Datasets:

Modalities:
Audio
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
file_id
stringlengths
69
69
audio
audioduration (s)
1.27
5.01
emotion
stringclasses
6 values
transcription
stringclasses
12 values
speaker_id
stringclasses
91 values
gender
stringclasses
2 values
age
stringclasses
38 values
dataset
stringclasses
1 value
language
stringclasses
1 value
license
stringclasses
1 value
3ca695d9bc369b82571ed75d367bad2ce33c3d06f8b1acb7bada4744aa9546ac.flac
anger
Don't forget a jacket.
crema-d_1001
male
51
CREMA-D
English
Open Database License
33c66f2e43a4762a592cb7cc2fc1673256c9bc20df4793ad9c8bacd5e7c75f4d.flac
anger
It's eleven o'clock.
crema-d_1001
male
51
CREMA-D
English
Open Database License
5e81a6dd31eaea283da818c6fa461c2f722ea69ef94088d0a5b962ec33dd43ae.flac
anger
It's eleven o'clock.
crema-d_1001
male
51
CREMA-D
English
Open Database License
ec27466a0e7841d0b03eda94779ca4cff155dedc14ef5d55e5aceac54d767481.flac
anger
It's eleven o'clock.
crema-d_1001
male
51
CREMA-D
English
Open Database License
a948060f122db61d68f88ddc309cb65584934502ce63b14d8b6b6f46abac2be1.flac
anger
I'm on my way to the meeting.
crema-d_1001
male
51
CREMA-D
English
Open Database License
adddba51a8738516b1321804d5451df840d3065c8440958578f742a530085d24.flac
anger
I think I have a doctor's appointment.
crema-d_1001
male
51
CREMA-D
English
Open Database License
73b7510ae513360f598f87be8bb8cfbb5a9f1abe5a26fecf38ada8d9defdcd1e.flac
anger
I think I've seen this before.
crema-d_1001
male
51
CREMA-D
English
Open Database License
ed62db0ab3df0e3fbcde61370c0f163c7eec917f7993b20a25fcae0c8cdca19b.flac
anger
I would like a new alarm clock.
crema-d_1001
male
51
CREMA-D
English
Open Database License
2a1ea5108db6e0d5e246c37d44ddff2bf8432d047f57e2288c0a430484f33dd4.flac
anger
I wonder what this is about.
crema-d_1001
male
51
CREMA-D
English
Open Database License
b8003676dd2674fb802d82cbdf18c57d12e0d8b0ed0a0c721b1d96ed13162dfb.flac
anger
Maybe tomorrow it will be cold.
crema-d_1001
male
51
CREMA-D
English
Open Database License
36d1c522458a7df2e9c80b4abad105920f52806341518fa5d01da01f18c29fc5.flac
anger
The airplane is almost full.
crema-d_1001
male
51
CREMA-D
English
Open Database License
5a452bbb7ed79ef38e35fad82d4e6c8f0688c6741ba4077c359cb07a748fa5e0.flac
anger
That is exactly what happened.
crema-d_1001
male
51
CREMA-D
English
Open Database License
58a83ad93160328a72b587b92064451d4e2afb133c8798cdb277d76e04e103f8.flac
anger
The surface is slick.
crema-d_1001
male
51
CREMA-D
English
Open Database License
5e6ee3af2b73418c8da460d481205ec390d0d5abcb485dd74a2db49a9b99776b.flac
anger
We'll stop in a couple of minutes.
crema-d_1001
male
51
CREMA-D
English
Open Database License
7882db368726cb44be340904dc7492db1c4bd892df68047e83ead0b64d8d0460.flac
disgust
Don't forget a jacket.
crema-d_1001
male
51
CREMA-D
English
Open Database License
d6c44c34b105da0f3ec2d5a60debf806771021d1d102bc6c84ecca0f743bf54d.flac
disgust
It's eleven o'clock.
crema-d_1001
male
51
CREMA-D
English
Open Database License
c9679ce132461461af8b30ca3ac061fc1a9ec0e0c23addefde3870a39cff6e30.flac
disgust
It's eleven o'clock.
crema-d_1001
male
51
CREMA-D
English
Open Database License
1f211b3209693dbca20a0b899809d83a9989e7c242b0038fa7bd3cdb76c041ad.flac
disgust
It's eleven o'clock.
crema-d_1001
male
51
CREMA-D
English
Open Database License
dcaa0beacea155d89b59bb4b49cf02a3238e27076827fad5a05009bb230155ae.flac
disgust
I'm on my way to the meeting.
crema-d_1001
male
51
CREMA-D
English
Open Database License
64dc1985dce53a5634a7fc4f174385301270c2f3f97d12cf95445a70fb9805d2.flac
disgust
I think I have a doctor's appointment.
crema-d_1001
male
51
CREMA-D
English
Open Database License
a60f538320da2942f2ff256ab2eb3c79c319365399d6c2ee7a6193c6e0cdb6e8.flac
disgust
I think I've seen this before.
crema-d_1001
male
51
CREMA-D
English
Open Database License
581a645092017ae47b26359285e7003932a5576fdf0e75cddee755712a4ffa04.flac
disgust
I would like a new alarm clock.
crema-d_1001
male
51
CREMA-D
English
Open Database License
5117595dfda48daa93572b6564ff487c8825cd521b31136c4fa63c899aeb6d64.flac
disgust
I wonder what this is about.
crema-d_1001
male
51
CREMA-D
English
Open Database License
e29a45db07c2627e46efa796d7c4e6bd2a474caa5109c62b41edf08da5ee53d8.flac
