The dataset viewer is not available for this dataset.
Error code: RetryableConfigNamesError
Exception: HfHubHTTPError
Message: 504 Server Error: Gateway Time-out for url: https://huggingface.co/api/datasets/alitourani/Popcorn_Dataset/tree/5aeef3f846e1c6e74dd19491c6ab1365c69abeb7?recursive=True&expand=False
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
config_names = get_dataset_config_names(
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/inspect.py", line 161, in get_dataset_config_names
dataset_module = dataset_module_factory(
^^^^^^^^^^^^^^^^^^^^^^^
File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/load.py", line 1031, in dataset_module_factory
raise e1 from None
File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/load.py", line 1004, in dataset_module_factory
).get_module()
^^^^^^^^^^^^
File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/load.py", line 631, in get_module
patterns = get_data_patterns(base_path, download_config=self.download_config)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/data_files.py", line 473, in get_data_patterns
return _get_data_files_patterns(resolver)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/data_files.py", line 284, in _get_data_files_patterns
data_files = pattern_resolver(pattern)
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/data_files.py", line 360, in resolve_pattern
for filepath, info in fs.glob(pattern, detail=True, **glob_kwargs).items()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/src/services/worker/.venv/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 521, in glob
return super().glob(path, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/src/services/worker/.venv/lib/python3.12/site-packages/fsspec/spec.py", line 604, in glob
allpaths = self.find(root, maxdepth=depth, withdirs=True, detail=True, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/src/services/worker/.venv/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 563, in find
out = self._ls_tree(path, recursive=True, refresh=refresh, revision=resolved_path.revision, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/src/services/worker/.venv/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 446, in _ls_tree
self._ls_tree(
File "/src/services/worker/.venv/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 463, in _ls_tree
for path_info in tree:
^^^^
File "/src/services/worker/.venv/lib/python3.12/site-packages/huggingface_hub/hf_api.py", line 3140, in list_repo_tree
for path_info in paginate(path=tree_url, headers=headers, params={"recursive": recursive, "expand": expand}):
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/src/services/worker/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_pagination.py", line 37, in paginate
hf_raise_for_status(r)
File "/src/services/worker/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_http.py", line 482, in hf_raise_for_status
raise _format(HfHubHTTPError, str(e), response) from e
huggingface_hub.errors.HfHubHTTPError: 504 Server Error: Gateway Time-out for url: https://huggingface.co/api/datasets/alitourani/Popcorn_Dataset/tree/5aeef3f846e1c6e74dd19491c6ab1365c69abeb7?recursive=True&expand=FalseNeed help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
πΏ Popcorn Dataset
This dataset contains visual features obtained from a wide range of movies (full-length), their extracted shots, and free trailers. It contains frame-level extracted visual features and aggregated version of them. Popcorn can be used in recommendation, information retrieval, classification, etc tasks.
π Table of Content
π How to Use?
Dataset Web-Page
Check the detailed information about the dataset in its web-page presented in the link in https://recsys-lab.github.io/popcorn_dataset/.
The Designed Framework for Benchmarking
In order to use, exploit, and generate this dataset, a framework titled Popcorn is implemented. You can read more about it on the GitHub repository.
π Dataset Stats
General
| Aspect | Value |
|---|---|
| Total number of movies | 274 |
| Average frames extracted per movie | 7,732 |
| Total number of frames/embeddings | 2,158,301 |
| Total number of full-movie frames/embeddings | 2,118,647 |
| Total number of trailer frames/embeddings | 39,654 |
Hybrid (combined with MovieLens 25M (link) with sampling 25%)
| Aspect | Value |
|---|---|
| Average movie ratings: | 3.88/5 |
| Total users (|U|): | 32,663 |
| Total items (|I|): | 255 |
| Total interactions (|R|): | 413,493 |
| |R| / |U|: | 12.66 |
| |R| / |I|: | 1621.54 |
| Sparsity: | 95.04% |
Required Capacity
| Data | Model | Total Files | Size on Disk |
|---|---|---|---|
| Full Movies | incp3 | 84,872 | 35.8 GB |
| Full Movies | vgg19 | 84,872 | 46.1 GB |
| Movie Shots | incp3 | 16,713 | 7.01 GB |
| Movie Shots | vgg19 | 24,598 | 13.3 GB |
| Trailers | incp3 | 1,725 | 681 MB |
| Trailers | vgg19 | 1,725 | 885 MB |
| Aggregated Full Movies | incp3 | 84,872 | 10 MB |
| Aggregated Full Movies | vgg19 | 84,872 | 19 MB |
| Aggregated Movie Shots | incp3 | 16,713 | 10 MB |
| Aggregated Movie Shots | vgg19 | 24,598 | 19 MB |
| Aggregated Trailers | incp3 | 1,725 | 10 MB |
| Aggregated Trailers | vgg19 | 1,725 | 19 MB |
| Total | - | 214,505 | ~103.9 GB |
ποΈ Files Structure
Level I. Primary Categories
The dataset contains six main folders and a stats.json file. The stats.json file contains the meta-data for the sources. Folders 'full_movies', 'movie_shots', and 'movie_trailers' keep the atomic visual features extracted from various sources, including full_movies for frame-level visual features extracted from full-length movie videos, movie_shots for the shot-level (i.e., important frames) visual features extracted from full-length movie videos, and movie_trailers for frame-level visual features extracted from movie trailers videos. Folders 'full_movies_agg', 'movie_shots_agg', and 'movie_trailers_agg' keep the aggregated (non-atomic) versions of the described items.
