text
stringlengths 4
4.46M
| id
stringlengths 13
126
| metadata
dict | __index_level_0__
int64 0
415
|
---|---|---|---|
# Copyright 2018-2021 Xanadu Quantum Technologies Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Unit tests for tape expansion stopping criteria and expansion functions.
"""
# pylint: disable=too-few-public-methods, invalid-unary-operand-type, no-member,
# pylint: disable=arguments-differ, arguments-renamed,
import warnings
import numpy as np
import pytest
import pennylane as qml
from pennylane.wires import Wires
class TestCreateExpandFn:
"""Test creating expansion functions from stopping criteria."""
crit_0 = (~qml.operation.is_trainable) | (qml.operation.has_gen & qml.operation.is_trainable)
doc_0 = "Test docstring."
with qml.queuing.AnnotatedQueue() as q:
qml.RX(0.2, wires=0)
qml.RY(qml.numpy.array(2.1, requires_grad=True), wires=1)
qml.Rot(*qml.numpy.array([0.5, 0.2, -0.1], requires_grad=True), wires=0)
tape = qml.tape.QuantumScript.from_queue(q)
def test_create_expand_fn(self):
"""Test creation of expand_fn."""
expand_fn = qml.transforms.create_expand_fn(
depth=10,
stop_at=self.crit_0,
docstring=self.doc_0,
)
assert expand_fn.__doc__ == "Test docstring."
def test_create_expand_fn_expansion(self):
"""Test expansion with created expand_fn."""
expand_fn = qml.transforms.create_expand_fn(depth=10, stop_at=self.crit_0)
new_tape = expand_fn(self.tape)
assert new_tape.operations[0] == self.tape.operations[0]
assert new_tape.operations[1] == self.tape.operations[1]
assert [op.name for op in new_tape.operations[2:]] == ["RZ", "RY", "RZ"]
assert np.allclose([op.data for op in new_tape.operations[2:]], [[0.5], [0.2], [-0.1]])
assert [op.wires for op in new_tape.operations[2:]] == [qml.wires.Wires(0)] * 3
def test_create_expand_fn_dont_expand(self):
"""Test expansion is skipped with depth=0."""
expand_fn = qml.transforms.create_expand_fn(depth=0, stop_at=self.crit_0)
new_tape = expand_fn(self.tape)
assert new_tape.operations == self.tape.operations
def test_device_and_stopping_expansion(self):
"""Test that passing a device alongside a stopping condition ensures
that all operations are expanded to match the devices default gate
set"""
dev = qml.device("default.qubit.legacy", wires=1)
expand_fn = qml.transforms.create_expand_fn(device=dev, depth=10, stop_at=self.crit_0)
with qml.queuing.AnnotatedQueue() as q:
qml.U1(0.2, wires=0)
qml.Rot(*qml.numpy.array([0.5, 0.2, -0.1], requires_grad=True), wires=0)
tape = qml.tape.QuantumScript.from_queue(q)
new_tape = expand_fn(tape)
assert new_tape.operations[0].name == "U1"
assert [op.name for op in new_tape.operations[1:]] == ["RZ", "RY", "RZ"]
def test_device_only_expansion(self):
"""Test that passing a device ensures that all operations are expanded
to match the devices default gate set"""
dev = qml.device("default.qubit.legacy", wires=1)
expand_fn = qml.transforms.create_expand_fn(device=dev, depth=10)
with qml.queuing.AnnotatedQueue() as q:
qml.U1(0.2, wires=0)
qml.Rot(*qml.numpy.array([0.5, 0.2, -0.1], requires_grad=True), wires=0)
tape = qml.tape.QuantumScript.from_queue(q)
new_tape = expand_fn(tape)
assert len(new_tape.operations) == 2
assert new_tape.operations[0].name == "U1"
assert new_tape.operations[1].name == "Rot"
def test_depth_only_expansion(self):
"""Test that passing a depth simply expands to that depth"""
with qml.queuing.AnnotatedQueue() as q:
qml.RX(0.2, wires=0)
qml.RY(qml.numpy.array(2.1, requires_grad=True), wires=1)
qml.Rot(*qml.numpy.array([0.5, 0.2, -0.1], requires_grad=True), wires=0)
qml.templates.StronglyEntanglingLayers(
qml.numpy.ones([2, 2, 3], requires_grad=True), wires=[0, 1]
)
tape = qml.tape.QuantumScript.from_queue(q)
expand_fn = qml.transforms.create_expand_fn(depth=0)
new_tape = expand_fn(tape)
assert new_tape is tape
expand_fn = qml.transforms.create_expand_fn(depth=10)
new_tape = expand_fn(tape)
assert new_tape.operations[0] == tape.operations[0]
assert new_tape.operations[1] == tape.operations[1]
assert [op.name for op in new_tape.operations[2:5]] == ["RZ", "RY", "RZ"]
assert len(new_tape.operations[6:]) == 15
class TestExpandMultipar:
"""Test the expansion of multi-parameter gates."""
def test_expand_multipar(self):
"""Test that a multi-parameter gate is decomposed correctly.
And that single-parameter gates are not decomposed."""
class _CRX(qml.CRX):
name = "_CRX"
@staticmethod
def decomposition(theta, wires):
raise NotImplementedError()
with qml.queuing.AnnotatedQueue() as q:
qml.RX(1.5, wires=0)
qml.Rot(-2.1, 0.2, -0.418, wires=1)
_CRX(1.5, wires=[0, 2])
tape = qml.tape.QuantumScript.from_queue(q)
new_tape = qml.transforms.expand_multipar(tape)
new_ops = new_tape.operations
assert [op.name for op in new_ops] == ["RX", "RZ", "RY", "RZ", "_CRX"]
def test_no_generator_expansion(self):
"""Test that a gate is decomposed correctly if it has
generator[0]==None."""
# pylint: disable=invalid-overridden-method
class _CRX(qml.CRX):
@property
def has_generator(self):
return False
def generator(self):
raise qml.operations.GeneratorUndefinedError()
with qml.queuing.AnnotatedQueue() as q:
qml.RX(1.5, wires=0)
qml.RZ(-2.1, wires=1)
qml.RY(0.2, wires=1)
qml.RZ(-0.418, wires=1)
_CRX(1.5, wires=[0, 2])
tape = qml.tape.QuantumScript.from_queue(q)
new_tape = qml.transforms.expand_multipar(tape)
new_ops = new_tape.operations
expected = ["RX", "RZ", "RY", "RZ", "RZ", "RY", "CNOT", "RY", "CNOT", "RZ"]
assert [op.name for op in new_ops] == expected
class TestExpandNonunitaryGen:
"""Test the expansion of operations without a unitary generator."""
def test_do_not_expand(self):
"""Test that a tape with single-parameter operations with
unitary generators and non-parametric operations is not touched."""
with qml.queuing.AnnotatedQueue() as q:
qml.RX(0.2, wires=0)
qml.Hadamard(0)
qml.PauliRot(0.9, "XY", wires=[0, 1])
qml.SingleExcitationPlus(-1.2, wires=[1, 0])
tape = qml.tape.QuantumScript.from_queue(q)
new_tape = qml.transforms.expand_nonunitary_gen(tape)
assert tape.operations == new_tape.operations
def test_expand_multi_par(self):
"""Test that a tape with single-parameter operations with
unitary generators and non-parametric operations is not touched."""
with qml.queuing.AnnotatedQueue() as q:
qml.RX(0.2, wires=0)
qml.Hadamard(0)
qml.Rot(0.9, 1.2, -0.6, wires=0)
qml.SingleExcitationPlus(-1.2, wires=[1, 0])
tape = qml.tape.QuantumScript.from_queue(q)
new_tape = qml.transforms.expand_nonunitary_gen(tape)
expanded = [
qml.RZ(0.9, wires=0),
qml.RY(1.2, wires=0),
qml.RZ(-0.6, wires=0),
]
assert tape.operations[:2] == new_tape.operations[:2]
assert all(exp.name == new.name for exp, new in zip(expanded, new_tape.operations[2:5]))
assert all(exp.data == new.data for exp, new in zip(expanded, new_tape.operations[2:5]))
assert all(exp.wires == new.wires for exp, new in zip(expanded, new_tape.operations[2:5]))
assert tape.operations[3:] == new_tape.operations[5:]
def test_expand_missing_generator(self):
"""Test that a tape with single-parameter operations with
unitary generators and non-parametric operations is not touched."""
class _PhaseShift(qml.PhaseShift):
def generator(self):
return None
with qml.queuing.AnnotatedQueue() as q:
qml.RX(0.2, wires=0)
qml.Hadamard(0)
_PhaseShift(2.1, wires=1)
qml.SingleExcitationPlus(-1.2, wires=[1, 0])
tape = qml.tape.QuantumScript.from_queue(q)
new_tape = qml.transforms.expand_nonunitary_gen(tape)
assert tape.operations[:2] == new_tape.operations[:2]
exp_op, gph_op = new_tape.operations[2:4]
assert exp_op.name == "RZ" and exp_op.data == (2.1,) and exp_op.wires == qml.wires.Wires(1)
assert gph_op.name == "GlobalPhase" and gph_op.data == (-2.1 * 0.5,)
assert tape.operations[3:] == new_tape.operations[4:]
def test_expand_nonunitary_generator(self):
"""Test that a tape with single-parameter operations with
unitary generators and non-parametric operations is not touched."""
with qml.queuing.AnnotatedQueue() as q:
qml.RX(0.2, wires=0)
qml.Hadamard(0)
qml.PhaseShift(2.1, wires=1)
qml.SingleExcitationPlus(-1.2, wires=[1, 0])
tape = qml.tape.QuantumScript.from_queue(q)
new_tape = qml.transforms.expand_nonunitary_gen(tape)
assert tape.operations[:2] == new_tape.operations[:2]
exp_op, gph_op = new_tape.operations[2:4]
assert exp_op.name == "RZ" and exp_op.data == (2.1,) and exp_op.wires == qml.wires.Wires(1)
assert gph_op.name == "GlobalPhase" and gph_op.data == (-2.1 * 0.5,)
assert tape.operations[3:] == new_tape.operations[4:]
def test_decompose_all_nonunitary_generator(self):
"""Test that decompositions actually only contain unitarily
generated operators (Bug #4055)."""
# Corrected list of unitarily generated operators
unitarily_generated = [
"RX",
"RY",
"RZ",
"MultiRZ",
"PauliRot",
"IsingXX",
"IsingYY",
"IsingZZ",
"SingleExcitationMinus",
"SingleExcitationPlus",
"DoubleExcitationMinus",
"DoubleExcitationPlus",
]
with qml.queuing.AnnotatedQueue() as q:
# All do not have unitary generator, but previously had this
# attribute
qml.IsingXY(0.35, wires=[0, 1])
qml.SingleExcitation(1.61, wires=[1, 0])
qml.DoubleExcitation(0.56, wires=[0, 1, 2, 3])
qml.OrbitalRotation(1.15, wires=[1, 0, 3, 2])
qml.FermionicSWAP(0.3, wires=[2, 3])
tape = qml.tape.QuantumScript.from_queue(q)
new_tape = qml.transforms.expand_nonunitary_gen(tape)
for op in new_tape.operations:
assert op.name in unitarily_generated or op.num_params == 0
class TestExpandInvalidTrainable:
"""Tests for the gradient expand function"""
def test_no_expansion(self, mocker):
"""Test that a circuit with differentiable
operations is not expanded"""
x = qml.numpy.array(0.2, requires_grad=True)
y = qml.numpy.array(0.1, requires_grad=True)
with qml.queuing.AnnotatedQueue() as q:
qml.RX(x, wires=0)
qml.RY(y, wires=1)
qml.CNOT(wires=[0, 1])
qml.expval(qml.PauliZ(0))
tape = qml.tape.QuantumScript.from_queue(q)
spy = mocker.spy(tape, "expand")
new_tape = qml.transforms.expand_invalid_trainable(tape)
assert new_tape is tape
spy.assert_not_called()
def test_trainable_nondiff_expansion(self, mocker):
"""Test that a circuit with non-differentiable
trainable operations is expanded"""
x = qml.numpy.array(0.2, requires_grad=True)
y = qml.numpy.array(0.1, requires_grad=True)
class NonDiffPhaseShift(qml.PhaseShift):
grad_method = None
with qml.queuing.AnnotatedQueue() as q:
NonDiffPhaseShift(x, wires=0)
qml.RY(y, wires=1)
qml.CNOT(wires=[0, 1])
qml.expval(qml.PauliZ(0))
tape = qml.tape.QuantumScript.from_queue(q)
spy = mocker.spy(tape, "expand")
new_tape = qml.transforms.expand_invalid_trainable(tape)
assert new_tape is not tape
spy.assert_called()
assert new_tape.operations[0].name == "RZ"
assert new_tape.operations[0].grad_method == "A"
assert new_tape.operations[1].name == "RY"
assert new_tape.operations[2].name == "CNOT"
def test_nontrainable_nondiff(self, mocker):
"""Test that a circuit with non-differentiable
non-trainable operations is not expanded"""
x = qml.numpy.array(0.2, requires_grad=False)
y = qml.numpy.array(0.1, requires_grad=True)
class NonDiffPhaseShift(qml.PhaseShift):
grad_method = None
with qml.queuing.AnnotatedQueue() as q:
NonDiffPhaseShift(x, wires=0)
qml.RY(y, wires=1)
qml.CNOT(wires=[0, 1])
qml.expval(qml.PauliZ(0))
tape = qml.tape.QuantumScript.from_queue(q)
params = tape.get_parameters(trainable_only=False)
tape.trainable_params = qml.math.get_trainable_indices(params)
assert tape.trainable_params == [1]
spy = mocker.spy(tape, "expand")
new_tape = qml.transforms.expand_invalid_trainable(tape)
assert new_tape is tape
spy.assert_not_called()
def test_trainable_numeric(self, mocker):
"""Test that a circuit with numeric differentiable
trainable operations is *not* expanded"""
x = qml.numpy.array(0.2, requires_grad=True)
y = qml.numpy.array(0.1, requires_grad=True)
class NonDiffPhaseShift(qml.PhaseShift):
grad_method = "F"
with qml.queuing.AnnotatedQueue() as q:
NonDiffPhaseShift(x, wires=0)
qml.RY(y, wires=1)
qml.CNOT(wires=[0, 1])
qml.expval(qml.PauliZ(0))
tape = qml.tape.QuantumScript.from_queue(q)
spy = mocker.spy(tape, "expand")
new_tape = qml.transforms.expand_invalid_trainable(tape)
assert new_tape is tape
spy.assert_not_called()
# Custom decomposition functions for testing.
def custom_cnot(wires, **_):
return [
qml.Hadamard(wires=wires[1]),
qml.CZ(wires=[wires[0], wires[1]]),
qml.Hadamard(wires=wires[1]),
]
def custom_hadamard(wires):
return [qml.RZ(np.pi, wires=wires), qml.RY(np.pi / 2, wires=wires)]
# Incorrect, for testing purposes only
def custom_rx(params, wires):
return [qml.RY(params, wires=wires), qml.Hadamard(wires=wires)]
# To test the gradient; use circuit identity RY(theta) = X RY(-theta) X
def custom_rot(phi, theta, omega, wires):
return [
qml.RZ(phi, wires=wires),
qml.PauliX(wires=wires),
qml.RY(-theta, wires=wires),
qml.PauliX(wires=wires),
qml.RZ(omega, wires=wires),
]
# Decompose a template into another template
def custom_basic_entangler_layers(weights, wires, **kwargs):
# pylint: disable=unused-argument
cnot_broadcast = qml.tape.make_qscript(qml.broadcast)(qml.CNOT, pattern="ring", wires=wires)
return [
qml.AngleEmbedding(weights[0], wires=wires),
*cnot_broadcast,
]
class TestCreateCustomDecompExpandFn:
"""Tests for the custom_decomps argument for devices"""
@pytest.fixture(scope="function", autouse=True)
def capture_warnings(self):
with pytest.warns(
qml.PennyLaneDeprecationWarning,
) as record:
yield
assert any(
"'expansion_strategy' attribute is deprecated" in str(w.message) for w in record
)
for w in record:
if "'expansion_strategy' attribute is deprecated" not in str(w.message):
warnings.warn(w.message, w.category)
@pytest.mark.parametrize("device_name", ["default.qubit", "default.qubit.legacy"])
def test_string_and_operator_allowed(self, device_name):
"""Test that the custom_decomps dictionary accepts both strings and operator classes as keys."""
custom_decomps = {"Hadamard": custom_hadamard, qml.CNOT: custom_cnot}
decomp_dev = qml.device(device_name, wires=2, custom_decomps=custom_decomps)
@qml.qnode(decomp_dev, expansion_strategy="device")
def circuit():
qml.Hadamard(wires=0)
qml.CNOT(wires=[0, 1])
return qml.expval(qml.PauliZ(0))
_ = circuit()
decomp_ops = circuit.tape.operations
assert len(decomp_ops) == 7
for op in decomp_ops:
assert op.name != "Hadamard"
assert op.name != "CNOT"
@pytest.mark.parametrize("device_name", ["default.qubit", "default.qubit.legacy"])
def test_no_custom_decomp(self, device_name):
"""Test that sending an empty dictionary results in no decompositions."""
def circuit():
qml.Hadamard(wires=0)
qml.CNOT(wires=[0, 1])
return qml.expval(qml.PauliZ(0))
original_dev = qml.device(device_name, wires=3)
decomp_dev = qml.device(device_name, wires=3, custom_decomps={})
original_qnode = qml.QNode(circuit, original_dev, expansion_strategy="device")
decomp_qnode = qml.QNode(circuit, decomp_dev, expansion_strategy="device")
original_res = original_qnode()
decomp_res = decomp_qnode()
assert np.isclose(original_res, decomp_res)
assert [
orig_op.name == decomp_op.name
for orig_op, decomp_op in zip(
original_qnode.qtape.operations, decomp_qnode.qtape.operations
)
]
@pytest.mark.parametrize("device_name", ["default.qubit", "default.qubit.legacy"])
def test_no_custom_decomp_template(self, device_name):
"""Test that sending an empty dictionary results in no decomposition
when a template is involved, except the decomposition expected from the device."""
def circuit():
qml.BasicEntanglerLayers([[0.1, 0.2]], wires=[0, 1])
return qml.expval(qml.PauliZ(0))
original_dev = qml.device(device_name, wires=3)
decomp_dev = qml.device(device_name, wires=3, custom_decomps={})
original_qnode = qml.QNode(circuit, original_dev, expansion_strategy="device")
decomp_qnode = qml.QNode(circuit, decomp_dev, expansion_strategy="device")
original_res = original_qnode()
decomp_res = decomp_qnode()
assert np.isclose(original_res, decomp_res)
assert [
orig_op.name == decomp_op.name
for orig_op, decomp_op in zip(
original_qnode.qtape.operations, decomp_qnode.qtape.operations
)
]
@pytest.mark.parametrize(
"device_name", ["default.qubit", "default.qubit.legacy", "lightning.qubit"]
)
def test_one_custom_decomp(self, device_name):
"""Test that specifying a single custom decomposition works as expected."""
custom_decomps = {"Hadamard": custom_hadamard}
decomp_dev = qml.device(device_name, wires=2, custom_decomps=custom_decomps)
@qml.qnode(decomp_dev, expansion_strategy="device")
def circuit():
qml.Hadamard(wires=0)
qml.CNOT(wires=[0, 1])
return qml.expval(qml.PauliZ(0))
_ = circuit()
decomp_ops = circuit.tape.operations
assert len(decomp_ops) == 3
assert decomp_ops[0].name == "RZ"
assert np.isclose(decomp_ops[0].parameters[0], np.pi)
assert decomp_ops[1].name == "RY"
assert np.isclose(decomp_ops[1].parameters[0], np.pi / 2)
assert decomp_ops[2].name == "CNOT"
@pytest.mark.parametrize("device_name", ["default.qubit", "default.qubit.legacy"])
def test_no_decomp_with_depth_zero(self, device_name):
"""Test that specifying a single custom decomposition works as expected."""
custom_decomps = {"Hadamard": custom_hadamard, "CNOT": custom_cnot}
with pytest.warns(
qml.PennyLaneDeprecationWarning, match="The decomp_depth argument is deprecated"
):
decomp_dev = qml.device(
device_name, wires=2, custom_decomps=custom_decomps, decomp_depth=0
)
@qml.qnode(decomp_dev, expansion_strategy="device")
def circuit():
qml.Hadamard(wires=0)
qml.CNOT(wires=[0, 1])
return qml.expval(qml.PauliZ(0))
_ = circuit()
decomp_ops = circuit.tape.operations
assert len(decomp_ops) == 2
assert decomp_ops[0].name == "Hadamard"
assert decomp_ops[1].name == "CNOT"
@pytest.mark.parametrize("device_name", ["default.qubit", "default.qubit.legacy"])
def test_one_custom_decomp_gradient(self, device_name):
"""Test that gradients are still correctly computed after a decomposition
that performs transpilation."""
def circuit(x):
qml.Hadamard(wires=0)
qml.Rot(x[0], x[1], x[2], wires=0)
qml.Hadamard(wires=0)
return qml.expval(qml.PauliZ(0))
original_dev = qml.device(device_name, wires=3)
decomp_dev = qml.device(device_name, wires=3, custom_decomps={"Rot": custom_rot})
original_qnode = qml.QNode(circuit, original_dev, expansion_strategy="device")
decomp_qnode = qml.QNode(circuit, decomp_dev, expansion_strategy="device")
x = qml.numpy.array([0.2, 0.3, 0.4], requires_grad=True)
original_res = original_qnode(x)
decomp_res = decomp_qnode(x)
assert np.allclose(original_res, decomp_res)
original_grad = qml.grad(original_qnode)(x)
decomp_grad = qml.grad(decomp_qnode)(x)
assert np.allclose(original_grad, decomp_grad)
expected_ops = ["Hadamard", "RZ", "PauliX", "RY", "PauliX", "RZ", "Hadamard"]
assert all(op.name == name for op, name in zip(decomp_qnode.qtape.operations, expected_ops))
@pytest.mark.parametrize("device_name", ["default.qubit", "default.qubit.legacy"])
def test_nested_custom_decomp(self, device_name):
"""Test that specifying two custom decompositions that have interdependence
works as expected."""
custom_decomps = {"Hadamard": custom_hadamard, qml.CNOT: custom_cnot}
decomp_dev = qml.device(device_name, wires=2, custom_decomps=custom_decomps)
@qml.qnode(decomp_dev, expansion_strategy="device")
def circuit():
qml.Hadamard(wires=0)
qml.CNOT(wires=[0, 1])
return qml.expval(qml.PauliZ(0))
_ = circuit()
decomp_ops = circuit.tape.operations
assert len(decomp_ops) == 7
# Check the RZ gates are in the correct place
for idx in [0, 2, 5]:
assert decomp_ops[idx].name == "RZ"
assert np.isclose(decomp_ops[idx].parameters[0], np.pi)
assert decomp_ops[0].wires == Wires(0)
assert decomp_ops[2].wires == Wires(1)
assert decomp_ops[5].wires == Wires(1)
# Check RY are in the correct place
for idx in [1, 3, 6]:
assert decomp_ops[idx].name == "RY"
assert np.isclose(decomp_ops[idx].parameters[0], np.pi / 2)
assert decomp_ops[1].wires == Wires(0)
assert decomp_ops[3].wires == Wires(1)
assert decomp_ops[6].wires == Wires(1)
assert decomp_ops[4].name == "CZ"
@pytest.mark.parametrize("device_name", ["default.qubit", "default.qubit.legacy"])
def test_nested_custom_decomp_with_template(self, device_name):
"""Test that specifying two custom decompositions that have interdependence
works as expected even when there is a template."""
custom_decomps = {"Hadamard": custom_hadamard, qml.CNOT: custom_cnot}
decomp_dev = qml.device(device_name, wires=2, custom_decomps=custom_decomps)
@qml.qnode(decomp_dev, expansion_strategy="device")
def circuit():
# -RX(0.1)-C- -> -RX(0.1)---C--- -> -RX(0.1)-----------------C----------------
# -RX(0.2)-X- -> -RX(0.2)-H-Z-H- -> -RX(0.2)-RZ(pi)-RY(pi/2)-Z-RY(pi/2)-RZ(pi)-
qml.BasicEntanglerLayers([[0.1, 0.2]], wires=[0, 1])
return qml.expval(qml.PauliZ(0))
_ = circuit()
decomp_ops = circuit.tape.operations
assert len(decomp_ops) == 7
assert decomp_ops[0].name == "RX"
assert decomp_ops[0].parameters[0] == 0.1
assert decomp_ops[0].wires == Wires(0)
assert decomp_ops[1].name == "RX"
assert decomp_ops[1].parameters[0] == 0.2
assert decomp_ops[1].wires == Wires(1)
assert decomp_ops[2].name == "RZ"
assert np.isclose(decomp_ops[2].parameters[0], np.pi)
assert decomp_ops[2].wires == Wires(1)
assert decomp_ops[3].name == "RY"
assert np.isclose(decomp_ops[3].parameters[0], np.pi / 2)
assert decomp_ops[3].wires == Wires(1)
assert decomp_ops[4].name == "CZ"
assert decomp_ops[4].wires == Wires([0, 1])
assert decomp_ops[5].name == "RZ"
assert np.isclose(decomp_ops[5].parameters[0], np.pi)
assert decomp_ops[5].wires == Wires(1)
assert decomp_ops[6].name == "RY"
assert np.isclose(decomp_ops[6].parameters[0], np.pi / 2)
assert decomp_ops[6].wires == Wires(1)
@pytest.mark.parametrize("device_name", ["default.qubit", "default.qubit.legacy"])
def test_custom_decomp_template_to_template(self, device_name):
"""Test that decomposing a template into another template and some
gates yields the correct results."""
# BasicEntanglerLayers custom decomposition involves AngleEmbedding
custom_decomps = {"BasicEntanglerLayers": custom_basic_entangler_layers, "RX": custom_rx}
decomp_dev = qml.device(device_name, wires=2, custom_decomps=custom_decomps)
@qml.qnode(decomp_dev, expansion_strategy="device")
def circuit():
qml.BasicEntanglerLayers([[0.1, 0.2]], wires=[0, 1])
return qml.expval(qml.PauliZ(0))
_ = circuit()
decomp_ops = circuit.tape.operations
assert len(decomp_ops) == 5
assert decomp_ops[0].name == "RY"
assert decomp_ops[0].parameters[0] == 0.1
assert decomp_ops[0].wires == Wires(0)
assert decomp_ops[1].name == "Hadamard"
assert decomp_ops[1].wires == Wires(0)
assert decomp_ops[2].name == "RY"
assert np.isclose(decomp_ops[2].parameters[0], 0.2)
assert decomp_ops[2].wires == Wires(1)
assert decomp_ops[3].name == "Hadamard"
assert decomp_ops[3].wires == Wires(1)
assert decomp_ops[4].name == "CNOT"
assert decomp_ops[4].wires == Wires([0, 1])
@pytest.mark.parametrize("device_name", ["default.qubit", "default.qubit.legacy"])
def test_custom_decomp_different_depth(self, device_name):
"""Test that alternative expansion depths can be specified."""
# BasicEntanglerLayers custom decomposition involves AngleEmbedding. If
# expansion depth is 2, the AngleEmbedding will still be decomposed into
# RX (since it's not a supported operation on the device), but the RX will
# not be further decomposed even though the custom decomposition is specified.
custom_decomps = {"BasicEntanglerLayers": custom_basic_entangler_layers, "RX": custom_rx}
with pytest.warns(
qml.PennyLaneDeprecationWarning, match="The decomp_depth argument is deprecated"
):
decomp_dev_2 = qml.device(
device_name, wires=2, custom_decomps=custom_decomps, decomp_depth=2
)
decomp_dev_3 = qml.device(
device_name, wires=2, custom_decomps=custom_decomps, decomp_depth=3
)
def circuit():
qml.BasicEntanglerLayers([[0.1, 0.2]], wires=[0, 1])
return qml.expval(qml.PauliZ(0))
circuit2 = qml.QNode(circuit, decomp_dev_2, expansion_strategy="device")
circuit3 = qml.QNode(circuit, decomp_dev_3, expansion_strategy="device")
_ = circuit2()
_ = circuit3()
decomp_ops = circuit2.tape.operations
assert len(decomp_ops) == 3
assert decomp_ops[0].name == "RX"
assert np.isclose(decomp_ops[0].parameters[0], 0.1)
assert decomp_ops[0].wires == Wires(0)
assert decomp_ops[1].name == "RX"
assert np.isclose(decomp_ops[1].parameters[0], 0.2)
assert decomp_ops[1].wires == Wires(1)
assert decomp_ops[2].name == "CNOT"
assert decomp_ops[2].wires == Wires([0, 1])
decomp_ops = circuit3.tape.operations
assert len(decomp_ops) == 5
@pytest.mark.parametrize("device_name", ["default.qubit", "default.qubit.legacy"])
def test_custom_decomp_with_adjoint(self, device_name):
"""Test that applying an adjoint in the circuit results in the adjoint
undergoing the custom decomposition."""
custom_decomps = {qml.RX: custom_rx}
decomp_dev = qml.device(device_name, wires="a", custom_decomps=custom_decomps)
@qml.qnode(decomp_dev, expansion_strategy="device")
def circuit():
# Adjoint is RX(-0.2), so expect RY(-0.2) H
qml.adjoint(qml.RX, lazy=False)(0.2, wires="a")
return qml.expval(qml.PauliZ("a"))
_ = circuit()
decomp_ops = circuit.tape.operations
assert len(decomp_ops) == 2
assert decomp_ops[0].name == "RY"
assert decomp_ops[0].parameters[0] == -0.2
assert decomp_ops[0].wires == Wires("a")
assert decomp_ops[1].name == "Hadamard"
assert decomp_ops[1].wires == Wires("a")
@pytest.mark.parametrize("device_name", ["default.qubit", "default.qubit.legacy"])
def test_custom_decomp_with_control(self, device_name):
"""Test that decomposing a controlled version of a gate uses the custom decomposition
for the base gate."""
class CustomOp(qml.operation.Operation):
num_wires = 1
@staticmethod
def compute_decomposition(wires):
return [qml.S(wires)]
original_decomp = CustomOp(0).decomposition()
custom_decomps = {CustomOp: lambda wires: [qml.T(wires), qml.T(wires)]}
decomp_dev = qml.device(device_name, wires=2, custom_decomps=custom_decomps)
@qml.qnode(decomp_dev, expansion_strategy="device")
def circuit():
qml.ctrl(CustomOp, control=1)(0)
return qml.expval(qml.PauliZ(0))
circuit.construct(tuple(), {})
decomp_ops = circuit.tape.operations
assert len(decomp_ops) == 2
for op in decomp_ops:
assert isinstance(op, qml.ops.op_math.Controlled)
qml.assert_equal(op.base, qml.T(0))
# check that new instances of the operator are not affected by the modifications made to get the decomposition
assert [op1 == op2 for op1, op2 in zip(CustomOp(0).decomposition(), original_decomp)]
def test_custom_decomp_in_separate_context_legacy_opmath(self):
"""Test that the set_decomposition context manager works."""
dev = qml.device("default.qubit.legacy", wires=2)
@qml.qnode(dev, expansion_strategy="device")
def circuit():
qml.CNOT(wires=[0, 1])
return qml.expval(qml.PauliZ(wires=0))
# Initial test
_ = circuit()
assert len(circuit.qtape.operations) == 1
assert circuit.qtape.operations[0].name == "CNOT"
assert dev.custom_expand_fn is None
# Test within the context manager
with qml.transforms.set_decomposition({qml.CNOT: custom_cnot}, dev):
_ = circuit()
ops_in_context = circuit.qtape.operations
assert dev.custom_expand_fn is not None
assert len(ops_in_context) == 3
assert ops_in_context[0].name == "Hadamard"
assert ops_in_context[1].name == "CZ"
assert ops_in_context[2].name == "Hadamard"
# Check that afterwards, the device has gone back to normal
circuit()
assert len(circuit.qtape.operations) == 1
assert circuit.qtape.operations[0].name == "CNOT"
assert dev.custom_expand_fn is None
def test_custom_decomp_in_separate_context(self, mocker):
"""Test that the set_decomposition context manager works for the new device API."""
# pylint:disable=protected-access
dev = qml.device("default.qubit", wires=2)
spy = mocker.spy(dev, "execute")
@qml.qnode(dev, expansion_strategy="device")
def circuit():
qml.CNOT(wires=[0, 1])
return qml.expval(qml.PauliZ(wires=0))
# Initial test
_ = circuit()
tape = spy.call_args_list[0][0][0][0]
assert len(tape.operations) == 1
assert tape.operations[0].name == "CNOT"
assert dev.preprocess()[0][2].transform.__name__ == "decompose"
assert dev.preprocess()[0][2].kwargs.get("decomposer", None) is None
# Test within the context manager
with qml.transforms.set_decomposition({qml.CNOT: custom_cnot}, dev):
_ = circuit()
assert dev.preprocess()[0][2].transform.__name__ == "decompose"
assert dev.preprocess()[0][2].kwargs.get("decomposer", None) is not None
tape = spy.call_args_list[1][0][0][0]
ops_in_context = tape.operations
assert len(ops_in_context) == 3
assert ops_in_context[0].name == "Hadamard"
assert ops_in_context[1].name == "CZ"
assert ops_in_context[2].name == "Hadamard"
# Check that afterwards, the device has gone back to normal
_ = circuit()
tape = spy.call_args_list[2][0][0][0]
ops_in_context = tape.operations
assert len(tape.operations) == 1
assert tape.operations[0].name == "CNOT"
assert dev.preprocess()[0][2].transform.__name__ == "decompose"
assert dev.preprocess()[0][2].kwargs.get("decomposer", None) is None
# pylint: disable=cell-var-from-loop
def test_custom_decomp_used_twice(self):
"""Test that creating a custom decomposition includes overwriting the
correct method under the hood and produces expected results."""
res = []
for _ in range(2):
custom_decomps = {"MultiRZ": qml.MultiRZ.compute_decomposition}
dev = qml.device("lightning.qubit", wires=2, custom_decomps=custom_decomps)
@qml.qnode(dev, diff_method="adjoint", expansion_strategy="gradient")
def cost(theta):
qml.Hadamard(wires=0)
qml.Hadamard(wires=1)
qml.MultiRZ(theta, wires=[1, 0])
return qml.expval(qml.PauliX(1))
x = np.array(0.5)
res.append(cost(x))
assert res[0] == res[1]
@pytest.mark.parametrize("shots", [None, 100])
def test_custom_decomp_with_mcm(self, shots):
"""Test that specifying a single custom decomposition works as expected."""
custom_decomps = {"Hadamard": custom_hadamard}
decomp_dev = qml.device("default.qubit", shots=shots, custom_decomps=custom_decomps)
@qml.qnode(decomp_dev, expansion_strategy="device")
def circuit():
qml.Hadamard(wires=0)
_ = qml.measure(0)
qml.CNOT(wires=[0, 1])
_ = qml.measure(1)
return qml.expval(qml.PauliZ(0))
_ = circuit()
decomp_ops = circuit.tape.operations
assert len(decomp_ops) == 4 if shots is None else 5
assert decomp_ops[0].name == "RZ"
assert np.isclose(decomp_ops[0].parameters[0], np.pi)
assert decomp_ops[1].name == "RY"
assert np.isclose(decomp_ops[1].parameters[0], np.pi / 2)
if shots:
assert decomp_ops[2].name == "MidMeasureMP"
assert decomp_ops[3].name == "CNOT"
assert decomp_ops[4].name == "MidMeasureMP"
else:
assert decomp_ops[2].name == "CNOT"
assert decomp_ops[3].name == "CNOT"
| pennylane/tests/transforms/test_tape_expand.py/0 | {
"file_path": "pennylane/tests/transforms/test_tape_expand.py",
"repo_id": "pennylane",
"token_count": 17178
} | 100 |
[DEFAULT]
test_path=./test
parallel_class=True | qiskit-experiments/.stestr.conf/0 | {
"file_path": "qiskit-experiments/.stestr.conf",
"repo_id": "qiskit-experiments",
"token_count": 18
} | 101 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2021, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Documentation extension for experiment class.
"""
import copy
import re
import sys
from abc import ABC
from typing import Union, List, Dict
from qiskit_experiments.framework.base_analysis import BaseAnalysis
from qiskit_experiments.framework.base_experiment import BaseExperiment
from sphinx.config import Config as SphinxConfig
from .formatter import (
ExperimentSectionFormatter,
AnalysisSectionFormatter,
DocstringSectionFormatter,
VisualizationSectionFormatter,
)
from .section_parsers import load_standard_section, load_fit_parameters
from .utils import (
_generate_analysis_ref,
_get_superclass,
)
_section_regex = re.compile(r"\s*# section:\s*(?P<section_key>\S+)")
class QiskitExperimentDocstring(ABC):
"""Qiskit Experiment style docstring parser base class."""
# mapping of sections supported by this style to parsing method or function
__sections__ = {
"header": load_standard_section,
}
# section formatter
__formatter__ = DocstringSectionFormatter
def __init__(
self,
target_cls: object,
docstring_lines: Union[str, List[str]],
config: SphinxConfig,
indent: str = "",
**extra_sections: List[str],
):
"""Create new parser and parse formatted docstring."""
if isinstance(docstring_lines, str):
lines = docstring_lines.splitlines()
else:
lines = docstring_lines
self._target_cls = target_cls
self._indent = indent
self._config = config
self._parsed_lines = self._classify(lines, **extra_sections)
def _classify(
self,
docstring_lines: List[str],
**extra_sections: List[str],
) -> Dict[str, List[str]]:
"""Classify formatted docstring into sections."""
sectioned_docstrings = dict()
for sec_key, parsed_lines in extra_sections.items():
if sec_key not in self.__sections__:
raise KeyError(
f"Section key {sec_key} is not a valid Qiskit Experiments extension "
f"section keys. Use one of {','.join(self.__sections__.keys())}."
)
sectioned_docstrings[sec_key] = parsed_lines
current_section = "header"
min_indent = sys.maxsize
tmp_lines = []
for line in docstring_lines:
matched = _section_regex.match(line)
if matched:
# Process previous section
if min_indent < sys.maxsize:
tmp_lines = [_line[min_indent:] for _line in tmp_lines]
parser = self.__sections__[current_section]
sectioned_docstrings[current_section] = parser(tmp_lines)
# Start new line
sec_key = matched["section_key"]
if sec_key not in self.__sections__:
raise KeyError(
f"Section key {sec_key} is not a valid Qiskit Experiments extension "
f"section keys. Use one of {','.join(self.__sections__.keys())}."
)
current_section = sec_key
tmp_lines.clear()
min_indent = sys.maxsize
continue
# calculate section indent
if len(line) > 0 and not line.isspace():
# ignore empty line
indent = len(line) - len(line.lstrip())
min_indent = min(indent, min_indent)
tmp_lines.append(line)
# Process final section
if tmp_lines:
if min_indent < sys.maxsize:
tmp_lines = [_line[min_indent:] for _line in tmp_lines]
parser = self.__sections__[current_section]
sectioned_docstrings[current_section] = parser(tmp_lines)
# add extra section
self._extra_sections(sectioned_docstrings)
return sectioned_docstrings
def _extra_sections(self, sectioned_docstring: Dict[str, List[str]]):
"""Generate extra sections."""
pass
def _format(self) -> Dict[str, List[str]]:
"""Format each section with predefined formatter."""
formatter = self.__formatter__(self._indent)
formatted_sections = {section: None for section in self.__sections__}
for section, lines in self._parsed_lines.items():
if not lines:
continue
section_formatter = getattr(formatter, f"format_{section}", None)
if section_formatter:
formatted_sections[section] = section_formatter(lines)
else:
formatted_sections[section] = lines + [""]
return formatted_sections
def generate_class_docs(self) -> List[List[str]]:
"""Output formatted experiment class documentation."""
formatted_sections = self._format()
classdoc_lines = []
for section_lines in formatted_sections.values():
if section_lines:
classdoc_lines.extend(section_lines)
return [classdoc_lines]
class ExperimentDocstring(QiskitExperimentDocstring):
"""Documentation parser for the experiment class introduction."""
__sections__ = {
"header": load_standard_section,
"warning": load_standard_section,
"overview": load_standard_section,
"reference": load_standard_section,
"manual": load_standard_section,
"analysis_ref": load_standard_section,
"experiment_opts": load_standard_section,
"example": load_standard_section,
"note": load_standard_section,
"see_also": load_standard_section,
"init": load_standard_section,
}
__formatter__ = ExperimentSectionFormatter
def _extra_sections(self, sectioned_docstring: Dict[str, List[str]]):
"""Generate extra sections."""
current_class = self._target_cls
# add see also for super classes
if "see_also" not in sectioned_docstring:
class_refs = _get_superclass(current_class, BaseExperiment)
if class_refs:
sectioned_docstring["see_also"] = class_refs
# add analysis reference, if nothing described, it copies from parent
exp_docs_config = copy.copy(self._config)
exp_docs_config.napoleon_custom_sections = [("experiment options", "args")]
if not sectioned_docstring.get("analysis_ref", None):
analysis_desc = _generate_analysis_ref(
current_class=current_class,
config=exp_docs_config,
indent=self._indent,
)
sectioned_docstring["analysis_ref"] = analysis_desc
class AnalysisDocstring(QiskitExperimentDocstring):
"""Documentation parser for the analysis class introduction."""
__sections__ = {
"header": load_standard_section,
"warning": load_standard_section,
"overview": load_standard_section,
"fit_model": load_standard_section,
"fit_parameters": load_fit_parameters,
"reference": load_standard_section,
"manual": load_standard_section,
"analysis_opts": load_standard_section,
"example": load_standard_section,
"note": load_standard_section,
"see_also": load_standard_section,
"init": load_standard_section,
}
__formatter__ = AnalysisSectionFormatter
def _extra_sections(self, sectioned_docstring: Dict[str, List[str]]):
"""Generate extra sections."""
current_class = self._target_cls
# add see also for super classes
if "see_also" not in sectioned_docstring:
class_refs = _get_superclass(current_class, BaseAnalysis)
if class_refs:
sectioned_docstring["see_also"] = class_refs
class VisualizationDocstring(QiskitExperimentDocstring):
"""Documentation parser for visualization classes' introductions."""
__sections__ = {
"header": load_standard_section,
"warning": load_standard_section,
"overview": load_standard_section,
"reference": load_standard_section,
"manual": load_standard_section,
"opts": load_standard_section, # For standard options
"figure_opts": load_standard_section, # For figure options
"example": load_standard_section,
"note": load_standard_section,
"see_also": load_standard_section,
"init": load_standard_section,
}
__formatter__ = VisualizationSectionFormatter
| qiskit-experiments/docs/_ext/custom_styles/styles.py/0 | {
"file_path": "qiskit-experiments/docs/_ext/custom_styles/styles.py",
"repo_id": "qiskit-experiments",
"token_count": 3746
} | 102 |
.. _qiskit-experiments-visualization:
.. automodule:: qiskit_experiments.visualization
:no-members:
:no-inherited-members:
:no-special-members: | qiskit-experiments/docs/apidocs/visualization.rst/0 | {
"file_path": "qiskit-experiments/docs/apidocs/visualization.rst",
"repo_id": "qiskit-experiments",
"token_count": 58
} | 103 |
T2* Ramsey Characterization
===========================
The purpose of the :math:`T_2^*` Ramsey experiment is to determine two of the qubit's
properties: *Ramsey* or *detuning frequency* and :math:`T_2^\ast`. In this experiment,
we would like to get a more precise estimate of the qubit's frequency given a rough
estimate. The difference between the frequency used for the control rotation pulses and
the qubit transition frequency is called the *detuning frequency*. This part of the
experiment is called a *Ramsey Experiment*. :math:`T_2^\ast` represents the rate of
decay toward a mixed state, when the qubit is initialized to the
:math:`\left|1\right\rangle` state. It is the dephasing time or the transverse
relaxation time of the qubit on the Bloch sphere as a result of both energy relaxation
and pure dephasing in the transverse plane. Unlike :math:`T_2`, which is measured by
:class:`.T2Hahn`, :math:`T_2^*` is sensitive to inhomogenous broadening.
Since the detuning frequency is relatively small, we add a phase gate to the circuit to
enable better measurement. The actual frequency measured is the sum of the detuning
frequency and the user induced *oscillation frequency* (``osc_freq`` parameter).
.. jupyter-execute::
import numpy as np
import qiskit
from qiskit_experiments.library import T2Ramsey
The circuits used for the experiment comprise the following steps:
#. Hadamard gate
#. Delay
#. RZ gate that rotates the qubit in the x-y plane
#. Hadamard gate
#. Measurement
The user provides as input a series of delays (in seconds) and the
oscillation frequency (in Hz). During the delay, we expect the qubit to
precess about the z-axis. If the p gate and the precession offset each
other perfectly, then the qubit will arrive at the
:math:`\left|0\right\rangle` state (after the second Hadamard gate). By
varying the extension of the delays, we get a series of oscillations of
the qubit state between the :math:`\left|0\right\rangle` and
:math:`\left|1\right\rangle` states. We can draw the graph of the
resulting function, and can analytically extract the desired values.
.. jupyter-execute::
qubit = 0
# set the desired delays
delays = list(np.arange(1e-6, 50e-6, 2e-6))
.. jupyter-execute::
# Create a T2Ramsey experiment. Print the first circuit as an example
exp1 = T2Ramsey((qubit,), delays, osc_freq=1e5)
print(exp1.circuits()[0])
We run the experiment on a simulated backend using Qiskit Aer with a
pure T1/T2 relaxation noise model.
.. note::
This tutorial requires the :external+qiskit_aer:doc:`qiskit-aer <index>` and :external+qiskit_ibm_runtime:doc:`qiskit-ibm-runtime <index>`
packages to run simulations. You can install them with ``python -m pip
install qiskit-aer qiskit-ibm-runtime``.
.. jupyter-execute::
# A T1 simulator
from qiskit_ibm_runtime.fake_provider import FakePerth
from qiskit_aer import AerSimulator
from qiskit_aer.noise import NoiseModel
# Create a pure relaxation noise model for AerSimulator
noise_model = NoiseModel.from_backend(
FakePerth(), thermal_relaxation=True, gate_error=False, readout_error=False
)
# Create a fake backend simulator
backend = AerSimulator.from_backend(FakePerth(), noise_model=noise_model)
The resulting graph will have the form:
:math:`f(t) = a^{-t/T_2*} \cdot \cos(2 \pi f t + \phi) + b` where *t* is
the delay, :math:`T_2^\ast` is the decay factor, and *f* is the detuning
frequency.
.. jupyter-execute::
# Set scheduling method so circuit is scheduled for delay noise simulation
exp1.set_transpile_options(scheduling_method='asap')
# Run experiment
expdata1 = exp1.run(backend=backend, shots=2000, seed_simulator=101)
expdata1.block_for_results() # Wait for job/analysis to finish.
# Display the figure
display(expdata1.figure(0))
.. jupyter-execute::
# Print results
for result in expdata1.analysis_results():
print(result)
Providing initial user estimates
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The user can provide initial estimates for the parameters to help the
analysis process. Because the curve is expected to decay toward
:math:`0.5`, the natural choice for parameters :math:`A` and :math:`B`
is :math:`0.5`. Varying the value of :math:`\phi` will shift the graph
along the x-axis. Since this is not of interest to us, we can safely
initialize :math:`\phi` to 0. In this experiment, ``t2ramsey`` and ``f``
are the parameters of interest. Good estimates for them are values
computed in previous experiments on this qubit or a similar values
computed for other qubits.
.. jupyter-execute::
user_p0={
"A": 0.5,
"T2star": 20e-6,
"f": 110000,
"phi": 0,
"B": 0.5
}
exp_with_p0 = T2Ramsey((qubit,), delays, osc_freq=1e5)
exp_with_p0.analysis.set_options(p0=user_p0)
exp_with_p0.set_transpile_options(scheduling_method='asap')
expdata_with_p0 = exp_with_p0.run(backend=backend, shots=2000, seed_simulator=101)
expdata_with_p0.block_for_results()
# Display fit figure
display(expdata_with_p0.figure(0))
.. jupyter-execute::
# Print results
for result in expdata_with_p0.analysis_results():
print(result)
See also
--------
* API documentation: :mod:`~qiskit_experiments.library.characterization.T2Ramsey`
| qiskit-experiments/docs/manuals/characterization/t2ramsey.rst/0 | {
"file_path": "qiskit-experiments/docs/manuals/characterization/t2ramsey.rst",
"repo_id": "qiskit-experiments",
"token_count": 1845
} | 104 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""A helper module to save calibration data to local storage.
.. warning::
This module is expected to be internal and is not intended as a stable user-facing API.
.. note::
Because a locally saved :class:`.Calibrations` instance may not conform to the
data model of the latest Qiskit Experiments implementation, the calibration loader
must be aware of the data model version.
CalibrationModel classes representing the data model must have
the version suffix, e.g., `CalibrationModelV1` and the `schema_version` field.
This helps the loader to raise user-friendly error rather than being crashed by
incompatible data, and possibly to dispatch the loader function based on the version number.
When a developer refactors the :class:`.Calibrations` class to a new data model,
the developer must also define a corresponding CalibrationModel class with new version number.
Existing CalibrationModel classes should be preserved for backward compatibility.
.. note::
We don't guarantee the portability of stored data across different Qiskit Experiments
versions. We allow the calibration loader to raise an error for non-supported
data models.
"""
from dataclasses import dataclass, field, asdict
from datetime import datetime
from typing import List, Dict, Any
from qiskit import QuantumCircuit
from qiskit.circuit import Instruction
from qiskit.pulse import ScheduleBlock
from .calibrations import Calibrations
from .control_channel_map import ControlChannelMap
from .parameter_value import ParameterValue
@dataclass(frozen=True)
class ParameterModelV1:
"""A data schema of a single calibrated parameter.
.. note::
This is intentionally agnostic to the data structure of
Qiskit Experiments Calibrations for portability.
"""
param_name: str
"""Name of the parameter."""
qubits: List[int]
"""List of associated qubits."""
schedule: str = ""
"""Associated schedule name."""
value: float = 0.0
"""Parameter value."""
datetime: datetime = None
"""A date time at which this value is obtained."""
valid: bool = True
"""If this parameter is valid."""
exp_id: str = ""
"""Associated experiment ID which is used to obtain this value."""
group: str = ""
"""Name of calibration group in which this calibration parameter belongs to."""
@classmethod
def apply_schema(cls, data: Dict[str, Any]):
"""Consume dictionary and returns canonical data model."""
return ParameterModelV1(**data)
@dataclass
class CalibrationModelV1:
"""A data schema to represent instances of Calibrations.
.. note::
This is intentionally agnostic to the data structure of
Qiskit Experiments Calibrations for portability.
"""
backend_name: str
"""Name of the backend."""
backend_version: str
"""Version of the backend."""
device_coupling_graph: List[List[int]]
"""Qubit coupling graph of the device."""
control_channel_map: ControlChannelMap
"""Mapping of ControlChannel to qubit index."""
schedules: List[ScheduleBlock] = field(default_factory=list)
"""Template schedules. It must contain the metadata for qubits and num_qubits."""
parameters: List[ParameterModelV1] = field(default_factory=list)
"""List of calibrated pulse parameters."""
schedule_free_parameters: QuantumCircuit = field(default_factory=lambda: QuantumCircuit(1))
"""Placeholder circuit for parameters not associated with a schedule
The circuit contains placeholder instructions which have the Parameter
objects attached and operate on the qubits that the parameter is associated
with in the calibrations.
"""
schema_version: str = "1.0"
"""Version of this data model. This must be static."""
@classmethod
def apply_schema(cls, data: Dict[str, Any]):
"""Consume dictionary and returns canonical data model."""
in_data = {}
for key, value in data.items():
if key == "parameters":
value = list(map(ParameterModelV1.apply_schema, value))
in_data[key] = value
return CalibrationModelV1(**in_data)
def calibrations_to_dict(
cals: Calibrations,
most_recent_only: bool = True,
) -> Dict[str, Any]:
"""A helper function to convert calibration data into dictionary.
Args:
cals: A calibration instance to save.
most_recent_only: Set True to save calibration parameters with most recent time stamps.
Returns:
Canonical calibration data in dictionary format.
"""
schedules = getattr(cals, "_schedules")
num_qubits = getattr(cals, "_schedules_qubits")
parameters = getattr(cals, "_params")
if most_recent_only:
# Get values with most recent time stamps.
parameters = {k: [max(parameters[k], key=lambda x: x.date_time)] for k in parameters}
data_entries = []
for param_key, param_values in parameters.items():
for param_value in param_values:
entry = ParameterModelV1(
param_name=param_key.parameter,
qubits=param_key.qubits,
schedule=param_key.schedule,
value=param_value.value,
datetime=param_value.date_time,
valid=param_value.valid,
exp_id=param_value.exp_id,
group=param_value.group,
)
data_entries.append(entry)
sched_entries = []
for sched_key, sched_obj in schedules.items():
if "qubits" not in sched_obj.metadata or "num_qubits" not in sched_obj.metadata:
qubit_metadata = {
"qubits": sched_key.qubits,
"num_qubits": num_qubits[sched_key],
}
sched_obj.metadata.update(qubit_metadata)
sched_entries.append(sched_obj)
max_qubit = max(
(max(k.qubits or (0,)) for k in cals._parameter_map if k.schedule is None),
default=0,
)
schedule_free_parameters = QuantumCircuit(max_qubit + 1)
for sched_key, param in cals._parameter_map.items():
if sched_key.schedule is None:
schedule_free_parameters.append(
Instruction("parameter_container", len(sched_key.qubits), 0, [param]),
sched_key.qubits,
)
model = CalibrationModelV1(
backend_name=cals.backend_name,
backend_version=cals.backend_version,
device_coupling_graph=getattr(cals, "_coupling_map"),
control_channel_map=ControlChannelMap(getattr(cals, "_control_channel_map")),
schedules=sched_entries,
parameters=data_entries,
schedule_free_parameters=schedule_free_parameters,
)
return asdict(model)
def calibrations_from_dict(
cal_data: Dict[str, Any],
) -> Calibrations:
"""A helper function to build calibration instance from canonical dictionary.