disgust
Maybe tomorrow it will be cold.
crema-d_1001
male
51
CREMA-D
English
Open Database License
329565f8b1ff3801a324cabc1dc4835e36c07bb94e88117b2e763602fd4244ec.flac
disgust
The airplane is almost full.
crema-d_1001
male
51
CREMA-D
English
Open Database License
749d8c07738f2ed0357762e3803fdc9f56d1e2ace89be0b8930cb79a037d3dab.flac
disgust
That is exactly what happened.
crema-d_1001
male
51
CREMA-D
English
Open Database License
4c6520502c5ec57294ce8f0bed2fe8180c31e665a7fc6ab687d3e1172fbbfc55.flac
disgust
The surface is slick.
crema-d_1001
male
51
CREMA-D
English
Open Database License
d5a185a2372e40c273afd780c7584aa778b9bc5614ffa9d488ddeab3cf75697a.flac
disgust
We'll stop in a couple of minutes.
crema-d_1001
male
51
CREMA-D
English
Open Database License
9bba2754a08cfc0a20d897ce162126d172995f4f24475901cf32680d5b5b819f.flac
fear
Don't forget a jacket.
crema-d_1001
male
51
CREMA-D
English
Open Database License
5e901e84abbd273ebd55bb4d97a89f1245500dbb779ea0d6eb3dc8f39dc09e9b.flac
fear
It's eleven o'clock.
crema-d_1001
male
51
CREMA-D
English
Open Database License
8078c44beedb10970ba5911d416ea730e87eff065f3b00ef762a4c68b39849a5.flac
fear
It's eleven o'clock.
crema-d_1001
male
51
CREMA-D
English
Open Database License
5e79a2621ab99ce5b0d64f3c3c68181a25c5bcd41031eaa1ab69dcb9a79bdf0f.flac
fear
It's eleven o'clock.
crema-d_1001
male
51
CREMA-D
English
Open Database License
6238277dae0761993c12942e94fe50c84aeb884ea3a783da5642122ff75a1071.flac
fear
I'm on my way to the meeting.
crema-d_1001
male
51
CREMA-D
English
Open Database License
fb940a89bb6e3877c978892b73e218f73eec57d0ca31de60bd59d30acc874353.flac
fear
I think I have a doctor's appointment.
crema-d_1001
male
51
CREMA-D
English
Open Database License
bcf592d4bcb88341afd9442ab166243c4b29d3d108512ec2c218c56a6d26754b.flac
fear
I think I've seen this before.
crema-d_1001
male
51
CREMA-D
English
Open Database License
9ecfc0978f6e05b88c6d457ccacff6fc5e87fb6ff3a9245681eb4d8668e42e05.flac
fear
I would like a new alarm clock.
crema-d_1001
male
51
CREMA-D
English
Open Database License
06dbf6bfcbe3bbec2867c6cd8fe53f60b84b33544c067d64cf04502caebcb1ef.flac
fear
I wonder what this is about.
crema-d_1001
male
51
CREMA-D
English
Open Database License
3f4558e2a81593294c738b5620cdc2b2171cd3389b8195379b8db7191611eb82.flac
fear
Maybe tomorrow it will be cold.
crema-d_1001
male
51
CREMA-D
English
Open Database License
e1f3a1fdb32ac14f770efdddde80949c320e1b308c16d021152f6358269bab13.flac
fear
The airplane is almost full.
crema-d_1001
male
51
CREMA-D
English
Open Database License
78b21847fd6cc12e67a3aedb85780ecda1fd1854f37dd11d0cee93dfa0d66560.flac
fear
That is exactly what happened.
crema-d_1001
male
51
CREMA-D
English
Open Database License
b065ea5f1756fac006b0956b34060578bc59520c10225b87d37e9de2f07ddec7.flac
fear
The surface is slick.
crema-d_1001
male
51
CREMA-D
English
Open Database License
f26d8b4ab61416d7c2f881b5c6b91ce0e7b281be81d0e93b672cc4f9aba84eda.flac
fear
We'll stop in a couple of minutes.
crema-d_1001
male
51
CREMA-D
English
Open Database License
b1f1ff92382be77068fa6f38b759760de7d0be1f6e0ee2ca20f353030d198c5d.flac
happiness
Don't forget a jacket.
crema-d_1001
male
51
CREMA-D
English
Open Database License
f26e75d8b3503b698c3a274322fef57d16ce2b3a141473d4d8ca4e062be79f2d.flac
happiness
It's eleven o'clock.
crema-d_1001
male
51
CREMA-D
English
Open Database License
00dd6ea7d3c3810bd3580976a82e9fe05d137a3410ba924e25d5d41254707fa7.flac
happiness
It's eleven o'clock.
crema-d_1001
male
51
CREMA-D
English
Open Database License
46f02a8ef40788e3961161d6ebb069515d3bd53347a7c0eed6f88d38caec8a8a.flac
happiness
It's eleven o'clock.
crema-d_1001
male
51
CREMA-D
English
Open Database License
59d196dafaf4629a006f6d364dbf4f943087378617f7204484b1117b9b3996f1.flac
happiness
I'm on my way to the meeting.
crema-d_1001
male
51
CREMA-D
English
Open Database License
296cfdf1d64d848c52f90a6acea004763251d52b9b32ad20beeb1f09ce397d76.flac
happiness
I think I have a doctor's appointment.
crema-d_1001
male
51
CREMA-D
English
Open Database License
473e36363c8703283c2489847a519eae65bf962c3f8f40be1ecd661b4c13d23c.flac
happiness
I think I've seen this before.
crema-d_1001
male
51
CREMA-D
English
Open Database License
