text
stringlengths
7
1.24M
id
stringlengths
14
166
metadata
dict
__index_level_0__
int64
0
519
# Copyright 2024-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This module contains the implementation of the LoraPlus optimizer. """ from __future__ import annotations from operator import attrgetter import torch.nn as nn from torch.optim import Optimizer from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS from transformers.trainer_pt_utils import get_parameter_names from ..peft_model import PeftModel from ..tuners.lora.layer import Embedding def create_loraplus_optimizer( model: PeftModel, optimizer_cls: type[Optimizer], *, lr: float, loraplus_lr_ratio: float, **kwargs ) -> Optimizer: """ Creates a LoraPlus optimizer. Efficient Low Rank Adaptation of Large Models: https://arxiv.org/abs/2402.12354 Reference: https://github.com/nikhil-ghosh-berkeley/loraplus/ Args: model (`torch.nn.Module`): The model to be optimized. optimizer_cls (`torch.optim.Optimizer`): The optimizer class to be used. lr (`float`): The learning rate to be used for the optimizer. loraplus_lr_ratio (`float`): The ratio of learning ηB/ηA where ηA (lr) is passed in as the optimizer learning rate. Should be ≥1. Should be set in tandem with the optimizer learning rate (lr); should be larger when the task is more difficult and the model needs to update its features to learn well. In this case, it helps to make the learning rate slightly smaller (e.g., by a factor of 2) than typical vanilla LoRA learning rates loraplus_lr_embedding (optional `float`): If LoRA modules are added to embedding layers your can specify a different learning rate for them. Default value 1e-6. kwargs (`dict`): Additional keyword arguments to be passed to the optimizer. Returns: `torch.optim.Optimizer`: An instance of the specified optimizer class configured with the model's parameters organized into groups with custom learning rates. """ decay_parameters = get_parameter_names(model, ALL_LAYERNORM_LAYERS) decay_parameters = [name for name in decay_parameters if "bias" not in name] param_groups = { "groupA": {}, "groupB": {}, "groupB_no_decay": {}, "embedding": {}, } for name, param in model.named_parameters(): if not param.requires_grad: continue module = attrgetter(name)(model) if isinstance(module, Embedding): param_groups["embedding"][name] = param elif "lora_B" in name or param.ndim == 1: if name in decay_parameters: param_groups["groupB"][name] = param else: param_groups["groupB_no_decay"][name] = param else: param_groups["groupA"][name] = param kwargs["lr"] = lr loraplus_weight_decay = kwargs.pop("loraplus_weight_decay", 0.0) loraplus_lr_embedding = kwargs.pop("loraplus_lr_embedding", 1e-6) optimizer_grouped_parameters = [ { "params": list(param_groups["groupA"].values()), "weight_decay": loraplus_weight_decay, "lr": lr, }, { "params": list(param_groups["embedding"].values()), "weight_decay": loraplus_weight_decay, "lr": loraplus_lr_embedding, }, { "params": list(param_groups["groupB"].values()), "weight_decay": loraplus_weight_decay, "lr": lr * loraplus_lr_ratio, }, { "params": list(param_groups["groupB_no_decay"].values()), "weight_decay": 0.0, "lr": lr * loraplus_lr_ratio, }, ] optimizer = optimizer_cls(optimizer_grouped_parameters, **kwargs) eight_bit_names = ["Adam8bit", "AdamW8bit", "PagedAdam8bit", "PagedAdamW8bit"] if optimizer_cls.__name__ in eight_bit_names: import bitsandbytes manager = bitsandbytes.optim.GlobalOptimManager.get_instance() for module in model.modules(): if isinstance(module, nn.Embedding): manager.register_module_override(module, "weight", {"optim_bits": 32}) return optimizer
peft/src/peft/optimizers/loraplus.py/0
{ "file_path": "peft/src/peft/optimizers/loraplus.py", "repo_id": "peft", "token_count": 1910 }
180
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any import torch from peft.import_utils import is_bnb_4bit_available, is_bnb_available from .layer import IA3Layer if is_bnb_available(): class Linear8bitLt(torch.nn.Module, IA3Layer): # (IA)^3 implemented in a dense layer def __init__( self, base_layer: torch.nn.Module, adapter_name: str, is_feedforward: bool, init_ia3_weights: bool = True, **kwargs, ) -> None: super().__init__() IA3Layer.__init__(self, base_layer, is_feedforward=is_feedforward) # Freezing the pre-trained weight matrix self.get_base_layer().weight.requires_grad = False self._active_adapter = adapter_name self.update_layer(adapter_name, init_ia3_weights) def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: # note: no check for self.merged because merging is not supported (yet) if self.disable_adapters: return self.base_layer(x) ia3_scaling = 1 for active_adapter in self.active_adapters: if active_adapter not in self.ia3_l.keys(): continue ia3_scaling *= self.ia3_l[active_adapter].flatten() requires_conversion = (not torch.is_autocast_enabled()) and (x.dtype != torch.float32) if requires_conversion: x = x.float() if self.is_feedforward: result = self.base_layer(x * ia3_scaling) expected_dtype = result.dtype else: result = self.base_layer(x) expected_dtype = result.dtype result = result * ia3_scaling if requires_conversion: result = result.to(expected_dtype) return result def __repr__(self) -> str: rep = super().__repr__() return "ia3." + rep if is_bnb_4bit_available(): class Linear4bit(torch.nn.Module, IA3Layer): # IA3 implemented in a dense layer def __init__( self, base_layer: torch.nn.Module, adapter_name: str, is_feedforward: bool, init_ia3_weights: bool = True, **kwargs, ) -> None: super().__init__() IA3Layer.__init__(self, base_layer, is_feedforward=is_feedforward) # Freezing the pre-trained weight matrix self.get_base_layer().weight.requires_grad = False self._active_adapter = adapter_name self.update_layer(adapter_name, init_ia3_weights) def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: # note: no check for self.merged because merging is not supported (yet) if self.disable_adapters: return self.base_layer(x) ia3_scaling = 1 for active_adapter in self.active_adapters: if active_adapter not in self.ia3_l.keys(): continue ia3_scaling *= self.ia3_l[active_adapter].flatten() requires_conversion = (not torch.is_autocast_enabled()) and (x.dtype != torch.float32) if requires_conversion: x = x.float() if self.is_feedforward: result = self.base_layer(x * ia3_scaling) expected_dtype = result.dtype else: result = self.base_layer(x) expected_dtype = result.dtype result = result * ia3_scaling result = result.clone() # adalora.py and lora.py both suggest that this is necessary for 4-bit training on older versions of Pytorch. # This has been duplicated here. if requires_conversion: result = result.to(expected_dtype) return result def __repr__(self) -> str: rep = super().__repr__() return "ia3." + rep
peft/src/peft/tuners/ia3/bnb.py/0
{ "file_path": "peft/src/peft/tuners/ia3/bnb.py", "repo_id": "peft", "token_count": 2193 }
181
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import enum from dataclasses import dataclass, field from typing import Optional, Union from peft.tuners.prompt_tuning import PromptTuningConfig from peft.utils import PeftType class MultitaskPromptTuningInit(str, enum.Enum): # initialize prompt with text TEXT = "TEXT" # initialize prompt with random matrix RANDOM = "RANDOM" # average the prefix and column matrices obtained during source training AVERAGE_SOURCE_TASKS = "AVERAGE_SOURCE_TASKS" # pick prefix and column matrices for a particular task obtained during source training EXACT_SOURCE_TASK = "EXACT_SOURCE_TASK" # only use the prompt embeddings trained during source training ONLY_SOURCE_SHARED = "ONLY_SOURCE_SHARED" @dataclass class MultitaskPromptTuningConfig(PromptTuningConfig): prompt_tuning_init: Union[MultitaskPromptTuningInit, str] = field( default=MultitaskPromptTuningInit.RANDOM, metadata={ "help": ( "How to initialize the prompt tuning parameters. Can be one of TEXT, RANDOM, AVERAGE_SOURCE_TASKS, " "EXACT_SOURCE_TASK, ONLY_SOURCE_SHARED." ), }, ) prompt_tuning_init_state_dict_path: Optional[str] = field( default=None, metadata={ "help": ( "The path of source state dict. This is required when training the downstream target prompt from " "the pretrained source prompt" ), }, ) prompt_tuning_init_task: Optional[int] = field(default=0, metadata={"help": "source task id for initialization"}) num_ranks: Optional[int] = field(default=1, metadata={"help": "ranks"}) num_tasks: Optional[int] = field(default=1, metadata={"help": "number of tasks"}) def __post_init__(self): self.peft_type = PeftType.MULTITASK_PROMPT_TUNING
peft/src/peft/tuners/multitask_prompt_tuning/config.py/0
{ "file_path": "peft/src/peft/tuners/multitask_prompt_tuning/config.py", "repo_id": "peft", "token_count": 883 }
182
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Based on https://github.com/THUDM/P-tuning-v2/blob/main/model/prefix_encoder.py # with some refactor import torch class PrefixEncoder(torch.nn.Module): r""" The `torch.nn` model to encode the prefix. Args: config ([`PrefixTuningConfig`]): The configuration of the prefix encoder. Example: ```py >>> from peft import PrefixEncoder, PrefixTuningConfig >>> config = PrefixTuningConfig( ... peft_type="PREFIX_TUNING", ... task_type="SEQ_2_SEQ_LM", ... num_virtual_tokens=20, ... token_dim=768, ... num_transformer_submodules=1, ... num_attention_heads=12, ... num_layers=12, ... encoder_hidden_size=768, ... ) >>> prefix_encoder = PrefixEncoder(config) ``` **Attributes**: - **embedding** (`torch.nn.Embedding`) -- The embedding layer of the prefix encoder. - **transform** (`torch.nn.Sequential`) -- The two-layer MLP to transform the prefix embeddings if `prefix_projection` is `True`. - **prefix_projection** (`bool`) -- Whether to project the prefix embeddings. Input shape: (`batch_size`, `num_virtual_tokens`) Output shape: (`batch_size`, `num_virtual_tokens`, `2*layers*hidden`) """ def __init__(self, config): super().__init__() self.prefix_projection = config.prefix_projection token_dim = config.token_dim num_layers = config.num_layers encoder_hidden_size = config.encoder_hidden_size num_virtual_tokens = config.num_virtual_tokens if self.prefix_projection and not config.inference_mode: # Use a two-layer MLP to encode the prefix self.embedding = torch.nn.Embedding(num_virtual_tokens, token_dim) self.transform = torch.nn.Sequential( torch.nn.Linear(token_dim, encoder_hidden_size), torch.nn.Tanh(), torch.nn.Linear(encoder_hidden_size, num_layers * 2 * token_dim), ) else: self.embedding = torch.nn.Embedding(num_virtual_tokens, num_layers * 2 * token_dim) def forward(self, prefix: torch.Tensor): if self.prefix_projection: prefix_tokens = self.embedding(prefix) past_key_values = self.transform(prefix_tokens) else: past_key_values = self.embedding(prefix) return past_key_values
peft/src/peft/tuners/prefix_tuning/model.py/0
{ "file_path": "peft/src/peft/tuners/prefix_tuning/model.py", "repo_id": "peft", "token_count": 1228 }
183
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from contextlib import contextmanager import packaging.version import torch import transformers @contextmanager def gather_params_ctx(param, modifier_rank: int = 0, fwd_module: torch.nn.Module = None): """Call DeepSpeed GatheredParameters context manager if DeepSpeed is enabled, otherwise do nothing.""" if packaging.version.parse(transformers.__version__) >= packaging.version.parse("4.33.0"): from transformers.integrations import is_deepspeed_zero3_enabled else: from transformers.deepspeed import is_deepspeed_zero3_enabled if not is_deepspeed_zero3_enabled(): yield return import deepspeed with deepspeed.zero.GatheredParameters(param, modifier_rank=modifier_rank, fwd_module=fwd_module): yield return def dequantize_module_weight(module: torch.nn.Module) -> torch.nn.Parameter: """ Helper function to dequantize a quantized weight. This function should be extended if more quantization schemes are added to the library. If the weight is not quantized, it will be returned as is. """ if hasattr(module, "W_q"): # For handling HQQ quantized weight weight = module.dequantize() return weight weight = module.weight if not isinstance(weight, torch.nn.Parameter): if isinstance(weight, torch.Tensor): # this is an FSDP-specific edge case return weight # type: ignore raise TypeError(f"Input weight should be of type nn.Parameter, got {type(weight)} instead") cls_name = weight.__class__.__name__ if cls_name not in ("Params4bit", "Int8Params"): return weight quant_state = getattr(module, "state", None) device = weight.device is_cpu = device.type == torch.device("cpu").type weight = dequantize_bnb_weight(weight, state=quant_state) # no-op if not bnb if is_cpu: # dequantize_bnb_weight for 8bit moves the device in-place, thus we need to move it back to CPU if necessary module.weight = module.weight.to(device) return weight def dequantize_bnb_weight(weight: torch.nn.Parameter, state=None): """Helper function to dequantize 4bit or 8bit bnb weights. Since dequantization is not supported on CPU, the weight will be temporarily moved to CUDA if necessary. """ import bitsandbytes as bnb # BNB requires CUDA weights device = weight.device is_cpu = device.type == torch.device("cpu").type if is_cpu: weight = weight.to(torch.device("cuda")) cls_name = weight.__class__.__name__ if cls_name == "Params4bit": dequantized = bnb.functional.dequantize_4bit(weight.data, weight.quant_state) if is_cpu: dequantized = dequantized.to(device) return dequantized if state.SCB is None: state.SCB = weight.SCB im = torch.eye(weight.data.shape[-1]).contiguous().half().to(weight.device) im, imt, SCim, SCimt, coo_tensorim = bnb.functional.double_quant(im) im, Sim = bnb.functional.transform(im, "col32") if state.CxB is None: state.CxB, state.SB = bnb.functional.transform(weight.data, to_order=state.formatB) out32, Sout32 = bnb.functional.igemmlt(im, state.CxB, Sim, state.SB) dequantized = bnb.functional.mm_dequant(out32, Sout32, SCim, state.SCB, bias=None).t() if is_cpu: dequantized = dequantized.to(device) return dequantized
peft/src/peft/utils/integrations.py/0
{ "file_path": "peft/src/peft/utils/integrations.py", "repo_id": "peft", "token_count": 1424 }
184
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest import torch from parameterized import parameterized from transformers import AutoModelForSeq2SeqLM, AutoModelForTokenClassification from peft import LoraConfig, PromptEncoderConfig, TaskType, get_peft_model from .testing_common import PeftCommonTester, PeftTestConfigManager PEFT_ENCODER_DECODER_MODELS_TO_TEST = [ "ybelkada/tiny-random-T5ForConditionalGeneration-calibrated", "hf-internal-testing/tiny-random-BartForConditionalGeneration", ] FULL_GRID = {"model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST, "task_type": "SEQ_2_SEQ_LM"} class PeftEncoderDecoderModelTester(unittest.TestCase, PeftCommonTester): r""" Test if the PeftModel behaves as expected. This includes: - test if the model has the expected methods We use parametrized.expand for debugging purposes to test each model individually. """ transformers_class = AutoModelForSeq2SeqLM def prepare_inputs_for_testing(self): input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device) decoder_input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device) attention_mask = torch.tensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device) input_dict = { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, } return input_dict @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_attributes_parametrized(self, test_name, model_id, config_cls, config_kwargs): self._test_model_attr(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_adapter_name(self, test_name, model_id, config_cls, config_kwargs): self._test_adapter_name(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_prepare_for_training_parametrized(self, test_name, model_id, config_cls, config_kwargs): self._test_prepare_for_training(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_save_pretrained(self, test_name, model_id, config_cls, config_kwargs): self._test_save_pretrained(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_save_pretrained_pickle(self, test_name, model_id, config_cls, config_kwargs): self._test_save_pretrained(model_id, config_cls, config_kwargs, safe_serialization=False) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_save_pretrained_selected_adapters(self, test_name, model_id, config_cls, config_kwargs): self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_save_pretrained_selected_adapters_pickle(self, test_name, model_id, config_cls, config_kwargs): self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs, safe_serialization=False) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_from_pretrained_config_construction(self, test_name, model_id, config_cls, config_kwargs): self._test_from_pretrained_config_construction(model_id, config_cls, config_kwargs) @parameterized.expand( PeftTestConfigManager.get_grid_parameters( { "model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST, "lora_kwargs": {"init_lora_weights": [False]}, "adalora_kwargs": {"init_lora_weights": [False]}, "ia3_kwargs": {"init_ia3_weights": [False]}, "vera_kwargs": {"init_weights": [False]}, "hra_kwargs": {"init_weights": [False]}, "task_type": "SEQ_2_SEQ_LM", }, ) ) def test_merge_layers(self, test_name, model_id, config_cls, config_kwargs): self._test_merge_layers(model_id, config_cls, config_kwargs) @parameterized.expand( PeftTestConfigManager.get_grid_parameters( { "model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST, "lora_kwargs": {"init_lora_weights": [False]}, "task_type": "SEQ_2_SEQ_LM", }, ) ) def test_mixed_adapter_batches(self, test_name, model_id, config_cls, config_kwargs): self._test_mixed_adapter_batches(model_id, config_cls, config_kwargs) # skip non lora models - generate does not work for prefix tuning, prompt tuning @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_generate(self, test_name, model_id, config_cls, config_kwargs): self._test_generate(model_id, config_cls, config_kwargs) # skip non lora models - generate does not work for prefix tuning, prompt tuning @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_generate_pos_args(self, test_name, model_id, config_cls, config_kwargs): # positional arguments are not supported for PeftModelForSeq2SeqLM self._test_generate_pos_args(model_id, config_cls, config_kwargs, raises_err=True) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_generate_half_prec(self, test_name, model_id, config_cls, config_kwargs): self._test_generate_half_prec(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_prefix_tuning_half_prec_conversion(self, test_name, model_id, config_cls, config_kwargs): self._test_prefix_tuning_half_prec_conversion(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_training_encoder_decoders(self, test_name, model_id, config_cls, config_kwargs): self._test_training(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_training_encoder_decoders_layer_indexing(self, test_name, model_id, config_cls, config_kwargs): self._test_training_layer_indexing(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_training_encoder_decoders_gradient_checkpointing(self, test_name, model_id, config_cls, config_kwargs): self._test_training_gradient_checkpointing(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_inference_safetensors(self, test_name, model_id, config_cls, config_kwargs): self._test_inference_safetensors(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_peft_model_device_map(self, test_name, model_id, config_cls, config_kwargs): self._test_peft_model_device_map(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_delete_adapter(self, test_name, model_id, config_cls, config_kwargs): self._test_delete_adapter(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_delete_inactive_adapter(self, test_name, model_id, config_cls, config_kwargs): self._test_delete_inactive_adapter(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_adding_multiple_adapters_with_bias_raises(self, test_name, model_id, config_cls, config_kwargs): self._test_adding_multiple_adapters_with_bias_raises(model_id, config_cls, config_kwargs) @parameterized.expand( PeftTestConfigManager.get_grid_parameters( { "model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST, "lora_kwargs": {"init_lora_weights": [False]}, "adalora_kwargs": {"init_lora_weights": [False]}, "ia3_kwargs": {"init_ia3_weights": [False]}, "boft_kwargs": {"init_weights": [False]}, "vera_kwargs": {"init_weights": [False]}, "hra_kwargs": {"init_weights": [False]}, "task_type": "SEQ_2_SEQ_LM", }, ) ) def test_unload_adapter(self, test_name, model_id, config_cls, config_kwargs): self._test_unload_adapter(model_id, config_cls, config_kwargs) @parameterized.expand( PeftTestConfigManager.get_grid_parameters( { "model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST, "lora_kwargs": {"init_lora_weights": [False]}, "ia3_kwargs": {"init_ia3_weights": [False]}, "task_type": "SEQ_2_SEQ_LM", }, ) ) def test_weighted_combination_of_adapters(self, test_name, model_id, config_cls, config_kwargs): self._test_weighted_combination_of_adapters(model_id, config_cls, config_kwargs) @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) def test_training_prompt_learning_tasks(self, test_name, model_id, config_cls, config_kwargs): self._test_training_prompt_learning_tasks(model_id, config_cls, config_kwargs) @parameterized.expand( PeftTestConfigManager.get_grid_parameters( { "model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST, "lora_kwargs": {"init_lora_weights": [False]}, "adalora_kwargs": {"init_lora_weights": [False]}, "ia3_kwargs": {"init_ia3_weights": [False]}, "boft_kwargs": {"init_weights": [False]}, "vera_kwargs": {"init_weights": [False]}, "hra_kwargs": {"init_weights": [False]}, "task_type": "SEQ_2_SEQ_LM", }, ) ) def test_disable_adapter(self, test_name, model_id, config_cls, config_kwargs): self._test_disable_adapter(model_id, config_cls, config_kwargs) def test_active_adapters_prompt_learning(self): # see issue https://github.com/huggingface/transformers/pull/30790#issuecomment-2253808249 model = AutoModelForSeq2SeqLM.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration") # any prompt learning method would work here config = PromptEncoderConfig(task_type=TaskType.SEQ_2_SEQ_LM, num_virtual_tokens=10) model = get_peft_model(model, config) assert model.active_adapters == ["default"] class PeftEncoderDecoderCustomModelTester(unittest.TestCase): """ A custom class to write any custom test related with Enc-Dec models """ def test_save_shared_tensors(self): model_id = "hf-internal-testing/tiny-random-RobertaModel" peft_config = LoraConfig( task_type=TaskType.TOKEN_CLS, inference_mode=False, r=16, lora_alpha=16, lora_dropout=0.1, bias="all" ) model = AutoModelForTokenClassification.from_pretrained(model_id, num_labels=11) model = get_peft_model(model, peft_config) with tempfile.TemporaryDirectory() as tmp_dir: # This should work fine model.save_pretrained(tmp_dir, safe_serialization=True)
peft/tests/test_encoder_decoder_models.py/0
{ "file_path": "peft/tests/test_encoder_decoder_models.py", "repo_id": "peft", "token_count": 5157 }
185
# Copyright 2024-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This test file is for tests specific to VeRA, since VeRA has some specific challenges due to the shared weights. import os import pytest import torch from safetensors import safe_open from torch import nn from peft import PeftModel, VeraConfig, get_peft_model from peft.utils import infer_device class MLP(nn.Module): def __init__(self, bias=True): super().__init__() self.relu = nn.ReLU() self.lin0 = nn.Linear(10, 20, bias=bias) self.lin1 = nn.Linear(20, 20, bias=bias) # lin1 and lin2 have same shape self.lin2 = nn.Linear(20, 20, bias=bias) self.lin3 = nn.Linear(20, 2, bias=bias) self.sm = nn.LogSoftmax(dim=-1) def forward(self, X): X = self.lin0(X) X = self.relu(X) X = self.lin1(X) X = self.relu(X) X = self.lin2(X) X = self.relu(X) X = self.lin3(X) X = self.sm(X) return X class TestVera: @pytest.fixture def mlp(self): torch.manual_seed(0) model = MLP() return model @pytest.fixture def mlp_same_prng(self, mlp): torch.manual_seed(0) config = VeraConfig(target_modules=["lin1", "lin2"], init_weights=False) # creates a default VeRA adapter peft_model = get_peft_model(mlp, config) config2 = VeraConfig(target_modules=["lin1", "lin2"], init_weights=False) peft_model.add_adapter("other", config2) return peft_model def test_multiple_adapters_same_prng_weights(self, mlp_same_prng): # we can have multiple adapters with the same prng key, in which case the weights should be shared assert ( mlp_same_prng.base_model.model.lin1.vera_A["default"] is mlp_same_prng.base_model.model.lin1.vera_A["other"] ) assert ( mlp_same_prng.base_model.model.lin1.vera_B["default"] is mlp_same_prng.base_model.model.lin1.vera_B["other"] ) assert ( mlp_same_prng.base_model.model.lin2.vera_A["default"] is mlp_same_prng.base_model.model.lin2.vera_A["other"] ) assert ( mlp_same_prng.base_model.model.lin2.vera_B["default"] is mlp_same_prng.base_model.model.lin2.vera_B["other"] ) input = torch.randn(5, 10) mlp_same_prng.set_adapter("default") output_default = mlp_same_prng(input) mlp_same_prng.set_adapter("other") output_other = mlp_same_prng(input) assert not torch.allclose(output_default, output_other, atol=1e-3, rtol=1e-3) def test_multiple_adapters_different_prng_raises(self): # we cannot have multiple adapters with different prng keys model = MLP() config = VeraConfig(target_modules=["lin1", "lin2"], init_weights=False) # creates a default VeRA adapter peft_model = get_peft_model(model, config) config2 = VeraConfig(target_modules=["lin1", "lin2"], init_weights=False, projection_prng_key=123) msg = ( r"Vera PRNG initialisation key must be the same for all adapters. Got config.projection_prng_key=123 but " r"previous config had 0" ) with pytest.raises(ValueError, match=msg): peft_model.add_adapter("other", config2) def test_multiple_adapters_save_load_save_projection_true(self, mlp_same_prng, tmp_path): # check saving and loading works with multiple adapters and saved projection weights torch.manual_seed(0) input = torch.randn(5, 10) mlp_same_prng.set_adapter("default") output_default = mlp_same_prng(input) mlp_same_prng.set_adapter("other") output_other = mlp_same_prng(input) # sanity check assert not torch.allclose(output_default, output_other, atol=1e-3, rtol=1e-3) save_path = tmp_path / "vera" mlp_same_prng.save_pretrained(save_path) assert os.path.exists(save_path / "adapter_config.json") assert os.path.exists(save_path / "other" / "adapter_config.json") torch.manual_seed(0) mlp = MLP() peft_model = PeftModel.from_pretrained(mlp, save_path) peft_model.load_adapter(save_path / "other", "other") peft_model.set_adapter("default") output_default_loaded = peft_model(input) peft_model.set_adapter("other") output_other_loaded = peft_model(input) assert torch.allclose(output_default, output_default_loaded, atol=1e-3, rtol=1e-3) assert torch.allclose(output_other, output_other_loaded, atol=1e-3, rtol=1e-3) def test_multiple_adapters_save_load_save_projection_false(self, mlp, tmp_path): # check saving and loading works with multiple adapters without saved projection weights torch.manual_seed(1) config = VeraConfig(target_modules=["lin1", "lin2"], init_weights=False, save_projection=False) # creates a default VeRA adapter peft_model = get_peft_model(mlp, config, adapter_name="first") config2 = VeraConfig(target_modules=["lin1", "lin2"], init_weights=False, save_projection=False) peft_model.add_adapter("second", config2) input = torch.randn(5, 10) peft_model.set_adapter("first") output_first = peft_model(input) peft_model.set_adapter("second") output_second = peft_model(input) # sanity check assert not torch.allclose(output_first, output_second, atol=1e-3, rtol=1e-3) save_path = tmp_path / "vera" peft_model.save_pretrained(save_path) assert os.path.exists(save_path / "first" / "adapter_config.json") assert os.path.exists(save_path / "second" / "adapter_config.json") torch.manual_seed(0) mlp = MLP() peft_model = PeftModel.from_pretrained(mlp, save_path / "first", adapter_name="first") peft_model.load_adapter(save_path / "second", "second") peft_model.set_adapter("first") output_first_loaded = peft_model(input) peft_model.set_adapter("second") output_second_loaded = peft_model(input) assert torch.allclose(output_first, output_first_loaded, atol=1e-3, rtol=1e-3) assert torch.allclose(output_second, output_second_loaded, atol=1e-3, rtol=1e-3) def test_multiple_adapters_save_projection_true_contains_vera_A_vera_B(self, mlp_same_prng, tmp_path): # check that the state_dicts don't contain the projection weights save_path = tmp_path / "vera" mlp_same_prng.save_pretrained(save_path) sd_default = {} with safe_open(save_path / "adapter_model.safetensors", framework="pt", device="cpu") as f: for key in f.keys(): sd_default[key] = f.get_tensor(key) assert any("vera_A" in key for key in sd_default) assert any("vera_B" in key for key in sd_default) # default rank for VeRA is 256 assert sd_default["base_model.vera_A"].shape == (256, 20) assert sd_default["base_model.vera_B"].shape == (20, 256) sd_other = {} with safe_open(save_path / "other" / "adapter_model.safetensors", framework="pt", device="cpu") as f: for key in f.keys(): sd_other[key] = f.get_tensor(key) assert any("vera_A" in key for key in sd_other) assert any("vera_B" in key for key in sd_other) assert sd_other["base_model.vera_A"].shape == (256, 20) assert sd_other["base_model.vera_B"].shape == (20, 256) def test_multiple_adapters_save_projection_false_contains_no_vera_A_vera_B(self, mlp, tmp_path): torch.manual_seed(1) config = VeraConfig(target_modules=["lin1", "lin2"], init_weights=False, save_projection=False) # creates a default VeRA adapter peft_model = get_peft_model(mlp, config, adapter_name="first") config2 = VeraConfig(target_modules=["lin1", "lin2"], init_weights=False, save_projection=False) peft_model.add_adapter("second", config2) save_path = tmp_path / "vera" peft_model.save_pretrained(save_path) sd_default = {} with safe_open(save_path / "first" / "adapter_model.safetensors", framework="pt", device="cpu") as f: for key in f.keys(): sd_default[key] = f.get_tensor(key) assert not any("vera_A" in key for key in sd_default) assert not any("vera_B" in key for key in sd_default) sd_other = {} with safe_open(save_path / "second" / "adapter_model.safetensors", framework="pt", device="cpu") as f: for key in f.keys(): sd_other[key] = f.get_tensor(key) assert not any("vera_A" in key for key in sd_other) assert not any("vera_B" in key for key in sd_other) def test_vera_A_vera_B_share_memory(self, mlp_same_prng): vera_A = mlp_same_prng.vera_A["default"] vera_B = mlp_same_prng.vera_B["default"] # these tensors should share the same data assert vera_A.data_ptr() == mlp_same_prng.base_model.model.lin1.vera_A["default"].data_ptr() assert vera_B.data_ptr() == mlp_same_prng.base_model.model.lin1.vera_B["default"].data_ptr() assert vera_A.data_ptr() == mlp_same_prng.base_model.model.lin2.vera_A["default"].data_ptr() assert vera_B.data_ptr() == mlp_same_prng.base_model.model.lin2.vera_B["default"].data_ptr() # sanity check: these tensors shouldn't share the same data assert vera_A.data_ptr() != vera_B.data_ptr() def test_vera_lambda_dont_share_memory(self, mlp_same_prng): # sanity check: these tensors shouldn't share the same data assert ( mlp_same_prng.base_model.model.lin1.vera_lambda_b["default"].data_ptr() != mlp_same_prng.base_model.model.lin1.vera_lambda_b["other"].data_ptr() ) assert ( mlp_same_prng.base_model.model.lin1.vera_lambda_b["default"].data_ptr() != mlp_same_prng.base_model.model.lin2.vera_lambda_b["default"].data_ptr() ) assert ( mlp_same_prng.base_model.model.lin1.vera_lambda_b["other"].data_ptr() != mlp_same_prng.base_model.model.lin2.vera_lambda_b["other"].data_ptr() ) assert ( mlp_same_prng.base_model.model.lin1.vera_lambda_d["default"].data_ptr() != mlp_same_prng.base_model.model.lin1.vera_lambda_d["other"].data_ptr() ) assert ( mlp_same_prng.base_model.model.lin1.vera_lambda_d["default"].data_ptr() != mlp_same_prng.base_model.model.lin2.vera_lambda_d["default"].data_ptr() ) assert ( mlp_same_prng.base_model.model.lin1.vera_lambda_d["other"].data_ptr() != mlp_same_prng.base_model.model.lin2.vera_lambda_d["other"].data_ptr() ) def test_vera_different_shapes(self, mlp): config = VeraConfig(target_modules=["lin0", "lin3"], init_weights=False) mlp_different_shapes = get_peft_model(mlp, config) vera_A = mlp_different_shapes.vera_A["default"] vera_B = mlp_different_shapes.vera_B["default"] # sanity check assert mlp.lin0.base_layer.weight.shape != mlp.lin3.base_layer.weight.shape # lin0 has the largest output dimension, lin3 has the largest input dimension # vera_A should have the shape of (rank, largest_in), vera_B should have the shape of (largest_out, rank) assert vera_A.shape == (config.r, mlp.lin3.in_features) assert vera_B.shape == (mlp.lin0.out_features, config.r) # should not raise input = torch.randn(5, 10) mlp_different_shapes(input) @pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16]) def test_vera_dtypes(self, dtype): if dtype == torch.bfloat16: # skip if bf16 is not supported on hardware, see #1872 is_xpu = infer_device() == "xpu" is_cuda_bf16 = torch.cuda.is_available() and torch.cuda.is_bf16_supported() if not (is_xpu or is_cuda_bf16): pytest.skip("bfloat16 not supported on this system, skipping the test") model = MLP().to(dtype) config = VeraConfig(target_modules=["lin1", "lin2"], init_weights=False) peft_model = get_peft_model(model, config) inputs = torch.randn(5, 10).to(dtype) output = peft_model(inputs) # should not raise assert output.dtype == dtype
peft/tests/test_vera.py/0
{ "file_path": "peft/tests/test_vera.py", "repo_id": "peft", "token_count": 5925 }
186
#!/usr/bin/env python3 """ Model Benchmark Script An inference and train step benchmark script for timm models. Hacked together by Ross Wightman (https://github.com/rwightman) """ import argparse import csv import json import logging import time from collections import OrderedDict from contextlib import suppress from functools import partial import torch import torch.nn as nn import torch.nn.parallel from timm.data import resolve_data_config from timm.layers import set_fast_norm from timm.models import create_model, is_model, list_models from timm.optim import create_optimizer_v2 from timm.utils import setup_default_logging, set_jit_fuser, decay_batch_step, check_batch_size_retry, ParseKwargs,\ reparameterize_model has_apex = False try: from apex import amp has_apex = True except ImportError: pass has_native_amp = False try: if getattr(torch.cuda.amp, 'autocast') is not None: has_native_amp = True except AttributeError: pass try: from deepspeed.profiling.flops_profiler import get_model_profile has_deepspeed_profiling = True except ImportError as e: has_deepspeed_profiling = False try: from fvcore.nn import FlopCountAnalysis, flop_count_str, ActivationCountAnalysis has_fvcore_profiling = True except ImportError as e: FlopCountAnalysis = None has_fvcore_profiling = False try: from functorch.compile import memory_efficient_fusion has_functorch = True except ImportError as e: has_functorch = False has_compile = hasattr(torch, 'compile') if torch.cuda.is_available(): torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.benchmark = True _logger = logging.getLogger('validate') parser = argparse.ArgumentParser(description='PyTorch Benchmark') # benchmark specific args parser.add_argument('--model-list', metavar='NAME', default='', help='txt file based list of model names to benchmark') parser.add_argument('--bench', default='both', type=str, help="Benchmark mode. One of 'inference', 'train', 'both'. Defaults to 'both'") parser.add_argument('--detail', action='store_true', default=False, help='Provide train fwd/bwd/opt breakdown detail if True. Defaults to False') parser.add_argument('--no-retry', action='store_true', default=False, help='Do not decay batch size and retry on error.') parser.add_argument('--results-file', default='', type=str, help='Output csv file for validation results (summary)') parser.add_argument('--results-format', default='csv', type=str, help='Format for results file one of (csv, json) (default: csv).') parser.add_argument('--num-warm-iter', default=10, type=int, help='Number of warmup iterations (default: 10)') parser.add_argument('--num-bench-iter', default=40, type=int, help='Number of benchmark iterations (default: 40)') parser.add_argument('--device', default='cuda', type=str, help="device to run benchmark on") # common inference / train args parser.add_argument('--model', '-m', metavar='NAME', default='resnet50', help='model architecture (default: resnet50)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('--img-size', default=None, type=int, metavar='N', help='Input image dimension, uses model default if empty') parser.add_argument('--input-size', default=None, nargs=3, type=int, metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty') parser.add_argument('--use-train-size', action='store_true', default=False, help='Run inference at train size, not test-input-size if it exists.') parser.add_argument('--num-classes', type=int, default=None, help='Number classes in dataset') parser.add_argument('--gp', default=None, type=str, metavar='POOL', help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.') parser.add_argument('--channels-last', action='store_true', default=False, help='Use channels_last memory layout') parser.add_argument('--grad-checkpointing', action='store_true', default=False, help='Enable gradient checkpointing through model blocks/stages') parser.add_argument('--amp', action='store_true', default=False, help='use PyTorch Native AMP for mixed precision training. Overrides --precision arg.') parser.add_argument('--amp-dtype', default='float16', type=str, help='lower precision AMP dtype (default: float16). Overrides --precision arg if args.amp True.') parser.add_argument('--precision', default='float32', type=str, help='Numeric precision. One of (amp, float32, float16, bfloat16, tf32)') parser.add_argument('--fuser', default='', type=str, help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')") parser.add_argument('--fast-norm', default=False, action='store_true', help='enable experimental fast-norm') parser.add_argument('--reparam', default=False, action='store_true', help='Reparameterize model') parser.add_argument('--model-kwargs', nargs='*', default={}, action=ParseKwargs) # codegen (model compilation) options scripting_group = parser.add_mutually_exclusive_group() scripting_group.add_argument('--torchscript', dest='torchscript', action='store_true', help='convert model torchscript for inference') scripting_group.add_argument('--torchcompile', nargs='?', type=str, default=None, const='inductor', help="Enable compilation w/ specified backend (default: inductor).") scripting_group.add_argument('--aot-autograd', default=False, action='store_true', help="Enable AOT Autograd optimization.") # train optimizer parameters parser.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER', help='Optimizer (default: "sgd"') parser.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: None, use opt default)') parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='Optimizer momentum (default: 0.9)') parser.add_argument('--weight-decay', type=float, default=0.0001, help='weight decay (default: 0.0001)') parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') parser.add_argument('--clip-mode', type=str, default='norm', help='Gradient clipping mode. One of ("norm", "value", "agc")') # model regularization / loss params that impact model or loss fn parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)') parser.add_argument('--drop', type=float, default=0.0, metavar='PCT', help='Dropout rate (default: 0.)') parser.add_argument('--drop-path', type=float, default=None, metavar='PCT', help='Drop path rate (default: None)') parser.add_argument('--drop-block', type=float, default=None, metavar='PCT', help='Drop block rate (default: None)') def timestamp(sync=False): return time.perf_counter() def cuda_timestamp(sync=False, device=None): if sync: torch.cuda.synchronize(device=device) return time.perf_counter() def count_params(model: nn.Module): return sum([m.numel() for m in model.parameters()]) def resolve_precision(precision: str): assert precision in ('amp', 'amp_bfloat16', 'float16', 'bfloat16', 'float32') amp_dtype = None # amp disabled model_dtype = torch.float32 data_dtype = torch.float32 if precision == 'amp': amp_dtype = torch.float16 elif precision == 'amp_bfloat16': amp_dtype = torch.bfloat16 elif precision == 'float16': model_dtype = torch.float16 data_dtype = torch.float16 elif precision == 'bfloat16': model_dtype = torch.bfloat16 data_dtype = torch.bfloat16 return amp_dtype, model_dtype, data_dtype def profile_deepspeed(model, input_size=(3, 224, 224), batch_size=1, detailed=False): _, macs, _ = get_model_profile( model=model, input_shape=(batch_size,) + input_size, # input shape/resolution print_profile=detailed, # prints the model graph with the measured profile attached to each module detailed=detailed, # print the detailed profile warm_up=10, # the number of warm-ups before measuring the time of each module as_string=False, # print raw numbers (e.g. 1000) or as human-readable strings (e.g. 1k) output_file=None, # path to the output file. If None, the profiler prints to stdout. ignore_modules=None) # the list of modules to ignore in the profiling return macs, 0 # no activation count in DS def profile_fvcore(model, input_size=(3, 224, 224), batch_size=1, detailed=False, force_cpu=False): if force_cpu: model = model.to('cpu') device, dtype = next(model.parameters()).device, next(model.parameters()).dtype example_input = torch.ones((batch_size,) + input_size, device=device, dtype=dtype) fca = FlopCountAnalysis(model, example_input) aca = ActivationCountAnalysis(model, example_input) if detailed: fcs = flop_count_str(fca) print(fcs) return fca.total(), aca.total() class BenchmarkRunner: def __init__( self, model_name, detail=False, device='cuda', torchscript=False, torchcompile=None, aot_autograd=False, reparam=False, precision='float32', fuser='', num_warm_iter=10, num_bench_iter=50, use_train_size=False, **kwargs ): self.model_name = model_name self.detail = detail self.device = device self.amp_dtype, self.model_dtype, self.data_dtype = resolve_precision(precision) self.channels_last = kwargs.pop('channels_last', False) if self.amp_dtype is not None: self.amp_autocast = partial(torch.cuda.amp.autocast, dtype=self.amp_dtype) else: self.amp_autocast = suppress if fuser: set_jit_fuser(fuser) self.model = create_model( model_name, num_classes=kwargs.pop('num_classes', None), in_chans=3, global_pool=kwargs.pop('gp', 'fast'), scriptable=torchscript, drop_rate=kwargs.pop('drop', 0.), drop_path_rate=kwargs.pop('drop_path', None), drop_block_rate=kwargs.pop('drop_block', None), **kwargs.pop('model_kwargs', {}), ) if reparam: self.model = reparameterize_model(self.model) self.model.to( device=self.device, dtype=self.model_dtype, memory_format=torch.channels_last if self.channels_last else None, ) self.num_classes = self.model.num_classes self.param_count = count_params(self.model) _logger.info('Model %s created, param count: %d' % (model_name, self.param_count)) data_config = resolve_data_config(kwargs, model=self.model, use_test_size=not use_train_size) self.input_size = data_config['input_size'] self.batch_size = kwargs.pop('batch_size', 256) self.compiled = False if torchscript: self.model = torch.jit.script(self.model) self.compiled = True elif torchcompile: assert has_compile, 'A version of torch w/ torch.compile() is required, possibly a nightly.' torch._dynamo.reset() self.model = torch.compile(self.model, backend=torchcompile) self.compiled = True elif aot_autograd: assert has_functorch, "functorch is needed for --aot-autograd" self.model = memory_efficient_fusion(self.model) self.compiled = True self.example_inputs = None self.num_warm_iter = num_warm_iter self.num_bench_iter = num_bench_iter self.log_freq = num_bench_iter // 5 if 'cuda' in self.device: self.time_fn = partial(cuda_timestamp, device=self.device) else: self.time_fn = timestamp def _init_input(self): self.example_inputs = torch.randn( (self.batch_size,) + self.input_size, device=self.device, dtype=self.data_dtype) if self.channels_last: self.example_inputs = self.example_inputs.contiguous(memory_format=torch.channels_last) class InferenceBenchmarkRunner(BenchmarkRunner): def __init__( self, model_name, device='cuda', torchscript=False, **kwargs ): super().__init__(model_name=model_name, device=device, torchscript=torchscript, **kwargs) self.model.eval() def run(self): def _step(): t_step_start = self.time_fn() with self.amp_autocast(): output = self.model(self.example_inputs) t_step_end = self.time_fn(True) return t_step_end - t_step_start _logger.info( f'Running inference benchmark on {self.model_name} for {self.num_bench_iter} steps w/ ' f'input size {self.input_size} and batch size {self.batch_size}.') with torch.no_grad(): self._init_input() for _ in range(self.num_warm_iter): _step() total_step = 0. num_samples = 0 t_run_start = self.time_fn() for i in range(self.num_bench_iter): delta_fwd = _step() total_step += delta_fwd num_samples += self.batch_size num_steps = i + 1 if num_steps % self.log_freq == 0: _logger.info( f"Infer [{num_steps}/{self.num_bench_iter}]." f" {num_samples / total_step:0.2f} samples/sec." f" {1000 * total_step / num_steps:0.3f} ms/step.") t_run_end = self.time_fn(True) t_run_elapsed = t_run_end - t_run_start results = dict( samples_per_sec=round(num_samples / t_run_elapsed, 2), step_time=round(1000 * total_step / self.num_bench_iter, 3), batch_size=self.batch_size, img_size=self.input_size[-1], param_count=round(self.param_count / 1e6, 2), ) retries = 0 if self.compiled else 2 # skip profiling if model is scripted while retries: retries -= 1 try: if has_deepspeed_profiling: macs, _ = profile_deepspeed(self.model, self.input_size) results['gmacs'] = round(macs / 1e9, 2) elif has_fvcore_profiling: macs, activations = profile_fvcore(self.model, self.input_size, force_cpu=not retries) results['gmacs'] = round(macs / 1e9, 2) results['macts'] = round(activations / 1e6, 2) except RuntimeError as e: pass _logger.info( f"Inference benchmark of {self.model_name} done. " f"{results['samples_per_sec']:.2f} samples/sec, {results['step_time']:.2f} ms/step") return results class TrainBenchmarkRunner(BenchmarkRunner): def __init__( self, model_name, device='cuda', torchscript=False, **kwargs ): super().__init__(model_name=model_name, device=device, torchscript=torchscript, **kwargs) self.model.train() self.loss = nn.CrossEntropyLoss().to(self.device) self.target_shape = tuple() self.optimizer = create_optimizer_v2( self.model, opt=kwargs.pop('opt', 'sgd'), lr=kwargs.pop('lr', 1e-4)) if kwargs.pop('grad_checkpointing', False): self.model.set_grad_checkpointing() def _gen_target(self, batch_size): return torch.empty( (batch_size,) + self.target_shape, device=self.device, dtype=torch.long).random_(self.num_classes) def run(self): def _step(detail=False): self.optimizer.zero_grad() # can this be ignored? t_start = self.time_fn() t_fwd_end = t_start t_bwd_end = t_start with self.amp_autocast(): output = self.model(self.example_inputs) if isinstance(output, tuple): output = output[0] if detail: t_fwd_end = self.time_fn(True) target = self._gen_target(output.shape[0]) self.loss(output, target).backward() if detail: t_bwd_end = self.time_fn(True) self.optimizer.step() t_end = self.time_fn(True) if detail: delta_fwd = t_fwd_end - t_start delta_bwd = t_bwd_end - t_fwd_end delta_opt = t_end - t_bwd_end return delta_fwd, delta_bwd, delta_opt else: delta_step = t_end - t_start return delta_step _logger.info( f'Running train benchmark on {self.model_name} for {self.num_bench_iter} steps w/ ' f'input size {self.input_size} and batch size {self.batch_size}.') self._init_input() for _ in range(self.num_warm_iter): _step() t_run_start = self.time_fn() if self.detail: total_fwd = 0. total_bwd = 0. total_opt = 0. num_samples = 0 for i in range(self.num_bench_iter): delta_fwd, delta_bwd, delta_opt = _step(True) num_samples += self.batch_size total_fwd += delta_fwd total_bwd += delta_bwd total_opt += delta_opt num_steps = (i + 1) if num_steps % self.log_freq == 0: total_step = total_fwd + total_bwd + total_opt _logger.info( f"Train [{num_steps}/{self.num_bench_iter}]." f" {num_samples / total_step:0.2f} samples/sec." f" {1000 * total_fwd / num_steps:0.3f} ms/step fwd," f" {1000 * total_bwd / num_steps:0.3f} ms/step bwd," f" {1000 * total_opt / num_steps:0.3f} ms/step opt." ) total_step = total_fwd + total_bwd + total_opt t_run_elapsed = self.time_fn() - t_run_start results = dict( samples_per_sec=round(num_samples / t_run_elapsed, 2), step_time=round(1000 * total_step / self.num_bench_iter, 3), fwd_time=round(1000 * total_fwd / self.num_bench_iter, 3), bwd_time=round(1000 * total_bwd / self.num_bench_iter, 3), opt_time=round(1000 * total_opt / self.num_bench_iter, 3), batch_size=self.batch_size, img_size=self.input_size[-1], param_count=round(self.param_count / 1e6, 2), ) else: total_step = 0. num_samples = 0 for i in range(self.num_bench_iter): delta_step = _step(False) num_samples += self.batch_size total_step += delta_step num_steps = (i + 1) if num_steps % self.log_freq == 0: _logger.info( f"Train [{num_steps}/{self.num_bench_iter}]." f" {num_samples / total_step:0.2f} samples/sec." f" {1000 * total_step / num_steps:0.3f} ms/step.") t_run_elapsed = self.time_fn() - t_run_start results = dict( samples_per_sec=round(num_samples / t_run_elapsed, 2), step_time=round(1000 * total_step / self.num_bench_iter, 3), batch_size=self.batch_size, img_size=self.input_size[-1], param_count=round(self.param_count / 1e6, 2), ) _logger.info( f"Train benchmark of {self.model_name} done. " f"{results['samples_per_sec']:.2f} samples/sec, {results['step_time']:.2f} ms/sample") return results class ProfileRunner(BenchmarkRunner): def __init__(self, model_name, device='cuda', profiler='', **kwargs): super().__init__(model_name=model_name, device=device, **kwargs) if not profiler: if has_deepspeed_profiling: profiler = 'deepspeed' elif has_fvcore_profiling: profiler = 'fvcore' assert profiler, "One of deepspeed or fvcore needs to be installed for profiling to work." self.profiler = profiler self.model.eval() def run(self): _logger.info( f'Running profiler on {self.model_name} w/ ' f'input size {self.input_size} and batch size {self.batch_size}.') macs = 0 activations = 0 if self.profiler == 'deepspeed': macs, _ = profile_deepspeed(self.model, self.input_size, batch_size=self.batch_size, detailed=True) elif self.profiler == 'fvcore': macs, activations = profile_fvcore(self.model, self.input_size, batch_size=self.batch_size, detailed=True) results = dict( gmacs=round(macs / 1e9, 2), macts=round(activations / 1e6, 2), batch_size=self.batch_size, img_size=self.input_size[-1], param_count=round(self.param_count / 1e6, 2), ) _logger.info( f"Profile of {self.model_name} done. " f"{results['gmacs']:.2f} GMACs, {results['param_count']:.2f} M params.") return results def _try_run( model_name, bench_fn, bench_kwargs, initial_batch_size, no_batch_size_retry=False ): batch_size = initial_batch_size results = dict() error_str = 'Unknown' while batch_size: try: torch.cuda.empty_cache() bench = bench_fn(model_name=model_name, batch_size=batch_size, **bench_kwargs) results = bench.run() return results except RuntimeError as e: error_str = str(e) _logger.error(f'"{error_str}" while running benchmark.') if not check_batch_size_retry(error_str): _logger.error(f'Unrecoverable error encountered while benchmarking {model_name}, skipping.') break if no_batch_size_retry: break batch_size = decay_batch_step(batch_size) _logger.warning(f'Reducing batch size to {batch_size} for retry.') results['error'] = error_str return results def benchmark(args): if args.amp: _logger.warning("Overriding precision to 'amp' since --amp flag set.") args.precision = 'amp' if args.amp_dtype == 'float16' else '_'.join(['amp', args.amp_dtype]) _logger.info(f'Benchmarking in {args.precision} precision. ' f'{"NHWC" if args.channels_last else "NCHW"} layout. ' f'torchscript {"enabled" if args.torchscript else "disabled"}') bench_kwargs = vars(args).copy() bench_kwargs.pop('amp') model = bench_kwargs.pop('model') batch_size = bench_kwargs.pop('batch_size') bench_fns = (InferenceBenchmarkRunner,) prefixes = ('infer',) if args.bench == 'both': bench_fns = ( InferenceBenchmarkRunner, TrainBenchmarkRunner ) prefixes = ('infer', 'train') elif args.bench == 'train': bench_fns = TrainBenchmarkRunner, prefixes = 'train', elif args.bench.startswith('profile'): # specific profiler used if included in bench mode string, otherwise default to deepspeed, fallback to fvcore if 'deepspeed' in args.bench: assert has_deepspeed_profiling, "deepspeed must be installed to use deepspeed flop counter" bench_kwargs['profiler'] = 'deepspeed' elif 'fvcore' in args.bench: assert has_fvcore_profiling, "fvcore must be installed to use fvcore flop counter" bench_kwargs['profiler'] = 'fvcore' bench_fns = ProfileRunner, batch_size = 1 model_results = OrderedDict(model=model) for prefix, bench_fn in zip(prefixes, bench_fns): run_results = _try_run( model, bench_fn, bench_kwargs=bench_kwargs, initial_batch_size=batch_size, no_batch_size_retry=args.no_retry, ) if prefix and 'error' not in run_results: run_results = {'_'.join([prefix, k]): v for k, v in run_results.items()} model_results.update(run_results) if 'error' in run_results: break if 'error' not in model_results: param_count = model_results.pop('infer_param_count', model_results.pop('train_param_count', 0)) model_results.setdefault('param_count', param_count) model_results.pop('train_param_count', 0) return model_results def main(): setup_default_logging() args = parser.parse_args() model_cfgs = [] model_names = [] if args.fast_norm: set_fast_norm() if args.model_list: args.model = '' with open(args.model_list) as f: model_names = [line.rstrip() for line in f] model_cfgs = [(n, None) for n in model_names] elif args.model == 'all': # validate all models in a list of names with pretrained checkpoints args.pretrained = True model_names = list_models(pretrained=True, exclude_filters=['*in21k']) model_cfgs = [(n, None) for n in model_names] elif not is_model(args.model): # model name doesn't exist, try as wildcard filter model_names = list_models(args.model) model_cfgs = [(n, None) for n in model_names] if len(model_cfgs): _logger.info('Running bulk validation on these pretrained models: {}'.format(', '.join(model_names))) results = [] try: for m, _ in model_cfgs: if not m: continue args.model = m r = benchmark(args) if r: results.append(r) time.sleep(10) except KeyboardInterrupt as e: pass sort_key = 'infer_samples_per_sec' if 'train' in args.bench: sort_key = 'train_samples_per_sec' elif 'profile' in args.bench: sort_key = 'infer_gmacs' results = filter(lambda x: sort_key in x, results) results = sorted(results, key=lambda x: x[sort_key], reverse=True) else: results = benchmark(args) if args.results_file: write_results(args.results_file, results, format=args.results_format) # output results in JSON to stdout w/ delimiter for runner script print(f'--result\n{json.dumps(results, indent=4)}') def write_results(results_file, results, format='csv'): with open(results_file, mode='w') as cf: if format == 'json': json.dump(results, cf, indent=4) else: if not isinstance(results, (list, tuple)): results = [results] if not results: return dw = csv.DictWriter(cf, fieldnames=results[0].keys()) dw.writeheader() for r in results: dw.writerow(r) cf.flush() if __name__ == '__main__': main()
pytorch-image-models/benchmark.py/0
{ "file_path": "pytorch-image-models/benchmark.py", "repo_id": "pytorch-image-models", "token_count": 13272 }
187
# Big Transfer (BiT) **Big Transfer (BiT)** is a type of pretraining recipe that pre-trains on a large supervised source dataset, and fine-tunes the weights on the target task. Models are trained on the JFT-300M dataset. The finetuned models contained in this collection are finetuned on ImageNet. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('resnetv2_101x1_bitm', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `resnetv2_101x1_bitm`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('resnetv2_101x1_bitm', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{kolesnikov2020big, title={Big Transfer (BiT): General Visual Representation Learning}, author={Alexander Kolesnikov and Lucas Beyer and Xiaohua Zhai and Joan Puigcerver and Jessica Yung and Sylvain Gelly and Neil Houlsby}, year={2020}, eprint={1912.11370}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Big Transfer Paper: Title: 'Big Transfer (BiT): General Visual Representation Learning' URL: https://paperswithcode.com/paper/large-scale-learning-of-general-visual Models: - Name: resnetv2_101x1_bitm In Collection: Big Transfer Metadata: FLOPs: 5330896 Parameters: 44540000 File Size: 178256468 Architecture: - 1x1 Convolution - Bottleneck Residual Block - Convolution - Global Average Pooling - Group Normalization - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Weight Standardization Tasks: - Image Classification Training Techniques: - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPUv3-512 ID: resnetv2_101x1_bitm LR: 0.03 Epochs: 90 Layers: 101 Crop Pct: '1.0' Momentum: 0.9 Batch Size: 4096 Image Size: '480' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnetv2.py#L444 Weights: https://storage.googleapis.com/bit_models/BiT-M-R101x1-ILSVRC2012.npz Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.21% Top 5 Accuracy: 96.47% - Name: resnetv2_101x3_bitm In Collection: Big Transfer Metadata: FLOPs: 15988688 Parameters: 387930000 File Size: 1551830100 Architecture: - 1x1 Convolution - Bottleneck Residual Block - Convolution - Global Average Pooling - Group Normalization - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Weight Standardization Tasks: - Image Classification Training Techniques: - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPUv3-512 ID: resnetv2_101x3_bitm LR: 0.03 Epochs: 90 Layers: 101 Crop Pct: '1.0' Momentum: 0.9 Batch Size: 4096 Image Size: '480' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnetv2.py#L451 Weights: https://storage.googleapis.com/bit_models/BiT-M-R101x3-ILSVRC2012.npz Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.38% Top 5 Accuracy: 97.37% - Name: resnetv2_152x2_bitm In Collection: Big Transfer Metadata: FLOPs: 10659792 Parameters: 236340000 File Size: 945476668 Architecture: - 1x1 Convolution - Bottleneck Residual Block - Convolution - Global Average Pooling - Group Normalization - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Weight Standardization Tasks: - Image Classification Training Techniques: - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet - JFT-300M ID: resnetv2_152x2_bitm Crop Pct: '1.0' Image Size: '480' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnetv2.py#L458 Weights: https://storage.googleapis.com/bit_models/BiT-M-R152x2-ILSVRC2012.npz Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.4% Top 5 Accuracy: 97.43% - Name: resnetv2_152x4_bitm In Collection: Big Transfer Metadata: FLOPs: 21317584 Parameters: 936530000 File Size: 3746270104 Architecture: - 1x1 Convolution - Bottleneck Residual Block - Convolution - Global Average Pooling - Group Normalization - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Weight Standardization Tasks: - Image Classification Training Techniques: - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPUv3-512 ID: resnetv2_152x4_bitm Crop Pct: '1.0' Image Size: '480' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnetv2.py#L465 Weights: https://storage.googleapis.com/bit_models/BiT-M-R152x4-ILSVRC2012.npz Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.95% Top 5 Accuracy: 97.45% - Name: resnetv2_50x1_bitm In Collection: Big Transfer Metadata: FLOPs: 5330896 Parameters: 25550000 File Size: 102242668 Architecture: - 1x1 Convolution - Bottleneck Residual Block - Convolution - Global Average Pooling - Group Normalization - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Weight Standardization Tasks: - Image Classification Training Techniques: - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPUv3-512 ID: resnetv2_50x1_bitm LR: 0.03 Epochs: 90 Layers: 50 Crop Pct: '1.0' Momentum: 0.9 Batch Size: 4096 Image Size: '480' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnetv2.py#L430 Weights: https://storage.googleapis.com/bit_models/BiT-M-R50x1-ILSVRC2012.npz Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.19% Top 5 Accuracy: 95.63% - Name: resnetv2_50x3_bitm In Collection: Big Transfer Metadata: FLOPs: 15988688 Parameters: 217320000 File Size: 869321580 Architecture: - 1x1 Convolution - Bottleneck Residual Block - Convolution - Global Average Pooling - Group Normalization - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Weight Standardization Tasks: - Image Classification Training Techniques: - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPUv3-512 ID: resnetv2_50x3_bitm LR: 0.03 Epochs: 90 Layers: 50 Crop Pct: '1.0' Momentum: 0.9 Batch Size: 4096 Image Size: '480' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnetv2.py#L437 Weights: https://storage.googleapis.com/bit_models/BiT-M-R50x3-ILSVRC2012.npz Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.75% Top 5 Accuracy: 97.12% -->
pytorch-image-models/hfdocs/source/models/big-transfer.mdx/0
{ "file_path": "pytorch-image-models/hfdocs/source/models/big-transfer.mdx", "repo_id": "pytorch-image-models", "token_count": 4101 }
188
# Noisy Student (EfficientNet) **Noisy Student Training** is a semi-supervised learning approach. It extends the idea of self-training and distillation with the use of equal-or-larger student models and noise added to the student during learning. It has three main steps: 1. train a teacher model on labeled images 2. use the teacher to generate pseudo labels on unlabeled images 3. train a student model on the combination of labeled images and pseudo labeled images. The algorithm is iterated a few times by treating the student as a teacher to relabel the unlabeled data and training a new student. Noisy Student Training seeks to improve on self-training and distillation in two ways. First, it makes the student larger than, or at least equal to, the teacher so the student can better learn from a larger dataset. Second, it adds noise to the student so the noised student is forced to learn harder from the pseudo labels. To noise the student, it uses input noise such as RandAugment data augmentation, and model noise such as dropout and stochastic depth during training. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('tf_efficientnet_b0_ns', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `tf_efficientnet_b0_ns`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('tf_efficientnet_b0_ns', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{xie2020selftraining, title={Self-training with Noisy Student improves ImageNet classification}, author={Qizhe Xie and Minh-Thang Luong and Eduard Hovy and Quoc V. Le}, year={2020}, eprint={1911.04252}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- Type: model-index Collections: - Name: Noisy Student Paper: Title: Self-training with Noisy Student improves ImageNet classification URL: https://paperswithcode.com/paper/self-training-with-noisy-student-improves Models: - Name: tf_efficientnet_b0_ns In Collection: Noisy Student Metadata: FLOPs: 488688572 Parameters: 5290000 File Size: 21386709 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod ID: tf_efficientnet_b0_ns LR: 0.128 Epochs: 700 Dropout: 0.5 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 2048 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1427 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ns-c0e6a31c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.66% Top 5 Accuracy: 94.37% - Name: tf_efficientnet_b1_ns In Collection: Noisy Student Metadata: FLOPs: 883633200 Parameters: 7790000 File Size: 31516408 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod ID: tf_efficientnet_b1_ns LR: 0.128 Epochs: 700 Dropout: 0.5 Crop Pct: '0.882' Momentum: 0.9 Batch Size: 2048 Image Size: '240' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1437 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_ns-99dd0c41.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.39% Top 5 Accuracy: 95.74% - Name: tf_efficientnet_b2_ns In Collection: Noisy Student Metadata: FLOPs: 1234321170 Parameters: 9110000 File Size: 36801803 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod ID: tf_efficientnet_b2_ns LR: 0.128 Epochs: 700 Dropout: 0.5 Crop Pct: '0.89' Momentum: 0.9 Batch Size: 2048 Image Size: '260' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1447 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_ns-00306e48.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.39% Top 5 Accuracy: 96.24% - Name: tf_efficientnet_b3_ns In Collection: Noisy Student Metadata: FLOPs: 2275247568 Parameters: 12230000 File Size: 49385734 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod ID: tf_efficientnet_b3_ns LR: 0.128 Epochs: 700 Dropout: 0.5 Crop Pct: '0.904' Momentum: 0.9 Batch Size: 2048 Image Size: '300' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1457 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_ns-9d44bf68.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.04% Top 5 Accuracy: 96.91% - Name: tf_efficientnet_b4_ns In Collection: Noisy Student Metadata: FLOPs: 5749638672 Parameters: 19340000 File Size: 77995057 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod ID: tf_efficientnet_b4_ns LR: 0.128 Epochs: 700 Dropout: 0.5 Crop Pct: '0.922' Momentum: 0.9 Batch Size: 2048 Image Size: '380' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1467 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_ns-d6313a46.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 85.15% Top 5 Accuracy: 97.47% - Name: tf_efficientnet_b5_ns In Collection: Noisy Student Metadata: FLOPs: 13176501888 Parameters: 30390000 File Size: 122404944 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod ID: tf_efficientnet_b5_ns LR: 0.128 Epochs: 350 Dropout: 0.5 Crop Pct: '0.934' Momentum: 0.9 Batch Size: 2048 Image Size: '456' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1477 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ns-6f26d0cf.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 86.08% Top 5 Accuracy: 97.75% - Name: tf_efficientnet_b6_ns In Collection: Noisy Student Metadata: FLOPs: 24180518488 Parameters: 43040000 File Size: 173239537 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod ID: tf_efficientnet_b6_ns LR: 0.128 Epochs: 350 Dropout: 0.5 Crop Pct: '0.942' Momentum: 0.9 Batch Size: 2048 Image Size: '528' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1487 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_ns-51548356.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 86.45% Top 5 Accuracy: 97.88% - Name: tf_efficientnet_b7_ns In Collection: Noisy Student Metadata: FLOPs: 48205304880 Parameters: 66349999 File Size: 266853140 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod ID: tf_efficientnet_b7_ns LR: 0.128 Epochs: 350 Dropout: 0.5 Crop Pct: '0.949' Momentum: 0.9 Batch Size: 2048 Image Size: '600' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1498 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ns-1dbc32de.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 86.83% Top 5 Accuracy: 98.08% - Name: tf_efficientnet_l2_ns In Collection: Noisy Student Metadata: FLOPs: 611646113804 Parameters: 480310000 File Size: 1925950424 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod Training Time: 6 days ID: tf_efficientnet_l2_ns LR: 0.128 Epochs: 350 Dropout: 0.5 Crop Pct: '0.96' Momentum: 0.9 Batch Size: 2048 Image Size: '800' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1520 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_l2_ns-df73bb44.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 88.35% Top 5 Accuracy: 98.66% -->
pytorch-image-models/hfdocs/source/models/noisy-student.mdx/0
{ "file_path": "pytorch-image-models/hfdocs/source/models/noisy-student.mdx", "repo_id": "pytorch-image-models", "token_count": 6683 }
189
# SPNASNet **Single-Path NAS** is a novel differentiable NAS method for designing hardware-efficient ConvNets in less than 4 hours. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('spnasnet_100', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `spnasnet_100`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('spnasnet_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{stamoulis2019singlepath, title={Single-Path NAS: Designing Hardware-Efficient ConvNets in less than 4 Hours}, author={Dimitrios Stamoulis and Ruizhou Ding and Di Wang and Dimitrios Lymberopoulos and Bodhi Priyantha and Jie Liu and Diana Marculescu}, year={2019}, eprint={1904.02877}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- Type: model-index Collections: - Name: SPNASNet Paper: Title: 'Single-Path NAS: Designing Hardware-Efficient ConvNets in less than 4 Hours' URL: https://paperswithcode.com/paper/single-path-nas-designing-hardware-efficient Models: - Name: spnasnet_100 In Collection: SPNASNet Metadata: FLOPs: 442385600 Parameters: 4420000 File Size: 17902337 Architecture: - Average Pooling - Batch Normalization - Convolution - Depthwise Separable Convolution - Dropout - ReLU Tasks: - Image Classification Training Data: - ImageNet ID: spnasnet_100 Crop Pct: '0.875' Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L995 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/spnasnet_100-048bc3f4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 74.08% Top 5 Accuracy: 91.82% -->
pytorch-image-models/hfdocs/source/models/spnasnet.mdx/0
{ "file_path": "pytorch-image-models/hfdocs/source/models/spnasnet.mdx", "repo_id": "pytorch-image-models", "token_count": 1508 }
190
# Optimization This page contains the API reference documentation for learning rate optimizers included in `timm`. ## Optimizers ### Factory functions [[autodoc]] timm.optim.optim_factory.create_optimizer [[autodoc]] timm.optim.optim_factory.create_optimizer_v2 ### Optimizer Classes [[autodoc]] timm.optim.adabelief.AdaBelief [[autodoc]] timm.optim.adafactor.Adafactor [[autodoc]] timm.optim.adahessian.Adahessian [[autodoc]] timm.optim.adamp.AdamP [[autodoc]] timm.optim.adamw.AdamW [[autodoc]] timm.optim.lamb.Lamb [[autodoc]] timm.optim.lars.Lars [[autodoc]] timm.optim.lookahead.Lookahead [[autodoc]] timm.optim.madgrad.MADGRAD [[autodoc]] timm.optim.nadam.Nadam [[autodoc]] timm.optim.nvnovograd.NvNovoGrad [[autodoc]] timm.optim.radam.RAdam [[autodoc]] timm.optim.rmsprop_tf.RMSpropTF [[autodoc]] timm.optim.sgdp.SGDP
pytorch-image-models/hfdocs/source/reference/optimizers.mdx/0
{ "file_path": "pytorch-image-models/hfdocs/source/reference/optimizers.mdx", "repo_id": "pytorch-image-models", "token_count": 333 }
191
import logging from .constants import * _logger = logging.getLogger(__name__) def resolve_data_config( args=None, pretrained_cfg=None, model=None, use_test_size=False, verbose=False ): assert model or args or pretrained_cfg, "At least one of model, args, or pretrained_cfg required for data config." args = args or {} pretrained_cfg = pretrained_cfg or {} if not pretrained_cfg and model is not None and hasattr(model, 'pretrained_cfg'): pretrained_cfg = model.pretrained_cfg data_config = {} # Resolve input/image size in_chans = 3 if args.get('in_chans', None) is not None: in_chans = args['in_chans'] elif args.get('chans', None) is not None: in_chans = args['chans'] input_size = (in_chans, 224, 224) if args.get('input_size', None) is not None: assert isinstance(args['input_size'], (tuple, list)) assert len(args['input_size']) == 3 input_size = tuple(args['input_size']) in_chans = input_size[0] # input_size overrides in_chans elif args.get('img_size', None) is not None: assert isinstance(args['img_size'], int) input_size = (in_chans, args['img_size'], args['img_size']) else: if use_test_size and pretrained_cfg.get('test_input_size', None) is not None: input_size = pretrained_cfg['test_input_size'] elif pretrained_cfg.get('input_size', None) is not None: input_size = pretrained_cfg['input_size'] data_config['input_size'] = input_size # resolve interpolation method data_config['interpolation'] = 'bicubic' if args.get('interpolation', None): data_config['interpolation'] = args['interpolation'] elif pretrained_cfg.get('interpolation', None): data_config['interpolation'] = pretrained_cfg['interpolation'] # resolve dataset + model mean for normalization data_config['mean'] = IMAGENET_DEFAULT_MEAN if args.get('mean', None) is not None: mean = tuple(args['mean']) if len(mean) == 1: mean = tuple(list(mean) * in_chans) else: assert len(mean) == in_chans data_config['mean'] = mean elif pretrained_cfg.get('mean', None): data_config['mean'] = pretrained_cfg['mean'] # resolve dataset + model std deviation for normalization data_config['std'] = IMAGENET_DEFAULT_STD if args.get('std', None) is not None: std = tuple(args['std']) if len(std) == 1: std = tuple(list(std) * in_chans) else: assert len(std) == in_chans data_config['std'] = std elif pretrained_cfg.get('std', None): data_config['std'] = pretrained_cfg['std'] # resolve default inference crop crop_pct = DEFAULT_CROP_PCT if args.get('crop_pct', None): crop_pct = args['crop_pct'] else: if use_test_size and pretrained_cfg.get('test_crop_pct', None): crop_pct = pretrained_cfg['test_crop_pct'] elif pretrained_cfg.get('crop_pct', None): crop_pct = pretrained_cfg['crop_pct'] data_config['crop_pct'] = crop_pct # resolve default crop percentage crop_mode = DEFAULT_CROP_MODE if args.get('crop_mode', None): crop_mode = args['crop_mode'] elif pretrained_cfg.get('crop_mode', None): crop_mode = pretrained_cfg['crop_mode'] data_config['crop_mode'] = crop_mode if verbose: _logger.info('Data processing configuration for current model + dataset:') for n, v in data_config.items(): _logger.info('\t%s: %s' % (n, str(v))) return data_config def resolve_model_data_config( model, args=None, pretrained_cfg=None, use_test_size=False, verbose=False, ): """ Resolve Model Data Config This is equivalent to resolve_data_config() but with arguments re-ordered to put model first. Args: model (nn.Module): the model instance args (dict): command line arguments / configuration in dict form (overrides pretrained_cfg) pretrained_cfg (dict): pretrained model config (overrides pretrained_cfg attached to model) use_test_size (bool): use the test time input resolution (if one exists) instead of default train resolution verbose (bool): enable extra logging of resolved values Returns: dictionary of config """ return resolve_data_config( args=args, pretrained_cfg=pretrained_cfg, model=model, use_test_size=use_test_size, verbose=verbose, )
pytorch-image-models/timm/data/config.py/0
{ "file_path": "pytorch-image-models/timm/data/config.py", "repo_id": "pytorch-image-models", "token_count": 1927 }
192
""" Dataset reader for HF IterableDataset """ import math import os from itertools import repeat, chain from typing import Optional import torch import torch.distributed as dist from PIL import Image try: import datasets from datasets.distributed import split_dataset_by_node from datasets.splits import SplitInfo except ImportError as e: print("Please install Hugging Face datasets package `pip install datasets`.") raise e from .class_map import load_class_map from .reader import Reader from .shared_count import SharedCount SHUFFLE_SIZE = int(os.environ.get('HFIDS_SHUFFLE_SIZE', 4096)) class ReaderHfids(Reader): def __init__( self, name: str, root: Optional[str] = None, split: str = 'train', is_training: bool = False, batch_size: int = 1, download: bool = False, repeats: int = 0, seed: int = 42, class_map: Optional[dict] = None, input_key: str = 'image', input_img_mode: str = 'RGB', target_key: str = 'label', target_img_mode: str = '', shuffle_size: Optional[int] = None, num_samples: Optional[int] = None, ): super().__init__() self.root = root self.split = split self.is_training = is_training self.batch_size = batch_size self.download = download self.repeats = repeats self.common_seed = seed # a seed that's fixed across all worker / distributed instances self.shuffle_size = shuffle_size or SHUFFLE_SIZE self.input_key = input_key self.input_img_mode = input_img_mode self.target_key = target_key self.target_img_mode = target_img_mode self.builder = datasets.load_dataset_builder(name, cache_dir=root) if download: self.builder.download_and_prepare() split_info: Optional[SplitInfo] = None if self.builder.info.splits and split in self.builder.info.splits: if isinstance(self.builder.info.splits[split], SplitInfo): split_info: Optional[SplitInfo] = self.builder.info.splits[split] if num_samples: self.num_samples = num_samples elif split_info and split_info.num_examples: self.num_samples = split_info.num_examples else: raise ValueError( "Dataset length is unknown, please pass `num_samples` explicitely. " "The number of steps needs to be known in advance for the learning rate scheduler." ) self.remap_class = False if class_map: self.class_to_idx = load_class_map(class_map) self.remap_class = True else: self.class_to_idx = {} # Distributed world state self.dist_rank = 0 self.dist_num_replicas = 1 if dist.is_available() and dist.is_initialized() and dist.get_world_size() > 1: self.dist_rank = dist.get_rank() self.dist_num_replicas = dist.get_world_size() # Attributes that are updated in _lazy_init self.worker_info = None self.worker_id = 0 self.num_workers = 1 self.global_worker_id = 0 self.global_num_workers = 1 # Initialized lazily on each dataloader worker process self.ds: Optional[datasets.IterableDataset] = None self.epoch = SharedCount() def set_epoch(self, count): # to update the shuffling effective_seed = seed + epoch self.epoch.value = count def set_loader_cfg( self, num_workers: Optional[int] = None, ): if self.ds is not None: return if num_workers is not None: self.num_workers = num_workers self.global_num_workers = self.dist_num_replicas * self.num_workers def _lazy_init(self): """ Lazily initialize worker (in worker processes) """ if self.worker_info is None: worker_info = torch.utils.data.get_worker_info() if worker_info is not None: self.worker_info = worker_info self.worker_id = worker_info.id self.num_workers = worker_info.num_workers self.global_num_workers = self.dist_num_replicas * self.num_workers self.global_worker_id = self.dist_rank * self.num_workers + self.worker_id if self.download: dataset = self.builder.as_dataset(split=self.split) # to distribute evenly to workers ds = dataset.to_iterable_dataset(num_shards=self.global_num_workers) else: # in this case the number of shard is determined by the number of remote files ds = self.builder.as_streaming_dataset(split=self.split) if self.is_training: # will shuffle the list of shards and use a shuffle buffer ds = ds.shuffle(seed=self.common_seed, buffer_size=self.shuffle_size) # Distributed: # The dataset has a number of shards that is a factor of `dist_num_replicas` (i.e. if `ds.n_shards % dist_num_replicas == 0`), # so the shards are evenly assigned across the nodes. # If it's not the case for dataset streaming, each node keeps 1 example out of `dist_num_replicas`, skipping the other examples. # Workers: # In a node, datasets.IterableDataset assigns the shards assigned to the node as evenly as possible to workers. self.ds = split_dataset_by_node(ds, rank=self.dist_rank, world_size=self.dist_num_replicas) def _num_samples_per_worker(self): num_worker_samples = \ max(1, self.repeats) * self.num_samples / max(self.global_num_workers, self.dist_num_replicas) if self.is_training or self.dist_num_replicas > 1: num_worker_samples = math.ceil(num_worker_samples) if self.is_training and self.batch_size is not None: num_worker_samples = math.ceil(num_worker_samples / self.batch_size) * self.batch_size return int(num_worker_samples) def __iter__(self): if self.ds is None: self._lazy_init() self.ds.set_epoch(self.epoch.value) target_sample_count = self._num_samples_per_worker() sample_count = 0 if self.is_training: ds_iter = chain.from_iterable(repeat(self.ds)) else: ds_iter = iter(self.ds) for sample in ds_iter: input_data: Image.Image = sample[self.input_key] if self.input_img_mode and input_data.mode != self.input_img_mode: input_data = input_data.convert(self.input_img_mode) target_data = sample[self.target_key] if self.target_img_mode: assert isinstance(target_data, Image.Image), "target_img_mode is specified but target is not an image" if target_data.mode != self.target_img_mode: target_data = target_data.convert(self.target_img_mode) elif self.remap_class: target_data = self.class_to_idx[target_data] yield input_data, target_data sample_count += 1 if self.is_training and sample_count >= target_sample_count: break def __len__(self): num_samples = self._num_samples_per_worker() * self.num_workers return num_samples def _filename(self, index, basename=False, absolute=False): assert False, "Not supported" # no random access to examples def filenames(self, basename=False, absolute=False): """ Return all filenames in dataset, overrides base""" if self.ds is None: self._lazy_init() names = [] for sample in self.ds: if 'file_name' in sample: name = sample['file_name'] elif 'filename' in sample: name = sample['filename'] elif 'id' in sample: name = sample['id'] elif 'image_id' in sample: name = sample['image_id'] else: assert False, "No supported name field present" names.append(name) return names
pytorch-image-models/timm/data/readers/reader_hfids.py/0
{ "file_path": "pytorch-image-models/timm/data/readers/reader_hfids.py", "repo_id": "pytorch-image-models", "token_count": 3722 }
193
from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from .config import use_fused_attn from .mlp import Mlp from .weight_init import trunc_normal_tf_ class AttentionPoolLatent(nn.Module): """ Attention pooling w/ latent query """ fused_attn: torch.jit.Final[bool] def __init__( self, in_features: int, out_features: int = None, embed_dim: int = None, num_heads: int = 8, feat_size: Optional[int] = None, mlp_ratio: float = 4.0, qkv_bias: bool = True, qk_norm: bool = False, latent_len: int = 1, latent_dim: int = None, pos_embed: str = '', pool_type: str = 'token', norm_layer: Optional[nn.Module] = None, drop: float = 0.0, ): super().__init__() embed_dim = embed_dim or in_features out_features = out_features or in_features assert embed_dim % num_heads == 0 self.num_heads = num_heads self.head_dim = embed_dim // num_heads self.feat_size = feat_size self.scale = self.head_dim ** -0.5 self.pool = pool_type self.fused_attn = use_fused_attn() if pos_embed == 'abs': assert feat_size is not None self.pos_embed = nn.Parameter(torch.zeros(feat_size, in_features)) else: self.pos_embed = None self.latent_dim = latent_dim or embed_dim self.latent_len = latent_len self.latent = nn.Parameter(torch.zeros(1, self.latent_len, embed_dim)) self.q = nn.Linear(embed_dim, embed_dim, bias=qkv_bias) self.kv = nn.Linear(embed_dim, embed_dim * 2, bias=qkv_bias) self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.proj = nn.Linear(embed_dim, embed_dim) self.proj_drop = nn.Dropout(drop) self.norm = norm_layer(out_features) if norm_layer is not None else nn.Identity() self.mlp = Mlp(embed_dim, int(embed_dim * mlp_ratio)) self.init_weights() def init_weights(self): if self.pos_embed is not None: trunc_normal_tf_(self.pos_embed, std=self.pos_embed.shape[1] ** -0.5) trunc_normal_tf_(self.latent, std=self.latent_dim ** -0.5) def forward(self, x): B, N, C = x.shape if self.pos_embed is not None: # FIXME interpolate x = x + self.pos_embed.unsqueeze(0).to(x.dtype) q_latent = self.latent.expand(B, -1, -1) q = self.q(q_latent).reshape(B, self.latent_len, self.num_heads, self.head_dim).transpose(1, 2) kv = self.kv(x).reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) k, v = kv.unbind(0) q, k = self.q_norm(q), self.k_norm(k) if self.fused_attn: x = F.scaled_dot_product_attention(q, k, v) else: q = q * self.scale attn = q @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) x = attn @ v x = x.transpose(1, 2).reshape(B, self.latent_len, C) x = self.proj(x) x = self.proj_drop(x) x = x + self.mlp(self.norm(x)) # optional pool if latent seq_len > 1 and pooled output is desired if self.pool == 'token': x = x[:, 0] elif self.pool == 'avg': x = x.mean(1) return x
pytorch-image-models/timm/layers/attention_pool.py/0
{ "file_path": "pytorch-image-models/timm/layers/attention_pool.py", "repo_id": "pytorch-image-models", "token_count": 1795 }
194
""" ECA module from ECAnet paper: ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks https://arxiv.org/abs/1910.03151 Original ECA model borrowed from https://github.com/BangguWu/ECANet Modified circular ECA implementation and adaption for use in timm package by Chris Ha https://github.com/VRandme Original License: MIT License Copyright (c) 2019 BangguWu, Qilong Wang Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import math from torch import nn import torch.nn.functional as F from .create_act import create_act_layer from .helpers import make_divisible class EcaModule(nn.Module): """Constructs an ECA module. Args: channels: Number of channels of the input feature map for use in adaptive kernel sizes for actual calculations according to channel. gamma, beta: when channel is given parameters of mapping function refer to original paper https://arxiv.org/pdf/1910.03151.pdf (default=None. if channel size not given, use k_size given for kernel size.) kernel_size: Adaptive selection of kernel size (default=3) gamm: used in kernel_size calc, see above beta: used in kernel_size calc, see above act_layer: optional non-linearity after conv, enables conv bias, this is an experiment gate_layer: gating non-linearity to use """ def __init__( self, channels=None, kernel_size=3, gamma=2, beta=1, act_layer=None, gate_layer='sigmoid', rd_ratio=1/8, rd_channels=None, rd_divisor=8, use_mlp=False): super(EcaModule, self).__init__() if channels is not None: t = int(abs(math.log(channels, 2) + beta) / gamma) kernel_size = max(t if t % 2 else t + 1, 3) assert kernel_size % 2 == 1 padding = (kernel_size - 1) // 2 if use_mlp: # NOTE 'mlp' mode is a timm experiment, not in paper assert channels is not None if rd_channels is None: rd_channels = make_divisible(channels * rd_ratio, divisor=rd_divisor) act_layer = act_layer or nn.ReLU self.conv = nn.Conv1d(1, rd_channels, kernel_size=1, padding=0, bias=True) self.act = create_act_layer(act_layer) self.conv2 = nn.Conv1d(rd_channels, 1, kernel_size=kernel_size, padding=padding, bias=True) else: self.conv = nn.Conv1d(1, 1, kernel_size=kernel_size, padding=padding, bias=False) self.act = None self.conv2 = None self.gate = create_act_layer(gate_layer) def forward(self, x): y = x.mean((2, 3)).view(x.shape[0], 1, -1) # view for 1d conv y = self.conv(y) if self.conv2 is not None: y = self.act(y) y = self.conv2(y) y = self.gate(y).view(x.shape[0], -1, 1, 1) return x * y.expand_as(x) EfficientChannelAttn = EcaModule # alias class CecaModule(nn.Module): """Constructs a circular ECA module. ECA module where the conv uses circular padding rather than zero padding. Unlike the spatial dimension, the channels do not have inherent ordering nor locality. Although this module in essence, applies such an assumption, it is unnecessary to limit the channels on either "edge" from being circularly adapted to each other. This will fundamentally increase connectivity and possibly increase performance metrics (accuracy, robustness), without significantly impacting resource metrics (parameter size, throughput,latency, etc) Args: channels: Number of channels of the input feature map for use in adaptive kernel sizes for actual calculations according to channel. gamma, beta: when channel is given parameters of mapping function refer to original paper https://arxiv.org/pdf/1910.03151.pdf (default=None. if channel size not given, use k_size given for kernel size.) kernel_size: Adaptive selection of kernel size (default=3) gamm: used in kernel_size calc, see above beta: used in kernel_size calc, see above act_layer: optional non-linearity after conv, enables conv bias, this is an experiment gate_layer: gating non-linearity to use """ def __init__(self, channels=None, kernel_size=3, gamma=2, beta=1, act_layer=None, gate_layer='sigmoid'): super(CecaModule, self).__init__() if channels is not None: t = int(abs(math.log(channels, 2) + beta) / gamma) kernel_size = max(t if t % 2 else t + 1, 3) has_act = act_layer is not None assert kernel_size % 2 == 1 # PyTorch circular padding mode is buggy as of pytorch 1.4 # see https://github.com/pytorch/pytorch/pull/17240 # implement manual circular padding self.padding = (kernel_size - 1) // 2 self.conv = nn.Conv1d(1, 1, kernel_size=kernel_size, padding=0, bias=has_act) self.gate = create_act_layer(gate_layer) def forward(self, x): y = x.mean((2, 3)).view(x.shape[0], 1, -1) # Manually implement circular padding, F.pad does not seemed to be bugged y = F.pad(y, (self.padding, self.padding), mode='circular') y = self.conv(y) y = self.gate(y).view(x.shape[0], -1, 1, 1) return x * y.expand_as(x) CircularEfficientChannelAttn = CecaModule
pytorch-image-models/timm/layers/eca.py/0
{ "file_path": "pytorch-image-models/timm/layers/eca.py", "repo_id": "pytorch-image-models", "token_count": 2411 }
195
""" Linear layer (alternate definition) """ import torch import torch.nn.functional as F from torch import nn as nn class Linear(nn.Linear): r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b` Wraps torch.nn.Linear to support AMP + torchscript usage by manually casting weight & bias to input.dtype to work around an issue w/ torch.addmm in this use case. """ def forward(self, input: torch.Tensor) -> torch.Tensor: if torch.jit.is_scripting(): bias = self.bias.to(dtype=input.dtype) if self.bias is not None else None return F.linear(input, self.weight.to(dtype=input.dtype), bias=bias) else: return F.linear(input, self.weight, self.bias)
pytorch-image-models/timm/layers/linear.py/0
{ "file_path": "pytorch-image-models/timm/layers/linear.py", "repo_id": "pytorch-image-models", "token_count": 282 }
196
""" Depthwise Separable Conv Modules Basic DWS convs. Other variations of DWS exist with batch norm or activations between the DW and PW convs such as the Depthwise modules in MobileNetV2 / EfficientNet and Xception. Hacked together by / Copyright 2020 Ross Wightman """ from torch import nn as nn from .create_conv2d import create_conv2d from .create_norm_act import get_norm_act_layer class SeparableConvNormAct(nn.Module): """ Separable Conv w/ trailing Norm and Activation """ def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, padding='', bias=False, channel_multiplier=1.0, pw_kernel_size=1, norm_layer=nn.BatchNorm2d, act_layer=nn.ReLU, apply_act=True, drop_layer=None): super(SeparableConvNormAct, self).__init__() self.conv_dw = create_conv2d( in_channels, int(in_channels * channel_multiplier), kernel_size, stride=stride, dilation=dilation, padding=padding, depthwise=True) self.conv_pw = create_conv2d( int(in_channels * channel_multiplier), out_channels, pw_kernel_size, padding=padding, bias=bias) norm_act_layer = get_norm_act_layer(norm_layer, act_layer) norm_kwargs = dict(drop_layer=drop_layer) if drop_layer is not None else {} self.bn = norm_act_layer(out_channels, apply_act=apply_act, **norm_kwargs) @property def in_channels(self): return self.conv_dw.in_channels @property def out_channels(self): return self.conv_pw.out_channels def forward(self, x): x = self.conv_dw(x) x = self.conv_pw(x) x = self.bn(x) return x SeparableConvBnAct = SeparableConvNormAct class SeparableConv2d(nn.Module): """ Separable Conv """ def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, padding='', bias=False, channel_multiplier=1.0, pw_kernel_size=1): super(SeparableConv2d, self).__init__() self.conv_dw = create_conv2d( in_channels, int(in_channels * channel_multiplier), kernel_size, stride=stride, dilation=dilation, padding=padding, depthwise=True) self.conv_pw = create_conv2d( int(in_channels * channel_multiplier), out_channels, pw_kernel_size, padding=padding, bias=bias) @property def in_channels(self): return self.conv_dw.in_channels @property def out_channels(self): return self.conv_pw.out_channels def forward(self, x): x = self.conv_dw(x) x = self.conv_pw(x) return x
pytorch-image-models/timm/layers/separable_conv.py/0
{ "file_path": "pytorch-image-models/timm/layers/separable_conv.py", "repo_id": "pytorch-image-models", "token_count": 1138 }
197
