jakep-allenai commited on
Commit
8853ad7
·
1 Parent(s): fe21a26

Cleaning up a few cyrllic symbols in math tests

Browse files
Files changed (1) hide show
  1. bench_data/old_scans_math.jsonl +5 -5
bench_data/old_scans_math.jsonl CHANGED
@@ -10,7 +10,7 @@
10
  {"pdf": "old_scans_math/1_pg72.pdf", "page": 1, "id": "1_pg72_equation_09", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.222025/page/n71/mode/2up", "math": "\\therefore u=a^{2} \\int(a^{2}-x^{2})^{\\frac{n-2}{2}} d x-\\int x . x(a^{2}-x^{2})^{\\frac{n-2}{2}} d x"}
11
  {"pdf": "old_scans_math/1_pg72.pdf", "page": 1, "id": "1_pg72_equation_10", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.222025/page/n71/mode/2up", "math": "=a^{2} \\int(a^{2}-x^{2})^{\\frac{n-2}{2}} d x+\\frac{x(a^{2}-x^{2})^{\\frac{n}{2}}}{n}-\\frac{u}{n}"}
12
  {"pdf": "old_scans_math/1_pg72.pdf", "page": 1, "id": "1_pg72_equation_11", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.222025/page/n71/mode/2up", "math": "\\therefore u=\\frac{x(a^{2}-x^{2})^{\\frac{n}{2}}}{n+1}+\\frac{n a^{2}}{n+1} \\int(a^{2}-x^{2})^{\\frac{n-2}{2}} d x"}
13
- {"pdf": "old_scans_math/1_pg40.pdf", "page": 1, "id": "1_pg40_equation_02", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.222025/page/n39/mode/2up", "math": "(22.)\\int \\frac{x^2 dx}{x^4+1}1"}
14
  {"pdf": "old_scans_math/1_pg40.pdf", "page": 1, "id": "1_pg40_equation_03", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.222025/page/n39/mode/2up", "math": "(x^m+1) = (x^2-2x \\cos \\frac{\\pi}{m}+1)(x^2-2x \\cos \\frac{3\\pi}{m}+1)\\dots"}
15
  {"pdf": "old_scans_math/1_pg40.pdf", "page": 1, "id": "1_pg40_equation_04", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.222025/page/n39/mode/2up", "math": "(x^2-2x \\cos \\frac{m-1}{m}\\pi+1)"}
16
  {"pdf": "old_scans_math/1_pg40.pdf", "page": 1, "id": "1_pg40_equation_05", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.222025/page/n39/mode/2up", "math": "(x^4+1) = (x^2-2x \\cos \\frac{\\pi}{4}+1)(x^2-2x \\cos \\frac{3\\pi}{4}+1)"}
@@ -280,7 +280,7 @@
280
  {"pdf": "old_scans_math/2_pg349.pdf", "page": 1, "id": "2_pg349_equation_09", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n347/mode/2up", "math": "x dx + y dy = x dy - y dx"}
281
  {"pdf": "old_scans_math/2_pg349.pdf", "page": 1, "id": "2_pg349_equation_10", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n347/mode/2up", "math": "(sin x + y) dy + (y cos x - x^{2}) dx = 0"}
282
  {"pdf": "old_scans_math/2_pg349.pdf", "page": 1, "id": "2_pg349_equation_11", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n347/mode/2up", "math": "y (e^{x} + 2) dx + (e^{x} + 2x) dy = 0"}
283
- {"pdf": "old_scans_math/2_pg349.pdf", "page": 1, "id": "2_pg349_equation_12", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n347/mode/2up", "math": "(\u0445\u0443^{2} - x) dx + (y + xy) dy = 0"}
284
  {"pdf": "old_scans_math/2_pg349.pdf", "page": 1, "id": "2_pg349_equation_13", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n347/mode/2up", "math": "(1 + x^{2}) \\frac{dy}{dx} + xy = 2 y"}
285
  {"pdf": "old_scans_math/2_pg349.pdf", "page": 1, "id": "2_pg349_equation_14", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n347/mode/2up", "math": "x dy - y dx = \\sqrt{x^{2} + y^{2}} dx"}
286