e2ddc718a42c025f88d45a44b87b5baf78f487f62d2bcb573ce3e934c3b2235c.flac
happiness
I would like a new alarm clock.
crema-d_1001
male
51
CREMA-D
English
Open Database License
5cca065c71b725c79b690bf6af70eb89b724e43c56542ca71cbd3eb114bd77d8.flac
happiness
I wonder what this is about.
crema-d_1001
male
51
CREMA-D
English
Open Database License
dc5ee0418e30542edc47478532c72bf66203dc15835e092b7f6b6e5210f3109e.flac
happiness
Maybe tomorrow it will be cold.
crema-d_1001
male
51
CREMA-D
English
Open Database License
633488d07836e3565d391ddba4d8cdd5bde0cb7d193a69ee376cc45a993bf4b5.flac
happiness
The airplane is almost full.
crema-d_1001
male
51
CREMA-D
English
Open Database License
60627d1bbd806f584bc37a07dded5d0cf91b03680a8132dd49bd7b8163fa177c.flac
happiness
That is exactly what happened.
crema-d_1001
male
51
CREMA-D
English
Open Database License
f78fe388ce8bd5aa6e3413668747a3efefec547408866555cda2a6733f4a7638.flac
happiness
The surface is slick.
crema-d_1001
male
51
CREMA-D
English
Open Database License
77c93bc592b658770457114c9608e92d30ea794cec3d320cc94229871956492a.flac
happiness
We'll stop in a couple of minutes.
crema-d_1001
male
51
CREMA-D
English
Open Database License
665694349c3a93fcd37ae8fb82f9343a0b39550b5a98312197d1a28211fa6bf6.flac
neutral
Don't forget a jacket.
crema-d_1001
male
51
CREMA-D
English
Open Database License
e5777f47e5f05b466958f0c358c230cc8f313b44a68b193902e5cd9ae775e094.flac
neutral
It's eleven o'clock.
crema-d_1001
male
51
CREMA-D
English
Open Database License
e941ea7f31bf0ffe6fcb080ab842c8a111948c1bf93da054a927b5a118bd32c8.flac
neutral
I'm on my way to the meeting.
crema-d_1001
male
51
CREMA-D
English
Open Database License
36a007021c8b9ed74431ab7a3b2b56e7e9a2566ee78d758371302a0406162080.flac
neutral
I think I have a doctor's appointment.
crema-d_1001
male
51
CREMA-D
English
Open Database License
76197e4b12f143b2bfea400b6ed54b3db0a904e9a1fea28dde6c4f890e5f7ffa.flac
neutral
I think I've seen this before.
crema-d_1001
male
51
CREMA-D
English
Open Database License
c204ff4c6c63dc7bc72b964393f77bb1fa76db6f9bff8dd3a5508ae806aacba6.flac
neutral
I would like a new alarm clock.
crema-d_1001
male
51
CREMA-D
English
Open Database License
cf840e4dd7a0986abe6fedc05bfb039bbc47ee0ae69ec2c16aa74bd17e6ac879.flac
neutral
I wonder what this is about.
crema-d_1001
male
51
CREMA-D
English
Open Database License
1a184b697552c49d08e99c63bfee20717bfe297be586cb6615beba361d449e0c.flac
neutral
Maybe tomorrow it will be cold.
crema-d_1001
male
51
CREMA-D
English
Open Database License
bf08001baa742324e3ac4147818a0e9d84fbf5df6aae4478ffa8a623fd6aaf4e.flac
neutral
The airplane is almost full.
crema-d_1001
male
51
CREMA-D
English
Open Database License
aa01fbabcc4497c5b28882cec42c0ebda0f1f37d6edc62adf5d8468d0089a43b.flac
neutral
That is exactly what happened.
crema-d_1001
male
51
CREMA-D
English
Open Database License
71f571bb990424dafa111b93cf07aaf81b788e09e7d0ec2a29404c1a8f3a289d.flac
neutral
The surface is slick.
crema-d_1001
male
51
CREMA-D
English
Open Database License
e62f8e0bf15812e683218fb5a0be13eea4613cd52847a538e7894ca5ea8f30d8.flac
neutral
We'll stop in a couple of minutes.
crema-d_1001
male
51
CREMA-D
English
Open Database License
ce9b4cf619052097a28238db4b342f8a9904809eaedf0dbc91e6507fea641651.flac
sadness
Don't forget a jacket.
crema-d_1001
male
51
CREMA-D
English
Open Database License
42217b4c4b283aa6090b9f4d9d1407c6ef8e86104a5d582f78571af63ab688c2.flac
sadness
It's eleven o'clock.
crema-d_1001
male
51
CREMA-D
English
Open Database License
060ce1879ed1fe55b6ed78254e2df98567e81bc8d85b0d3484ee7fbcc3184e62.flac
sadness
It's eleven o'clock.
crema-d_1001
male
51
CREMA-D
English
Open Database License
f15a06d0c03f59f7c05ed128b31982d4d63911dcd848374c9d74b21b33904739.flac
sadness
It's eleven o'clock.
crema-d_1001
male
51
CREMA-D
English
Open Database License
abd43ca07eec65ad653dfdddfa96cff0b65dbf87e85a1da9a7c08a59e8de4fa6.flac
sadness
I'm on my way to the meeting.
crema-d_1001
male
51
CREMA-D
English
Open Database License
a9e847fe2b18328bc94729b68d0cd3354314b2e1d5ae9d2743356c1feaa49b61.flac
sadness
I think I have a doctor's appointment.
crema-d_1001
male
51
CREMA-D
English
Open Database License
0f7b70f423e81f0f8432986e3d7097d4088c930f16803b4141071361f7557b62.flac
sadness
I think I've seen this before.
