
42
+ num_nodes = item["num_nodes"]
43
+
44
+ if len(edge_attr.shape) == 1:
45
+ edge_attr = edge_attr[:, None]
46
+ attn_edge_type = np.zeros([num_nodes, num_nodes, edge_attr.shape[-1]], dtype=np.int64)
47
+ attn_edge_type[edge_index[0], edge_index[1]] = convert_to_single_emb(edge_attr) + 1
48
+
49
+ # node adj matrix [num_nodes, num_nodes] bool
50
+ adj = np.zeros([num_nodes, num_nodes], dtype=bool)
51
+ adj[edge_index[0], edge_index[1]] = True
52
+
53
+ shortest_path_result, path = algos_graphormer.floyd_warshall(adj)
54
+ max_dist = np.amax(shortest_path_result)
55
+
56
+ input_edges = algos_graphormer.gen_edge_input(max_dist, path, attn_edge_type)
57
+ attn_bias = np.zeros([num_nodes + 1, num_nodes + 1], dtype=np.single) # with graph token
58
+
59
+ # combine
60
+ item["input_nodes"] = input_nodes + 1 # we shift all indices by one for padding
61
+ item["attn_bias"] = attn_bias
62
+ item["attn_edge_type"] = attn_edge_type
63
+ item["spatial_pos"] = shortest_path_result.astype(np.int64) + 1 # we shift all indices by one for padding
64
+ item["in_degree"] = np.sum(adj, axis=1).reshape(-1) + 1 # we shift all indices by one for padding
65
+ item["out_degree"] = item["in_degree"] # for undirected graph
66
+ item["input_edges"] = input_edges + 1 # we shift all indices by one for padding
67
+ if "labels" not in item:
68
+ item["labels"] = item["y"]
69
+
70
+ return item
71
+
72
+
73
+ class GraphormerDataCollator:
74
+ def __init__(self, spatial_pos_max=20, on_the_fly_processing=False):
75
+ if not is_cython_available():
76
+ raise ImportError("Graphormer preprocessing needs Cython (pyximport)")
77
+
78
+ self.spatial_pos_max = spatial_pos_max
79
+ self.on_the_fly_processing = on_the_fly_processing
80
+
81
+ def __call__(self, features: List[dict]) -> Dict[str, Any]:
82
+ if self.on_the_fly_processing:
83
+ features = [preprocess_item(i) for i in features]
84
+
85
+ if not isinstance(features[0], Mapping):
86
+ features = [vars(f) for f in features]
87
+ batch = {}
88
+
89
+ max_node_num = max(len(i["input_nodes"]) for i in features)
90
+ node_feat_size = len(features[0]["input_nodes"][0])
91
+ edge_feat_size = len(features[0]["attn_edge_type"][0][0])
92
+ max_dist = max(len(i["input_edges"][0][0]) for i in features)
93
+ edge_input_size = len(features[0]["input_edges"][0][0][0])
94
+ batch_size = len(features)
95
+
96
+ batch["attn_bias"] = torch.zeros(batch_size, max_node_num + 1, max_node_num + 1, dtype=torch.float)
97
+ batch["attn_edge_type"] = torch.zeros(batch_size, max_node_num, max_node_num, edge_feat_size, dtype=torch.long)
98
+ batch["spatial_pos"] = torch.zeros(batch_size, max_node_num, max_node_num, dtype=torch.long)
99
+ batch["in_degree"] = torch.zeros(batch_size, max_node_num, dtype=torch.long)
100
+ batch["input_nodes"] = torch.zeros(batch_size, max_node_num, node_feat_size, dtype=torch.long)
101
+ batch["input_edges"] = torch.zeros(
102
+ batch_size, max_node_num, max_node_num, max_dist, edge_input_size, dtype=torch.long
103
+ )
104
+
105
+ for ix, f in enumerate(features):
106
+ for k in ["attn_bias", "attn_edge_type", "spatial_pos", "in_degree", "input_nodes", "input_edges"]:
107
+ f[k] = torch.tensor(f[k])
108
+
109
+ if len(f["attn_bias"][1:, 1:][f["spatial_pos"] >= self.spatial_pos_max]) > 0:
110
+ f["attn_bias"][1:, 1:][f["spatial_pos"] >= self.spatial_pos_max] = float("-inf")
111
+
112
+ batch["attn_bias"][ix, : f["attn_bias"].shape[0], : f["attn_bias"].shape[1]] = f["attn_bias"]
113