  {"pdf": "old_scans_math/2_pg349.pdf", "page": 1, "id": "2_pg349_equation_15", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n347/mode/2up", "math": "(x - y) dx + x dy = 0"}
@@ -348,10 +348,10 @@
348
  {"pdf": "old_scans_math/4_pg48.pdf", "page": 1, "id": "4_pg48_equation_16", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/32/mode/2up", "math": "6m+\\{4m-[8n- (2m +4 n) - 22 n]-7 n\\}+[9m-(3n+ 4 m) +14 n]"}
349
  {"pdf": "old_scans_math/4_pg48.pdf", "page": 1, "id": "4_pg48_equation_17", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/32/mode/2up", "math": "1247 - [1722-\\{1722+(933 - 1247)\\}]"}
350
  {"pdf": "old_scans_math/4_pg48.pdf", "page": 1, "id": "4_pg48_equation_18", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/32/mode/2up", "math": "a +\\{(4 - b) + (a - 4) -\\overline{a-7}\\}"}
351
- {"pdf": "old_scans_math/4_pg48.pdf", "page": 1, "id": "4_pg48_equation_19", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/32/mode/2up", "math": "a -\\{(6-b)+(6\u0430 - 6) - (5\u0430 - 7)\\}"}
352
  {"pdf": "old_scans_math/4_pg48.pdf", "page": 1, "id": "4_pg48_equation_20", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/32/mode/2up", "math": "a + \\{a-(b - c)\\}"}
353
  {"pdf": "old_scans_math/4_pg48.pdf", "page": 1, "id": "4_pg48_equation_21", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/32/mode/2up", "math": "- a+[4a-(5 b + c)]"}
354
- {"pdf": "old_scans_math/4_pg48.pdf", "page": 1, "id": "4_pg48_equation_22", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/32/mode/2up", "math": "4a-[6b+(3\u0430-\u0441) - \\{5b-\\overline{c- a}\\}]"}
355
  {"pdf": "old_scans_math/4_pg48.pdf", "page": 1, "id": "4_pg48_equation_23", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/32/mode/2up", "math": "9a-[-7a+\\{56 - (a - b) + \\overline{a -b}\\}]"}
356
  {"pdf": "old_scans_math/4_pg396.pdf", "page": 1, "id": "4_pg396_equation_00", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/380/mode/2up", "math": "OA=a"}
357
  {"pdf": "old_scans_math/4_pg396.pdf", "page": 1, "id": "4_pg396_equation_01", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/380/mode/2up", "math": "a + bi"}
@@ -359,7 +359,7 @@
359
  {"pdf": "old_scans_math/4_pg396.pdf", "page": 1, "id": "4_pg396_equation_03", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/380/mode/2up", "math": "a + bi = OB"}
360
  {"pdf": "old_scans_math/4_pg396.pdf", "page": 1, "id": "4_pg396_equation_04", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/380/mode/2up", "math": "4 - 2 i = \\sqrt{4^2 + 2^2} = 2\\sqrt{5}"}
361
  {"pdf": "old_scans_math/4_pg396.pdf", "page": 1, "id": "4_pg396_equation_05", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/380/mode/2up", "math": "OA = OB = OC = OD = 1"}
362
- {"pdf": "old_scans_math/4_pg396.pdf", "page": 1, "id": "4_pg396_equation_06", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/380/mode/2up", "math": "\\angle AOB = \\angle BOC = \\angle COD = 60\u00b0"}
363
  {"pdf": "old_scans_math/4_pg396.pdf", "page": 1, "id": "4_pg396_equation_07", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/380/mode/2up", "math": "OB = x"}
364
  {"pdf": "old_scans_math/4_pg396.pdf", "page": 1, "id": "4_pg396_equation_08", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/380/mode/2up", "math": "x^3 = - 1"}
365
