amanrangapur commited on
Commit
85bc1f6
·
1 Parent(s): a04d615

removed duplicates

Browse files
Files changed (1) hide show
  1. bench_data/old_scans_math.jsonl +0 -17
bench_data/old_scans_math.jsonl CHANGED
@@ -111,18 +111,12 @@
111
  {"pdf": "old_scans_math/3_pg199.pdf", "page": 1, "id": "3_pg199_equation_06", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n197/mode/2up", "math": "x^2 + y^2 - 1 = 0"}
112
  {"pdf": "old_scans_math/3_pg199.pdf", "page": 1, "id": "3_pg199_equation_07", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n197/mode/2up", "math": "y + 2\\lambda x = 0"}
113
  {"pdf": "old_scans_math/3_pg199.pdf", "page": 1, "id": "3_pg199_equation_08", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n197/mode/2up", "math": "x + 2\\lambda y = 0"}
114
- {"pdf": "old_scans_math/3_pg199.pdf", "page": 1, "id": "3_pg199_equation_09", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n197/mode/2up", "math": "x^2 + y^2 - 1 = 0"}
115
  {"pdf": "old_scans_math/3_pg199.pdf", "page": 1, "id": "3_pg199_equation_10", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n197/mode/2up", "math": "\\xi = \\frac{1}{2} \\sqrt{2}"}
116
  {"pdf": "old_scans_math/3_pg199.pdf", "page": 1, "id": "3_pg199_equation_11", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n197/mode/2up", "math": "\\eta = \\frac{1}{2} \\sqrt{2}"}
117
  {"pdf": "old_scans_math/3_pg199.pdf", "page": 1, "id": "3_pg199_equation_12", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n197/mode/2up", "math": "\\xi = -\\frac{1}{2} \\sqrt{2}"}
118
  {"pdf": "old_scans_math/3_pg199.pdf", "page": 1, "id": "3_pg199_equation_13", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n197/mode/2up", "math": "\\eta = -\\frac{1}{2} \\sqrt{2}"}
119
- {"pdf": "old_scans_math/3_pg199.pdf", "page": 1, "id": "3_pg199_equation_14", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n197/mode/2up", "math": "\\xi = \\frac{1}{2} \\sqrt{2}"}
120
- {"pdf": "old_scans_math/3_pg199.pdf", "page": 1, "id": "3_pg199_equation_15", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n197/mode/2up", "math": "\\eta = -\\frac{1}{2} \\sqrt{2}"}
121
- {"pdf": "old_scans_math/3_pg199.pdf", "page": 1, "id": "3_pg199_equation_16", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n197/mode/2up", "math": "\\xi = -\\frac{1}{2} \\sqrt{2}"}
122
- {"pdf": "old_scans_math/3_pg199.pdf", "page": 1, "id": "3_pg199_equation_17", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n197/mode/2up", "math": "\\eta = \\frac{1}{2} \\sqrt{2}"}
123
  {"pdf": "old_scans_math/3_pg199.pdf", "page": 1, "id": "3_pg199_equation_18", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n197/mode/2up", "math": "u = \\frac{1}{2}"}
124
  {"pdf": "old_scans_math/3_pg199.pdf", "page": 1, "id": "3_pg199_equation_19", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n197/mode/2up", "math": "u = -\\frac{1}{2}"}
125
- {"pdf": "old_scans_math/3_pg199.pdf", "page": 1, "id": "3_pg199_equation_20", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n197/mode/2up", "math": "u = xy"}
126
  {"pdf": "old_scans_math/3_pg634.pdf", "page": 1, "id": "3_pg634_equation_00", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n633/mode/2up", "math": "x^{2}=1"}
127
  {"pdf": "old_scans_math/3_pg634.pdf", "page": 1, "id": "3_pg634_equation_01", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n633/mode/2up", "math": "\\dot{x} x=0"}
128
  {"pdf": "old_scans_math/3_pg634.pdf", "page": 1, "id": "3_pg634_equation_02", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n633/mode/2up", "math": "(y-x) x=0"}
@@ -187,8 +181,6 @@
187
  {"pdf": "old_scans_math/3_pg204.pdf", "page": 1, "id": "3_pg204_equation_05", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n203/mode/2up", "math": "\\phi(x, y, z, t) = 0"}
188
  {"pdf": "old_scans_math/3_pg204.pdf", "page": 1, "id": "3_pg204_equation_06", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n203/mode/2up", "math": "\\psi(x, y, z, t) = 0"}
189
  {"pdf": "old_scans_math/3_pg204.pdf", "page": 1, "id": "3_pg204_equation_07", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n203/mode/2up", "math": "\\frac{\\partial(\\phi, \\psi)}{\\partial(z, t)}"}
190