crema-d_1001
male
51
CREMA-D
English
Open Database License
106db0c7377a46c871290e4debd86524a59dc2ca2e795eba2295f347d834fc95.flac
sadness
I would like a new alarm clock.
crema-d_1001
male
51
CREMA-D
English
Open Database License
35707001c8ece685028fa7e1a29328b097523e063b5f41c7ea777a7ce4f954c6.flac
sadness
I wonder what this is about.
crema-d_1001
male
51
CREMA-D
English
Open Database License
419fe485818f9d15dbe3f8ad944aa5f89c23b1a9c540eb54b01a1a33a874e922.flac
sadness
Maybe tomorrow it will be cold.
crema-d_1001
male
51
CREMA-D
English
Open Database License
226f43a09b42ca52c66a1e2c10e93f0097aa16348304e39c4c901e58307f7144.flac
sadness
The airplane is almost full.
crema-d_1001
male
51
CREMA-D
English
Open Database License
da00cf9501bab2f143d113e472fdc409dbdcaf988cd5c2709138903aed1c8cfe.flac
sadness
That is exactly what happened.
crema-d_1001
male
51
CREMA-D
English
Open Database License
bd6c39ad691391118d110ea8efb0726e81e596025652c5eeafd5676178466632.flac
sadness
The surface is slick.
crema-d_1001
male
51
CREMA-D
English
Open Database License
db5bf5f38c8cec0524e6fd1174d462795a5239b249b9ab45e3fc414c2150b6e1.flac
sadness
We'll stop in a couple of minutes.
crema-d_1001
male
51
CREMA-D
English
Open Database License
df44d646f873b22991b1c99f6ed589bb456524316340b3ecfb61cb60a3cdbd33.flac
anger
Don't forget a jacket.
crema-d_1002
female
21
CREMA-D
English
Open Database License
6aaaeaa4fdd6cce005a629b9f73357bb83ec12322f10195ea2cdd8320ba5bb73.flac
anger
It's eleven o'clock.
crema-d_1002
female
21
CREMA-D
English
Open Database License
d1c47da485684d9da59260d9c72abc93ccbeff669d6f7af90e62102137f5435d.flac
anger
It's eleven o'clock.
crema-d_1002
female
21
CREMA-D
English
Open Database License
be1afd89d45d57d61aeb76e6a52cd23829747ebcd173b1cb2e780ecb54e65e4c.flac
anger
It's eleven o'clock.
crema-d_1002
female
21
CREMA-D
English
Open Database License
d00de5fcded49d2791633bac4505a9a0b4b25f60839bafb29c1a19bcbe0bfc32.flac
anger
I'm on my way to the meeting.
crema-d_1002
female
21
CREMA-D
English
Open Database License
cef6534f43b48fb56d2b7a81dae3a06eb6e30f829e19f0d6809e5149c5d2983b.flac
anger
I think I have a doctor's appointment.
crema-d_1002
female
21
CREMA-D
English
Open Database License
3fbdfc714e0b79d58a897f846e363742bf7ea57c391b08ebe510c17611550ae3.flac
anger
I think I've seen this before.
crema-d_1002
female
21
CREMA-D
English
Open Database License
c53c6473739a977738c97c61d0da00c354ddaf39b4ba4afbeb6e982b58fb1890.flac
anger
I would like a new alarm clock.
crema-d_1002
female
21
CREMA-D
English
Open Database License
ce14d6a516abe4b5dcf7536ae49dc68844652c76b0feb7dbd8409e82335f85a8.flac
anger
I wonder what this is about.
crema-d_1002
female
21
CREMA-D
English
Open Database License
770b3f7fb9a1fc6061a6898827d702e30b3004d1e0e3ac73bb5de975364d13ee.flac
anger
Maybe tomorrow it will be cold.
crema-d_1002
female
21
CREMA-D
English
Open Database License
030107c8873ceebf76b9fe3512146fecde272c5c7eacfd4e8144ed80d767d020.flac
anger
The airplane is almost full.
crema-d_1002
female
21
CREMA-D
English
Open Database License
49c6ca660806a77f88259254dd3ca9ef5a83ff14d7d475ce2daaa5be1af22f5c.flac
anger
That is exactly what happened.
crema-d_1002
female
21
CREMA-D
English
Open Database License
c3490a6b49311b25b4224de2849a5a5d4edc19caaa707942fe2e33acbc75eb7d.flac
anger
The surface is slick.
crema-d_1002
female
21
CREMA-D
English
Open Database License
941250a9399c3718e4cbee5cb46b10c5b8f4e86ffd74649616ab54fa6b01f9db.flac
anger
We'll stop in a couple of minutes.
crema-d_1002
female
21
CREMA-D
English
Open Database License
fa4f04d338ea69286be729dc9c598d00569e1c2b56fa7eceb32ca563102bc44d.flac
disgust
Don't forget a jacket.
crema-d_1002
female
21
CREMA-D
English
Open Database License
744b1a0e0f1d524789efebf156ce1b7fab7b8327a4ee115bfb18c28a1991bc1d.flac
disgust
It's eleven o'clock.
crema-d_1002
female
21
CREMA-D
English
Open Database License
0b9331c2589667967cbb576b6ad4221836ba70fb0c9dfa779b28db1e011d6670.flac
disgust
It's eleven o'clock.
crema-d_1002
female
21
CREMA-D
English
Open Database License
cf2ad9027ccfc0b3e2bb76e328348333440447567e909d2b85a567717090107f.flac
disgust
It's eleven o'clock.
crema-d_1002
female
21
CREMA-D
English
Open Database License
End of preview. Expand in Data Studio