Args:
cal_data: Calibration data dictionary which is formatted according to the
predefined data schema provided by Qiskit Experiments.
This formatting is implicitly performed when the calibration data is
dumped into dictionary with the :func:`calibrations_to_dict` function.
Returns:
Calibration instance.
Raises:
ValueError: When input data model version is not supported.
KeyError: When input data model doesn't conform to data schema.
"""
# Apply schema for data field validation
try:
version = cal_data["schema_version"]
if version == "1.0":
model = CalibrationModelV1.apply_schema(cal_data)
else:
raise ValueError(
f"Loading calibration data with schema version {version} is no longer supported. "
"Use the same version of Qiskit Experiments at the time of saving."
)
except (KeyError, TypeError) as ex:
raise KeyError(
"Loaded data doesn't match with the defined data schema. "
"Check if this object is dumped from the Calibrations instance."
) from ex
# This can dispatch loading mechanism depending on schema version
cals = Calibrations(
coupling_map=model.device_coupling_graph,
control_channel_map=model.control_channel_map.chan_map,
backend_name=model.backend_name,
backend_version=model.backend_version,
)
# Add schedules
for sched in model.schedules:
qubits = sched.metadata.pop("qubits", tuple())
num_qubits = sched.metadata.pop("num_qubits", None)
cals.add_schedule(
schedule=sched,
qubits=qubits if qubits and len(qubits) != 0 else None,
num_qubits=num_qubits,
)
# Add parameters
for param in model.parameters:
param_value = ParameterValue(
value=param.value,
date_time=param.datetime,
valid=param.valid,
exp_id=param.exp_id,
group=param.group,
)
cals.add_parameter_value(
value=param_value,
param=param.param_name,
qubits=tuple(param.qubits),
schedule=param.schedule,
update_inst_map=False,
)
for instruction in model.schedule_free_parameters.data:
# For some reason, pylint thinks the items in data are tuples instead
# of CircuitInstruction. Remove the following line if it ever stops
# thinking that:
# pylint: disable=no-member
for param in instruction.operation.params:
cals._register_parameter(param, instruction.qubits)
cals.update_inst_map()
return cals
| qiskit-experiments/qiskit_experiments/calibration_management/save_utils.py/0 | {
"file_path": "qiskit-experiments/qiskit_experiments/calibration_management/save_utils.py",
"repo_id": "qiskit-experiments",
"token_count": 3799
} | 105 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Analyze oscillating data such as a Rabi amplitude experiment."""
from typing import List, Union, Optional
import lmfit
import numpy as np
import qiskit_experiments.curve_analysis as curve
class OscillationAnalysis(curve.CurveAnalysis):
r"""Oscillation analysis class based on a fit of the data to a cosine function.
# section: fit_model
Analyse oscillating data by fitting it to a cosine function
.. math::
y = {\rm amp} \cos\left(2 \pi\cdot {\rm freq}\cdot x + {\rm phase}\right) + {\rm base}
# section: fit_parameters
defpar \rm amp:
desc: Amplitude of the oscillation.
init_guess: Calculated by :func:`~qiskit_experiments.curve_analysis.guess.max_height`.
bounds: [-2, 2] scaled to the maximum signal value.
defpar \rm base:
desc: Base line.
init_guess: Calculated by :func:`~qiskit_experiments.curve_analysis.\
guess.constant_sinusoidal_offset`.
bounds: [-1, 1] scaled to the maximum signal value.
defpar \rm freq:
desc: Frequency of the oscillation. This is the fit parameter of interest.
init_guess: Calculated by :func:`~qiskit_experiments.curve_analysis.\
guess.frequency`.
bounds: [0, inf].
defpar \rm phase:
desc: Phase of the oscillation.
init_guess: Zero.
bounds: [-pi, pi].
"""
def __init__(
self,
name: Optional[str] = None,
):
super().__init__(
models=[
lmfit.models.ExpressionModel(
expr="amp * cos(2 * pi * freq * x + phase) + base",
name="cos",
)
],
name=name,
)
def _generate_fit_guesses(
self,
user_opt: curve.FitOptions,
curve_data: curve.ScatterTable,
) -> Union[curve.FitOptions, List[curve.FitOptions]]:
"""Create algorithmic initial fit guess from analysis options and curve data.
Args:
user_opt: Fit options filled with user provided guess and bounds.
curve_data: Formatted data collection to fit.
Returns:
List of fit options that are passed to the fitter function.
"""
max_abs_y, _ = curve.guess.max_height(curve_data.y, absolute=True)
user_opt.bounds.set_if_empty(
amp=(-2 * max_abs_y, 2 * max_abs_y),
freq=(0, np.inf),
phase=(-np.pi, np.pi),
base=(-max_abs_y, max_abs_y),
)
user_opt.p0.set_if_empty(
freq=curve.guess.frequency(curve_data.x, curve_data.y),
base=curve.guess.constant_sinusoidal_offset(curve_data.y),
)
user_opt.p0.set_if_empty(
amp=curve.guess.max_height(curve_data.y - user_opt.p0["base"], absolute=True)[0],
)
options = []
for phase_guess in np.linspace(0, np.pi, 5):
new_opt = user_opt.copy()
new_opt.p0.set_if_empty(phase=phase_guess)
options.append(new_opt)
return options
def _evaluate_quality(self, fit_data: curve.CurveFitResult) -> Union[str, None]:
"""Algorithmic criteria for whether the fit is good or bad.
A good fit has:
- a reduced chi-squared lower than three and greater than zero,
- more than a quarter of a full period,
- less than 10 full periods, and
- an error on the fit frequency lower than the fit frequency.
"""
fit_freq = fit_data.ufloat_params["freq"]
criteria = [
0 < fit_data.reduced_chisq < 3,
1.0 / 4.0 < fit_freq.nominal_value < 10.0,
curve.utils.is_error_not_significant(fit_freq),
]
if all(criteria):
return "good"
return "bad"
class DampedOscillationAnalysis(curve.CurveAnalysis):
r"""A class to analyze general exponential decay curve with sinusoidal oscillation.
# section: fit_model
This class is based on the fit model of sinusoidal signal with exponential decay.
This model is often used for the oscillation signal in the dissipative system.
.. math::
F(x) = {\rm amp} \cdot e^{-x/\tau}
\cos(2\pi \cdot {\rm freq} \cdot t + \phi) + {\rm base}
# section: fit_parameters
defpar \rm amp:
desc: Amplitude. Height of the decay curve.
init_guess: 0.5
bounds: [0, 1.5],
defpar \rm base:
desc: Offset. Base line of the decay curve.
init_guess: Determined by :func:`~qiskit_experiments.curve_analysis.\
guess.constant_sinusoidal_offset`
bounds: [0, 1.5]
defpar \tau:
desc: Represents the rate of decay.
init_guess: Determined by :func:`~qiskit_experiments.curve_analysis.\
guess.oscillation_exp_decay`
bounds: [0, None]
defpar \rm freq:
desc: Oscillation frequency.
init_guess: Determined by :func:`~qiskit_experiments.curve_analysis.guess.frequency`
bounds: [0, 10 freq]
defpar \phi:
desc: Phase. Relative shift of the sinusoidal function from the origin.
init_guess: Set multiple guesses within [-pi, pi]
bounds: [-pi, pi]
"""
def __init__(
self,
name: Optional[str] = None,
):
super().__init__(
models=[
lmfit.models.ExpressionModel(
expr="amp * exp(-x / tau) * cos(2 * pi * freq * x + phi) + base",
name="cos_decay",
)
],
name=name,
)
def _generate_fit_guesses(
self,
user_opt: curve.FitOptions,
curve_data: curve.ScatterTable,
) -> Union[curve.FitOptions, List[curve.FitOptions]]:
"""Create algorithmic initial fit guess from analysis options and curve data.
Args:
user_opt: Fit options filled with user provided guess and bounds.
curve_data: Formatted data collection to fit.
Returns:
List of fit options that are passed to the fitter function.
"""
user_opt.p0.set_if_empty(
amp=0.5,
base=curve.guess.constant_sinusoidal_offset(curve_data.y),
)
# frequency resolution of this scan
df = 1 / ((curve_data.x[1] - curve_data.x[0]) * len(curve_data.x))
if user_opt.p0["freq"] is not None:
# If freq guess is provided
freq_guess = user_opt.p0["freq"]
freqs = [freq_guess]
else:
freq_guess = curve.guess.frequency(curve_data.x, curve_data.y - user_opt.p0["base"])
# The FFT might be up to 1/2 bin off
if freq_guess > df:
freqs = [freq_guess - df, freq_guess, freq_guess + df]
else:
freqs = [0.0, freq_guess]
# Set guess for decay parameter based on estimated frequency
if freq_guess > df:
alpha = curve.guess.oscillation_exp_decay(
curve_data.x, curve_data.y - user_opt.p0["base"], freq_guess=freq_guess
)
else:
# Very low frequency. Assume standard exponential decay
alpha = curve.guess.exp_decay(curve_data.x, curve_data.y)
if alpha != 0.0:
user_opt.p0.set_if_empty(tau=-1 / alpha)
else:
# Likely there is no slope. Cannot fit constant line with this model.
# Set some large enough number against to the scan range.
user_opt.p0.set_if_empty(tau=100 * np.max(curve_data.x))
user_opt.bounds.set_if_empty(
amp=[0, 1.5],
base=[0, 1.5],
tau=(0, np.inf),
freq=(0, 10 * freq_guess),
phi=(-np.pi, np.pi),
)
# more robust estimation
options = []
for freq in freqs:
for phi in np.linspace(-np.pi, np.pi, 5)[:-1]:
new_opt = user_opt.copy()
new_opt.p0.set_if_empty(freq=freq, phi=phi)
options.append(new_opt)
return options
def _evaluate_quality(self, fit_data: curve.CurveFitResult) -> Union[str, None]:
"""Algorithmic criteria for whether the fit is good or bad.
A good fit has:
- a reduced chi-squared lower than three and greater than zero
- relative error of tau is less than its value
- relative error of freq is less than its value
"""
tau = fit_data.ufloat_params["tau"]
freq = fit_data.ufloat_params["freq"]
criteria = [
0 < fit_data.reduced_chisq < 3,
curve.utils.is_error_not_significant(tau),
curve.utils.is_error_not_significant(freq),
]
if all(criteria):
return "good"
return "bad"
| qiskit-experiments/qiskit_experiments/curve_analysis/standard_analysis/oscillation.py/0 | {
"file_path": "qiskit-experiments/qiskit_experiments/curve_analysis/standard_analysis/oscillation.py",
"repo_id": "qiskit-experiments",
"token_count": 4521
} | 106 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
==========================================================
Experiment Framework (:mod:`qiskit_experiments.framework`)
==========================================================
.. currentmodule:: qiskit_experiments.framework
Overview
========
The experiment framework broadly defines an experiment as the execution of one or more
circuits on a device, and analysis of the resulting measurement data
to return one or more derived results.
The interface for running an experiment is through the ``Experiment`` classes subclassed from
:class:`.BaseExperiment`, such as those contained in the :mod:`~qiskit_experiments.library`. The
following pseudo-code illustrates the typical workflow in Qiskit Experiments for
- Initializing a new experiment
- Running the experiment on a backend
- Saving result to an online database (for compatible providers)
- Viewing analysis results
.. code-block:: python
# Import an experiment
from qiskit_experiments.library import SomeExperiment
# Initialize with desired qubits and options
exp = SomeExperiment(physical_qubits, **options)
# Run on a backend
exp_data = exp.run(backend)
# Wait for execution and analysis to finish
exp_data.block_for_results()
# Optionally save results to database
exp_data.save()
# View analysis results
for result in exp_data.analysis_results():
print(result)
The experiment class contains information for generating circuits and analysis
of results. These can typically be configured with a variety of options.
Once all options are set, you can call the :meth:`.BaseExperiment.run` method to run
the experiment on a Qiskit compatible ``backend``.
The steps of running an experiment involves generation experimental circuits
according to the options you set and submission of a job to the specified
``backend``. Once the job has finished executing an analysis job performs
data analysis of the experiment execution results.
The result of running an experiment is an :class:`ExperimentData` container
which contains the analysis results, any figures generated during analysis,
and the raw measurement data. These can each be accessed using the
:meth:`.ExperimentData.analysis_results`, :meth:`.ExperimentData.figure`
and :meth:`.ExperimentData.data` methods respectively. Additional metadata
for the experiment itself can be added via :meth:`.ExperimentData.metadata`.
Classes
=======
Experiment Data Classes
***********************
.. autosummary::
:toctree: ../stubs/
ExperimentData
ExperimentStatus
AnalysisStatus
AnalysisResult
AnalysisResultData
AnalysisResultTable
ExperimentConfig
AnalysisConfig
ExperimentEncoder
ExperimentDecoder
ArtifactData
FigureData
.. _composite-experiment:
Composite Experiment Classes
****************************
.. autosummary::
:toctree: ../stubs/
CompositeExperiment
ParallelExperiment
BatchExperiment
CompositeAnalysis
Base Classes
************
.. autosummary::
:toctree: ../stubs/
BaseExperiment
BaseAnalysis
Experiment Configuration Helper Classes
***************************************
.. autosummary::
:toctree: ../stubs/
BackendData
BackendTiming
RestlessMixin
"""
from qiskit.providers.options import Options
from qiskit_experiments.framework.backend_data import BackendData
from qiskit_experiments.framework.analysis_result import AnalysisResult
from qiskit_experiments.framework.status import (
ExperimentStatus,
AnalysisStatus,
AnalysisCallback,
)
from qiskit_experiments.framework.containers import (
ArtifactData,
FigureData,
FigureType,
)
from .base_analysis import BaseAnalysis
from .base_experiment import BaseExperiment
from .backend_timing import BackendTiming
from .configs import ExperimentConfig, AnalysisConfig
from .analysis_result_data import AnalysisResultData
from .analysis_result_table import AnalysisResultTable
from .experiment_data import ExperimentData
from .composite import (
ParallelExperiment,
BatchExperiment,
CompositeExperiment,
CompositeAnalysis,
)
from .json import ExperimentEncoder, ExperimentDecoder
from .restless_mixin import RestlessMixin
| qiskit-experiments/qiskit_experiments/framework/__init__.py/0 | {
"file_path": "qiskit-experiments/qiskit_experiments/framework/__init__.py",
"repo_id": "qiskit-experiments",
"token_count": 1267
} | 107 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Container of experiment data components."""
from __future__ import annotations
import copy
import io
from typing import Dict, Optional, Union, Any
from matplotlib.figure import Figure as MatplotlibFigure
class FigureData:
"""A plot data container.
.. note::
Raw figure data can be accessed through the :attr:`.FigureData.figure` attribute.
"""
def __init__(
self,
figure,
name: str | None = None,
metadata: dict[str, Any] | None = None,
):
"""Creates a new figure data object.
Args:
figure: The raw figure itself. Can be SVG or matplotlib.Figure.
name: The name of the figure.
metadata: Any metadata to be stored with the figure.
"""
self.figure = figure
self._name = name
self.metadata = metadata or {}
def __eq__(self, value):
"""Test equality between two instances of FigureData."""
return vars(self) == vars(value)
# name is read only
@property
def name(self) -> str:
"""The name of the figure"""
return self._name
@property
def metadata(self) -> dict:
"""The metadata dictionary stored with the figure"""
return self._metadata
@metadata.setter
def metadata(self, new_metadata: dict):
"""Set the metadata to new value; must be a dictionary"""
if not isinstance(new_metadata, dict):
raise ValueError("figure metadata must be a dictionary")
self._metadata = new_metadata
def copy(self, new_name: Optional[str] = None):
"""Creates a copy of the figure data"""
name = new_name or self.name
return FigureData(figure=self.figure, name=name, metadata=copy.deepcopy(self.metadata))
def __json_encode__(self) -> Dict[str, Any]:
"""Return the json representation of the figure data"""
return {"figure": self.figure, "name": self.name, "metadata": self.metadata}
@classmethod
def __json_decode__(cls, args: Dict[str, Any]) -> "FigureData":
"""Initialize a figure data from the json representation"""
return cls(**args)
def _repr_png_(self):
if isinstance(self.figure, MatplotlibFigure):
b = io.BytesIO()
self.figure.savefig(b, format="png", bbox_inches="tight")
png = b.getvalue()
return png
else:
return None
def _repr_svg_(self):
if isinstance(self.figure, str):
return self.figure
if isinstance(self.figure, bytes):
return self.figure.decode("utf-8")
return None
FigureType = Union[str, bytes, MatplotlibFigure, FigureData]
| qiskit-experiments/qiskit_experiments/framework/containers/figure_data.py/0 | {
"file_path": "qiskit-experiments/qiskit_experiments/framework/containers/figure_data.py",
"repo_id": "qiskit-experiments",
"token_count": 1203
} | 108 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Rough drag calibration experiment."""
from typing import Dict, Iterable, Optional, Sequence
from qiskit.circuit import Parameter, QuantumCircuit
from qiskit.providers.backend import Backend
from qiskit_experiments.framework import ExperimentData
from qiskit_experiments.calibration_management import (
BaseCalibrationExperiment,
Calibrations,
)
from qiskit_experiments.calibration_management.update_library import BaseUpdater
from qiskit_experiments.library.characterization.drag import RoughDrag
class RoughDragCal(BaseCalibrationExperiment, RoughDrag):
"""A calibration version of the :class:`.RoughDrag` experiment.
# section: manual
:ref:`DRAG Calibration`
"""
def __init__(
self,
physical_qubits: Sequence[int],
calibrations: Calibrations,
backend: Optional[Backend] = None,
schedule_name: str = "x",
betas: Iterable[float] = None,
cal_parameter_name: Optional[str] = "β",
auto_update: bool = True,
group: str = "default",
):
r"""see class :class:`.RoughDrag` for details.
Args:
physical_qubits: Sequence containing the qubit for which to run the
rough DRAG calibration.
calibrations: The calibrations instance with the schedules.
backend: Optional, the backend to run the experiment on.
schedule_name: The name of the schedule to calibrate. Defaults to "x".
betas: A list of DRAG parameter values to scan. If None is given 51 betas ranging
from -5 to 5 will be scanned.
cal_parameter_name: The name of the parameter in the schedule to update.
Defaults to "β".
auto_update: Whether or not to automatically update the calibrations. By
default this variable is set to True.
group: The group of calibration parameters to use. The default value is "default".
"""
qubit = physical_qubits[0]
schedule = calibrations.get_schedule(
schedule_name, qubit, assign_params={cal_parameter_name: Parameter("β")}, group=group
)
self._validate_channels(schedule, [qubit])
self._validate_parameters(schedule, 1)
super().__init__(
calibrations,
physical_qubits,
schedule=schedule,
betas=betas,
backend=backend,
schedule_name=schedule_name,
cal_parameter_name=cal_parameter_name,
auto_update=auto_update,
)
def _metadata(self) -> Dict[str, any]:
"""Add metadata to the experiment data making it more self contained.
The following keys are added to each experiment's metadata:
cal_param_value: The value of the previous calibrated beta.
cal_param_name: The name of the parameter in the calibrations.
cal_schedule: The name of the schedule in the calibrations.
cal_group: The calibration group to which the parameter belongs.
"""
metadata = super()._metadata()
metadata["cal_param_value"] = self._cals.get_parameter_value(
self._param_name, self.physical_qubits, self._sched_name, self.experiment_options.group
)
return metadata
def _attach_calibrations(self, circuit: QuantumCircuit):
"""RoughDrag already has the schedules attached in the program circuits."""
pass
def update_calibrations(self, experiment_data: ExperimentData):
"""Update the beta using the value directly reported from the fit.
See :class:`.DragCalAnalysis` for details on the fit.
"""
new_beta = BaseUpdater.get_value(
experiment_data, "beta", self.experiment_options.result_index
)
BaseUpdater.add_parameter_value(
self._cals,
experiment_data,
new_beta,
self._param_name,
self._sched_name,
self.experiment_options.group,
)
| qiskit-experiments/qiskit_experiments/library/calibration/rough_drag_cal.py/0 | {
"file_path": "qiskit-experiments/qiskit_experiments/library/calibration/rough_drag_cal.py",
"repo_id": "qiskit-experiments",
"token_count": 1762
} | 109 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2021, 2022.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Tphi Analysis class.
"""
from typing import List, Tuple
from qiskit_experiments.framework import ExperimentData, AnalysisResultData
from qiskit_experiments.framework.composite.composite_analysis import CompositeAnalysis
from qiskit_experiments.library.characterization.analysis import (
T1Analysis,
T2HahnAnalysis,
T2RamseyAnalysis,
)
from qiskit_experiments.exceptions import QiskitError
class TphiAnalysis(CompositeAnalysis):
r"""A class to analyze :math:`T_\phi` experiments.
# section: see_also
* :py:class:`qiskit_experiments.library.characterization.analysis.T1Analysis`
* :py:class:`qiskit_experiments.library.characterization.analysis.T2HahnAnalysis`
* :py:class:`qiskit_experiments.library.characterization.analysis.T2RamseyAnalysis`
"""
def __init__(self, analyses=None):
if analyses is None:
analyses = [T1Analysis(), T2HahnAnalysis()]
# Validate analyses kwarg
if (
len(analyses) != 2
or not isinstance(analyses[0], T1Analysis)
or not isinstance(analyses[1], (T2RamseyAnalysis, T2HahnAnalysis))
):
raise QiskitError(
"Invalid component analyses for Tphi, analyses must be a pair of "
"T1Analysis and T2HahnAnalysis or T2RamseyAnalysis instances."
)
super().__init__(analyses, flatten_results=True)
def _run_analysis(
self, experiment_data: ExperimentData
) -> Tuple[List[AnalysisResultData], List["matplotlib.figure.Figure"]]:
r"""Run analysis for :math:`T_\phi` experiment.
It invokes CompositeAnalysis._run_analysis that will invoke
_run_analysis for the two sub-experiments.
Based on the results, it computes the result for :math:`T_phi`.
"""
# Run composite analysis and extract T1 and T2 results
analysis_results, figures = super()._run_analysis(experiment_data)
t1_result = next(filter(lambda res: res.name == "T1", analysis_results))
t2_result = next(filter(lambda res: res.name in {"T2star", "T2"}, analysis_results))
# Calculate Tphi from T1 and T2
tphi = 1 / (1 / t2_result.value - 1 / (2 * t1_result.value))
quality_tphi = (
"good" if (t1_result.quality == "good" and t2_result.quality == "good") else "bad"
)
tphi_result = AnalysisResultData(
name="T_phi",
value=tphi,
chisq=None,
quality=quality_tphi,
extra={"unit": "s"},
)
# Return combined results
analysis_results = [tphi_result] + analysis_results
return analysis_results, figures
| qiskit-experiments/qiskit_experiments/library/characterization/analysis/tphi_analysis.py/0 | {
"file_path": "qiskit-experiments/qiskit_experiments/library/characterization/analysis/tphi_analysis.py",
"repo_id": "qiskit-experiments",
"token_count": 1244
} | 110 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Spectroscopy experiment class for resonators."""
from typing import Iterable, Optional, Sequence, Tuple
import numpy as np
from qiskit import QuantumCircuit
from qiskit import pulse
from qiskit.circuit import Parameter
from qiskit.exceptions import QiskitError
from qiskit.providers import Backend
from qiskit_experiments.framework import BackendData, BackendTiming, Options
from qiskit_experiments.library.characterization.spectroscopy import Spectroscopy
from qiskit_experiments.database_service import Resonator
from .analysis.resonator_spectroscopy_analysis import ResonatorSpectroscopyAnalysis
class ResonatorSpectroscopy(Spectroscopy):
"""An experiment to perform frequency spectroscopy of the readout resonator.
# section: overview
This experiment does spectroscopy on the readout resonator. It applies the following
circuit
.. parsed-literal::
┌─┐
q: ┤M├
└╥┘
c: 1/═╩═
0
where a spectroscopy pulse is attached to the measurement instruction. An initial circuit
can be added before the measurement by setting the ``initial_circuit`` experiment option. If
set, the experiment applies the following circuit:
.. parsed-literal::
┌─────────────────┐┌─┐
q: ┤ initial_circuit ├┤M├
└─────────────────┘└╥┘
c: 1/════════════════════╩═
0
Side note 1: when doing readout resonator spectroscopy, each measured IQ point has a
frequency dependent phase. Close to the resonance, the IQ points start rotating around
in the IQ plan. This effect must be accounted for in the data processing to produce a
meaningful signal. The default data processing workflow will therefore reduce the two-
dimensional IQ data to one-dimensional data using the magnitude of each IQ point.
Side node 2: when running readout resonator spectroscopy in a parallel experiment the
user will need to specify the memory slot to use. This can easily be done with the code
shown below.
.. code::
specs = []
for slot, qubit in enumerate(qubits):
specs.append(ResonatorSpectroscopy(
physical_qubits=[qubit],
backend=backend2,
memory_slot=slot,
))
exp = ParallelExperiment(specs, backend=backend2)
# section: warning
Some backends may not have the required functionality to properly support resonator
spectroscopy experiments. The experiment may not work or the resulting resonance
may not properly reflect the properties of the readout resonator.
# section: example
The resonator spectroscopy experiment can be run by doing:
.. code:: python
qubit = 1
spec = ResonatorSpectroscopy([qubit], backend)
exp_data = spec.run().block_for_results()
exp_data.figure(0)
This will measure the resonator attached to qubit 1 and report the resonance frequency
as well as the kappa, i.e. the line width, of the resonator.
# section: analysis_ref
:class:`ResonatorSpectroscopyAnalysis`
"""
@classmethod
def _default_experiment_options(cls) -> Options:
"""Default option values used for the spectroscopy pulse.
All units of the resonator spectroscopy experiment are given in seconds.
Experiment Options:
amp (float): The amplitude of the spectroscopy pulse. Defaults to 1 and must
be between 0 and 1.
duration (float): The duration in seconds of the spectroscopy pulse.
sigma (float): The standard deviation of the spectroscopy pulse in seconds.
width (float): The width of the flat-top part of the GaussianSquare pulse in
seconds.
initial_circuit (QuantumCircuit): A single-qubit initial circuit to run before the
measurement/spectroscopy pulse. The circuit must contain only a single qubit and zero
classical bits. If None, no circuit is appended before the measurement. Defaults to None.
memory_slot (int): The memory slot that the acquire instruction uses in the pulse schedule.
The default value is ``0``. This argument allows the experiment to function in a
:class:`.ParallelExperiment`.
"""
options = super()._default_experiment_options()
options.amp = 1
options.duration = 480e-9
options.sigma = 60e-9
options.width = 360e-9
options.initial_circuit = None
options.memory_slot = 0
return options
def set_experiment_options(self, **fields):
# Check that the initial circuit is for a single qubit only.
if "initial_circuit" in fields:
initial_circuit = fields["initial_circuit"]
if (
initial_circuit is not None
and initial_circuit.num_qubits != 1
or initial_circuit.num_clbits != 0
):
raise QiskitError(
"Initial circuit must be for exactly one qubit and zero classical bits. Got "
f"{initial_circuit.num_qubits} qubits and {initial_circuit.num_clbits} "
"classical bits instead."
)
return super().set_experiment_options(**fields)
def __init__(
self,
physical_qubits: Sequence[int],
backend: Optional[Backend] = None,
frequencies: Optional[Iterable[float]] = None,
absolute: bool = True,
**experiment_options,
):
"""Initialize a resonator spectroscopy experiment.
A spectroscopy experiment run by setting the frequency of the readout drive.
The parameters of the GaussianSquare spectroscopy pulse can be specified at run-time
through the experiment options.
Args:
physical_qubits: List containing the resonator on which to run readout
spectroscopy.
backend: Optional, the backend to run the experiment on.
frequencies: The frequencies to scan in the experiment, in Hz. The default values
range from -20 MHz to 20 MHz in 51 steps. If the ``absolute`` variable is
set to True then a center frequency obtained from the backend's defaults is
added to each value of this range.
absolute: Boolean to specify if the frequencies are absolute or relative to the
resonator frequency in the backend. The default value is True.
experiment_options: Key word arguments used to set the experiment options.
Raises:
QiskitError: If no frequencies are given and absolute frequencies are desired and
no backend is given or the backend does not have default measurement frequencies.
"""
analysis = ResonatorSpectroscopyAnalysis()
if frequencies is None:
frequencies = np.linspace(-20.0e6, 20.0e6, 51)
if absolute:
frequencies += self._get_backend_meas_freq(
BackendData(backend) if backend is not None else None,
physical_qubits[0],
)
super().__init__(
physical_qubits, frequencies, backend, absolute, analysis, **experiment_options
)
@staticmethod
def _get_backend_meas_freq(backend_data: Optional[BackendData], qubit: int) -> float:
"""Get backend meas_freq with error checking"""
if backend_data is None:
raise QiskitError(
"Cannot automatically compute absolute frequencies without a backend."
)
if len(backend_data.meas_freqs) < qubit + 1:
raise QiskitError(
"Cannot retrieve default measurement frequencies from backend. "
"Please set frequencies explicitly or set `absolute` to `False`."
)
return backend_data.meas_freqs[qubit]
@property
def _backend_center_frequency(self) -> float:
"""Returns the center frequency of the experiment.
Returns:
The center frequency of the experiment.
Raises:
QiskitError: If the experiment does not have a backend set.
"""
return self._get_backend_meas_freq(self._backend_data, self.physical_qubits[0])
def _template_circuit(self) -> QuantumCircuit:
"""Return the template quantum circuit."""
circuit = QuantumCircuit(1, 1)
if self.experiment_options.initial_circuit is not None:
circuit.append(self.experiment_options.initial_circuit, [0])
circuit.measure(0, 0)
return circuit
def _schedule(self) -> Tuple[pulse.ScheduleBlock, Parameter]:
"""Create the spectroscopy schedule."""
timing = BackendTiming(self.backend)
if timing.dt is None:
raise QiskitError(f"{self.__class__.__name__} requires a backend with a dt value.")
duration = timing.round_pulse(time=self.experiment_options.duration)
sigma = self.experiment_options.sigma / timing.dt
width = self.experiment_options.width / timing.dt
qubit = self.physical_qubits[0]
freq_param = Parameter("frequency")
with pulse.build(backend=self.backend, name="spectroscopy") as schedule:
pulse.shift_frequency(freq_param, pulse.MeasureChannel(qubit))
pulse.play(
pulse.GaussianSquare(
duration=duration,
amp=self.experiment_options.amp,
sigma=sigma,
width=width,
),
pulse.MeasureChannel(qubit),
)
pulse.acquire(duration, qubit, pulse.MemorySlot(self.experiment_options.memory_slot))
return schedule, freq_param
def _metadata(self):
"""Update metadata with the resonator components."""
metadata = super()._metadata()
metadata["device_components"] = list(map(Resonator, self.physical_qubits))
return metadata
def circuits(self):
"""Create the circuit for the spectroscopy experiment.
The circuits are based on a GaussianSquare pulse and a frequency_shift instruction
encapsulated in a measurement instruction.
Returns:
circuits: The circuits that will run the spectroscopy experiment.
"""
sched, freq_param = self._schedule()
circs = []
for freq in self._frequencies:
freq_shift = freq - self._backend_center_frequency if self._absolute else freq
freq_shift = np.round(freq_shift, decimals=3)
sched_ = sched.assign_parameters({freq_param: freq_shift}, inplace=False)
circuit = self._template_circuit()
circuit.add_calibration("measure", self.physical_qubits, sched_)
self._add_metadata(circuit, freq)
circs.append(circuit)
return circs
| qiskit-experiments/qiskit_experiments/library/characterization/resonator_spectroscopy.py/0 | {
"file_path": "qiskit-experiments/qiskit_experiments/library/characterization/resonator_spectroscopy.py",
"repo_id": "qiskit-experiments",
"token_count": 4685
} | 111 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Quantum Volume Experiment class.
"""
from typing import Union, Sequence, Optional, List
from numpy.random import Generator, default_rng
from numpy.random.bit_generator import BitGenerator, SeedSequence
from qiskit.utils.optionals import HAS_AER
from qiskit import QuantumCircuit
from qiskit.circuit.library import QuantumVolume as QuantumVolumeCircuit
from qiskit import transpile
from qiskit.providers.backend import Backend
from qiskit_experiments.framework import BaseExperiment, Options
from .qv_analysis import QuantumVolumeAnalysis
class QuantumVolume(BaseExperiment):
"""An experiment to measure the largest random square circuit that can be run on a processor.
# section: overview
Quantum Volume (QV) is a single-number metric that can be measured using a concrete protocol
on near-term quantum computers of modest size. The QV method quantifies the largest random
circuit of equal width and depth that the computer successfully implements.
Quantum computing systems with high-fidelity operations, high connectivity,
large calibrated gate sets, and circuit rewriting toolchains are expected to
have higher quantum volumes.
The Quantum Volume is determined by the largest circuit depth :math:`d_{max}`,
and equals to :math:`2^{d_{max}}`.
See the `Qiskit Textbook
<https://github.com/Qiskit/textbook/blob/main/notebooks/quantum-hardware/measuring-quantum-volume.ipynb>`_
for an explanation on the QV protocol.
In the QV experiment we generate :class:`~qiskit.circuit.library.QuantumVolume` circuits on
:math:`d` qubits, which contain :math:`d` layers, where each layer consists of random 2-qubit
unitary gates from :math:`SU(4)`, followed by a random permutation on the :math:`d` qubits.
Then these circuits run on the quantum backend and on an ideal simulator (either
:class:`~qiskit_aer.AerSimulator` or :class:`~qiskit.quantum_info.Statevector`).
A depth :math:`d` QV circuit is successful if it has `mean heavy-output probability` > 2/3 with
confidence level > 0.977 (corresponding to z_value = 2), and at least 100 trials have been ran.
See :class:`QuantumVolumeAnalysis` documentation for additional
information on QV experiment analysis.
# section: analysis_ref
:class:`QuantumVolumeAnalysis`
# section: manual
:doc:`/manuals/verification/quantum_volume`
# section: reference
.. ref_arxiv:: 1 1811.12926
.. ref_arxiv:: 2 2008.08571
"""
def __init__(
self,
physical_qubits: Sequence[int],
backend: Optional[Backend] = None,
trials: Optional[int] = 100,
seed: Optional[Union[int, SeedSequence, BitGenerator, Generator]] = None,
simulation_backend: Optional[Backend] = None,
):
"""Initialize a quantum volume experiment.
Args:
physical_qubits: list of physical qubits for the experiment.
backend: Optional, the backend to run the experiment on.
trials: The number of trials to run the quantum volume circuit.
seed: Optional, seed used to initialize ``numpy.random.default_rng``
when generating circuits. The ``default_rng`` will be initialized
with this seed value every time :meth:`circuits` is called.
simulation_backend: The simulator backend to use to generate
the expected results. the simulator must have a 'save_probabilities'
method. If None, the :class:`qiskit_aer.AerSimulator` simulator will be used
(in case :external+qiskit_aer:doc:`qiskit-aer <index>` is not
installed, :class:`qiskit.quantum_info.Statevector` will be used).
"""
super().__init__(physical_qubits, analysis=QuantumVolumeAnalysis(), backend=backend)
# Set configurable options
self.set_experiment_options(trials=trials, seed=seed)
if not simulation_backend and HAS_AER:
from qiskit_aer import AerSimulator
self._simulation_backend = AerSimulator()
else:
self._simulation_backend = simulation_backend
@classmethod
def _default_experiment_options(cls) -> Options:
"""Default experiment options.
Experiment Options:
trials (int): Optional, number of times to generate new Quantum Volume
circuits and calculate their heavy output.
seed (None or int or SeedSequence or BitGenerator or Generator): A seed
used to initialize ``numpy.random.default_rng`` when generating circuits.
The ``default_rng`` will be initialized with this seed value every time
:meth:`circuits` is called.
"""
options = super()._default_experiment_options()
options.trials = 100
options.seed = None
return options
def _get_ideal_data(self, circuit: QuantumCircuit, **run_options) -> List[float]:
"""Return ideal measurement probabilities.
In case the user does not have Aer installed, use Qiskit's quantum info module
to calculate the ideal state.
Args:
circuit: the circuit to extract the ideal data from
run_options: backend run options.
Returns:
list: list of the probabilities for each state in the circuit.
"""
ideal_circuit = circuit.remove_final_measurements(inplace=False)
if self._simulation_backend:
ideal_circuit.save_probabilities()
# always transpile with optimization_level 0, even if the non ideal circuits will run
# with different optimization level, because we need to compare the results to the
# exact generated probabilities
ideal_circuit = transpile(ideal_circuit, self._simulation_backend, optimization_level=0)
ideal_result = self._simulation_backend.run(ideal_circuit, **run_options).result()
probabilities = ideal_result.data().get("probabilities")
else:
from qiskit.quantum_info import Statevector
state_vector = Statevector(ideal_circuit)
probabilities = state_vector.probabilities()
return list(probabilities)
def circuits(self) -> List[QuantumCircuit]:
"""Return a list of Quantum Volume circuits.
Returns:
A list of :class:`QuantumCircuit`.
"""
rng = default_rng(seed=self.experiment_options.seed)
circuits = []
depth = self._num_qubits
# Note: the trials numbering in the metadata is starting from 1 for each new experiment run
for trial in range(1, self.experiment_options.trials + 1):
qv_circ = QuantumVolumeCircuit(depth, depth, seed=rng)
qv_circ.measure_active()
qv_circ.metadata = {
"depth": depth,
"trial": trial,
"ideal_probabilities": self._get_ideal_data(qv_circ),
}
circuits.append(qv_circ)
return circuits
| qiskit-experiments/qiskit_experiments/library/quantum_volume/qv_experiment.py/0 | {
"file_path": "qiskit-experiments/qiskit_experiments/library/quantum_volume/qv_experiment.py",
"repo_id": "qiskit-experiments",
"token_count": 2851
} | 112 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Standard RB Experiment class.
"""
import functools
import logging
from collections import defaultdict
from numbers import Integral
from typing import Union, Iterable, Optional, List, Sequence, Dict, Any
import numpy as np
import rustworkx as rx
from numpy.random import Generator, default_rng
from numpy.random.bit_generator import BitGenerator, SeedSequence
from qiskit.circuit import CircuitInstruction, QuantumCircuit, Instruction, Barrier, Gate
from qiskit.exceptions import QiskitError
from qiskit.providers import BackendV2Converter
from qiskit.providers.backend import Backend, BackendV1, BackendV2
from qiskit.pulse.instruction_schedule_map import CalibrationPublisher
from qiskit.quantum_info import Clifford
from qiskit.quantum_info.random import random_clifford
from qiskit.transpiler import CouplingMap
from qiskit_experiments.framework import BaseExperiment, Options
from qiskit_experiments.framework.restless_mixin import RestlessMixin
from .clifford_utils import (
CliffordUtils,
DEFAULT_SYNTHESIS_METHOD,
compose_1q,
compose_2q,
inverse_1q,
inverse_2q,
_clifford_1q_int_to_instruction,
_clifford_2q_int_to_instruction,
_clifford_to_instruction,
_transpile_clifford_circuit,
)
from .rb_analysis import RBAnalysis
LOG = logging.getLogger(__name__)
SequenceElementType = Union[Clifford, Integral, QuantumCircuit]
class StandardRB(BaseExperiment, RestlessMixin):
"""An experiment to characterize the error rate of a gate set on a device.
# section: overview
Randomized Benchmarking (RB) is an efficient and robust method
for estimating the average error rate of a set of quantum gate operations.
See `Qiskit Textbook
<https://github.com/Qiskit/textbook/blob/main/notebooks/quantum-hardware/randomized-benchmarking.ipynb>`_
for an explanation on the RB method.
A standard RB experiment generates sequences of random Cliffords
such that the unitary computed by the sequences is the identity.
After running the sequences on a backend, it calculates the probabilities to get back to
the ground state, fits an exponentially decaying curve, and estimates
the Error Per Clifford (EPC), as described in Refs. [1, 2].
.. note::
In 0.5.0, the default value of ``optimization_level`` in ``transpile_options`` changed
from ``0`` to ``1`` for RB experiments. That may result in shorter RB circuits
hence slower decay curves than before.
# section: analysis_ref
:class:`RBAnalysis`
# section: manual
:doc:`/manuals/verification/randomized_benchmarking`
# section: reference
.. ref_arxiv:: 1 1009.3639
.. ref_arxiv:: 2 1109.6887
"""
def __init__(
self,
physical_qubits: Sequence[int],
lengths: Iterable[int],
backend: Optional[Backend] = None,
num_samples: int = 3,
seed: Optional[Union[int, SeedSequence, BitGenerator, Generator]] = None,
full_sampling: Optional[bool] = False,
):
"""Initialize a standard randomized benchmarking experiment.
Args:
physical_qubits: List of physical qubits for the experiment.
lengths: A list of RB sequences lengths.
backend: The backend to run the experiment on.
num_samples: Number of samples to generate for each sequence length.
seed: Optional, seed used to initialize ``numpy.random.default_rng``.
when generating circuits. The ``default_rng`` will be initialized
with this seed value every time :meth:`circuits` is called.
full_sampling: If True all Cliffords are independently sampled for all lengths.
If False for sample of lengths longer sequences are constructed
by appending additional samples to shorter sequences.
The default is False.
Raises:
QiskitError: If any invalid argument is supplied.
"""
# Initialize base experiment
super().__init__(physical_qubits, analysis=RBAnalysis(), backend=backend)
# Verify parameters
if any(length <= 0 for length in lengths):
raise QiskitError(
f"The lengths list {lengths} should only contain " "positive elements."
)
if len(set(lengths)) != len(lengths):
raise QiskitError(
f"The lengths list {lengths} should not contain " "duplicate elements."
)
if num_samples <= 0:
raise QiskitError(f"The number of samples {num_samples} should " "be positive.")
# Set configurable options
self.set_experiment_options(
lengths=sorted(lengths), num_samples=num_samples, seed=seed, full_sampling=full_sampling
)
self.analysis.set_options(outcome="0" * self.num_qubits)
@classmethod
def _default_experiment_options(cls) -> Options:
"""Default experiment options.
Experiment Options:
lengths (List[int]): A list of RB sequences lengths.
num_samples (int): Number of samples to generate for each sequence length.
seed (None or int or SeedSequence or BitGenerator or Generator): A seed
used to initialize ``numpy.random.default_rng`` when generating circuits.
The ``default_rng`` will be initialized with this seed value every time
:meth:`circuits` is called.
full_sampling (bool): If True all Cliffords are independently sampled for
all lengths. If False for sample of lengths longer sequences are constructed
by appending additional Clifford samples to shorter sequences.
clifford_synthesis_method (str): The name of the Clifford synthesis plugin to use
for building circuits of RB sequences.
"""
options = super()._default_experiment_options()
options.update_options(
lengths=None,
num_samples=None,
seed=None,
full_sampling=None,
clifford_synthesis_method=DEFAULT_SYNTHESIS_METHOD,
)
return options
@classmethod
def _default_transpile_options(cls) -> Options:
"""Default transpiler options for transpiling RB circuits."""
return Options(optimization_level=1)
def _set_backend(self, backend: Backend):
"""Set the backend V2 for RB experiments since RB experiments only support BackendV2
except for simulators. If BackendV1 is provided, it is converted to V2 and stored.
"""
if isinstance(backend, BackendV1) and "simulator" not in backend.name():
super()._set_backend(BackendV2Converter(backend, add_delay=True))
else:
super()._set_backend(backend)
def circuits(self) -> List[QuantumCircuit]:
"""Return a list of RB circuits.
Returns:
A list of :class:`QuantumCircuit`.
"""
# Sample random Clifford sequences
sequences = self._sample_sequences()
# Convert each sequence into circuit and append the inverse to the end.
circuits = self._sequences_to_circuits(sequences)
# Add metadata for each circuit
for circ, seq in zip(circuits, sequences):
circ.metadata = {
"xval": len(seq),
"group": "Clifford",
}
return circuits
def _sample_sequences(self) -> List[Sequence[SequenceElementType]]:
"""Sample RB sequences
Returns:
A list of RB sequences.
"""
rng = default_rng(seed=self.experiment_options.seed)
sequences = []
if self.experiment_options.full_sampling:
for _ in range(self.experiment_options.num_samples):
for length in self.experiment_options.lengths:
sequences.append(self.__sample_sequence(length, rng))
else:
for _ in range(self.experiment_options.num_samples):
longest_seq = self.__sample_sequence(max(self.experiment_options.lengths), rng)
for length in self.experiment_options.lengths:
sequences.append(longest_seq[:length])
return sequences
def _get_synthesis_options(self) -> Dict[str, Optional[Any]]:
"""Get options for Clifford synthesis from the backend information as a dictionary.
The options include:
- "basis_gates": Sorted basis gate names.
Return None if no basis gates are supplied via ``backend`` or ``transpile_options``.
- "coupling_tuple": Reduced coupling map in the form of tuple of edges in the coupling graph.
Return None if no coupling map are supplied via ``backend`` or ``transpile_options``.
Returns:
Synthesis options as a dictionary.
"""
basis_gates = self.transpile_options.get("basis_gates", [])
coupling_map = self.transpile_options.get("coupling_map", None)
if coupling_map:
coupling_map = coupling_map.reduce(self.physical_qubits)
if not (basis_gates and coupling_map) and self.backend:
if isinstance(self.backend, BackendV2) and "simulator" in self.backend.name:
basis_gates = basis_gates if basis_gates else self.backend.target.operation_names
coupling_map = coupling_map if coupling_map else None
elif isinstance(self.backend, BackendV2):
gate_ops = [op for op in self.backend.target.operations if isinstance(op, Gate)]
backend_basis_gates = [op.name for op in gate_ops if op.num_qubits != 2]
backend_cmap = None
for op in gate_ops:
if op.num_qubits != 2:
continue
cmap = self.backend.target.build_coupling_map(op.name)
if cmap is None:
backend_basis_gates.append(op.name)
else:
reduced = cmap.reduce(self.physical_qubits)
if rx.is_weakly_connected(reduced.graph):
backend_basis_gates.append(op.name)
backend_cmap = reduced
# take the first non-global 2q gate if backend has multiple 2q gates
break
basis_gates = basis_gates if basis_gates else backend_basis_gates
coupling_map = coupling_map if coupling_map else backend_cmap
elif isinstance(self.backend, BackendV1):
backend_basis_gates = self.backend.configuration().basis_gates
backend_cmap = self.backend.configuration().coupling_map
if backend_cmap:
backend_cmap = CouplingMap(backend_cmap).reduce(self.physical_qubits)
basis_gates = basis_gates if basis_gates else backend_basis_gates
coupling_map = coupling_map if coupling_map else backend_cmap
return {
"basis_gates": tuple(sorted(basis_gates)) if basis_gates else None,
"coupling_tuple": tuple(sorted(coupling_map.get_edges())) if coupling_map else None,
"synthesis_method": self.experiment_options["clifford_synthesis_method"],
}
def _sequences_to_circuits(
self, sequences: List[Sequence[SequenceElementType]]
) -> List[QuantumCircuit]:
"""Convert an RB sequence into circuit and append the inverse to the end.
Returns:
A list of RB circuits.
"""
synthesis_opts = self._get_synthesis_options()
# Circuit generation
circuits = []
for i, seq in enumerate(sequences):
if (
self.experiment_options.full_sampling
or i % len(self.experiment_options.lengths) == 0
):
prev_elem, prev_seq = self.__identity_clifford(), []
circ = QuantumCircuit(self.num_qubits)
for elem in seq:
circ.append(self._to_instruction(elem, synthesis_opts), circ.qubits)
circ._append(CircuitInstruction(Barrier(self.num_qubits), circ.qubits))
# Compute inverse, compute only the difference from the previous shorter sequence
prev_elem = self.__compose_clifford_seq(prev_elem, seq[len(prev_seq) :])
prev_seq = seq
inv = self.__adjoint_clifford(prev_elem)
circ.append(self._to_instruction(inv, synthesis_opts), circ.qubits)
circ.measure_all() # includes insertion of the barrier before measurement
circuits.append(circ)
return circuits
def __sample_sequence(self, length: int, rng: Generator) -> Sequence[SequenceElementType]:
# Sample an RB sequence with the given length.
# Return integer instead of Clifford object for 1 or 2 qubits case for speed
if self.num_qubits == 1:
return rng.integers(CliffordUtils.NUM_CLIFFORD_1_QUBIT, size=length)
if self.num_qubits == 2:
return rng.integers(CliffordUtils.NUM_CLIFFORD_2_QUBIT, size=length)
# Return Clifford object for 3 or more qubits case
return [random_clifford(self.num_qubits, rng) for _ in range(length)]
def _to_instruction(
self,
elem: SequenceElementType,
synthesis_options: Dict[str, Optional[Any]],
) -> Instruction:
"""Return the instruction of a Clifford element.
The resulting instruction contains a circuit definition with ``basis_gates`` and
it complies with ``coupling_tuple``, which is specified in ``synthesis_options``.
Args:
elem: a Clifford element to be converted
synthesis_options: options for synthesizing the Clifford element
Returns:
Converted instruction
"""
# Switching for speed up
if isinstance(elem, Integral):
if self.num_qubits == 1:
return _clifford_1q_int_to_instruction(
elem,
basis_gates=synthesis_options["basis_gates"],
synthesis_method=synthesis_options["synthesis_method"],
)
if self.num_qubits == 2:
return _clifford_2q_int_to_instruction(elem, **synthesis_options)
return _clifford_to_instruction(elem, **synthesis_options)
def __identity_clifford(self) -> SequenceElementType:
if self.num_qubits <= 2:
return 0
return Clifford(np.eye(2 * self.num_qubits))
def __compose_clifford_seq(
self, base_elem: SequenceElementType, elements: Sequence[SequenceElementType]
) -> SequenceElementType:
if self.num_qubits <= 2:
return functools.reduce(
compose_1q if self.num_qubits == 1 else compose_2q, elements, base_elem
)
# 3 or more qubits
res = base_elem
for elem in elements:
res = res.compose(elem)
return res
def __adjoint_clifford(self, op: SequenceElementType) -> SequenceElementType:
if self.num_qubits == 1:
return inverse_1q(op)
if self.num_qubits == 2:
return inverse_2q(op)
if isinstance(op, QuantumCircuit):
return Clifford.from_circuit(op).adjoint()
return op.adjoint()
def _transpiled_circuits(self) -> List[QuantumCircuit]:
"""Return a list of experiment circuits, transpiled."""
has_custom_transpile_option = (
not set(vars(self.transpile_options)).issubset(
{"basis_gates", "coupling_map", "optimization_level"}
)
or self.transpile_options.get("optimization_level", 1) != 1
)
if has_custom_transpile_option:
transpiled = super()._transpiled_circuits()
else:
transpiled = [
_transpile_clifford_circuit(circ, physical_qubits=self.physical_qubits)
for circ in self.circuits()
]
# Set custom calibrations provided in backend (excluding simulators)
if isinstance(self.backend, BackendV2) and "simulator" not in self.backend.name:
qargs_patterns = [self.physical_qubits] # for 1q or 3q+ case
if self.num_qubits == 2:
qargs_patterns = [
(self.physical_qubits[0],),
(self.physical_qubits[1],),
self.physical_qubits,
(self.physical_qubits[1], self.physical_qubits[0]),
]
qargs_supported = self.backend.target.qargs
instructions = [] # (op_name, qargs) for each element where qargs means qubit tuple
for qargs in qargs_patterns:
if qargs in qargs_supported:
for op_name in self.backend.target.operation_names_for_qargs(qargs):
instructions.append((op_name, qargs))
common_calibrations = defaultdict(dict)
for op_name, qargs in instructions:
inst_prop = self.backend.target[op_name].get(qargs, None)
if inst_prop is None:
continue
schedule = inst_prop.calibration
if schedule is None:
continue
publisher = schedule.metadata.get("publisher", CalibrationPublisher.QISKIT)
if publisher != CalibrationPublisher.BACKEND_PROVIDER:
common_calibrations[op_name][(qargs, tuple())] = schedule
for circ in transpiled:
# This logic is inefficient in terms of payload size and backend compilation
# because this binds every custom pulse to a circuit regardless of
# its existence. It works but redundant calibration must be removed -- NK.
circ.calibrations = common_calibrations
if self.analysis.options.get("gate_error_ratio", None) is None:
# Gate errors are not computed, then counting ops is not necessary.
return transpiled
# Compute average basis gate numbers per Clifford operation
# This is probably main source of performance regression.
# This should be integrated into transpile pass in future.
qubit_indices = {bit: index for index, bit in enumerate(transpiled[0].qubits)}
for circ in transpiled:
count_ops_result = defaultdict(int)
# This is physical circuits, i.e. qargs is physical index
for inst, qargs, _ in circ.data:
if inst.name in ("measure", "reset", "delay", "barrier", "snapshot"):
continue
qinds = [qubit_indices[q] for q in qargs]
if not set(self.physical_qubits).issuperset(qinds):
continue
# Not aware of multi-qubit gate direction
formatted_key = tuple(sorted(qinds)), inst.name
count_ops_result[formatted_key] += 1
circ.metadata["count_ops"] = tuple(count_ops_result.items())
return transpiled
def _metadata(self):
metadata = super()._metadata()
# Store measurement level and meas return if they have been
# set for the experiment
for run_opt in ["meas_level", "meas_return"]:
if hasattr(self.run_options, run_opt):
metadata[run_opt] = getattr(self.run_options, run_opt)
return metadata
| qiskit-experiments/qiskit_experiments/library/randomized_benchmarking/standard_rb.py/0 | {
"file_path": "qiskit-experiments/qiskit_experiments/library/randomized_benchmarking/standard_rb.py",
"repo_id": "qiskit-experiments",
"token_count": 8751
} | 113 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Readout error mitigated tomography analysis
"""
from qiskit_experiments.framework import CompositeAnalysis
from qiskit_experiments.library.characterization import LocalReadoutErrorAnalysis
from .tomography_analysis import TomographyAnalysis
from .basis.pauli_basis import PauliMeasurementBasis
class MitigatedTomographyAnalysis(CompositeAnalysis):
"""Analysis for readout error mitigated tomography experiments.