+ batch["attn_edge_type"][ix, : f["attn_edge_type"].shape[0], : f["attn_edge_type"].shape[1], :] = f[
114
+ "attn_edge_type"
115
+ ]
116
+ batch["spatial_pos"][ix, : f["spatial_pos"].shape[0], : f["spatial_pos"].shape[1]] = f["spatial_pos"]
117
+ batch["in_degree"][ix, : f["in_degree"].shape[0]] = f["in_degree"]
118
+ batch["input_nodes"][ix, : f["input_nodes"].shape[0], :] = f["input_nodes"]
119
+ batch["input_edges"][
120
+ ix, : f["input_edges"].shape[0], : f["input_edges"].shape[1], : f["input_edges"].shape[2], :
121
+ ] = f["input_edges"]
122
+
123
+ batch["out_degree"] = batch["in_degree"]
124
+
125
+ sample = features[0]["labels"]
126
+ if len(sample) == 1: # one task
127
+ if isinstance(sample[0], float): # regression
128
+ batch["labels"] = torch.from_numpy(np.concatenate([i["labels"] for i in features]))
129
+ else: # binary classification
130
+ batch["labels"] = torch.from_numpy(np.concatenate([i["labels"] for i in features]))
131
+ else: # multi task classification, left to float to keep the NaNs
132
+ batch["labels"] = torch.from_numpy(np.stack([i["labels"] for i in features], axis=0))
133
+
134
+ return batch
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/configuration_graphormer.py ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 Microsoft, clefourrier and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Graphormer model configuration"""
16
+
17
+ from ...configuration_utils import PretrainedConfig
18
+ from ...utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
24
+ # pcqm4mv1 now deprecated
25
+ "graphormer-base": "https://huggingface.co/clefourrier/graphormer-base-pcqm4mv2/resolve/main/config.json",
26
+ # See all Graphormer models at https://huggingface.co/models?filter=graphormer
27
+ }
28
+
29
+
30
+ class GraphormerConfig(PretrainedConfig):
31
+ r"""
32
+ This is the configuration class to store the configuration of a [`~GraphormerModel`]. It is used to instantiate an
33
+ Graphormer model according to the specified arguments, defining the model architecture. Instantiating a
34
+ configuration with the defaults will yield a similar configuration to that of the Graphormer
35
+ [graphormer-base-pcqm4mv1](https://huggingface.co/graphormer-base-pcqm4mv1) architecture.
36
+
37
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
+ documentation from [`PretrainedConfig`] for more information.
39
+
40
+
41
+ Args:
42
+ num_classes (`int`, *optional*, defaults to 1):
43
+ Number of target classes or labels, set to n for binary classification of n tasks.
44
+ num_atoms (`int`, *optional*, defaults to 512*9):
45
+ Number of node types in the graphs.
46
+ num_edges (`int`, *optional*, defaults to 512*3):
47
+ Number of edges types in the graph.
48
+ num_in_degree (`int`, *optional*, defaults to 512):
49
+ Number of in degrees types in the input graphs.
50
+ num_out_degree (`int`, *optional*, defaults to 512):
51
+ Number of out degrees types in the input graphs.
52
+ num_edge_dis (`int`, *optional*, defaults to 128):
53
+ Number of edge dis in the input graphs.
54
+ multi_hop_max_dist (`int`, *optional*, defaults to 20):
55
+ Maximum distance of multi hop edges between two nodes.
56
+ spatial_pos_max (`int`, *optional*, defaults to 1024):
57
+ Maximum distance between nodes in the graph attention bias matrices, used during preprocessing and
58
+ collation.
59
+ edge_type (`str`, *optional*, defaults to multihop):
60
+ Type of edge relation chosen.
61
+ max_nodes (`int`, *optional*, defaults to 512):
62
+ Maximum number of nodes which can be parsed for the input graphs.