Level II. Visual Feature Extractors
Inside each of the mentioned folders, there are two folders titled incp3 and vgg19, referring to the feature extractor used to generate the visual features, which are Inception-v3 (GoogleNet) and VGG-19, respectively.
Level III. Contents (Movies & Trailers)
A: Atomic Features (folders full_movies, movie_shots, and movie_trailers)
Inside each feature extractor folder (e.g., full_movies/incp3 or movie_trailers/vgg19) you can find a set of folders with unique title (e.g., 0000000778) indicating the ID of the movie in MovieLens 25M (link) dataset. Accordingly, you have access to the visual features extracted from the movie 0000000778, using Inception-v3 and VGG-19 extractors, in full-length frame, full-length shot, and trailer levels.
B: Aggregated Features (folders full_movies_agg, movie_shots_agg, and movie_trailers_agg)
Inside each feature extractor folder (e.g., full_movies_agg/incp3 or movie_trailers_agg/vgg19) you can find a set of json files with unique title (e.g., 0000000778.json) indicating the ID of the movie in MovieLens 25M (link) dataset. Accordingly, you have access to the aggregated visual features extracted from the movie 0000000778 (and available on the atomic features folders), using Inception-v3 and VGG-19 extractors, in full-length frame, full-length shot, and trailer levels.
Level IV. Packets (Atomic Feature Folders Only)
To better organize visual features, each movie folder (e.g., 0000000778) has a set of packets named as packet0001.json to packet000N.json saved as json files. Each packet contains a set of objects with frameId and features attributes, keeping the equivalent frame-ID and visual feature, respectively. In general, every 25 object (frameId-features pair) form a packet, except the last packet that can have less objects.
The described structure is presented below in brief:
> [full_movies] ## visual features of frame-level full-length movie videos
> [incp3] ## visual features extracted using Inception-v3
> [movie-1]
> [packet-1]
> [packet-2]
...
> [packet-m]
> [movie-2]
...
> [movie-n]
> [vgg19] ## visual features extracted using VGG-19
> [movie-1]
...
> [movie-n]
> [movie_shots] ## visual features of shot-level full-length movie videos
> [incp3]
> ...
> [vgg19]
> ...
> [movie_trailers] ## visual features of frame-level movie trailer videos
> [incp3]
> ...
> [vgg19]
> ...
> [full_movies_agg] ## aggregated visual features of frame-level full-length movie videos
> [incp3] ## aggregated visual features extracted using Inception-v3
> [movie-1-json]
> [movie-2]
...
> [movie-n]
> [vgg19] ## aggregated visual features extracted using VGG-19
> [movie-1]
...
> [movie-n]
> [movie_shots_agg] ## aggregated visual features of shot-level full-length movie videos
> [movie_trailers_agg] ## aggregated visual features of frame-level movie trailer videos
stats.json File
The stats.json file placed in the root contains valuable information about the characteristics of each of the movies, fetched from MovieLens 25M (link).
[
{
"id": "0000000006",
"title": "Heat",
"year": 1995,
"genres": [
"Action",
"Crime",
"Thriller"
]
},
...
]
π Citation
@article{tourani2025rag,
title={RAG-VisualRec: An Open Resource for Vision-and Text-Enhanced Retrieval-Augmented Generation in Recommendation},
author={Tourani, Ali and Nazary, Fatemeh and Deldjoo, Yashar},
journal={arXiv preprint arXiv:2506.20817},
year={2025}
doi={https://doi.org/10.48550/arXiv.2506.20817}
}
@article{villammbench,
title={ViLLA-MMBench: A Unified Benchmark Suite for LLM-Augmented Multimodal Movie Recommendation},
author={TBD},
journal={TBD},
year={2025}
}
- Downloads last month
- 1,132