Dataset Viewer
Auto-converted to Parquet
mels_S
float64
-0.34
70.3
lig_S
float64
-0.05
41
mels_N
float64
-0.44
219
hvac_N
float64
0
400
hvac_S
float64
0
350
Timestamp
stringlengths
16
29
1.2
0.2
7.5
37.400002
19.5
2018-01-01 01:00:00
1.3
0.2
6.8
37.5
19.889999
2018-01-01 01:15:00
1.1
0.2
7.4
38
19.299999
2018-01-01 01:30:00
1.2
0.2
7.7
37.200001
18.889999
2018-01-01 01:45:00
1.1
0.2
7.3
37.400002
24.700001
2018-01-01 02:00:00
1.15
0.2
7.4
37.200001
24.9
2018-01-01 02:15:00
1.2
0.2
7.5
38.200001
21.4
2018-01-01 02:30:00
1
0.2
8
38.200001
20.1
2018-01-01 02:45:00
1.1
0.2
6.9
37.400002
18.700001
2018-01-01 03:00:00
1.3
0.1
8.3
37.200001
18.889999
2018-01-01 03:15:00
1.2
0.15
7.9
37.900002
19.200001
2018-01-01 03:30:00
1.1
0.2
7.5
37.700001
18.889999
2018-01-01 03:45:00
1.4
0.2
7.2
37.200001
23.299999
2018-01-01 04:00:00
1.2
0.1
7.9
36.900002
23.9
2018-01-01 04:15:00
1.4
0.2
6.7
35.400002
20.700001
2018-01-01 04:30:00
1.3
0.2
7
37.200001
18.5
2018-01-01 04:45:00
1.2
0.2
6.95
36.200001
18.6
2018-01-01 05:00:00
1.1
0.2
6.9
37.5
19.200001
2018-01-01 05:15:00
1.2
0.2
6.3
37.790001
19
2018-01-01 05:30:00
1.166667
0.2
6.433333
37.599998
19.200001
2018-01-01 05:45:00
1.133333
0.2
6.566667
37.599998
19.5
2018-01-01 06:00:00
1.1
0.2
6.7
38.200001
24.700001
2018-01-01 06:15:00
1.1
0.2
6.7
38.290001
25.9
2018-01-01 06:30:00
1.1
0.2
6.7
38.290001
22.6
2018-01-01 06:45:00
1.1
0.2
6.7
36.700001
20.1
2018-01-01 07:00:00
1.2
0.1
7.2
37.200001
20.700001
2018-01-01 07:15:00
1.3
0.2
7.4
38.099998
20.389999
2018-01-01 07:30:00
1.2
0.2
6.9
37.700001
20.1
2018-01-01 07:45:00
1.1
0.2
7.5
38.5
19.7
2018-01-01 08:00:00
1.133333
0.2
7.266667
38.29
23
2018-01-01 08:15:00
1.166667
0.2
7.033333
36.6
24.3
2018-01-01 08:30:00
1.2
0.2
6.8
36.400002
20.700001
2018-01-01 08:45:00
1.2
0.2
6.8
36.7
18.89
2018-01-01 09:00:00
1.25
0.2
7.15
37
18.389999
2018-01-01 09:15:00
1.3
0.2
7.5
37.6
20.1
2018-01-01 09:30:00
1.4
0.2
7.3
37.900002
19.299999
2018-01-01 09:45:00
1.2
0.2
6.7
37.400002
19.6
2018-01-01 10:00:00
1.1
0.15
6.85
36.7
18.7
2018-01-01 10:15:00
1
0.1
7
35.790001
17.700001
2018-01-01 10:30:00
1.1
0.2
7.3
36.6
18.6
2018-01-01 10:45:00
0.8
0.2
7.3
37
24.700001
2018-01-01 11:00:00
0.95
0.2
6.95
36.700001
23.700001
2018-01-01 11:15:00
1.1
0.2
6.6
66.400002
20
2018-01-01 11:30:00
1.2
0.2
6.9
37.900002
20.1
2018-01-01 11:45:00
1.2
0.2
7.6
36.4
17.8
2018-01-01 12:00:00
1.2
0.2
6.7
35.700001
18.299999
2018-01-01 12:15:00
1.1
0.2
7.5
37
18.200001
2018-01-01 12:30:00
1.3
0.2
7.4
37.4
18.39
