Datasets:
Dataset Viewer
Search is not available for this dataset
audio
audioduration (s) 0.2
688
|
---|
End of preview. Expand
in Data Studio
TTS Dataset - Peaky Blinders
This dataset contains audio segments with transcriptions from Peaky Blinders for Text-to-Speech training.
Dataset Generation
This dataset was generated using the TTS-Dataset-Maker pipeline, which provides:
- Silero VAD-based silence removal - Removes long silences while preserving natural speech gaps
- DeepFilterNet denoising - CPU-optimized audio denoising with gentle attenuation (15dB)
- AssemblyAI transcription - High-quality speech-to-text with speaker diarization
- Existing transcript support - Uses pre-existing transcripts to skip transcription
- Precise segmentation - Exact audio segment extraction matching transcript timings
- Unique file naming - Source-aware segment names to prevent collisions
Processing Pipeline
- Audio preprocessing with DeepFilterNet denoising (atten_lim_db=15.0 for gentle noise reduction)
- Voice Activity Detection using Silero VAD to remove long silences
- Speaker diarization and transcription (or loading existing transcripts)
- Precise audio segmentation based on transcript timestamps
- Quality validation and filtering of segments
Dataset Structure
audio/
: Audio files (WAV format, 44.1kHz)metadata.json
: Complete segment metadata for Label Studiotranscripts/
: Per-file transcript JSON files
Usage
import json
import os
# Load metadata
with open("metadata.json", 'r') as f:
data = json.load(f)
# Access segments
for segment in data:
print(f"Text: {segment['text']}")
print(f"Speaker: {segment['speaker_id']}")
print(f"Audio: {segment['audio_file']}")
print(f"Duration: {segment['duration']}s")
print(f"Quality Score: {segment['quality_score']}")
Dataset Details
- Language: English
- Format: WAV audio files (44.1kHz, 16-bit PCM)
- Speakers: Multiple speakers (A, B, C, D, E)
- Duration: Variable segment lengths (filtered for >1s duration)
- Quality: High-quality audio with quality scores and confidence metrics
- Total Segments: 356 segments
- Total Duration: ~89 minutes
- Processing: Denoised with DeepFilterNet, silence-removed with Silero VAD
Metadata Format
Each segment contains:
text
: Transcribed textspeaker_id
: Speaker identifieraudio_file
: Path to audio fileduration
: Duration in secondsquality_score
: Audio quality scoreconfidence_score
: Transcription confidencestart_time
: Start time in millisecondsend_time
: End time in millisecondssource_file
: Original source file path
License
MIT License
Citation
If you use this dataset, please cite: @dataset{peaky_blinders_tts, title={TTS Dataset - Peaky Blinders}, author={ahk-d}, year={2024}, url={https://huggingface.co/datasets/ahk-d/peaky-blinders-learning-purpose-only} }
Generation Tool
Generated using TTS-Dataset-Maker - A comprehensive pipeline for creating high-quality TTS datasets from audio files with automatic transcription, denoising, and segmentation.
- Downloads last month
- 324