Analysis is performed as a :class:`.CompositeAnalysis` consisting
of :class:`.LocalReadoutErrorAnalysis` to determine the local
assignment matrices describing single qubit Z-basis readout errors,
and then these matrices are used to automatically construct a noisy
:class:`~.PauliMeasurementBasis` for use during tomographic
fitting with the tomography analysis.
"""
def __init__(self, roerror_analysis="default", tomography_analysis="default"):
"""Initialize mitigated tomography analysis"""
if roerror_analysis == "default":
roerror_analysis = LocalReadoutErrorAnalysis()
if tomography_analysis == "default":
tomography_analysis = TomographyAnalysis()
super().__init__([roerror_analysis, tomography_analysis], flatten_results=True)
@classmethod
def _default_options(cls):
"""Default analysis options
Analysis Options:
fitter (str or Callable): The fitter function to use for reconstruction.
This can be a string to select one of the built-in fitters, or a callable to
supply a custom fitter function. See the `Fitter Functions` section for
additional information.
fitter_options (dict): Any addition kwarg options to be supplied to the fitter
function. For documentation of available kwargs refer to the fitter function
documentation.
rescale_positive (bool): If True rescale the state returned by the fitter
to be positive-semidefinite. See the `PSD Rescaling` section for
additional information (Default: True).
rescale_trace (bool): If True rescale the state returned by the fitter
have either trace 1 for :class:`~qiskit.quantum_info.DensityMatrix`,
or trace dim for :class:`~qiskit.quantum_info.Choi` matrices (Default: True).
measurement_qubits (Sequence[int]): Optional, the physical qubits with tomographic
measurements. If not specified will be set to ``[0, ..., N-1]`` for N-qubit
tomographic measurements.
preparation_qubits (Sequence[int]): Optional, the physical qubits with tomographic
preparations. If not specified will be set to ``[0, ..., N-1]`` for N-qubit
tomographic preparations.
unmitigated_fit (bool): If True also run tomography fit without readout error
mitigation and include both mitigated and unmitigated analysis results. If
False only compute mitigated results (Default: False)
target (Any): Optional, target object for fidelity comparison of the fit
(Default: None).
"""
# Override options to be tomography options minus bases
options = super()._default_options()
options.fitter = "linear_inversion"
options.fitter_options = {}
options.rescale_positive = True
options.rescale_trace = True
options.measurement_qubits = None
options.preparation_qubits = None
options.unmitigated_fit = False
options.target = None
return options
def set_options(self, **fields):
# filter fields
self_fields = {key: val for key, val in fields.items() if hasattr(self.options, key)}
super().set_options(**self_fields)
tomo_fields = {
key: val for key, val in fields.items() if hasattr(self._analyses[1].options, key)
}
self._analyses[1].set_options(**tomo_fields)
def _run_analysis(self, experiment_data):
# Return list of experiment data containers for each component experiment
# containing the marginalized data from the composite experiment
roerror_analysis, tomo_analysis = self._analyses
roerror_data, tomo_data = self._component_experiment_data(experiment_data)
# Run readout error analysis
roerror_analysis.run(roerror_data, replace_results=True).block_for_results()
# Construct noisy measurement basis
mitigator = roerror_data.analysis_results("Local Readout Mitigator").value
# Run mitigated tomography analysis with noisy mitigated basis
# Tomo analysis instance is internally copied by setting option with run.
tomo_analysis.run(
tomo_data,
replace_results=True,
measurement_basis=PauliMeasurementBasis(mitigator=mitigator),
extra={"mitigated": True},
).block_for_results()
# Combine results so that tomography results are ordered first
combined_data = [tomo_data, roerror_data]
# Run unmitigated tomography analysis
if self.options.unmitigated_fit:
nomit_data = tomo_analysis.run(
tomo_data,
replace_results=False,
measurement_basis=PauliMeasurementBasis(),
extra={"mitigated": False},
).block_for_results()
combined_data.append(nomit_data)
if self._flatten_results:
return self._combine_results(combined_data)
return [], []
| qiskit-experiments/qiskit_experiments/library/tomography/mit_tomography_analysis.py/0 | {
"file_path": "qiskit-experiments/qiskit_experiments/library/tomography/mit_tomography_analysis.py",
"repo_id": "qiskit-experiments",
"token_count": 2257
} | 114 |
---
fixes:
- |
The gate counting for EPG in the RB analysis code was not including the
inverse, so that the total number of operations per Clifford was incorrect,
leading to incorrect reporting of EPG from EPC. Fixed by adding +1 for the
inverse gate.
| qiskit-experiments/releasenotes/notes/0.7/fix-epg-gatecount-60777f7a3f3566bc.yaml/0 | {
"file_path": "qiskit-experiments/releasenotes/notes/0.7/fix-epg-gatecount-60777f7a3f3566bc.yaml",
"repo_id": "qiskit-experiments",
"token_count": 76
} | 115 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Tests for base experiment framework."""
from test.base import QiskitExperimentsTestCase
from test.fake_experiment import FakeExperiment
import ddt
import numpy as np
from qiskit.circuit import Instruction
from qiskit.circuit.library import QuantumVolume, SXGate, RZXGate, Barrier, Measure
import qiskit.quantum_info as qi
from qiskit_experiments.curve_analysis import CurveFitResult
class CustomClass:
"""Custom class for serialization tests"""
def __init__(self, value=None):
self._value = value
def __eq__(self, other):
return other.__class__ == self.__class__ and other._value == self._value
@property
def settings(self):
"""Return settings for class"""
return {"value": self._value}
@staticmethod
def static_method(arg):
"""A static method"""
return arg
@classmethod
def class_method(cls, arg):
"""A static method"""
return arg
def custom_function(*args, **kwargs):
"""Test function for serialization"""
return args, kwargs
@ddt.ddt
class TestJSON(QiskitExperimentsTestCase):
"""Test JSON encoder and decoder"""
def test_roundtrip_experiment(self):
"""Test serializing an experiment"""
obj = FakeExperiment([0])
obj.set_transpile_options(optimization_level=3, basis_gates=["rx", "ry", "cz"])
obj.set_run_options(shots=2000)
self.assertRoundTripSerializable(obj)
@ddt.data(SXGate(), RZXGate(0.4), Barrier(5), Measure())
def test_roundtrip_gate(self, instruction):
"""Test round-trip serialization of a gate."""
self.assertRoundTripSerializable(instruction)
def test_custom_instruction(self):
"""Test the serialisation of a custom instruction."""
class CustomInstruction(Instruction):
"""A custom instruction for testing."""
def __init__(self, param: float):
"""Initialize the instruction."""
super().__init__("test_inst", 2, 2, [param, 0.6])
def compare_instructions(inst1, inst2):
"""Soft comparison of two instructions."""
return inst1.soft_compare(inst2)
self.assertRoundTripSerializable(CustomInstruction(0.123), check_func=compare_instructions)
def test_roundtrip_quantum_circuit(self):
"""Test round-trip serialization of a circuits"""
obj = QuantumVolume(4)
self.assertRoundTripSerializable(obj)
def test_roundtrip_operator(self):
"""Test round-trip serialization of an Operator"""
obj = qi.random_unitary(4, seed=10)
self.assertRoundTripSerializable(obj)
def test_roundtrip_statevector(self):
"""Test round-trip serialization of a Statevector"""
obj = qi.random_statevector(4, seed=10)
self.assertRoundTripSerializable(obj)
def test_roundtrip_density_matrix(self):
"""Test round-trip serialization of a DensityMatrix"""
obj = qi.random_density_matrix(4, seed=10)
self.assertRoundTripSerializable(obj)
@ddt.data("Choi", "SuperOp", "Kraus", "Stinespring", "PTM", "Chi")
def test_roundtrip_quantum_channel(self, rep):
"""Test round-trip serialization of a DensityMatrix"""
chan_cls = {
"Choi": qi.Choi,
"SuperOp": qi.SuperOp,
"Kraus": qi.Kraus,
"Stinespring": qi.Stinespring,
"PTM": qi.PTM,
"Chi": qi.Chi,
}
obj = chan_cls[rep](qi.random_quantum_channel(2, seed=10))
self.assertRoundTripSerializable(obj)
def test_roundtrip_function(self):
"""Test roundtrip serialization of custom class object"""
obj = custom_function
self.assertRoundTripSerializable(obj)
def test_roundtrip_curvefitresult(self):
"""Test roundtrip serialization of the ScatterTable class"""
obj = CurveFitResult(
method="some_method",
model_repr={"s1": "par0 * x + par1"},
success=True,
params={"par0": 0.3, "par1": 0.4},
var_names=["par0", "par1"],
covar=np.array([[2.19188077e-03, 2.19906808e-01], [2.19906808e-01, 2.62351788e01]]),
reduced_chisq=1.5,
)
self.assertRoundTripSerializable(obj)
def test_roundtrip_class_type(self):
"""Test roundtrip serialization of custom class"""
obj = CustomClass
self.assertRoundTripSerializable(obj)
def test_roundtrip_class_object(self):
"""Test roundtrip serialization of custom class object"""
obj = CustomClass(123)
self.assertRoundTripSerializable(obj)
def test_roundtrip_class_method(self):
"""Test roundtrip serialization of custom class object"""
obj = CustomClass.class_method
self.assertRoundTripSerializable(obj)
def test_roundtrip_custom_static_method(self):
"""Test roundtrip serialization of custom class object"""
obj = CustomClass.static_method
self.assertRoundTripSerializable(obj)
def test_roundtrip_main_function(self):
"""Test roundtrip serialization of __main__ custom class object"""
import __main__ as main_mod
main_mod.custom_function = custom_function
main_mod.custom_function.__module__ = "__main__"
obj = main_mod.custom_function
self.assertRoundTripSerializable(obj)
def test_roundtrip_main_class_type(self):
"""Test roundtrip serialization of __main__ custom class"""
import __main__ as main_mod
main_mod.CustomClass = CustomClass
main_mod.CustomClass.__module__ = "__main__"
obj = main_mod.CustomClass
self.assertRoundTripSerializable(obj)
def test_roundtrip_main_class_object(self):
"""Test roundtrip serialization of __main__ custom class object"""
import __main__ as main_mod
main_mod.CustomClass = CustomClass
main_mod.CustomClass.__module__ = "__main__"
obj = main_mod.CustomClass(123)
self.assertRoundTripSerializable(obj)
def test_roundtrip_main_class_method(self):
"""Test roundtrip serialization of __main__ custom class object"""
import __main__ as main_mod
main_mod.CustomClass = CustomClass
main_mod.CustomClass.__module__ = "__main__"
obj = main_mod.CustomClass.class_method
self.assertRoundTripSerializable(obj)
def test_roundtrip_main_custom_static_method(self):
"""Test roundtrip serialization of __main__ custom class object"""
import __main__ as main_mod
main_mod.CustomClass = CustomClass
main_mod.CustomClass.__module__ = "__main__"
obj = main_mod.CustomClass.static_method
self.assertRoundTripSerializable(obj)
| qiskit-experiments/test/database_service/test_json.py/0 | {
"file_path": "qiskit-experiments/test/database_service/test_json.py",
"repo_id": "qiskit-experiments",
"token_count": 2876
} | 116 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Test the fine amplitude characterization and calibration experiments."""
from test.base import QiskitExperimentsTestCase
import numpy as np
from ddt import ddt, data
from qiskit import pulse
from qiskit.circuit import Gate
from qiskit.circuit.library import XGate, SXGate
from qiskit.pulse import DriveChannel, Drag
from qiskit_ibm_runtime.fake_provider import FakeArmonkV2
from qiskit_experiments.library import (
FineXAmplitude,
FineSXAmplitude,
FineZXAmplitude,
FineXAmplitudeCal,
FineSXAmplitudeCal,
)
from qiskit_experiments.calibration_management.basis_gate_library import FixedFrequencyTransmon
from qiskit_experiments.calibration_management import Calibrations
from qiskit_experiments.test.mock_iq_backend import MockIQBackend
from qiskit_experiments.test.mock_iq_helpers import MockIQFineAmpHelper as FineAmpHelper
@ddt
class TestFineAmpEndToEnd(QiskitExperimentsTestCase):
"""Test the fine amplitude experiment."""
@data(0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08)
def test_end_to_end_under_rotation(self, pi_ratio):
"""Test the experiment end to end."""
amp_exp = FineXAmplitude([0])
error = -np.pi * pi_ratio
backend = MockIQBackend(FineAmpHelper(error, np.pi, "x"))
backend.target.add_instruction(XGate(), properties={(0,): None})
backend.target.add_instruction(SXGate(), properties={(0,): None})
expdata = amp_exp.run(backend)
self.assertExperimentDone(expdata)
result = expdata.analysis_results("d_theta")
d_theta = result.value.n
tol = 0.04
self.assertAlmostEqual(d_theta, error, delta=tol)
self.assertEqual(result.quality, "good")
@data(0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08)
def test_end_to_end_over_rotation(self, pi_ratio):
"""Test the experiment end to end."""
amp_exp = FineXAmplitude([0])
error = np.pi * pi_ratio
backend = MockIQBackend(FineAmpHelper(error, np.pi, "x"))
backend.target.add_instruction(XGate(), properties={(0,): None})
backend.target.add_instruction(SXGate(), properties={(0,): None})
expdata = amp_exp.run(backend)
self.assertExperimentDone(expdata)
result = expdata.analysis_results("d_theta")
d_theta = result.value.n
tol = 0.04
self.assertAlmostEqual(d_theta, error, delta=tol)
self.assertEqual(result.quality, "good")
def test_circuits_serialization(self):
"""Test circuits serialization of the experiment."""
backend = FakeArmonkV2()
amp_exp = FineXAmplitude([0], backend=backend)
self.assertRoundTripSerializable(amp_exp._transpiled_circuits())
@ddt
class TestFineZXAmpEndToEnd(QiskitExperimentsTestCase):
"""Test the fine amplitude experiment."""
@data(-0.08, -0.03, -0.02, 0.02, 0.06, 0.07)
def test_end_to_end(self, pi_ratio):
"""Test the experiment end to end."""
error = -np.pi * pi_ratio
amp_exp = FineZXAmplitude((0, 1))
backend = MockIQBackend(FineAmpHelper(error, np.pi / 2, "szx"))
backend.target.add_instruction(Gate("szx", 2, []), properties={(0, 1): None})
expdata = amp_exp.run(backend)
self.assertExperimentDone(expdata)
result = expdata.analysis_results("d_theta")
d_theta = result.value.n
tol = 0.04
self.assertAlmostEqual(d_theta, error, delta=tol)
self.assertEqual(result.quality, "good")
def test_experiment_config(self):
"""Test converting to and from config works"""
exp = FineZXAmplitude((0, 1))
loaded_exp = FineZXAmplitude.from_config(exp.config())
self.assertNotEqual(exp, loaded_exp)
self.assertEqualExtended(exp, loaded_exp)
class TestFineAmplitudeCircuits(QiskitExperimentsTestCase):
"""Test the circuits."""
def setUp(self):
"""Setup some schedules."""
super().setUp()
with pulse.build(name="xp") as xp:
pulse.play(Drag(duration=160, amp=0.208519, sigma=40, beta=0.0), DriveChannel(0))
with pulse.build(name="x90p") as x90p:
pulse.play(Drag(duration=160, amp=0.208519, sigma=40, beta=0.0), DriveChannel(0))
self.x_plus = xp
self.x_90_plus = x90p
def test_xp(self):
"""Test a circuit with the x gate."""
amp_cal = FineXAmplitude([0])
circs = amp_cal.circuits()
self.assertTrue(circs[0].data[0][0].name == "measure")
self.assertTrue(circs[1].data[0][0].name == "x")
for idx, circ in enumerate(circs[2:]):
self.assertTrue(circ.data[0][0].name == "sx")
self.assertEqual(circ.count_ops().get("x", 0), idx + 1)
def test_x90p(self):
"""Test circuits with an x90p pulse."""
amp_cal = FineSXAmplitude([0])
expected = [0, 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 21, 23, 25]
for idx, circ in enumerate(amp_cal.circuits()):
self.assertEqual(circ.count_ops().get("sx", 0), expected[idx])
@ddt
class TestSpecializations(QiskitExperimentsTestCase):
"""Test the options of the specialized classes."""
def test_fine_x_amp(self):
"""Test the fine X amplitude."""
exp = FineXAmplitude([0])
self.assertTrue(exp.experiment_options.add_cal_circuits)
self.assertDictEqual(
exp.analysis.options.fixed_parameters,
{"angle_per_gate": np.pi, "phase_offset": np.pi / 2},
)
self.assertEqual(exp.experiment_options.gate, XGate())
def test_x_roundtrip_serializable(self):
"""Test round trip JSON serialization"""
exp = FineXAmplitude([0])
self.assertRoundTripSerializable(exp)
def test_fine_sx_amp(self):
"""Test the fine SX amplitude."""
exp = FineSXAmplitude([0])
self.assertFalse(exp.experiment_options.add_cal_circuits)
expected = [0, 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 21, 23, 25]
self.assertEqual(exp.experiment_options.repetitions, expected)
self.assertDictEqual(
exp.analysis.options.fixed_parameters,
{"angle_per_gate": np.pi / 2, "phase_offset": np.pi},
)
self.assertEqual(exp.experiment_options.gate, SXGate())
def test_sx_roundtrip_serializable(self):
"""Test round trip JSON serialization"""
exp = FineSXAmplitude([0])
self.assertRoundTripSerializable(exp)
@data((2, 3), (3, 1), (0, 1))
def test_measure_qubits(self, qubits):
"""Test that the measurement is on the logical qubits."""
fine_amp = FineZXAmplitude(qubits)
for circuit in fine_amp.circuits():
self.assertEqual(circuit.num_qubits, 2)
self.assertEqual(circuit.data[-1][0].name, "measure")
self.assertEqual(circuit.data[-1][1][0], circuit.qregs[0][1])
class TestFineAmplitudeCal(QiskitExperimentsTestCase):
"""A class to test the fine amplitude calibration experiments."""
def setUp(self):
"""Setup the tests"""
super().setUp()
library = FixedFrequencyTransmon()
self.backend = MockIQBackend(FineAmpHelper(-np.pi * 0.07, np.pi, "xp"))
self.backend.target.add_instruction(SXGate(), properties={(0,): None})
self.backend.target.add_instruction(XGate(), properties={(0,): None})
self.cals = Calibrations.from_backend(self.backend, libraries=[library])
def test_cal_options(self):
"""Test that the options are properly propagated."""
# Test the X gate cal
amp_cal = FineXAmplitudeCal([0], self.cals, "x")
exp_opt = amp_cal.experiment_options
self.assertEqual(exp_opt.gate.name, "x")
self.assertTrue(exp_opt.add_cal_circuits)
self.assertEqual(exp_opt.result_index, -1)
self.assertEqual(exp_opt.group, "default")
self.assertTrue(np.allclose(exp_opt.target_angle, np.pi))
# Test the SX gate cal
amp_cal = FineSXAmplitudeCal([0], self.cals, "sx")
exp_opt = amp_cal.experiment_options
self.assertEqual(exp_opt.gate.name, "sx")
self.assertFalse(exp_opt.add_cal_circuits)
self.assertEqual(exp_opt.result_index, -1)
self.assertEqual(exp_opt.group, "default")
self.assertTrue(np.allclose(exp_opt.target_angle, np.pi / 2))
def test_run_x_cal(self):
"""Test that we can transpile in the calibrations before and after update.
If this test passes then we were successful in running a calibration experiment,
updating a pulse parameter, having this parameter propagated to the schedules
for use the next time the experiment is run.
"""
# Initial pulse amplitude
init_amp = 0.5
amp_cal = FineXAmplitudeCal([0], self.cals, "x", backend=self.backend)
circs = amp_cal._transpiled_circuits()
with pulse.build(name="x") as expected_x:
pulse.play(pulse.Drag(160, 0.5, 40, 0), pulse.DriveChannel(0))
with pulse.build(name="sx") as expected_sx:
pulse.play(pulse.Drag(160, 0.25, 40, 0), pulse.DriveChannel(0))
self.assertEqual(circs[5].calibrations["x"][((0,), ())], expected_x)
self.assertEqual(circs[5].calibrations["sx"][((0,), ())], expected_sx)
# run the calibration experiment. This should update the amp parameter of x which we test.
exp_data = amp_cal.run()
self.assertExperimentDone(exp_data)
d_theta = exp_data.analysis_results("d_theta").value.n
new_amp = init_amp * np.pi / (np.pi + d_theta)
circs = amp_cal._transpiled_circuits()
x_cal = circs[5].calibrations["x"][((0,), ())]
# Requires allclose due to numerical precision.
self.assertTrue(np.allclose(x_cal.blocks[0].pulse.amp, new_amp))
self.assertFalse(np.allclose(x_cal.blocks[0].pulse.amp, init_amp))
self.assertEqual(circs[5].calibrations["sx"][((0,), ())], expected_sx)
def test_run_sx_cal(self):
"""Test that we can transpile in the calibrations before and after update.
If this test passes then we were successful in running a calibration experiment,
updating a pulse parameter, having this parameter propagated to the schedules
for use the next time the experiment is run.
"""
# Initial pulse amplitude
init_amp = 0.25
backend = MockIQBackend(FineAmpHelper(-np.pi * 0.07, np.pi / 2, "sx"))
amp_cal = FineSXAmplitudeCal([0], self.cals, "sx", backend=backend)
circs = amp_cal._transpiled_circuits()
with pulse.build(name="sx") as expected_sx:
pulse.play(pulse.Drag(160, 0.25, 40, 0), pulse.DriveChannel(0))
self.assertEqual(circs[5].calibrations["sx"][((0,), ())], expected_sx)
# run the calibration experiment. This should update the amp parameter of x which we test.
exp_data = amp_cal.run()
self.assertExperimentDone(exp_data)
d_theta = exp_data.analysis_results("d_theta").value.n
new_amp = init_amp * (np.pi / 2) / (np.pi / 2 + d_theta)
circs = amp_cal._transpiled_circuits()
sx_cal = circs[5].calibrations["sx"][((0,), ())]
# Requires allclose due to numerical precision.
self.assertTrue(np.allclose(sx_cal.blocks[0].pulse.amp, new_amp))
self.assertFalse(np.allclose(sx_cal.blocks[0].pulse.amp, init_amp))
def test_experiment_config(self):
"""Test converting to and from config works"""
exp = FineSXAmplitudeCal([0], self.cals, "sx")
loaded_exp = FineSXAmplitudeCal.from_config(exp.config())
self.assertNotEqual(exp, loaded_exp)
self.assertEqualExtended(exp, loaded_exp)
def test_roundtrip_serializable(self):
"""Test round trip JSON serialization"""
exp = FineSXAmplitudeCal([0], self.cals, "sx")
self.assertRoundTripSerializable(exp)
| qiskit-experiments/test/library/calibration/test_fine_amplitude.py/0 | {
"file_path": "qiskit-experiments/test/library/calibration/test_fine_amplitude.py",
"repo_id": "qiskit-experiments",
"token_count": 5256
} | 117 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Test T1 experiment
"""
from test.base import QiskitExperimentsTestCase
import numpy as np
from qiskit.qobj.utils import MeasLevel
from qiskit_ibm_runtime.fake_provider import FakeAthensV2
from qiskit_experiments.test.noisy_delay_aer_simulator import NoisyDelayAerBackend
from qiskit_experiments.framework import ExperimentData, ParallelExperiment
from qiskit_experiments.library import T1
from qiskit_experiments.library.characterization import T1Analysis, T1KerneledAnalysis
from qiskit_experiments.test.mock_iq_backend import MockIQBackend, MockIQParallelBackend
from qiskit_experiments.test.mock_iq_helpers import MockIQT1Helper, MockIQParallelExperimentHelper
class TestT1(QiskitExperimentsTestCase):
"""
Test measurement of T1
"""
def test_t1_end2end(self):
"""
Test T1 experiment using a simulator.
"""
t1 = 25e-6
backend = NoisyDelayAerBackend([t1], [t1 / 2])
delays = np.arange(1e-6, 40e-6, 3e-6)
exp = T1([0], delays)
exp.analysis.set_options(p0={"amp": 1, "tau": t1, "base": 0})
exp_data = exp.run(backend, shots=10000, seed_simulator=1)
self.assertExperimentDone(exp_data)
self.assertRoundTripSerializable(exp_data)
self.assertRoundTripPickle(exp_data)
res = exp_data.analysis_results("T1")
self.assertEqual(res.quality, "good")
self.assertAlmostEqual(res.value.n, t1, delta=3)
self.assertEqual(res.extra["unit"], "s")
def test_t1_measurement_level_1(self):
"""
Test T1 experiment using a simulator.
"""
ns = 1e-9
mu = 1e-6
t1 = 45 * mu
# delays
delays = np.logspace(1, 11, num=23, base=np.exp(1))
delays *= ns
delays = np.insert(delays, 0, 0)
delays = np.append(delays, [t1 * 3])
num_shots = 4096
backend = MockIQBackend(
MockIQT1Helper(
t1=t1,
iq_cluster_centers=[((-5.0, -4.0), (-5.0, 4.0)), ((3.0, 1.0), (5.0, -3.0))],
iq_cluster_width=[1.0, 2.0],
)
)
# Experiment initialization and analysis options
exp0 = T1([0], delays)
exp0.analysis = T1KerneledAnalysis()
exp0.analysis.set_options(p0={"amp": 1, "tau": t1, "base": 0})
expdata0 = exp0.run(
backend=backend,
meas_return="avg",
meas_level=MeasLevel.KERNELED,
shots=num_shots,
)
self.assertExperimentDone(expdata0)
self.assertRoundTripSerializable(expdata0)
self.assertRoundTripPickle(expdata0)
res = expdata0.analysis_results("T1")
self.assertEqual(res.quality, "good")
self.assertAlmostEqual(res.value.n, t1, delta=3)
self.assertEqual(res.extra["unit"], "s")
def test_t1_parallel(self):
"""
Test parallel experiments of T1 using a simulator.
"""
t1 = [25, 20, 15]
t2 = [value / 2 for value in t1]
delays = list(range(1, 40, 3))
qubit0 = 0
qubit2 = 2
quantum_bit = [qubit0, qubit2]
backend = NoisyDelayAerBackend(t1, t2)
exp0 = T1(physical_qubits=[qubit0], delays=delays)
exp2 = T1(physical_qubits=[qubit2], delays=delays)
par_exp = ParallelExperiment([exp0, exp2], flatten_results=False)
res = par_exp.run(backend=backend, shots=10000, seed_simulator=1)
self.assertExperimentDone(res)
for i, qb in enumerate(quantum_bit):
sub_res = res.child_data(i).analysis_results("T1")
self.assertEqual(sub_res.quality, "good")
self.assertAlmostEqual(sub_res.value.n, t1[qb], delta=3)
def test_t1_parallel_measurement_level_1(self):
"""
Test parallel experiments of T1 using a simulator.
"""
ns = 1e-9
mu = 1e-6
t1s = [25 * mu, 20 * mu]
qubits = [0, 1]
num_shots = 4096
# Delays
delays = np.logspace(1, 11, num=23, base=np.exp(1))
delays *= ns
delays = np.insert(delays, 0, 0)
delays = np.append(delays, [t1s[0] * 3])
par_exp_list = []
exp_helpers = []
for qidx, t1 in zip(qubits, t1s):
# Experiment
exp = T1(physical_qubits=[qidx], delays=delays)
exp.analysis = T1KerneledAnalysis()
par_exp_list.append(exp)
# Helper
helper = MockIQT1Helper(
t1=t1,
iq_cluster_centers=[
((-5.0, -4.0), (-5.0, 4.0)),
((-1.0, -1.0), (1.0, 1.0)),
((4.0, 1.0), (6.0, -3.0)),
],
iq_cluster_width=[1.0, 2.0, 1.0],
)
exp_helpers.append(helper)
par_exp = ParallelExperiment(
par_exp_list,
flatten_results=False,
)
par_helper = MockIQParallelExperimentHelper(
exp_list=par_exp_list,
exp_helper_list=exp_helpers,
)
# Backend
backend = MockIQParallelBackend(par_helper, rng_seed=1)
# Running experiment
res = par_exp.run(
backend=backend,
shots=num_shots,
rng_seed=1,
meas_level=MeasLevel.KERNELED,
meas_return="avg",
)
self.assertExperimentDone(res)
# Checking analysis
for i, t1 in enumerate(t1s):
sub_res = res.child_data(i).analysis_results("T1")
self.assertEqual(sub_res.quality, "good")
self.assertAlmostEqual(sub_res.value.n, t1, delta=3)
def test_t1_analysis(self):
"""
Test T1Analysis
"""
data = ExperimentData()
data.metadata.update({"meas_level": 2})
numbers = [750, 1800, 2750, 3550, 4250, 4850, 5450, 5900, 6400, 6800, 7000, 7350, 7700]
for i, count0 in enumerate(numbers):
data.add_data(
{
"counts": {"0": count0, "1": 10000 - count0},
"metadata": {"xval": (3 * i + 1) * 1e-9},
}
)
experiment_data = T1Analysis().run(data, plot=False)
result = experiment_data.analysis_results("T1")
self.assertEqual(result.quality, "good")
self.assertAlmostEqual(result.value.nominal_value, 25e-9, delta=3)
def test_t1_metadata(self):
"""
Test the circuits metadata
"""
delays = np.arange(1e-3, 40e-3, 3e-3)
exp = T1([0], delays)
circs = exp.circuits()
self.assertEqual(len(circs), len(delays))
for delay, circ in zip(delays, circs):
# xval is rounded to nealest granularity value.
self.assertAlmostEqual(circ.metadata["xval"], delay)
def test_t1_low_quality(self):
"""
A test where the fit's quality will be low
"""
data = ExperimentData()
data.metadata.update({"meas_level": 2})
for i in range(10):
data.add_data(
{
"counts": {"0": 10, "1": 10},
"metadata": {"xval": i * 1e-9},
}
)
experiment_data = T1Analysis().run(data, plot=False)
result = experiment_data.analysis_results("T1")
self.assertEqual(result.quality, "bad")
def test_t1_parallel_exp_transpile(self):
"""Test parallel transpile options for T1 experiment"""
num_qubits = 5
instruction_durations = []
for i in range(num_qubits):
instruction_durations += [
("rx", [i], (i + 1) * 10, "ns"),
("measure", [i], (i + 1) * 1000, "ns"),
]
coupling_map = [[i - 1, i] for i in range(1, num_qubits)]
basis_gates = ["rx", "delay"]
exp1 = T1([1], delays=[50e-9, 100e-9, 160e-9])
exp2 = T1([3], delays=[40e-9, 80e-9, 190e-9])
parexp = ParallelExperiment([exp1, exp2], flatten_results=False)
parexp.set_transpile_options(
basis_gates=basis_gates,
instruction_durations=instruction_durations,
coupling_map=coupling_map,
scheduling_method="alap",
)
circs = parexp.circuits()
for circ in circs:
self.assertEqual(circ.num_qubits, 2)
op_counts = circ.count_ops()
self.assertEqual(op_counts.get("rx"), 2)
self.assertEqual(op_counts.get("delay"), 2)
tcircs = parexp._transpiled_circuits()
for circ in tcircs:
self.assertEqual(circ.num_qubits, num_qubits)
op_counts = circ.count_ops()
self.assertEqual(op_counts.get("rx"), 2)
self.assertEqual(op_counts.get("delay"), 2)
def test_experiment_config(self):
"""Test converting to and from config works"""
exp = T1([0], [1, 2, 3, 4, 5])
loaded_exp = T1.from_config(exp.config())
self.assertNotEqual(exp, loaded_exp)
self.assertEqualExtended(exp, loaded_exp)
def test_roundtrip_serializable(self):
"""Test round trip JSON serialization"""
exp = T1([0], [1, 2])
self.assertRoundTripSerializable(exp)
def test_circuit_roundtrip_serializable(self):
"""Test circuit round trip JSON serialization"""
exp = T1([0], [1, 2, 3, 4, 5])
self.assertRoundTripSerializable(exp._transpiled_circuits())
def test_analysis_config(self):
""" "Test converting analysis to and from config works"""
analysis = T1Analysis()
loaded = T1Analysis.from_config(analysis.config())
self.assertNotEqual(analysis, loaded)
self.assertEqual(analysis.config(), loaded.config())
def test_circuits_with_backend(self):
"""
Test the circuits metadata when passing backend
"""
backend = FakeAthensV2()
delays = np.arange(1e-3, 40e-3, 3e-3)
exp = T1([0], delays, backend=backend)
circs = exp.circuits()
self.assertEqual(len(circs), len(delays))
for delay, circ in zip(delays, circs):
# xval is rounded to nealest granularity value.
self.assertAlmostEqual(circ.metadata["xval"], delay)
| qiskit-experiments/test/library/characterization/test_t1.py/0 | {
"file_path": "qiskit-experiments/test/library/characterization/test_t1.py",
"repo_id": "qiskit-experiments",
"token_count": 5268
} | 118 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Common methods for tomography tests
"""
import numpy as np
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister
from qiskit_aer.noise import NoiseModel
FITTERS = [
None,
"linear_inversion",
"cvxpy_linear_lstsq",
"cvxpy_gaussian_lstsq",
]
def filter_results(analysis_results, name):
"""Filter list of analysis results by result name"""
for result in analysis_results:
if result.name == name:
return result
return None
def teleport_circuit(flatten_creg=True):
"""Teleport qubit 0 to qubit 2"""
if flatten_creg:
teleport = QuantumCircuit(3, 2)
creg = teleport.cregs[0]
else:
qr = QuantumRegister(3)
c0 = ClassicalRegister(1, "c0")
c1 = ClassicalRegister(1, "c1")
teleport = QuantumCircuit(qr, c0, c1)
creg = [c0, c1]
teleport.h(1)
teleport.cx(1, 2)
teleport.cx(0, 1)
teleport.h(0)
teleport.measure(0, creg[0])
teleport.measure(1, creg[1])
# Conditionals
teleport.z(2).c_if(creg[0], 1)
teleport.x(2).c_if(creg[1], 1)
return teleport
def teleport_bell_circuit(flatten_creg=True):
"""Teleport entangled qubit 0 -> 2"""
if flatten_creg:
teleport = QuantumCircuit(4, 2)
creg = teleport.cregs[0]
else:
qr = QuantumRegister(4)
c0 = ClassicalRegister(1)
c1 = ClassicalRegister(1)
teleport = QuantumCircuit(qr, c0, c1)
creg = [c0, c1]
teleport.h(0)
teleport.cx(0, 3)
teleport.h(1)
teleport.cx(1, 2)
teleport.cx(0, 1)
teleport.h(0)
teleport.measure(0, creg[0])
teleport.measure(1, creg[1])
teleport.z(2).c_if(creg[0], 1)
teleport.x(2).c_if(creg[1], 1)
return teleport
def readout_noise_model(num_qubits, seed=None):
"""Generate noise model of random local readout errors"""
rng = np.random.default_rng(seed=seed)
p1g0s = 0.15 * rng.random(num_qubits)
p0g1s = 0.3 * rng.random(num_qubits)
amats = np.stack([[1 - p1g0s, p1g0s], [p0g1s, 1 - p0g1s]]).T
noise_model = NoiseModel()
for i, amat in enumerate(amats):
noise_model.add_readout_error(amat.T, [i])
return noise_model
| qiskit-experiments/test/library/tomography/tomo_utils.py/0 | {
"file_path": "qiskit-experiments/test/library/tomography/tomo_utils.py",
"repo_id": "qiskit-experiments",
"token_count": 1151
} | 119 |
aa
ab
acb
acknowledgment
adjoint
aer
aij
al
alanine
allclose
alzheimer
amino
aminoacid
aminoacids
ancilla
ancillas
ang
anharmonic
annihilation
ansatz
ansatze
ansätze
ansatzes
anticommutation
antiparallel
antisymmetric
antisymmetrized
ao
april
arg
arginine
args
arrowheads
arrowstyle
arxiv
asarray
asdict
asparagine
aspartic
atol
attr
autosummary
avogadro
äquivalenzverbot
bac
backend
backends
barkoutsos
bb
bergholm
berlin
bitstring
bksf
bo
bogoliubov
bohr
boltzmann
bool
boolean
bools
bopes
boson
bosons
bosonic
bosonicop
bravais
bravyi
calcinfo
cargs
cartesian
cbit
ccx
cdots
cfg
chc
chiral
chirality
chkfile
cholesky
chuang
ci
classmethod
clbit
clbits
clifford
cliffords
cls
cmap
cnot
codec
codeowners
coeff
coeffs
colormap
commutativities
commutativity
computable
conda
conf
config
connectionstyle
coord
coords
coul
cp
creg
crx
crz
csc
cswap
csx
ctrl
currentmodule
cvar
cx
cy
cysteine
cz
das
dataclass
dataclasses
dataset
dcx
de
debye
deepcopy
delocalized
deuterium
deuteron
dft
diag
diagonalization
diagonalize
diagonalizes
diagonalizing
dicts
dimens
dimensionality
dirac
discoverable
distanceunit
distinguishability
dll
docstring
dof
doi
dok
downarrow
dt
dtype
dumitrescu
ecp
ecr
eigen
eigenfunctions
eigensolution
eigensolver
eigensolverfactory
eigensolvers
eigenstate
eigenstateresult
eigenstates
eigenvector
eigenvectors
einact
einsum
electronicintegrals
electronicstructureproblem
endian
endianness
endif
enum
eom
eq
eri
et
eta
eugene
excitations
extrapolator
extrapolator's
extrapolators
facs
fcidump
fcompiler
fermi
fermion
fermionic
fermionicop
fermions
feynman
filename
fmt
fock
formatter
fortran
fp
fredkin
func
functionalities
für
gauopen
gaussian
gaussiand
gcc
gcxs
getitem
getter
gfortran
github
globals
glutamic
glutamine
glycine
gss
gto
hamiltonian
hamiltonians
hardcoded
hartree
hartrees
hcore
hdf
heidelberg
heisenberg
helgaker
hermite
hermitian
hermiticity
hijkls
hijs
hilbert
histidine
hjo
hsplit
hstack
html
https
hubbard
ia
iajb
ifdef
ifortvars
ij
ijkl
ijlk
ik
iklj
il
init
initializer
initio
inplace
integrations
intel
intelvem
interatomic
internuclear
interoperability
interpretable
ints
io
ipynb
isclose
ising
iso
isoleucine
isometry
isospectral
iswap
isym
iten
iter
iterable
iteratively
itertools
ivano
iz
james
jb
jcf
jcp
jernigan
ji
jk
jl
jordan
jørgensen
josé
json
jupyter
jw
kagome
kanav
ket
kitaev
knowles
kohn
kron
kronecker
kwarg
kwargs
kwds
labelled
langle
lbl
lbrace
lda
ldots
leighton
len
leucine
levinthal
lexicographically
libifcoremd
libor
libxc
lih
lijh
linewidths
linux
listordict
listordicttype
ljik
lk
logfile
lookback
lvert
lysine
macos
majorana
majoranaop
makefile
matmul
matplotlib
maxdepth
maxiter
maxiters
mazzola
mcp
mcrx
mcry
mcrz
mct
mcu
mcx
mentorship
metadata
meth
methionine
microsoft
miessen
minao
mixin
miyazawa
moc
mohij
mohijkl
mol
moller
molssi
morse
mpl
mul
multi
multigraph
multinomial
mypy
møller
namelist
nan
nannichini
nao
natom
nbasis
nd
ndarray
ndim
nelec
neq
networkx
neuropeptide
neutron
nicholas
nielsen
nisq
nmodes
noancilla
noint
nonlocal
norb
norbs
nosignatures
np
npj
ns
nucleus
num
numpy
numpyeigensolver
observables
occupancies
ok
ollitrault
onboarding
onee
oneeints
onsite
onwards
opflow
oppenheimer
optimizers
orbsym
ortho
orthonormal
otimes
outpath
overline
ovlp
pac
param
parameterized
params
pauli
paulis
paulische
pca
peptide
performant
perturbative
pes
phenylalanine
phonons
physik
physrevd
plesset
pmatrix
polynomialtensor
polypeptides
popovas
pos
posteriori
pqrs
pre
prebuilt
prefactor
prepend
prepended
preprint
preprocesses
proline
protium
proton
prsq
ps
pseudorandom
pxd
py
pydata
pyquante
pyright
pyscf
qarg
qargs
qasm
qbit
qc
qcbase
qcmatrixio
qcschema
qeom
qfi
qiskit
qiskit's
qj
qmolecule
qn
qregs
qs
quantization
quantized
quantumcircuit
quartic
qubit
qubitmapper
qubits
qutrit
radians
rangle
rcccx
rccx
rdm
readme
readthedocs
realise
rebranding
refactor
refactored
refactoring
regs
reinstall
repr
retworkx
rgb
rgba
rhf
rhs
rk
robert
rohf
rossmannek
rtol
rtype
runtime
rustworkx
rv
rx
rxx
ry
ryy
rz
rzx
rzz
scalable
scf
schroedinger
schrödinger
schur
scikit
scipy
sd
sdg
sdt
serine
setia
setted
shende
siddhartha
sklearn
sl
slater
soham
somma
sp
sparsearray
sparselabelop
sparsepauliop
spinop
springer
spsa
squ
statevector
statevectors
stderr
stdlib
stdout
stereochemistry
sto
stober
str
stylesheet
subcircuits
subclasses
submatrix
submatrices
submodule
submodules
subtest
subtype
succ
sudo
superfast
superpositions
sx
sxdg
symm
sys
sysctl
tavernelli
taylor
tb
tdg
tcoeff
tensored
tensoring
terra
th
thermostabilization
theta
threonine
timestamp
toctree
toffoli
tol
tos
traceback
tran
translational
transpilation
transpile
trotterization
tryptophan
tuple
tuples
twoe
twoeints
tyrosine
uc
ucc
uccd
uccs
uccsd
ucrx
ucry
ucrz
ufuncs
uhf
ulimit
un
unary
uncompiled
undirected
unitaries
unitstype
untransforms
uparrow
username
utils
uvcc
über
valine
vals
varepsilon
variational
vdots
vec
verbatim
versa
vibrational
vibrationalop
vibrationalops
vibro
vienna
vmax
vmin
vqe
vscf
vsplit
vstack
vwn
vx
vy
vz
watson
wavefunction
whitespace
whitfield
wigner
wikipedia
woerner
workflow
xcf
xcfun
xdata
xy
xyz
ydata
yx
yy
zeitschrift
zi
zmatrix
zsh
zz
| qiskit-nature/.pylintdict/0 | {
"file_path": "qiskit-nature/.pylintdict",
"repo_id": "qiskit-nature",
"token_count": 2263
} | 120 |
.. _qiskit_nature-second_q-formats-fcidump:
.. automodule:: qiskit_nature.second_q.formats.fcidump
:no-members:
:no-inherited-members:
:no-special-members:
| qiskit-nature/docs/apidocs/qiskit_nature.second_q.formats.fcidump.rst/0 | {
"file_path": "qiskit-nature/docs/apidocs/qiskit_nature.second_q.formats.fcidump.rst",
"repo_id": "qiskit-nature",
"token_count": 76
} | 121 |
.. _qiskit_nature-settings:
.. automodule:: qiskit_nature.settings
.. rubric:: Classes
.. autosummary::
QiskitNatureSettings
| qiskit-nature/docs/apidocs/qiskit_nature.settings.rst/0 | {
"file_path": "qiskit-nature/docs/apidocs/qiskit_nature.settings.rst",
"repo_id": "qiskit-nature",
"token_count": 55
} | 122 |
Solving Problems with v0.5
==========================
Overview
~~~~~~~~
The major focus of the Qiskit Nature v0.5 refactoring was the
description and representation of second-quantized operators and
problems. Nonetheless, the ``algorithms`` module and supporting modules
did also receive significant updates. Most importantly all algorithms In
Nature are now dependent on the new Qiskit Terra algorithms, and these
are now based on `Qiskit
Primitives <https://docs.quantum.ibm.com/run/primitives>`__
and were added in Qiskit Terra 0.22. It is not the intention to provide
detailed explanations of the primitives in this migration guide. We
suggest that you read the `corresponding
resources <https://docs.quantum.ibm.com/api/qiskit/primitives>`__
of the Qiskit Terra documentation instead.
Further Resources
~~~~~~~~~~~~~~~~~
For more details, please refer to the corresponding tutorials:
- `Ground State Solvers <../tutorials/03_ground_state_solvers.ipynb>`__
- `Excited States
Solvers <../tutorials/04_excited_states_solvers.ipynb>`__
- `Qubit Mappers <../tutorials/06_qubit_mappers.ipynb>`__
``qiskit_nature.mappers``
=========================
The mappers of Qiskit Nature did **not** receive any API changes (other
than potentially requiring certain arguments to be keywords; see also
the `“Too many positional arguments” section <./0.5_a_intro.ipynb>`__).
However, the entire module ``qiskit_nature.mappers.second_quantization``
has been moved to ``qiskit_nature.second_q.mappers``. So updating your
import is all you need to do here.
``qiskit_nature.converters``
============================
This module contained a single component: ``QubitConverter``. This has
been moved to ``qiskit_nature.second_q.mappers.QubitConverter`` so you
can simply update your import path.
API changes were again minimal but the operators being translated by
this class are no longer the legacy ``SecondQuantizedOp`` but rather the
new ``SparseLabelOp`` objects.
``qiskit_nature.circuit``
=========================
The entire ``qiskit_nature.circuit`` module was relocated to
``qiskit_nature.second_q.circuit``. The reason for this, is that the
existing circuit were actually only applicable to second-quantized
applications, but the API did not reflect this. Updating your imports
should fix *most* issues.
However, there are two more details to take note of, detailed below.
Number of Orbitals
~~~~~~~~~~~~~~~~~~
We have been consistently describing the number of orbitals via
``num_spin_orbitals`` throughout the package. However, what this
oftentimes implied (without rigorous checks) was that an **even** number
was supplied, since the number of spin orbitals was assumed to equal
twice the number of **spatial** orbitals.
To be more rigorous and avoid the ill-defined behavior when providing
*odd* numbers for ``num_spin_orbitals``, we have switched the entire
stack to use ``num_spatial_orbitals`` instead. This is well defined for
any positive integer value (and negative values are guarded against).
What this means for you in practice, is that whenever you supply the
``num_spin_orbitals`` manually in the past, you now need to supply
**half the value** to represent the ``num_spatial_orbitals``.
Previously
^^^^^^^^^^
.. code:: ipython3
from qiskit_nature.circuit.library import UCCSD
ansatz = UCCSD()
ansatz.num_spin_orbitals = 10
New
^^^
.. code:: ipython3
from qiskit_nature.second_q.circuit.library import UCCSD
ansatz = UCCSD()
ansatz.num_spatial_orbitals = 5
UCC/UVCC ``__init__`` arguments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The ``UCC`` and ``UVCC`` subclasses used to take the following arguments
for their ``__init__``:
Previously
^^^^^^^^^^
.. code:: ipython3
from qiskit_nature.circuit.library import UCC, UVCC
ucc = UCC(qubit_converter=None, num_particles=None, num_spin_orbitals=None, excitations=None)
uvcc = UVCC(qubit_converter=None, num_modals=None, excitations=None)
New
^^^
This was mismatching the API of the ``HartreeFock`` and ``VSCF`` initial
states. We have aligned these APIs to look like in the following:
.. code:: ipython3
from qiskit_nature.second_q.circuit.library import UCC, UVCC
ucc = UCC(num_spatial_orbitals=None, num_particles=None, excitations=None, qubit_converter=None)
uvcc = UVCC(num_modals=None, excitations=None, qubit_converter=None)
HartreeFock/VSCF initial states
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The ``HartreeFock`` and ``VSCF`` initial state circuits are now
implemented as ``BlueprintCircuit``. That means, that you can initialize
them without any arguments and supply the information later as shown
below:
Previously
^^^^^^^^^^
.. code:: ipython3
from qiskit_nature.circuit.library import HartreeFock, VSCF
from qiskit_nature.converters.second_quantization import QubitConverter
from qiskit_nature.mappers.second_quantization import DirectMapper, JordanWignerMapper
hf = HartreeFock(
num_spin_orbitals=4, num_particles=(1, 1), qubit_converter=QubitConverter(JordanWignerMapper())
)
vscf = VSCF(num_modals=[2, 2])
New
^^^
.. code:: ipython3
from qiskit_nature.second_q.circuit.library import HartreeFock, VSCF
from qiskit_nature.second_q.mappers import DirectMapper, JordanWignerMapper, QubitConverter
hf = HartreeFock()
hf.num_spatial_orbitals = 2
hf.num_particles = (1, 1)
hf.qubit_converter = QubitConverter(JordanWignerMapper())
vscf = VSCF()
vscf.num_modals = [2, 2]
``qiskit_nature.algorithms``
============================
The algorithms in Qiskit Nature have been updated to use the new
``qiskit.algorithms`` components which are based on the
``qiskit.primitives`` as of Qiskit Terra 0.22.
For most changes to take effect, you can once again simply update your
import paths from ``qiskit_nature.algorithms`` to
``qiskit_nature.second_q.algorithms``. However, there are some details
which you need to pay attention to, due to the change to the
primitive-based algorithms of Qiskit Terra being used under the hood.
These details are explained below.
``qiskit_nature.algorithms.initial_points``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This module was moved to
``qiskit_nature.second_q.algorithms.initial_points``. All you need to do
is update your imports.
``qiskit_nature.algorithms.pes_samplers``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This module was **removed** without a replacement. The reason for that,
is that we are working towards a driver-less design of Qiskit Nature, in
which case the sampling of the potential energy surface becomes the
responsibility of the classical code rather than Qiskit Nature.
``qiskit_nature.algorithms.ground_state_solvers``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This module was moved to
``qiskit_nature.second_q.algorithms.ground_state_solvers``. Besides
updating your imports, you need to pay attention to the following:
- ``AdaptVQE`` was migrated to Qiskit Terra:
``qiskit.algorithms.minimum_eigensolver.AdaptVQE``. In doing so, this
is no longer a ``GroundStateSolver`` but rather became a
``MinimumEigensolver`` which means that you would use it like any
other ``VQE`` and inject it **into** a ``GroundStateSolver`` of
Qiskit Nature. To see the new ``AdaptVQE`` in action, check out the
`How to use the AdaptVQE <../howtos/adapt_vqe.rst>`__.