import dataclasses import logging import os from copy import deepcopy from typing import Any, Callable, Dict, List, Optional, Tuple from torch import nn as nn from torch.hub import load_state_dict_from_url from timm.models._features import FeatureListNet, FeatureDictNet, FeatureHookNet, FeatureGetterNet from timm.models._features_fx import FeatureGraphNet from timm.models._helpers import load_state_dict from timm.models._hub import has_hf_hub, download_cached_file, check_cached_file, load_state_dict_from_hf,\ load_custom_from_hf from timm.models._manipulate import adapt_input_conv from timm.models._pretrained import PretrainedCfg from timm.models._prune import adapt_model_from_file from timm.models._registry import get_pretrained_cfg _logger = logging.getLogger(__name__) # Global variables for rarely used pretrained checkpoint download progress and hash check. # Use set_pretrained_download_progress / set_pretrained_check_hash functions to toggle. _DOWNLOAD_PROGRESS = False _CHECK_HASH = False _USE_OLD_CACHE = int(os.environ.get('TIMM_USE_OLD_CACHE', 0)) > 0 __all__ = ['set_pretrained_download_progress', 'set_pretrained_check_hash', 'load_custom_pretrained', 'load_pretrained', 'pretrained_cfg_for_features', 'resolve_pretrained_cfg', 'build_model_with_cfg'] def _resolve_pretrained_source(pretrained_cfg): cfg_source = pretrained_cfg.get('source', '') pretrained_url = pretrained_cfg.get('url', None) pretrained_file = pretrained_cfg.get('file', None) pretrained_sd = pretrained_cfg.get('state_dict', None) hf_hub_id = pretrained_cfg.get('hf_hub_id', None) # resolve where to load pretrained weights from load_from = '' pretrained_loc = '' if cfg_source == 'hf-hub' and has_hf_hub(necessary=True): # hf-hub specified as source via model identifier load_from = 'hf-hub' assert hf_hub_id pretrained_loc = hf_hub_id else: # default source == timm or unspecified if pretrained_sd: # direct state_dict pass through is the highest priority load_from = 'state_dict' pretrained_loc = pretrained_sd assert isinstance(pretrained_loc, dict) elif pretrained_file: # file load override is the second-highest priority if set load_from = 'file' pretrained_loc = pretrained_file else: old_cache_valid = False if _USE_OLD_CACHE: # prioritized old cached weights if exists and env var enabled old_cache_valid = check_cached_file(pretrained_url) if pretrained_url else False if not old_cache_valid and hf_hub_id and has_hf_hub(necessary=True): # hf-hub available as alternate weight source in default_cfg load_from = 'hf-hub' pretrained_loc = hf_hub_id elif pretrained_url: load_from = 'url' pretrained_loc = pretrained_url if load_from == 'hf-hub' and pretrained_cfg.get('hf_hub_filename', None): # if a filename override is set, return tuple for location w/ (hub_id, filename) pretrained_loc = pretrained_loc, pretrained_cfg['hf_hub_filename'] return load_from, pretrained_loc def set_pretrained_download_progress(enable=True): """ Set download progress for pretrained weights on/off (globally). """ global _DOWNLOAD_PROGRESS _DOWNLOAD_PROGRESS = enable def set_pretrained_check_hash(enable=True): """ Set hash checking for pretrained weights on/off (globally). """ global _CHECK_HASH _CHECK_HASH = enable def load_custom_pretrained( model: nn.Module, pretrained_cfg: Optional[Dict] = None, load_fn: Optional[Callable] = None, ): r"""Loads a custom (read non .pth) weight file Downloads checkpoint file into cache-dir like torch.hub based loaders, but calls a passed in custom load fun, or the `load_pretrained` model member fn. If the object is already present in `model_dir`, it's deserialized and returned. The default value of `model_dir` is ``<hub_dir>/checkpoints`` where `hub_dir` is the directory returned by :func:`~torch.hub.get_dir`. Args: model: The instantiated model to load weights into pretrained_cfg (dict): Default pretrained model cfg load_fn: An external standalone fn that loads weights into provided model, otherwise a fn named 'laod_pretrained' on the model will be called if it exists """ pretrained_cfg = pretrained_cfg or getattr(model, 'pretrained_cfg', None) if not pretrained_cfg: _logger.warning("Invalid pretrained config, cannot load weights.") return load_from, pretrained_loc = _resolve_pretrained_source(pretrained_cfg) if not load_from: _logger.warning("No pretrained weights exist for this model. Using random initialization.") return if load_from == 'hf-hub': _logger.warning("Hugging Face hub not currently supported for custom load pretrained models.") elif load_from == 'url': pretrained_loc = download_cached_file( pretrained_loc, check_hash=_CHECK_HASH, progress=_DOWNLOAD_PROGRESS, ) if load_fn is not None: load_fn(model, pretrained_loc) elif hasattr(model, 'load_pretrained'): model.load_pretrained(pretrained_loc) else: _logger.warning("Valid function to load pretrained weights is not available, using random initialization.") def load_pretrained( model: nn.Module, pretrained_cfg: Optional[Dict] = None, num_classes: int = 1000, in_chans: int = 3, filter_fn: Optional[Callable] = None, strict: bool = True, ): """ Load pretrained checkpoint Args: model (nn.Module) : PyTorch model module pretrained_cfg (Optional[Dict]): configuration for pretrained weights / target dataset num_classes (int): num_classes for target model in_chans (int): in_chans for target model filter_fn (Optional[Callable]): state_dict filter fn for load (takes state_dict, model as args) strict (bool): strict load of checkpoint """ pretrained_cfg = pretrained_cfg or getattr(model, 'pretrained_cfg', None) if not pretrained_cfg: raise RuntimeError("Invalid pretrained config, cannot load weights. Use `pretrained=False` for random init.") load_from, pretrained_loc = _resolve_pretrained_source(pretrained_cfg) if load_from == 'state_dict': _logger.info(f'Loading pretrained weights from state dict') state_dict = pretrained_loc # pretrained_loc is the actual state dict for this override elif load_from == 'file': _logger.info(f'Loading pretrained weights from file ({pretrained_loc})') if pretrained_cfg.get('custom_load', False): model.load_pretrained(pretrained_loc) return else: state_dict = load_state_dict(pretrained_loc) elif load_from == 'url': _logger.info(f'Loading pretrained weights from url ({pretrained_loc})') if pretrained_cfg.get('custom_load', False): pretrained_loc = download_cached_file( pretrained_loc, progress=_DOWNLOAD_PROGRESS, check_hash=_CHECK_HASH, ) model.load_pretrained(pretrained_loc) return else: try: state_dict = load_state_dict_from_url( pretrained_loc, map_location='cpu', progress=_DOWNLOAD_PROGRESS, check_hash=_CHECK_HASH, weights_only=True, ) except TypeError: state_dict = load_state_dict_from_url( pretrained_loc, map_location='cpu', progress=_DOWNLOAD_PROGRESS, check_hash=_CHECK_HASH, ) elif load_from == 'hf-hub': _logger.info(f'Loading pretrained weights from Hugging Face hub ({pretrained_loc})') if isinstance(pretrained_loc, (list, tuple)): custom_load = pretrained_cfg.get('custom_load', False) if isinstance(custom_load, str) and custom_load == 'hf': load_custom_from_hf(*pretrained_loc, model) return else: state_dict = load_state_dict_from_hf(*pretrained_loc) else: state_dict = load_state_dict_from_hf(pretrained_loc, weights_only=True) else: model_name = pretrained_cfg.get('architecture', 'this model') raise RuntimeError(f"No pretrained weights exist for {model_name}. Use `pretrained=False` for random init.") if filter_fn is not None: try: state_dict = filter_fn(state_dict, model) except TypeError as e: # for backwards compat with filter fn that take one arg state_dict = filter_fn(state_dict) input_convs = pretrained_cfg.get('first_conv', None) if input_convs is not None and in_chans != 3: if isinstance(input_convs, str): input_convs = (input_convs,) for input_conv_name in input_convs: weight_name = input_conv_name + '.weight' try: state_dict[weight_name] = adapt_input_conv(in_chans, state_dict[weight_name]) _logger.info( f'Converted input conv {input_conv_name} pretrained weights from 3 to {in_chans} channel(s)') except NotImplementedError as e: del state_dict[weight_name] strict = False _logger.warning( f'Unable to convert pretrained {input_conv_name} weights, using random init for this layer.') classifiers = pretrained_cfg.get('classifier', None) label_offset = pretrained_cfg.get('label_offset', 0) if classifiers is not None: if isinstance(classifiers, str): classifiers = (classifiers,) if num_classes != pretrained_cfg['num_classes']: for classifier_name in classifiers: # completely discard fully connected if model num_classes doesn't match pretrained weights state_dict.pop(classifier_name + '.weight', None) state_dict.pop(classifier_name + '.bias', None) strict = False elif label_offset > 0: for classifier_name in classifiers: # special case for pretrained weights with an extra background class in pretrained weights classifier_weight = state_dict[classifier_name + '.weight'] state_dict[classifier_name + '.weight'] = classifier_weight[label_offset:] classifier_bias = state_dict[classifier_name + '.bias'] state_dict[classifier_name + '.bias'] = classifier_bias[label_offset:] load_result = model.load_state_dict(state_dict, strict=strict) if load_result.missing_keys: _logger.info( f'Missing keys ({", ".join(load_result.missing_keys)}) discovered while loading pretrained weights.' f' This is expected if model is being adapted.') if load_result.unexpected_keys: _logger.warning( f'Unexpected keys ({", ".join(load_result.unexpected_keys)}) found while loading pretrained weights.' f' This may be expected if model is being adapted.') def pretrained_cfg_for_features(pretrained_cfg): pretrained_cfg = deepcopy(pretrained_cfg) # remove default pretrained cfg fields that don't have much relevance for feature backbone to_remove = ('num_classes', 'classifier', 'global_pool') # add default final pool size? for tr in to_remove: pretrained_cfg.pop(tr, None) return pretrained_cfg def _filter_kwargs(kwargs, names): if not kwargs or not names: return for n in names: kwargs.pop(n, None) def _update_default_model_kwargs(pretrained_cfg, kwargs, kwargs_filter): """ Update the default_cfg and kwargs before passing to model Args: pretrained_cfg: input pretrained cfg (updated in-place) kwargs: keyword args passed to model build fn (updated in-place) kwargs_filter: keyword arg keys that must be removed before model __init__ """ # Set model __init__ args that can be determined by default_cfg (if not already passed as kwargs) default_kwarg_names = ('num_classes', 'global_pool', 'in_chans') if pretrained_cfg.get('fixed_input_size', False): # if fixed_input_size exists and is True, model takes an img_size arg that fixes its input size default_kwarg_names += ('img_size',) for n in default_kwarg_names: # for legacy reasons, model __init__args uses img_size + in_chans as separate args while # pretrained_cfg has one input_size=(C, H ,W) entry if n == 'img_size': input_size = pretrained_cfg.get('input_size', None) if input_size is not None: assert len(input_size) == 3 kwargs.setdefault(n, input_size[-2:]) elif n == 'in_chans': input_size = pretrained_cfg.get('input_size', None) if input_size is not None: assert len(input_size) == 3 kwargs.setdefault(n, input_size[0]) elif n == 'num_classes': default_val = pretrained_cfg.get(n, None) # if default is < 0, don't pass through to model if default_val is not None and default_val >= 0: kwargs.setdefault(n, pretrained_cfg[n]) else: default_val = pretrained_cfg.get(n, None) if default_val is not None: kwargs.setdefault(n, pretrained_cfg[n]) # Filter keyword args for task specific model variants (some 'features only' models, etc.) _filter_kwargs(kwargs, names=kwargs_filter) def resolve_pretrained_cfg( variant: str, pretrained_cfg=None, pretrained_cfg_overlay=None, ) -> PretrainedCfg: model_with_tag = variant pretrained_tag = None if pretrained_cfg: if isinstance(pretrained_cfg, dict): # pretrained_cfg dict passed as arg, validate by converting to PretrainedCfg pretrained_cfg = PretrainedCfg(**pretrained_cfg) elif isinstance(pretrained_cfg, str): pretrained_tag = pretrained_cfg pretrained_cfg = None # fallback to looking up pretrained cfg in model registry by variant identifier if not pretrained_cfg: if pretrained_tag: model_with_tag = '.'.join([variant, pretrained_tag]) pretrained_cfg = get_pretrained_cfg(model_with_tag) if not pretrained_cfg: _logger.warning( f"No pretrained configuration specified for {model_with_tag} model. Using a default." f" Please add a config to the model pretrained_cfg registry or pass explicitly.") pretrained_cfg = PretrainedCfg() # instance with defaults pretrained_cfg_overlay = pretrained_cfg_overlay or {} if not pretrained_cfg.architecture: pretrained_cfg_overlay.setdefault('architecture', variant) pretrained_cfg = dataclasses.replace(pretrained_cfg, **pretrained_cfg_overlay) return pretrained_cfg def build_model_with_cfg( model_cls: Callable, variant: str, pretrained: bool, pretrained_cfg: Optional[Dict] = None, pretrained_cfg_overlay: Optional[Dict] = None, model_cfg: Optional[Any] = None, feature_cfg: Optional[Dict] = None, pretrained_strict: bool = True, pretrained_filter_fn: Optional[Callable] = None, kwargs_filter: Optional[Tuple[str]] = None, **kwargs, ): """ Build model with specified default_cfg and optional model_cfg This helper fn aids in the construction of a model including: * handling default_cfg and associated pretrained weight loading * passing through optional model_cfg for models with config based arch spec * features_only model adaptation * pruning config / model adaptation Args: model_cls: model class variant: model variant name pretrained: load pretrained weights pretrained_cfg: model's pretrained weight/task config model_cfg: model's architecture config feature_cfg: feature extraction adapter config pretrained_strict: load pretrained weights strictly pretrained_filter_fn: filter callable for pretrained weights kwargs_filter: kwargs to filter before passing to model **kwargs: model args passed through to model __init__ """ pruned = kwargs.pop('pruned', False) features = False feature_cfg = feature_cfg or {} # resolve and update model pretrained config and model kwargs pretrained_cfg = resolve_pretrained_cfg( variant, pretrained_cfg=pretrained_cfg, pretrained_cfg_overlay=pretrained_cfg_overlay ) # FIXME converting back to dict, PretrainedCfg use should be propagated further, but not into model pretrained_cfg = pretrained_cfg.to_dict() _update_default_model_kwargs(pretrained_cfg, kwargs, kwargs_filter) # Setup for feature extraction wrapper done at end of this fn if kwargs.pop('features_only', False): features = True feature_cfg.setdefault('out_indices', (0, 1, 2, 3, 4)) if 'out_indices' in kwargs: feature_cfg['out_indices'] = kwargs.pop('out_indices') if 'feature_cls' in kwargs: feature_cfg['feature_cls'] = kwargs.pop('feature_cls') # Instantiate the model if model_cfg is None: model = model_cls(**kwargs) else: model = model_cls(cfg=model_cfg, **kwargs) model.pretrained_cfg = pretrained_cfg model.default_cfg = model.pretrained_cfg # alias for backwards compat if pruned: model = adapt_model_from_file(model, variant) # For classification models, check class attr, then kwargs, then default to 1k, otherwise 0 for feats num_classes_pretrained = 0 if features else getattr(model, 'num_classes', kwargs.get('num_classes', 1000)) if pretrained: load_pretrained( model, pretrained_cfg=pretrained_cfg, num_classes=num_classes_pretrained, in_chans=kwargs.get('in_chans', 3), filter_fn=pretrained_filter_fn, strict=pretrained_strict, ) # Wrap the model in a feature extraction module if enabled if features: use_getter = False if 'feature_cls' in feature_cfg: feature_cls = feature_cfg.pop('feature_cls') if isinstance(feature_cls, str): feature_cls = feature_cls.lower() # flatten_sequential only valid for some feature extractors if feature_cls not in ('dict', 'list', 'hook'): feature_cfg.pop('flatten_sequential', None) if 'hook' in feature_cls: feature_cls = FeatureHookNet elif feature_cls == 'list': feature_cls = FeatureListNet elif feature_cls == 'dict': feature_cls = FeatureDictNet elif feature_cls == 'fx': feature_cls = FeatureGraphNet elif feature_cls == 'getter': use_getter = True feature_cls = FeatureGetterNet else: assert False, f'Unknown feature class {feature_cls}' else: feature_cls = FeatureListNet output_fmt = getattr(model, 'output_fmt', None) if output_fmt is not None and not use_getter: # don't set default for intermediate feat getter feature_cfg.setdefault('output_fmt', output_fmt) model = feature_cls(model, **feature_cfg) model.pretrained_cfg = pretrained_cfg_for_features(pretrained_cfg) # add back pretrained cfg model.default_cfg = model.pretrained_cfg # alias for rename backwards compat (default_cfg -> pretrained_cfg) return model
pytorch-image-models/timm/models/_builder.py/0
{ "file_path": "pytorch-image-models/timm/models/_builder.py", "repo_id": "pytorch-image-models", "token_count": 8424 }
198
""" Model Registry Hacked together by / Copyright 2020 Ross Wightman """ import fnmatch import re import sys import warnings from collections import defaultdict, deque from copy import deepcopy from dataclasses import replace from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Sequence, Union, Tuple from ._pretrained import PretrainedCfg, DefaultCfg __all__ = [ 'split_model_name_tag', 'get_arch_name', 'register_model', 'generate_default_cfgs', 'list_models', 'list_pretrained', 'is_model', 'model_entrypoint', 'list_modules', 'is_model_in_modules', 'get_pretrained_cfg_value', 'is_model_pretrained' ] _module_to_models: Dict[str, Set[str]] = defaultdict(set) # dict of sets to check membership of model in module _model_to_module: Dict[str, str] = {} # mapping of model names to module names _model_entrypoints: Dict[str, Callable[..., Any]] = {} # mapping of model names to architecture entrypoint fns _model_has_pretrained: Set[str] = set() # set of model names that have pretrained weight url present _model_default_cfgs: Dict[str, PretrainedCfg] = {} # central repo for model arch -> default cfg objects _model_pretrained_cfgs: Dict[str, PretrainedCfg] = {} # central repo for model arch.tag -> pretrained cfgs _model_with_tags: Dict[str, List[str]] = defaultdict(list) # shortcut to map each model arch to all model + tag names _module_to_deprecated_models: Dict[str, Dict[str, Optional[str]]] = defaultdict(dict) _deprecated_models: Dict[str, Optional[str]] = {} def split_model_name_tag(model_name: str, no_tag: str = '') -> Tuple[str, str]: model_name, *tag_list = model_name.split('.', 1) tag = tag_list[0] if tag_list else no_tag return model_name, tag def get_arch_name(model_name: str) -> str: return split_model_name_tag(model_name)[0] def generate_default_cfgs(cfgs: Dict[str, Union[Dict[str, Any], PretrainedCfg]]): out = defaultdict(DefaultCfg) default_set = set() # no tag and tags ending with * are prioritized as default for k, v in cfgs.items(): if isinstance(v, dict): v = PretrainedCfg(**v) has_weights = v.has_weights model, tag = split_model_name_tag(k) is_default_set = model in default_set priority = (has_weights and not tag) or (tag.endswith('*') and not is_default_set) tag = tag.strip('*') default_cfg = out[model] if priority: default_cfg.tags.appendleft(tag) default_set.add(model) elif has_weights and not default_cfg.is_pretrained: default_cfg.tags.appendleft(tag) else: default_cfg.tags.append(tag) if has_weights: default_cfg.is_pretrained = True default_cfg.cfgs[tag] = v return out def register_model(fn: Callable[..., Any]) -> Callable[..., Any]: # lookup containing module mod = sys.modules[fn.__module__] module_name_split = fn.__module__.split('.') module_name = module_name_split[-1] if len(module_name_split) else '' # add model to __all__ in module model_name = fn.__name__ if hasattr(mod, '__all__'): mod.__all__.append(model_name) else: mod.__all__ = [model_name] # type: ignore # add entries to registry dict/sets if model_name in _model_entrypoints: warnings.warn( f'Overwriting {model_name} in registry with {fn.__module__}.{model_name}. This is because the name being ' 'registered conflicts with an existing name. Please check if this is not expected.', stacklevel=2, ) _model_entrypoints[model_name] = fn _model_to_module[model_name] = module_name _module_to_models[module_name].add(model_name) if hasattr(mod, 'default_cfgs') and model_name in mod.default_cfgs: # this will catch all models that have entrypoint matching cfg key, but miss any aliasing # entrypoints or non-matching combos default_cfg = mod.default_cfgs[model_name] if not isinstance(default_cfg, DefaultCfg): # new style default cfg dataclass w/ multiple entries per model-arch assert isinstance(default_cfg, dict) # old style cfg dict per model-arch pretrained_cfg = PretrainedCfg(**default_cfg) default_cfg = DefaultCfg(tags=deque(['']), cfgs={'': pretrained_cfg}) for tag_idx, tag in enumerate(default_cfg.tags): is_default = tag_idx == 0 pretrained_cfg = default_cfg.cfgs[tag] model_name_tag = '.'.join([model_name, tag]) if tag else model_name replace_items = dict(architecture=model_name, tag=tag if tag else None) if pretrained_cfg.hf_hub_id and pretrained_cfg.hf_hub_id == 'timm/': # auto-complete hub name w/ architecture.tag replace_items['hf_hub_id'] = pretrained_cfg.hf_hub_id + model_name_tag pretrained_cfg = replace(pretrained_cfg, **replace_items) if is_default: _model_pretrained_cfgs[model_name] = pretrained_cfg if pretrained_cfg.has_weights: # add tagless entry if it's default and has weights _model_has_pretrained.add(model_name) if tag: _model_pretrained_cfgs[model_name_tag] = pretrained_cfg if pretrained_cfg.has_weights: # add model w/ tag if tag is valid _model_has_pretrained.add(model_name_tag) _model_with_tags[model_name].append(model_name_tag) else: _model_with_tags[model_name].append(model_name) # has empty tag (to slowly remove these instances) _model_default_cfgs[model_name] = default_cfg return fn def _deprecated_model_shim(deprecated_name: str, current_fn: Callable = None, current_tag: str = ''): def _fn(pretrained=False, **kwargs): assert current_fn is not None, f'Model {deprecated_name} has been removed with no replacement.' current_name = '.'.join([current_fn.__name__, current_tag]) if current_tag else current_fn.__name__ warnings.warn(f'Mapping deprecated model name {deprecated_name} to current {current_name}.', stacklevel=2) pretrained_cfg = kwargs.pop('pretrained_cfg', None) return current_fn(pretrained=pretrained, pretrained_cfg=pretrained_cfg or current_tag, **kwargs) return _fn def register_model_deprecations(module_name: str, deprecation_map: Dict[str, Optional[str]]): mod = sys.modules[module_name] module_name_split = module_name.split('.') module_name = module_name_split[-1] if len(module_name_split) else '' for deprecated, current in deprecation_map.items(): if hasattr(mod, '__all__'): mod.__all__.append(deprecated) current_fn = None current_tag = '' if current: current_name, current_tag = split_model_name_tag(current) current_fn = getattr(mod, current_name) deprecated_entrypoint_fn = _deprecated_model_shim(deprecated, current_fn, current_tag) setattr(mod, deprecated, deprecated_entrypoint_fn) _model_entrypoints[deprecated] = deprecated_entrypoint_fn _model_to_module[deprecated] = module_name _module_to_models[module_name].add(deprecated) _deprecated_models[deprecated] = current _module_to_deprecated_models[module_name][deprecated] = current def _natural_key(string_: str) -> List[Union[int, str]]: """See https://blog.codinghorror.com/sorting-for-humans-natural-sort-order/""" return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())] def _expand_filter(filter: str): """ expand a 'base_filter' to 'base_filter.*' if no tag portion""" filter_base, filter_tag = split_model_name_tag(filter) if not filter_tag: return ['.'.join([filter_base, '*']), filter] else: return [filter] def list_models( filter: Union[str, List[str]] = '', module: Union[str, List[str]] = '', pretrained: bool = False, exclude_filters: Union[str, List[str]] = '', name_matches_cfg: bool = False, include_tags: Optional[bool] = None, ) -> List[str]: """ Return list of available model names, sorted alphabetically Args: filter - Wildcard filter string that works with fnmatch module - Limit model selection to a specific submodule (ie 'vision_transformer') pretrained - Include only models with valid pretrained weights if True exclude_filters - Wildcard filters to exclude models after including them with filter name_matches_cfg - Include only models w/ model_name matching default_cfg name (excludes some aliases) include_tags - Include pretrained tags in model names (model.tag). If None, defaults set to True when pretrained=True else False (default: None) Returns: models - The sorted list of models Example: model_list('gluon_resnet*') -- returns all models starting with 'gluon_resnet' model_list('*resnext*, 'resnet') -- returns all models with 'resnext' in 'resnet' module """ if filter: include_filters = filter if isinstance(filter, (tuple, list)) else [filter] else: include_filters = [] if include_tags is None: # FIXME should this be default behaviour? or default to include_tags=True? include_tags = pretrained if not module: all_models: Set[str] = set(_model_entrypoints.keys()) else: if isinstance(module, str): all_models: Set[str] = _module_to_models[module] else: assert isinstance(module, Sequence) all_models: Set[str] = set() for m in module: all_models.update(_module_to_models[m]) all_models = all_models - _deprecated_models.keys() # remove deprecated models from listings if include_tags: # expand model names to include names w/ pretrained tags models_with_tags: Set[str] = set() for m in all_models: models_with_tags.update(_model_with_tags[m]) all_models = models_with_tags # expand include and exclude filters to include a '.*' for proper match if no tags in filter include_filters = [ef for f in include_filters for ef in _expand_filter(f)] exclude_filters = [ef for f in exclude_filters for ef in _expand_filter(f)] if include_filters: models: Set[str] = set() for f in include_filters: include_models = fnmatch.filter(all_models, f) # include these models if len(include_models): models = models.union(include_models) else: models = all_models if exclude_filters: if not isinstance(exclude_filters, (tuple, list)): exclude_filters = [exclude_filters] for xf in exclude_filters: exclude_models = fnmatch.filter(models, xf) # exclude these models if len(exclude_models): models = models.difference(exclude_models) if pretrained: models = _model_has_pretrained.intersection(models) if name_matches_cfg: models = set(_model_pretrained_cfgs).intersection(models) return sorted(models, key=_natural_key) def list_pretrained( filter: Union[str, List[str]] = '', exclude_filters: str = '', ) -> List[str]: return list_models( filter=filter, pretrained=True, exclude_filters=exclude_filters, include_tags=True, ) def get_deprecated_models(module: str = '') -> Dict[str, str]: all_deprecated = _module_to_deprecated_models[module] if module else _deprecated_models return deepcopy(all_deprecated) def is_model(model_name: str) -> bool: """ Check if a model name exists """ arch_name = get_arch_name(model_name) return arch_name in _model_entrypoints def model_entrypoint(model_name: str, module_filter: Optional[str] = None) -> Callable[..., Any]: """Fetch a model entrypoint for specified model name """ arch_name = get_arch_name(model_name) if module_filter and arch_name not in _module_to_models.get(module_filter, {}): raise RuntimeError(f'Model ({model_name} not found in module {module_filter}.') return _model_entrypoints[arch_name] def list_modules() -> List[str]: """ Return list of module names that contain models / model entrypoints """ modules = _module_to_models.keys() return sorted(modules) def is_model_in_modules( model_name: str, module_names: Union[Tuple[str, ...], List[str], Set[str]] ) -> bool: """Check if a model exists within a subset of modules Args: model_name - name of model to check module_names - names of modules to search in """ arch_name = get_arch_name(model_name) assert isinstance(module_names, (tuple, list, set)) return any(arch_name in _module_to_models[n] for n in module_names) def is_model_pretrained(model_name: str) -> bool: return model_name in _model_has_pretrained def get_pretrained_cfg(model_name: str, allow_unregistered: bool = True) -> Optional[PretrainedCfg]: if model_name in _model_pretrained_cfgs: return deepcopy(_model_pretrained_cfgs[model_name]) arch_name, tag = split_model_name_tag(model_name) if arch_name in _model_default_cfgs: # if model arch exists, but the tag is wrong, error out raise RuntimeError(f'Invalid pretrained tag ({tag}) for {arch_name}.') if allow_unregistered: # if model arch doesn't exist, it has no pretrained_cfg registered, allow a default to be created return None raise RuntimeError(f'Model architecture ({arch_name}) has no pretrained cfg registered.') def get_pretrained_cfg_value(model_name: str, cfg_key: str) -> Optional[Any]: """ Get a specific model default_cfg value by key. None if key doesn't exist. """ cfg = get_pretrained_cfg(model_name, allow_unregistered=False) return getattr(cfg, cfg_key, None)
pytorch-image-models/timm/models/_registry.py/0
{ "file_path": "pytorch-image-models/timm/models/_registry.py", "repo_id": "pytorch-image-models", "token_count": 5587 }
199
""" EdgeNeXt Paper: `EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for Mobile Vision Applications` - https://arxiv.org/abs/2206.10589 Original code and weights from https://github.com/mmaaz60/EdgeNeXt Modifications and additions for timm by / Copyright 2022, Ross Wightman """ import math from functools import partial from typing import Optional, Tuple import torch import torch.nn.functional as F from torch import nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import trunc_normal_tf_, DropPath, LayerNorm2d, Mlp, create_conv2d, \ NormMlpClassifierHead, ClassifierHead from ._builder import build_model_with_cfg from ._features_fx import register_notrace_module from ._manipulate import named_apply, checkpoint_seq from ._registry import register_model, generate_default_cfgs __all__ = ['EdgeNeXt'] # model_registry will add each entrypoint fn to this @register_notrace_module # reason: FX can't symbolically trace torch.arange in forward method class PositionalEncodingFourier(nn.Module): def __init__(self, hidden_dim=32, dim=768, temperature=10000): super().__init__() self.token_projection = nn.Conv2d(hidden_dim * 2, dim, kernel_size=1) self.scale = 2 * math.pi self.temperature = temperature self.hidden_dim = hidden_dim self.dim = dim def forward(self, shape: Tuple[int, int, int]): device = self.token_projection.weight.device dtype = self.token_projection.weight.dtype inv_mask = ~torch.zeros(shape).to(device=device, dtype=torch.bool) y_embed = inv_mask.cumsum(1, dtype=torch.float32) x_embed = inv_mask.cumsum(2, dtype=torch.float32) eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.hidden_dim, dtype=torch.int64, device=device).to(torch.float32) dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode='floor') / self.hidden_dim) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack( (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack( (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) pos = self.token_projection(pos.to(dtype)) return pos class ConvBlock(nn.Module): def __init__( self, dim, dim_out=None, kernel_size=7, stride=1, conv_bias=True, expand_ratio=4, ls_init_value=1e-6, norm_layer=partial(nn.LayerNorm, eps=1e-6), act_layer=nn.GELU, drop_path=0., ): super().__init__() dim_out = dim_out or dim self.shortcut_after_dw = stride > 1 or dim != dim_out self.conv_dw = create_conv2d( dim, dim_out, kernel_size=kernel_size, stride=stride, depthwise=True, bias=conv_bias) self.norm = norm_layer(dim_out) self.mlp = Mlp(dim_out, int(expand_ratio * dim_out), act_layer=act_layer) self.gamma = nn.Parameter(ls_init_value * torch.ones(dim_out)) if ls_init_value > 0 else None self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): shortcut = x x = self.conv_dw(x) if self.shortcut_after_dw: shortcut = x x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) x = self.norm(x) x = self.mlp(x) if self.gamma is not None: x = self.gamma * x x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) x = shortcut + self.drop_path(x) return x class CrossCovarianceAttn(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0. ): super().__init__() self.num_heads = num_heads self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1)) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 4, 1) q, k, v = qkv.unbind(0) # NOTE, this is NOT spatial attn, q, k, v are B, num_heads, C, L --> C x C attn map attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)) * self.temperature attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v) x = x.permute(0, 3, 1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x @torch.jit.ignore def no_weight_decay(self): return {'temperature'} class SplitTransposeBlock(nn.Module): def __init__( self, dim, num_scales=1, num_heads=8, expand_ratio=4, use_pos_emb=True, conv_bias=True, qkv_bias=True, ls_init_value=1e-6, norm_layer=partial(nn.LayerNorm, eps=1e-6), act_layer=nn.GELU, drop_path=0., attn_drop=0., proj_drop=0. ): super().__init__() width = max(int(math.ceil(dim / num_scales)), int(math.floor(dim // num_scales))) self.width = width self.num_scales = max(1, num_scales - 1) convs = [] for i in range(self.num_scales): convs.append(create_conv2d(width, width, kernel_size=3, depthwise=True, bias=conv_bias)) self.convs = nn.ModuleList(convs) self.pos_embd = None if use_pos_emb: self.pos_embd = PositionalEncodingFourier(dim=dim) self.norm_xca = norm_layer(dim) self.gamma_xca = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value > 0 else None self.xca = CrossCovarianceAttn( dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop) self.norm = norm_layer(dim, eps=1e-6) self.mlp = Mlp(dim, int(expand_ratio * dim), act_layer=act_layer) self.gamma = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value > 0 else None self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): shortcut = x # scales code re-written for torchscript as per my res2net fixes -rw # NOTE torch.split(x, self.width, 1) causing issues with ONNX export spx = x.chunk(len(self.convs) + 1, dim=1) spo = [] sp = spx[0] for i, conv in enumerate(self.convs): if i > 0: sp = sp + spx[i] sp = conv(sp) spo.append(sp) spo.append(spx[-1]) x = torch.cat(spo, 1) # XCA B, C, H, W = x.shape x = x.reshape(B, C, H * W).permute(0, 2, 1) if self.pos_embd is not None: pos_encoding = self.pos_embd((B, H, W)).reshape(B, -1, x.shape[1]).permute(0, 2, 1) x = x + pos_encoding x = x + self.drop_path(self.gamma_xca * self.xca(self.norm_xca(x))) x = x.reshape(B, H, W, C) # Inverted Bottleneck x = self.norm(x) x = self.mlp(x) if self.gamma is not None: x = self.gamma * x x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) x = shortcut + self.drop_path(x) return x class EdgeNeXtStage(nn.Module): def __init__( self, in_chs, out_chs, stride=2, depth=2, num_global_blocks=1, num_heads=4, scales=2, kernel_size=7, expand_ratio=4, use_pos_emb=False, downsample_block=False, conv_bias=True, ls_init_value=1.0, drop_path_rates=None, norm_layer=LayerNorm2d, norm_layer_cl=partial(nn.LayerNorm, eps=1e-6), act_layer=nn.GELU ): super().__init__() self.grad_checkpointing = False if downsample_block or stride == 1: self.downsample = nn.Identity() else: self.downsample = nn.Sequential( norm_layer(in_chs), nn.Conv2d(in_chs, out_chs, kernel_size=2, stride=2, bias=conv_bias) ) in_chs = out_chs stage_blocks = [] for i in range(depth): if i < depth - num_global_blocks: stage_blocks.append( ConvBlock( dim=in_chs, dim_out=out_chs, stride=stride if downsample_block and i == 0 else 1, conv_bias=conv_bias, kernel_size=kernel_size, expand_ratio=expand_ratio, ls_init_value=ls_init_value, drop_path=drop_path_rates[i], norm_layer=norm_layer_cl, act_layer=act_layer, ) ) else: stage_blocks.append( SplitTransposeBlock( dim=in_chs, num_scales=scales, num_heads=num_heads, expand_ratio=expand_ratio, use_pos_emb=use_pos_emb, conv_bias=conv_bias, ls_init_value=ls_init_value, drop_path=drop_path_rates[i], norm_layer=norm_layer_cl, act_layer=act_layer, ) ) in_chs = out_chs self.blocks = nn.Sequential(*stage_blocks) def forward(self, x): x = self.downsample(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x) else: x = self.blocks(x) return x class EdgeNeXt(nn.Module): def __init__( self, in_chans=3, num_classes=1000, global_pool='avg', dims=(24, 48, 88, 168), depths=(3, 3, 9, 3), global_block_counts=(0, 1, 1, 1), kernel_sizes=(3, 5, 7, 9), heads=(8, 8, 8, 8), d2_scales=(2, 2, 3, 4), use_pos_emb=(False, True, False, False), ls_init_value=1e-6, head_init_scale=1., expand_ratio=4, downsample_block=False, conv_bias=True, stem_type='patch', head_norm_first=False, act_layer=nn.GELU, drop_path_rate=0., drop_rate=0., ): super().__init__() self.num_classes = num_classes self.global_pool = global_pool self.drop_rate = drop_rate norm_layer = partial(LayerNorm2d, eps=1e-6) norm_layer_cl = partial(nn.LayerNorm, eps=1e-6) self.feature_info = [] assert stem_type in ('patch', 'overlap') if stem_type == 'patch': self.stem = nn.Sequential( nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4, bias=conv_bias), norm_layer(dims[0]), ) else: self.stem = nn.Sequential( nn.Conv2d(in_chans, dims[0], kernel_size=9, stride=4, padding=9 // 2, bias=conv_bias), norm_layer(dims[0]), ) curr_stride = 4 stages = [] dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] in_chs = dims[0] for i in range(4): stride = 2 if curr_stride == 2 or i > 0 else 1 # FIXME support dilation / output_stride curr_stride *= stride stages.append(EdgeNeXtStage( in_chs=in_chs, out_chs=dims[i], stride=stride, depth=depths[i], num_global_blocks=global_block_counts[i], num_heads=heads[i], drop_path_rates=dp_rates[i], scales=d2_scales[i], expand_ratio=expand_ratio, kernel_size=kernel_sizes[i], use_pos_emb=use_pos_emb[i], ls_init_value=ls_init_value, downsample_block=downsample_block, conv_bias=conv_bias, norm_layer=norm_layer, norm_layer_cl=norm_layer_cl, act_layer=act_layer, )) # NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2 in_chs = dims[i] self.feature_info += [dict(num_chs=in_chs, reduction=curr_stride, module=f'stages.{i}')] self.stages = nn.Sequential(*stages) self.num_features = self.head_hidden_size = dims[-1] if head_norm_first: self.norm_pre = norm_layer(self.num_features) self.head = ClassifierHead( self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate, ) else: self.norm_pre = nn.Identity() self.head = NormMlpClassifierHead( self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate, norm_layer=norm_layer, ) named_apply(partial(_init_weights, head_init_scale=head_init_scale), self) @torch.jit.ignore def group_matcher(self, coarse=False): return dict( stem=r'^stem', blocks=r'^stages\.(\d+)' if coarse else [ (r'^stages\.(\d+)\.downsample', (0,)), # blocks (r'^stages\.(\d+)\.blocks\.(\d+)', None), (r'^norm_pre', (99999,)) ] ) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): for s in self.stages: s.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head.fc def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes self.head.reset(num_classes, global_pool) def forward_features(self, x): x = self.stem(x) x = self.stages(x) x = self.norm_pre(x) return x def forward_head(self, x, pre_logits: bool = False): return self.head(x, pre_logits=True) if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def _init_weights(module, name=None, head_init_scale=1.0): if isinstance(module, nn.Conv2d): trunc_normal_tf_(module.weight, std=.02) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Linear): trunc_normal_tf_(module.weight, std=.02) nn.init.zeros_(module.bias) if name and 'head.' in name: module.weight.data.mul_(head_init_scale) module.bias.data.mul_(head_init_scale) def checkpoint_filter_fn(state_dict, model): """ Remap FB checkpoints -> timm """ if 'head.norm.weight' in state_dict or 'norm_pre.weight' in state_dict: return state_dict # non-FB checkpoint # models were released as train checkpoints... :/ if 'model_ema' in state_dict: state_dict = state_dict['model_ema'] elif 'model' in state_dict: state_dict = state_dict['model'] elif 'state_dict' in state_dict: state_dict = state_dict['state_dict'] out_dict = {} import re for k, v in state_dict.items(): k = k.replace('downsample_layers.0.', 'stem.') k = re.sub(r'stages.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k) k = re.sub(r'downsample_layers.([0-9]+).([0-9]+)', r'stages.\1.downsample.\2', k) k = k.replace('dwconv', 'conv_dw') k = k.replace('pwconv', 'mlp.fc') k = k.replace('head.', 'head.fc.') if k.startswith('norm.'): k = k.replace('norm', 'head.norm') if v.ndim == 2 and 'head' not in k: model_shape = model.state_dict()[k].shape v = v.reshape(model_shape) out_dict[k] = v return out_dict def _create_edgenext(variant, pretrained=False, **kwargs): model = build_model_with_cfg( EdgeNeXt, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True), **kwargs) return model def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8), 'crop_pct': 0.9, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.0', 'classifier': 'head.fc', **kwargs } default_cfgs = generate_default_cfgs({ 'edgenext_xx_small.in1k': _cfg( hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'edgenext_x_small.in1k': _cfg( hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'edgenext_small.usi_in1k': _cfg( # USI weights hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, ), 'edgenext_base.usi_in1k': _cfg( # USI weights hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, ), 'edgenext_base.in21k_ft_in1k': _cfg( # USI weights hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, ), 'edgenext_small_rw.sw_in1k': _cfg( hf_hub_id='timm/', test_input_size=(3, 320, 320), test_crop_pct=1.0, ), }) @register_model def edgenext_xx_small(pretrained=False, **kwargs) -> EdgeNeXt: # 1.33M & 260.58M @ 256 resolution # 71.23% Top-1 accuracy # No AA, Color Jitter=0.4, No Mixup & Cutmix, DropPath=0.0, BS=4096, lr=0.006, multi-scale-sampler # Jetson FPS=51.66 versus 47.67 for MobileViT_XXS # For A100: FPS @ BS=1: 212.13 & @ BS=256: 7042.06 versus FPS @ BS=1: 96.68 & @ BS=256: 4624.71 for MobileViT_XXS model_args = dict(depths=(2, 2, 6, 2), dims=(24, 48, 88, 168), heads=(4, 4, 4, 4)) return _create_edgenext('edgenext_xx_small', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def edgenext_x_small(pretrained=False, **kwargs) -> EdgeNeXt: # 2.34M & 538.0M @ 256 resolution # 75.00% Top-1 accuracy # No AA, No Mixup & Cutmix, DropPath=0.0, BS=4096, lr=0.006, multi-scale-sampler # Jetson FPS=31.61 versus 28.49 for MobileViT_XS # For A100: FPS @ BS=1: 179.55 & @ BS=256: 4404.95 versus FPS @ BS=1: 94.55 & @ BS=256: 2361.53 for MobileViT_XS model_args = dict(depths=(3, 3, 9, 3), dims=(32, 64, 100, 192), heads=(4, 4, 4, 4)) return _create_edgenext('edgenext_x_small', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def edgenext_small(pretrained=False, **kwargs) -> EdgeNeXt: # 5.59M & 1260.59M @ 256 resolution # 79.43% Top-1 accuracy # AA=True, No Mixup & Cutmix, DropPath=0.1, BS=4096, lr=0.006, multi-scale-sampler # Jetson FPS=20.47 versus 18.86 for MobileViT_S # For A100: FPS @ BS=1: 172.33 & @ BS=256: 3010.25 versus FPS @ BS=1: 93.84 & @ BS=256: 1785.92 for MobileViT_S model_args = dict(depths=(3, 3, 9, 3), dims=(48, 96, 160, 304)) return _create_edgenext('edgenext_small', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def edgenext_base(pretrained=False, **kwargs) -> EdgeNeXt: # 18.51M & 3840.93M @ 256 resolution # 82.5% (normal) 83.7% (USI) Top-1 accuracy # AA=True, Mixup & Cutmix, DropPath=0.1, BS=4096, lr=0.006, multi-scale-sampler # Jetson FPS=xx.xx versus xx.xx for MobileViT_S # For A100: FPS @ BS=1: xxx.xx & @ BS=256: xxxx.xx model_args = dict(depths=[3, 3, 9, 3], dims=[80, 160, 288, 584]) return _create_edgenext('edgenext_base', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def edgenext_small_rw(pretrained=False, **kwargs) -> EdgeNeXt: model_args = dict( depths=(3, 3, 9, 3), dims=(48, 96, 192, 384), downsample_block=True, conv_bias=False, stem_type='overlap') return _create_edgenext('edgenext_small_rw', pretrained=pretrained, **dict(model_args, **kwargs))
pytorch-image-models/timm/models/edgenext.py/0
{ "file_path": "pytorch-image-models/timm/models/edgenext.py", "repo_id": "pytorch-image-models", "token_count": 11055 }
200
""" PP-HGNet (V1 & V2) Reference: https://github.com/PaddlePaddle/PaddleClas/blob/develop/docs/zh_CN/models/ImageNet1k/PP-HGNetV2.md The Paddle Implement of PP-HGNet (https://github.com/PaddlePaddle/PaddleClas/blob/release/2.5.1/docs/en/models/PP-HGNet_en.md) PP-HGNet: https://github.com/PaddlePaddle/PaddleClas/blob/release/2.5.1/ppcls/arch/backbone/legendary_models/pp_hgnet.py PP-HGNetv2: https://github.com/PaddlePaddle/PaddleClas/blob/release/2.5.1/ppcls/arch/backbone/legendary_models/pp_hgnet_v2.py """ from typing import Dict, Optional import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import SelectAdaptivePool2d, DropPath, create_conv2d from ._builder import build_model_with_cfg from ._registry import register_model, generate_default_cfgs from ._manipulate import checkpoint_seq __all__ = ['HighPerfGpuNet'] class LearnableAffineBlock(nn.Module): def __init__( self, scale_value=1.0, bias_value=0.0 ): super().__init__() self.scale = nn.Parameter(torch.tensor([scale_value]), requires_grad=True) self.bias = nn.Parameter(torch.tensor([bias_value]), requires_grad=True) def forward(self, x): return self.scale * x + self.bias class ConvBNAct(nn.Module): def __init__( self, in_chs, out_chs, kernel_size, stride=1, groups=1, padding='', use_act=True, use_lab=False ): super().__init__() self.use_act = use_act self.use_lab = use_lab self.conv = create_conv2d( in_chs, out_chs, kernel_size, stride=stride, padding=padding, groups=groups, ) self.bn = nn.BatchNorm2d(out_chs) if self.use_act: self.act = nn.ReLU() else: self.act = nn.Identity() if self.use_act and self.use_lab: self.lab = LearnableAffineBlock() else: self.lab = nn.Identity() def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.act(x) x = self.lab(x) return x class LightConvBNAct(nn.Module): def __init__( self, in_chs, out_chs, kernel_size, groups=1, use_lab=False ): super().__init__() self.conv1 = ConvBNAct( in_chs, out_chs, kernel_size=1, use_act=False, use_lab=use_lab, ) self.conv2 = ConvBNAct( out_chs, out_chs, kernel_size=kernel_size, groups=out_chs, use_act=True, use_lab=use_lab, ) def forward(self, x): x = self.conv1(x) x = self.conv2(x) return x class EseModule(nn.Module): def __init__(self, chs): super().__init__() self.conv = nn.Conv2d( chs, chs, kernel_size=1, stride=1, padding=0, ) self.sigmoid = nn.Sigmoid() def forward(self, x): identity = x x = x.mean((2, 3), keepdim=True) x = self.conv(x) x = self.sigmoid(x) return torch.mul(identity, x) class StemV1(nn.Module): # for PP-HGNet def __init__(self, stem_chs): super().__init__() self.stem = nn.Sequential(*[ ConvBNAct( stem_chs[i], stem_chs[i + 1], kernel_size=3, stride=2 if i == 0 else 1) for i in range( len(stem_chs) - 1) ]) self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) def forward(self, x): x = self.stem(x) x = self.pool(x) return x class StemV2(nn.Module): # for PP-HGNetv2 def __init__(self, in_chs, mid_chs, out_chs, use_lab=False): super().__init__() self.stem1 = ConvBNAct( in_chs, mid_chs, kernel_size=3, stride=2, use_lab=use_lab, ) self.stem2a = ConvBNAct( mid_chs, mid_chs // 2, kernel_size=2, stride=1, use_lab=use_lab, ) self.stem2b = ConvBNAct( mid_chs // 2, mid_chs, kernel_size=2, stride=1, use_lab=use_lab, ) self.stem3 = ConvBNAct( mid_chs * 2, mid_chs, kernel_size=3, stride=2, use_lab=use_lab, ) self.stem4 = ConvBNAct( mid_chs, out_chs, kernel_size=1, stride=1, use_lab=use_lab, ) self.pool = nn.MaxPool2d(kernel_size=2, stride=1, ceil_mode=True) def forward(self, x): x = self.stem1(x) x = F.pad(x, (0, 1, 0, 1)) x2 = self.stem2a(x) x2 = F.pad(x2, (0, 1, 0, 1)) x2 = self.stem2b(x2) x1 = self.pool(x) x = torch.cat([x1, x2], dim=1) x = self.stem3(x) x = self.stem4(x) return x class HighPerfGpuBlock(nn.Module): def __init__( self, in_chs, mid_chs, out_chs, layer_num, kernel_size=3, residual=False, light_block=False, use_lab=False, agg='ese', drop_path=0., ): super().__init__() self.residual = residual self.layers = nn.ModuleList() for i in range(layer_num): if light_block: self.layers.append( LightConvBNAct( in_chs if i == 0 else mid_chs, mid_chs, kernel_size=kernel_size, use_lab=use_lab, ) ) else: self.layers.append( ConvBNAct( in_chs if i == 0 else mid_chs, mid_chs, kernel_size=kernel_size, stride=1, use_lab=use_lab, ) ) # feature aggregation total_chs = in_chs + layer_num * mid_chs if agg == 'se': aggregation_squeeze_conv = ConvBNAct( total_chs, out_chs // 2, kernel_size=1, stride=1, use_lab=use_lab, ) aggregation_excitation_conv = ConvBNAct( out_chs // 2, out_chs, kernel_size=1, stride=1, use_lab=use_lab, ) self.aggregation = nn.Sequential( aggregation_squeeze_conv, aggregation_excitation_conv, ) else: aggregation_conv = ConvBNAct( total_chs, out_chs, kernel_size=1, stride=1, use_lab=use_lab, ) att = EseModule(out_chs) self.aggregation = nn.Sequential( aggregation_conv, att, ) self.drop_path = DropPath(drop_path) if drop_path else nn.Identity() def forward(self, x): identity = x output = [x] for layer in self.layers: x = layer(x) output.append(x) x = torch.cat(output, dim=1) x = self.aggregation(x) if self.residual: x = self.drop_path(x) + identity return x class HighPerfGpuStage(nn.Module): def __init__( self, in_chs, mid_chs, out_chs, block_num, layer_num, downsample=True, stride=2, light_block=False, kernel_size=3, use_lab=False, agg='ese', drop_path=0., ): super().__init__() self.downsample = downsample if downsample: self.downsample = ConvBNAct( in_chs, in_chs, kernel_size=3, stride=stride, groups=in_chs, use_act=False, use_lab=use_lab, ) else: self.downsample = nn.Identity() blocks_list = [] for i in range(block_num): blocks_list.append( HighPerfGpuBlock( in_chs if i == 0 else out_chs, mid_chs, out_chs, layer_num, residual=False if i == 0 else True, kernel_size=kernel_size, light_block=light_block, use_lab=use_lab, agg=agg, drop_path=drop_path[i] if isinstance(drop_path, (list, tuple)) else drop_path, ) ) self.blocks = nn.Sequential(*blocks_list) self.grad_checkpointing= False def forward(self, x): x = self.downsample(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x, flatten=False) else: x = self.blocks(x) return x class ClassifierHead(nn.Module): def __init__( self, in_features: int, num_classes: int, pool_type: str = 'avg', drop_rate: float = 0., hidden_size: Optional[int] = 2048, use_lab: bool = False ): super(ClassifierHead, self).__init__() self.num_features = in_features if pool_type is not None: if not pool_type: assert num_classes == 0, 'Classifier head must be removed if pooling is disabled' self.global_pool = SelectAdaptivePool2d(pool_type=pool_type) if hidden_size is not None: self.num_features = hidden_size last_conv = nn.Conv2d( in_features, hidden_size, kernel_size=1, stride=1, padding=0, bias=False, ) act = nn.ReLU() if use_lab: lab = LearnableAffineBlock() self.last_conv = nn.Sequential(last_conv, act, lab) else: self.last_conv = nn.Sequential(last_conv, act) else: self.last_conv = nn.Identity() self.dropout = nn.Dropout(drop_rate) self.flatten = nn.Flatten(1) if pool_type else nn.Identity() # don't flatten if pooling disabled self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() def reset(self, num_classes: int, pool_type: Optional[str] = None): if pool_type is not None: if not pool_type: assert num_classes == 0, 'Classifier head must be removed if pooling is disabled' self.global_pool = SelectAdaptivePool2d(pool_type=pool_type) self.flatten = nn.Flatten(1) if pool_type else nn.Identity() # don't flatten if pooling disabled self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() def forward(self, x, pre_logits: bool = False): x = self.global_pool(x) x = self.last_conv(x) x = self.dropout(x) x = self.flatten(x) if pre_logits: return x x = self.fc(x) return x class HighPerfGpuNet(nn.Module): def __init__( self, cfg: Dict, in_chans: int = 3, num_classes: int = 1000, global_pool: str = 'avg', head_hidden_size: Optional[int] = 2048, drop_rate: float = 0., drop_path_rate: float = 0., use_lab: bool = False, **kwargs, ): super(HighPerfGpuNet, self).__init__() stem_type = cfg["stem_type"] stem_chs = cfg["stem_chs"] stages_cfg = [cfg["stage1"], cfg["stage2"], cfg["stage3"], cfg["stage4"]] self.num_classes = num_classes self.drop_rate = drop_rate self.use_lab = use_lab assert stem_type in ['v1', 'v2'] if stem_type == 'v2': self.stem = StemV2( in_chs=in_chans, mid_chs=stem_chs[0], out_chs=stem_chs[1], use_lab=use_lab) else: self.stem = StemV1([in_chans] + stem_chs) current_stride = 4 stages = [] self.feature_info = [] block_depths = [c[3] for c in stages_cfg] dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(block_depths)).split(block_depths)] for i, stage_config in enumerate(stages_cfg): in_chs, mid_chs, out_chs, block_num, downsample, light_block, kernel_size, layer_num = stage_config stages += [HighPerfGpuStage( in_chs=in_chs, mid_chs=mid_chs, out_chs=out_chs, block_num=block_num, layer_num=layer_num, downsample=downsample, light_block=light_block, kernel_size=kernel_size, use_lab=use_lab, agg='ese' if stem_type == 'v1' else 'se', drop_path=dpr[i], )] self.num_features = out_chs if downsample: current_stride *= 2 self.feature_info += [dict(num_chs=self.num_features, reduction=current_stride, module=f'stages.{i}')] self.stages = nn.Sequential(*stages) self.head = ClassifierHead( self.num_features, num_classes=num_classes, pool_type=global_pool, drop_rate=drop_rate, hidden_size=head_hidden_size, use_lab=use_lab ) self.head_hidden_size = self.head.num_features for n, m in self.named_modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.zeros_(m.bias) @torch.jit.ignore def group_matcher(self, coarse=False): return dict( stem=r'^stem', blocks=r'^stages\.(\d+)' if coarse else r'^stages\.(\d+).blocks\.(\d+)', ) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): for s in self.stages: s.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head.fc def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes self.head.reset(num_classes, global_pool) def forward_features(self, x): x = self.stem(x) return self.stages(x) def forward_head(self, x, pre_logits: bool = False): return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x model_cfgs = dict( # PP-HGNet hgnet_tiny={ "stem_type": 'v1', "stem_chs": [48, 48, 96], # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num "stage1": [96, 96, 224, 1, False, False, 3, 5], "stage2": [224, 128, 448, 1, True, False, 3, 5], "stage3": [448, 160, 512, 2, True, False, 3, 5], "stage4": [512, 192, 768, 1, True, False, 3, 5], }, hgnet_small={ "stem_type": 'v1', "stem_chs": [64, 64, 128], # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num "stage1": [128, 128, 256, 1, False, False, 3, 6], "stage2": [256, 160, 512, 1, True, False, 3, 6], "stage3": [512, 192, 768, 2, True, False, 3, 6], "stage4": [768, 224, 1024, 1, True, False, 3, 6], }, hgnet_base={ "stem_type": 'v1', "stem_chs": [96, 96, 160], # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num "stage1": [160, 192, 320, 1, False, False, 3, 7], "stage2": [320, 224, 640, 2, True, False, 3, 7], "stage3": [640, 256, 960, 3, True, False, 3, 7], "stage4": [960, 288, 1280, 2, True, False, 3, 7], }, # PP-HGNetv2 hgnetv2_b0={ "stem_type": 'v2', "stem_chs": [16, 16], # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num "stage1": [16, 16, 64, 1, False, False, 3, 3], "stage2": [64, 32, 256, 1, True, False, 3, 3], "stage3": [256, 64, 512, 2, True, True, 5, 3], "stage4": [512, 128, 1024, 1, True, True, 5, 3], }, hgnetv2_b1={ "stem_type": 'v2', "stem_chs": [24, 32], # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num "stage1": [32, 32, 64, 1, False, False, 3, 3], "stage2": [64, 48, 256, 1, True, False, 3, 3], "stage3": [256, 96, 512, 2, True, True, 5, 3], "stage4": [512, 192, 1024, 1, True, True, 5, 3], }, hgnetv2_b2={ "stem_type": 'v2', "stem_chs": [24, 32], # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num "stage1": [32, 32, 96, 1, False, False, 3, 4], "stage2": [96, 64, 384, 1, True, False, 3, 4], "stage3": [384, 128, 768, 3, True, True, 5, 4], "stage4": [768, 256, 1536, 1, True, True, 5, 4], }, hgnetv2_b3={ "stem_type": 'v2', "stem_chs": [24, 32], # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num "stage1": [32, 32, 128, 1, False, False, 3, 5], "stage2": [128, 64, 512, 1, True, False, 3, 5], "stage3": [512, 128, 1024, 3, True, True, 5, 5], "stage4": [1024, 256, 2048, 1, True, True, 5, 5], }, hgnetv2_b4={ "stem_type": 'v2', "stem_chs": [32, 48], # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num "stage1": [48, 48, 128, 1, False, False, 3, 6], "stage2": [128, 96, 512, 1, True, False, 3, 6], "stage3": [512, 192, 1024, 3, True, True, 5, 6], "stage4": [1024, 384, 2048, 1, True, True, 5, 6], }, hgnetv2_b5={ "stem_type": 'v2', "stem_chs": [32, 64], # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num "stage1": [64, 64, 128, 1, False, False, 3, 6], "stage2": [128, 128, 512, 2, True, False, 3, 6], "stage3": [512, 256, 1024, 5, True, True, 5, 6], "stage4": [1024, 512, 2048, 2, True, True, 5, 6], }, hgnetv2_b6={ "stem_type": 'v2', "stem_chs": [48, 96], # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num "stage1": [96, 96, 192, 2, False, False, 3, 6], "stage2": [192, 192, 512, 3, True, False, 3, 6], "stage3": [512, 384, 1024, 6, True, True, 5, 6], "stage4": [1024, 768, 2048, 3, True, True, 5, 6], }, ) def _create_hgnet(variant, pretrained=False, **kwargs): out_indices = kwargs.pop('out_indices', (0, 1, 2, 3)) return build_model_with_cfg( HighPerfGpuNet, variant, pretrained, model_cfg=model_cfgs[variant], feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs, ) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.965, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head.fc', 'first_conv': 'stem.stem1.conv', 'test_crop_pct': 1.0, 'test_input_size': (3, 288, 288), **kwargs, } default_cfgs = generate_default_cfgs({ 'hgnet_tiny.paddle_in1k': _cfg( first_conv='stem.stem.0.conv', hf_hub_id='timm/'), 'hgnet_tiny.ssld_in1k': _cfg( first_conv='stem.stem.0.conv', hf_hub_id='timm/'), 'hgnet_small.paddle_in1k': _cfg( first_conv='stem.stem.0.conv', hf_hub_id='timm/'), 'hgnet_small.ssld_in1k': _cfg( first_conv='stem.stem.0.conv', hf_hub_id='timm/'), 'hgnet_base.ssld_in1k': _cfg( first_conv='stem.stem.0.conv', hf_hub_id='timm/'), 'hgnetv2_b0.ssld_stage2_ft_in1k': _cfg( hf_hub_id='timm/'), 'hgnetv2_b0.ssld_stage1_in22k_in1k': _cfg( hf_hub_id='timm/'), 'hgnetv2_b1.ssld_stage2_ft_in1k': _cfg( hf_hub_id='timm/'), 'hgnetv2_b1.ssld_stage1_in22k_in1k': _cfg( hf_hub_id='timm/'), 'hgnetv2_b2.ssld_stage2_ft_in1k': _cfg( hf_hub_id='timm/'), 'hgnetv2_b2.ssld_stage1_in22k_in1k': _cfg( hf_hub_id='timm/'), 'hgnetv2_b3.ssld_stage2_ft_in1k': _cfg( hf_hub_id='timm/'), 'hgnetv2_b3.ssld_stage1_in22k_in1k': _cfg( hf_hub_id='timm/'), 'hgnetv2_b4.ssld_stage2_ft_in1k': _cfg( hf_hub_id='timm/'), 'hgnetv2_b4.ssld_stage1_in22k_in1k': _cfg( hf_hub_id='timm/'), 'hgnetv2_b5.ssld_stage2_ft_in1k': _cfg( hf_hub_id='timm/'), 'hgnetv2_b5.ssld_stage1_in22k_in1k': _cfg( hf_hub_id='timm/'), 'hgnetv2_b6.ssld_stage2_ft_in1k': _cfg( hf_hub_id='timm/'), 'hgnetv2_b6.ssld_stage1_in22k_in1k': _cfg( hf_hub_id='timm/'), }) @register_model def hgnet_tiny(pretrained=False, **kwargs) -> HighPerfGpuNet: return _create_hgnet('hgnet_tiny', pretrained=pretrained, **kwargs) @register_model def hgnet_small(pretrained=False, **kwargs) -> HighPerfGpuNet: return _create_hgnet('hgnet_small', pretrained=pretrained, **kwargs) @register_model def hgnet_base(pretrained=False, **kwargs) -> HighPerfGpuNet: return _create_hgnet('hgnet_base', pretrained=pretrained, **kwargs) @register_model def hgnetv2_b0(pretrained=False, **kwargs) -> HighPerfGpuNet: return _create_hgnet('hgnetv2_b0', pretrained=pretrained, use_lab=True, **kwargs) @register_model def hgnetv2_b1(pretrained=False, **kwargs) -> HighPerfGpuNet: return _create_hgnet('hgnetv2_b1', pretrained=pretrained, use_lab=True, **kwargs) @register_model def hgnetv2_b2(pretrained=False, **kwargs) -> HighPerfGpuNet: return _create_hgnet('hgnetv2_b2', pretrained=pretrained, use_lab=True, **kwargs) @register_model def hgnetv2_b3(pretrained=False, **kwargs) -> HighPerfGpuNet: return _create_hgnet('hgnetv2_b3', pretrained=pretrained, use_lab=True, **kwargs) @register_model def hgnetv2_b4(pretrained=False, **kwargs) -> HighPerfGpuNet: return _create_hgnet('hgnetv2_b4', pretrained=pretrained, **kwargs) @register_model def hgnetv2_b5(pretrained=False, **kwargs) -> HighPerfGpuNet: return _create_hgnet('hgnetv2_b5', pretrained=pretrained, **kwargs) @register_model def hgnetv2_b6(pretrained=False, **kwargs) -> HighPerfGpuNet: return _create_hgnet('hgnetv2_b6', pretrained=pretrained, **kwargs)
pytorch-image-models/timm/models/hgnet.py/0
{ "file_path": "pytorch-image-models/timm/models/hgnet.py", "repo_id": "pytorch-image-models", "token_count": 13177 }
201
""" Multi-Scale Vision Transformer v2 @inproceedings{li2021improved, title={MViTv2: Improved multiscale vision transformers for classification and detection}, author={Li, Yanghao and Wu, Chao-Yuan and Fan, Haoqi and Mangalam, Karttikeya and Xiong, Bo and Malik, Jitendra and Feichtenhofer, Christoph}, booktitle={CVPR}, year={2022} } Code adapted from original Apache 2.0 licensed impl at https://github.com/facebookresearch/mvit Original copyright below. Modifications and timm support by / Copyright 2022, Ross Wightman """ # Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. All Rights Reserved. import operator from collections import OrderedDict from dataclasses import dataclass from functools import partial, reduce from typing import Union, List, Tuple, Optional import torch import torch.utils.checkpoint as checkpoint from torch import nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import Mlp, DropPath, trunc_normal_tf_, get_norm_layer, to_2tuple from ._builder import build_model_with_cfg from ._features import feature_take_indices from ._features_fx import register_notrace_function from ._registry import register_model, register_model_deprecations, generate_default_cfgs __all__ = ['MultiScaleVit', 'MultiScaleVitCfg'] # model_registry will add each entrypoint fn to this @dataclass class MultiScaleVitCfg: depths: Tuple[int, ...] = (2, 3, 16, 3) embed_dim: Union[int, Tuple[int, ...]] = 96 num_heads: Union[int, Tuple[int, ...]] = 1 mlp_ratio: float = 4. pool_first: bool = False expand_attn: bool = True qkv_bias: bool = True use_cls_token: bool = False use_abs_pos: bool = False residual_pooling: bool = True mode: str = 'conv' kernel_qkv: Tuple[int, int] = (3, 3) stride_q: Optional[Tuple[Tuple[int, int]]] = ((1, 1), (2, 2), (2, 2), (2, 2)) stride_kv: Optional[Tuple[Tuple[int, int]]] = None stride_kv_adaptive: Optional[Tuple[int, int]] = (4, 4) patch_kernel: Tuple[int, int] = (7, 7) patch_stride: Tuple[int, int] = (4, 4) patch_padding: Tuple[int, int] = (3, 3) pool_type: str = 'max' rel_pos_type: str = 'spatial' act_layer: Union[str, Tuple[str, str]] = 'gelu' norm_layer: Union[str, Tuple[str, str]] = 'layernorm' norm_eps: float = 1e-6 def __post_init__(self): num_stages = len(self.depths) if not isinstance(self.embed_dim, (tuple, list)): self.embed_dim = tuple(self.embed_dim * 2 ** i for i in range(num_stages)) assert len(self.embed_dim) == num_stages if not isinstance(self.num_heads, (tuple, list)): self.num_heads = tuple(self.num_heads * 2 ** i for i in range(num_stages)) assert len(self.num_heads) == num_stages if self.stride_kv_adaptive is not None and self.stride_kv is None: _stride_kv = self.stride_kv_adaptive pool_kv_stride = [] for i in range(num_stages): if min(self.stride_q[i]) > 1: _stride_kv = [ max(_stride_kv[d] // self.stride_q[i][d], 1) for d in range(len(_stride_kv)) ] pool_kv_stride.append(tuple(_stride_kv)) self.stride_kv = tuple(pool_kv_stride) def prod(iterable): return reduce(operator.mul, iterable, 1) class PatchEmbed(nn.Module): """ PatchEmbed. """ def __init__( self, dim_in=3, dim_out=768, kernel=(7, 7), stride=(4, 4), padding=(3, 3), ): super().__init__() self.proj = nn.Conv2d( dim_in, dim_out, kernel_size=kernel, stride=stride, padding=padding, ) def forward(self, x) -> Tuple[torch.Tensor, List[int]]: x = self.proj(x) # B C H W -> B HW C return x.flatten(2).transpose(1, 2), x.shape[-2:] @register_notrace_function def reshape_pre_pool( x, feat_size: List[int], has_cls_token: bool = True ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: H, W = feat_size if has_cls_token: cls_tok, x = x[:, :, :1, :], x[:, :, 1:, :] else: cls_tok = None x = x.reshape(-1, H, W, x.shape[-1]).permute(0, 3, 1, 2).contiguous() return x, cls_tok @register_notrace_function def reshape_post_pool( x, num_heads: int, cls_tok: Optional[torch.Tensor] = None ) -> Tuple[torch.Tensor, List[int]]: feat_size = [x.shape[2], x.shape[3]] L_pooled = x.shape[2] * x.shape[3] x = x.reshape(-1, num_heads, x.shape[1], L_pooled).transpose(2, 3) if cls_tok is not None: x = torch.cat((cls_tok, x), dim=2) return x, feat_size @register_notrace_function def cal_rel_pos_type( attn: torch.Tensor, q: torch.Tensor, has_cls_token: bool, q_size: List[int], k_size: List[int], rel_pos_h: torch.Tensor, rel_pos_w: torch.Tensor, ): """ Spatial Relative Positional Embeddings. """ sp_idx = 1 if has_cls_token else 0 q_h, q_w = q_size k_h, k_w = k_size # Scale up rel pos if shapes for q and k are different. q_h_ratio = max(k_h / q_h, 1.0) k_h_ratio = max(q_h / k_h, 1.0) dist_h = ( torch.arange(q_h, device=q.device).unsqueeze(-1) * q_h_ratio - torch.arange(k_h, device=q.device).unsqueeze(0) * k_h_ratio ) dist_h += (k_h - 1) * k_h_ratio q_w_ratio = max(k_w / q_w, 1.0) k_w_ratio = max(q_w / k_w, 1.0) dist_w = ( torch.arange(q_w, device=q.device).unsqueeze(-1) * q_w_ratio - torch.arange(k_w, device=q.device).unsqueeze(0) * k_w_ratio ) dist_w += (k_w - 1) * k_w_ratio rel_h = rel_pos_h[dist_h.long()] rel_w = rel_pos_w[dist_w.long()] B, n_head, q_N, dim = q.shape r_q = q[:, :, sp_idx:].reshape(B, n_head, q_h, q_w, dim) rel_h = torch.einsum("byhwc,hkc->byhwk", r_q, rel_h) rel_w = torch.einsum("byhwc,wkc->byhwk", r_q, rel_w) attn[:, :, sp_idx:, sp_idx:] = ( attn[:, :, sp_idx:, sp_idx:].view(B, -1, q_h, q_w, k_h, k_w) + rel_h.unsqueeze(-1) + rel_w.unsqueeze(-2) ).view(B, -1, q_h * q_w, k_h * k_w) return attn class MultiScaleAttentionPoolFirst(nn.Module): def __init__( self, dim, dim_out, feat_size, num_heads=8, qkv_bias=True, mode="conv", kernel_q=(1, 1), kernel_kv=(1, 1), stride_q=(1, 1), stride_kv=(1, 1), has_cls_token=True, rel_pos_type='spatial', residual_pooling=True, norm_layer=nn.LayerNorm, ): super().__init__() self.num_heads = num_heads self.dim_out = dim_out self.head_dim = dim_out // num_heads self.scale = self.head_dim ** -0.5 self.has_cls_token = has_cls_token padding_q = tuple([int(q // 2) for q in kernel_q]) padding_kv = tuple([int(kv // 2) for kv in kernel_kv]) self.q = nn.Linear(dim, dim_out, bias=qkv_bias) self.k = nn.Linear(dim, dim_out, bias=qkv_bias) self.v = nn.Linear(dim, dim_out, bias=qkv_bias) self.proj = nn.Linear(dim_out, dim_out) # Skip pooling with kernel and stride size of (1, 1, 1). if prod(kernel_q) == 1 and prod(stride_q) == 1: kernel_q = None if prod(kernel_kv) == 1 and prod(stride_kv) == 1: kernel_kv = None self.mode = mode self.unshared = mode == 'conv_unshared' self.pool_q, self.pool_k, self.pool_v = None, None, None self.norm_q, self.norm_k, self.norm_v = None, None, None if mode in ("avg", "max"): pool_op = nn.MaxPool2d if mode == "max" else nn.AvgPool2d if kernel_q: self.pool_q = pool_op(kernel_q, stride_q, padding_q) if kernel_kv: self.pool_k = pool_op(kernel_kv, stride_kv, padding_kv) self.pool_v = pool_op(kernel_kv, stride_kv, padding_kv) elif mode == "conv" or mode == "conv_unshared": dim_conv = dim // num_heads if mode == "conv" else dim if kernel_q: self.pool_q = nn.Conv2d( dim_conv, dim_conv, kernel_q, stride=stride_q, padding=padding_q, groups=dim_conv, bias=False, ) self.norm_q = norm_layer(dim_conv) if kernel_kv: self.pool_k = nn.Conv2d( dim_conv, dim_conv, kernel_kv, stride=stride_kv, padding=padding_kv, groups=dim_conv, bias=False, ) self.norm_k = norm_layer(dim_conv) self.pool_v = nn.Conv2d( dim_conv, dim_conv, kernel_kv, stride=stride_kv, padding=padding_kv, groups=dim_conv, bias=False, ) self.norm_v = norm_layer(dim_conv) else: raise NotImplementedError(f"Unsupported model {mode}") # relative pos embedding self.rel_pos_type = rel_pos_type if self.rel_pos_type == 'spatial': assert feat_size[0] == feat_size[1] size = feat_size[0] q_size = size // stride_q[1] if len(stride_q) > 0 else size kv_size = size // stride_kv[1] if len(stride_kv) > 0 else size rel_sp_dim = 2 * max(q_size, kv_size) - 1 self.rel_pos_h = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim)) self.rel_pos_w = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim)) trunc_normal_tf_(self.rel_pos_h, std=0.02) trunc_normal_tf_(self.rel_pos_w, std=0.02) self.residual_pooling = residual_pooling def forward(self, x, feat_size: List[int]): B, N, _ = x.shape fold_dim = 1 if self.unshared else self.num_heads x = x.reshape(B, N, fold_dim, -1).permute(0, 2, 1, 3) q = k = v = x if self.pool_q is not None: q, q_tok = reshape_pre_pool(q, feat_size, self.has_cls_token) q = self.pool_q(q) q, q_size = reshape_post_pool(q, self.num_heads, q_tok) else: q_size = feat_size if self.norm_q is not None: q = self.norm_q(q) if self.pool_k is not None: k, k_tok = reshape_pre_pool(k, feat_size, self.has_cls_token) k = self.pool_k(k) k, k_size = reshape_post_pool(k, self.num_heads, k_tok) else: k_size = feat_size if self.norm_k is not None: k = self.norm_k(k) if self.pool_v is not None: v, v_tok = reshape_pre_pool(v, feat_size, self.has_cls_token) v = self.pool_v(v) v, v_size = reshape_post_pool(v, self.num_heads, v_tok) else: v_size = feat_size if self.norm_v is not None: v = self.norm_v(v) q_N = q_size[0] * q_size[1] + int(self.has_cls_token) q = q.transpose(1, 2).reshape(B, q_N, -1) q = self.q(q).reshape(B, q_N, self.num_heads, -1).transpose(1, 2) k_N = k_size[0] * k_size[1] + int(self.has_cls_token) k = k.transpose(1, 2).reshape(B, k_N, -1) k = self.k(k).reshape(B, k_N, self.num_heads, -1) v_N = v_size[0] * v_size[1] + int(self.has_cls_token) v = v.transpose(1, 2).reshape(B, v_N, -1) v = self.v(v).reshape(B, v_N, self.num_heads, -1).transpose(1, 2) attn = (q * self.scale) @ k if self.rel_pos_type == 'spatial': attn = cal_rel_pos_type( attn, q, self.has_cls_token, q_size, k_size, self.rel_pos_h, self.rel_pos_w, ) attn = attn.softmax(dim=-1) x = attn @ v if self.residual_pooling: x = x + q x = x.transpose(1, 2).reshape(B, -1, self.dim_out) x = self.proj(x) return x, q_size class MultiScaleAttention(nn.Module): def __init__( self, dim, dim_out, feat_size, num_heads=8, qkv_bias=True, mode="conv", kernel_q=(1, 1), kernel_kv=(1, 1), stride_q=(1, 1), stride_kv=(1, 1), has_cls_token=True, rel_pos_type='spatial', residual_pooling=True, norm_layer=nn.LayerNorm, ): super().__init__() self.num_heads = num_heads self.dim_out = dim_out self.head_dim = dim_out // num_heads self.scale = self.head_dim ** -0.5 self.has_cls_token = has_cls_token padding_q = tuple([int(q // 2) for q in kernel_q]) padding_kv = tuple([int(kv // 2) for kv in kernel_kv]) self.qkv = nn.Linear(dim, dim_out * 3, bias=qkv_bias) self.proj = nn.Linear(dim_out, dim_out) # Skip pooling with kernel and stride size of (1, 1, 1). if prod(kernel_q) == 1 and prod(stride_q) == 1: kernel_q = None if prod(kernel_kv) == 1 and prod(stride_kv) == 1: kernel_kv = None self.mode = mode self.unshared = mode == 'conv_unshared' self.norm_q, self.norm_k, self.norm_v = None, None, None self.pool_q, self.pool_k, self.pool_v = None, None, None if mode in ("avg", "max"): pool_op = nn.MaxPool2d if mode == "max" else nn.AvgPool2d if kernel_q: self.pool_q = pool_op(kernel_q, stride_q, padding_q) if kernel_kv: self.pool_k = pool_op(kernel_kv, stride_kv, padding_kv) self.pool_v = pool_op(kernel_kv, stride_kv, padding_kv) elif mode == "conv" or mode == "conv_unshared": dim_conv = dim_out // num_heads if mode == "conv" else dim_out if kernel_q: self.pool_q = nn.Conv2d( dim_conv, dim_conv, kernel_q, stride=stride_q, padding=padding_q, groups=dim_conv, bias=False, ) self.norm_q = norm_layer(dim_conv) if kernel_kv: self.pool_k = nn.Conv2d( dim_conv, dim_conv, kernel_kv, stride=stride_kv, padding=padding_kv, groups=dim_conv, bias=False, ) self.norm_k = norm_layer(dim_conv) self.pool_v = nn.Conv2d( dim_conv, dim_conv, kernel_kv, stride=stride_kv, padding=padding_kv, groups=dim_conv, bias=False, ) self.norm_v = norm_layer(dim_conv) else: raise NotImplementedError(f"Unsupported model {mode}") # relative pos embedding self.rel_pos_type = rel_pos_type if self.rel_pos_type == 'spatial': assert feat_size[0] == feat_size[1] size = feat_size[0] q_size = size // stride_q[1] if len(stride_q) > 0 else size kv_size = size // stride_kv[1] if len(stride_kv) > 0 else size rel_sp_dim = 2 * max(q_size, kv_size) - 1 self.rel_pos_h = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim)) self.rel_pos_w = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim)) trunc_normal_tf_(self.rel_pos_h, std=0.02) trunc_normal_tf_(self.rel_pos_w, std=0.02) self.residual_pooling = residual_pooling def forward(self, x, feat_size: List[int]): B, N, _ = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(dim=0) if self.pool_q is not None: q, q_tok = reshape_pre_pool(q, feat_size, self.has_cls_token) q = self.pool_q(q) q, q_size = reshape_post_pool(q, self.num_heads, q_tok) else: q_size = feat_size if self.norm_q is not None: q = self.norm_q(q) if self.pool_k is not None: k, k_tok = reshape_pre_pool(k, feat_size, self.has_cls_token) k = self.pool_k(k) k, k_size = reshape_post_pool(k, self.num_heads, k_tok) else: k_size = feat_size if self.norm_k is not None: k = self.norm_k(k) if self.pool_v is not None: v, v_tok = reshape_pre_pool(v, feat_size, self.has_cls_token) v = self.pool_v(v) v, _ = reshape_post_pool(v, self.num_heads, v_tok) if self.norm_v is not None: v = self.norm_v(v) attn = (q * self.scale) @ k.transpose(-2, -1) if self.rel_pos_type == 'spatial': attn = cal_rel_pos_type( attn, q, self.has_cls_token, q_size, k_size, self.rel_pos_h, self.rel_pos_w, ) attn = attn.softmax(dim=-1) x = attn @ v if self.residual_pooling: x = x + q x = x.transpose(1, 2).reshape(B, -1, self.dim_out) x = self.proj(x) return x, q_size class MultiScaleBlock(nn.Module): def __init__( self, dim, dim_out, num_heads, feat_size, mlp_ratio=4.0, qkv_bias=True, drop_path=0.0, norm_layer=nn.LayerNorm, kernel_q=(1, 1), kernel_kv=(1, 1), stride_q=(1, 1), stride_kv=(1, 1), mode="conv", has_cls_token=True, expand_attn=False, pool_first=False, rel_pos_type='spatial', residual_pooling=True, ): super().__init__() proj_needed = dim != dim_out self.dim = dim self.dim_out = dim_out self.has_cls_token = has_cls_token self.norm1 = norm_layer(dim) self.shortcut_proj_attn = nn.Linear(dim, dim_out) if proj_needed and expand_attn else None if stride_q and prod(stride_q) > 1: kernel_skip = [s + 1 if s > 1 else s for s in stride_q] stride_skip = stride_q padding_skip = [int(skip // 2) for skip in kernel_skip] self.shortcut_pool_attn = nn.MaxPool2d(kernel_skip, stride_skip, padding_skip) else: self.shortcut_pool_attn = None att_dim = dim_out if expand_attn else dim attn_layer = MultiScaleAttentionPoolFirst if pool_first else MultiScaleAttention self.attn = attn_layer( dim, att_dim, num_heads=num_heads, feat_size=feat_size, qkv_bias=qkv_bias, kernel_q=kernel_q, kernel_kv=kernel_kv, stride_q=stride_q, stride_kv=stride_kv, norm_layer=norm_layer, has_cls_token=has_cls_token, mode=mode, rel_pos_type=rel_pos_type, residual_pooling=residual_pooling, ) self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(att_dim) mlp_dim_out = dim_out self.shortcut_proj_mlp = nn.Linear(dim, dim_out) if proj_needed and not expand_attn else None self.mlp = Mlp( in_features=att_dim, hidden_features=int(att_dim * mlp_ratio), out_features=mlp_dim_out, ) self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() def _shortcut_pool(self, x, feat_size: List[int]): if self.shortcut_pool_attn is None: return x if self.has_cls_token: cls_tok, x = x[:, :1, :], x[:, 1:, :] else: cls_tok = None B, L, C = x.shape H, W = feat_size x = x.reshape(B, H, W, C).permute(0, 3, 1, 2).contiguous() x = self.shortcut_pool_attn(x) x = x.reshape(B, C, -1).transpose(1, 2) if cls_tok is not None: x = torch.cat((cls_tok, x), dim=1) return x def forward(self, x, feat_size: List[int]): x_norm = self.norm1(x) # NOTE as per the original impl, this seems odd, but shortcut uses un-normalized input if no proj x_shortcut = x if self.shortcut_proj_attn is None else self.shortcut_proj_attn(x_norm) x_shortcut = self._shortcut_pool(x_shortcut, feat_size) x, feat_size_new = self.attn(x_norm, feat_size) x = x_shortcut + self.drop_path1(x) x_norm = self.norm2(x) x_shortcut = x if self.shortcut_proj_mlp is None else self.shortcut_proj_mlp(x_norm) x = x_shortcut + self.drop_path2(self.mlp(x_norm)) return x, feat_size_new class MultiScaleVitStage(nn.Module): def __init__( self, dim, dim_out, depth, num_heads, feat_size, mlp_ratio=4.0, qkv_bias=True, mode="conv", kernel_q=(1, 1), kernel_kv=(1, 1), stride_q=(1, 1), stride_kv=(1, 1), has_cls_token=True, expand_attn=False, pool_first=False, rel_pos_type='spatial', residual_pooling=True, norm_layer=nn.LayerNorm, drop_path=0.0, ): super().__init__() self.grad_checkpointing = False self.blocks = nn.ModuleList() if expand_attn: out_dims = (dim_out,) * depth else: out_dims = (dim,) * (depth - 1) + (dim_out,) for i in range(depth): attention_block = MultiScaleBlock( dim=dim, dim_out=out_dims[i], num_heads=num_heads, feat_size=feat_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, kernel_q=kernel_q, kernel_kv=kernel_kv, stride_q=stride_q if i == 0 else (1, 1), stride_kv=stride_kv, mode=mode, has_cls_token=has_cls_token, pool_first=pool_first, rel_pos_type=rel_pos_type, residual_pooling=residual_pooling, expand_attn=expand_attn, norm_layer=norm_layer, drop_path=drop_path[i] if isinstance(drop_path, (list, tuple)) else drop_path, ) dim = out_dims[i] self.blocks.append(attention_block) if i == 0: feat_size = tuple([size // stride for size, stride in zip(feat_size, stride_q)]) self.feat_size = feat_size def forward(self, x, feat_size: List[int]): for blk in self.blocks: if self.grad_checkpointing and not torch.jit.is_scripting(): x, feat_size = checkpoint.checkpoint(blk, x, feat_size) else: x, feat_size = blk(x, feat_size) return x, feat_size class MultiScaleVit(nn.Module): """ Improved Multiscale Vision Transformers for Classification and Detection Yanghao Li*, Chao-Yuan Wu*, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra Malik, Christoph Feichtenhofer* https://arxiv.org/abs/2112.01526 Multiscale Vision Transformers Haoqi Fan*, Bo Xiong*, Karttikeya Mangalam*, Yanghao Li*, Zhicheng Yan, Jitendra Malik, Christoph Feichtenhofer* https://arxiv.org/abs/2104.11227 """ def __init__( self, cfg: MultiScaleVitCfg, img_size: Tuple[int, int] = (224, 224), in_chans: int = 3, global_pool: Optional[str] = None, num_classes: int = 1000, drop_path_rate: float = 0., drop_rate: float = 0., ): super().__init__() img_size = to_2tuple(img_size) norm_layer = partial(get_norm_layer(cfg.norm_layer), eps=cfg.norm_eps) self.num_classes = num_classes self.drop_rate = drop_rate if global_pool is None: global_pool = 'token' if cfg.use_cls_token else 'avg' self.global_pool = global_pool self.depths = tuple(cfg.depths) self.expand_attn = cfg.expand_attn embed_dim = cfg.embed_dim[0] self.patch_embed = PatchEmbed( dim_in=in_chans, dim_out=embed_dim, kernel=cfg.patch_kernel, stride=cfg.patch_stride, padding=cfg.patch_padding, ) patch_dims = (img_size[0] // cfg.patch_stride[0], img_size[1] // cfg.patch_stride[1]) num_patches = prod(patch_dims) if cfg.use_cls_token: self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.num_prefix_tokens = 1 pos_embed_dim = num_patches + 1 else: self.num_prefix_tokens = 0 self.cls_token = None pos_embed_dim = num_patches if cfg.use_abs_pos: self.pos_embed = nn.Parameter(torch.zeros(1, pos_embed_dim, embed_dim)) else: self.pos_embed = None num_stages = len(cfg.embed_dim) feat_size = patch_dims curr_stride = max(cfg.patch_stride) dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg.depths)).split(cfg.depths)] self.stages = nn.ModuleList() self.feature_info = [] for i in range(num_stages): if cfg.expand_attn: dim_out = cfg.embed_dim[i] else: dim_out = cfg.embed_dim[min(i + 1, num_stages - 1)] stage = MultiScaleVitStage( dim=embed_dim, dim_out=dim_out, depth=cfg.depths[i], num_heads=cfg.num_heads[i], feat_size=feat_size, mlp_ratio=cfg.mlp_ratio, qkv_bias=cfg.qkv_bias, mode=cfg.mode, pool_first=cfg.pool_first, expand_attn=cfg.expand_attn, kernel_q=cfg.kernel_qkv, kernel_kv=cfg.kernel_qkv, stride_q=cfg.stride_q[i], stride_kv=cfg.stride_kv[i], has_cls_token=cfg.use_cls_token, rel_pos_type=cfg.rel_pos_type, residual_pooling=cfg.residual_pooling, norm_layer=norm_layer, drop_path=dpr[i], ) curr_stride *= max(cfg.stride_q[i]) self.feature_info += [dict(module=f'block.{i}', num_chs=dim_out, reduction=curr_stride)] embed_dim = dim_out feat_size = stage.feat_size self.stages.append(stage) self.num_features = self.head_hidden_size = embed_dim self.norm = norm_layer(embed_dim) self.head = nn.Sequential(OrderedDict([ ('drop', nn.Dropout(self.drop_rate)), ('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()) ])) if self.pos_embed is not None: trunc_normal_tf_(self.pos_embed, std=0.02) if self.cls_token is not None: trunc_normal_tf_(self.cls_token, std=0.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_tf_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0.0) @torch.jit.ignore def no_weight_decay(self): return {k for k, _ in self.named_parameters() if any(n in k for n in ["pos_embed", "rel_pos_h", "rel_pos_w", "cls_token"])} @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^patch_embed', # stem and embed blocks=[(r'^stages\.(\d+)', None), (r'^norm', (99999,))] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): for s in self.stages: s.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head.fc def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes if global_pool is not None: self.global_pool = global_pool self.head = nn.Sequential(OrderedDict([ ('drop', nn.Dropout(self.drop_rate)), ('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()) ])) def forward_intermediates( self, x: torch.Tensor, indices: Optional[Union[int, List[int]]] = None, norm: bool = False, stop_early: bool = False, output_fmt: str = 'NCHW', intermediates_only: bool = False, ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: """ Forward features that returns intermediates. Args: x: Input image tensor indices: Take last n blocks if int, all if None, select matching indices if sequence norm: Apply norm layer to all intermediates stop_early: Stop iterating over blocks when last desired intermediate hit output_fmt: Shape of intermediate feature outputs intermediates_only: Only return intermediate features Returns: """ assert output_fmt in ('NCHW', 'NLC'), 'Output shape must be NCHW or NLC.' reshape = output_fmt == 'NCHW' intermediates = [] take_indices, max_index = feature_take_indices(len(self.stages), indices) # FIXME slice block/pos_block if < max # forward pass x, feat_size = self.patch_embed(x) B = x.shape[0] if self.cls_token is not None: cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed for i, stage in enumerate(self.stages): x, feat_size = stage(x, feat_size) if i in take_indices: if norm and i == (len(self.stages) - 1): x_inter = self.norm(x) # applying final norm last intermediate else: x_inter = x if reshape: if self.cls_token is not None: # possible to allow return of class tokens, TBD x_inter = x_inter[:, 1:] x_inter = x_inter.reshape(B, feat_size[0], feat_size[1], -1).permute(0, 3, 1, 2) intermediates.append(x_inter) if intermediates_only: return intermediates x = self.norm(x) return x, intermediates def prune_intermediate_layers( self, indices: Union[int, List[int]] = 1, prune_norm: bool = False, prune_head: bool = True, ): """ Prune layers not required for specified intermediates. """ take_indices, max_index = feature_take_indices(len(self.stages), indices) # FIXME add stage pruning # self.stages = self.stages[:max_index] # truncate blocks w/ stem as idx 0 if prune_norm: self.norm = nn.Identity() if prune_head: self.reset_classifier(0, '') return take_indices def forward_features(self, x): x, feat_size = self.patch_embed(x) B, N, C = x.shape if self.cls_token is not None: cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed for stage in self.stages: x, feat_size = stage(x, feat_size) x = self.norm(x) return x def forward_head(self, x, pre_logits: bool = False): if self.global_pool: if self.global_pool == 'avg': x = x[:, self.num_prefix_tokens:].mean(1) else: x = x[:, 0] return x if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def checkpoint_filter_fn(state_dict, model): if 'stages.0.blocks.0.norm1.weight' in state_dict: # native checkpoint, look for rel_pos interpolations for k in state_dict.keys(): if 'rel_pos' in k: rel_pos = state_dict[k] dest_rel_pos_shape = model.state_dict()[k].shape if rel_pos.shape[0] != dest_rel_pos_shape[0]: rel_pos_resized = torch.nn.functional.interpolate( rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), size=dest_rel_pos_shape[0], mode="linear", ) state_dict[k] = rel_pos_resized.reshape(-1, dest_rel_pos_shape[0]).permute(1, 0) return state_dict import re if 'model_state' in state_dict: state_dict = state_dict['model_state'] depths = getattr(model, 'depths', None) expand_attn = getattr(model, 'expand_attn', True) assert depths is not None, 'model requires depth attribute to remap checkpoints' depth_map = {} block_idx = 0 for stage_idx, d in enumerate(depths): depth_map.update({i: (stage_idx, i - block_idx) for i in range(block_idx, block_idx + d)}) block_idx += d out_dict = {} for k, v in state_dict.items(): k = re.sub( r'blocks\.(\d+)', lambda x: f'stages.{depth_map[int(x.group(1))][0]}.blocks.{depth_map[int(x.group(1))][1]}', k) if expand_attn: k = re.sub(r'stages\.(\d+).blocks\.(\d+).proj', f'stages.\\1.blocks.\\2.shortcut_proj_attn', k) else: k = re.sub(r'stages\.(\d+).blocks\.(\d+).proj', f'stages.\\1.blocks.\\2.shortcut_proj_mlp', k) if 'head' in k: k = k.replace('head.projection', 'head.fc') out_dict[k] = v return out_dict model_cfgs = dict( mvitv2_tiny=MultiScaleVitCfg( depths=(1, 2, 5, 2), ), mvitv2_small=MultiScaleVitCfg( depths=(1, 2, 11, 2), ), mvitv2_base=MultiScaleVitCfg( depths=(2, 3, 16, 3), ), mvitv2_large=MultiScaleVitCfg( depths=(2, 6, 36, 4), embed_dim=144, num_heads=2, expand_attn=False, ), mvitv2_small_cls=MultiScaleVitCfg( depths=(1, 2, 11, 2), use_cls_token=True, ), mvitv2_base_cls=MultiScaleVitCfg( depths=(2, 3, 16, 3), use_cls_token=True, ), mvitv2_large_cls=MultiScaleVitCfg( depths=(2, 6, 36, 4), embed_dim=144, num_heads=2, use_cls_token=True, expand_attn=True, ), mvitv2_huge_cls=MultiScaleVitCfg( depths=(4, 8, 60, 8), embed_dim=192, num_heads=3, use_cls_token=True, expand_attn=True, ), ) def _create_mvitv2(variant, cfg_variant=None, pretrained=False, **kwargs): out_indices = kwargs.pop('out_indices', 4) return build_model_with_cfg( MultiScaleVit, variant, pretrained, model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant], pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs, ) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head.fc', 'fixed_input_size': True, **kwargs } default_cfgs = generate_default_cfgs({ 'mvitv2_tiny.fb_in1k': _cfg( url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_T_in1k.pyth', hf_hub_id='timm/'), 'mvitv2_small.fb_in1k': _cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_S_in1k.pyth', hf_hub_id='timm/'), 'mvitv2_base.fb_in1k': _cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_B_in1k.pyth', hf_hub_id='timm/'), 'mvitv2_large.fb_in1k': _cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_L_in1k.pyth', hf_hub_id='timm/'), 'mvitv2_small_cls': _cfg(url=''), 'mvitv2_base_cls.fb_inw21k': _cfg( url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_B_in21k.pyth', hf_hub_id='timm/', num_classes=19168), 'mvitv2_large_cls.fb_inw21k': _cfg( url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_L_in21k.pyth', hf_hub_id='timm/', num_classes=19168), 'mvitv2_huge_cls.fb_inw21k': _cfg( url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_H_in21k.pyth', hf_hub_id='timm/', num_classes=19168), }) @register_model def mvitv2_tiny(pretrained=False, **kwargs) -> MultiScaleVit: return _create_mvitv2('mvitv2_tiny', pretrained=pretrained, **kwargs) @register_model def mvitv2_small(pretrained=False, **kwargs) -> MultiScaleVit: return _create_mvitv2('mvitv2_small', pretrained=pretrained, **kwargs) @register_model def mvitv2_base(pretrained=False, **kwargs) -> MultiScaleVit: return _create_mvitv2('mvitv2_base', pretrained=pretrained, **kwargs) @register_model def mvitv2_large(pretrained=False, **kwargs) -> MultiScaleVit: return _create_mvitv2('mvitv2_large', pretrained=pretrained, **kwargs) @register_model def mvitv2_small_cls(pretrained=False, **kwargs) -> MultiScaleVit: return _create_mvitv2('mvitv2_small_cls', pretrained=pretrained, **kwargs) @register_model def mvitv2_base_cls(pretrained=False, **kwargs) -> MultiScaleVit: return _create_mvitv2('mvitv2_base_cls', pretrained=pretrained, **kwargs) @register_model def mvitv2_large_cls(pretrained=False, **kwargs) -> MultiScaleVit: return _create_mvitv2('mvitv2_large_cls', pretrained=pretrained, **kwargs) @register_model def mvitv2_huge_cls(pretrained=False, **kwargs) -> MultiScaleVit: return _create_mvitv2('mvitv2_huge_cls', pretrained=pretrained, **kwargs)
pytorch-image-models/timm/models/mvitv2.py/0
{ "file_path": "pytorch-image-models/timm/models/mvitv2.py", "repo_id": "pytorch-image-models", "token_count": 21273 }
202
"""Pre-Activation ResNet v2 with GroupNorm and Weight Standardization. A PyTorch implementation of ResNetV2 adapted from the Google Big-Transfer (BiT) source code at https://github.com/google-research/big_transfer to match timm interfaces. The BiT weights have been included here as pretrained models from their original .NPZ checkpoints. Additionally, supports non pre-activation bottleneck for use as a backbone for Vision Transfomers (ViT) and extra padding support to allow porting of official Hybrid ResNet pretrained weights from https://github.com/google-research/vision_transformer Thanks to the Google team for the above two repositories and associated papers: * Big Transfer (BiT): General Visual Representation Learning - https://arxiv.org/abs/1912.11370 * An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale - https://arxiv.org/abs/2010.11929 * Knowledge distillation: A good teacher is patient and consistent - https://arxiv.org/abs/2106.05237 Original copyright of Google code below, modifications by Ross Wightman, Copyright 2020. """ # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict # pylint: disable=g-importing-member from functools import partial from typing import Optional import torch import torch.nn as nn from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD from timm.layers import GroupNormAct, BatchNormAct2d, EvoNorm2dS0, FilterResponseNormTlu2d, ClassifierHead, \ DropPath, AvgPool2dSame, create_pool2d, StdConv2d, create_conv2d, get_act_layer, get_norm_act_layer, make_divisible from ._builder import build_model_with_cfg from ._manipulate import checkpoint_seq, named_apply, adapt_input_conv from ._registry import generate_default_cfgs, register_model, register_model_deprecations __all__ = ['ResNetV2'] # model_registry will add each entrypoint fn to this class PreActBottleneck(nn.Module): """Pre-activation (v2) bottleneck block. Follows the implementation of "Identity Mappings in Deep Residual Networks": https://github.com/KaimingHe/resnet-1k-layers/blob/master/resnet-pre-act.lua Except it puts the stride on 3x3 conv when available. """ def __init__( self, in_chs, out_chs=None, bottle_ratio=0.25, stride=1, dilation=1, first_dilation=None, groups=1, act_layer=None, conv_layer=None, norm_layer=None, proj_layer=None, drop_path_rate=0., ): super().__init__() first_dilation = first_dilation or dilation conv_layer = conv_layer or StdConv2d norm_layer = norm_layer or partial(GroupNormAct, num_groups=32) out_chs = out_chs or in_chs mid_chs = make_divisible(out_chs * bottle_ratio) if proj_layer is not None: self.downsample = proj_layer( in_chs, out_chs, stride=stride, dilation=dilation, first_dilation=first_dilation, preact=True, conv_layer=conv_layer, norm_layer=norm_layer) else: self.downsample = None self.norm1 = norm_layer(in_chs) self.conv1 = conv_layer(in_chs, mid_chs, 1) self.norm2 = norm_layer(mid_chs) self.conv2 = conv_layer(mid_chs, mid_chs, 3, stride=stride, dilation=first_dilation, groups=groups) self.norm3 = norm_layer(mid_chs) self.conv3 = conv_layer(mid_chs, out_chs, 1) self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() def zero_init_last(self): nn.init.zeros_(self.conv3.weight) def forward(self, x): x_preact = self.norm1(x) # shortcut branch shortcut = x if self.downsample is not None: shortcut = self.downsample(x_preact) # residual branch x = self.conv1(x_preact) x = self.conv2(self.norm2(x)) x = self.conv3(self.norm3(x)) x = self.drop_path(x) return x + shortcut class Bottleneck(nn.Module): """Non Pre-activation bottleneck block, equiv to V1.5/V1b Bottleneck. Used for ViT. """ def __init__( self, in_chs, out_chs=None, bottle_ratio=0.25, stride=1, dilation=1, first_dilation=None, groups=1, act_layer=None, conv_layer=None, norm_layer=None, proj_layer=None, drop_path_rate=0., ): super().__init__() first_dilation = first_dilation or dilation act_layer = act_layer or nn.ReLU conv_layer = conv_layer or StdConv2d norm_layer = norm_layer or partial(GroupNormAct, num_groups=32) out_chs = out_chs or in_chs mid_chs = make_divisible(out_chs * bottle_ratio) if proj_layer is not None: self.downsample = proj_layer( in_chs, out_chs, stride=stride, dilation=dilation, preact=False, conv_layer=conv_layer, norm_layer=norm_layer) else: self.downsample = None self.conv1 = conv_layer(in_chs, mid_chs, 1) self.norm1 = norm_layer(mid_chs) self.conv2 = conv_layer(mid_chs, mid_chs, 3, stride=stride, dilation=first_dilation, groups=groups) self.norm2 = norm_layer(mid_chs) self.conv3 = conv_layer(mid_chs, out_chs, 1) self.norm3 = norm_layer(out_chs, apply_act=False) self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() self.act3 = act_layer(inplace=True) def zero_init_last(self): if getattr(self.norm3, 'weight', None) is not None: nn.init.zeros_(self.norm3.weight) def forward(self, x): # shortcut branch shortcut = x if self.downsample is not None: shortcut = self.downsample(x) # residual x = self.conv1(x) x = self.norm1(x) x = self.conv2(x) x = self.norm2(x) x = self.conv3(x) x = self.norm3(x) x = self.drop_path(x) x = self.act3(x + shortcut) return x class DownsampleConv(nn.Module): def __init__( self, in_chs, out_chs, stride=1, dilation=1, first_dilation=None, preact=True, conv_layer=None, norm_layer=None, ): super(DownsampleConv, self).__init__() self.conv = conv_layer(in_chs, out_chs, 1, stride=stride) self.norm = nn.Identity() if preact else norm_layer(out_chs, apply_act=False) def forward(self, x): return self.norm(self.conv(x)) class DownsampleAvg(nn.Module): def __init__( self, in_chs, out_chs, stride=1, dilation=1, first_dilation=None, preact=True, conv_layer=None, norm_layer=None, ): """ AvgPool Downsampling as in 'D' ResNet variants. This is not in RegNet space but I might experiment.""" super(DownsampleAvg, self).__init__() avg_stride = stride if dilation == 1 else 1 if stride > 1 or dilation > 1: avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) else: self.pool = nn.Identity() self.conv = conv_layer(in_chs, out_chs, 1, stride=1) self.norm = nn.Identity() if preact else norm_layer(out_chs, apply_act=False) def forward(self, x): return self.norm(self.conv(self.pool(x))) class ResNetStage(nn.Module): """ResNet Stage.""" def __init__( self, in_chs, out_chs, stride, dilation, depth, bottle_ratio=0.25, groups=1, avg_down=False, block_dpr=None, block_fn=PreActBottleneck, act_layer=None, conv_layer=None, norm_layer=None, **block_kwargs, ): super(ResNetStage, self).__init__() first_dilation = 1 if dilation in (1, 2) else 2 layer_kwargs = dict(act_layer=act_layer, conv_layer=conv_layer, norm_layer=norm_layer) proj_layer = DownsampleAvg if avg_down else DownsampleConv prev_chs = in_chs self.blocks = nn.Sequential() for block_idx in range(depth): drop_path_rate = block_dpr[block_idx] if block_dpr else 0. stride = stride if block_idx == 0 else 1 self.blocks.add_module(str(block_idx), block_fn( prev_chs, out_chs, stride=stride, dilation=dilation, bottle_ratio=bottle_ratio, groups=groups, first_dilation=first_dilation, proj_layer=proj_layer, drop_path_rate=drop_path_rate, **layer_kwargs, **block_kwargs, )) prev_chs = out_chs first_dilation = dilation proj_layer = None def forward(self, x): x = self.blocks(x) return x def is_stem_deep(stem_type): return any([s in stem_type for s in ('deep', 'tiered')]) def create_resnetv2_stem( in_chs, out_chs=64, stem_type='', preact=True, conv_layer=StdConv2d, norm_layer=partial(GroupNormAct, num_groups=32), ): stem = OrderedDict() assert stem_type in ('', 'fixed', 'same', 'deep', 'deep_fixed', 'deep_same', 'tiered') # NOTE conv padding mode can be changed by overriding the conv_layer def if is_stem_deep(stem_type): # A 3 deep 3x3 conv stack as in ResNet V1D models if 'tiered' in stem_type: stem_chs = (3 * out_chs // 8, out_chs // 2) # 'T' resnets in resnet.py else: stem_chs = (out_chs // 2, out_chs // 2) # 'D' ResNets stem['conv1'] = conv_layer(in_chs, stem_chs[0], kernel_size=3, stride=2) stem['norm1'] = norm_layer(stem_chs[0]) stem['conv2'] = conv_layer(stem_chs[0], stem_chs[1], kernel_size=3, stride=1) stem['norm2'] = norm_layer(stem_chs[1]) stem['conv3'] = conv_layer(stem_chs[1], out_chs, kernel_size=3, stride=1) if not preact: stem['norm3'] = norm_layer(out_chs) else: # The usual 7x7 stem conv stem['conv'] = conv_layer(in_chs, out_chs, kernel_size=7, stride=2) if not preact: stem['norm'] = norm_layer(out_chs) if 'fixed' in stem_type: # 'fixed' SAME padding approximation that is used in BiT models stem['pad'] = nn.ConstantPad2d(1, 0.) stem['pool'] = nn.MaxPool2d(kernel_size=3, stride=2, padding=0) elif 'same' in stem_type: # full, input size based 'SAME' padding, used in ViT Hybrid model stem['pool'] = create_pool2d('max', kernel_size=3, stride=2, padding='same') else: # the usual PyTorch symmetric padding stem['pool'] = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) return nn.Sequential(stem) class ResNetV2(nn.Module): """Implementation of Pre-activation (v2) ResNet mode. """ def __init__( self, layers, channels=(256, 512, 1024, 2048), num_classes=1000, in_chans=3, global_pool='avg', output_stride=32, width_factor=1, stem_chs=64, stem_type='', avg_down=False, preact=True, act_layer=nn.ReLU, norm_layer=partial(GroupNormAct, num_groups=32), conv_layer=StdConv2d, drop_rate=0., drop_path_rate=0., zero_init_last=False, ): """ Args: layers (List[int]) : number of layers in each block channels (List[int]) : number of channels in each block: num_classes (int): number of classification classes (default 1000) in_chans (int): number of input (color) channels. (default 3) global_pool (str): Global pooling type. One of 'avg', 'max', 'avgmax', 'catavgmax' (default 'avg') output_stride (int): output stride of the network, 32, 16, or 8. (default 32) width_factor (int): channel (width) multiplication factor stem_chs (int): stem width (default: 64) stem_type (str): stem type (default: '' == 7x7) avg_down (bool): average pooling in residual downsampling (default: False) preact (bool): pre-activiation (default: True) act_layer (Union[str, nn.Module]): activation layer norm_layer (Union[str, nn.Module]): normalization layer conv_layer (nn.Module): convolution module drop_rate: classifier dropout rate (default: 0.) drop_path_rate: stochastic depth rate (default: 0.) zero_init_last: zero-init last weight in residual path (default: False) """ super().__init__() self.num_classes = num_classes self.drop_rate = drop_rate wf = width_factor norm_layer = get_norm_act_layer(norm_layer, act_layer=act_layer) act_layer = get_act_layer(act_layer) self.feature_info = [] stem_chs = make_divisible(stem_chs * wf) self.stem = create_resnetv2_stem( in_chans, stem_chs, stem_type, preact, conv_layer=conv_layer, norm_layer=norm_layer, ) stem_feat = ('stem.conv3' if is_stem_deep(stem_type) else 'stem.conv') if preact else 'stem.norm' self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=stem_feat)) prev_chs = stem_chs curr_stride = 4 dilation = 1 block_dprs = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(layers)).split(layers)] block_fn = PreActBottleneck if preact else Bottleneck self.stages = nn.Sequential() for stage_idx, (d, c, bdpr) in enumerate(zip(layers, channels, block_dprs)): out_chs = make_divisible(c * wf) stride = 1 if stage_idx == 0 else 2 if curr_stride >= output_stride: dilation *= stride stride = 1 stage = ResNetStage( prev_chs, out_chs, stride=stride, dilation=dilation, depth=d, avg_down=avg_down, act_layer=act_layer, conv_layer=conv_layer, norm_layer=norm_layer, block_dpr=bdpr, block_fn=block_fn, ) prev_chs = out_chs curr_stride *= stride self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{stage_idx}')] self.stages.add_module(str(stage_idx), stage) self.num_features = self.head_hidden_size = prev_chs self.norm = norm_layer(self.num_features) if preact else nn.Identity() self.head = ClassifierHead( self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate, use_conv=True, ) self.init_weights(zero_init_last=zero_init_last) self.grad_checkpointing = False @torch.jit.ignore def init_weights(self, zero_init_last=True): named_apply(partial(_init_weights, zero_init_last=zero_init_last), self) @torch.jit.ignore() def load_pretrained(self, checkpoint_path, prefix='resnet/'): _load_weights(self, checkpoint_path, prefix) @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^stem', blocks=r'^stages\.(\d+)' if coarse else [ (r'^stages\.(\d+)\.blocks\.(\d+)', None), (r'^norm', (99999,)) ] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head.fc def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes self.head.reset(num_classes, global_pool) def forward_features(self, x): x = self.stem(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.stages, x, flatten=True) else: x = self.stages(x) x = self.norm(x) return x def forward_head(self, x, pre_logits: bool = False): return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def _init_weights(module: nn.Module, name: str = '', zero_init_last=True): if isinstance(module, nn.Linear) or ('head.fc' in name and isinstance(module, nn.Conv2d)): nn.init.normal_(module.weight, mean=0.0, std=0.01) nn.init.zeros_(module.bias) elif isinstance(module, nn.Conv2d): nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu') if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, (nn.BatchNorm2d, nn.LayerNorm, nn.GroupNorm)): nn.init.ones_(module.weight) nn.init.zeros_(module.bias) elif zero_init_last and hasattr(module, 'zero_init_last'): module.zero_init_last() @torch.no_grad() def _load_weights(model: nn.Module, checkpoint_path: str, prefix: str = 'resnet/'): import numpy as np def t2p(conv_weights): """Possibly convert HWIO to OIHW.""" if conv_weights.ndim == 4: conv_weights = conv_weights.transpose([3, 2, 0, 1]) return torch.from_numpy(conv_weights) weights = np.load(checkpoint_path) stem_conv_w = adapt_input_conv( model.stem.conv.weight.shape[1], t2p(weights[f'{prefix}root_block/standardized_conv2d/kernel'])) model.stem.conv.weight.copy_(stem_conv_w) model.norm.weight.copy_(t2p(weights[f'{prefix}group_norm/gamma'])) model.norm.bias.copy_(t2p(weights[f'{prefix}group_norm/beta'])) if isinstance(getattr(model.head, 'fc', None), nn.Conv2d) and \ model.head.fc.weight.shape[0] == weights[f'{prefix}head/conv2d/kernel'].shape[-1]: model.head.fc.weight.copy_(t2p(weights[f'{prefix}head/conv2d/kernel'])) model.head.fc.bias.copy_(t2p(weights[f'{prefix}head/conv2d/bias'])) for i, (sname, stage) in enumerate(model.stages.named_children()): for j, (bname, block) in enumerate(stage.blocks.named_children()): cname = 'standardized_conv2d' block_prefix = f'{prefix}block{i + 1}/unit{j + 1:02d}/' block.conv1.weight.copy_(t2p(weights[f'{block_prefix}a/{cname}/kernel'])) block.conv2.weight.copy_(t2p(weights[f'{block_prefix}b/{cname}/kernel'])) block.conv3.weight.copy_(t2p(weights[f'{block_prefix}c/{cname}/kernel'])) block.norm1.weight.copy_(t2p(weights[f'{block_prefix}a/group_norm/gamma'])) block.norm2.weight.copy_(t2p(weights[f'{block_prefix}b/group_norm/gamma'])) block.norm3.weight.copy_(t2p(weights[f'{block_prefix}c/group_norm/gamma'])) block.norm1.bias.copy_(t2p(weights[f'{block_prefix}a/group_norm/beta'])) block.norm2.bias.copy_(t2p(weights[f'{block_prefix}b/group_norm/beta'])) block.norm3.bias.copy_(t2p(weights[f'{block_prefix}c/group_norm/beta'])) if block.downsample is not None: w = weights[f'{block_prefix}a/proj/{cname}/kernel'] block.downsample.conv.weight.copy_(t2p(w)) def _create_resnetv2(variant, pretrained=False, **kwargs): feature_cfg = dict(flatten_sequential=True) return build_model_with_cfg( ResNetV2, variant, pretrained, feature_cfg=feature_cfg, **kwargs, ) def _create_resnetv2_bit(variant, pretrained=False, **kwargs): return _create_resnetv2( variant, pretrained=pretrained, stem_type='fixed', conv_layer=partial(StdConv2d, eps=1e-8), **kwargs, ) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, 'first_conv': 'stem.conv', 'classifier': 'head.fc', **kwargs } default_cfgs = generate_default_cfgs({ # Paper: Knowledge distillation: A good teacher is patient and consistent - https://arxiv.org/abs/2106.05237 'resnetv2_50x1_bit.goog_distilled_in1k': _cfg( hf_hub_id='timm/', interpolation='bicubic', custom_load=True), 'resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k': _cfg( hf_hub_id='timm/', interpolation='bicubic', custom_load=True), 'resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384': _cfg( hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, interpolation='bicubic', custom_load=True), # pretrained on imagenet21k, finetuned on imagenet1k 'resnetv2_50x1_bit.goog_in21k_ft_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, custom_load=True), 'resnetv2_50x3_bit.goog_in21k_ft_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, custom_load=True), 'resnetv2_101x1_bit.goog_in21k_ft_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, custom_load=True), 'resnetv2_101x3_bit.goog_in21k_ft_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, custom_load=True), 'resnetv2_152x2_bit.goog_in21k_ft_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, custom_load=True), 'resnetv2_152x4_bit.goog_in21k_ft_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 480, 480), pool_size=(15, 15), crop_pct=1.0, custom_load=True), # only one at 480x480? # trained on imagenet-21k 'resnetv2_50x1_bit.goog_in21k': _cfg( hf_hub_id='timm/', num_classes=21843, custom_load=True), 'resnetv2_50x3_bit.goog_in21k': _cfg( hf_hub_id='timm/', num_classes=21843, custom_load=True), 'resnetv2_101x1_bit.goog_in21k': _cfg( hf_hub_id='timm/', num_classes=21843, custom_load=True), 'resnetv2_101x3_bit.goog_in21k': _cfg( hf_hub_id='timm/', num_classes=21843, custom_load=True), 'resnetv2_152x2_bit.goog_in21k': _cfg( hf_hub_id='timm/', num_classes=21843, custom_load=True), 'resnetv2_152x4_bit.goog_in21k': _cfg( hf_hub_id='timm/', num_classes=21843, custom_load=True), 'resnetv2_50.a1h_in1k': _cfg( hf_hub_id='timm/', interpolation='bicubic', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'resnetv2_50d.untrained': _cfg( interpolation='bicubic', first_conv='stem.conv1'), 'resnetv2_50t.untrained': _cfg( interpolation='bicubic', first_conv='stem.conv1'), 'resnetv2_101.a1h_in1k': _cfg( hf_hub_id='timm/', interpolation='bicubic', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'resnetv2_101d.untrained': _cfg( interpolation='bicubic', first_conv='stem.conv1'), 'resnetv2_152.untrained': _cfg( interpolation='bicubic'), 'resnetv2_152d.untrained': _cfg( interpolation='bicubic', first_conv='stem.conv1'), 'resnetv2_50d_gn.ah_in1k': _cfg( hf_hub_id='timm/', interpolation='bicubic', first_conv='stem.conv1', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'resnetv2_50d_evos.ah_in1k': _cfg( hf_hub_id='timm/', interpolation='bicubic', first_conv='stem.conv1', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'resnetv2_50d_frn.untrained': _cfg( interpolation='bicubic', first_conv='stem.conv1'), }) @register_model def resnetv2_50x1_bit(pretrained=False, **kwargs) -> ResNetV2: return _create_resnetv2_bit( 'resnetv2_50x1_bit', pretrained=pretrained, layers=[3, 4, 6, 3], width_factor=1, **kwargs) @register_model def resnetv2_50x3_bit(pretrained=False, **kwargs) -> ResNetV2: return _create_resnetv2_bit( 'resnetv2_50x3_bit', pretrained=pretrained, layers=[3, 4, 6, 3], width_factor=3, **kwargs) @register_model def resnetv2_101x1_bit(pretrained=False, **kwargs) -> ResNetV2: return _create_resnetv2_bit( 'resnetv2_101x1_bit', pretrained=pretrained, layers=[3, 4, 23, 3], width_factor=1, **kwargs) @register_model def resnetv2_101x3_bit(pretrained=False, **kwargs) -> ResNetV2: return _create_resnetv2_bit( 'resnetv2_101x3_bit', pretrained=pretrained, layers=[3, 4, 23, 3], width_factor=3, **kwargs) @register_model def resnetv2_152x2_bit(pretrained=False, **kwargs) -> ResNetV2: return _create_resnetv2_bit( 'resnetv2_152x2_bit', pretrained=pretrained, layers=[3, 8, 36, 3], width_factor=2, **kwargs) @register_model def resnetv2_152x4_bit(pretrained=False, **kwargs) -> ResNetV2: return _create_resnetv2_bit( 'resnetv2_152x4_bit', pretrained=pretrained, layers=[3, 8, 36, 3], width_factor=4, **kwargs) @register_model def resnetv2_50(pretrained=False, **kwargs) -> ResNetV2: model_args = dict(layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d) return _create_resnetv2('resnetv2_50', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def resnetv2_50d(pretrained=False, **kwargs) -> ResNetV2: model_args = dict( layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d, stem_type='deep', avg_down=True) return _create_resnetv2('resnetv2_50d', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def resnetv2_50t(pretrained=False, **kwargs) -> ResNetV2: model_args = dict( layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d, stem_type='tiered', avg_down=True) return _create_resnetv2('resnetv2_50t', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def resnetv2_101(pretrained=False, **kwargs) -> ResNetV2: model_args = dict(layers=[3, 4, 23, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d) return _create_resnetv2('resnetv2_101', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def resnetv2_101d(pretrained=False, **kwargs) -> ResNetV2: model_args = dict( layers=[3, 4, 23, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d, stem_type='deep', avg_down=True) return _create_resnetv2('resnetv2_101d', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def resnetv2_152(pretrained=False, **kwargs) -> ResNetV2: model_args = dict(layers=[3, 8, 36, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d) return _create_resnetv2('resnetv2_152', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def resnetv2_152d(pretrained=False, **kwargs) -> ResNetV2: model_args = dict( layers=[3, 8, 36, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d, stem_type='deep', avg_down=True) return _create_resnetv2('resnetv2_152d', pretrained=pretrained, **dict(model_args, **kwargs)) # Experimental configs (may change / be removed) @register_model def resnetv2_50d_gn(pretrained=False, **kwargs) -> ResNetV2: model_args = dict( layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=GroupNormAct, stem_type='deep', avg_down=True) return _create_resnetv2('resnetv2_50d_gn', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def resnetv2_50d_evos(pretrained=False, **kwargs) -> ResNetV2: model_args = dict( layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=EvoNorm2dS0, stem_type='deep', avg_down=True) return _create_resnetv2('resnetv2_50d_evos', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def resnetv2_50d_frn(pretrained=False, **kwargs) -> ResNetV2: model_args = dict( layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=FilterResponseNormTlu2d, stem_type='deep', avg_down=True) return _create_resnetv2('resnetv2_50d_frn', pretrained=pretrained, **dict(model_args, **kwargs)) register_model_deprecations(__name__, { 'resnetv2_50x1_bitm': 'resnetv2_50x1_bit.goog_in21k_ft_in1k', 'resnetv2_50x3_bitm': 'resnetv2_50x3_bit.goog_in21k_ft_in1k', 'resnetv2_101x1_bitm': 'resnetv2_101x1_bit.goog_in21k_ft_in1k', 'resnetv2_101x3_bitm': 'resnetv2_101x3_bit.goog_in21k_ft_in1k', 'resnetv2_152x2_bitm': 'resnetv2_152x2_bit.goog_in21k_ft_in1k', 'resnetv2_152x4_bitm': 'resnetv2_152x4_bit.goog_in21k_ft_in1k', 'resnetv2_50x1_bitm_in21k': 'resnetv2_50x1_bit.goog_in21k', 'resnetv2_50x3_bitm_in21k': 'resnetv2_50x3_bit.goog_in21k', 'resnetv2_101x1_bitm_in21k': 'resnetv2_101x1_bit.goog_in21k', 'resnetv2_101x3_bitm_in21k': 'resnetv2_101x3_bit.goog_in21k', 'resnetv2_152x2_bitm_in21k': 'resnetv2_152x2_bit.goog_in21k', 'resnetv2_152x4_bitm_in21k': 'resnetv2_152x4_bit.goog_in21k', 'resnetv2_50x1_bit_distilled': 'resnetv2_50x1_bit.goog_distilled_in1k', 'resnetv2_152x2_bit_teacher': 'resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k', 'resnetv2_152x2_bit_teacher_384': 'resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384', })