CAMEO: Collection of Multilingual Emotional Speech Corpora

Dataset Description

CAMEO is a curated collection of multilingual emotional speech datasets. It includes 13 distinct datasets with transcriptions, encompassing a total of 41,265 audio samples. The collection features audio in eight languages: Bengali, English, French, German, Italian, Polish, Russian, and Spanish.

Example Usage

The dataset can be loaded and processed using the datasets library:

from datasets import load_dataset

dataset = load_dataset("amu-cai/CAMEO", split=split)

Supported Tasks

  • Audio Classification: Primarily designed for speech emotion recognition, each recording is annotated with a label corresponding to an emotional state. Additionally, most samples include speaker identifier and gender, enabling its use in various audio classification tasks.

  • Automatic Speech Recognition (ASR): With orthographic transcriptions for each recording, this dataset is a valuable resource for ASR tasks.

  • Text-to-Speech (TTS): The dataset's emotional audio recordings, complemented by transcriptions, are beneficial for developing TTS systems that aim to produce emotionally expressive speech.

Languages

CAMEO contains audio and transcription in eight languages: Bengali, English, French, German, Italian, Polish, Russian, Spanish.

Data Structure

Data Instances

{
  'file_id': 'e80234c75eb3f827a0d85bb7737a107a425be1dd5d3cf5c59320b9981109b698.flac', 
  'audio': {
    'path': None, 
    'array': array([-3.05175781e-05,  3.05175781e-05, -9.15527344e-05, ...,
       -1.49536133e-03, -1.49536133e-03, -8.85009766e-04]), 
    'sampling_rate': 16000
  }, 
  'emotion': 'neutral', 
  'transcription': 'Cinq pumas fiers et passionnés', 
  'speaker_id': 'cafe_12', 
  'gender': 'female', 
  'age': '37', 
  'dataset': 'CaFE', 
  'language': 'French', 
  'license': 'CC BY-NC-SA 4.0'
}

Data Fields

  • file_id (str): A unique identifier of the audio sample.
  • audio (dict): A dictionary containing the file path to the audio sample, the raw waveform, and the sampling rate (16 kHz).
  • emotion (str): A label indicating the expressed emotional state.
  • transcription (str): The orthographic transcription of the utterance.
  • speaker_id (str): A unique identifier of the speaker.
  • gender (str): The gender of the speaker.
  • age (str): The age of the speaker.
  • dataset (str): The name of the dataset from which the sample was taken.
  • language (str): The primary language spoken in the audio sample.
  • license (str): The license under which the original dataset is distributed.

Data Splits

Since all corpora are already publicly available, there is a risk of contamination. Because of that, CAMEO is not divided into train and test splits.

Split Dataset Language Samples Emotions
cafe CaFE French 936 anger, disgust, fear, happiness, neutral, sadness, surprise
crema_d CREMA-D English 7442 anger, disgust, fear, happiness, neutral, sadness
emns EMNS English 1205 anger, disgust, excitement, happiness, neutral, sadness, sarcasm, surprise
emozionalmente Emozionalmente Italian 6902 anger, disgust, fear, happiness, neutral, sadness, surprise
enterface eNTERFACE English 1257 anger, disgust, fear, happiness, sadness, surprise
jl_corpus JL-Corpus English 2400 anger, anxiety, apology, assertiveness, concern, encouragement, excitement, happiness, neutral, sadness
mesd MESD Spanish 862 anger, disgust, fear, happiness, neutral, sadness
nemo nEMO Polish 4481 anger, fear, happiness, neutral, sadness, surprise
oreau Oréau French 502 anger, disgust, fear, happiness, neutral, sadness, surprise
pavoque PAVOQUE German 5442 anger, happiness, neutral, poker, sadness
ravdess RAVDESS English 1440 anger, calm, disgust, fear, happiness, neutral, sadness, surprise
resd RESD Russian 1396 anger, disgust, enthusiasm, fear, happiness, neutral, sadness
subesco SUBESCO Bengali 7000 anger, disgust, fear, happiness, neutral, sadness, surprise