  {"pdf": "old_scans_math/4_pg396.pdf", "page": 1, "id": "4_pg396_equation_09", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/380/mode/2up", "math": "x=\\sqrt[3]{-1}"}
 
10
  {"pdf": "old_scans_math/1_pg72.pdf", "page": 1, "id": "1_pg72_equation_09", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.222025/page/n71/mode/2up", "math": "\\therefore u=a^{2} \\int(a^{2}-x^{2})^{\\frac{n-2}{2}} d x-\\int x . x(a^{2}-x^{2})^{\\frac{n-2}{2}} d x"}
11
  {"pdf": "old_scans_math/1_pg72.pdf", "page": 1, "id": "1_pg72_equation_10", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.222025/page/n71/mode/2up", "math": "=a^{2} \\int(a^{2}-x^{2})^{\\frac{n-2}{2}} d x+\\frac{x(a^{2}-x^{2})^{\\frac{n}{2}}}{n}-\\frac{u}{n}"}
12
  {"pdf": "old_scans_math/1_pg72.pdf", "page": 1, "id": "1_pg72_equation_11", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.222025/page/n71/mode/2up", "math": "\\therefore u=\\frac{x(a^{2}-x^{2})^{\\frac{n}{2}}}{n+1}+\\frac{n a^{2}}{n+1} \\int(a^{2}-x^{2})^{\\frac{n-2}{2}} d x"}
13
+ {"pdf": "old_scans_math/1_pg40.pdf", "page": 1, "id": "1_pg40_equation_02", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.222025/page/n39/mode/2up", "math": "\\int \\frac{x^2 dx}{x^4+1}1"}
14
  {"pdf": "old_scans_math/1_pg40.pdf", "page": 1, "id": "1_pg40_equation_03", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.222025/page/n39/mode/2up", "math": "(x^m+1) = (x^2-2x \\cos \\frac{\\pi}{m}+1)(x^2-2x \\cos \\frac{3\\pi}{m}+1)\\dots"}
15
  {"pdf": "old_scans_math/1_pg40.pdf", "page": 1, "id": "1_pg40_equation_04", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.222025/page/n39/mode/2up", "math": "(x^2-2x \\cos \\frac{m-1}{m}\\pi+1)"}
16
  {"pdf": "old_scans_math/1_pg40.pdf", "page": 1, "id": "1_pg40_equation_05", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/in.ernet.dli.2015.222025/page/n39/mode/2up", "math": "(x^4+1) = (x^2-2x \\cos \\frac{\\pi}{4}+1)(x^2-2x \\cos \\frac{3\\pi}{4}+1)"}
 
280
  {"pdf": "old_scans_math/2_pg349.pdf", "page": 1, "id": "2_pg349_equation_09", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n347/mode/2up", "math": "x dx + y dy = x dy - y dx"}
281
  {"pdf": "old_scans_math/2_pg349.pdf", "page": 1, "id": "2_pg349_equation_10", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n347/mode/2up", "math": "(sin x + y) dy + (y cos x - x^{2}) dx = 0"}
282
  {"pdf": "old_scans_math/2_pg349.pdf", "page": 1, "id": "2_pg349_equation_11", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n347/mode/2up", "math": "y (e^{x} + 2) dx + (e^{x} + 2x) dy = 0"}
283
+ {"pdf": "old_scans_math/2_pg349.pdf", "page": 1, "id": "2_pg349_equation_12", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n347/mode/2up", "math": "(xy^{2} - x) dx + (y + xy) dy = 0"}
284
  {"pdf": "old_scans_math/2_pg349.pdf", "page": 1, "id": "2_pg349_equation_13", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n347/mode/2up", "math": "(1 + x^{2}) \\frac{dy}{dx} + xy = 2 y"}
285
  {"pdf": "old_scans_math/2_pg349.pdf", "page": 1, "id": "2_pg349_equation_14", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n347/mode/2up", "math": "x dy - y dx = \\sqrt{x^{2} + y^{2}} dx"}
286
  {"pdf": "old_scans_math/2_pg349.pdf", "page": 1, "id": "2_pg349_equation_15", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/integralcalculus00philrich/page/n347/mode/2up", "math": "(x - y) dx + x dy = 0"}
 