pytorch-image-models/timm/models/resnetv2.py/0
{ "file_path": "pytorch-image-models/timm/models/resnetv2.py", "repo_id": "pytorch-image-models", "token_count": 14715 }
203
""" Hybrid Vision Transformer (ViT) in PyTorch A PyTorch implement of the Hybrid Vision Transformers as described in: 'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' - https://arxiv.org/abs/2010.11929 `How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers` - https://arxiv.org/abs/2106.10270 NOTE These hybrid model definitions depend on code in vision_transformer.py. They were moved here to keep file sizes sane. Hacked together by / Copyright 2020, Ross Wightman """ import math from functools import partial from typing import Dict, List, Optional, Tuple, Type, Union import torch import torch.nn as nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import StdConv2dSame, StdConv2d, ConvNormAct, to_2tuple, to_ntuple, HybridEmbed from ._builder import build_model_with_cfg from ._registry import generate_default_cfgs, register_model, register_model_deprecations from .resnet import resnet26d, resnet50d from .resnetv2 import ResNetV2, create_resnetv2_stem from .vision_transformer import VisionTransformer class ConvStem(nn.Sequential): def __init__( self, in_chans: int = 3, depth: int = 3, channels: Union[int, Tuple[int, ...]] = 64, kernel_size: Union[int, Tuple[int, ...]] = 3, stride: Union[int, Tuple[int, ...]] = (2, 2, 2), padding: Union[str, int, Tuple[int, ...]] = "", norm_layer: Type[nn.Module] = nn.BatchNorm2d, act_layer: Type[nn.Module] = nn.ReLU, ): super().__init__() if isinstance(channels, int): # a default tiered channel strategy channels = tuple([channels // 2**i for i in range(depth)][::-1]) kernel_size = to_ntuple(depth)(kernel_size) padding = to_ntuple(depth)(padding) assert depth == len(stride) == len(kernel_size) == len(channels) in_chs = in_chans for i in range(len(channels)): last_conv = i == len(channels) - 1 self.add_module(f'{i}', ConvNormAct( in_chs, channels[i], kernel_size=kernel_size[i], stride=stride[i], padding=padding[i], bias=last_conv, apply_norm=not last_conv, apply_act=not last_conv, norm_layer=norm_layer, act_layer=act_layer, )) in_chs = channels[i] def _resnetv2(layers=(3, 4, 9), **kwargs): """ ResNet-V2 backbone helper""" padding_same = kwargs.get('padding_same', True) stem_type = 'same' if padding_same else '' conv_layer = partial(StdConv2dSame, eps=1e-8) if padding_same else partial(StdConv2d, eps=1e-8) if len(layers): backbone = ResNetV2( layers=layers, num_classes=0, global_pool='', in_chans=kwargs.get('in_chans', 3), preact=False, stem_type=stem_type, conv_layer=conv_layer) else: backbone = create_resnetv2_stem( kwargs.get('in_chans', 3), stem_type=stem_type, preact=False, conv_layer=conv_layer) return backbone def _convert_mobileclip(state_dict, model, prefix='image_encoder.model.'): out = {} for k, v in state_dict.items(): if not k.startswith(prefix): continue k = k.replace(prefix, '') k = k.replace('patch_emb.', 'patch_embed.backbone.') k = k.replace('block.conv', 'conv') k = k.replace('block.norm', 'bn') k = k.replace('post_transformer_norm.', 'norm.') k = k.replace('pre_norm_mha.0', 'norm1') k = k.replace('pre_norm_mha.1', 'attn') k = k.replace('pre_norm_ffn.0', 'norm2') k = k.replace('pre_norm_ffn.1', 'mlp.fc1') k = k.replace('pre_norm_ffn.4', 'mlp.fc2') k = k.replace('qkv_proj.', 'qkv.') k = k.replace('out_proj.', 'proj.') k = k.replace('transformer.', 'blocks.') if k == 'pos_embed.pos_embed.pos_embed': k = 'pos_embed' v = v.squeeze(0) if 'classifier.proj' in k: bias_k = k.replace('classifier.proj', 'head.bias') k = k.replace('classifier.proj', 'head.weight') v = v.T out[bias_k] = torch.zeros(v.shape[0]) out[k] = v return out def checkpoint_filter_fn( state_dict: Dict[str, torch.Tensor], model: VisionTransformer, interpolation: str = 'bicubic', antialias: bool = True, ) -> Dict[str, torch.Tensor]: from .vision_transformer import checkpoint_filter_fn as _filter_fn if 'image_encoder.model.patch_emb.0.block.conv.weight' in state_dict: state_dict = _convert_mobileclip(state_dict, model) return _filter_fn(state_dict, model, interpolation=interpolation, antialias=antialias) def _create_vision_transformer_hybrid(variant, backbone, embed_args=None, pretrained=False, **kwargs): out_indices = kwargs.pop('out_indices', 3) embed_args = embed_args or {} embed_layer = partial(HybridEmbed, backbone=backbone, **embed_args) kwargs.setdefault('embed_layer', embed_layer) kwargs.setdefault('patch_size', 1) # default patch size for hybrid models if not set return build_model_with_cfg( VisionTransformer, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs, ) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), 'first_conv': 'patch_embed.backbone.stem.conv', 'classifier': 'head', **kwargs } default_cfgs = generate_default_cfgs({ # hybrid in-1k models (weights from official JAX impl where they exist) 'vit_tiny_r_s16_p8_224.augreg_in21k_ft_in1k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R_Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz', hf_hub_id='timm/', custom_load=True, first_conv='patch_embed.backbone.conv'), 'vit_tiny_r_s16_p8_384.augreg_in21k_ft_in1k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R_Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', hf_hub_id='timm/', first_conv='patch_embed.backbone.conv', input_size=(3, 384, 384), crop_pct=1.0, custom_load=True), 'vit_small_r26_s32_224.augreg_in21k_ft_in1k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R26_S_32-i21k-300ep-lr_0.001-aug_light0-wd_0.03-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.03-res_224.npz', hf_hub_id='timm/', custom_load=True, ), 'vit_small_r26_s32_384.augreg_in21k_ft_in1k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R26_S_32-i21k-300ep-lr_0.001-aug_medium2-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', hf_hub_id='timm/', input_size=(3, 384, 384), crop_pct=1.0, custom_load=True), 'vit_base_r26_s32_224.untrained': _cfg(), 'vit_base_r50_s16_384.orig_in21k_ft_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_384-9fd3c705.pth', hf_hub_id='timm/', input_size=(3, 384, 384), crop_pct=1.0), 'vit_large_r50_s32_224.augreg_in21k_ft_in1k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R50_L_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz', hf_hub_id='timm/', custom_load=True, ), 'vit_large_r50_s32_384.augreg_in21k_ft_in1k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R50_L_32-i21k-300ep-lr_0.001-aug_medium2-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz', hf_hub_id='timm/', input_size=(3, 384, 384), crop_pct=1.0, custom_load=True, ), # hybrid in-21k models (weights from official Google JAX impl where they exist) 'vit_tiny_r_s16_p8_224.augreg_in21k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R_Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0.npz', hf_hub_id='timm/', num_classes=21843, crop_pct=0.9, first_conv='patch_embed.backbone.conv', custom_load=True), 'vit_small_r26_s32_224.augreg_in21k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R26_S_32-i21k-300ep-lr_0.001-aug_medium2-wd_0.03-do_0.0-sd_0.0.npz', hf_hub_id='timm/', num_classes=21843, crop_pct=0.9, custom_load=True), 'vit_base_r50_s16_224.orig_in21k': _cfg( #url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_224_in21k-6f7c7740.pth', hf_hub_id='timm/', num_classes=0, crop_pct=0.9), 'vit_large_r50_s32_224.augreg_in21k': _cfg( url='https://storage.googleapis.com/vit_models/augreg/R50_L_32-i21k-300ep-lr_0.001-aug_medium2-wd_0.1-do_0.0-sd_0.0.npz', hf_hub_id='timm/', num_classes=21843, crop_pct=0.9, custom_load=True), # hybrid models (using timm resnet backbones) 'vit_small_resnet26d_224.untrained': _cfg( mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, first_conv='patch_embed.backbone.conv1.0'), 'vit_small_resnet50d_s16_224.untrained': _cfg( mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, first_conv='patch_embed.backbone.conv1.0'), 'vit_base_resnet26d_224.untrained': _cfg( mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, first_conv='patch_embed.backbone.conv1.0'), 'vit_base_resnet50d_224.untrained': _cfg( mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, first_conv='patch_embed.backbone.conv1.0'), 'vit_base_mci_224.apple_mclip_lt': _cfg( hf_hub_id='apple/mobileclip_b_lt_timm', url='https://docs-assets.developer.apple.com/ml-research/datasets/mobileclip/mobileclip_blt.pt', num_classes=512, mean=(0., 0., 0.), std=(1., 1., 1.), first_conv='patch_embed.backbone.0.conv', ), 'vit_base_mci_224.apple_mclip': _cfg( hf_hub_id='apple/mobileclip_b_timm', url='https://docs-assets.developer.apple.com/ml-research/datasets/mobileclip/mobileclip_b.pt', num_classes=512, mean=(0., 0., 0.), std=(1., 1., 1.), first_conv='patch_embed.backbone.0.conv', ), }) @register_model def vit_tiny_r_s16_p8_224(pretrained=False, **kwargs) -> VisionTransformer: """ R+ViT-Ti/S16 w/ 8x8 patch hybrid @ 224 x 224. """ backbone = _resnetv2(layers=(), **kwargs) model_args = dict(patch_size=8, embed_dim=192, depth=12, num_heads=3) model = _create_vision_transformer_hybrid( 'vit_tiny_r_s16_p8_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_tiny_r_s16_p8_384(pretrained=False, **kwargs) -> VisionTransformer: """ R+ViT-Ti/S16 w/ 8x8 patch hybrid @ 384 x 384. """ backbone = _resnetv2(layers=(), **kwargs) model_args = dict(patch_size=8, embed_dim=192, depth=12, num_heads=3) model = _create_vision_transformer_hybrid( 'vit_tiny_r_s16_p8_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_small_r26_s32_224(pretrained=False, **kwargs) -> VisionTransformer: """ R26+ViT-S/S32 hybrid. """ backbone = _resnetv2((2, 2, 2, 2), **kwargs) model_args = dict(embed_dim=384, depth=12, num_heads=6) model = _create_vision_transformer_hybrid( 'vit_small_r26_s32_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_small_r26_s32_384(pretrained=False, **kwargs) -> VisionTransformer: """ R26+ViT-S/S32 hybrid. """ backbone = _resnetv2((2, 2, 2, 2), **kwargs) model_args = dict(embed_dim=384, depth=12, num_heads=6) model = _create_vision_transformer_hybrid( 'vit_small_r26_s32_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_base_r26_s32_224(pretrained=False, **kwargs) -> VisionTransformer: """ R26+ViT-B/S32 hybrid. """ backbone = _resnetv2((2, 2, 2, 2), **kwargs) model_args = dict(embed_dim=768, depth=12, num_heads=12) model = _create_vision_transformer_hybrid( 'vit_base_r26_s32_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_base_r50_s16_224(pretrained=False, **kwargs) -> VisionTransformer: """ R50+ViT-B/S16 hybrid from original paper (https://arxiv.org/abs/2010.11929). """ backbone = _resnetv2((3, 4, 9), **kwargs) model_args = dict(embed_dim=768, depth=12, num_heads=12) model = _create_vision_transformer_hybrid( 'vit_base_r50_s16_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_base_r50_s16_384(pretrained=False, **kwargs) -> VisionTransformer: """ R50+ViT-B/16 hybrid from original paper (https://arxiv.org/abs/2010.11929). ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. """ backbone = _resnetv2((3, 4, 9), **kwargs) model_args = dict(embed_dim=768, depth=12, num_heads=12) model = _create_vision_transformer_hybrid( 'vit_base_r50_s16_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_large_r50_s32_224(pretrained=False, **kwargs) -> VisionTransformer: """ R50+ViT-L/S32 hybrid. """ backbone = _resnetv2((3, 4, 6, 3), **kwargs) model_args = dict(embed_dim=1024, depth=24, num_heads=16) model = _create_vision_transformer_hybrid( 'vit_large_r50_s32_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_large_r50_s32_384(pretrained=False, **kwargs) -> VisionTransformer: """ R50+ViT-L/S32 hybrid. """ backbone = _resnetv2((3, 4, 6, 3), **kwargs) model_args = dict(embed_dim=1024, depth=24, num_heads=16) model = _create_vision_transformer_hybrid( 'vit_large_r50_s32_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_small_resnet26d_224(pretrained=False, **kwargs) -> VisionTransformer: """ Custom ViT small hybrid w/ ResNet26D stride 32. No pretrained weights. """ backbone = resnet26d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[4]) model_args = dict(embed_dim=768, depth=8, num_heads=8, mlp_ratio=3) model = _create_vision_transformer_hybrid( 'vit_small_resnet26d_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_small_resnet50d_s16_224(pretrained=False, **kwargs) -> VisionTransformer: """ Custom ViT small hybrid w/ ResNet50D 3-stages, stride 16. No pretrained weights. """ backbone = resnet50d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[3]) model_args = dict(embed_dim=768, depth=8, num_heads=8, mlp_ratio=3) model = _create_vision_transformer_hybrid( 'vit_small_resnet50d_s16_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_base_resnet26d_224(pretrained=False, **kwargs) -> VisionTransformer: """ Custom ViT base hybrid w/ ResNet26D stride 32. No pretrained weights. """ backbone = resnet26d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[4]) model_args = dict(embed_dim=768, depth=12, num_heads=12) model = _create_vision_transformer_hybrid( 'vit_base_resnet26d_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_base_resnet50d_224(pretrained=False, **kwargs) -> VisionTransformer: """ Custom ViT base hybrid w/ ResNet50D stride 32. No pretrained weights. """ backbone = resnet50d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[4]) model_args = dict(embed_dim=768, depth=12, num_heads=12) model = _create_vision_transformer_hybrid( 'vit_base_resnet50d_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def vit_base_mci_224(pretrained=False, **kwargs) -> VisionTransformer: """ Custom ViT base hybrid w/ ResNet50D stride 32. No pretrained weights. """ backbone = ConvStem( channels=(768//4, 768//4, 768), stride=(4, 2, 2), kernel_size=(4, 2, 2), padding=0, in_chans=kwargs.get('in_chans', 3), act_layer=nn.GELU, ) model_args = dict(embed_dim=768, depth=12, num_heads=12, no_embed_class=True) model = _create_vision_transformer_hybrid( 'vit_base_mci_224', backbone=backbone, embed_args=dict(proj=False), pretrained=pretrained, **dict(model_args, **kwargs) ) return model register_model_deprecations(__name__, { 'vit_tiny_r_s16_p8_224_in21k': 'vit_tiny_r_s16_p8_224.augreg_in21k', 'vit_small_r26_s32_224_in21k': 'vit_small_r26_s32_224.augreg_in21k', 'vit_base_r50_s16_224_in21k': 'vit_base_r50_s16_224.orig_in21k', 'vit_base_resnet50_224_in21k': 'vit_base_r50_s16_224.orig_in21k', 'vit_large_r50_s32_224_in21k': 'vit_large_r50_s32_224.augreg_in21k', 'vit_base_resnet50_384': 'vit_base_r50_s16_384.orig_in21k_ft_in1k' })
pytorch-image-models/timm/models/vision_transformer_hybrid.py/0
{ "file_path": "pytorch-image-models/timm/models/vision_transformer_hybrid.py", "repo_id": "pytorch-image-models", "token_count": 8273 }
204
""" PyTorch Lamb optimizer w/ behaviour similar to NVIDIA FusedLamb This optimizer code was adapted from the following (starting with latest) * https://github.com/HabanaAI/Model-References/blob/2b435114fe8e31f159b1d3063b8280ae37af7423/PyTorch/nlp/bert/pretraining/lamb.py * https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/Transformer-XL/pytorch/lamb.py * https://github.com/cybertronai/pytorch-lamb Use FusedLamb if you can (GPU). The reason for including this variant of Lamb is to have a version that is similar in behaviour to APEX FusedLamb if you aren't using NVIDIA GPUs or cannot install/use APEX. In addition to some cleanup, this Lamb impl has been modified to support PyTorch XLA and has been tested on TPU. Original copyrights for above sources are below. Modifications Copyright 2021 Ross Wightman """ # Copyright (c) 2021, Habana Labs Ltd. All rights reserved. # Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # MIT License # # Copyright (c) 2019 cybertronai # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import math import torch from torch.optim import Optimizer class Lamb(Optimizer): """Implements a pure pytorch variant of FuseLAMB (NvLamb variant) optimizer from apex.optimizers.FusedLAMB reference: https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/Transformer-XL/pytorch/lamb.py LAMB was proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its norm. (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability. (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) grad_averaging (bool, optional): whether apply (1-beta2) to grad when calculating running averages of gradient. (default: True) max_grad_norm (float, optional): value used to clip global grad norm (default: 1.0) trust_clip (bool): enable LAMBC trust ratio clipping (default: False) always_adapt (boolean, optional): Apply adaptive learning rate to 0.0 weight decay parameter (default: False) .. _Large Batch Optimization for Deep Learning - Training BERT in 76 minutes: https://arxiv.org/abs/1904.00962 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__( self, params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-6, weight_decay=0.01, grad_averaging=True, max_grad_norm=1.0, trust_clip=False, always_adapt=False): defaults = dict( lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay, grad_averaging=grad_averaging, max_grad_norm=max_grad_norm, trust_clip=trust_clip, always_adapt=always_adapt) super().__init__(params, defaults) @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() device = self.param_groups[0]['params'][0].device one_tensor = torch.tensor(1.0, device=device) # because torch.where doesn't handle scalars correctly global_grad_norm = torch.zeros(1, device=device) for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad if grad.is_sparse: raise RuntimeError('Lamb does not support sparse gradients, consider SparseAdam instad.') global_grad_norm.add_(grad.pow(2).sum()) global_grad_norm = torch.sqrt(global_grad_norm) # FIXME it'd be nice to remove explicit tensor conversion of scalars when torch.where promotes # scalar types properly https://github.com/pytorch/pytorch/issues/9190 max_grad_norm = torch.tensor(self.defaults['max_grad_norm'], device=device) clip_global_grad_norm = torch.where( global_grad_norm > max_grad_norm, global_grad_norm / max_grad_norm, one_tensor) for group in self.param_groups: bias_correction = 1 if group['bias_correction'] else 0 beta1, beta2 = group['betas'] grad_averaging = 1 if group['grad_averaging'] else 0 beta3 = 1 - beta1 if grad_averaging else 1.0 # assume same step across group now to simplify things # per parameter step can be easily support by making it tensor, or pass list into kernel if 'step' in group: group['step'] += 1 else: group['step'] = 1 if bias_correction: bias_correction1 = 1 - beta1 ** group['step'] bias_correction2 = 1 - beta2 ** group['step'] else: bias_correction1, bias_correction2 = 1.0, 1.0 for p in group['params']: if p.grad is None: continue grad = p.grad.div_(clip_global_grad_norm) state = self.state[p] # State initialization if len(state) == 0: # Exponential moving average of gradient valuesa state['exp_avg'] = torch.zeros_like(p) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(grad, alpha=beta3) # m_t exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) # v_t denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) update = (exp_avg / bias_correction1).div_(denom) weight_decay = group['weight_decay'] if weight_decay != 0: update.add_(p, alpha=weight_decay) if weight_decay != 0 or group['always_adapt']: # Layer-wise LR adaptation. By default, skip adaptation on parameters that are # excluded from weight decay, unless always_adapt == True, then always enabled. w_norm = p.norm(2.0) g_norm = update.norm(2.0) # FIXME nested where required since logical and/or not working in PT XLA trust_ratio = torch.where( w_norm > 0, torch.where(g_norm > 0, w_norm / g_norm, one_tensor), one_tensor, ) if group['trust_clip']: # LAMBC trust clipping, upper bound fixed at one trust_ratio = torch.minimum(trust_ratio, one_tensor) update.mul_(trust_ratio) p.add_(update, alpha=-group['lr']) return loss
pytorch-image-models/timm/optim/lamb.py/0
{ "file_path": "pytorch-image-models/timm/optim/lamb.py", "repo_id": "pytorch-image-models", "token_count": 3768 }
205
""" Plateau Scheduler Adapts PyTorch plateau scheduler and allows application of noise, warmup. Hacked together by / Copyright 2020 Ross Wightman """ import torch from typing import List from .scheduler import Scheduler class PlateauLRScheduler(Scheduler): """Decay the LR by a factor every time the validation loss plateaus.""" def __init__( self, optimizer, decay_rate=0.1, patience_t=10, verbose=True, threshold=1e-4, cooldown_t=0, warmup_t=0, warmup_lr_init=0, lr_min=0, mode='max', noise_range_t=None, noise_type='normal', noise_pct=0.67, noise_std=1.0, noise_seed=None, initialize=True, ): super().__init__( optimizer, 'lr', noise_range_t=noise_range_t, noise_type=noise_type, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed, initialize=initialize, ) self.lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( self.optimizer, patience=patience_t, factor=decay_rate, verbose=verbose, threshold=threshold, cooldown=cooldown_t, mode=mode, min_lr=lr_min ) self.warmup_t = warmup_t self.warmup_lr_init = warmup_lr_init if self.warmup_t: self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values] super().update_groups(self.warmup_lr_init) else: self.warmup_steps = [1 for _ in self.base_values] self.restore_lr = None def state_dict(self): return { 'best': self.lr_scheduler.best, 'last_epoch': self.lr_scheduler.last_epoch, } def load_state_dict(self, state_dict): self.lr_scheduler.best = state_dict['best'] if 'last_epoch' in state_dict: self.lr_scheduler.last_epoch = state_dict['last_epoch'] # override the base class step fn completely def step(self, epoch, metric=None): if epoch <= self.warmup_t: lrs = [self.warmup_lr_init + epoch * s for s in self.warmup_steps] super().update_groups(lrs) else: if self.restore_lr is not None: # restore actual LR from before our last noise perturbation before stepping base for i, param_group in enumerate(self.optimizer.param_groups): param_group['lr'] = self.restore_lr[i] self.restore_lr = None self.lr_scheduler.step(metric, epoch) # step the base scheduler if self._is_apply_noise(epoch): self._apply_noise(epoch) def step_update(self, num_updates: int, metric: float = None): return None def _apply_noise(self, epoch): noise = self._calculate_noise(epoch) # apply the noise on top of previous LR, cache the old value so we can restore for normal # stepping of base scheduler restore_lr = [] for i, param_group in enumerate(self.optimizer.param_groups): old_lr = float(param_group['lr']) restore_lr.append(old_lr) new_lr = old_lr + old_lr * noise param_group['lr'] = new_lr self.restore_lr = restore_lr def _get_lr(self, t: int) -> List[float]: assert False, 'should not be called as step is overridden'
pytorch-image-models/timm/scheduler/plateau_lr.py/0
{ "file_path": "pytorch-image-models/timm/scheduler/plateau_lr.py", "repo_id": "pytorch-image-models", "token_count": 1807 }
206
""" Eval metrics and related Hacked together by / Copyright 2020 Ross Wightman """ class AverageMeter: """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" maxk = min(max(topk), output.size()[1]) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.reshape(1, -1).expand_as(pred)) return [correct[:min(k, maxk)].reshape(-1).float().sum(0) * 100. / batch_size for k in topk]
pytorch-image-models/timm/utils/metrics.py/0
{ "file_path": "pytorch-image-models/timm/utils/metrics.py", "repo_id": "pytorch-image-models", "token_count": 374 }
207
# All the tooling for CUDA FROM nvidia/cuda:12.4.1-cudnn-devel-ubuntu22.04 AS cuda-builder WORKDIR /usr/src/tgi/backends/trtllm RUN apt update && apt install -y cmake git git-lfs gcc g++ ninja-build libopenmpi-dev python3-dev python3-pip wget COPY . /usr/src/tgi RUN chmod +x scripts/install_tensorrt.sh && scripts/install_tensorrt.sh RUN cmake -G Ninja -B build -DTRT_LIB_DIR=/usr/local/tensorrt/lib -DTRT_INCLUDE_DIR=/usr/local/tensorrt/include . RUN cmake --build build --parallel -t tgi_trtllm_backend_impl # All the tooling for Rust FROM lukemathwalker/cargo-chef:latest-rust-1.79 AS chef WORKDIR /usr/src # Include CUDA related libraries and tools to the Rust based image COPY --from=cuda-builder /usr/local/cuda /usr/local/cuda COPY --from=cuda-builder /usr/local/tensorrt /usr/local/tensorrt COPY --from=cuda-builder /usr/src/tgi/backends/trtllm/build /usr/local/tgi/trtllm/build ENV PATH=/usr/local/cuda/bin:$PATH ENV LD_LIBRARY_PATH=/usr/local/tensorrt/lib:$LD_LIBRARY_PATH RUN apt update && apt install -y cmake git gcc g++ ninja-build libopenmpi3
text-generation-inference/Dockerfile.trtllm/0
{ "file_path": "text-generation-inference/Dockerfile.trtllm", "repo_id": "text-generation-inference", "token_count": 432 }
208
// // Created by mfuntowicz on 7/11/24. // #ifndef TGI_TRTLLM_BACKEND_FFI_H #define TGI_TRTLLM_BACKEND_FFI_H #include <cstddef> #include "backend.h" namespace huggingface::tgi::backends { class TensorRtLlmBackendImpl; } #include "backends/trtllm/src/lib.rs.h" namespace huggingface::tgi::backends { // struct GenerationContext; class TensorRtLlmBackendImpl : public TensorRtLlmBackend { public: /*** * * @param engineFolder * @param executorWorker */ TensorRtLlmBackendImpl(const std::string_view &engineFolder, const std::string_view &executorWorker); /*** * * @return */ bool IsReady() const; /*** * * @param tokens * @param topK * @param topP * @param temperature * @param repetition_penalty * @param frequency_penalty * @param seed * @return */ [[nodiscard("returned request id should be used to refer to the request's generation result later on")]] uint64_t Submit(rust::Slice<const uint32_t> tokens, int32_t topK, float_t topP, float_t temperature, float_t repetition_penalty, float_t frequency_penalty, uint64_t seed); /*** * * @param requestId * @param ctx * @param callback * @return */ size_t StreamTokens( const RequestId requestId, huggingface::tgi::backends::GenerationContext *ctx, rust::Fn<void(huggingface::tgi::backends::GenerationContext *, huggingface::tgi::backends::GenerationStep)> callback); }; /*** * * @param engineFolder * @return */ std::unique_ptr<TensorRtLlmBackendImpl> CreateTensorRtLlmBackend(rust::Str engineFolder, rust::Str executorWorker); } #endif //TGI_TRTLLM_BACKEND_FFI_H
text-generation-inference/backends/trtllm/include/ffi.h/0
{ "file_path": "text-generation-inference/backends/trtllm/include/ffi.h", "repo_id": "text-generation-inference", "token_count": 946 }
209
//! Text Generation gRPC client library use async_trait::async_trait; use thiserror::Error; use tonic::transport; use tonic::Status; #[allow(clippy::derive_partial_eq_without_eq)] mod pb; mod grpc_client; mod sharded_client; pub use grpc_client::Client; pub use pb::generate::v3::{ input_chunk::Chunk, Batch, CachedBatch, FinishReason, GeneratedText, Generation, GrammarType, HealthResponse, Image, InfoResponse, Input, InputChunk, NextTokenChooserParameters, Request, StoppingCriteriaParameters, }; pub use sharded_client::ShardedClient; #[async_trait] pub trait Health { /// Check if a generate server is healthy by asking it to allocate a tensor on device async fn device_health(&self) -> Result<()>; /// Check if a generate server is healthy by doing a forward pass. /// EXPENSIVE async fn model_health(&self) -> Result<()>; } #[derive(Debug)] pub struct ShardInfo { pub requires_padding: bool, pub dtype: String, pub device_type: String, pub window_size: Option<u32>, pub speculate: u32, } #[derive(Error, Debug, Clone)] pub enum ClientError { #[error("Could not connect to Text Generation server: {0}")] Connection(String), #[error("Server error: {0}")] Generation(String), #[error("Sharded results are empty")] EmptyResults, } impl From<Status> for ClientError { fn from(err: Status) -> Self { let err = Self::Generation(err.message().to_string()); tracing::error!("{err}"); err } } impl From<transport::Error> for ClientError { fn from(err: transport::Error) -> Self { let err = Self::Connection(err.to_string()); tracing::error!("{err}"); err } } // Small convenience re-wrapping of `Chunk`. impl From<Chunk> for InputChunk { fn from(chunk: Chunk) -> Self { InputChunk { chunk: Some(chunk) } } } static WARMUP_IMAGE_BASE64 :&str = "iVBORw0KGgoAAAANSUhEUgAAABQAAAAUCAIAAAAC64paAAABg2lDQ1BJQ0MgcHJvZmlsZQAAKJF9kT1Iw0AcxV/TSotUROxQxCFDdbKLijjWKhShQqgVWnUwufQLmrQkKS6OgmvBwY/FqoOLs64OroIg+AHi7OCk6CIl/i8ptIjx4Lgf7+497t4BQqvKNDOQADTdMjKppJjLr4rBVwQQwhAERGVm1uckKQ3P8XUPH1/v4jzL+9yfY0AtmAzwicQJVjcs4g3imU2rznmfOMLKskp8Tjxh0AWJH7muuPzGueSwwDMjRjYzTxwhFks9rPQwKxsa8TRxTNV0yhdyLquctzhr1Qbr3JO/MFzQV5a5TnMUKSxiCRJEKGiggiosxGnVSTGRof2kh3/E8UvkUshVASPHAmrQIDt+8D/43a1ZnJp0k8JJoO/Ftj/GgOAu0G7a9vexbbdPAP8zcKV3/bUWMPtJerOrxY6AwW3g4rqrKXvA5Q4QfarLhuxIfppCsQi8n9E35YHhW6B/ze2ts4/TByBLXaVvgINDYLxE2ese7w719vbvmU5/PycecohsjayNAAAACXBIWXMAAC4jAAAuIwF4pT92AAAAB3RJTUUH6AQIEQMnlTSSjwAAABl0RVh0Q29tbWVudABDcmVhdGVkIHdpdGggR0lNUFeBDhcAAAASSURBVDjLY2AYBaNgFIyCoQsABMQAAeRw1DoAAAAASUVORK5CYII="; pub type Result<T> = std::result::Result<T, ClientError>;
text-generation-inference/backends/v3/src/client/mod.rs/0
{ "file_path": "text-generation-inference/backends/v3/src/client/mod.rs", "repo_id": "text-generation-inference", "token_count": 1283 }
210
unit-tests: python -m pytest --cov=text_generation tests install: pip install pip --upgrade pip install -e .
text-generation-inference/clients/python/Makefile/0
{ "file_path": "text-generation-inference/clients/python/Makefile", "repo_id": "text-generation-inference", "token_count": 41 }
211
{ "openapi": "3.0.3", "info": { "title": "Text Generation Inference", "description": "Text Generation Webserver", "contact": { "name": "Olivier Dehaene" }, "license": { "name": "Apache 2.0", "url": "https://www.apache.org/licenses/LICENSE-2.0" }, "version": "2.2.1-dev0" }, "paths": { "/": { "post": { "tags": [ "Text Generation Inference" ], "summary": "Generate tokens if `stream == false` or a stream of token if `stream == true`", "operationId": "compat_generate", "requestBody": { "content": { "application/json": { "schema": { "$ref": "#/components/schemas/CompatGenerateRequest" } } }, "required": true }, "responses": { "200": { "description": "Generated Text", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/GenerateResponse" } }, "text/event-stream": { "schema": { "$ref": "#/components/schemas/StreamResponse" } } } }, "422": { "description": "Input validation error", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/ErrorResponse" }, "example": { "error": "Input validation error" } } } }, "424": { "description": "Generation Error", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/ErrorResponse" }, "example": { "error": "Request failed during generation" } } } }, "429": { "description": "Model is overloaded", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/ErrorResponse" }, "example": { "error": "Model is overloaded" } } } }, "500": { "description": "Incomplete generation", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/ErrorResponse" }, "example": { "error": "Incomplete generation" } } } } } } }, "/generate": { "post": { "tags": [ "Text Generation Inference" ], "summary": "Generate tokens", "operationId": "generate", "requestBody": { "content": { "application/json": { "schema": { "$ref": "#/components/schemas/GenerateRequest" } } }, "required": true }, "responses": { "200": { "description": "Generated Text", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/GenerateResponse" } } } }, "422": { "description": "Input validation error", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/ErrorResponse" }, "example": { "error": "Input validation error" } } } }, "424": { "description": "Generation Error", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/ErrorResponse" }, "example": { "error": "Request failed during generation" } } } }, "429": { "description": "Model is overloaded", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/ErrorResponse" }, "example": { "error": "Model is overloaded" } } } }, "500": { "description": "Incomplete generation", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/ErrorResponse" }, "example": { "error": "Incomplete generation" } } } } } } }, "/generate_stream": { "post": { "tags": [ "Text Generation Inference" ], "summary": "Generate a stream of token using Server-Sent Events", "operationId": "generate_stream", "requestBody": { "content": { "application/json": { "schema": { "$ref": "#/components/schemas/GenerateRequest" } } }, "required": true }, "responses": { "200": { "description": "Generated Text", "content": { "text/event-stream": { "schema": { "$ref": "#/components/schemas/StreamResponse" } } } }, "422": { "description": "Input validation error", "content": { "text/event-stream": { "schema": { "$ref": "#/components/schemas/ErrorResponse" }, "example": { "error": "Input validation error" } } } }, "424": { "description": "Generation Error", "content": { "text/event-stream": { "schema": { "$ref": "#/components/schemas/ErrorResponse" }, "example": { "error": "Request failed during generation" } } } }, "429": { "description": "Model is overloaded", "content": { "text/event-stream": { "schema": { "$ref": "#/components/schemas/ErrorResponse" }, "example": { "error": "Model is overloaded" } } } }, "500": { "description": "Incomplete generation", "content": { "text/event-stream": { "schema": { "$ref": "#/components/schemas/ErrorResponse" }, "example": { "error": "Incomplete generation" } } } } } } }, "/health": { "get": { "tags": [ "Text Generation Inference" ], "summary": "Health check method", "operationId": "health", "responses": { "200": { "description": "Everything is working fine" }, "503": { "description": "Text generation inference is down", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/ErrorResponse" }, "example": { "error": "unhealthy", "error_type": "healthcheck" } } } } } } }, "/info": { "get": { "tags": [ "Text Generation Inference" ], "summary": "Text Generation Inference endpoint info", "operationId": "get_model_info", "responses": { "200": { "description": "Served model info", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/Info" } } } } } } }, "/metrics": { "get": { "tags": [ "Text Generation Inference" ], "summary": "Prometheus metrics scrape endpoint", "operationId": "metrics", "responses": { "200": { "description": "Prometheus Metrics", "content": { "text/plain": { "schema": { "type": "string" } } } } } } }, "/tokenize": { "post": { "tags": [ "Text Generation Inference" ], "summary": "Tokenize inputs", "operationId": "tokenize", "requestBody": { "content": { "application/json": { "schema": { "$ref": "#/components/schemas/GenerateRequest" } } }, "required": true }, "responses": { "200": { "description": "Tokenized ids", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/TokenizeResponse" } } } }, "404": { "description": "No tokenizer found", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/ErrorResponse" }, "example": { "error": "No fast tokenizer available" } } } } } } }, "/v1/chat/completions": { "post": { "tags": [ "Text Generation Inference" ], "summary": "Generate tokens", "operationId": "chat_completions", "requestBody": { "content": { "application/json": { "schema": { "$ref": "#/components/schemas/ChatRequest" } } }, "required": true }, "responses": { "200": { "description": "Generated Chat Completion", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/ChatCompletion" } }, "text/event-stream": { "schema": { "$ref": "#/components/schemas/ChatCompletionChunk" } } } }, "422": { "description": "Input validation error", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/ErrorResponse" }, "example": { "error": "Input validation error" } } } }, "424": { "description": "Generation Error", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/ErrorResponse" }, "example": { "error": "Request failed during generation" } } } }, "429": { "description": "Model is overloaded", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/ErrorResponse" }, "example": { "error": "Model is overloaded" } } } }, "500": { "description": "Incomplete generation", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/ErrorResponse" }, "example": { "error": "Incomplete generation" } } } } } } }, "/v1/completions": { "post": { "tags": [ "Text Generation Inference" ], "summary": "Generate tokens", "operationId": "completions", "requestBody": { "content": { "application/json": { "schema": { "$ref": "#/components/schemas/CompletionRequest" } } }, "required": true }, "responses": { "200": { "description": "Generated Chat Completion", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/CompletionFinal" } }, "text/event-stream": { "schema": { "$ref": "#/components/schemas/Chunk" } } } }, "422": { "description": "Input validation error", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/ErrorResponse" }, "example": { "error": "Input validation error" } } } }, "424": { "description": "Generation Error", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/ErrorResponse" }, "example": { "error": "Request failed during generation" } } } }, "429": { "description": "Model is overloaded", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/ErrorResponse" }, "example": { "error": "Model is overloaded" } } } }, "500": { "description": "Incomplete generation", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/ErrorResponse" }, "example": { "error": "Incomplete generation" } } } } } } }, "/v1/models": { "get": { "tags": [ "Text Generation Inference" ], "summary": "Get model info", "operationId": "openai_get_model_info", "responses": { "200": { "description": "Served model info", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/ModelInfo" } } } }, "404": { "description": "Model not found", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/ErrorResponse" } } } } } } } }, "components": { "schemas": { "BestOfSequence": { "type": "object", "required": [ "generated_text", "finish_reason", "generated_tokens", "prefill", "tokens" ], "properties": { "finish_reason": { "$ref": "#/components/schemas/FinishReason" }, "generated_text": { "type": "string", "example": "test" }, "generated_tokens": { "type": "integer", "format": "int32", "example": 1, "minimum": 0 }, "prefill": { "type": "array", "items": { "$ref": "#/components/schemas/PrefillToken" } }, "seed": { "type": "integer", "format": "int64", "example": 42, "nullable": true, "minimum": 0 }, "tokens": { "type": "array", "items": { "$ref": "#/components/schemas/Token" } }, "top_tokens": { "type": "array", "items": { "type": "array", "items": { "$ref": "#/components/schemas/Token" } } } } }, "ChatCompletion": { "type": "object", "required": [ "id", "created", "model", "system_fingerprint", "choices", "usage" ], "properties": { "choices": { "type": "array", "items": { "$ref": "#/components/schemas/ChatCompletionComplete" } }, "created": { "type": "integer", "format": "int64", "example": "1706270835", "minimum": 0 }, "id": { "type": "string" }, "model": { "type": "string", "example": "mistralai/Mistral-7B-Instruct-v0.2" }, "system_fingerprint": { "type": "string" }, "usage": { "$ref": "#/components/schemas/Usage" } } }, "ChatCompletionChoice": { "type": "object", "required": [ "index", "delta" ], "properties": { "delta": { "$ref": "#/components/schemas/ChatCompletionDelta" }, "finish_reason": { "type": "string", "nullable": true }, "index": { "type": "integer", "format": "int32", "minimum": 0 }, "logprobs": { "allOf": [ { "$ref": "#/components/schemas/ChatCompletionLogprobs" } ], "nullable": true } } }, "ChatCompletionChunk": { "type": "object", "required": [ "id", "created", "model", "system_fingerprint", "choices" ], "properties": { "choices": { "type": "array", "items": { "$ref": "#/components/schemas/ChatCompletionChoice" } }, "created": { "type": "integer", "format": "int64", "example": "1706270978", "minimum": 0 }, "id": { "type": "string" }, "model": { "type": "string", "example": "mistralai/Mistral-7B-Instruct-v0.2" }, "system_fingerprint": { "type": "string" } } }, "ChatCompletionComplete": { "type": "object", "required": [ "index", "message", "finish_reason" ], "properties": { "finish_reason": { "type": "string" }, "index": { "type": "integer", "format": "int32", "minimum": 0 }, "logprobs": { "allOf": [ { "$ref": "#/components/schemas/ChatCompletionLogprobs" } ], "nullable": true }, "message": { "$ref": "#/components/schemas/OutputMessage" } } }, "ChatCompletionDelta": { "oneOf": [ { "$ref": "#/components/schemas/TextMessage" }, { "$ref": "#/components/schemas/ToolCallDelta" } ] }, "ChatCompletionLogprob": { "type": "object", "required": [ "token", "logprob", "top_logprobs" ], "properties": { "logprob": { "type": "number", "format": "float" }, "token": { "type": "string" }, "top_logprobs": { "type": "array", "items": { "$ref": "#/components/schemas/ChatCompletionTopLogprob" } } } }, "ChatCompletionLogprobs": { "type": "object", "required": [ "content" ], "properties": { "content": { "type": "array", "items": { "$ref": "#/components/schemas/ChatCompletionLogprob" } } } }, "ChatCompletionTopLogprob": { "type": "object", "required": [ "token", "logprob" ], "properties": { "logprob": { "type": "number", "format": "float" }, "token": { "type": "string" } } }, "ChatRequest": { "type": "object", "required": [ "messages" ], "properties": { "frequency_penalty": { "type": "number", "format": "float", "description": "Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,\ndecreasing the model's likelihood to repeat the same line verbatim.", "example": "1.0", "nullable": true }, "guideline": { "type": "string", "description": "A guideline to be used in the chat_template", "default": "null", "example": "null", "nullable": true }, "logit_bias": { "type": "array", "items": { "type": "number", "format": "float" }, "description": "UNUSED\nModify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens\n(specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,\nthe bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,\nbut values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should\nresult in a ban or exclusive selection of the relevant token.", "nullable": true }, "logprobs": { "type": "boolean", "description": "Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each\noutput token returned in the content of message.", "example": "false", "nullable": true }, "max_tokens": { "type": "integer", "format": "int32", "description": "The maximum number of tokens that can be generated in the chat completion.", "example": "32", "nullable": true, "minimum": 0 }, "messages": { "type": "array", "items": { "$ref": "#/components/schemas/Message" }, "description": "A list of messages comprising the conversation so far.", "example": "[{\"role\": \"user\", \"content\": \"What is Deep Learning?\"}]" }, "model": { "type": "string", "description": "[UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.", "example": "mistralai/Mistral-7B-Instruct-v0.2", "nullable": true }, "n": { "type": "integer", "format": "int32", "description": "UNUSED\nHow many chat completion choices to generate for each input message. Note that you will be charged based on the\nnumber of generated tokens across all of the choices. Keep n as 1 to minimize costs.", "example": "2", "nullable": true, "minimum": 0 }, "presence_penalty": { "type": "number", "format": "float", "description": "Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,\nincreasing the model's likelihood to talk about new topics", "example": 0.1, "nullable": true }, "response_format": { "allOf": [ { "$ref": "#/components/schemas/GrammarType" } ], "default": "null", "nullable": true }, "seed": { "type": "integer", "format": "int64", "example": 42, "nullable": true, "minimum": 0 }, "stop": { "type": "array", "items": { "type": "string" }, "description": "Up to 4 sequences where the API will stop generating further tokens.", "example": "null", "nullable": true }, "stream": { "type": "boolean" }, "temperature": { "type": "number", "format": "float", "description": "What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while\nlower values like 0.2 will make it more focused and deterministic.\n\nWe generally recommend altering this or `top_p` but not both.", "example": 1.0, "nullable": true }, "tool_choice": { "allOf": [ { "$ref": "#/components/schemas/ToolChoice" } ], "nullable": true }, "tool_prompt": { "type": "string", "description": "A prompt to be appended before the tools", "example": "Given the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables.", "nullable": true }, "tools": { "type": "array", "items": { "$ref": "#/components/schemas/Tool" }, "description": "A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of\nfunctions the model may generate JSON inputs for.", "example": "null", "nullable": true }, "top_logprobs": { "type": "integer", "format": "int32", "description": "An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with\nan associated log probability. logprobs must be set to true if this parameter is used.", "example": "5", "nullable": true, "minimum": 0 }, "top_p": { "type": "number", "format": "float", "description": "An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the\ntokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.", "example": 0.95, "nullable": true } } }, "Chunk": { "type": "object", "required": [ "id", "created", "choices", "model", "system_fingerprint" ], "properties": { "choices": { "type": "array", "items": { "$ref": "#/components/schemas/CompletionComplete" } }, "created": { "type": "integer", "format": "int64", "minimum": 0 }, "id": { "type": "string" }, "model": { "type": "string" }, "system_fingerprint": { "type": "string" } } }, "CompatGenerateRequest": { "type": "object", "required": [ "inputs" ], "properties": { "inputs": { "type": "string", "example": "My name is Olivier and I" }, "parameters": { "$ref": "#/components/schemas/GenerateParameters" }, "stream": { "type": "boolean", "default": "false" } } }, "Completion": { "oneOf": [ { "allOf": [ { "$ref": "#/components/schemas/Chunk" }, { "type": "object", "required": [ "object" ], "properties": { "object": { "type": "string", "enum": [ "text_completion" ] } } } ] }, { "allOf": [ { "$ref": "#/components/schemas/CompletionFinal" }, { "type": "object", "required": [ "object" ], "properties": { "object": { "type": "string", "enum": [ "text_completion" ] } } } ] } ], "discriminator": { "propertyName": "object" } }, "CompletionComplete": { "type": "object", "required": [ "index", "text", "finish_reason" ], "properties": { "finish_reason": { "type": "string" }, "index": { "type": "integer", "format": "int32", "minimum": 0 }, "logprobs": { "type": "array", "items": { "type": "number", "format": "float" }, "nullable": true }, "text": { "type": "string" } } }, "CompletionFinal": { "type": "object", "required": [ "id", "created", "model", "system_fingerprint", "choices", "usage" ], "properties": { "choices": { "type": "array", "items": { "$ref": "#/components/schemas/CompletionComplete" } }, "created": { "type": "integer", "format": "int64", "example": "1706270835", "minimum": 0 }, "id": { "type": "string" }, "model": { "type": "string", "example": "mistralai/Mistral-7B-Instruct-v0.2" }, "system_fingerprint": { "type": "string" }, "usage": { "$ref": "#/components/schemas/Usage" } } }, "CompletionRequest": { "type": "object", "required": [ "prompt" ], "properties": { "frequency_penalty": { "type": "number", "format": "float", "description": "Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,\ndecreasing the model's likelihood to repeat the same line verbatim.", "example": "1.0", "nullable": true }, "max_tokens": { "type": "integer", "format": "int32", "description": "The maximum number of tokens that can be generated in the chat completion.", "default": "32", "nullable": true, "minimum": 0 }, "model": { "type": "string", "description": "UNUSED\nID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.", "example": "mistralai/Mistral-7B-Instruct-v0.2", "nullable": true }, "prompt": { "$ref": "#/components/schemas/Prompt" }, "repetition_penalty": { "type": "number", "format": "float", "nullable": true }, "seed": { "type": "integer", "format": "int64", "example": 42, "nullable": true, "minimum": 0 }, "stop": { "type": "array", "items": { "type": "string" }, "description": "Up to 4 sequences where the API will stop generating further tokens.", "example": "null", "nullable": true }, "stream": { "type": "boolean" }, "suffix": { "type": "string", "description": "The text to append to the prompt. This is useful for completing sentences or generating a paragraph of text.\nplease see the completion_template field in the model's tokenizer_config.json file for completion template.", "nullable": true }, "temperature": { "type": "number", "format": "float", "description": "What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while\nlower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both.", "example": 1.0, "nullable": true }, "top_p": { "type": "number", "format": "float", "description": "An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the\ntokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.", "example": 0.95, "nullable": true } } }, "DeltaToolCall": { "type": "object", "required": [ "index", "id", "type", "function" ], "properties": { "function": { "$ref": "#/components/schemas/Function" }, "id": { "type": "string" }, "index": { "type": "integer", "format": "int32", "minimum": 0 }, "type": { "type": "string" } } }, "Details": { "type": "object", "required": [ "finish_reason", "generated_tokens", "prefill", "tokens" ], "properties": { "best_of_sequences": { "type": "array", "items": { "$ref": "#/components/schemas/BestOfSequence" }, "nullable": true }, "finish_reason": { "$ref": "#/components/schemas/FinishReason" }, "generated_tokens": { "type": "integer", "format": "int32", "example": 1, "minimum": 0 }, "prefill": { "type": "array", "items": { "$ref": "#/components/schemas/PrefillToken" } }, "seed": { "type": "integer", "format": "int64", "example": 42, "nullable": true, "minimum": 0 }, "tokens": { "type": "array", "items": { "$ref": "#/components/schemas/Token" } }, "top_tokens": { "type": "array", "items": { "type": "array", "items": { "$ref": "#/components/schemas/Token" } } } } }, "ErrorResponse": { "type": "object", "required": [ "error", "error_type" ], "properties": { "error": { "type": "string" }, "error_type": { "type": "string" } } }, "FinishReason": { "type": "string", "enum": [ "length", "eos_token", "stop_sequence" ], "example": "Length" }, "Function": { "type": "object", "required": [ "arguments" ], "properties": { "arguments": { "type": "string" }, "name": { "type": "string", "nullable": true } } }, "FunctionDefinition": { "type": "object", "required": [ "name", "arguments" ], "properties": { "arguments": {}, "description": { "type": "string", "nullable": true }, "name": { "type": "string" } } }, "FunctionName": { "type": "object", "required": [ "name" ], "properties": { "name": { "type": "string" } } }, "GenerateParameters": { "type": "object", "properties": { "adapter_id": { "type": "string", "description": "Lora adapter id", "default": "null", "example": "null", "nullable": true }, "best_of": { "type": "integer", "description": "Generate best_of sequences and return the one if the highest token logprobs.", "default": "null", "example": 1, "nullable": true, "minimum": 0, "exclusiveMinimum": 0 }, "decoder_input_details": { "type": "boolean", "description": "Whether to return decoder input token logprobs and ids.", "default": "false" }, "details": { "type": "boolean", "description": "Whether to return generation details.", "default": "true" }, "do_sample": { "type": "boolean", "description": "Activate logits sampling.", "default": "false", "example": true }, "frequency_penalty": { "type": "number", "format": "float", "description": "The parameter for frequency penalty. 1.0 means no penalty\nPenalize new tokens based on their existing frequency in the text so far,\ndecreasing the model's likelihood to repeat the same line verbatim.", "default": "null", "example": 0.1, "nullable": true, "exclusiveMinimum": -2 }, "grammar": { "allOf": [ { "$ref": "#/components/schemas/GrammarType" } ], "default": "null", "nullable": true }, "max_new_tokens": { "type": "integer", "format": "int32", "description": "Maximum number of tokens to generate.", "default": "100", "example": "20", "nullable": true, "minimum": 0 }, "repetition_penalty": { "type": "number", "format": "float", "description": "The parameter for repetition penalty. 1.0 means no penalty.\nSee [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.", "default": "null", "example": 1.03, "nullable": true, "exclusiveMinimum": 0 }, "return_full_text": { "type": "boolean", "description": "Whether to prepend the prompt to the generated text", "default": "null", "example": false, "nullable": true }, "seed": { "type": "integer", "format": "int64", "description": "Random sampling seed.", "default": "null", "example": "null", "nullable": true, "minimum": 0, "exclusiveMinimum": 0 }, "stop": { "type": "array", "items": { "type": "string" }, "description": "Stop generating tokens if a member of `stop` is generated.", "example": [ "photographer" ], "maxItems": 4 }, "temperature": { "type": "number", "format": "float", "description": "The value used to module the logits distribution.", "default": "null", "example": 0.5, "nullable": true, "exclusiveMinimum": 0 }, "top_k": { "type": "integer", "format": "int32", "description": "The number of highest probability vocabulary tokens to keep for top-k-filtering.", "default": "null", "example": 10, "nullable": true, "exclusiveMinimum": 0 }, "top_n_tokens": { "type": "integer", "format": "int32", "description": "The number of highest probability vocabulary tokens to keep for top-n-filtering.", "default": "null", "example": 5, "nullable": true, "minimum": 0, "exclusiveMinimum": 0 }, "top_p": { "type": "number", "format": "float", "description": "Top-p value for nucleus sampling.", "default": "null", "example": 0.95, "nullable": true, "maximum": 1, "exclusiveMinimum": 0 }, "truncate": { "type": "integer", "description": "Truncate inputs tokens to the given size.", "default": "null", "example": "null", "nullable": true, "minimum": 0 }, "typical_p": { "type": "number", "format": "float", "description": "Typical Decoding mass\nSee [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information.", "default": "null", "example": 0.95, "nullable": true, "maximum": 1, "exclusiveMinimum": 0 }, "watermark": { "type": "boolean", "description": "Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226).", "default": "false", "example": true } } }, "GenerateRequest": { "type": "object", "required": [ "inputs" ], "properties": { "inputs": { "type": "string", "example": "My name is Olivier and I" }, "parameters": { "$ref": "#/components/schemas/GenerateParameters" } } }, "GenerateResponse": { "type": "object", "required": [ "generated_text" ], "properties": { "details": { "allOf": [ { "$ref": "#/components/schemas/Details" } ], "nullable": true }, "generated_text": { "type": "string", "example": "test" } } }, "GrammarType": { "oneOf": [ { "type": "object", "required": [ "type", "value" ], "properties": { "type": { "type": "string", "enum": [ "json" ] }, "value": { "description": "A string that represents a [JSON Schema](https://json-schema.org/).\n\nJSON Schema is a declarative language that allows to annotate JSON documents\nwith types and descriptions." } } }, { "type": "object", "required": [ "type", "value" ], "properties": { "type": { "type": "string", "enum": [ "regex" ] }, "value": { "type": "string" } } } ], "discriminator": { "propertyName": "type" } }, "Info": { "type": "object", "required": [ "model_id", "max_concurrent_requests", "max_best_of", "max_stop_sequences", "max_input_tokens", "max_total_tokens", "validation_workers", "max_client_batch_size", "router", "version" ], "properties": { "docker_label": { "type": "string", "example": "null", "nullable": true }, "max_best_of": { "type": "integer", "example": "2", "minimum": 0 }, "max_client_batch_size": { "type": "integer", "example": "32", "minimum": 0 }, "max_concurrent_requests": { "type": "integer", "description": "Router Parameters", "example": "128", "minimum": 0 }, "max_input_tokens": { "type": "integer", "example": "1024", "minimum": 0 }, "max_stop_sequences": { "type": "integer", "example": "4", "minimum": 0 }, "max_total_tokens": { "type": "integer", "example": "2048", "minimum": 0 }, "model_id": { "type": "string", "description": "Model info", "example": "bigscience/blomm-560m" }, "model_pipeline_tag": { "type": "string", "example": "text-generation", "nullable": true }, "model_sha": { "type": "string", "example": "e985a63cdc139290c5f700ff1929f0b5942cced2", "nullable": true }, "router": { "type": "string", "description": "Router Info", "example": "text-generation-router" }, "sha": { "type": "string", "example": "null", "nullable": true }, "validation_workers": { "type": "integer", "example": "2", "minimum": 0 }, "version": { "type": "string", "example": "0.5.0" } } }, "Message": { "type": "object", "required": [ "role", "content" ], "properties": { "content": { "$ref": "#/components/schemas/MessageContent" }, "name": { "type": "string", "example": "\"David\"", "nullable": true }, "role": { "type": "string", "example": "user" } } }, "MessageChunk": { "oneOf": [ { "type": "object", "required": [ "text", "type" ], "properties": { "text": { "type": "string" }, "type": { "type": "string", "enum": [ "text" ] } } }, { "type": "object", "required": [ "image_url", "type" ], "properties": { "image_url": { "$ref": "#/components/schemas/Url" }, "type": { "type": "string", "enum": [ "image_url" ] } } } ], "discriminator": { "propertyName": "type" } }, "MessageContent": { "oneOf": [ { "type": "string" }, { "type": "array", "items": { "$ref": "#/components/schemas/MessageChunk" } } ] }, "ModelInfo": { "type": "object", "required": [ "id", "object", "created", "owned_by" ], "properties": { "created": { "type": "integer", "format": "int64", "example": 1686935002, "minimum": 0 }, "id": { "type": "string", "example": "gpt2" }, "object": { "type": "string", "example": "model" }, "owned_by": { "type": "string", "example": "openai" } } }, "OutputMessage": { "oneOf": [ { "$ref": "#/components/schemas/TextMessage" }, { "$ref": "#/components/schemas/ToolCallMessage" } ] }, "PrefillToken": { "type": "object", "required": [ "id", "text", "logprob" ], "properties": { "id": { "type": "integer", "format": "int32", "example": 0, "minimum": 0 }, "logprob": { "type": "number", "format": "float", "example": -0.34, "nullable": true }, "text": { "type": "string", "example": "test" } } }, "Prompt": { "type": "array", "items": { "type": "string" } }, "SimpleToken": { "type": "object", "required": [ "id", "text", "start", "stop" ], "properties": { "id": { "type": "integer", "format": "int32", "example": 0, "minimum": 0 }, "start": { "type": "integer", "example": 0, "minimum": 0 }, "stop": { "type": "integer", "example": 2, "minimum": 0 }, "text": { "type": "string", "example": "test" } } }, "StreamDetails": { "type": "object", "required": [ "finish_reason", "generated_tokens", "input_length" ], "properties": { "finish_reason": { "$ref": "#/components/schemas/FinishReason" }, "generated_tokens": { "type": "integer", "format": "int32", "example": 1, "minimum": 0 }, "input_length": { "type": "integer", "format": "int32", "example": 1, "minimum": 0 }, "seed": { "type": "integer", "format": "int64", "example": 42, "nullable": true, "minimum": 0 } } }, "StreamResponse": { "type": "object", "required": [ "index", "token" ], "properties": { "details": { "allOf": [ { "$ref": "#/components/schemas/StreamDetails" } ], "default": "null", "nullable": true }, "generated_text": { "type": "string", "default": "null", "example": "test", "nullable": true }, "index": { "type": "integer", "format": "int32", "minimum": 0 }, "token": { "$ref": "#/components/schemas/Token" }, "top_tokens": { "type": "array", "items": { "$ref": "#/components/schemas/Token" } } } }, "TextMessage": { "type": "object", "required": [ "role", "content" ], "properties": { "content": { "type": "string", "example": "My name is David and I" }, "role": { "type": "string", "example": "user" } } }, "Token": { "type": "object", "required": [ "id", "text", "logprob", "special" ], "properties": { "id": { "type": "integer", "format": "int32", "example": 0, "minimum": 0 }, "logprob": { "type": "number", "format": "float", "example": -0.34, "nullable": true }, "special": { "type": "boolean", "example": "false" }, "text": { "type": "string", "example": "test" } } }, "TokenizeResponse": { "type": "array", "items": { "$ref": "#/components/schemas/SimpleToken" } }, "Tool": { "type": "object", "required": [ "type", "function" ], "properties": { "function": { "$ref": "#/components/schemas/FunctionDefinition" }, "type": { "type": "string", "example": "function" } } }, "ToolCall": { "type": "object", "required": [ "id", "type", "function" ], "properties": { "function": { "$ref": "#/components/schemas/FunctionDefinition" }, "id": { "type": "string" }, "type": { "type": "string" } } }, "ToolCallDelta": { "type": "object", "required": [ "role", "tool_calls" ], "properties": { "role": { "type": "string", "example": "assistant" }, "tool_calls": { "$ref": "#/components/schemas/DeltaToolCall" } } }, "ToolCallMessage": { "type": "object", "required": [ "role", "tool_calls" ], "properties": { "role": { "type": "string", "example": "assistant" }, "tool_calls": { "type": "array", "items": { "$ref": "#/components/schemas/ToolCall" } } } }, "ToolChoice": { "allOf": [ { "$ref": "#/components/schemas/ToolType" } ], "nullable": true }, "ToolType": { "oneOf": [ { "type": "object", "default": null, "nullable": true }, { "type": "string" }, { "type": "object", "required": [ "function" ], "properties": { "function": { "$ref": "#/components/schemas/FunctionName" } } }, { "type": "object", "default": null, "nullable": true } ] }, "Url": { "type": "object", "required": [ "url" ], "properties": { "url": { "type": "string" } } }, "Usage": { "type": "object", "required": [ "prompt_tokens", "completion_tokens", "total_tokens" ], "properties": { "completion_tokens": { "type": "integer", "format": "int32", "minimum": 0 }, "prompt_tokens": { "type": "integer", "format": "int32", "minimum": 0 }, "total_tokens": { "type": "integer", "format": "int32", "minimum": 0 } } } } }, "tags": [ { "name": "Text Generation Inference", "description": "Hugging Face Text Generation Inference API" } ] }
text-generation-inference/docs/openapi.json/0
{ "file_path": "text-generation-inference/docs/openapi.json", "repo_id": "text-generation-inference", "token_count": 34879 }
212
{ "choices": [ { "finish_reason": "length", "index": 0, "logprobs": null, "text": " PR for flake8" } ], "created": 1713284454, "id": "", "model": "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "object": "text_completion", "system_fingerprint": "2.0.1-native", "usage": { "completion_tokens": 5, "prompt_tokens": 6, "total_tokens": 11 } }
text-generation-inference/integration-tests/models/__snapshots__/test_completion_prompts/test_flash_llama_completion_single_prompt.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_completion_prompts/test_flash_llama_completion_single_prompt.json", "repo_id": "text-generation-inference", "token_count": 203 }
213
[ { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [ { "id": 1, "logprob": null, "text": "<s>" }, { "id": 1247, "logprob": -5.2421875, "text": "User" }, { "id": 28747, "logprob": -6.9570312, "text": ":" }, { "id": 32000, "logprob": -16.234375, "text": "<fake_token_around_image>" }, { "id": 32001, "logprob": -18.96875, "text": "<image>" }, { "id": 32001, "logprob": -18.1875, "text": "<image>" }, { "id": 32001, "logprob": -19.46875, "text": "<image>" }, { "id": 32001, "logprob": -17.578125, "text": "<image>" }, { "id": 32001, "logprob": -16.8125, "text": "<image>" }, { "id": 32001, "logprob": -19.296875, "text": "<image>" }, { "id": 32001, "logprob": -20.21875, "text": "<image>" }, { "id": 32001, "logprob": -16.421875, "text": "<image>" }, { "id": 32001, "logprob": -19.84375, "text": "<image>" }, { "id": 32001, "logprob": -23.265625, "text": "<image>" }, { "id": 32001, "logprob": -19.421875, "text": "<image>" }, { "id": 32001, "logprob": -15.28125, "text": "<image>" }, { "id": 32001, "logprob": -17.734375, "text": "<image>" }, { "id": 32001, "logprob": -20.34375, "text": "<image>" }, { "id": 32001, "logprob": -21.3125, "text": "<image>" }, { "id": 32001, "logprob": -21.03125, "text": "<image>" }, { "id": 32001, "logprob": -20.421875, "text": "<image>" }, { "id": 32001, "logprob": -16.03125, "text": "<image>" }, { "id": 32001, "logprob": -19.046875, "text": "<image>" }, { "id": 32001, "logprob": -22.765625, "text": "<image>" }, { "id": 32001, "logprob": -23.609375, "text": "<image>" }, { "id": 32001, "logprob": -20.421875, "text": "<image>" }, { "id": 32001, "logprob": -20.4375, "text": "<image>" }, { "id": 32001, "logprob": -20.875, "text": "<image>" }, { "id": 32001, "logprob": -16.5, "text": "<image>" }, { "id": 32001, "logprob": -19.96875, "text": "<image>" }, { "id": 32001, "logprob": -18.234375, "text": "<image>" }, { "id": 32001, "logprob": -23.59375, "text": "<image>" }, { "id": 32001, "logprob": -21.1875, "text": "<image>" }, { "id": 32001, "logprob": -17.359375, "text": "<image>" }, { "id": 32001, "logprob": -16.53125, "text": "<image>" }, { "id": 32001, "logprob": -19.03125, "text": "<image>" }, { "id": 32001, "logprob": -21.78125, "text": "<image>" }, { "id": 32001, "logprob": -19.328125, "text": "<image>" }, { "id": 32001, "logprob": -17.96875, "text": "<image>" }, { "id": 32001, "logprob": -18.875, "text": "<image>" }, { "id": 32001, "logprob": -17.921875, "text": "<image>" }, { "id": 32001, "logprob": -19.1875, "text": "<image>" }, { "id": 32001, "logprob": -18.65625, "text": "<image>" }, { "id": 32001, "logprob": -20.140625, "text": "<image>" }, { "id": 32001, "logprob": -19.4375, "text": "<image>" }, { "id": 32001, "logprob": -14.8828125, "text": "<image>" }, { "id": 32001, "logprob": -18.453125, "text": "<image>" }, { "id": 32001, "logprob": -23.203125, "text": "<image>" }, { "id": 32001, "logprob": -17.421875, "text": "<image>" }, { "id": 32001, "logprob": -23.671875, "text": "<image>" }, { "id": 32001, "logprob": -23.0, "text": "<image>" }, { "id": 32001, "logprob": -19.75, "text": "<image>" }, { "id": 32001, "logprob": -17.078125, "text": "<image>" }, { "id": 32001, "logprob": -17.640625, "text": "<image>" }, { "id": 32001, "logprob": -17.046875, "text": "<image>" }, { "id": 32001, "logprob": -18.40625, "text": "<image>" }, { "id": 32001, "logprob": -20.578125, "text": "<image>" }, { "id": 32001, "logprob": -18.328125, "text": "<image>" }, { "id": 32001, "logprob": -17.125, "text": "<image>" }, { "id": 32001, "logprob": -18.65625, "text": "<image>" }, { "id": 32001, "logprob": -18.890625, "text": "<image>" }, { "id": 32001, "logprob": -15.9921875, "text": "<image>" }, { "id": 32001, "logprob": -18.15625, "text": "<image>" }, { "id": 32001, "logprob": -18.84375, "text": "<image>" }, { "id": 32001, "logprob": -20.15625, "text": "<image>" }, { "id": 32001, "logprob": -18.96875, "text": "<image>" }, { "id": 32001, "logprob": -18.703125, "text": "<image>" }, { "id": 32001, "logprob": -17.921875, "text": "<image>" }, { "id": 32000, "logprob": -3.015625, "text": "<fake_token_around_image>" }, { "id": 32001, "logprob": -22.09375, "text": "<image>" }, { "id": 32001, "logprob": -18.96875, "text": "<image>" }, { "id": 32001, "logprob": -20.140625, "text": "<image>" }, { "id": 32001, "logprob": -17.125, "text": "<image>" }, { "id": 32001, "logprob": -17.796875, "text": "<image>" }, { "id": 32001, "logprob": -19.3125, "text": "<image>" }, { "id": 32001, "logprob": -19.65625, "text": "<image>" }, { "id": 32001, "logprob": -16.3125, "text": "<image>" }, { "id": 32001, "logprob": -19.375, "text": "<image>" }, { "id": 32001, "logprob": -20.046875, "text": "<image>" }, { "id": 32001, "logprob": -20.828125, "text": "<image>" }, { "id": 32001, "logprob": -15.8125, "text": "<image>" }, { "id": 32001, "logprob": -16.25, "text": "<image>" }, { "id": 32001, "logprob": -19.953125, "text": "<image>" }, { "id": 32001, "logprob": -18.875, "text": "<image>" }, { "id": 32001, "logprob": -21.59375, "text": "<image>" }, { "id": 32001, "logprob": -20.515625, "text": "<image>" }, { "id": 32001, "logprob": -19.171875, "text": "<image>" }, { "id": 32001, "logprob": -19.296875, "text": "<image>" }, { "id": 32001, "logprob": -16.703125, "text": "<image>" }, { "id": 32001, "logprob": -20.46875, "text": "<image>" }, { "id": 32001, "logprob": -21.125, "text": "<image>" }, { "id": 32001, "logprob": -20.40625, "text": "<image>" }, { "id": 32001, "logprob": -20.71875, "text": "<image>" }, { "id": 32001, "logprob": -17.78125, "text": "<image>" }, { "id": 32001, "logprob": -20.328125, "text": "<image>" }, { "id": 32001, "logprob": -15.2734375, "text": "<image>" }, { "id": 32001, "logprob": -18.84375, "text": "<image>" }, { "id": 32001, "logprob": -17.875, "text": "<image>" }, { "id": 32001, "logprob": -15.578125, "text": "<image>" }, { "id": 32001, "logprob": -18.3125, "text": "<image>" }, { "id": 32001, "logprob": -20.625, "text": "<image>" }, { "id": 32001, "logprob": -20.140625, "text": "<image>" }, { "id": 32001, "logprob": -18.34375, "text": "<image>" }, { "id": 32001, "logprob": -17.796875, "text": "<image>" }, { "id": 32001, "logprob": -17.046875, "text": "<image>" }, { "id": 32001, "logprob": -16.5625, "text": "<image>" }, { "id": 32001, "logprob": -20.859375, "text": "<image>" }, { "id": 32001, "logprob": -18.140625, "text": "<image>" }, { "id": 32001, "logprob": -19.625, "text": "<image>" }, { "id": 32001, "logprob": -19.546875, "text": "<image>" }, { "id": 32001, "logprob": -14.1953125, "text": "<image>" }, { "id": 32001, "logprob": -18.90625, "text": "<image>" }, { "id": 32001, "logprob": -18.171875, "text": "<image>" }, { "id": 32001, "logprob": -17.421875, "text": "<image>" }, { "id": 32001, "logprob": -20.421875, "text": "<image>" }, { "id": 32001, "logprob": -20.0, "text": "<image>" }, { "id": 32001, "logprob": -20.359375, "text": "<image>" }, { "id": 32001, "logprob": -18.03125, "text": "<image>" }, { "id": 32001, "logprob": -17.203125, "text": "<image>" }, { "id": 32001, "logprob": -16.84375, "text": "<image>" }, { "id": 32001, "logprob": -18.09375, "text": "<image>" }, { "id": 32001, "logprob": -15.71875, "text": "<image>" }, { "id": 32001, "logprob": -18.1875, "text": "<image>" }, { "id": 32001, "logprob": -18.4375, "text": "<image>" }, { "id": 32001, "logprob": -18.46875, "text": "<image>" }, { "id": 32001, "logprob": -17.3125, "text": "<image>" }, { "id": 32001, "logprob": -16.265625, "text": "<image>" }, { "id": 32001, "logprob": -19.4375, "text": "<image>" }, { "id": 32001, "logprob": -14.734375, "text": "<image>" }, { "id": 32001, "logprob": -20.6875, "text": "<image>" }, { "id": 32001, "logprob": -20.21875, "text": "<image>" }, { "id": 32001, "logprob": -18.359375, "text": "<image>" }, { "id": 32001, "logprob": -18.1875, "text": "<image>" }, { "id": 32000, "logprob": -3.2988281, "text": "<fake_token_around_image>" }, { "id": 32001, "logprob": -25.75, "text": "<image>" }, { "id": 32001, "logprob": -18.421875, "text": "<image>" }, { "id": 32001, "logprob": -19.265625, "text": "<image>" }, { "id": 32001, "logprob": -17.921875, "text": "<image>" }, { "id": 32001, "logprob": -17.203125, "text": "<image>" }, { "id": 32001, "logprob": -20.140625, "text": "<image>" }, { "id": 32001, "logprob": -17.96875, "text": "<image>" }, { "id": 32001, "logprob": -16.46875, "text": "<image>" }, { "id": 32001, "logprob": -19.65625, "text": "<image>" }, { "id": 32001, "logprob": -18.203125, "text": "<image>" }, { "id": 32001, "logprob": -16.921875, "text": "<image>" }, { "id": 32001, "logprob": -15.7421875, "text": "<image>" }, { "id": 32001, "logprob": -16.375, "text": "<image>" }, { "id": 32001, "logprob": -17.25, "text": "<image>" }, { "id": 32001, "logprob": -16.5625, "text": "<image>" }, { "id": 32001, "logprob": -18.828125, "text": "<image>" }, { "id": 32001, "logprob": -18.765625, "text": "<image>" }, { "id": 32001, "logprob": -16.90625, "text": "<image>" }, { "id": 32001, "logprob": -18.984375, "text": "<image>" }, { "id": 32001, "logprob": -19.765625, "text": "<image>" }, { "id": 32001, "logprob": -19.890625, "text": "<image>" }, { "id": 32001, "logprob": -20.421875, "text": "<image>" }, { "id": 32001, "logprob": -19.34375, "text": "<image>" }, { "id": 32001, "logprob": -20.140625, "text": "<image>" }, { "id": 32001, "logprob": -19.34375, "text": "<image>" }, { "id": 32001, "logprob": -19.875, "text": "<image>" }, { "id": 32001, "logprob": -19.015625, "text": "<image>" }, { "id": 32001, "logprob": -19.625, "text": "<image>" }, { "id": 32001, "logprob": -17.65625, "text": "<image>" }, { "id": 32001, "logprob": -16.984375, "text": "<image>" }, { "id": 32001, "logprob": -15.9453125, "text": "<image>" }, { "id": 32001, "logprob": -19.53125, "text": "<image>" }, { "id": 32001, "logprob": -20.078125, "text": "<image>" }, { "id": 32001, "logprob": -18.953125, "text": "<image>" }, { "id": 32001, "logprob": -15.4375, "text": "<image>" }, { "id": 32001, "logprob": -19.8125, "text": "<image>" }, { "id": 32001, "logprob": -15.4453125, "text": "<image>" }, { "id": 32001, "logprob": -20.6875, "text": "<image>" }, { "id": 32001, "logprob": -20.1875, "text": "<image>" }, { "id": 32001, "logprob": -19.03125, "text": "<image>" }, { "id": 32001, "logprob": -17.40625, "text": "<image>" }, { "id": 32001, "logprob": -15.984375, "text": "<image>" }, { "id": 32001, "logprob": -18.21875, "text": "<image>" }, { "id": 32001, "logprob": -19.71875, "text": "<image>" }, { "id": 32001, "logprob": -19.9375, "text": "<image>" }, { "id": 32001, "logprob": -20.421875, "text": "<image>" }, { "id": 32001, "logprob": -19.46875, "text": "<image>" }, { "id": 32001, "logprob": -18.921875, "text": "<image>" }, { "id": 32001, "logprob": -17.8125, "text": "<image>" }, { "id": 32001, "logprob": -18.90625, "text": "<image>" }, { "id": 32001, "logprob": -17.09375, "text": "<image>" }, { "id": 32001, "logprob": -16.234375, "text": "<image>" }, { "id": 32001, "logprob": -16.25, "text": "<image>" }, { "id": 32001, "logprob": -18.984375, "text": "<image>" }, { "id": 32001, "logprob": -19.578125, "text": "<image>" }, { "id": 32001, "logprob": -16.328125, "text": "<image>" }, { "id": 32001, "logprob": -17.703125, "text": "<image>" }, { "id": 32001, "logprob": -16.4375, "text": "<image>" }, { "id": 32001, "logprob": -19.359375, "text": "<image>" }, { "id": 32001, "logprob": -17.015625, "text": "<image>" }, { "id": 32001, "logprob": -17.03125, "text": "<image>" }, { "id": 32001, "logprob": -20.140625, "text": "<image>" }, { "id": 32001, "logprob": -18.5625, "text": "<image>" }, { "id": 32001, "logprob": -18.0, "text": "<image>" }, { "id": 32000, "logprob": -2.7207031, "text": "<fake_token_around_image>" }, { "id": 32001, "logprob": -23.34375, "text": "<image>" }, { "id": 32001, "logprob": -22.203125, "text": "<image>" }, { "id": 32001, "logprob": -21.015625, "text": "<image>" }, { "id": 32001, "logprob": -18.578125, "text": "<image>" }, { "id": 32001, "logprob": -18.1875, "text": "<image>" }, { "id": 32001, "logprob": -20.296875, "text": "<image>" }, { "id": 32001, "logprob": -18.5, "text": "<image>" }, { "id": 32001, "logprob": -16.46875, "text": "<image>" }, { "id": 32001, "logprob": -20.890625, "text": "<image>" }, { "id": 32001, "logprob": -19.390625, "text": "<image>" }, { "id": 32001, "logprob": -18.96875, "text": "<image>" }, { "id": 32001, "logprob": -16.0625, "text": "<image>" }, { "id": 32001, "logprob": -17.265625, "text": "<image>" }, { "id": 32001, "logprob": -18.53125, "text": "<image>" }, { "id": 32001, "logprob": -20.5, "text": "<image>" }, { "id": 32001, "logprob": -21.5, "text": "<image>" }, { "id": 32001, "logprob": -19.671875, "text": "<image>" }, { "id": 32001, "logprob": -18.765625, "text": "<image>" }, { "id": 32001, "logprob": -19.671875, "text": "<image>" }, { "id": 32001, "logprob": -19.203125, "text": "<image>" }, { "id": 32001, "logprob": -21.03125, "text": "<image>" }, { "id": 32001, "logprob": -21.34375, "text": "<image>" }, { "id": 32001, "logprob": -19.3125, "text": "<image>" }, { "id": 32001, "logprob": -20.609375, "text": "<image>" }, { "id": 32001, "logprob": -18.6875, "text": "<image>" }, { "id": 32001, "logprob": -19.921875, "text": "<image>" }, { "id": 32001, "logprob": -20.9375, "text": "<image>" }, { "id": 32001, "logprob": -19.46875, "text": "<image>" }, { "id": 32001, "logprob": -18.0, "text": "<image>" }, { "id": 32001, "logprob": -17.40625, "text": "<image>" }, { "id": 32001, "logprob": -18.640625, "text": "<image>" }, { "id": 32001, "logprob": -18.59375, "text": "<image>" }, { "id": 32001, "logprob": -20.25, "text": "<image>" }, { "id": 32001, "logprob": -19.828125, "text": "<image>" }, { "id": 32001, "logprob": -15.796875, "text": "<image>" }, { "id": 32001, "logprob": -18.765625, "text": "<image>" }, { "id": 32001, "logprob": -15.6640625, "text": "<image>" }, { "id": 32001, "logprob": -21.3125, "text": "<image>" }, { "id": 32001, "logprob": -19.796875, "text": "<image>" }, { "id": 32001, "logprob": -19.671875, "text": "<image>" }, { "id": 32001, "logprob": -18.640625, "text": "<image>" }, { "id": 32001, "logprob": -15.96875, "text": "<image>" }, { "id": 32001, "logprob": -20.1875, "text": "<image>" }, { "id": 32001, "logprob": -19.8125, "text": "<image>" }, { "id": 32001, "logprob": -20.921875, "text": "<image>" }, { "id": 32001, "logprob": -21.46875, "text": "<image>" }, { "id": 32001, "logprob": -21.25, "text": "<image>" }, { "id": 32001, "logprob": -19.09375, "text": "<image>" }, { "id": 32001, "logprob": -17.59375, "text": "<image>" }, { "id": 32001, "logprob": -19.375, "text": "<image>" }, { "id": 32001, "logprob": -17.09375, "text": "<image>" }, { "id": 32001, "logprob": -16.90625, "text": "<image>" }, { "id": 32001, "logprob": -18.875, "text": "<image>" }, { "id": 32001, "logprob": -20.171875, "text": "<image>" }, { "id": 32001, "logprob": -20.921875, "text": "<image>" }, { "id": 32001, "logprob": -16.453125, "text": "<image>" }, { "id": 32001, "logprob": -18.984375, "text": "<image>" }, { "id": 32001, "logprob": -16.4375, "text": "<image>" }, { "id": 32001, "logprob": -19.875, "text": "<image>" }, { "id": 32001, "logprob": -17.59375, "text": "<image>" }, { "id": 32001, "logprob": -17.171875, "text": "<image>" }, { "id": 32001, "logprob": -20.34375, "text": "<image>" }, { "id": 32001, "logprob": -19.171875, "text": "<image>" }, { "id": 32001, "logprob": -18.578125, "text": "<image>" }, { "id": 32000, "logprob": -3.0917969, "text": "<fake_token_around_image>" }, { "id": 32001, "logprob": -25.375, "text": "<image>" }, { "id": 32001, "logprob": -18.921875, "text": "<image>" }, { "id": 32001, "logprob": -20.6875, "text": "<image>" }, { "id": 32001, "logprob": -17.921875, "text": "<image>" }, { "id": 32001, "logprob": -18.75, "text": "<image>" }, { "id": 32001, "logprob": -18.71875, "text": "<image>" }, { "id": 32001, "logprob": -21.453125, "text": "<image>" }, { "id": 32001, "logprob": -16.734375, "text": "<image>" }, { "id": 32001, "logprob": -20.875, "text": "<image>" }, { "id": 32001, "logprob": -21.453125, "text": "<image>" }, { "id": 32001, "logprob": -15.796875, "text": "<image>" }, { "id": 32001, "logprob": -15.1328125, "text": "<image>" }, { "id": 32001, "logprob": -17.125, "text": "<image>" }, { "id": 32001, "logprob": -18.90625, "text": "<image>" }, { "id": 32001, "logprob": -21.421875, "text": "<image>" }, { "id": 32001, "logprob": -21.015625, "text": "<image>" }, { "id": 32001, "logprob": -20.734375, "text": "<image>" }, { "id": 32001, "logprob": -16.25, "text": "<image>" }, { "id": 32001, "logprob": -19.5, "text": "<image>" }, { "id": 32001, "logprob": -21.59375, "text": "<image>" }, { "id": 32001, "logprob": -22.515625, "text": "<image>" }, { "id": 32001, "logprob": -20.921875, "text": "<image>" }, { "id": 32001, "logprob": -19.703125, "text": "<image>" }, { "id": 32001, "logprob": -21.0, "text": "<image>" }, { "id": 32001, "logprob": -16.984375, "text": "<image>" }, { "id": 32001, "logprob": -17.53125, "text": "<image>" }, { "id": 32001, "logprob": -17.9375, "text": "<image>" }, { "id": 32001, "logprob": -22.1875, "text": "<image>" }, { "id": 32001, "logprob": -18.75, "text": "<image>" }, { "id": 32001, "logprob": -16.390625, "text": "<image>" }, { "id": 32001, "logprob": -18.421875, "text": "<image>" }, { "id": 32001, "logprob": -20.265625, "text": "<image>" }, { "id": 32001, "logprob": -22.296875, "text": "<image>" }, { "id": 32001, "logprob": -18.484375, "text": "<image>" }, { "id": 32001, "logprob": -15.3984375, "text": "<image>" }, { "id": 32001, "logprob": -19.75, "text": "<image>" }, { "id": 32001, "logprob": -14.6484375, "text": "<image>" }, { "id": 32001, "logprob": -21.609375, "text": "<image>" }, { "id": 32001, "logprob": -18.828125, "text": "<image>" }, { "id": 32001, "logprob": -20.84375, "text": "<image>" }, { "id": 32001, "logprob": -17.015625, "text": "<image>" }, { "id": 32001, "logprob": -16.40625, "text": "<image>" }, { "id": 32001, "logprob": -21.046875, "text": "<image>" }, { "id": 32001, "logprob": -21.234375, "text": "<image>" }, { "id": 32001, "logprob": -17.125, "text": "<image>" }, { "id": 32001, "logprob": -21.5, "text": "<image>" }, { "id": 32001, "logprob": -20.0, "text": "<image>" }, { "id": 32001, "logprob": -18.78125, "text": "<image>" }, { "id": 32001, "logprob": -16.375, "text": "<image>" }, { "id": 32001, "logprob": -16.875, "text": "<image>" }, { "id": 32001, "logprob": -16.703125, "text": "<image>" }, { "id": 32001, "logprob": -13.6171875, "text": "<image>" }, { "id": 32001, "logprob": -15.375, "text": "<image>" }, { "id": 32001, "logprob": -17.5, "text": "<image>" }, { "id": 32001, "logprob": -21.921875, "text": "<image>" }, { "id": 32001, "logprob": -15.640625, "text": "<image>" }, { "id": 32001, "logprob": -16.46875, "text": "<image>" }, { "id": 32001, "logprob": -16.421875, "text": "<image>" }, { "id": 32001, "logprob": -19.890625, "text": "<image>" }, { "id": 32001, "logprob": -17.890625, "text": "<image>" }, { "id": 32001, "logprob": -17.40625, "text": "<image>" }, { "id": 32001, "logprob": -20.390625, "text": "<image>" }, { "id": 32001, "logprob": -19.1875, "text": "<image>" }, { "id": 32001, "logprob": -15.9609375, "text": "<image>" }, { "id": 32000, "logprob": -2.0332031, "text": "<fake_token_around_image>" }, { "id": 12018, "logprob": -12.078125, "text": "Write" }, { "id": 528, "logprob": -10.09375, "text": "me" }, { "id": 264, "logprob": -0.103393555, "text": "a" }, { "id": 2485, "logprob": -4.5742188, "text": "short" }, { "id": 2838, "logprob": -0.23815918, "text": "story" }, { "id": 32002, "logprob": -10.9765625, "text": "<end_of_utterance>" }, { "id": 259, "logprob": -20.34375, "text": " " }, { "id": 13, "logprob": -8.53125, "text": "\n" }, { "id": 7226, "logprob": -10.4765625, "text": "Ass" }, { "id": 11143, "logprob": -13.6015625, "text": "istant" }, { "id": 28747, "logprob": -0.008514404, "text": ":" } ], "seed": null, "tokens": [ { "id": 330, "logprob": -0.09289551, "special": false, "text": " A" }, { "id": 13088, "logprob": -0.6743164, "special": false, "text": " chicken" }, { "id": 349, "logprob": -0.31396484, "special": false, "text": " is" }, { "id": 6398, "logprob": -0.051727295, "special": false, "text": " sitting" }, { "id": 356, "logprob": -0.34448242, "special": false, "text": " on" }, { "id": 264, "logprob": -0.1194458, "special": false, "text": " a" }, { "id": 17972, "logprob": -0.03237915, "special": false, "text": " pile" }, { "id": 302, "logprob": -0.00018751621, "special": false, "text": " of" }, { "id": 2445, "logprob": -0.07043457, "special": false, "text": " money" }, { "id": 28723, "logprob": -0.00422287, "special": false, "text": "." } ], "top_tokens": null }, "generated_text": " A chicken is sitting on a pile of money." }, { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [ { "id": 1, "logprob": null, "text": "<s>" }, { "id": 1247, "logprob": -5.2382812, "text": "User" }, { "id": 28747, "logprob": -6.9492188, "text": ":" }, { "id": 32000, "logprob": -16.234375, "text": "<fake_token_around_image>" }, { "id": 32001, "logprob": -18.984375, "text": "<image>" }, { "id": 32001, "logprob": -18.171875, "text": "<image>" }, { "id": 32001, "logprob": -19.46875, "text": "<image>" }, { "id": 32001, "logprob": -17.578125, "text": "<image>" }, { "id": 32001, "logprob": -16.8125, "text": "<image>" }, { "id": 32001, "logprob": -19.296875, "text": "<image>" }, { "id": 32001, "logprob": -20.21875, "text": "<image>" }, { "id": 32001, "logprob": -16.421875, "text": "<image>" }, { "id": 32001, "logprob": -19.84375, "text": "<image>" }, { "id": 32001, "logprob": -23.25, "text": "<image>" }, { "id": 32001, "logprob": -19.421875, "text": "<image>" }, { "id": 32001, "logprob": -15.28125, "text": "<image>" }, { "id": 32001, "logprob": -17.734375, "text": "<image>" }, { "id": 32001, "logprob": -20.34375, "text": "<image>" }, { "id": 32001, "logprob": -21.296875, "text": "<image>" }, { "id": 32001, "logprob": -21.03125, "text": "<image>" }, { "id": 32001, "logprob": -20.421875, "text": "<image>" }, { "id": 32001, "logprob": -16.03125, "text": "<image>" }, { "id": 32001, "logprob": -19.046875, "text": "<image>" }, { "id": 32001, "logprob": -22.765625, "text": "<image>" }, { "id": 32001, "logprob": -23.609375, "text": "<image>" }, { "id": 32001, "logprob": -20.421875, "text": "<image>" }, { "id": 32001, "logprob": -20.421875, "text": "<image>" }, { "id": 32001, "logprob": -20.875, "text": "<image>" }, { "id": 32001, "logprob": -16.5, "text": "<image>" }, { "id": 32001, "logprob": -19.96875, "text": "<image>" }, { "id": 32001, "logprob": -18.234375, "text": "<image>" }, { "id": 32001, "logprob": -23.59375, "text": "<image>" }, { "id": 32001, "logprob": -21.1875, "text": "<image>" }, { "id": 32001, "logprob": -17.359375, "text": "<image>" }, { "id": 32001, "logprob": -16.53125, "text": "<image>" }, { "id": 32001, "logprob": -19.03125, "text": "<image>" }, { "id": 32001, "logprob": -21.78125, "text": "<image>" }, { "id": 32001, "logprob": -19.328125, "text": "<image>" }, { "id": 32001, "logprob": -17.96875, "text": "<image>" }, { "id": 32001, "logprob": -18.859375, "text": "<image>" }, { "id": 32001, "logprob": -17.921875, "text": "<image>" }, { "id": 32001, "logprob": -19.1875, "text": "<image>" }, { "id": 32001, "logprob": -18.65625, "text": "<image>" }, { "id": 32001, "logprob": -20.140625, "text": "<image>" }, { "id": 32001, "logprob": -19.4375, "text": "<image>" }, { "id": 32001, "logprob": -14.8828125, "text": "<image>" }, { "id": 32001, "logprob": -18.453125, "text": "<image>" }, { "id": 32001, "logprob": -23.21875, "text": "<image>" }, { "id": 32001, "logprob": -17.421875, "text": "<image>" }, { "id": 32001, "logprob": -23.671875, "text": "<image>" }, { "id": 32001, "logprob": -23.0, "text": "<image>" }, { "id": 32001, "logprob": -19.75, "text": "<image>" }, { "id": 32001, "logprob": -17.078125, "text": "<image>" }, { "id": 32001, "logprob": -17.640625, "text": "<image>" }, { "id": 32001, "logprob": -17.046875, "text": "<image>" }, { "id": 32001, "logprob": -18.421875, "text": "<image>" }, { "id": 32001, "logprob": -20.578125, "text": "<image>" }, { "id": 32001, "logprob": -18.328125, "text": "<image>" }, { "id": 32001, "logprob": -17.125, "text": "<image>" }, { "id": 32001, "logprob": -18.65625, "text": "<image>" }, { "id": 32001, "logprob": -18.875, "text": "<image>" }, { "id": 32001, "logprob": -16.0, "text": "<image>" }, { "id": 32001, "logprob": -18.15625, "text": "<image>" }, { "id": 32001, "logprob": -18.84375, "text": "<image>" }, { "id": 32001, "logprob": -20.15625, "text": "<image>" }, { "id": 32001, "logprob": -18.96875, "text": "<image>" }, { "id": 32001, "logprob": -18.703125, "text": "<image>" }, { "id": 32001, "logprob": -17.921875, "text": "<image>" }, { "id": 32000, "logprob": -3.015625, "text": "<fake_token_around_image>" }, { "id": 32001, "logprob": -22.109375, "text": "<image>" }, { "id": 32001, "logprob": -18.96875, "text": "<image>" }, { "id": 32001, "logprob": -20.125, "text": "<image>" }, { "id": 32001, "logprob": -17.125, "text": "<image>" }, { "id": 32001, "logprob": -17.8125, "text": "<image>" }, { "id": 32001, "logprob": -19.3125, "text": "<image>" }, { "id": 32001, "logprob": -19.65625, "text": "<image>" }, { "id": 32001, "logprob": -16.3125, "text": "<image>" }, { "id": 32001, "logprob": -19.375, "text": "<image>" }, { "id": 32001, "logprob": -20.046875, "text": "<image>" }, { "id": 32001, "logprob": -20.828125, "text": "<image>" }, { "id": 32001, "logprob": -15.8046875, "text": "<image>" }, { "id": 32001, "logprob": -16.25, "text": "<image>" }, { "id": 32001, "logprob": -19.953125, "text": "<image>" }, { "id": 32001, "logprob": -18.875, "text": "<image>" }, { "id": 32001, "logprob": -21.59375, "text": "<image>" }, { "id": 32001, "logprob": -20.515625, "text": "<image>" }, { "id": 32001, "logprob": -19.171875, "text": "<image>" }, { "id": 32001, "logprob": -19.296875, "text": "<image>" }, { "id": 32001, "logprob": -16.71875, "text": "<image>" }, { "id": 32001, "logprob": -20.46875, "text": "<image>" }, { "id": 32001, "logprob": -21.125, "text": "<image>" }, { "id": 32001, "logprob": -20.40625, "text": "<image>" }, { "id": 32001, "logprob": -20.734375, "text": "<image>" }, { "id": 32001, "logprob": -17.765625, "text": "<image>" }, { "id": 32001, "logprob": -20.328125, "text": "<image>" }, { "id": 32001, "logprob": -15.2734375, "text": "<image>" }, { "id": 32001, "logprob": -18.84375, "text": "<image>" }, { "id": 32001, "logprob": -17.875, "text": "<image>" }, { "id": 32001, "logprob": -15.578125, "text": "<image>" }, { "id": 32001, "logprob": -18.3125, "text": "<image>" }, { "id": 32001, "logprob": -20.625, "text": "<image>" }, { "id": 32001, "logprob": -20.140625, "text": "<image>" }, { "id": 32001, "logprob": -18.34375, "text": "<image>" }, { "id": 32001, "logprob": -17.8125, "text": "<image>" }, { "id": 32001, "logprob": -17.046875, "text": "<image>" }, { "id": 32001, "logprob": -16.578125, "text": "<image>" }, { "id": 32001, "logprob": -20.859375, "text": "<image>" }, { "id": 32001, "logprob": -18.15625, "text": "<image>" }, { "id": 32001, "logprob": -19.625, "text": "<image>" }, { "id": 32001, "logprob": -19.546875, "text": "<image>" }, { "id": 32001, "logprob": -14.1953125, "text": "<image>" }, { "id": 32001, "logprob": -18.90625, "text": "<image>" }, { "id": 32001, "logprob": -18.1875, "text": "<image>" }, { "id": 32001, "logprob": -17.421875, "text": "<image>" }, { "id": 32001, "logprob": -20.421875, "text": "<image>" }, { "id": 