Dataset Creation

The inclusion of a dataset in the collection was determined by the following criteria:

  • The corpus is publicly available and distributed under a license that allows free use for non-commercial purposes and creation of derivative works.
  • The dataset includes transcription of the speech, either directly within the dataset, associated publications or documentation.
  • The annotations corresponding to basic emotional states are included and consistent with commonly used naming conventions.
  • The availability of speaker-related metadata (e.g., speaker identifiers or demographic information) was considered valuable, but not mandatory.

Evaluation

To evaluate your model according to the methodology used in our paper, you can use the following code.

import os
import string

from Levenshtein import ratio
from datasets import load_dataset, Dataset, concatenate_datasets
from sklearn.metrics import classification_report, f1_score, accuracy_score

# 🔧 Change this path to where your JSONL prediction files are stored
outputs_path = "./"

_DATASETS = [
    "cafe", "crema_d", "emns", "emozionalmente", "enterface",
    "jl_Corpus", "mesd", "nemo", "oreau", "pavoque",
    "ravdess", "resd", "subesco",
]

THRESHOLD = 0.57


def get_expected(split: str) -> tuple[set, str, dict]:
    """Load expected emotion labels and language metadata from CAMEO dataset."""
    ds = load_dataset("amu-cai/CAMEO", split=split)
    return set(ds["emotion"]), ds["language"][0], dict(zip(ds["file_id"], ds["emotion"]))


def process_outputs(dataset_name: str) -> tuple[Dataset, set, str]:
    """Clean and correct predictions, returning a Dataset with fixed predictions."""
    outputs = Dataset.from_json(os.path.join(outputs_path, f"{dataset_name}.jsonl"))
    options, language, expected = get_expected(dataset_name)

    def preprocess(x):
        return {
            "predicted": x["predicted"].translate(str.maketrans('', '', string.punctuation)).lower().strip(),
            "expected": expected.get(x["file_id"]),
        }

    outputs = outputs.map(preprocess)

    def fix_prediction(x):
        if x["predicted"] in options:
            x["fixed_prediction"] = x["predicted"]
        else:
            predicted_words = x["predicted"].split()
            label_scores = {
                label: sum(r for r in (ratio(label, word) for word in predicted_words) if r > THRESHOLD)
                for label in options
            }
            x["fixed_prediction"] = max(label_scores, key=label_scores.get)
        return x

    outputs = outputs.map(fix_prediction)
    return outputs, options, language


def calculate_metrics(outputs: Dataset, labels: set) -> dict:
    """Compute classification metrics."""
    y_true = outputs["expected"]
    y_pred = outputs["fixed_prediction"]

    return {
        "f1_macro": f1_score(y_true, y_pred, average="macro"),
        "weighted_f1": f1_score(y_true, y_pred, average="weighted"),
        "accuracy": accuracy_score(y_true, y_pred),
        "metrics_per_label": classification_report(
            y_true, y_pred, target_names=sorted(labels), output_dict=True
        ),
    }


# 🧮 Main Evaluation Loop
results = []
outputs_per_language = {}
full_outputs, full_labels = None, set()

for dataset in _DATASETS:
    jsonl_path = os.path.join(outputs_path, f"{dataset}.jsonl")

    if not os.path.isfile(jsonl_path):
        print(f"Jsonl file for {dataset} not found.")
        continue

    outputs, labels, language = process_outputs(dataset)
    metrics = calculate_metrics(outputs, labels)
    results.append({"language": language, "dataset": dataset, **metrics})

    if language not in outputs_per_language:
        outputs_per_language[language] = {"labels": labels, "outputs": outputs}
    else:
        outputs_per_language[language]["labels"] |= labels
        outputs_per_language[language]["outputs"] = concatenate_datasets([
            outputs_per_language[language]["outputs"], outputs
        ])

    full_outputs = outputs if full_outputs is None else concatenate_datasets([full_outputs, outputs])
    full_labels |= labels

# 🔤 Per-language evaluation
for language, data in outputs_per_language.items():
    metrics = calculate_metrics(data["outputs"], data["labels"])
    results.append({"language": language, "dataset": "all", **metrics})

# 🌍 Global evaluation
if full_outputs is not None:
    metrics = calculate_metrics(full_outputs, full_labels)
    results.append({"language": "all", "dataset": "all", **metrics})

# 💾 Save results
Dataset.from_list(results).to_json(os.path.join(outputs_path, "results.jsonl"))

Additional Information

Licensing Information

The CAMEO collection is available under CC BY-NC-SA 4.0 license.