- {"pdf": "old_scans_math/3_pg204.pdf", "page": 1, "id": "3_pg204_equation_08", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n203/mode/2up", "math": "f_{x} + \\lambda \\phi_{x} + \\mu \\psi_{x} = 0"}
191
- {"pdf": "old_scans_math/3_pg204.pdf", "page": 1, "id": "3_pg204_equation_09", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n203/mode/2up", "math": "f_{y} + \\lambda \\phi_{y} + \\mu \\psi_{y} = 0"}
192
  {"pdf": "old_scans_math/3_pg204.pdf", "page": 1, "id": "3_pg204_equation_10", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n203/mode/2up", "math": "f_{z} + \\lambda \\phi_{z} + \\mu \\psi_{z} = 0"}
193
  {"pdf": "old_scans_math/3_pg204.pdf", "page": 1, "id": "3_pg204_equation_11", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n203/mode/2up", "math": "f_{t} + \\lambda \\phi_{t} + \\mu \\psi_{t} = 0"}
194
  {"pdf": "old_scans_math/3_pg204.pdf", "page": 1, "id": "3_pg204_equation_12", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n203/mode/2up", "math": "\\frac{\\partial(\\phi, \\psi)}{\\partial(z, t)} \\neq 0"}
@@ -217,8 +209,6 @@
217
  {"pdf": "old_scans_math/3_pg148.pdf", "page": 1, "id": "3_pg148_equation_06", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n147/mode/2up", "math": "\\psi(x, y) = const"}
218
  {"pdf": "old_scans_math/3_pg148.pdf", "page": 1, "id": "3_pg148_equation_07", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n147/mode/2up", "math": "x = g(\\xi, \\eta)"}
219
  {"pdf": "old_scans_math/3_pg148.pdf", "page": 1, "id": "3_pg148_equation_08", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n147/mode/2up", "math": "y = h(\\xi, \\eta)"}
220
- {"pdf": "old_scans_math/3_pg148.pdf", "page": 1, "id": "3_pg148_equation_09", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n147/mode/2up", "math": "\\xi = \\phi(x, y)"}
221
- {"pdf": "old_scans_math/3_pg148.pdf", "page": 1, "id": "3_pg148_equation_10", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n147/mode/2up", "math": "\\eta = \\psi(x, y)"}
222
  {"pdf": "old_scans_math/3_pg251.pdf", "page": 1, "id": "3_pg251_equation_00", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n249/mode/2up", "math": "\\lim_{\\delta \\to 0} \\int_{\\psi_{1}(x)}^{\\overline{\\psi_{2}}(x)} f(x, y) dy = \\int_{\\psi_{1}(x)}^{\\psi_{2}(x)} f(x, y) dy"}
223
  {"pdf": "old_scans_math/3_pg251.pdf", "page": 1, "id": "3_pg251_equation_01", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n249/mode/2up", "math": "\\lim_{\\delta \\to 0} \\int_{x_{0}'}^{x_{1}'} dx \\int_{\\overline{\\psi_{1}}(x)}^{\\overline{\\psi_{2}}(x)} f(x, y) dx = \\int_{x_{0}}^{x_{1}} dx \\int_{\\psi_{1}(x)}^{\\psi_{2}(x)} f(x, y) dx"}
224
  {"pdf": "old_scans_math/3_pg251.pdf", "page": 1, "id": "3_pg251_equation_02", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n249/mode/2up", "math": "\\lim_{\\delta \\to 0} \\iint_{R} f(x, y) dS = \\iint_{R} f(x, y) dS"}
@@ -293,9 +283,7 @@
293
  {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_01", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "y = \\frac{a}{2} (e^{\\frac{x}{a}} + e^{-\\frac{x}{a}})"}
294
  {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_02", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "y = sin x"}
295
  {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_03", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "y^2 = 4 ax"}
296
- {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_04", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "y^2 = 4 ax"}
297
  {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_05", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "y = -2 a"}
298
- {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_06", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "y^2 = 4 ax"}
299
  {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_07", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "x = a (\\phi - sin \\phi)"}
300
  {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_08", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "y = a (1 - cos \\phi)"}
301
  {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_09", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "x = a cos^3 \\phi"}
@@ -305,7 +293,6 @@
305
  {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_13", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "x = -\\frac{a}{4}"}
306