32001, "logprob": -20.0, "text": "<image>" }, { "id": 32001, "logprob": -20.359375, "text": "<image>" }, { "id": 32001, "logprob": -18.03125, "text": "<image>" }, { "id": 32001, "logprob": -17.203125, "text": "<image>" }, { "id": 32001, "logprob": -16.84375, "text": "<image>" }, { "id": 32001, "logprob": -18.09375, "text": "<image>" }, { "id": 32001, "logprob": -15.71875, "text": "<image>" }, { "id": 32001, "logprob": -18.203125, "text": "<image>" }, { "id": 32001, "logprob": -18.4375, "text": "<image>" }, { "id": 32001, "logprob": -18.46875, "text": "<image>" }, { "id": 32001, "logprob": -17.3125, "text": "<image>" }, { "id": 32001, "logprob": -16.265625, "text": "<image>" }, { "id": 32001, "logprob": -19.453125, "text": "<image>" }, { "id": 32001, "logprob": -14.734375, "text": "<image>" }, { "id": 32001, "logprob": -20.6875, "text": "<image>" }, { "id": 32001, "logprob": -20.21875, "text": "<image>" }, { "id": 32001, "logprob": -18.359375, "text": "<image>" }, { "id": 32001, "logprob": -18.1875, "text": "<image>" }, { "id": 32000, "logprob": -3.2988281, "text": "<fake_token_around_image>" }, { "id": 32001, "logprob": -25.75, "text": "<image>" }, { "id": 32001, "logprob": -18.421875, "text": "<image>" }, { "id": 32001, "logprob": -19.265625, "text": "<image>" }, { "id": 32001, "logprob": -17.90625, "text": "<image>" }, { "id": 32001, "logprob": -17.203125, "text": "<image>" }, { "id": 32001, "logprob": -20.140625, "text": "<image>" }, { "id": 32001, "logprob": -17.96875, "text": "<image>" }, { "id": 32001, "logprob": -16.453125, "text": "<image>" }, { "id": 32001, "logprob": -19.65625, "text": "<image>" }, { "id": 32001, "logprob": -18.203125, "text": "<image>" }, { "id": 32001, "logprob": -16.921875, "text": "<image>" }, { "id": 32001, "logprob": -15.75, "text": "<image>" }, { "id": 32001, "logprob": -16.375, "text": "<image>" }, { "id": 32001, "logprob": -17.25, "text": "<image>" }, { "id": 32001, "logprob": -16.5625, "text": "<image>" }, { "id": 32001, "logprob": -18.828125, "text": "<image>" }, { "id": 32001, "logprob": -18.765625, "text": "<image>" }, { "id": 32001, "logprob": -16.90625, "text": "<image>" }, { "id": 32001, "logprob": -18.984375, "text": "<image>" }, { "id": 32001, "logprob": -19.765625, "text": "<image>" }, { "id": 32001, "logprob": -19.890625, "text": "<image>" }, { "id": 32001, "logprob": -20.421875, "text": "<image>" }, { "id": 32001, "logprob": -19.34375, "text": "<image>" }, { "id": 32001, "logprob": -20.140625, "text": "<image>" }, { "id": 32001, "logprob": -19.34375, "text": "<image>" }, { "id": 32001, "logprob": -19.875, "text": "<image>" }, { "id": 32001, "logprob": -19.015625, "text": "<image>" }, { "id": 32001, "logprob": -19.625, "text": "<image>" }, { "id": 32001, "logprob": -17.671875, "text": "<image>" }, { "id": 32001, "logprob": -16.984375, "text": "<image>" }, { "id": 32001, "logprob": -15.953125, "text": "<image>" }, { "id": 32001, "logprob": -19.53125, "text": "<image>" }, { "id": 32001, "logprob": -20.078125, "text": "<image>" }, { "id": 32001, "logprob": -18.953125, "text": "<image>" }, { "id": 32001, "logprob": -15.4453125, "text": "<image>" }, { "id": 32001, "logprob": -19.828125, "text": "<image>" }, { "id": 32001, "logprob": -15.453125, "text": "<image>" }, { "id": 32001, "logprob": -20.6875, "text": "<image>" }, { "id": 32001, "logprob": -20.1875, "text": "<image>" }, { "id": 32001, "logprob": -19.03125, "text": "<image>" }, { "id": 32001, "logprob": -17.40625, "text": "<image>" }, { "id": 32001, "logprob": -15.984375, "text": "<image>" }, { "id": 32001, "logprob": -18.21875, "text": "<image>" }, { "id": 32001, "logprob": -19.71875, "text": "<image>" }, { "id": 32001, "logprob": -19.9375, "text": "<image>" }, { "id": 32001, "logprob": -20.421875, "text": "<image>" }, { "id": 32001, "logprob": -19.46875, "text": "<image>" }, { "id": 32001, "logprob": -18.90625, "text": "<image>" }, { "id": 32001, "logprob": -17.8125, "text": "<image>" }, { "id": 32001, "logprob": -18.90625, "text": "<image>" }, { "id": 32001, "logprob": -17.09375, "text": "<image>" }, { "id": 32001, "logprob": -16.234375, "text": "<image>" }, { "id": 32001, "logprob": -16.25, "text": "<image>" }, { "id": 32001, "logprob": -18.984375, "text": "<image>" }, { "id": 32001, "logprob": -19.59375, "text": "<image>" }, { "id": 32001, "logprob": -16.328125, "text": "<image>" }, { "id": 32001, "logprob": -17.703125, "text": "<image>" }, { "id": 32001, "logprob": -16.4375, "text": "<image>" }, { "id": 32001, "logprob": -19.359375, "text": "<image>" }, { "id": 32001, "logprob": -17.015625, "text": "<image>" }, { "id": 32001, "logprob": -17.03125, "text": "<image>" }, { "id": 32001, "logprob": -20.140625, "text": "<image>" }, { "id": 32001, "logprob": -18.5625, "text": "<image>" }, { "id": 32001, "logprob": -18.0, "text": "<image>" }, { "id": 32000, "logprob": -2.7207031, "text": "<fake_token_around_image>" }, { "id": 32001, "logprob": -23.34375, "text": "<image>" }, { "id": 32001, "logprob": -22.203125, "text": "<image>" }, { "id": 32001, "logprob": -21.015625, "text": "<image>" }, { "id": 32001, "logprob": -18.578125, "text": "<image>" }, { "id": 32001, "logprob": -18.1875, "text": "<image>" }, { "id": 32001, "logprob": -20.296875, "text": "<image>" }, { "id": 32001, "logprob": -18.484375, "text": "<image>" }, { "id": 32001, "logprob": -16.46875, "text": "<image>" }, { "id": 32001, "logprob": -20.890625, "text": "<image>" }, { "id": 32001, "logprob": -19.390625, "text": "<image>" }, { "id": 32001, "logprob": -18.96875, "text": "<image>" }, { "id": 32001, "logprob": -16.078125, "text": "<image>" }, { "id": 32001, "logprob": -17.28125, "text": "<image>" }, { "id": 32001, "logprob": -18.53125, "text": "<image>" }, { "id": 32001, "logprob": -20.5, "text": "<image>" }, { "id": 32001, "logprob": -21.5, "text": "<image>" }, { "id": 32001, "logprob": -19.6875, "text": "<image>" }, { "id": 32001, "logprob": -18.765625, "text": "<image>" }, { "id": 32001, "logprob": -19.671875, "text": "<image>" }, { "id": 32001, "logprob": -19.203125, "text": "<image>" }, { "id": 32001, "logprob": -21.03125, "text": "<image>" }, { "id": 32001, "logprob": -21.328125, "text": "<image>" }, { "id": 32001, "logprob": -19.3125, "text": "<image>" }, { "id": 32001, "logprob": -20.609375, "text": "<image>" }, { "id": 32001, "logprob": -18.6875, "text": "<image>" }, { "id": 32001, "logprob": -19.921875, "text": "<image>" }, { "id": 32001, "logprob": -20.9375, "text": "<image>" }, { "id": 32001, "logprob": -19.46875, "text": "<image>" }, { "id": 32001, "logprob": -18.0, "text": "<image>" }, { "id": 32001, "logprob": -17.40625, "text": "<image>" }, { "id": 32001, "logprob": -18.640625, "text": "<image>" }, { "id": 32001, "logprob": -18.59375, "text": "<image>" }, { "id": 32001, "logprob": -20.25, "text": "<image>" }, { "id": 32001, "logprob": -19.828125, "text": "<image>" }, { "id": 32001, "logprob": -15.796875, "text": "<image>" }, { "id": 32001, "logprob": -18.765625, "text": "<image>" }, { "id": 32001, "logprob": -15.6640625, "text": "<image>" }, { "id": 32001, "logprob": -21.3125, "text": "<image>" }, { "id": 32001, "logprob": -19.8125, "text": "<image>" }, { "id": 32001, "logprob": -19.671875, "text": "<image>" }, { "id": 32001, "logprob": -18.640625, "text": "<image>" }, { "id": 32001, "logprob": -15.96875, "text": "<image>" }, { "id": 32001, "logprob": -20.1875, "text": "<image>" }, { "id": 32001, "logprob": -19.8125, "text": "<image>" }, { "id": 32001, "logprob": -20.921875, "text": "<image>" }, { "id": 32001, "logprob": -21.46875, "text": "<image>" }, { "id": 32001, "logprob": -21.25, "text": "<image>" }, { "id": 32001, "logprob": -19.09375, "text": "<image>" }, { "id": 32001, "logprob": -17.59375, "text": "<image>" }, { "id": 32001, "logprob": -19.375, "text": "<image>" }, { "id": 32001, "logprob": -17.09375, "text": "<image>" }, { "id": 32001, "logprob": -16.90625, "text": "<image>" }, { "id": 32001, "logprob": -18.875, "text": "<image>" }, { "id": 32001, "logprob": -20.171875, "text": "<image>" }, { "id": 32001, "logprob": -20.921875, "text": "<image>" }, { "id": 32001, "logprob": -16.453125, "text": "<image>" }, { "id": 32001, "logprob": -18.984375, "text": "<image>" }, { "id": 32001, "logprob": -16.4375, "text": "<image>" }, { "id": 32001, "logprob": -19.875, "text": "<image>" }, { "id": 32001, "logprob": -17.59375, "text": "<image>" }, { "id": 32001, "logprob": -17.171875, "text": "<image>" }, { "id": 32001, "logprob": -20.34375, "text": "<image>" }, { "id": 32001, "logprob": -19.171875, "text": "<image>" }, { "id": 32001, "logprob": -18.578125, "text": "<image>" }, { "id": 32000, "logprob": -3.0917969, "text": "<fake_token_around_image>" }, { "id": 32001, "logprob": -25.375, "text": "<image>" }, { "id": 32001, "logprob": -18.921875, "text": "<image>" }, { "id": 32001, "logprob": -20.6875, "text": "<image>" }, { "id": 32001, "logprob": -17.921875, "text": "<image>" }, { "id": 32001, "logprob": -18.734375, "text": "<image>" }, { "id": 32001, "logprob": -18.71875, "text": "<image>" }, { "id": 32001, "logprob": -21.453125, "text": "<image>" }, { "id": 32001, "logprob": -16.734375, "text": "<image>" }, { "id": 32001, "logprob": -20.875, "text": "<image>" }, { "id": 32001, "logprob": -21.453125, "text": "<image>" }, { "id": 32001, "logprob": -15.796875, "text": "<image>" }, { "id": 32001, "logprob": -15.1328125, "text": "<image>" }, { "id": 32001, "logprob": -17.125, "text": "<image>" }, { "id": 32001, "logprob": -18.90625, "text": "<image>" }, { "id": 32001, "logprob": -21.421875, "text": "<image>" }, { "id": 32001, "logprob": -21.015625, "text": "<image>" }, { "id": 32001, "logprob": -20.734375, "text": "<image>" }, { "id": 32001, "logprob": -16.25, "text": "<image>" }, { "id": 32001, "logprob": -19.5, "text": "<image>" }, { "id": 32001, "logprob": -21.59375, "text": "<image>" }, { "id": 32001, "logprob": -22.515625, "text": "<image>" }, { "id": 32001, "logprob": -20.921875, "text": "<image>" }, { "id": 32001, "logprob": -19.703125, "text": "<image>" }, { "id": 32001, "logprob": -21.0, "text": "<image>" }, { "id": 32001, "logprob": -16.984375, "text": "<image>" }, { "id": 32001, "logprob": -17.53125, "text": "<image>" }, { "id": 32001, "logprob": -17.921875, "text": "<image>" }, { "id": 32001, "logprob": -22.1875, "text": "<image>" }, { "id": 32001, "logprob": -18.75, "text": "<image>" }, { "id": 32001, "logprob": -16.375, "text": "<image>" }, { "id": 32001, "logprob": -18.4375, "text": "<image>" }, { "id": 32001, "logprob": -20.265625, "text": "<image>" }, { "id": 32001, "logprob": -22.296875, "text": "<image>" }, { "id": 32001, "logprob": -18.484375, "text": "<image>" }, { "id": 32001, "logprob": -15.390625, "text": "<image>" }, { "id": 32001, "logprob": -19.75, "text": "<image>" }, { "id": 32001, "logprob": -14.6484375, "text": "<image>" }, { "id": 32001, "logprob": -21.609375, "text": "<image>" }, { "id": 32001, "logprob": -18.828125, "text": "<image>" }, { "id": 32001, "logprob": -20.828125, "text": "<image>" }, { "id": 32001, "logprob": -17.015625, "text": "<image>" }, { "id": 32001, "logprob": -16.40625, "text": "<image>" }, { "id": 32001, "logprob": -21.046875, "text": "<image>" }, { "id": 32001, "logprob": -21.234375, "text": "<image>" }, { "id": 32001, "logprob": -17.140625, "text": "<image>" }, { "id": 32001, "logprob": -21.515625, "text": "<image>" }, { "id": 32001, "logprob": -20.0, "text": "<image>" }, { "id": 32001, "logprob": -18.78125, "text": "<image>" }, { "id": 32001, "logprob": -16.375, "text": "<image>" }, { "id": 32001, "logprob": -16.890625, "text": "<image>" }, { "id": 32001, "logprob": -16.703125, "text": "<image>" }, { "id": 32001, "logprob": -13.625, "text": "<image>" }, { "id": 32001, "logprob": -15.375, "text": "<image>" }, { "id": 32001, "logprob": -17.515625, "text": "<image>" }, { "id": 32001, "logprob": -21.921875, "text": "<image>" }, { "id": 32001, "logprob": -15.640625, "text": "<image>" }, { "id": 32001, "logprob": -16.46875, "text": "<image>" }, { "id": 32001, "logprob": -16.421875, "text": "<image>" }, { "id": 32001, "logprob": -19.890625, "text": "<image>" }, { "id": 32001, "logprob": -17.890625, "text": "<image>" }, { "id": 32001, "logprob": -17.40625, "text": "<image>" }, { "id": 32001, "logprob": -20.390625, "text": "<image>" }, { "id": 32001, "logprob": -19.1875, "text": "<image>" }, { "id": 32001, "logprob": -15.9609375, "text": "<image>" }, { "id": 32000, "logprob": -2.0332031, "text": "<fake_token_around_image>" }, { "id": 12018, "logprob": -12.078125, "text": "Write" }, { "id": 528, "logprob": -10.109375, "text": "me" }, { "id": 264, "logprob": -0.103515625, "text": "a" }, { "id": 2485, "logprob": -4.5664062, "text": "short" }, { "id": 2838, "logprob": -0.23864746, "text": "story" }, { "id": 32002, "logprob": -10.9609375, "text": "<end_of_utterance>" }, { "id": 259, "logprob": -20.34375, "text": " " }, { "id": 13, "logprob": -8.5546875, "text": "\n" }, { "id": 7226, "logprob": -10.484375, "text": "Ass" }, { "id": 11143, "logprob": -13.6015625, "text": "istant" }, { "id": 28747, "logprob": -0.008308411, "text": ":" } ], "seed": null, "tokens": [ { "id": 330, "logprob": -0.09448242, "special": false, "text": " A" }, { "id": 13088, "logprob": -0.6743164, "special": false, "text": " chicken" }, { "id": 349, "logprob": -0.31201172, "special": false, "text": " is" }, { "id": 6398, "logprob": -0.051635742, "special": false, "text": " sitting" }, { "id": 356, "logprob": -0.34033203, "special": false, "text": " on" }, { "id": 264, "logprob": -0.1194458, "special": false, "text": " a" }, { "id": 17972, "logprob": -0.032562256, "special": false, "text": " pile" }, { "id": 302, "logprob": -0.00018763542, "special": false, "text": " of" }, { "id": 2445, "logprob": -0.07122803, "special": false, "text": " money" }, { "id": 28723, "logprob": -0.0041007996, "special": false, "text": "." } ], "top_tokens": null }, "generated_text": " A chicken is sitting on a pile of money." }, { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [ { "id": 1, "logprob": null, "text": "<s>" }, { "id": 1247, "logprob": -5.2382812, "text": "User" }, { "id": 28747, "logprob": -6.9492188, "text": ":" }, { "id": 32000, "logprob": -16.234375, "text": "<fake_token_around_image>" }, { "id": 32001, "logprob": -18.984375, "text": "<image>" }, { "id": 32001, "logprob": -18.171875, "text": "<image>" }, { "id": 32001, "logprob": -19.46875, "text": "<image>" }, { "id": 32001, "logprob": -17.578125, "text": "<image>" }, { "id": 32001, "logprob": -16.8125, "text": "<image>" }, { "id": 32001, "logprob": -19.296875, "text": "<image>" }, { "id": 32001, "logprob": -20.21875, "text": "<image>" }, { "id": 32001, "logprob": -16.421875, "text": "<image>" }, { "id": 32001, "logprob": -19.84375, "text": "<image>" }, { "id": 32001, "logprob": -23.25, "text": "<image>" }, { "id": 32001, "logprob": -19.421875, "text": "<image>" }, { "id": 32001, "logprob": -15.28125, "text": "<image>" }, { "id": 32001, "logprob": -17.734375, "text": "<image>" }, { "id": 32001, "logprob": -20.34375, "text": "<image>" }, { "id": 32001, "logprob": -21.296875, "text": "<image>" }, { "id": 32001, "logprob": -21.03125, "text": "<image>" }, { "id": 32001, "logprob": -20.421875, "text": "<image>" }, { "id": 32001, "logprob": -16.03125, "text": "<image>" }, { "id": 32001, "logprob": -19.046875, "text": "<image>" }, { "id": 32001, "logprob": -22.765625, "text": "<image>" }, { "id": 32001, "logprob": -23.609375, "text": "<image>" }, { "id": 32001, "logprob": -20.421875, "text": "<image>" }, { "id": 32001, "logprob": -20.421875, "text": "<image>" }, { "id": 32001, "logprob": -20.875, "text": "<image>" }, { "id": 32001, "logprob": -16.5, "text": "<image>" }, { "id": 32001, "logprob": -19.96875, "text": "<image>" }, { "id": 32001, "logprob": -18.234375, "text": "<image>" }, { "id": 32001, "logprob": -23.59375, "text": "<image>" }, { "id": 32001, "logprob": -21.1875, "text": "<image>" }, { "id": 32001, "logprob": -17.359375, "text": "<image>" }, { "id": 32001, "logprob": -16.53125, "text": "<image>" }, { "id": 32001, "logprob": -19.03125, "text": "<image>" }, { "id": 32001, "logprob": -21.78125, "text": "<image>" }, { "id": 32001, "logprob": -19.328125, "text": "<image>" }, { "id": 32001, "logprob": -17.96875, "text": "<image>" }, { "id": 32001, "logprob": -18.859375, "text": "<image>" }, { "id": 32001, "logprob": -17.921875, "text": "<image>" }, { "id": 32001, "logprob": -19.1875, "text": "<image>" }, { "id": 32001, "logprob": -18.65625, "text": "<image>" }, { "id": 32001, "logprob": -20.140625, "text": "<image>" }, { "id": 32001, "logprob": -19.4375, "text": "<image>" }, { "id": 32001, "logprob": -14.8828125, "text": "<image>" }, { "id": 32001, "logprob": -18.453125, "text": "<image>" }, { "id": 32001, "logprob": -23.21875, "text": "<image>" }, { "id": 32001, "logprob": -17.421875, "text": "<image>" }, { "id": 32001, "logprob": -23.671875, "text": "<image>" }, { "id": 32001, "logprob": -23.0, "text": "<image>" }, { "id": 32001, "logprob": -19.75, "text": "<image>" }, { "id": 32001, "logprob": -17.078125, "text": "<image>" }, { "id": 32001, "logprob": -17.640625, "text": "<image>" }, { "id": 32001, "logprob": -17.046875, "text": "<image>" }, { "id": 32001, "logprob": -18.421875, "text": "<image>" }, { "id": 32001, "logprob": -20.578125, "text": "<image>" }, { "id": 32001, "logprob": -18.328125, "text": "<image>" }, { "id": 32001, "logprob": -17.125, "text": "<image>" }, { "id": 32001, "logprob": -18.65625, "text": "<image>" }, { "id": 32001, "logprob": -18.875, "text": "<image>" }, { "id": 32001, "logprob": -16.0, "text": "<image>" }, { "id": 32001, "logprob": -18.15625, "text": "<image>" }, { "id": 32001, "logprob": -18.84375, "text": "<image>" }, { "id": 32001, "logprob": -20.15625, "text": "<image>" }, { "id": 32001, "logprob": -18.96875, "text": "<image>" }, { "id": 32001, "logprob": -18.703125, "text": "<image>" }, { "id": 32001, "logprob": -17.921875, "text": "<image>" }, { "id": 32000, "logprob": -3.015625, "text": "<fake_token_around_image>" }, { "id": 32001, "logprob": -22.109375, "text": "<image>" }, { "id": 32001, "logprob": -18.96875, "text": "<image>" }, { "id": 32001, "logprob": -20.125, "text": "<image>" }, { "id": 32001, "logprob": -17.125, "text": "<image>" }, { "id": 32001, "logprob": -17.8125, "text": "<image>" }, { "id": 32001, "logprob": -19.3125, "text": "<image>" }, { "id": 32001, "logprob": -19.65625, "text": "<image>" }, { "id": 32001, "logprob": -16.3125, "text": "<image>" }, { "id": 32001, "logprob": -19.375, "text": "<image>" }, { "id": 32001, "logprob": -20.046875, "text": "<image>" }, { "id": 32001, "logprob": -20.828125, "text": "<image>" }, { "id": 32001, "logprob": -15.8046875, "text": "<image>" }, { "id": 32001, "logprob": -16.25, "text": "<image>" }, { "id": 32001, "logprob": -19.953125, "text": "<image>" }, { "id": 32001, "logprob": -18.875, "text": "<image>" }, { "id": 32001, "logprob": -21.59375, "text": "<image>" }, { "id": 32001, "logprob": -20.515625, "text": "<image>" }, { "id": 32001, "logprob": -19.171875, "text": "<image>" }, { "id": 32001, "logprob": -19.296875, "text": "<image>" }, { "id": 32001, "logprob": -16.71875, "text": "<image>" }, { "id": 32001, "logprob": -20.46875, "text": "<image>" }, { "id": 32001, "logprob": -21.125, "text": "<image>" }, { "id": 32001, "logprob": -20.40625, "text": "<image>" }, { "id": 32001, "logprob": -20.734375, "text": "<image>" }, { "id": 32001, "logprob": -17.765625, "text": "<image>" }, { "id": 32001, "logprob": -20.328125, "text": "<image>" }, { "id": 32001, "logprob": -15.2734375, "text": "<image>" }, { "id": 32001, "logprob": -18.84375, "text": "<image>" }, { "id": 32001, "logprob": -17.875, "text": "<image>" }, { "id": 32001, "logprob": -15.578125, "text": "<image>" }, { "id": 32001, "logprob": -18.3125, "text": "<image>" }, { "id": 32001, "logprob": -20.625, "text": "<image>" }, { "id": 32001, "logprob": -20.140625, "text": "<image>" }, { "id": 32001, "logprob": -18.34375, "text": "<image>" }, { "id": 32001, "logprob": -17.8125, "text": "<image>" }, { "id": 32001, "logprob": -17.046875, "text": "<image>" }, { "id": 32001, "logprob": -16.578125, "text": "<image>" }, { "id": 32001, "logprob": -20.859375, "text": "<image>" }, { "id": 32001, "logprob": -18.15625, "text": "<image>" }, { "id": 32001, "logprob": -19.625, "text": "<image>" }, { "id": 32001, "logprob": -19.546875, "text": "<image>" }, { "id": 32001, "logprob": -14.1953125, "text": "<image>" }, { "id": 32001, "logprob": -18.90625, "text": "<image>" }, { "id": 32001, "logprob": -18.1875, "text": "<image>" }, { "id": 32001, "logprob": -17.421875, "text": "<image>" }, { "id": 32001, "logprob": -20.421875, "text": "<image>" }, { "id": 32001, "logprob": -20.0, "text": "<image>" }, { "id": 32001, "logprob": -20.359375, "text": "<image>" }, { "id": 32001, "logprob": -18.03125, "text": "<image>" }, { "id": 32001, "logprob": -17.203125, "text": "<image>" }, { "id": 32001, "logprob": -16.84375, "text": "<image>" }, { "id": 32001, "logprob": -18.09375, "text": "<image>" }, { "id": 32001, "logprob": -15.71875, "text": "<image>" }, { "id": 32001, "logprob": -18.203125, "text": "<image>" }, { "id": 32001, "logprob": -18.4375, "text": "<image>" }, { "id": 32001, "logprob": -18.46875, "text": "<image>" }, { "id": 32001, "logprob": -17.3125, "text": "<image>" }, { "id": 32001, "logprob": -16.265625, "text": "<image>" }, { "id": 32001, "logprob": -19.453125, "text": "<image>" }, { "id": 32001, "logprob": -14.734375, "text": "<image>" }, { "id": 32001, "logprob": -20.6875, "text": "<image>" }, { "id": 32001, "logprob": -20.21875, "text": "<image>" }, { "id": 32001, "logprob": -18.359375, "text": "<image>" }, { "id": 32001, "logprob": -18.1875, "text": "<image>" }, { "id": 32000, "logprob": -3.2988281, "text": "<fake_token_around_image>" }, { "id": 32001, "logprob": -25.75, "text": "<image>" }, { "id": 32001, "logprob": -18.421875, "text": "<image>" }, { "id": 32001, "logprob": -19.265625, "text": "<image>" }, { "id": 32001, "logprob": -17.90625, "text": "<image>" }, { "id": 32001, "logprob": -17.203125, "text": "<image>" }, { "id": 32001, "logprob": -20.140625, "text": "<image>" }, { "id": 32001, "logprob": -17.96875, "text": "<image>" }, { "id": 32001, "logprob": -16.453125, "text": "<image>" }, { "id": 32001, "logprob": -19.65625, "text": "<image>" }, { "id": 32001, "logprob": -18.203125, "text": "<image>" }, { "id": 32001, "logprob": -16.921875, "text": "<image>" }, { "id": 32001, "logprob": -15.75, "text": "<image>" }, { "id": 32001, "logprob": -16.375, "text": "<image>" }, { "id": 32001, "logprob": -17.25, "text": "<image>" }, { "id": 32001, "logprob": -16.5625, "text": "<image>" }, { "id": 32001, "logprob": -18.828125, "text": "<image>" }, { "id": 32001, "logprob": -18.765625, "text": "<image>" }, { "id": 32001, "logprob": -16.90625, "text": "<image>" }, { "id": 32001, "logprob": -18.984375, "text": "<image>" }, { "id": 32001, "logprob": -19.765625, "text": "<image>" }, { "id": 32001, "logprob": -19.890625, "text": "<image>" }, { "id": 32001, "logprob": -20.421875, "text": "<image>" }, { "id": 32001, "logprob": -19.34375, "text": "<image>" }, { "id": 32001, "logprob": -20.140625, "text": "<image>" }, { "id": 32001, "logprob": -19.34375, "text": "<image>" }, { "id": 32001, "logprob": -19.875, "text": "<image>" }, { "id": 32001, "logprob": -19.015625, "text": "<image>" }, { "id": 32001, "logprob": -19.625, "text": "<image>" }, { "id": 32001, "logprob": -17.671875, "text": "<image>" }, { "id": 32001, "logprob": -16.984375, "text": "<image>" }, { "id": 32001, "logprob": -15.953125, "text": "<image>" }, { "id": 32001, "logprob": -19.53125, "text": "<image>" }, { "id": 32001, "logprob": -20.078125, "text": "<image>" }, { "id": 32001, "logprob": -18.953125, "text": "<image>" }, { "id": 32001, "logprob": -15.4453125, "text": "<image>" }, { "id": 32001, "logprob": -19.828125, "text": "<image>" }, { "id": 32001, "logprob": -15.453125, "text": "<image>" }, { "id": 32001, "logprob": -20.6875, "text": "<image>" }, { "id": 32001, "logprob": -20.1875, "text": "<image>" }, { "id": 32001, "logprob": -19.03125, "text": "<image>" }, { "id": 32001, "logprob": -17.40625, "text": "<image>" }, { "id": 32001, "logprob": -15.984375, "text": "<image>" }, { "id": 32001, "logprob": -18.21875, "text": "<image>" }, { "id": 32001, "logprob": -19.71875, "text": "<image>" }, { "id": 32001, "logprob": -19.9375, "text": "<image>" }, { "id": 32001, "logprob": -20.421875, "text": "<image>" }, { "id": 32001, "logprob": -19.46875, "text": "<image>" }, { "id": 32001, "logprob": -18.90625, "text": "<image>" }, { "id": 32001, "logprob": -17.8125, "text": "<image>" }, { "id": 32001, "logprob": -18.90625, "text": "<image>" }, { "id": 32001, "logprob": -17.09375, "text": "<image>" }, { "id": 32001, "logprob": -16.234375, "text": "<image>" }, { "id": 32001, "logprob": -16.25, "text": "<image>" }, { "id": 32001, "logprob": -18.984375, "text": "<image>" }, { "id": 32001, "logprob": -19.59375, "text": "<image>" }, { "id": 32001, "logprob": -16.328125, "text": "<image>" }, { "id": 32001, "logprob": -17.703125, "text": "<image>" }, { "id": 32001, "logprob": -16.4375, "text": "<image>" }, { "id": 32001, "logprob": -19.359375, "text": "<image>" }, { "id": 32001, "logprob": -17.015625, "text": "<image>" }, { "id": 32001, "logprob": -17.03125, "text": "<image>" }, { "id": 32001, "logprob": -20.140625, "text": "<image>" }, { "id": 32001, "logprob": -18.5625, "text": "<image>" }, { "id": 32001, "logprob": -18.0, "text": "<image>" }, { "id": 32000, "logprob": -2.7207031, "text": "<fake_token_around_image>" }, { "id": 32001, "logprob": -23.34375, "text": "<image>" }, { "id": 32001, "logprob": -22.203125, "text": "<image>" }, { "id": 32001, "logprob": -21.015625, "text": "<image>" }, { "id": 32001, "logprob": -18.578125, "text": "<image>" }, { "id": 32001, "logprob": -18.1875, "text": "<image>" }, { "id": 32001, "logprob": -20.296875, "text": "<image>" }, { "id": 32001, "logprob": -18.484375, "text": "<image>" }, { "id": 32001, "logprob": -16.46875, "text": "<image>" }, { "id": 32001, "logprob": -20.890625, "text": "<image>" }, { "id": 32001, "logprob": -19.390625, "text": "<image>" }, { "id": 32001, "logprob": -18.96875, "text": "<image>" }, { "id": 32001, "logprob": -16.078125, "text": "<image>" }, { "id": 32001, "logprob": -17.28125, "text": "<image>" }, { "id": 32001, "logprob": -18.53125, "text": "<image>" }, { "id": 32001, "logprob": -20.5, "text": "<image>" }, { "id": 32001, "logprob": -21.5, "text": "<image>" }, { "id": 32001, "logprob": -19.6875, "text": "<image>" }, { "id": 32001, "logprob": -18.765625, "text": "<image>" }, { "id": 32001, "logprob": -19.671875, "text": "<image>" }, { "id": 32001, "logprob": -19.203125, "text": "<image>" }, { "id": 32001, "logprob": -21.03125, "text": "<image>" }, { "id": 32001, "logprob": -21.328125, "text": "<image>" }, { "id": 32001, "logprob": -19.3125, "text": "<image>" }, { "id": 32001, "logprob": -20.609375, "text": "<image>" }, { "id": 32001, "logprob": -18.6875, "text": "<image>" }, { "id": 32001, "logprob": -19.921875, "text": "<image>" }, { "id": 32001, "logprob": -20.9375, "text": "<image>" }, { "id": 32001, "logprob": -19.46875, "text": "<image>" }, { "id": 32001, "logprob": -18.0, "text": "<image>" }, { "id": 32001, "logprob": -17.40625, "text": "<image>" }, { "id": 32001, "logprob": -18.640625, "text": "<image>" }, { "id": 32001, "logprob": -18.59375, "text": "<image>" }, { "id": 32001, "logprob": -20.25, "text": "<image>" }, { "id": 32001, "logprob": -19.828125, "text": "<image>" }, { "id": 32001, "logprob": -15.796875, "text": "<image>" }, { "id": 32001, "logprob": -18.765625, "text": "<image>" }, { "id": 32001, "logprob": -15.6640625, "text": "<image>" }, { "id": 32001, "logprob": -21.3125, "text": "<image>" }, { "id": 32001, "logprob": -19.8125, "text": "<image>" }, { "id": 32001, "logprob": -19.671875, "text": "<image>" }, { "id": 32001, "logprob": -18.640625, "text": "<image>" }, { "id": 32001, "logprob": -15.96875, "text": "<image>" }, { "id": 32001, "logprob": -20.1875, "text": "<image>" }, { "id": 32001, "logprob": -19.8125, "text": "<image>" }, { "id": 32001, "logprob": -20.921875, "text": "<image>" }, { "id": 32001, "logprob": -21.46875, "text": "<image>" }, { "id": 32001, "logprob": -21.25, "text": "<image>" }, { "id": 32001, "logprob": -19.09375, "text": "<image>" }, { "id": 32001, "logprob": -17.59375, "text": "<image>" }, { "id": 32001, "logprob": -19.375, "text": "<image>" }, { "id": 32001, "logprob": -17.09375, "text": "<image>" }, { "id": 32001, "logprob": -16.90625, "text": "<image>" }, { "id": 32001, "logprob": -18.875, "text": "<image>" }, { "id": 32001, "logprob": -20.171875, "text": "<image>" }, { "id": 32001, "logprob": -20.921875, "text": "<image>" }, { "id": 32001, "logprob": -16.453125, "text": "<image>" }, { "id": 32001, "logprob": -18.984375, "text": "<image>" }, { "id": 32001, "logprob": -16.4375, "text": "<image>" }, { "id": 32001, "logprob": -19.875, "text": "<image>" }, { "id": 32001, "logprob": -17.59375, "text": "<image>" }, { "id": 32001, "logprob": -17.171875, "text": "<image>" }, { "id": 32001, "logprob": -20.34375, "text": "<image>" }, { "id": 32001, "logprob": -19.171875, "text": "<image>" }, { "id": 32001, "logprob": -18.578125, "text": "<image>" }, { "id": 32000, "logprob": -3.0917969, "text": "<fake_token_around_image>" }, { "id": 32001, "logprob": -25.375, "text": "<image>" }, { "id": 32001, "logprob": -18.921875, "text": "<image>" }, { "id": 32001, "logprob": -20.6875, "text": "<image>" }, { "id": 32001, "logprob": -17.921875, "text": "<image>" }, { "id": 32001, "logprob": -18.734375, "text": "<image>" }, { "id": 32001, "logprob": -18.71875, "text": "<image>" }, { "id": 32001, "logprob": -21.453125, "text": "<image>" }, { "id": 32001, "logprob": -16.734375, "text": "<image>" }, { "id": 32001, "logprob": -20.875, "text": "<image>" }, { "id": 32001, "logprob": -21.453125, "text": "<image>" }, { "id": 32001, "logprob": -15.796875, "text": "<image>" }, { "id": 32001, "logprob": -15.1328125, "text": "<image>" }, { "id": 32001, "logprob": -17.125, "text": "<image>" }, { "id": 32001, "logprob": -18.90625, "text": "<image>" }, { "id": 32001, "logprob": -21.421875, "text": "<image>" }, { "id": 32001, "logprob": -21.015625, "text": "<image>" }, { "id": 32001, "logprob": -20.734375, "text": "<image>" }, { "id": 32001, "logprob": -16.25, "text": "<image>" }, { "id": 32001, "logprob": -19.5, "text": "<image>" }, { "id": 32001, "logprob": -21.59375, "text": "<image>" }, { "id": 32001, "logprob": -22.515625, "text": "<image>" }, { "id": 32001, "logprob": -20.921875, "text": "<image>" }, { "id": 32001, "logprob": -19.703125, "text": "<image>" }, { "id": 32001, "logprob": -21.0, "text": "<image>" }, { "id": 32001, "logprob": -16.984375, "text": "<image>" }, { "id": 32001, "logprob": -17.53125, "text": "<image>" }, { "id": 32001, "logprob": -17.921875, "text": "<image>" }, { "id": 32001, "logprob": -22.1875, "text": "<image>" }, { "id": 32001, "logprob": -18.75, "text": "<image>" }, { "id": 32001, "logprob": -16.375, "text": "<image>" }, { "id": 32001, "logprob": -18.4375, "text": "<image>" }, { "id": 32001, "logprob": -20.265625, "text": "<image>" }, { "id": 32001, "logprob": -22.296875, "text": "<image>" }, { "id": 32001, "logprob": -18.484375, "text": "<image>" }, { "id": 32001, "logprob": -15.390625, "text": "<image>" }, { "id": 32001, "logprob": -19.75, "text": "<image>" }, { "id": 32001, "logprob": -14.6484375, "text": "<image>" }, { "id": 32001, "logprob": -21.609375, "text": "<image>" }, { "id": 32001, "logprob": -18.828125, "text": "<image>" }, { "id": 32001, "logprob": -20.828125, "text": "<image>" }, { "id": 32001, "logprob": -17.015625, "text": "<image>" }, { "id": 32001, "logprob": -16.40625, "text": "<image>" }, { "id": 32001, "logprob": -21.046875, "text": "<image>" }, { "id": 32001, "logprob": -21.234375, "text": "<image>" }, { "id": 32001, "logprob": -17.140625, "text": "<image>" }, { "id": 32001, "logprob": -21.515625, "text": "<image>" }, { "id": 32001, "logprob": -20.0, "text": "<image>" }, { "id": 32001, "logprob": -18.78125, "text": "<image>" }, { "id": 32001, "logprob": -16.375, "text": "<image>" }, { "id": 32001, "logprob": -16.890625, "text": "<image>" }, { "id": 32001, "logprob": -16.703125, "text": "<image>" }, { "id": 32001, "logprob": -13.625, "text": "<image>" }, { "id": 32001, "logprob": -15.375, "text": "<image>" }, { "id": 32001, "logprob": -17.515625, "text": "<image>" }, { "id": 32001, "logprob": -21.921875, "text": "<image>" }, { "id": 32001, "logprob": -15.640625, "text": "<image>" }, { "id": 32001, "logprob": -16.46875, "text": "<image>" }, { "id": 32001, "logprob": -16.421875, "text": "<image>" }, { "id": 32001, "logprob": -19.890625, "text": "<image>" }, { "id": 32001, "logprob": -17.890625, "text": "<image>" }, { "id": 32001, "logprob": -17.40625, "text": "<image>" }, { "id": 32001, "logprob": -20.390625, "text": "<image>" }, { "id": 32001, "logprob": -19.1875, "text": "<image>" }, { "id": 32001, "logprob": -15.9609375, "text": "<image>" }, { "id": 32000, "logprob": -2.0332031, "text": "<fake_token_around_image>" }, { "id": 12018, "logprob": -12.078125, "text": "Write" }, { "id": 528, "logprob": -10.109375, "text": "me" }, { "id": 264, "logprob": -0.103515625, "text": "a" }, { "id": 2485, "logprob": -4.5664062, "text": "short" }, { "id": 2838, "logprob": -0.23864746, "text": "story" }, { "id": 32002, "logprob": -10.9609375, "text": "<end_of_utterance>" }, { "id": 259, "logprob": -20.34375, "text": " " }, { "id": 13, "logprob": -8.5546875, "text": "\n" }, { "id": 7226, "logprob": -10.484375, "text": "Ass" }, { "id": 11143, "logprob": -13.6015625, "text": "istant" }, { "id": 28747, "logprob": -0.008308411, "text": ":" } ], "seed": null, "tokens": [ { "id": 330, "logprob": -0.09448242, "special": false, "text": " A" }, { "id": 13088, "logprob": -0.6743164, "special": false, "text": " chicken" }, { "id": 349, "logprob": -0.31201172, "special": false, "text": " is" }, { "id": 6398, "logprob": -0.051635742, "special": false, "text": " sitting" }, { "id": 356, "logprob": -0.34033203, "special": false, "text": " on" }, { "id": 264, "logprob": -0.1194458, "special": false, "text": " a" }, { "id": 17972, "logprob": -0.032562256, "special": false, "text": " pile" }, { "id": 302, "logprob": -0.00018787384, "special": false, "text": " of" }, { "id": 2445, "logprob": -0.07122803, "special": false, "text": " money" }, { "id": 28723, "logprob": -0.0041007996, "special": false, "text": "." } ], "top_tokens": null }, "generated_text": " A chicken is sitting on a pile of money." }, { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [ { "id": 1, "logprob": null, "text": "<s>" }, { "id": 1247, "logprob": -5.2382812, "text": "User" }, { "id": 28747, "logprob": -6.9492188, "text": ":" }, { "id": 32000, "logprob": -16.234375, "text": "<fake_token_around_image>" }, { "id": 32001, "logprob": -18.984375, "text": "<image>" }, { "id": 32001, "logprob": -18.171875, "text": "<image>" }, { "id": 32001, "logprob": -19.46875, "text": "<image>" }, { "id": 32001, "logprob": -17.578125, "text": "<image>" }, { "id": 32001, "logprob": -16.8125, "text": "<image>" }, { "id": 32001, "logprob": -19.296875, "text": "<image>" }, { "id": 32001, "logprob": -20.21875, "text": "<image>" }, { "id": 32001, "logprob": -16.421875, "text": "<image>" }, { "id": 32001, "logprob": -19.84375, "text": "<image>" }, { "id": 32001, "logprob": -23.25, "text": "<image>" }, { "id": 32001, "logprob": -19.421875, "text": "<image>" }, { "id": 32001, "logprob": -15.28125, "text": "<image>" }, { "id": 32001, "logprob": -17.734375, "text": "<image>" }, { "id": 32001, "logprob": -20.34375, "text": "<image>" }, { "id": 32001, "logprob": -21.296875, "text": "<image>" }, { "id": 32001, "logprob": -21.03125, "text": "<image>" }, { "id": 32001, "logprob": -20.421875, "text": "<image>" }, { "id": 32001, "logprob": -16.03125, "text": "<image>" }, { "id": 32001, "logprob": -19.046875, "text": "<image>" }, { "id": 32001, "logprob": -22.765625, "text": "<image>" }, { "id": 32001, "logprob": -23.609375, "text": "<image>" }, { "id": 32001, "logprob": -20.421875, "text": "<image>" }, { "id": 32001, "logprob": -20.421875, "text": "<image>" }, { "id": 32001, "logprob": -20.875, "text": "<image>" }, { "id": 32001, "logprob": -16.5, "text": "<image>" }, { "id": 32001, "logprob": -19.96875, "text": "<image>" }, { "id": 32001, "logprob": -18.234375, "text": "<image>" }, { "id": 32001, "logprob": -23.59375, "text": "<image>" }, { "id": 32001, "logprob": -21.1875, "text": "<image>" }, { "id": 32001, "logprob": -17.359375, "text": "<image>" }, { "id": 32001, "logprob": -16.53125, "text": "<image>" }, { "id": 32001, "logprob": -19.03125, "text": "<image>" }, { "id": 32001, "logprob": -21.78125, "text": "<image>" }, { "id": 32001, "logprob": -19.328125, "text": "<image>" }, { "id": 32001, "logprob": -17.96875, "text": "<image>" }, { "id": 32001, "logprob": -18.859375, "text": "<image>" }, { "id": 32001, "logprob": -17.921875, "text": "<image>" }, { "id": 32001, "logprob": -19.1875, "text": "<image>" }, { "id": 32001, "logprob": -18.65625, "text": "<image>" }, { "id": 32001, "logprob": -20.140625, "text": "<image>" }, { "id": 32001, "logprob": -19.4375, "text": "<image>" }, { "id": 32001, "logprob": -14.8828125, "text": "<image>" }, { "id": 32001, "logprob": -18.453125, "text": "<image>" }, { "id": 32001, "logprob": -23.21875, "text": "<image>" }, { "id": 32001, "logprob": -17.421875, "text": "<image>" }, { "id": 32001, "logprob": -23.671875, "text": "<image>" }, { "id": 32001, "logprob": -23.0, "text": "<image>" }, { "id": 32001, "logprob": -19.75, "text": "<image>" }, { "id": 32001, "logprob": -17.078125, "text": "<image>" }, { "id": 32001, "logprob": -17.640625, "text": "<image>" }, { "id": 32001, "logprob": -17.046875, "text": "<image>" }, { "id": 32001, "logprob": -18.421875, "text": "<image>" }, { "id": 32001, "logprob": -20.578125, "text": "<image>" }, { "id": 32001, "logprob": -18.328125, "text": "<image>" }, { "id": 32001, "logprob": -17.125, "text": "<image>" }, { "id": 32001, "logprob": -18.65625, "text": "<image>" }, { "id": 32001, "logprob": -18.875, "text": "<image>" }, { "id": 32001, "logprob": -16.0, "text": "<image>" }, { "id": 32001, "logprob": -18.15625, "text": "<image>" }, { "id": 32001, "logprob": -18.84375, "text": "<image>" }, { "id": 32001, "logprob": -20.15625, "text": "<image>" }, { "id": 32001, "logprob": -18.96875, "text": "<image>" }, { "id": 32001, "logprob": -18.703125, "text": "<image>" }, { "id": 32001, "logprob": -17.921875, "text": "<image>" }, { "id": 32000, "logprob": -3.015625, "text": "<fake_token_around_image>" }, { "id": 32001, "logprob": -22.109375, "text": "<image>" }, { "id": 32001, "logprob": -18.96875, "text": "<image>" }, { "id": 32001, "logprob": -20.125, "text": "<image>" }, { "id": 32001, "logprob": -17.125, "text": "<image>" }, { "id": 32001, "logprob": -17.8125, "text": "<image>" }, { "id": 32001, "logprob": -19.3125, "text": "<image>" }, { "id": 32001, "logprob": -19.65625, "text": "<image>" }, { "id": 32001, "logprob": -16.3125, "text": "<image>" }, { "id": 32001, "logprob": -19.375, "text": "<image>" }, { "id": 32001, "logprob": -20.046875, "text": "<image>" }, { "id": 32001, "logprob": -20.828125, "text": "<image>" }, { "id": 32001, "logprob": -15.8046875, "text": "<image>" }, { "id": 32001, "logprob": -16.25, "text": "<image>" }, { "id": 32001, "logprob": -19.953125, "text": "<image>" }, { "id": 32001, "logprob": -18.875, "text": "<image>" }, { "id": 32001, "logprob": -21.59375, "text": "<image>" }, { "id": 32001, "logprob": -20.515625, "text": "<image>" }, { "id": 32001, "logprob": -19.171875, "text": "<image>" }, { "id": 32001, "logprob": -19.296875, "text": "<image>" }, { "id": 32001, "logprob": -16.71875, "text": "<image>" }, { "id": 32001, "logprob": -20.46875, "text": "<image>" }, { "id": 32001, "logprob": -21.125, "text": "<image>" }, { "id": 32001, "logprob": -20.40625, "text": "<image>" }, { "id": 32001, "logprob": -20.734375, "text": "<image>" }, { "id": 32001, "logprob": -17.765625, "text": "<image>" }, { "id": 32001, "logprob": -20.328125, "text": "<image>" }, { "id": 32001, "logprob": -15.2734375, "text": "<image>" }, { "id": 32001, "logprob": -18.84375, "text": "<image>" }, { "id": 32001, "logprob": -17.875, "text": "<image>" }, { "id": 32001, "logprob": -15.578125, "text": "<image>" }, { "id": 32001, "logprob": -18.3125, "text": "<image>" }, { "id": 32001, "logprob": -20.625, "text": "<image>" }, { "id": 32001, "logprob": -20.140625, "text": "<image>" }, { "id": 32001, "logprob": -18.34375, "text": "<image>" }, { "id": 32001, "logprob": -17.8125, "text": "<image>" }, { "id": 32001, "logprob": -17.046875, "text": "<image>" }, { "id": 32001, "logprob": -16.578125, "text": "<image>" }, { "id": 32001, "logprob": -20.859375, "text": "<image>" }, { "id": 32001, "logprob": -18.15625, "text": "<image>" }, { "id": 32001, "logprob": -19.625, "text": "<image>" }, { "id": 32001, "logprob": -19.546875, "text": "<image>" }, { "id": 32001, "logprob": -14.1953125, "text": "<image>" }, { "id": 32001, "logprob": -18.90625, "text": "<image>" }, { "id": 32001, "logprob": -18.1875, "text": "<image>" }, { "id": 32001, "logprob": -17.421875, "text": "<image>" }, { "id": 32001, "logprob": -20.421875, "text": "<image>" }, { "id": 32001, "logprob": -20.0, "text": "<image>" }, { "id": 32001, "logprob": -20.359375, "text": "<image>" }, { "id": 32001, "logprob": -18.03125, "text": "<image>" }, { "id": 32001, "logprob": -17.203125, "text": "<image>" }, { "id": 32001, "logprob": -16.84375, "text": "<image>" }, { "id": 32001, "logprob": -18.09375, "text": "<image>" }, { "id": 32001, "logprob": -15.71875, "text": "<image>" }, { "id": 32001, "logprob": -18.203125, "text": "<image>" }, { "id": 32001, "logprob": -18.4375, "text": "<image>" }, { "id": 32001, "logprob": -18.46875, "text": "<image>" }, { "id": 32001, "logprob": -17.3125, "text": "<image>" }, { "id": 32001, "logprob": -16.265625, "text": "<image>" }, { "id": 32001, "logprob": -19.453125, "text": "<image>" }, { "id": 32001, "logprob": -14.734375, "text": "<image>" }, { "id": 32001, "logprob": -20.6875, "text": "<image>" }, { "id": 32001, "logprob": -20.21875, "text": "<image>" }, { "id": 32001, "logprob": -18.359375, "text": "<image>" }, { "id": 32001, "logprob": -18.1875, "text": "<image>" }, { "id": 32000, "logprob": -3.2988281, "text": "<fake_token_around_image>" }, { "id": 32001, "logprob": -25.75, "text": "<image>" }, { "id": 32001, "logprob": -18.421875, "text": "<image>" }, { "id": 32001, "logprob": -19.265625, "text": "<image>" }, { "id": 32001, "logprob": -17.90625, "text": "<image>" }, { "id": 32001, "logprob": -17.203125, "text": "<image>" }, { "id": 32001, "logprob": -20.140625, "text": "<image>" }, { "id": 32001, "logprob": -17.96875, "text": "<image>" }, { "id": 32001, "logprob": -16.453125, "text": "<image>" }, { "id": 32001, "logprob": -19.65625, "text": "<image>" }, { "id": 32001, "logprob": -18.203125, "text": "<image>" }, { "id": 32001, "logprob": -16.921875, "text": "<image>" }, { "id": 32001, "logprob": -15.75, "text": "<image>" }, { "id": 32001, "logprob": -16.375, "text": "<image>" }, { "id": 32001, "logprob": -17.25, "text": "<image>" }, { "id": 32001, "logprob": -16.5625, "text": "<image>" }, { "id": 32001, "logprob": -18.828125, "text": "<image>" }, { "id": 32001, "logprob": -18.765625, "text": "<image>" }, { "id": 32001, "logprob": -16.90625, "text": "<image>" }, { "id": 32001, "logprob": -18.984375, "text": "<image>" }, { "id": 32001, "logprob": -19.765625, "text": "<image>" }, { "id": 32001, "logprob": -19.890625, "text": "<image>" }, { "id": 32001, "logprob": -20.421875, "text": "<image>" }, { "id": 32001, "logprob": -19.34375, "text": "<image>" }, { "id": 32001, "logprob": -20.140625, "text": "<image>" }, { "id": 32001, "logprob": -19.34375, "text": "<image>" }, { "id": 32001, "logprob": -19.875, "text": "<image>" }, { "id": 32001, "logprob": -19.015625, "text": "<image>" }, { "id": 32001, "logprob": -19.625, "text": "<image>" }, { "id": 32001, "logprob": -17.671875, "text": "<image>" }, { "id": 32001, "logprob": -16.984375, "text": "<image>" }, { "id": 32001, "logprob": -15.953125, "text": "<image>" }, { "id": 32001, "logprob": -19.53125, "text": "<image>" }, { "id": 32001, "logprob": -20.078125, "text": "<image>" }, { "id": 32001, "logprob": -18.953125, "text": "<image>" }, { "id": 32001, "logprob": -15.4453125, "text": "<image>" }, { "id": 32001, "logprob": -19.828125, "text": "<image>" }, { "id": 32001, "logprob": -15.453125, "text": "<image>" }, { "id": 32001, "logprob": -20.6875, "text": "<image>" }, { "id": 32001, "logprob": -20.1875, "text": "<image>" }, { "id": 32001, "logprob": -19.03125, "text": "<image>" }, { "id": 32001, "logprob": -17.40625, "text": "<image>" }, { "id": 32001, "logprob": -15.984375, "text": "<image>" }, { "id": 32001, "logprob": -18.21875, "text": "<image>" }, { "id": 32001, "logprob": -19.71875, "text": "<image>" }, { "id": 32001, "logprob": -19.9375, "text": "<image>" }, { "id": 32001, "logprob": -20.421875, "text": "<image>" }, { "id": 32001, "logprob": -19.46875, "text": "<image>" }, { "id": 32001, "logprob": -18.90625, "text": "<image>" }, { "id": 32001, "logprob": -17.8125, "text": "<image>" }, { "id": 32001, "logprob": -18.90625, "text": "<image>" }, { "id": 32001, "logprob": -17.09375, "text": "<image>" }, { "id": 32001, "logprob": -16.234375, "text": "<image>" }, { "id": 32001, "logprob": -16.25, "text": "<image>" }, { "id": 32001, "logprob": -18.984375, "text": "<image>" }, { "id": 32001, "logprob": -19.59375, "text": "<image>" }, { "id": 32001, "logprob": -16.328125, "text": "<image>" }, { "id": 32001, "logprob": -17.703125, "text": "<image>" }, { "id": 32001, "logprob": -16.4375, "text": "<image>" }, { "id": 32001, "logprob": -19.359375, "text": "<image>" }, { "id": 32001, "logprob": -17.015625, "text": "<image>" }, { "id": 32001, "logprob": -17.03125, "text": "<image>" }, { "id": 32001, "logprob": -20.140625, "text": "<image>" }, { "id": 32001, "logprob": -18.5625, "text": "<image>" }, { "id": 32001, "logprob": -18.0, "text": "<image>" }, { "id": 32000, "logprob": -2.7207031, "text": "<fake_token_around_image>" }, { "id": 32001, "logprob": -23.34375, "text": "<image>" }, { "id": 32001, "logprob": -22.203125, "text": "<image>" }, { "id": 32001, "logprob": -21.015625, "text": "<image>" }, { "id": 32001, "logprob": -18.578125, "text": "<image>" }, { "id": 32001, "logprob": -18.1875, "text": "<image>" }, { "id": 32001, "logprob": -20.296875, "text": "<image>" }, { "id": 32001, "logprob": -18.484375, "text": "<image>" }, { "id": 32001, "logprob": -16.46875, "text": "<image>" }, { "id": 32001, "logprob": -20.890625, "text": "<image>" }, { "id": 32001, "logprob": -19.390625, "text": "<image>" }, { "id": 32001, "logprob": -18.96875, "text": "<image>" }, { "id": 32001, "logprob": -16.078125, "text": "<image>" }, { "id": 32001, "logprob": -17.28125, "text": "<image>" }, { "id": 32001, "logprob": -18.53125, "text": "<image>" }, { "id": 32001, "logprob": -20.5, "text": "<image>" }, { "id": 32001, "logprob": -21.5, "text": "<image>" }, { "id": 32001, "logprob": -19.6875, "text": "<image>" }, { "id": 32001, "logprob": -18.765625, "text": "<image>" }, { "id": 32001, "logprob": -19.671875, "text": "<image>" }, { "id": 32001, "logprob": -19.203125, "text": "<image>" }, { "id": 32001, "logprob": -21.03125, "text": "<image>" }, { "id": 32001, "logprob": -21.328125, "text": "<image>" }, { "id": 32001, "logprob": -19.3125, "text": "<image>" }, { "id": 32001, "logprob": -20.609375, "text": "<image>" }, { "id": 32001, "logprob": -18.6875, "text": "<image>" }, { "id": 32001, "logprob": -19.921875, "text": "<image>" }, { "id": 32001, "logprob": -20.9375, "text": "<image>" }, { "id": 32001, "logprob": -19.46875, "text": "<image>" }, { "id": 32001, "logprob": -18.0, "text": "<image>" }, { "id": 32001, "logprob": -17.40625, "text": "<image>" }, { "id": 32001, "logprob": -18.640625, "text": "<image>" }, { "id": 32001, "logprob": -18.59375, "text": "<image>" }, { "id": 32001, "logprob": -20.25, "text": "<image>" }, { "id": 32001, "logprob": -19.828125, "text": "<image>" }, { "id": 32001, "logprob": -15.796875, "text": "<image>" }, { "id": 32001, "logprob": -18.765625, "text": "<image>" }, { "id": 32001, "logprob": -15.6640625, "text": "<image>" }, { "id": 32001, "logprob": -21.3125, "text": "<image>" }, { "id": 32001, "logprob": -19.8125, "text": "<image>" }, { "id": 32001, "logprob": -19.671875, "text": "<image>" }, { "id": 32001, "logprob": -18.640625, "text": "<image>" }, { "id": 32001, "logprob": -15.96875, "text": "<image>" }, { "id": 32001, "logprob": -20.1875, "text": "<image>" }, { "id": 32001, "logprob": -19.8125, "text": "<image>" }, { "id": 32001, "logprob": -20.921875, "text": "<image>" }, { "id": 32001, "logprob": -21.46875, "text": "<image>" }, { "id": 32001, "logprob": -21.25, "text": "<image>" }, { "id": 32001, "logprob": -19.09375, "text": "<image>" }, { "id": 32001, "logprob": -17.59375, "text": "<image>" }, { "id": 32001, "logprob": -19.375, "text": "<image>" }, { "id": 32001, "logprob": -17.09375, "text": "<image>" }, { "id": 32001, "logprob": -16.90625, "text": "<image>" }, { "id": 32001, "logprob": -18.875, "text": "<image>" }, { "id": 32001, "logprob": -20.171875, "text": "<image>" }, { "id": 32001, "logprob": -20.921875, "text": "<image>" }, { "id": 32001, "logprob": -16.453125, "text": "<image>" }, { "id": 32001, "logprob": -18.984375, "text": "<image>" }, { "id": 32001, "logprob": -16.4375, "text": "<image>" }, { "id": 32001, "logprob": -19.875, "text": "<image>" }, { "id": 32001, "logprob": -17.59375, "text": "<image>" }, { "id": 32001, "logprob": -17.171875, "text": "<image>" }, { "id": 32001, "logprob": -20.34375, "text": "<image>" }, { "id": 32001, "logprob": -19.171875, "text": "<image>" }, { "id": 32001, "logprob": -18.578125, "text": "<image>" }, { "id": 32000, "logprob": -3.0917969, "text": "<fake_token_around_image>" }, { "id": 32001, "logprob": -25.375, "text": "<image>" }, { "id": 32001, "logprob": -18.921875, "text": "<image>" }, { "id": 32001, "logprob": -20.6875, "text": "<image>" }, { "id": 32001, "logprob": -17.921875, "text": "<image>" }, { "id": 32001, "logprob": -18.734375, "text": "<image>" }, { "id": 32001, "logprob": -18.71875, "text": "<image>" }, { "id": 32001, "logprob": -21.453125, "text": "<image>" }, { "id": 32001, "logprob": -16.734375, "text": "<image>" }, { "id": 32001, "logprob": -20.875, "text": "<image>" }, { "id": 32001, "logprob": -21.453125, "text": "<image>" }, { "id": 32001, "logprob": -15.796875, "text": "<image>" }, { "id": 32001, "logprob": -15.1328125, "text": "<image>" }, { "id": 32001, "logprob": -17.125, "text": "<image>" }, { "id": 32001, "logprob": -18.90625, "text": "<image>" }, { "id": 32001, "logprob": -21.421875, "text": "<image>" }, { "id": 32001, "logprob": -21.015625, "text": "<image>" }, { "id": 32001, "logprob": -20.734375, "text": "<image>" }, { "id": 32001, "logprob": -16.25, "text": "<image>" }, { "id": 32001, "logprob": -19.5, "text": "<image>" }, { "id": 32001, "logprob": -21.59375, "text": "<image>" }, { "id": 32001, "logprob": -22.515625, "text": "<image>" }, { "id": 32001, "logprob": -20.921875, "text": "<image>" }, { "id": 32001, "logprob": -19.703125, "text": "<image>" }, { "id": 32001, "logprob": -21.0, "text": "<image>" }, { "id": 32001, "logprob": -16.984375, "text": "<image>" }, { "id": 32001, "logprob": -17.53125, "text": "<image>" }, { "id": 32001, "logprob": -17.921875, "text": "<image>" }, { "id": 32001, "logprob": -22.1875, "text": "<image>" }, { "id": 32001, "logprob": -18.75, "text": "<image>" }, { "id": 32001, "logprob": -16.375, "text": "<image>" }, { "id": 32001, "logprob": -18.4375, "text": "<image>" }, { "id": 32001, "logprob": -20.265625, "text": "<image>" }, { "id": 32001, "logprob": -22.296875, "text": "<image>" }, { "id": 32001, "logprob": -18.484375, "text": "<image>" }, { "id": 32001, "logprob": -15.390625, "text": "<image>" }, { "id": 32001, "logprob": -19.75, "text": "<image>" }, { "id": 32001, "logprob": -14.6484375, "text": "<image>" }, { "id": 32001, "logprob": -21.609375, "text": "<image>" }, { "id": 32001, "logprob": -18.828125, "text": "<image>" }, { "id": 32001, "logprob": -20.828125, "text": "<image>" }, { "id": 32001, "logprob": -17.015625, "text": "<image>" }, { "id": 32001, "logprob": -16.40625, "text": "<image>" }, { "id": 32001, "logprob": -21.046875, "text": "<image>" }, { "id": 32001, "logprob": -21.234375, "text": "<image>" }, { "id": 32001, "logprob": -17.140625, "text": "<image>" }, { "id": 32001, "logprob": -21.515625, "text": "<image>" }, { "id": 32001, "logprob": -20.0, "text": "<image>" }, { "id": 32001, "logprob": -18.78125, "text": "<image>" }, { "id": 32001, "logprob": -16.375, "text": "<image>" }, { "id": 32001, "logprob": -16.890625, "text": "<image>" }, { "id": 32001, "logprob": -16.703125, "text": "<image>" }, { "id": 32001, "logprob": -13.625, "text": "<image>" }, { "id": 32001, "logprob": -15.375, "text": "<image>" }, { "id": 32001, "logprob": -17.515625, "text": "<image>" }, { "id": 32001, "logprob": -21.921875, "text": "<image>" }, { "id": 32001, "logprob": -15.640625, "text": "<image>" }, { "id": 32001, "logprob": -16.46875, "text": "<image>" }, { "id": 32001, "logprob": -16.421875, "text": "<image>" }, { "id": 32001, "logprob": -19.890625, "text": "<image>" }, { "id": 32001, "logprob": -17.890625, "text": "<image>" }, { "id": 32001, "logprob": -17.40625, "text": "<image>" }, { "id": 32001, "logprob": -20.390625, "text": "<image>" }, { "id": 32001, "logprob": -19.1875, "text": "<image>" }, { "id": 32001, "logprob": -15.9609375, "text": "<image>" }, { "id": 32000, "logprob": -2.0332031, "text": "<fake_token_around_image>" }, { "id": 12018, "logprob": -12.078125, "text": "Write" }, { "id": 528, "logprob": -10.109375, "text": "me" }, { "id": 264, "logprob": -0.103515625, "text": "a" }, { "id": 2485, "logprob": -4.5664062, "text": "short" }, { "id": 2838, "logprob": -0.23864746, "text": "story" }, { "id": 32002, "logprob": -10.9609375, "text": "<end_of_utterance>" }, { "id": 259, "logprob": -20.34375, "text": " " }, { "id": 13, "logprob": -8.5546875, "text": "\n" }, { "id": 7226, "logprob": -10.484375, "text": "Ass" }, { "id": 11143, "logprob": -13.6015625, "text": "istant" }, { "id": 28747, "logprob": -0.008308411, "text": ":" } ], "seed": null, "tokens": [ { "id": 330, "logprob": -0.09448242, "special": false, "text": " A" }, { "id": 13088, "logprob": -0.6743164, "special": false, "text": " chicken" }, { "id": 349, "logprob": -0.31201172, "special": false, "text": " is" }, { "id": 6398, "logprob": -0.051635742, "special": false, "text": " sitting" }, { "id": 356, "logprob": -0.34033203, "special": false, "text": " on" }, { "id": 264, "logprob": -0.1194458, "special": false, "text": " a" }, { "id": 17972, "logprob": -0.032562256, "special": false, "text": " pile" }, { "id": 302, "logprob": -0.00018763542, "special": false, "text": " of" }, { "id": 2445, "logprob": -0.07122803, "special": false, "text": " money" }, { "id": 28723, "logprob": -0.0041007996, "special": false, "text": "." } ], "top_tokens": null }, "generated_text": " A chicken is sitting on a pile of money." } ]
text-generation-inference/integration-tests/models/__snapshots__/test_idefics2/test_flash_idefics2_next_load.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_idefics2/test_flash_idefics2_next_load.json", "repo_id": "text-generation-inference", "token_count": 101154 }
214
{ "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [ { "id": 0, "logprob": null, "text": "<pad>" } ], "seed": 0, "tokens": [ { "id": 16017, "logprob": 0.0, "special": false, "text": " blue" }, { "id": 20495, "logprob": 0.0, "special": false, "text": " sky" }, { "id": 259, "logprob": -0.46948242, "special": false, "text": " " }, { "id": 261, "logprob": -0.15307617, "special": false, "text": "," }, { "id": 35622, "logprob": -0.79589844, "special": false, "text": " cloud" }, { "id": 263, "logprob": -1.2958984, "special": false, "text": "s" }, { "id": 305, "logprob": 0.0, "special": false, "text": " and" }, { "id": 35622, "logprob": -1.2998047, "special": false, "text": " cloud" }, { "id": 263, "logprob": 0.0, "special": false, "text": "s" }, { "id": 1, "logprob": 0.0, "special": true, "text": "</s>" } ], "top_tokens": null }, "generated_text": "Why is the sky blue?blue sky, clouds and clouds" }
text-generation-inference/integration-tests/models/__snapshots__/test_mt0_base/test_mt0_base_all_params.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_mt0_base/test_mt0_base_all_params.json", "repo_id": "text-generation-inference", "token_count": 911 }
215
import pytest @pytest.fixture(scope="module") def bloom_560_handle(launcher): with launcher("bigscience/bloom-560m") as handle: yield handle @pytest.fixture(scope="module") async def bloom_560(bloom_560_handle): await bloom_560_handle.health(240) return bloom_560_handle.client @pytest.mark.release @pytest.mark.asyncio async def test_bloom_560m(bloom_560, response_snapshot): response = await bloom_560.generate( "Pour déguster un ortolan, il faut tout d'abord", max_new_tokens=10, top_p=0.9, decoder_input_details=True, seed=0, ) assert response.details.generated_tokens == 10 assert response == response_snapshot @pytest.mark.release @pytest.mark.asyncio async def test_bloom_560m_all_params(bloom_560, response_snapshot): response = await bloom_560.generate( "Pour déguster un ortolan, il faut tout d'abord", max_new_tokens=10, repetition_penalty=1.2, return_full_text=True, stop_sequences=["test"], temperature=0.5, top_p=0.9, top_k=10, truncate=5, typical_p=0.9, watermark=True, decoder_input_details=True, seed=0, ) assert response.details.generated_tokens == 10 assert response == response_snapshot @pytest.mark.release @pytest.mark.asyncio async def test_bloom_560m_load(bloom_560, generate_load, response_snapshot): responses = await generate_load( bloom_560, "Pour déguster un ortolan, il faut tout d'abord", max_new_tokens=10, n=4, ) assert len(responses) == 4 assert all([r.generated_text == responses[0].generated_text for r in responses]) assert responses == response_snapshot
text-generation-inference/integration-tests/models/test_bloom_560m.py/0
{ "file_path": "text-generation-inference/integration-tests/models/test_bloom_560m.py", "repo_id": "text-generation-inference", "token_count": 776 }
216
import pytest @pytest.fixture(scope="module") def flash_llama_gptq_handle(launcher): with launcher( "astronomer/Llama-3-8B-Instruct-GPTQ-4-Bit", num_shard=2, quantize="gptq" ) as handle: yield handle @pytest.fixture(scope="module") async def flash_llama_gptq(flash_llama_gptq_handle): await flash_llama_gptq_handle.health(300) return flash_llama_gptq_handle.client @pytest.mark.release @pytest.mark.asyncio @pytest.mark.private async def test_flash_llama_gptq(flash_llama_gptq, response_snapshot): response = await flash_llama_gptq.generate( "Test request", max_new_tokens=10, decoder_input_details=True ) assert response.details.generated_tokens == 10 assert response == response_snapshot @pytest.mark.release @pytest.mark.asyncio @pytest.mark.private async def test_flash_llama_gptq_all_params(flash_llama_gptq, response_snapshot): response = await flash_llama_gptq.generate( "Test request", max_new_tokens=10, repetition_penalty=1.2, return_full_text=True, temperature=0.5, top_p=0.9, top_k=10, truncate=5, typical_p=0.9, watermark=True, decoder_input_details=True, seed=0, ) assert response.details.generated_tokens == 10 assert response == response_snapshot @pytest.mark.release @pytest.mark.asyncio @pytest.mark.private async def test_flash_llama_gptq_load( flash_llama_gptq, generate_load, response_snapshot ): responses = await generate_load( flash_llama_gptq, "Test request", max_new_tokens=10, n=4 ) assert len(responses) == 4 assert all([r.generated_text == responses[0].generated_text for r in responses]) assert responses == response_snapshot
text-generation-inference/integration-tests/models/test_flash_llama_gptq.py/0
{ "file_path": "text-generation-inference/integration-tests/models/test_flash_llama_gptq.py", "repo_id": "text-generation-inference", "token_count": 769 }
217
import pytest import base64 @pytest.fixture(scope="module") def idefics_handle(launcher): with launcher( "HuggingFaceM4/idefics-9b-instruct", num_shard=2, dtype="float16" ) as handle: yield handle @pytest.fixture(scope="module") async def idefics(idefics_handle): await idefics_handle.health(300) return idefics_handle.client # TODO fix the server parsser to count inline image tokens correctly def get_chicken(): with open("integration-tests/images/chicken_on_money.png", "rb") as image_file: encoded_string = base64.b64encode(image_file.read()) return f"data:image/png;base64,{encoded_string.decode('utf-8')}" def get_cow_beach(): with open("integration-tests/images/cow_beach.png", "rb") as image_file: encoded_string = base64.b64encode(image_file.read()) return f"data:image/png;base64,{encoded_string.decode('utf-8')}" @pytest.mark.asyncio async def test_idefics(idefics, response_snapshot): chicken = get_chicken() response = await idefics.generate( f"User:![]({chicken})Can you tell me a very short story based on the image?", max_new_tokens=10, decoder_input_details=True, ) assert response.details.generated_tokens == 10 assert ( response.generated_text == " \nAssistant: A rooster stands" ), f"{repr(response.generated_text)}" assert response == response_snapshot @pytest.mark.release @pytest.mark.asyncio @pytest.mark.private async def test_idefics_two_images(idefics, response_snapshot): chicken = get_chicken() cow_beach = get_cow_beach() response = await idefics.generate( f"User:![]({chicken})![]({cow_beach})Where are the cow and chicken?<end_of_utterance> \nAssistant:", max_new_tokens=20, ) assert ( response.generated_text == " The cow and chicken are on a beach." ), f"{repr(response.generated_text)}" assert response == response_snapshot @pytest.mark.release @pytest.mark.asyncio async def test_idefics_load(idefics, generate_load, response_snapshot): chicken = get_chicken() responses = await generate_load( idefics, f"User:![]({chicken})Can you tell me a very short story based on the image?", max_new_tokens=10, n=4, ) generated_texts = [r.generated_text for r in responses] assert generated_texts[0] == " \nAssistant: A rooster stands" assert len(generated_texts) == 4 assert generated_texts, all( [text == generated_texts[0] for text in generated_texts] ) assert responses == response_snapshot
text-generation-inference/integration-tests/models/test_idefics.py/0
{ "file_path": "text-generation-inference/integration-tests/models/test_idefics.py", "repo_id": "text-generation-inference", "token_count": 1030 }
218
[package] name = "text-generation-launcher" description = "Text Generation Launcher" version.workspace = true edition.workspace = true authors.workspace = true homepage.workspace = true [dependencies] clap = { version = "4.4.5", features = ["derive", "env"] } ctrlc = { version = "3.4.1", features = ["termination"] } hf-hub = "0.3.2" nix = { version = "0.28.0", features = ["signal"] } once_cell = "1.19.0" serde = { version = "1.0.188", features = ["derive"] } serde_json = "1.0.107" thiserror = "1.0.59" tracing = "0.1.37" tracing-subscriber = { version = "0.3.17", features = ["json", "env-filter"] } [dev-dependencies] float_eq = "1.0.1" reqwest = { version = "0.11.20", features = ["blocking", "json"] } [build-dependencies] vergen = { version = "8.2.5", features = ["build", "cargo", "git", "gitcl", "rustc", "si"] }
text-generation-inference/launcher/Cargo.toml/0
{ "file_path": "text-generation-inference/launcher/Cargo.toml", "repo_id": "text-generation-inference", "token_count": 322 }
219
include Makefile-flash-att include Makefile-flash-att-v2 include Makefile-vllm include Makefile-awq include Makefile-eetq include Makefile-selective-scan include Makefile-lorax-punica include Makefile-fbgemm include Makefile-exllamav2 include Makefile-flashinfer unit-tests: pytest -s -vv -m "not private" tests gen-server: # Compile protos pip install grpcio-tools==1.62.2 mypy-protobuf==3.6.0 'types-protobuf' --no-cache-dir mkdir text_generation_server/pb || true python -m grpc_tools.protoc -I../proto/v3 --python_out=text_generation_server/pb \ --grpc_python_out=text_generation_server/pb --mypy_out=text_generation_server/pb ../proto/v3/generate.proto find text_generation_server/pb/ -type f -name "*.py" -print0 -exec sed -i -e 's/^\(import.*pb2\)/from . \1/g' {} \; touch text_generation_server/pb/__init__.py install-server: gen-server pip install pip --upgrade pip install -r requirements_cuda.txt pip install -e ".[accelerate, quantize, peft, outlines]" install: install-cuda echo "Installed server" install-cuda: install-server install-flash-attention-v2-cuda install-vllm-cuda install-flash-attention install-fbgemm pip install -e ".[bnb]" pip install nvidia-nccl-cu12==2.22.3 install-rocm: install-server install-flash-attention-v2-rocm install-vllm-rocm run-dev: SAFETENSORS_FAST_GPU=1 python -m torch.distributed.run --nproc_per_node=2 text_generation_server/cli.py serve bigscience/bloom-560m --sharded export-requirements: poetry export -o requirements_cuda.txt --without-hashes poetry export -o requirements_rocm.txt --without-hashes poetry export -o requirements_intel.txt --without-hashes
text-generation-inference/server/Makefile/0
{ "file_path": "text-generation-inference/server/Makefile", "repo_id": "text-generation-inference", "token_count": 610 }
220
// Adapted from turboderp exllama: https://github.com/turboderp/exllama #define _cuda_buffers_cu #include "cuda_buffers.cuh" CudaBuffers* g_buffers[CUDA_MAX_DEVICES] = {NULL}; // __constant__ half2 q4_table[16][256]; // half2 q4_table_host[16][256]; // bool q4_table_init = false; CudaBuffers::CudaBuffers ( int _device, half* _temp_state, half* _temp_dq ) : device(_device), temp_state(_temp_state), temp_dq(_temp_dq) { cudaSetDevice(_device); cudaStreamCreate(&alt_stream_1); cudaStreamCreate(&alt_stream_2); cudaStreamCreate(&alt_stream_3); cudaEventCreate(&alt_stream_1_done); cudaEventCreate(&alt_stream_2_done); cudaEventCreate(&alt_stream_3_done); } CudaBuffers::~CudaBuffers() { cudaStreamDestroy(alt_stream_1); cudaStreamDestroy(alt_stream_2); cudaStreamDestroy(alt_stream_3); cudaEventDestroy(alt_stream_1_done); cudaEventDestroy(alt_stream_2_done); cudaEventDestroy(alt_stream_3_done); } CudaBuffers* get_buffers(const int device_index) { return g_buffers[device_index]; } void prepare_buffers_cuda ( int _device, half* _temp_state, half* _temp_dq ) { CudaBuffers* buffers = new CudaBuffers ( _device, _temp_state, _temp_dq ); g_buffers[_device] = buffers; } void cleanup_buffers_cuda() { for (int i = 0; i < CUDA_MAX_DEVICES; i++) { if (!g_buffers[i]) continue; delete g_buffers[i]; g_buffers[i] = NULL; } }
text-generation-inference/server/exllama_kernels/exllama_kernels/cuda_buffers.cu/0
{ "file_path": "text-generation-inference/server/exllama_kernels/exllama_kernels/cuda_buffers.cu", "repo_id": "text-generation-inference", "token_count": 680 }
221
#include <torch/extension.h> #include <c10/cuda/CUDAGuard.h> #include <ATen/cuda/CUDAContext.h> #include <cuda_runtime.h> #include <cuda_fp16.h> #include <cstdint> #include <cstdio> #include "config.h" #include "cuda/q_matrix.cuh" #include "cuda/q_gemm.cuh" #include "cpp/util.h" // Some decluttering macros #define TORCH_CHECK_DTYPE(__x, __dtype) TORCH_CHECK((__x).dtype() == torch::__dtype, #__x " is incorrect datatype, must be " #__dtype) #define TORCH_CHECK_DTYPE_OPT(__x, __dtype) TORCH_CHECK((__x).device().is_meta() || (__x).dtype() == torch::__dtype, #__x " is incorrect datatype, must be " #__dtype) #define TORCH_CHECK_SHAPES(__x, __dim_x, __y, __dim_y, __scale_y) TORCH_CHECK((__x).size(__dim_x) == (__y).size(__dim_y) * __scale_y, #__x " and " #__y " have incompatible shapes") #define TORCH_CHECK_SHAPES_OPT(__x, __dim_x, __y, __dim_y, __scale_y) TORCH_CHECK((__x).device().is_meta() || (__x).size(__dim_x) == (__y).size(__dim_y) * __scale_y, #__x " and " #__y " have incompatible shapes") // Quant matrix uintptr_t make_q_matrix ( torch::Tensor q_weight, torch::Tensor q_perm, torch::Tensor q_invperm, torch::Tensor q_scale, torch::Tensor q_scale_max, torch::Tensor q_groups, torch::Tensor q_group_map, torch::Tensor gptq_qzeros, torch::Tensor gptq_scales, torch::Tensor gptq_g_idx, torch::Tensor temp_dq ) { TORCH_CHECK_DTYPE(q_weight, kInt); TORCH_CHECK_DTYPE_OPT(q_perm, kShort); TORCH_CHECK_DTYPE_OPT(q_invperm, kShort); TORCH_CHECK_DTYPE_OPT(q_scale, kInt); TORCH_CHECK_DTYPE_OPT(q_scale_max, kHalf); TORCH_CHECK_DTYPE_OPT(q_groups, kShort); TORCH_CHECK_DTYPE_OPT(q_group_map, kShort); TORCH_CHECK_DTYPE_OPT(gptq_qzeros, kInt); TORCH_CHECK_DTYPE_OPT(gptq_scales, kHalf); TORCH_CHECK_DTYPE_OPT(gptq_g_idx, kInt); TORCH_CHECK_SHAPES(q_perm, 0, q_invperm, 0, 1); int device = q_weight.device().index(); int width = q_weight.size(1); int groups; int height; if (!q_scale.device().is_meta()) { TORCH_CHECK_SHAPES(q_weight, 1, q_scale, 1, 8); TORCH_CHECK_SHAPES(q_scale_max, 0, q_scale, 0, 1); groups = q_scale.size(0); height = q_invperm.size(0); } else { TORCH_CHECK_SHAPES(q_weight, 1, gptq_qzeros, 1, 8); TORCH_CHECK_SHAPES(q_weight, 1, gptq_scales, 1, 1); groups = gptq_qzeros.size(0); height = q_weight.size(0) * 8; } TORCH_CHECK(temp_dq.size(0) >= width * height, "Insufficient size of temp_dq buffer") QMatrix* m = new QMatrix ( device, height, width, groups, (uint32_t*) q_weight.data_ptr(), q_perm.device().is_meta() ? NULL : (uint16_t*) q_perm.data_ptr(), q_invperm.device().is_meta() ? NULL : (uint16_t*) q_invperm.data_ptr(), q_scale.device().is_meta() ? NULL : (uint32_t*) q_scale.data_ptr(), q_scale_max.device().is_meta() ? NULL : (half*) q_scale_max.data_ptr(), q_groups.device().is_meta() ? NULL : (uint16_t*) q_groups.data_ptr(), q_group_map.device().is_meta() ? NULL : (uint16_t*) q_group_map.data_ptr(), gptq_qzeros.device().is_meta() ? NULL : (uint32_t*) gptq_qzeros.data_ptr(), gptq_scales.device().is_meta() ? NULL : (half*) gptq_scales.data_ptr(), gptq_g_idx.device().is_meta() ? NULL : (uint32_t*) gptq_g_idx.data_ptr(), (half*) temp_dq.data_ptr() ); if (m->failed) throw std::runtime_error("CUDA out of memory"); return reinterpret_cast<uintptr_t> (m); } void gemm_half_q_half ( torch::Tensor a, uintptr_t b, torch::Tensor c, bool force_cuda ) { QMatrix* qm = reinterpret_cast<QMatrix*> (b); TORCH_CHECK_DTYPE(a, kHalf); TORCH_CHECK_DTYPE(c, kHalf); TORCH_CHECK_SHAPES(a, 0, c, 0, 1); TORCH_CHECK(qm->height == a.size(1), "a and b have incompatible shapes") TORCH_CHECK(qm->width == c.size(1), "b and c have incompatible shapes") const at::cuda::OptionalCUDAGuard device_guard(device_of(a)); gemm_half_q_half_cuda ( at::cuda::getCurrentCUDABlasHandle(), (const half*) a.data_ptr(), qm, (half*) c.data_ptr(), c.size(0), // m c.size(1), // n a.size(1), // k true, NULL, force_cuda ); } // Bindings PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("make_q_matrix", &make_q_matrix, "make_q_matrix"); m.def("gemm_half_q_half", &gemm_half_q_half, "gemm_half_q_half"); }
text-generation-inference/server/exllamav2_kernels/exllamav2_kernels/ext.cpp/0
{ "file_path": "text-generation-inference/server/exllamav2_kernels/exllamav2_kernels/ext.cpp", "repo_id": "text-generation-inference", "token_count": 2184 }
222
import torch from text_generation_server.layers import ( TensorParallelEmbedding, ) class ProcessGroup: def __init__(self, rank: int, world_size: int): self._rank = rank self.world_size = world_size def size(self) -> int: return self.world_size def rank(self) -> int: return self._rank class Weights: def __init__(self, rank: int, world_size: int, vocab_size: int, hidden_dim: int): self.weight = ( torch.arange(vocab_size * hidden_dim).float().view(vocab_size, hidden_dim) ) self.process_group = ProcessGroup(rank, world_size) def get_partial_sharded(self, name: str, dim: int): assert dim == 0 rank = self.process_group.rank() world_size = self.process_group.size() size = self.weight.shape[dim] block_size = (size + world_size - 1) // world_size start = rank * block_size stop = (rank + 1) * block_size return self.weight[start:stop] def get_shape(self, name: str): return self.weight.shape def test_weight_hub_files_offline_error(): vocab_size = 17 weights = Weights( rank=0, world_size=1, vocab_size=vocab_size, hidden_dim=256, ) embeddings = TensorParallelEmbedding("", weights) input_ids = torch.arange(vocab_size) output = embeddings.forward(input_ids) assert embeddings.min_id == 0 assert embeddings.max_id == 17 torch.testing.assert_close(output, torch.arange(256 * 17).float().view(17, 256)) weights_0_2 = Weights(rank=0, world_size=2, vocab_size=vocab_size, hidden_dim=256) weights_1_2 = Weights(rank=1, world_size=2, vocab_size=vocab_size, hidden_dim=256) embeddings_0_2 = TensorParallelEmbedding("", weights_0_2, reduce=False) assert embeddings_0_2.min_id == 0 assert embeddings_0_2.max_id == 9 torch.testing.assert_close( embeddings_0_2.weight, torch.cat([torch.arange(9 * 256), torch.zeros(256)], dim=0) .view(10, 256) .float(), ) embeddings_1_2 = TensorParallelEmbedding("", weights_1_2, reduce=False) assert embeddings_1_2.min_id == 9 assert embeddings_1_2.max_id == 17 torch.testing.assert_close( embeddings_1_2.weight, torch.cat([torch.arange(8 * 256) + 9 * 256, torch.zeros(256)], dim=0) .view(9, 256) .float(), ) output_tp_0 = embeddings_0_2.forward(input_ids) output_tp_1 = embeddings_1_2.forward(input_ids) torch.testing.assert_close(output, output_tp_0 + output_tp_1)
text-generation-inference/server/tests/utils/test_layers.py/0
{ "file_path": "text-generation-inference/server/tests/utils/test_layers.py", "repo_id": "text-generation-inference", "token_count": 1146 }
223
#!/usr/bin/env python """ Fused Attention =============== This is a Triton implementation of the Flash Attention v2 algorithm from Tri Dao (https://tridao.me/publications/flash2/flash2.pdf) Credits: OpenAI kernel team, AMD ML Frameworks Triton team Features supported: 1) Fwd with causal masking 2) Any sequence lengths without padding (currently fwd kernel only) 3) Support for different sequence lengths for q and k 4) Nested tensor API currently does not support dropout or bias. Not currently supported: 1) Non power of two head dims """ import torch import triton import triton.language as tl torch_dtype: tl.constexpr = torch.float16 @triton.jit def cdiv_fn(x, y): return (x + y - 1) // y @triton.jit def max_fn(x, y): return tl.math.max(x, y) @triton.jit def dropout_offsets(philox_seed, philox_offset, dropout_p, m, n, stride): ms = tl.arange(0, m) ns = tl.arange(0, n) return philox_offset + ms[:, None] * stride + ns[None, :] @triton.jit def dropout_rng(philox_seed, philox_offset, dropout_p, m, n, stride): rng_offsets = dropout_offsets( philox_seed, philox_offset, dropout_p, m, n, stride ).to(tl.uint32) # TODO: use tl.randint for better performance return tl.rand(philox_seed, rng_offsets) @triton.jit def dropout_mask(philox_seed, philox_offset, dropout_p, m, n, stride): rng_output = dropout_rng(philox_seed, philox_offset, dropout_p, m, n, stride) rng_keep = rng_output > dropout_p return rng_keep @triton.jit def load_fn(block_ptr, first, second, pad): if first and second: tensor = tl.load(block_ptr, boundary_check=(0, 1), padding_option=pad) elif first: tensor = tl.load(block_ptr, boundary_check=(0,), padding_option=pad) elif second: tensor = tl.load(block_ptr, boundary_check=(1,), padding_option=pad) else: tensor = tl.load(block_ptr) return tensor @triton.jit def _attn_fwd_inner( acc, l_i, m_i, q, K_block_ptr, V_block_ptr, start_m, actual_seqlen_k, dropout_p, philox_seed, batch_philox_offset, encoded_softmax_block_ptr, block_min, block_max, offs_n_causal, masked_blocks, n_extra_tokens, bias_ptr, IS_CAUSAL: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, OFFS_M: tl.constexpr, OFFS_N: tl.constexpr, PRE_LOAD_V: tl.constexpr, MASK_STEPS: tl.constexpr, ENABLE_DROPOUT: tl.constexpr, RETURN_ENCODED_SOFTMAX: tl.constexpr, PADDED_HEAD: tl.constexpr, ): # loop over k, v, and update accumulator for start_n in range(block_min, block_max, BLOCK_N): # For padded blocks, we will overrun the tensor size if # we load all BLOCK_N. For others, the blocks are all within range. k = load_fn( K_block_ptr, PADDED_HEAD, MASK_STEPS and (n_extra_tokens != 0), "zero", ) if PRE_LOAD_V: v = load_fn( V_block_ptr, MASK_STEPS and (n_extra_tokens != 0), PADDED_HEAD, "zero", ) qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) # We start from end of seqlen_k so only the first iteration would need # to be checked for padding if it is not a multiple of block_n # TODO: This can be optimized to only be true for the padded block. if MASK_STEPS: # noqa: SIM102 # If this is the last block / iteration, we want to # mask if the sequence length is not a multiple of block size # a solution is to always do BLOCK_M // BLOCK_N + 1 steps # if not is_modulo_mn. last step might get wasted but that is okay. # check if this masking works for that case. if (start_n + BLOCK_N == block_max) and (n_extra_tokens != 0): boundary_m = tl.full([BLOCK_M], actual_seqlen_k, dtype=tl.int32) size_n = start_n + OFFS_N[None, :] mask = size_n < boundary_m[:, None] qk = tl.where(mask, qk, float("-inf")) if IS_CAUSAL: causal_boundary = start_n + offs_n_causal causal_mask = OFFS_M[:, None] >= causal_boundary[None, :] qk = tl.where(causal_mask, qk, float("-inf")) # -- compute qk ---- qk += tl.dot(q, k) if bias_ptr is not None: bias = load_fn( bias_ptr, False, MASK_STEPS and (n_extra_tokens != 0), "zero" ) # While bias is added after multiplying qk with sm_scale, our # optimization to use 2^x instead of e^x results in an additional # scale factor of log2(e) which we must also multiply the bias with. qk += bias * 1.44269504089 m_ij = tl.maximum(m_i, tl.max(qk, 1)) qk = qk - m_ij[:, None] p = tl.math.exp2(qk) # CAVEAT: Must update l_ij before applying dropout l_ij = tl.sum(p, 1) if ENABLE_DROPOUT: philox_offset = ( batch_philox_offset + start_m * BLOCK_M * actual_seqlen_k + start_n - BLOCK_N ) keep = dropout_mask( philox_seed, philox_offset, dropout_p, BLOCK_M, BLOCK_N, actual_seqlen_k, ) if RETURN_ENCODED_SOFTMAX: tl.store( encoded_softmax_block_ptr, tl.where(keep, p, -p).to(encoded_softmax_block_ptr.type.element_ty), ) p = tl.where(keep, p, 0.0) elif RETURN_ENCODED_SOFTMAX: tl.store( encoded_softmax_block_ptr, p.to(encoded_softmax_block_ptr.type.element_ty), ) # -- update output accumulator -- alpha = tl.math.exp2(m_i - m_ij) acc = acc * alpha[:, None] if not PRE_LOAD_V: v = load_fn( V_block_ptr, MASK_STEPS and (n_extra_tokens != 0), PADDED_HEAD, "zero", ) # -- update m_i and l_i l_i = l_i * alpha + l_ij # update m_i and l_i m_i = m_ij acc += tl.dot(p.to(V_block_ptr.type.element_ty), v) V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) if bias_ptr is not None: bias_ptr = tl.advance(bias_ptr, (0, BLOCK_N)) if RETURN_ENCODED_SOFTMAX: encoded_softmax_block_ptr = tl.advance( encoded_softmax_block_ptr, (0, BLOCK_N) ) return acc, l_i, m_i @triton.autotune( configs=[ triton.Config( { "BLOCK_M": 256, "BLOCK_N": 64, "waves_per_eu": 2, "PRE_LOAD_V": False, }, num_stages=1, num_warps=8, ), triton.Config( { "BLOCK_M": 128, "BLOCK_N": 128, "waves_per_eu": 2, "PRE_LOAD_V": False, }, num_stages=1, num_warps=4, ), triton.Config( { "BLOCK_M": 256, "BLOCK_N": 128, "waves_per_eu": 2, "PRE_LOAD_V": False, }, num_stages=1, num_warps=8, ), triton.Config( { "BLOCK_M": 128, "BLOCK_N": 64, "waves_per_eu": 3, "PRE_LOAD_V": True, }, num_stages=1, num_warps=4, ), triton.Config( { "BLOCK_M": 128, "BLOCK_N": 64, "waves_per_eu": 3, "PRE_LOAD_V": False, }, num_stages=1, num_warps=4, ), triton.Config( { "BLOCK_M": 64, "BLOCK_N": 64, "waves_per_eu": 4, "PRE_LOAD_V": False, }, num_stages=1, num_warps=8, ), triton.Config( { "BLOCK_M": 32, "BLOCK_N": 32, "waves_per_eu": 4, "PRE_LOAD_V": False, }, num_stages=1, num_warps=8, ), # TODO: This config fails with head_size not pow2 with data mismatches. # triton.Config({'BLOCK_M': 32, 'BLOCK_N': 16, 'waves_per_eu': 1, # 'PRE_LOAD_V': False}, num_stages=1, num_warps=4), triton.Config( { "BLOCK_M": 16, "BLOCK_N": 16, "waves_per_eu": 1, "PRE_LOAD_V": False, }, num_stages=1, num_warps=4, ), triton.Config( { "BLOCK_M": 128, "BLOCK_N": 64, "waves_per_eu": 1, "PRE_LOAD_V": False, }, num_stages=1, num_warps=4, ), ], key=["IS_CAUSAL", "dropout_p", "BLOCK_DMODEL"], ) @triton.jit def attn_fwd( Q, K, V, bias, sm_scale, L, Out, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om, stride_on, stride_bz, stride_bh, stride_bm, stride_bn, cu_seqlens_q, cu_seqlens_k, dropout_p, philox_seed, philox_offset_base, encoded_softmax, HQ: tl.constexpr, HK: tl.constexpr, ACTUAL_BLOCK_DMODEL: tl.constexpr, MAX_SEQLENS_Q: tl.constexpr, MAX_SEQLENS_K: tl.constexpr, VARLEN: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, PRE_LOAD_V: tl.constexpr, BIAS_TYPE: tl.constexpr, ENABLE_DROPOUT: tl.constexpr, RETURN_ENCODED_SOFTMAX: tl.constexpr, ): start_m = tl.program_id(0) off_h_q = tl.program_id(1) off_z = tl.program_id(2) offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) if VARLEN: cu_seqlens_q_start = tl.load(cu_seqlens_q + off_z) cu_seqlens_q_end = tl.load(cu_seqlens_q + off_z + 1) seqlen_q = cu_seqlens_q_end - cu_seqlens_q_start # We have a one-size-fits-all grid in id(0). Some seqlens might be too # small for all start_m so for those we return early. if start_m * BLOCK_M > seqlen_q: return cu_seqlens_k_start = tl.load(cu_seqlens_k + off_z) cu_seqlens_k_end = tl.load(cu_seqlens_k + off_z + 1) seqlen_k = cu_seqlens_k_end - cu_seqlens_k_start else: cu_seqlens_q_start = 0 cu_seqlens_k_start = 0 seqlen_q = MAX_SEQLENS_Q seqlen_k = MAX_SEQLENS_K # Now we compute whether we need to exit early due to causal masking. # This is because for seqlen_q > seqlen_k, M rows of the attn scores # are completely masked, resulting in 0s written to the output, and # inf written to LSE. We don't need to do any GEMMs in this case. # This block of code determines what N is, and if this WG is operating # on those M rows. n_blocks = cdiv_fn(seqlen_k, BLOCK_N) if IS_CAUSAL: # If seqlen_q == seqlen_k, the attn scores are a square matrix. # If seqlen_q != seqlen_k, attn scores are rectangular which means # the causal mask boundary is bottom right aligned, and ends at either # the top edge (seqlen_q < seqlen_k) or left edge. # This captures the decrease in n_blocks if we have a rectangular attn # matrix n_blocks_seqlen = cdiv_fn( (start_m + 1) * BLOCK_M + seqlen_k - seqlen_q, BLOCK_N ) # This is what adjusts the block_max for the current WG, only # if IS_CAUSAL. Otherwise we want to always iterate through all n_blocks n_blocks = min(n_blocks, n_blocks_seqlen) # If we have no blocks after adjusting for seqlen deltas, this WG is # part of the blocks that are all 0. We exit early. if n_blocks <= 0: o_offset = ( off_z * stride_oz + cu_seqlens_q_start * stride_om + off_h_q * stride_oh ) O_block_ptr = tl.make_block_ptr( base=Out + o_offset, shape=(seqlen_q, BLOCK_DMODEL), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0), ) acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=Out.type.element_ty) # We still need to write 0s to the result # tl.store(O_block_ptr, # acc.to(Out.type.element_ty), boundary_check=(0,1)) # l_ptrs = L + off_z * hq * MAX_SEQLENS_Q + off_h_q * MAX_SEQLENS_Q # + offs_m # We store inf to LSE, not -inf because in the bwd pass, # we subtract this # from qk which makes it -inf, such that exp(qk - inf) = 0 # for these masked blocks. # l = tl.full([BLOCK_M], value=float("inf"), dtype=tl.float32) # tl.store(l_ptrs, l) # TODO: Should dropout and return encoded softmax be handled here? return # If MQA / GQA, set the K and V head offsets appropriately. GROUP_SIZE: tl.constexpr = HQ // HK if GROUP_SIZE != 1: off_h_k = off_h_q // GROUP_SIZE else: off_h_k = off_h_q n_extra_tokens = 0 if seqlen_k < BLOCK_N: n_extra_tokens = BLOCK_N - seqlen_k elif seqlen_k % BLOCK_N: n_extra_tokens = seqlen_k % BLOCK_N PADDED_HEAD: tl.constexpr = ACTUAL_BLOCK_DMODEL != BLOCK_DMODEL # Compute pointers for all the tensors used in this kernel. q_offset = off_z * stride_qz + off_h_q * stride_qh + cu_seqlens_q_start * stride_qm Q_block_ptr = tl.make_block_ptr( base=Q + q_offset, shape=(seqlen_q, ACTUAL_BLOCK_DMODEL), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0), ) k_offset = off_z * stride_kz + off_h_k * stride_kh + cu_seqlens_k_start * stride_kn K_block_ptr = tl.make_block_ptr( base=K + k_offset, shape=(ACTUAL_BLOCK_DMODEL, seqlen_k), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(BLOCK_DMODEL, BLOCK_N), order=(0, 1), ) v_offset = off_z * stride_vz + off_h_k * stride_vh + cu_seqlens_k_start * stride_vk V_block_ptr = tl.make_block_ptr( base=V + v_offset, shape=(seqlen_k, ACTUAL_BLOCK_DMODEL), strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, BLOCK_DMODEL), order=(1, 0), ) if BIAS_TYPE != 0: bias_ptr = tl.make_block_ptr( base=bias + off_h_q * stride_bh, shape=(seqlen_q, seqlen_k), strides=(stride_bm, stride_bn), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_N), order=(1, 0), ) else: bias_ptr = None if ENABLE_DROPOUT: batch_philox_offset = ( philox_offset_base + (off_z * HQ + off_h_q) * seqlen_q * seqlen_k ) else: batch_philox_offset = 0 # We can ask to return the dropout mask without actually doing any dropout. # In this case, we return an invalid pointer so indicate the mask is not i # valid. # TODO: Fix encoded softmax. It currently uses just h_q in the base offset. if RETURN_ENCODED_SOFTMAX: encoded_softmax_block_ptr = tl.make_block_ptr( base=encoded_softmax + off_h_q * seqlen_q * seqlen_k, shape=(seqlen_q, seqlen_k), strides=(seqlen_k, 1), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_N), order=(1, 0), ) else: encoded_softmax_block_ptr = 0 # initialize pointer to m and l m_i = tl.full([BLOCK_M], float("-inf"), dtype=tl.float32) l_i = tl.full([BLOCK_M], 1.0, dtype=tl.float32) acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) # scale sm_scale by log_2(e) and use 2^x in the loop as we do not # have native e^x support in HW. qk_scale = sm_scale * 1.44269504089 # Q is loaded once at the beginning and shared by all N blocks. q = load_fn(Q_block_ptr, True, PADDED_HEAD, "zero") q = (q * qk_scale).to(Q_block_ptr.type.element_ty) # Here we compute how many full and masked blocks we have. padded_block_k = n_extra_tokens != 0 is_modulo_mn = not padded_block_k and (seqlen_q % BLOCK_M == 0) if IS_CAUSAL: # There are always at least BLOCK_M // BLOCK_N masked blocks. # Additionally there might be one more due to dissimilar seqlens. masked_blocks = BLOCK_M // BLOCK_N + (not is_modulo_mn) else: # Padding on Q does not need to be masked in the FA loop. masked_blocks = padded_block_k # if IS_CAUSAL, not is_modulo_mn does not always result in an additional # block. In this case we might exceed n_blocks so pick the min. masked_blocks = min(masked_blocks, n_blocks) n_full_blocks = n_blocks - masked_blocks block_min = 0 block_max = n_blocks * BLOCK_N # Compute for full blocks. Here we set causal to false regardless of its # value because there is no masking. Similarly we do not need padding. if n_full_blocks > 0: block_max = (n_blocks - masked_blocks) * BLOCK_N acc, l_i, m_i = _attn_fwd_inner( acc, l_i, m_i, q, K_block_ptr, V_block_ptr, start_m, seqlen_k, dropout_p, philox_seed, batch_philox_offset, encoded_softmax_block_ptr, # _, _, offs_n_causal, masked_blocks, n_extra_tokens, _ block_min, block_max, 0, 0, 0, bias_ptr, # IS_CAUSAL, .... False, BLOCK_M, BLOCK_DMODEL, BLOCK_N, offs_m, offs_n, # _, MASK_STEPS, ... PRE_LOAD_V, False, ENABLE_DROPOUT, RETURN_ENCODED_SOFTMAX, PADDED_HEAD, ) block_min = block_max block_max = n_blocks * BLOCK_N tl.debug_barrier() # Remaining blocks, if any, are full / not masked. if masked_blocks > 0: offs_n_causal = offs_n + (seqlen_q - seqlen_k) if IS_CAUSAL else 0 K_block_ptr = tl.advance(K_block_ptr, (0, n_full_blocks * BLOCK_N)) V_block_ptr = tl.advance(V_block_ptr, (n_full_blocks * BLOCK_N, 0)) if bias_ptr is not None: bias_ptr = tl.advance(bias_ptr, (0, n_full_blocks * BLOCK_N)) if RETURN_ENCODED_SOFTMAX: encoded_softmax_block_ptr = tl.advance( encoded_softmax_block_ptr, (0, n_full_blocks) ) acc, l_i, m_i = _attn_fwd_inner( acc, l_i, m_i, q, K_block_ptr, V_block_ptr, start_m, seqlen_k, dropout_p, philox_seed, batch_philox_offset, encoded_softmax_block_ptr, block_min, block_max, offs_n_causal, masked_blocks, n_extra_tokens, bias_ptr, IS_CAUSAL, BLOCK_M, BLOCK_DMODEL, BLOCK_N, offs_m, offs_n, # _, MASK_STEPS, ... PRE_LOAD_V, True, ENABLE_DROPOUT, RETURN_ENCODED_SOFTMAX, PADDED_HEAD, ) # epilogue acc = acc / l_i[:, None] if ENABLE_DROPOUT: acc = acc / (1 - dropout_p) # If seqlen_q > seqlen_k but the delta is not a multiple of BLOCK_M, # then we have one block with a row of all NaNs which come from computing # softmax over a row of all -infs (-inf - inf = NaN). We check for that here # and store 0s where there are NaNs as these rows should've been zeroed out. end_m_idx = (start_m + 1) * BLOCK_M start_m_idx = start_m * BLOCK_M causal_start_idx = seqlen_q - seqlen_k acc = acc.to(Out.type.element_ty) if IS_CAUSAL: # noqa: SIM102 if causal_start_idx > start_m_idx and causal_start_idx < end_m_idx: out_mask_boundary = tl.full( (BLOCK_DMODEL,), causal_start_idx, dtype=tl.int32 ) mask_m_offsets = start_m_idx + tl.arange(0, BLOCK_M) out_ptrs_mask = mask_m_offsets[:, None] >= out_mask_boundary[None, :] z = 0.0 acc = tl.where(out_ptrs_mask, acc, z.to(acc.type.element_ty)) # write back LSE # l_ptrs = L + off_z * hq * MAX_SEQLENS_Q + off_h_q * MAX_SEQLENS_Q + offs_m # If seqlen_q not multiple of BLOCK_M, we need to mask out the last # few rows. This is only true for the last M block. For others, # overflow_size will be -ve # overflow_size = end_m_idx - seqlen_q # if overflow_size > 0: # boundary = tl.full((BLOCK_M,), BLOCK_M - overflow_size, dtype=tl.int32) # # This is a > check because mask being 0 blocks the store. # l_ptrs_mask = boundary > tl.arange(0, BLOCK_M) # tl.store(l_ptrs, m_i + tl.math.log2(l_i), mask=l_ptrs_mask) # else: # tl.store(l_ptrs, m_i + tl.math.log2(l_i)) # write back O o_offset = off_z * stride_oz + cu_seqlens_q_start * stride_om + off_h_q * stride_oh O_block_ptr = tl.make_block_ptr( base=Out + o_offset, shape=(seqlen_q, ACTUAL_BLOCK_DMODEL), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0), ) # Need boundary check on this to make sure the padding from the # Q and KV tensors in both dims are not part of what we store back. # TODO: Do the boundary check optionally. tl.store(O_block_ptr, acc, boundary_check=(0, 1)) def check_args( q, k, v, o, varlen=True, max_seqlens=None, cu_seqlens_q=None, cu_seqlens_k=None, ): assert q.dim() == k.dim() and q.dim() == v.dim() if varlen: assert q.dim() == 3 total_q, nheads_q, head_size = q.shape total_k, nheads_k, _ = k.shape assert cu_seqlens_q is not None assert cu_seqlens_k is not None assert len(cu_seqlens_q) == len(cu_seqlens_k) else: assert q.dim() == 4 batch, nheads_q, seqlen_q, head_size = q.shape _, nheads_k, seqlen_k, _ = k.shape assert max_seqlens > 0 assert k.shape == v.shape assert q.shape[-1] == k.shape[-1] and q.shape[-1] == v.shape[-1] # TODO: Change assert if we support qkl f8 and v f16 assert q.dtype == k.dtype and q.dtype == v.dtype # TODO: Fix assert to check head size <=256 once supported assert head_size <= 128 assert o.shape == q.shape assert (nheads_q % nheads_k) == 0 class _attention(torch.autograd.Function): @staticmethod def forward( ctx, q, k, v, o, cu_seqlens_q, cu_seqlens_k, max_seqlens_q, max_seqlens_k, causal=False, sm_scale=1.0, bias=None, ): if o is None: o = torch.empty_like(q, dtype=v.dtype) check_args( q, k, v, o, varlen=True, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, ) if True: # varlen total_q, nheads_q, head_size = q.shape total_k, nheads_k, _ = k.shape batch = len(cu_seqlens_q) - 1 q_strides = (0, q.stride(1), q.stride(0), q.stride(2)) k_strides = (0, k.stride(1), k.stride(0), k.stride(2)) v_strides = (0, v.stride(1), v.stride(0), v.stride(2)) o_strides = (0, o.stride(1), o.stride(0), o.stride(2)) else: batch, seqlen_q, nheads_q, head_size = q.shape _, seqlen_k, nheads_k, _ = k.shape q_strides = (q.stride(0), q.stride(2), q.stride(1), q.stride(3)) k_strides = (k.stride(0), k.stride(2), k.stride(1), k.stride(3)) v_strides = (v.stride(0), v.stride(2), v.stride(1), v.stride(3)) o_strides = (o.stride(0), o.stride(2), o.stride(1), o.stride(3)) # Get closest power of 2 over or equal to 32. padded_d_model = 1 << (head_size - 1).bit_length() padded_d_model = max(padded_d_model, 16) def grid(META): return triton.cdiv(max_seqlens_q, META["BLOCK_M"]), nheads_q, batch encoded_softmax = None # Seed the RNG so we get reproducible results for testing. philox_seed = 0x1BF52 philox_offset = 0x1D4B42 if bias is not None: bias_strides = ( bias.stride(0), bias.stride(1), bias.stride(2), bias.stride(3), ) else: bias_strides = (0, 0, 0, 0) attn_fwd[grid]( q, k, v, bias, sm_scale, None, o, *q_strides, *k_strides, *v_strides, *o_strides, *bias_strides, cu_seqlens_q, cu_seqlens_k, dropout_p=0.0, philox_seed=philox_seed, philox_offset_base=philox_offset, encoded_softmax=encoded_softmax, HQ=nheads_q, HK=nheads_k, ACTUAL_BLOCK_DMODEL=head_size, MAX_SEQLENS_Q=max_seqlens_q, MAX_SEQLENS_K=max_seqlens_k, IS_CAUSAL=causal, VARLEN=True, BLOCK_DMODEL=padded_d_model, BIAS_TYPE=0 if bias is None else 1, ENABLE_DROPOUT=False, RETURN_ENCODED_SOFTMAX=False, ) ctx.grid = grid ctx.sm_scale = sm_scale ctx.BLOCK_DMODEL = head_size ctx.causal = causal ctx.dropout_p = 0.0 ctx.philox_seed = philox_seed ctx.philox_offset = philox_offset ctx.encoded_softmax = encoded_softmax ctx.return_encoded_softmax = False return o, encoded_softmax triton_attention = _attention.apply
text-generation-inference/server/text_generation_server/layers/attention/flash_attn_triton.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/layers/attention/flash_attn_triton.py", "repo_id": "text-generation-inference", "token_count": 14692 }
224