- the API of the ``VQEUCCFactory`` and ``VQEUVCCFactory`` has been
matched with the new primitive-based ``VQE`` API
Previously
^^^^^^^^^^
.. code:: ipython3
from qiskit.providers.basicaer import BasicAer
from qiskit.utils import QuantumInstance
from qiskit_nature.algorithms.ground_state_solvers import VQEUCCFactory
quantum_instance = QuantumInstance(BasicAer.get_backend("statevector_simulator"))
vqe_factory = VQEUCCFactory(quantum_instance=quantum_instance)
New
^^^
.. code:: ipython3
from qiskit.algorithms.optimizers import SLSQP
from qiskit.primitives import Estimator
from qiskit_nature.second_q.circuit.library import UCCSD
from qiskit_nature.second_q.algorithms.ground_state_solvers import VQEUCCFactory
estimator = Estimator()
ansatz = UCCSD()
optimizer = SLSQP()
vqe_factory = VQEUCCFactory(estimator, ansatz, optimizer)
``qiskit_nature.algorithms.excited_states_solvers``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This module was moved to
``qiskit_nature.second_q.algorithms.excited_states_solvers``. Besides
updating your imports, you need to pay attention to the following:
- the ``QEOM`` API now also requires an `Estimator
primitiver <https://docs.quantum.ibm.com/api/qiskit/qiskit.primitives.BaseEstimator>`__
to be provided
Previously
^^^^^^^^^^
.. code:: ipython3
from qiskit_nature.algorithms.ground_state_solvers import GroundStateEigensolver, VQEUCCFactory
from qiskit_nature.algorithms.excited_states_solvers import QEOM
from qiskit_nature.converters.second_quantization import QubitConverter
from qiskit_nature.mappers.second_quantization import JordanWignerMapper
vqe_factory = VQEUCCFactory()
converter = QubitConverter(JordanWignerMapper())
ground_state_solver = GroundStateEigensolver(converter, vqe_factory)
qeom = QEOM(ground_state_solver)
New
^^^
.. code:: ipython3
from qiskit.algorithms.optimizers import SLSQP
from qiskit.primitives import Estimator
from qiskit_nature.second_q.circuit.library import UCCSD
from qiskit_nature.second_q.algorithms.ground_state_solvers import (
GroundStateEigensolver,
VQEUCCFactory,
)
from qiskit_nature.second_q.algorithms.excited_states_solvers import QEOM
from qiskit_nature.second_q.mappers import JordanWignerMapper, QubitConverter
estimator = Estimator()
ansatz = UCCSD()
optimizer = SLSQP()
vqe_factory = VQEUCCFactory(estimator, ansatz, optimizer)
converter = QubitConverter(JordanWignerMapper())
ground_state_solver = GroundStateEigensolver(converter, vqe_factory)
qeom = QEOM(ground_state_solver, estimator)
| qiskit-nature/docs/migration/0.5_b_solving_problems.rst/0 | {
"file_path": "qiskit-nature/docs/migration/0.5_b_solving_problems.rst",
"repo_id": "qiskit-nature",
"token_count": 3290
} | 123 |
<jupyter_start><jupyter_text>Excited states solvers IntroductionIn this tutorial we are going to discuss the excited states calculation interface of Qiskit Nature. The goal is to compute the excited states of a molecular Hamiltonian. This Hamiltonian can be electronic or vibrational. To know more about the preparation of the Hamiltonian, check out the [Electronic structure](01_electronic_structure.ipynb) and [Vibrational structure tutorials](02_vibrational_structure.ipynb).The first step is to define the molecular system. In the following we ask for the electronic part of a hydrogen molecule.<jupyter_code>from qiskit_nature.units import DistanceUnit
from qiskit_nature.second_q.drivers import PySCFDriver
driver = PySCFDriver(
atom="H 0 0 0; H 0 0 0.735",
basis="sto3g",
charge=0,
spin=0,
unit=DistanceUnit.ANGSTROM,
)
es_problem = driver.run()<jupyter_output><empty_output><jupyter_text>We will also be sticking to the Jordan-Wigner mapping. To learn more about the various mappers available in Qiskit Nature, check out the [Qubit Mappers tutorial](06_qubit_mappers.ipynb).<jupyter_code>from qiskit_nature.second_q.mappers import JordanWignerMapper
mapper = JordanWignerMapper()<jupyter_output><empty_output><jupyter_text>The SolverAfter these steps we need to define a solver. The solver is the algorithm through which the excited states are computed. Let's first start with a purely classical example: the `NumPyEigensolver`. This algorithm exactly diagonalizes the Hamiltonian. Although it scales badly, it can be used on small systems to check the results of the quantum algorithms. Here, we are only interested to look at eigenstates with a given number of particles. To compute only those states a filter function can be passed to the `NumPyEigensolver`. A default filter function is already implemented in Qiskit Nature which you can use for this purpose.We also need to specify the number of eigenvalues to be computed by the `NumPyEigensolver`. For this particular system, we are interested in the ground and first three excited states, so we will set `k=4` (which defaults to 1 so be sure to set this, otherwise you will only obtain the ground state!).<jupyter_code>from qiskit_algorithms import NumPyEigensolver
numpy_solver = NumPyEigensolver(k=4, filter_criterion=es_problem.get_default_filter_criterion())<jupyter_output><empty_output><jupyter_text>The excitation energies can also be accessed with the [qEOM algorithm](https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.043140). The EOM method finds the excitation energies (differences in energy between the ground state and all $n$th excited states) by solving the following pseudo-eigenvalue problem.$$\begin{pmatrix} \text{M} & \text{Q}\\ \text{Q*} & \text{M*}\end{pmatrix}\begin{pmatrix} \text{X}_n\\ \text{Y}_n\end{pmatrix}= E_{0n}\begin{pmatrix} \text{V} & \text{W}\\ -\text{W*} & -\text{V*}\end{pmatrix}\begin{pmatrix} \text{X}_n\\ \text{Y}_n\end{pmatrix}$$with $$M_{\mu_{\alpha}\nu_{\beta}} = \langle0| [(\hat{\text{E}}_{\mu_{\alpha}}^{(\alpha)})^{\dagger},\hat{\text{H}}, \hat{\text{E}}_{\nu_{\beta}}^{(\beta)}]|0\rangle$$$$Q_{\mu_{\alpha}\nu_{\beta}} = -\langle0| [(\hat{\text{E}}_{\mu_{\alpha}}^{(\alpha)})^{\dagger}, \hat{\text{H}}, (\hat{\text{E}}_{\nu_{\beta}}^{(\beta)})^{\dagger}]|0\rangle$$$$V_{\mu_{\alpha}\nu_{\beta}} = \langle0| [(\hat{\text{E}}_{\mu_{\alpha}}^{(\alpha)})^{\dagger}, \hat{\text{E}}_{\nu_{\beta}}^{(\beta)}]|0\rangle$$$$W_{\mu_{\alpha}\nu_{\beta}} = -\langle0| [(\hat{\text{E}}_{\mu_\alpha}^{(\alpha)})^{\dagger}, (\hat{\text{E}}_{\nu_{\beta}}^{(\beta)})^{\dagger}]|0\rangle$$Although the previous equation can be solved classically, each matrix element must be measured on the quantum computer with the corresponding ground state. To use the qEOM as a solver in Qiskit, we have to define a ground state calculation first, which will provide the required ground state information to the algorithm. With this the qEOM solver can be initialized like so:<jupyter_code>from qiskit_algorithms import VQE
from qiskit_algorithms.optimizers import SLSQP
from qiskit.primitives import Estimator
from qiskit_nature.second_q.algorithms import GroundStateEigensolver, QEOM, EvaluationRule
from qiskit_nature.second_q.circuit.library import HartreeFock, UCCSD
ansatz = UCCSD(
es_problem.num_spatial_orbitals,
es_problem.num_particles,
mapper,
initial_state=HartreeFock(
es_problem.num_spatial_orbitals,
es_problem.num_particles,
mapper,
),
)
estimator = Estimator()
# This first part sets the ground state solver
# see more about this part in the ground state calculation tutorial
solver = VQE(estimator, ansatz, SLSQP())
solver.initial_point = [0.0] * ansatz.num_parameters
gse = GroundStateEigensolver(mapper, solver)
# The qEOM algorithm is simply instantiated with the chosen ground state solver and Estimator primitive
qeom_excited_states_solver = QEOM(gse, estimator, "sd", EvaluationRule.ALL)<jupyter_output><empty_output><jupyter_text>The calculation and resultsWe are now ready to compute the results. Below, we are comparing the results obtained by the exact `NumPyEigensolver` with the default filter criterion enabled with the results obtained by the qEOM algorithm.<jupyter_code>from qiskit_nature.second_q.algorithms import ExcitedStatesEigensolver
numpy_excited_states_solver = ExcitedStatesEigensolver(mapper, numpy_solver)
numpy_results = numpy_excited_states_solver.solve(es_problem)
qeom_results = qeom_excited_states_solver.solve(es_problem)
print(numpy_results)
print("\n\n")
print(qeom_results)<jupyter_output>=== GROUND STATE ENERGY ===
* Electronic ground state energy (Hartree): -1.857275030202
- computed part: -1.857275030202
~ Nuclear repulsion energy (Hartree): 0.719968994449
> Total ground state energy (Hartree): -1.137306035753
=== EXCITED STATE ENERGIES ===
1:
* Electronic excited state energy (Hartree): -0.882722150245
> Total excited state energy (Hartree): -0.162753155796
2:
* Electronic excited state energy (Hartree): -0.224911252831
> Total excited state energy (Hartree): 0.495057741618
=== MEASURED OBSERVABLES ===
0: # Particles: 2.000 S: 0.000 S^2: 0.000 M: 0.000
1: # Particles: 2.000 S: 0.000 S^2: 0.000 M: 0.000
2: # Particles: 2.000 S: 0.000 S^2: 0.000 M: 0.000
=== DIPOLE MOMENTS ===
~ Nuclear dipole moment (a.u.): [0.0 0.0 1.3889487]
0:
* Electronic dipole moment (a.u.): [0.0 0.0 1.388948701555]
- computed part: [0.0 0.0 1.388948701555]
> Dipole moment (a.u.): [0.0 0.0 -0.000000001555] Total: 0.000000001555
[...]<jupyter_text>One can see from these results that one state is missing from the NumPy results. The reason for this is because the spin is also used as a filter and only singlet states are shown. In the following we use a custom filter function to check our results consistently and only filter out states with the incorrect number of particles (in this case the number of particle is 2) as well as the wrong magnetization (which we enforce to be 0).<jupyter_code>import numpy as np
def filter_criterion(eigenstate, eigenvalue, aux_values):
return np.isclose(aux_values["ParticleNumber"][0], 2.0) and np.isclose(
aux_values["Magnetization"][0], 0.0
)
new_numpy_solver = NumPyEigensolver(k=4, filter_criterion=filter_criterion)
new_numpy_excited_states_solver = ExcitedStatesEigensolver(mapper, new_numpy_solver)
new_numpy_results = new_numpy_excited_states_solver.solve(es_problem)
print(new_numpy_results)
import tutorial_magics
%qiskit_version_table
%qiskit_copyright<jupyter_output><empty_output> | qiskit-nature/docs/tutorials/04_excited_states_solvers.ipynb/0 | {
"file_path": "qiskit-nature/docs/tutorials/04_excited_states_solvers.ipynb",
"repo_id": "qiskit-nature",
"token_count": 2647
} | 124 |
[mypy]
warn_unused_configs = True
ignore_missing_imports = True
strict_optional = False
no_implicit_optional = True
warn_redundant_casts = True
warn_unused_ignores = True
### Output
show_error_codes = True
show_error_context = True
| qiskit-nature/mypy.ini/0 | {
"file_path": "qiskit-nature/mypy.ini",
"repo_id": "qiskit-nature",
"token_count": 80
} | 125 |
# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2021, 2024.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Utility methods to build vibrational hopping operators."""
from __future__ import annotations
from typing import Callable
from qiskit.quantum_info import SparsePauliOp
from qiskit_nature.second_q.circuit.library import UVCC
from qiskit_nature.second_q.operators import VibrationalOp
from qiskit_nature.second_q.mappers import QubitMapper, TaperedQubitMapper
from qiskit_nature.utils import _parallel_map
def build_vibrational_ops(
num_modals: list[int],
excitations: (
str
| int
| list[int]
| Callable[
[int, tuple[int, int]],
list[tuple[tuple[int, ...], tuple[int, ...]]],
]
),
qubit_mapper: QubitMapper,
) -> tuple[
dict[str, SparsePauliOp],
dict[str, list[bool]],
dict[str, tuple[tuple[int, ...], tuple[int, ...]]],
]:
# pylint: disable=unused-argument
"""
Args:
num_modals: The number of modals per mode.
excitations: The types of excitations to consider. The simple cases for this input are:
- a `str` containing any of the following characters: `s`, `d`, `t` or `q`.
- a single, positive `int` denoting the excitation type (1 == `s`, etc.).
- a list of positive integers.
- and finally a callable which can be used to specify a custom list of excitations.
For more details on how to write such a function refer to the default method,
:meth:`generate_vibrational_excitations`.
qubit_mapper: The ``QubitMapper`` to use for mapping.
Returns:
Dict of hopping operators, dict of commutativity types and dict of excitation indices.
"""
ansatz = UVCC(num_modals, excitations, qubit_mapper)
excitations_list = ansatz._get_excitation_list()
size = len(excitations_list)
hopping_operators: dict[str, SparsePauliOp] = {}
excitation_indices: dict[str, tuple[tuple[int, ...], tuple[int, ...]]] = {}
to_be_executed_list = []
for idx in range(size):
to_be_executed_list += [excitations_list[idx], excitations_list[idx][::-1]]
hopping_operators[f"E_{idx}"] = None
hopping_operators[f"Edag_{idx}"] = None
excitation_indices[f"E_{idx}"] = excitations_list[idx]
excitation_indices[f"Edag_{idx}"] = excitations_list[idx][::-1]
result = _parallel_map(
_build_single_hopping_operator,
to_be_executed_list,
task_args=(num_modals, qubit_mapper),
)
for key, res in zip(hopping_operators.keys(), result):
hopping_operators[key] = res
# This variable is required for compatibility with the ElectronicStructureProblem
# at the moment we do not have any type of commutativity in the bosonic case.
type_of_commutativities: dict[str, list[bool]] = {}
return hopping_operators, type_of_commutativities, excitation_indices
def _build_single_hopping_operator(
excitation: tuple[tuple[int, ...], tuple[int, ...]],
num_modals: list[int],
qubit_mapper: QubitMapper,
) -> SparsePauliOp:
label = []
for occ in excitation[0]:
label.append(f"+_{VibrationalOp.build_dual_index(num_modals, occ)}")
for unocc in excitation[1]:
label.append(f"-_{VibrationalOp.build_dual_index(num_modals, unocc)}")
vibrational_op = VibrationalOp({" ".join(label): 1}, num_modals)
qubit_op: SparsePauliOp
if isinstance(qubit_mapper, TaperedQubitMapper):
qubit_op = qubit_mapper.map_clifford(vibrational_op)
else:
qubit_op = qubit_mapper.map(vibrational_op)
return qubit_op
| qiskit-nature/qiskit_nature/second_q/algorithms/excited_states_solvers/qeom_vibrational_ops_builder.py/0 | {
"file_path": "qiskit-nature/qiskit_nature/second_q/algorithms/excited_states_solvers/qeom_vibrational_ops_builder.py",
"repo_id": "qiskit-nature",
"token_count": 1599
} | 126 |
# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2021, 2024.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
The Unitary Coupled-Cluster Ansatz.
"""
from __future__ import annotations
import logging
from functools import partial
from itertools import chain
from typing import Callable, Sequence
from qiskit.circuit import QuantumCircuit
from qiskit.circuit.library import EvolvedOperatorAnsatz
from qiskit_nature import QiskitNatureError
from qiskit_nature.second_q.mappers import QubitMapper, TaperedQubitMapper
from qiskit_nature.second_q.operators import FermionicOp, SparseLabelOp
from .utils.fermionic_excitation_generator import generate_fermionic_excitations
logger = logging.getLogger(__name__)
class UCC(EvolvedOperatorAnsatz):
r"""The Unitary Coupled-Cluster Ansatz. For more information, see [1].
This ansatz is an ``EvolvedOperatorAnsatz`` given by :math:`e^{T - T^{\dagger}}` where
:math:`T` is the *cluster operator*. This cluster operator generally consists of excitation
operators which are generated by
:meth:`~qiskit_nature.second_q.circuit.library.ansatzes.utils.generate_fermionic_excitations`.
This method constructs the requested excitations based on a
:class:`~qiskit_nature.second_q.circuit.library.HartreeFock` reference state by default. When
setting up a ``VQE`` algorithm using this ansatz and initial state, it is likely you will also
want to use a :class:`~qiskit_nature.second_q.algorithms.initial_points.HFInitialPoint` that has
been configured using the corresponding ansatz parameters. This can be done as follows:
.. code-block:: python
qubit_mapper = JordanWignerMapper()
ucc = UCC(4, (2, 2), 'sd', qubit_mapper)
hf_initial_point = HFInitialPoint()
hf_initial_point.ansatz = ucc
initial_point = hf_initial_point.to_numpy_array()
vqe = VQE(Estimator(), ucc, SLSQP(), initial_point=initial_point)
You can also use a custom excitation generator method by passing a callable to ``excitations``.
A utility class :class:`UCCSD` exists, which is equivalent to:
.. code-block:: python
uccsd = UCC(excitations='sd', alpha_spin=True, beta_spin=True, max_spin_excitation=None)
If you want to use a tailored ansatz, you have multiple options to do so. Below, we provide some
examples:
.. code-block:: python
# pure single excitations (equivalent options):
uccs = UCC(excitations='s')
uccs = UCC(excitations=1)
uccs = UCC(excitations=[1])
# pure double excitations (equivalent options):
uccd = UCC(excitations='d')
uccd = UCC(excitations=2)
uccd = UCC(excitations=[2])
# combinations of excitations:
custom_ucc_sd = UCC(excitations='sd') # see also the convenience sub-class UCCSD
custom_ucc_sd = UCC(excitations=[1, 2]) # see also the convenience sub-class UCCSD
custom_ucc_sdt = UCC(excitations='sdt')
custom_ucc_sdt = UCC(excitations=[1, 2, 3])
custom_ucc_st = UCC(excitations='st')
custom_ucc_st = UCC(excitations=[1, 3])
# you can even define a fully custom list of excitations:
def custom_excitation_list(num_spatial_orbitals: int,
num_particles: tuple[int, int]
) -> list[tuple[tuple[Any, ...], ...]]:
# generate your list of excitations...
my_excitation_list = [...]
# For more information about the required format of the return statement, please take a
# look at the documentation of
# `qiskit_nature.second_q.circuit.library.ansatzes.utils.fermionic_excitation_generator`
return my_excitation_list
my_custom_ucc = UCC(excitations=custom_excitation_list)
Keep in mind, that in all of the examples above we have not set any of the following keyword
arguments, which must be specified before the ansatz becomes usable:
- ``qubit_mapper``
- ``num_particles``
- ``num_spatial_orbitals``
If you are using this ansatz with a Qiskit Nature algorithm, these arguments will be set for
you, depending on the rest of the stack.
References:
[1] `arXiv:1805.04340 <https://arxiv.org/abs/1805.04340>`_
"""
_EXCITATION_TYPE = {
"s": 1,
"d": 2,
"t": 3,
"q": 4,
}
def __init__(
self,
num_spatial_orbitals: int | None = None,
num_particles: tuple[int, int] | None = None,
excitations: (
str
| int
| list[int]
| Callable[
[int, tuple[int, int]],
list[tuple[tuple[int, ...], tuple[int, ...]]],
]
| None
) = None,
qubit_mapper: QubitMapper | None = None,
*,
alpha_spin: bool = True,
beta_spin: bool = True,
max_spin_excitation: int | None = None,
generalized: bool = False,
preserve_spin: bool = True,
include_imaginary: bool = False,
reps: int = 1,
initial_state: QuantumCircuit | None = None,
) -> None:
# pylint: disable=unused-argument
"""
Args:
num_spatial_orbitals: The number of spatial orbitals.
num_particles: The tuple of the number of alpha- and beta-spin particles.
excitations: This can be any of the following types:
:`str`: Contains the types of excitations. Allowed characters are: ``'s'`` for
singles, ``'d'`` for doubles, ``'t'`` for triples, and ``'q'`` for quadruples.
:`int`: A single, positive integer which denotes the number of excitations
(``1 == 's'``, ``2 == 'd'``, etc.)
:`list[int]`: A list of positive integers generalizing the above to multiple numbers
of excitations (``[1, 2] == 'sd'``, etc.)
:`Callable`: A function which is used to generate the excitations.
The callable must take the *keyword* arguments ``num_spatial_orbitals`` and
``num_particles`` (with identical types to those explained above) and must return
a ``list[tuple[tuple[int, ...], tuple[int, ...]]]``. For more information on how
to write such a callable refer to the default method
:meth:`~qiskit_nature.second_q.circuit.library.ansatzes.utils.\
generate_fermionic_excitations`.
qubit_mapper: The :class:`~qiskit_nature.second_q.mappers.QubitMapper` which takes care
of mapping to a qubit operator.
alpha_spin: Boolean flag whether to include alpha-spin excitations.
beta_spin: Boolean flag whether to include beta-spin excitations.
max_spin_excitation: The largest number of excitations within a spin. E.g. you can set
this to 1 and ``num_excitations`` to 2 in order to obtain only mixed-spin double
excitations (alpha,beta) but no pure-spin double excitations (alpha,alpha or
beta,beta).
generalized: Boolean flag whether or not to use generalized excitations, which ignore
the occupation of the spin orbitals. As such, the set of generalized excitations is
only determined from the number of spin orbitals and independent from the number of
particles.
preserve_spin: Boolean flag whether or not to preserve the particle spins.
include_imaginary: Boolean flag which when set to ``True`` expands the ansatz to include
imaginary parts using twice the number of free parameters.
reps: The number of times to repeat the evolved operators.
initial_state: A ``QuantumCircuit`` object to prepend to the circuit. Note that this
setting does *not* influence the ``excitations``. When relying on the default
generation method (i.e. not providing a ``Callable`` to ``excitations``), these will
always be constructed with respect to a
:class:`~qiskit_nature.second_q.circuit.library.HartreeFock` reference state.
When setting up a ``VQE`` algorithm using this ansatz and initial state, it is
likely you will also want to use a
:class:`~qiskit_nature.second_q.algorithms.initial_points.HFInitialPoint` that has
been configured using the corresponding ansatz parameters.
"""
self._qubit_mapper = qubit_mapper
self._num_particles = num_particles
self._num_spatial_orbitals = num_spatial_orbitals
self._excitations = excitations
self._alpha_spin = alpha_spin
self._beta_spin = beta_spin
self._max_spin_excitation = max_spin_excitation
self._generalized = generalized
self._preserve_spin = preserve_spin
self._include_imaginary = include_imaginary
super().__init__(reps=reps, initial_state=initial_state)
# To give read access to the actual excitation list that UCC is using.
self._excitation_list: list[tuple[tuple[int, ...], tuple[int, ...]]] | None = None
# We cache these, because the generation may be quite expensive (depending on the generator)
# and the user may want quick access to inspect these. Also, it speeds up testing for the
# same reason!
self._excitation_ops: list[SparseLabelOp] = None
# Our parent, EvolvedOperatorAnsatz, sets qregs when it knows the
# number of qubits, which it gets from the operators. Getting the
# operators here will build them if configuration already allows.
# This will allow the circuit to be fully built/valid when it's
# possible at this stage.
_ = self.operators
@property
def qubit_mapper(self) -> QubitMapper | None:
"""The qubit operator mapper."""
return self._qubit_mapper
@qubit_mapper.setter
def qubit_mapper(self, mapper: QubitMapper | None) -> None:
"""Sets the qubit operator mapper."""
self._operators = None
self._invalidate()
self._qubit_mapper = mapper
@property
def num_spatial_orbitals(self) -> int:
"""The number of spatial orbitals."""
return self._num_spatial_orbitals
@num_spatial_orbitals.setter
def num_spatial_orbitals(self, n: int) -> None:
"""Sets the number of spatial orbitals."""
self._operators = None
self._invalidate()
self._num_spatial_orbitals = n
@property
def num_particles(self) -> tuple[int, int]:
"""The number of particles."""
return self._num_particles
@num_particles.setter
def num_particles(self, n: tuple[int, int]) -> None:
"""Sets the number of particles."""
self._operators = None
self._invalidate()
self._num_particles = n
@property
def excitations(self) -> str | int | list[int] | Callable | None:
"""The excitations."""
return self._excitations
@excitations.setter
def excitations(self, exc: str | int | list[int] | Callable | None) -> None:
"""Sets the excitations."""
self._operators = None
self._invalidate()
self._excitations = exc
@property
def excitation_list(self) -> list[tuple[tuple[int, ...], tuple[int, ...]]] | None:
"""The excitation list that UCC is using.
Raises:
QiskitNatureError: If private the excitation list is ``None``.
"""
if self._excitation_list is None:
# If the excitation_list is None build it out alongside the operators if the ucc config
# checks out ok, otherwise it will be left as None to be built at some later time.
_ = self.operators
return self._excitation_list
@EvolvedOperatorAnsatz.operators.getter
def operators(self): # pylint: disable=invalid-overridden-method
"""The operators that are evolved in this circuit.
Returns:
list: The operators to be evolved contained in this ansatz or
None if the configuration is not complete
"""
# Overriding the getter to build the operators on demand when they are
# requested, if they are still set to None.
operators = super(UCC, self.__class__).operators.__get__(self)
if operators is None or operators == [None]:
# If the operators are None build them out if the ucc config checks out ok, otherwise
# they will be left as None to be built at some later time.
if self._check_ucc_configuration(raise_on_failure=False):
# The qubit operators are cached by `EvolvedOperatorAnsatz` class. We only generate
# them from the `SparseLabelOp`s produced by the generators, if they're not
# already present. This behavior also enables the adaptive usage of the `UCC` class
# by algorithms such as `AdaptVQE`.
excitation_ops = self.excitation_ops()
logger.debug("Converting second-quantized into qubit operators...")
# Convert operators according to saved state in mapper from the conversion of the
# main operator since these need to be compatible. If Z2 Symmetry tapering was done
# it may be that one or more excitation operators do not commute with the symmetry.
# The converted operators are maintained at the same index by the mapper
# inserting ``None`` as the result if an operator did not commute. To ensure that
# the ``excitation_list`` is transformed identically to the operators, we retain
# ``None`` for non-commuting operators in order to manually remove them in unison.
if isinstance(self.qubit_mapper, TaperedQubitMapper):
operators = self.qubit_mapper.map_clifford(excitation_ops)
operators = self.qubit_mapper.taper_clifford(operators, suppress_none=False)
else:
operators = self.qubit_mapper.map(excitation_ops)
if self._include_imaginary:
# duplicate each excitation to account for the real and imaginary parts.
self._excitation_list = list(
chain(*zip(self._excitation_list, self._excitation_list))
)
self._filter_operators(operators=operators)
return super(UCC, self.__class__).operators.__get__(self)
def _filter_operators(self, operators):
valid_operators, valid_excitations = [], []
for op, ex in zip(operators, self._excitation_list):
if op is not None:
valid_operators.append(op)
valid_excitations.append(ex)
self._excitation_list = valid_excitations
self.operators = valid_operators
def _invalidate(self):
self._excitation_ops = None
super()._invalidate()
def _check_configuration(self, raise_on_failure: bool = True) -> bool:
# Check our local config is valid first. The super class will check the
# operators by getting them, and if we detect they are still None they
# will be built so that its valid check will end up passing in that regard.
if not self._check_ucc_configuration(raise_on_failure):
return False
return super()._check_configuration(raise_on_failure)
# pylint: disable=too-many-return-statements
def _check_ucc_configuration(self, raise_on_failure: bool = True) -> bool:
# Check the local config, separated out that it can be checked via build
# or ahead of building operators to make sure everything needed is present.
if self.num_spatial_orbitals is None:
if raise_on_failure:
raise ValueError("The number of spatial orbitals cannot be 'None'.")
return False
if self.num_spatial_orbitals <= 0:
if raise_on_failure:
raise ValueError(
f"The number of spatial orbitals must be > 0 was {self.num_spatial_orbitals}."
)
return False
if self.num_particles is None:
if raise_on_failure:
raise ValueError("The number of particles cannot be 'None'.")
return False
if any(n < 0 for n in self.num_particles):
if raise_on_failure:
raise ValueError(
f"The number of particles cannot be smaller than 0 was {self.num_particles}."
)
return False
if not self._generalized:
if all(n == self.num_spatial_orbitals for n in self.num_particles):
if raise_on_failure:
raise ValueError(
f"UCC calculations for fully occupied alpha and beta orbitals "
f"is still not implemented. The current system contains "
f"{self.num_spatial_orbitals} orbitals for {self.num_particles} "
f"(alpha, beta) particles."
)
return False
if any(n > self.num_spatial_orbitals for n in self.num_particles):
if raise_on_failure:
raise ValueError(
f"The number of spatial orbitals {self.num_spatial_orbitals} "
f"must be greater than number of particles of any spin kind "
f"{self.num_particles}."
)
return False
if self.excitations is None:
if raise_on_failure:
raise ValueError("The excitations cannot be `None`.")
return False
if self.qubit_mapper is None:
if raise_on_failure:
raise ValueError("The qubit_mapper cannot be `None`.")
return False
return True
def excitation_ops(self) -> list[SparseLabelOp]:
"""Parses the excitations and generates the list of operators.
Raises:
QiskitNatureError: if invalid excitations are specified.
Returns:
The list of generated excitation operators.
"""
if self._excitation_ops is not None:
return self._excitation_ops
excitation_list = self._get_excitation_list()
self._check_excitation_list(excitation_list)
logger.debug("Converting excitations into SparseLabelOps...")
excitation_ops = self._build_fermionic_excitation_ops(excitation_list)
self._excitation_list = excitation_list
self._excitation_ops = excitation_ops
return excitation_ops
def _get_excitation_list(self) -> list[tuple[tuple[int, ...], tuple[int, ...]]]:
generators = self._get_excitation_generators()
logger.debug("Generating excitation list...")
excitations = []
for gen in generators:
excitations.extend(
gen( # pylint: disable=not-callable
num_spatial_orbitals=self.num_spatial_orbitals,
num_particles=self.num_particles,
)
)
return excitations
def _get_excitation_generators(self) -> list[Callable]:
logger.debug("Gathering excitation generators...")
generators: list[Callable] = []
extra_kwargs = {
"alpha_spin": self._alpha_spin,
"beta_spin": self._beta_spin,
"max_spin_excitation": self._max_spin_excitation,
"generalized": self._generalized,
"preserve_spin": self._preserve_spin,
}
if isinstance(self.excitations, str):
for exc in self.excitations:
generators.append(
partial(
generate_fermionic_excitations,
num_excitations=self._EXCITATION_TYPE[exc],
**extra_kwargs,
)
)
elif isinstance(self.excitations, int):
generators.append(
partial(
generate_fermionic_excitations, num_excitations=self.excitations, **extra_kwargs
)
)
elif isinstance(self.excitations, list):
for exc in self.excitations: # type: ignore
generators.append(
partial(generate_fermionic_excitations, num_excitations=exc, **extra_kwargs)
)
elif callable(self.excitations):
generators = [self.excitations]
else:
raise QiskitNatureError(f"Invalid excitation configuration: {self.excitations}")
return generators
def _check_excitation_list(self, excitations: Sequence) -> None:
"""Checks the format of the given excitation operators.
The following conditions are checked:
- the list of excitations consists of pairs of tuples
- each pair of excitation indices has the same length
- the indices within each excitation pair are unique
Args:
excitations: the list of excitations
Raises:
QiskitNatureError: if format of excitations is invalid
"""
logger.debug("Checking excitation list...")
error_message = "{error} in the following UCC excitation: {excitation}"
for excitation in excitations:
if len(excitation) != 2:
raise QiskitNatureError(
error_message.format(error="Invalid number of tuples", excitation=excitation)
+ "; Two tuples are expected, e.g. ((0, 1, 4), (2, 3, 6))"
)
if len(excitation[0]) != len(excitation[1]):
raise QiskitNatureError(
error_message.format(
error="Different number of occupied and virtual indices",
excitation=excitation,
)
)
if any(i in excitation[0] for i in excitation[1]) or any(
len(set(indices)) != len(indices) for indices in excitation
):
raise QiskitNatureError(
error_message.format(error="Duplicated indices", excitation=excitation)
)
def _build_fermionic_excitation_ops(self, excitations: Sequence) -> list[FermionicOp]:
"""Builds all possible excitation operators with the given number of excitations for the
specified number of particles distributed in the number of orbitals.
Args:
excitations: the list of excitations.
Returns:
The list of excitation operators in the second quantized formalism.
"""
num_spin_orbitals = 2 * self.num_spatial_orbitals
operators = []
for exc in excitations:
label = []
for occ in exc[0]:
label.append(f"+_{occ}")
for unocc in exc[1]:
label.append(f"-_{unocc}")
op = FermionicOp({" ".join(label): 1}, num_spin_orbitals=num_spin_orbitals)
op_adj = op.adjoint()
# we need to account for an additional imaginary phase in the exponent accumulated from
# the first-order trotterization routine implemented in Qiskit
op_minus = 1j * (op - op_adj)
operators.append(op_minus)
if self._include_imaginary:
op_plus = -1 * (op + op_adj)
operators.append(op_plus)
return operators
| qiskit-nature/qiskit_nature/second_q/circuit/library/ansatzes/ucc.py/0 | {
"file_path": "qiskit-nature/qiskit_nature/second_q/circuit/library/ansatzes/ucc.py",
"repo_id": "qiskit-nature",
"token_count": 10335
} | 127 |
# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2018, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""The PySCF Driver."""
from __future__ import annotations
import inspect
import logging
import os
import tempfile
import warnings
from enum import Enum
from typing import Any
import numpy as np
from qiskit_algorithms.utils.validation import validate_min
from qiskit_nature.units import DistanceUnit
from qiskit_nature.exceptions import QiskitNatureError
from qiskit_nature.second_q.formats.molecule_info import MoleculeInfo
from qiskit_nature.second_q.formats.qcschema import QCSchema
from qiskit_nature.second_q.formats.qcschema_translator import qcschema_to_problem
from qiskit_nature.second_q.operators.symmetric_two_body import fold
from qiskit_nature.second_q.problems import ElectronicBasis, ElectronicStructureProblem
import qiskit_nature.optionals as _optionals
from qiskit_nature.utils import get_einsum
from ..electronic_structure_driver import ElectronicStructureDriver, MethodType, _QCSchemaData
logger = logging.getLogger(__name__)
warnings.filterwarnings("ignore", category=DeprecationWarning, module="pyscf")
class InitialGuess(Enum):
"""Initial Guess Enum"""
MINAO = "minao"
HCORE = "1e"
ONE_E = "1e"
ATOM = "atom"
@_optionals.HAS_PYSCF.require_in_instance
class PySCFDriver(ElectronicStructureDriver):
"""A Second-Quantization driver for Qiskit Nature using the PySCF library.
References:
https://pyscf.org/
"""
def __init__(
self,
atom: str | list[str] = "H 0.0 0.0 0.0; H 0.0 0.0 0.735",
*,
unit: DistanceUnit = DistanceUnit.ANGSTROM,
charge: int = 0,
spin: int = 0,
basis: str = "sto3g",
method: MethodType = MethodType.RHF,
xc_functional: str = "lda,vwn",
xcf_library: str = "libxc",
conv_tol: float = 1e-9,
max_cycle: int = 50,
init_guess: InitialGuess = InitialGuess.MINAO,
max_memory: int | None = None,
chkfile: str | None = None,
) -> None:
"""
Args:
atom: A string (or a list thereof) denoting the elements and coordinates of all atoms in
the system. Two formats are allowed; first, the PySCF-style `XYZ` format which is a
list of strings formatted as `{element symbol} {x_coord} {y_coord} {z_coord}`. If a
single string is given, the list entries should be joined by `;` as in the example:
`H 0.0 0.0 0.0; H 0.0 0.0 0.735`.
Second, the `Z-Matrix` format which is explained at 1_. The previous example
would be written as `H; H 3 0.735`.
See also 2_ for more details on geometry specifications supported by PySCF.
unit: Denotes the unit of coordinates. Valid values are given by the ``UnitsType`` enum.
charge: The charge of the molecule.
spin: The spin of the molecule. In accordance with PySCF's definition, the spin equals
:math:`2*S`, where :math:`S` is the total spin number of the molecule.
basis: A basis set name as recognized by PySCF (3_), e.g. `sto3g` (the default), `321g`,
etc. Note, that more advanced configuration options like a Dictionary or custom
basis sets are not allowed for the moment. Refer to 4_ for an extensive list of
PySCF's valid basis set names.
method: The SCF method type to be used for the PySCF calculation. While the name
refers to HF methods, the PySCFDriver also supports KS methods. Refer to the
``MethodType`` for a list of the supported methods.
xc_functional: One of the predefined Exchange-Correlation functional names as recognized
by PySCF (5_). Defaults to PySCF's default: 'lda,vwn'. __Note: this setting only has
an effect when a KS method is chosen for `method`.__
xcf_library: The Exchange-Correlation functional library to be used. This can be either
'libxc' (the default) or 'xcfun'. Depending on this value, a different set of values
for `xc_functional` will be available. Refer to 5_ for more details.
conv_tol: The SCF convergence tolerance. See 6_ for more details.
max_cycle: The maximum number of SCF iterations. See 6_ for more details.
init_guess: The method to make the initial guess for the SCF starting point. Valid
values are given by the ``InitialGuess`` enum. See 6_ for more details.
max_memory: The maximum memory that PySCF should use. See 6_ for more details.
chkfile: The path to a PySCF checkpoint file from which to load a previously run
calculation. The data stored in this file is assumed to be already converged.
Refer to 6_ and 7_ for more details.
Raises:
QiskitNatureError: An invalid input was supplied.
.. _1: https://en.wikipedia.org/wiki/Z-matrix_(chemistry)
.. _2: https://pyscf.org/user/gto.html#geometry
.. _3: https://pyscf.org/user/gto.html#basis-set
.. _4: https://pyscf.org/pyscf_api_docs/pyscf.gto.basis.html#module-pyscf.gto.basis
.. _5: https://pyscf.org/user/dft.html#predefined-xc-functionals-and-functional-aliases
.. _6: https://pyscf.org/pyscf_api_docs/pyscf.scf.html#module-pyscf.scf.hf
.. _7: https://pyscf.org/pyscf_api_docs/pyscf.lib.html#module-pyscf.lib.chkfile
"""
super().__init__()
# pylint: disable=import-error
from pyscf import gto, scf
# First, ensure that PySCF supports the method
PySCFDriver.check_method_supported(method)
if isinstance(atom, list):
atom = ";".join(atom)
elif isinstance(atom, str):
atom = atom.replace("\n", ";")
else:
raise QiskitNatureError(
f"`atom` must be either a `str` or `list[str]`, but you passed {atom}"
)
validate_min("max_cycle", max_cycle, 1)
# we use the property-setter to deal with conversion
self.atom = atom
self._unit = unit
self._charge = charge
self._spin = spin
self._basis = basis
self._method = method
self._xc_functional = xc_functional
self.xcf_library = xcf_library # validate choice in property setter
self._conv_tol = conv_tol
self._max_cycle = max_cycle
self._init_guess = init_guess.value
self._max_memory = max_memory
self._chkfile = chkfile
self._mol: gto.Mole = None
self._calc: scf.HF = None
@property
def atom(self) -> str:
"""Returns the atom."""
return self._atom
@atom.setter
def atom(self, atom: str | list[str]) -> None:
"""Sets the atom."""
if isinstance(atom, list):
atom = ";".join(atom)
self._atom = atom.replace("\n", ";")
@property
def unit(self) -> DistanceUnit:
"""Returns the unit."""
return self._unit
@unit.setter
def unit(self, unit: DistanceUnit) -> None:
"""Sets the unit."""
self._unit = unit
@property
def charge(self) -> int:
"""Returns the charge."""
return self._charge
@charge.setter
def charge(self, charge: int) -> None:
"""Sets the charge."""
self._charge = charge
@property
def spin(self) -> int:
"""Returns the spin."""
return self._spin
@spin.setter
def spin(self, spin: int) -> None:
"""Sets the spin."""
self._spin = spin
@property
def basis(self) -> str:
"""return basis"""
return self._basis
@basis.setter
def basis(self, value: str) -> None:
"""set basis"""
self._basis = value
@property
def method(self) -> MethodType:
"""Returns Hartree-Fock/Kohn-Sham method"""
return self._method
@method.setter
def method(self, value: MethodType) -> None:
"""Sets Hartree-Fock/Kohn-Sham method"""
self._method = value
@property
def xc_functional(self) -> str:
"""Returns the Exchange-Correlation functional."""
return self._xc_functional
@xc_functional.setter
def xc_functional(self, xc_functional: str) -> None:
"""Sets the Exchange-Correlation functional."""
self._xc_functional = xc_functional
@property
def xcf_library(self) -> str:
"""Returns the Exchange-Correlation functional library."""
return self._xcf_library
@xcf_library.setter
def xcf_library(self, xcf_library: str) -> None:
"""Sets the Exchange-Correlation functional library."""
if xcf_library not in ("libxc", "xcfun"):
raise QiskitNatureError(
"Invalid XCF library. It can be either 'libxc' or 'xcfun', not " f"'{xcf_library}'"
)
self._xcf_library = xcf_library
@property
def conv_tol(self) -> float:
"""Returns the SCF convergence tolerance."""
return self._conv_tol
@conv_tol.setter
def conv_tol(self, conv_tol: float) -> None:
"""Sets the SCF convergence tolerance."""
self._conv_tol = conv_tol
@property
def max_cycle(self) -> int:
"""Returns the maximum number of SCF iterations."""
return self._max_cycle
@max_cycle.setter
def max_cycle(self, max_cycle: int) -> None:
"""Sets the maximum number of SCF iterations."""
self._max_cycle = max_cycle
@property
def init_guess(self) -> str:
"""Returns the method for the initial guess."""
return self._init_guess
@init_guess.setter
def init_guess(self, init_guess: str) -> None:
"""Sets the method for the initial guess."""
self._init_guess = init_guess
@property
def max_memory(self) -> int:
"""Returns the maximum memory allowance for the calculation."""
return self._max_memory
@max_memory.setter
def max_memory(self, max_memory: int) -> None:
"""Sets the maximum memory allowance for the calculation."""
self._max_memory = max_memory
@property
def chkfile(self) -> str:
"""Returns the path to the PySCF checkpoint file."""
return self._chkfile
@chkfile.setter
def chkfile(self, chkfile: str) -> None:
"""Sets the path to the PySCF checkpoint file."""
self._chkfile = chkfile
@staticmethod
def from_molecule(
molecule: MoleculeInfo,
*,
basis: str = "sto3g",
method: MethodType = MethodType.RHF,
driver_kwargs: dict[str, Any] | None = None,
) -> "PySCFDriver":
"""Creates a driver from a molecule.
Args:
molecule: the molecular information.
basis: the basis set.
method: the SCF method type.
driver_kwargs: keyword arguments to be passed to driver.
Returns:
The constructed driver instance.
"""
PySCFDriver.check_method_supported(method)
kwargs = {}
if driver_kwargs:
args = inspect.signature(PySCFDriver.__init__).parameters.keys()
for key, value in driver_kwargs.items():
if key not in ["self"] and key in args:
kwargs[key] = value
kwargs["atom"] = [
" ".join(map(str, (name, *coord)))
for name, coord in zip(molecule.symbols, molecule.coords)
]
kwargs["charge"] = molecule.charge
kwargs["spin"] = molecule.multiplicity - 1
kwargs["unit"] = molecule.units
kwargs["basis"] = PySCFDriver.to_driver_basis(basis)
kwargs["method"] = method
return PySCFDriver(**kwargs)
@staticmethod
def to_driver_basis(basis: str) -> str:
"""Converts basis to a driver acceptable basis.
Args:
basis: The basis set to be used.
Returns:
A driver acceptable basis.
"""
return basis
@staticmethod
def check_method_supported(method: MethodType) -> None:
"""Checks that PySCF supports this method.
Args:
method: the SCF method type.
Raises:
UnsupportMethodError: If the method is not supported.
"""
# supports all methods
pass
def run(self) -> ElectronicStructureProblem:
"""Runs the driver to produce a result.
Returns:
ElectronicStructureProblem produced by the run driver.
Raises:
QiskitNatureError: if an error during the PySCF setup or calculation occurred.
"""
self.run_pyscf()
return self.to_problem()
def _build_molecule(self) -> None:
"""Builds the PySCF molecule object.
Raises:
QiskitNatureError: If building the PySCF molecule object failed.
"""
# Get config from input parameters
# molecule is in PySCF atom string format e.g. "H .0 .0 .0; H .0 .0 0.2"
# or in Z-Matrix format e.g. "H; O 1 1.08; H 2 1.08 1 107.5"
# other parameters are as per PySCF got.Mole format
# pylint: disable=import-error
from pyscf import gto
from pyscf.lib import logger as pylogger
from pyscf.lib import param
atom = self._check_molecule_format(self.atom)
if self._max_memory is None:
self._max_memory = param.MAX_MEMORY
try:
verbose = pylogger.QUIET
output = None
if logger.isEnabledFor(logging.DEBUG):
verbose = pylogger.INFO
file, output = tempfile.mkstemp(suffix=".log")
os.close(file)
self._mol = gto.Mole(
atom=atom,
unit=self._unit.value,
basis=self._basis,
max_memory=self._max_memory,
verbose=verbose,
output=output,
)
self._mol.symmetry = False
self._mol.charge = self._charge
self._mol.spin = self._spin
self._mol.build(parse_arg=False)
if output is not None:
self._process_pyscf_log(output)
try:
os.remove(output)
except Exception: # pylint: disable=broad-except
pass
except Exception as exc:
raise QiskitNatureError("Failed to build the PySCF Molecule object.") from exc
@staticmethod
def _check_molecule_format(val: str) -> str | list[str]:
"""Ensures the molecule coordinates are in XYZ format.
This utility automatically converts a Z-matrix coordinate format into XYZ coordinates.
Args:
val: the atomic coordinates.
Raises:
QiskitNatureError: If the provided coordinate are badly formatted.
Returns:
The coordinates in XYZ format.
"""
# pylint: disable=import-error
from pyscf import gto
atoms = [x.strip() for x in val.split(";")]
if atoms is None or len(atoms) < 1:
raise QiskitNatureError("Molecule format error: " + val)
# An xyz format has 4 parts in each atom, if not then do zmatrix convert
# Allows dummy atoms, using symbol 'X' in zmatrix format for coord computation to xyz
parts = [x.strip() for x in atoms[0].split()]
if len(parts) != 4:
try:
newval = []
for entry in gto.mole.from_zmatrix(val):
if entry[0].upper() != "X":
newval.append(entry)
return newval
except Exception as exc:
raise QiskitNatureError("Failed to convert atom string: " + val) from exc
return val
def run_pyscf(self) -> None:
"""Runs the PySCF calculation.
This method is part of the public interface to allow the user to easily overwrite it in a
subclass to further tailor the behavior to some specific use case.
Raises:
QiskitNatureError: If an invalid HF method type was supplied.
"""
self._build_molecule()
# pylint: disable=import-error
from pyscf import dft, scf
from pyscf.lib import chkfile as lib_chkfile
method_name = None
method_cls = None
try:
# attempt to gather the SCF-method class specified by the MethodType
method_name = self.method.value.upper()
method_cls = getattr(scf, method_name)
except AttributeError as exc:
raise QiskitNatureError(f"Failed to load {method_name} HF object.") from exc
self._calc = method_cls(self._mol)
if method_name in ("RKS", "ROKS", "UKS"):
self._calc._numint.libxc = getattr(dft, self.xcf_library)
self._calc.xc = self.xc_functional
if self._chkfile is not None and os.path.exists(self._chkfile):
self._calc.__dict__.update(lib_chkfile.load(self._chkfile, "scf"))
logger.info("PySCF loaded from chkfile e(hf): %s", self._calc.e_tot)
else:
self._calc.conv_tol = self._conv_tol
self._calc.max_cycle = self._max_cycle
self._calc.init_guess = self._init_guess
self._calc.kernel()
logger.info(
"PySCF kernel() converged: %s, e(hf): %s",
self._calc.converged,
self._calc.e_tot,
)
def to_qcschema(self, *, include_dipole: bool = True) -> QCSchema:
# pylint: disable=import-error
from pyscf import __version__ as pyscf_version
from pyscf import ao2mo, gto
from pyscf.tools import dump_mat
einsum_func, _ = get_einsum()
data = _QCSchemaData()
data.overlap = self._calc.get_ovlp()
data.mo_coeff, data.mo_coeff_b = self._expand_mo_object(
self._calc.mo_coeff, array_dimension=3
)
data.mo_energy, data.mo_energy_b = self._expand_mo_object(self._calc.mo_energy)
data.mo_occ, data.mo_occ_b = self._expand_mo_object(self._calc.mo_occ)
if logger.isEnabledFor(logging.DEBUG):
# Add some more to PySCF output...
# First analyze() which prints extra information about MO energy and occupation
self._mol.stdout.write("\n")
self._calc.analyze()
# Now labelled orbitals for contributions to the MOs for s,p,d etc of each atom
self._mol.stdout.write("\n\n--- Alpha Molecular Orbitals ---\n\n")
dump_mat.dump_mo(self._mol, data.mo_coeff, digits=7, start=1)
if data.mo_coeff_b is not None:
self._mol.stdout.write("\n--- Beta Molecular Orbitals ---\n\n")
dump_mat.dump_mo(self._mol, data.mo_coeff_b, digits=7, start=1)
self._mol.stdout.flush()
data.hij = self._calc.get_hcore()
data.hij_mo = np.dot(np.dot(data.mo_coeff.T, data.hij), data.mo_coeff)
if data.mo_coeff_b is not None:
data.hij_mo_b = np.dot(np.dot(data.mo_coeff_b.T, data.hij), data.mo_coeff_b)
data.eri = self._mol.intor("int2e", aosym=8)
data.eri_mo = fold(ao2mo.full(self._mol, data.mo_coeff, aosym=4))
if data.mo_coeff_b is not None:
data.eri_mo_bb = fold(ao2mo.full(self._mol, data.mo_coeff_b, aosym=4))
data.eri_mo_ba = fold(
ao2mo.general(
self._mol,
[data.mo_coeff_b, data.mo_coeff_b, data.mo_coeff, data.mo_coeff],
aosym=4,
)
)
data.e_nuc = gto.mole.energy_nuc(self._mol)
data.e_ref = self._calc.e_tot
data.symbols = [self._mol.atom_pure_symbol(i) for i in range(self._mol.natm)]
data.coords = self._mol.atom_coords(unit="Bohr").ravel().tolist()
data.multiplicity = self._spin + 1
data.charge = self._charge
data.masses = list(self._mol.atom_mass_list())
data.method = self._method.value.upper()
data.basis = self._basis
data.creator = "PySCF"
data.version = pyscf_version
data.nbasis = self._mol.nbas
data.nmo = self._mol.nao
data.nalpha = self._mol.nelec[0]
data.nbeta = self._mol.nelec[1]
if include_dipole:
self._mol.set_common_orig((0, 0, 0))
ao_dip = self._mol.intor_symmetric("int1e_r", comp=3)
d_m = self._calc.make_rdm1(self._calc.mo_coeff, self._calc.mo_occ)
if not (isinstance(d_m, np.ndarray) and d_m.ndim == 2):
d_m = d_m[0] + d_m[1]
elec_dip = np.negative(einsum_func("xij,ji->x", ao_dip, d_m).real)
elec_dip = np.round(elec_dip, decimals=8)
nucl_dip = einsum_func("i,ix->x", self._mol.atom_charges(), self._mol.atom_coords())
nucl_dip = np.round(nucl_dip, decimals=8)
ref_dip = nucl_dip + elec_dip
logger.info("HF Electronic dipole moment: %s", elec_dip)
logger.info("Nuclear dipole moment: %s", nucl_dip)
logger.info("Total dipole moment: %s", ref_dip)
data.dip_nuc = nucl_dip
data.dip_ref = ref_dip
data.dip_x = ao_dip[0]
data.dip_y = ao_dip[1]
data.dip_z = ao_dip[2]
data.dip_mo_x_a = np.dot(np.dot(data.mo_coeff.T, data.dip_x), data.mo_coeff)
data.dip_mo_y_a = np.dot(np.dot(data.mo_coeff.T, data.dip_y), data.mo_coeff)
data.dip_mo_z_a = np.dot(np.dot(data.mo_coeff.T, data.dip_z), data.mo_coeff)
if data.mo_coeff_b is not None:
data.dip_mo_x_b = np.dot(np.dot(data.mo_coeff_b.T, data.dip_x), data.mo_coeff_b)
data.dip_mo_y_b = np.dot(np.dot(data.mo_coeff_b.T, data.dip_y), data.mo_coeff_b)
data.dip_mo_z_b = np.dot(np.dot(data.mo_coeff_b.T, data.dip_z), data.mo_coeff_b)
return self._to_qcschema(data, include_dipole=include_dipole)
def to_problem(
self,
*,
basis: ElectronicBasis = ElectronicBasis.MO,
include_dipole: bool = True,
) -> ElectronicStructureProblem:
qcschema = self.to_qcschema(include_dipole=include_dipole)
problem = qcschema_to_problem(qcschema, basis=basis, include_dipole=include_dipole)
if include_dipole and problem.properties.electronic_dipole_moment is not None:
problem.properties.electronic_dipole_moment.reverse_dipole_sign = True
return problem
def _expand_mo_object(
self,
mo_object: tuple[np.ndarray | None, np.ndarray | None] | np.ndarray,
array_dimension: int = 2,
) -> tuple[np.ndarray, np.ndarray]:
"""Expands the molecular orbital object into alpha- and beta-spin components.
Since PySCF 1.6.2, the alpha and beta components are no longer stored as a tuple but as a
multi-dimensional numpy array. This utility takes care of differentiating these cases.
Args:
mo_object: the molecular orbital object to expand.
array_dimension: This argument specifies the dimension of the numpy array (if a tuple
is not encountered). Making this configurable permits this function to be used to
expand both, MO coefficients (3D array) and MO energies (2D array).
Returns:
The (alpha, beta) tuple of MO data.
"""
if isinstance(mo_object, tuple):
return mo_object
if len(mo_object.shape) == array_dimension:
return mo_object[0], mo_object[1]
return mo_object, None
def _process_pyscf_log(self, logfile: str) -> None:
"""Processes a PySCF logfile.
Args:
logfile: the path of the PySCF logfile.
"""
with open(logfile, "r", encoding="utf8") as file:
contents = file.readlines()
for i, content in enumerate(contents):
if content.startswith("System:"):
contents = contents[i:]
break
logger.debug("PySCF processing messages log:\n%s", "".join(contents))
| qiskit-nature/qiskit_nature/second_q/drivers/pyscfd/pyscfdriver.py/0 | {
"file_path": "qiskit-nature/qiskit_nature/second_q/drivers/pyscfd/pyscfdriver.py",
"repo_id": "qiskit-nature",
"token_count": 11293
} | 128 |
# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2022, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""The QCSchema (output) dataclass."""
from __future__ import annotations
from dataclasses import dataclass
from typing import Any, Sequence, cast
# Sphinx is somehow unable to resolve this forward reference which gets inherited from QCSchemaInput
# Thus, we import it here manually to ensure the documentation can be built
from typing import Mapping # pylint: disable=unused-import
import h5py
from qiskit_nature.version import __version__
from .qc_error import QCError
from .qc_model import QCModel
from .qc_schema_input import QCSchemaInput
from .qc_properties import QCProperties
from .qc_provenance import QCProvenance
from .qc_topology import QCTopology
from .qc_wavefunction import QCWavefunction
@dataclass
class QCSchema(QCSchemaInput):
"""The full QCSchema as a dataclass.
For more information refer to
[here](https://molssi-qc-schema.readthedocs.io/en/latest/spec_components.html#output-components).
"""
provenance: QCProvenance
"""An instance of :class:`QCProvenance`."""
return_result: float | Sequence[float]
"""The primary result of the computation. Its value depends on the type of computation (see also
`driver`)."""
success: bool
"""Whether the computation was successful."""
properties: QCProperties
"""An instance of :class:`QCProperties`."""
error: QCError | None = None
"""An instance of :class:`QCError` if the computation was not successful (`success = False`)."""
wavefunction: QCWavefunction | None = None
"""An instance of :class:`QCWavefunction`."""