  {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_14", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "x^2 + xy + y^2 = 3"}
307
  {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_15", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "y = x"}
308
- {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_16", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "x^{\\frac{1}{2}} + y^{\\frac{1}{2}} = a^{\\frac{1}{2}}"}
309
  {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_17", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "x + y = a"}
310
  {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_18", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "PQR \\cdot \\Delta x = X \\Delta x"}
311
  {"pdf": "old_scans_math/4_pg433.pdf", "page": 1, "id": "4_pg433_equation_00", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/416/mode/2up", "math": "\\begin{vmatrix} \na_1 \\pm mb_1 & b_1 & c_1 \\\\ \na_2 \\pm mb_2 & b_2 & c_2 \\\\ \na_3 \\pm mb_3 & b_3 & c_3 \n\\end{vmatrix} = \n\\begin{vmatrix} \na_1 & b_1 & c_1 \\\\ \na_2 & b_2 & c_2 \\\\ \na_3 & b_3 & c_3 \n\\end{vmatrix} \\pm \n\\begin{vmatrix} \nmb_1 & b_1 & c_1 \\\\ \nmb_2 & b_2 & c_2 \\\\ \nmb_3 & b_3 & c_3 \n\\end{vmatrix}\n"}
@@ -328,7 +315,6 @@
328
  {"pdf": "old_scans_math/4_pg451.pdf", "page": 1, "id": "4_pg451_equation_07", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/435/mode/2up", "math": "2 x^3 =8x^2"}
329
  {"pdf": "old_scans_math/4_pg451.pdf", "page": 1, "id": "4_pg451_equation_08", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/435/mode/2up", "math": "-x^2=-4x"}
330
  {"pdf": "old_scans_math/4_pg451.pdf", "page": 1, "id": "4_pg451_equation_09", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/435/mode/2up", "math": "-4x=-16"}
331
- {"pdf": "old_scans_math/4_pg451.pdf", "page": 1, "id": "4_pg451_equation_10", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/435/mode/2up", "math": "f(4) = - 14"}
332
  {"pdf": "old_scans_math/4_pg48.pdf", "page": 1, "id": "4_pg48_equation_00", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/32/mode/2up", "math": "a+[b-(a - b)]"}
333
  {"pdf": "old_scans_math/4_pg48.pdf", "page": 1, "id": "4_pg48_equation_01", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/32/mode/2up", "math": "a+b -[(b+d) - (a - b)]"}
334
  {"pdf": "old_scans_math/4_pg48.pdf", "page": 1, "id": "4_pg48_equation_02", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/32/mode/2up", "math": "m-(n-p) +[3m-\\overline{3n-6 m}]"}
@@ -408,10 +394,7 @@
408
  {"pdf": "old_scans_math/4_pg380.pdf", "page": 1, "id": "4_pg380_equation_17", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/364/mode/2up", "math": "f(x) = 5 x^{3}-2x-3"}
409
  {"pdf": "old_scans_math/4_pg380.pdf", "page": 1, "id": "4_pg380_equation_18", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/364/mode/2up", "math": "f(2)"}
410
  {"pdf": "old_scans_math/4_pg380.pdf", "page": 1, "id": "4_pg380_equation_19", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/364/mode/2up", "math": "f(a)"}
411
- {"pdf": "old_scans_math/4_pg380.pdf", "page": 1, "id": "4_pg380_equation_20", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/364/mode/2up", "math": "f(0)"}
412
  {"pdf": "old_scans_math/4_pg380.pdf", "page": 1, "id": "4_pg380_equation_21", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/364/mode/2up", "math": "f(x) = 4^{x}"}
413
- {"pdf": "old_scans_math/4_pg380.pdf", "page": 1, "id": "4_pg380_equation_22", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/364/mode/2up", "math": "f(0)"}
414
- {"pdf": "old_scans_math/4_pg380.pdf", "page": 1, "id": "4_pg380_equation_23", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/364/mode/2up", "math": "f(-1)"}
415
  {"pdf": "old_scans_math/4_pg380.pdf", "page": 1, "id": "4_pg380_equation_24", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/364/mode/2up", "math": "f(\\frac{1}{2})"}
416
  {"pdf": "old_scans_math/4_pg512.pdf", "page": 1, "id": "4_pg512_equation_00", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/496/mode/2up", "math": "x^3-3x-2=0"}
417
  {"pdf": "old_scans_math/4_pg512.pdf", "page": 1, "id": "4_pg512_equation_01", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/496/mode/2up", "math": "x^3-9x + 28 = 0"}
 