63
+ share_input_output_embed (`bool`, *optional*, defaults to `False`):
64
+ Shares the embedding layer between encoder and decoder - careful, True is not implemented.
65
+ num_layers (`int`, *optional*, defaults to 12):
66
+ Number of layers.
67
+ embedding_dim (`int`, *optional*, defaults to 768):
68
+ Dimension of the embedding layer in encoder.
69
+ ffn_embedding_dim (`int`, *optional*, defaults to 768):
70
+ Dimension of the "intermediate" (often named feed-forward) layer in encoder.
71
+ num_attention_heads (`int`, *optional*, defaults to 32):
72
+ Number of attention heads in the encoder.
73
+ self_attention (`bool`, *optional*, defaults to `True`):
74
+ Model is self attentive (False not implemented).
75
+ activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
76
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
77
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
78
+ dropout (`float`, *optional*, defaults to 0.1):
79
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
80
+ attention_dropout (`float`, *optional*, defaults to 0.1):
81
+ The dropout probability for the attention weights.
82
+ activation_dropout (`float`, *optional*, defaults to 0.1):
83
+ The dropout probability for the activation of the linear transformer layer.
84
+ layerdrop (`float`, *optional*, defaults to 0.0):
85
+ The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
86
+ for more details.
87
+ bias (`bool`, *optional*, defaults to `True`):
88
+ Uses bias in the attention module - unsupported at the moment.
89
+ embed_scale(`float`, *optional*, defaults to None):
90
+ Scaling factor for the node embeddings.
91
+ num_trans_layers_to_freeze (`int`, *optional*, defaults to 0):
92
+ Number of transformer layers to freeze.
93
+ encoder_normalize_before (`bool`, *optional*, defaults to `False`):
94
+ Normalize features before encoding the graph.
95
+ pre_layernorm (`bool`, *optional*, defaults to `False`):
96
+ Apply layernorm before self attention and the feed forward network. Without this, post layernorm will be
97
+ used.
98
+ apply_graphormer_init (`bool`, *optional*, defaults to `False`):
99
+ Apply a custom graphormer initialisation to the model before training.
100
+ freeze_embeddings (`bool`, *optional*, defaults to `False`):
101
+ Freeze the embedding layer, or train it along the model.
102
+ encoder_normalize_before (`bool`, *optional*, defaults to `False`):
103
+ Apply the layer norm before each encoder block.
104
+ q_noise (`float`, *optional*, defaults to 0.0):
105
+ Amount of quantization noise (see "Training with Quantization Noise for Extreme Model Compression"). (For
106
+ more detail, see fairseq's documentation on quant_noise).
107
+ qn_block_size (`int`, *optional*, defaults to 8):
108
+ Size of the blocks for subsequent quantization with iPQ (see q_noise).
109
+ kdim (`int`, *optional*, defaults to None):
110
+ Dimension of the key in the attention, if different from the other values.
111
+ vdim (`int`, *optional*, defaults to None):
112
+ Dimension of the value in the attention, if different from the other values.
113
+ use_cache (`bool`, *optional*, defaults to `True`):
114
+ Whether or not the model should return the last key/values attentions (not used by all models).
115
+ traceable (`bool`, *optional*, defaults to `False`):
116
+ Changes return value of the encoder's inner_state to stacked tensors.
