Datasets:
url
stringlengths 18
9.49k
| natural_score
float32 0
1
⌀ |
---|---|
http://brightbazaaar.wpengine.netdna-cdn.com/wp-content/uploads/2013/06/colorful-home-in-mexico.jpg
| 0.202178 |
http://ichef.bbci.co.uk/images/ic/336xn/p036k3pp.jpg
| 0.89958 |
0.04968 |
|
0.171863 |
|
https://images.ulta.com/is/image/Ulta/2302320?$detail$
| 0.30632 |
0.935128 |
|
0.868931 |
|
0.220399 |
|
0.124186 |
|
0.873063 |
|
0.556558 |
|
0.259737 |
|
0.488934 |
|
0.075599 |
|
0.075599 |
|
http://lr-assets.storage.googleapis.com/gardimg/400/9780435049607.jpg
| 0.055118 |
0.192867 |
|
0.392829 |
|
0.012658 |
|
0.158149 |
|
0.075137 |
|
0.644879 |
|
0.256467 |
|
0.797264 |
|
0.073661 |
|
0.200006 |
|
https://chairish-prod.global.ssl.fastly.net/image/product/sized/5044fac4-2745-4311-9dc3-f9d640b1204d/helmut-lubke-sculptural-bar-stools-set-of-3-9404?aspect=fit&width=320&height=320
| 0.267561 |
0.200006 |
|
0.200006 |
|
http://www.jewelsforme.com/productimages/large/y/10/2374e.jpg
| 0.371927 |
0.096557 |
|
http://s7d2.scene7.com/is/image/Motosport/MOS-BAG-003B_is?$productdetail264$
| 0.224823 |
0.036101 |
|
http://s7d2.scene7.com/is/image/Motosport/MOS-BAG-003B_is?$productdetail264$
| 0.224823 |
0.453489 |
|
http://decorstainless.com/uploadfiles/image/201911/1239.png
| 0.087862 |
0.11193 |
|
http://image1.slideserve.com/1582656/slide11-n.jpg
| 0.015946 |
https://tse3.mm.bing.net/th?id=OIP.gs-55Dlc8KYT9XTfrAGOnQEsDH&pid=15.1&P=0&w=300&h=300
| 0.565278 |
0.31788 |
|
0.060966 |
|
0.914777 |
|
0.923865 |
|
0.007298 |
|
0.973418 |
|
http://image.lampsplus.com/is/image/R4996.fpx?qlt=65&wid=236&hei=236&fmt=jpeg
| 0.295743 |
0.17519 |
|
http://img.omni7.jp/co/productimage/0001/product/42/1106416942/image/1106416942_main_m.jpg
| 0.012136 |
http://www.magment.com/wp-content/uploads/2016/10/Brown-Copper-and-Gold-Christmas-Tree.jpg
| 0.930325 |
http://st.depositphotos.com/1401847/2610/i/110/depositphotos_26107209-Beekeepers.jpg
| 0.944331 |
http://tse2.mm.bing.net/th?id=OIP.b37NMGP3NFDLaQMEYqn-9wHaJ4
| 0.894893 |
https://lf.lids.com/hwl?set=sku[20952141],c[2],w[400],h[300]&call=url[file:product]
| 0.245889 |
https://images.carpages.ca/inventory/3056997.92439747?w=320&h=240&q=75&s=19dee924cabd2c8147ce310d91ede192
| 0.391937 |
http://www.lovablequote.com/wp-content/uploads/2017/09/i-promise-i-will-always-do-whatever-i-can-love-lovable-quote.jpg
| 0.041598 |
0.940367 |
|
0.057772 |
|
http://sc02.alicdn.com/kf/HTB12ADaKpXXXXaUXVXXq6xXFXXXx/custom-made-metal-dog-tag-with-printed.jpg_200x200.jpg
| 0.186894 |
http://sc01.alicdn.com/kf/HTB1TcfEj22H8KJjy1zkq6xr7pXa3/193612510/HTB1TcfEj22H8KJjy1zkq6xr7pXa3.jpg
| 0.130072 |
http://sc01.alicdn.com/kf/HTB1TcfEj22H8KJjy1zkq6xr7pXa3/193612510/HTB1TcfEj22H8KJjy1zkq6xr7pXa3.jpg
| 0.130072 |
0.252772 |
|
0.004496 |
|
0.42363 |
|
0.781965 |
|
0.087165 |
|
0.250631 |
|
0.1262 |
|
0.683728 |
|
0.077801 |
|
0.036165 |
|
0.040446 |
|
0.071291 |
|
0.879757 |
|
0.19366 |
|
http://www.davidsanger.com/images/sanfrancisco/5-620-9915.hongkongshow.x.jpg
| 0.533288 |
0.827446 |
|
0.877989 |
|
0.006249 |
|
http://images.crestock.com/5050000-5059999/5058344-xs.jpg
| 0.570638 |
0.653473 |
|
0.095641 |
|
https://process.fs.grailed.com/AJdAgnqCST4iPtnUxiGtTz/cache=expiry:max/rotate=deg:exif/resize=width:2400,fit:crop/output=quality:70/compress/https://process.fs.grailed.com/uYDIyR47T2yelP0xVSUh