111
  {"pdf": "old_scans_math/3_pg199.pdf", "page": 1, "id": "3_pg199_equation_06", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n197/mode/2up", "math": "x^2 + y^2 - 1 = 0"}
112
  {"pdf": "old_scans_math/3_pg199.pdf", "page": 1, "id": "3_pg199_equation_07", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n197/mode/2up", "math": "y + 2\\lambda x = 0"}
113
  {"pdf": "old_scans_math/3_pg199.pdf", "page": 1, "id": "3_pg199_equation_08", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n197/mode/2up", "math": "x + 2\\lambda y = 0"}
 
114
  {"pdf": "old_scans_math/3_pg199.pdf", "page": 1, "id": "3_pg199_equation_10", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n197/mode/2up", "math": "\\xi = \\frac{1}{2} \\sqrt{2}"}
115
  {"pdf": "old_scans_math/3_pg199.pdf", "page": 1, "id": "3_pg199_equation_11", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n197/mode/2up", "math": "\\eta = \\frac{1}{2} \\sqrt{2}"}
116
  {"pdf": "old_scans_math/3_pg199.pdf", "page": 1, "id": "3_pg199_equation_12", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n197/mode/2up", "math": "\\xi = -\\frac{1}{2} \\sqrt{2}"}
117
  {"pdf": "old_scans_math/3_pg199.pdf", "page": 1, "id": "3_pg199_equation_13", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n197/mode/2up", "math": "\\eta = -\\frac{1}{2} \\sqrt{2}"}
 
 
 
 
118
  {"pdf": "old_scans_math/3_pg199.pdf", "page": 1, "id": "3_pg199_equation_18", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n197/mode/2up", "math": "u = \\frac{1}{2}"}
119
  {"pdf": "old_scans_math/3_pg199.pdf", "page": 1, "id": "3_pg199_equation_19", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n197/mode/2up", "math": "u = -\\frac{1}{2}"}
 
120
  {"pdf": "old_scans_math/3_pg634.pdf", "page": 1, "id": "3_pg634_equation_00", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n633/mode/2up", "math": "x^{2}=1"}
121
  {"pdf": "old_scans_math/3_pg634.pdf", "page": 1, "id": "3_pg634_equation_01", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n633/mode/2up", "math": "\\dot{x} x=0"}
122
  {"pdf": "old_scans_math/3_pg634.pdf", "page": 1, "id": "3_pg634_equation_02", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n633/mode/2up", "math": "(y-x) x=0"}
 