The datasets used for the creation of CAMEO have specific licensing terms that must be understood and agreed beforeuse. The following licenses apply to the corpora:

  • CC BY-NC-SA 4.0 applies to CaFE, nEMO, PAVOQUE, RAVDESS,
  • Open Database License applies to CREMA-D,
  • Apache 2.0 applies to EMNS,
  • CC BY 4.0 applies to Emozionalmente, MESD, Oréau, SUBESCO,
  • MIT applies to eNTERFACE, RESD,
  • CC0: Public Domain applies to JL-Corpus.

Additionally, the licence of each dataset is described in the license field in the metadata.

Contributions

Thanks to @iwonachristop and @MaciejCzajka for adding this dataset.

Citation Information

You can access the CAMEO paper at arXiv. When referencing the CAMEO collection, please cite the paper as follows, along with the original datasets incuded in the corpus.

@mis{cameo}

@inproceedings{cafe,
  author = {Gournay, Philippe and Lahaie, Olivier and Lefebvre, Roch},
  title = {{A Canadian French Emotional Speech Dataset}},
  year = {2018},
  isbn = {9781450351928},
  publisher = {Association for Computing Machinery},
  address = {New York, NY, USA},
  url = {https://doi.org/10.1145/3204949.3208121},
  doi = {10.1145/3204949.3208121},
  booktitle = {Proceedings of the 9th ACM Multimedia Systems Conference},
  pages = {399–402},
  numpages = {4},
  keywords = {canadian french, digital recording, emotional speech, speech dataset},
  location = {Amsterdam, Netherlands},
  series = {MMSys '18}
}

@article{cremad,
  author = {Cao, Houwei and Cooper, David and Keutmann, Michael and Gur, Ruben and Nenkova, Ani and Verma, Ragini},
  year = {2014},
  month = {10},
  pages = {377-390},
  title = {{CREMA-D: Crowd-sourced emotional multimodal actors dataset}},
  volume = {5},
  journal = {IEEE transactions on affective computing},
  doi = {10.1109/TAFFC.2014.2336244}
}

@misc{emns,
  title={{EMNS /Imz/ Corpus: An emotive single-speaker dataset for narrative storytelling in games, television and graphic novels}},
  author={Kari Ali Noriy and Xiaosong Yang and Jian Jun Zhang},
  year={2023},
  eprint={2305.13137},
  archivePrefix={arXiv},
  primaryClass={cs.CL},
  url={https://arxiv.org/abs/2305.13137},
}

@article{emozionalmente,
  author = {Catania, Fabio and Wilke, Jordan and Garzotto, Franca},
  year = {2025},
  month = {01},
  pages = {1-14},
  title = {{Emozionalmente: A Crowdsourced Corpus of Simulated Emotional Speech in Italian}},
  volume = {PP},
  journal = {IEEE Transactions on Audio, Speech and Language Processing},
  doi = {10.1109/TASLPRO.2025.3540662}
}

@inproceedings{enterface,
  author={Martin, O. and Kotsia, I. and Macq, B. and Pitas, I.},
  booktitle={22nd International Conference on Data Engineering Workshops (ICDEW'06)},
  title={{The eNTERFACE' 05 Audio-Visual Emotion Database}},
  year={2006},
  volume={},
  number={},
  pages={8-8},
  keywords={Audio databases;Image databases;Emotion recognition;Spatial databases;Visual databases;Signal processing algorithms;Protocols;Speech analysis;Humans;Informatics},
  doi={10.1109/ICDEW.2006.145}
}

@inproceedings{jlcorpus,
  author = {James, Jesin and Tian, Li and Watson, Catherine},
  year = {2018},
  month = {09},
  pages = {2768-2772},
  title = {{An Open Source Emotional Speech Corpus for Human Robot Interaction Applications}},
  doi = {10.21437/Interspeech.2018-1349}
}

@inproceedings{mesd,
  author = {Duville, Mathilde Marie and Alonso-Valerdi, Luz and Ibarra-Zarate, David I.},
  year = {2021},
  month = {12},
  pages = {},
  title = {{The Mexican Emotional Speech Database (MESD): elaboration and assessment based on machine learning}},
  volume = {2021},
  doi = {10.1109/EMBC46164.2021.9629934}
}

  @article{mesd2,
  author = {Duville, Mathilde Marie and Alonso-Valerdi, Luz and Ibarra-Zarate, David I.},
  year = {2021},
  month = {12},
  pages = {},
  title = {{Mexican Emotional Speech Database Based on Semantic, Frequency, Familiarity, Concreteness, and Cultural Shaping of Affective Prosody}},
  volume = {6},
  journal = {Data},
  doi = {10.3390/data6120130}
}

@inproceedings{christop-2024-nemo,
  title = "n{EMO}: Dataset of Emotional Speech in {P}olish",
  author = "Christop, Iwona",
  editor = "Calzolari, Nicoletta  and
    Kan, Min-Yen  and
    Hoste, Veronique  and
    Lenci, Alessandro  and
    Sakti, Sakriani  and
    Xue, Nianwen",
  booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
  month = may,
  year = "2024",
  address = "Torino, Italia",
  publisher = "ELRA and ICCL",
  url = "https://aclanthology.org/2024.lrec-main.1059/",
  pages = "12111--12116",
  abstract = "Speech emotion recognition has become increasingly important in recent years due to its potential applications in healthcare, customer service, and personalization of dialogue systems. However, a major issue in this field is the lack of datasets that adequately represent basic emotional states across various language families. As datasets covering Slavic languages are rare, there is a need to address this research gap. This paper presents the development of nEMO, a novel corpus of emotional speech in Polish. The dataset comprises over 3 hours of samples recorded with the participation of nine actors portraying six emotional states: anger, fear, happiness, sadness, surprise, and a neutral state. The text material used was carefully selected to represent the phonetics of the Polish language adequately. The corpus is freely available under the terms of a Creative Commons license (CC BY-NC-SA 4.0)."
}