2018-01-01 12:45:00
1.2
0.2
7.45
36.599998
18.389999
2018-01-01 13:00:00
1.1
0.2
7.5
35.79
18.39
2018-01-01 13:15:00
1
0.2
7.4
36.1
19.39
2018-01-01 13:30:00
1.1
0.2
7.2
36.9
18.8
2018-01-01 13:45:00
1.2
0.2
7.1
36.790001
19.389999
2018-01-01 14:00:00
1.2
0.2
7
37
19.2
2018-01-01 14:15:00
1.3
0.3
8.4
36.099998
18.1
2018-01-01 14:30:00
1.15
0.2
7.2
35.5
18
2018-01-01 14:45:00
1
0.3
7.5
35.79
23
2018-01-01 15:00:00
1.2
0.3
8
36.5
23.700001
2018-01-01 15:15:00
1.15
0.3
7.55
36.5
23.799999
2018-01-01 15:30:00
1.1
0.3
7.1
36.700001
20.700001
2018-01-01 15:45:00
1
0.3
7.7
36.290001
19.5
2018-01-01 16:00:00
1.05
0.3
7.65
36.79
18.6
2018-01-01 16:15:00
1.1
0.3
7.6
37.200001
18.889999
2018-01-01 16:30:00
1.15
0.3
7.55
37.200001
19.299999
2018-01-01 16:45:00
1.2
0.3
7.5
35.900002
23
2018-01-01 17:00:00
1.2
0.3
8
36
23.1
2018-01-01 17:15:00
1.2
0.3
7.4
36.6
19.2
2018-01-01 17:30:00
1.2
0.3
6.8
36.700001
18.700001
2018-01-01 17:45:00
1.3
0.3
7.1
37.099998
18.889999
2018-01-01 18:00:00
1.4
0.2
7.9
37.099998
19.299999
2018-01-01 18:15:00
1.2
0.3
6.9
37
19.2
2018-01-01 18:30:00
1.233333
0.6
9.533333
37.9
18.1
2018-01-01 18:45:00
1.266667
0.9
12.166667
36.599998
23.700001
2018-01-01 19:00:00
1.3
1.2
14.8
37.400002
24
2018-01-01 19:15:00
1.4
1.15
15
36.1
18.39
2018-01-01 19:30:00
1.5
1.1
15.2
36.29
18.7
2018-01-01 19:45:00
1.3
0.1
14.2
36.5
18.8
2018-01-01 20:00:00
1.3
0.64
14.16
36.7
19.2
2018-01-01 20:15:00
1.3
1.18
14.12
37.099998
19.389999
2018-01-01 20:30:00
1.3
1.72
14.08
37.4
20.39
2018-01-01 20:45:00
1.3
2.26
14.04
38.290001
20
2018-01-01 21:00:00
1.3
2.8
14
37.2
25.3
2018-01-01 21:15:00
1.4
2.6
15.1
37.2
25.6
2018-01-01 21:30:00
1.45
2.1
14.55
35.599998
20.6
2018-01-01 21:45:00
1.5
1.6
14
36.7
17.89
2018-01-01 22:00:00
1.2
1.3
14.2
37.5
18.6
2018-01-01 22:15:00
1.2
1.4
14.2
38.790001
21.299999
2018-01-01 22:30:00
1.3
1.4
14.2
38.5
21.299999
2018-01-01 22:45:00
1.4
1.4
14.2
38.2
20.39
2018-01-01 23:00:00
1.3
1.4
13.9
37.1
18.5
2018-01-01 23:15:00
1.2
1.4
13.6
39.400002
25.200001
2018-01-01 23:30:00
1.3
1.4
14.2
38.900002
25.200001
2018-01-01 23:45:00
1.4
1.4
14.8
38.599998
21.5
2018-01-02 00:00:00
1.3
1.45
14.35
37.6
44.3
2018-01-02 00:15:00
1.2
1.5
13.9
38.2
19.6
2018-01-02 00:30:00
1.2
1.7
13.95
38.5
20.200001
2018-01-02 00:45:00
1.2
1.9
14
38.400002
19.799999
2018-01-02 01:00:00
1.2
1.5
13.3
37.790001
19.6
2018-01-02 01:15:00
1.2
0.1
14
38.400002
19.799999
2018-01-02 01:30:00
0.7
0.2
13.9
38.599998
25.5
2018-01-02 01:45:00
End of preview. Expand in Data Studio