import time import torch.nn as nn import math import json import os import torch import transformers from texttable import Texttable from transformers import AutoModelForCausalLM, AutoConfig, AutoTokenizer from huggingface_hub import HfApi from accelerate import init_empty_weights from text_generation_server.utils import initialize_torch_distributed, Weights from text_generation_server.utils.hub import weight_files from text_generation_server.layers.gptq.quant_linear import QuantLinear from loguru import logger from typing import Optional from text_generation_server.layers.gptq.utils import torch_snr_error from text_generation_server.utils.weights import DefaultWeightsLoader, UnquantizedWeight DEV = torch.device("cuda:0") class Quantizer(nn.Module): def __init__(self, shape=1): super(Quantizer, self).__init__() self.register_buffer("maxq", torch.tensor(0)) self.register_buffer("scale", torch.zeros(shape)) self.register_buffer("zero", torch.zeros(shape)) def configure( self, bits, perchannel=False, sym=True, mse=False, norm=2.4, grid=100, maxshrink=0.8, trits=False, ): self.maxq = torch.tensor(2**bits - 1) self.perchannel = perchannel self.sym = sym self.mse = mse self.norm = norm self.grid = grid self.maxshrink = maxshrink if trits: self.maxq = torch.tensor(-1) self.scale = torch.zeros_like(self.scale) def _quantize(self, x, scale, zero, maxq): if maxq < 0: return (x > scale / 2).float() * scale + (x < zero / 2).float() * zero q = torch.clamp(torch.round(x / scale) + zero, 0, maxq) return scale * (q - zero) def find_params(self, x, weight=False): dev = x.device self.maxq = self.maxq.to(dev) shape = x.shape if self.perchannel: if weight: x = x.flatten(1) else: if len(shape) == 4: x = x.permute([1, 0, 2, 3]) x = x.flatten(1) if len(shape) == 3: x = x.reshape((-1, shape[-1])).t() if len(shape) == 2: x = x.t() else: x = x.flatten().unsqueeze(0) tmp = torch.zeros(x.shape[0], device=dev) xmin = torch.minimum(x.min(1)[0], tmp) xmax = torch.maximum(x.max(1)[0], tmp) if self.sym: xmax = torch.maximum(torch.abs(xmin), xmax) tmp = xmin < 0 if torch.any(tmp): xmin[tmp] = -xmax[tmp] tmp = (xmin == 0) & (xmax == 0) xmin[tmp] = -1 xmax[tmp] = +1 if self.maxq < 0: self.scale = xmax self.zero = xmin else: self.scale = (xmax - xmin) / self.maxq if self.sym: self.zero = torch.full_like(self.scale, (self.maxq + 1) / 2) else: self.zero = torch.round(-xmin / self.scale) if self.mse: best = torch.full([x.shape[0]], float("inf"), device=dev) for i in range(int(self.maxshrink * self.grid)): p = 1 - i / self.grid xmin1 = p * xmin xmax1 = p * xmax scale1 = (xmax1 - xmin1) / self.maxq zero1 = torch.round(-xmin1 / scale1) if not self.sym else self.zero q = self._quantize( x, scale1.unsqueeze(1), zero1.unsqueeze(1), self.maxq ) q -= x q.abs_() q.pow_(self.norm) err = torch.sum(q, 1) tmp = err < best if torch.any(tmp): best[tmp] = err[tmp] self.scale[tmp] = scale1[tmp] self.zero[tmp] = zero1[tmp] if not self.perchannel: if weight: tmp = shape[0] else: tmp = shape[1] if len(shape) != 3 else shape[2] self.scale = self.scale.repeat(tmp) self.zero = self.zero.repeat(tmp) if weight: shape = [-1] + [1] * (len(shape) - 1) self.scale = self.scale.reshape(shape) self.zero = self.zero.reshape(shape) return if len(shape) == 4: self.scale = self.scale.reshape((1, -1, 1, 1)) self.zero = self.zero.reshape((1, -1, 1, 1)) if len(shape) == 3: self.scale = self.scale.reshape((1, 1, -1)) self.zero = self.zero.reshape((1, 1, -1)) if len(shape) == 2: self.scale = self.scale.unsqueeze(0) self.zero = self.zero.unsqueeze(0) def quantize(self, x): if self.ready(): return self._quantize(x, self.scale, self.zero, self.maxq) return x def enabled(self): return self.maxq > 0 def ready(self): return torch.all(self.scale != 0) class GPTQ: def __init__(self, layer, observe=False): self.layer = layer self.dev = self.layer.weight.device W = layer.weight.data.clone() if isinstance(self.layer, nn.Conv2d): W = W.flatten(1) if isinstance(self.layer, transformers.Conv1D): W = W.t() self.rows = W.shape[0] self.columns = W.shape[1] self.H = torch.zeros((self.columns, self.columns), device=self.dev) self.nsamples = 0 self.quantizer = Quantizer() self.observe = observe def add_batch(self, inp, out): # Hessian H = 2 X XT + λ I if self.observe: self.inp1 = inp self.out1 = out else: self.inp1 = None self.out1 = None if len(inp.shape) == 2: inp = inp.unsqueeze(0) tmp = inp.shape[0] if isinstance(self.layer, nn.Linear) or isinstance( self.layer, transformers.Conv1D ): if len(inp.shape) == 3: inp = inp.reshape((-1, inp.shape[-1])) inp = inp.t() if isinstance(self.layer, nn.Conv2d): unfold = nn.Unfold( self.layer.kernel_size, dilation=self.layer.dilation, padding=self.layer.padding, stride=self.layer.stride, ) inp = unfold(inp) inp = inp.permute([1, 0, 2]) inp = inp.flatten(1) self.H *= self.nsamples / (self.nsamples + tmp) self.nsamples += tmp # inp = inp.float() inp = math.sqrt(2 / self.nsamples) * inp.float() # self.H += 2 / self.nsamples * inp.matmul(inp.t()) self.H += inp.matmul(inp.t()) def print_loss(self, name, q_weight, weight_error, timecost): table = Texttable() length = 28 name = ( (name + " " * (length - len(name))) if len(name) <= length else name[:length] ) table.header(["name", "weight_error", "fp_inp_SNR", "q_inp_SNR", "time"]) # assign weight self.layer.weight.data = q_weight.reshape(self.layer.weight.shape).to( self.layer.weight.data.dtype ) if self.inp1 is not None: # quantize input to int8 quantizer = Quantizer() quantizer.configure(8, perchannel=False, sym=True, mse=False) quantizer.find_params(self.inp1) q_in = quantizer.quantize(self.inp1).type(torch.float16) q_out = self.layer(q_in) # get kinds of SNR q_SNR = torch_snr_error(q_out, self.out1).item() fp_SNR = torch_snr_error(self.layer(self.inp1), self.out1).item() else: q_SNR = "-" fp_SNR = "-" table.add_row([name, weight_error, fp_SNR, q_SNR, timecost]) print(table.draw().split("\n")[-2]) def fasterquant( self, blocksize=128, percdamp=0.01, groupsize=-1, act_order=False, name="" ): self.layer.to(self.dev) W = self.layer.weight.data.clone() if isinstance(self.layer, nn.Conv2d): W = W.flatten(1) if isinstance(self.layer, transformers.Conv1D): W = W.t() W = W.float() tick = time.time() if not self.quantizer.ready(): self.quantizer.find_params(W, weight=True) H = self.H if not self.observe: del self.H dead = torch.diag(H) == 0 H[dead, dead] = 1 W[:, dead] = 0 if act_order: perm = torch.argsort(torch.diag(H), descending=True) W = W[:, perm] H = H[perm][:, perm] Losses = torch.zeros_like(W) Q = torch.zeros_like(W) damp = percdamp * torch.mean(torch.diag(H)) diag = torch.arange(self.columns, device=self.dev) H[diag, diag] += damp H = torch.linalg.cholesky(H) H = torch.cholesky_inverse(H) try: H = torch.linalg.cholesky(H, upper=True) except Exception: # Addition because Falcon fails on h_to_4h H = torch.linalg.cholesky( H + 1e-5 * torch.eye(H.shape[0]).to(H.device), upper=True ) Hinv = H g_idx = [] scale = [] zero = [] now_idx = 1 for i1 in range(0, self.columns, blocksize): i2 = min(i1 + blocksize, self.columns) count = i2 - i1 W1 = W[:, i1:i2].clone() Q1 = torch.zeros_like(W1) Err1 = torch.zeros_like(W1) Losses1 = torch.zeros_like(W1) Hinv1 = Hinv[i1:i2, i1:i2] for i in range(count): w = W1[:, i] d = Hinv1[i, i] if groupsize != -1: if (i1 + i) % groupsize == 0: self.quantizer.find_params( W[:, (i1 + i) : (i1 + i + groupsize)], weight=True ) if ((i1 + i) // groupsize) - now_idx == -1: scale.append(self.quantizer.scale) zero.append(self.quantizer.zero) now_idx += 1 q = self.quantizer.quantize(w.unsqueeze(1)).flatten() Q1[:, i] = q Losses1[:, i] = (w - q) ** 2 / d**2 err1 = (w - q) / d W1[:, i:] -= err1.unsqueeze(1).matmul(Hinv1[i, i:].unsqueeze(0)) Err1[:, i] = err1 Q[:, i1:i2] = Q1 Losses[:, i1:i2] = Losses1 / 2 W[:, i2:] -= Err1.matmul(Hinv[i1:i2, i2:]) torch.cuda.synchronize() error = torch.sum(Losses).item() groupsize = groupsize if groupsize != -1 else self.columns g_idx = [i // groupsize for i in range(self.columns)] g_idx = torch.tensor(g_idx, dtype=torch.int32, device=Q.device) if act_order: invperm = torch.argsort(perm) Q = Q[:, invperm] g_idx = g_idx[invperm] if isinstance(self.layer, transformers.Conv1D): Q = Q.t() self.print_loss( name=name, q_weight=Q, weight_error=error, timecost=(time.time() - tick) ) if scale == []: scale.append(self.quantizer.scale) zero.append(self.quantizer.zero) scale = torch.cat(scale, dim=1) zero = torch.cat(zero, dim=1) return scale, zero, g_idx, error def free(self): self.inp1 = None self.out1 = None self.H = None self.Losses = None self.Trace = None torch.cuda.empty_cache() def get_wikitext2(nsamples, seed, seqlen, model_id, trust_remote_code): from datasets import load_dataset traindata = load_dataset("wikitext", "wikitext-2-raw-v1", split="train") testdata = load_dataset("wikitext", "wikitext-2-raw-v1", split="test") try: tokenizer = AutoTokenizer.from_pretrained( model_id, use_fast=False, trust_remote_code=trust_remote_code ) except Exception: tokenizer = AutoTokenizer.from_pretrained( model_id, use_fast=True, trust_remote_code=trust_remote_code ) trainenc = tokenizer("\n\n".join(traindata["text"]), return_tensors="pt") testenc = tokenizer("\n\n".join(testdata["text"]), return_tensors="pt") import random random.seed(seed) trainloader = [] for _ in range(nsamples): i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1) j = i + seqlen inp = trainenc.input_ids[:, i:j] tar = inp.clone() tar[:, :-1] = -100 trainloader.append((inp, tar)) return trainloader, testenc def get_ptb(nsamples, seed, seqlen, model_id, trust_remote_code): from datasets import load_dataset traindata = load_dataset("ptb_text_only", "penn_treebank", split="train") valdata = load_dataset("ptb_text_only", "penn_treebank", split="validation") try: tokenizer = AutoTokenizer.from_pretrained( model_id, use_fast=False, trust_remote_code=trust_remote_code ) except Exception: tokenizer = AutoTokenizer.from_pretrained( model_id, use_fast=True, trust_remote_code=trust_remote_code ) trainenc = tokenizer("\n\n".join(traindata["sentence"]), return_tensors="pt") testenc = tokenizer("\n\n".join(valdata["sentence"]), return_tensors="pt") import random random.seed(seed) trainloader = [] for _ in range(nsamples): i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1) j = i + seqlen inp = trainenc.input_ids[:, i:j] tar = inp.clone() tar[:, :-1] = -100 trainloader.append((inp, tar)) return trainloader, testenc def get_c4(nsamples, seed, seqlen, model_id, trust_remote_code): from datasets import load_dataset traindata = load_dataset( "allenai/c4", "allenai--c4", data_files={"train": "en/c4-train.00000-of-01024.json.gz"}, split="train", use_auth_token=False, ) valdata = load_dataset( "allenai/c4", "allenai--c4", data_files={"validation": "en/c4-validation.00000-of-00008.json.gz"}, split="validation", use_auth_token=False, ) try: tokenizer = AutoTokenizer.from_pretrained( model_id, use_fast=False, trust_remote_code=trust_remote_code ) except Exception: tokenizer = AutoTokenizer.from_pretrained( model_id, use_fast=True, trust_remote_code=trust_remote_code ) import random random.seed(seed) trainloader = [] for _ in range(nsamples): while True: i = random.randint(0, len(traindata) - 1) trainenc = tokenizer(traindata[i]["text"], return_tensors="pt") if trainenc.input_ids.shape[1] >= seqlen: break i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1) j = i + seqlen inp = trainenc.input_ids[:, i:j] tar = inp.clone() tar[:, :-1] = -100 trainloader.append((inp, tar)) import random random.seed(0) valenc = [] for _ in range(256): while True: i = random.randint(0, len(valdata) - 1) tmp = tokenizer(valdata[i]["text"], return_tensors="pt") if tmp.input_ids.shape[1] >= seqlen: break i = random.randint(0, tmp.input_ids.shape[1] - seqlen - 1) j = i + seqlen valenc.append(tmp.input_ids[:, i:j]) valenc = torch.hstack(valenc) class TokenizerWrapper: def __init__(self, input_ids): self.input_ids = input_ids valenc = TokenizerWrapper(valenc) return trainloader, valenc def get_ptb_new(nsamples, seed, seqlen, model_id, trust_remote_code): from datasets import load_dataset traindata = load_dataset("ptb_text_only", "penn_treebank", split="train") testdata = load_dataset("ptb_text_only", "penn_treebank", split="test") try: tokenizer = AutoTokenizer.from_pretrained( model_id, use_fast=False, trust_remote_code=trust_remote_code ) except Exception: tokenizer = AutoTokenizer.from_pretrained( model_id, use_fast=True, trust_remote_code=trust_remote_code ) trainenc = tokenizer(" ".join(traindata["sentence"]), return_tensors="pt") testenc = tokenizer(" ".join(testdata["sentence"]), return_tensors="pt") import random random.seed(seed) trainloader = [] for _ in range(nsamples): i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1) j = i + seqlen inp = trainenc.input_ids[:, i:j] tar = inp.clone() tar[:, :-1] = -100 trainloader.append((inp, tar)) return trainloader, testenc def get_c4_new(nsamples, seed, seqlen, model_id, trust_remote_code): from datasets import load_dataset traindata = load_dataset( "allenai/c4", "allenai--c4", data_files={"train": "en/c4-train.00000-of-01024.json.gz"}, split="train", ) valdata = load_dataset( "allenai/c4", "allenai--c4", data_files={"validation": "en/c4-validation.00000-of-00008.json.gz"}, split="validation", ) try: tokenizer = AutoTokenizer.from_pretrained( model_id, use_fast=False, trust_remote_code=trust_remote_code ) except Exception: tokenizer = AutoTokenizer.from_pretrained( model_id, use_fast=True, trust_remote_code=trust_remote_code ) import random random.seed(seed) trainloader = [] for _ in range(nsamples): while True: i = random.randint(0, len(traindata) - 1) trainenc = tokenizer(traindata[i]["text"], return_tensors="pt") if trainenc.input_ids.shape[1] >= seqlen: break i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1) j = i + seqlen inp = trainenc.input_ids[:, i:j] tar = inp.clone() tar[:, :-1] = -100 trainloader.append((inp, tar)) valenc = tokenizer(" ".join(valdata[:1100]["text"]), return_tensors="pt") valenc = valenc.input_ids[:, : (256 * seqlen)] class TokenizerWrapper: def __init__(self, input_ids): self.input_ids = input_ids valenc = TokenizerWrapper(valenc) return trainloader, valenc def get_loaders( name, nsamples=128, seed=0, seqlen=2048, model_id="", trust_remote_code=False ): if "wikitext2" in name: return get_wikitext2(nsamples, seed, seqlen, model_id, trust_remote_code) if "ptb" in name: if "new" in name: return get_ptb_new(nsamples, seed, seqlen, model_id, trust_remote_code) return get_ptb(nsamples, seed, seqlen, model_id, trust_remote_code) if "c4" in name: if "new" in name: return get_c4_new(nsamples, seed, seqlen, model_id, trust_remote_code) return get_c4(nsamples, seed, seqlen, model_id, trust_remote_code) def find_layers(module, layers=(nn.Conv2d, nn.Linear), name=""): # Skip last lm_head linear # Need isintance Falcon is inheriting Linear. if isinstance(module, layers) and "lm_head" not in name: return {name: module} res = {} for name1, child in module.named_children(): res.update( find_layers( child, layers=layers, name=name + "." + name1 if name != "" else name1 ) ) return res @torch.no_grad() def sequential( model, dataloader, dev, nsamples, bits, groupsize, *, hooks, percdamp=0.01, sym: bool = False, act_order: bool = False, ): print("Starting ...") use_cache = model.config.use_cache model.config.use_cache = False try: layers = model.model.layers prefix = "model.layers" except Exception: layers = model.transformer.h prefix = "transformer.h" dtype = next(iter(model.parameters())).dtype inps = torch.zeros( (nsamples, model.seqlen, model.config.hidden_size), dtype=dtype, device=dev ) cache = {"i": 0} extra = {} class Catcher(nn.Module): def __init__(self, module): super().__init__() self.module = module def forward(self, inp, **kwargs): inps[cache["i"]] = inp cache["i"] += 1 extra.update(kwargs.copy()) raise ValueError layers[0] = Catcher(layers[0]) for batch in dataloader: try: model(batch[0].cuda()) except ValueError: pass layers[0] = layers[0].module # layers[0] = layers[0].cpu() # model.model.embed_tokens = model.model.embed_tokens.cpu() # model.model.norm = model.model.norm.cpu() torch.cuda.empty_cache() for hook in hooks: hook.remove() outs = torch.zeros_like(inps) extra = { k: v.to(dev) if isinstance(v, torch.Tensor) else v for k, v in extra.items() } print("Ready.") quantizers = {} for i in range(len(layers)): print(f"Quantizing layer {i+1}/{len(layers)}..") print("+------------------+--------------+------------+-----------+-------+") print("| name | weight_error | fp_inp_SNR | q_inp_SNR | time |") print("+==================+==============+============+===========+=======+") layer = layers[i] layer.load() full = find_layers(layer) sequential = [list(full.keys())] for names in sequential: subset = {n: full[n] for n in names} gptq = {} for name in subset: gptq[name] = GPTQ(subset[name]) gptq[name].quantizer.configure( bits, perchannel=True, sym=sym, mse=False ) pass def add_batch(name): nonlocal gptq def tmp(_, inp, out): gptq[name].add_batch(inp[0].data, out.data) return tmp handles = [] for name in subset: handles.append(subset[name].register_forward_hook(add_batch(name))) for j in range(nsamples): outs[j] = layer(inps[j].unsqueeze(0), **extra)[0] for h in handles: h.remove() for name in subset: scale, zero, g_idx, error = gptq[name].fasterquant( percdamp=percdamp, groupsize=groupsize, act_order=act_order, name=name, ) quantizers[f"{prefix}.{i}.{name}"] = ( gptq[name].quantizer.cpu(), scale.cpu(), zero.cpu(), g_idx.cpu(), bits, groupsize, ) gptq[name].free() for j in range(nsamples): outs[j] = layer(inps[j].unsqueeze(0), **extra)[0] layer.unload() del layer del gptq torch.cuda.empty_cache() inps, outs = outs, inps print("+------------------+--------------+------------+-----------+-------+") print("\n") model.config.use_cache = use_cache return quantizers def make_quant_linear(module, names, bits, groupsize, name=""): if isinstance(module, QuantLinear): return for attr in dir(module): tmp = getattr(module, attr) name1 = name + "." + attr if name != "" else attr if name1 in names: delattr(module, attr) setattr( module, attr, QuantLinear.new( bits, groupsize, tmp.in_features, tmp.out_features, tmp.bias is not None, ), ) for name1, child in module.named_children(): make_quant_linear( child, names, bits, groupsize, name + "." + name1 if name != "" else name1 ) # TODO: perform packing on GPU def pack(model, quantizers, bits, groupsize): layers = find_layers(model) layers = {n: layers[n] for n in quantizers} make_quant_linear(model, quantizers, bits, groupsize) qlayers = find_layers(model, (QuantLinear,)) print("Packing ...") for name in qlayers: print(name) quantizers[name], scale, zero, g_idx, _, _ = quantizers[name] qlayers[name].pack(layers[name], scale, zero, g_idx) print("Done.") return model def setdeepattr(module, full_name, tensor): current = module tokens = full_name.split(".") for token in tokens[:-1]: current = getattr(current, token) setattr(current, tokens[-1], tensor) def getdeepattr(module, full_name): current = module tokens = full_name.split(".") for token in tokens: current = getattr(current, token) return current def load_weights_pre_hook(module_name, weights, recursive=False): def inner(module, args): print(f"Pre hook {module_name}") local_params = {} for k, v in module.named_parameters(): if not recursive and k.count(".") != 1: continue local_params[k] = v for k, v in module.named_buffers(): if not recursive and k.count(".") != 1: continue local_params[k] = v for local_param in local_params: current_tensor = getdeepattr(module, local_param) if current_tensor.device == torch.device("meta"): # print(f"Loading {local_param}") if module_name: tensor_name = f"{module_name}.{local_param}" else: tensor_name = local_param tensor = weights.get_tensor(tensor_name) setdeepattr(module, local_param, nn.Parameter(tensor)) else: tensor = current_tensor.to(device=torch.device("cuda:0")) if current_tensor.requires_grad: tensor = nn.Parameter(tensor) setdeepattr(module, local_param, tensor) return inner def load_weights_post_hook(module_name, weights, recursive=False): def inner(module, args, output): print(f"Post hook {module_name}") local_params = {} for k, v in module.named_parameters(): if not recursive and k.count(".") != 1: continue local_params[k] = v for k, v in module.named_buffers(): if not recursive and k.count(".") != 1: continue local_params[k] = v for local_param in local_params: # print(f"Unloading {local_param}") current_tensor = getdeepattr(module, local_param) setdeepattr( module, local_param, nn.Parameter(current_tensor.to(device=torch.device("cpu"))), ) return output return inner def quantize( model_id: str, bits: int, groupsize: int, output_dir: str, revision: str, trust_remote_code: bool, upload_to_model_id: Optional[str], percdamp: float, act_order: bool, sym: bool, ): print("loading model") config = AutoConfig.from_pretrained( model_id, trust_remote_code=trust_remote_code, ) with init_empty_weights(): model = AutoModelForCausalLM.from_config( config, torch_dtype=torch.float16, trust_remote_code=trust_remote_code ) model = model.eval() print("LOADED model") files = weight_files(model_id, revision, extension=".safetensors") process_group, _, _ = initialize_torch_distributed() weights = Weights( files, device=torch.device("cuda:0"), dtype=torch.float16, process_group=process_group, aliases={"embed_tokens.weight": ["lm_head.weight"]}, weights_loader=DefaultWeightsLoader(UnquantizedWeight), ) hooks = [] for name, module in model.named_modules(): def load(module, name): def _load(): load_weights_pre_hook(name, weights, recursive=True)(module, None) return _load def unload(module, name): def _unload(): load_weights_post_hook(name, weights, recursive=True)( module, None, None ) return _unload module.load = load(module, name) module.unload = unload(module, name) hooks.append( module.register_forward_pre_hook(load_weights_pre_hook(name, weights)) ) hooks.append( module.register_forward_hook(load_weights_post_hook(name, weights)) ) model.seqlen = 2048 dataset = "wikitext2" nsamples = 128 seed = None dataloader, testloader = get_loaders( dataset, nsamples=nsamples, seed=seed, model_id=model_id, seqlen=model.seqlen, trust_remote_code=trust_remote_code, ) tick = time.time() quantizers = sequential( model, dataloader, DEV, nsamples, bits, groupsize, percdamp=percdamp, act_order=act_order, hooks=hooks, sym=sym, ) print(time.time() - tick) pack(model, quantizers, bits, groupsize) from safetensors.torch import save_file from transformers.modeling_utils import shard_checkpoint state_dict = model.state_dict() state_dict = {k: v.cpu().contiguous() for k, v in state_dict.items()} max_shard_size = "10GB" shards, index = shard_checkpoint( state_dict, max_shard_size=max_shard_size, weights_name="model.safetensors" ) os.makedirs(output_dir, exist_ok=True) for shard_file, shard in shards.items(): save_file( shard, os.path.join(output_dir, shard_file), metadata={ "format": "pt", "quantized": "gptq", "origin": "text-generation-inference", }, ) if index is None: path_to_weights = os.path.join(output_dir, "model.safetensors") logger.info(f"Model weights saved in {path_to_weights}") else: save_index_file = "model.safetensors.index.json" save_index_file = os.path.join(output_dir, save_index_file) with open(save_index_file, "w", encoding="utf-8") as f: content = json.dumps(index, indent=2, sort_keys=True) + "\n" f.write(content) logger.info( f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be " f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the " f"index located at {save_index_file}." ) config = AutoConfig.from_pretrained(model_id, trust_remote_code=trust_remote_code) config.quantization_config = { "bits": bits, "group_size": groupsize, "damp_percent": percdamp, "desc_act": act_order, "static_groups": False, "sym": sym, "quant_method": "gptq", } config.save_pretrained(output_dir) logger.info("Saved config") logger.info("Saving tokenizer") tokenizer = AutoTokenizer.from_pretrained( model_id, trust_remote_code=trust_remote_code ) tokenizer.save_pretrained(output_dir) logger.info("Saved tokenizer") if upload_to_model_id: api = HfApi() api.upload_folder( folder_path=output_dir, repo_id=upload_to_model_id, repo_type="model" )
text-generation-inference/server/text_generation_server/layers/gptq/quantize.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/layers/gptq/quantize.py", "repo_id": "text-generation-inference", "token_count": 16163 }
225
import torch import torch.distributed from typing import Optional, Type from transformers import ( PreTrainedTokenizerBase, ) from text_generation_server.models import CausalLM from text_generation_server.models.causal_lm import CausalLMBatch from text_generation_server.pb import generate_pb2 class BloomCausalLMBatch(CausalLMBatch): @classmethod def from_pb( cls, pb: generate_pb2.Batch, tokenizer: PreTrainedTokenizerBase, dtype: torch.dtype, device: torch.device, ) -> "CausalLMBatch": batch = super().from_pb(pb=pb, tokenizer=tokenizer, dtype=dtype, device=device) batch.keys_head_dim_last = False return batch class BLOOMSharded(CausalLM): @property def batch_type(self) -> Type[CausalLMBatch]: return BloomCausalLMBatch def forward( self, input_ids, attention_mask, position_ids, past_key_values: Optional = None ): outputs, speculative_logits = self.model.forward( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=True, ) logits = outputs.logits return logits, speculative_logits, outputs.past_key_values
text-generation-inference/server/text_generation_server/models/bloom.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/models/bloom.py", "repo_id": "text-generation-inference", "token_count": 543 }
226
# coding=utf-8 # Copyright 2024 HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.distributed from torch import nn from typing import Optional, List, Tuple from text_generation_server.layers.tensor_parallel import TensorParallelColumnLinear from text_generation_server.layers.attention import Seqlen from text_generation_server.models.custom_modeling.vlm import ( load_text_model, load_vision_model, ) class PaliGemmaForConditionalGeneration(nn.Module): def __init__(self, prefix, config, weights): super().__init__() config.vision_config.quantize = config.quantize self.vision_tower = load_vision_model( prefix="vision_tower" if not prefix else f"{prefix}.vision_tower", config=config.vision_config, weights=weights, ) self.post_vision_tower_layernorm = nn.LayerNorm.load( prefix="vision_tower.vision_model.post_layernorm", weights=weights, eps=config.vision_config.layer_norm_eps, ) self.multi_modal_projector = TensorParallelColumnLinear.load( config, prefix="multi_modal_projector.linear", weights=weights, bias=True, ) self.vocab_size = config.vocab_size self.config = config text_config = config.text_config text_config.speculator = config.speculator text_config.quantize = config.quantize self.text_model = load_text_model( prefix="language_model" if not prefix else f"{prefix}.language_model", config=config.text_config, weights=weights, ) self.pad_token_id = ( config.pad_token_id if config.pad_token_id is not None else -1 ) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, seqlen: Seqlen, max_s: int, prefill_cache_indices: Optional[torch.Tensor] = None, lm_head_indices: Optional[torch.Tensor] = None, pixel_values: torch.FloatTensor = None, # Unused here pixel_attention_mask: Optional[torch.BoolTensor] = None, image_sizes: Optional[torch.Tensor] = None, adapter_data: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: inputs_embeds = self.text_model.embed_tokens(input_ids) # TODO This is odd but apparently pali gemma position ids start at 1. if cu_seqlen_prefill is not None: max_s += 1 position_ids += 1 if pixel_values is not None: pixel_values = pixel_values.to(dtype=inputs_embeds.dtype) image_outputs = self.vision_tower(pixel_values) last_hidden_state = self.post_vision_tower_layernorm( image_outputs.last_hidden_state ) image_features = self.multi_modal_projector(last_hidden_state) # mask where image or padding tokens mask = input_ids == self.config.image_token_index # insert image features into input embeddings inputs_embeds[mask] = image_features.view(-1, image_features.shape[-1]) hidden_states = self.text_model.model( inputs_embeds=inputs_embeds, position_ids=position_ids, cu_seqlen_prefill=cu_seqlen_prefill, kv_cache=kv_cache, block_tables=block_tables, slots=slots, seqlen=seqlen, max_s=max_s, ) if lm_head_indices is not None: hidden_states = hidden_states[lm_head_indices] logits, speculative_logits = self.text_model.lm_head(hidden_states) return logits, speculative_logits
text-generation-inference/server/text_generation_server/models/custom_modeling/flash_pali_gemma_modeling.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/models/custom_modeling/flash_pali_gemma_modeling.py", "repo_id": "text-generation-inference", "token_count": 1938 }
227
# coding=utf-8 # Copyright 2022 EleutherAI The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch GPTNeoX model.""" from typing import Optional, Tuple, Union import os import torch import torch.distributed import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from transformers.activations import ACT2FN from transformers.modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, ) from transformers.modeling_utils import PreTrainedModel from text_generation_server.layers import ( TensorParallelColumnLinear, TensorParallelEmbedding, TensorParallelRowLinear, SpeculativeHead, ) CUSTOM_KERNELS_ENABLED = False if ( torch.cuda.is_available() and not os.environ.get("DISABLE_CUSTOM_KERNELS", "False") == "True" ): try: from custom_kernels import fused_attention_cuda CUSTOM_KERNELS_ENABLED = True except ImportError: pass def make_causal_mask( input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int ) -> torch.BoolTensor: """ Make causal mask used for self-attention. """ batch_size, target_length = input_ids_shape mask = torch.ones( (target_length, target_length + past_key_values_length), dtype=torch.bool, device=device, ) mask = mask.triu(1 + past_key_values_length) expanded_mask = mask.unsqueeze(0).expand( batch_size, target_length, target_length + past_key_values_length ) return expanded_mask def expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor: """ Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`. """ batch_size, src_length = mask.shape tgt_length = tgt_length if tgt_length is not None else src_length expanded_mask = ~(mask[:, None, :].to(torch.bool)) return expanded_mask.expand(batch_size, tgt_length, src_length) def prepare_attn_mask( attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int, ) -> torch.BoolTensor: # create causal mask # [batch_size, seq_length] -> [batch_size, tgt_length, src_length] combined_attention_mask = None device = attention_mask.device _, src_length = input_shape if src_length > 1: combined_attention_mask = make_causal_mask( input_shape, device=device, past_key_values_length=past_key_values_length ) # [batch_size, seq_length] -> [batch_size, tgt_length, src_length] expanded_attn_mask = expand_mask(attention_mask, tgt_length=src_length) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask ) return combined_attention_mask class GPTNeoXPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ class GPTNeoXAttention(nn.Module): def __init__(self, config, prefix, weights): super().__init__() self.num_attention_heads = config.num_attention_heads self.hidden_size = config.hidden_size self.head_size = self.hidden_size // self.num_attention_heads self.rotary_ndims = int(self.head_size * config.rotary_pct) # ??? TODO # self.register_buffer( # "bias", # torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view( # 1, 1, max_positions, max_positions # ), # ) # self.register_buffer("masked_bias", torch.tensor(-1e9)) self.rotary_emb = RotaryEmbedding( self.rotary_ndims, config.max_position_embeddings, base=config.rotary_emb_base, ) self.rotary_emb.inv_freq = nn.Parameter( weights.get_tensor(f"{prefix}.rotary_emb.inv_freq") ) self.inv_norm_factor = 1.0 / torch.sqrt( torch.tensor(self.head_size, dtype=torch.float32) ).to(torch.get_default_dtype()) if self.num_attention_heads % weights.process_group.size() != 0: raise ValueError( f"`num_attention_heads` must be divisible by `num_shards` " f"(got `num_attention_heads`: {self.num_attention_heads} " f"and `num_shards`: {weights.process_group.size()}" ) self.num_attention_heads = ( self.num_attention_heads // weights.process_group.size() ) self.query_key_value = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.query_key_value", weights=weights, bias=True ) self.dense = TensorParallelRowLinear.load( config, prefix=f"{prefix}.dense", weights=weights, bias=True ) def forward( self, hidden_states, position_ids, attention_mask, head_mask=None, layer_past=None, use_cache=False, output_attentions=False, ): has_layer_past = layer_past is not None # Compute QKV # Attention heads [batch, seq_len, hidden_size] # --> [batch, seq_len, (np * 3 * head_size)] qkv = self.query_key_value(hidden_states) # [batch, seq_len, (num_heads * 3 * head_size)] # --> [batch, seq_len, num_heads, 3 * head_size] new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size) qkv = qkv.view(*new_qkv_shape).permute(0, 2, 1, 3) # [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size] query, key, value = qkv.split(self.head_size, -1) # Compute token offset for rotary embeddings (when decoding) seq_len = key.shape[-2] if has_layer_past: seq_len += layer_past[0].shape[-2] # Compute rotary embeddings on rotary_ndims query_rot = query[..., : self.rotary_ndims] key_rot = key[..., : self.rotary_ndims] query_rot, key_rot = self.rotary_emb(query_rot, key_rot, position_ids, seq_len) query[..., : self.rotary_ndims] = query_rot key[..., : self.rotary_ndims] = key_rot if CUSTOM_KERNELS_ENABLED: attn_output, present, attn_weights = fused_attention_cuda.forward( query, key, value, layer_past, attention_mask, head_mask, self.inv_norm_factor, self.num_attention_heads, use_cache, ) else: # Cache QKV values if has_layer_past: past_key = layer_past[0] past_value = layer_past[1] key = torch.cat((past_key, key), dim=-2) value = torch.cat((past_value, value), dim=-2) present = (key, value) if use_cache else None # Compute attention attn_output, attn_weights = self._attn( query, key, value, attention_mask, head_mask ) # Reshape outputs attn_output = self._merge_heads( attn_output, self.num_attention_heads, self.head_size ) attn_output = self.dense(attn_output) outputs = (attn_output, present) if output_attentions: outputs += (attn_weights,) return outputs @classmethod def _split_heads(cls, tensor, num_attention_heads, attn_head_size): """ Splits hidden dim into attn_head_size and num_attention_heads """ # tensor: [bs, seq_len, hidden_size] new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size) # -> [bs, seq_len, num_attention_heads, attn_head_size] tensor = tensor.view(new_shape) # -> [bs, num_attention_heads, seq_len, attn_head_size] tensor = tensor.permute(0, 2, 1, 3) return tensor @classmethod def _merge_heads(cls, tensor, num_attention_heads, attn_head_size): """ Merges attn_head_size dim and num_attn_heads dim into hidden dim """ # tensor [bs, num_attention_heads, seq_len, attn_head_size] tensor = tensor.permute(0, 2, 1, 3).contiguous() # -> [bs, seq_len, num_attention_heads, attn_head_size] tensor = tensor.view( tensor.size(0), tensor.size(1), num_attention_heads * attn_head_size ) # -> [bs, seq_len, hidden_size] return tensor def _attn(self, query, key, value, attention_mask=None, head_mask=None): # q, k, v: [bs, num_attention_heads, seq_len, attn_head_size] # compute causal mask from causal mask buffer batch_size, num_attention_heads, query_length, attn_head_size = query.size() key_length = key.size(-2) query = query.reshape( batch_size * num_attention_heads, query_length, attn_head_size ) key = key.reshape(batch_size * num_attention_heads, key_length, attn_head_size) attn_scores = torch.zeros( 1, dtype=query.dtype, device=key.device, ).expand(batch_size * num_attention_heads, query_length, key_length) attn_scores = torch.baddbmm( attn_scores, query, key.transpose(1, 2), beta=1.0, alpha=self.inv_norm_factor, ) # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length] input_dtype = attn_scores.dtype if input_dtype in [torch.float16, torch.bfloat16]: attn_scores = attn_scores.to(torch.float) attn_scores = torch.where( attention_mask, torch.finfo(attn_scores.dtype).min, attn_scores ) attn_scores = attn_scores.view( batch_size, num_attention_heads, query_length, key_length ) attn_weights = nn.functional.softmax(attn_scores, dim=-1) attn_weights = attn_weights.to(value.dtype) # Mask heads if we want to if head_mask is not None: attn_weights = attn_weights * head_mask attn_output = torch.matmul(attn_weights, value) return attn_output, attn_weights class RotaryEmbedding(torch.nn.Module): def __init__(self, dim, max_position_embeddings, base=10000, device=None): super().__init__() self.true_inv_freq = 1.0 / ( base ** (torch.arange(0, dim, 2).float().to(device) / dim) ) self.register_buffer("inv_freq", self.true_inv_freq) # Build here to make `torch.jit.trace` work. self.max_seq_len_cached = max_position_embeddings self.cos_cached = None self.sin_cached = None @staticmethod def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) @staticmethod def _create_cos_sin(inv_freq, max_position_embeddings, dtype, device): t = torch.arange( max_position_embeddings, device=inv_freq.device, dtype=inv_freq.dtype ) freqs = torch.einsum("i,j->ij", t, inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) return emb.cos().to(device).to(dtype), emb.sin().to(device).to(dtype) def forward(self, q, k, position_ids, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] if ( seq_len > self.max_seq_len_cached or self.cos_cached is None or self.sin_cached is None ): if seq_len > self.max_seq_len_cached: self.max_seq_len_cached = seq_len self.cos_cached, self.sin_cached = self._create_cos_sin( self.true_inv_freq, self.max_seq_len_cached, q.dtype, q.device ) return rotary_forward(q, k, self.cos_cached, self.sin_cached, position_ids) @torch.jit.script def rotary_forward(q, k, cos, sin, position_ids): cos = cos[position_ids].unsqueeze(1) sin = sin[position_ids].unsqueeze(1) chunk_size = q.shape[-1] // 2 q1, q2 = q.split(chunk_size, -1) q_rotated = torch.cat((-q2, q1), dim=-1) k1, k2 = k.split(chunk_size, -1) k_rotated = torch.cat((-k2, k1), dim=-1) q_embed = (q * cos) + (q_rotated * sin) k_embed = (k * cos) + (k_rotated * sin) return q_embed, k_embed class GPTNeoXMLP(nn.Module): def __init__(self, config, prefix, weights): super().__init__() self.act = ( ACT2FN[config.hidden_act] if "gelu_fast" not in config.hidden_act else lambda x: torch.nn.functional.gelu(x, approximate="tanh") ) self.dense_h_to_4h = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.dense_h_to_4h", weights=weights, bias=True ) self.dense_4h_to_h = TensorParallelRowLinear.load( config, prefix=f"{prefix}.dense_4h_to_h", weights=weights, bias=True ) def forward(self, hidden_states): hidden_states = self.dense_h_to_4h(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dense_4h_to_h(hidden_states) return hidden_states class GPTNeoXLayer(nn.Module): def __init__(self, layer_id, prefix: str, config, weights): super().__init__() self.use_parallel_residual = config.use_parallel_residual self.input_layernorm = nn.LayerNorm.load( prefix=f"{prefix}.layers.{layer_id}.input_layernorm", weights=weights, eps=config.layer_norm_eps, ) self.post_attention_layernorm = nn.LayerNorm.load( prefix=f"{prefix}.layers.{layer_id}.post_attention_layernorm", weights=weights, eps=config.layer_norm_eps, ) self.attention = GPTNeoXAttention( config, prefix=f"{prefix}.layers.{layer_id}.attention", weights=weights ) self.mlp = GPTNeoXMLP( config, prefix=f"{prefix}.layers.{layer_id}.mlp", weights=weights ) def forward( self, hidden_states, position_ids, attention_mask=None, head_mask=None, use_cache=False, layer_past=None, output_attentions=False, ): attention_layer_outputs = self.attention( self.input_layernorm(hidden_states), attention_mask=attention_mask, position_ids=position_ids, layer_past=layer_past, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attn_output = attention_layer_outputs[ 0 ] # output_attn: attn_output, present, (attn_weights) outputs = attention_layer_outputs[1:] if self.use_parallel_residual: # pseudocode: # x = x + attn(ln1(x)) + mlp(ln2(x)) mlp_output = self.mlp(self.post_attention_layernorm(hidden_states)) hidden_states = mlp_output + attn_output + hidden_states else: # pseudocode: # x = x + attn(ln1(x)) # x = x + mlp(ln2(x)) attn_output = attn_output + hidden_states mlp_output = self.mlp(self.post_attention_layernorm(attn_output)) hidden_states = mlp_output + attn_output if use_cache: outputs = ( hidden_states, ) + outputs # hidden_states, present, (attn_weights) else: outputs = (hidden_states,) + outputs[1:] # hidden_states, (attn_weights) return outputs class GPTNeoXModel(GPTNeoXPreTrainedModel): def __init__(self, prefix: str, config, weights): super().__init__(config) self.config = config self.num_attention_heads = config.num_attention_heads self.embed_in = TensorParallelEmbedding( prefix=f"{prefix}.embed_in", weights=weights ) self.layers = nn.ModuleList( [ GPTNeoXLayer(layer_id, prefix, config, weights) for layer_id in range(config.num_hidden_layers) ] ) self.final_layer_norm = nn.LayerNorm.load( prefix=f"{prefix}.final_layer_norm", weights=weights, eps=config.layer_norm_eps, ) self.tp_world_size = weights.process_group.size() def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids=None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: r""" past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) use_cache = use_cache if use_cache is not None else self.config.use_cache if input_ids is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape if past_key_values is None: past_length = 0 past_key_values = tuple([None] * self.config.num_hidden_layers) else: past_length = past_key_values[0][0].size(-2) if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_length, seq_length + past_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0).view(-1, seq_length) else: position_ids = position_ids.view(-1, seq_length).long() if inputs_embeds is None: inputs_embeds = self.embed_in(input_ids) hidden_states = inputs_embeds # Attention mask. seq_length_with_past = seq_length past_key_values_length = 0 if past_key_values[0] is not None: past_key_values_length = past_key_values[0][0].shape[-1] seq_length_with_past = seq_length_with_past + past_key_values_length if attention_mask is None: attention_mask = torch.ones( (batch_size, seq_length_with_past), device=hidden_states.device ) else: attention_mask = attention_mask.to(hidden_states.device) causal_mask = prepare_attn_mask( attention_mask, input_shape=(batch_size, seq_length), past_key_values_length=past_key_values_length, ) assert self.num_attention_heads % self.tp_world_size == 0 block_size = self.num_attention_heads // self.tp_world_size causal_mask = torch.repeat_interleave(causal_mask, block_size, dim=0) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) presents = () if use_cache else None all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = layer( hidden_states, position_ids=position_ids, attention_mask=causal_mask, head_mask=head_mask[i], layer_past=layer_past, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_attentions = all_attentions + (outputs[2 if use_cache else 1],) hidden_states = self.final_layer_norm(hidden_states) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None ) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_attentions, ) class GPTNeoxForCausalLM(GPTNeoXPreTrainedModel): _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] def __init__(self, prefix: str, config, weights): super().__init__(config) if not prefix: prefix = "gpt_neox" else: prefix = f"{prefix}.gpt_neox" self.gpt_neox = GPTNeoXModel(prefix, config, weights) self.embed_out = SpeculativeHead.load( config, prefix="embed_out", weights=weights ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are only required when the model is used as a decoder in a Sequence to Sequence model. Contains pre-computed hidden-states (key and values in the self-attention blocks that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import AutoTokenizer, GPTNeoXForCausalLM, GPTNeoXConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") >>> config = GPTNeoXConfig.from_pretrained("EleutherAI/gpt-neox-20b") >>> config.is_decoder = True >>> model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ```""" return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) outputs = self.gpt_neox( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] lm_logits, speculative_logits = self.embed_out(hidden_states) lm_loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(lm_logits.device) # we are doing next-token prediction; shift prediction scores and input ids by one shift_logits = lm_logits[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct( shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1) ) if not return_dict: output = (lm_logits,) + outputs[1:] return ((lm_loss,) + output) if lm_loss is not None else output return ( CausalLMOutputWithPast( loss=lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ), speculative_logits, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs, ): input_shape = input_ids.shape # cut decoder_input_ids if past is used if past_key_values and past_key_values[0] is not None: input_ids = input_ids[:, -1:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -1].unsqueeze(-1) # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "attention_mask": attention_mask, "past_key_values": past_key_values, "position_ids": position_ids, } ) return model_inputs def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple( past_state.index_select(0, beam_idx) for past_state in layer_past[:2] ) + layer_past[2:], ) return reordered_past
text-generation-inference/server/text_generation_server/models/custom_modeling/neox_modeling.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/models/custom_modeling/neox_modeling.py", "repo_id": "text-generation-inference", "token_count": 14228 }
228
import torch from PIL import Image from io import BytesIO from opentelemetry import trace from typing import Iterable, Optional, Tuple, List, Type, Dict from transformers import PreTrainedTokenizerBase from transformers.image_processing_utils import select_best_resolution from text_generation_server.pb import generate_pb2 from text_generation_server.models.flash_causal_lm import ( FlashCausalLMBatch, FlashCausalLM, block_tables_to_ragged, ) from text_generation_server.models.globals import PREFIX_CACHING, ATTENTION from text_generation_server.utils.log import log_master from transformers import AutoProcessor from text_generation_server.layers.attention import Seqlen tracer = trace.get_tracer(__name__) IDEFICS2_FAKE_TOKEN = "<fake_token_around_image>" IDEFICS2_IMAGE_TOKEN = "<image>" def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size): """ Calculate the shape of the image patch grid after the preprocessing for images of any resolution. Args: image_size (`tuple`): The size of the input image in the format (height, width). grid_pinpoints (`List`): A list containing possible resolutions. Each item in the list should be a tuple or list of the form `(height, width)`. patch_size (`int`): The size of each image patch. Returns: tuple: The shape of the image patch grid in the format (width, height). """ if not isinstance(grid_pinpoints, list): raise ValueError("grid_pinpoints should be a list of tuples or lists") height, width = select_best_resolution(image_size, grid_pinpoints) return height // patch_size, width // patch_size def image_text_replacement(processor, image_input, config, image_id: int) -> str: if config.model_type == "idefics2": image_seq_len = 64 image_str = f"{IDEFICS2_FAKE_TOKEN}{IDEFICS2_IMAGE_TOKEN * image_seq_len}{IDEFICS2_FAKE_TOKEN}" if processor.image_processor.do_image_splitting: image_str *= 5 return image_str elif config.model_type == "llava_next": height, width = image_input["image_sizes"][image_id] num_features = get_number_of_features(height, width, config) from loguru import logger log_master( logger.info, f"Found {num_features} features in image of resolution {height}x{width}", ) return "<image>" * num_features elif config.model_type == "paligemma": return "<image>" * config.text_config.num_image_tokens else: raise RuntimeError(f"Unknown config {config.model_type} for multimodal") def image_text_replacement_fixup(config, text: str) -> str: if config.model_type == "idefics2": return text.replace( f"{IDEFICS2_FAKE_TOKEN}{IDEFICS2_FAKE_TOKEN}", IDEFICS2_FAKE_TOKEN ) return text def get_unpadded_features( original_height: int, original_width: int, npatches: int, num_patch_height: int, num_patch_width: int, ) -> Tuple[int, int]: current_height = npatches * num_patch_height current_width = npatches * num_patch_width aspect_ratio: float = original_width / original_height current_aspect_ratio: float = current_width / current_height if aspect_ratio > current_aspect_ratio: new_height = (original_height * current_width) // original_width padding = (current_height - new_height) // 2 current_height = current_height - (2 * padding) else: new_width = (original_width * current_height) // original_height padding = (current_width - new_width) // 2 current_width = current_width - (2 * padding) unpadded_features = current_height * current_width newline_features = current_height return (unpadded_features, newline_features) def get_number_of_features(height: int, width: int, config) -> int: # From config # Hardcoded for CLIP for now # image_grid_pinpoints = [[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]] image_grid_pinpoints = config.image_grid_pinpoints image_size = config.vision_config.image_size patch_size = config.vision_config.patch_size assert image_size % patch_size == 0 npatches = image_size // patch_size # Dimensions are intentionally swapped to be bug-compatible with # upstream: https://github.com/LLaVA-VL/LLaVA-NeXT/issues/59 num_patch_width, num_patch_height = get_anyres_image_grid_shape( [height, width], image_grid_pinpoints, image_size, ) unpadded_features, newline_features = get_unpadded_features( height, width, npatches, num_patch_height, num_patch_width ) # The base patch covers the entire image base_features = npatches**2 return unpadded_features + newline_features + base_features class VlmCausalLMBatch(FlashCausalLMBatch): pixel_values: Optional[List[torch.Tensor]] pixel_attention_mask: Optional[List[torch.Tensor]] image_sizes: Optional[List[Tuple[int, int]]] @classmethod @tracer.start_as_current_span("concatenate") def concatenate(cls, batches): batch = super(VlmCausalLMBatch, cls).concatenate(batches) batch.pixel_values = None batch.pixel_attention_mask = None batch.image_sizes = None return batch @tracer.start_as_current_span("filter") def filter(self, request_ids: List[int]): batch = super().filter(request_ids) batch.pixel_values = None batch.pixel_attention_mask = None batch.image_sizes = None return batch @classmethod def batch_tokenized_inputs( cls, requests: Iterable[generate_pb2.Request], tokenizer, processor, config ): # Process images first. We need all of them so that the processor # can make the image splits the same size. And we need the final # sizes to insert correct number of image tokens. images = [] for r in requests: for chunk in r.input_chunks.chunks: chunk_type = chunk.WhichOneof("chunk") if chunk_type == "text": pass elif chunk_type == "image": image = Image.open(BytesIO(chunk.image.data)) if config.model_type == "llava_next": images.append(image) else: images.append([image]) else: raise RuntimeError(f"Invalid chunk type {chunk_type}") if images: image_inputs = processor.image_processor(images, return_tensors="pt") else: image_inputs = None batch_inputs = [] max_truncation = 0 image_id = 0 for r in requests: full_text = "" for chunk in r.input_chunks.chunks: chunk_type = chunk.WhichOneof("chunk") if chunk_type == "text": full_text += chunk.text elif chunk_type == "image": full_text += image_text_replacement( processor, image_inputs, config, image_id ) image_id += 1 full_text = image_text_replacement_fixup(config, full_text) batch_inputs.append(full_text) max_truncation = max(max_truncation, r.truncate) batch_tokenized_inputs = tokenizer( batch_inputs, truncation=True, max_length=max_truncation, add_special_tokens=not config.model_type == "paligemma", )["input_ids"] return batch_tokenized_inputs, image_inputs @classmethod def from_pb_processor( cls, pb: generate_pb2.Batch, tokenizer: PreTrainedTokenizerBase, processor, config, dtype: torch.dtype, device: torch.device, ) -> "VlmCausalLMBatch": batch_tokenized_inputs, image_inputs = cls.batch_tokenized_inputs( pb.requests, tokenizer, processor, config ) batch = cls.from_tokenized(pb, tokenizer, batch_tokenized_inputs, dtype, device) if image_inputs is not None: batch.pixel_values = image_inputs["pixel_values"].to(device=device) if "pixel_attention_mask" in image_inputs: batch.pixel_attention_mask = image_inputs["pixel_attention_mask"].to( device=device ) else: batch.pixel_attention_mask = None if "image_sizes" in image_inputs: batch.image_sizes = image_inputs["image_sizes"].to(device=device) else: batch.image_sizes = None else: batch.pixel_values = None batch.pixel_attention_mask = None batch.image_sizes = None return batch class VlmCausalLM(FlashCausalLM): def __init__( self, model_id: str, *, processor_class=AutoProcessor, processor_kwargs=None, batch_class=VlmCausalLMBatch, revision, trust_remote_code: bool, **kwargs, ): if PREFIX_CACHING: raise NotImplementedError("Vlm do not work with prefix caching yet") if processor_kwargs is None: processor_kwargs = {} self.processor = processor_class.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code, **processor_kwargs, ) self.batch_class = batch_class super().__init__( model_id=model_id, revision=revision, trust_remote_code=trust_remote_code, **kwargs, ) @property def batch_type(self) -> Type[VlmCausalLMBatch]: return self.batch_class def max_past(self) -> Optional[int]: return getattr(self.model.text_model, "max_past", None) def forward( self, batch: VlmCausalLMBatch, adapter_data: Optional[Dict[str, torch.Tensor]] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: # Model Forward if batch.speculative_ids is not None: input_ids = batch.input_ids position_ids = batch.position_ids cu_seqlen_prefill = batch.cu_seqlen_prefill kv_cache = self.kv_cache block_tables = batch.block_tables_tensor slots = batch.slots[batch.slot_indices] input_lengths = batch.input_lengths_tensor max_s = batch.max_seqlen lm_head_indices = batch.prefill_head_indices speculative_ids = batch.speculative_ids B, speculative_length = speculative_ids.shape new_length = speculative_length + 1 new_input_ids = torch.cat( [input_ids.unsqueeze(-1), speculative_ids], dim=1 ).reshape(-1) arange = torch.arange(new_length, device=position_ids.device).unsqueeze(0) arange_int = arange.to(dtype=torch.int32) new_position_ids = ( position_ids.unsqueeze(-1).expand(B, new_length) + arange ).view(-1) slots = (slots.unsqueeze(-1).expand(B, new_length) + arange_int).view(-1) input_lengths = ( input_lengths.unsqueeze(-1).expand(B, new_length) + arange_int ).view(-1) prefix_lens_tensor = ( batch.prefix_lens_tensor.unsqueeze(-1).expand(B, new_length) ).reshape(-1) # Add Copy the block tables for all members block_tables = ( block_tables.unsqueeze(1) .expand(B, new_length, -1) .reshape(B * new_length, -1) .contiguous() ) max_s = max_s + speculative_length input_ids = new_input_ids position_ids = new_position_ids else: input_ids = batch.input_ids position_ids = batch.position_ids cu_seqlen_prefill = batch.cu_seqlen_prefill kv_cache = self.kv_cache block_tables = batch.block_tables_tensor slots = batch.slots[batch.slot_indices] input_lengths = batch.input_lengths_tensor prefix_lens_tensor = batch.prefix_lens_tensor max_s = batch.max_seqlen lm_head_indices = batch.prefill_head_indices if cu_seqlen_prefill is None and self.max_past() is not None: # In decode, not prefill, we're actually overwriting the KV-cache # in a circular buffer mode. # This makes sure the max_s for the decode pass is correct. max_s = min(self.max_past(), max_s) bs = input_ids.shape[0] # Try to find an associated cuda graph bs = input_ids.shape[0] sorted_padded_bs = sorted([k for k in self.cuda_graphs.keys() if k >= bs]) if sorted_padded_bs: # Get associated cuda graph cuda_graph = self.cuda_graphs[sorted_padded_bs[0]] else: cuda_graph = None if cu_seqlen_prefill is not None or cuda_graph is None: input_lengths = input_lengths + prefix_lens_tensor if PREFIX_CACHING: block_tables = block_tables_to_ragged( block_tables=block_tables, input_lengths=batch.input_lengths, prefix_lens=batch.prefix_lens, ) with self._forward_context( block_tables=block_tables, cu_seqlen_prefill=cu_seqlen_prefill, input_lengths=batch.input_lengths, input_lengths_tensor=input_lengths, prefix_lens=batch.prefix_lens, prefix_lens_tensor=prefix_lens_tensor, ): max_k = (input_lengths + prefix_lens_tensor).max().item() seqlen = Seqlen( input_lengths=input_lengths, prefix_lengths=prefix_lens_tensor, cu_seqlen_q=cu_seqlen_prefill, max_q=max_s, max_k=max_k, ) logits, speculative_logits = self.model.forward( input_ids=input_ids, position_ids=position_ids, cu_seqlen_prefill=cu_seqlen_prefill, kv_cache=kv_cache, block_tables=block_tables, slots=slots, seqlen=seqlen, max_s=max_s, prefill_cache_indices=batch.prefill_cache_indices, lm_head_indices=lm_head_indices, pixel_values=batch.pixel_values, pixel_attention_mask=batch.pixel_attention_mask, image_sizes=batch.image_sizes, ) if batch.prefill_cache_indices is not None: batch.prefill_cache_indices = None if batch.pixel_values is not None: batch.pixel_values = None if batch.pixel_attention_mask is not None: batch.pixel_attention_mask = None if batch.image_sizes is not None: batch.image_sizes = None return logits, speculative_logits # Copy inputs to the static inputs of the cuda graph # Static inputs are potentially padded cuda_graph["input_ids"][: input_ids.shape[0]] = input_ids cuda_graph["position_ids"][: position_ids.shape[0]] = position_ids if ATTENTION == "flashinfer": block_tables = block_tables_to_ragged( block_tables=block_tables, input_lengths=batch.input_lengths, prefix_lens=batch.prefix_lens, ) cuda_graph["block_tables"][: block_tables.shape[0]] = block_tables else: cuda_graph["block_tables"][ : block_tables.shape[0], : block_tables.shape[1] ] = block_tables cuda_graph["slots"].fill_(-1) cuda_graph["slots"][: slots.shape[0]] = slots cuda_graph["input_lengths"].zero_() cuda_graph["input_lengths"][: input_lengths.shape[0]] = ( input_lengths + prefix_lens_tensor ) # Replay the graph cuda_graph["graph"].replay() # Slice output to the correct shape speculative_logits = ( cuda_graph["speculative_logits"][:bs] if cuda_graph["speculative_logits"] is not None else None ) logits = cuda_graph["logits"][:bs] return logits, speculative_logits
text-generation-inference/server/text_generation_server/models/vlm_causal_lm.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/models/vlm_causal_lm.py", "repo_id": "text-generation-inference", "token_count": 8077 }
229
import json import os from dataclasses import dataclass from typing import Optional from huggingface_hub import hf_hub_download from text_generation_server.layers.marlin.gptq import can_use_gptq_marlin from text_generation_server.utils.weights import ( DefaultWeightsLoader, WeightsLoader, ) # TODO: Split this config to have a single config type per quant method @dataclass class _QuantizerConfig: bits: int checkpoint_format: Optional[str] desc_act: bool groupsize: int quant_method: str sym: bool @dataclass class _FP8QuantizerConfig: activation_scale_ub: float # We should probably do this with Pytantic JSON deserialization, # but for now we'll stay close to the old _set_gptq_params. def _get_quantizer_config(model_id, revision): bits = 4 groupsize = -1 quant_method = "gptq" checkpoint_format = None sym = False desc_act = False filename = "config.json" try: if os.path.exists(os.path.join(model_id, filename)): filename = os.path.join(model_id, filename) else: filename = hf_hub_download(model_id, filename=filename, revision=revision) with open(filename, "r") as f: data = json.load(f) # FP8 config if data["quantization_config"]["quant_method"] == "fbgemm_fp8": return _FP8QuantizerConfig( activation_scale_ub=data["quantization_config"]["activation_scale_ub"] ) if "zero_point" in data["quantization_config"]: sym = not data["quantization_config"]["zero_point"] quant_method = "awq" elif "sym" in data["quantization_config"]: sym = data["quantization_config"]["sym"] bits = data["quantization_config"]["bits"] groupsize = data["quantization_config"]["group_size"] # Order is important here, desc_act is missing on some real models quant_method = data["quantization_config"]["quant_method"] checkpoint_format = data["quantization_config"].get("checkpoint_format") desc_act = data["quantization_config"]["desc_act"] except Exception: filename = "quantize_config.json" try: if os.path.exists(os.path.join(model_id, filename)): filename = os.path.join(model_id, filename) else: filename = hf_hub_download( model_id, filename=filename, revision=revision ) with open(filename, "r") as f: data = json.load(f) bits = data["bits"] groupsize = data["group_size"] if "zero_point" in data: sym = not data["zero_point"] quant_method = "awq" elif "sym" in data: sym = data["sym"] desc_act = data["desc_act"] if "version" in data and data["version"] == "GEMM": quant_method = "awq" except Exception: filename = "quant_config.json" try: if os.path.exists(os.path.join(model_id, filename)): filename = os.path.join(model_id, filename) else: filename = hf_hub_download( model_id, filename=filename, revision=revision ) with open(filename, "r") as f: data = json.load(f) bits = data["w_bit"] groupsize = data["q_group_size"] desc_act = data["desc_act"] if "version" in data and data["version"] == "GEMM": quant_method = "awq" except Exception: pass return _QuantizerConfig( bits=bits, groupsize=groupsize, quant_method=quant_method, checkpoint_format=checkpoint_format, sym=sym, desc_act=desc_act, ) def get_loader( quantize: Optional[str], model_id: str, revision: Optional[str] ) -> WeightsLoader: quantizer_config = _get_quantizer_config(model_id, revision) if quantize in {"awq", "gptq"}: from text_generation_server.layers.gptq import GPTQWeightsLoader # TODO: improve check once we have one config type per quantize value if not isinstance(quantizer_config, _QuantizerConfig): raise ValueError( f"Quantize is set to `{quantize}` but received a `{quantizer_config.__class__.__name__}` config." ) if can_use_gptq_marlin( bits=quantizer_config.bits, groupsize=quantizer_config.groupsize, quant_method=quantizer_config.quant_method, quantize=quantize, sym=quantizer_config.sym, ): from text_generation_server.layers.marlin import GPTQMarlinWeightsLoader return GPTQMarlinWeightsLoader( bits=quantizer_config.bits, desc_act=quantizer_config.desc_act, groupsize=quantizer_config.groupsize, quant_method=quantizer_config.quant_method, quantize=quantize, sym=quantizer_config.sym, ) else: return GPTQWeightsLoader( bits=quantizer_config.bits, desc_act=quantizer_config.desc_act, groupsize=quantizer_config.groupsize, quant_method=quantizer_config.quant_method, quantize=quantize, sym=quantizer_config.sym, ) elif quantize == "bitsandbytes": from text_generation_server.layers.bnb import BNBWeight return DefaultWeightsLoader(BNBWeight) elif quantize == "bitsandbytes-fp4": from text_generation_server.layers.bnb import BNBFP4Weight return DefaultWeightsLoader(BNBFP4Weight) elif quantize == "bitsandbytes-nf4": from text_generation_server.layers.bnb import BNBNF4Weight return DefaultWeightsLoader(BNBNF4Weight) elif quantize == "eetq": from text_generation_server.layers.eetq import EETQWeight return DefaultWeightsLoader(EETQWeight) elif quantize == "exl2": from text_generation_server.layers.exl2 import Exl2WeightsLoader return Exl2WeightsLoader() elif quantize == "marlin": from text_generation_server.layers.marlin import MarlinWeightsLoader # TODO: improve check once we have one config type per quantize value if not isinstance(quantizer_config, _QuantizerConfig): raise ValueError( f"Quantize is set to `{quantize}` but received a `{quantizer_config.__class__.__name__}` config." ) return MarlinWeightsLoader( bits=quantizer_config.bits, is_marlin_24=quantizer_config.checkpoint_format == "marlin_24", ) elif quantize == "fp8" or quantize is None: from text_generation_server.layers.fp8 import HybridFP8UnquantLoader # Since the default for the quantize config is _QuantizerConfig, # we need to add this check to not get an attribute error activation_scale_ub = None if isinstance(quantizer_config, _FP8QuantizerConfig): activation_scale_ub = quantizer_config.activation_scale_ub return HybridFP8UnquantLoader(activation_scale_ub, to_fp8=quantize == "fp8") else: raise ValueError(f"Unknown quantization method: {quantize}")
text-generation-inference/server/text_generation_server/utils/quantization.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/utils/quantization.py", "repo_id": "text-generation-inference", "token_count": 3406 }
230
target .yarn
tokenizers/bindings/node/.prettierignore/0
{ "file_path": "tokenizers/bindings/node/.prettierignore", "repo_id": "tokenizers", "token_count": 5 }
231
{ "name": "tokenizers-win32-ia32-msvc", "version": "0.13.4-rc1", "os": [ "win32" ], "cpu": [ "ia32" ], "main": "tokenizers.win32-ia32-msvc.node", "files": [ "tokenizers.win32-ia32-msvc.node" ], "description": "Tokenizers platform specific bindings", "keywords": [ "napi-rs", "NAPI", "N-API", "Rust", "node-addon", "node-addon-api" ], "license": "MIT", "engines": { "node": ">= 10" }, "publishConfig": { "registry": "https://registry.npmjs.org/", "access": "public" }, "repository": "tokenizers" }
tokenizers/bindings/node/npm/win32-ia32-msvc/package.json/0
{ "file_path": "tokenizers/bindings/node/npm/win32-ia32-msvc/package.json", "repo_id": "tokenizers", "token_count": 277 }
232
use crate::decoders::Decoder; use crate::encoding::{JsEncoding, JsTruncationDirection, JsTruncationStrategy}; use crate::models::Model; use crate::normalizers::Normalizer; use crate::pre_tokenizers::PreTokenizer; use crate::processors::Processor; use crate::tasks::tokenizer::{DecodeBatchTask, DecodeTask, EncodeBatchTask, EncodeTask}; use crate::trainers::Trainer; use std::collections::HashMap; use tokenizers::Model as ModelTrait; use napi::bindgen_prelude::*; use napi_derive::napi; use std::sync::{Arc, RwLock}; use tokenizers as tk; #[napi] #[derive(Default)] pub enum PaddingDirection { #[default] Left, Right, } impl From<PaddingDirection> for tk::PaddingDirection { fn from(w: PaddingDirection) -> Self { match w { PaddingDirection::Left => tk::PaddingDirection::Left, PaddingDirection::Right => tk::PaddingDirection::Right, } } } impl TryFrom<String> for PaddingDirection { type Error = Error; fn try_from(w: String) -> Result<Self> { match w.as_str() { "left" => Ok(PaddingDirection::Left), "right" => Ok(PaddingDirection::Right), s => Err(Error::from_reason(format!( "{s:?} is not a valid direction" ))), } } } #[napi(object)] #[derive(Default)] pub struct PaddingOptions { pub max_length: Option<u32>, pub direction: Option<Either<String, PaddingDirection>>, pub pad_to_multiple_of: Option<u32>, pub pad_id: Option<u32>, pub pad_type_id: Option<u32>, pub pad_token: Option<String>, } impl TryFrom<PaddingOptions> for tk::PaddingParams { type Error = Error; fn try_from(value: PaddingOptions) -> Result<Self> { let direction = match value.direction { Some(either) => match either { Either::A(string) => { let direction: PaddingDirection = string.try_into()?; direction.into() } Either::B(direction) => direction.into(), }, None => tk::PaddingDirection::Right, }; Ok(Self { pad_to_multiple_of: value.pad_to_multiple_of.map(|s| s as usize), pad_id: value.pad_id.unwrap_or_default(), pad_type_id: value.pad_type_id.unwrap_or_default(), pad_token: value.pad_token.unwrap_or("[PAD]".to_string()), direction, strategy: match value.max_length { Some(length) => tk::PaddingStrategy::Fixed(length as usize), None => tk::PaddingStrategy::BatchLongest, }, }) } } #[napi(object)] #[derive(Default)] pub struct EncodeOptions { pub is_pretokenized: Option<bool>, pub add_special_tokens: Option<bool>, } #[derive(Default)] struct EncodeOptionsDef { // TODO // is_pretokenized: bool, add_special_tokens: bool, } impl From<EncodeOptions> for EncodeOptionsDef { fn from(value: EncodeOptions) -> Self { EncodeOptionsDef { // TODO // is_pretokenized: value.is_pretokenized.unwrap_or(false), add_special_tokens: value.add_special_tokens.unwrap_or(true), } } } #[napi(object)] #[derive(Default)] pub struct TruncationOptions { pub max_length: Option<u32>, pub strategy: Option<JsTruncationStrategy>, pub direction: Option<Either<String, JsTruncationDirection>>, pub stride: Option<u32>, } impl TryFrom<TruncationOptions> for tk::TruncationParams { type Error = Error; fn try_from(value: TruncationOptions) -> Result<Self> { let direction = match value.direction { Some(either) => match either { Either::A(string) => { let direction: JsTruncationDirection = string.try_into()?; direction.into() } Either::B(direction) => direction.into(), }, None => Default::default(), }; Ok(Self { max_length: value.max_length.unwrap_or(0) as usize, strategy: value.strategy.map(|s| s.into()).unwrap_or_default(), direction, stride: value.stride.unwrap_or_default() as usize, }) } } #[napi(object)] pub struct AddedTokenOptions { pub single_word: Option<bool>, pub left_strip: Option<bool>, pub right_strip: Option<bool>, pub normalized: Option<bool>, } #[napi] #[derive(Clone)] pub struct AddedToken { token: tk::AddedToken, } #[napi] impl AddedToken { #[napi(constructor)] pub fn from(token: String, is_special: bool, options: Option<AddedTokenOptions>) -> Self { let mut token = tk::AddedToken::from(token, is_special); if let Some(options) = options { if let Some(sw) = options.single_word { token = token.single_word(sw); } if let Some(ls) = options.left_strip { token = token.lstrip(ls); } if let Some(rs) = options.right_strip { token = token.rstrip(rs); } if let Some(n) = options.normalized { token = token.normalized(n); } } Self { token } } #[napi] pub fn get_content(&self) -> String { self.token.content.clone() } } impl From<AddedToken> for tk::AddedToken { fn from(v: AddedToken) -> Self { v.token } } type RsTokenizer = tk::TokenizerImpl<Model, Normalizer, PreTokenizer, Processor, Decoder>; #[napi] #[derive(Clone)] pub struct Tokenizer { pub(crate) tokenizer: Arc<RwLock<RsTokenizer>>, } #[napi] impl Tokenizer { #[napi(constructor)] pub fn new(model: &Model) -> Self { Self { tokenizer: Arc::new(RwLock::new(tk::TokenizerImpl::new((*model).clone()))), } } #[napi] pub fn set_pre_tokenizer(&mut self, pre_tokenizer: &PreTokenizer) { self .tokenizer .write() .unwrap() .with_pre_tokenizer(Some((*pre_tokenizer).clone())); } #[napi] pub fn set_decoder(&mut self, decoder: &Decoder) { self .tokenizer .write() .unwrap() .with_decoder(Some((*decoder).clone())); } #[napi] pub fn set_model(&mut self, model: &Model) { self.tokenizer.write().unwrap().with_model((*model).clone()); } #[napi] pub fn set_post_processor(&mut self, post_processor: &Processor) { self .tokenizer .write() .unwrap() .with_post_processor(Some((*post_processor).clone())); } #[napi] pub fn set_normalizer(&mut self, normalizer: &Normalizer) { self .tokenizer .write() .unwrap() .with_normalizer(Some((*normalizer).clone())); } #[napi] pub fn save(&self, path: String, pretty: Option<bool>) -> Result<()> { let pretty = pretty.unwrap_or(false); self .tokenizer .read() .unwrap() .save(path, pretty) .map_err(|e| Error::from_reason(format!("{}", e))) } #[napi] pub fn add_added_tokens(&mut self, tokens: Vec<&AddedToken>) -> u32 { let tokens: Vec<_> = tokens .into_iter() .map(|tok| (*tok).clone().into()) .collect(); self.tokenizer.write().unwrap().add_tokens(&tokens) as u32 } #[napi] pub fn add_tokens(&mut self, tokens: Vec<String>) -> u32 { let tokens: Vec<_> = tokens .into_iter() .map(|tok| tk::AddedToken::from(tok, false)) .collect(); self.tokenizer.write().unwrap().add_tokens(&tokens) as u32 } #[napi(ts_return_type = "Promise<JsEncoding>")] pub fn encode( &self, #[napi(ts_arg_type = "InputSequence")] sentence: String, #[napi(ts_arg_type = "InputSequence | null")] pair: Option<String>, encode_options: Option<EncodeOptions>, ) -> AsyncTask<EncodeTask<'static>> { let options: EncodeOptionsDef = encode_options.unwrap_or_default().into(); let input: tk::EncodeInput = match pair { Some(pair) => (sentence, pair).into(), None => sentence.into(), }; AsyncTask::new(EncodeTask { tokenizer: (*self).clone(), input: Some(input), add_special_tokens: options.add_special_tokens, }) } #[napi(ts_return_type = "Promise<JsEncoding[]>")] pub fn encode_batch( &self, #[napi(ts_arg_type = "EncodeInput[]")] sentences: Vec<String>, encode_options: Option<EncodeOptions>, ) -> AsyncTask<EncodeBatchTask<'static>> { let options: EncodeOptionsDef = encode_options.unwrap_or_default().into(); let inputs: Vec<tk::EncodeInput> = sentences .into_iter() .map(|sentence| sentence.into()) .collect(); AsyncTask::new(EncodeBatchTask { tokenizer: (*self).clone(), inputs: Some(inputs), add_special_tokens: options.add_special_tokens, }) } #[napi(ts_return_type = "Promise<string>")] pub fn decode(&self, ids: Vec<u32>, skip_special_tokens: bool) -> AsyncTask<DecodeTask> { AsyncTask::new(DecodeTask { tokenizer: (*self).clone(), ids, skip_special_tokens, }) } #[napi(ts_return_type = "Promise<string[]>")] pub fn decode_batch( &self, ids: Vec<Vec<u32>>, skip_special_tokens: bool, ) -> AsyncTask<DecodeBatchTask> { AsyncTask::new(DecodeBatchTask { tokenizer: (*self).clone(), ids, skip_special_tokens, }) } #[napi(factory)] pub fn from_string(s: String) -> Result<Self> { let tokenizer: tk::tokenizer::TokenizerImpl< Model, Normalizer, PreTokenizer, Processor, Decoder, > = s .parse() .map_err(|e| Error::from_reason(format!("{}", e)))?; Ok(Self { tokenizer: Arc::new(RwLock::new(tokenizer)), }) } #[napi(factory)] pub fn from_file(file: String) -> Result<Self> { let tokenizer = tk::tokenizer::TokenizerImpl::from_file(file) .map_err(|e| Error::from_reason(format!("Error loading from file{}", e)))?; Ok(Self { tokenizer: Arc::new(RwLock::new(tokenizer)), }) } #[napi] pub fn add_special_tokens(&mut self, tokens: Vec<String>) { let tokens: Vec<_> = tokens .into_iter() .map(|s| tk::AddedToken::from(s, true)) .collect(); self.tokenizer.write().unwrap().add_special_tokens(&tokens); } #[napi] pub fn set_truncation( &mut self, max_length: u32, options: Option<TruncationOptions>, ) -> Result<()> { let mut options: tk::TruncationParams = if let Some(options) = options { options.try_into()? } else { Default::default() }; options.max_length = max_length as usize; self .tokenizer .write() .unwrap() .with_truncation(Some(options)) .unwrap(); Ok(()) } #[napi] pub fn disable_truncation(&mut self) { self .tokenizer .write() .unwrap() .with_truncation(None) .unwrap(); } #[napi] pub fn set_padding(&mut self, options: Option<PaddingOptions>) -> Result<()> { let options = if let Some(options) = options { Some(options.try_into()?) } else { None }; self.tokenizer.write().unwrap().with_padding(options); Ok(()) } #[napi] pub fn disable_padding(&mut self) { self.tokenizer.write().unwrap().with_padding(None); } #[napi] pub fn get_decoder(&self) -> Option<Decoder> { self.tokenizer.read().unwrap().get_decoder().cloned() } #[napi] pub fn get_normalizer(&self) -> Option<Normalizer> { self.tokenizer.read().unwrap().get_normalizer().cloned() } #[napi] pub fn get_pre_tokenizer(&self) -> Option<PreTokenizer> { self.tokenizer.read().unwrap().get_pre_tokenizer().cloned() } #[napi] pub fn get_post_processor(&self) -> Option<Processor> { self.tokenizer.read().unwrap().get_post_processor().cloned() } #[napi] pub fn get_vocab(&self, with_added_tokens: Option<bool>) -> HashMap<String, u32> { let with_added_tokens = with_added_tokens.unwrap_or(true); self.tokenizer.read().unwrap().get_vocab(with_added_tokens) } #[napi] pub fn get_vocab_size(&self, with_added_tokens: Option<bool>) -> u32 { self.get_vocab(with_added_tokens).len() as u32 } #[napi] pub fn id_to_token(&self, id: u32) -> Option<String> { self.tokenizer.read().unwrap().id_to_token(id) } #[napi] pub fn token_to_id(&self, token: String) -> Option<u32> { self.tokenizer.read().unwrap().token_to_id(&token) } #[napi] pub fn train(&mut self, files: Vec<String>) -> Result<()> { let mut trainer: Trainer = self .tokenizer .read() .unwrap() .get_model() .model .as_ref() .unwrap() .read() .unwrap() .get_trainer() .into(); self .tokenizer .write() .unwrap() .train_from_files(&mut trainer, files) .map_err(|e| Error::from_reason(format!("{}", e)))?; Ok(()) } #[napi] pub fn running_tasks(&self) -> u32 { std::sync::Arc::strong_count(&self.tokenizer) as u32 } #[napi] pub fn post_process( &self, encoding: &JsEncoding, pair: Option<&JsEncoding>, add_special_tokens: Option<bool>, ) -> Result<JsEncoding> { let add_special_tokens = add_special_tokens.unwrap_or(true); Ok( self .tokenizer .read() .unwrap() .post_process( (*encoding).clone().try_into()?, if let Some(pair) = pair { Some((*pair).clone().try_into()?) } else { None }, add_special_tokens, ) .map_err(|e| Error::from_reason(format!("{}", e)))? .into(), ) } } #[napi(object)] #[derive(Default)] pub struct JsFromPretrainedParameters { pub revision: Option<String>, pub auth_token: Option<String>, }
tokenizers/bindings/node/src/tokenizer.rs/0
{ "file_path": "tokenizers/bindings/node/src/tokenizer.rs", "repo_id": "tokenizers", "token_count": 5713 }
233
import argparse import logging import time from tqdm import tqdm from tokenizers import Tokenizer, decoders, pre_tokenizers from tokenizers.models import BPE, WordPiece from tokenizers.normalizers import BertNormalizer from tokenizers.processors import BertProcessing from transformers import BertTokenizer, GPT2Tokenizer logging.getLogger("transformers").disabled = True logging.getLogger("transformers.tokenization_utils").disabled = True parser = argparse.ArgumentParser() parser.add_argument("--type", default="gpt2", type=str, help="The type of tokenizer (bert|gpt2)") parser.add_argument("--file", default=None, type=str, help="The file to encode") parser.add_argument("--vocab", default=None, type=str, required=True, help="The vocab file") parser.add_argument("--merges", default=None, type=str, help="The merges.txt file") parser.add_argument("--debug", action="store_true", help="Verbose output") args = parser.parse_args() if args.type == "gpt2" and args.merges is None: raise Exception("Expected merges.txt file") if args.file is not None: with open(args.file, "r") as fp: text = [line.strip() for line in fp] else: text = """ The Zen of Python, by Tim Peters Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Complex is better than complicated. Flat is better than nested. Sparse is better than dense. Readability counts. Special cases aren't special enough to break the rules. Although practicality beats purity. Errors should never pass silently. Unless explicitly silenced. In the face of ambiguity, refuse the temptation to guess. There should be one-- and preferably only one --obvious way to do it. Although that way may not be obvious at first unless you're Dutch. Now is better than never. Although never is often better than *right* now. If the implementation is hard to explain, it's a bad idea. If the implementation is easy to explain, it may be a good idea. Namespaces are one honking great idea -- let's do more of those! """.split("\n") if args.type == "gpt2": print("Running GPT-2 tokenizer") tok_p = GPT2Tokenizer.from_pretrained("gpt2") # Create a Tokenizer using BPE tok_r = Tokenizer(BPE(args.vocab, args.merges)) # Use ByteLevel PreTokenizer tok_r.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=False) # Use ByteLevel Decoder tok_r.decoder = decoders.ByteLevel() elif args.type == "bert": print("Running Bert tokenizer") tok_p = BertTokenizer.from_pretrained(args.vocab) tok_r = Tokenizer(WordPiece(args.vocab, unk_token="[UNK]", max_input_chars_per_word=100)) tok_r.normalizer = BertNormalizer( clean_text=True, handle_chinese_chars=True, strip_accents=True, lowercase=True, ) # tok_r.pre_tokenizer = pre_tokenizers.Whitespace() tok_r.pre_tokenizer = pre_tokenizers.BertPreTokenizer() tok_r.decoder = decoders.WordPiece() tok_r.post_processor = BertProcessing( ("[SEP]", tok_r.token_to_id("[SEP]")), ("[CLS]", tok_r.token_to_id("[CLS]")), ) else: raise Exception(f"Unknown type {args.type}") def tokenize_r(): return tok_r.encode_batch(text) def tokenize_p(): return [tok_p.encode(sentence, add_special_tokens=True) for sentence in tqdm(text)] print(f"Tokenizing {len(text)} lines") # Rust version start = time.time() encoded_r = tokenize_r() end = time.time() time_r = end - start print(f"Rust tokenizer took: {time_r} sec") # Python version start = time.time() encoded_p = tokenize_p() end = time.time() time_p = end - start print(f"Transformer tokenizer took: {time_p} sec") print(f"SpeedUp Ratio: {time_p / time_r}") ids_r = [sentence.ids for sentence in encoded_r] diff_ids = 0 for i in range(0, len(encoded_r)): if encoded_r[i].ids != encoded_p[i]: diff_ids += 1 if args.debug: print(encoded_r[i].ids) print(encoded_p[i]) print(encoded_r[i].tokens) print(tok_p.tokenize(text[i])) print(text[i]) print("") print(f"Ids differences: {diff_ids}") decoded_r = tok_r.decode_batch([sentence.ids for sentence in encoded_r], False) decoded_p = [tok_p.decode(en) for en in encoded_p] diff_decoded = 0 for i in range(0, len(text)): if decoded_r[i] != decoded_p[i]: diff_decoded += 1 if args.debug: print(f"Original: {text[i]}") print(f"Rust: {decoded_r[i]}") print(f"Python: {decoded_p[i]}") print("") print(f"Decoding differences: {diff_decoded}")
tokenizers/bindings/python/examples/example.py/0
{ "file_path": "tokenizers/bindings/python/examples/example.py", "repo_id": "tokenizers", "token_count": 1770 }
234
# Generated content DO NOT EDIT from .. import models Model = models.Model BPE = models.BPE Unigram = models.Unigram WordLevel = models.WordLevel WordPiece = models.WordPiece
tokenizers/bindings/python/py_src/tokenizers/models/__init__.py/0
{ "file_path": "tokenizers/bindings/python/py_src/tokenizers/models/__init__.py", "repo_id": "tokenizers", "token_count": 56 }
235
from argparse import ArgumentParser from json import dump from logging import basicConfig, getLogger from os import linesep, remove from os.path import exists from tempfile import NamedTemporaryFile from typing import Dict, List, Tuple from requests import get from sentencepiece import SentencePieceProcessor from tqdm import trange, tqdm basicConfig() logger = getLogger() class SentencePieceExtractor: """ Extractor implementation for SentencePiece trained models. https://github.com/google/sentencepiece """ def __init__(self, model: str): # Get SentencePiece self.sp = SentencePieceProcessor() self.sp.Load(model) def extract(self) -> Tuple[Dict[str, int], List[Tuple]]: sp = self.sp vocab = {sp.id_to_piece(index): index for index in trange(sp.GetPieceSize())} # Merges merges = [] for piece_l in tqdm(vocab.keys(), total=sp.GetPieceSize()): for piece_r in vocab.keys(): merge = f"{piece_l}{piece_r}" piece_id = vocab.get(merge, None) if piece_id: merges += [(piece_l, piece_r, piece_id)] merges = sorted(merges, key=lambda val: val[2]) merges = [(val[0], val[1]) for val in merges] return vocab, merges class YouTokenToMeExtractor: """ Extractor implementation for YouTokenToMe trained models format. Model are as follow: vocab_size nb_merges piece piece_id ...(repeated vocab_size) piece_id_left piece_id_right piece_id ...(repeated nb merges) """ def __init__(self, model: str): self._model = model def extract(self) -> Tuple[Dict[str, int], List[Tuple]]: with open(self._model, "r") as model_f: # Retrieve information nb_pieces, nb_merges = map(int, model_f.readline().split()) vocab, merges = {}, [] # Vocab for _ in trange(nb_pieces): piece, piece_id = map(int, model_f.readline().split()) vocab[piece_id] = chr(piece) # Merges for _ in trange(nb_merges): piece_id_l, piece_id_r, piece = map(int, model_f.readline().split()) piece_l, piece_r = vocab[piece_id_l], vocab[piece_id_r] vocab[piece] = f"{piece_l}{piece_r}" merges += [(piece_l, piece_r)] # Special tokens unk, pad, bos, eos = map(int, model_f.readline().split()) vocab[unk] = "<unk>" vocab[pad] = "<pad>" vocab[bos] = "<bos>" vocab[eos] = "<eos>" # Invert key and value for vocab vocab = dict(zip(vocab.values(), vocab.keys())) return vocab, merges if __name__ == "__main__": parser = ArgumentParser("SentencePiece vocab extractor") parser.add_argument( "--provider", type=str, required=True, choices=["sentencepiece", "youtokentome"], help="Indicate the format of the file.", ) parser.add_argument("--model", type=str, required=True, help="SentencePiece model to extract vocab from.") parser.add_argument( "--vocab-output-path", type=str, required=True, help="Path where the vocab.json file will be extracted", ) parser.add_argument( "--merges-output-path", type=str, required=True, help="Path where the merges file will be extracted", ) # Parse cli arguments args = parser.parse_args() try: if args.model.startswith("http"): # Saving model with NamedTemporaryFile("wb", delete=False) as f: logger.info("Writing content from {} to {}".format(args.model, f.name)) response = get(args.model, allow_redirects=True) f.write(response.content) args.remote_model = args.model args.model = f.name # Allocate extractor extractor = SentencePieceExtractor if args.provider == "sentencepiece" else YouTokenToMeExtractor extractor = extractor(args.model) logger.info(f"Using {type(extractor).__name__}") # Open output files and let's extract model information with open(args.vocab_output_path, "w") as vocab_f: with open(args.merges_output_path, "w") as merges_f: # Do the extraction vocab, merges = extractor.extract() # Save content dump(vocab, vocab_f) merges_f.writelines(map(lambda x: f"{x[0]} {x[1]}{linesep}", merges)) finally: # If model was downloaded from internet we need to cleanup the tmp folder. if hasattr(args, "remote_model") and exists(args.model): remove(args.model)
tokenizers/bindings/python/scripts/sentencepiece_extractor.py/0
{ "file_path": "tokenizers/bindings/python/scripts/sentencepiece_extractor.py", "repo_id": "tokenizers", "token_count": 2231 }
236
use super::regex::PyRegex; use super::{DestroyPtr, RefMutContainer, RefMutGuard}; use crate::error::ToPyResult; use pyo3::exceptions; use pyo3::prelude::*; use pyo3::types::*; use tk::normalizer::{char_to_bytes, NormalizedString, Range, SplitDelimiterBehavior}; use tk::pattern::Pattern; /// Represents a Pattern as used by `NormalizedString` #[derive(Clone, FromPyObject)] pub enum PyPattern { #[pyo3(annotation = "str")] Str(String), #[pyo3(annotation = "tokenizers.Regex")] Regex(Py<PyRegex>), // TODO: Add the compatibility for Fn(char) -> bool } impl Pattern for PyPattern { fn find_matches(&self, inside: &str) -> tk::Result<Vec<(tk::Offsets, bool)>> { match self { PyPattern::Str(s) => { let mut chars = s.chars(); if let (Some(c), None) = (chars.next(), chars.next()) { c.find_matches(inside) } else { s.find_matches(inside) } } PyPattern::Regex(r) => { Python::with_gil(|py| (&r.borrow(py).inner).find_matches(inside)) } } } } impl From<PyPattern> for tk::normalizers::replace::ReplacePattern { fn from(pattern: PyPattern) -> Self { match pattern { PyPattern::Str(s) => Self::String(s.to_owned()), PyPattern::Regex(r) => Python::with_gil(|py| Self::Regex(r.borrow(py).pattern.clone())), } } } impl From<PyPattern> for tk::pre_tokenizers::split::SplitPattern { fn from(pattern: PyPattern) -> Self { match pattern { PyPattern::Str(s) => Self::String(s.to_owned()), PyPattern::Regex(r) => Python::with_gil(|py| Self::Regex(r.borrow(py).pattern.clone())), } } } #[derive(Debug, Clone, FromPyObject)] pub enum PyRange<'s> { #[pyo3(annotation = "int")] Single(isize), #[pyo3(annotation = "Tuple[uint, uint]")] Range(usize, usize), #[pyo3(annotation = "slice")] Slice(&'s PySlice), } impl PyRange<'_> { pub fn to_range(&self, max_len: usize) -> PyResult<std::ops::Range<usize>> { match self { PyRange::Single(i) => { if i.is_negative() { let i = -i as usize; if i > max_len { Err(exceptions::PyValueError::new_err(format!( "{} is bigger than max len", i ))) } else { Ok(max_len - i..max_len - i + 1) } } else { let i = *i as usize; Ok(i..i + 1) } } PyRange::Range(s, e) => Ok(*s..*e), PyRange::Slice(s) => { let r = s.indices(max_len as std::os::raw::c_long)?; Ok(r.start as usize..r.stop as usize) } } } } #[derive(Clone)] pub struct PySplitDelimiterBehavior(pub SplitDelimiterBehavior); impl FromPyObject<'_> for PySplitDelimiterBehavior { fn extract(obj: &PyAny) -> PyResult<Self> { let s = obj.extract::<&str>()?; Ok(Self(match s { "removed" => Ok(SplitDelimiterBehavior::Removed), "isolated" => Ok(SplitDelimiterBehavior::Isolated), "merged_with_previous" => Ok(SplitDelimiterBehavior::MergedWithPrevious), "merged_with_next" => Ok(SplitDelimiterBehavior::MergedWithNext), "contiguous" => Ok(SplitDelimiterBehavior::Contiguous), _ => Err(exceptions::PyValueError::new_err( "Wrong value for SplitDelimiterBehavior, expected one of: \ `removed, isolated, merged_with_previous, merged_with_next, contiguous`", )), }?)) } } impl From<PySplitDelimiterBehavior> for SplitDelimiterBehavior { fn from(v: PySplitDelimiterBehavior) -> Self { v.0 } } fn filter(normalized: &mut NormalizedString, func: &Bound<'_, PyAny>) -> PyResult<()> { let err = "`filter` expect a callable with the signature: `fn(char) -> bool`"; if !func.is_callable() { Err(exceptions::PyTypeError::new_err(err)) } else { normalized.filter(|c| { func.call1((c.to_string(),)) .expect(err) .extract() .expect(err) }); Ok(()) } } fn for_each(normalized: &NormalizedString, func: &Bound<'_, PyAny>) -> PyResult<()> { let err = "`for_each` expect a callable with the signature: `fn(char)`"; if !func.is_callable() { Err(exceptions::PyTypeError::new_err(err)) } else { normalized.for_each(|c| { func.call1((c.to_string(),)).expect(err); }); Ok(()) } } fn map(normalized: &mut NormalizedString, func: &Bound<'_, PyAny>) -> PyResult<()> { let err = "`map` expect a callable with the signature: `fn(char) -> char`"; if !func.is_callable() { Err(exceptions::PyTypeError::new_err(err)) } else { normalized.map(|c| { let c: String = func .call1((c.to_string(),)) .expect(err) .extract() .expect(err); c.chars().next().expect(err) }); Ok(()) } } fn slice( normalized: &NormalizedString, range: &PyRange<'_>, ) -> PyResult<Option<PyNormalizedString>> { let n_char = normalized.len(); let char_range = range.to_range(n_char)?; Ok( char_to_bytes(normalized.get(), char_range).and_then(|bytes_range| { normalized .slice(Range::Normalized(bytes_range)) .map(|n| n.into()) }), ) } /// NormalizedString /// /// A NormalizedString takes care of modifying an "original" string, to obtain a "normalized" one. /// While making all the requested modifications, it keeps track of the alignment information /// between the two versions of the string. /// /// Args: /// sequence: str: /// The string sequence used to initialize this NormalizedString #[pyclass(module = "tokenizers", name = "NormalizedString")] #[derive(Clone)] pub struct PyNormalizedString { pub(crate) normalized: NormalizedString, } #[pymethods] impl PyNormalizedString { #[new] #[pyo3(text_signature = None)] fn new(s: &str) -> Self { NormalizedString::from(s).into() } /// The normalized part of the string #[getter] fn get_normalized(&self) -> &str { self.normalized.get() } #[getter] fn get_original(&self) -> &str { self.normalized.get_original() } /// Runs the NFD normalization #[pyo3(text_signature = "(self)")] fn nfd(&mut self) { self.normalized.nfd(); } /// Runs the NFKD normalization #[pyo3(text_signature = "(self)")] fn nfkd(&mut self) { self.normalized.nfkd(); } /// Runs the NFC normalization #[pyo3(text_signature = "(self)")] fn nfc(&mut self) { self.normalized.nfc(); } /// Runs the NFKC normalization #[pyo3(text_signature = "(self)")] fn nfkc(&mut self) { self.normalized.nfkc(); } /// Lowercase the string #[pyo3(text_signature = "(self)")] fn lowercase(&mut self) { self.normalized.lowercase(); } /// Uppercase the string #[pyo3(text_signature = "(self)")] fn uppercase(&mut self) { self.normalized.uppercase(); } /// Prepend the given sequence to the string #[pyo3(text_signature = "(self, s)")] fn prepend(&mut self, s: &str) { self.normalized.prepend(s); } /// Append the given sequence to the string #[pyo3(text_signature = "(self, s)")] fn append(&mut self, s: &str) { self.normalized.append(s); } /// Strip the left of the string #[pyo3(text_signature = "(self)")] fn lstrip(&mut self) { self.normalized.lstrip(); } /// Strip the right of the string #[pyo3(text_signature = "(self)")] fn rstrip(&mut self) { self.normalized.rstrip(); } /// Strip both ends of the string #[pyo3(text_signature = "(self)")] fn strip(&mut self) { self.normalized.strip(); } /// Clears the string #[pyo3(text_signature = "(self)")] fn clear(&mut self) { self.normalized.clear(); } /// Slice the string using the given range #[pyo3(text_signature = "(self, range)")] fn slice(&self, range: PyRange) -> PyResult<Option<PyNormalizedString>> { slice(&self.normalized, &range) } /// Filter each character of the string using the given func #[pyo3(text_signature = "(self, func)")] fn filter(&mut self, func: &Bound<'_, PyAny>) -> PyResult<()> { filter(&mut self.normalized, func) } /// Calls the given function for each character of the string #[pyo3(text_signature = "(self, func)")] fn for_each(&self, func: &Bound<'_, PyAny>) -> PyResult<()> { for_each(&self.normalized, func) } /// Calls the given function for each character of the string /// /// Replaces each character of the string using the returned value. Each /// returned value **must** be a str of length 1 (ie a character). #[pyo3(text_signature = "(self, func)")] fn map(&mut self, func: &Bound<'_, PyAny>) -> PyResult<()> { map(&mut self.normalized, func) } /// Split the NormalizedString using the given pattern and the specified behavior /// /// Args: /// pattern: Pattern: /// A pattern used to split the string. Usually a string or a regex built with `tokenizers.Regex` /// /// behavior: SplitDelimiterBehavior: /// The behavior to use when splitting. /// Choices: "removed", "isolated", "merged_with_previous", "merged_with_next", /// "contiguous" /// /// Returns: /// A list of NormalizedString, representing each split #[pyo3(text_signature = "(self, pattern, behavior)")] fn split( &mut self, pattern: PyPattern, behavior: PySplitDelimiterBehavior, ) -> PyResult<Vec<PyNormalizedString>> { Ok(ToPyResult(self.normalized.split(pattern, behavior.into())) .into_py()? .into_iter() .map(|n| n.into()) .collect()) } /// Replace the content of the given pattern with the provided content /// /// Args: /// pattern: Pattern: /// A pattern used to match the string. Usually a string or a Regex /// /// content: str: /// The content to be used as replacement #[pyo3(text_signature = "(self, pattern, content)")] fn replace(&mut self, pattern: PyPattern, content: &str) -> PyResult<()> { ToPyResult(self.normalized.replace(pattern, content)).into() } fn __repr__(&self) -> String { format!( r#"NormalizedString(original="{}", normalized="{}")"#, self.normalized.get_original(), self.normalized.get() ) } fn __str__(&self) -> &str { self.normalized.get() } fn __getitem__(&self, range: PyRange<'_>) -> PyResult<Option<PyNormalizedString>> { slice(&self.normalized, &range) } } impl From<NormalizedString> for PyNormalizedString { fn from(normalized: NormalizedString) -> Self { Self { normalized } } } impl From<PyNormalizedString> for NormalizedString { fn from(normalized: PyNormalizedString) -> Self { normalized.normalized } } #[pyclass(module = "tokenizers", name = "NormalizedStringRefMut")] #[derive(Clone)] pub struct PyNormalizedStringRefMut { inner: RefMutContainer<NormalizedString>, } impl DestroyPtr for PyNormalizedStringRefMut { fn destroy(&mut self) { self.inner.destroy(); } } impl PyNormalizedStringRefMut { pub fn new(normalized: &mut NormalizedString) -> RefMutGuard<Self> { RefMutGuard::new(Self { inner: RefMutContainer::new(normalized), }) } pub fn destroyed_error() -> PyErr { exceptions::PyException::new_err("Cannot use a NormalizedStringRefMut outside `normalize`") } /// Provides a way to access a reference to the underlying NormalizedString pub fn map_as_ref<F: FnOnce(&NormalizedString) -> U, U>(&self, f: F) -> PyResult<U> { self.inner .map(f) .ok_or_else(PyNormalizedStringRefMut::destroyed_error) } /// Provides a way to access a mutable reference to the underlying NormalizedString pub fn map_as_mut<F: FnOnce(&mut NormalizedString) -> U, U>(&mut self, f: F) -> PyResult<U> { self.inner .map_mut(f) .ok_or_else(PyNormalizedStringRefMut::destroyed_error) } } #[pymethods] impl PyNormalizedStringRefMut { #[getter] fn get_normalized(&self) -> PyResult<String> { self.inner .map(|n| n.get().to_owned()) .ok_or_else(PyNormalizedStringRefMut::destroyed_error) } #[getter] fn get_original(&self) -> PyResult<String> { self.inner .map(|n| n.get_original().to_owned()) .ok_or_else(PyNormalizedStringRefMut::destroyed_error) } fn nfd(&mut self) -> PyResult<()> { self.inner .map_mut(|n| { n.nfd(); }) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?; Ok(()) } fn nfkd(&mut self) -> PyResult<()> { self.inner .map_mut(|n| { n.nfkd(); }) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?; Ok(()) } fn nfc(&mut self) -> PyResult<()> { self.inner .map_mut(|n| { n.nfc(); }) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?; Ok(()) } fn nfkc(&mut self) -> PyResult<()> { self.inner .map_mut(|n| { n.nfkc(); }) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?; Ok(()) } fn lowercase(&mut self) -> PyResult<()> { self.inner .map_mut(|n| { n.lowercase(); }) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?; Ok(()) } fn uppercase(&mut self) -> PyResult<()> { self.inner .map_mut(|n| { n.uppercase(); }) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?; Ok(()) } fn prepend(&mut self, s: &str) -> PyResult<()> { self.inner .map_mut(|n| { n.prepend(s); }) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?; Ok(()) } fn append(&mut self, s: &str) -> PyResult<()> { self.inner .map_mut(|n| { n.append(s); }) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?; Ok(()) } fn lstrip(&mut self) -> PyResult<()> { self.inner .map_mut(|n| { n.lstrip(); }) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?; Ok(()) } fn rstrip(&mut self) -> PyResult<()> { self.inner .map_mut(|n| { n.rstrip(); }) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?; Ok(()) } fn strip(&mut self) -> PyResult<()> { self.inner .map_mut(|n| { n.strip(); }) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?; Ok(()) } fn clear(&mut self) -> PyResult<()> { self.inner .map_mut(|n| { n.clear(); }) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?; Ok(()) } fn slice(&self, range: PyRange) -> PyResult<Option<PyNormalizedString>> { self.inner .map(|n| slice(n, &range)) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)? } fn filter(&mut self, func: &Bound<'_, PyAny>) -> PyResult<()> { self.inner .map_mut(|n| filter(n, func)) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)??; Ok(()) } fn for_each(&self, func: &Bound<'_, PyAny>) -> PyResult<()> { self.inner .map(|n| for_each(n, func)) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)??; Ok(()) } fn map(&mut self, func: &Bound<'_, PyAny>) -> PyResult<()> { self.inner .map_mut(|n| map(n, func)) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)??; Ok(()) } fn split( &mut self, pattern: PyPattern, behavior: PySplitDelimiterBehavior, ) -> PyResult<Vec<PyNormalizedString>> { Ok(ToPyResult( self.inner .map_mut(|n| n.split(pattern, behavior.into())) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?, ) .into_py()? .into_iter() .map(|n| n.into()) .collect()) } fn replace(&mut self, pattern: PyPattern, content: &str) -> PyResult<()> { ToPyResult( self.inner .map_mut(|n| n.replace(pattern, content)) .ok_or_else(PyNormalizedStringRefMut::destroyed_error)?, ) .into() } }
tokenizers/bindings/python/src/utils/normalization.rs/0
{ "file_path": "tokenizers/bindings/python/src/utils/normalization.rs", "repo_id": "tokenizers", "token_count": 8490 }
237
# Decoders <tokenizerslangcontent> <python> ## BPEDecoder [[autodoc]] tokenizers.decoders.BPEDecoder ## ByteLevel [[autodoc]] tokenizers.decoders.ByteLevel ## CTC [[autodoc]] tokenizers.decoders.CTC ## Metaspace [[autodoc]] tokenizers.decoders.Metaspace ## WordPiece [[autodoc]] tokenizers.decoders.WordPiece </python> <rust> The Rust API Reference is available directly on the [Docs.rs](https://docs.rs/tokenizers/latest/tokenizers/) website. </rust> <node> The node API has not been documented yet. </node> </tokenizerslangcontent>
tokenizers/docs/source-doc-builder/api/decoders.mdx/0
{ "file_path": "tokenizers/docs/source-doc-builder/api/decoders.mdx", "repo_id": "tokenizers", "token_count": 197 }
238
# Training from memory In the [Quicktour](quicktour), we saw how to build and train a tokenizer using text files, but we can actually use any Python Iterator. In this section we'll see a few different ways of training our tokenizer. For all the examples listed below, we'll use the same [`~tokenizers.Tokenizer`] and [`~tokenizers.trainers.Trainer`], built as following: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START init_tokenizer_trainer", "end-before": "END init_tokenizer_trainer", "dedent": 8} </literalinclude> This tokenizer is based on the [`~tokenizers.models.Unigram`] model. It takes care of normalizing the input using the NFKC Unicode normalization method, and uses a [`~tokenizers.pre_tokenizers.ByteLevel`] pre-tokenizer with the corresponding decoder. For more information on the components used here, you can check [here](components). ## The most basic way As you probably guessed already, the easiest way to train our tokenizer is by using a `List`{.interpreted-text role="obj"}: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START train_basic", "end-before": "END train_basic", "dedent": 8} </literalinclude> Easy, right? You can use anything working as an iterator here, be it a `List`{.interpreted-text role="obj"}, `Tuple`{.interpreted-text role="obj"}, or a `np.Array`{.interpreted-text role="obj"}. Anything works as long as it provides strings. ## Using the 🀗 Datasets library An awesome way to access one of the many datasets that exist out there is by using the 🀗 Datasets library. For more information about it, you should check [the official documentation here](https://huggingface.co/docs/datasets/). Let's start by loading our dataset: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START load_dataset", "end-before": "END load_dataset", "dedent": 8} </literalinclude> The next step is to build an iterator over this dataset. The easiest way to do this is probably by using a generator: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START def_batch_iterator", "end-before": "END def_batch_iterator", "dedent": 8} </literalinclude> As you can see here, for improved efficiency we can actually provide a batch of examples used to train, instead of iterating over them one by one. By doing so, we can expect performances very similar to those we got while training directly from files. With our iterator ready, we just need to launch the training. In order to improve the look of our progress bars, we can specify the total length of the dataset: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START train_datasets", "end-before": "END train_datasets", "dedent": 8} </literalinclude> And that's it! ## Using gzip files Since gzip files in Python can be used as iterators, it is extremely simple to train on such files: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START single_gzip", "end-before": "END single_gzip", "dedent": 8} </literalinclude> Now if we wanted to train from multiple gzip files, it wouldn't be much harder: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START multi_gzip", "end-before": "END multi_gzip", "dedent": 8} </literalinclude> And voilà!