@classmethod
def from_dict(cls, data: dict[str, Any]) -> QCSchema:
error: QCError | None = None
if "error" in data.keys():
error = QCError(**data.pop("error"))
model = QCModel(**data.pop("model"))
molecule = QCTopology(**data.pop("molecule"))
provenance = QCProvenance(**data.pop("provenance"))
properties = QCProperties(**data.pop("properties"))
wavefunction: QCWavefunction | None = None
if "wavefunction" in data.keys():
wavefunction = QCWavefunction.from_dict(data.pop("wavefunction"))
return cls(
**data,
error=error,
model=model,
molecule=molecule,
provenance=provenance,
properties=properties,
wavefunction=wavefunction,
)
def to_hdf5(self, group: h5py.Group) -> None:
group.attrs["schema_name"] = self.schema_name
group.attrs["schema_version"] = self.schema_version
group.attrs["driver"] = self.driver
group.attrs["return_result"] = self.return_result
group.attrs["success"] = self.success
molecule_group = group.require_group("molecule")
self.molecule.to_hdf5(molecule_group)
model_group = group.require_group("model")
self.model.to_hdf5(model_group)
provenance_group = group.require_group("provenance")
self.provenance.to_hdf5(provenance_group)
properties_group = group.require_group("properties")
self.properties.to_hdf5(properties_group)
if self.error is not None:
error_group = group.require_group("error")
self.error.to_hdf5(error_group)
if self.wavefunction is not None:
wavefunction_group = group.require_group("wavefunction")
self.wavefunction.to_hdf5(wavefunction_group)
keywords_group = group.require_group("keywords")
for key, value in self.keywords.items():
keywords_group.attrs[key] = value
@classmethod
def _from_hdf5_group(cls, h5py_group: h5py.Group) -> QCSchemaInput:
data = dict(h5py_group.attrs.items())
data["molecule"] = cast(QCTopology, QCTopology.from_hdf5(h5py_group["molecule"]))
data["model"] = cast(QCModel, QCModel.from_hdf5(h5py_group["model"]))
data["provenance"] = cast(QCProvenance, QCProvenance.from_hdf5(h5py_group["provenance"]))
data["properties"] = cast(QCProperties, QCProperties.from_hdf5(h5py_group["properties"]))
if "error" in h5py_group.keys():
data["error"] = cast(QCError, QCError.from_hdf5(h5py_group["error"]))
if "wavefunction" in h5py_group.keys():
data["wavefunction"] = cast(
QCWavefunction, QCWavefunction.from_hdf5(h5py_group["wavefunction"])
)
data["keywords"] = dict(h5py_group["keywords"].attrs.items())
return cls(**data)
| qiskit-nature/qiskit_nature/second_q/formats/qcschema/qc_schema.py/0 | {
"file_path": "qiskit-nature/qiskit_nature/second_q/formats/qcschema/qc_schema.py",
"repo_id": "qiskit-nature",
"token_count": 1971
} | 129 |
# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2021, 2024.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""The Direct Mapper."""
from __future__ import annotations
from functools import lru_cache
import numpy as np
from qiskit.quantum_info.operators import Pauli
from .vibrational_mapper import VibrationalMapper
from .mode_based_mapper import ModeBasedMapper, PauliType
class DirectMapper(VibrationalMapper, ModeBasedMapper):
"""The Direct mapper.
This mapper maps a :class:`~.VibrationalOp` to a qubit operator. In doing so, each modal of the
``VibrationalOp`` gets mapped to a single qubit.
"""
def pauli_table(self, register_length: int) -> list[tuple[PauliType, PauliType]]:
return self._pauli_table(register_length)
@staticmethod
@lru_cache(maxsize=32)
def _pauli_table(register_length: int) -> list[tuple[PauliType, PauliType]]:
pauli_table = []
for i in range(register_length):
a_z = np.asarray([0] * i + [0] + [0] * (register_length - i - 1), dtype=bool)
a_x = np.asarray([0] * i + [1] + [0] * (register_length - i - 1), dtype=bool)
b_z = np.asarray([0] * i + [1] + [0] * (register_length - i - 1), dtype=bool)
b_x = np.asarray([0] * i + [1] + [0] * (register_length - i - 1), dtype=bool)
pauli_table.append((Pauli((a_z, a_x)), Pauli((b_z, b_x))))
return pauli_table
| qiskit-nature/qiskit_nature/second_q/mappers/direct_mapper.py/0 | {
"file_path": "qiskit-nature/qiskit_nature/second_q/mappers/direct_mapper.py",
"repo_id": "qiskit-nature",
"token_count": 694
} | 130 |
# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2022, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""A container class for electronic operator coefficients (a.k.a. electronic integrals)."""
from __future__ import annotations
from collections.abc import Callable
from numbers import Number
from typing import Optional, Sequence, Tuple, cast
import numpy as np
from qiskit.quantum_info.operators.mixins import LinearMixin
from qiskit_nature.exceptions import QiskitNatureError
import qiskit_nature.optionals as _optionals
from .polynomial_tensor import PolynomialTensor
from .symmetric_two_body import SymmetricTwoBodyIntegrals
from .tensor import Tensor
from .tensor_ordering import (
IndexType,
find_index_order,
to_physicist_ordering,
)
if _optionals.HAS_SPARSE:
# pylint: disable=import-error
from sparse import SparseArray
else:
class SparseArray: # type: ignore
"""Empty SparseArray class
Replacement if sparse.SparseArray is not present.
"""
pass
class ElectronicIntegrals(LinearMixin):
r"""A container class for electronic operator coefficients (a.k.a. electronic integrals).
This class contains multiple :class:`qiskit_nature.second_q.operators.PolynomialTensor`
instances, dealing with the specific case of storing electronic integrals, where the up- and
down-spin electronic interactions need to be handled separately. These two spins are also
commonly referred to by :math:`\alpha` and :math:`\beta`, respectively.
Specifically, this class stores three :class:`~.PolynomialTensor` instances:
- :attr:`alpha`: which stores the up-spin integrals
- :attr:`beta`: which stores the down-spin integrals
- :attr:`beta_alpha`: which stores beta-alpha-spin two-body integrals
These tensors are subject to some expectations, namely:
- for ``alpha`` and ``beta`` only the following keys are allowed: ``""``, ``"+-"``, ``"++--"``
- for ``beta_alpha`` the only allowed key is ``"++--"``
- the reported ``register_length`` attributes of all non-empty tensors must match
There are two ways of constructing the ``ElectronicIntegrals``:
.. code-block:: python
# assuming you already have your one- and two-body integrals from somewhere
h1_a, h2_aa, h1_b, h2_bb, h2_ba = ...
from qiskit_nature.second_q.operators import ElectronicIntegrals, PolynomialTensor
alpha = PolynomialTensor({"+-": h1_a, "++--": h2_aa})
beta = PolynomialTensor({"+-": h1_b, "++--": h2_bb})
beta_alpha = PolynomialTensor({"++--": h2_ba})
integrals = ElectronicIntegrals(alpha, beta, beta_alpha)
# alternatively, the following achieves the same effect:
integrals = ElectronicIntegrals.from_raw_integrals(h1_a, h2_aa, h1_b, h2_bb, h2_ba)
This class then exposes common mathematical operations performed on these tensors allowing
simple manipulation of the underlying data structures.
.. code-block:: python
# addition
integrals + integrals
# scalar multiplication
2.0 * integrals
This class will substitute empty ``beta`` and ``beta_alpha`` tensors with the ``alpha`` tensor
when necessary. For example, this means the following will happen:
.. code-block:: python
integrals_pure = ElectronicIntegrals(alpha)
integrals_mixed = ElectronicIntegrals(alpha, beta, beta_alpha)
sum = integrals_pure + integrals_mixed
print(sum.beta.is_empty()) # False
print(sum.beta_alpha.is_empty()) # False
print(sum.beta.equiv(alpha + beta)) # True
print(sum.beta_alpha.equiv(alpha + beta_alpha)) # True
The same logic holds for other mathematical operations involving multiple ``ElectronicIntegrals``.
You can add a custom offset to be included in the operator generated from these coefficients
like so:
.. code-block:: python
from qiskit_nature.second_q.operators import PolynomialTensor
integrals: ElectronicIntegrals
offset = 2.5
integrals.alpha += PolynomialTensor({"": offset})
"""
_VALID_KEYS = {"", "+-", "++--"}
def __init__(
self,
alpha: PolynomialTensor | None = None,
beta: PolynomialTensor | None = None,
beta_alpha: PolynomialTensor | None = None,
*,
validate: bool = True,
) -> None:
"""
Any ``None``-valued argument will internally be replaced by an empty :class:`~.PolynomialTensor`
(see also :meth:`qiskit_nature.second_q.operators.PolynomialTensor.empty`).
Args:
alpha: the up-spin electronic integrals
beta: the down-spin electronic integrals
beta_alpha: the beta-alpha-spin two-body electronic integrals. This may *only* contain
the ``++--`` key.
validate: when set to False, no validation will be performed. Disable this setting with
care!
Raises:
KeyError: if the ``alpha`` tensor contains keys other than ``""``, ``"+-"``, and ``"++--"``.
KeyError: if the ``beta`` tensor contains keys other than ``""``, ``"+-"``, and ``"++--"``.
KeyError: if the ``beta_alpha`` tensor contains keys other than ``"++--"``.
ValueError: if the reported :attr:`~.PolynomialTensor.register_length` attributes of the
alpha-, beta-, and beta-alpha-spin tensors do not all match.
"""
self.alpha = alpha
self.beta = beta
self.beta_alpha = beta_alpha
if validate:
self._validate()
def _validate(self):
"""Performs internal validation."""
self._validate_tensor_keys()
self._validate_register_lengths()
def _validate_tensor_keys(self):
"""Validates the keys of all internal tensors."""
if not self.alpha.keys() <= ElectronicIntegrals._VALID_KEYS:
raise KeyError(
"The only allowed keys for the alpha-spin tensor are '', '+-', and '++--', but your"
f" tensor has keys: {self.alpha.keys()}"
)
if not self.beta.keys() <= ElectronicIntegrals._VALID_KEYS:
raise KeyError(
"The only allowed keys for the beta-spin tensor are '', '+-', and '++--', but your"
f" tensor has keys: {self.beta.keys()}"
)
if not self.beta_alpha.keys() <= {"++--"}:
raise KeyError(
"The only allowed key for the beta-alpha-spin tensor is '++--', but your "
f" tensor has keys: {self.beta_alpha.keys()}"
)
def _validate_register_lengths(self):
"""Validates the reported `register_length` attributes of all internal tensors."""
alpha_len = self.alpha.register_length
beta_len = self.beta.register_length
beta_alpha_len = self.beta_alpha.register_length
if alpha_len is None:
if beta_len is not None:
raise ValueError(
f"The reported register_length of your beta-spin tensor, {beta_len}, does not "
f"match the alpha-spin tensor one, {alpha_len}."
)
if beta_alpha_len is not None:
raise ValueError(
f"The reported register_length of your beta-alpha-spin tensor, {beta_alpha_len}"
f", does not match the alpha-spin tensor one, {alpha_len}."
)
else:
if beta_len is not None and alpha_len != beta_len:
raise ValueError(
f"The reported register_length of your beta-spin tensor, {beta_len}, does not "
f"match the alpha-spin tensor one, {alpha_len}."
)
if beta_alpha_len is not None and alpha_len != beta_alpha_len:
raise ValueError(
f"The reported register_length of your beta-alpha-spin tensor, {beta_alpha_len}"
f", does not match the alpha-spin tensor one, {alpha_len}."
)
@property
def alpha(self) -> PolynomialTensor:
"""The up-spin electronic integrals."""
return self._alpha
@alpha.setter
def alpha(self, alpha: PolynomialTensor | None) -> None:
self._alpha = alpha if alpha is not None else PolynomialTensor.empty()
@property
def beta(self) -> PolynomialTensor:
"""The down-spin electronic integrals."""
return self._beta
@beta.setter
def beta(self, beta: PolynomialTensor | None) -> None:
self._beta = beta if beta is not None else PolynomialTensor.empty()
@property
def beta_alpha(self) -> PolynomialTensor:
"""The beta-alpha-spin two-body electronic integrals."""
return self._beta_alpha
@beta_alpha.setter
def beta_alpha(self, beta_alpha: PolynomialTensor | None) -> None:
if beta_alpha is None:
self._beta_alpha = PolynomialTensor.empty()
else:
keys = set(beta_alpha)
if keys and keys != {"++--"}:
raise ValueError(
f"The beta_alpha tensor may only contain a `++--` key, not {keys}."
)
self._beta_alpha = beta_alpha
@property
def alpha_beta(self) -> PolynomialTensor:
"""The alpha-beta-spin two-body electronic integrals.
These get reconstructed from :attr:`beta_alpha` by transposing in the physicist' ordering
convention.
"""
if self.beta_alpha.is_empty():
return self.beta_alpha
two_body_ba = self.beta_alpha["++--"]
if isinstance(two_body_ba, SymmetricTwoBodyIntegrals):
# NOTE: to ensure proper inter-operability with the symmetry-aware integral containers,
# we delegate the conjugation to the objects themselves
return PolynomialTensor({"++--": two_body_ba.conjugate()}, validate=False)
alpha_beta = cast(Tensor, np.moveaxis(two_body_ba, (0, 1), (2, 3)))
return PolynomialTensor({"++--": alpha_beta}, validate=False)
@property
def one_body(self) -> ElectronicIntegrals:
"""Returns only the one-body integrals."""
alpha: PolynomialTensor = None
if "+-" in self.alpha:
alpha = PolynomialTensor(
{"+-": self.alpha["+-"]},
validate=False,
)
beta: PolynomialTensor = None
if "+-" in self.beta:
beta = PolynomialTensor(
{"+-": self.beta["+-"]},
validate=False,
)
return self.__class__(alpha, beta)
@property
def two_body(self) -> ElectronicIntegrals:
"""Returns only the two-body integrals."""
alpha: PolynomialTensor = None
if "++--" in self.alpha:
alpha = PolynomialTensor(
{"++--": self.alpha["++--"]},
validate=False,
)
beta: PolynomialTensor = None
if "++--" in self.beta:
beta = PolynomialTensor(
{"++--": self.beta["++--"]},
validate=False,
)
beta_alpha: PolynomialTensor = None
if "++--" in self.beta_alpha:
beta_alpha = PolynomialTensor(
{"++--": self.beta_alpha["++--"]},
validate=False,
)
return self.__class__(alpha, beta, beta_alpha)
@property
def register_length(self) -> int | None:
"""The size of the operator that can be generated from these `ElectronicIntegrals`."""
alpha_length = self.alpha.register_length
return alpha_length
def __eq__(self, other: object) -> bool:
"""Check equality of first ElectronicIntegrals with other
Args:
other: second ``ElectronicIntegrals`` object to be compared with the first.
Returns:
True when ``ElectronicIntegrals`` objects are equal, False when unequal.
"""
if not isinstance(other, ElectronicIntegrals):
return False
if (
self.alpha == other.alpha
and self.beta == other.beta
and self.beta_alpha == other.beta_alpha
):
return True
return False
def equiv(self, other: object) -> bool:
"""Check equivalence of first ElectronicIntegrals with other
Args:
other: second ``ElectronicIntegrals`` object to be compared with the first.
Returns:
True when ``ElectronicIntegrals`` objects are equivalent, False when not.
"""
if not isinstance(other, ElectronicIntegrals):
return False
if (
self.alpha.equiv(other.alpha)
and self.beta.equiv(other.beta)
and self.beta_alpha.equiv(other.beta_alpha)
):
return True
return False
def _multiply(self, other: complex) -> ElectronicIntegrals:
if not isinstance(other, Number):
raise TypeError(f"other {other} must be a number")
return self.__class__(
cast(PolynomialTensor, other * self.alpha),
cast(PolynomialTensor, other * self.beta),
cast(PolynomialTensor, other * self.beta_alpha),
)
def _add(self, other: ElectronicIntegrals, qargs=None) -> ElectronicIntegrals:
if not isinstance(other, ElectronicIntegrals):
raise TypeError("Incorrect argument type: other should be ElectronicIntegrals")
# we need to handle beta separately in order to inject alpha where necessary
beta: PolynomialTensor = None
beta_self_empty = self.beta.is_empty()
beta_other_empty = other.beta.is_empty()
if not (beta_self_empty and beta_other_empty):
beta_self = self.alpha if beta_self_empty else self.beta
beta_other = other.alpha if beta_other_empty else other.beta
beta = beta_self + beta_other
return self.__class__(
self.alpha + other.alpha,
beta,
self.beta_alpha + other.beta_alpha,
)
@classmethod
def apply(
cls,
function: Callable[..., np.ndarray | SparseArray | complex],
*operands: ElectronicIntegrals,
multi: bool = False,
validate: bool = True,
) -> ElectronicIntegrals | list[ElectronicIntegrals]:
"""Exposes the :meth:`qiskit_nature.second_q.operators.PolynomialTensor.apply` method.
This behaves identical to the ``apply`` implementation of the ``PolynomialTensor``, applied
to the :attr:`alpha`, :attr:`beta`, and :attr:`beta_alpha` attributes of the provided
``ElectronicIntegrals`` operands.
This method is special, because it handles the scenario in which any operand has a non-empty
:attr:`beta` attribute, in which case the empty-beta attributes of any other operands will
be filled with :attr:`alpha` attributes of those operands.
The :attr:`beta_alpha` attributes will only be handled if they are non-empty in all supplied
operands.
Args:
function: the function to apply to the internal arrays of the provided operands. This
function must take numpy (or sparse) arrays as its positional arguments. The number
of arguments must match the number of provided operands.
operands: a sequence of ``ElectronicIntegrals`` instances on which to operate.
multi: when set to True this indicates that the provided numpy function will return
multiple new numpy arrays which will each be wrapped into an ``ElectronicIntegrals``
instance separately.
validate: when set to False, no validation will be performed. Disable this setting with
care!
Returns:
A new ``ElectronicIntegrals``.
"""
alphas = PolynomialTensor.apply(
function, *(op.alpha for op in operands), multi=multi, validate=validate
)
betas: PolynomialTensor | list[PolynomialTensor] | None = None
if any(not op.beta.is_empty() for op in operands):
# If any beta-entry is non-empty, we have to perform this computation.
# Empty tensors will be populated with their alpha-terms automatically.
betas = PolynomialTensor.apply(
function,
*(op.alpha if op.beta.is_empty() else op.beta for op in operands),
multi=multi,
validate=validate,
)
beta_alphas: PolynomialTensor | list[PolynomialTensor] | None = None
if all(not op.beta_alpha.is_empty() for op in operands):
# We can only perform this operation, when all beta_alpha tensors are non-empty.
beta_alphas = PolynomialTensor.apply(
function, *(op.beta_alpha for op in operands), multi=multi, validate=validate
)
if multi:
if betas is None:
betas = [None] * len(alphas)
if beta_alphas is None:
beta_alphas = [None] * len(alphas)
return [
cls(a, b, ba, validate=validate) for a, b, ba in zip(alphas, betas, beta_alphas)
]
alphas = cast(PolynomialTensor, alphas)
betas = cast(Optional[PolynomialTensor], betas)
beta_alphas = cast(Optional[PolynomialTensor], beta_alphas)
return cls(alphas, betas, beta_alphas, validate=validate)
@classmethod
def stack(
cls,
function: Callable[..., np.ndarray | SparseArray | Number],
operands: Sequence[ElectronicIntegrals],
*,
validate: bool = True,
) -> ElectronicIntegrals:
"""Exposes the :meth:`qiskit_nature.second_q.operators.PolynomialTensor.stack` method.
This behaves identical to the ``stack`` implementation of the ``PolynomialTensor``, applied
to the :attr:`alpha`, :attr:`beta`, and :attr:`beta_alpha` attributes of the provided
``ElectronicIntegrals`` operands.
This method is special, because it handles the scenario in which any operand has a non-empty
:attr:`beta` attribute, in which case the empty-beta attributes of any other operands will
be filled with :attr:`alpha` attributes of those operands.
The :attr:`beta_alpha` attributes will only be handled if they are non-empty in all supplied
operands.
.. note::
When stacking arrays this will likely lead to array shapes which would fail the shape
validation check. This is considered an advanced use case which is why the user is left
to disable this check themselves, to ensure they know what they are doing.
Args:
function: the stacking function to apply to the internal arrays of the provided
operands. This function must take a sequence of numpy (or sparse) arrays as its
first argument. You should use :code:`functools.partial` if you need to provide
keyword arguments (e.g. :code:`partial(np.stack, axis=-1)`). Common methods to use
here are :func:`numpy.hstack` and :func:`numpy.vstack`.
operands: a sequence of ``ElectronicIntegrals`` instances on which to operate.
validate: when set to False, no validation will be performed. Disable this setting with
care!
Returns:
A new ``ElectronicIntegrals``.
"""
alpha = PolynomialTensor.stack(function, [op.alpha for op in operands], validate=validate)
beta: PolynomialTensor = None
if any(not op.beta.is_empty() for op in operands):
# If any beta-entry is non-empty, we have to perform this computation.
# Empty tensors will be populated with their alpha-terms automatically.
beta = PolynomialTensor.stack(
function,
[op.alpha if op.beta.is_empty() else op.beta for op in operands],
validate=validate,
)
beta_alpha: PolynomialTensor = None
if all(not op.beta_alpha.is_empty() for op in operands):
# We can only perform this operation, when all beta_alpha tensors are non-empty.
beta_alpha = PolynomialTensor.stack(
function, [op.beta_alpha for op in operands], validate=validate
)
return cls(alpha, beta, beta_alpha, validate=validate)
def split(
self,
function: Callable[..., np.ndarray | SparseArray | Number],
indices_or_sections: int | Sequence[int],
*,
validate: bool = True,
) -> list[ElectronicIntegrals]:
"""Exposes the :meth:`qiskit_nature.second_q.operators.PolynomialTensor.split` method.
This behaves identical to the ``split`` implementation of the ``PolynomialTensor``, applied
to the :attr:`alpha`, :attr:`beta`, and :attr:`beta_alpha` attributes of the provided
``ElectronicIntegrals`` operands.
.. note::
When splitting arrays this will likely lead to array shapes which would fail the shape
validation check. This is considered an advanced use case which is why the user is left
to disable this check themselves, to ensure they know what they are doing.
Args:
function: the splitting function to use. This function must take a single numpy (or
sparse) array as its first input followed by a sequence of indices to split on.
You should use :code:`functools.partial` if you need to provide keyword arguments
(e.g. :code:`partial(np.split, axis=-1)`). Common methods to use here are
:func:`numpy.hsplit` and :func:`numpy.vsplit`.
indices_or_sections: a single index or sequence of indices to split on.
validate: when set to False, no validation will be performed. Disable this setting with
care!
Returns:
The new ``ElectronicIntegrals`` instances.
"""
alphas = self.alpha.split(function, indices_or_sections, validate=validate)
betas: list[PolynomialTensor | None]
if self.beta.is_empty():
betas = [None] * len(alphas)
else:
betas = self.beta.split(function, indices_or_sections, validate=validate)
beta_alphas: list[PolynomialTensor | None]
if self.beta_alpha.is_empty():
beta_alphas = [None] * len(alphas)
else:
beta_alphas = self.beta_alpha.split(function, indices_or_sections, validate=validate)
return [
self.__class__(a, b, ba, validate=validate)
for a, b, ba in zip(alphas, betas, beta_alphas)
]
@classmethod
def einsum(
cls,
einsum_map: dict[str, tuple[str, ...]],
*operands: ElectronicIntegrals,
validate: bool = True,
) -> ElectronicIntegrals:
"""Exposes the :meth:`qiskit_nature.second_q.operators.PolynomialTensor.einsum` method.
This behaves identical to the ``einsum`` implementation of the ``PolynomialTensor``, applied
to the :attr:`alpha`, :attr:`beta`, and :attr:`beta_alpha` attributes of the provided
``ElectronicIntegrals`` operands.
This method is special, because it handles the scenario in which any operand has a non-empty
:attr:`beta` attribute, in which case the empty-beta attributes of any other operands will
be filled with :attr:`alpha` attributes of those operands.
The :attr:`beta_alpha` attributes will only be handled if they are non-empty in all supplied
operands.
Args:
einsum_map: a dictionary, mapping from :meth:`numpy.einsum` subscripts to a tuple of
strings. These strings correspond to the keys of matrices to be extracted from the
provided ``ElectronicIntegrals`` operands. The last string in this tuple indicates
the key under which to store the result in the returned ``ElectronicIntegrals``.
operands: a sequence of ``ElectronicIntegrals`` instances on which to operate.
validate: when set to False, no validation will be performed. Disable this setting with
care!
Returns:
A new ``ElectronicIntegrals``.
"""
alpha = PolynomialTensor.einsum(
einsum_map, *(op.alpha for op in operands), validate=validate
)
beta: PolynomialTensor = None
if any(not op.beta.is_empty() for op in operands):
# If any beta-entry is non-empty, we have to perform this computation.
# Empty tensors will be populated with their alpha-terms automatically.
beta = PolynomialTensor.einsum(
einsum_map,
*(op.alpha if op.beta.is_empty() else op.beta for op in operands),
validate=validate,
)
beta_alpha: PolynomialTensor = None
if all(not op.beta_alpha.is_empty() for op in operands):
# We can only perform this operation, when all beta_alpha tensors are non-empty.
beta_alpha = PolynomialTensor.einsum(
einsum_map, *(op.beta_alpha for op in operands), validate=validate
)
return cls(alpha, beta, beta_alpha, validate=validate)
# pylint: disable=invalid-name
@classmethod
def from_raw_integrals(
cls,
h1_a: np.ndarray | SparseArray,
h2_aa: np.ndarray | SparseArray | None = None,
h1_b: np.ndarray | SparseArray | None = None,
h2_bb: np.ndarray | SparseArray | None = None,
h2_ba: np.ndarray | SparseArray | None = None,
*,
validate: bool = True,
auto_index_order: bool = True,
) -> ElectronicIntegrals:
"""Loads the provided integral matrices into an ``ElectronicIntegrals`` instance.
When ``auto_index_order`` is enabled,
:meth:`qiskit_nature.second_q.operators.tensor_ordering.find_index_order` will be used to
determine the index ordering of the ``h2_aa`` matrix, based on which the two-body matrices
will automatically be transformed to the physicist' order, which is required by the
:class:`qiskit_nature.second_q.operators.PolynomialTensor`.
Args:
h1_a: the alpha-spin one-body integrals.
h2_aa: the alpha-alpha-spin two-body integrals.
h1_b: the beta-spin one-body integrals.
h2_bb: the beta-beta-spin two-body integrals.
h2_ba: the beta-alpha-spin two-body integrals.
validate: whether or not to validate the integral matrices. Disable this setting with
care!
auto_index_order: whether or not to automatically convert the matrices to physicists'
order.
Raises:
QiskitNatureError: if `auto_index_order=True`, upon encountering an invalid
:class:`qiskit_nature.second_q.operators.tensor_ordering.IndexType`.
Returns:
The resulting ``ElectronicIntegrals``.
"""
alpha_dict = {"+-": h1_a}
if h2_aa is not None:
if auto_index_order and not isinstance(h2_aa, SymmetricTwoBodyIntegrals):
index_order = find_index_order(h2_aa)
if index_order == IndexType.UNKNOWN:
raise QiskitNatureError(
f"The index ordering of the `h2_aa` argument, {index_order}, is invalid.\n"
"Provide the two-body matrices in either chemists' or physicists' order, "
"or disable the automatic transformation to enforce these matrices to be "
"used (`auto_index_order=False`)."
)
h2_aa = to_physicist_ordering(h2_aa, index_order=index_order)
if h2_bb is not None:
h2_bb = to_physicist_ordering(h2_bb, index_order=index_order)
if h2_ba is not None:
h2_ba = to_physicist_ordering(h2_ba, index_order=index_order)
alpha_dict["++--"] = h2_aa
alpha = PolynomialTensor(alpha_dict, validate=validate)
beta = None
beta_dict = {}
if h1_b is not None:
beta_dict["+-"] = h1_b
if h2_bb is not None:
beta_dict["++--"] = h2_bb
if beta_dict:
beta = PolynomialTensor(beta_dict, validate=validate)
beta_alpha = None
if h2_ba is not None:
beta_alpha = PolynomialTensor({"++--": h2_ba}, validate=validate)
return cls(alpha, beta, beta_alpha, validate=validate)
def second_q_coeffs(self) -> PolynomialTensor:
"""Constructs the total ``PolynomialTensor`` contained the second-quantized coefficients.
This function constructs the spin-orbital basis tensor as a
:class:`qiskit_nature.second_q.operators.PolynomialTensor`, by arranging the :attr:`alpha`
and :attr:`beta` attributes in a block-ordered fashion (up-spin integrals cover the first
part, down-spin integrals the second part of the resulting register space).
If the :attr:`beta` and/or :attr:`beta_alpha` attributes are empty, the :attr:`alpha` data
will be used in their place.
Returns:
The ``PolynomialTensor`` representing the entire system.
"""
beta_empty = self.beta.is_empty()
beta_alpha_empty = self.beta_alpha.is_empty()
kron_one_body = np.zeros((2, 2))
kron_two_body = np.zeros((2, 2, 2, 2))
kron_tensor = PolynomialTensor({"": 1.0, "+-": kron_one_body, "++--": kron_two_body})
ba_index = (1, 0, 0, 1)
ab_index = (0, 1, 1, 0)
if beta_empty and beta_alpha_empty:
kron_one_body[(0, 0)] = 1
kron_one_body[(1, 1)] = 1
kron_two_body[(0, 0, 0, 0)] = 0.5
kron_two_body[(1, 1, 1, 1)] = 0.5
aa_tensor = self.alpha.get("++--", None)
if aa_tensor is not None:
if not isinstance(aa_tensor, Tensor):
aa_tensor = Tensor(aa_tensor)
ba_index = cast(
Tuple[int, int, int, int], tuple(aa_tensor._reverse_label_template(ba_index))
)
ab_index = cast(
Tuple[int, int, int, int], tuple(aa_tensor._reverse_label_template(ab_index))
)
kron_two_body[ba_index] = 0.5
kron_two_body[ab_index] = 0.5
tensor_blocked_spin_orbitals = PolynomialTensor.apply(np.kron, kron_tensor, self.alpha)
return cast(PolynomialTensor, tensor_blocked_spin_orbitals)
tensor_blocked_spin_orbitals = PolynomialTensor({})
# pure alpha spin
kron_one_body[(0, 0)] = 1
kron_two_body[(0, 0, 0, 0)] = 0.5
tensor_blocked_spin_orbitals += PolynomialTensor.apply(np.kron, kron_tensor, self.alpha)
kron_one_body[(0, 0)] = 0
kron_two_body[(0, 0, 0, 0)] = 0
# pure beta spin
kron_one_body[(1, 1)] = 1
kron_two_body[(1, 1, 1, 1)] = 0.5
tensor_blocked_spin_orbitals += PolynomialTensor.apply(np.kron, kron_tensor, self.beta)
kron_one_body[(1, 1)] = 0
kron_two_body[(1, 1, 1, 1)] = 0
# beta_alpha spin
if not beta_alpha_empty:
kron_tensor = PolynomialTensor({"++--": kron_two_body})
ba_tensor = self.beta_alpha["++--"]
if not isinstance(ba_tensor, Tensor):
ba_tensor = Tensor(ba_tensor)
ba_index = cast(
Tuple[int, int, int, int], tuple(ba_tensor._reverse_label_template(ba_index))
)
ab_index = cast(
Tuple[int, int, int, int], tuple(ba_tensor._reverse_label_template(ab_index))
)
kron_two_body[ba_index] = 0.5
tensor_blocked_spin_orbitals += PolynomialTensor.apply(
np.kron, kron_tensor, self.beta_alpha
)
kron_two_body[ba_index] = 0
# extract transposed beta_alpha term
kron_two_body[ab_index] = 0.5
tensor_blocked_spin_orbitals += PolynomialTensor.apply(
np.kron, kron_tensor, self.alpha_beta
)
kron_two_body[ab_index] = 0
return cast(PolynomialTensor, tensor_blocked_spin_orbitals)
def trace_spin(self) -> PolynomialTensor:
"""Returns a :class:`~.PolynomialTensor` where the spin components have been traced out.
This will sum the :attr:`alpha` and :attr:`beta` components, tracing out the spin.
Returns:
A ``PolynomialTensor`` with the spin traced out.
"""
beta_empty = self.beta.is_empty()
beta_alpha_empty = self.beta_alpha.is_empty()
if beta_empty and beta_alpha_empty:
return cast(PolynomialTensor, 2.0 * self.alpha)
two_body = self.two_body
tensor_spin_traced = PolynomialTensor({})
tensor_spin_traced += self.alpha
tensor_spin_traced += self.beta
if beta_alpha_empty:
tensor_spin_traced += two_body.alpha
tensor_spin_traced += two_body.beta
else:
tensor_spin_traced += two_body.beta_alpha
tensor_spin_traced += two_body.alpha_beta
return tensor_spin_traced
| qiskit-nature/qiskit_nature/second_q/operators/electronic_integrals.py/0 | {
"file_path": "qiskit-nature/qiskit_nature/second_q/operators/electronic_integrals.py",
"repo_id": "qiskit-nature",
"token_count": 14585
} | 131 |
# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2021, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""The Electronic Structure Problem class."""
from __future__ import annotations
from functools import partial
from typing import cast, Callable, List, Optional, Union, TYPE_CHECKING
import numpy as np
from qiskit_algorithms import EigensolverResult, MinimumEigensolverResult
from qiskit.quantum_info.analysis.z2_symmetries import Z2Symmetries
from qiskit_nature.exceptions import QiskitNatureError
from qiskit_nature.second_q.circuit.library.initial_states.hartree_fock import (
hartree_fock_bitstring_mapped,
)
from qiskit_nature.second_q.mappers import QubitMapper
from qiskit_nature.second_q.hamiltonians import ElectronicEnergy
from qiskit_nature.second_q.properties import Interpretable
from .electronic_structure_result import ElectronicStructureResult
from .electronic_properties_container import ElectronicPropertiesContainer
from .eigenstate_result import EigenstateResult
from .base_problem import BaseProblem
from .electronic_basis import ElectronicBasis
if TYPE_CHECKING:
from qiskit_nature.second_q.formats.molecule_info import MoleculeInfo
class ElectronicStructureProblem(BaseProblem):
r"""The Electronic Structure Problem.
This class represents the problem of the electronic Schrödinger equation:
.. math::
\hat{H_{el}}|\Psi\rangle = E_{el}|\Psi\rangle,
where :math:`\hat{H_{el}}` is the :class:`qiskit_nature.second_q.hamiltonians.ElectronicEnergy`
hamiltonian, :math:`\Psi` is the wave function of the system and :math:`E_{el}` is the
eigenvalue. When passed to a :class:`qiskit_nature.second_q.algorithms.GroundStateSolver`, you
will be solving for the ground-state energy, :math:`E_0`.
This class has various attributes (see below) which allow you to add additional information
about the problem which you are trying to solve, which can be used by various modules in the
stack. For example, specifying the number of particles in the system :attr:`num_particles` is
useful (and even required) for many components that interact with this problem instance to make
your life easier (for example the
:class:`qiskit_nature.second_q.transformers.ActiveSpaceTransformer`).
In the fermionic case the default filter ensures that the number of particles is being
preserved.
.. note::
The default filter_criterion assumes a singlet spin configuration. This means, that the
number of alpha-spin electrons is equal to the number of beta-spin electrons.
If the :class:`~qiskit_nature.second_q.properties.AngularMomentum`
property is available, one can correctly filter a non-singlet spin configuration with a
custom `filter_criterion` similar to the following:
.. code-block:: python
import numpy as np
from qiskit_algorithms import NumPyMinimumEigensolver
expected_spin = 2
expected_num_electrons = 6
def filter_criterion_custom(eigenstate, eigenvalue, aux_values):
num_particles_aux = aux_values["ParticleNumber"][0]
total_angular_momentum_aux = aux_values["AngularMomentum"][0]
return (
np.isclose(total_angular_momentum_aux, expected_spin) and
np.isclose(num_particles_aux, expected_num_electrons)
)
solver = NumPyEigensolver()
solver.filter_criterion = filter_criterion_custom
The following attributes can be read and updated once the ``ElectronicStructureProblem`` object
has been constructed.
Attributes:
properties (ElectronicStructureProblem): a container for additional observable operator
factories.
molecule (MoleculeInfo | None): a container for molecular system data.
basis (ElectronicBasis | None): the electronic basis of all contained orbital coefficients.
num_spatial_orbitals (int | tuple[int, int] | None): the number of spatial orbitals in the
system.
reference_energy (float | None): a reference energy for the ground state of the problem.
orbital_energies (np.ndarray | None): the energy values of the alpha-spin orbitals.
orbital_energies_b (np.ndarray | None): the energy values of the beta-spin orbitals.
"""
def __init__(self, hamiltonian: ElectronicEnergy) -> None:
"""
Args:
hamiltonian: the Hamiltonian of this problem.
"""
super().__init__(hamiltonian)
self.properties: ElectronicPropertiesContainer = ElectronicPropertiesContainer()
self.molecule: "MoleculeInfo" | None = None
self.basis: ElectronicBasis | None = None
self._num_particles: int | tuple[int, int] | None = None
self.num_spatial_orbitals: int | None = hamiltonian.register_length
self._orbital_occupations: np.ndarray | None = None
self._orbital_occupations_b: np.ndarray | None = None
self.reference_energy: float | None = None
self.orbital_energies: np.ndarray | None = None
self.orbital_energies_b: np.ndarray | None = None
@property
def hamiltonian(self) -> ElectronicEnergy:
return cast(ElectronicEnergy, self._hamiltonian)
@property
def nuclear_repulsion_energy(self) -> float | None:
"""The nuclear repulsion energy.
See :attr:`qiskit_nature.second_q.hamiltonians.ElectronicEnergy.nuclear_repulsion_energy`
for more details.
"""
return self.hamiltonian.nuclear_repulsion_energy
@property
def num_particles(self) -> tuple[int, int] | None:
"""The number of particles in alpha- and beta-spin."""
if self._num_particles is None:
return None
if isinstance(self._num_particles, tuple):
return self._num_particles
num_beta = self._num_particles // 2
num_alpha = self._num_particles - num_beta
return (num_alpha, num_beta)
@num_particles.setter
def num_particles(self, num_particles: int | tuple[int, int] | None) -> None:
self._num_particles = num_particles
@property
def num_alpha(self) -> int | None:
"""The number of alpha-spin particles."""
if self.num_particles is None:
return None
return self.num_particles[0]
@property
def num_beta(self) -> int | None:
"""The number of beta-spin particles."""
if self.num_particles is None:
return None
return self.num_particles[1]
@property
def num_spin_orbitals(self) -> int | None:
"""The total number of spin orbitals."""
if self.num_spatial_orbitals is None:
return None
return 2 * self.num_spatial_orbitals
@property
def orbital_occupations(self) -> np.ndarray | None:
"""The occupations of the alpha-spin orbitals."""
if self._orbital_occupations is not None:
return self._orbital_occupations
if self.basis != ElectronicBasis.MO:
return None
num_orbs = self.num_spatial_orbitals
if num_orbs is None:
return None
num_alpha = self.num_alpha
if num_alpha is None:
return None
return np.asarray([1.0] * num_alpha + [0.0] * (num_orbs - num_alpha))
@orbital_occupations.setter
def orbital_occupations(self, occ: np.ndarray | None) -> None:
self._orbital_occupations = occ
@property
def orbital_occupations_b(self) -> np.ndarray | None:
"""The occupations of the beta-spin orbitals."""
if self._orbital_occupations_b is not None:
return self._orbital_occupations_b
if self.basis != ElectronicBasis.MO:
return None
num_orbs = self.num_spatial_orbitals
if num_orbs is None:
return None
num_beta = self.num_beta
if num_beta is None:
return None
return np.asarray([1.0] * num_beta + [0.0] * (num_orbs - num_beta))
@orbital_occupations_b.setter
def orbital_occupations_b(self, occ: np.ndarray | None) -> None:
self._orbital_occupations_b = occ
def interpret(
self,
raw_result: Union[EigenstateResult, EigensolverResult, MinimumEigensolverResult],
) -> ElectronicStructureResult:
"""Interprets an EigenstateResult in the context of this problem.
Args:
raw_result: an eigenstate result object.
Returns:
An electronic structure result.
"""
eigenstate_result = super().interpret(raw_result)
result = ElectronicStructureResult()
result.combine(eigenstate_result)
if isinstance(self.hamiltonian, Interpretable):
self.hamiltonian.interpret(result)
for prop in self.properties:
if isinstance(prop, Interpretable):
prop.interpret(result)
result.computed_energies = np.asarray([e.real for e in eigenstate_result.eigenvalues])
if self.reference_energy is not None:
result.hartree_fock_energy = self.reference_energy
return result
def get_default_filter_criterion(
self,
) -> Optional[Callable[[Union[List, np.ndarray], float, Optional[List[float]]], bool]]:
"""Returns a default filter criterion method to filter the eigenvalues computed by the
eigensolver. For more information see also
:meth:`~qiskit_algorithms.NumPyEigensolver.filter_criterion`.
This particular default ensures that the total number of particles is conserved and that the
angular momentum (if computed) evaluates to 0.
"""
# pylint: disable=unused-argument
def filter_criterion(self, eigenstate, eigenvalue, aux_values):
eval_num_particles = aux_values.get("ParticleNumber", None)
if eval_num_particles is None:
return True
num_particles_close = np.isclose(eval_num_particles[0], self.num_alpha + self.num_beta)
eval_angular_momentum = aux_values.get("AngularMomentum", None)
if eval_angular_momentum is None:
return num_particles_close
angular_momentum_close = np.isclose(eval_angular_momentum[0], 0.0)
return num_particles_close and angular_momentum_close
return partial(filter_criterion, self)
def _symmetry_sector_locator(
self,
z2_symmetries: Z2Symmetries,
mapper: QubitMapper,
) -> Optional[List[int]]:
"""Given the detected Z2Symmetries this determines the correct sector of the tapered
operator that contains the ground state we need and returns that information.
Args:
z2_symmetries: the z2 symmetries object.
mapper: the ``QubitMapper`` used for the operator conversion that symmetries are to be
determined for.
Raises:
QiskitNatureError: if the :attr:`num_particles` attribute is ``None``.
Returns:
The sector of the tapered operators with the problem solution.
"""
if self.num_particles is None:
raise QiskitNatureError(
"Determining the correct symmetry sector for Z2 symmetry reduction requires the "
"number of particles to be set on the problem instance. Please set "
"ElectronicStructureProblem.num_particles or disable the use of Z2Symmetries to "
"fix this."
)
num_particles = self.num_particles
if not isinstance(num_particles, tuple):
num_particles = (self.num_alpha, self.num_beta)
hf_bitstr = hartree_fock_bitstring_mapped(
num_spatial_orbitals=self.num_spatial_orbitals,
num_particles=num_particles,
qubit_mapper=mapper,
)
sector = ElectronicStructureProblem._pick_sector(z2_symmetries, hf_bitstr)
return sector
@staticmethod
def _pick_sector(z2_symmetries: Z2Symmetries, hf_str: List[bool]) -> List[int]:
# Finding all the symmetries using the find_Z2_symmetries:
taper_coeff: List[int] = []
for sym in z2_symmetries.symmetries:
coeff = -1 if np.logical_xor.reduce(np.logical_and(sym.z, hf_str)) else 1
taper_coeff.append(coeff)
return taper_coeff
| qiskit-nature/qiskit_nature/second_q/problems/electronic_structure_problem.py/0 | {
"file_path": "qiskit-nature/qiskit_nature/second_q/problems/electronic_structure_problem.py",
"repo_id": "qiskit-nature",
"token_count": 5006
} | 132 |
# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2021, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""The OccupiedModals property."""
from __future__ import annotations
from typing import Mapping, Sequence
import qiskit_nature # pylint: disable=unused-import
from qiskit_nature.second_q.operators import VibrationalOp
class OccupiedModals:
"""The OccupiedModals property.
The following attributes can be set via the initializer but can also be read and updated once
the ``OccupiedModals`` object has been constructed.
Attributes:
num_modals (Sequence[int]): the number of modals per mode in the system.
"""
def __init__(self, num_modals: Sequence[int]) -> None:
"""
Args:
num_modals: the number of modals for each mode.
"""
self.num_modals = num_modals
def second_q_ops(self) -> Mapping[str, VibrationalOp]:
"""Returns the second quantized operators indicating the occupied modals per mode.
Returns:
A mapping of strings to `VibrationalOp` objects.
"""
return {str(mode): self._get_mode_op(mode) for mode in range(len(self.num_modals))}
def _get_mode_op(self, mode: int) -> VibrationalOp:
"""Constructs an operator to evaluate which modal of a given mode is occupied.
Args:
mode: the mode index.
Returns:
The operator to evaluate which modal of the given mode is occupied.
"""
labels: dict[str, complex] = {}
for modal in range(self.num_modals[mode]):
labels[f"+_{mode}_{modal} -_{mode}_{modal}"] = 1.0
return VibrationalOp(labels, self.num_modals)
def interpret(
self, result: "qiskit_nature.second_q.problems.EigenstateResult" # type: ignore[name-defined]
) -> None:
"""Interprets an :class:`~qiskit_nature.second_q.problems.EigenstateResult`
in this property's context.
Args:
result: the result to add meaning to.
"""
result.num_occupied_modals_per_mode = []
if not isinstance(result.aux_operators_evaluated, list):
aux_operators_evaluated = [result.aux_operators_evaluated]
else:
aux_operators_evaluated = result.aux_operators_evaluated
for aux_op_eigenvalues in aux_operators_evaluated:
occ_modals = []
for mode, _ in enumerate(self.num_modals):
_key = str(mode) if isinstance(aux_op_eigenvalues, dict) else mode
if aux_op_eigenvalues[_key] is not None:
occ_modals.append(aux_op_eigenvalues[_key].real)
else:
occ_modals.append(None)
result.num_occupied_modals_per_mode.append(occ_modals)
| qiskit-nature/qiskit_nature/second_q/properties/occupied_modals.py/0 | {
"file_path": "qiskit-nature/qiskit_nature/second_q/properties/occupied_modals.py",
"repo_id": "qiskit-nature",
"token_count": 1274
} | 133 |
---
deprecations:
- |
All currently existing drivers have been moved from `qiskit_nature.drivers`
to `qiskit_nature.drivers.second_quantization`. This is necessary because
future additions to Nature which reside in parallel to the
`second_quantization` submodules will not be using these drivers. Making
this separation reflects that in the code structure.
The same change was necessary for the existing `qiskit_nature.transformers`.
| qiskit-nature/releasenotes/notes/0.2/relocate-drivers-fac59a504b5bc986.yaml/0 | {
"file_path": "qiskit-nature/releasenotes/notes/0.2/relocate-drivers-fac59a504b5bc986.yaml",
"repo_id": "qiskit-nature",
"token_count": 124
} | 134 |
---
features:
- |
Support was added for generalized fermionic excitations. These kinds of
excitations are effectively ignoring the orbital occupancies and instead
yield all possible excitations within a spin species.
Furthermore, another option was added which can be used to enabled spin-
flipped excitations.
| qiskit-nature/releasenotes/notes/0.3/generalized-fermionic-excitations-1d345d179e097896.yaml/0 | {
"file_path": "qiskit-nature/releasenotes/notes/0.3/generalized-fermionic-excitations-1d345d179e097896.yaml",
"repo_id": "qiskit-nature",
"token_count": 82
} | 135 |
---
features:
- |
Adds :class:`~.BogoliubovTransform`.
This class constructs a circuit that performs a Bogoliubov transform,
which is a single-particle basis change that may or may not conserve
particle number. See the
`Quadratic Hamiltonians and Slater determinants <tutorials/11_quadratic_hamiltonian_and_slater_determinants.ipynb>`_ tutorial
for a demonstration of how to use this class. | qiskit-nature/releasenotes/notes/0.4/bogoliubov-transform-885eb6442172c76e.yaml/0 | {
"file_path": "qiskit-nature/releasenotes/notes/0.4/bogoliubov-transform-885eb6442172c76e.yaml",
"repo_id": "qiskit-nature",
"token_count": 131
} | 136 |
---
features:
- |
Adds a new HDF5-integration to support storing and loading of (mostly)
Property objects using HDF5 files. A similar feature existed in the legacy
QMolecule object but the new implementation is handled more general to
enable leveraging this integration throughout more parts of the stack in the
future.
To store a driver result of the new drivers in a file you can do:
.. code-block:: python
from qiskit_nature.hdf5 import save_to_hdf5
my_driver_result = driver.run()
save_to_hdf5(my_driver_result, "my_driver_result.hdf5")
and to load it again you would do:
.. code-block:: python
from qiskit_nature.hdf5 import load_from_hdf5
my_driver_result = load_from_hdf5("my_driver_result.hdf5")
| qiskit-nature/releasenotes/notes/0.4/hdf5-integration-b08c31426d1fdf9e.yaml/0 | {
"file_path": "qiskit-nature/releasenotes/notes/0.4/hdf5-integration-b08c31426d1fdf9e.yaml",
"repo_id": "qiskit-nature",
"token_count": 278
} | 137 |
---
features:
- |
:class:`~qiskit_nature.runtime.VQEClient` now extends
VariationalAlgorithm, meaning users can now implement
:class:`~qiskit_nature.algorithms.pes_samplers.BOPESSampler`
using bootstrapping, which works similarly now with VQEClient
:class:`~qiskit_nature.runtime.VQEClient` as it did previously
with local VQE.
| qiskit-nature/releasenotes/notes/0.4/vqeclient-extends-variationalalg-eb5b3f951405fd16.yaml/0 | {
"file_path": "qiskit-nature/releasenotes/notes/0.4/vqeclient-extends-variationalalg-eb5b3f951405fd16.yaml",
"repo_id": "qiskit-nature",
"token_count": 135
} | 138 |
---
fixes:
- |
Fixes a bug where numpy integer objects were causing integer-based isinstance
checks to fail. This also avoids such problems by explicitly converting integer
values to Python integers when loading properties from HDF5 files.
| qiskit-nature/releasenotes/notes/0.5/fix-isinstance-integer-checks-50f7614393e68e87.yaml/0 | {
"file_path": "qiskit-nature/releasenotes/notes/0.5/fix-isinstance-integer-checks-50f7614393e68e87.yaml",
"repo_id": "qiskit-nature",
"token_count": 62
} | 139 |
---
deprecations:
- |
Deprecated the :meth:`~qiskit_nature.second_q.operators.FermionicOp.to_matrix` method.
The same functionality can be achieved via the qubit-operator after applying the
:class:`~qiskit_nature.second_q.mappers.JordanWignerMapper` (one only needs to
adapt to the different basis state ordering due to the reversed bitstring endianness).
.. code-block:: python
import numpy as np
from qiskit_nature.second_q.mappers import JordanWignerMapper
from qiskit_nature.second_q.operators import FermionicOp
from qiskit_nature.settings import settings
settings.use_pauli_sum_op = False
op = FermionicOp({"+_0": 1, "-_1": 1})
mat = op.to_matrix().todense()
jw = JordanWignerMapper().map(op)
print(np.allclose(mat, jw.to_matrix(), atol=1e-8)) # prints False
for pauli in jw.paulis:
pauli.x = pauli.x[::-1]
pauli.z = pauli.z[::-1]
print(np.allclose(mat, jw.to_matrix(), atol=1e-8)) # prints True
| qiskit-nature/releasenotes/notes/0.6/deprecate-fermionic-op-to-matrix-74b182129fbb0171.yaml/0 | {
"file_path": "qiskit-nature/releasenotes/notes/0.6/deprecate-fermionic-op-to-matrix-74b182129fbb0171.yaml",
"repo_id": "qiskit-nature",
"token_count": 447
} | 140 |
---
fixes:
- |
Fixes the :meth:`~qiskit_nature.second_q.operators.VibrationalOp.normal_order`
method, which in turn corrects the commutation relations of this operator type.
| qiskit-nature/releasenotes/notes/0.6/fix-vibrational-op-commutation-5cbda6833c0d5232.yaml/0 | {
"file_path": "qiskit-nature/releasenotes/notes/0.6/fix-vibrational-op-commutation-5cbda6833c0d5232.yaml",
"repo_id": "qiskit-nature",
"token_count": 63
} | 141 |
---
features:
- |
Adds a new lattice class, :class:`~qiskit_nature.second_q.hamiltonians.lattices.HexagonalLattice`
for the generation of hexagonal lattices.
You construct a hexagonal lattice by specifying the number of rows and columns of hexagons.
You can also specify the edge- and on-site-parameters.