EnergyBench Dataset

Overview

A open-source large-scale energy meter dataset designed to support a variety of energy analytics applications, including load profile analysis, and load forecasting. It compiles over 60 detailed electricity consumption datasets encompassing approximately 78,037 real buildings representing the global building stock, offering insights into the temporal and spatial variations in energy consumption. The buildings are classified into two categories: Commercial, which includes 2,916 buildings, and Residential, which includes 75,121 buildings, with a total of 65,000 building-days of time-series data. These buildings span diverse geographies, climatic zones, and operational profiles, providing a broad spectrum of usage patterns. Additional to the real buildings, it also includes synthetic and simulated buildings electricity consumption data.

All processed datasets contain hourly data, with some offering additional 15-minute and 30-minute resolution. To ensure efficient storage, we saved the datasets in Parquet format rather than CSV. For datasets involving a large number of buildings, we partitioned the data into multiple Parquet files.

Metadata of each datasets are provided in metadata.

Table 1: Summary of EnergBench dataset (Real Buildings)

Category # Datasets # Buildings # Days # Hourly Obs
Commercial 20 2,916 16,706 62M
Residential 47 75,121 43,852 1.2B

Table 2: Summary of EnergBench dataset (Synthetic and Simulated Buildings)

Category # Datasets # Buildings # Days # Hourly Obs
Commercial 1 207,559 365 ~1.7B
Residential 4 31M 966 ~718.7B

Dataset Details

Below tables shows the summary of the real buildings

Table 3: Details of real commercial buildings

Dataset Location # Buildings Year # Days # Hourly Obs Unit Resolution Type Metadata Weather Data
IBlend India 9 2013-17 1,604 296,357 kW 15min, 1H Mains Building type (Office, Hostels) can be extracted. NA
CLEMD Malaysia 1 2023-23 34 706 kW 15min, 1H Mains NA NA
CU-BEMS Thailand 1 2018-19 548 1,504,058 kW 15min, 1H Circuits NA NA
IPC-Commercial China 3 2016-21 2,191 132,519 kW 1H Mains NA Available
EWELD Southern China 386 2016-22 2,260 13,730,258 kWh 15min,1H Mains Industry type can be extracted. NA
SKC South Korea 10 2019 213 50,708 kW 15min, 1H Mains NA NA
IOT Sharjah 1 2024 171 2,163 kWh 1H Circuits NA Available
SEWA UAE 1 2020-21 730 17,489 kW 1H Mains NA Available
PSS South Africa 53 2022-23 364 454,774 kWh 30min, 1H Mains NA NA
Enernoc USA 100 2012-13 366 877,728 kWh 15min, 1H Mains Given - Industry type, Sub-industry type, Sq-ft, Lat-Long, Timezone and Timezone offset. NA
DGS USA 322 2016-18 1,064 5,333,851 NA 15min, 1H Mains Given - Status (Active/Deactive), Address, Cost per square foot, Description of Building. NA
Berkely USA 1 2018-21 1,096 126,159 kW 15min, 1H Circuits Given - Appliance belonging to building wings (North, South). NA
HB Phoenix, USA 1 2023 364 87,600 kWh 1H Circuits NA NA
BDG-2 USA 1,578 2016-17 730 25,212,579 kWh 1H Mains Given - Sq-m, Sq-ft, Lat, Long. Building-type, County can be extracted. NA
ULE Cambridge 1 2023-24 365 8,783 kWh 1H Mains NA Available
ECRG-Commercial Poland 10 2,017 7 1,690 kW 15min, 1H Mains NA Available
RKP Portugal 3 2019 98 1,319 kW 15min, 1H Mains NA NA
UCIE Portugal 370 2011-15 1,461 12,974,050 kWh 15min, 1H Mains NA NA
NEST-Commercial Switzerland 1 2019-23 1,460 34,798 kW 15min, 1H Mains Given - Description of Building. NA
UNICON Australia 64 2018-22 1,580 2,066,301 kW 15min, 1H Mains Given category of each building id like: library,teaching,office,sport,mixed use,residence,other and given built year of each building, capicity,grass floor area, room area Available
Total 2,916 16,706 62M