@misc{oreau,
  title = {{French emotional speech database - Or{\'e}au}},
  author = {Kerkeni, Leila and Cleder, Catherine and Serrestou, Youssef and
               Raoof, Kosai},
  abstract = {This document presents the French emotional speech database -
               Or{\'e}au, recorded in a quiet environment. The database is
               designed for general study of emotional speech and analysis of
               emotion characteristics for speech synthesis purposes. It
               contains 79 utterances which could be used in everyday life in
               the classroom. Between 10 and 13 utterances were written for
               each of the 7 emotions in French language by 32 non-professional
               speakers. 2 versions are available, the first one contains 502
               sentences. A perception test was performed to evaluate the
               recognition of emotions and their naturalness. 90\% of
               utterances (434 utterances) were correctly identified and
               retained after the test and various analyses, which constitutes
               the second version of database.},
  publisher = {Zenodo},
  year      =  {2020}
}

@inproceedings{pavoque,
  author = {Steiner, Ingmar and Schröder, Marc and Klepp, Annette},
  title = {{The PAVOQUE corpus as a resource for analysis and synthesis of expressive speech}},
  booktitle = {Phonetik & Phonologie 9. Phonetik & Phonologie (P&P-9), October 11-12, Zurich, Switzerland},
  year = {2013},
  month = {10},
  pages = {83--84},
  organization = {UZH},
  publisher = {Peter Lang}
}

@article{ravdess,
  doi = {10.1371/journal.pone.0196391},
  author = {Livingstone, Steven R. AND Russo, Frank A.},
  journal = {PLOS ONE},
  publisher = {Public Library of Science},
  title = {{The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English}},
  year = {2018},
  month = {05},
  volume = {13},
  url = {https://doi.org/10.1371/journal.pone.0196391},
  pages = {1-35},
  abstract = {The RAVDESS is a validated multimodal database of emotional speech and song. The database is gender balanced consisting of 24 professional actors, vocalizing lexically-matched statements in a neutral North American accent. Speech includes calm, happy, sad, angry, fearful, surprise, and disgust expressions, and song contains calm, happy, sad, angry, and fearful emotions. Each expression is produced at two levels of emotional intensity, with an additional neutral expression. All conditions are available in face-and-voice, face-only, and voice-only formats. The set of 7356 recordings were each rated 10 times on emotional validity, intensity, and genuineness. Ratings were provided by 247 individuals who were characteristic of untrained research participants from North America. A further set of 72 participants provided test-retest data. High levels of emotional validity and test-retest intrarater reliability were reported. Corrected accuracy and composite "goodness" measures are presented to assist researchers in the selection of stimuli. All recordings are made freely available under a Creative Commons license and can be downloaded at https://doi.org/10.5281/zenodo.1188976.},
  number = {5},
}

@misc{resd,
  author = {Artem Amentes and Nikita Davidchuk and Ilya Lubenets},
  title = {{Russian Emotional Speech Dialogs with annotated text}},
  year = {2022},
  publisher = {Hugging Face},
  journal = {Hugging Face Hub},
  howpublished = {\url{https://huggingface.co/datasets/Aniemore/resd_annotated}},
}

@article{subesco,
  doi = {10.1371/journal.pone.0250173},
  author = {Sultana, Sadia AND Rahman, M. Shahidur AND Selim, M. Reza AND Iqbal, M. Zafar},
  journal = {PLOS ONE},
  publisher = {Public Library of Science},
  title = {{SUST Bangla Emotional Speech Corpus (SUBESCO): An audio-only emotional speech corpus for Bangla}},
  year = {2021},
  month = {04},
  volume = {16},
  url = {https://doi.org/10.1371/journal.pone.0250173},
  pages = {1-27},
  abstract = {SUBESCO is an audio-only emotional speech corpus for Bangla language. The total duration of the corpus is in excess of 7 hours containing 7000 utterances, and it is the largest emotional speech corpus available for this language. Twenty native speakers participated in the gender-balanced set, each recording of 10 sentences simulating seven targeted emotions. Fifty university students participated in the evaluation of this corpus. Each audio clip of this corpus, except those of Disgust emotion, was validated four times by male and female raters. Raw hit rates and unbiased rates were calculated producing scores above chance level of responses. Overall recognition rate was reported to be above 70% for human perception tests. Kappa statistics and intra-class correlation coefficient scores indicated high-level of inter-rater reliability and consistency of this corpus evaluation. SUBESCO is an Open Access database, licensed under Creative Common Attribution 4.0 International, and can be downloaded free of charge from the web link: https://doi.org/10.5281/zenodo.4526477.},
  number = {4},
}
Downloads last month
6