Below is a simple example to illustrate this:
.. code-block:: python
from qiskit_nature.second_q.hamiltonians.lattices import HexagonalLattice
lattice = HexagonalLattice(
2,
3,
edge_parameter=1.0,
onsite_parameter=1.5,
)
| qiskit-nature/releasenotes/notes/0.7/add-hexagonal-lattice-a981f1b5c832a154.yaml/0 | {
"file_path": "qiskit-nature/releasenotes/notes/0.7/add-hexagonal-lattice-a981f1b5c832a154.yaml",
"repo_id": "qiskit-nature",
"token_count": 257
} | 142 |
---
fixes:
- |
Fixes the behavior of :meth:`.SpinOp.to_matrix` for operators acting on more
than a single spin.
| qiskit-nature/releasenotes/notes/0.7/fix-spin-op-to-matrix-e84594248fc49fd7.yaml/0 | {
"file_path": "qiskit-nature/releasenotes/notes/0.7/fix-spin-op-to-matrix-e84594248fc49fd7.yaml",
"repo_id": "qiskit-nature",
"token_count": 45
} | 143 |
---
features:
- |
The class :class:`.second_q.mappers.ModeBasedMapper` has been added to implement mode based
mapping via a Pauli table (previously part of :class:`.second_q.mappers.QubitMapper`).
upgrade:
- |
:meth:`.ModeBasedMapper.pauli_table` is now an instance method of all :class:`.ModeBasedMapper`
subclasses (previously a class method of :class:`.QubitMapper`)
- |
Methods ``.pauli_table``, ``.sparse_pauli_operators``, and ``.mode_based_mapping``
have been removed from :class:`.QubitMapper`.
| qiskit-nature/releasenotes/notes/improve-mappers-b55cb0ca5fd656e4.yaml/0 | {
"file_path": "qiskit-nature/releasenotes/notes/improve-mappers-b55cb0ca5fd656e4.yaml",
"repo_id": "qiskit-nature",
"token_count": 198
} | 144 |
# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2020, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
""" Test Numerical qEOM excited states calculation."""
from __future__ import annotations
import unittest
from test import QiskitNatureTestCase
from ddt import ddt, named_data
import numpy as np
from qiskit_algorithms import VQE
from qiskit_algorithms.optimizers import SLSQP
from qiskit_algorithms.utils import algorithm_globals
from qiskit.primitives import Estimator
from qiskit_nature.units import DistanceUnit
from qiskit_nature.second_q.circuit.library import HartreeFock, UCCSD
from qiskit_nature.second_q.drivers import PySCFDriver
from qiskit_nature.second_q.mappers import (
JordanWignerMapper,
ParityMapper,
)
from qiskit_nature.second_q.mappers import QubitMapper, TaperedQubitMapper
from qiskit_nature.second_q.operators.fermionic_op import FermionicOp
from qiskit_nature.second_q.algorithms import GroundStateEigensolver, QEOM
from qiskit_nature.second_q.algorithms.excited_states_solvers.qeom import EvaluationRule
import qiskit_nature.optionals as _optionals
from .resources.expected_transition_amplitudes import reference_trans_amps
@ddt
class TestNumericalQEOMObscalculation(QiskitNatureTestCase):
"""Test qEOM excited state observables calculation."""
@unittest.skipIf(not _optionals.HAS_PYSCF, "pyscf not available.")
def setUp(self):
super().setUp()
algorithm_globals.random_seed = 8
self.driver = PySCFDriver(
atom="H .0 .0 .0; H .0 .0 0.75",
unit=DistanceUnit.ANGSTROM,
charge=0,
spin=0,
basis="sto3g",
)
self.reference_energies = [
-1.8427016,
-1.8427016 + 0.5943372,
-1.8427016 + 0.95788352,
-1.8427016 + 1.5969296,
]
self.reference_trans_amps = reference_trans_amps
self.electronic_structure_problem = self.driver.run()
self.num_particles = self.electronic_structure_problem.num_particles
def _hamiltonian_derivative(self):
identity = FermionicOp.one()
esp_plus = PySCFDriver(
atom="H .0 .0 .0; H .0 .0 0.7501",
unit=DistanceUnit.ANGSTROM,
charge=0,
spin=0,
basis="sto3g",
).run()
esp_minus = PySCFDriver(
atom="H .0 .0 .0; H .0 .0 0.7049",
unit=DistanceUnit.ANGSTROM,
charge=0,
spin=0,
basis="sto3g",
).run()
hamiltonian_op_plus, _ = esp_plus.second_q_ops()
nre_plus = esp_plus.nuclear_repulsion_energy
nre_op_plus = identity * nre_plus
hamiltonian_op_minus, _ = esp_minus.second_q_ops()
nre_minus = esp_minus.nuclear_repulsion_energy
nre_op_minus = identity * nre_minus
delta_hamiltonian = (
1
/ (2 * 0.0001)
* (hamiltonian_op_plus + nre_op_plus - hamiltonian_op_minus - nre_op_minus)
)
return delta_hamiltonian.simplify()
def _assert_energies(self, computed, references, *, places=4):
with self.subTest("same number of energies"):
self.assertEqual(len(computed), len(references))
with self.subTest("ground state"):
self.assertAlmostEqual(computed[0], references[0], places=places)
for i in range(1, len(computed)):
with self.subTest(f"{i}. excited state"):
self.assertAlmostEqual(computed[i], references[i], places=places)
def _assert_transition_amplitudes(self, computed, references, *, places=4):
with self.subTest("same number of indices"):
self.assertEqual(len(computed), len(references))
with self.subTest("operators computed are reference operators"):
self.assertEqual(computed.keys(), references.keys())
with self.subTest("same transition amplitude absolute value"):
for key in computed.keys():
for opkey in computed[key].keys():
trans_amp = np.abs(computed[key][opkey][0])
trans_amp_expected = np.abs(references[key][opkey][0])
self.assertAlmostEqual(trans_amp, trans_amp_expected, places=places)
def _compute_and_assert_qeom_aux_eigenvalues(self, mapper: QubitMapper):
hamiltonian_op, _ = self.electronic_structure_problem.second_q_ops()
aux_ops = {"hamiltonian": hamiltonian_op}
estimator = Estimator()
ansatz = UCCSD(
self.electronic_structure_problem.num_spatial_orbitals,
self.electronic_structure_problem.num_particles,
mapper,
initial_state=HartreeFock(
self.electronic_structure_problem.num_spatial_orbitals,
self.electronic_structure_problem.num_particles,
mapper,
),
)
solver = VQE(estimator, ansatz, SLSQP())
solver.initial_point = [0] * ansatz.num_parameters
gsc = GroundStateEigensolver(mapper, solver)
esc = QEOM(gsc, estimator, "sd", aux_eval_rules=EvaluationRule.DIAG)
results = esc.solve(self.electronic_structure_problem, aux_operators=aux_ops)
energies_recalculated = np.zeros_like(results.computed_energies)
for estate, aux_op in enumerate(results.aux_operators_evaluated):
energies_recalculated[estate] = aux_op["hamiltonian"]
self._assert_energies(results.computed_energies, self.reference_energies)
self._assert_energies(energies_recalculated, self.reference_energies)
def _compute_and_assert_qeom_trans_amp(self, mapper: QubitMapper):
aux_eval_rules = {
"hamiltonian_derivative": [(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
}
aux_ops = {"hamiltonian_derivative": self._hamiltonian_derivative()}
estimator = Estimator()
ansatz = UCCSD(
self.electronic_structure_problem.num_spatial_orbitals,
self.electronic_structure_problem.num_particles,
mapper,
initial_state=HartreeFock(
self.electronic_structure_problem.num_spatial_orbitals,
self.electronic_structure_problem.num_particles,
mapper,
),
)
solver = VQE(estimator, ansatz, SLSQP())
solver.initial_point = [0] * ansatz.num_parameters
gsc = GroundStateEigensolver(mapper, solver)
esc = QEOM(gsc, estimator, excitations="sd", aux_eval_rules=aux_eval_rules)
results = esc.solve(self.electronic_structure_problem, aux_operators=aux_ops)
transition_amplitudes = results.raw_result.transition_amplitudes
self._assert_transition_amplitudes(
transition_amplitudes, self.reference_trans_amps, places=3
)
@named_data(
["JWM", JordanWignerMapper()],
["PM", ParityMapper()],
["PM_TQR", ParityMapper(num_particles=(1, 1))],
)
def test_aux_ops_qeom(self, mapper: QubitMapper):
"""Test QEOM evaluation of excited state properties"""
self._compute_and_assert_qeom_aux_eigenvalues(mapper)
@named_data(
["JW", lambda n, esp: TaperedQubitMapper(JordanWignerMapper())],
["JW_Z2", lambda n, esp: esp.get_tapered_mapper(JordanWignerMapper())],
["PM", lambda n, esp: TaperedQubitMapper(ParityMapper())],
["PM_Z2", lambda n, esp: esp.get_tapered_mapper(ParityMapper())],
["PM_TQR", lambda n, esp: TaperedQubitMapper(ParityMapper(n))],
["PM_TQR_Z2", lambda n, esp: esp.get_tapered_mapper(ParityMapper(n))],
)
def test_aux_ops_qeom_taperedmapper(self, tapered_mapper_creator):
"""Test QEOM evaluation of excited state properties"""
tapered_mapper = tapered_mapper_creator(
self.num_particles, self.electronic_structure_problem
)
self._compute_and_assert_qeom_aux_eigenvalues(tapered_mapper)
@named_data(
["JWM", JordanWignerMapper()],
["PM", ParityMapper()],
["PM_TQR", ParityMapper(num_particles=(1, 1))],
)
def test_trans_amps_qeom(self, mapper: QubitMapper):
"""Test QEOM evaluation of transition amplitudes"""
self._compute_and_assert_qeom_trans_amp(mapper)
@named_data(
["JW", lambda n, esp: TaperedQubitMapper(JordanWignerMapper())],
["JW_Z2", lambda n, esp: esp.get_tapered_mapper(JordanWignerMapper())],
["PM", lambda n, esp: TaperedQubitMapper(ParityMapper())],
["PM_Z2", lambda n, esp: esp.get_tapered_mapper(ParityMapper())],
["PM_TQR", lambda n, esp: TaperedQubitMapper(ParityMapper(n))],
["PM_TQR_Z2", lambda n, esp: esp.get_tapered_mapper(ParityMapper(n))],
)
def test_trans_amps_qeom_taperedmapper(self, tapered_mapper_creator):
"""Test QEOM evaluation of transition amplitudes"""
tapered_mapper = tapered_mapper_creator(
self.num_particles, self.electronic_structure_problem
)
self._compute_and_assert_qeom_trans_amp(tapered_mapper)
if __name__ == "__main__":
unittest.main()
| qiskit-nature/test/second_q/algorithms/excited_state_solvers/test_excited_states_solvers_auxiliaries.py/0 | {
"file_path": "qiskit-nature/test/second_q/algorithms/excited_state_solvers/test_excited_states_solvers_auxiliaries.py",
"repo_id": "qiskit-nature",
"token_count": 4296
} | 145 |
# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2021, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Test the PUCCD Ansatz."""
from test import QiskitNatureTestCase
from test.second_q.circuit.library.ansatzes.test_ucc import assert_ucc_like_ansatz
import unittest
from ddt import ddt, data, unpack
from qiskit_nature import QiskitNatureError
from qiskit_nature.second_q.circuit.library import PUCCD
from qiskit_nature.second_q.mappers import JordanWignerMapper
from qiskit_nature.second_q.operators import FermionicOp
@ddt
class TestPUCC(QiskitNatureTestCase):
"""Tests for the PUCCD Ansatz."""
@unpack
@data(
(
2,
(1, 1),
[FermionicOp({"+_0 +_2 -_1 -_3": 1j, "+_3 +_1 -_2 -_0": -1j}, num_spin_orbitals=4)],
),
(
4,
(2, 2),
[
FermionicOp({"+_0 +_4 -_2 -_6": 1j, "+_6 +_2 -_4 -_0": -1j}, num_spin_orbitals=8),
FermionicOp({"+_0 +_4 -_3 -_7": 1j, "+_7 +_3 -_4 -_0": -1j}, num_spin_orbitals=8),
FermionicOp({"+_1 +_5 -_2 -_6": 1j, "+_6 +_2 -_5 -_1": -1j}, num_spin_orbitals=8),
FermionicOp({"+_1 +_5 -_3 -_7": 1j, "+_7 +_3 -_5 -_1": -1j}, num_spin_orbitals=8),
],
),
)
def test_puccd_ansatz(self, num_spatial_orbitals, num_particles, expect):
"""Tests the PUCCD Ansatz."""
mapper = JordanWignerMapper()
ansatz = PUCCD(
qubit_mapper=mapper,
num_particles=num_particles,
num_spatial_orbitals=num_spatial_orbitals,
)
assert_ucc_like_ansatz(self, ansatz, num_spatial_orbitals, expect)
@unpack
@data(
(
2,
(1, 1),
(True, True),
[
FermionicOp({"+_0 -_1": 1j, "+_1 -_0": -1j}, num_spin_orbitals=4),
FermionicOp({"+_2 -_3": 1j, "+_3 -_2": -1j}, num_spin_orbitals=4),
FermionicOp({"+_0 +_2 -_1 -_3": 1j, "+_3 +_1 -_2 -_0": -1j}, num_spin_orbitals=4),
],
),
(
2,
(1, 1),
(True, False),
[
FermionicOp({"+_0 -_1": 1j, "+_1 -_0": -1j}, num_spin_orbitals=4),
FermionicOp({"+_0 +_2 -_1 -_3": 1j, "+_3 +_1 -_2 -_0": -1j}, num_spin_orbitals=4),
],
),
(
2,
(1, 1),
(False, True),
[
FermionicOp({"+_2 -_3": 1j, "+_3 -_2": -1j}, num_spin_orbitals=4),
FermionicOp({"+_0 +_2 -_1 -_3": 1j, "+_3 +_1 -_2 -_0": -1j}, num_spin_orbitals=4),
],
),
)
def test_puccd_ansatz_with_singles(
self, num_spatial_orbitals, num_particles, include_singles, expect
):
"""Tests the PUCCD Ansatz with included single excitations."""
mapper = JordanWignerMapper()
ansatz = PUCCD(
qubit_mapper=mapper,
num_particles=num_particles,
num_spatial_orbitals=num_spatial_orbitals,
include_singles=include_singles,
)
assert_ucc_like_ansatz(self, ansatz, num_spatial_orbitals, expect)
def test_raise_non_singlet(self):
"""Test an error is raised when the number of alpha and beta electrons differ."""
with self.assertRaises(QiskitNatureError):
PUCCD(num_particles=(2, 1))
@unpack
@data(
(
3,
(1, 1),
[
FermionicOp({"+_0 +_3 -_1 -_4": 1j, "+_4 +_1 -_3 -_0": -1j}, num_spin_orbitals=6),
FermionicOp({"+_0 +_3 -_2 -_5": 1j, "+_5 +_2 -_3 -_0": -1j}, num_spin_orbitals=6),
FermionicOp({"+_1 +_4 -_2 -_5": 1j, "+_5 +_2 -_4 -_1": -1j}, num_spin_orbitals=6),
],
),
(
3,
(2, 2),
[
FermionicOp({"+_0 +_3 -_1 -_4": 1j, "+_4 +_1 -_3 -_0": -1j}, num_spin_orbitals=6),
FermionicOp({"+_0 +_3 -_2 -_5": 1j, "+_5 +_2 -_3 -_0": -1j}, num_spin_orbitals=6),
FermionicOp({"+_1 +_4 -_2 -_5": 1j, "+_5 +_2 -_4 -_1": -1j}, num_spin_orbitals=6),
],
),
)
def test_puccd_ansatz_generalized(self, num_spatial_orbitals, num_particles, expect):
"""Tests the generalized PUCCD Ansatz."""
mapper = JordanWignerMapper()
ansatz = PUCCD(
qubit_mapper=mapper,
num_particles=num_particles,
num_spatial_orbitals=num_spatial_orbitals,
generalized=True,
)
assert_ucc_like_ansatz(self, ansatz, num_spatial_orbitals, expect)
@unpack
@data(
(
3,
(1, 1),
[
FermionicOp({"+_0 +_3 -_1 -_4": 1j, "+_4 +_1 -_3 -_0": -1j}, num_spin_orbitals=6),
FermionicOp({"+_0 +_3 -_1 -_4": -1, "+_4 +_1 -_3 -_0": -1}, num_spin_orbitals=6),
FermionicOp({"+_0 +_3 -_2 -_5": 1j, "+_5 +_2 -_3 -_0": -1j}, num_spin_orbitals=6),
FermionicOp({"+_0 +_3 -_2 -_5": -1, "+_5 +_2 -_3 -_0": -1}, num_spin_orbitals=6),
],
),
(
3,
(2, 2),
[
FermionicOp({"+_0 +_3 -_2 -_5": 1j, "+_5 +_2 -_3 -_0": -1j}, num_spin_orbitals=6),
FermionicOp({"+_0 +_3 -_2 -_5": -1, "+_5 +_2 -_3 -_0": -1}, num_spin_orbitals=6),
FermionicOp({"+_1 +_4 -_2 -_5": 1j, "+_5 +_2 -_4 -_1": -1j}, num_spin_orbitals=6),
FermionicOp({"+_1 +_4 -_2 -_5": -1, "+_5 +_2 -_4 -_1": -1}, num_spin_orbitals=6),
],
),
)
def test_puccd_ansatz_include_imaginary(self, num_spatial_orbitals, num_particles, expect):
"""Tests the PUCCD Ansatz with imaginary terms included."""
mapper = JordanWignerMapper()
ansatz = PUCCD(
qubit_mapper=mapper,
num_particles=num_particles,
num_spatial_orbitals=num_spatial_orbitals,
include_imaginary=True,
)
assert_ucc_like_ansatz(self, ansatz, num_spatial_orbitals, expect)
if __name__ == "__main__":
unittest.main()
| qiskit-nature/test/second_q/circuit/library/ansatzes/test_puccd.py/0 | {
"file_path": "qiskit-nature/test/second_q/circuit/library/ansatzes/test_puccd.py",
"repo_id": "qiskit-nature",
"token_count": 3684
} | 146 |
# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2020, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
""" Test Driver Psi4 Extra """
import unittest
from test import QiskitNatureTestCase
import numpy as np
from qiskit_nature.second_q.drivers import Psi4Driver
from qiskit_nature import QiskitNatureError
import qiskit_nature.optionals as _optionals
class TestDriverPsi4Extra(QiskitNatureTestCase):
"""Psi4 Driver extra tests for driver specifics, errors etc"""
@unittest.skipIf(not _optionals.HAS_PSI4, "psi4 not available.")
def setUp(self):
super().setUp()
def test_input_format_list(self):
"""input as a list"""
driver = Psi4Driver(
[
"molecule h2 {",
" 0 1",
" H 0.0 0.0 0.0",
" H 0.0 0.0 0.735",
" no_com",
" no_reorient",
"}",
"",
"set {",
" basis sto-3g",
" scf_type pk",
"}",
]
)
driver_result = driver.run()
with self.subTest("energy"):
self.assertAlmostEqual(driver_result.reference_energy, -1.117, places=3)
with self.subTest("masses"):
np.testing.assert_array_almost_equal(
driver_result.molecule.masses, [1.00782503, 1.00782503]
)
def test_input_format_string(self):
"""input as a multi line string"""
cfg = """
molecule h2 {
0 1
H 0.0 0.0 0.0
H 0.0 0.0 0.735
no_com
no_reorient
}
set {
basis sto-3g
scf_type pk
}
"""
driver = Psi4Driver(cfg)
driver_result = driver.run()
with self.subTest("energy"):
self.assertAlmostEqual(driver_result.reference_energy, -1.117, places=3)
with self.subTest("masses"):
np.testing.assert_array_almost_equal(
driver_result.molecule.masses, [1.00782503, 1.00782503]
)
def test_input_format_fail(self):
"""input type failure"""
with self.assertRaises(QiskitNatureError):
_ = Psi4Driver(1.000)
def test_psi4_failure(self):
"""check we catch psi4 failures (bad scf type used here)"""
bad_cfg = """
molecule h2 {
0 1
H 0.0 0.0 0.0
H 0.0 0.0 0.735
no_com
no_reorient
}
set {
basis sto-3g
scf_type unknown
}
"""
driver = Psi4Driver(bad_cfg)
with self.assertRaises(QiskitNatureError) as ctxmgr:
_ = driver.run()
self.assertTrue(str(ctxmgr.exception).startswith("'psi4 process return code"))
if __name__ == "__main__":
unittest.main()
| qiskit-nature/test/second_q/drivers/psi4d/test_driver_psi4_extra.py/0 | {
"file_path": "qiskit-nature/test/second_q/drivers/psi4d/test_driver_psi4_extra.py",
"repo_id": "qiskit-nature",
"token_count": 1425
} | 147 |
# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2021, 2024.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Test KagomeLattice."""
import unittest
from test import QiskitNatureTestCase
from numpy.testing import assert_array_equal
import numpy as np
from rustworkx import PyGraph, is_isomorphic
from qiskit_nature.second_q.hamiltonians.lattices import (
BoundaryCondition,
KagomeLattice,
)
class TestKagomeLattice(QiskitNatureTestCase):
"""Test KagomeLattice."""
def setUp(self):
super().setUp()
self.rows = 3
self.cols = 2
self.num_sites_per_cell = 3
self.edge_parameter = 1 - 1j
self.onsite_parameter = 0.0
self.weighted_bulk_edges = [
(2, 0, 1 - 1j),
(0, 1, 1 - 1j),
(1, 2, 1 - 1j),
(3, 4, 1 - 1j),
(5, 3, 1 - 1j),
(4, 5, 1 - 1j),
(6, 7, 1 - 1j),
(8, 6, 1 - 1j),
(7, 8, 1 - 1j),
(9, 10, 1 - 1j),
(11, 9, 1 - 1j),
(10, 11, 1 - 1j),
(12, 13, 1 - 1j),
(14, 12, 1 - 1j),
(13, 14, 1 - 1j),
(15, 16, 1 - 1j),
(17, 15, 1 - 1j),
(16, 17, 1 - 1j),
(1, 3, 1 - 1j),
(2, 9, 1 - 1j),
(5, 10, 1 - 1j),
(5, 12, 1 - 1j),
(4, 6, 1 - 1j),
(8, 13, 1 - 1j),
(8, 15, 1 - 1j),
(10, 12, 1 - 1j),
(13, 15, 1 - 1j),
]
self.weighted_self_loops = [(i, i, 0.0) for i in range(18)]
self.weighted_boundary_x_edges = [
(7, 0, 1 + 1j),
(16, 9, 1 + 1j),
]
self.weighted_boundary_y_edges = [
(11, 0, 1 + 1j),
(14, 3, 1 + 1j),
(17, 6, 1 + 1j),
]
self.weighted_boundary_xy_edges = [
(14, 1, 1 + 1j),
(17, 4, 1 + 1j),
(2, 16, 1 + 1j),
(11, 7, 1 + 1j),
]
def test_init_open(self):
"""Test init for the open boundary conditions."""
boundary_condition = BoundaryCondition.OPEN
kagome = KagomeLattice(
self.rows, self.cols, self.edge_parameter, self.onsite_parameter, boundary_condition
)
weighted_list = self.weighted_bulk_edges + self.weighted_self_loops
with self.subTest("Check the graph."):
target_graph = PyGraph(multigraph=False)
target_graph.add_nodes_from(range(self.num_sites_per_cell * 6))
target_graph.add_edges_from(weighted_list)
self.assertTrue(
is_isomorphic(kagome.graph, target_graph, edge_matcher=lambda x, y: x == y)
)
with self.subTest("Check the number of nodes."):
self.assertEqual(kagome.num_nodes, self.num_sites_per_cell * 6)
with self.subTest("Check the set of nodes."):
self.assertSetEqual(set(kagome.node_indexes), set(range(self.num_sites_per_cell * 6)))
with self.subTest("Check the set of weights."):
target_set = set(weighted_list)
self.assertSetEqual(set(kagome.weighted_edge_list), target_set)
with self.subTest("Check the adjacency matrix."):
target_matrix = np.zeros((kagome.num_nodes, kagome.num_nodes), dtype=np.complex128)
# Fill in the edges from the edge list
for edge in weighted_list:
i, j, weight = edge
if j > i:
target_matrix[i][j] = weight
target_matrix[j][i] = weight.conjugate()
elif i > j:
target_matrix[j][i] = weight
target_matrix[i][j] = weight.conjugate()
else:
target_matrix[i][i] = weight
assert_array_equal(kagome.to_adjacency_matrix(weighted=True), target_matrix)
def test_init_periodic(self):
"""Test init for the periodic boundary conditions."""
boundary_condition = BoundaryCondition.PERIODIC
kagome = KagomeLattice(
self.rows, self.cols, self.edge_parameter, self.onsite_parameter, boundary_condition
)
weighted_list = (
self.weighted_bulk_edges
+ self.weighted_self_loops
+ self.weighted_boundary_x_edges
+ self.weighted_boundary_y_edges
+ self.weighted_boundary_xy_edges
)
with self.subTest("Check the graph."):
target_graph = PyGraph(multigraph=False)
target_graph.add_nodes_from(range(self.num_sites_per_cell * 6))
target_graph.add_edges_from(weighted_list)
self.assertTrue(
is_isomorphic(kagome.graph, target_graph, edge_matcher=lambda x, y: x == y)
)
with self.subTest("Check the number of nodes."):
self.assertEqual(kagome.num_nodes, self.num_sites_per_cell * 6)
with self.subTest("Check the set of nodes."):
self.assertSetEqual(set(kagome.node_indexes), set(range(self.num_sites_per_cell * 6)))
with self.subTest("Check the set of weights."):
target_set = set(weighted_list)
self.assertSetEqual(set(kagome.weighted_edge_list), target_set)
with self.subTest("Check the adjacency matrix."):
target_matrix = np.zeros((kagome.num_nodes, kagome.num_nodes), dtype=np.complex128)
# Fill in the edges from the edge list
for edge in weighted_list:
i, j, weight = edge
if j > i:
target_matrix[i][j] = weight
target_matrix[j][i] = weight.conjugate()
elif i > j:
target_matrix[j][i] = weight
target_matrix[i][j] = weight.conjugate()
else:
target_matrix[i][i] = weight
assert_array_equal(kagome.to_adjacency_matrix(weighted=True), target_matrix)
def test_init_x_periodic(self):
"""Test init for the periodic boundary conditions."""
boundary_condition = (BoundaryCondition.PERIODIC, BoundaryCondition.OPEN)
kagome = KagomeLattice(
self.rows, self.cols, self.edge_parameter, self.onsite_parameter, boundary_condition
)
weighted_list = (
self.weighted_bulk_edges + self.weighted_self_loops + self.weighted_boundary_x_edges
)
with self.subTest("Check the graph."):
target_graph = PyGraph(multigraph=False)
target_graph.add_nodes_from(range(self.num_sites_per_cell * 6))
target_graph.add_edges_from(weighted_list)
self.assertTrue(
is_isomorphic(kagome.graph, target_graph, edge_matcher=lambda x, y: x == y)
)
with self.subTest("Check the number of nodes."):
self.assertEqual(kagome.num_nodes, self.num_sites_per_cell * 6)
with self.subTest("Check the set of nodes."):
self.assertSetEqual(set(kagome.node_indexes), set(range(self.num_sites_per_cell * 6)))
with self.subTest("Check the set of weights."):
target_set = set(weighted_list)
self.assertSetEqual(set(kagome.weighted_edge_list), target_set)
with self.subTest("Check the adjacency matrix."):
target_matrix = np.zeros((kagome.num_nodes, kagome.num_nodes), dtype=np.complex128)
# Fill in the edges from the edge list
for edge in weighted_list:
i, j, weight = edge
if j > i:
target_matrix[i][j] = weight
target_matrix[j][i] = weight.conjugate()
elif i > j:
target_matrix[j][i] = weight
target_matrix[i][j] = weight.conjugate()
else:
target_matrix[i][i] = weight
assert_array_equal(kagome.to_adjacency_matrix(weighted=True), target_matrix)
def test_init_y_periodic(self):
"""Test init for the periodic boundary conditions."""
boundary_condition = (BoundaryCondition.OPEN, BoundaryCondition.PERIODIC)
kagome = KagomeLattice(
self.rows, self.cols, self.edge_parameter, self.onsite_parameter, boundary_condition
)
weighted_list = (
self.weighted_bulk_edges + self.weighted_self_loops + self.weighted_boundary_y_edges
)
with self.subTest("Check the graph."):
target_graph = PyGraph(multigraph=False)
target_graph.add_nodes_from(range(self.num_sites_per_cell * 6))
target_graph.add_edges_from(weighted_list)
self.assertTrue(
is_isomorphic(kagome.graph, target_graph, edge_matcher=lambda x, y: x == y)
)
with self.subTest("Check the number of nodes."):
self.assertEqual(kagome.num_nodes, self.num_sites_per_cell * 6)
with self.subTest("Check the set of nodes."):
self.assertSetEqual(set(kagome.node_indexes), set(range(self.num_sites_per_cell * 6)))
with self.subTest("Check the set of weights."):
target_set = set(weighted_list)
self.assertSetEqual(set(kagome.weighted_edge_list), target_set)
with self.subTest("Check the adjacency matrix."):
target_matrix = np.zeros((kagome.num_nodes, kagome.num_nodes), dtype=np.complex128)
# Fill in the edges from the edge list
for edge in weighted_list:
i, j, weight = edge
if j > i:
target_matrix[i][j] = weight
target_matrix[j][i] = weight.conjugate()
elif i > j:
target_matrix[j][i] = weight
target_matrix[i][j] = weight.conjugate()
else:
target_matrix[i][i] = weight
assert_array_equal(kagome.to_adjacency_matrix(weighted=True), target_matrix)
if __name__ == "__main__":
unittest.main()
| qiskit-nature/test/second_q/hamiltonians/lattices/test_kagome_lattice.py/0 | {
"file_path": "qiskit-nature/test/second_q/hamiltonians/lattices/test_kagome_lattice.py",
"repo_id": "qiskit-nature",
"token_count": 5296
} | 148 |
# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2021, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
""" Test Bravyi-Kitaev Super-Fast Mapper """
import unittest
from test import QiskitNatureTestCase
from test.second_q.mappers.resources.bksf_lih import (
FERMIONIC_HAMILTONIAN,
QUBIT_HAMILTONIAN,
)
import numpy as np
from qiskit.quantum_info import SparsePauliOp, PauliList
from qiskit_nature.second_q.operators import FermionicOp
from qiskit_nature.second_q.mappers import BravyiKitaevSuperFastMapper
from qiskit_nature.second_q.mappers.bksf import (
_edge_operator_aij,
_edge_operator_bi,
_bksf_edge_list_fermionic_op,
)
def _sort_simplify(sparse_pauli):
sparse_pauli = sparse_pauli.simplify()
indices = sparse_pauli.paulis.argsort()
table = sparse_pauli.paulis[indices]
coeffs = sparse_pauli.coeffs[indices]
sparse_pauli = SparsePauliOp(table, coeffs)
return sparse_pauli
class TestBravyiKitaevSuperFastMapper(QiskitNatureTestCase):
"""Test Bravyi-Kitaev Super-Fast Mapper"""
def test_bksf_edge_op_bi(self):
"""Test BKSF mapping, edge operator bi"""
edge_matrix = np.triu(np.ones((4, 4)))
edge_list = np.array(np.nonzero(np.triu(edge_matrix) - np.diag(np.diag(edge_matrix))))
qterm_b0 = _edge_operator_bi(edge_list, 0)
qterm_b1 = _edge_operator_bi(edge_list, 1)
qterm_b2 = _edge_operator_bi(edge_list, 2)
qterm_b3 = _edge_operator_bi(edge_list, 3)
ref_qterm_b0 = SparsePauliOp("IIIZZZ")
ref_qterm_b1 = SparsePauliOp("IZZIIZ")
ref_qterm_b2 = SparsePauliOp("ZIZIZI")
ref_qterm_b3 = SparsePauliOp("ZZIZII")
with self.subTest("Test edge operator b0"):
self.assertEqual(qterm_b0, ref_qterm_b0)
with self.subTest("Test edge operator b1"):
self.assertEqual(qterm_b1, ref_qterm_b1)
with self.subTest("Test edge operator b2"):
self.assertEqual(qterm_b2, ref_qterm_b2)
with self.subTest("Test edge operator b3"):
self.assertEqual(qterm_b3, ref_qterm_b3)
def test_bksf_edge_op_aij(self):
"""Test BKSF mapping, edge operator aij"""
edge_matrix = np.triu(np.ones((4, 4)))
edge_list = np.array(np.nonzero(np.triu(edge_matrix) - np.diag(np.diag(edge_matrix))))
qterm_a01 = _edge_operator_aij(edge_list, 0, 1)
qterm_a02 = _edge_operator_aij(edge_list, 0, 2)
qterm_a03 = _edge_operator_aij(edge_list, 0, 3)
qterm_a12 = _edge_operator_aij(edge_list, 1, 2)
qterm_a13 = _edge_operator_aij(edge_list, 1, 3)
qterm_a23 = _edge_operator_aij(edge_list, 2, 3)
ref_qterm_a01 = SparsePauliOp("IIIIIX")
ref_qterm_a02 = SparsePauliOp("IIIIXZ")
ref_qterm_a03 = SparsePauliOp("IIIXZZ")
ref_qterm_a12 = SparsePauliOp("IIXIZZ")
ref_qterm_a13 = SparsePauliOp("IXZZIZ")
ref_qterm_a23 = SparsePauliOp("XZZZZI")
with self.subTest("Test edge operator a01"):
self.assertEqual(qterm_a01, ref_qterm_a01)
with self.subTest("Test edge operator a02"):
self.assertEqual(qterm_a02, ref_qterm_a02)
with self.subTest("Test edge operator a03"):
self.assertEqual(qterm_a03, ref_qterm_a03)
with self.subTest("Test edge operator a12"):
self.assertEqual(qterm_a12, ref_qterm_a12)
with self.subTest("Test edge operator a13"):
self.assertEqual(qterm_a13, ref_qterm_a13)
with self.subTest("Test edge operator a23"):
self.assertEqual(qterm_a23, ref_qterm_a23)
def test_h2(self):
"""Test H2 molecule"""
with self.subTest("Excitation edges 1"):
assert np.alltrue(
_bksf_edge_list_fermionic_op(
FermionicOp({"+_0 -_1 +_2 -_3": 1}, num_spin_orbitals=4),
4,
)
== np.array([[0, 1], [2, 3]])
)
with self.subTest("Excitation edges 2"):
assert np.alltrue(
_bksf_edge_list_fermionic_op(
FermionicOp({"+_0 -_1 -_2 +_3": 1}, num_spin_orbitals=4),
4,
)
== np.array([[0, 1], [3, 2]])
)
## H2 from pyscf with sto-3g basis
h2_fop = FermionicOp(
{
"+_0 -_1 +_2 -_3": 0.18128880821149607,
"+_0 -_1 -_2 +_3": -0.18128880821149607,
"-_0 +_1 +_2 -_3": -0.18128880821149607,
"-_0 +_1 -_2 +_3": 0.18128880821149604,
"+_3 -_3": -0.4759487152209648,
"+_2 -_2": -1.2524635735648986,
"+_2 -_2 +_3 -_3": 0.48217928821207245,
"+_1 -_1": -0.4759487152209648,
"+_1 -_1 +_3 -_3": 0.697393767423027,
"+_1 -_1 +_2 -_2": 0.6634680964235684,
"+_0 -_0": -1.2524635735648986,
"+_0 -_0 +_3 -_3": 0.6634680964235684,
"+_0 -_0 +_2 -_2": 0.6744887663568382,
"+_0 -_0 +_1 -_1": 0.48217928821207245,
},
num_spin_orbitals=4,
copy=False,
)
expected_pauli_op = SparsePauliOp.from_list(
[
("IIII", (-0.8126179630230767 + 0j)),
("IIZZ", (0.17119774903432952 + 0j)),
("IYYI", (0.04532220205287402 + 0j)),
("IZIZ", (0.17119774903432955 + 0j)),
("IZZI", (0.34297063344496626 + 0j)),
("XIIX", (0.04532220205287402 + 0j)),
("YIIY", (0.04532220205287402 + 0j)),
("YZZY", (0.04532220205287402 + 0j)),
("ZIIZ", (0.3317340482117842 + 0j)),
("ZIZI", (-0.22278593040418454 + 0j)),
("ZXXZ", (0.04532220205287402 + 0j)),
("ZYYZ", (0.04532220205287402 + 0j)),
("ZZII", (-0.22278593040418454 + 0j)),
("ZZZZ", (0.24108964410603623 + 0j)),
]
)
pauli_sparse_op = BravyiKitaevSuperFastMapper().map(h2_fop)
op1 = _sort_simplify(expected_pauli_op)
op2 = _sort_simplify(pauli_sparse_op)
with self.subTest("Map H2 frome sto3g basis, number of terms"):
self.assertEqual(len(op1), len(op2))
with self.subTest("Map H2 frome sto3g basis result"):
self.assertEqualSparsePauliOp(op1, op2)
with self.subTest("Sparse FermionicOp input"):
h2_fop_sparse = h2_fop.normal_order()
pauli_sum_op_from_sparse = BravyiKitaevSuperFastMapper().map(h2_fop_sparse)
op2_from_sparse = _sort_simplify(pauli_sum_op_from_sparse)
self.assertEqualSparsePauliOp(op1, op2_from_sparse)
with self.subTest("Test accepting identity with zero coefficient"):
h2_fop_zero_term = h2_fop + FermionicOp({"": 0.0}, num_spin_orbitals=4)
pauli_sum_op_extra = BravyiKitaevSuperFastMapper().map(h2_fop_zero_term)
op3 = _sort_simplify(pauli_sum_op_extra)
self.assertEqualSparsePauliOp(op1, op3)
with self.subTest("Test zero FermiOp"):
fermi_op = FermionicOp.zero()
fermi_op.num_spin_orbitals = 4
pauli_op = BravyiKitaevSuperFastMapper().map(fermi_op)
x = np.array([], dtype="bool")
z = np.array([], dtype="bool")
expected_pauli_op = SparsePauliOp(PauliList.from_symplectic(x, z), coeffs=[0.0])
self.assertEqualSparsePauliOp(pauli_op, expected_pauli_op)
def test_LiH(self):
"""Test LiH molecule"""
pauli_sparse_op = BravyiKitaevSuperFastMapper().map(FERMIONIC_HAMILTONIAN)
self.assertEqualSparsePauliOp(pauli_sparse_op, QUBIT_HAMILTONIAN)
def test_mapping_overwrite_reg_len(self):
"""Test overwriting the register length."""
op = FermionicOp({"+_0 -_0": 1}, num_spin_orbitals=1)
expected = FermionicOp({"+_0 -_0": 1}, num_spin_orbitals=3)
mapper = BravyiKitaevSuperFastMapper()
self.assertEqual(mapper.map(op, register_length=3), mapper.map(expected))
if __name__ == "__main__":
unittest.main()
| qiskit-nature/test/second_q/mappers/test_bksf_mapper.py/0 | {
"file_path": "qiskit-nature/test/second_q/mappers/test_bksf_mapper.py",
"repo_id": "qiskit-nature",
"token_count": 4519
} | 149 |
# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2021, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Test for FermionicOp"""
import unittest
from test import QiskitNatureTestCase
import numpy as np
from ddt import data, ddt, unpack
from qiskit.circuit import Parameter
from qiskit_nature.exceptions import QiskitNatureError
from qiskit_nature.second_q.operators import FermionicOp, PolynomialTensor
import qiskit_nature.optionals as _optionals
@ddt
class TestFermionicOp(QiskitNatureTestCase):
"""FermionicOp tests."""
a = Parameter("a")
b = Parameter("b")
op1 = FermionicOp({"+_0 -_0": 1})
op2 = FermionicOp({"-_0 +_0": 2})
op3 = FermionicOp({"+_0 -_0": 1, "-_0 +_0": 2})
op4 = FermionicOp({"+_0 -_0": a})
def test_neg(self):
"""Test __neg__"""
fer_op = -self.op1
targ = FermionicOp({"+_0 -_0": -1}, num_spin_orbitals=1)
self.assertEqual(fer_op, targ)
fer_op = -self.op4
targ = FermionicOp({"+_0 -_0": -self.a})
self.assertEqual(fer_op, targ)
def test_mul(self):
"""Test __mul__, and __rmul__"""
with self.subTest("rightmul"):
fer_op = self.op1 * 2
targ = FermionicOp({"+_0 -_0": 2}, num_spin_orbitals=1)
self.assertEqual(fer_op, targ)
fer_op = self.op1 * self.a
targ = FermionicOp({"+_0 -_0": self.a})
self.assertEqual(fer_op, targ)
with self.subTest("left mul"):
fer_op = (2 + 1j) * self.op3
targ = FermionicOp({"+_0 -_0": (2 + 1j), "-_0 +_0": (4 + 2j)}, num_spin_orbitals=1)
self.assertEqual(fer_op, targ)
def test_div(self):
"""Test __truediv__"""
fer_op = self.op1 / 2
targ = FermionicOp({"+_0 -_0": 0.5}, num_spin_orbitals=1)
self.assertEqual(fer_op, targ)
fer_op = self.op1 / self.a
targ = FermionicOp({"+_0 -_0": 1 / self.a})
self.assertEqual(fer_op, targ)
def test_add(self):
"""Test __add__"""
fer_op = self.op1 + self.op2
targ = self.op3
self.assertEqual(fer_op, targ)
fer_op = self.op1 + self.op4
targ = FermionicOp({"+_0 -_0": 1 + self.a})
self.assertEqual(fer_op, targ)
with self.subTest("sum"):
fer_op = sum(FermionicOp({label: 1}) for label in ["+_0", "-_1", "+_2 -_2"])
targ = FermionicOp({"+_0": 1, "-_1": 1, "+_2 -_2": 1})
self.assertEqual(fer_op, targ)
def test_sub(self):
"""Test __sub__"""
fer_op = self.op3 - self.op2
targ = FermionicOp({"+_0 -_0": 1, "-_0 +_0": 0}, num_spin_orbitals=1)
self.assertEqual(fer_op, targ)
fer_op = self.op4 - self.op1
targ = FermionicOp({"+_0 -_0": self.a - 1})
self.assertEqual(fer_op, targ)
def test_compose(self):
"""Test operator composition"""
with self.subTest("single compose"):
fer_op = FermionicOp({"+_0 -_1": 1}, num_spin_orbitals=2) @ FermionicOp(
{"-_0": 1}, num_spin_orbitals=2
)
targ = FermionicOp({"+_0 -_1 -_0": 1}, num_spin_orbitals=2)
self.assertEqual(fer_op, targ)
with self.subTest("single compose with parameters"):
fer_op = FermionicOp({"+_0 -_1": self.a}) @ FermionicOp({"-_0": 1})
targ = FermionicOp({"+_0 -_1 -_0": self.a})
self.assertEqual(fer_op, targ)
with self.subTest("multi compose"):
fer_op = FermionicOp(
{"+_0 +_1 -_1": 1, "-_0 +_0 -_1": 1}, num_spin_orbitals=2
) @ FermionicOp({"": 1, "-_0 +_1": 1}, num_spin_orbitals=2)
fer_op = fer_op.simplify()
targ = FermionicOp(
{"+_0 +_1 -_1": 1, "-_0 +_0 -_1": 1, "+_0 +_1 -_0": -1, "-_0 -_1 +_1": -1},
num_spin_orbitals=2,
)
self.assertEqual(fer_op, targ)
with self.subTest("multi compose with parameters"):
fer_op = FermionicOp({"+_0 +_1 -_1": self.a, "-_0 +_0 -_1": 1}) @ FermionicOp(
{"": 1, "-_0 +_1": self.b}
)
fer_op = fer_op.simplify()
targ = FermionicOp(
{
"+_0 +_1 -_1": self.a,
"-_0 +_0 -_1": 1,
"+_0 +_1 -_0": -self.a * self.b,
"-_0 -_1 +_1": -self.b,
}
)
self.assertEqual(fer_op, targ)
def test_tensor(self):
"""Test tensor multiplication"""
fer_op = self.op1.tensor(self.op2)
targ = FermionicOp({"+_0 -_0 -_1 +_1": 2}, num_spin_orbitals=2)
self.assertEqual(fer_op, targ)
fer_op = self.op4.tensor(self.op2)
targ = FermionicOp({"+_0 -_0 -_1 +_1": 2 * self.a})
self.assertEqual(fer_op, targ)
def test_expand(self):
"""Test reversed tensor multiplication"""
fer_op = self.op1.expand(self.op2)
targ = FermionicOp({"-_0 +_0 +_1 -_1": 2}, num_spin_orbitals=2)
self.assertEqual(fer_op, targ)
fer_op = self.op4.expand(self.op2)
targ = FermionicOp({"-_0 +_0 +_1 -_1": 2 * self.a})
self.assertEqual(fer_op, targ)
def test_pow(self):
"""Test __pow__"""
with self.subTest("square trivial"):
fer_op = FermionicOp({"+_0 +_1 -_1": 3, "-_0 +_0 -_1": 1}, num_spin_orbitals=2) ** 2
fer_op = fer_op.simplify()
targ = FermionicOp.zero()
self.assertEqual(fer_op, targ)
with self.subTest("square nontrivial"):
fer_op = FermionicOp({"+_0 +_1 -_1": 3, "+_0 -_0 -_1": 1}, num_spin_orbitals=2) ** 2
fer_op = fer_op.simplify()
targ = FermionicOp({"+_0 -_1": -3}, num_spin_orbitals=2)
self.assertEqual(fer_op, targ)
with self.subTest("3rd power"):
fer_op = (3 * FermionicOp.one()) ** 3
targ = 27 * FermionicOp.one()
self.assertEqual(fer_op, targ)
with self.subTest("0th power"):
fer_op = FermionicOp({"+_0 +_1 -_1": 3, "-_0 +_0 -_1": 1}, num_spin_orbitals=2) ** 0
fer_op = fer_op.simplify()
targ = FermionicOp.one()
self.assertEqual(fer_op, targ)
with self.subTest("square nontrivial with parameters"):
fer_op = FermionicOp({"+_0 +_1 -_1": self.a, "+_0 -_0 -_1": 1}) ** 2
fer_op = fer_op.simplify()
targ = FermionicOp({"+_0 -_1": -self.a})
self.assertEqual(fer_op, targ)
def test_adjoint(self):
"""Test adjoint method"""
fer_op = FermionicOp(
{"": 1j, "+_0 +_1 -_1": 3, "+_0 -_0 -_1": 1, "-_0 -_1": 2 + 4j}, num_spin_orbitals=3
).adjoint()
targ = FermionicOp(
{"": -1j, "+_1 -_1 -_0": 3, "+_1 +_0 -_0": 1, "+_1 +_0": 2 - 4j}, num_spin_orbitals=3
)
self.assertEqual(fer_op, targ)
fer_op = FermionicOp(
{"": 1j, "+_0 +_1 -_1": 3, "+_0 -_0 -_1": self.a, "-_0 -_1": 2 + 4j}
).adjoint()
targ = FermionicOp(
{"": -1j, "+_1 -_1 -_0": 3, "+_1 +_0 -_0": self.a.conjugate(), "+_1 +_0": 2 - 4j}
)
self.assertEqual(fer_op, targ)
def test_simplify(self):
"""Test simplify"""
with self.subTest("simplify integer"):
fer_op = FermionicOp({"+_0 -_0": 1, "+_0 -_0 +_0 -_0": 1}, num_spin_orbitals=1)
simplified_op = fer_op.simplify()
targ = FermionicOp({"+_0 -_0": 2}, num_spin_orbitals=1)
self.assertEqual(simplified_op, targ)
with self.subTest("simplify complex"):
fer_op = FermionicOp({"+_0 -_0": 1, "+_0 -_0 +_0 -_0": 1j}, num_spin_orbitals=1)
simplified_op = fer_op.simplify()
targ = FermionicOp({"+_0 -_0": 1 + 1j}, num_spin_orbitals=1)
self.assertEqual(simplified_op, targ)
with self.subTest("simplify doesn't reorder"):
fer_op = FermionicOp({"-_0 +_1": 1 + 0j}, num_spin_orbitals=2)
simplified_op = fer_op.simplify()
self.assertEqual(simplified_op, fer_op)
fer_op = FermionicOp({"-_1 +_0": 1 + 0j}, num_spin_orbitals=2)
simplified_op = fer_op.simplify()
self.assertEqual(simplified_op, fer_op)
with self.subTest("simplify zero"):
fer_op = self.op1 - self.op1
simplified_op = fer_op.simplify()
targ = FermionicOp.zero()
self.assertEqual(simplified_op, targ)
with self.subTest("simplify parameters"):
fer_op = FermionicOp({"+_0 -_0": self.a, "+_0 -_0 +_0 -_0": 1j})
simplified_op = fer_op.simplify()
targ = FermionicOp({"+_0 -_0": self.a + 1j})
self.assertEqual(simplified_op, targ)
with self.subTest("simplify commutes with normal_order"):
fer_op = FermionicOp({"-_0 +_1": 1}, num_spin_orbitals=2)
self.assertEqual(fer_op.simplify().normal_order(), fer_op.normal_order().simplify())
with self.subTest("simplify + index order"):
orig = FermionicOp({"+_1 -_0 +_0 -_0": 1, "-_0 +_1": 2})
fer_op = orig.simplify().index_order()
targ = FermionicOp({"-_0 +_1": 1})
self.assertEqual(fer_op, targ)
def test_hermiticity(self):
"""test is_hermitian"""
with self.subTest("operator hermitian"):
# deliberately define test operator with duplicate terms in case .adjoint() simplifies terms
fer_op = (
1j * FermionicOp({"+_0 -_1 +_2 -_2 -_3 +_3": 1}, num_spin_orbitals=4)
+ 1j * FermionicOp({"+_0 -_1 +_2 -_2 -_3 +_3": 1}, num_spin_orbitals=4)
+ 1j * FermionicOp({"-_0 +_1 +_2 -_2 -_3 +_3": 1}, num_spin_orbitals=4)
+ 1j * FermionicOp({"-_0 +_1 +_2 -_2 -_3 +_3": 1}, num_spin_orbitals=4)
+ FermionicOp({"+_0 -_1 -_2 +_2 +_3 -_3": 1}, num_spin_orbitals=4)
- FermionicOp({"-_0 +_1 -_2 +_2 +_3 -_3": 1}, num_spin_orbitals=4)
)
self.assertTrue(fer_op.is_hermitian())
with self.subTest("operator not hermitian"):
fer_op = (
1j * FermionicOp({"+_0 -_1 +_2 -_2 -_3 +_3": 1}, num_spin_orbitals=4)
+ 1j * FermionicOp({"+_0 -_1 +_2 -_2 -_3 +_3": 1}, num_spin_orbitals=4)
- 1j * FermionicOp({"-_0 +_1 +_2 -_2 -_3 +_3": 1}, num_spin_orbitals=4)
- 1j * FermionicOp({"-_0 +_1 +_2 -_2 -_3 +_3": 1}, num_spin_orbitals=4)
)
self.assertFalse(fer_op.is_hermitian())
with self.subTest("test require normal order"):
fer_op = (
FermionicOp({"+_0 -_0 -_1": 1}, num_spin_orbitals=2)
- FermionicOp({"+_1 -_0 +_0": 1}, num_spin_orbitals=2)
+ FermionicOp({"+_1": 1}, num_spin_orbitals=2)
)
self.assertTrue(fer_op.is_hermitian())
with self.subTest("test passing atol"):
fer_op = FermionicOp({"+_0 -_1": 1}, num_spin_orbitals=2) + (1 + 1e-7) * FermionicOp(
{"+_1 -_0": 1}, num_spin_orbitals=2
)
self.assertFalse(fer_op.is_hermitian())
self.assertFalse(fer_op.is_hermitian(atol=1e-8))
self.assertTrue(fer_op.is_hermitian(atol=1e-6))
with self.subTest("parameters"):
fer_op = FermionicOp({"+_0": self.a})
with self.assertRaisesRegex(ValueError, "parameter"):
_ = fer_op.is_hermitian()
def test_equiv(self):
"""test equiv"""
prev_atol = FermionicOp.atol
prev_rtol = FermionicOp.rtol
op3 = self.op1 + (1 + 0.00005) * self.op2
self.assertFalse(op3.equiv(self.op3))
FermionicOp.atol = 1e-4
FermionicOp.rtol = 1e-4
self.assertTrue(op3.equiv(self.op3))
FermionicOp.atol = prev_atol
FermionicOp.rtol = prev_rtol
def test_normal_order(self):
"""test normal_order method"""
with self.subTest("Test for creation operator"):
orig = FermionicOp({"+_0": 1}, num_spin_orbitals=1)
fer_op = orig.normal_order()
self.assertEqual(fer_op, orig)
with self.subTest("Test for annihilation operator"):
orig = FermionicOp({"-_0": 1}, num_spin_orbitals=1)
fer_op = orig.normal_order()
self.assertEqual(fer_op, orig)
with self.subTest("Test for number operator"):
orig = FermionicOp({"+_0 -_0": 1}, num_spin_orbitals=1)
fer_op = orig.normal_order()
self.assertEqual(fer_op, orig)
with self.subTest("Test for empty operator"):
orig = FermionicOp({"-_0 +_0": 1}, num_spin_orbitals=1)
fer_op = orig.normal_order()
targ = FermionicOp({"": 1, "+_0 -_0": -1}, num_spin_orbitals=1)
self.assertEqual(fer_op, targ)
with self.subTest("Test for multiple operators 1"):
orig = FermionicOp({"-_0 +_1": 1}, num_spin_orbitals=2)
fer_op = orig.normal_order()
targ = FermionicOp({"+_1 -_0": -1}, num_spin_orbitals=2)
self.assertEqual(fer_op, targ)
with self.subTest("Test for multiple operators 2"):
orig = FermionicOp({"-_0 +_0 +_1 -_2": 1}, num_spin_orbitals=3)
fer_op = orig.normal_order()
targ = FermionicOp({"+_1 -_2": 1, "+_0 +_1 -_0 -_2": 1}, num_spin_orbitals=3)
self.assertEqual(fer_op, targ)
with self.subTest("Test normal ordering simplifies"):
orig = FermionicOp({"-_0 +_1": 1, "+_1 -_0": -1, "+_0": 0.0}, num_spin_orbitals=2)
fer_op = orig.normal_order()
targ = FermionicOp({"+_1 -_0": -2}, num_spin_orbitals=2)
self.assertEqual(fer_op, targ)
with self.subTest("Test parameters"):
orig = FermionicOp({"-_0 +_0 +_1 -_2": self.a})
fer_op = orig.normal_order()
targ = FermionicOp({"+_1 -_2": self.a, "+_0 +_1 -_0 -_2": self.a})
self.assertEqual(fer_op, targ)
def test_index_order(self):
"""test index_order method"""
with self.subTest("Test for creation operator"):
orig = FermionicOp({"+_0": 1})
fer_op = orig.index_order()
self.assertEqual(fer_op, orig)
with self.subTest("Test for annihilation operator"):
orig = FermionicOp({"-_0": 1})
fer_op = orig.index_order()
self.assertEqual(fer_op, orig)
with self.subTest("Test for number operator"):
orig = FermionicOp({"+_0 -_0": 1})
fer_op = orig.index_order()
self.assertEqual(fer_op, orig)
with self.subTest("Test for empty operator"):
orig = FermionicOp({"-_0 +_0": 1})
fer_op = orig.index_order()
self.assertEqual(fer_op, orig)
with self.subTest("Test for multiple operators 1"):
orig = FermionicOp({"+_1 -_0": 1})
fer_op = orig.index_order()
targ = FermionicOp({"-_0 +_1": -1})
self.assertEqual(fer_op, targ)
with self.subTest("Test for multiple operators 2"):
orig = FermionicOp({"+_2 -_0 +_1 -_0": 1, "-_0 +_1": 2})
fer_op = orig.index_order()
targ = FermionicOp({"-_0 -_0 +_1 +_2": 1, "-_0 +_1": 2})
self.assertEqual(fer_op, targ)
with self.subTest("Test index ordering simplifies"):
orig = FermionicOp({"-_0 +_1": 1, "+_1 -_0": -1, "+_0": 0.0})
fer_op = orig.index_order()
targ = FermionicOp({"-_0 +_1": 2})
self.assertEqual(fer_op, targ)
with self.subTest("index order + simplify"):
orig = FermionicOp({"+_1 -_0 +_0 -_0": 1, "-_0 +_1": 2})
fer_op = orig.index_order().simplify()
targ = FermionicOp({"-_0 +_1": 1})
self.assertEqual(fer_op, targ)
def test_induced_norm(self):
"""Test induced norm."""