| 0.343877 |
0.481573 |
|
0.91981 |
|
0.389525 |
|
http://i0.wp.com/venueeventartist.com/imateq/event/446/1126/366730/900SC0/419292.jpeg?strip=all
| 0.206685 |
0.244809 |
|
0.008085 |
|
http://images.shopflowers.net/images/products/SW0_512290.jpg
| 0.397581 |
0.019927 |
|
0.792261 |
|
0.030368 |
|
0.046875 |
|
http://m.olokaustos.org/uploaded_images/c1597594-dansion-kyrgyzstan-p080-series-pump-p080-03r5c-h8p-00.jpg
| 0.212421 |
0.886475 |
|
0.037512 |
|
http://images.fineartamerica.com/images-small-5/1-golden-sunset-over-farm-field-with-hay-bales-elena-elisseeva.jpg
| 0.251134 |
0.344486 |
|
0.356114 |
|
0.441749 |
|
http://brookeandyara.com/wp-content/uploads/2017/08/how-to-write-an-awesome-college-essay.png
| 0.047471 |
relaion2B-en-research-safe natural scores
This dataset is based in part on ReLAION-2B-en-research-safe, released by LAION under the Apache 2.0 License.
The naturalness scores predict how "natural" or "photographic" an image looks (vs artificial/rendered content). Scores range from 0-1, where higher values = more natural.
Quick stats:
- ~2M+ image URLs from RELAION2B
- Only URLs that were also in LAION-2B-en have scores
- File format: Snappy-compressed Parquet
Dataset Structure
Column | Description |
---|---|
url |
Image URL from RELAION2B |
natural_score |
Naturalness prediction (0-1), null if no match |
Files are named relaion2b_natural_part-*.snappy.parquet
and match the original relaion2b-en-safe dataset.
Dataset creation
We first obtained a small set of natural and non-natural images, by manually labeling 200k images from LAION-2B-en in an active learning loop. Selection criteria for natural images were:
- No watermarks, logos, or banners in the image
- No heavy editing (black-and-white filters, high contrast or saturation, etc., photoshopped images)
- Real-world scene or object
We trained a logistic regression model on CLIP ViT-L/14 features (768-dim) of the images and applied the model to image embeddings of the original LAION-2B-en dataset. As this dataset can't be shared any longer, we finally matched URLs between it and the new relaion2b-en-safe dataset.
Usage
Load with pandas:
import pandas as pd
df = pd.read_parquet("relaion2b_natural_part-000.snappy.parquet")
# Get natural images only
natural = df[df['natural_score'] > 0.7]
Load everything:
import glob
files = glob.glob("relaion2b_natural_part-*.snappy.parquet")
df_all = pd.concat([pd.read_parquet(f) for f in files])
With Hugging Face datasets:
from datasets import load_dataset
dataset = load_dataset("andropar/relaion2b-natural")
Use cases
- Filtering image datasets for natural/photographic content
- Quality assessment for computer vision training data
- Research on image naturalness
- Preprocessing step before training vision models
Limitations
- "Naturalness" is based on our specific training data - might not match your definition
- These are ML predictions, not ground truth
- Some URLs might be broken or point to different images now, but we can't check for that
Citation
TBD.
Questions? Issues? Let me know in the discussions!
This dataset is intended for research purposes only. Do not use it in commercial applications without verifying the license compatibility and content suitability.
- Downloads last month
- 196