tokenizers/docs/source-doc-builder/training_from_memory.mdx/0
{ "file_path": "tokenizers/docs/source-doc-builder/training_from_memory.mdx", "repo_id": "tokenizers", "token_count": 1199 }
239
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath("./_ext")) sys.path.insert(0, os.path.abspath(".")) # -- Project information ----------------------------------------------------- project = "tokenizers" copyright = "2020, huggingface" author = "huggingface" # The full version, including alpha/beta/rc tags release = "" # -- Custom information ------------------------------------------------------ # The possible values for languages (used by `_ext/entities`) languages = ["node", "rust", "python"] # This defines the version used to generate links to docs.rs rust_version = "latest" # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ["sphinx.ext.autodoc", "sphinx.ext.napoleon", "entities", "rust_doc", "toctree_tags"] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {"analytics_id": "UA-83738774-2"} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] def setup(app): for language in languages: if not tags.has(language): exclude_patterns.append(f"tutorials/{language}/*") app.add_css_file("css/huggingface.css") app.add_css_file("css/code-snippets.css") app.add_js_file("js/custom.js")
tokenizers/docs/source/conf.py/0
{ "file_path": "tokenizers/docs/source/conf.py", "repo_id": "tokenizers", "token_count": 781 }
240
#[macro_use] extern crate criterion; mod common; use std::fs::File; use std::io::{BufRead, BufReader}; use std::path::Path; use criterion::Criterion; use tokenizers::models::wordpiece::{WordPiece, WordPieceTrainerBuilder}; use tokenizers::normalizers::{BertNormalizer, NormalizerWrapper}; use tokenizers::pre_tokenizers::bert::BertPreTokenizer; use tokenizers::processors::bert::BertProcessing; use tokenizers::{decoders, EncodeInput, Model, TokenizerImpl}; use common::{iter_bench_encode, iter_bench_encode_batch, iter_bench_train}; use tokenizers::decoders::DecoderWrapper; use tokenizers::pre_tokenizers::whitespace::Whitespace; use tokenizers::processors::PostProcessorWrapper; static BATCH_SIZE: usize = 1_000; type BertTokenizer = TokenizerImpl< WordPiece, BertNormalizer, BertPreTokenizer, BertProcessing, decoders::wordpiece::WordPiece, >; /// Resembling the BertTokenizer implementation from the Python bindings. fn create_bert_tokenizer(wp: WordPiece) -> BertTokenizer { let sep_id = *wp.get_vocab().get("[SEP]").unwrap(); let cls_id = *wp.get_vocab().get("[CLS]").unwrap(); let mut tokenizer = TokenizerImpl::new(wp); tokenizer.with_pre_tokenizer(Some(BertPreTokenizer)); tokenizer.with_normalizer(Some(BertNormalizer::default())); tokenizer.with_decoder(Some(decoders::wordpiece::WordPiece::default())); tokenizer.with_post_processor(Some(BertProcessing::new( ("[SEP]".to_string(), sep_id), ("[CLS]".to_string(), cls_id), ))); tokenizer } pub fn bench_bert(c: &mut Criterion) { let wp = WordPiece::from_file("data/bert-base-uncased-vocab.txt") .build() .unwrap(); let tokenizer = create_bert_tokenizer(wp); let mut lines: Vec<EncodeInput> = vec![]; let mut batches: Vec<Vec<EncodeInput>> = vec![vec![]]; for line in BufReader::new(File::open(Path::new("data/big.txt")).unwrap()).lines() { let line: EncodeInput = line.unwrap().into(); lines.push(line.clone()); if batches.last().unwrap().len() >= BATCH_SIZE { batches.push(vec![]); } batches.last_mut().unwrap().push(line); } c.bench_function("WordPiece BERT encode", |b| { b.iter_custom(|iters| iter_bench_encode(iters, &tokenizer, &lines)) }); c.bench_function("WordPiece BERT encode batch", |b| { b.iter_custom(|iters| iter_bench_encode_batch(iters, &tokenizer, &batches)) }); } fn bench_train(c: &mut Criterion) { let mut trainer = WordPieceTrainerBuilder::default() .show_progress(false) .build(); type Tok = TokenizerImpl< WordPiece, NormalizerWrapper, Whitespace, PostProcessorWrapper, DecoderWrapper, >; let mut tokenizer = Tok::new(WordPiece::default()); tokenizer.with_pre_tokenizer(Some(Whitespace {})); c.bench_function("WordPiece Train vocabulary (small)", |b| { b.iter_custom(|iters| { iter_bench_train( iters, &mut tokenizer, &mut trainer, vec!["data/small.txt".to_string()], ) }) }); let mut tokenizer = Tok::new(WordPiece::default()); tokenizer.with_pre_tokenizer(Some(Whitespace {})); c.bench_function("WordPiece Train vocabulary (big)", |b| { b.iter_custom(|iters| { iter_bench_train( iters, &mut tokenizer, &mut trainer, vec!["data/big.txt".to_string()], ) }) }); } criterion_group! { name = bert_benches; config = Criterion::default().sample_size(20); targets = bench_bert } criterion_group! { name = benches_train; config = Criterion::default().sample_size(10); targets = bench_train } criterion_main!(bert_benches, benches_train);
tokenizers/tokenizers/benches/bert_benchmark.rs/0
{ "file_path": "tokenizers/tokenizers/benches/bert_benchmark.rs", "repo_id": "tokenizers", "token_count": 1657 }
241
language: node_js node_js: "10" script: - ./node_modules/.bin/webpack
tokenizers/tokenizers/examples/unstable_wasm/www/.travis.yml/0
{ "file_path": "tokenizers/tokenizers/examples/unstable_wasm/www/.travis.yml", "repo_id": "tokenizers", "token_count": 30 }
242
use crate::decoders::DecoderWrapper; use crate::tokenizer::{Decoder, Result}; use crate::utils::macro_rules_attribute; use serde::{Deserialize, Serialize}; #[derive(Clone, Debug)] #[macro_rules_attribute(impl_serde_type!)] pub struct Sequence { decoders: Vec<DecoderWrapper>, } impl Sequence { pub fn new(decoders: Vec<DecoderWrapper>) -> Self { Self { decoders } } pub fn get_decoders(&self) -> &[DecoderWrapper] { &self.decoders } pub fn get_decoders_mut(&mut self) -> &mut [DecoderWrapper] { &mut self.decoders } } impl Decoder for Sequence { fn decode_chain(&self, mut tokens: Vec<String>) -> Result<Vec<String>> { for decoder in &self.decoders { tokens = decoder.decode_chain(tokens)?; } Ok(tokens) } } #[cfg(test)] mod tests { use super::*; use crate::decoders::ctc::CTC; use crate::pre_tokenizers::metaspace::Metaspace; #[test] fn sequence_basic() { let decoders = vec![ DecoderWrapper::CTC(CTC::default()), DecoderWrapper::Metaspace(Metaspace::default()), ]; let decoder = Sequence::new(decoders); let tokens: Vec<String> = vec!["▁", "▁", "H", "H", "i", "i", "▁", "y", "o", "u"] .into_iter() .map(|s| s.to_string()) .collect(); let out_tokens = decoder.decode(tokens).unwrap(); assert_eq!(out_tokens, "Hi you"); } }
tokenizers/tokenizers/src/decoders/sequence.rs/0
{ "file_path": "tokenizers/tokenizers/src/decoders/sequence.rs", "repo_id": "tokenizers", "token_count": 689 }
243
use super::OrderedVocabIter; use crate::tokenizer::{Model, Result, Token}; use serde_json::Value; use std::collections::HashMap; use std::fs::File; use std::io::{BufReader, Read, Write}; use std::path::{Path, PathBuf}; mod serialization; mod trainer; // Re-export pub use trainer::*; type Vocab = HashMap<String, u32>; #[derive(thiserror::Error, Debug)] pub enum Error { #[error("WordLevel error: Missing [UNK] token from the vocabulary")] MissingUnkToken, #[error("Bad vocabulary json file")] BadVocabulary, } struct Config { files: Option<String>, vocab: HashMap<String, u32>, unk_token: String, } /// A `WordLevelBuilder` can be used to create a `WordLevel` /// model with a custom configuration. pub struct WordLevelBuilder { config: Config, } impl Default for WordLevelBuilder { fn default() -> Self { Self { config: Config { files: None, vocab: HashMap::new(), unk_token: String::from("<unk>"), }, } } } impl WordLevelBuilder { /// Construct a new `WordLevelBuilder`. pub fn new() -> Self { Self::default() } /// Set the input files. #[must_use] pub fn files(mut self, vocab: String) -> Self { self.config.files = Some(vocab); self } /// Set the vocab (token -> ID) mapping. #[must_use] pub fn vocab(mut self, vocab: HashMap<String, u32>) -> Self { self.config.vocab = vocab; self } /// The the `UNK` token for the vocab. #[must_use] pub fn unk_token(mut self, unk_token: String) -> Self { self.config.unk_token = unk_token; self } /// Contructs a `WordLevel` model that uses the `WordLevelBuilder`'s configuration. pub fn build(mut self) -> Result<WordLevel> { if let Some(vocab) = self.config.files { self.config.vocab = WordLevel::read_file(&vocab)?; } let vocab_r = self .config .vocab .iter() .map(|(key, val)| (*val, key.to_owned())) .collect(); Ok(WordLevel { vocab: self.config.vocab, vocab_r, unk_token: self.config.unk_token, }) } } #[derive(PartialEq, Clone, Eq)] pub struct WordLevel { vocab: HashMap<String, u32>, vocab_r: HashMap<u32, String>, pub unk_token: String, } impl std::fmt::Debug for WordLevel { fn fmt(&self, fmt: &mut std::fmt::Formatter) -> std::fmt::Result { fmt.debug_struct("WordLevel") .field("unk_token", &self.unk_token) .field("vocab", &self.vocab.len()) .finish() } } impl WordLevel { pub fn builder() -> WordLevelBuilder { WordLevelBuilder::new() } pub fn read_file(vocab_path: &str) -> Result<Vocab> { let vocab_file = File::open(vocab_path)?; let mut vocab_file = BufReader::new(vocab_file); let mut buffer = String::new(); let mut vocab = HashMap::new(); vocab_file.read_to_string(&mut buffer)?; let json: Value = serde_json::from_str(&buffer)?; match json { Value::Object(m) => { for (token, id) in m { if let Value::Number(id) = id { let id = id.as_u64().ok_or(Error::BadVocabulary)? as u32; vocab.insert(token, id); } } } _ => return Err(Box::new(Error::BadVocabulary)), }; Ok(vocab) } /// Initialize a WordLevel model from vocab and merges file. pub fn from_file(vocab_path: &str, unk_token: String) -> Result<WordLevel> { let vocab = WordLevel::read_file(vocab_path)?; Self::builder().vocab(vocab).unk_token(unk_token).build() } } impl Default for WordLevel { fn default() -> Self { Self { vocab: HashMap::new(), vocab_r: HashMap::new(), unk_token: String::from("<unk>"), } } } impl Model for WordLevel { type Trainer = WordLevelTrainer; fn tokenize(&self, token: &str) -> Result<Vec<Token>> { if let Some(&id) = self.vocab.get(token) { Ok(vec![Token { id, value: token.to_owned(), offsets: (0, token.len()), }]) } else if let Some(&unk_id) = self.vocab.get(&self.unk_token) { Ok(vec![Token { id: unk_id, value: self.unk_token.to_owned(), offsets: (0, token.len()), }]) } else { Err(Box::new(Error::MissingUnkToken)) } } fn token_to_id(&self, token: &str) -> Option<u32> { self.vocab.get(token).copied() } fn id_to_token(&self, id: u32) -> Option<String> { self.vocab_r.get(&id).cloned() } fn get_vocab(&self) -> HashMap<String, u32> { self.vocab.clone() } fn get_vocab_size(&self) -> usize { self.vocab.keys().len() } fn save(&self, folder: &Path, name: Option<&str>) -> Result<Vec<PathBuf>> { let vocab_file_name = match name { Some(name) => format!("{}-vocab.json", name), None => "vocab.json".to_string(), }; // Write vocab.json let vocab_path: PathBuf = [folder, Path::new(vocab_file_name.as_str())] .iter() .collect(); let mut vocab_file = File::create(&vocab_path)?; let order_vocab_iter = OrderedVocabIter::new(&self.vocab_r); let serialized = serde_json::to_string(&order_vocab_iter)?; vocab_file.write_all(serialized.as_bytes())?; Ok(vec![vocab_path]) } fn get_trainer(&self) -> Self::Trainer { WordLevelTrainer::default() } } #[cfg(test)] mod tests { use super::*; #[test] fn test_tokenize_unk() { let vocab: Vocab = [("<unk>".into(), 0), ("a".into(), 1), ("b".into(), 2)] .iter() .cloned() .collect(); let wordlevel = WordLevelBuilder::default() .vocab(vocab) .unk_token("<unk>".to_string()) .build() .unwrap(); let tokens = wordlevel.tokenize("c").unwrap(); assert_eq!(tokens, vec![Token::new(0u32, "<unk>".into(), (0, 1)),]); let tokens = wordlevel.tokenize("a").unwrap(); assert_eq!(tokens, vec![Token::new(1u32, "a".into(), (0, 1)),]); } #[test] fn test_tokenize_missing_unk_token() { let vocab: Vocab = [("a".into(), 0), ("b".into(), 1)].iter().cloned().collect(); let wordlevel = WordLevelBuilder::default().vocab(vocab).build().unwrap(); let tokens = wordlevel.tokenize("a").unwrap(); assert_eq!(tokens, vec![Token::new(0u32, "a".into(), (0, 1)),]); let error = wordlevel.tokenize("c").err().unwrap(); assert!(error.is::<Error>()); } }
tokenizers/tokenizers/src/models/wordlevel/mod.rs/0
{ "file_path": "tokenizers/tokenizers/src/models/wordlevel/mod.rs", "repo_id": "tokenizers", "token_count": 3383 }
244
use std::collections::{HashMap, HashSet}; use crate::utils::SysRegex; use serde::{Deserialize, Serialize}; use crate::tokenizer::{ Decoder, Encoding, PostProcessor, PreTokenizedString, PreTokenizer, Result, SplitDelimiterBehavior, }; use crate::utils::macro_rules_attribute; /// Converts bytes to unicode characters. /// See https://github.com/openai/gpt-2/blob/master/src/encoder.py#L9 pub(crate) fn bytes_char() -> HashMap<u8, char> { let mut bs: Vec<u8> = vec![]; bs.extend(b'!'..=b'~'); bs.extend(b'\xA1'..=b'\xAC'); bs.extend(b'\xAE'..=b'\xFF'); let mut cs: Vec<u32> = bs.iter().map(|i| *i as u32).collect(); let mut n = 0; for b in 0..=255u8 { if !bs.contains(&b) { bs.push(b); cs.push(u32::pow(2, 8) + n); n += 1; } } bs.into_iter() .zip(cs) .map(|(f, t)| (f, unsafe { std::char::from_u32_unchecked(t) })) .collect() } lazy_static! { /// Regex that matches exactly one token. /// See https://github.com/openai/gpt-2/blob/master/src/encoder.py#L98 static ref RE: SysRegex = SysRegex::new( r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) .unwrap(); static ref BYTES_CHAR: HashMap<u8, char> = bytes_char(); static ref CHAR_BYTES: HashMap<char, u8> = bytes_char().into_iter().map(|(c, b)| (b, c)).collect(); } #[derive(Copy, Clone, Debug, PartialEq, Eq)] /// Provides all the necessary steps to handle the BPE tokenization at the byte-level. Takes care /// of all the required processing steps to transform a UTF-8 string as needed before and after the /// BPE model does its job. #[macro_rules_attribute(impl_serde_type!)] #[non_exhaustive] pub struct ByteLevel { /// Whether to add a leading space to the first word. This allows to treat the leading word /// just as any other word. pub add_prefix_space: bool, /// Whether the post processing step should trim offsets to avoid including whitespaces. pub trim_offsets: bool, /// Whether to use the standard GPT2 regex for whitespace splitting /// Set it to False if you want to use your own splitting. #[serde(default = "default_true")] pub use_regex: bool, } fn default_true() -> bool { true } impl Default for ByteLevel { fn default() -> Self { Self { add_prefix_space: true, trim_offsets: true, use_regex: true, } } } impl ByteLevel { pub fn new(add_prefix_space: bool, trim_offsets: bool, use_regex: bool) -> Self { Self { add_prefix_space, trim_offsets, use_regex, } } pub fn alphabet() -> HashSet<char> { BYTES_CHAR.values().copied().collect() } #[must_use] pub fn add_prefix_space(mut self, v: bool) -> Self { self.add_prefix_space = v; self } #[must_use] pub fn trim_offsets(mut self, v: bool) -> Self { self.trim_offsets = v; self } #[must_use] pub fn use_regex(mut self, v: bool) -> Self { self.use_regex = v; self } } /// As a `PreTokenizer`, `ByteLevel` is in charge of transforming all the unicode characters into /// their byte-level counterpart. It also splits the input according to the configured regex. // TODO: Give the ability to modify this regex impl PreTokenizer for ByteLevel { fn pre_tokenize(&self, pretokenized: &mut PreTokenizedString) -> Result<()> { let re_ref: &SysRegex = &RE; pretokenized.split(|_, mut normalized| { if self.add_prefix_space && !normalized.get().starts_with(' ') { normalized.prepend(" "); } if self.use_regex { normalized.split(re_ref, SplitDelimiterBehavior::Isolated) } else { Ok(vec![normalized]) } })?; pretokenized.normalize(|normalized| { let s = normalized.get(); let mut transformations: Vec<(char, isize)> = Vec::with_capacity(s.len()); let mut i = 0; for cur_char in s.chars() { let size = cur_char.len_utf8(); let bytes = s[i..i + size].as_bytes(); i += size; transformations.extend( bytes .iter() .enumerate() .map(|(i, b)| (BYTES_CHAR[b], isize::from(i > 0))), ); } normalized.transform(transformations, 0); Ok(()) }) } } /// As a `Decoder`, `ByteLevel` is in charge of converting any byte-level characters to their /// unicode counterpart, before merging everything back into a single String. /// This decoder will consume the tokens and merge them in one step to alleviate /// the fact that single token decoded might be a byte not representable as /// as String. impl Decoder for ByteLevel { fn decode_chain(&self, tokens: Vec<String>) -> Result<Vec<String>> { let toks = tokens .into_iter() .flat_map(|t| { t.chars() .try_fold(vec![], |mut acc, c| { CHAR_BYTES.get(&c).map(|b| { acc.push(*b); acc }) }) .unwrap_or_else(|| t.as_bytes().to_vec()) }) .collect::<Vec<u8>>(); Ok(vec![String::from_utf8_lossy(&toks).to_string()]) } } /// As a `PostProcessor`, `ByteLevel` is in charge of trimming the offsets if necessary. impl PostProcessor for ByteLevel { fn added_tokens(&self, _is_pair: bool) -> usize { 0 } fn process_encodings( &self, mut encodings: Vec<Encoding>, _add_special_tokens: bool, ) -> Result<Vec<Encoding>> { if self.trim_offsets { for encoding in encodings.iter_mut() { process_offsets(encoding, self.add_prefix_space); encoding .get_overflowing_mut() .iter_mut() .for_each(|encoding| process_offsets(encoding, self.add_prefix_space)); } } for (i, encoding) in encodings.iter_mut().enumerate() { encoding.set_sequence_id(i); } Ok(encodings) //<dyn PostProcessor>::default_process(encodings, add_special_tokens) } } pub fn process_offsets(encoding: &mut Encoding, add_prefix_space: bool) { encoding.process_tokens_with_offsets_mut(|(i, (token, offsets))| { let mut leading_spaces = token .chars() .take_while(|c| *c == BYTES_CHAR[&b' '] || c.is_whitespace()) .count(); let trailing_spaces = token .chars() .rev() .take_while(|c| *c == BYTES_CHAR[&b' '] || c.is_whitespace()) .count(); if leading_spaces > 0 || trailing_spaces > 0 { if leading_spaces > 0 { // If user uses `is_pretokenized=True` we might have // offsets that might begin at the start of the string but are // NOT the first token. let is_first = i == 0 || offsets.0 == 0; if is_first && add_prefix_space && leading_spaces == 1 { // If we are processing the first pair of offsets, with `add_prefix_space`, // then we shouldn't remove anything we added. If there are more than one // leading spaces though, it means we didn't add them, and they should be // removed. leading_spaces = 0; } offsets.0 = std::cmp::min(offsets.0 + leading_spaces, offsets.1); } if trailing_spaces > 0 && offsets.1 >= trailing_spaces { offsets.1 = std::cmp::max(offsets.1 - trailing_spaces, offsets.0); } } }); } #[cfg(test)] mod tests { use super::*; use crate::tokenizer::{ Decoder, Encoding, OffsetReferential, OffsetType, PostProcessor, PreTokenizedString, PreTokenizer, }; use std::iter::FromIterator; #[test] fn pre_tokenization() { let bytelevel = ByteLevel::default().add_prefix_space(false); let mut pretokenized: PreTokenizedString = "Hello my friend, how is your day going?".into(); bytelevel.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![ ("Hello", (0, 5)), ("Ä my", (5, 8)), ("Ä friend", (8, 15)), (",", (15, 16)), ("Ä how", (16, 20)), ("Ä is", (20, 23)), ("Ä your", (23, 28)), ("Ä day", (28, 32)), ("Ä going", (32, 38)), ("?", (38, 39)) ] ); } #[test] fn pre_tokenization_no_regex() { let bytelevel = ByteLevel::default().use_regex(false); let mut pretokenized: PreTokenizedString = "Hello my friend, how is your day going?".into(); bytelevel.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![("Ä HelloÄ myÄ friend,Ä howÄ isÄ yourÄ dayÄ going?", (0, 39))] ); } #[test] fn decoding() { let bytelevel = ByteLevel::default().add_prefix_space(false); assert_eq!( bytelevel .decode_chain( vec![ "Hello", "Ä my", "Ä friend", ",", "Ä how", "Ä is", "Ä your", "Ä day", "Ä going", "?" ] .into_iter() .map(|s| s.into()) .collect::<Vec<String>>() ) .unwrap(), vec!["Hello my friend, how is your day going?"] ); } #[test] fn add_prefix_space() { let bytelevel = ByteLevel::default().add_prefix_space(true); for s in &[ " Hello my friend, how is your day going?", "Hello my friend, how is your day going?", ] { let mut pretokenized = PreTokenizedString::from(*s); bytelevel.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Normalized, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![ ("Ä Hello", (0, 7)), ("Ä my", (7, 11)), ("Ä friend", (11, 19)), (",", (19, 20)), ("Ä how", (20, 25)), ("Ä is", (25, 29)), ("Ä your", (29, 35)), ("Ä day", (35, 40)), ("Ä going", (40, 47)), ("?", (47, 48)) ] ); } } #[test] fn decode_works_on_separated_tokens() { let samples = vec![ "A Nuskhuri abbreviation of იესუ ქრისტე ( iesu kriste ) \" Jesus Christ \"", "An equal number have descenders , like p or q in English \ : გ , დ , ე , ვ , კ , ლ , ჟ , ტ , უ , Ⴠ , ჊ , ყ , ც", ]; let bytelevel = ByteLevel::default().add_prefix_space(false); for sample in samples { let mut pretokenized = PreTokenizedString::from(sample); bytelevel.pre_tokenize(&mut pretokenized).unwrap(); let separated_tokens = pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .iter() .flat_map(|(s, _, _)| s.split("").map(|t| t.into())) .collect::<Vec<_>>(); assert_eq!( sample, bytelevel.decode_chain(separated_tokens).unwrap().join("") ); } } #[test] fn handling_of_newlines() { let mut pretokenized = PreTokenizedString::from("Hello there\nHello there"); let bytelevel = ByteLevel::default().add_prefix_space(false); bytelevel.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![ ("Hello", (0, 5)), ("Ä there", (5, 11)), ("Ċ", (11, 12)), ("Hello", (12, 17)), ("Ä there", (17, 23)) ] ); } #[test] fn handling_of_multiple_whitespaces() { let mut pretokenized = PreTokenizedString::from("Hello there dear"); let bytelevel = ByteLevel::default().add_prefix_space(false); bytelevel.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![ ("Hello", (0, 5)), ("Ä there", (5, 11)), ("Ä Ä Ä Ä Ä Ä ", (11, 17)), ("Ä dear", (17, 22)) ] ); } #[test] fn offsets_when_char_split_up() { let input = "iâ­¢j"; let mut pretokenized = PreTokenizedString::from(input); let bytelevel = ByteLevel::default().add_prefix_space(false); bytelevel.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![("i", (0, 1)), ("âŃ¢", (1, 4)), ("j", (4, 5))] ); assert_eq!( pretokenized .get_splits(OffsetReferential::Normalized, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![("i", (0, 1)), ("âŃ¢", (1, 7)), ("j", (7, 8))] ); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(_, o, _)| &input[o.0..o.1]) .collect::<Vec<_>>(), vec!["i", "â­¢", "j"] ); } #[test] fn processor_trims_offsets_pre_tokenized() { // If user uses `is_pretokenized=True` we might have // offsets that might begin at the start of the string but are // NOT the first token. let mut encoding = Encoding::new( vec![0; 5], vec![], vec!["Ä l".into(), "ove".into(), "Ä l".into(), "ove".into()], vec![], vec![(0, 1), (1, 4), (0, 1), (1, 4)], vec![], vec![], vec![], HashMap::new(), ); process_offsets(&mut encoding, true); assert_eq!( encoding, Encoding::new( vec![0; 5], vec![], vec!["Ä l".into(), "ove".into(), "Ä l".into(), "ove".into()], vec![], vec![(0, 1), (1, 4), (0, 1), (1, 4)], vec![], vec![], vec![], HashMap::new(), ) ); } #[test] fn processor_trims_offsets() { let start = Encoding::new( vec![0; 5], vec![], vec![ "Ä ".into(), "Ä Ä Ä Ä HelloÄ Ä ".into(), "Ä Ä Hello".into(), "HelloÄ Ä ".into(), "Ä Ä Ä Ä ".into(), ], vec![], vec![(0, 1), (0, 11), (11, 18), (18, 25), (25, 29)], vec![], vec![], vec![], HashMap::new(), ); let expected = Encoding::new( vec![0; 5], vec![0; 5], vec![ "Ä ".into(), "Ä Ä Ä Ä HelloÄ Ä ".into(), "Ä Ä Hello".into(), "HelloÄ Ä ".into(), "Ä Ä Ä Ä ".into(), ], vec![], vec![(0, 0), (4, 9), (13, 18), (18, 23), (29, 29)], vec![], vec![], vec![], HashMap::from_iter(vec![(0, 0..5)]), ); let bytelevel = ByteLevel::default().trim_offsets(true); assert_eq!( expected, bytelevel.process(start.clone(), None, false).unwrap() ); let pair_expected = Encoding::new( vec![0; 10], vec![0, 0, 0, 0, 0, 1, 1, 1, 1, 1], vec![ "Ä ".into(), "Ä Ä Ä Ä HelloÄ Ä ".into(), "Ä Ä Hello".into(), "HelloÄ Ä ".into(), "Ä Ä Ä Ä ".into(), "Ä ".into(), "Ä Ä Ä Ä HelloÄ Ä ".into(), "Ä Ä Hello".into(), "HelloÄ Ä ".into(), "Ä Ä Ä Ä ".into(), ], vec![], vec![ (0, 0), (4, 9), (13, 18), (18, 23), (29, 29), (0, 0), (4, 9), (13, 18), (18, 23), (29, 29), ], vec![], vec![], vec![], HashMap::from_iter(vec![(0, 0..5), (1, 5..10)]), ); assert_eq!( pair_expected, bytelevel .process(start.clone(), Some(start), false) .unwrap() ); } #[test] fn decode_unknown_characters() { let byte_level = ByteLevel::default(); assert_eq!( byte_level .decode_chain(vec![ "Hello".into(), "Ä there".into(), "Ä dear".into(), "Ä friend!".into(), "Ä ".into(), "[PA D]".into() ]) .unwrap(), vec!["Hello there dear friend! [PA D]"] ); } #[test] fn deserialization() { // Before use_regex let byte_level: ByteLevel = serde_json::from_str( r#"{"type": "ByteLevel", "add_prefix_space": true, "trim_offsets": false}"#, ) .unwrap(); assert!(byte_level.use_regex); // Loading works, new future BC test. let byte_level: ByteLevel = serde_json::from_str( r#"{"type": "ByteLevel", "add_prefix_space": true, "trim_offsets": false, "use_regex": true}"#, ) .unwrap(); assert!(byte_level.use_regex); let byte_level: ByteLevel = serde_json::from_str( r#"{"type": "ByteLevel", "add_prefix_space": true, "trim_offsets": false, "use_regex": false}"#, ) .unwrap(); assert!(!byte_level.use_regex); } }
tokenizers/tokenizers/src/pre_tokenizers/byte_level.rs/0
{ "file_path": "tokenizers/tokenizers/src/pre_tokenizers/byte_level.rs", "repo_id": "tokenizers", "token_count": 10935 }
245
//! # Template Processing //! //! Provides a way to specify templates in order to add the special tokens to each //! input sequence as relevant. //! //! ## Example //! //! Let's take `BERT` tokenizer as an example. It uses two special tokens, used to //! delimitate each sequence. `[CLS]` is always used at the beginning of the first //! sequence, and `[SEP]` is added at the end of both the first, and the pair //! sequences. The final result looks like this: //! - Single sequence: `[CLS] Hello there [SEP]` //! - Pair sequences: `[CLS] My name is Anthony [SEP] What is my name? [SEP]` //! //! With the type ids as following: //! ```markdown //! [CLS] ... [SEP] ... [SEP] //! 0 0 0 1 1 //! ``` //! //! So, we can define a [`TemplateProcessing`] that will achieve this result: //! ``` //! # use tokenizers::processors::template::TemplateProcessing; //! let template = TemplateProcessing::builder() //! // The template when we only have a single sequence: //! .try_single(vec!["[CLS]", "$0", "[SEP]"]).unwrap() //! // Same as: //! .try_single("[CLS] $0 [SEP]").unwrap() //! //! // The template when we have both sequences: //! .try_pair(vec!["[CLS]:0", "$A:0", "[SEP]:0", "$B:1", "[SEP]:1"]).unwrap() //! // Same as: //! .try_pair("[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1").unwrap() //! // Or: //! .try_pair("[CLS] $0 [SEP] $B:1 [SEP]:1").unwrap() //! //! // The list of special tokens used by each sequences //! .special_tokens(vec![("[CLS]", 1), ("[SEP]", 0)]) //! .build() //! .unwrap(); //! ``` //! //! In this example, each input sequence is identified using a `$` construct. This identifier //! lets us specify each input sequence, and the type_id to use. When nothing is specified, //! it uses the default values. Here are the different ways to specify it: //! - Specifying the sequence, with default `type_id == 0`: `$A` or `$B` //! - Specifying the `type_id` with default `sequence == A`: `$0`, `$1`, `$2`, ... //! - Specifying both: `$A:0`, `$B:1`, ... //! //! The same construct is used for special tokens: `<identifier>(:<type_id>)?`. //! //! **Warning**: You must ensure that you are giving the correct tokens/ids as these will //! be added to the `Encoding` without any further check. If the given ids correspond to //! something totally different in a `Tokenizer` using this `PostProcessor`, it might lead //! to unexpected results. //! //! [`TemplateProcessing`]: struct.TemplateProcessing.html //! use crate::{Encoding, PostProcessor, Result}; use itertools::Itertools; use serde::{Deserialize, Serialize}; use std::collections::{HashMap, HashSet}; use std::convert::{TryFrom, TryInto}; use std::result::Result as StdResult; /// Represents any sequences received as input of the PostProcessor #[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Eq)] pub enum Sequence { /// This is the first sequence, the one that is always specified A, /// This is the pair sequence, that is optional B, } /// Represents the different kind of pieces that constitute a template. /// It can be either the input sequence or a [`SpecialToken`]: /// /// - The `Sequence` has an associated `type_id` which is used by default /// for any token inside this sequence. The `Sequence` corresponds to one /// of the input sequence given as input of the `PostProcessor`. /// /// - The `SpecialToken` has an associated `id`. It corresponds to a [`SpecialToken`]. /// /// The easiest way to build a `Piece` is actually by converting it from a string: /// ``` /// # use tokenizers::processors::template::Piece; /// # use std::convert::TryFrom; /// let sequence_with_type_id_0 = Piece::try_from("$0").unwrap(); /// let sequence_with_type_id_1 = Piece::try_from("$1").unwrap(); /// let special_token_cls = Piece::try_from("[CLS]").unwrap(); /// ``` /// /// [`SpecialToken`]: struct.SpecialToken.html /// #[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Eq)] pub enum Piece { Sequence { id: Sequence, type_id: u32 }, SpecialToken { id: String, type_id: u32 }, } impl Piece { fn extract_id(s: &str) -> Option<Self> { if s.starts_with('$') { let rest = &s['$'.len_utf8()..]; // If the id is just `$`, we use 0 as type_id, and Sequence A match rest { "" => Some(Self::Sequence { id: Sequence::A, type_id: 0, }), "A" | "a" => Some(Self::Sequence { id: Sequence::A, type_id: 0, }), "B" | "b" => Some(Self::Sequence { id: Sequence::B, type_id: 0, }), n => { if let Ok(type_id) = n.parse::<u32>() { Some(Self::Sequence { id: Sequence::A, type_id, }) } else { None } } } } else { Some(Self::SpecialToken { id: s.to_owned(), type_id: 0, }) } } fn with_type_id(self, type_id: u32) -> Self { match self { Self::Sequence { id, .. } => Self::Sequence { id, type_id }, Self::SpecialToken { id, .. } => Self::SpecialToken { id, type_id }, } } } impl TryFrom<String> for Piece { type Error = String; fn try_from(s: String) -> StdResult<Self, Self::Error> { let parts = s.split(':').collect::<Vec<_>>(); let err = || format!("Cannot build Piece from string \"{}\"", s); match parts.as_slice() { [id, type_id] => { let type_id: u32 = type_id.parse().map_err(|_| err())?; let piece = Self::extract_id(id).ok_or_else(err)?; Ok(piece.with_type_id(type_id)) } [id] => Self::extract_id(id).ok_or_else(err), _ => Err(err()), } } } impl TryFrom<&str> for Piece { type Error = String; fn try_from(s: &str) -> StdResult<Self, Self::Error> { Piece::try_from(s.to_owned()) } } /// Represents a bunch of tokens to be used in a template. /// Usually, special tokens have only one associated id/token but in /// some cases, it might be interesting to have multiple ids/tokens. /// /// # Examples /// ``` /// # use tokenizers::processors::template::SpecialToken; /// // Simple cases, where a single id/token is necessary: /// let cls = SpecialToken::from(("[CLS]", 1)); /// let sep = SpecialToken::from((0, "[SEP]")); // The order in the tuple is not important /// /// // More complex case with multiple values: /// let complex = SpecialToken::new( /// "A complex special token:".into(), /// vec![0, 1, 2, 3, 4], /// vec!["A".into(), "complex".into(), "special".into(), "token".into(), ":".into()] /// ).unwrap(); /// ``` #[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Eq)] pub struct SpecialToken { /// A unique id used to identify this SpecialToken in the template id: String, /// The list of associated ids ids: Vec<u32>, /// The list of associated tokens tokens: Vec<String>, } impl From<(String, u32)> for SpecialToken { fn from(v: (String, u32)) -> Self { Self { id: v.0.clone(), ids: vec![v.1], tokens: vec![v.0], } } } impl From<(&str, u32)> for SpecialToken { fn from(v: (&str, u32)) -> Self { Self::from((v.0.to_owned(), v.1)) } } impl From<(u32, String)> for SpecialToken { fn from(v: (u32, String)) -> Self { Self::from((v.1, v.0)) } } impl From<(u32, &str)> for SpecialToken { fn from(v: (u32, &str)) -> Self { Self::from((v.1.to_owned(), v.0)) } } impl SpecialToken { pub fn new(id: String, ids: Vec<u32>, tokens: Vec<String>) -> Result<Self> { if ids.len() != tokens.len() { Err("SpecialToken: ids and tokens must be of the same length".into()) } else { Ok(Self { id, ids, tokens }) } } } /// A Template represents a Vec<[`Piece`]>. /// /// We can easily build one as follows /// ``` /// # use tokenizers::processors::template::Template; /// # use std::convert::TryFrom; /// // By providing a `String` or `&str`, we just split on whitespaces: /// let template = Template::try_from("[CLS] $0 [SEP]").unwrap(); /// /// // By providing pieces directly: /// let template = Template::try_from(vec!["[CLS]", "$0", "[SEP]"]).unwrap(); /// ``` /// Both of these methods give the same result. /// /// [`Piece`]: enum.Piece.html /// #[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Eq)] #[serde(transparent)] pub struct Template(Vec<Piece>); impl<T> TryFrom<Vec<T>> for Template where T: TryInto<Piece, Error = String>, { type Error = String; fn try_from(v: Vec<T>) -> StdResult<Self, Self::Error> { Ok(Self( v.into_iter() .map(|p| p.try_into()) .collect::<StdResult<Vec<_>, Self::Error>>()?, )) } } impl TryFrom<String> for Template { type Error = String; fn try_from(s: String) -> StdResult<Self, Self::Error> { Self::try_from(s.as_ref()) } } impl TryFrom<&str> for Template { type Error = String; fn try_from(s: &str) -> StdResult<Self, Self::Error> { Self::try_from(s.split(' ').collect::<Vec<_>>()) } } /// A bunch of [`SpecialToken`] represented by their ID. /// Internally, `Tokens` is a `HashMap<String, SpecialToken>` and can be built /// from a HashMap or a Vec<[`SpecialToken`]>. /// /// [`SpecialToken`]: struct.SpecialToken.html #[derive(Debug, Clone, PartialEq, Default, Serialize, Deserialize, Eq)] #[serde(transparent)] pub struct Tokens( #[serde(serialize_with = "crate::utils::ordered_map")] pub HashMap<String, SpecialToken>, ); impl<T: Into<SpecialToken>> From<Vec<T>> for Tokens { fn from(v: Vec<T>) -> Self { Self( v.into_iter() .map(|t| { let token: SpecialToken = t.into(); (token.id.clone(), token) }) .collect(), ) } } impl From<HashMap<String, SpecialToken>> for Tokens { fn from(v: HashMap<String, SpecialToken>) -> Self { Self(v) } } /// This PostProcessor takes care of processing each input `Encoding` by applying /// the corresponding template, before merging them in the final Encoding. /// /// A `Template` is actually a sequence of `Piece` that will be /// concatenated together in the given order. Each `Piece` represents either /// one of the input `Encoding` or a `SpecialToken`. /// /// ## Example /// ``` /// # use tokenizers::processors::template::TemplateProcessing; /// let template = TemplateProcessing::builder() /// .try_single("[CLS] $A [SEP]").unwrap() /// .try_pair("[CLS] $A [SEP] $B:1 [SEP]:1").unwrap() /// .special_tokens(vec![("[CLS]", 1), ("[SEP]", 0)]) /// .build() /// .unwrap(); /// ``` /// #[derive(Debug, Clone, PartialEq, Builder, Serialize, Deserialize, Eq)] #[serde(tag = "type", from = "TemplateProcessingDeserializer")] #[builder(build_fn(validate = "Self::validate"))] pub struct TemplateProcessing { #[builder(try_setter, default = "\"$0\".try_into().unwrap()")] single: Template, #[builder(try_setter, default = "\"$A:0 $B:1\".try_into().unwrap()")] pair: Template, #[builder(setter(skip), default = "self.default_added(true)")] #[serde(skip)] added_single: usize, #[builder(setter(skip), default = "self.default_added(false)")] #[serde(skip)] added_pair: usize, #[builder(setter(into), default)] special_tokens: Tokens, } impl From<&str> for TemplateProcessingBuilderError { fn from(e: &str) -> Self { e.to_string().into() } } impl PartialEq for TemplateProcessingBuilderError { fn eq(&self, other: &Self) -> bool { self.to_string() == other.to_string() } } /// We use this custom deserializer to provided the values for `added_single` /// and `added_pair` during deserialization, while not having to serialize them #[doc(hidden)] #[derive(Deserialize)] #[serde(tag = "type")] struct TemplateProcessingDeserializer { single: Template, pair: Template, special_tokens: Tokens, } impl From<TemplateProcessingDeserializer> for TemplateProcessing { fn from(t: TemplateProcessingDeserializer) -> Self { let added_single = count_added(&t.single, Some(&t.special_tokens)); let added_pair = count_added(&t.pair, Some(&t.special_tokens)); Self { single: t.single, pair: t.pair, added_single, added_pair, special_tokens: t.special_tokens, } } } /// Count the number of added tokens in the given template fn count_added(container: &Template, special_tokens: Option<&Tokens>) -> usize { container .0 .iter() .map(|p| match p { Piece::Sequence { .. } => 0, Piece::SpecialToken { id, .. } => { special_tokens.map_or(0, |spt| spt.0.get(id).map_or(0, |s| s.ids.len())) } }) .sum() } impl TemplateProcessingBuilder { fn default_added(&self, is_single: bool) -> usize { let container = if is_single { self.single.as_ref() } else { self.pair.as_ref() }; container.map_or(0, |pieces| { count_added(pieces, self.special_tokens.as_ref()) }) } fn validate(&self) -> std::result::Result<(), String> { let pair_has_both = self.pair.as_ref().map_or(true, |pair| { let mut has_a = false; let mut has_b = false; for piece in &pair.0 { if let Piece::Sequence { id: Sequence::A, .. } = piece { has_a = true; } if let Piece::Sequence { id: Sequence::B, .. } = piece { has_b = true; } } has_a && has_b }); if !pair_has_both { return Err("Template for `pair` must use both sequences".into()); } let check = |sp| { let exist = self .special_tokens .as_ref() .map_or(false, |map| map.0.contains_key(sp)); match exist { false => Some(sp), true => None, } }; let empty = []; let missing: HashSet<&str> = self .single .as_ref() .map_or(empty.iter(), |s| s.0.iter()) .chain(self.pair.as_ref().map_or(empty.iter(), |s| s.0.iter())) .filter_map(|piece| match piece { Piece::Sequence { .. } => None, Piece::SpecialToken { id, .. } => check(id.as_ref()), }) .collect::<HashSet<_>>(); if missing.is_empty() { Ok(()) } else { Err(format!( "Missing SpecialToken(s) with id(s) `{}`", missing.iter().join(", ") )) } } } impl Default for TemplateProcessing { fn default() -> Self { Self { single: "$0".try_into().unwrap(), pair: "$1".try_into().unwrap(), added_single: 0, added_pair: 0, special_tokens: Tokens::default(), } } } impl TemplateProcessing { pub fn builder() -> TemplateProcessingBuilder { TemplateProcessingBuilder::default() } fn apply_template( &self, template: &[Piece], mut encodings: Vec<Encoding>, add_special_tokens: bool, ) -> Result<Vec<Encoding>> { let final_encodings: Vec<Encoding> = template .iter() .flat_map(|piece| { match piece { Piece::Sequence { id, type_id } => { let i = usize::from(*id != Sequence::A); let encoding = &mut encodings[i]; encoding.set_type_ids(vec![*type_id; encoding.len()]); encoding.set_sequence_id(i); Some(encoding.clone()) } Piece::SpecialToken { id, type_id } => { if add_special_tokens { let tok = &self.special_tokens.0[id]; // We already checked existance above let len = tok.ids.len(); let encoding = Encoding::new( tok.ids.clone(), std::iter::repeat(*type_id).take(len).collect(), tok.tokens.clone(), // words std::iter::repeat(None).take(len).collect(), // offsets std::iter::repeat((0, 0)).take(len).collect(), // special_tokens_mask std::iter::repeat(1).take(len).collect(), // attention_mask std::iter::repeat(1).take(len).collect(), // overflowing vec![], // sequence_range HashMap::new(), ); Some(encoding) } else { None } } } }) .collect(); //let mut pair = if encodings.len() > 1 { // Some(encodings.pop().unwrap()) //} else { // None //}; //let mut encoding = encodings.pop().unwrap(); //let pair_overflowing = pair.as_mut().map_or(vec![], |e| e.take_overflowing()); //let mut overflowing: Vec<Encoding> = encoding // .take_overflowing() // .iter() // .map(|encoding| -> Result<Vec<Encoding>> { // // 1. The pair itself // let mut overflowings = self.apply_template( // template, // if encodings.len() > 1 { // vec![encoding.clone(), encodings[1].clone()] // } else { // vec![encoding.clone()] // }, // add_special_tokens, // )?; // // 2. Its overflowings // for other_o in &pair_overflowing { // overflowings.extend(self.apply_template( // template, // vec![encoding.clone(), other_o.clone()], // add_special_tokens, // )?); // } // Ok(overflowings) // }) // .collect::<Result<Vec<Vec<Encoding>>>>()? // .into_iter() // .flatten() // .collect(); //// We also need to combine the first sequence with all other overflowings //overflowing.extend( // pair_overflowing // .into_iter() // .map(|pair| { // self.apply_template(template, vec![encoding.clone(), pair], add_special_tokens) // }) // .collect::<Result<Vec<_>>>()? // .into_iter() // .flatten(), //); Ok(final_encodings) } } impl PostProcessor for TemplateProcessing { fn added_tokens(&self, is_pair: bool) -> usize { if is_pair { self.added_pair } else { self.added_single } } fn process_encodings( &self, encodings: Vec<Encoding>, add_special_tokens: bool, ) -> Result<Vec<Encoding>> { // let (encoding, pair): (Encoding, Option<Encoding>) = match encodings.len() { // 1 => ( // encodings // .pop() // .ok_or(ProcessorError::InvalidEncodingsVecLength)?, // None, // ), // 2 => { // let pair = encodings // .pop() // .ok_or(ProcessorError::InvalidEncodingsVecLength)?; // let encoding = encodings // .pop() // .ok_or(ProcessorError::InvalidEncodingsVecLength)?; // (encoding, Some(pair)) // } // _ => return Err(Box::new(ProcessorError::InvalidEncodingsVecLength)), // }; let template = match encodings.len() { 2 => &self.pair.0, 1 => &self.single.0, _ => todo!(), }; let encodings = self.apply_template(template, encodings, add_special_tokens)?; Ok(encodings) } } #[cfg(test)] mod tests { use super::*; use std::convert::TryInto; use std::iter::FromIterator; #[test] fn piece_serde() { let seq_0 = Piece::Sequence { id: Sequence::A, type_id: 0, }; let seq_0_s = r#"{"Sequence":{"id":"A","type_id":0}}"#; assert_eq!(serde_json::to_string(&seq_0).unwrap(), seq_0_s); assert_eq!(serde_json::from_str::<Piece>(seq_0_s).unwrap(), seq_0); let seq_1 = Piece::Sequence { id: Sequence::B, type_id: 1, }; let seq_1_s = r#"{"Sequence":{"id":"B","type_id":1}}"#; assert_eq!(serde_json::to_string(&seq_1).unwrap(), seq_1_s); assert_eq!(serde_json::from_str::<Piece>(seq_1_s).unwrap(), seq_1); let spe = Piece::SpecialToken { id: "[CLS]".into(), type_id: 0, }; let spe_s = r#"{"SpecialToken":{"id":"[CLS]","type_id":0}}"#; assert_eq!(serde_json::to_string(&spe).unwrap(), spe_s); assert_eq!(serde_json::from_str::<Piece>(spe_s).unwrap(), spe); } #[test] fn piece() { assert_eq!( Ok(Piece::Sequence { id: Sequence::A, type_id: 0 }), "$".try_into() ); assert_eq!( Ok(Piece::Sequence { id: Sequence::B, type_id: 0 }), "$B".try_into() ); assert_eq!( Ok(Piece::Sequence { id: Sequence::A, type_id: 1 }), "$1".try_into() ); assert_eq!( Ok(Piece::Sequence { id: Sequence::B, type_id: 2 }), "$B:2".try_into() ); assert_eq!( Ok(Piece::Sequence { id: Sequence::A, type_id: 1 }), "$:1".try_into() ); assert!(Piece::try_from("$C:1").is_err()); assert!(Piece::try_from("$A:").is_err()); } #[test] fn special_token_serde() { let simple = SpecialToken::from(("[CLS]", 0)); let simple_s = r#"{"id":"[CLS]","ids":[0],"tokens":["[CLS]"]}"#; assert_eq!(serde_json::to_string(&simple).unwrap(), simple_s); assert_eq!( serde_json::from_str::<SpecialToken>(simple_s).unwrap(), simple ); let complete = SpecialToken::new( "[2FR]".into(), vec![1, 2, 3], vec!["convert".into(), "to".into(), "FR".into()], ) .unwrap(); let complete_s = r#"{"id":"[2FR]","ids":[1,2,3],"tokens":["convert","to","FR"]}"#; assert_eq!(serde_json::to_string(&complete).unwrap(), complete_s); assert_eq!( serde_json::from_str::<SpecialToken>(complete_s).unwrap(), complete ); let malformed = SpecialToken::new( "[2FR]".into(), vec![1, 2], vec!["convert".into(), "to".into(), "FR".into()], ); assert!(malformed.is_err()); let malformed = SpecialToken::new( "[2FR]".into(), vec![1, 2, 3], vec!["convert".into(), "FR".into()], ); assert!(malformed.is_err()); } #[test] fn template_serde() { let template = Template(vec![ Piece::Sequence { id: Sequence::A, type_id: 0, }, Piece::SpecialToken { id: "[CLS]".into(), type_id: 0, }, ]); let template_s = r#"[{"Sequence":{"id":"A","type_id":0}},{"SpecialToken":{"id":"[CLS]","type_id":0}}]"#; assert_eq!(serde_json::to_string(&template).unwrap(), template_s); assert_eq!( serde_json::from_str::<Template>(template_s).unwrap(), template ); } #[test] fn tokens_serde() { let tokens = Tokens::from(vec![("[CLS]", 1), ("[SEP]", 0)]); let tokens_s = r#"{"[CLS]":{"id":"[CLS]","ids":[1],"tokens":["[CLS]"]},"[SEP]":{"id":"[SEP]","ids":[0],"tokens":["[SEP]"]}}"#; let tokens_ser = serde_json::to_string(&tokens).unwrap(); assert_eq!(tokens_ser, tokens_s); assert_eq!(serde_json::from_str::<Tokens>(tokens_s).unwrap(), tokens); } fn get_bert_template() -> TemplateProcessing { TemplateProcessing::builder() .try_single(vec!["[CLS]", "$0", "[SEP]"]) .unwrap() .try_pair("[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1") .unwrap() .special_tokens(vec![("[CLS]", 1), ("[SEP]", 0)]) .build() .unwrap() } #[test] fn template_processing_serde() { let template = tests::get_bert_template(); let template_s = "{\ \"type\":\"TemplateProcessing\",\ \"single\":[\ {\"SpecialToken\":{\"id\":\"[CLS]\",\"type_id\":0}},\ {\"Sequence\":{\"id\":\"A\",\"type_id\":0}},\ {\"SpecialToken\":{\"id\":\"[SEP]\",\"type_id\":0}}\ ],\ \"pair\":[\ {\"SpecialToken\":{\"id\":\"[CLS]\",\"type_id\":0}},\ {\"Sequence\":{\"id\":\"A\",\"type_id\":0}},\ {\"SpecialToken\":{\"id\":\"[SEP]\",\"type_id\":0}},\ {\"Sequence\":{\"id\":\"B\",\"type_id\":1}},\ {\"SpecialToken\":{\"id\":\"[SEP]\",\"type_id\":1}}\ ],\ \"special_tokens\":{\ \"[CLS]\":{\ \"id\":\"[CLS]\",\"ids\":[1],\"tokens\":[\"[CLS]\"]\ },\ \"[SEP]\":{\ \"id\":\"[SEP]\",\"ids\":[0],\"tokens\":[\"[SEP]\"]\ }\ }}"; let template_ser = serde_json::to_string(&template).unwrap(); assert_eq!(template_ser, template_s); assert_eq!( serde_json::from_str::<TemplateProcessing>(template_s).unwrap(), template ); } #[test] fn missing_special_tokens() { let processor = TemplateProcessing::builder() .try_single("[CLS] $0 [SEP]") .unwrap() .try_pair("[CLS] $A:0 [SEP] $B:1 [SEP]") .unwrap() .build(); let err_a = Err("Missing SpecialToken(s) with id(s) `[SEP], [CLS]`".into()); let err_b = Err("Missing SpecialToken(s) with id(s) `[CLS], [SEP]`".into()); assert!(processor == err_a || processor == err_b); } #[test] fn template_processing() { let processor = tests::get_bert_template(); assert_eq!(processor.added_tokens(false), 2); assert_eq!(processor.added_tokens(true), 3); use crate::Token; let encoding = Encoding::from_tokens( vec![ Token::new(12, "Hello".into(), (0, 5)), Token::new(14, "there".into(), (6, 11)), ], 0, ); let pair = Encoding::from_tokens(vec![Token::new(15, "pair".into(), (0, 4))], 0); let single_encoding = processor.process(encoding.clone(), None, true).unwrap(); assert_eq!( single_encoding, Encoding::new( vec![1, 12, 14, 0], vec![0, 0, 0, 0], vec![ "[CLS]".into(), "Hello".into(), "there".into(), "[SEP]".into() ], vec![None, None, None, None], vec![(0, 0), (0, 5), (6, 11), (0, 0)], vec![1, 0, 0, 1], vec![1, 1, 1, 1], vec![], HashMap::from_iter(vec![(0, 1..3)]), ) ); assert_eq!(single_encoding.token_to_sequence(2), Some(0)); assert_eq!(single_encoding.token_to_sequence(3), None); let pair_encoding = processor.process(encoding, Some(pair), true).unwrap(); assert_eq!( pair_encoding, Encoding::new( vec![1, 12, 14, 0, 15, 0], vec![0, 0, 0, 0, 1, 1], vec![ "[CLS]".into(), "Hello".into(), "there".into(), "[SEP]".into(), "pair".into(), "[SEP]".into() ], vec![None, None, None, None, None, None], vec![(0, 0), (0, 5), (6, 11), (0, 0), (0, 4), (0, 0)], vec![1, 0, 0, 1, 0, 1], vec![1, 1, 1, 1, 1, 1], vec![], HashMap::from_iter(vec![(0, 1..3), (1, 4..5)]), ) ); assert_eq!(pair_encoding.token_to_sequence(2), Some(0)); assert_eq!(pair_encoding.token_to_sequence(3), None); assert_eq!(pair_encoding.token_to_sequence(4), Some(1)); assert_eq!(pair_encoding.token_to_sequence(5), None); } #[test] fn template_processing_overflowing() { let processor = tests::get_bert_template(); assert_eq!(processor.added_tokens(false), 2); assert_eq!(processor.added_tokens(true), 3); use crate::Token; let mut encoding = Encoding::from_tokens( vec![ Token::new(12, "Hello".into(), (0, 5)), Token::new(14, "there".into(), (6, 11)), ], 0, ); let overflowing = Encoding::from_tokens(vec![Token::new(13, "you".into(), (12, 15))], 0); encoding.set_overflowing(vec![overflowing]); let mut pair = Encoding::from_tokens( vec![ Token::new(15, "pair".into(), (0, 4)), Token::new(16, "with".into(), (5, 9)), ], 0, ); let pair_overflowing = Encoding::from_tokens(vec![Token::new(17, "info".into(), (10, 14))], 0); pair.set_overflowing(vec![pair_overflowing]); let single_encoding = processor.process(encoding.clone(), None, true).unwrap(); assert_eq!( single_encoding, Encoding::new( vec![1, 12, 14, 0], vec![0, 0, 0, 0], vec![ "[CLS]".into(), "Hello".into(), "there".into(), "[SEP]".into() ], vec![None, None, None, None], vec![(0, 0), (0, 5), (6, 11), (0, 0)], vec![1, 0, 0, 1], vec![1, 1, 1, 1], vec![Encoding::new( vec![1, 13, 0], vec![0, 0, 0], vec!["[CLS]".into(), "you".into(), "[SEP]".into()], vec![None, None, None], vec![(0, 0), (12, 15), (0, 0)], vec![1, 0, 1], vec![1, 1, 1], vec![], HashMap::from_iter(vec![(0, 1..2)]), )], HashMap::from_iter(vec![(0, 1..3)]), ) ); assert_eq!(single_encoding.token_to_sequence(2), Some(0)); assert_eq!(single_encoding.token_to_sequence(3), None); let pair_encoding = processor.process(encoding, Some(pair), true).unwrap(); println!("{pair_encoding:#?}"); assert_eq!( pair_encoding, Encoding::new( vec![1, 12, 14, 0, 15, 16, 0], vec![0, 0, 0, 0, 1, 1, 1], vec![ "[CLS]".into(), "Hello".into(), "there".into(), "[SEP]".into(), "pair".into(), "with".into(), "[SEP]".into() ], vec![None, None, None, None, None, None, None], vec![(0, 0), (0, 5), (6, 11), (0, 0), (0, 4), (5, 9), (0, 0)], vec![1, 0, 0, 1, 0, 0, 1], vec![1, 1, 1, 1, 1, 1, 1], vec![ Encoding::new( vec![1, 13, 0, 15, 16, 0], vec![0, 0, 0, 1, 1, 1], vec![ "[CLS]".into(), "you".into(), "[SEP]".into(), "pair".into(), "with".into(), "[SEP]".into() ], vec![None, None, None, None, None, None], vec![(0, 0), (12, 15), (0, 0), (0, 4), (5, 9), (0, 0)], vec![1, 0, 1, 0, 0, 1], vec![1, 1, 1, 1, 1, 1], vec![Encoding::new( vec![1, 13, 0, 17, 0], vec![0, 0, 0, 0, 1], vec![ "[CLS]".into(), "you".into(), "[SEP]".into(), "info".into(), "[SEP]".into() ], vec![None, None, None, None, None,], vec![(0, 0), (12, 15), (0, 0), (10, 14), (0, 0)], vec![1, 0, 1, 0, 1], vec![1, 1, 1, 1, 1], vec![], HashMap::from_iter(vec![(0, 1..2), (1, 3..4)]), ),], HashMap::from_iter(vec![(1, 3..5), (0, 1..2)]), ), Encoding::new( vec![1, 13, 0, 17, 0], vec![0, 0, 0, 0, 1], vec![ "[CLS]".into(), "you".into(), "[SEP]".into(), "info".into(), "[SEP]".into() ], vec![None, None, None, None, None,], vec![(0, 0), (12, 15), (0, 0), (10, 14), (0, 0)], vec![1, 0, 1, 0, 1], vec![1, 1, 1, 1, 1], vec![], HashMap::from_iter(vec![(0, 1..2), (1, 3..4)]), ), Encoding::new( vec![1, 12, 14, 0, 17, 0], vec![0, 0, 0, 0, 0, 1], vec![ "[CLS]".into(), "Hello".into(), "there".into(), "[SEP]".into(), "info".into(), "[SEP]".into() ], vec![None, None, None, None, None, None], vec![(0, 0), (0, 5), (6, 11), (0, 0), (10, 14), (0, 0)], vec![1, 0, 0, 1, 0, 1], vec![1, 1, 1, 1, 1, 1], vec![Encoding::new( vec![1, 13, 0, 17, 0], vec![0, 0, 0, 0, 1], vec![ "[CLS]".into(), "you".into(), "[SEP]".into(), "info".into(), "[SEP]".into() ], vec![None, None, None, None, None,], vec![(0, 0), (12, 15), (0, 0), (10, 14), (0, 0)], vec![1, 0, 1, 0, 1], vec![1, 1, 1, 1, 1], vec![], HashMap::from_iter(vec![(0, 1..2), (1, 3..4)]), ),], HashMap::from_iter(vec![(0, 1..3), (1, 4..5)]), ) ], HashMap::from_iter(vec![(0, 1..3), (1, 4..6)]), ) ); assert_eq!(pair_encoding.token_to_sequence(2), Some(0)); assert_eq!(pair_encoding.token_to_sequence(3), None); assert_eq!(pair_encoding.token_to_sequence(4), Some(1)); assert_eq!(pair_encoding.token_to_sequence(5), Some(1)); assert_eq!(pair_encoding.token_to_sequence(6), None); } #[test] fn pair_must_use_both_sequences() { let processor = TemplateProcessing::builder() .try_single("$0") .unwrap() .try_pair("$0 $1") .unwrap() .build(); assert_eq!( processor, Err("Template for `pair` must use both sequences".into()) ); } #[test] fn expect_wrong_error_message() { let processor = TemplateProcessing::builder() .try_single("$0") .unwrap() .try_pair("$0 $1") .unwrap() .build(); assert_ne!( processor, Err("Expect the left side error message to be different from the right side!".into()) ); } }
tokenizers/tokenizers/src/processors/template.rs/0
{ "file_path": "tokenizers/tokenizers/src/processors/template.rs", "repo_id": "tokenizers", "token_count": 21199 }
246
#[cfg(feature = "progressbar")] pub(crate) use indicatif::{ProgressBar, ProgressStyle}; #[cfg(not(feature = "progressbar"))] mod progressbar { use std::borrow::Cow; pub struct ProgressBar; impl ProgressBar { pub fn new(_length: u64) -> Self { Self {} } pub fn set_length(&self, _length: u64) {} pub fn set_message(&self, _message: impl Into<Cow<'static, str>>) {} pub fn finish(&self) {} pub fn reset(&self) {} pub fn inc(&self, _inc: u64) {} pub fn set_style(&self, _style: ProgressStyle) {} } pub struct ProgressStyle {} impl ProgressStyle { pub fn default_bar() -> Self { Self {} } pub fn template(self, _template: &str) -> Result<Self, String> { Ok(self) } } } #[cfg(not(feature = "progressbar"))] pub(crate) use progressbar::{ProgressBar, ProgressStyle};
tokenizers/tokenizers/src/utils/progress.rs/0
{ "file_path": "tokenizers/tokenizers/src/utils/progress.rs", "repo_id": "tokenizers", "token_count": 403 }
247
FROM python:3.10-slim ENV PYTHONDONTWRITEBYTECODE=1 ARG REF=main USER root RUN apt-get update && apt-get install -y time git ENV UV_PYTHON=/usr/local/bin/python RUN pip install uv && uv venv RUN uv pip install --no-cache-dir -U pip setuptools GitPython "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[ruff]" urllib3 RUN apt-get install -y jq curl && apt-get clean && rm -rf /var/lib/apt/lists/*
transformers/docker/quality.dockerfile/0
{ "file_path": "transformers/docker/quality.dockerfile", "repo_id": "transformers", "token_count": 168 }
248
apiVersion: v1 kind: PersistentVolume metadata: name: huggingface-cluster-disk spec: storageClassName: "" capacity: storage: 500Gi accessModes: - ReadOnlyMany claimRef: namespace: default name: huggingface-cluster-disk-claim gcePersistentDisk: pdName: huggingface-cluster-disk fsType: ext4 readOnly: true --- apiVersion: v1 kind: PersistentVolumeClaim metadata: name: huggingface-cluster-disk-claim spec: # Specify "" as the storageClassName so it matches the PersistentVolume's StorageClass. # A nil storageClassName value uses the default StorageClass. For details, see # https://kubernetes.io/docs/concepts/storage/persistent-volumes/#class-1 storageClassName: "" accessModes: - ReadOnlyMany resources: requests: storage: 1Ki
transformers/docker/transformers-pytorch-tpu/dataset.yaml/0
{ "file_path": "transformers/docker/transformers-pytorch-tpu/dataset.yaml", "repo_id": "transformers", "token_count": 274 }
249
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Generation with LLMs [[open-in-colab]] LLMs (Large Language Models) sind die SchlÃŒsselkomponente bei der Texterstellung. Kurz gesagt, bestehen sie aus großen, vortrainierten Transformationsmodellen, die darauf trainiert sind, das nÀchste Wort (oder genauer gesagt Token) aus einem Eingabetext vorherzusagen. Da sie jeweils ein Token vorhersagen, mÃŒssen Sie etwas AufwÀndigeres tun, um neue SÀtze zu generieren, als nur das Modell aufzurufen - Sie mÃŒssen eine autoregressive Generierung durchfÃŒhren. Die autoregressive Generierung ist ein Verfahren zur Inferenzzeit, bei dem ein Modell mit seinen eigenen generierten Ausgaben iterativ aufgerufen wird, wenn einige anfÀngliche Eingaben vorliegen. In 🀗 Transformers wird dies von der Methode [`~generation.GenerationMixin.generate`] ÃŒbernommen, die allen Modellen mit generativen FÀhigkeiten zur VerfÃŒgung steht. Dieses Tutorial zeigt Ihnen, wie Sie: * Text mit einem LLM generieren * Vermeiden Sie hÀufige Fallstricke * NÀchste Schritte, damit Sie das Beste aus Ihrem LLM herausholen können Bevor Sie beginnen, stellen Sie sicher, dass Sie alle erforderlichen Bibliotheken installiert haben: ```bash pip install transformers bitsandbytes>=0.39.0 -q ``` ## Text generieren Ein Sprachmodell, das fÃŒr [causal language modeling](tasks/language_modeling) trainiert wurde, nimmt eine Folge von Text-Token als Eingabe und gibt die Wahrscheinlichkeitsverteilung fÃŒr das nÀchste Token zurÃŒck. <!-- [GIF 1 -- FWD PASS] --> <figure class="image table text-center m-0 w-full"> <video style="max-width: 90%; margin: auto;" autoplay loop muted playsinline src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/assisted-generation/gif_1_1080p.mov" ></video> <figcaption>"Forward pass of an LLM"</figcaption> </figure> Ein wichtiger Aspekt der autoregressiven Generierung mit LLMs ist die Auswahl des nÀchsten Tokens aus dieser Wahrscheinlichkeitsverteilung. In diesem Schritt ist alles möglich, solange Sie am Ende ein Token fÃŒr die nÀchste Iteration haben. Das heißt, es kann so einfach sein wie die Auswahl des wahrscheinlichsten Tokens aus der Wahrscheinlichkeitsverteilung oder so komplex wie die Anwendung von einem Dutzend Transformationen vor der Stichprobenziehung aus der resultierenden Verteilung. <!-- [GIF 2 -- TEXT GENERATION] --> <figure class="image table text-center m-0 w-full"> <video style="max-width: 90%; margin: auto;" autoplay loop muted playsinline src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/assisted-generation/gif_2_1080p.mov" ></video> <figcaption>"Die autoregressive Generierung wÀhlt iterativ das nÀchste Token aus einer Wahrscheinlichkeitsverteilung aus, um Text zu erzeugen"</figcaption> </figure> Der oben dargestellte Prozess wird iterativ wiederholt, bis eine bestimmte Abbruchbedingung erreicht ist. Im Idealfall wird die Abbruchbedingung vom Modell vorgegeben, das lernen sollte, wann es ein Ende-der-Sequenz-Token (EOS) ausgeben muss. Ist dies nicht der Fall, stoppt die Generierung, wenn eine vordefinierte MaximallÀnge erreicht ist. Damit sich Ihr Modell so verhÀlt, wie Sie es fÃŒr Ihre Aufgabe erwarten, mÃŒssen Sie den Schritt der Token-Auswahl und die Abbruchbedingung richtig einstellen. Aus diesem Grund haben wir zu jedem Modell eine [`~generation.GenerationConfig`]-Datei, die eine gute generative Standardparametrisierung enthÀlt und zusammen mit Ihrem Modell geladen wird. Lassen Sie uns ÃŒber Code sprechen! <Tip> Wenn Sie an der grundlegenden Verwendung von LLMs interessiert sind, ist unsere High-Level-Schnittstelle [`Pipeline`](pipeline_tutorial) ein guter Ausgangspunkt. LLMs erfordern jedoch oft fortgeschrittene Funktionen wie Quantisierung und Feinsteuerung des Token-Auswahlschritts, was am besten ÃŒber [`~generation.GenerationMixin.generate`] erfolgt. Die autoregressive Generierung mit LLMs ist ebenfalls ressourcenintensiv und sollte fÃŒr einen angemessenen Durchsatz auf einer GPU ausgefÃŒhrt werden. </Tip> <!-- TODO: update example to llama 2 (or a newer popular baseline) when it becomes ungated --> ZunÀchst mÃŒssen Sie das Modell laden. ```py >>> from transformers import AutoModelForCausalLM >>> model = AutoModelForCausalLM.from_pretrained( ... "openlm-research/open_llama_7b", device_map="auto", load_in_4bit=True ... ) ``` Sie werden zwei Flags in dem Aufruf `from_pretrained` bemerken: - `device_map` stellt sicher, dass das Modell auf Ihre GPU(s) ÃŒbertragen wird - `load_in_4bit` wendet [dynamische 4-Bit-Quantisierung](main_classes/quantization) an, um die Ressourcenanforderungen massiv zu reduzieren Es gibt noch andere Möglichkeiten, ein Modell zu initialisieren, aber dies ist eine gute Grundlage, um mit einem LLM zu beginnen. Als nÀchstes mÃŒssen Sie Ihre Texteingabe mit einem [tokenizer](tokenizer_summary) vorverarbeiten. ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("openlm-research/open_llama_7b") >>> model_inputs = tokenizer(["A list of colors: red, blue"], return_tensors="pt").to("cuda") ``` Die Variable `model_inputs` enthÀlt die tokenisierte Texteingabe sowie die Aufmerksamkeitsmaske. Obwohl [`~generation.GenerationMixin.generate`] sein Bestes tut, um die Aufmerksamkeitsmaske abzuleiten, wenn sie nicht ÃŒbergeben wird, empfehlen wir, sie fÃŒr optimale Ergebnisse wann immer möglich zu ÃŒbergeben. Rufen Sie schließlich die Methode [`~generation.GenerationMixin.generate`] auf, um die generierten Token zurÃŒckzugeben, die vor dem Drucken in Text umgewandelt werden sollten. ```py >>> generated_ids = model.generate(**model_inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] 'A list of colors: red, blue, green, yellow, black, white, and brown' ``` Und das war's! Mit ein paar Zeilen Code können Sie sich die Macht eines LLM zunutze machen. ## HÀufige Fallstricke Es gibt viele [Generierungsstrategien](generation_strategies), und manchmal sind die Standardwerte fÃŒr Ihren Anwendungsfall vielleicht nicht geeignet. Wenn Ihre Ausgaben nicht mit dem ÃŒbereinstimmen, was Sie erwarten, haben wir eine Liste der hÀufigsten Fallstricke erstellt und wie Sie diese vermeiden können. ```py >>> from transformers import AutoModelForCausalLM, AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("openlm-research/open_llama_7b") >>> tokenizer.pad_token = tokenizer.eos_token # Llama has no pad token by default >>> model = AutoModelForCausalLM.from_pretrained( ... "openlm-research/open_llama_7b", device_map="auto", load_in_4bit=True ... ) ``` ### Generierte Ausgabe ist zu kurz/lang Wenn in der Datei [`~generation.GenerationConfig`] nichts angegeben ist, gibt `generate` standardmÀßig bis zu 20 Token zurÃŒck. Wir empfehlen dringend, `max_new_tokens` in Ihrem `generate`-Aufruf manuell zu setzen, um die maximale Anzahl neuer Token zu kontrollieren, die zurÃŒckgegeben werden können. Beachten Sie, dass LLMs (genauer gesagt, [decoder-only models](https://huggingface.co/learn/nlp-course/chapter1/6?fw=pt)) auch die Eingabeaufforderung als Teil der Ausgabe zurÃŒckgeben. ```py >>> model_inputs = tokenizer(["A sequence of numbers: 1, 2"], return_tensors="pt").to("cuda") >>> # By default, the output will contain up to 20 tokens >>> generated_ids = model.generate(**model_inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] 'A sequence of numbers: 1, 2, 3, 4, 5' >>> # Setting `max_new_tokens` allows you to control the maximum length >>> generated_ids = model.generate(**model_inputs, max_new_tokens=50) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] 'A sequence of numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,' ``` ### Falscher Generierungsmodus StandardmÀßig und sofern nicht in der Datei [`~generation.GenerationConfig`] angegeben, wÀhlt `generate` bei jeder Iteration das wahrscheinlichste Token aus (gierige Dekodierung). Je nach Aufgabe kann dies unerwÃŒnscht sein; kreative Aufgaben wie Chatbots oder das Schreiben eines Aufsatzes profitieren vom Sampling. Andererseits profitieren Aufgaben, bei denen es auf die Eingabe ankommt, wie z.B. Audiotranskription oder Übersetzung, von der gierigen Dekodierung. Aktivieren Sie das Sampling mit `do_sample=True`. Mehr zu diesem Thema erfahren Sie in diesem [Blogbeitrag](https://huggingface.co/blog/how-to-generate). ```py >>> # Set seed or reproducibility -- you don't need this unless you want full reproducibility >>> from transformers import set_seed >>> set_seed(0) >>> model_inputs = tokenizer(["I am a cat."], return_tensors="pt").to("cuda") >>> # LLM + greedy decoding = repetitive, boring output >>> generated_ids = model.generate(**model_inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] 'I am a cat. I am a cat. I am a cat. I am a cat' >>> # With sampling, the output becomes more creative! >>> generated_ids = model.generate(**model_inputs, do_sample=True) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] 'I am a cat.\nI just need to be. I am always.\nEvery time' ``` ### Falsche AuffÃŒllseite LLMs sind [decoder-only](https://huggingface.co/learn/nlp-course/chapter1/6?fw=pt)-Architekturen, d.h. sie iterieren weiter ÃŒber Ihre Eingabeaufforderung. Wenn Ihre Eingaben nicht die gleiche LÀnge haben, mÃŒssen sie aufgefÃŒllt werden. Da LLMs nicht darauf trainiert sind, mit aufgefÃŒllten Token fortzufahren, muss Ihre Eingabe links aufgefÃŒllt werden. Vergessen Sie auch nicht, die Aufmerksamkeitsmaske an generate zu ÃŒbergeben! ```py >>> # The tokenizer initialized above has right-padding active by default: the 1st sequence, >>> # which is shorter, has padding on the right side. Generation fails. >>> model_inputs = tokenizer( ... ["1, 2, 3", "A, B, C, D, E"], padding=True, return_tensors="pt" ... ).to("cuda") >>> generated_ids = model.generate(**model_inputs) >>> tokenizer.batch_decode(generated_ids[0], skip_special_tokens=True)[0] '' >>> # With left-padding, it works as expected! >>> tokenizer = AutoTokenizer.from_pretrained("openlm-research/open_llama_7b", padding_side="left") >>> tokenizer.pad_token = tokenizer.eos_token # Llama has no pad token by default >>> model_inputs = tokenizer( ... ["1, 2, 3", "A, B, C, D, E"], padding=True, return_tensors="pt" ... ).to("cuda") >>> generated_ids = model.generate(**model_inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] '1, 2, 3, 4, 5, 6,' ``` <!-- TODO: when the prompting guide is ready, mention the importance of setting the right prompt in this section --> ## Weitere Ressourcen WÀhrend der Prozess der autoregressiven Generierung relativ einfach ist, kann die optimale Nutzung Ihres LLM ein schwieriges Unterfangen sein, da es viele bewegliche Teile gibt. FÃŒr Ihre nÀchsten Schritte, die Ihnen helfen, tiefer in die LLM-Nutzung und das VerstÀndnis einzutauchen: <!-- TODO: mit neuen Anleitungen vervollstÀndigen --> ### Fortgeschrittene Nutzung generieren 1. [Leitfaden](generation_strategies) zur Steuerung verschiedener Generierungsmethoden, zur Einrichtung der Generierungskonfigurationsdatei und zum Streaming der Ausgabe; 2. API-Referenz zu [`~generation.GenerationConfig`], [`~generation.GenerationMixin.generate`] und [generate-bezogene Klassen](internal/generation_utils). ### LLM-Ranglisten 1. [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard), das sich auf die QualitÀt der Open-Source-Modelle konzentriert; 2. [Open LLM-Perf Leaderboard](https://huggingface.co/spaces/optimum/llm-perf-leaderboard), das sich auf den LLM-Durchsatz konzentriert. ### Latenz und Durchsatz 1. [Leitfaden](main_classes/quantization) zur dynamischen Quantisierung, der Ihnen zeigt, wie Sie Ihren Speicherbedarf drastisch reduzieren können. ### Verwandte Bibliotheken 1. [text-generation-inference](https://github.com/huggingface/text-generation-inference), ein produktionsreifer Server fÃŒr LLMs; 2. [`optimum`](https://github.com/huggingface/optimum), eine Erweiterung von 🀗 Transformers, die fÃŒr bestimmte Hardware-GerÀte optimiert.