op = 3 * FermionicOp({"+_0": 1}, num_spin_orbitals=1) + 4j * FermionicOp(
{"-_0": 1}, num_spin_orbitals=1
)
self.assertAlmostEqual(op.induced_norm(), 7.0)
self.assertAlmostEqual(op.induced_norm(2), 5.0)
@unpack
@data(
("", 1, True), # empty string
("+_0", 1, True), # single term
("+_0 -_0", 1, True), # multiple terms
("+_10", 11, True), # multiple digits
(" +_0", 1, False), # leading whitespace
("+_0 ", 1, False), # trailing whitespace
("+_0 -_0", 1, False), # multiple separating spaces
("+_0a", 1, False), # incorrect term pattern
("+_a0", 1, False), # incorrect term pattern
("0_+", 1, False), # incorrect term pattern
("something", 1, False), # incorrect term pattern
("+_1", 1, False), # register length is too short
)
def test_validate(self, key: str, length: int, valid: bool):
"""Test key validation."""
if valid:
_ = FermionicOp({key: 1.0}, num_spin_orbitals=length)
else:
with self.assertRaises(QiskitNatureError):
_ = FermionicOp({key: 1.0}, num_spin_orbitals=length)
def test_from_polynomial_tensor(self):
"""Test from PolynomialTensor construction"""
with self.subTest("dense tensor"):
r_l = 2
p_t = PolynomialTensor(
{
"+-": np.arange(1, 5).reshape((r_l, r_l)),
"++--": np.arange(1, 17).reshape((r_l, r_l, r_l, r_l)),
}
)
op = FermionicOp.from_polynomial_tensor(p_t)
expected = FermionicOp(
{
"+_0 -_0": 1,
"+_0 -_1": 2,
"+_1 -_0": 3,
"+_1 -_1": 4,
"+_0 +_0 -_0 -_0": 1,
"+_0 +_0 -_0 -_1": 2,
"+_0 +_0 -_1 -_0": 3,
"+_0 +_0 -_1 -_1": 4,
"+_0 +_1 -_0 -_0": 5,
"+_0 +_1 -_0 -_1": 6,
"+_0 +_1 -_1 -_0": 7,
"+_0 +_1 -_1 -_1": 8,
"+_1 +_0 -_0 -_0": 9,
"+_1 +_0 -_0 -_1": 10,
"+_1 +_0 -_1 -_0": 11,
"+_1 +_0 -_1 -_1": 12,
"+_1 +_1 -_0 -_0": 13,
"+_1 +_1 -_0 -_1": 14,
"+_1 +_1 -_1 -_0": 15,
"+_1 +_1 -_1 -_1": 16,
},
num_spin_orbitals=r_l,
)
self.assertEqual(op, expected)
if _optionals.HAS_SPARSE:
import sparse as sp # pylint: disable=import-error
with self.subTest("sparse tensor"):
r_l = 2
p_t = PolynomialTensor(
{
"+-": sp.as_coo({(0, 0): 1, (1, 0): 2}, shape=(r_l, r_l)),
"++--": sp.as_coo(
{(0, 0, 0, 1): 1, (1, 0, 1, 1): 2}, shape=(r_l, r_l, r_l, r_l)
),
}
)
op = FermionicOp.from_polynomial_tensor(p_t)
expected = FermionicOp(
{
"+_0 -_0": 1,
"+_1 -_0": 2,
"+_0 +_0 -_0 -_1": 1,
"+_1 +_0 -_1 -_1": 2,
},
num_spin_orbitals=r_l,
)
self.assertEqual(op, expected)
with self.subTest("compose operation order"):
r_l = 2
p_t = PolynomialTensor(
{
"+-": np.arange(1, 5).reshape((r_l, r_l)),
"++--": np.arange(1, 17).reshape((r_l, r_l, r_l, r_l)),
}
)
op = FermionicOp.from_polynomial_tensor(p_t)
a = op @ op
b = FermionicOp.from_polynomial_tensor(p_t @ p_t)
self.assertEqual(a, b)
with self.subTest("tensor operation order"):
r_l = 2
p_t = PolynomialTensor(
{
"+-": np.arange(1, 5).reshape((r_l, r_l)),
"++--": np.arange(1, 17).reshape((r_l, r_l, r_l, r_l)),
}
)
op = FermionicOp.from_polynomial_tensor(p_t)
self.assertEqual(op ^ op, FermionicOp.from_polynomial_tensor(p_t ^ p_t))
def test_no_num_spin_orbitals(self):
"""Test operators with automatic register length"""
op0 = FermionicOp({"": 1})
op1 = FermionicOp({"+_0 -_0": 1})
op2 = FermionicOp({"-_0 +_1": 2})
with self.subTest("Inferred register length"):
self.assertEqual(op0.num_spin_orbitals, 0)
self.assertEqual(op1.num_spin_orbitals, 1)
self.assertEqual(op2.num_spin_orbitals, 2)
with self.subTest("Mathematical operations"):
self.assertEqual((op0 + op2).num_spin_orbitals, 2)
self.assertEqual((op1 + op2).num_spin_orbitals, 2)
self.assertEqual((op0 @ op2).num_spin_orbitals, 2)
self.assertEqual((op1 @ op2).num_spin_orbitals, 2)
self.assertEqual((op1 ^ op2).num_spin_orbitals, 3)
with self.subTest("Equality"):
op3 = FermionicOp({"+_0 -_0": 1}, num_spin_orbitals=3)
self.assertEqual(op1, op3)
self.assertTrue(op1.equiv(1.000001 * op3))
def test_terms(self):
"""Test terms generator."""
op = FermionicOp(
{
"+_0": 1,
"-_0 +_1": 2,
"+_1 -_1 +_2": 2,
}
)
terms = [([("+", 0)], 1), ([("-", 0), ("+", 1)], 2), ([("+", 1), ("-", 1), ("+", 2)], 2)]
with self.subTest("terms"):
self.assertEqual(list(op.terms()), terms)
with self.subTest("from_terms"):
self.assertEqual(FermionicOp.from_terms(terms), op)
def test_permute_indices(self):
"""Test index permutation method."""
op = FermionicOp(
{
"+_0 -_1": 1,
"+_1 -_2": 2,
},
num_spin_orbitals=4,
)
with self.subTest("wrong permutation length"):
with self.assertRaises(ValueError):
_ = op.permute_indices([1, 0])
with self.subTest("actual permutation"):
permuted_op = op.permute_indices([2, 1, 3, 0])
self.assertEqual(
permuted_op, FermionicOp({"+_2 -_1": 1, "+_1 -_3": 2}, num_spin_orbitals=4)
)
def test_reg_len_with_skipped_key_validation(self):
"""Test the behavior of `register_length` after key validation was skipped."""
new_op = FermionicOp({"+_0 -_1": 1}, validate=False)
self.assertIsNone(new_op.num_spin_orbitals)
self.assertEqual(new_op.register_length, 2)
if __name__ == "__main__":
unittest.main()
| qiskit-nature/test/second_q/operators/test_fermionic_op.py/0 | {
"file_path": "qiskit-nature/test/second_q/operators/test_fermionic_op.py",
"repo_id": "qiskit-nature",
"token_count": 12957
} | 150 |
# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2021, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Tests Electronic Structure Problem."""
import unittest
from test import QiskitNatureTestCase
import json
import numpy as np
from qiskit_algorithms import MinimumEigensolverResult
import qiskit_nature.optionals as _optionals
from qiskit_nature.second_q.drivers import PySCFDriver
from qiskit_nature.second_q.hamiltonians import ElectronicEnergy
from qiskit_nature.second_q.operators import SparseLabelOp
from qiskit_nature.second_q.problems import ElectronicStructureProblem
from qiskit_nature.second_q.properties import AngularMomentum, Magnetization, ParticleNumber
from qiskit_nature.second_q.transformers import ActiveSpaceTransformer
class TestElectronicStructureProblem(QiskitNatureTestCase):
"""Tests Electronic Structure Problem."""
def test_interpret(self):
"""Tests the result interpretation method."""
dummy_result = MinimumEigensolverResult()
dummy_result.eigenvalue = 1.0
dummy_result.aux_operators_evaluated = {
"ParticleNumber": (1.0, 0.0),
"AngularMomentum": (2.0, 0.0),
"Magnetization": (-1.0, 0.0),
}
dummy_problem = ElectronicStructureProblem(
ElectronicEnergy.from_raw_integrals(np.zeros((2, 2)), np.zeros((2, 2, 2, 2)))
)
dummy_problem.hamiltonian.nuclear_repulsion_energy = 1.23
dummy_problem.reference_energy = -4.56
dummy_problem.properties.angular_momentum = AngularMomentum(1)
dummy_problem.properties.magnetization = Magnetization(1)
dummy_problem.properties.particle_number = ParticleNumber(1)
elec_struc_res = dummy_problem.interpret(dummy_result)
with self.subTest("hartree fock energy"):
self.assertAlmostEqual(elec_struc_res.hartree_fock_energy, -4.56)
with self.subTest("nuclear repulsion energy"):
self.assertAlmostEqual(elec_struc_res.nuclear_repulsion_energy, 1.23)
with self.subTest("computed energy"):
self.assertEqual(len(elec_struc_res.computed_energies), 1)
self.assertAlmostEqual(elec_struc_res.computed_energies[0], 1.0)
with self.subTest("number of particles"):
self.assertAlmostEqual(elec_struc_res.num_particles[0], 1.0)
with self.subTest("angular momentum"):
self.assertAlmostEqual(elec_struc_res.total_angular_momentum[0], 2.0)
with self.subTest("spin"):
self.assertAlmostEqual(elec_struc_res.spin[0], 1.0)
with self.subTest("magnetization"):
self.assertAlmostEqual(elec_struc_res.magnetization[0], -1.0)
@unittest.skipIf(not _optionals.HAS_PYSCF, "pyscf not available.")
def test_second_q_ops_without_transformers(self):
"""Tests that the list of second quantized operators is created if no transformers
provided."""
expected_num_of_sec_quant_ops = 6
with open(
self.get_resource_path("H2_631g_ferm_op.json", "second_q/problems/resources"),
"r",
encoding="utf8",
) as file:
expected = json.load(file)
driver = PySCFDriver(basis="631g")
electronic_structure_problem = driver.run()
electr_sec_quant_op, second_quantized_ops = electronic_structure_problem.second_q_ops()
with self.subTest("Check expected length of the list of second quantized operators."):
assert len(second_quantized_ops) == expected_num_of_sec_quant_ops
with self.subTest("Check types in the list of second quantized operators."):
for second_quantized_op in second_quantized_ops.values():
assert isinstance(second_quantized_op, SparseLabelOp)
with self.subTest("Check components of electronic second quantized operator."):
assert all(
s[0] == t[0] and np.isclose(np.abs(s[1]), np.abs(t[1]))
for s, t in zip(sorted(expected.items()), sorted(electr_sec_quant_op.items()))
)
@unittest.skipIf(not _optionals.HAS_PYSCF, "pyscf not available.")
def test_second_q_ops_with_active_space(self):
"""Tests that the correct second quantized operator is created if an active space
transformer is provided."""
expected_num_of_sec_quant_ops = 6
with open(
self.get_resource_path(
"H2_631g_ferm_op_active_space.json", "second_q/problems/resources"
),
"r",
encoding="utf8",
) as file:
expected = json.load(file)
driver = PySCFDriver(basis="631g")
trafo = ActiveSpaceTransformer(2, 2)
electronic_structure_problem = trafo.transform(driver.run())
electr_sec_quant_op, second_quantized_ops = electronic_structure_problem.second_q_ops()
with self.subTest("Check expected length of the list of second quantized operators."):
assert len(second_quantized_ops) == expected_num_of_sec_quant_ops
with self.subTest("Check types in the list of second quantized operators."):
for second_quantized_op in second_quantized_ops.values():
assert isinstance(second_quantized_op, SparseLabelOp)
with self.subTest("Check components of electronic second quantized operator."):
assert all(
s[0] == t[0] and np.isclose(np.abs(s[1]), np.abs(t[1]))
for s, t in zip(sorted(expected.items()), sorted(electr_sec_quant_op.items()))
)
if __name__ == "__main__":
unittest.main()
| qiskit-nature/test/second_q/problems/test_electronic_structure_problem.py/0 | {
"file_path": "qiskit-nature/test/second_q/problems/test_electronic_structure_problem.py",
"repo_id": "qiskit-nature",
"token_count": 2460
} | 151 |
# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2021, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Test ParticleNumber Property"""
from test.second_q.properties.property_test import PropertyTest
from qiskit_nature.second_q.properties import ParticleNumber
class TestParticleNumber(PropertyTest):
"""Test ParticleNumber Property"""
def setUp(self):
"""Setup."""
super().setUp()
num_spatial_orbitals = 4
self.prop = ParticleNumber(num_spatial_orbitals)
def test_second_q_ops(self):
"""Test second_q_ops."""
ops = self.prop.second_q_ops()["ParticleNumber"]
expected = {
"+_0 -_0": 1.0,
"+_1 -_1": 1.0,
"+_2 -_2": 1.0,
"+_3 -_3": 1.0,
"+_4 -_4": 1.0,
"+_5 -_5": 1.0,
"+_6 -_6": 1.0,
"+_7 -_7": 1.0,
}
self.assertEqual(dict(ops.items()), expected)
| qiskit-nature/test/second_q/properties/test_particle_number.py/0 | {
"file_path": "qiskit-nature/test/second_q/properties/test_particle_number.py",
"repo_id": "qiskit-nature",
"token_count": 559
} | 152 |
# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2020, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
""" Fix copyright year in header """
from typing import Tuple, Union, List
import builtins
import sys
import os
import datetime
import argparse
import subprocess
import traceback
class CopyrightChecker:
"""Check copyright"""
_UTF_STRING = "# -*- coding: utf-8 -*-"
_COPYRIGHT_STRING = "# (C) Copyright IBM "
def __init__(self, root_dir: str, check: bool) -> None:
self._root_dir = root_dir
self._check = check
self._current_year = datetime.datetime.now().year
self._changed_files = self._get_changed_files()
@staticmethod
def _exception_to_string(excp: Exception) -> str:
stack = traceback.extract_stack()[:-3] + traceback.extract_tb(excp.__traceback__)
pretty = traceback.format_list(stack)
return "".join(pretty) + f"\n {excp.__class__} {excp}"
@staticmethod
def _get_year_from_date(date) -> int:
if not date or len(date) < 4:
return None
return int(date[:4])
def _cmd_execute(self, args: List[str]) -> Tuple[str, Union[None, str]]:
# execute command
env = {}
for k in ["SYSTEMROOT", "PATH"]:
v = os.environ.get(k)
if v is not None:
env[k] = v
# LANGUAGE is used on win32
env["LANGUAGE"] = "C"
env["LANG"] = "C"
env["LC_ALL"] = "C"
with subprocess.Popen(
args,
cwd=self._root_dir,
env=env,
stdin=subprocess.DEVNULL,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
) as popen:
out, err = popen.communicate()
popen.wait()
out_str = out.decode("utf-8").strip()
err_str = err.decode("utf-8").strip()
err_str = err_str if err_str else None
return out_str, err_str
def _get_changed_files(self) -> List[str]:
out_str, err_str = self._cmd_execute(["git", "diff", "--name-only", "HEAD"])
if err_str:
raise builtins.Exception(err_str)
return out_str.splitlines()
def _get_file_last_year(self, relative_path: str) -> int:
last_year = None
errors = []
try:
out_str, err_str = self._cmd_execute(
["git", "log", "-1", "--format=%cI", relative_path]
)
last_year = CopyrightChecker._get_year_from_date(out_str)
if err_str:
errors.append(err_str)
except Exception as ex: # pylint: disable=broad-except
errors.append(f"'{relative_path}' Last year: {str(ex)}")
if errors:
raise ValueError(" - ".join(errors))
return last_year
def check_copyright(self, file_path) -> Tuple[bool, bool, bool]:
"""check copyright for a file"""
file_with_utf8 = False
file_with_invalid_year = False
file_has_header = False
try:
new_line = "# (C) Copyright IBM "
idx_utf8 = -1
idx_new_line = -1
file_lines = None
with open(file_path, "rt", encoding="utf8") as file:
file_lines = file.readlines()
for idx, line in enumerate(file_lines):
relative_path = os.path.relpath(file_path, self._root_dir)
if line.startswith(CopyrightChecker._UTF_STRING):
if self._check:
print(f"File contains utf-8 header: '{relative_path}'")
file_with_utf8 = True
idx_utf8 = idx
if not line.startswith(CopyrightChecker._COPYRIGHT_STRING):
continue
file_has_header = True
curr_years = []
for word in line.strip().split():
for year in word.strip().split(","):
if year.startswith("20") and len(year) >= 4:
try:
curr_years.append(int(year[0:4]))
except ValueError:
pass
header_start_year = None
header_last_year = None
if len(curr_years) > 1:
header_start_year = curr_years[0]
header_last_year = curr_years[1]
elif len(curr_years) == 1:
header_start_year = header_last_year = curr_years[0]
if relative_path in self._changed_files:
self._changed_files.remove(relative_path)
last_year = self._current_year
else:
last_year = self._get_file_last_year(relative_path)
if last_year and header_last_year != last_year:
if header_start_year and header_start_year != last_year:
new_line += f"{header_start_year}, "
new_line += f"{self._current_year}.\n"
if self._check:
print(
f"Wrong Copyright Year:'{relative_path}': ",
f"Current:'{line[:-1]}' Correct:'{new_line[:-1]}'",
)
file_with_invalid_year = True
idx_new_line = idx
break
if not self._check and (idx_utf8 >= 0 or idx_new_line >= 0):
if idx_new_line >= 0:
file_lines[idx_new_line] = new_line
if idx_utf8 >= 0:
del file_lines[idx_utf8]
with open(file_path, "w", encoding="utf8") as file:
file.writelines(file_lines)
if idx_new_line >= 0:
file_with_invalid_year = False
print(f"Fixed copyright year for {relative_path}.")
if idx_utf8 >= 0:
file_with_utf8 = False
print(f"Removed utf-8 header for {relative_path}.")
except UnicodeDecodeError:
return file_with_utf8, file_with_invalid_year, file_has_header
return file_with_utf8, file_with_invalid_year, file_has_header
def check(self) -> Tuple[int, int, int]:
"""check copyright"""
return self._check_copyright(self._root_dir)
def _check_copyright(self, path: str) -> Tuple[int, int, int]:
files_with_utf8 = 0
files_with_invalid_year = 0
files_with_header = 0
for item in os.listdir(path):
fullpath = os.path.join(path, item)
if os.path.isdir(fullpath):
if not item.startswith("."):
files = self._check_copyright(fullpath)
files_with_utf8 += files[0]
files_with_invalid_year += files[1]
files_with_header += files[2]
continue
if os.path.isfile(fullpath):
# check copyright year
(
file_with_utf8,
file_with_invalid_year,
file_has_header,
) = self.check_copyright(fullpath)
if file_with_utf8:
files_with_utf8 += 1
if file_with_invalid_year:
files_with_invalid_year += 1
if file_has_header:
files_with_header += 1
return files_with_utf8, files_with_invalid_year, files_with_header
def check_path(path):
"""valid path argument"""
if not path or os.path.isdir(path):
return path
raise argparse.ArgumentTypeError(f"readable_dir:{path} is not a valid path")
if __name__ == "__main__":
PARSER = argparse.ArgumentParser(description="Check Copyright Tool")
PARSER.add_argument("-path", type=check_path, metavar="path", help="Root path of project.")
PARSER.add_argument(
"-check",
required=False,
action="store_true",
help="Just check copyright, without fixing it.",
)
ARGS = PARSER.parse_args()
if not ARGS.path:
ARGS.path = os.getcwd()
ARGS.path = os.path.abspath(os.path.realpath(os.path.expanduser(ARGS.path)))
INVALID_UTF8, INVALID_YEAR, HAS_HEADER = CopyrightChecker(ARGS.path, ARGS.check).check()
print(f"{INVALID_UTF8} files have utf8 headers.")
print(f"{INVALID_YEAR} of {HAS_HEADER} files with copyright header have wrong years.")
sys.exit(0 if INVALID_UTF8 == 0 and INVALID_YEAR == 0 else 1)
| qiskit-nature/tools/check_copyright.py/0 | {
"file_path": "qiskit-nature/tools/check_copyright.py",
"repo_id": "qiskit-nature",
"token_count": 4588
} | 153 |
:orphan:
###############
Getting started
###############
Installation
============
Qiskit Optimization depends on Qiskit, which has its own
`installation instructions <https://docs.quantum.ibm.com/start/install>`__ detailing the
installation options for Qiskit and its supported environments/platforms. You should refer to
that first. Then the information here can be followed which focuses on the additional installation
specific to Qiskit Optimization.
Qiskit Optimization has some functions that have been made optional where the dependent code and/or
support program(s) are not (or cannot be) installed by default. Those are IBM CPLEX, CVXPY and Matplotlib.
See :ref:`optional_installs` for more information.
.. tab-set::
.. tab-item:: Start locally
The simplest way to get started is to follow the `Qiskit installation instructions <https://docs.quantum.ibm.com/start/install>`__
In your virtual environment where you installed Qiskit, also install ``qiskit-optimization``:
.. code:: sh
pip install qiskit-optimization
.. note::
As Qiskit Optimization depends on Qiskit, you can though simply install it into your
environment, as above, and pip will automatically install a compatible version of Qiskit
if one is not already installed.
.. tab-item:: Install from source
Installing Qiskit Optimization from source allows you to access the most recently
updated version under development instead of using the version in the Python Package
Index (PyPI) repository. This will give you the ability to inspect and extend
the latest version of the Qiskit Optimization code more efficiently.
Since Qiskit Optimization depends on Qiskit, and its latest changes may require new or changed
features of Qiskit, you should first follow Qiskit's `"Install from source"` instructions
`here <https://docs.quantum.ibm.com/start/install-qiskit-source>`__
.. raw:: html
<h2>Installing Qiskit Optimization from Source</h2>
Using the same development environment that you installed Qiskit in you are ready to install
Qiskit Optimization.
1. Clone the Qiskit Optimization repository.
.. code:: sh
git clone https://github.com/qiskit-community/qiskit-optimization.git
2. Cloning the repository creates a local folder called ``qiskit-optimization``.
.. code:: sh
cd qiskit-optimization
3. If you want to run tests or linting checks, install the developer requirements.
.. code:: sh
pip install -r requirements-dev.txt
4. Install ``qiskit-optimization``.
.. code:: sh
pip install .
If you want to install it in editable mode, meaning that code changes to the
project don't require a reinstall to be applied, you can do this with:
.. code:: sh
pip install -e .
.. _optional_installs:
Optional installs
=================
* **IBM CPLEX** may be installed using ``pip install 'qiskit-optimization[cplex]'`` to enable the reading of `LP` files and the usage of
the `CplexOptimizer`, wrapper for ``cplex.Cplex``. CPLEX is a separate package and its support of Python versions is independent of Qiskit Optimization, where this CPLEX command will have no effect if there is no compatible version of CPLEX available (yet).
* **CVXPY** may be installed using the command ``pip install 'qiskit-optimization[cvx]'``.
CVXPY being installed will enable the usage of the Goemans-Williamson algorithm as an optimizer `GoemansWilliamsonOptimizer`.
* **Matplotlib** may be installed using the command ``pip install 'qiskit-optimization[matplotlib]'``.
Matplotlib being installed will enable the usage of the `draw` method in the graph optimization application classes.
* **Gurobipy** may be installed using the command ``pip install 'qiskit-optimization[gurobi]'``.
Gurobipy being installed will enable the usage of the `GurobiOptimizer`.
----
Ready to get going?...
======================
.. raw:: html
<div class="tutorials-callout-container">
<div class="row">
.. qiskit-call-to-action-item::
:description: Find out about Qiskit Optimization.
:header: Dive into the tutorials
:button_link: ./tutorials/index.html
:button_text: Qiskit Optimization tutorials
.. raw:: html
</div>
</div>
.. Hiding - Indices and tables
:ref:`genindex`
:ref:`modindex`
:ref:`search`
| qiskit-optimization/docs/getting_started.rst/0 | {
"file_path": "qiskit-optimization/docs/getting_started.rst",
"repo_id": "qiskit-optimization",
"token_count": 1455
} | 154 |
<jupyter_start><jupyter_text>Application Classes for Optimization Problems IntroductionWe introduce application classes for the following optimization problems so that users can easily try various optimization problems on quantum computers.1. Exact cover problem - Given a collection of subsets of items, find a subcollection such that each item is covered exactly once.2. Knapsack problem - Given a set of items, find a subset of items such that the total weight is within the capacity and the total value is maximized.3. Number partition problem - Given a multiset of positive integers, find a partition of the multiset into two subsets such that the sums of the subsets are equal.4. Set packing problem - Given a collection of subsets of items, find a subcollection such that all subsets of the subcollection are pairwise disjoint and the number of items in the subcollection is maximized.Graph problems5. Clique problem - Given an undirected graph, find a subset of nodes with a specified number or the maximum number such that the induced subgraph is complete.6. Graph partition problem - Given an undirected graph, find a partition into two components whose sizes are equal such that the total capacity of the edges between the two components is minimized.7. Max-cut problem - Given an undirected graph, find a partition of nodes into two subsets such that the total weight of the edges between the two subsets is maximized. 8. Stable set problem - Given an undirected graph, find a subset of nodes such that no edge connects the nodes in the subset and the number of nodes is maximized.9. Traveling salesman problem - Given a graph, find a route with the minimum distance such that the route visits each city exactly once.10. Vehicle routing problem - Given a graph, a depot node, and the number of vehicles (routes), find a set of routes such that each node is covered exactly once except the depot and the total distance of the routes is minimized.11. Vertex cover problem - Given an undirected graph, find a subset of nodes with the minimum size such that each edge has at least one endpoint in the subsets.The application classes for graph problems (`GraphOptimizationApplication`) provide a functionality to draw graphs of an instance and a result.Note that you need to install `matplotlib` beforehand to utilize the functionality. We introduce examples of the vertex cover problem and the knapsack problem in this page.Examples of the max-cut problem and the traveling salesman problem are available in [Max-Cut and Traveling Salesman Problem](06_examples_max_cut_and_tsp.ipynb). We first import packages necessary for application classes.<jupyter_code>from qiskit_optimization.algorithms import MinimumEigenOptimizer
from qiskit_algorithms.utils import algorithm_globals
from qiskit_algorithms import QAOA, NumPyMinimumEigensolver
from qiskit_algorithms.optimizers import COBYLA
from qiskit.primitives import Sampler<jupyter_output><empty_output><jupyter_text>Vertex cover problemWe introduce the application class for the vertex cover problem as an example of graph problems.Given an undirected graph, the vertex cover problem asks us to find a subset of nodes with the minimum size such that all edges are covered by any node selected.We import the application class `VertexCover` for the vertex cover problem and `networkx` to generate a random graph.<jupyter_code>from qiskit_optimization.applications.vertex_cover import VertexCover
import networkx as nx
seed = 123
algorithm_globals.random_seed = seed
graph = nx.random_regular_graph(d=3, n=6, seed=seed)
pos = nx.spring_layout(graph, seed=seed)
prob = VertexCover(graph)
prob.draw(pos=pos)<jupyter_output><empty_output><jupyter_text>`VertexCover` takes a graph as an instance and `to_quadratic_program` generates a corresponding `QuadraticProgram` of the instance of the vertex cover problem.<jupyter_code>qp = prob.to_quadratic_program()
print(qp.prettyprint())<jupyter_output>Problem name: Vertex cover
Minimize
x_0 + x_1 + x_2 + x_3 + x_4 + x_5
Subject to
Linear constraints (9)
x_1 + x_2 >= 1 'c0'
x_1 + x_4 >= 1 'c1'
x_1 + x_3 >= 1 'c2'
x_2 + x_3 >= 1 'c3'
x_0 + x_2 >= 1 'c4'
x_0 + x_4 >= 1 'c5'
x_0 + x_5 >= 1 'c6'
x_4 + x_5 >= 1 'c7'
x_3 + x_5 >= 1 'c8'
Binary variables (6)
x_0 x_1 x_2 x_3 x_4 x_5<jupyter_text>You can solve the problem as follows. `NumPyMinimumEigensolver` finds the minimum eigen vector. You can also apply QAOA. Note that the solution by QAOA is not always optimal.<jupyter_code># Numpy Eigensolver
meo = MinimumEigenOptimizer(min_eigen_solver=NumPyMinimumEigensolver())
result = meo.solve(qp)
print(result.prettyprint())
print("\nsolution:", prob.interpret(result))
prob.draw(result, pos=pos)
# QAOA
meo = MinimumEigenOptimizer(min_eigen_solver=QAOA(reps=1, sampler=Sampler(), optimizer=COBYLA()))
result = meo.solve(qp)
print(result.prettyprint())
print("\nsolution:", prob.interpret(result))
print("\ntime:", result.min_eigen_solver_result.optimizer_time)
prob.draw(result, pos=pos)<jupyter_output>objective function value: 4.0
variable values: x_0=1.0, x_1=1.0, x_2=0.0, x_3=1.0, x_4=1.0, x_5=0.0
status: SUCCESS
solution: [0, 1, 3, 4]
time: 2.721126079559326<jupyter_text>Knapsack problemThe knapsack problem asks us to find a combination of items such that the total weight is within the capacity of the knapsack and maximize the total value of the items.The following examples solve an instance of the knapsack problem with 5 items by Numpy eigensolver and QAOA.<jupyter_code>from qiskit_optimization.applications import Knapsack
prob = Knapsack(values=[3, 4, 5, 6, 7], weights=[2, 3, 4, 5, 6], max_weight=10)
qp = prob.to_quadratic_program()
print(qp.prettyprint())
# Numpy Eigensolver
meo = MinimumEigenOptimizer(min_eigen_solver=NumPyMinimumEigensolver())
result = meo.solve(qp)
print(result.prettyprint())
print("\nsolution:", prob.interpret(result))
# QAOA
meo = MinimumEigenOptimizer(min_eigen_solver=QAOA(reps=1, sampler=Sampler(), optimizer=COBYLA()))
result = meo.solve(qp)
print(result.prettyprint())
print("\nsolution:", prob.interpret(result))
print("\ntime:", result.min_eigen_solver_result.optimizer_time)<jupyter_output>objective function value: 13.0
variable values: x_0=1.0, x_1=1.0, x_2=0.0, x_3=1.0, x_4=0.0
status: SUCCESS
solution: [0, 1, 3]
time: 2.0846190452575684<jupyter_text>How to check the HamiltonianIf you want to check the actual Hamiltonian generated from your problem instance, you need to apply a converter as follows.<jupyter_code>from qiskit_optimization.converters import QuadraticProgramToQubo
# the same knapsack problem instance as in the previous section
prob = Knapsack(values=[3, 4, 5, 6, 7], weights=[2, 3, 4, 5, 6], max_weight=10)
qp = prob.to_quadratic_program()
print(qp.prettyprint())
# intermediate QUBO form of the optimization problem
conv = QuadraticProgramToQubo()
qubo = conv.convert(qp)
print(qubo.prettyprint())
# qubit Hamiltonian and offset
op, offset = qubo.to_ising()
print(f"num qubits: {op.num_qubits}, offset: {offset}\n")
print(op)
import tutorial_magics
%qiskit_version_table
%qiskit_copyright<jupyter_output><empty_output> | qiskit-optimization/docs/tutorials/09_application_classes.ipynb/0 | {
"file_path": "qiskit-optimization/docs/tutorials/09_application_classes.ipynb",
"repo_id": "qiskit-optimization",
"token_count": 2273
} | 155 |
# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2020, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""An implementation of the ADMM algorithm."""
import copy
import logging
import time
from typing import List, Optional, Tuple, cast
import numpy as np
from qiskit_algorithms import NumPyMinimumEigensolver
from ..converters import MaximizeToMinimize
from ..problems.constraint import Constraint
from ..problems.linear_constraint import LinearConstraint
from ..problems.linear_expression import LinearExpression
from ..problems.quadratic_program import QuadraticProgram
from ..problems.variable import Variable, VarType
from .minimum_eigen_optimizer import MinimumEigenOptimizer
from .optimization_algorithm import (
OptimizationAlgorithm,
OptimizationResult,
OptimizationResultStatus,
)
from .slsqp_optimizer import SlsqpOptimizer
UPDATE_RHO_BY_TEN_PERCENT = 0
UPDATE_RHO_BY_RESIDUALS = 1
logger = logging.getLogger(__name__)
class ADMMParameters:
"""Defines a set of parameters for ADMM optimizer."""
def __init__(
self,
rho_initial: float = 10000,
factor_c: float = 100000,
beta: float = 1000,
maxiter: int = 10,
tol: float = 1.0e-4,
max_time: float = np.inf,
three_block: bool = True,
vary_rho: int = UPDATE_RHO_BY_TEN_PERCENT,
tau_incr: float = 2,
tau_decr: float = 2,
mu_res: float = 10,
mu_merit: float = 1000,
warm_start: bool = False,
) -> None:
"""Defines parameters for ADMM optimizer and their default values.
Args:
rho_initial: Initial value of rho parameter of ADMM.
factor_c: Penalizing factor for equality constraints, when mapping to QUBO.
beta: Penalization for y decision variables.
maxiter: Maximum number of iterations for ADMM.
tol: Tolerance for the residual convergence.
max_time: Maximum running time (in seconds) for ADMM.
three_block: Boolean flag to select the 3-block ADMM implementation.
vary_rho: Flag to select the rule to update rho.
If set to 0, then rho increases by 10% at each iteration.
If set to 1, then rho is modified according to primal and dual residuals.
tau_incr: Parameter used in the rho update (UPDATE_RHO_BY_RESIDUALS).
The update rule can be found in:
Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011).
Distributed optimization and statistical learning via the alternating
direction method of multipliers.
Foundations and Trends® in Machine learning, 3(1), 1-122.
tau_decr: Parameter used in the rho update (UPDATE_RHO_BY_RESIDUALS).
mu_res: Parameter used in the rho update (UPDATE_RHO_BY_RESIDUALS).
mu_merit: Penalization for constraint residual. Used to compute the merit values.
warm_start: Start ADMM with pre-initialized values for binary and continuous variables
by solving a relaxed (all variables are continuous) problem first. This option does
not guarantee the solution will optimal or even feasible. The option should be
used when tuning other options does not help and should be considered as a hint
to the optimizer where to start its iterative process.
"""
super().__init__()
self.mu_merit = mu_merit
self.mu_res = mu_res
self.tau_decr = tau_decr
self.tau_incr = tau_incr
self.vary_rho = vary_rho
self.three_block = three_block
self.max_time = max_time
self.tol = tol
self.maxiter = maxiter
self.factor_c = factor_c
self.beta = beta
self.rho_initial = rho_initial
self.warm_start = warm_start
def __repr__(self) -> str:
props = ", ".join([f"{key}={value}" for (key, value) in vars(self).items()])
return f"{type(self).__name__}({props})"
class ADMMState:
"""Internal computation state of the ADMM implementation.
The state keeps track of various variables are stored that are being updated during problem
solving. The values are relevant to the problem being solved. The state is recreated for each
optimization problem. State is returned as the third value.
"""
def __init__(self, op: QuadraticProgram, rho_initial: float) -> None:
"""
Args:
op: The optimization problem being solved.
rho_initial: Initial value of the rho parameter.
"""
super().__init__()
# Optimization problem itself
self.op = op
# Indices of the variables
self.binary_indices = None # type: Optional[List[int]]
self.continuous_indices = None # type: Optional[List[int]]
self.step1_absolute_indices = None # type: Optional[List[int]]
self.step1_relative_indices = None # type: Optional[List[int]]
# define heavily used matrix, they are used at each iteration, so let's cache them,
# they are np.ndarrays
# pylint:disable=invalid-name
# objective
self.q0 = None # type: Optional[np.ndarray]
self.c0 = None # type: Optional[np.ndarray]
self.q1 = None # type: Optional[np.ndarray]
self.c1 = None # type: Optional[np.ndarray]
# constraints
self.a0 = None # type: Optional[np.ndarray]
self.b0 = None # type: Optional[np.ndarray]
# These are the parameters that are updated in the ADMM iterations.
self.u = np.zeros(op.get_num_continuous_vars())
binary_size = op.get_num_binary_vars()
self.x0 = np.zeros(binary_size)
self.z = np.zeros(binary_size)
self.z_init = self.z
self.y = np.zeros(binary_size)
self.lambda_mult = np.zeros(binary_size)
# The following structures store quantities obtained in each ADMM iteration.
self.cost_iterates = [] # type: List[float]
self.residuals = [] # type: List[float]
self.dual_residuals = [] # type: List[float]
self.cons_r = [] # type: List[float]
self.merits = [] # type: List[float]
self.lambdas = [] # type: List[float]
self.x0_saved = [] # type: List[np.ndarray]
self.u_saved = [] # type: List[np.ndarray]
self.z_saved = [] # type: List[np.ndarray]
self.y_saved = [] # type: List[np.ndarray]
self.rho = rho_initial
# lin. eq. constraints with bin. vars. only
self.binary_equality_constraints = [] # type: List[LinearConstraint]
# all equality constraints
self.equality_constraints = [] # type: List[Constraint]
# all inequality constraints
self.inequality_constraints = [] # type: List[Constraint]
class ADMMOptimizationResult(OptimizationResult):
"""ADMMOptimization Result."""
def __init__(
self,
x: np.ndarray,
fval: float,
variables: List[Variable],
state: ADMMState,
status: OptimizationResultStatus,
) -> None:
"""
Args:
x: the optimal value found by ADMM.
fval: the optimal function value.
variables: the list of variables of the optimization problem.
state: the internal computation state of ADMM.
status: Termination status of an optimization algorithm
"""
super().__init__(x=x, fval=fval, variables=variables, status=status, raw_results=state)
@property
def state(self) -> ADMMState:
"""returns state"""
return self._raw_results
class ADMMOptimizer(OptimizationAlgorithm):
"""An implementation of the ADMM-based heuristic.
This algorithm is introduced in [1].
**References:**
[1] Gambella, C., & Simonetto, A. (2020). Multi-block ADMM Heuristics for Mixed-Binary
Optimization on Classical and Quantum Computers. arXiv preprint arXiv:2001.02069.
"""
def __init__(
self,
qubo_optimizer: Optional[OptimizationAlgorithm] = None,
continuous_optimizer: Optional[OptimizationAlgorithm] = None,
params: Optional[ADMMParameters] = None,
) -> None:
"""
Args:
qubo_optimizer: An instance of OptimizationAlgorithm that can effectively solve
QUBO problems. If not specified then :class:`MinimumEigenOptimizer` initialized
with an instance of ``NumPyMinimumEigensolver`` will be used.
continuous_optimizer: An instance of OptimizationAlgorithm that can solve
continuous problems. If not specified then :class:`SlsqpOptimizer` will be used.
params: An instance of ADMMParameters.
"""
super().__init__()
self._log = logging.getLogger(__name__)
# create default params if not present
self._params = params or ADMMParameters()
# create optimizers if not specified
self._qubo_optimizer = qubo_optimizer or MinimumEigenOptimizer(NumPyMinimumEigensolver())
self._continuous_optimizer = continuous_optimizer or SlsqpOptimizer()
# internal state where we'll keep intermediate solution
# here, we just declare the class variable, the variable is initialized in kept in
# the solve method.
self._state = None # type: Optional[ADMMState]
def get_compatibility_msg(self, problem: QuadraticProgram) -> str:
"""Checks whether a given problem can be solved with the optimizer implementing this method.
Args:
problem: The optimization problem to check compatibility.
Returns:
Returns the incompatibility message. If the message is empty no issues were found.
"""
msg = ""
# 1. get bin/int and continuous variable indices
bin_int_indices = self._get_variable_indices(problem, Variable.Type.BINARY)
continuous_indices = self._get_variable_indices(problem, Variable.Type.CONTINUOUS)
# 2. binary and continuous variables are separable in objective
for bin_int_index in bin_int_indices:
for continuous_index in continuous_indices:
coeff = problem.objective.quadratic[bin_int_index, continuous_index]
if coeff != 0:
# binary and continuous vars are mixed.
msg += "Binary and continuous variables are not separable in the objective. "
# if an error occurred, return error message, otherwise, return the empty string
return msg
def solve(self, problem: QuadraticProgram) -> ADMMOptimizationResult:
"""Tries to solves the given problem using ADMM algorithm.
Args:
problem: The problem to be solved.
Returns:
The result of the optimizer applied to the problem.
Raises:
QiskitOptimizationError: If the problem is not compatible with the ADMM optimizer.
"""
self._verify_compatibility(problem)
# debug
self._log.debug("Initial problem: %s", problem.export_as_lp_string())
# map integer variables to binary variables
from ..converters.integer_to_binary import IntegerToBinary
# we deal with minimization in the optimizer, so turn the problem to minimization
converters = [IntegerToBinary(), MaximizeToMinimize()]
original_problem = problem
problem = self._convert(problem, converters)
# create our computation state.
self._state = ADMMState(problem, self._params.rho_initial)
# parse problem and convert to an ADMM specific representation.
self._state.binary_indices = self._get_variable_indices(problem, Variable.Type.BINARY)
self._state.continuous_indices = self._get_variable_indices(
problem, Variable.Type.CONTINUOUS
)
if self._params.warm_start:
# warm start injection for the initial values of the variables
self._warm_start(problem)
# convert optimization problem to a set of matrices and vector that are used
# at each iteration.
self._convert_problem_representation()
start_time = time.time()
# we have not stated our computations yet, so elapsed time initialized as zero.
elapsed_time = 0.0
iteration = 0
residual = 1.0e2
while (iteration < self._params.maxiter and residual > self._params.tol) and (
elapsed_time < self._params.max_time
):
if self._state.step1_absolute_indices:
op1 = self._create_step1_problem()
self._state.x0 = self._update_x0(op1)
# debug
self._log.debug("Step 1 sub-problem: %s", op1.export_as_lp_string())
# else, no binary variables exist, and no update to be done in this case.
# debug
self._log.debug("x0=%s", self._state.x0)
op2 = self._create_step2_problem()
self._state.u, self._state.z = self._update_x1(op2)
# debug
self._log.debug("Step 2 sub-problem: %s", op2.export_as_lp_string())
self._log.debug("u=%s", self._state.u)
self._log.debug("z=%s", self._state.z)
if self._params.three_block:
if self._state.binary_indices:
op3 = self._create_step3_problem()
self._state.y = self._update_y(op3)
# debug
self._log.debug("Step 3 sub-problem: %s", op3.export_as_lp_string())
# debug
self._log.debug("y=%s", self._state.y)
self._state.lambda_mult = self._update_lambda_mult()
# debug
self._log.debug("lambda: %s", self._state.lambda_mult)
cost_iterate = self._get_objective_value()
constraint_residual = self._get_constraint_residual()
residual, dual_residual = self._get_solution_residuals(iteration)
merit = self._get_merit(cost_iterate, constraint_residual)
# debug
self._log.debug(
"cost_iterate=%s, cr=%s, merit=%s",
cost_iterate,
constraint_residual,
merit,
)
# costs are saved with their original sign.
self._state.cost_iterates.append(cost_iterate)
self._state.residuals.append(residual)
self._state.dual_residuals.append(dual_residual)
self._state.cons_r.append(constraint_residual)
self._state.merits.append(merit)
self._state.lambdas.append(cast(float, np.linalg.norm(self._state.lambda_mult)))
self._state.x0_saved.append(self._state.x0)
self._state.u_saved.append(self._state.u)
self._state.z_saved.append(self._state.z)
self._state.y_saved.append(self._state.y)
self._update_rho(residual, dual_residual)
iteration += 1
elapsed_time = time.time() - start_time
binary_vars, continuous_vars, objective_value = self._get_best_merit_solution()
solution = self._revert_solution_indexes(binary_vars, continuous_vars)
self._log.debug(
"solution=%s, objective=%s at iteration=%s", solution, objective_value, iteration
)
# convert back integer to binary and eventually minimization to maximization
# `state` is our internal state of computations.
return cast(
ADMMOptimizationResult,
self._interpret(
x=solution,
converters=converters,
problem=original_problem,
result_class=ADMMOptimizationResult,
state=self._state,
),
)
@staticmethod
def _get_variable_indices(op: QuadraticProgram, var_type: VarType) -> List[int]:
"""Returns a list of indices of the variables of the specified type.
Args:
op: Optimization problem.
var_type: type of variables to look for.
Returns:
List of indices.
"""
indices = []
for i, variable in enumerate(op.variables):
if variable.vartype == var_type:
indices.append(i)
return indices
def _get_current_solution(self) -> np.ndarray:
"""
Returns current solution of the problem.
Returns:
An array of the current solution.
"""
return self._revert_solution_indexes(self._state.x0, self._state.u)
def _revert_solution_indexes(
self, binary_vars: np.ndarray, continuous_vars: np.ndarray
) -> np.ndarray:
"""Constructs a solution array where variables are stored in the correct order.
Args:
binary_vars: solution for binary variables
continuous_vars: solution for continuous variables
Returns:
A solution array.
"""
solution = np.zeros(len(self._state.binary_indices) + len(self._state.continuous_indices))
# restore solution at the original index location
solution.put(self._state.binary_indices, binary_vars)
solution.put(self._state.continuous_indices, continuous_vars)
return solution
def _convert_problem_representation(self) -> None:
"""Converts problem representation into set of matrices and vectors."""
binary_var_indices = set(self._state.binary_indices)
# separate constraints
for l_constraint in self._state.op.linear_constraints:
if l_constraint.sense == Constraint.Sense.EQ:
self._state.equality_constraints.append(l_constraint)
# verify that there are only binary variables in the constraint
# this is to build A0, b0 in step 1
constraint_var_indices = set(l_constraint.linear.to_dict().keys())
if constraint_var_indices.issubset(binary_var_indices):
self._state.binary_equality_constraints.append(l_constraint)
elif l_constraint.sense in (Constraint.Sense.LE, Constraint.Sense.GE):
self._state.inequality_constraints.append(l_constraint)
# separate quadratic constraints into eq and non-eq
for q_constraint in self._state.op.quadratic_constraints:
if q_constraint.sense == Constraint.Sense.EQ:
self._state.equality_constraints.append(q_constraint)
elif q_constraint.sense in (Constraint.Sense.LE, Constraint.Sense.GE):
self._state.inequality_constraints.append(q_constraint)
# separately keep binary variables that are for step 1 only
# temp variables are due to limit of 100 chars per line
step1_absolute_indices, step1_relative_indices = self._get_step1_indices()
self._state.step1_absolute_indices = step1_absolute_indices
self._state.step1_relative_indices = step1_relative_indices
# objective
self._state.q0 = self._get_q(self._state.step1_absolute_indices)
c0_vec = self._state.op.objective.linear.to_array()[self._state.step1_absolute_indices]
self._state.c0 = c0_vec
self._state.q1 = self._get_q(self._state.continuous_indices)
self._state.c1 = self._state.op.objective.linear.to_array()[self._state.continuous_indices]
# equality constraints with binary vars only
self._state.a0, self._state.b0 = self._get_a0_b0()
def _get_step1_indices(self) -> Tuple[List[int], List[int]]:
"""
Constructs two arrays of absolute (pointing to the original problem) and relative (pointing
to the list of all binary variables) indices of the variables considered
to be included in the step1(QUBO) problem.
Returns: A tuple of lists with absolute and relative indices
"""
# here we keep binary indices from the original problem
step1_absolute_indices = []
# iterate over binary variables and put all binary variables mentioned in the objective
# to the array for the step1
for binary_index in self._state.binary_indices:
# here we check if this binary variable present in the objective
# either in the linear or quadratic terms
if (
self._state.op.objective.linear[binary_index] != 0
or np.abs(self._state.op.objective.quadratic.coefficients[binary_index, :]).sum()
!= 0
):
# add the variable if it was not added before
if binary_index not in step1_absolute_indices:
step1_absolute_indices.append(binary_index)
# compute all unverified binary variables (the variables that are present in constraints
# but not in objective):
# rest variables := all binary variables - already verified for step 1
rest_binary = set(self._state.binary_indices).difference(step1_absolute_indices)
# verify if an equality contains binary variables
for constraint in self._state.binary_equality_constraints:
for binary_index in list(rest_binary):
if (
constraint.linear[binary_index] > 0
and binary_index not in step1_absolute_indices
):
# a binary variable with the binary_index is present in this constraint
step1_absolute_indices.append(binary_index)
# we want to preserve order of the variables but this order could be broken by adding
# a variable in the previous for loop.
step1_absolute_indices.sort()
# compute relative indices, these indices are used when we generate step1 and
# update variables on step1.
# on step1 we solve for a subset of all binary variables,
# so we want to operate only these indices
step1_relative_indices = []
relative_index = 0
# for each binary variable that comes from lin.eq/obj and which is denoted by abs_index
for abs_index in step1_absolute_indices:
found = False
# we want to find relative index of a variable the comes from linear constraints
# or objective across all binary variables
for j in range(relative_index, len(self._state.binary_indices)):
if self._state.binary_indices[j] == abs_index:
found = True
relative_index = j
break
if found:
step1_relative_indices.append(relative_index)
else:
raise ValueError("No relative index found!")
return step1_absolute_indices, step1_relative_indices
def _get_q(self, variable_indices: List[int]) -> np.ndarray:
"""Constructs a quadratic matrix for the variables with the specified indices
from the quadratic terms in the objective.
Args:
variable_indices: variable indices to look for.
Returns:
A matrix as a numpy array of the shape(len(variable_indices), len(variable_indices)).
"""
size = len(variable_indices)
q = np.zeros(shape=(size, size))
# fill in the matrix
# in fact we use re-indexed variables
# we build upper triangular matrix to avoid doubling of the coefficients
for i in range(0, size):
for j in range(i, size):
q[i, j] = self._state.op.objective.quadratic[
variable_indices[i], variable_indices[j]
]
return q
def _get_a0_b0(self) -> Tuple[np.ndarray, np.ndarray]:
"""Constructs a matrix and a vector from the constraints in a form of Ax = b, where
x is a vector of binary variables.
Returns:
Corresponding matrix and vector as numpy arrays.
Raises:
ValueError: if the problem is not suitable for this optimizer.
"""
matrix = []
vector = []
for constraint in self._state.binary_equality_constraints:
row = constraint.linear.to_array().take(self._state.step1_absolute_indices).tolist()
matrix.append(row)
vector.append(constraint.rhs)
if len(matrix) != 0:
np_matrix = np.array(matrix)
np_vector = np.array(vector)
else:
np_matrix = np.array([0] * len(self._state.step1_absolute_indices)).reshape((1, -1))
np_vector = np.zeros(shape=(1,))
return np_matrix, np_vector
def _create_step1_problem(self) -> QuadraticProgram:
"""Creates a step 1 sub-problem.
Returns:
A newly created optimization problem.
"""
op1 = QuadraticProgram()
binary_size = len(self._state.step1_absolute_indices)
# create the same binary variables.
for i in range(binary_size):
name = self._state.op.variables[self._state.step1_absolute_indices[i]].name
op1.binary_var(name=name)
# prepare and set quadratic objective.
quadratic_objective = (
self._state.q0
+ self._params.factor_c / 2 * np.dot(self._state.a0.transpose(), self._state.a0)
+ self._state.rho / 2 * np.eye(binary_size)
)
op1.objective.quadratic = quadratic_objective
# prepare and set linear objective.
linear_objective = (
self._state.c0
- self._params.factor_c * np.dot(self._state.b0, self._state.a0)
+ self._state.rho
* (
-self._state.y[self._state.step1_relative_indices]
- self._state.z[self._state.step1_relative_indices]
)
+ self._state.lambda_mult[self._state.step1_relative_indices]
)
op1.objective.linear = linear_objective
return op1
def _create_step2_problem(self) -> QuadraticProgram:
"""Creates a step 2 sub-problem.
Returns:
A newly created optimization problem.
"""
op2 = copy.deepcopy(self._state.op)
# replace binary variables with the continuous ones bound in [0,1]
# x0(bin) -> z(cts)
# u (cts) are still there unchanged
for i, var_index in enumerate(self._state.binary_indices):
variable = op2.variables[var_index]
variable.vartype = Variable.Type.CONTINUOUS
variable.upperbound = 1.0
variable.lowerbound = 0.0
# replacing Q0 objective and take of min/max sense, initially we consider minimization
op2.objective.quadratic[var_index, var_index] = self._state.rho / 2
# replacing linear objective
op2.objective.linear[var_index] = -1 * self._state.lambda_mult[i] - self._state.rho * (
self._state.x0[i] - self._state.y[i]
)
# remove A0 x0 = b0 constraints
for constraint in self._state.binary_equality_constraints:
op2.remove_linear_constraint(constraint.name)
return op2
def _create_step3_problem(self) -> QuadraticProgram:
"""Creates a step 3 sub-problem.