181
  {"pdf": "old_scans_math/3_pg204.pdf", "page": 1, "id": "3_pg204_equation_05", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n203/mode/2up", "math": "\\phi(x, y, z, t) = 0"}
182
  {"pdf": "old_scans_math/3_pg204.pdf", "page": 1, "id": "3_pg204_equation_06", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n203/mode/2up", "math": "\\psi(x, y, z, t) = 0"}
183
  {"pdf": "old_scans_math/3_pg204.pdf", "page": 1, "id": "3_pg204_equation_07", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n203/mode/2up", "math": "\\frac{\\partial(\\phi, \\psi)}{\\partial(z, t)}"}
 
 
184
  {"pdf": "old_scans_math/3_pg204.pdf", "page": 1, "id": "3_pg204_equation_10", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n203/mode/2up", "math": "f_{z} + \\lambda \\phi_{z} + \\mu \\psi_{z} = 0"}
185
  {"pdf": "old_scans_math/3_pg204.pdf", "page": 1, "id": "3_pg204_equation_11", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n203/mode/2up", "math": "f_{t} + \\lambda \\phi_{t} + \\mu \\psi_{t} = 0"}
186
  {"pdf": "old_scans_math/3_pg204.pdf", "page": 1, "id": "3_pg204_equation_12", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n203/mode/2up", "math": "\\frac{\\partial(\\phi, \\psi)}{\\partial(z, t)} \\neq 0"}
 
209
  {"pdf": "old_scans_math/3_pg148.pdf", "page": 1, "id": "3_pg148_equation_06", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n147/mode/2up", "math": "\\psi(x, y) = const"}
210
  {"pdf": "old_scans_math/3_pg148.pdf", "page": 1, "id": "3_pg148_equation_07", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n147/mode/2up", "math": "x = g(\\xi, \\eta)"}
211
  {"pdf": "old_scans_math/3_pg148.pdf", "page": 1, "id": "3_pg148_equation_08", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n147/mode/2up", "math": "y = h(\\xi, \\eta)"}
 
 
212
  {"pdf": "old_scans_math/3_pg251.pdf", "page": 1, "id": "3_pg251_equation_00", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n249/mode/2up", "math": "\\lim_{\\delta \\to 0} \\int_{\\psi_{1}(x)}^{\\overline{\\psi_{2}}(x)} f(x, y) dy = \\int_{\\psi_{1}(x)}^{\\psi_{2}(x)} f(x, y) dy"}
213
  {"pdf": "old_scans_math/3_pg251.pdf", "page": 1, "id": "3_pg251_equation_01", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n249/mode/2up", "math": "\\lim_{\\delta \\to 0} \\int_{x_{0}'}^{x_{1}'} dx \\int_{\\overline{\\psi_{1}}(x)}^{\\overline{\\psi_{2}}(x)} f(x, y) dx = \\int_{x_{0}}^{x_{1}} dx \\int_{\\psi_{1}(x)}^{\\psi_{2}(x)} f(x, y) dx"}
214
  {"pdf": "old_scans_math/3_pg251.pdf", "page": 1, "id": "3_pg251_equation_02", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.212519/page/n249/mode/2up", "math": "\\lim_{\\delta \\to 0} \\iint_{R} f(x, y) dS = \\iint_{R} f(x, y) dS"}
 
283
  {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_01", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "y = \\frac{a}{2} (e^{\\frac{x}{a}} + e^{-\\frac{x}{a}})"}
284
  {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_02", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "y = sin x"}
285
  {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_03", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "y^2 = 4 ax"}
 
286
  {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_05", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "y = -2 a"}
 