Table 4: Details of real residential buildings

Dataset Location # Buildings Year # Days # Hourly Obs Unit Resolution Type Metadata Weather Data
Prayas India 116 2018-20 911 1,536,409 kWh 15min, 1H Mains Given - Region, Household type, Deployment type. NA
CEEW India 84 2019-21 914 923,897 kWh 15min, 1H Mains Region of households can be extracted. NA
RSL Sri Lanka 2,903 2023-24 449 11,372,970 kW 15min, 1H Mains Given - Demographic data of households. NA
IPC-Residential China 1 2016-21 2,191 45,471 kW 1H Mains NA Available
SFAC China 1 2021-22 366 115,857 kWh 15min, 1H Circuits NA Available
ENERTALK South Korea 22 2016-17 242 39,923 kW 15min, 1H Mains NA NA
DCB Japan 1 2002-22 7,457 187,008 kW 1H Mains NA Available
SRSA South Africa 1 2016-18 662 13,966 kWh 1H Mains NA NA
MIHEC South Africa 1 2019-21 1,013 19,358 kWh 1H Mains NA Available
AMPD Canada 1 2012-14 730 17,520 kW 15min, 1H Mains NA NA
RHC Canada 1 2012-14 730 17,520 kWh 15min, 1H Mains NA Available
HUE British Columbia 28 2012-20 2,910 610,949 kWh 1H Mains Given - Housetype, Facing. NA
flEECe USA 6 2017-18 259 74,492 kWh 1H Mains Given - Province, Muncipality of Buildings. NA
MFRED USA 26 2019-20 365 227,622 kW 15min, 1H Mains NA NA
SMART-Star USA 114 2014-16 867 958,998 kW 15min, 1H Mains NA Available
Honda SMART Home USA 1 2020 365 8,760 kW 15min, 1H Mains NA NA
PES USA, Europe 10 2011-14 971 13,508 kWh 15min, 1H Mains NA NA
ECWM Mexico 1 2022-24 426 10,184 kW 1H Mains NA Available
WED Mexico 5 2022-23 378 45,096 kWh 15min, 1H Mains NA Available
REEDD Costa Rica 46 2018-19 384 12,058 kW 15min, 1H Circuits NA NA
REFIT UK 20 2013-15 661 231,970 kW 15min, 1H Circuits Given - Company of appliances. NA
METER UK 311 2016-19 1,065 8,928 kW 30min, 1H Mains NA NA
SAVE UK 4,691 2016-18 904 59,918,911 kWh 15min, 1H Mains NA NA
HES UK 16 2010-11 455 115,824 kWh 1H Mains NA NA
NDB UK 1 2022 229 3,282 kW 15min, 1H Circuits NA NA
LCL UK 5,561 2011-14 828 83,925,571 kWh 30min, 1H Mains NA NA
UKST Great Britain 14,319 2008-10 996 207,579,283 kWh 30min, 1H Mains NA NA
IRH Ireland 20 2020-21 366 174,398 kW 15min, 1H Mains NA Available
DESM France 3 2020-21 365 24,018 kW 15min, 1H Mains NA Available
IHEPC Sceaux 1 2006-10 1,441 34,168 kW 15min, 1H Mains NA NA
NEEA Portland 410 2018-20 855 2,922,289 kW 15min, 1H Mains Given - State of buildings. Available
GoiEner Spain 25,559 2014-22 2,775 632,313,933 kWh 1H Mains NA NA
Plegma Greece 13 2022-23 446 83,452 kW 15min, 1H Mains Given - Sociodemographic of houses. Available
DEDDIAG Germany 15 2016-20 1582 732,597 kW 15min, 1H Circuits Given - Descriptions of Appliances (Name, Category). NA
HSG Germany 11 2014-19 1602 220,775 kWh 15min, 1H Mains NA NA
SFHG Germany 38 2019-20 730 769,247 kW 1H Mains NA NA
GREEND Italy, Austria 7 2013-15 570 489,644 kWh 15min, 1H Circuits NA NA
iFlex Norway 4,429 2020-21 445 13,515,600 kWh 1H Mains NA Available
Norwegian Norway 1,136 2020-22 546 14,913,408 kWh 1H Mains Given - Region.
LEC Portugal 172 2022-23 485 1,507,699 kWh 15min, 1H Mains NA Available
ECCC Portugal 51 2019-20 365 447,984 kW 15min, 1H Mains NA Available
ECRG-Residential Poland 15 2017 7 2,535 kW 15min, 1H Mains NA Available
NESEMP Scotland 215 2010-12 720 1,575,682 kW 15min, 1H Mains NA NA
NEST-Residential Switzerland 2 2019-23 1,460 34715 kW 15min, 1H Mains Given - Description of Buildings. NA
DTH Slovak Republic 1,000 2016-17 395 9,453,051 kWh 15min, 1H Mains Given - ZIP. NA
SGSC Australia 13,735 2011-14 880 172,277,213 kWh 30min, 1H Mains Given - Customer type. NA
BTS Australia 1 2021 89 443,208 kW 15min, 1H Circuits NA NA
Total 75,121 43,852 1.2B

License

EnergyBench dataset is available for download with permissive CC-4.0 license.

Downloads last month
1,810

Models trained or fine-tuned on ai-iot/EnergyBench