348
  {"pdf": "old_scans_math/4_pg48.pdf", "page": 1, "id": "4_pg48_equation_16", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/32/mode/2up", "math": "6m+\\{4m-[8n- (2m +4 n) - 22 n]-7 n\\}+[9m-(3n+ 4 m) +14 n]"}
349
  {"pdf": "old_scans_math/4_pg48.pdf", "page": 1, "id": "4_pg48_equation_17", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/32/mode/2up", "math": "1247 - [1722-\\{1722+(933 - 1247)\\}]"}
350
  {"pdf": "old_scans_math/4_pg48.pdf", "page": 1, "id": "4_pg48_equation_18", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/32/mode/2up", "math": "a +\\{(4 - b) + (a - 4) -\\overline{a-7}\\}"}
351
+ {"pdf": "old_scans_math/4_pg48.pdf", "page": 1, "id": "4_pg48_equation_19", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/32/mode/2up", "math": "a -\\{(6-b)+(6a - 6) - (5a - 7)\\}"}
352
  {"pdf": "old_scans_math/4_pg48.pdf", "page": 1, "id": "4_pg48_equation_20", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/32/mode/2up", "math": "a + \\{a-(b - c)\\}"}
353
  {"pdf": "old_scans_math/4_pg48.pdf", "page": 1, "id": "4_pg48_equation_21", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/32/mode/2up", "math": "- a+[4a-(5 b + c)]"}
354
+ {"pdf": "old_scans_math/4_pg48.pdf", "page": 1, "id": "4_pg48_equation_22", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/32/mode/2up", "math": "4a-[6b+(3a-c) - \\{5b-\\overline{c- a}\\}]"}
355
  {"pdf": "old_scans_math/4_pg48.pdf", "page": 1, "id": "4_pg48_equation_23", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/32/mode/2up", "math": "9a-[-7a+\\{56 - (a - b) + \\overline{a -b}\\}]"}
356
  {"pdf": "old_scans_math/4_pg396.pdf", "page": 1, "id": "4_pg396_equation_00", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/380/mode/2up", "math": "OA=a"}
357
  {"pdf": "old_scans_math/4_pg396.pdf", "page": 1, "id": "4_pg396_equation_01", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/380/mode/2up", "math": "a + bi"}
 
359
  {"pdf": "old_scans_math/4_pg396.pdf", "page": 1, "id": "4_pg396_equation_03", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/380/mode/2up", "math": "a + bi = OB"}
360
  {"pdf": "old_scans_math/4_pg396.pdf", "page": 1, "id": "4_pg396_equation_04", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/380/mode/2up", "math": "4 - 2 i = \\sqrt{4^2 + 2^2} = 2\\sqrt{5}"}
361
  {"pdf": "old_scans_math/4_pg396.pdf", "page": 1, "id": "4_pg396_equation_05", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/380/mode/2up", "math": "OA = OB = OC = OD = 1"}
362
+ {"pdf": "old_scans_math/4_pg396.pdf", "page": 1, "id": "4_pg396_equation_06", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/380/mode/2up", "math": "\\angle AOB = \\angle BOC = \\angle COD = 60\\degree"}
363
  {"pdf": "old_scans_math/4_pg396.pdf", "page": 1, "id": "4_pg396_equation_07", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/380/mode/2up", "math": "OB = x"}
364
  {"pdf": "old_scans_math/4_pg396.pdf", "page": 1, "id": "4_pg396_equation_08", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/380/mode/2up", "math": "x^3 = - 1"}
365
  {"pdf": "old_scans_math/4_pg396.pdf", "page": 1, "id": "4_pg396_equation_09", "type": "math", "max_diffs": 0, "checked": "verified", "url": "https://archive.org/details/advancedalgebra00schu/page/380/mode/2up", "math": "x=\\sqrt[3]{-1}"}