287
  {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_07", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "x = a (\\phi - sin \\phi)"}
288
  {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_08", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "y = a (1 - cos \\phi)"}
289
  {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_09", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "x = a cos^3 \\phi"}
 
293
  {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_13", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "x = -\\frac{a}{4}"}
294
  {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_14", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "x^2 + xy + y^2 = 3"}
295
  {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_15", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "y = x"}
 
296
  {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_17", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "x + y = a"}
297
  {"pdf": "old_scans_math/2_pg238.pdf", "page": 1, "id": "2_pg238_equation_18", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n237/mode/2up", "math": "PQR \\cdot \\Delta x = X \\Delta x"}
298
  {"pdf": "old_scans_math/4_pg433.pdf", "page": 1, "id": "4_pg433_equation_00", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/416/mode/2up", "math": "\\begin{vmatrix} \na_1 \\pm mb_1 & b_1 & c_1 \\\\ \na_2 \\pm mb_2 & b_2 & c_2 \\\\ \na_3 \\pm mb_3 & b_3 & c_3 \n\\end{vmatrix} = \n\\begin{vmatrix} \na_1 & b_1 & c_1 \\\\ \na_2 & b_2 & c_2 \\\\ \na_3 & b_3 & c_3 \n\\end{vmatrix} \\pm \n\\begin{vmatrix} \nmb_1 & b_1 & c_1 \\\\ \nmb_2 & b_2 & c_2 \\\\ \nmb_3 & b_3 & c_3 \n\\end{vmatrix}\n"}
 
315
  {"pdf": "old_scans_math/4_pg451.pdf", "page": 1, "id": "4_pg451_equation_07", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/435/mode/2up", "math": "2 x^3 =8x^2"}
316
  {"pdf": "old_scans_math/4_pg451.pdf", "page": 1, "id": "4_pg451_equation_08", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/435/mode/2up", "math": "-x^2=-4x"}
317
  {"pdf": "old_scans_math/4_pg451.pdf", "page": 1, "id": "4_pg451_equation_09", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/435/mode/2up", "math": "-4x=-16"}
 
318
  {"pdf": "old_scans_math/4_pg48.pdf", "page": 1, "id": "4_pg48_equation_00", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/32/mode/2up", "math": "a+[b-(a - b)]"}
319
  {"pdf": "old_scans_math/4_pg48.pdf", "page": 1, "id": "4_pg48_equation_01", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/32/mode/2up", "math": "a+b -[(b+d) - (a - b)]"}
320
  {"pdf": "old_scans_math/4_pg48.pdf", "page": 1, "id": "4_pg48_equation_02", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/32/mode/2up", "math": "m-(n-p) +[3m-\\overline{3n-6 m}]"}
 
394
  {"pdf": "old_scans_math/4_pg380.pdf", "page": 1, "id": "4_pg380_equation_17", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/364/mode/2up", "math": "f(x) = 5 x^{3}-2x-3"}
395
  {"pdf": "old_scans_math/4_pg380.pdf", "page": 1, "id": "4_pg380_equation_18", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/364/mode/2up", "math": "f(2)"}
396
  {"pdf": "old_scans_math/4_pg380.pdf", "page": 1, "id": "4_pg380_equation_19", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/364/mode/2up", "math": "f(a)"}
 
397
  {"pdf": "old_scans_math/4_pg380.pdf", "page": 1, "id": "4_pg380_equation_21", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/364/mode/2up", "math": "f(x) = 4^{x}"}
 
 
398
  {"pdf": "old_scans_math/4_pg380.pdf", "page": 1, "id": "4_pg380_equation_24", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/364/mode/2up", "math": "f(\\frac{1}{2})"}
399
  {"pdf": "old_scans_math/4_pg512.pdf", "page": 1, "id": "4_pg512_equation_00", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/496/mode/2up", "math": "x^3-3x-2=0"}
400
  {"pdf": "old_scans_math/4_pg512.pdf", "page": 1, "id": "4_pg512_equation_01", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/496/mode/2up", "math": "x^3-9x + 28 = 0"}