117
+
118
+ Example:
119
+ ```python
120
+ >>> from transformers import GraphormerForGraphClassification, GraphormerConfig
121
+
122
+ >>> # Initializing a Graphormer graphormer-base-pcqm4mv2 style configuration
123
+ >>> configuration = GraphormerConfig()
124
+
125
+ >>> # Initializing a model from the graphormer-base-pcqm4mv1 style configuration
126
+ >>> model = GraphormerForGraphClassification(configuration)
127
+
128
+ >>> # Accessing the model configuration
129
+ >>> configuration = model.config
130
+ ```
131
+ """
132
+
133
+ model_type = "graphormer"
134
+ keys_to_ignore_at_inference = ["past_key_values"]
135
+
136
+ def __init__(
137
+ self,
138
+ num_classes: int = 1,
139
+ num_atoms: int = 512 * 9,
140
+ num_edges: int = 512 * 3,
141
+ num_in_degree: int = 512,
142
+ num_out_degree: int = 512,
143
+ num_spatial: int = 512,
144
+ num_edge_dis: int = 128,
145
+ multi_hop_max_dist: int = 5, # sometimes is 20
146
+ spatial_pos_max: int = 1024,
147
+ edge_type: str = "multi_hop",
148
+ max_nodes: int = 512,
149
+ share_input_output_embed: bool = False,
150
+ num_hidden_layers: int = 12,
151
+ embedding_dim: int = 768,
152
+ ffn_embedding_dim: int = 768,
153
+ num_attention_heads: int = 32,
154
+ dropout: float = 0.1,
155
+ attention_dropout: float = 0.1,
156
+ activation_dropout: float = 0.1,
157
+ layerdrop: float = 0.0,
158
+ encoder_normalize_before: bool = False,
159
+ pre_layernorm: bool = False,
160
+ apply_graphormer_init: bool = False,
161
+ activation_fn: str = "gelu",
162
+ embed_scale: float = None,
163
+ freeze_embeddings: bool = False,
164
+ num_trans_layers_to_freeze: int = 0,
165
+ traceable: bool = False,
166
+ q_noise: float = 0.0,
167
+ qn_block_size: int = 8,
168
+ kdim: int = None,
169
+ vdim: int = None,
170
+ bias: bool = True,
171
+ self_attention: bool = True,
172
+ pad_token_id=0,
173
+ bos_token_id=1,
174
+ eos_token_id=2,
175
+ **kwargs,
176
+ ):
177
+ self.num_classes = num_classes
178
+ self.num_atoms = num_atoms
179
+ self.num_in_degree = num_in_degree
180
+ self.num_out_degree = num_out_degree
181
+ self.num_edges = num_edges
182
+ self.num_spatial = num_spatial
183
+ self.num_edge_dis = num_edge_dis
184
+ self.edge_type = edge_type
185
+ self.multi_hop_max_dist = multi_hop_max_dist
186
+ self.spatial_pos_max = spatial_pos_max
187
+ self.max_nodes = max_nodes
188
+ self.num_hidden_layers = num_hidden_layers
189
+ self.embedding_dim = embedding_dim
190
+ self.hidden_size = embedding_dim
191
+ self.ffn_embedding_dim = ffn_embedding_dim
192
+ self.num_attention_heads = num_attention_heads
193
+ self.dropout = dropout
194
+ self.attention_dropout = attention_dropout
195
+ self.activation_dropout = activation_dropout
196
+ self.layerdrop = layerdrop
197
+ self.encoder_normalize_before = encoder_normalize_before
198
+ self.pre_layernorm = pre_layernorm
199
+ self.apply_graphormer_init = apply_graphormer_init
200
+ self.activation_fn = activation_fn
201
+ self.embed_scale = embed_scale
202
+ self.freeze_embeddings = freeze_embeddings
203
+ self.num_trans_layers_to_freeze = num_trans_layers_to_freeze
204
+ self.share_input_output_embed = share_input_output_embed
205
+ self.traceable = traceable
206
+ self.q_noise = q_noise
207
+ self.qn_block_size = qn_block_size
208
+
209
+ # These parameters are here for future extensions
210
+ # atm, the model only supports self attention
211
+ self.kdim = kdim
212
+ self.vdim = vdim
213
+ self.self_attention = self_attention
214
+ self.bias = bias
215
+
216
+ super().__init__(
217
+ pad_token_id=pad_token_id,
218
+ bos_token_id=bos_token_id,
219
+ eos_token_id=eos_token_id,
220
+ **kwargs,
221
+ )
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/roc_bert/__pycache__/configuration_roc_bert.cpython-310.pyc ADDED
Binary file (7.61 kB). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.14 kB). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/__pycache__/configuration_vitmatte.cpython-310.pyc ADDED
Binary file (4.23 kB). View file
 
evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/__pycache__/convert_vitmatte_to_hf.cpython-310.pyc ADDED
Binary file (4.65 kB). View file