transformers/docs/source/de/llm_tutorial.md/0
{ "file_path": "transformers/docs/source/de/llm_tutorial.md", "repo_id": "transformers", "token_count": 4767 }
250
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # How to create a custom pipeline? In this guide, we will see how to create a custom pipeline and share it on the [Hub](https://hf.co/models) or add it to the 🀗 Transformers library. First and foremost, you need to decide the raw entries the pipeline will be able to take. It can be strings, raw bytes, dictionaries or whatever seems to be the most likely desired input. Try to keep these inputs as pure Python as possible as it makes compatibility easier (even through other languages via JSON). Those will be the `inputs` of the pipeline (`preprocess`). Then define the `outputs`. Same policy as the `inputs`. The simpler, the better. Those will be the outputs of `postprocess` method. Start by inheriting the base class `Pipeline` with the 4 methods needed to implement `preprocess`, `_forward`, `postprocess`, and `_sanitize_parameters`. ```python from transformers import Pipeline class MyPipeline(Pipeline): def _sanitize_parameters(self, **kwargs): preprocess_kwargs = {} if "maybe_arg" in kwargs: preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"] return preprocess_kwargs, {}, {} def preprocess(self, inputs, maybe_arg=2): model_input = Tensor(inputs["input_ids"]) return {"model_input": model_input} def _forward(self, model_inputs): # model_inputs == {"model_input": model_input} outputs = self.model(**model_inputs) # Maybe {"logits": Tensor(...)} return outputs def postprocess(self, model_outputs): best_class = model_outputs["logits"].softmax(-1) return best_class ``` The structure of this breakdown is to support relatively seamless support for CPU/GPU, while supporting doing pre/postprocessing on the CPU on different threads `preprocess` will take the originally defined inputs, and turn them into something feedable to the model. It might contain more information and is usually a `Dict`. `_forward` is the implementation detail and is not meant to be called directly. `forward` is the preferred called method as it contains safeguards to make sure everything is working on the expected device. If anything is linked to a real model it belongs in the `_forward` method, anything else is in the preprocess/postprocess. `postprocess` methods will take the output of `_forward` and turn it into the final output that was decided earlier. `_sanitize_parameters` exists to allow users to pass any parameters whenever they wish, be it at initialization time `pipeline(...., maybe_arg=4)` or at call time `pipe = pipeline(...); output = pipe(...., maybe_arg=4)`. The returns of `_sanitize_parameters` are the 3 dicts of kwargs that will be passed directly to `preprocess`, `_forward`, and `postprocess`. Don't fill anything if the caller didn't call with any extra parameter. That allows to keep the default arguments in the function definition which is always more "natural". A classic example would be a `top_k` argument in the post processing in classification tasks. ```python >>> pipe = pipeline("my-new-task") >>> pipe("This is a test") [{"label": "1-star", "score": 0.8}, {"label": "2-star", "score": 0.1}, {"label": "3-star", "score": 0.05} {"label": "4-star", "score": 0.025}, {"label": "5-star", "score": 0.025}] >>> pipe("This is a test", top_k=2) [{"label": "1-star", "score": 0.8}, {"label": "2-star", "score": 0.1}] ``` In order to achieve that, we'll update our `postprocess` method with a default parameter to `5`. and edit `_sanitize_parameters` to allow this new parameter. ```python def postprocess(self, model_outputs, top_k=5): best_class = model_outputs["logits"].softmax(-1) # Add logic to handle top_k return best_class def _sanitize_parameters(self, **kwargs): preprocess_kwargs = {} if "maybe_arg" in kwargs: preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"] postprocess_kwargs = {} if "top_k" in kwargs: postprocess_kwargs["top_k"] = kwargs["top_k"] return preprocess_kwargs, {}, postprocess_kwargs ``` Try to keep the inputs/outputs very simple and ideally JSON-serializable as it makes the pipeline usage very easy without requiring users to understand new kinds of objects. It's also relatively common to support many different types of arguments for ease of use (audio files, which can be filenames, URLs or pure bytes) ## Adding it to the list of supported tasks To register your `new-task` to the list of supported tasks, you have to add it to the `PIPELINE_REGISTRY`: ```python from transformers.pipelines import PIPELINE_REGISTRY PIPELINE_REGISTRY.register_pipeline( "new-task", pipeline_class=MyPipeline, pt_model=AutoModelForSequenceClassification, ) ``` You can specify a default model if you want, in which case it should come with a specific revision (which can be the name of a branch or a commit hash, here we took `"abcdef"`) as well as the type: ```python PIPELINE_REGISTRY.register_pipeline( "new-task", pipeline_class=MyPipeline, pt_model=AutoModelForSequenceClassification, default={"pt": ("user/awesome_model", "abcdef")}, type="text", # current support type: text, audio, image, multimodal ) ``` ## Share your pipeline on the Hub To share your custom pipeline on the Hub, you just have to save the custom code of your `Pipeline` subclass in a python file. For instance, let's say we want to use a custom pipeline for sentence pair classification like this: ```py import numpy as np from transformers import Pipeline def softmax(outputs): maxes = np.max(outputs, axis=-1, keepdims=True) shifted_exp = np.exp(outputs - maxes) return shifted_exp / shifted_exp.sum(axis=-1, keepdims=True) class PairClassificationPipeline(Pipeline): def _sanitize_parameters(self, **kwargs): preprocess_kwargs = {} if "second_text" in kwargs: preprocess_kwargs["second_text"] = kwargs["second_text"] return preprocess_kwargs, {}, {} def preprocess(self, text, second_text=None): return self.tokenizer(text, text_pair=second_text, return_tensors=self.framework) def _forward(self, model_inputs): return self.model(**model_inputs) def postprocess(self, model_outputs): logits = model_outputs.logits[0].numpy() probabilities = softmax(logits) best_class = np.argmax(probabilities) label = self.model.config.id2label[best_class] score = probabilities[best_class].item() logits = logits.tolist() return {"label": label, "score": score, "logits": logits} ``` The implementation is framework agnostic, and will work for PyTorch and TensorFlow models. If we have saved this in a file named `pair_classification.py`, we can then import it and register it like this: ```py from pair_classification import PairClassificationPipeline from transformers.pipelines import PIPELINE_REGISTRY from transformers import AutoModelForSequenceClassification, TFAutoModelForSequenceClassification PIPELINE_REGISTRY.register_pipeline( "pair-classification", pipeline_class=PairClassificationPipeline, pt_model=AutoModelForSequenceClassification, tf_model=TFAutoModelForSequenceClassification, ) ``` Once this is done, we can use it with a pretrained model. For instance `sgugger/finetuned-bert-mrpc` has been fine-tuned on the MRPC dataset, which classifies pairs of sentences as paraphrases or not. ```py from transformers import pipeline classifier = pipeline("pair-classification", model="sgugger/finetuned-bert-mrpc") ``` Then we can share it on the Hub by using the `push_to_hub` method: ```py classifier.push_to_hub("test-dynamic-pipeline") ``` This will copy the file where you defined `PairClassificationPipeline` inside the folder `"test-dynamic-pipeline"`, along with saving the model and tokenizer of the pipeline, before pushing everything into the repository `{your_username}/test-dynamic-pipeline`. After that, anyone can use it as long as they provide the option `trust_remote_code=True`: ```py from transformers import pipeline classifier = pipeline(model="{your_username}/test-dynamic-pipeline", trust_remote_code=True) ``` ## Add the pipeline to 🀗 Transformers If you want to contribute your pipeline to 🀗 Transformers, you will need to add a new module in the `pipelines` submodule with the code of your pipeline, then add it to the list of tasks defined in `pipelines/__init__.py`. Then you will need to add tests. Create a new file `tests/test_pipelines_MY_PIPELINE.py` with examples of the other tests. The `run_pipeline_test` function will be very generic and run on small random models on every possible architecture as defined by `model_mapping` and `tf_model_mapping`. This is very important to test future compatibility, meaning if someone adds a new model for `XXXForQuestionAnswering` then the pipeline test will attempt to run on it. Because the models are random it's impossible to check for actual values, that's why there is a helper `ANY` that will simply attempt to match the output of the pipeline TYPE. You also *need* to implement 2 (ideally 4) tests. - `test_small_model_pt` : Define 1 small model for this pipeline (doesn't matter if the results don't make sense) and test the pipeline outputs. The results should be the same as `test_small_model_tf`. - `test_small_model_tf` : Define 1 small model for this pipeline (doesn't matter if the results don't make sense) and test the pipeline outputs. The results should be the same as `test_small_model_pt`. - `test_large_model_pt` (`optional`): Tests the pipeline on a real pipeline where the results are supposed to make sense. These tests are slow and should be marked as such. Here the goal is to showcase the pipeline and to make sure there is no drift in future releases. - `test_large_model_tf` (`optional`): Tests the pipeline on a real pipeline where the results are supposed to make sense. These tests are slow and should be marked as such. Here the goal is to showcase the pipeline and to make sure there is no drift in future releases.
transformers/docs/source/en/add_new_pipeline.md/0
{ "file_path": "transformers/docs/source/en/add_new_pipeline.md", "repo_id": "transformers", "token_count": 3336 }
251
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Fully Sharded Data Parallel [Fully Sharded Data Parallel (FSDP)](https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/) is a data parallel method that shards a model's parameters, gradients and optimizer states across the number of available GPUs (also called workers or *rank*). Unlike [DistributedDataParallel (DDP)](https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html), FSDP reduces memory-usage because a model is replicated on each GPU. This improves GPU memory-efficiency and allows you to train much larger models on fewer GPUs. FSDP is integrated with the Accelerate, a library for easily managing training in distributed environments, which means it is available for use from the [`Trainer`] class. Before you start, make sure Accelerate is installed and at least PyTorch 2.1.0 or newer. ```bash pip install accelerate ``` ## FSDP configuration To start, run the [`accelerate config`](https://huggingface.co/docs/accelerate/package_reference/cli#accelerate-config) command to create a configuration file for your training environment. Accelerate uses this configuration file to automatically setup the correct training environment based on your selected training options in `accelerate config`. ```bash accelerate config ``` When you run `accelerate config`, you'll be prompted with a series of options to configure your training environment. This section covers some of the most important FSDP options. To learn more about the other available FSDP options, take a look at the [fsdp_config](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments.fsdp_config) parameters. ### Sharding strategy FSDP offers a number of sharding strategies to select from: * `FULL_SHARD` - shards model parameters, gradients and optimizer states across workers; select `1` for this option * `SHARD_GRAD_OP`- shard gradients and optimizer states across workers; select `2` for this option * `NO_SHARD` - don't shard anything (this is equivalent to DDP); select `3` for this option * `HYBRID_SHARD` - shard model parameters, gradients and optimizer states within each worker where each worker also has a full copy; select `4` for this option * `HYBRID_SHARD_ZERO2` - shard gradients and optimizer states within each worker where each worker also has a full copy; select `5` for this option This is enabled by the `fsdp_sharding_strategy` flag. ### CPU offload You could also offload parameters and gradients when they are not in use to the CPU to save even more GPU memory and help you fit large models where even FSDP may not be sufficient. This is enabled by setting `fsdp_offload_params: true` when running `accelerate config`. ### Wrapping policy FSDP is applied by wrapping each layer in the network. The wrapping is usually applied in a nested way where the full weights are discarded after each forward pass to save memory for use in the next layer. The *auto wrapping* policy is the simplest way to implement this and you don't need to change any code. You should select `fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP` to wrap a Transformer layer and `fsdp_transformer_layer_cls_to_wrap` to specify which layer to wrap (for example `BertLayer`). Otherwise, you can choose a size-based wrapping policy where FSDP is applied to a layer if it exceeds a certain number of parameters. This is enabled by setting `fsdp_wrap_policy: SIZE_BASED_WRAP` and `min_num_param` to the desired size threshold. ### Checkpointing Intermediate checkpoints should be saved with `fsdp_state_dict_type: SHARDED_STATE_DICT` because saving the full state dict with CPU offloading on rank 0 takes a lot of time and often results in `NCCL Timeout` errors due to indefinite hanging during broadcasting. You can resume training with the sharded state dicts with the [`~accelerate.Accelerator.load_state`]` method. ```py # directory containing checkpoints accelerator.load_state("ckpt") ``` However, when training ends, you want to save the full state dict because sharded state dict is only compatible with FSDP. ```py if trainer.is_fsdp_enabled: trainer.accelerator.state.fsdp_plugin.set_state_dict_type("FULL_STATE_DICT") trainer.save_model(script_args.output_dir) ``` ### TPU [PyTorch XLA](https://pytorch.org/xla/release/2.1/index.html) supports FSDP training for TPUs and it can be enabled by modifying the FSDP configuration file generated by `accelerate config`. In addition to the sharding strategies and wrapping options specified above, you can add the parameters shown below to the file. ```yaml xla: True # must be set to True to enable PyTorch/XLA xla_fsdp_settings: # XLA-specific FSDP parameters xla_fsdp_grad_ckpt: True # use gradient checkpointing ``` The [`xla_fsdp_settings`](https://github.com/pytorch/xla/blob/2e6e183e0724818f137c8135b34ef273dea33318/torch_xla/distributed/fsdp/xla_fully_sharded_data_parallel.py#L128) allow you to configure additional XLA-specific parameters for FSDP. ## Launch training An example FSDP configuration file may look like: ```yaml compute_environment: LOCAL_MACHINE debug: false distributed_type: FSDP downcast_bf16: 'no' fsdp_config: fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_backward_prefetch_policy: BACKWARD_PRE fsdp_cpu_ram_efficient_loading: true fsdp_forward_prefetch: false fsdp_offload_params: true fsdp_sharding_strategy: 1 fsdp_state_dict_type: SHARDED_STATE_DICT fsdp_sync_module_states: true fsdp_transformer_layer_cls_to_wrap: BertLayer fsdp_use_orig_params: true machine_rank: 0 main_training_function: main mixed_precision: bf16 num_machines: 1 num_processes: 2 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false ``` To launch training, run the [`accelerate launch`](https://huggingface.co/docs/accelerate/package_reference/cli#accelerate-launch) command and it'll automatically use the configuration file you previously created with `accelerate config`. ```bash accelerate launch my-trainer-script.py ``` ```bash accelerate launch --fsdp="full shard" --fsdp_config="path/to/fsdp_config/ my-trainer-script.py ``` ## Next steps FSDP can be a powerful tool for training really large models and you have access to more than one GPU or TPU. By sharding the model parameters, optimizer and gradient states, and even offloading them to the CPU when they're inactive, FSDP can reduce the high cost of large-scale training. If you're interested in learning more, the following may be helpful: * Follow along with the more in-depth Accelerate guide for [FSDP](https://huggingface.co/docs/accelerate/usage_guides/fsdp). * Read the [Introducing PyTorch Fully Sharded Data Parallel (FSDP) API](https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/) blog post. * Read the [Scaling PyTorch models on Cloud TPUs with FSDP](https://pytorch.org/blog/scaling-pytorch-models-on-cloud-tpus-with-fsdp/) blog post.
transformers/docs/source/en/fsdp.md/0
{ "file_path": "transformers/docs/source/en/fsdp.md", "repo_id": "transformers", "token_count": 2239 }
252
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Best Practices for Generation with Cache Efficient caching is crucial for optimizing the performance of models in various generative tasks, including text generation, translation, summarization and other transformer-based applications. Effective caching helps reduce computation time and improve response rates, especially in real-time or resource-intensive applications. Transformers support various caching methods, leveraging "Cache" classes to abstract and manage the caching logic. This document outlines best practices for using these classes to maximize performance and efficiency. Check out all the available `Cache` classes in the [API documentation](./internal/generation_utils.md). ## What is Cache and why we should care? Imagine you’re having a conversation with someone, and instead of remembering what was said previously, you have to start from scratch every time you respond. This would be slow and inefficient, right? In the world of Transformer models, a similar concept applies, and that's where Caching keys and values come into play. From now on, I'll refer to the concept as KV Cache. KV cache is needed to optimize the generation in autoregressive models, where the model predicts text token by token. This process can be slow since the model can generate only one token at a time, and each new prediction is dependent on the previous context. That means, to predict token number 1000 in the generation, you need information from the previous 999 tokens, which comes in the form of some matrix multiplications across the representations of those tokens. But to predict token number 1001, you also need the same information from the first 999 tokens, plus additional information from token number 1000. That is where key-value cache is used to optimize the sequential generation process by storing previous calculations to reuse in subsequent tokens, so they don't need to be computed again. More concretely, key-value cache acts as a memory bank for these generative models, where the model stores key-value pairs derived from self-attention layers for previously processed tokens. By storing this information, the model can avoid redundant computations and instead retrieve keys and values of previous tokens from the cache. <details> <summary><em>For the Curious Minds Who Like to Dive Deep</em></summary> ### Under the Hood: How Cache Object Works in Attention Mechanism When utilizing a cache object in the input, the Attention module performs several critical steps to integrate past and present information seamlessly. The Attention module concatenates the current key-values with the past key-values stored in the cache. This results in attention weights of shape `(new_tokens_length, past_kv_length + new_tokens_length)`. Essentially, the past and current key-values are combined to compute attention scores, ensuring that the model considers both previous context and new input. The concatenated key-values are used to compute the attention scores resulting in attention weights of shape `(new_tokens_length, past_kv_length + new_tokens_length)`. Therefore, when iteratively calling `forward()` instead of the `generate()` method, it’s crucial to ensure that the attention mask shape matches the combined length of past and current key-values. The attention mask should have the shape `(batch_size, past_kv_length + new_tokens_length)`. This is usually handled internally when you call `generate()` method. If you want to implement your own generation loop with Cache classes, take this into consideration and prepare the attention mask to hold values to current and past tokens. <Tip warning={true}> One important concept you need to know when writing your own generation loop, is `cache_position`. In case you want to reuse an already filled Cache object by calling `forward()`, you have to pass in a valid `cache_position` which will indicate the positions of inputs in the sequence. Note that `cache_position` is not affected by padding, and always adds one more position for each token. For example, if key/value cache contains 10 tokens (no matter how many of it is a pad token), the cache position for the next token should be `torch.tensor([10])`. </Tip> See an example below for how to implement your own generation loop. ```python >>> import torch >>> from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache >>> model_id = "meta-llama/Llama-2-7b-chat-hf" >>> model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="cuda:0") >>> tokenizer = AutoTokenizer.from_pretrained(model_id) >>> past_key_values = DynamicCache() >>> messages = [{"role": "user", "content": "Hello, what's your name."}] >>> inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda:0") >>> generated_ids = inputs.input_ids >>> cache_position = torch.arange(inputs.input_ids.shape[1], dtype=torch.int64, device="cuda:0") >>> max_new_tokens = 10 >>> for _ in range(max_new_tokens): ... outputs = model(**inputs, cache_position=cache_position, past_key_values=past_key_values, use_cache=True) ... # Greedily sample one next token ... next_token_ids = outputs.logits[:, -1:].argmax(-1) ... generated_ids = torch.cat([generated_ids, next_token_ids], dim=-1) ... ... # Prepare inputs for the next generation step by leaaving unprocessed tokens, in our case we have only one new token ... # and expanding attn mask for the new token, as explained above ... attention_mask = inputs["attention_mask"] ... attention_mask = torch.cat([attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1) ... inputs = {"input_ids": next_token_ids, "attention_mask": attention_mask} ... cache_position = cache_position[-1:] + 1 # add one more position for the next token >>> print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]) "[INST] Hello, what's your name. [/INST] Hello! My name is LLaMA," ``` </details> ## Generate with Cache In 🀗 Transformers, we support various Cache types to optimize the performance across different models and tasks. By default, all models generate with caching, with the [`~DynamicCache`] class being the default cache for most models. It allows us to dynamically grow cache size, by saving more and more keys and values as we generate. If for some reason you don't want to use caches, you can pass `use_cache=False` into the `generate()` method. Refer to the table below to see the difference between cache types and choose the one that suits best for your use-case. | Cache Type | Memory Efficient | Supports torch.compile() | Initialization Recommended | Latency | Long Context Generation | |------------------------|------------------|--------------------------|----------------------------|---------|-------------------------| | Dynamic Cache | No | No | No | Mid | No | | Static Cache | No | Yes | Yes | High | No | | Offloaded Cache | Yes | No | No | Low | Yes | | Offloaded Static Cache | No | Yes | Yes | High | Yes | | Quantized Cache | Yes | No | No | Low | Yes | | Sliding Window Cache | No | Yes | Yes | High | No | | Sink Cache | Yes | No | Yes | Mid | Yes | These cache classes can be set with a `cache_implementation` argument when generating. To learn about the available options for the cache_implementation flag, please refer to the [API Documentation](./main_classes/text_generation.md#transformers.GenerationConfig). Now, let's explore each cache type in detail and see how to use them. Note that the below examples are for decoder-only Tranformer-based models. We also support ["Model-Specific Cache"] classes for models such as Mamba or Jamba, keep reading for more details. ### Quantized Cache The key and value cache can occupy a large portion of memory, becoming a [bottleneck for long-context generation](https://huggingface.co/blog/llama31#inference-memory-requirements), especially for Large Language Models. Quantizing the cache when using `generate()` can significantly reduce memory requirements at the cost of speed. KV Cache quantization in `transformers` is largely inspired by the paper ["KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache"](https://arxiv.org/abs/2402.02750) and currently supports [`~QuantoQuantizedCache`] and [`~HQQQuantizedCache`] classes. For more information on the inner workings see the paper. To enable quantization of the key-value cache, one needs to indicate `cache_implementation="quantized"` in the `generation_config`. Quantization related arguments should be passed to the `generation_config` either as a `dict` or an instance of a [`~QuantizedCacheConfig`] class. One has to indicate which quantization backend to use in the [`~QuantizedCacheConfig`], the default is `quanto`. <Tip warning={true}> Cache quantization can be detrimental in terms of latency if the context length is short and there is enough GPU VRAM available to run without cache quantization. It is recommended to seek balance between memory efficiency and latency. </Tip> ```python >>> import torch >>> from transformers import AutoTokenizer, AutoModelForCausalLM >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf") >>> model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16).to("cuda:0") >>> inputs = tokenizer("I like rock music because", return_tensors="pt").to(model.device) >>> out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="quantized", cache_config={"nbits": 4, "backend": "quanto"}) >>> print(tokenizer.batch_decode(out, skip_special_tokens=True)[0]) I like rock music because it's loud and energetic. It's a great way to express myself and rel >>> out = model.generate(**inputs, do_sample=False, max_new_tokens=20) >>> print(tokenizer.batch_decode(out, skip_special_tokens=True)[0]) I like rock music because it's loud and energetic. I like to listen to it when I'm feeling ``` ## Offloaded Cache Similarly to KV cache quantization, [`~OffloadedCache`] strategy aims to reduce GPU VRAM usage. It does so by moving the KV cache for most layers to the CPU. As the model's `forward()` method iterates over the layers, this strategy maintains the current layer cache on the GPU. At the same time it asynchronously prefetches the next layer cache as well as sending the previous layer cache back to the CPU. Unlike KV cache quantization, this strategy always produces the same result as the default KV cache implementation. Thus, it can serve as a drop-in replacement or a fallback for it. Depending on your model and the characteristics of your generation task (size of context, number of generated tokens, number of beams, etc.) you may notice a small degradation in generation throughput compared to the default KV cache implementation. To enable KV cache offloading, pass `cache_implementation="offloaded"` in the `generation_config` or directly to the `generate()` call. Use `cache_implementation="offloaded_static"` for an offloaded static cache (see also [Offloaded Static Cache](#offloaded-static-cache) below). ```python >>> import torch >>> from transformers import AutoTokenizer, AutoModelForCausalLM >>> ckpt = "microsoft/Phi-3-mini-4k-instruct" >>> tokenizer = AutoTokenizer.from_pretrained(ckpt) >>> model = AutoModelForCausalLM.from_pretrained(ckpt, torch_dtype=torch.float16).to("cuda:0") >>> inputs = tokenizer("Fun fact: The shortest", return_tensors="pt").to(model.device) >>> out = model.generate(**inputs, do_sample=False, max_new_tokens=23, cache_implementation="offloaded") >>> print(tokenizer.batch_decode(out, skip_special_tokens=True)[0]) Fun fact: The shortest war in history was between Britain and Zanzibar on August 27, 1896. >>> out = model.generate(**inputs, do_sample=False, max_new_tokens=23) >>> print(tokenizer.batch_decode(out, skip_special_tokens=True)[0]) Fun fact: The shortest war in history was between Britain and Zanzibar on August 27, 1896. ``` <Tip warning={true}> Cache offloading requires a GPU and can be slower than dynamic KV cache. Use it if you are getting CUDA out of memory errors. </Tip> The example below shows how KV cache offloading can be used as a fallback strategy. ```python >>> import torch >>> from transformers import AutoTokenizer, AutoModelForCausalLM >>> def resilient_generate(model, *args, **kwargs): ... oom = False ... try: ... return model.generate(*args, **kwargs) ... except torch.cuda.OutOfMemoryError as e: ... print(e) ... print("retrying with cache_implementation='offloaded'") ... oom = True ... if oom: ... torch.cuda.empty_cache() ... kwargs["cache_implementation"] = "offloaded" ... return model.generate(*args, **kwargs) ... ... >>> ckpt = "microsoft/Phi-3-mini-4k-instruct" >>> tokenizer = AutoTokenizer.from_pretrained(ckpt) >>> model = AutoModelForCausalLM.from_pretrained(ckpt, torch_dtype=torch.float16).to("cuda:0") >>> prompt = ["okay "*1000 + "Fun fact: The most"] >>> inputs = tokenizer(prompt, return_tensors="pt").to(model.device) >>> beams = { "num_beams": 40, "num_beam_groups": 40, "num_return_sequences": 40, "diversity_penalty": 1.0, "max_new_tokens": 23, "early_stopping": True, } >>> out = resilient_generate(model, **inputs, **beams) >>> responses = tokenizer.batch_decode(out[:,-28:], skip_special_tokens=True) ``` On a GPU with 50 GB of RAM, running this code will print ``` CUDA out of memory. Tried to allocate 4.83 GiB. GPU retrying with cache_implementation='offloaded' ``` before successfully generating 40 beams. ### Static Cache Since the "DynamicCache" dynamically grows with each generation step, it prevents you from taking advantage of JIT optimizations. The [`~StaticCache`] pre-allocates a specific maximum size for the keys and values, allowing you to generate up to the maximum length without having to modify cache size. Check the below usage example. For more examples with Static Cache and JIT compilation, take a look at [StaticCache & torchcompile](./llm_optims.md#static-kv-cache-and-torchcompile) ```python >>> import torch >>> from transformers import AutoTokenizer, AutoModelForCausalLM >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf") >>> model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto") >>> inputs = tokenizer("Hello, my name is", return_tensors="pt").to(model.device) >>> # simply pass the cache implementation="static" >>> out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="static") >>> tokenizer.batch_decode(out, skip_special_tokens=True)[0] "Hello, my name is [Your Name], and I am a [Your Profession] with [Number of Years] of" ``` ## Offloaded Static Cache Like [`~OffloadedCache`] exists for offloading a "DynamicCache", there is also an offloaded static cache. It fully supports JIT optimizations. Just pass `cache_implementation="offloaded_static"` in the `generation_config` or directly to the `generate()` call. This will use the [`~OffloadedStaticCache`] implementation instead. ```python >>> import torch >>> from transformers import AutoTokenizer, AutoModelForCausalLM >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf") >>> model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto") >>> inputs = tokenizer("Hello, my name is", return_tensors="pt").to(model.device) >>> # simply pass the cache implementation="static" >>> out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="offloaded_static") >>> tokenizer.batch_decode(out, skip_special_tokens=True)[0] "Hello, my name is [Your Name], and I am a [Your Profession] with [Number of Years] of" ``` ### Sliding Window Cache As the name suggests, this cache type implements a sliding window over previous keys and values, retaining only the last `sliding_window` tokens. It should be used with models like Mistral that support sliding window attention. Additionally, similar to Static Cache, this one is JIT-friendly and can be used with the same compile tecniques as Static Cache. Note that you can use this cache only for models that support sliding window, e.g. Mistral models. ```python >>> import torch >>> from transformers import AutoTokenizer, AutoModelForCausalLM, SinkCache >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") >>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype=torch.float16).to("cuda:0") >>> inputs = tokenizer("Yesterday I was on a rock concert and.", return_tensors="pt").to(model.device) >>> # can be used by passing in cache implementation >>> out = model.generate(**inputs, do_sample=False, max_new_tokens=30, cache_implementation="sliding_window") >>> tokenizer.batch_decode(out, skip_special_tokens=True)[0] "Yesterday I was on a rock concert and. I was so excited to see my favorite band. I was so excited that I was jumping up and down and screaming. I was so excited that I" ``` ### Sink Cache Sink Cache was introduced in ["Efficient Streaming Language Models with Attention Sinks"](https://arxiv.org/abs/2309.17453). It allows you to generate long sequences of text ("infinite length" according to the paper) without any fine-tuning. That is achieved by smart handling of previous keys and values, specifically it retains a few initial tokens from the sequence, called "sink tokens". This is based on the observation that these initial tokens attract a significant portion of attention scores during the generation process. Tokens that come after "sink tokens" are discarded on a sliding windowed basis, keeping only the latest `window_size` tokens. By keeping these initial tokens as "attention sinks," the model maintains stable performance even when dealing with very long texts, thus discarding most of the previous knowledge. Unlike other cache classes, this one can't be used directly by indicating a `cache_implementation`. You have to initialize the Cache before calling on `generate()` as follows. ```python >>> import torch >>> from transformers import AutoTokenizer, AutoModelForCausalLM, SinkCache >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf") >>> model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16).to("cuda:0") >>> inputs = tokenizer("This is a long story about unicorns, fairies and magic.", return_tensors="pt").to(model.device) >>> # get our cache, specify number of sink tokens and window size >>> # Note that window size already includes sink tokens, so has to be larger >>> past_key_values = SinkCache(window_length=256, num_sink_tokens=4) >>> out = model.generate(**inputs, do_sample=False, max_new_tokens=30, past_key_values=past_key_values) >>> tokenizer.batch_decode(out, skip_special_tokens=True)[0] "This is a long story about unicorns, fairies and magic. It is a fantasy world where unicorns and fairies live together in harmony. The story follows a young girl named Lily" ``` ### Encoder-Decoder Cache The [`~EncoderDecoderCache`] is a wrapper designed to handle the caching needs of encoder-decoder models. This cache type is specifically built to manage both self-attention and cross-attention caches, ensuring storage and retrieval of past key/values required for these complex models. Cool thing about Encoder-Decoder Cache is that you can set different cache types for the encoder and for the decoder, depending on your use case. Currently this cache is only supported in [Whisper](./model_doc/whisper.md) models but we will be adding more models soon. In terms of usage, there is nothing special to be done and calling `generate()` or `forward()` will handle everything for you. ### Model-specific Cache Classes Some models require storing previous keys, values, or states in a specific way, and the above cache classes cannot be used. For such cases, we have several specialized cache classes that are designed for specific models. These models only accept their own dedicated cache classes and do not support using any other cache types. Some examples include [`~HybridCache`] for [Gemma2](./model_doc/gemma2.md) series models or [`~MambaCache`] for [Mamba](./model_doc/mamba.md) architecture models. ## Iterative Generation with Cache We have seen how to use each of the cache types when generating. What if you want to use cache in iterative generation setting, for example in applications like chatbots, where interactions involve multiple turns and continuous back-and-forth exchanges. Iterative generation with cache allows these systems to handle ongoing conversations effectively without reprocessing the entire context at each step. But there are some tips that you should know before you start implementing: The general format when doing iterative generation is as below. First you have to initialize an empty cache of the type you want, and you can start feeding in new prompts iteratively. Keeping track of dialogues history and formatting can be done with chat templates, read more on that in [chat_templating](./chat_templating.md) In case you are using Sink Cache, you have to crop your inputs to that maximum length because Sink Cache can generate text longer than its maximum window size, but it expects the first input to not exceed the maximum cache length. ```python >>> import torch >>> from transformers import AutoTokenizer,AutoModelForCausalLM >>> from transformers.cache_utils import ( >>> DynamicCache, >>> SinkCache, >>> StaticCache, >>> SlidingWindowCache, >>> QuantoQuantizedCache, >>> QuantizedCacheConfig, >>> ) >>> model_id = "meta-llama/Llama-2-7b-chat-hf" >>> model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map='auto') >>> tokenizer = AutoTokenizer.from_pretrained(model_id) >>> user_prompts = ["Hello, what's your name?", "Btw, yesterday I was on a rock concert."] >>> past_key_values = DynamicCache() >>> max_cache_length = past_key_values.get_max_length() >>> messages = [] >>> for prompt in user_prompts: ... messages.append({"role": "user", "content": prompt}) ... inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device) ... if isinstance(past_key_values, SinkCache): ... inputs = {k: v[:, -max_cache_length:] for k, v in inputs.items()} ... ... input_length = inputs["input_ids"].shape[1] ... ... outputs = model.generate(**inputs, do_sample=False, max_new_tokens=256, past_key_values=past_key_values) ... completion = tokenizer.decode(outputs[0, input_length: ], skip_special_tokens=True) ... messages.append({"role": "assistant", "content": completion}) print(messages) [{'role': 'user', 'content': "Hello, what's your name?"}, {'role': 'assistant', 'content': " Hello! My name is LLaMA, I'm a large language model trained by a team of researcher at Meta AI. 😊"}, {'role': 'user', 'content': 'Btw, yesterday I was on a rock concert.'}, {'role': 'assistant', 'content': ' Oh, cool! That sounds like a lot of fun! 🎉 Did you enjoy the concert? What was the band like? 🀔'}] ``` ## Re-use Cache to continue generation Sometimes you would want to fist fill-in cache object with key/values for certain prefix prompt and re-use it several times to generate different sequences from it. We are working hard on adding this feature to 🀗 Transformers and will update this section soon.
transformers/docs/source/en/kv_cache.md/0
{ "file_path": "transformers/docs/source/en/kv_cache.md", "repo_id": "transformers", "token_count": 7492 }
253
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # BARThez ## Overview The BARThez model was proposed in [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis on 23 Oct, 2020. The abstract of the paper: *Inductive transfer learning, enabled by self-supervised learning, have taken the entire Natural Language Processing (NLP) field by storm, with models such as BERT and BART setting new state of the art on countless natural language understanding tasks. While there are some notable exceptions, most of the available models and research have been conducted for the English language. In this work, we introduce BARThez, the first BART model for the French language (to the best of our knowledge). BARThez was pretrained on a very large monolingual French corpus from past research that we adapted to suit BART's perturbation schemes. Unlike already existing BERT-based French language models such as CamemBERT and FlauBERT, BARThez is particularly well-suited for generative tasks, since not only its encoder but also its decoder is pretrained. In addition to discriminative tasks from the FLUE benchmark, we evaluate BARThez on a novel summarization dataset, OrangeSum, that we release with this paper. We also continue the pretraining of an already pretrained multilingual BART on BARThez's corpus, and we show that the resulting model, which we call mBARTHez, provides a significant boost over vanilla BARThez, and is on par with or outperforms CamemBERT and FlauBERT.* This model was contributed by [moussakam](https://huggingface.co/moussakam). The Authors' code can be found [here](https://github.com/moussaKam/BARThez). <Tip> BARThez implementation is the same as BART, except for tokenization. Refer to [BART documentation](bart) for information on configuration classes and their parameters. BARThez-specific tokenizers are documented below. </Tip> ## Resources - BARThez can be fine-tuned on sequence-to-sequence tasks in a similar way as BART, check: [examples/pytorch/summarization/](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization/README.md). ## BarthezTokenizer [[autodoc]] BarthezTokenizer ## BarthezTokenizerFast [[autodoc]] BarthezTokenizerFast
transformers/docs/source/en/model_doc/barthez.md/0
{ "file_path": "transformers/docs/source/en/model_doc/barthez.md", "repo_id": "transformers", "token_count": 818 }
254
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # BORT <Tip warning={true}> This model is in maintenance mode only, we do not accept any new PRs changing its code. If you run into any issues running this model, please reinstall the last version that supported this model: v4.30.0. You can do so by running the following command: `pip install -U transformers==4.30.0`. </Tip> ## Overview The BORT model was proposed in [Optimal Subarchitecture Extraction for BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry. It is an optimal subset of architectural parameters for the BERT, which the authors refer to as "Bort". The abstract from the paper is the following: *We extract an optimal subset of architectural parameters for the BERT architecture from Devlin et al. (2018) by applying recent breakthroughs in algorithms for neural architecture search. This optimal subset, which we refer to as "Bort", is demonstrably smaller, having an effective (that is, not counting the embedding layer) size of 5.5% the original BERT-large architecture, and 16% of the net size. Bort is also able to be pretrained in 288 GPU hours, which is 1.2% of the time required to pretrain the highest-performing BERT parametric architectural variant, RoBERTa-large (Liu et al., 2019), and about 33% of that of the world-record, in GPU hours, required to train BERT-large on the same hardware. It is also 7.9x faster on a CPU, as well as being better performing than other compressed variants of the architecture, and some of the non-compressed variants: it obtains performance improvements of between 0.3% and 31%, absolute, with respect to BERT-large, on multiple public natural language understanding (NLU) benchmarks.* This model was contributed by [stefan-it](https://huggingface.co/stefan-it). The original code can be found [here](https://github.com/alexa/bort/). ## Usage tips - BORT's model architecture is based on BERT, refer to [BERT's documentation page](bert) for the model's API reference as well as usage examples. - BORT uses the RoBERTa tokenizer instead of the BERT tokenizer, refer to [RoBERTa's documentation page](roberta) for the tokenizer's API reference as well as usage examples. - BORT requires a specific fine-tuning algorithm, called [Agora](https://adewynter.github.io/notes/bort_algorithms_and_applications.html#fine-tuning-with-algebraic-topology) , that is sadly not open-sourced yet. It would be very useful for the community, if someone tries to implement the algorithm to make BORT fine-tuning work.
transformers/docs/source/en/model_doc/bort.md/0
{ "file_path": "transformers/docs/source/en/model_doc/bort.md", "repo_id": "transformers", "token_count": 867 }
255
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # ConvBERT <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=convbert"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-convbert-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/conv-bert-base"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div> ## Overview The ConvBERT model was proposed in [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan. The abstract from the paper is the following: *Pre-trained language models like BERT and its variants have recently achieved impressive performance in various natural language understanding tasks. However, BERT heavily relies on the global self-attention block and thus suffers large memory footprint and computation cost. Although all its attention heads query on the whole input sequence for generating the attention map from a global perspective, we observe some heads only need to learn local dependencies, which means the existence of computation redundancy. We therefore propose a novel span-based dynamic convolution to replace these self-attention heads to directly model local dependencies. The novel convolution heads, together with the rest self-attention heads, form a new mixed attention block that is more efficient at both global and local context learning. We equip BERT with this mixed attention design and build a ConvBERT model. Experiments have shown that ConvBERT significantly outperforms BERT and its variants in various downstream tasks, with lower training cost and fewer model parameters. Remarkably, ConvBERTbase model achieves 86.4 GLUE score, 0.7 higher than ELECTRAbase, while using less than 1/4 training cost. Code and pre-trained models will be released.* This model was contributed by [abhishek](https://huggingface.co/abhishek). The original implementation can be found here: https://github.com/yitu-opensource/ConvBert ## Usage tips ConvBERT training tips are similar to those of BERT. For usage tips refer to [BERT documentation](bert). ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/multiple_choice) ## ConvBertConfig [[autodoc]] ConvBertConfig ## ConvBertTokenizer [[autodoc]] ConvBertTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## ConvBertTokenizerFast [[autodoc]] ConvBertTokenizerFast <frameworkcontent> <pt> ## ConvBertModel [[autodoc]] ConvBertModel - forward ## ConvBertForMaskedLM [[autodoc]] ConvBertForMaskedLM - forward ## ConvBertForSequenceClassification [[autodoc]] ConvBertForSequenceClassification - forward ## ConvBertForMultipleChoice [[autodoc]] ConvBertForMultipleChoice - forward ## ConvBertForTokenClassification [[autodoc]] ConvBertForTokenClassification - forward ## ConvBertForQuestionAnswering [[autodoc]] ConvBertForQuestionAnswering - forward </pt> <tf> ## TFConvBertModel [[autodoc]] TFConvBertModel - call ## TFConvBertForMaskedLM [[autodoc]] TFConvBertForMaskedLM - call ## TFConvBertForSequenceClassification [[autodoc]] TFConvBertForSequenceClassification - call ## TFConvBertForMultipleChoice [[autodoc]] TFConvBertForMultipleChoice - call ## TFConvBertForTokenClassification [[autodoc]] TFConvBertForTokenClassification - call ## TFConvBertForQuestionAnswering [[autodoc]] TFConvBertForQuestionAnswering - call </tf> </frameworkcontent>
transformers/docs/source/en/model_doc/convbert.md/0
{ "file_path": "transformers/docs/source/en/model_doc/convbert.md", "repo_id": "transformers", "token_count": 1393 }
256
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Encoder Decoder Models ## Overview The [`EncoderDecoderModel`] can be used to initialize a sequence-to-sequence model with any pretrained autoencoding model as the encoder and any pretrained autoregressive model as the decoder. The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. After such an [`EncoderDecoderModel`] has been trained/fine-tuned, it can be saved/loaded just like any other models (see the examples for more information). An application of this architecture could be to leverage two pretrained [`BertModel`] as the encoder and decoder for a summarization model as was shown in: [Text Summarization with Pretrained Encoders](https://arxiv.org/abs/1908.08345) by Yang Liu and Mirella Lapata. ## Randomly initializing `EncoderDecoderModel` from model configurations. [`EncoderDecoderModel`] can be randomly initialized from an encoder and a decoder config. In the following example, we show how to do this using the default [`BertModel`] configuration for the encoder and the default [`BertForCausalLM`] configuration for the decoder. ```python >>> from transformers import BertConfig, EncoderDecoderConfig, EncoderDecoderModel >>> config_encoder = BertConfig() >>> config_decoder = BertConfig() >>> config = EncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder) >>> model = EncoderDecoderModel(config=config) ``` ## Initialising `EncoderDecoderModel` from a pretrained encoder and a pretrained decoder. [`EncoderDecoderModel`] can be initialized from a pretrained encoder checkpoint and a pretrained decoder checkpoint. Note that any pretrained auto-encoding model, *e.g.* BERT, can serve as the encoder and both pretrained auto-encoding models, *e.g.* BERT, pretrained causal language models, *e.g.* GPT2, as well as the pretrained decoder part of sequence-to-sequence models, *e.g.* decoder of BART, can be used as the decoder. Depending on which architecture you choose as the decoder, the cross-attention layers might be randomly initialized. Initializing [`EncoderDecoderModel`] from a pretrained encoder and decoder checkpoint requires the model to be fine-tuned on a downstream task, as has been shown in [the *Warm-starting-encoder-decoder blog post*](https://huggingface.co/blog/warm-starting-encoder-decoder). To do so, the `EncoderDecoderModel` class provides a [`EncoderDecoderModel.from_encoder_decoder_pretrained`] method. ```python >>> from transformers import EncoderDecoderModel, BertTokenizer >>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased") >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-uncased", "google-bert/bert-base-uncased") ``` ## Loading an existing `EncoderDecoderModel` checkpoint and perform inference. To load fine-tuned checkpoints of the `EncoderDecoderModel` class, [`EncoderDecoderModel`] provides the `from_pretrained(...)` method just like any other model architecture in Transformers. To perform inference, one uses the [`generate`] method, which allows to autoregressively generate text. This method supports various forms of decoding, such as greedy, beam search and multinomial sampling. ```python >>> from transformers import AutoTokenizer, EncoderDecoderModel >>> # load a fine-tuned seq2seq model and corresponding tokenizer >>> model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert_cnn_daily_mail") >>> tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/bert2bert_cnn_daily_mail") >>> # let's perform inference on a long piece of text >>> ARTICLE_TO_SUMMARIZE = ( ... "PG&E stated it scheduled the blackouts in response to forecasts for high winds " ... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were " ... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow." ... ) >>> input_ids = tokenizer(ARTICLE_TO_SUMMARIZE, return_tensors="pt").input_ids >>> # autoregressively generate summary (uses greedy decoding by default) >>> generated_ids = model.generate(input_ids) >>> generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] >>> print(generated_text) nearly 800 thousand customers were affected by the shutoffs. the aim is to reduce the risk of wildfires. nearly 800, 000 customers were expected to be affected by high winds amid dry conditions. pg & e said it scheduled the blackouts to last through at least midday tomorrow. ``` ## Loading a PyTorch checkpoint into `TFEncoderDecoderModel`. [`TFEncoderDecoderModel.from_pretrained`] currently doesn't support initializing the model from a pytorch checkpoint. Passing `from_pt=True` to this method will throw an exception. If there are only pytorch checkpoints for a particular encoder-decoder model, a workaround is: ```python >>> # a workaround to load from pytorch checkpoint >>> from transformers import EncoderDecoderModel, TFEncoderDecoderModel >>> _model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16") >>> _model.encoder.save_pretrained("./encoder") >>> _model.decoder.save_pretrained("./decoder") >>> model = TFEncoderDecoderModel.from_encoder_decoder_pretrained( ... "./encoder", "./decoder", encoder_from_pt=True, decoder_from_pt=True ... ) >>> # This is only for copying some specific attributes of this particular model. >>> model.config = _model.config ``` ## Training Once the model is created, it can be fine-tuned similar to BART, T5 or any other encoder-decoder model. As you can see, only 2 inputs are required for the model in order to compute a loss: `input_ids` (which are the `input_ids` of the encoded input sequence) and `labels` (which are the `input_ids` of the encoded target sequence). ```python >>> from transformers import BertTokenizer, EncoderDecoderModel >>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased") >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-uncased", "google-bert/bert-base-uncased") >>> model.config.decoder_start_token_id = tokenizer.cls_token_id >>> model.config.pad_token_id = tokenizer.pad_token_id >>> input_ids = tokenizer( ... "The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side.During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft).Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct.", ... return_tensors="pt", ... ).input_ids >>> labels = tokenizer( ... "the eiffel tower surpassed the washington monument to become the tallest structure in the world. it was the first structure to reach a height of 300 metres in paris in 1930. it is now taller than the chrysler building by 5. 2 metres ( 17 ft ) and is the second tallest free - standing structure in paris.", ... return_tensors="pt", ... ).input_ids >>> # the forward function automatically creates the correct decoder_input_ids >>> loss = model(input_ids=input_ids, labels=labels).loss ``` Detailed [colab](https://colab.research.google.com/drive/1WIk2bxglElfZewOHboPFNj8H44_VAyKE?usp=sharing#scrollTo=ZwQIEhKOrJpl) for training. This model was contributed by [thomwolf](https://github.com/thomwolf). This model's TensorFlow and Flax versions were contributed by [ydshieh](https://github.com/ydshieh). ## EncoderDecoderConfig [[autodoc]] EncoderDecoderConfig <frameworkcontent> <pt> ## EncoderDecoderModel [[autodoc]] EncoderDecoderModel - forward - from_encoder_decoder_pretrained </pt> <tf> ## TFEncoderDecoderModel [[autodoc]] TFEncoderDecoderModel - call - from_encoder_decoder_pretrained </tf> <jax> ## FlaxEncoderDecoderModel [[autodoc]] FlaxEncoderDecoderModel - __call__ - from_encoder_decoder_pretrained </jax> </frameworkcontent>
transformers/docs/source/en/model_doc/encoder-decoder.md/0
{ "file_path": "transformers/docs/source/en/model_doc/encoder-decoder.md", "repo_id": "transformers", "token_count": 2664 }
257
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Gemma ## Overview The Gemma model was proposed in [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) by Gemma Team, Google. Gemma models are trained on 6T tokens, and released with 2 versions, 2b and 7b. The abstract from the paper is the following: *This work introduces Gemma, a new family of open language models demonstrating strong performance across academic benchmarks for language understanding, reasoning, and safety. We release two sizes of models (2 billion and 7 billion parameters), and provide both pretrained and fine-tuned checkpoints. Gemma outperforms similarly sized open models on 11 out of 18 text-based tasks, and we present comprehensive evaluations of safety and responsibility aspects of the models, alongside a detailed description of our model development. We believe the responsible release of LLMs is critical for improving the safety of frontier models, and for enabling the next wave of LLM innovations* Tips: - The original checkpoints can be converted using the conversion script `src/transformers/models/gemma/convert_gemma_weights_to_hf.py` This model was contributed by [Arthur Zucker](https://huggingface.co/ArthurZ), [Younes Belkada](https://huggingface.co/ybelkada), [Sanchit Gandhi](https://huggingface.co/sanchit-gandhi), [Pedro Cuenca](https://huggingface.co/pcuenq). ## GemmaConfig [[autodoc]] GemmaConfig ## GemmaTokenizer [[autodoc]] GemmaTokenizer ## GemmaTokenizerFast [[autodoc]] GemmaTokenizerFast ## GemmaModel [[autodoc]] GemmaModel - forward ## GemmaForCausalLM [[autodoc]] GemmaForCausalLM - forward ## GemmaForSequenceClassification [[autodoc]] GemmaForSequenceClassification - forward ## GemmaForTokenClassification [[autodoc]] GemmaForTokenClassification - forward ## FlaxGemmaModel [[autodoc]] FlaxGemmaModel - __call__ ## FlaxGemmaForCausalLM [[autodoc]] FlaxGemmaForCausalLM - __call__
transformers/docs/source/en/model_doc/gemma.md/0
{ "file_path": "transformers/docs/source/en/model_doc/gemma.md", "repo_id": "transformers", "token_count": 764 }
258
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # HerBERT ## Overview The HerBERT model was proposed in [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, and Ireneusz Gawlik. It is a BERT-based Language Model trained on Polish Corpora using only MLM objective with dynamic masking of whole words. The abstract from the paper is the following: *In recent years, a series of Transformer-based models unlocked major improvements in general natural language understanding (NLU) tasks. Such a fast pace of research would not be possible without general NLU benchmarks, which allow for a fair comparison of the proposed methods. However, such benchmarks are available only for a handful of languages. To alleviate this issue, we introduce a comprehensive multi-task benchmark for the Polish language understanding, accompanied by an online leaderboard. It consists of a diverse set of tasks, adopted from existing datasets for named entity recognition, question-answering, textual entailment, and others. We also introduce a new sentiment analysis task for the e-commerce domain, named Allegro Reviews (AR). To ensure a common evaluation scheme and promote models that generalize to different NLU tasks, the benchmark includes datasets from varying domains and applications. Additionally, we release HerBERT, a Transformer-based model trained specifically for the Polish language, which has the best average performance and obtains the best results for three out of nine tasks. Finally, we provide an extensive evaluation, including several standard baselines and recently proposed, multilingual Transformer-based models.* This model was contributed by [rmroczkowski](https://huggingface.co/rmroczkowski). The original code can be found [here](https://github.com/allegro/HerBERT). ## Usage example ```python >>> from transformers import HerbertTokenizer, RobertaModel >>> tokenizer = HerbertTokenizer.from_pretrained("allegro/herbert-klej-cased-tokenizer-v1") >>> model = RobertaModel.from_pretrained("allegro/herbert-klej-cased-v1") >>> encoded_input = tokenizer.encode("Kto ma lepszą sztukę, ma lepszy rząd – to jasne.", return_tensors="pt") >>> outputs = model(encoded_input) >>> # HerBERT can also be loaded using AutoTokenizer and AutoModel: >>> import torch >>> from transformers import AutoModel, AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("allegro/herbert-klej-cased-tokenizer-v1") >>> model = AutoModel.from_pretrained("allegro/herbert-klej-cased-v1") ``` <Tip> Herbert implementation is the same as `BERT` except for the tokenization method. Refer to [BERT documentation](bert) for API reference and examples. </Tip> ## HerbertTokenizer [[autodoc]] HerbertTokenizer ## HerbertTokenizerFast [[autodoc]] HerbertTokenizerFast
transformers/docs/source/en/model_doc/herbert.md/0
{ "file_path": "transformers/docs/source/en/model_doc/herbert.md", "repo_id": "transformers", "token_count": 956 }
259
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # MADLAD-400 ## Overview MADLAD-400 models were released in the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](MADLAD-400: A Multilingual And Document-Level Large Audited Dataset). The abstract from the paper is the following: *We introduce MADLAD-400, a manually audited, general domain 3T token monolingual dataset based on CommonCrawl, spanning 419 languages. We discuss the limitations revealed by self-auditing MADLAD-400, and the role data auditing had in the dataset creation process. We then train and release a 10.7B-parameter multilingual machine translation model on 250 billion tokens covering over 450 languages using publicly available data, and find that it is competitive with models that are significantly larger, and report the results on different domains. In addition, we train a 8B-parameter language model, and assess the results on few-shot translation. We make the baseline models 1 available to the research community.* This model was added by [Juarez Bochi](https://huggingface.co/jbochi). The original checkpoints can be found [here](https://github.com/google-research/google-research/tree/master/madlad_400). This is a machine translation model that supports many low-resource languages, and that is competitive with models that are significantly larger. One can directly use MADLAD-400 weights without finetuning the model: ```python >>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer >>> model = AutoModelForSeq2SeqLM.from_pretrained("google/madlad400-3b-mt") >>> tokenizer = AutoTokenizer.from_pretrained("google/madlad400-3b-mt") >>> inputs = tokenizer("<2pt> I love pizza!", return_tensors="pt") >>> outputs = model.generate(**inputs) >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) ['Eu amo pizza!'] ``` Google has released the following variants: - [google/madlad400-3b-mt](https://huggingface.co/google/madlad400-3b-mt) - [google/madlad400-7b-mt](https://huggingface.co/google/madlad400-7b-mt) - [google/madlad400-7b-mt-bt](https://huggingface.co/google/madlad400-7b-mt-bt) - [google/madlad400-10b-mt](https://huggingface.co/google/madlad400-10b-mt) The original checkpoints can be found [here](https://github.com/google-research/google-research/tree/master/madlad_400). <Tip> Refer to [T5's documentation page](t5) for all API references, code examples, and notebooks. For more details regarding training and evaluation of the MADLAD-400, refer to the model card. </Tip>
transformers/docs/source/en/model_doc/madlad-400.md/0
{ "file_path": "transformers/docs/source/en/model_doc/madlad-400.md", "repo_id": "transformers", "token_count": 930 }
260
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # mLUKE ## Overview The mLUKE model was proposed in [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka. It's a multilingual extension of the [LUKE model](https://arxiv.org/abs/2010.01057) trained on the basis of XLM-RoBERTa. It is based on XLM-RoBERTa and adds entity embeddings, which helps improve performance on various downstream tasks involving reasoning about entities such as named entity recognition, extractive question answering, relation classification, cloze-style knowledge completion. The abstract from the paper is the following: *Recent studies have shown that multilingual pretrained language models can be effectively improved with cross-lingual alignment information from Wikipedia entities. However, existing methods only exploit entity information in pretraining and do not explicitly use entities in downstream tasks. In this study, we explore the effectiveness of leveraging entity representations for downstream cross-lingual tasks. We train a multilingual language model with 24 languages with entity representations and show the model consistently outperforms word-based pretrained models in various cross-lingual transfer tasks. We also analyze the model and the key insight is that incorporating entity representations into the input allows us to extract more language-agnostic features. We also evaluate the model with a multilingual cloze prompt task with the mLAMA dataset. We show that entity-based prompt elicits correct factual knowledge more likely than using only word representations.* This model was contributed by [ryo0634](https://huggingface.co/ryo0634). The original code can be found [here](https://github.com/studio-ousia/luke). ## Usage tips One can directly plug in the weights of mLUKE into a LUKE model, like so: ```python from transformers import LukeModel model = LukeModel.from_pretrained("studio-ousia/mluke-base") ``` Note that mLUKE has its own tokenizer, [`MLukeTokenizer`]. You can initialize it as follows: ```python from transformers import MLukeTokenizer tokenizer = MLukeTokenizer.from_pretrained("studio-ousia/mluke-base") ``` <Tip> As mLUKE's architecture is equivalent to that of LUKE, one can refer to [LUKE's documentation page](luke) for all tips, code examples and notebooks. </Tip> ## MLukeTokenizer [[autodoc]] MLukeTokenizer - __call__ - save_vocabulary
transformers/docs/source/en/model_doc/mluke.md/0
{ "file_path": "transformers/docs/source/en/model_doc/mluke.md", "repo_id": "transformers", "token_count": 825 }
261
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Nezha <Tip warning={true}> This model is in maintenance mode only, we don't accept any new PRs changing its code. If you run into any issues running this model, please reinstall the last version that supported this model: v4.40.2. You can do so by running the following command: `pip install -U transformers==4.40.2`. </Tip> ## Overview The Nezha model was proposed in [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei et al. The abstract from the paper is the following: *The pre-trained language models have achieved great successes in various natural language understanding (NLU) tasks due to its capacity to capture the deep contextualized information in text by pre-training on large-scale corpora. In this technical report, we present our practice of pre-training language models named NEZHA (NEural contextualiZed representation for CHinese lAnguage understanding) on Chinese corpora and finetuning for the Chinese NLU tasks. The current version of NEZHA is based on BERT with a collection of proven improvements, which include Functional Relative Positional Encoding as an effective positional encoding scheme, Whole Word Masking strategy, Mixed Precision Training and the LAMB Optimizer in training the models. The experimental results show that NEZHA achieves the state-of-the-art performances when finetuned on several representative Chinese tasks, including named entity recognition (People's Daily NER), sentence matching (LCQMC), Chinese sentiment classification (ChnSenti) and natural language inference (XNLI).* This model was contributed by [sijunhe](https://huggingface.co/sijunhe). The original code can be found [here](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/NEZHA-PyTorch). ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/multiple_choice) ## NezhaConfig [[autodoc]] NezhaConfig ## NezhaModel [[autodoc]] NezhaModel - forward ## NezhaForPreTraining [[autodoc]] NezhaForPreTraining - forward ## NezhaForMaskedLM [[autodoc]] NezhaForMaskedLM - forward ## NezhaForNextSentencePrediction [[autodoc]] NezhaForNextSentencePrediction - forward ## NezhaForSequenceClassification [[autodoc]] NezhaForSequenceClassification - forward ## NezhaForMultipleChoice [[autodoc]] NezhaForMultipleChoice - forward ## NezhaForTokenClassification [[autodoc]] NezhaForTokenClassification - forward ## NezhaForQuestionAnswering [[autodoc]] NezhaForQuestionAnswering - forward
transformers/docs/source/en/model_doc/nezha.md/0
{ "file_path": "transformers/docs/source/en/model_doc/nezha.md", "repo_id": "transformers", "token_count": 996 }
262
<!--Copyright 2024 The Qwen Team and The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Qwen2MoE ## Overview Qwen2MoE is the new model series of large language models from the Qwen team. Previously, we released the Qwen series, including Qwen-72B, Qwen-1.8B, Qwen-VL, Qwen-Audio, etc. ### Model Details Qwen2MoE is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. Qwen2MoE has the following architectural choices: - Qwen2MoE is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. - Qwen2MoE employs Mixture of Experts (MoE) architecture, where the models are upcycled from dense language models. For instance, `Qwen1.5-MoE-A2.7B` is upcycled from `Qwen-1.8B`. It has 14.3B parameters in total and 2.7B activated parameters during runtime, while it achieves comparable performance with `Qwen1.5-7B`, with only 25% of the training resources. For more details refer to the [release blog post](https://qwenlm.github.io/blog/qwen-moe/). ## Usage tips `Qwen1.5-MoE-A2.7B` and `Qwen1.5-MoE-A2.7B-Chat` can be found on the [Huggingface Hub](https://huggingface.co/Qwen) In the following, we demonstrate how to use `Qwen1.5-MoE-A2.7B-Chat` for the inference. Note that we have used the ChatML format for dialog, in this demo we show how to leverage `apply_chat_template` for this purpose. ```python >>> from transformers import AutoModelForCausalLM, AutoTokenizer >>> device = "cuda" # the device to load the model onto >>> model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-MoE-A2.7B-Chat", device_map="auto") >>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-MoE-A2.7B-Chat") >>> prompt = "Give me a short introduction to large language model." >>> messages = [{"role": "user", "content": prompt}] >>> text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) >>> model_inputs = tokenizer([text], return_tensors="pt").to(device) >>> generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512, do_sample=True) >>> generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)] >>> response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ## Qwen2MoeConfig [[autodoc]] Qwen2MoeConfig ## Qwen2MoeModel [[autodoc]] Qwen2MoeModel - forward ## Qwen2MoeForCausalLM [[autodoc]] Qwen2MoeForCausalLM - forward ## Qwen2MoeForSequenceClassification [[autodoc]] Qwen2MoeForSequenceClassification - forward ## Qwen2MoeForTokenClassification [[autodoc]] Qwen2MoeForTokenClassification - forward
transformers/docs/source/en/model_doc/qwen2_moe.md/0
{ "file_path": "transformers/docs/source/en/model_doc/qwen2_moe.md", "repo_id": "transformers", "token_count": 1111 }
263
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # SAM ## Overview SAM (Segment Anything Model) was proposed in [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick. The model can be used to predict segmentation masks of any object of interest given an input image. ![example image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/sam-output.png) The abstract from the paper is the following: *We introduce the Segment Anything (SA) project: a new task, model, and dataset for image segmentation. Using our efficient model in a data collection loop, we built the largest segmentation dataset to date (by far), with over 1 billion masks on 11M licensed and privacy respecting images. The model is designed and trained to be promptable, so it can transfer zero-shot to new image distributions and tasks. We evaluate its capabilities on numerous tasks and find that its zero-shot performance is impressive -- often competitive with or even superior to prior fully supervised results. We are releasing the Segment Anything Model (SAM) and corresponding dataset (SA-1B) of 1B masks and 11M images at [https://segment-anything.com](https://segment-anything.com) to foster research into foundation models for computer vision.* Tips: - The model predicts binary masks that states the presence or not of the object of interest given an image. - The model predicts much better results if input 2D points and/or input bounding boxes are provided - You can prompt multiple points for the same image, and predict a single mask. - Fine-tuning the model is not supported yet - According to the paper, textual input should be also supported. However, at this time of writing this seems not to be supported according to [the official repository](https://github.com/facebookresearch/segment-anything/issues/4#issuecomment-1497626844). This model was contributed by [ybelkada](https://huggingface.co/ybelkada) and [ArthurZ](https://huggingface.co/ArthurZ). The original code can be found [here](https://github.com/facebookresearch/segment-anything). Below is an example on how to run mask generation given an image and a 2D point: ```python import torch from PIL import Image import requests from transformers import SamModel, SamProcessor device = "cuda" if torch.cuda.is_available() else "cpu" model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device) processor = SamProcessor.from_pretrained("facebook/sam-vit-huge") img_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB") input_points = [[[450, 600]]] # 2D location of a window in the image inputs = processor(raw_image, input_points=input_points, return_tensors="pt").to(device) with torch.no_grad(): outputs = model(**inputs) masks = processor.image_processor.post_process_masks( outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu() ) scores = outputs.iou_scores ``` You can also process your own masks alongside the input images in the processor to be passed to the model. ```python import torch from PIL import Image import requests from transformers import SamModel, SamProcessor device = "cuda" if torch.cuda.is_available() else "cpu" model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device) processor = SamProcessor.from_pretrained("facebook/sam-vit-huge") img_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB") mask_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" segmentation_map = Image.open(requests.get(mask_url, stream=True).raw).convert("1") input_points = [[[450, 600]]] # 2D location of a window in the image inputs = processor(raw_image, input_points=input_points, segmentation_maps=segmentation_map, return_tensors="pt").to(device) with torch.no_grad(): outputs = model(**inputs) masks = processor.image_processor.post_process_masks( outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu() ) scores = outputs.iou_scores ``` ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with SAM. - [Demo notebook](https://github.com/huggingface/notebooks/blob/main/examples/segment_anything.ipynb) for using the model. - [Demo notebook](https://github.com/huggingface/notebooks/blob/main/examples/automatic_mask_generation.ipynb) for using the automatic mask generation pipeline. - [Demo notebook](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/SAM/Run_inference_with_MedSAM_using_HuggingFace_Transformers.ipynb) for inference with MedSAM, a fine-tuned version of SAM on the medical domain. 🌎 - [Demo notebook](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/SAM/Fine_tune_SAM_(segment_anything)_on_a_custom_dataset.ipynb) for fine-tuning the model on custom data. 🌎 ## SlimSAM SlimSAM, a pruned version of SAM, was proposed in [0.1% Data Makes Segment Anything Slim](https://arxiv.org/abs/2312.05284) by Zigeng Chen et al. SlimSAM reduces the size of the SAM models considerably while maintaining the same performance. Checkpoints can be found on the [hub](https://huggingface.co/models?other=slimsam), and they can be used as a drop-in replacement of SAM. ## Grounded SAM One can combine [Grounding DINO](grounding-dino) with SAM for text-based mask generation as introduced in [Grounded SAM: Assembling Open-World Models for Diverse Visual Tasks](https://arxiv.org/abs/2401.14159). You can refer to this [demo notebook](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/Grounding%20DINO/GroundingDINO_with_Segment_Anything.ipynb) 🌍 for details. <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/grounded_sam.png" alt="drawing" width="900"/> <small> Grounded SAM overview. Taken from the <a href="https://github.com/IDEA-Research/Grounded-Segment-Anything">original repository</a>. </small> ## SamConfig [[autodoc]] SamConfig ## SamVisionConfig [[autodoc]] SamVisionConfig ## SamMaskDecoderConfig [[autodoc]] SamMaskDecoderConfig ## SamPromptEncoderConfig [[autodoc]] SamPromptEncoderConfig ## SamProcessor [[autodoc]] SamProcessor ## SamImageProcessor [[autodoc]] SamImageProcessor ## SamModel [[autodoc]] SamModel - forward ## TFSamModel [[autodoc]] TFSamModel - call
transformers/docs/source/en/model_doc/sam.md/0
{ "file_path": "transformers/docs/source/en/model_doc/sam.md", "repo_id": "transformers", "token_count": 2257 }
264
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the MIT License; you may not use this file except in compliance with the License. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # SuperPoint ## Overview The SuperPoint model was proposed in [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich. This model is the result of a self-supervised training of a fully-convolutional network for interest point detection and description. The model is able to detect interest points that are repeatable under homographic transformations and provide a descriptor for each point. The use of the model in its own is limited, but it can be used as a feature extractor for other tasks such as homography estimation, image matching, etc. The abstract from the paper is the following: *This paper presents a self-supervised framework for training interest point detectors and descriptors suitable for a large number of multiple-view geometry problems in computer vision. As opposed to patch-based neural networks, our fully-convolutional model operates on full-sized images and jointly computes pixel-level interest point locations and associated descriptors in one forward pass. We introduce Homographic Adaptation, a multi-scale, multi-homography approach for boosting interest point detection repeatability and performing cross-domain adaptation (e.g., synthetic-to-real). Our model, when trained on the MS-COCO generic image dataset using Homographic Adaptation, is able to repeatedly detect a much richer set of interest points than the initial pre-adapted deep model and any other traditional corner detector. The final system gives rise to state-of-the-art homography estimation results on HPatches when compared to LIFT, SIFT and ORB.* <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/superpoint_architecture.png" alt="drawing" width="500"/> <small> SuperPoint overview. Taken from the <a href="https://arxiv.org/abs/1712.07629v4">original paper.</a> </small> ## Usage tips Here is a quick example of using the model to detect interest points in an image: ```python from transformers import AutoImageProcessor, SuperPointForKeypointDetection import torch from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained("magic-leap-community/superpoint") model = SuperPointForKeypointDetection.from_pretrained("magic-leap-community/superpoint") inputs = processor(image, return_tensors="pt") outputs = model(**inputs) ``` The outputs contain the list of keypoint coordinates with their respective score and description (a 256-long vector). You can also feed multiple images to the model. Due to the nature of SuperPoint, to output a dynamic number of keypoints, you will need to use the mask attribute to retrieve the respective information : ```python from transformers import AutoImageProcessor, SuperPointForKeypointDetection import torch from PIL import Image import requests url_image_1 = "http://images.cocodataset.org/val2017/000000039769.jpg" image_1 = Image.open(requests.get(url_image_1, stream=True).raw) url_image_2 = "http://images.cocodataset.org/test-stuff2017/000000000568.jpg" image_2 = Image.open(requests.get(url_image_2, stream=True).raw) images = [image_1, image_2] processor = AutoImageProcessor.from_pretrained("magic-leap-community/superpoint") model = SuperPointForKeypointDetection.from_pretrained("magic-leap-community/superpoint") inputs = processor(images, return_tensors="pt") outputs = model(**inputs) for i in range(len(images)): image_mask = outputs.mask[i] image_indices = torch.nonzero(image_mask).squeeze() image_keypoints = outputs.keypoints[i][image_indices] image_scores = outputs.scores[i][image_indices] image_descriptors = outputs.descriptors[i][image_indices] ``` You can then print the keypoints on the image to visualize the result : ```python import cv2 for keypoint, score in zip(image_keypoints, image_scores): keypoint_x, keypoint_y = int(keypoint[0].item()), int(keypoint[1].item()) color = tuple([score.item() * 255] * 3) image = cv2.circle(image, (keypoint_x, keypoint_y), 2, color) cv2.imwrite("output_image.png", image) ``` This model was contributed by [stevenbucaille](https://huggingface.co/stevenbucaille). The original code can be found [here](https://github.com/magicleap/SuperPointPretrainedNetwork). ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with SuperPoint. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. - A notebook showcasing inference and visualization with SuperPoint can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/SuperPoint/Inference_with_SuperPoint_to_detect_interest_points_in_an_image.ipynb). 🌎 ## SuperPointConfig [[autodoc]] SuperPointConfig ## SuperPointImageProcessor [[autodoc]] SuperPointImageProcessor - preprocess ## SuperPointForKeypointDetection [[autodoc]] SuperPointForKeypointDetection - forward
transformers/docs/source/en/model_doc/superpoint.md/0
{ "file_path": "transformers/docs/source/en/model_doc/superpoint.md", "repo_id": "transformers", "token_count": 1654 }
265
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # TVLT <Tip warning={true}> This model is in maintenance mode only, we don't accept any new PRs changing its code. If you run into any issues running this model, please reinstall the last version that supported this model: v4.40.2. You can do so by running the following command: `pip install -U transformers==4.40.2`. </Tip> ## Overview The TVLT model was proposed in [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal (the first three authors contributed equally). The Textless Vision-Language Transformer (TVLT) is a model that uses raw visual and audio inputs for vision-and-language representation learning, without using text-specific modules such as tokenization or automatic speech recognition (ASR). It can perform various audiovisual and vision-language tasks like retrieval, question answering, etc. The abstract from the paper is the following: *In this work, we present the Textless Vision-Language Transformer (TVLT), where homogeneous transformer blocks take raw visual and audio inputs for vision-and-language representation learning with minimal modality-specific design, and do not use text-specific modules such as tokenization or automatic speech recognition (ASR). TVLT is trained by reconstructing masked patches of continuous video frames and audio spectrograms (masked autoencoding) and contrastive modeling to align video and audio. TVLT attains performance comparable to its text-based counterpart on various multimodal tasks, such as visual question answering, image retrieval, video retrieval, and multimodal sentiment analysis, with 28x faster inference speed and only 1/3 of the parameters. Our findings suggest the possibility of learning compact and efficient visual-linguistic representations from low-level visual and audio signals without assuming the prior existence of text.* <p align="center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/tvlt_architecture.png" alt="drawing" width="600"/> </p> <small> TVLT architecture. Taken from the <a href="[https://arxiv.org/abs/2102.03334](https://arxiv.org/abs/2209.14156)">original paper</a>. </small> The original code can be found [here](https://github.com/zinengtang/TVLT). This model was contributed by [Zineng Tang](https://huggingface.co/ZinengTang). ## Usage tips - TVLT is a model that takes both `pixel_values` and `audio_values` as input. One can use [`TvltProcessor`] to prepare data for the model. This processor wraps an image processor (for the image/video modality) and an audio feature extractor (for the audio modality) into one. - TVLT is trained with images/videos and audios of various sizes: the authors resize and crop the input images/videos to 224 and limit the length of audio spectrogram to 2048. To make batching of videos and audios possible, the authors use a `pixel_mask` that indicates which pixels are real/padding and `audio_mask` that indicates which audio values are real/padding. - The design of TVLT is very similar to that of a standard Vision Transformer (ViT) and masked autoencoder (MAE) as in [ViTMAE](vitmae). The difference is that the model includes embedding layers for the audio modality. - The PyTorch version of this model is only available in torch 1.10 and higher. ## TvltConfig [[autodoc]] TvltConfig ## TvltProcessor [[autodoc]] TvltProcessor - __call__ ## TvltImageProcessor [[autodoc]] TvltImageProcessor - preprocess ## TvltFeatureExtractor [[autodoc]] TvltFeatureExtractor - __call__ ## TvltModel [[autodoc]] TvltModel - forward ## TvltForPreTraining [[autodoc]] TvltForPreTraining - forward ## TvltForAudioVisualClassification [[autodoc]] TvltForAudioVisualClassification - forward
transformers/docs/source/en/model_doc/tvlt.md/0
{ "file_path": "transformers/docs/source/en/model_doc/tvlt.md", "repo_id": "transformers", "token_count": 1236 }
266
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # VisualBERT ## Overview The VisualBERT model was proposed in [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang. VisualBERT is a neural network trained on a variety of (image, text) pairs. The abstract from the paper is the following: *We propose VisualBERT, a simple and flexible framework for modeling a broad range of vision-and-language tasks. VisualBERT consists of a stack of Transformer layers that implicitly align elements of an input text and regions in an associated input image with self-attention. We further propose two visually-grounded language model objectives for pre-training VisualBERT on image caption data. Experiments on four vision-and-language tasks including VQA, VCR, NLVR2, and Flickr30K show that VisualBERT outperforms or rivals with state-of-the-art models while being significantly simpler. Further analysis demonstrates that VisualBERT can ground elements of language to image regions without any explicit supervision and is even sensitive to syntactic relationships, tracking, for example, associations between verbs and image regions corresponding to their arguments.* This model was contributed by [gchhablani](https://huggingface.co/gchhablani). The original code can be found [here](https://github.com/uclanlp/visualbert). ## Usage tips 1. Most of the checkpoints provided work with the [`VisualBertForPreTraining`] configuration. Other checkpoints provided are the fine-tuned checkpoints for down-stream tasks - VQA ('visualbert-vqa'), VCR ('visualbert-vcr'), NLVR2 ('visualbert-nlvr2'). Hence, if you are not working on these downstream tasks, it is recommended that you use the pretrained checkpoints. 2. For the VCR task, the authors use a fine-tuned detector for generating visual embeddings, for all the checkpoints. We do not provide the detector and its weights as a part of the package, but it will be available in the research projects, and the states can be loaded directly into the detector provided. VisualBERT is a multi-modal vision and language model. It can be used for visual question answering, multiple choice, visual reasoning and region-to-phrase correspondence tasks. VisualBERT uses a BERT-like transformer to prepare embeddings for image-text pairs. Both the text and visual features are then projected to a latent space with identical dimension. To feed images to the model, each image is passed through a pre-trained object detector and the regions and the bounding boxes are extracted. The authors use the features generated after passing these regions through a pre-trained CNN like ResNet as visual embeddings. They also add absolute position embeddings, and feed the resulting sequence of vectors to a standard BERT model. The text input is concatenated in the front of the visual embeddings in the embedding layer, and is expected to be bound by [CLS] and a [SEP] tokens, as in BERT. The segment IDs must also be set appropriately for the textual and visual parts. The [`BertTokenizer`] is used to encode the text. A custom detector/image processor must be used to get the visual embeddings. The following example notebooks show how to use VisualBERT with Detectron-like models: - [VisualBERT VQA demo notebook](https://github.com/huggingface/transformers/tree/main/examples/research_projects/visual_bert) : This notebook contains an example on VisualBERT VQA. - [Generate Embeddings for VisualBERT (Colab Notebook)](https://colab.research.google.com/drive/1bLGxKdldwqnMVA5x4neY7-l_8fKGWQYI?usp=sharing) : This notebook contains an example on how to generate visual embeddings. The following example shows how to get the last hidden state using [`VisualBertModel`]: ```python >>> import torch >>> from transformers import BertTokenizer, VisualBertModel >>> model = VisualBertModel.from_pretrained("uclanlp/visualbert-vqa-coco-pre") >>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased") >>> inputs = tokenizer("What is the man eating?", return_tensors="pt") >>> # this is a custom function that returns the visual embeddings given the image path >>> visual_embeds = get_visual_embeddings(image_path) >>> visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long) >>> visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float) >>> inputs.update( ... { ... "visual_embeds": visual_embeds, ... "visual_token_type_ids": visual_token_type_ids, ... "visual_attention_mask": visual_attention_mask, ... } ... ) >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state ``` ## VisualBertConfig [[autodoc]] VisualBertConfig ## VisualBertModel [[autodoc]] VisualBertModel - forward ## VisualBertForPreTraining [[autodoc]] VisualBertForPreTraining - forward ## VisualBertForQuestionAnswering [[autodoc]] VisualBertForQuestionAnswering - forward ## VisualBertForMultipleChoice [[autodoc]] VisualBertForMultipleChoice - forward ## VisualBertForVisualReasoning [[autodoc]] VisualBertForVisualReasoning - forward ## VisualBertForRegionToPhraseAlignment [[autodoc]] VisualBertForRegionToPhraseAlignment - forward
transformers/docs/source/en/model_doc/visual_bert.md/0
{ "file_path": "transformers/docs/source/en/model_doc/visual_bert.md", "repo_id": "transformers", "token_count": 1680 }
267
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # XGLM ## Overview The XGLM model was proposed in [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li. The abstract from the paper is the following: *Large-scale autoregressive language models such as GPT-3 are few-shot learners that can perform a wide range of language tasks without fine-tuning. While these models are known to be able to jointly represent many different languages, their training data is dominated by English, potentially limiting their cross-lingual generalization. In this work, we train multilingual autoregressive language models on a balanced corpus covering a diverse set of languages, and study their few- and zero-shot learning capabilities in a wide range of tasks. Our largest model with 7.5 billion parameters sets new state of the art in few-shot learning in more than 20 representative languages, outperforming GPT-3 of comparable size in multilingual commonsense reasoning (with +7.4% absolute accuracy improvement in 0-shot settings and +9.4% in 4-shot settings) and natural language inference (+5.4% in each of 0-shot and 4-shot settings). On the FLORES-101 machine translation benchmark, our model outperforms GPT-3 on 171 out of 182 translation directions with 32 training examples, while surpassing the official supervised baseline in 45 directions. We present a detailed analysis of where the model succeeds and fails, showing in particular that it enables cross-lingual in-context learning on some tasks, while there is still room for improvement on surface form robustness and adaptation to tasks that do not have a natural cloze form. Finally, we evaluate our models in social value tasks such as hate speech detection in five languages and find it has limitations similar to comparable sized GPT-3 models.* This model was contributed by [Suraj](https://huggingface.co/valhalla). The original code can be found [here](https://github.com/pytorch/fairseq/tree/main/examples/xglm). ## Resources - [Causal language modeling task guide](../tasks/language_modeling) ## XGLMConfig [[autodoc]] XGLMConfig ## XGLMTokenizer [[autodoc]] XGLMTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## XGLMTokenizerFast [[autodoc]] XGLMTokenizerFast <frameworkcontent> <pt> ## XGLMModel [[autodoc]] XGLMModel - forward ## XGLMForCausalLM [[autodoc]] XGLMForCausalLM - forward </pt> <tf> ## TFXGLMModel [[autodoc]] TFXGLMModel - call ## TFXGLMForCausalLM [[autodoc]] TFXGLMForCausalLM - call </tf> <jax> ## FlaxXGLMModel [[autodoc]] FlaxXGLMModel - __call__ ## FlaxXGLMForCausalLM [[autodoc]] FlaxXGLMForCausalLM - __call__ </jax> </frameworkcontent>
transformers/docs/source/en/model_doc/xglm.md/0
{ "file_path": "transformers/docs/source/en/model_doc/xglm.md", "repo_id": "transformers", "token_count": 1137 }
268
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Multilingual models for inference [[open-in-colab]] There are several multilingual models in 🀗 Transformers, and their inference usage differs from monolingual models. Not *all* multilingual model usage is different though. Some models, like [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased), can be used just like a monolingual model. This guide will show you how to use multilingual models whose usage differs for inference. ## XLM XLM has ten different checkpoints, only one of which is monolingual. The nine remaining model checkpoints can be split into two categories: the checkpoints that use language embeddings and those that don't. ### XLM with language embeddings The following XLM models use language embeddings to specify the language used at inference: - `FacebookAI/xlm-mlm-ende-1024` (Masked language modeling, English-German) - `FacebookAI/xlm-mlm-enfr-1024` (Masked language modeling, English-French) - `FacebookAI/xlm-mlm-enro-1024` (Masked language modeling, English-Romanian) - `FacebookAI/xlm-mlm-xnli15-1024` (Masked language modeling, XNLI languages) - `FacebookAI/xlm-mlm-tlm-xnli15-1024` (Masked language modeling + translation, XNLI languages) - `FacebookAI/xlm-clm-enfr-1024` (Causal language modeling, English-French) - `FacebookAI/xlm-clm-ende-1024` (Causal language modeling, English-German) Language embeddings are represented as a tensor of the same shape as the `input_ids` passed to the model. The values in these tensors depend on the language used and are identified by the tokenizer's `lang2id` and `id2lang` attributes. In this example, load the `FacebookAI/xlm-clm-enfr-1024` checkpoint (Causal language modeling, English-French): ```py >>> import torch >>> from transformers import XLMTokenizer, XLMWithLMHeadModel >>> tokenizer = XLMTokenizer.from_pretrained("FacebookAI/xlm-clm-enfr-1024") >>> model = XLMWithLMHeadModel.from_pretrained("FacebookAI/xlm-clm-enfr-1024") ``` The `lang2id` attribute of the tokenizer displays this model's languages and their ids: ```py >>> print(tokenizer.lang2id) {'en': 0, 'fr': 1} ``` Next, create an example input: ```py >>> input_ids = torch.tensor([tokenizer.encode("Wikipedia was used to")]) # batch size of 1 ``` Set the language id as `"en"` and use it to define the language embedding. The language embedding is a tensor filled with `0` since that is the language id for English. This tensor should be the same size as `input_ids`. ```py >>> language_id = tokenizer.lang2id["en"] # 0 >>> langs = torch.tensor([language_id] * input_ids.shape[1]) # torch.tensor([0, 0, 0, ..., 0]) >>> # We reshape it to be of size (batch_size, sequence_length) >>> langs = langs.view(1, -1) # is now of shape [1, sequence_length] (we have a batch size of 1) ``` Now you can pass the `input_ids` and language embedding to the model: ```py >>> outputs = model(input_ids, langs=langs) ``` The [run_generation.py](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-generation/run_generation.py) script can generate text with language embeddings using the `xlm-clm` checkpoints. ### XLM without language embeddings The following XLM models do not require language embeddings during inference: - `FacebookAI/xlm-mlm-17-1280` (Masked language modeling, 17 languages) - `FacebookAI/xlm-mlm-100-1280` (Masked language modeling, 100 languages) These models are used for generic sentence representations, unlike the previous XLM checkpoints. ## BERT The following BERT models can be used for multilingual tasks: - `google-bert/bert-base-multilingual-uncased` (Masked language modeling + Next sentence prediction, 102 languages) - `google-bert/bert-base-multilingual-cased` (Masked language modeling + Next sentence prediction, 104 languages) These models do not require language embeddings during inference. They should identify the language from the context and infer accordingly. ## XLM-RoBERTa The following XLM-RoBERTa models can be used for multilingual tasks: - `FacebookAI/xlm-roberta-base` (Masked language modeling, 100 languages) - `FacebookAI/xlm-roberta-large` (Masked language modeling, 100 languages) XLM-RoBERTa was trained on 2.5TB of newly created and cleaned CommonCrawl data in 100 languages. It provides strong gains over previously released multilingual models like mBERT or XLM on downstream tasks like classification, sequence labeling, and question answering. ## M2M100 The following M2M100 models can be used for multilingual translation: - `facebook/m2m100_418M` (Translation) - `facebook/m2m100_1.2B` (Translation) In this example, load the `facebook/m2m100_418M` checkpoint to translate from Chinese to English. You can set the source language in the tokenizer: ```py >>> from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer >>> en_text = "Do not meddle in the affairs of wizards, for they are subtle and quick to anger." >>> chinese_text = "䞍芁插手巫垫的事務, 因為他們是埮劙的, 埈快就會癌怒." >>> tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="zh") >>> model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M") ``` Tokenize the text: ```py >>> encoded_zh = tokenizer(chinese_text, return_tensors="pt") ``` M2M100 forces the target language id as the first generated token to translate to the target language. Set the `forced_bos_token_id` to `en` in the `generate` method to translate to English: ```py >>> generated_tokens = model.generate(**encoded_zh, forced_bos_token_id=tokenizer.get_lang_id("en")) >>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) 'Do not interfere with the matters of the witches, because they are delicate and will soon be angry.' ``` ## MBart The following MBart models can be used for multilingual translation: - `facebook/mbart-large-50-one-to-many-mmt` (One-to-many multilingual machine translation, 50 languages) - `facebook/mbart-large-50-many-to-many-mmt` (Many-to-many multilingual machine translation, 50 languages) - `facebook/mbart-large-50-many-to-one-mmt` (Many-to-one multilingual machine translation, 50 languages) - `facebook/mbart-large-50` (Multilingual translation, 50 languages) - `facebook/mbart-large-cc25` In this example, load the `facebook/mbart-large-50-many-to-many-mmt` checkpoint to translate Finnish to English. You can set the source language in the tokenizer: ```py >>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM >>> en_text = "Do not meddle in the affairs of wizards, for they are subtle and quick to anger." >>> fi_text = "ÄlÀ sekaannu velhojen asioihin, sillÀ ne ovat hienovaraisia ja nopeasti vihaisia." >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", src_lang="fi_FI") >>> model = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-50-many-to-many-mmt") ``` Tokenize the text: ```py >>> encoded_en = tokenizer(en_text, return_tensors="pt") ``` MBart forces the target language id as the first generated token to translate to the target language. Set the `forced_bos_token_id` to `en` in the `generate` method to translate to English: ```py >>> generated_tokens = model.generate(**encoded_en, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"]) >>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) "Don't interfere with the wizard's affairs, because they are subtle, will soon get angry." ``` If you are using the `facebook/mbart-large-50-many-to-one-mmt` checkpoint, you don't need to force the target language id as the first generated token otherwise the usage is the same.
transformers/docs/source/en/multilingual.md/0
{ "file_path": "transformers/docs/source/en/multilingual.md", "repo_id": "transformers", "token_count": 2588 }
269
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Philosophy 🀗 Transformers is an opinionated library built for: - machine learning researchers and educators seeking to use, study or extend large-scale Transformers models. - hands-on practitioners who want to fine-tune those models or serve them in production, or both. - engineers who just want to download a pretrained model and use it to solve a given machine learning task. The library was designed with two strong goals in mind: 1. Be as easy and fast to use as possible: - We strongly limited the number of user-facing abstractions to learn, in fact, there are almost no abstractions, just three standard classes required to use each model: [configuration](main_classes/configuration), [models](main_classes/model), and a preprocessing class ([tokenizer](main_classes/tokenizer) for NLP, [image processor](main_classes/image_processor) for vision, [feature extractor](main_classes/feature_extractor) for audio, and [processor](main_classes/processors) for multimodal inputs). - All of these classes can be initialized in a simple and unified way from pretrained instances by using a common `from_pretrained()` method which downloads (if needed), caches and loads the related class instance and associated data (configurations' hyperparameters, tokenizers' vocabulary, and models' weights) from a pretrained checkpoint provided on [Hugging Face Hub](https://huggingface.co/models) or your own saved checkpoint. - On top of those three base classes, the library provides two APIs: [`pipeline`] for quickly using a model for inference on a given task and [`Trainer`] to quickly train or fine-tune a PyTorch model (all TensorFlow models are compatible with `Keras.fit`). - As a consequence, this library is NOT a modular toolbox of building blocks for neural nets. If you want to extend or build upon the library, just use regular Python, PyTorch, TensorFlow, Keras modules and inherit from the base classes of the library to reuse functionalities like model loading and saving. If you'd like to learn more about our coding philosophy for models, check out our [Repeat Yourself](https://huggingface.co/blog/transformers-design-philosophy) blog post. 2. Provide state-of-the-art models with performances as close as possible to the original models: - We provide at least one example for each architecture which reproduces a result provided by the official authors of said architecture. - The code is usually as close to the original code base as possible which means some PyTorch code may be not as *pytorchic* as it could be as a result of being converted TensorFlow code and vice versa. A few other goals: - Expose the models' internals as consistently as possible: - We give access, using a single API, to the full hidden-states and attention weights. - The preprocessing classes and base model APIs are standardized to easily switch between models. - Incorporate a subjective selection of promising tools for fine-tuning and investigating these models: - A simple and consistent way to add new tokens to the vocabulary and embeddings for fine-tuning. - Simple ways to mask and prune Transformer heads. - Easily switch between PyTorch, TensorFlow 2.0 and Flax, allowing training with one framework and inference with another. ## Main concepts The library is built around three types of classes for each model: - **Model classes** can be PyTorch models ([torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)), Keras models ([tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model)) or JAX/Flax models ([flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html)) that work with the pretrained weights provided in the library. - **Configuration classes** store the hyperparameters required to build a model (such as the number of layers and hidden size). You don't always need to instantiate these yourself. In particular, if you are using a pretrained model without any modification, creating the model will automatically take care of instantiating the configuration (which is part of the model). - **Preprocessing classes** convert the raw data into a format accepted by the model. A [tokenizer](main_classes/tokenizer) stores the vocabulary for each model and provide methods for encoding and decoding strings in a list of token embedding indices to be fed to a model. [Image processors](main_classes/image_processor) preprocess vision inputs, [feature extractors](main_classes/feature_extractor) preprocess audio inputs, and a [processor](main_classes/processors) handles multimodal inputs. All these classes can be instantiated from pretrained instances, saved locally, and shared on the Hub with three methods: - `from_pretrained()` lets you instantiate a model, configuration, and preprocessing class from a pretrained version either provided by the library itself (the supported models can be found on the [Model Hub](https://huggingface.co/models)) or stored locally (or on a server) by the user. - `save_pretrained()` lets you save a model, configuration, and preprocessing class locally so that it can be reloaded using `from_pretrained()`. - `push_to_hub()` lets you share a model, configuration, and a preprocessing class to the Hub, so it is easily accessible to everyone.
transformers/docs/source/en/philosophy.md/0
{ "file_path": "transformers/docs/source/en/philosophy.md", "repo_id": "transformers", "token_count": 1518 }
270
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # TorchAO [TorchAO](https://github.com/pytorch/ao) is an architecture optimization library for PyTorch, it provides high performance dtypes, optimization techniques and kernels for inference and training, featuring composability with native PyTorch features like `torch.compile`, FSDP etc.. Some benchmark numbers can be found [here](https://github.com/pytorch/ao/tree/main?tab=readme-ov-file#without-intrusive-code-changes) Before you begin, make sure the following libraries are installed with their latest version: ```bash pip install --upgrade torch torchao ``` ```py from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer model_name = "meta-llama/Meta-Llama-3-8B" # We support int4_weight_only, int8_weight_only and int8_dynamic_activation_int8_weight # More examples and documentations for arguments can be found in https://github.com/pytorch/ao/tree/main/torchao/quantization#other-available-quantization-techniques quantization_config = TorchAoConfig("int4_weight_only", group_size=128) quantized_model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", quantization_config=quantization_config) tokenizer = AutoTokenizer.from_pretrained(model_name) input_text = "What are we having for dinner?" input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") # compile the quantizd model to get speedup import torchao torchao.quantization.utils.recommended_inductor_config_setter() quantized_model = torch.compile(quantized_model, mode="max-autotune") output = quantized_model.generate(**input_ids, max_new_tokens=10) print(tokenizer.decode(output[0], skip_special_tokens=True)) ``` torchao quantization is implemented with tensor subclasses, currently it does not work with huggingface serialization, both the safetensor option and [non-safetensor option](https://github.com/huggingface/transformers/issues/32364), we'll update here with instructions when it's working.
transformers/docs/source/en/quantization/torchao.md/0
{ "file_path": "transformers/docs/source/en/quantization/torchao.md", "repo_id": "transformers", "token_count": 759 }
271
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Causal language modeling [[open-in-colab]] There are two types of language modeling, causal and masked. This guide illustrates causal language modeling. Causal language models are frequently used for text generation. You can use these models for creative applications like choosing your own text adventure or an intelligent coding assistant like Copilot or CodeParrot. <Youtube id="Vpjb1lu0MDk"/> Causal language modeling predicts the next token in a sequence of tokens, and the model can only attend to tokens on the left. This means the model cannot see future tokens. GPT-2 is an example of a causal language model. This guide will show you how to: 1. Finetune [DistilGPT2](https://huggingface.co/distilbert/distilgpt2) on the [r/askscience](https://www.reddit.com/r/askscience/) subset of the [ELI5](https://huggingface.co/datasets/eli5) dataset. 2. Use your finetuned model for inference. <Tip> To see all architectures and checkpoints compatible with this task, we recommend checking the [task-page](https://huggingface.co/tasks/text-generation) </Tip> Before you begin, make sure you have all the necessary libraries installed: ```bash pip install transformers datasets evaluate ``` We encourage you to log in to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to log in: ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` ## Load ELI5 dataset Start by loading the first 5000 examples from the [ELI5-Category](https://huggingface.co/datasets/eli5_category) dataset with the 🀗 Datasets library. This'll give you a chance to experiment and make sure everything works before spending more time training on the full dataset. ```py >>> from datasets import load_dataset >>> eli5 = load_dataset("eli5_category", split="train[:5000]") ``` Split the dataset's `train` split into a train and test set with the [`~datasets.Dataset.train_test_split`] method: ```py >>> eli5 = eli5.train_test_split(test_size=0.2) ``` Then take a look at an example: ```py >>> eli5["train"][0] {'q_id': '7h191n', 'title': 'What does the tax bill that was passed today mean? How will it affect Americans in each tax bracket?', 'selftext': '', 'category': 'Economics', 'subreddit': 'explainlikeimfive', 'answers': {'a_id': ['dqnds8l', 'dqnd1jl', 'dqng3i1', 'dqnku5x'], 'text': ["The tax bill is 500 pages long and there were a lot of changes still going on right to the end. It's not just an adjustment to the income tax brackets, it's a whole bunch of changes. As such there is no good answer to your question. The big take aways are: - Big reduction in corporate income tax rate will make large companies very happy. - Pass through rate change will make certain styles of business (law firms, hedge funds) extremely happy - Income tax changes are moderate, and are set to expire (though it's the kind of thing that might just always get re-applied without being made permanent) - People in high tax states (California, New York) lose out, and many of them will end up with their taxes raised.", 'None yet. It has to be reconciled with a vastly different house bill and then passed again.', 'Also: does this apply to 2017 taxes? Or does it start with 2018 taxes?', 'This article explains both the House and senate bills, including the proposed changes to your income taxes based on your income level. URL_0'], 'score': [21, 19, 5, 3], 'text_urls': [[], [], [], ['https://www.investopedia.com/news/trumps-tax-reform-what-can-be-done/']]}, 'title_urls': ['url'], 'selftext_urls': ['url']} ``` While this may look like a lot, you're only really interested in the `text` field. What's cool about language modeling tasks is you don't need labels (also known as an unsupervised task) because the next word *is* the label. ## Preprocess <Youtube id="ma1TrR7gE7I"/> The next step is to load a DistilGPT2 tokenizer to process the `text` subfield: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilgpt2") ``` You'll notice from the example above, the `text` field is actually nested inside `answers`. This means you'll need to extract the `text` subfield from its nested structure with the [`flatten`](https://huggingface.co/docs/datasets/process#flatten) method: ```py >>> eli5 = eli5.flatten() >>> eli5["train"][0] {'q_id': '7h191n', 'title': 'What does the tax bill that was passed today mean? How will it affect Americans in each tax bracket?', 'selftext': '', 'category': 'Economics', 'subreddit': 'explainlikeimfive', 'answers.a_id': ['dqnds8l', 'dqnd1jl', 'dqng3i1', 'dqnku5x'], 'answers.text': ["The tax bill is 500 pages long and there were a lot of changes still going on right to the end. It's not just an adjustment to the income tax brackets, it's a whole bunch of changes. As such there is no good answer to your question. The big take aways are: - Big reduction in corporate income tax rate will make large companies very happy. - Pass through rate change will make certain styles of business (law firms, hedge funds) extremely happy - Income tax changes are moderate, and are set to expire (though it's the kind of thing that might just always get re-applied without being made permanent) - People in high tax states (California, New York) lose out, and many of them will end up with their taxes raised.", 'None yet. It has to be reconciled with a vastly different house bill and then passed again.', 'Also: does this apply to 2017 taxes? Or does it start with 2018 taxes?', 'This article explains both the House and senate bills, including the proposed changes to your income taxes based on your income level. URL_0'], 'answers.score': [21, 19, 5, 3], 'answers.text_urls': [[], [], [], ['https://www.investopedia.com/news/trumps-tax-reform-what-can-be-done/']], 'title_urls': ['url'], 'selftext_urls': ['url']} ``` Each subfield is now a separate column as indicated by the `answers` prefix, and the `text` field is a list now. Instead of tokenizing each sentence separately, convert the list to a string so you can jointly tokenize them. Here is a first preprocessing function to join the list of strings for each example and tokenize the result: ```py >>> def preprocess_function(examples): ... return tokenizer([" ".join(x) for x in examples["answers.text"]]) ``` To apply this preprocessing function over the entire dataset, use the 🀗 Datasets [`~datasets.Dataset.map`] method. You can speed up the `map` function by setting `batched=True` to process multiple elements of the dataset at once, and increasing the number of processes with `num_proc`. Remove any columns you don't need: ```py >>> tokenized_eli5 = eli5.map( ... preprocess_function, ... batched=True, ... num_proc=4, ... remove_columns=eli5["train"].column_names, ... ) ``` This dataset contains the token sequences, but some of these are longer than the maximum input length for the model. You can now use a second preprocessing function to - concatenate all the sequences - split the concatenated sequences into shorter chunks defined by `block_size`, which should be both shorter than the maximum input length and short enough for your GPU RAM. ```py >>> block_size = 128 >>> def group_texts(examples): ... # Concatenate all texts. ... concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()} ... total_length = len(concatenated_examples[list(examples.keys())[0]]) ... # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can ... # customize this part to your needs. ... if total_length >= block_size: ... total_length = (total_length // block_size) * block_size ... # Split by chunks of block_size. ... result = { ... k: [t[i : i + block_size] for i in range(0, total_length, block_size)] ... for k, t in concatenated_examples.items() ... } ... result["labels"] = result["input_ids"].copy() ... return result ``` Apply the `group_texts` function over the entire dataset: ```py >>> lm_dataset = tokenized_eli5.map(group_texts, batched=True, num_proc=4) ``` Now create a batch of examples using [`DataCollatorForLanguageModeling`]. It's more efficient to *dynamically pad* the sentences to the longest length in a batch during collation, instead of padding the whole dataset to the maximum length. <frameworkcontent> <pt> Use the end-of-sequence token as the padding token and set `mlm=False`. This will use the inputs as labels shifted to the right by one element: ```py >>> from transformers import DataCollatorForLanguageModeling >>> tokenizer.pad_token = tokenizer.eos_token >>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) ``` </pt> <tf> Use the end-of-sequence token as the padding token and set `mlm=False`. This will use the inputs as labels shifted to the right by one element: ```py >>> from transformers import DataCollatorForLanguageModeling >>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False, return_tensors="tf") ``` </tf> </frameworkcontent> ## Train <frameworkcontent> <pt> <Tip> If you aren't familiar with finetuning a model with the [`Trainer`], take a look at the [basic tutorial](../training#train-with-pytorch-trainer)! </Tip> You're ready to start training your model now! Load DistilGPT2 with [`AutoModelForCausalLM`]: ```py >>> from transformers import AutoModelForCausalLM, TrainingArguments, Trainer >>> model = AutoModelForCausalLM.from_pretrained("distilbert/distilgpt2") ``` At this point, only three steps remain: 1. Define your training hyperparameters in [`TrainingArguments`]. The only required parameter is `output_dir` which specifies where to save your model. You'll push this model to the Hub by setting `push_to_hub=True` (you need to be signed in to Hugging Face to upload your model). 2. Pass the training arguments to [`Trainer`] along with the model, datasets, and data collator. 3. Call [`~Trainer.train`] to finetune your model. ```py >>> training_args = TrainingArguments( ... output_dir="my_awesome_eli5_clm-model", ... eval_strategy="epoch", ... learning_rate=2e-5, ... weight_decay=0.01, ... push_to_hub=True, ... ) >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=lm_dataset["train"], ... eval_dataset=lm_dataset["test"], ... data_collator=data_collator, ... ) >>> trainer.train() ``` Once training is completed, use the [`~transformers.Trainer.evaluate`] method to evaluate your model and get its perplexity: ```py >>> import math >>> eval_results = trainer.evaluate() >>> print(f"Perplexity: {math.exp(eval_results['eval_loss']):.2f}") Perplexity: 49.61 ``` Then share your model to the Hub with the [`~transformers.Trainer.push_to_hub`] method so everyone can use your model: ```py >>> trainer.push_to_hub() ``` </pt> <tf> <Tip> If you aren't familiar with finetuning a model with Keras, take a look at the [basic tutorial](../training#train-a-tensorflow-model-with-keras)! </Tip> To finetune a model in TensorFlow, start by setting up an optimizer function, learning rate schedule, and some training hyperparameters: ```py >>> from transformers import create_optimizer, AdamWeightDecay >>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01) ``` Then you can load DistilGPT2 with [`TFAutoModelForCausalLM`]: ```py >>> from transformers import TFAutoModelForCausalLM >>> model = TFAutoModelForCausalLM.from_pretrained("distilbert/distilgpt2") ``` Convert your datasets to the `tf.data.Dataset` format with [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]: ```py >>> tf_train_set = model.prepare_tf_dataset( ... lm_dataset["train"], ... shuffle=True, ... batch_size=16, ... collate_fn=data_collator, ... ) >>> tf_test_set = model.prepare_tf_dataset( ... lm_dataset["test"], ... shuffle=False, ... batch_size=16, ... collate_fn=data_collator, ... ) ``` Configure the model for training with [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). Note that Transformers models all have a default task-relevant loss function, so you don't need to specify one unless you want to: ```py >>> import tensorflow as tf >>> model.compile(optimizer=optimizer) # No loss argument! ``` This can be done by specifying where to push your model and tokenizer in the [`~transformers.PushToHubCallback`]: ```py >>> from transformers.keras_callbacks import PushToHubCallback >>> callback = PushToHubCallback( ... output_dir="my_awesome_eli5_clm-model", ... tokenizer=tokenizer, ... ) ``` Finally, you're ready to start training your model! Call [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) with your training and validation datasets, the number of epochs, and your callback to finetune the model: ```py >>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=[callback]) ``` Once training is completed, your model is automatically uploaded to the Hub so everyone can use it! </tf> </frameworkcontent> <Tip> For a more in-depth example of how to finetune a model for causal language modeling, take a look at the corresponding [PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb) or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb). </Tip> ## Inference Great, now that you've finetuned a model, you can use it for inference! Come up with a prompt you'd like to generate text from: ```py >>> prompt = "Somatic hypermutation allows the immune system to" ``` The simplest way to try out your finetuned model for inference is to use it in a [`pipeline`]. Instantiate a `pipeline` for text generation with your model, and pass your text to it: ```py >>> from transformers import pipeline >>> generator = pipeline("text-generation", model="username/my_awesome_eli5_clm-model") >>> generator(prompt) [{'generated_text': "Somatic hypermutation allows the immune system to be able to effectively reverse the damage caused by an infection.\n\n\nThe damage caused by an infection is caused by the immune system's ability to perform its own self-correcting tasks."}] ``` <frameworkcontent> <pt> Tokenize the text and return the `input_ids` as PyTorch tensors: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("username/my_awesome_eli5_clm-model") >>> inputs = tokenizer(prompt, return_tensors="pt").input_ids ``` Use the [`~generation.GenerationMixin.generate`] method to generate text. For more details about the different text generation strategies and parameters for controlling generation, check out the [Text generation strategies](../generation_strategies) page. ```py >>> from transformers import AutoModelForCausalLM >>> model = AutoModelForCausalLM.from_pretrained("username/my_awesome_eli5_clm-model") >>> outputs = model.generate(inputs, max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95) ``` Decode the generated token ids back into text: ```py >>> tokenizer.batch_decode(outputs, skip_special_tokens=True) ["Somatic hypermutation allows the immune system to react to drugs with the ability to adapt to a different environmental situation. In other words, a system of 'hypermutation' can help the immune system to adapt to a different environmental situation or in some cases even a single life. In contrast, researchers at the University of Massachusetts-Boston have found that 'hypermutation' is much stronger in mice than in humans but can be found in humans, and that it's not completely unknown to the immune system. A study on how the immune system"] ``` </pt> <tf> Tokenize the text and return the `input_ids` as TensorFlow tensors: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("username/my_awesome_eli5_clm-model") >>> inputs = tokenizer(prompt, return_tensors="tf").input_ids ``` Use the [`~transformers.generation_tf_utils.TFGenerationMixin.generate`] method to create the summarization. For more details about the different text generation strategies and parameters for controlling generation, check out the [Text generation strategies](../generation_strategies) page. ```py >>> from transformers import TFAutoModelForCausalLM >>> model = TFAutoModelForCausalLM.from_pretrained("username/my_awesome_eli5_clm-model") >>> outputs = model.generate(input_ids=inputs, max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95) ``` Decode the generated token ids back into text: ```py >>> tokenizer.batch_decode(outputs, skip_special_tokens=True) ['Somatic hypermutation allows the immune system to detect the presence of other viruses as they become more prevalent. Therefore, researchers have identified a high proportion of human viruses. The proportion of virus-associated viruses in our study increases with age. Therefore, we propose a simple algorithm to detect the presence of these new viruses in our samples as a sign of improved immunity. A first study based on this algorithm, which will be published in Science on Friday, aims to show that this finding could translate into the development of a better vaccine that is more effective for'] ``` </tf> </frameworkcontent>
transformers/docs/source/en/tasks/language_modeling.md/0
{ "file_path": "transformers/docs/source/en/tasks/language_modeling.md", "repo_id": "transformers", "token_count": 5525 }
272
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Visual Question Answering [[open-in-colab]] Visual Question Answering (VQA) is the task of answering open-ended questions based on an image. The input to models supporting this task is typically a combination of an image and a question, and the output is an answer expressed in natural language. Some noteworthy use case examples for VQA include: * Accessibility applications for visually impaired individuals. * Education: posing questions about visual materials presented in lectures or textbooks. VQA can also be utilized in interactive museum exhibits or historical sites. * Customer service and e-commerce: VQA can enhance user experience by letting users ask questions about products. * Image retrieval: VQA models can be used to retrieve images with specific characteristics. For example, the user can ask "Is there a dog?" to find all images with dogs from a set of images. In this guide you'll learn how to: - Fine-tune a classification VQA model, specifically [ViLT](../model_doc/vilt), on the [`Graphcore/vqa` dataset](https://huggingface.co/datasets/Graphcore/vqa). - Use your fine-tuned ViLT for inference. - Run zero-shot VQA inference with a generative model, like BLIP-2. ## Fine-tuning ViLT ViLT model incorporates text embeddings into a Vision Transformer (ViT), allowing it to have a minimal design for Vision-and-Language Pre-training (VLP). This model can be used for several downstream tasks. For the VQA task, a classifier head is placed on top (a linear layer on top of the final hidden state of the `[CLS]` token) and randomly initialized. Visual Question Answering is thus treated as a **classification problem**. More recent models, such as BLIP, BLIP-2, and InstructBLIP, treat VQA as a generative task. Later in this guide we illustrate how to use them for zero-shot VQA inference. Before you begin, make sure you have all the necessary libraries installed. ```bash pip install -q transformers datasets ``` We encourage you to share your model with the community. Log in to your Hugging Face account to upload it to the 🀗 Hub. When prompted, enter your token to log in: ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` Let's define the model checkpoint as a global variable. ```py >>> model_checkpoint = "dandelin/vilt-b32-mlm" ``` ## Load the data For illustration purposes, in this guide we use a very small sample of the annotated visual question answering `Graphcore/vqa` dataset. You can find the full dataset on [🀗 Hub](https://huggingface.co/datasets/Graphcore/vqa). As an alternative to the [`Graphcore/vqa` dataset](https://huggingface.co/datasets/Graphcore/vqa), you can download the same data manually from the official [VQA dataset page](https://visualqa.org/download.html). If you prefer to follow the tutorial with your custom data, check out how to [Create an image dataset](https://huggingface.co/docs/datasets/image_dataset#loading-script) guide in the 🀗 Datasets documentation. Let's load the first 200 examples from the validation split and explore the dataset's features: ```python >>> from datasets import load_dataset >>> dataset = load_dataset("Graphcore/vqa", split="validation[:200]") >>> dataset Dataset({ features: ['question', 'question_type', 'question_id', 'image_id', 'answer_type', 'label'], num_rows: 200 }) ``` Let's take a look at an example to understand the dataset's features: ```py >>> dataset[0] {'question': 'Where is he looking?', 'question_type': 'none of the above', 'question_id': 262148000, 'image_id': '/root/.cache/huggingface/datasets/downloads/extracted/ca733e0e000fb2d7a09fbcc94dbfe7b5a30750681d0e965f8e0a23b1c2f98c75/val2014/COCO_val2014_000000262148.jpg', 'answer_type': 'other', 'label': {'ids': ['at table', 'down', 'skateboard', 'table'], 'weights': [0.30000001192092896, 1.0, 0.30000001192092896, 0.30000001192092896]}} ``` The features relevant to the task include: * `question`: the question to be answered from the image * `image_id`: the path to the image the question refers to * `label`: the annotations We can remove the rest of the features as they won't be necessary: ```py >>> dataset = dataset.remove_columns(['question_type', 'question_id', 'answer_type']) ``` As you can see, the `label` feature contains several answers to the same question (called `ids` here) collected by different human annotators. This is because the answer to a question can be subjective. In this case, the question is "where is he looking?". Some people annotated this with "down", others with "at table", another one with "skateboard", etc. Take a look at the image and consider which answer would you give: ```python >>> from PIL import Image >>> image = Image.open(dataset[0]['image_id']) >>> image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/vqa-example.png" alt="VQA Image Example"/> </div> Due to the questions' and answers' ambiguity, datasets like this are treated as a multi-label classification problem (as multiple answers are possibly valid). Moreover, rather than just creating a one-hot encoded vector, one creates a soft encoding, based on the number of times a certain answer appeared in the annotations. For instance, in the example above, because the answer "down" is selected way more often than other answers, it has a score (called `weight` in the dataset) of 1.0, and the rest of the answers have scores < 1.0. To later instantiate the model with an appropriate classification head, let's create two dictionaries: one that maps the label name to an integer and vice versa: ```py >>> import itertools >>> labels = [item['ids'] for item in dataset['label']] >>> flattened_labels = list(itertools.chain(*labels)) >>> unique_labels = list(set(flattened_labels)) >>> label2id = {label: idx for idx, label in enumerate(unique_labels)} >>> id2label = {idx: label for label, idx in label2id.items()} ``` Now that we have the mappings, we can replace the string answers with their ids, and flatten the dataset for a more convenient further preprocessing. ```python >>> def replace_ids(inputs): ... inputs["label"]["ids"] = [label2id[x] for x in inputs["label"]["ids"]] ... return inputs >>> dataset = dataset.map(replace_ids) >>> flat_dataset = dataset.flatten() >>> flat_dataset.features {'question': Value(dtype='string', id=None), 'image_id': Value(dtype='string', id=None), 'label.ids': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None), 'label.weights': Sequence(feature=Value(dtype='float64', id=None), length=-1, id=None)} ``` ## Preprocessing data The next step is to load a ViLT processor to prepare the image and text data for the model. [`ViltProcessor`] wraps a BERT tokenizer and ViLT image processor into a convenient single processor: ```py >>> from transformers import ViltProcessor >>> processor = ViltProcessor.from_pretrained(model_checkpoint) ``` To preprocess the data we need to encode the images and questions using the [`ViltProcessor`]. The processor will use the [`BertTokenizerFast`] to tokenize the text and create `input_ids`, `attention_mask` and `token_type_ids` for the text data. As for images, the processor will leverage [`ViltImageProcessor`] to resize and normalize the image, and create `pixel_values` and `pixel_mask`. All these preprocessing steps are done under the hood, we only need to call the `processor`. However, we still need to prepare the target labels. In this representation, each element corresponds to a possible answer (label). For correct answers, the element holds their respective score (weight), while the remaining elements are set to zero. The following function applies the `processor` to the images and questions and formats the labels as described above: ```py >>> import torch >>> def preprocess_data(examples): ... image_paths = examples['image_id'] ... images = [Image.open(image_path) for image_path in image_paths] ... texts = examples['question'] ... encoding = processor(images, texts, padding="max_length", truncation=True, return_tensors="pt") ... for k, v in encoding.items(): ... encoding[k] = v.squeeze() ... targets = [] ... for labels, scores in zip(examples['label.ids'], examples['label.weights']): ... target = torch.zeros(len(id2label)) ... for label, score in zip(labels, scores): ... target[label] = score ... targets.append(target) ... encoding["labels"] = targets ... return encoding ``` To apply the preprocessing function over the entire dataset, use 🀗 Datasets [`~datasets.map`] function. You can speed up `map` by setting `batched=True` to process multiple elements of the dataset at once. At this point, feel free to remove the columns you don't need. ```py >>> processed_dataset = flat_dataset.map(preprocess_data, batched=True, remove_columns=['question','question_type', 'question_id', 'image_id', 'answer_type', 'label.ids', 'label.weights']) >>> processed_dataset Dataset({ features: ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values', 'pixel_mask', 'labels'], num_rows: 200 }) ``` As a final step, create a batch of examples using [`DefaultDataCollator`]: ```py >>> from transformers import DefaultDataCollator >>> data_collator = DefaultDataCollator() ``` ## Train the model You’re ready to start training your model now! Load ViLT with [`ViltForQuestionAnswering`]. Specify the number of labels along with the label mappings: ```py >>> from transformers import ViltForQuestionAnswering >>> model = ViltForQuestionAnswering.from_pretrained(model_checkpoint, num_labels=len(id2label), id2label=id2label, label2id=label2id) ``` At this point, only three steps remain: 1. Define your training hyperparameters in [`TrainingArguments`]: ```py >>> from transformers import TrainingArguments >>> repo_id = "MariaK/vilt_finetuned_200" >>> training_args = TrainingArguments( ... output_dir=repo_id, ... per_device_train_batch_size=4, ... num_train_epochs=20, ... save_steps=200, ... logging_steps=50, ... learning_rate=5e-5, ... save_total_limit=2, ... remove_unused_columns=False, ... push_to_hub=True, ... ) ``` 2. Pass the training arguments to [`Trainer`] along with the model, dataset, processor, and data collator. ```py >>> from transformers import Trainer >>> trainer = Trainer( ... model=model, ... args=training_args, ... data_collator=data_collator, ... train_dataset=processed_dataset, ... tokenizer=processor, ... ) ``` 3. Call [`~Trainer.train`] to finetune your model. ```py >>> trainer.train() ``` Once training is completed, share your model to the Hub with the [`~Trainer.push_to_hub`] method to share your final model on the 🀗 Hub: ```py >>> trainer.push_to_hub() ``` ## Inference Now that you have fine-tuned a ViLT model, and uploaded it to the 🀗 Hub, you can use it for inference. The simplest way to try out your fine-tuned model for inference is to use it in a [`Pipeline`]. ```py >>> from transformers import pipeline >>> pipe = pipeline("visual-question-answering", model="MariaK/vilt_finetuned_200") ``` The model in this guide has only been trained on 200 examples, so don't expect a lot from it. Let's see if it at least learned something from the data and take the first example from the dataset to illustrate inference: ```py >>> example = dataset[0] >>> image = Image.open(example['image_id']) >>> question = example['question'] >>> print(question) >>> pipe(image, question, top_k=1) "Where is he looking?" [{'score': 0.5498199462890625, 'answer': 'down'}] ``` Even though not very confident, the model indeed has learned something. With more examples and longer training, you'll get far better results! You can also manually replicate the results of the pipeline if you'd like: 1. Take an image and a question, prepare them for the model using the processor from your model. 2. Forward the result or preprocessing through the model. 3. From the logits, get the most likely answer's id, and find the actual answer in the `id2label`. ```py >>> processor = ViltProcessor.from_pretrained("MariaK/vilt_finetuned_200") >>> image = Image.open(example['image_id']) >>> question = example['question'] >>> # prepare inputs >>> inputs = processor(image, question, return_tensors="pt") >>> model = ViltForQuestionAnswering.from_pretrained("MariaK/vilt_finetuned_200") >>> # forward pass >>> with torch.no_grad(): ... outputs = model(**inputs) >>> logits = outputs.logits >>> idx = logits.argmax(-1).item() >>> print("Predicted answer:", model.config.id2label[idx]) Predicted answer: down ``` ## Zero-shot VQA The previous model treated VQA as a classification task. Some recent models, such as BLIP, BLIP-2, and InstructBLIP approach VQA as a generative task. Let's take [BLIP-2](../model_doc/blip-2) as an example. It introduced a new visual-language pre-training paradigm in which any combination of pre-trained vision encoder and LLM can be used (learn more in the [BLIP-2 blog post](https://huggingface.co/blog/blip-2)). This enables achieving state-of-the-art results on multiple visual-language tasks including visual question answering. Let's illustrate how you can use this model for VQA. First, let's load the model. Here we'll explicitly send the model to a GPU, if available, which we didn't need to do earlier when training, as [`Trainer`] handles this automatically: ```py >>> from transformers import AutoProcessor, Blip2ForConditionalGeneration >>> import torch >>> processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b") >>> model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16) >>> device = "cuda" if torch.cuda.is_available() else "cpu" >>> model.to(device) ``` The model takes image and text as input, so let's use the exact same image/question pair from the first example in the VQA dataset: ```py >>> example = dataset[0] >>> image = Image.open(example['image_id']) >>> question = example['question'] ``` To use BLIP-2 for visual question answering task, the textual prompt has to follow a specific format: `Question: {} Answer:`. ```py >>> prompt = f"Question: {question} Answer:" ``` Now we need to preprocess the image/prompt with the model's processor, pass the processed input through the model, and decode the output: ```py >>> inputs = processor(image, text=prompt, return_tensors="pt").to(device, torch.float16) >>> generated_ids = model.generate(**inputs, max_new_tokens=10) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() >>> print(generated_text) "He is looking at the crowd" ``` As you can see, the model recognized the crowd, and the direction of the face (looking down), however, it seems to miss the fact the crowd is behind the skater. Still, in cases where acquiring human-annotated datasets is not feasible, this approach can quickly produce useful results.
transformers/docs/source/en/tasks/visual_question_answering.md/0
{ "file_path": "transformers/docs/source/en/tasks/visual_question_answering.md", "repo_id": "transformers", "token_count": 4862 }
273
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Mecanismos de atención La mayoría de los modelos transformers utilizan atención completa, en el sentido de que la matriz de atención es cuadrada. Esto puede ser un gran cuello de botella computacional cuando tienes textos largos. `Longformer` y `reformer` son modelos que intentan ser más eficientes y utilizan una versión dispersa de la matriz de atención para acelerar el entrenamiento. ## Atención LSH [Reformer](https://huggingface.co/docs/transformers/model_doc/reformer) utiliza atención LSH. En el softmax(QK^t), solo los elementos más grandes (en la dimensión softmax) de la matriz QK^t van a dar contribuciones útiles. Entonces, para cada consulta q en Q, podemos considerar solo las claves k en K que estén cerca de q. Se utiliza una función hash para determinar si q y k están cerca. La máscara de atención se modifica para enmascarar el token actual (excepto en la primera posición), porque dará una consulta y una clave iguales (entonces muy similares entre sí). Dado que el hash puede ser un poco aleatorio, en la práctica se utilizan varias funciones hash (determinadas por un parámetro n_rounds) y luego se promedian juntas. ## Atención local [Longformer](https://huggingface.co/docs/transformers/model_doc/longformer) utiliza atención local: a menudo, el contexto local (por ejemplo, ¿cuáles son los dos tokens a la izquierda y a la derecha?) es suficiente para tomar acción para un token dado. Además, apilando capas de atención que tienen una ventana pequeña, la última capa tendrá un campo receptivo mayor que solamente los tokens en la ventana, lo que les permite construir una representación de toda la oración. Algunos tokens de entrada preseleccionados también reciben atención global: para esos pocos tokens, la matriz de atención puede acceder a todos los tokens y este proceso es simétrico: todos los demás tokens tienen acceso a esos tokens específicos (además de los que están en su ventana local). Esto se muestra en la Figura 2d del artículo, el cual se puede apreciar un ejemplo de una máscara de atención: <div class="flex justify-center"> <img scale="50 %" align="center" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/local_attention_mask.png"/> </div> El uso de dichas matrices de atención con menos parámetros permite que el modelo tenga entradas con una longitud de secuencia mayor. ## Otros trucos ### Codificación posicional axial [Reformer](https://huggingface.co/docs/transformers/model_doc/reformer) utiliza codificación posicional axial: en los modelos transformers tradicionales, la codificación posicional E es una matriz de tamaño \\(l\\) por \\(d\\), donde \\(l\\) es la longitud de la secuencia y \\(d\\) es la dimensión del estado oculto. Si tienes textos muy extensos, esta matriz puede ser enorme y ocupar demasiado espacio en la GPU. Para aliviar eso, las codificaciones posicionales axiales consisten en factorizar esa gran matriz E en dos matrices más pequeñas E1 y E2, con dimensiones \\(l_{1} \times d_{1}\\) y \\(l_{2} \times d_{2}\\), tal que \\(l_{1} \times l_{2} = l\\) y \\(d_{1} + d_{2} = d\\) (con el producto de las longitudes, esto termina siendo mucho más pequeño). La incrustación (embedding) para el paso de tiempo \\(j\\) en E se obtiene concatenando las incrustaciones para el paso de tiempo \\(j \% l1\\) en E1 y \\(j // l1\\) en E2.
transformers/docs/source/es/attention.md/0
{ "file_path": "transformers/docs/source/es/attention.md", "repo_id": "transformers", "token_count": 1396 }
274
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Modelado de lenguaje El modelado de lenguaje predice palabras en un enunciado. Hay dos formas de modelado de lenguaje. <Youtube id="Vpjb1lu0MDk"/> El modelado de lenguaje causal predice el siguiente token en una secuencia de tokens, y el modelo solo puede considerar los tokens a la izquierda. <Youtube id="mqElG5QJWUg"/> El modelado de lenguaje por enmascaramiento predice un token enmascarado en una secuencia, y el modelo puede considerar los tokens bidireccionalmente. Esta guía te mostrará cómo realizar fine-tuning [DistilGPT2](https://huggingface.co/distilbert/distilgpt2) para modelos de lenguaje causales y [DistilRoBERTa](https://huggingface.co/distilbert/distilroberta-base) para modelos de lenguaje por enmascaramiento en el [r/askscience](https://www.reddit.com/r/askscience/) subdataset [ELI5](https://huggingface.co/datasets/eli5). <Tip> Mira la [página de tarea](https://huggingface.co/tasks/text-generation) para generación de texto y la [página de tarea](https://huggingface.co/tasks/fill-mask) para modelos de lenguajes por enmascaramiento para obtener más información sobre los modelos, datasets, y métricas asociadas. </Tip> ## Carga el dataset ELI5 Carga solo los primeros 5000 registros desde la biblioteca 🀗 Datasets, dado que es bastante grande: ```py >>> from datasets import load_dataset >>> eli5 = load_dataset("eli5", split="train_asks[:5000]") ``` Divide este dataset en subdatasets para el entrenamiento y el test: ```py eli5 = eli5.train_test_split(test_size=0.2) ``` Luego observa un ejemplo: ```py >>> eli5["train"][0] {'answers': {'a_id': ['c3d1aib', 'c3d4lya'], 'score': [6, 3], 'text': ["The velocity needed to remain in orbit is equal to the square root of Newton's constant times the mass of earth divided by the distance from the center of the earth. I don't know the altitude of that specific mission, but they're usually around 300 km. That means he's going 7-8 km/s.\n\nIn space there are no other forces acting on either the shuttle or the guy, so they stay in the same position relative to each other. If he were to become unable to return to the ship, he would presumably run out of oxygen, or slowly fall into the atmosphere and burn up.", "Hope you don't mind me asking another question, but why aren't there any stars visible in this photo?"]}, 'answers_urls': {'url': []}, 'document': '', 'q_id': 'nyxfp', 'selftext': '_URL_0_\n\nThis was on the front page earlier and I have a few questions about it. Is it possible to calculate how fast the astronaut would be orbiting the earth? Also how does he stay close to the shuttle so that he can return safely, i.e is he orbiting at the same speed and can therefore stay next to it? And finally if his propulsion system failed, would he eventually re-enter the atmosphere and presumably die?', 'selftext_urls': {'url': ['http://apod.nasa.gov/apod/image/1201/freeflyer_nasa_3000.jpg']}, 'subreddit': 'askscience', 'title': 'Few questions about this space walk photograph.', 'title_urls': {'url': []}} ``` Observa que `text` es un subcampo anidado dentro del diccionario `answers`. Cuando preproceses el dataset, deberás extraer el subcampo `text` en una columna aparte. ## Preprocesamiento <Youtube id="ma1TrR7gE7I"/> Para modelados de lenguaje causales carga el tokenizador DistilGPT2 para procesar el subcampo `text`: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilgpt2") ``` <Youtube id="8PmhEIXhBvI"/> Para modelados de lenguaje por enmascaramiento carga el tokenizador DistilRoBERTa, en lugar de DistilGPT2: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilroberta-base") ``` Extrae el subcampo `text` desde su estructura anidado con el método [`flatten`](https://huggingface.co/docs/datasets/process#flatten): ```py >>> eli5 = eli5.flatten() >>> eli5["train"][0] {'answers.a_id': ['c3d1aib', 'c3d4lya'], 'answers.score': [6, 3], 'answers.text': ["The velocity needed to remain in orbit is equal to the square root of Newton's constant times the mass of earth divided by the distance from the center of the earth. I don't know the altitude of that specific mission, but they're usually around 300 km. That means he's going 7-8 km/s.\n\nIn space there are no other forces acting on either the shuttle or the guy, so they stay in the same position relative to each other. If he were to become unable to return to the ship, he would presumably run out of oxygen, or slowly fall into the atmosphere and burn up.", "Hope you don't mind me asking another question, but why aren't there any stars visible in this photo?"], 'answers_urls.url': [], 'document': '', 'q_id': 'nyxfp', 'selftext': '_URL_0_\n\nThis was on the front page earlier and I have a few questions about it. Is it possible to calculate how fast the astronaut would be orbiting the earth? Also how does he stay close to the shuttle so that he can return safely, i.e is he orbiting at the same speed and can therefore stay next to it? And finally if his propulsion system failed, would he eventually re-enter the atmosphere and presumably die?', 'selftext_urls.url': ['http://apod.nasa.gov/apod/image/1201/freeflyer_nasa_3000.jpg'], 'subreddit': 'askscience', 'title': 'Few questions about this space walk photograph.', 'title_urls.url': []} ``` Cada subcampo es ahora una columna separada, como lo indica el prefijo `answers`. Observa que `answers.text` es una lista. En lugar de tokenizar cada enunciado por separado, convierte la lista en un string para tokenizarlos conjuntamente. Así es como puedes crear una función de preprocesamiento para convertir la lista en una cadena y truncar las secuencias para que no superen la longitud máxima de input de DistilGPT2: ```py >>> def preprocess_function(examples): ... return tokenizer([" ".join(x) for x in examples["answers.text"]], truncation=True) ``` Usa de 🀗 Datasets la función [`map`](https://huggingface.co/docs/datasets/process#map) para aplicar la función de preprocesamiento sobre el dataset en su totalidad. Puedes acelerar la función `map` configurando el argumento `batched=True` para procesar múltiples elementos del dataset a la vez y aumentar la cantidad de procesos con `num_proc`. Elimina las columnas que no necesitas: ```py >>> tokenized_eli5 = eli5.map( ... preprocess_function, ... batched=True, ... num_proc=4, ... remove_columns=eli5["train"].column_names, ... ) ``` Ahora necesitas una segunda función de preprocesamiento para capturar el texto truncado de cualquier ejemplo demasiado largo para evitar cualquier pérdida de información. Esta función de preprocesamiento debería: - Concatenar todo el texto. - Dividir el texto concatenado en trozos más pequeños definidos por un `block_size`. ```py >>> block_size = 128 >>> def group_texts(examples): ... concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()} ... total_length = len(concatenated_examples[list(examples.keys())[0]]) ... total_length = (total_length // block_size) * block_size ... result = { ... k: [t[i : i + block_size] for i in range(0, total_length, block_size)] ... for k, t in concatenated_examples.items() ... } ... result["labels"] = result["input_ids"].copy() ... return result ``` Aplica la función `group_texts` sobre todo el dataset: ```py >>> lm_dataset = tokenized_eli5.map(group_texts, batched=True, num_proc=4) ``` Para modelados de lenguaje causales, usa [`DataCollatorForLanguageModeling`] para crear un lote de ejemplos. Esto también *rellenará dinámicamente* tu texto a la dimensión del elemento más largo del lote para que de esta manera tengan largo uniforme. Si bien es posible rellenar tu texto en la función `tokenizer` mediante el argumento `padding=True`, el rellenado dinámico es más eficiente. <frameworkcontent> <pt> Puedes usar el token de final de secuencia como el token de relleno y asignar `mlm=False`. Esto usará los inputs como etiquetas movidas un elemento hacia la derecha: ```py >>> from transformers import DataCollatorForLanguageModeling >>> tokenizer.pad_token = tokenizer.eos_token >>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) ``` Para modelados de lenguaje por enmascaramiento usa el mismo [`DataCollatorForLanguageModeling`] excepto que deberás especificar `mlm_probability` para enmascarar tokens aleatoriamente cada vez que iteras sobre los datos. ```py >>> from transformers import DataCollatorForLanguageModeling >>> tokenizer.pad_token = tokenizer.eos_token >>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=0.15) ``` </pt> <tf> Puedes usar el token de final de secuencia como el token de relleno y asignar `mlm=False`. Esto usará los inputs como etiquetas movidas un elemento hacia la derecha: ```py >>> from transformers import DataCollatorForLanguageModeling >>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False, return_tensors="tf") ``` Para modelados de lenguajes por enmascaramiento usa el mismo [`DataCollatorForLanguageModeling`] excepto que deberás especificar `mlm_probability` para enmascarar tokens aleatoriamente cada vez que iteras sobre los datos. ```py >>> from transformers import DataCollatorForLanguageModeling >>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False, return_tensors="tf") ``` </tf> </frameworkcontent> ## Modelado de lenguaje causal El modelado de lenguaje causal es frecuentemente utilizado para generación de texto. Esta sección te muestra cómo realizar fine-tuning a [DistilGPT2](https://huggingface.co/distilbert/distilgpt2) para generar nuevo texto. ### Entrenamiento <frameworkcontent> <pt> Carga DistilGPT2 con [`AutoModelForCausalLM`]: ```py >>> from transformers import AutoModelForCausalLM, TrainingArguments, Trainer >>> model = AutoModelForCausalLM.from_pretrained("distilbert/distilgpt2") ``` <Tip> Si no estás familiarizado con el proceso de realizar fine-tuning sobre un modelo con [`Trainer`], considera el tutorial básico [aquí](../training#finetune-with-trainer)! </Tip> A este punto, solo faltan tres pasos: 1. Definir tus hiperparámetros de entrenamiento en [`TrainingArguments`]. 2. Pasarle los argumentos de entrenamiento a [`Trainer`] junto con el modelo, dataset, y el data collator. 3. Realiza la llamada [`~Trainer.train`] para realizar el fine-tuning sobre tu modelo. ```py >>> training_args = TrainingArguments( ... output_dir="./results", ... eval_strategy="epoch", ... learning_rate=2e-5, ... weight_decay=0.01, ... ) >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=lm_dataset["train"], ... eval_dataset=lm_dataset["test"], ... data_collator=data_collator, ... ) >>> trainer.train() ``` </pt> <tf> Para realizar el fine-tuning de un modelo en TensorFlow, comienza por convertir tus datasets al formato `tf.data.Dataset` con [`to_tf_dataset`](https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.to_tf_dataset). Especifica los inputs y etiquetas en `columns`, ya sea para mezclar el dataset, tamaño de lote, y el data collator: ```py >>> tf_train_set = lm_dataset["train"].to_tf_dataset( ... columns=["attention_mask", "input_ids", "labels"], ... dummy_labels=True, ... shuffle=True, ... batch_size=16, ... collate_fn=data_collator, ... ) >>> tf_test_set = lm_dataset["test"].to_tf_dataset( ... columns=["attention_mask", "input_ids", "labels"], ... dummy_labels=True, ... shuffle=False, ... batch_size=16, ... collate_fn=data_collator, ... ) ``` <Tip> Si no estás familiarizado con realizar fine-tuning de tus modelos con Keras, considera el tutorial básico [aquí](training#finetune-with-keras)! </Tip> Crea la función optimizadora, la tasa de aprendizaje, y algunos hiperparámetros de entrenamiento: ```py >>> from transformers import create_optimizer, AdamWeightDecay >>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01) ``` Carga DistilGPT2 con [`TFAutoModelForCausalLM`]: ```py >>> from transformers import TFAutoModelForCausalLM >>> model = TFAutoModelForCausalLM.from_pretrained("distilbert/distilgpt2") ``` Configura el modelo para entrenamiento con [`compile`](https://keras.io/api/models/model_training_apis/#compile-method): ```py >>> import tensorflow as tf >>> model.compile(optimizer=optimizer) ``` Llama a [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) para realizar el fine-tuning del modelo: ```py >>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3) ``` </tf> </frameworkcontent> ## Modelado de lenguaje por enmascaramiento El modelado de lenguaje por enmascaramiento es también conocido como una tarea de rellenar la máscara, pues predice un token enmascarado dada una secuencia. Los modelos de lenguaje por enmascaramiento requieren una buena comprensión del contexto de una secuencia entera, en lugar de solo el contexto a la izquierda. Esta sección te enseña como realizar el fine-tuning de [DistilRoBERTa](https://huggingface.co/distilbert/distilroberta-base) para predecir una palabra enmascarada. ### Entrenamiento <frameworkcontent> <pt> Carga DistilRoBERTa con [`AutoModelForMaskedlM`]: ```py >>> from transformers import AutoModelForMaskedLM >>> model = AutoModelForMaskedLM.from_pretrained("distilbert/distilroberta-base") ``` <Tip> Si no estás familiarizado con el proceso de realizar fine-tuning sobre un modelo con [`Trainer`], considera el tutorial básico [aquí](../training#finetune-with-trainer)! </Tip> A este punto, solo faltan tres pasos: 1. Definir tus hiperparámetros de entrenamiento en [`TrainingArguments`]. 2. Pasarle los argumentos de entrenamiento a [`Trainer`] junto con el modelo, dataset, y el data collator. 3. Realiza la llamada [`~Trainer.train`] para realizar el fine-tuning de tu modelo. ```py >>> training_args = TrainingArguments( ... output_dir="./results", ... eval_strategy="epoch", ... learning_rate=2e-5, ... num_train_epochs=3, ... weight_decay=0.01, ... ) >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=lm_dataset["train"], ... eval_dataset=lm_dataset["test"], ... data_collator=data_collator, ... ) >>> trainer.train() ``` </pt> <tf> Para realizar el fine-tuning de un modelo en TensorFlow, comienza por convertir tus datasets al formato `tf.data.Dataset` con [`to_tf_dataset`](https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.to_tf_dataset). Especifica los inputs y etiquetas en `columns`, ya sea para mezclar el dataset, tamaño de lote, y el data collator: ```py >>> tf_train_set = lm_dataset["train"].to_tf_dataset( ... columns=["attention_mask", "input_ids", "labels"], ... dummy_labels=True, ... shuffle=True, ... batch_size=16, ... collate_fn=data_collator, ... ) >>> tf_test_set = lm_dataset["test"].to_tf_dataset( ... columns=["attention_mask", "input_ids", "labels"], ... dummy_labels=True, ... shuffle=False, ... batch_size=16, ... collate_fn=data_collator, ... ) ``` <Tip> Si no estás familiarizado con realizar fine-tuning de tus modelos con Keras, considera el tutorial básico [aquí](training#finetune-with-keras)! </Tip> Crea la función optimizadora, la tasa de aprendizaje, y algunos hiperparámetros de entrenamiento: ```py >>> from transformers import create_optimizer, AdamWeightDecay >>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01) ``` Carga DistilRoBERTa con [`TFAutoModelForMaskedLM`]: ```py >>> from transformers import TFAutoModelForMaskedLM >>> model = TFAutoModelForCausalLM.from_pretrained("distilbert/distilroberta-base") ``` Configura el modelo para entrenamiento con [`compile`](https://keras.io/api/models/model_training_apis/#compile-method): ```py >>> import tensorflow as tf >>> model.compile(optimizer=optimizer) ``` Llama a [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) para realizar el fine-tuning del modelo: ```py >>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3) ``` </tf> </frameworkcontent> <Tip> Para un ejemplo más profundo sobre cómo realizar el fine-tuning sobre un modelo de lenguaje causal, considera [PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb) o [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb). </Tip>
transformers/docs/source/es/tasks/language_modeling.md/0
{ "file_path": "transformers/docs/source/es/tasks/language_modeling.md", "repo_id": "transformers", "token_count": 6287 }
275
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Entraîner avec un script En plus des [notebooks](./notebooks) de 🀗 Transformers, il existe également des exemples de scripts démontrant comment entraîner un modÚle pour une tâche avec [PyTorch](https://github.com/huggingface/transformers/tree/main/examples/pytorch), [TensorFlow](https://github.com/huggingface/transformers/tree/main/examples/tensorflow) ou [JAX/Flax](https://github.com/huggingface/transformers/tree/main/examples/flax). Vous trouverez également des scripts que nous avons utilisé dans nos [projets de recherche](https://github.com/huggingface/transformers/tree/main/examples/research_projects) et des [exemples "legacy"](https://github.com/huggingface/transformers/tree/main/examples/legacy) qui sont des contributions de la communauté. Ces scripts ne sont pas activement maintenus et nécessitent une version spécifique de 🀗 Transformers qui sera probablement incompatible avec la derniÚre version de la librairie. Les exemples de scripts ne sont pas censés fonctionner immédiatement pour chaque problÚme, et il se peut que vous ayez besoin d'adapter le script au problÚme que vous essayez de résoudre. Pour vous aider dans cette tâche, la plupart des scripts exposent entiÚrement la maniÚre dont les données sont prétraitées, vous permettant de les modifier selon vos besoins. Pour toute fonctionnalité que vous souhaitez implémenter dans un script d'exemple, veuillez en discuter sur le [forum](https://discuss.huggingface.co/) ou dans une [issue](https://github.com/huggingface/transformers/issues) avant de soumettre une Pull Request. Bien que nous acceptions les corrections de bugs, il est peu probable que nous fusionnions une Pull Request (opération "merge" dans Git) ajoutant plus de fonctionnalités au détriment de la lisibilité. Ce guide vous montrera comment exécuter un script d'entraînement de résumé en exemple avec [PyTorch](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization) et [TensorFlow](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/summarization). Tous les exemples sont censés fonctionner avec les deux frameworks, sauf indication contraire. ## Configuration Pour exécuter avec succÚs la derniÚre version des scripts d'exemple, vous devez **installer 🀗 Transformers à partir du code source** dans un nouvel environnement virtuel : ```bash git clone https://github.com/huggingface/transformers cd transformers pip install . ``` Pour les versions plus anciennes des exemples de scripts, cliquez sur le bouton ci-dessous : <details> <summary>Exemples pour les anciennes versions de Transformers 🀗</summary> <ul> <li><a href="https://github.com/huggingface/transformers/tree/v4.5.1/examples">v4.5.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.4.2/examples">v4.4.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.3.3/examples">v4.3.3</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.2.2/examples">v4.2.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.1.1/examples">v4.1.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.0.1/examples">v4.0.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.5.1/examples">v3.5.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.4.0/examples">v3.4.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.3.1/examples">v3.3.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.2.0/examples">v3.2.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.1.0/examples">v3.1.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.0.2/examples">v3.0.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.11.0/examples">v2.11.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.10.0/examples">v2.10.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.9.1/examples">v2.9.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.8.0/examples">v2.8.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.7.0/examples">v2.7.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.6.0/examples">v2.6.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.5.1/examples">v2.5.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.4.0/examples">v2.4.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.3.0/examples">v2.3.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.2.0/examples">v2.2.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.1.0/examples">v2.1.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.0.0/examples">v2.0.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v1.2.0/examples">v1.2.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v1.1.0/examples">v1.1.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v1.0.0/examples">v1.0.0</a></li> </ul> </details> Ensuite, changez votre clone actuel de 🀗 Transformers pour une version spécifique, comme par exemple v3.5.1 : ```bash git checkout tags/v3.5.1 ``` AprÚs avoir configuré la bonne version de la librairie, accédez au dossier d'exemple de votre choix et installez les prérequis spécifiques à l'exemple. ```bash pip install -r requirements.txt ``` ## Exécuter un script <frameworkcontent> <pt> Le script d'exemple télécharge et prétraite un jeu de données à partir de la bibliothÚque 🀗 [Datasets](https://huggingface.co/docs/datasets/). Ensuite, le script affine un ensemble de données à l'aide de [Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) sur une architecture qui prend en charge la tâche de résumé. L'exemple suivant montre comment ajuster le modÚle [T5-small](https://huggingface.co/google-t5/t5-small) sur les données [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail). Le modÚle T5 nécessite un argument supplémentaire `source_prefix` en raison de la façon dont il a été entraîné. Cette invite permet à T5 de savoir qu'il s'agit d'une tâche de résumé. ```bash python examples/pytorch/summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` </pt> <tf> Le script d'exemple télécharge et prétraite un jeu de données à partir de la bibliothÚque 🀗 [Datasets](https://huggingface.co/docs/datasets/). Ensuite, le script ajuste un modÚle à l'aide de Keras sur une architecture qui prend en charge la tâche de résumé. L'exemple suivant montre comment ajuster le modÚle [T5-small](https://huggingface.co/google-t5/t5-small) sur le jeu de données [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail). Le modÚle T5 nécessite un argument supplémentaire source_prefix en raison de la façon dont il a été entraîné. Cette invite permet à T5 de savoir qu'il s'agit d'une tâche de résumé. ```bash python examples/tensorflow/summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size 8 \ --per_device_eval_batch_size 16 \ --num_train_epochs 3 \ --do_train \ --do_eval ``` </tf> </frameworkcontent> ## Entraînement distribué et précision mixte [Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) prend en charge l'entraînement distribué et la précision mixte, ce qui signifie que vous pouvez également les utiliser dans un script. Pour activer ces deux fonctionnalités : - Ajoutez l'argument fp16 pour activer la précision mixte. - Définissez le nombre de GPU à utiliser avec l'argument `nproc_per_node`. ```bash torchrun \ --nproc_per_node 8 pytorch/summarization/run_summarization.py \ --fp16 \ --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` Les scripts TensorFlow utilisent une Strategie en Miroir [`MirroredStrategy`](https://www.tensorflow.org/guide/distributed_training#mirroredstrategy) pour l'entraînement distribué, et vous n'avez pas besoin d'ajouter d'arguments supplémentaires au script d'entraînement. Le script TensorFlow utilisera plusieurs GPU par défaut s'ils sont disponibles. ## Exécuter un script sur un TPU <frameworkcontent> <pt> Les unités de traitement de tenseurs (UTT) (TPU) sont spécialement conçues pour accélérer les performances. PyTorch prend en charge les TPU avec le compilateur de deep learning [XLA](https://www.tensorflow.org/xla). Pour utiliser un TPU, lancez le script xla_spawn.py et utilisez l'argument num_cores pour définir le nombre de cœurs TPU que vous souhaitez utilise ```bash python xla_spawn.py --num_cores 8 \ summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` </pt> <tf> Les scripts TensorFlow utilisent une [`TPUStrategy`](https://www.tensorflow.org/guide/distributed_training#tpustrategy) pour l'entraînement sur TPU. Pour utiliser un TPU, passez le nom de la ressource TPU à l'argument tpu. ```bash python run_summarization.py \ --tpu name_of_tpu_resource \ --model_name_or_path google-t5/t5-small \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size 8 \ --per_device_eval_batch_size 16 \ --num_train_epochs 3 \ --do_train \ --do_eval ``` </tf> </frameworkcontent> ## Exécuter un script avec 🀗 Accelerate 🀗 [Accelerate](https://huggingface.co/docs/accelerate) est une bibliothÚque uniquement pour PyTorch qui offre une méthode unifiée pour entraîner un modÚle sur plusieurs types de configurations (CPU uniquement, plusieurs GPU, TPU) tout en maintenant une visibilité complÚte sur la boucle d'entraînement PyTorch. Assurez-vous que vous avez installé 🀗 Accelerate si ce n'est pas déjà le cas. > Note : Comme Accelerate est en développement rapide, la version git d'accelerate doit être installée pour exécuter les scripts. ```bash pip install git+https://github.com/huggingface/accelerate ``` Au lieu du script `run_summarization.py`, vous devez utiliser le script `run_summarization_no_trainer.py`. Les scripts compatibles avec 🀗 Accelerate auront un fichier `task_no_trainer.py` dans le dossier. Commencez par exécuter la commande suivante pour créer et enregistrer un fichier de configuration. ```bash accelerate config ``` Testez votre configuration pour vous assurer qu'elle est correctement configurée : ```bash accelerate test ``` Maintenant, vous êtes prêt à lancer l'entraînement : ```bash accelerate launch run_summarization_no_trainer.py \ --model_name_or_path google-t5/t5-small \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir ~/tmp/tst-summarization ``` ## Utiliser un jeu de données personnalisé Le script de résumé prend en charge les jeux de données personnalisés tant qu'ils sont au format CSV ou JSON Line. Lorsque vous utilisez votre propre jeu de données, vous devez spécifier plusieurs arguments supplémentaires : - `train_file` et `validation_file` spécifient le chemin vers vos fichiers d'entraînement et de validation. - `text_column` est le texte d'entrée à résumer. - `summary_column` est le texte cible à produire. Un exemple de script de résumé utilisant un ensemble de données personnalisé ressemblerait à ceci : ```bash python examples/pytorch/summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --train_file path_to_csv_or_jsonlines_file \ --validation_file path_to_csv_or_jsonlines_file \ --text_column text_column_name \ --summary_column summary_column_name \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --overwrite_output_dir \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --predict_with_generate ``` ## Tester un script Il est souvent judicieux d'exécuter votre script sur un plus petit nombre d'exemples de jeu de données pour s'assurer que tout fonctionne comme prévu avant de s'engager sur un jeu de données complet qui pourrait prendre des heures à traiter. Utilisez les arguments suivants pour tronquer le jeu de données à un nombre maximal d'échantillons : - `max_train_samples` - `max_eval_samples` - `max_predict_samples` ```bash python examples/pytorch/summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --max_train_samples 50 \ --max_eval_samples 50 \ --max_predict_samples 50 \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` Tous les scripts d'exemple ne prennent pas en charge l'argument `max_predict_samples`. Si vous n'êtes pas sûr que votre script prenne en charge cet argument, ajoutez l'argument `-h` pour vérifier. ```bash examples/pytorch/summarization/run_summarization.py -h ``` ## Reprendre l'entraînement à partir d'un point de contrÃŽle Une autre option utile est de reprendre l'entraînement à partir d'un point de contrÃŽle précédent. Cela vous permettra de reprendre là où vous vous étiez arrêté sans recommencer si votre entraînement est interrompu. Il existe deux méthodes pour reprendre l'entraînement à partir d'un point de contrÃŽle. La premiÚre méthode utilise l'argument `output_dir previous_output_dir` pour reprendre l'entraînement à partir du dernier point de contrÃŽle stocké dans `output_dir`. Dans ce cas, vous devez supprimer l'argument `overwrite_output_dir`. ```bash python examples/pytorch/summarization/run_summarization.py --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --output_dir previous_output_dir \ --predict_with_generate ``` La seconde méthode utilise l'argument `resume_from_checkpoint path_to_specific_checkpoint` pour reprendre l'entraînement à partir d'un dossier de point de contrÃŽle spécifique. ```bash python examples/pytorch/summarization/run_summarization.py --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --resume_from_checkpoint path_to_specific_checkpoint \ --predict_with_generate ``` ## Partage ton modÚle Tous les scripts peuvent télécharger votre modÚle final sur le Model Hub. Assurez-vous que vous êtes connecté à Hugging Face avant de commencer : ```bash huggingface-cli login ``` Ensuite, ajoutez l'argument `push_to_hub` au script. Cet argument créera un dépÃŽt avec votre nom d'utilisateur Hugging Face et le nom du dossier spécifié dans `output_dir`. Pour donner un nom spécifique à votre dépÃŽt, utilisez l'argument `push_to_hub_model_id` pour l'ajouter. Le dépÃŽt sera automatiquement listé sous votre namespace. L'exemple suivant montre comment télécharger un modÚle avec un nom de dépÃŽt spécifique : ```bash python examples/pytorch/summarization/run_summarization.py --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --push_to_hub \ --push_to_hub_model_id finetuned-t5-cnn_dailymail \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ```
transformers/docs/source/fr/run_scripts_fr.md/0
{ "file_path": "transformers/docs/source/fr/run_scripts_fr.md", "repo_id": "transformers", "token_count": 7046 }
276
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Preprocess [[open-in-colab]] Prima di poter usare i dati in un modello, bisogna processarli in un formato accettabile per quest'ultimo. Un modello non comprende il testo grezzo, le immagini o l'audio. Bisogna convertire questi input in numeri e assemblarli all'interno di tensori. In questa esercitazione, tu potrai: * Preprocessare dati testuali con un tokenizer. * Preprocessare immagini o dati audio con un estrattore di caratteristiche. * Preprocessare dati per attività multimodali mediante un processore. ## NLP <Youtube id="Yffk5aydLzg"/> Lo strumento principale per processare dati testuali Ú un [tokenizer](main_classes/tokenizer). Un tokenizer inizia separando il testo in *tokens* secondo una serie di regole. I tokens sono convertiti in numeri, questi vengono utilizzati per costruire i tensori di input del modello. Anche altri input addizionali se richiesti dal modello vengono aggiunti dal tokenizer. <Tip> Se stai pensando si utilizzare un modello preaddestrato, Ú importante utilizzare il tokenizer preaddestrato associato. Questo assicura che il testo sia separato allo stesso modo che nel corpus usato per l'addestramento, e venga usata la stessa mappatura tokens-to-index (solitamente indicato come il *vocabolario*) come nel preaddestramento. </Tip> Iniziamo subito caricando un tokenizer preaddestrato con la classe [`AutoTokenizer`]. Questo scarica il *vocabolario* usato quando il modello Ú stato preaddestrato. ### Tokenize Carica un tokenizer preaddestrato con [`AutoTokenizer.from_pretrained`]: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased") ``` Poi inserisci le tue frasi nel tokenizer: ```py >>> encoded_input = tokenizer("Do not meddle in the affairs of wizards, for they are subtle and quick to anger.") >>> print(encoded_input) {'input_ids': [101, 2079, 2025, 19960, 10362, 1999, 1996, 3821, 1997, 16657, 1010, 2005, 2027, 2024, 11259, 1998, 4248, 2000, 4963, 1012, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} ``` Il tokenizer restituisce un dizionario contenente tre oggetti importanti: * [input_ids](glossary#input-ids) sono gli indici che corrispondono ad ogni token nella frase. * [attention_mask](glossary#attention-mask) indicata se un token deve essere elaborato o no. * [token_type_ids](glossary#token-type-ids) identifica a quale sequenza appartiene un token se Ú presente più di una sequenza. Si possono decodificare gli `input_ids` per farsi restituire l'input originale: ```py >>> tokenizer.decode(encoded_input["input_ids"]) '[CLS] Do not meddle in the affairs of wizards, for they are subtle and quick to anger. [SEP]' ``` Come si può vedere, il tokenizer aggiunge due token speciali - `CLS` e `SEP` (classificatore e separatore) - alla frase. Non tutti i modelli hanno bisogno dei token speciali, ma se servono, il tokenizer li aggiungerà automaticamente. Se ci sono più frasi che vuoi processare, passale come una lista al tokenizer: ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_inputs = tokenizer(batch_sentences) >>> print(encoded_inputs) {'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1]]} ``` ### Pad Questo Ú un argomento importante. Quando processi un insieme di frasi potrebbero non avere tutte la stessa lunghezza. Questo Ú un problema perchÚ i tensori, in input del modello, devono avere dimensioni uniformi. Il padding Ú una strategia per assicurarsi che i tensori siano rettangolari aggiungendo uno speciale *padding token* alle frasi più corte. Imposta il parametro `padding` a `True` per imbottire le frasi più corte nel gruppo in modo che combacino con la massima lunghezza presente: ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch_sentences, padding=True) >>> print(encoded_input) {'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]} ``` Nota che il tokenizer aggiunge alle sequenze degli `0` perchÚ sono troppo corte! ### Truncation L'altra faccia della medaglia Ú che avolte le sequenze possono essere troppo lunghe per essere gestite dal modello. In questo caso, avrai bisogno di troncare la sequenza per avere una lunghezza minore. Imposta il parametro `truncation` a `True` per troncare una sequenza alla massima lunghezza accettata dal modello: ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True) >>> print(encoded_input) {'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]} ``` ### Costruire i tensori Infine, vuoi che il tokenizer restituisca i tensori prodotti dal modello. Imposta il parametro `return_tensors` su `pt` per PyTorch, o `tf` per TensorFlow: ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch, padding=True, truncation=True, return_tensors="pt") >>> print(encoded_input) {'input_ids': tensor([[ 101, 153, 7719, 21490, 1122, 1114, 9582, 1623, 102], [ 101, 5226, 1122, 9649, 1199, 2610, 1236, 102, 0]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 0]])} ===PT-TF-SPLIT=== >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch, padding=True, truncation=True, return_tensors="tf") >>> print(encoded_input) {'input_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy= array([[ 101, 153, 7719, 21490, 1122, 1114, 9582, 1623, 102], [ 101, 5226, 1122, 9649, 1199, 2610, 1236, 102, 0]], dtype=int32)>, 'token_type_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy= array([[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>, 'attention_mask': <tf.Tensor: shape=(2, 9), dtype=int32, numpy= array([[1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 0]], dtype=int32)>} ``` ## Audio Gli input audio sono processati in modo differente rispetto al testo, ma l'obiettivo rimane lo stesso: creare sequenze numeriche che il modello può capire. Un [estrattore di caratteristiche](main_classes/feature_extractor) Ú progettato con lo scopo preciso di estrarre caratteristiche da immagini o dati audio grezzi e convertirli in tensori. Prima di iniziare, installa 🀗 Datasets per caricare un dataset audio e sperimentare: ```bash pip install datasets ``` Carica il dataset [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) (vedi il 🀗 [Datasets tutorial](https://huggingface.co/docs/datasets/load_hub) per avere maggiori dettagli su come caricare un dataset): ```py >>> from datasets import load_dataset, Audio >>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") ``` Accedi al primo elemento della colonna `audio` per dare uno sguardo all'input. Richiamando la colonna `audio` sarà caricato automaticamente e ricampionato il file audio: ```py >>> dataset[0]["audio"] {'array': array([ 0. , 0.00024414, -0.00024414, ..., -0.00024414, 0. , 0. ], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav', 'sampling_rate': 8000} ``` Questo restituisce tre oggetti: * `array` Ú il segnale vocale caricato - e potenzialmente ricampionato - come vettore 1D. * `path` il percorso del file audio. * `sampling_rate` si riferisce al numero di campioni del segnale vocale misurati al secondo. ### Ricampionamento Per questo tutorial, puoi usare il modello [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base). Come puoi vedere dalla model card, il modello Wav2Vec2 Ú preaddestrato su un campionamento vocale a 16kHz.È importante che la frequenza di campionamento dei tuoi dati audio combaci con la frequenza di campionamento del dataset usato per preaddestrare il modello. Se la frequenza di campionamento dei tuoi dati non Ú uguale dovrai ricampionare i tuoi dati audio. Per esempio, il dataset [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) ha una frequenza di campionamento di 8000kHz. Utilizzando il modello Wav2Vec2 su questo dataset, alzala a 16kHz: ```py >>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") >>> dataset[0]["audio"] {'array': array([ 0. , 0.00024414, -0.00024414, ..., -0.00024414, 0. , 0. ], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav', 'sampling_rate': 8000} ``` 1. Usa il metodo di 🀗 Datasets' [`cast_column`](https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.cast_column) per alzare la frequenza di campionamento a 16kHz: ```py >>> dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000)) ``` 2. Carica il file audio: ```py >>> dataset[0]["audio"] {'array': array([ 2.3443763e-05, 2.1729663e-04, 2.2145823e-04, ..., 3.8356509e-05, -7.3497440e-06, -2.1754686e-05], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav', 'sampling_rate': 16000} ``` Come puoi notare, la `sampling_rate` adesso Ú 16kHz! ### Feature extractor Il prossimo passo Ú caricare un estrattore di caratteristiche per normalizzare e fare padding sull'input. Quando applichiamo il padding sui dati testuali, uno `0` Ú aggiunto alle sequenze più brevi. La stessa idea si applica ai dati audio, l'estrattore di caratteristiche per gli audio aggiungerà uno `0` - interpretato come silenzio - agli `array`. Carica l'estrattore delle caratteristiche con [`AutoFeatureExtractor.from_pretrained`]: ```py >>> from transformers import AutoFeatureExtractor >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base") ``` Inserisci l' `array` audio nell'estrattore delle caratteristiche. Noi raccomandiamo sempre di aggiungere il parametro `sampling_rate` nell'estrattore delle caratteristiche per correggere meglio qualche errore, dovuto ai silenzi, che potrebbe verificarsi. ```py >>> audio_input = [dataset[0]["audio"]["array"]] >>> feature_extractor(audio_input, sampling_rate=16000) {'input_values': [array([ 3.8106556e-04, 2.7506407e-03, 2.8015103e-03, ..., 5.6335266e-04, 4.6588284e-06, -1.7142107e-04], dtype=float32)]} ``` ### Pad e truncate Come per il tokenizer, puoi applicare le operazioni padding o truncation per manipolare sequenze di variabili a lotti. Dai uno sguaro alla lunghezza delle sequenze di questi due campioni audio: ```py >>> dataset[0]["audio"]["array"].shape (173398,) >>> dataset[1]["audio"]["array"].shape (106496,) ``` Come puoi vedere, il primo campione ha una sequenza più lunga del secondo. Crea una funzione che preprocesserà il dataset. Specifica una lunghezza massima del campione, e l'estrattore di features si occuperà di riempire o troncare la sequenza per coincidervi: ```py >>> def preprocess_function(examples): ... audio_arrays = [x["array"] for x in examples["audio"]] ... inputs = feature_extractor( ... audio_arrays, ... sampling_rate=16000, ... padding=True, ... max_length=100000, ... truncation=True, ... ) ... return inputs ``` Applica la funzione ai primi esempi nel dataset: ```py >>> processed_dataset = preprocess_function(dataset[:5]) ``` Adesso guarda la lunghezza dei campioni elaborati: ```py >>> processed_dataset["input_values"][0].shape (100000,) >>> processed_dataset["input_values"][1].shape (100000,) ``` La lunghezza dei campioni adesso coincide con la massima lunghezza impostata nelle funzione. ## Vision Un estrattore di caratteristiche si può usare anche per processare immagini e per compiti di visione. Ancora una volta, l'obiettivo Ú convertire l'immagine grezza in un lotto di tensori come input. Carica il dataset [food101](https://huggingface.co/datasets/food101) per questa esercitazione. Usa il parametro `split` di 🀗 Datasets per caricare solo un piccolo campione dal dataset di addestramento poichÚ il set di dati Ú molto grande: ```py >>> from datasets import load_dataset >>> dataset = load_dataset("food101", split="train[:100]") ``` Secondo passo, dai uno sguardo alle immagini usando la caratteristica [`Image`](https://huggingface.co/docs/datasets/package_reference/main_classes.html?highlight=image#datasets.Image) di 🀗 Datasets: ```py >>> dataset[0]["image"] ``` ![vision-preprocess-tutorial.png](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vision-preprocess-tutorial.png) ### Feature extractor Carica l'estrattore di caratteristiche [`AutoFeatureExtractor.from_pretrained`]: ```py >>> from transformers import AutoFeatureExtractor >>> feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224") ``` ### Data augmentation Per le attività di visione, Ú usuale aggiungere alcuni tipi di data augmentation alle immagini come parte del preprocessing. Puoi aggiungere augmentations con qualsiasi libreria che preferisci, ma in questa esercitazione, userai il modulo [`transforms`](https://pytorch.org/vision/stable/transforms.html) di torchvision. 1. Normalizza l'immagine e usa [`Compose`](https://pytorch.org/vision/master/generated/torchvision.transforms.Compose.html) per concatenare alcune trasformazioni - [`RandomResizedCrop`](https://pytorch.org/vision/main/generated/torchvision.transforms.RandomResizedCrop.html) e [`ColorJitter`](https://pytorch.org/vision/main/generated/torchvision.transforms.ColorJitter.html) - insieme: ```py >>> from torchvision.transforms import Compose, Normalize, RandomResizedCrop, ColorJitter, ToTensor >>> normalize = Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) >>> _transforms = Compose( ... [RandomResizedCrop(feature_extractor.size), ColorJitter(brightness=0.5, hue=0.5), ToTensor(), normalize] ... ) ``` 2. Il modello accetta [`pixel_values`](model_doc/visionencoderdecoder#transformers.VisionEncoderDecoderModel.forward.pixel_values) come input. Questo valore Ú generato dall'estrattore di caratteristiche. Crea una funzione che genera `pixel_values` dai transforms: ```py >>> def transforms(examples): ... examples["pixel_values"] = [_transforms(image.convert("RGB")) for image in examples["image"]] ... return examples ``` 3. Poi utilizza 🀗 Datasets [`set_transform`](https://huggingface.co/docs/datasets/process#format-transform)per applicare al volo la trasformazione: ```py >>> dataset.set_transform(transforms) ``` 4. Adesso quando accedi all'immagine, puoi notare che l'estrattore di caratteristiche ha aggiunto `pixel_values` allo schema di input: ```py >>> dataset[0]["image"] {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=384x512 at 0x7F1A7B0630D0>, 'label': 6, 'pixel_values': tensor([[[ 0.0353, 0.0745, 0.1216, ..., -0.9922, -0.9922, -0.9922], [-0.0196, 0.0667, 0.1294, ..., -0.9765, -0.9843, -0.9922], [ 0.0196, 0.0824, 0.1137, ..., -0.9765, -0.9686, -0.8667], ..., [ 0.0275, 0.0745, 0.0510, ..., -0.1137, -0.1216, -0.0824], [ 0.0667, 0.0824, 0.0667, ..., -0.0588, -0.0745, -0.0980], [ 0.0353, 0.0353, 0.0431, ..., -0.0039, -0.0039, -0.0588]], [[ 0.2078, 0.2471, 0.2863, ..., -0.9451, -0.9373, -0.9451], [ 0.1608, 0.2471, 0.3098, ..., -0.9373, -0.9451, -0.9373], [ 0.2078, 0.2706, 0.3020, ..., -0.9608, -0.9373, -0.8275], ..., [-0.0353, 0.0118, -0.0039, ..., -0.2392, -0.2471, -0.2078], [ 0.0196, 0.0353, 0.0196, ..., -0.1843, -0.2000, -0.2235], [-0.0118, -0.0039, -0.0039, ..., -0.0980, -0.0980, -0.1529]], [[ 0.3961, 0.4431, 0.4980, ..., -0.9216, -0.9137, -0.9216], [ 0.3569, 0.4510, 0.5216, ..., -0.9059, -0.9137, -0.9137], [ 0.4118, 0.4745, 0.5216, ..., -0.9137, -0.8902, -0.7804], ..., [-0.2314, -0.1922, -0.2078, ..., -0.4196, -0.4275, -0.3882], [-0.1843, -0.1686, -0.2000, ..., -0.3647, -0.3804, -0.4039], [-0.1922, -0.1922, -0.1922, ..., -0.2941, -0.2863, -0.3412]]])} ``` Di seguito come si vede l'immagine dopo la fase di preprocessing. Come ci si aspetterebbe dalle trasformazioni applicate, l'immagine Ú stata ritagliata in modo casuale e le proprietà del colore sono diverse. ```py >>> import numpy as np >>> import matplotlib.pyplot as plt >>> img = dataset[0]["pixel_values"] >>> plt.imshow(img.permute(1, 2, 0)) ``` ![preprocessed_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/preprocessed_image.png) ## Multimodal Per attività multimodali userai una combinazione di tutto quello che hai imparato poco fa e applicherai le tue competenze alla comprensione automatica del parlato (Automatic Speech Recognition - ASR). Questo significa che avrai bisogno di: * Un estrattore delle caratteristiche per processare i dati audio. * Il Tokenizer per processare i testi. Ritorna sul datasere [LJ Speech](https://huggingface.co/datasets/lj_speech): ```py >>> from datasets import load_dataset >>> lj_speech = load_dataset("lj_speech", split="train") ``` Visto che sei interessato solo alle colonne `audio` e `text`, elimina tutte le altre: ```py >>> lj_speech = lj_speech.map(remove_columns=["file", "id", "normalized_text"]) ``` Adesso guarda le colonne `audio` e `text`: ```py >>> lj_speech[0]["audio"] {'array': array([-7.3242188e-04, -7.6293945e-04, -6.4086914e-04, ..., 7.3242188e-04, 2.1362305e-04, 6.1035156e-05], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/917ece08c95cf0c4115e45294e3cd0dee724a1165b7fc11798369308a465bd26/LJSpeech-1.1/wavs/LJ001-0001.wav', 'sampling_rate': 22050} >>> lj_speech[0]["text"] 'Printing, in the only sense with which we are at present concerned, differs from most if not from all the arts and crafts represented in the Exhibition' ``` Ricorda dalla sezione precedente sull'elaborazione dei dati audio, tu dovresti sempre [ricampionare](preprocessing#audio) la frequenza di campionamento dei tuoi dati audio per farla coincidere con quella del dataset usato dal modello preaddestrato: ```py >>> lj_speech = lj_speech.cast_column("audio", Audio(sampling_rate=16_000)) ``` ### Processor Un processor combina un estrattore di caratteristiche e un tokenizer. Carica un processor con [`AutoProcessor.from_pretrained`]: ```py >>> from transformers import AutoProcessor >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h") ``` 1. Crea una funzione che processi i dati audio in `input_values`, e tokenizza il testo in `labels`. Questi sono i tuoi input per il modello: ```py >>> def prepare_dataset(example): ... audio = example["audio"] ... example.update(processor(audio=audio["array"], text=example["text"], sampling_rate=16000)) ... return example ``` 2. Applica la funzione `prepare_dataset` ad un campione: ```py >>> prepare_dataset(lj_speech[0]) ``` Nota che il processor ha aggiunto `input_values` e `labels`. La frequenza di campionamento Ú stata corretta riducendola a 16kHz. Fantastico, ora dovresti essere in grado di preelaborare i dati per qualsiasi modalità e persino di combinare modalità diverse! Nella prossima esercitazione, impareremo a mettere a punto un modello sui dati appena pre-elaborati.
transformers/docs/source/it/preprocessing.md/0
{ "file_path": "transformers/docs/source/it/preprocessing.md", "repo_id": "transformers", "token_count": 9562 }
277
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Sharing custom models 🀗 Transformersラむブラリは、簡単に拡匵できるように蚭蚈されおいたす。すべおのモデルはリポゞトリの特定のサブフォルダに完党にコヌド化されおおり、抜象化はありたせん。したがっお、モデリングファむルをコピヌしお調敎するこずが簡単です。 新しいモデルを曞いおいる堎合、れロから始める方が簡単かもしれたせん。このチュヌトリアルでは、カスタムモデルずその蚭定をどのように曞き、Transformers内で䜿甚できるようにし、コヌドに䟝存する共同䜓ず共有する方法を説明したす。ラむブラリに存圚しない堎合でも、誰でも䜿甚できるようにしたす。 これを実蚌するために、[timmラむブラリ](https://github.com/rwightman/pytorch-image-models)のResNetクラスを[`PreTrainedModel`]にラップするこずによっお、ResNetモデルを䜿甚したす。 ## Writing a custom configuration モデルに取り組む前に、たずその蚭定を曞きたしょう。モデルの蚭定は、モデルを構築するために必芁なすべおの情報を含むオブゞェクトです。次のセクションで芋るように、モデルは初期化するために`config`しか受け取るこずができないため、そのオブゞェクトができるだけ完党である必芁がありたす。 この䟋では、ResNetクラスのいく぀かの匕数を取埗し、調敎したいかもしれないずしたす。異なる蚭定は、異なるタむプのResNetを提䟛したす。その埌、これらの匕数を確認した埌、それらの匕数を単に栌玍したす。 ```python from transformers import PretrainedConfig from typing import List class ResnetConfig(PretrainedConfig): model_type = "resnet" def __init__( self, block_type="bottleneck", layers: List[int] = [3, 4, 6, 3], num_classes: int = 1000, input_channels: int = 3, cardinality: int = 1, base_width: int = 64, stem_width: int = 64, stem_type: str = "", avg_down: bool = False, **kwargs, ): if block_type not in ["basic", "bottleneck"]: raise ValueError(f"`block_type` must be 'basic' or bottleneck', got {block_type}.") if stem_type not in ["", "deep", "deep-tiered"]: raise ValueError(f"`stem_type` must be '', 'deep' or 'deep-tiered', got {stem_type}.") self.block_type = block_type self.layers = layers self.num_classes = num_classes self.input_channels = input_channels self.cardinality = cardinality self.base_width = base_width self.stem_width = stem_width self.stem_type = stem_type self.avg_down = avg_down super().__init__(**kwargs) ``` 重芁なこずを3぀芚えおおくべきポむントは次のずおりです - `PretrainedConfig` を継承する必芁がありたす。 - あなたの `PretrainedConfig` の `__init__` は任意の kwargs を受け入れる必芁がありたす。 - これらの `kwargs` は芪クラスの `__init__` に枡す必芁がありたす。 継承は、🀗 Transformers ラむブラリのすべおの機胜を取埗できるようにするためです。他の2぀の制玄は、 `PretrainedConfig` が蚭定しおいるフィヌルド以倖にも倚くのフィヌルドを持っおいるこずから来おいたす。 `from_pretrained` メ゜ッドで蚭定を再ロヌドする堎合、これらのフィヌルドはあなたの蚭定に受け入れられ、 その埌、芪クラスに送信される必芁がありたす。 蚭定の `model_type` を定矩するこずここでは `model_type="resnet"`は、 自動クラスにモデルを登録したい堎合を陀いおは必須ではありたせん最埌のセクションを参照。 これで、ラむブラリの他のモデル蚭定ず同様に、蚭定を簡単に䜜成しお保存できたす。 以䞋は、resnet50d 蚭定を䜜成しお保存する方法の䟋です ```py resnet50d_config = ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True) resnet50d_config.save_pretrained("custom-resnet") ``` これにより、`custom-resnet` フォルダ内に `config.json` ずいう名前のファむルが保存されたす。その埌、`from_pretrained` メ゜ッドを䜿甚しお構成を再ロヌドできたす。 ```py resnet50d_config = ResnetConfig.from_pretrained("custom-resnet") ``` たた、[`PretrainedConfig`] クラスの他のメ゜ッドを䜿甚するこずもできたす。たずえば、[`~PretrainedConfig.push_to_hub`] を䜿甚しお、蚭定を盎接 Hub にアップロヌドできたす。 ## Writing a custom model ResNet の蚭定ができたので、モデルを曞き始めるこずができたす。実際には2぀のモデルを曞きたす。1぀はバッチの画像から隠れた特城を抜出するモデル[`BertModel`] のようなもので、もう1぀は画像分類に適したモデル[`BertForSequenceClassification`] のようなものです。 前述したように、この䟋をシンプルに保぀ために、モデルの緩いラッパヌのみを曞きたす。このクラスを曞く前に行う必芁がある唯䞀のこずは、ブロックタむプず実際のブロッククラスの間のマップです。その埌、すべおを `ResNet` クラスに枡しお蚭定からモデルを定矩したす ```py from transformers import PreTrainedModel from timm.models.resnet import BasicBlock, Bottleneck, ResNet from .configuration_resnet import ResnetConfig BLOCK_MAPPING = {"basic": BasicBlock, "bottleneck": Bottleneck} class ResnetModel(PreTrainedModel): config_class = ResnetConfig def __init__(self, config): super().__init__(config) block_layer = BLOCK_MAPPING[config.block_type] self.model = ResNet( block_layer, config.layers, num_classes=config.num_classes, in_chans=config.input_channels, cardinality=config.cardinality, base_width=config.base_width, stem_width=config.stem_width, stem_type=config.stem_type, avg_down=config.avg_down, ) def forward(self, tensor): return self.model.forward_features(tensor) ``` 画像を分類するモデルの堎合、forwardメ゜ッドを倉曎するだけです ```py import torch class ResnetModelForImageClassification(PreTrainedModel): config_class = ResnetConfig def __init__(self, config): super().__init__(config) block_layer = BLOCK_MAPPING[config.block_type] self.model = ResNet( block_layer, config.layers, num_classes=config.num_classes, in_chans=config.input_channels, cardinality=config.cardinality, base_width=config.base_width, stem_width=config.stem_width, stem_type=config.stem_type, avg_down=config.avg_down, ) def forward(self, tensor, labels=None): logits = self.model(tensor) if labels is not None: loss = torch.nn.functional.cross_entropy(logits, labels) return {"loss": loss, "logits": logits} return {"logits": logits} ``` 䞡方の堎合、`PreTrainedModel`から継承し、`config`を䜿甚しおスヌパヌクラスの初期化を呌び出したす通垞の`torch.nn.Module`を曞くずきのような感じです。 `config_class`を蚭定する行は必須ではありたせんが、最埌のセクションを参照、モデルを自動クラスに登録したい堎合に䜿甚できたす。 <Tip> モデルがラむブラリ内のモデルず非垞に䌌おいる堎合、このモデルず同じ構成を再利甚できたす。 </Tip> モデルが返す内容は䜕でも構いたせんが、ラベルが枡されるずきに損倱を含む蟞曞を返す`ResnetModelForImageClassification`のように行ったものず、 モデルを[`Trainer`]クラス内で盎接䜿甚できるようになりたす。独自のトレヌニングルヌプたたは他のラむブラリを䜿甚する予定である限り、 別の出力圢匏を䜿甚するこずも問題ありたせん。 さお、モデルクラスができたので、1぀䜜成したしょう ```py resnet50d = ResnetModelForImageClassification(resnet50d_config) ``` 再床、[`PreTrainedModel`]のいずれかのメ゜ッド、䟋えば[`~PreTrainedModel.save_pretrained`]や [`~PreTrainedModel.push_to_hub`]などを䜿甚できたす。次のセクションでは、モデルの重みをコヌドず䞀緒に Hugging Face Hub にプッシュする方法を芋おみたす。 しかし、たずはモデル内に事前孊習枈みの重みをロヌドしたしょう。 独自のナヌスケヌスでは、おそらく独自のデヌタでカスタムモデルをトレヌニングするこずになるでしょう。 このチュヌトリアルではスピヌドアップのために、resnet50dの事前孊習枈みバヌゞョンを䜿甚したす。 私たちのモデルはそれをラップするだけなので、これらの重みを転送するのは簡単です ```py import timm pretrained_model = timm.create_model("resnet50d", pretrained=True) resnet50d.model.load_state_dict(pretrained_model.state_dict()) ``` さお、[`~PreTrainedModel.save_pretrained`]たたは[`~PreTrainedModel.push_to_hub`]を実行したずきに、 モデルのコヌドが保存されるようにする方法を芋おみたしょう。 ## Sending the code to the Hub <Tip warning={true}> このAPIは実隓的であり、次のリリヌスでわずかな倉曎があるかもしれたせん。 </Tip> たず、モデルが`.py`ファむルに完党に定矩されおいるこずを確認しおください。 ファむルは盞察むンポヌトを他のファむルに䟝存できたすが、すべおのファむルが同じディレクトリにある限りただこの機胜ではサブモゞュヌルはサポヌトしおいたせん、問題ありたせん。 この䟋では、珟圚の䜜業ディレクトリ内に名前が「resnet_model」のフォルダを䜜成し、その䞭に`modeling_resnet.py`ファむルず`configuration_resnet.py`ファむルを定矩したす。 構成ファむルには`ResnetConfig`のコヌドが含たれ、モデリングファむルには`ResnetModel`ず`ResnetModelForImageClassification`のコヌドが含たれおいたす。 ``` . └── resnet_model ├── __init__.py ├── configuration_resnet.py └── modeling_resnet.py ``` `__init__.py`は空であっおも問題ありたせん。Pythonが`resnet_model`をモゞュヌルずしお怜出できるようにするために存圚したす。 <Tip warning={true}> ラむブラリからモデリングファむルをコピヌする堎合、ファむルの先頭にあるすべおの盞察むンポヌトを`transformers`パッケヌゞからむンポヌトに眮き換える必芁がありたす。 </Tip> 既存の蚭定やモデルを再利甚たたはサブクラス化できるこずに泚意しおください。 コミュニティずモデルを共有するために、次の手順に埓っおくださいたず、新しく䜜成したファむルからResNetモデルず蚭定をむンポヌトしたす ```py from resnet_model.configuration_resnet import ResnetConfig from resnet_model.modeling_resnet import ResnetModel, ResnetModelForImageClassification ``` 次に、`save_pretrained`メ゜ッドを䜿甚しおこれらのオブゞェクトのコヌドファむルをコピヌし、特定のAutoクラス特にモデルの堎合に正しく登録するようラむブラリに指瀺する必芁がありたす。次のように実行したす ```py ResnetConfig.register_for_auto_class() ResnetModel.register_for_auto_class("AutoModel") ResnetModelForImageClassification.register_for_auto_class("AutoModelForImageClassification") ``` 泚意: 蚭定に぀いおは自動クラスを指定する必芁はありたせん蚭定甚の自動クラスは1぀しかなく、[`AutoConfig`]ですが、 モデルに぀いおは異なりたす。カスタムモデルは倚くの異なるタスクに適しおいる可胜性があるため、 モデルが正確な自動クラスのうちどれに適しおいるかを指定する必芁がありたす。 次に、前述のように蚭定ずモデルを䜜成したしょう ```py resnet50d_config = ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True) resnet50d = ResnetModelForImageClassification(resnet50d_config) pretrained_model = timm.create_model("resnet50d", pretrained=True) resnet50d.model.load_state_dict(pretrained_model.state_dict()) ``` モデルをHubに送信するには、ログむンしおいるこずを確認しおください。タヌミナルで次のコマンドを実行したす ```bash huggingface-cli login ``` たたはノヌトブックから ```py from huggingface_hub import notebook_login notebook_login() ``` 次に、次のようにしお、独自の名前空間にプッシュできたすたたは、メンバヌである組織にプッシュできたす ```py resnet50d.push_to_hub("custom-resnet50d") ``` モデリングの重みずJSON圢匏の構成に加えお、このフォルダヌ「custom-resnet50d」内のモデリングおよび構成「.py」ファむルもコピヌされ、結果はHubにアップロヌドされたした。結果はこの[model repo](https://huggingface.co/sgugger/custom-resnet50d)で確認できたす。 詳现に぀いおは、[Hubぞのプッシュ方法](model_sharing)を参照しおください。 ## Using a model with custom code 自動クラスず `from_pretrained` メ゜ッドを䜿甚しお、リポゞトリ内のカスタムコヌドファむルず共に任意の構成、モデル、たたはトヌクナむザを䜿甚できたす。 Hubにアップロヌドされるすべおのファむルずコヌドはマルりェアのスキャンが実斜されたす詳现は[Hubセキュリティ](https://huggingface.co/docs/hub/security#malware-scanning)ドキュメンテヌションを参照しおください、しかし、䟝然ずしお悪意のあるコヌドを実行しないために、モデルコヌドず䜜者を確認する必芁がありたす。 `trust_remote_code=True` を蚭定しおカスタムコヌドを持぀モデルを䜿甚できたす ```py from transformers import AutoModelForImageClassification model = AutoModelForImageClassification.from_pretrained("sgugger/custom-resnet50d", trust_remote_code=True) ``` コミットハッシュを「revision」ずしお枡すこずも匷く掚奚されおいたす。これにより、モデルの䜜者がコヌドを悪意のある新しい行で曎新しなかったこずを確認できたすモデルの䜜者を完党に信頌しおいる堎合を陀きたす。 ```py commit_hash = "ed94a7c6247d8aedce4647f00f20de6875b5b292" model = AutoModelForImageClassification.from_pretrained( "sgugger/custom-resnet50d", trust_remote_code=True, revision=commit_hash ) ``` モデルリポゞトリのコミット履歎をブラりゞングする際には、任意のコミットのコミットハッシュを簡単にコピヌできるボタンがありたす。 ## Registering a model with custom code to the auto classes 🀗 Transformersを拡匵するラむブラリを䜜成しおいる堎合、独自のモデルを含めるために自動クラスを拡匵したい堎合がありたす。 これはコヌドをHubにプッシュするこずずは異なり、ナヌザヌはカスタムモデルを取埗するためにあなたのラむブラリをむンポヌトする必芁がありたす Hubからモデルコヌドを自動的にダりンロヌドするのずは察照的です。 構成に既存のモデルタむプず異なる `model_type` 属性がある限り、たたあなたのモデルクラスが適切な `config_class` 属性を持っおいる限り、 次のようにそれらを自動クラスに远加できたす ```py from transformers import AutoConfig, AutoModel, AutoModelForImageClassification AutoConfig.register("resnet", ResnetConfig) AutoModel.register(ResnetConfig, ResnetModel) AutoModelForImageClassification.register(ResnetConfig, ResnetModelForImageClassification) ``` 泚意: `AutoConfig` にカスタム蚭定を登録する際の最初の匕数は、カスタム蚭定の `model_type` ず䞀臎する必芁がありたす。 たた、任意の自動モデルクラスにカスタムモデルを登録する際の最初の匕数は、それらのモデルの `config_class` ず䞀臎する必芁がありたす。
transformers/docs/source/ja/custom_models.md/0
{ "file_path": "transformers/docs/source/ja/custom_models.md", "repo_id": "transformers", "token_count": 7503 }
278
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Processors Transformers ラむブラリでは、プロセッサは 2 ぀の異なる意味を持ちたす。 - [Wav2Vec2](../model_doc/wav2vec2) などのマルチモヌダル モデルの入力を前凊理するオブゞェクト (音声ずテキスト) たたは [CLIP](../model_doc/clip) (テキストずビゞョン) - 叀いバヌゞョンのラむブラリで GLUE たたは SQUAD のデヌタを前凊理するために䜿甚されおいたオブゞェクトは非掚奚になりたした。 ## Multi-modal processors マルチモヌダル モデルでは、オブゞェクトが耇数のモダリティ (テキスト、 芖芚ず音声。これは、2 ぀以䞊の凊理オブゞェクトをグルヌプ化するプロセッサヌず呌ばれるオブゞェクトによっお凊理されたす。 トヌクナむザヌ (テキスト モダリティ甚)、画像プロセッサヌ (芖芚甚)、特城抜出噚 (オヌディオ甚) など。 これらのプロセッサは、保存およびロヌド機胜を実装する次の基本クラスを継承したす。 [[autodoc]] ProcessorMixin ## Deprecated processors すべおのプロセッサは、同じアヌキテクチャに埓っおいたす。 [`~data.processors.utils.DataProcessor`]。プロセッサは次のリストを返したす。 [`~data.processors.utils.InputExample`]。これら [`~data.processors.utils.InputExample`] は次のように倉換できたす。 [`~data.processors.utils.Input features`] をモデルにフィヌドしたす。 [[autodoc]] data.processors.utils.DataProcessor [[autodoc]] data.processors.utils.InputExample [[autodoc]] data.processors.utils.InputFeatures ## GLUE [䞀般蚀語理解評䟡 (GLUE)](https://gluebenchmark.com/) は、 既存の NLU タスクの倚様なセットにわたるモデルのパフォヌマンス。玙ず同時発売された [GLUE: A 自然蚀語理解のためのマルチタスクベンチマヌクおよび分析プラットフォヌム](https://openreview.net/pdf?id=rJ4km2R5t7) このラむブラリは、MRPC、MNLI、MNLI (䞍䞀臎)、CoLA、SST2、STSB、 QQP、QNLI、RTE、WNLI。 それらのプロセッサは次のずおりです。 - [`~data.processors.utils.MrpcProcessor`] - [`~data.processors.utils.MnliProcessor`] - [`~data.processors.utils.MnliMismatchedProcessor`] - [`~data.processors.utils.Sst2Processor`] - [`~data.processors.utils.StsbProcessor`] - [`~data.processors.utils.QqpProcessor`] - [`~data.processors.utils.QnliProcessor`] - [`~data.processors.utils.RteProcessor`] - [`~data.processors.utils.WnliProcessor`] さらに、次のメ゜ッドを䜿甚しお、デヌタ ファむルから倀をロヌドし、それらをリストに倉換するこずができたす。 [`~data.processors.utils.InputExample`]。 [[autodoc]] data.processors.glue.glue_convert_examples_to_features ## XNLI [クロスリンガル NLI コヌパス (XNLI)](https://www.nyu.edu/projects/bowman/xnli/) は、 蚀語を超えたテキスト衚珟の品質。 XNLI は、[*MultiNLI*](http://www.nyu.edu/projects/bowman/multinli/) に基づくクラりド゜ヌスのデヌタセットです。テキストのペアには、15 個のテキスト含意アノテヌションがラベル付けされおいたす。 さたざたな蚀語 (英語などの高リ゜ヌス蚀語ずスワヒリ語などの䜎リ゜ヌス蚀語の䞡方を含む)。 論文 [XNLI: Evaluating Cross-lingual Sentence Representations](https://arxiv.org/abs/1809.05053) ず同時にリリヌスされたした。 このラむブラリは、XNLI デヌタをロヌドするプロセッサをホストしたす。 - [`~data.processors.utils.XnliProcessor`] テストセットにはゎヌルドラベルが付いおいるため、評䟡はテストセットで行われたすのでご了承ください。 これらのプロセッサを䜿甚する䟋は、[run_xnli.py](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification/run_xnli.py) スクリプトに瀺されおいたす。 ## SQuAD [The Stanford Question Answering Dataset (SQuAD)](https://rajpurkar.github.io/SQuAD-explorer//) は、次のベンチマヌクです。 質問応答に関するモデルのパフォヌマンスを評䟡したす。 v1.1 ず v2.0 の 2 ぀のバヌゞョンが利甚可胜です。最初のバヌゞョン (v1.1) は、論文 [SQuAD: 100,000+ question for Machine Comprehension of Text](https://arxiv.org/abs/1606.05250) ずずもにリリヌスされたした。 2 番目のバヌゞョン (v2.0) は、論文 [Know What You Don't ず同時にリリヌスされたした。 知っおおくべき: SQuAD の答えられない質問](https://arxiv.org/abs/1806.03822)。 このラむブラリは、次の 2 ぀のバヌゞョンのそれぞれのプロセッサをホストしたす。 ### Processors それらのプロセッサは次のずおりです。 - [`~data.processors.utils.SquadV1Processor`] - [`~data.processors.utils.SquadV2Processor`] どちらも抜象クラス [`~data.processors.utils.SquadProcessor`] を継承しおいたす。 [[autodoc]] data.processors.squad.SquadProcessor - all さらに、次のメ゜ッドを䜿甚しお、SQuAD の䟋を次の圢匏に倉換できたす。 モデルの入力ずしお䜿甚できる [`~data.processors.utils.SquadFeatures`]。 [[autodoc]] data.processors.squad.squad_convert_examples_to_features これらのプロセッサず前述の方法は、デヌタを含むファむルだけでなく、 *tensorflow_datasets* パッケヌゞ。以䞋に䟋を瀺したす。 ### Example usage 以䞋にプロセッサを䜿甚した䟋ず、デヌタ ファむルを䜿甚した倉換方法を瀺したす。 ```python # Loading a V2 processor processor = SquadV2Processor() examples = processor.get_dev_examples(squad_v2_data_dir) # Loading a V1 processor processor = SquadV1Processor() examples = processor.get_dev_examples(squad_v1_data_dir) features = squad_convert_examples_to_features( examples=examples, tokenizer=tokenizer, max_seq_length=max_seq_length, doc_stride=args.doc_stride, max_query_length=max_query_length, is_training=not evaluate, ) ``` *tensorflow_datasets* の䜿甚は、デヌタ ファむルを䜿甚するのず同じくらい簡単です。 ```python # tensorflow_datasets only handle Squad V1. tfds_examples = tfds.load("squad") examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate) features = squad_convert_examples_to_features( examples=examples, tokenizer=tokenizer, max_seq_length=max_seq_length, doc_stride=args.doc_stride, max_query_length=max_query_length, is_training=not evaluate, ) ``` これらのプロセッサを䜿甚する別の䟋は、[run_squad.py](https://github.com/huggingface/transformers/tree/main/examples/legacy/question-answering/run_squad.py) スクリプトに瀺されおいたす。
transformers/docs/source/ja/main_classes/processors.md/0
{ "file_path": "transformers/docs/source/ja/main_classes/processors.md", "repo_id": "transformers", "token_count": 3103 }
279