Returns:
A newly created optimization problem.
"""
op3 = QuadraticProgram()
# add y variables.
binary_size = len(self._state.binary_indices)
for i in range(binary_size):
name = self._state.op.variables[self._state.binary_indices[i]].name
op3.continuous_var(lowerbound=-np.inf, upperbound=np.inf, name=name)
# set quadratic objective y
quadratic_y = self._params.beta / 2 * np.eye(binary_size) + self._state.rho / 2 * np.eye(
binary_size
)
op3.objective.quadratic = quadratic_y # type: ignore[assignment]
# set linear objective for y
linear_y = -self._state.lambda_mult - self._state.rho * (self._state.x0 - self._state.z)
op3.objective.linear = cast(LinearExpression, linear_y)
return op3
def _update_x0(self, op1: QuadraticProgram) -> np.ndarray:
"""Solves the Step1 QuadraticProgram via the qubo optimizer.
Args:
op1: the Step1 QuadraticProgram.
Returns:
A solution of the Step1, as a numpy array.
"""
x0_all_binaries = np.zeros(len(self._state.binary_indices))
x0_qubo = np.asarray(self._qubo_optimizer.solve(op1).x)
x0_all_binaries[self._state.step1_relative_indices] = x0_qubo
return x0_all_binaries
def _update_x1(self, op2: QuadraticProgram) -> Tuple[np.ndarray, np.ndarray]:
"""Solves the Step2 QuadraticProgram via the continuous optimizer.
Args:
op2: the Step2 QuadraticProgram
Returns:
A solution of the Step2, as a pair of numpy arrays.
First array contains the values of decision variables u, and
second array contains the values of decision variables z.
"""
vars_op2 = np.asarray(self._continuous_optimizer.solve(op2).x)
vars_u = vars_op2.take(self._state.continuous_indices)
vars_z = vars_op2.take(self._state.binary_indices)
return vars_u, vars_z
def _update_y(self, op3: QuadraticProgram) -> np.ndarray:
"""Solves the Step3 QuadraticProgram via the continuous optimizer.
Args:
op3: the Step3 QuadraticProgram
Returns:
A solution of the Step3, as a numpy array.
"""
return np.asarray(self._continuous_optimizer.solve(op3).x)
def _get_best_merit_solution(self) -> Tuple[np.ndarray, np.ndarray, float]:
"""The ADMM solution is that for which the merit value is the min
* sol: Iterate with the min merit value
* sol_val: Value of sol, according to the original objective
Returns:
A tuple of (binary_vars, continuous_vars, sol_val), where
* binary_vars: binary variable values with the min merit value
* continuous_vars: continuous variable values with the min merit value
* sol_val: Value of the objective function
"""
it_min_merits = self._state.merits.index(min(self._state.merits))
binary_vars = self._state.x0_saved[it_min_merits]
continuous_vars = self._state.u_saved[it_min_merits]
sol_val = self._state.cost_iterates[it_min_merits]
return binary_vars, continuous_vars, sol_val
def _update_lambda_mult(self) -> np.ndarray:
"""
Updates the values of lambda multiplier, given the updated iterates
x0, z, and y.
Returns: The updated array of values of lambda multiplier.
"""
return self._state.lambda_mult + self._state.rho * (
self._state.x0 - self._state.z - self._state.y
)
def _update_rho(self, primal_residual: float, dual_residual: float) -> None:
"""Updating the rho parameter in ADMM.
Args:
primal_residual: primal residual
dual_residual: dual residual
"""
if self._params.vary_rho == UPDATE_RHO_BY_TEN_PERCENT:
# Increase rho, to aid convergence.
if self._state.rho < 1.0e10:
self._state.rho *= 1.1
elif self._params.vary_rho == UPDATE_RHO_BY_RESIDUALS:
if primal_residual > self._params.mu_res * dual_residual:
self._state.rho = self._params.tau_incr * self._state.rho
elif dual_residual > self._params.mu_res * primal_residual:
self._state.rho = self._state.rho / self._params.tau_decr
def _get_constraint_residual(self) -> float:
"""Compute violation of the constraints of the original problem, as:
* norm 1 of the body-rhs of eq. constraints
* -1 * min(body - rhs, 0) for geq constraints
* max(body - rhs, 0) for leq constraints
Returns:
Violation of the constraints as a float value
"""
solution = self._get_current_solution()
# equality constraints
cr_eq = 0
for constraint in self._state.equality_constraints:
cr_eq += np.abs(constraint.evaluate(solution) - constraint.rhs)
# inequality constraints
cr_ineq = 0.0
for constraint in self._state.inequality_constraints:
sense = -1.0 if constraint.sense == Constraint.Sense.GE else 1.0
cr_ineq += max(sense * (constraint.evaluate(solution) - constraint.rhs), 0.0)
return cr_eq + cr_ineq
def _get_merit(self, cost_iterate: float, constraint_residual: float) -> float:
"""Compute merit value associated with the current iterate
Args:
cost_iterate: Cost at the certain iteration.
constraint_residual: Value of violation of the constraints.
Returns:
Merit value as a float
"""
return cost_iterate + self._params.mu_merit * constraint_residual
def _get_objective_value(self) -> float:
"""Computes the value of the objective function.
Returns:
Value of the objective function as a float
"""
return self._state.op.objective.evaluate(self._get_current_solution())
def _get_solution_residuals(self, iteration: int) -> Tuple[float, float]:
"""Compute primal and dual residual.
Args:
iteration: Iteration number.
Returns:
r, s as primary and dual residuals.
"""
elements = self._state.x0 - self._state.z - self._state.y
primal_residual: float = cast(float, np.linalg.norm(elements))
if iteration > 0:
elements_dual = self._state.z - self._state.z_saved[iteration - 1]
else:
elements_dual = self._state.z - self._state.z_init
dual_residual: float = cast(float, self._state.rho * np.linalg.norm(elements_dual))
return primal_residual, dual_residual
def _warm_start(self, problem: QuadraticProgram) -> None:
"""Solves a relaxed (all variables are continuous) and initializes the optimizer state with
the found solution.
Args:
problem: a problem to solve.
Returns:
None
"""
qp_copy = copy.deepcopy(problem)
for variable in qp_copy.variables:
variable.vartype = VarType.CONTINUOUS
cts_result = self._continuous_optimizer.solve(qp_copy)
logger.debug("Continuous relaxation: %s", cts_result.x)
self._state.x0 = cts_result.x[self._state.binary_indices]
self._state.u = cts_result.x[self._state.continuous_indices]
self._state.z = cts_result.x[self._state.binary_indices]
@property
def parameters(self) -> ADMMParameters:
"""Returns current parameters of the optimizer.
Returns:
The parameters.
"""
return self._params
@parameters.setter
def parameters(self, params: ADMMParameters) -> None:
"""Sets the parameters of the optimizer.
Args:
params: New parameters to set.
"""
self._params = params
| qiskit-optimization/qiskit_optimization/algorithms/admm_optimizer.py/0 | {
"file_path": "qiskit-optimization/qiskit_optimization/algorithms/admm_optimizer.py",
"repo_id": "qiskit-optimization",
"token_count": 15367
} | 156 |
# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2020, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""A recursive minimal eigen optimizer in Qiskit optimization module."""
from copy import deepcopy
from enum import Enum
from typing import Dict, List, Optional, Tuple, Union, cast
import numpy as np
from qiskit_algorithms import NumPyMinimumEigensolver
from qiskit_algorithms.utils.validation import validate_min
from ..converters.quadratic_program_to_qubo import QuadraticProgramConverter, QuadraticProgramToQubo
from ..exceptions import QiskitOptimizationError
from ..problems import Variable
from ..problems.quadratic_program import QuadraticProgram
from .minimum_eigen_optimizer import MinimumEigenOptimizationResult, MinimumEigenOptimizer
from .optimization_algorithm import (
OptimizationAlgorithm,
OptimizationResult,
OptimizationResultStatus,
)
class IntermediateResult(Enum):
"""
Defines whether the intermediate results of
:class:`~qiskit_optimization.algorithms.RecursiveMinimumEigenOptimizer`
at each iteration should be stored and returned to the end user.
"""
NO_ITERATIONS = 0
"""No intermediate results are stored."""
LAST_ITERATION = 1
"""Only results from the last iteration are stored."""
ALL_ITERATIONS = 2
"""All intermediate results are stored."""
class RecursiveMinimumEigenOptimizationResult(OptimizationResult):
"""Recursive Eigen Optimizer Result."""
def __init__(
self,
x: Union[List[float], np.ndarray],
fval: float,
variables: List[Variable],
status: OptimizationResultStatus,
replacements: Dict[str, Tuple[str, int]],
history: Tuple[List[MinimumEigenOptimizationResult], OptimizationResult],
) -> None:
"""
Constructs an instance of the result class.
Args:
x: the optimal value found in the optimization.
fval: the optimal function value.
variables: the list of variables of the optimization problem.
status: the termination status of the optimization algorithm.
replacements: a dictionary of substituted variables. Key is a variable being
substituted, value is a tuple of substituting variable and a weight, either 1 or -1.
history: a tuple containing intermediate results. The first element is a list of
:class:`~qiskit_optimization.algorithms.MinimumEigenOptimizerResult` obtained by
invoking :class:`~qiskit_optimization.algorithms.MinimumEigenOptimizer` iteratively,
the second element is an instance of
:class:`~qiskit_optimization.algorithm.OptimizationResult` obtained at the last step
via `min_num_vars_optimizer`.
"""
super().__init__(x, fval, variables, status, None)
self._replacements = replacements
self._history = history
@property
def replacements(self) -> Dict[str, Tuple[str, int]]:
"""
Returns a dictionary of substituted variables. Key is a variable being substituted, value
is a tuple of substituting variable and a weight, either 1 or -1."""
return self._replacements
@property
def history(
self,
) -> Tuple[List[MinimumEigenOptimizationResult], OptimizationResult]:
"""
Returns intermediate results. The first element is a list of
:class:`~qiskit_optimization.algorithms.MinimumEigenOptimizerResult` obtained by invoking
:class:`~qiskit_optimization.algorithms.MinimumEigenOptimizer` iteratively, the second
element is an instance of :class:`~qiskit_optimization.algorithm.OptimizationResult`
obtained at the last step via `min_num_vars_optimizer`.
"""
return self._history
class RecursiveMinimumEigenOptimizer(OptimizationAlgorithm):
"""A meta-algorithm that applies a recursive optimization.
The recursive minimum eigen optimizer applies a recursive optimization on top of
:class:`~qiskit_optimization.algorithms.OptimizationAlgorithm`. This optimizer can use
:class:`~qiskit_optimization.algorithms.MinimumEigenOptimizer` as an optimizer that is called
at each iteration.
The algorithm is introduced in [1].
Examples:
Outline of how to use this class:
.. code-block:: python
from qiskit_algorithms import QAOA
from qiskit_optimization.problems import QuadraticProgram
from qiskit_optimization.algorithms import (
MinimumEigenOptimizer, RecursiveMinimumEigenOptimizer
)
problem = QuadraticProgram()
# specify problem here
# specify minimum eigen solver to be used, e.g., QAOA
qaoa = QAOA(...)
internal_optimizer = MinimumEigenOptimizer(qaoa)
optimizer = RecursiveMinimumEigenOptimizer(internal_optimizer)
result = optimizer.solve(problem)
References:
[1] Bravyi et al. (2019), Obstacles to State Preparation and Variational Optimization
from Symmetry Protection. `arXiv:1910.08980 <http://arxiv.org/abs/1910.08980>`_
"""
def __init__(
self,
optimizer: OptimizationAlgorithm,
min_num_vars: int = 1,
min_num_vars_optimizer: Optional[OptimizationAlgorithm] = None,
penalty: Optional[float] = None,
history: Optional[IntermediateResult] = IntermediateResult.LAST_ITERATION,
converters: Optional[
Union[QuadraticProgramConverter, List[QuadraticProgramConverter]]
] = None,
) -> None:
"""Initializes the recursive minimum eigen optimizer.
This initializer takes an ``OptimizationAlgorithm``, the parameters to specify until when to
to apply the iterative scheme, and the optimizer to be applied once the threshold number of
variables is reached.
Args:
optimizer: The optimizer to use in every iteration.
min_num_vars: The minimum number of variables to apply the recursive scheme. If this
threshold is reached, the min_num_vars_optimizer is used.
min_num_vars_optimizer: This optimizer is used after the recursive scheme for the
problem with the remaining variables. Default value is
:class:`~qiskit_optimization.algorithms.MinimumEigenOptimizer` created on top of
:class:`~qiskit_algorithms.NumPyMinimumEigensolver`.
penalty: The factor that is used to scale the penalty terms corresponding to linear
equality constraints.
history: Whether the intermediate results are stored.
Default value is :py:obj:`~IntermediateResult.LAST_ITERATION`.
converters: The converters to use for converting a problem into a different form.
By default, when None is specified, an internally created instance of
:class:`~qiskit_optimization.converters.QuadraticProgramToQubo` will be used.
Raises:
QiskitOptimizationError: In case of invalid parameters (num_min_vars < 1).
TypeError: When there one of converters is an invalid type.
"""
validate_min("min_num_vars", min_num_vars, 1)
self._optimizer = optimizer
self._min_num_vars = min_num_vars
if min_num_vars_optimizer:
self._min_num_vars_optimizer = min_num_vars_optimizer
else:
self._min_num_vars_optimizer = MinimumEigenOptimizer(NumPyMinimumEigensolver())
self._penalty = penalty
self._history = history
self._converters = self._prepare_converters(converters, penalty)
def get_compatibility_msg(self, problem: QuadraticProgram) -> str:
"""Checks whether a given problem can be solved with this optimizer.
Checks whether the given problem is compatible, i.e., whether the problem can be converted
to a QUBO, and otherwise, returns a message explaining the incompatibility.
Args:
problem: The optimization problem to check compatibility.
Returns:
A message describing the incompatibility.
"""
return QuadraticProgramToQubo.get_compatibility_msg(problem)
def solve(self, problem: QuadraticProgram) -> OptimizationResult:
"""Tries to solve the given problem using the recursive optimizer.
Runs the optimizer to try to solve the optimization problem.
Args:
problem: The problem to be solved.
Returns:
The result of the optimizer applied to the problem.
Raises:
QiskitOptimizationError: Incompatible problem.
QiskitOptimizationError: Infeasible due to variable substitution
"""
self._verify_compatibility(problem)
# convert problem to QUBO, this implicitly checks if the problem is compatible
problem_ = self._convert(problem, self._converters)
problem_ref = deepcopy(problem_)
# run recursive optimization until the resulting problem is small enough
replacements = {} # type: Dict[str, Tuple[str, int]]
optimization_results = [] # type: List[OptimizationResult]
while problem_.get_num_vars() > self._min_num_vars:
# solve current problem with optimizer
res = self._optimizer.solve(problem_) # type: OptimizationResult
if self._history == IntermediateResult.ALL_ITERATIONS:
optimization_results.append(res)
# analyze results to get strongest correlation
correlations = res.get_correlations()
i, j = self._find_strongest_correlation(correlations)
x_i = problem_.variables[i].name
x_j = problem_.variables[j].name
if correlations[i, j] > 0:
# set x_i = x_j
problem_ = problem_.substitute_variables(variables={i: (j, 1)})
if problem_.status == QuadraticProgram.Status.INFEASIBLE:
raise QiskitOptimizationError("Infeasible due to variable substitution")
replacements[x_i] = (x_j, 1)
else:
# set x_i = 1 - x_j, this is done in two steps:
# 1. set x_i = 1 + x_i
# 2. set x_i = -x_j
# 1a. get additional offset
constant = problem_.objective.constant
constant += problem_.objective.linear[i]
constant += problem_.objective.quadratic[i, i]
problem_.objective.constant = constant
# 1b. get additional linear part
for k in range(problem_.get_num_vars()):
coeff = problem_.objective.linear[k]
if k == i:
coeff += 2 * problem_.objective.quadratic[i, k]
else:
coeff += problem_.objective.quadratic[i, k]
# set new coefficient if not too small
if np.abs(coeff) > 1e-10:
problem_.objective.linear[k] = coeff
else:
problem_.objective.linear[k] = 0
# 2. replace x_i by -x_j
problem_ = problem_.substitute_variables(variables={i: (j, -1)})
if problem_.status == QuadraticProgram.Status.INFEASIBLE:
raise QiskitOptimizationError("Infeasible due to variable substitution")
replacements[x_i] = (x_j, -1)
# solve remaining problem
result = self._min_num_vars_optimizer.solve(problem_)
# unroll replacements
var_values = {}
for i, x in enumerate(problem_.variables):
var_values[x.name] = result.x[i]
def find_value(x, replacements, var_values):
if x in var_values:
# if value for variable is known, return it
return var_values[x]
elif x in replacements:
# get replacement for variable
(y, sgn) = replacements[x]
# find details for replacing variable
value = find_value(y, replacements, var_values)
# construct, set, and return new value
var_values[x] = value if sgn == 1 else 1 - value
return var_values[x]
else:
raise QiskitOptimizationError("Invalid values!")
# loop over all variables to set their values
for x_i in problem_ref.variables:
if x_i.name not in var_values:
find_value(x_i.name, replacements, var_values)
# build history before any translations are applied
# min_eigen_results is an empty list if history is set to NO or LAST.
history = (
optimization_results,
None if self._history == IntermediateResult.NO_ITERATIONS else result,
)
# construct result
x_v = np.array([var_values[x_aux.name] for x_aux in problem_ref.variables])
return cast(
RecursiveMinimumEigenOptimizationResult,
self._interpret(
x=x_v,
converters=self._converters,
problem=problem,
result_class=RecursiveMinimumEigenOptimizationResult,
replacements=replacements,
history=history,
),
)
@staticmethod
def _find_strongest_correlation(correlations):
# get absolute values and set diagonal to -1 to make sure maximum is always on off-diagonal
abs_correlations = np.abs(correlations)
for i in range(len(correlations)):
abs_correlations[i, i] = -1
# get index of maximum (by construction on off-diagonal)
m_max = np.argmax(abs_correlations.flatten())
# translate back to indices
i = int(m_max // len(correlations))
j = int(m_max - i * len(correlations))
return (i, j)
| qiskit-optimization/qiskit_optimization/algorithms/recursive_minimum_eigen_optimizer.py/0 | {
"file_path": "qiskit-optimization/qiskit_optimization/algorithms/recursive_minimum_eigen_optimizer.py",
"repo_id": "qiskit-optimization",
"token_count": 5864
} | 157 |
# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2018, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""An application class for the stable set."""
from typing import Dict, List, Optional, Union
import networkx as nx
import numpy as np
from docplex.mp.model import Model
from qiskit_optimization.algorithms import OptimizationResult
from qiskit_optimization.problems.quadratic_program import QuadraticProgram
from qiskit_optimization.translators import from_docplex_mp
from .graph_optimization_application import GraphOptimizationApplication
class StableSet(GraphOptimizationApplication):
"""Optimization application for the "stable set" [1] problem based on a NetworkX graph.
References:
[1]: "Independent set (graph theory)",
`https://en.wikipedia.org/wiki/Independent_set_(graph_theory)
<https://en.wikipedia.org/wiki/Independent_set_(graph_theory)>`_
"""
def to_quadratic_program(self) -> QuadraticProgram:
"""Convert a stable set instance into a
:class:`~qiskit_optimization.problems.QuadraticProgram`
Returns:
The :class:`~qiskit_optimization.problems.QuadraticProgram` created
from the stable set instance.
"""
mdl = Model(name="Stable set")
n = self._graph.number_of_nodes()
x = {i: mdl.binary_var(name=f"x_{i}") for i in range(n)}
for w, v in self._graph.edges:
self._graph.edges[w, v].setdefault("weight", 1)
objective = mdl.sum(x[i] for i in x)
for w, v in self._graph.edges:
mdl.add_constraint(x[w] + x[v] <= 1)
mdl.maximize(objective)
op = from_docplex_mp(mdl)
return op
def interpret(self, result: Union[OptimizationResult, np.ndarray]) -> List[int]:
"""Interpret a result as a list of node indices
Args:
result : The calculated result of the problem
Returns:
A list of node indices whose corresponding variable is 1
"""
x = self._result_to_x(result)
stable_set = []
for i, value in enumerate(x):
if value:
stable_set.append(i)
return stable_set
def _draw_result(
self,
result: Union[OptimizationResult, np.ndarray],
pos: Optional[Dict[int, np.ndarray]] = None,
) -> None:
"""Draw the result with colors
Args:
result : The calculated result for the problem
pos: The positions of nodes
"""
x = self._result_to_x(result)
nx.draw(self._graph, node_color=self._node_colors(x), pos=pos, with_labels=True)
def _node_colors(self, x: np.ndarray):
# Return a list of strings for draw.
# Color a node with red when the corresponding variable is 1.
# Otherwise color it with dark gray.
return ["r" if x[node] == 1 else "darkgrey" for node in self._graph.nodes]
| qiskit-optimization/qiskit_optimization/applications/stable_set.py/0 | {
"file_path": "qiskit-optimization/qiskit_optimization/applications/stable_set.py",
"repo_id": "qiskit-optimization",
"token_count": 1306
} | 158 |
# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2019, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Abstract Constraint."""
from abc import abstractmethod
from enum import Enum
from typing import Union, List, Dict, Any
from numpy import ndarray
from .quadratic_program_element import QuadraticProgramElement
from ..exceptions import QiskitOptimizationError
class ConstraintSense(Enum):
"""Constraint Sense Type."""
# pylint: disable=invalid-name
LE = 0
GE = 1
EQ = 2
@staticmethod
def convert(sense: Union[str, "ConstraintSense"]) -> "ConstraintSense":
"""Convert a string into a corresponding sense of constraints
Args:
sense: A string or sense of constraints
Returns:
The sense of constraints
Raises:
QiskitOptimizationError: if the input string is invalid.
"""
if isinstance(sense, ConstraintSense):
return sense
sense = sense.upper()
if sense not in [
"E",
"L",
"G",
"EQ",
"LE",
"GE",
"=",
"==",
"<=",
"<",
">=",
">",
]:
raise QiskitOptimizationError(f"Invalid sense: {sense}")
if sense in ["E", "EQ", "=", "=="]:
return ConstraintSense.EQ
elif sense in ["L", "LE", "<=", "<"]:
return ConstraintSense.LE
else:
return ConstraintSense.GE
@property
def label(self) -> str:
"""Label of the constraint sense
Returns:
The label of the constraint sense ('<=', '>=', or '==')
"""
if self is ConstraintSense.LE:
return "<="
elif self is ConstraintSense.GE:
return ">="
else:
return "=="
class Constraint(QuadraticProgramElement):
"""Abstract Constraint Class."""
Sense = ConstraintSense
def __init__(
self, quadratic_program: Any, name: str, sense: ConstraintSense, rhs: float
) -> None:
"""Initializes the constraint.
Args:
quadratic_program: The parent QuadraticProgram.
name: The name of the constraint.
sense: The sense of the constraint.
rhs: The right-hand-side of the constraint.
"""
super().__init__(quadratic_program)
self._name = name
self._sense = sense
self._rhs = rhs
@property
def name(self) -> str:
"""Returns the name of the constraint.
Returns:
The name of the constraint.
"""
return self._name
@property
def sense(self) -> ConstraintSense:
"""Returns the sense of the constraint.
Returns:
The sense of the constraint.
"""
return self._sense
@sense.setter
def sense(self, sense: ConstraintSense) -> None:
"""Sets the sense of the constraint.
Args:
sense: The sense of the constraint.
"""
self._sense = sense
@property
def rhs(self) -> float:
"""Returns the right-hand-side of the constraint.
Returns:
The right-hand-side of the constraint.
"""
return self._rhs
@rhs.setter
def rhs(self, rhs: float) -> None:
"""Sets the right-hand-side of the constraint.
Args:
rhs: The right-hand-side of the constraint.
"""
self._rhs = rhs
@abstractmethod
def evaluate(self, x: Union[ndarray, List, Dict[Union[int, str], float]]) -> float:
"""Evaluate left-hand-side of constraint for given values of variables.
Args:
x: The values to be used for the variables.
Returns:
The left-hand-side of the constraint.
"""
raise NotImplementedError()
| qiskit-optimization/qiskit_optimization/problems/constraint.py/0 | {
"file_path": "qiskit-optimization/qiskit_optimization/problems/constraint.py",
"repo_id": "qiskit-optimization",
"token_count": 1891
} | 159 |
---
features:
- |
Adding the bin-packing application :class:`qiskit_optimization.applications.BinPacking`.
https://en.wikipedia.org/wiki/Bin_packing_problem
| qiskit-optimization/releasenotes/notes/0.3/add-bin-packing-app-c4ecf62fe047d496.yaml/0 | {
"file_path": "qiskit-optimization/releasenotes/notes/0.3/add-bin-packing-app-c4ecf62fe047d496.yaml",
"repo_id": "qiskit-optimization",
"token_count": 59
} | 160 |
---
prelude: >
Qiskit Optimization 0.5 supports the new algorithms introduced in Qiskit Terra 0.22
which in turn rely on the `Qiskit Primitives <https://docs.quantum.ibm.com/api/qiskit/primitives>`_.
Qiskit Optimization 0.5 still supports the former algorithms based on :class:`qiskit.utils.QuantumInstance`,
but they will be deprecated and then removed, along with the support here, in future releases.
features:
- |
The :class:`~.MinimumEigenOptimizer` class takes the primitives-based algorithms
(:class:`qiskit.algorithms.minimum_eigensolvers.SamplingMinimumEigensolver` and
:class:`qiskit.algorithms.minimum_eigensolvers.NumPyMinimumEigensolver`)
as ``min_eigen_solver`` argument.
The former algorithm :class:`qiskit.algorithms.MinimumEigensolver`
is pending deprecation and will be deprecated and subsequently removed in future releases.
Note that :class:`qiskit.algorithms.minimum_eigensolvers.SamplingVQE` supersedes
:class:`qiskit.algorithms.VQE` for :class:`~.MinimumEigenOptimizer`.
:class:`qiskit.algorithms.minimum_eigensolvers.NumPyMinimumEigensolver` also supersedes
:class:`qiskit.algorithms.NumPyMinimumEigensolver`.
- |
The :class:`~.WarmStartQAOAOptimizer` class takes the primitives-based QAOA
(:class:`qiskit.algorithms.minimum_eigensolvers.QAOA`) as ``qaoa`` argument.
The former algorithm :class:`qiskit.algorithms.QAOA`
is pending deprecation and will be deprecated and subsequently removed in future releases.
| qiskit-optimization/releasenotes/notes/0.5/add-primitives-support-31af39549b5e66e3.yaml/0 | {
"file_path": "qiskit-optimization/releasenotes/notes/0.5/add-primitives-support-31af39549b5e66e3.yaml",
"repo_id": "qiskit-optimization",
"token_count": 536
} | 161 |
# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2018, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
""" Test Cplex Optimizer """
import unittest
from test.optimization_test_case import QiskitOptimizationTestCase
import numpy as np
from ddt import data, ddt
import qiskit_optimization.optionals as _optionals
from qiskit_optimization.algorithms import CplexOptimizer, OptimizationResultStatus
from qiskit_optimization.problems import QuadraticProgram
@ddt
class TestCplexOptimizer(QiskitOptimizationTestCase):
"""CPLEX Optimizer Tests."""
@data(
("op_ip1.lp", [0, 2], 6),
("op_mip1.lp", [0, 1, 1], 5.5),
("op_lp1.lp", [0.25, 1.75], 5.8750),
)
@unittest.skipIf(not _optionals.HAS_CPLEX, "CPLEX not available.")
def test_cplex_optimizer(self, config):
"""CPLEX Optimizer Test"""
cplex_optimizer = CplexOptimizer(
disp=False, cplex_parameters={"threads": 1, "randomseed": 1}
)
# unpack configuration
filename, x, fval = config
# load optimization problem
problem = QuadraticProgram()
lp_file = self.get_resource_path(filename, "algorithms/resources")
problem.read_from_lp_file(lp_file)
# solve problem with cplex
result = cplex_optimizer.solve(problem)
# analyze results
self.assertAlmostEqual(result.fval, fval)
for i in range(problem.get_num_vars()):
self.assertAlmostEqual(result.x[i], x[i])
@data(
("op_ip1.lp", [0, 2], 6),
("op_mip1.lp", [0, 1, 1], 5.5),
("op_lp1.lp", [0.25, 1.75], 5.8750),
)
@unittest.skipIf(not _optionals.HAS_CPLEX, "CPLEX not available.")
def test_cplex_optimizer_no_solution(self, config):
"""CPLEX Optimizer Test if no solution is found"""
cplex_optimizer = CplexOptimizer(disp=False, cplex_parameters={"dettimelimit": 0})
# unpack configuration
filename, _, _ = config
# load optimization problem
problem = QuadraticProgram()
lp_file = self.get_resource_path(filename, "algorithms/resources")
problem.read_from_lp_file(lp_file)
# solve problem with cplex
result = cplex_optimizer.solve(problem)
np.testing.assert_array_almost_equal(result.x, np.zeros(problem.get_num_vars()))
self.assertEqual(result.status, OptimizationResultStatus.FAILURE)
self.assertEqual(result.raw_results, None)
if __name__ == "__main__":
unittest.main()
| qiskit-optimization/test/algorithms/test_cplex_optimizer.py/0 | {
"file_path": "qiskit-optimization/test/algorithms/test_cplex_optimizer.py",
"repo_id": "qiskit-optimization",
"token_count": 1181
} | 162 |
\ This file has been generated by DOcplex
\ ENCODING=ISO-8859-1
\Problem name: my problem
Minimize
obj: x - y + 10 z + [ x^2 - 2 y*z ]/2 + 1
Subject To
lin_eq: x + 2 y = 1
lin_leq: x + 2 y <= 1
lin_geq: x + 2 y >= 1
quad_eq: [ x^2 - y*z + 2 z^2 ] + x + y = 1
quad_leq: [ x^2 - y*z + 2 z^2 ] + x + y <= 1
quad_geq: [ x^2 - y*z + 2 z^2 ] + x + y >= 1
Bounds
0 <= x <= 1
-1 <= y <= 5
-1 <= z <= 5
Binaries
x
Generals
y
End
| qiskit-optimization/test/problems/resources/test_quadratic_program.lp/0 | {
"file_path": "qiskit-optimization/test/problems/resources/test_quadratic_program.lp",
"repo_id": "qiskit-optimization",
"token_count": 213
} | 163 |
# Code of Conduct
All members of this project agree to adhere to the Qiskit Code of Conduct listed at [docs.quantum.ibm.com/open-source/code-of-conduct](https://docs.quantum.ibm.com/open-source/code-of-conduct)
| qiskit/CODE_OF_CONDUCT.md/0 | {
"file_path": "qiskit/CODE_OF_CONDUCT.md",
"repo_id": "qiskit",
"token_count": 68
} | 164 |
# `qiskit-accelerate`
This crate provides a bits-and-pieces Rust libary for small, self-contained functions
that are used by the main Python-space components to accelerate certain tasks. If you're trying to
speed up one particular Python function by replacing its innards with a Rust one, this is the best
place to put the code. This is _usually_ the right place to put new Rust/Python code.
The `qiskit-pyext` crate is what actually builds the C extension modules. Modules in here should define
themselves has being submodules of `qiskit._accelerate`, and then the `qiskit-pyext` crate should bind them
into its `fn _accelerate` when it's making the C extension.
| qiskit/crates/accelerate/README.md/0 | {
"file_path": "qiskit/crates/accelerate/README.md",
"repo_id": "qiskit",
"token_count": 177
} | 165 |
// This code is part of Qiskit.
//
// (C) Copyright IBM 2022
//
// This code is licensed under the Apache License, Version 2.0. You may
// obtain a copy of this license in the LICENSE.txt file in the root directory
// of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
//
// Any modifications or derivative works of this code must retain this
// copyright notice, and modified files need to carry a notice indicating
// that they have been altered from the originals.
pub mod converters;
pub mod marginalization;
use pyo3::prelude::*;
use pyo3::wrap_pyfunction;
pub fn results(m: &Bound<PyModule>) -> PyResult<()> {
m.add_wrapped(wrap_pyfunction!(marginalization::marginal_counts))?;
m.add_wrapped(wrap_pyfunction!(marginalization::marginal_distribution))?;
m.add_wrapped(wrap_pyfunction!(marginalization::marginal_memory))?;
m.add_wrapped(wrap_pyfunction!(marginalization::marginal_measure_level_0))?;
m.add_wrapped(wrap_pyfunction!(
marginalization::marginal_measure_level_0_avg
))?;
m.add_wrapped(wrap_pyfunction!(marginalization::marginal_measure_level_1))?;
m.add_wrapped(wrap_pyfunction!(
marginalization::marginal_measure_level_1_avg
))?;
Ok(())
}
| qiskit/crates/accelerate/src/results/mod.rs/0 | {
"file_path": "qiskit/crates/accelerate/src/results/mod.rs",
"repo_id": "qiskit",
"token_count": 440
} | 166 |
// This code is part of Qiskit.
//
// (C) Copyright IBM 2024
//
// This code is licensed under the Apache License, Version 2.0. You may
// obtain a copy of this license in the LICENSE.txt file in the root directory
// of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
//
// Any modifications or derivative works of this code must retain this
// copyright notice, and modified files need to carry a notice indicating
// that they have been altered from the originals.
use crate::synthesis::linear::utils::calc_inverse_matrix_inner;
use ndarray::{azip, s, Array1, Array2, ArrayView2};
use qiskit_circuit::operations::{Param, StandardGate};
use qiskit_circuit::Qubit;
use smallvec::{smallvec, SmallVec};
/// Symplectic matrix.
/// Currently this class is internal to the synthesis library.
pub struct SymplecticMatrix {
/// Number of qubits.
pub num_qubits: usize,
/// Matrix with dimensions (2 * num_qubits) x (2 * num_qubits).
pub smat: Array2<bool>,
}
/// Clifford.
/// Currently this class is internal to the synthesis library and
/// has a very different functionality from Qiskit's python-based
/// Clifford class.
#[derive(Clone)]
pub struct Clifford {
/// Number of qubits.
pub num_qubits: usize,
/// Matrix with dimensions (2 * num_qubits) x (2 * num_qubits + 1).
pub tableau: Array2<bool>,
}
impl SymplecticMatrix {
/// Modifies the matrix in-place by appending S-gate
#[allow(dead_code)]
pub fn append_s(&mut self, qubit: usize) {
let (x, mut z) = self
.smat
.multi_slice_mut((s![.., qubit], s![.., self.num_qubits + qubit]));
azip!((z in &mut z, &x in &x) *z ^= x);
}
/// Modifies the matrix in-place by prepending S-gate
pub fn prepend_s(&mut self, qubit: usize) {
let (x, mut z) = self
.smat
.multi_slice_mut((s![self.num_qubits + qubit, ..], s![qubit, ..]));
azip!((z in &mut z, &x in &x) *z ^= x);
}
/// Modifies the matrix in-place by appending H-gate
#[allow(dead_code)]
pub fn append_h(&mut self, qubit: usize) {
let (mut x, mut z) = self
.smat
.multi_slice_mut((s![.., qubit], s![.., self.num_qubits + qubit]));
azip!((x in &mut x, z in &mut z) (*x, *z) = (*z, *x));
}
/// Modifies the matrix in-place by prepending H-gate
pub fn prepend_h(&mut self, qubit: usize) {
let (mut x, mut z) = self
.smat
.multi_slice_mut((s![qubit, ..], s![self.num_qubits + qubit, ..]));
azip!((x in &mut x, z in &mut z) (*x, *z) = (*z, *x));
}
/// Modifies the matrix in-place by appending SWAP-gate
#[allow(dead_code)]
pub fn append_swap(&mut self, qubit0: usize, qubit1: usize) {
let (mut x0, mut z0, mut x1, mut z1) = self.smat.multi_slice_mut((
s![.., qubit0],
s![.., self.num_qubits + qubit0],
s![.., qubit1],
s![.., self.num_qubits + qubit1],
));
azip!((x0 in &mut x0, x1 in &mut x1) (*x0, *x1) = (*x1, *x0));
azip!((z0 in &mut z0, z1 in &mut z1) (*z0, *z1) = (*z1, *z0));
}
/// Modifies the matrix in-place by prepending SWAP-gate
pub fn prepend_swap(&mut self, qubit0: usize, qubit1: usize) {
let (mut x0, mut z0, mut x1, mut z1) = self.smat.multi_slice_mut((
s![qubit0, ..],
s![self.num_qubits + qubit0, ..],
s![qubit1, ..],
s![self.num_qubits + qubit1, ..],
));
azip!((x0 in &mut x0, x1 in &mut x1) (*x0, *x1) = (*x1, *x0));
azip!((z0 in &mut z0, z1 in &mut z1) (*z0, *z1) = (*z1, *z0));
}
/// Modifies the matrix in-place by appending CX-gate
#[allow(dead_code)]
pub fn append_cx(&mut self, qubit0: usize, qubit1: usize) {
let (x0, mut z0, mut x1, z1) = self.smat.multi_slice_mut((
s![.., qubit0],
s![.., self.num_qubits + qubit0],
s![.., qubit1],
s![.., self.num_qubits + qubit1],
));
azip!((x1 in &mut x1, &x0 in &x0) *x1 ^= x0);
azip!((z0 in &mut z0, &z1 in &z1) *z0 ^= z1);
}
/// Modifies the matrix in-place by prepending CX-gate
pub fn prepend_cx(&mut self, qubit0: usize, qubit1: usize) {
let (x0, mut z0, mut x1, z1) = self.smat.multi_slice_mut((
s![qubit1, ..],
s![self.num_qubits + qubit1, ..],
s![qubit0, ..],
s![self.num_qubits + qubit0, ..],
));
azip!((x1 in &mut x1, &x0 in &x0) *x1 ^= x0);
azip!((z0 in &mut z0, &z1 in &z1) *z0 ^= z1);
}
}
impl Clifford {
/// Modifies the tableau in-place by appending S-gate
pub fn append_s(&mut self, qubit: usize) {
let (x, mut z, mut p) = self.tableau.multi_slice_mut((
s![.., qubit],
s![.., self.num_qubits + qubit],
s![.., 2 * self.num_qubits],
));
azip!((p in &mut p, &x in &x, &z in &z) *p ^= x & z);
azip!((z in &mut z, &x in &x) *z ^= x);
}
/// Modifies the tableau in-place by appending Sdg-gate
#[allow(dead_code)]
pub fn append_sdg(&mut self, qubit: usize) {
let (x, mut z, mut p) = self.tableau.multi_slice_mut((
s![.., qubit],
s![.., self.num_qubits + qubit],
s![.., 2 * self.num_qubits],
));
azip!((p in &mut p, &x in &x, &z in &z) *p ^= x & !z);
azip!((z in &mut z, &x in &x) *z ^= x);
}
/// Modifies the tableau in-place by appending H-gate
pub fn append_h(&mut self, qubit: usize) {
let (mut x, mut z, mut p) = self.tableau.multi_slice_mut((
s![.., qubit],
s![.., self.num_qubits + qubit],
s![.., 2 * self.num_qubits],
));
azip!((p in &mut p, &x in &x, &z in &z) *p ^= x & z);
azip!((x in &mut x, z in &mut z) (*x, *z) = (*z, *x));
}
/// Modifies the tableau in-place by appending SWAP-gate
pub fn append_swap(&mut self, qubit0: usize, qubit1: usize) {
let (mut x0, mut z0, mut x1, mut z1) = self.tableau.multi_slice_mut((
s![.., qubit0],
s![.., self.num_qubits + qubit0],
s![.., qubit1],
s![.., self.num_qubits + qubit1],
));
azip!((x0 in &mut x0, x1 in &mut x1) (*x0, *x1) = (*x1, *x0));
azip!((z0 in &mut z0, z1 in &mut z1) (*z0, *z1) = (*z1, *z0));
}
/// Modifies the tableau in-place by appending CX-gate
pub fn append_cx(&mut self, qubit0: usize, qubit1: usize) {
let (x0, mut z0, mut x1, z1, mut p) = self.tableau.multi_slice_mut((
s![.., qubit0],
s![.., self.num_qubits + qubit0],
s![.., qubit1],
s![.., self.num_qubits + qubit1],
s![.., 2 * self.num_qubits],
));
azip!((p in &mut p, &x0 in &x0, &z0 in &z0, &x1 in &x1, &z1 in &z1) *p ^= (x1 ^ z0 ^ true) & z1 & x0);
azip!((x1 in &mut x1, &x0 in &x0) *x1 ^= x0);
azip!((z0 in &mut z0, &z1 in &z1) *z0 ^= z1);
}
/// Modifies the tableau in-place by appending W-gate.
/// This is equivalent to an Sdg gate followed by an H gate.
pub fn append_v(&mut self, qubit: usize) {
let (mut x, mut z) = self
.tableau
.multi_slice_mut((s![.., qubit], s![.., self.num_qubits + qubit]));
azip!((x in &mut x, z in &mut z) (*x, *z) = (*x ^ *z, *x));
}
/// Modifies the tableau in-place by appending V-gate.
/// This is equivalent to two V gates.
pub fn append_w(&mut self, qubit: usize) {
let (mut x, mut z) = self
.tableau
.multi_slice_mut((s![.., qubit], s![.., self.num_qubits + qubit]));
azip!((x in &mut x, z in &mut z) (*x, *z) = (*z, *x ^ *z));
}
/// Creates a Clifford from a given sequence of Clifford gates.
/// In essence, starts from the identity tableau and modifies it
/// based on the gates in the sequence.
pub fn from_gate_sequence(
gate_seq: &CliffordGatesVec,
num_qubits: usize,
) -> Result<Clifford, String> {
// create the identity
let mut clifford = Clifford {
num_qubits,
tableau: Array2::from_shape_fn((2 * num_qubits, 2 * num_qubits + 1), |(i, j)| i == j),
};
gate_seq
.iter()
.try_for_each(|(gate, _params, qubits)| match *gate {
StandardGate::SGate => {
clifford.append_s(qubits[0].0 as usize);
Ok(())
}
StandardGate::HGate => {
clifford.append_h(qubits[0].0 as usize);
Ok(())
}
StandardGate::CXGate => {
clifford.append_cx(qubits[0].0 as usize, qubits[1].0 as usize);
Ok(())
}
StandardGate::SwapGate => {
clifford.append_swap(qubits[0].0 as usize, qubits[1].0 as usize);
Ok(())
}
_ => Err(format!("Unsupported gate {:?}", gate)),
})?;
Ok(clifford)
}
}
/// A sequence of Clifford gates.
/// Represents the return type of Clifford synthesis algorithms.
pub type CliffordGatesVec = Vec<(StandardGate, SmallVec<[Param; 3]>, SmallVec<[Qubit; 2]>)>;
/// Given a sequence of Clifford gates that correctly implements the symplectic matrix
/// of the target clifford tableau, adds the Pauli gates to also match the phase of
/// the tableau.
pub fn adjust_final_pauli_gates(
gate_seq: &mut CliffordGatesVec,
target_tableau: ArrayView2<bool>,
num_qubits: usize,
) -> Result<(), String> {
// simulate the clifford circuit that we have constructed
let simulated_clifford = Clifford::from_gate_sequence(gate_seq, num_qubits)?;
// compute the phase difference
let target_phase = target_tableau.column(2 * num_qubits);
let sim_phase = simulated_clifford.tableau.column(2 * num_qubits);
let delta_phase: Vec<bool> = target_phase
.iter()
.zip(sim_phase.iter())
.map(|(&a, &b)| a ^ b)
.collect();
// compute inverse of the symplectic matrix
let smat = target_tableau.slice(s![.., ..2 * num_qubits]);
let smat_inv = calc_inverse_matrix_inner(smat, false)?;
// compute smat_inv * delta_phase
let arr1 = smat_inv.map(|v| *v as usize);
let vec2: Vec<usize> = delta_phase.into_iter().map(|v| v as usize).collect();
let arr2 = Array1::from(vec2);
let delta_phase_pre = arr1.dot(&arr2).map(|v| v % 2 == 1);
// add pauli gates
for qubit in 0..num_qubits {
if delta_phase_pre[qubit] && delta_phase_pre[qubit + num_qubits] {
// println!("=> Adding Y-gate on {}", qubit);
gate_seq.push((
StandardGate::YGate,
smallvec![],
smallvec![Qubit(qubit as u32)],
));
} else if delta_phase_pre[qubit] {
// println!("=> Adding Z-gate on {}", qubit);
gate_seq.push((
StandardGate::ZGate,
smallvec![],
smallvec![Qubit(qubit as u32)],
));
} else if delta_phase_pre[qubit + num_qubits] {
// println!("=> Adding X-gate on {}", qubit);
gate_seq.push((
StandardGate::XGate,
smallvec![],
smallvec![Qubit(qubit as u32)],
));
}
}
Ok(())
}
| qiskit/crates/accelerate/src/synthesis/clifford/utils.rs/0 | {
"file_path": "qiskit/crates/accelerate/src/synthesis/clifford/utils.rs",
"repo_id": "qiskit",
"token_count": 5756
} | 167 |
// This code is part of Qiskit.
//
// (C) Copyright IBM 2024
//
// This code is licensed under the Apache License, Version 2.0. You may
// obtain a copy of this license in the LICENSE.txt file in the root directory
// of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
//
// Any modifications or derivative works of this code must retain this
// copyright notice, and modified files need to carry a notice indicating
// that they have been altered from the originals.
use pyo3::prelude::*;
use faer_ext::IntoFaerComplex;
use num_complex::Complex;
use numpy::{IntoPyArray, PyReadonlyArray2};
/// Return indices that sort partially ordered data.
/// If `data` contains two elements that are incomparable,
/// an error will be thrown.
pub fn arg_sort<T: PartialOrd>(data: &[T]) -> Vec<usize> {
let mut indices = (0..data.len()).collect::<Vec<_>>();
indices.sort_by(|&a, &b| data[a].partial_cmp(&data[b]).unwrap());
indices
}
/// Return the eigenvalues of `unitary` as a one-dimensional `numpy.ndarray`
/// with `dtype(complex128)`.
#[pyfunction]
#[pyo3(text_signature = "(unitary, /")]
pub fn eigenvalues(py: Python, unitary: PyReadonlyArray2<Complex<f64>>) -> PyObject {
unitary
.as_array()
.into_faer_complex()
.complex_eigenvalues()
.into_iter()
.map(|x| Complex::<f64>::new(x.re, x.im))
.collect::<Vec<_>>()
.into_pyarray_bound(py)
.into()
}
pub fn utils(m: &Bound<PyModule>) -> PyResult<()> {
m.add_wrapped(wrap_pyfunction!(eigenvalues))?;
Ok(())
}
| qiskit/crates/accelerate/src/utils.rs/0 | {
"file_path": "qiskit/crates/accelerate/src/utils.rs",
"repo_id": "qiskit",
"token_count": 592
} | 168 |
// This code is part of Qiskit.
//
// (C) Copyright IBM 2024
//
// This code is licensed under the Apache License, Version 2.0. You may
// obtain a copy of this license in the LICENSE.txt file in the root directory
// of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
//
// Any modifications or derivative works of this code must retain this
// copyright notice, and modified files need to carry a notice indicating
// that they have been altered from the originals.
#[cfg(feature = "cache_pygates")]
use std::cell::OnceCell;
use std::ptr::NonNull;
use pyo3::intern;
use pyo3::prelude::*;
use pyo3::types::{PyDict, PyType};
use ndarray::Array2;
use num_complex::Complex64;
use smallvec::SmallVec;
use crate::circuit_data::CircuitData;
use crate::circuit_instruction::ExtraInstructionAttributes;
use crate::imports::{get_std_gate_class, DEEPCOPY};
use crate::interner::Interned;
use crate::operations::{
Operation, OperationRef, Param, PyGate, PyInstruction, PyOperation, StandardGate,
};
use crate::{Clbit, Qubit};
/// The logical discriminant of `PackedOperation`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[repr(u8)]
enum PackedOperationType {
// It's important that the `StandardGate` item is 0, so that zeroing out a `PackedOperation`
// will make it appear as a standard gate, which will never allow accidental dangling-pointer
// dereferencing.
StandardGate = 0,
Gate = 1,
Instruction = 2,
Operation = 3,
}
unsafe impl ::bytemuck::CheckedBitPattern for PackedOperationType {
type Bits = u8;
fn is_valid_bit_pattern(bits: &Self::Bits) -> bool {
*bits < 4
}
}
unsafe impl ::bytemuck::NoUninit for PackedOperationType {}
/// A bit-packed `OperationType` enumeration.
///
/// This is logically equivalent to:
///
/// ```rust
/// enum Operation {
/// Standard(StandardGate),
/// Gate(Box<PyGate>),
/// Instruction(Box<PyInstruction>),
/// Operation(Box<PyOperation>),
/// }
/// ```
///
/// including all ownership semantics, except it bit-packs the enumeration into a single pointer.
/// This works because `PyGate` (and friends) have an alignment of 8, so pointers to them always
/// have the low three bits set to 0, and `StandardGate` has a width much smaller than a pointer.
/// This lets us store the enum discriminant in the low data bits, and then type-pun a suitable
/// bitmask on the contained value back into proper data.
///
/// Explicitly, this is logical memory layout of `PackedOperation` on a 64-bit system, written out
/// as a binary integer. `x` marks padding bits with undefined values, `S` is the bits that make up
/// a `StandardGate`, and `P` is bits that make up part of a pointer.
///
/// ```text
/// Standard gate:
/// 0b_xxxxxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx_xxxxxxxx_xxxxxxSS_SSSSSS00
/// |-------|||
/// | |
/// Standard gate, stored inline as a u8. --+ +-- Discriminant.
///
/// Python object:
/// 0b_PPPPPPPP_PPPPPPPP_PPPPPPPP_PPPPPPPP_PPPPPPPP_PPPPPPPP_PPPPPPPP_PPPPP10
/// |------------------------------------------------------------------|||
/// | |
/// The high 62 bits of the pointer. Because of alignment, the low 3 | Discriminant of the
/// bits of the full 64 bits are guaranteed to be zero (so one marked +-- enumeration. This
/// `P` is always zero here), so we can retrieve the "full" pointer by is 0b10, which means
/// taking the whole `usize` and zeroing the low 3 bits, letting us that this points to
/// store the discriminant in there at other times. a `PyInstruction`.
/// ```
///
/// There is currently one spare bit that could be used for additional metadata, if required.
///
/// # Construction
///
/// From Rust space, build this type using one of the `from_*` methods, depending on which
/// implementer of `Operation` you have. `StandardGate` has an implementation of `Into` for this.
///
/// From Python space, use the supplied `FromPyObject`.
///
/// # Safety
///
/// `PackedOperation` asserts ownership over its contained pointer (if not a `StandardGate`). This
/// has the following requirements:
///
/// * The pointer must be managed by a `Box` using the global allocator.
/// * The pointed-to data must match the type of the discriminant used to store it.
/// * `PackedOperation` must take care to forward implementations of `Clone` and `Drop` to the
/// contained pointer.
#[derive(Debug)]
#[repr(transparent)]
pub struct PackedOperation(usize);
impl PackedOperation {
/// The bits representing the `PackedOperationType` discriminant. This can be used to mask out
/// the discriminant, and defines the rest of the bit shifting.
const DISCRIMINANT_MASK: usize = 0b11;
/// The number of bits used to store the discriminant metadata.
const DISCRIMINANT_BITS: u32 = Self::DISCRIMINANT_MASK.count_ones();
/// A bitmask that masks out only the standard gate information. This should always have the
/// same effect as `POINTER_MASK` because the high bits should be 0 for a `StandardGate`, but
/// this is defensive against us adding further metadata on `StandardGate` later. After
/// masking, the resulting integer still needs shifting downwards to retrieve the standard gate.
const STANDARD_GATE_MASK: usize = (u8::MAX as usize) << Self::DISCRIMINANT_BITS;
/// A bitmask that retrieves the stored pointer directly. The discriminant is stored in the
/// low pointer bits that are guaranteed to be 0 by alignment, so no shifting is required.
const POINTER_MASK: usize = usize::MAX ^ Self::DISCRIMINANT_MASK;
/// Extract the discriminant of the operation.
#[inline]
fn discriminant(&self) -> PackedOperationType {
::bytemuck::checked::cast((self.0 & Self::DISCRIMINANT_MASK) as u8)
}
/// Get the contained pointer to the `PyGate`/`PyInstruction`/`PyOperation` that this object
/// contains.
///
/// **Panics** if the object represents a standard gate; see `try_pointer`.
#[inline]
fn pointer(&self) -> NonNull<()> {
self.try_pointer()
.expect("the caller is responsible for knowing the correct type")
}
/// Get the contained pointer to the `PyGate`/`PyInstruction`/`PyOperation` that this object
/// contains.
///
/// Returns `None` if the object represents a standard gate.
#[inline]
pub fn try_pointer(&self) -> Option<NonNull<()>> {
match self.discriminant() {
PackedOperationType::StandardGate => None,
PackedOperationType::Gate
| PackedOperationType::Instruction
| PackedOperationType::Operation => {
let ptr = (self.0 & Self::POINTER_MASK) as *mut ();
// SAFETY: `PackedOperation` can only be constructed from a pointer via `Box`, which
// is always non-null (except in the case that we're partway through a `Drop`).
Some(unsafe { NonNull::new_unchecked(ptr) })
}
}
}
/// Get the contained `StandardGate`.
///
/// **Panics** if this `PackedOperation` doesn't contain a `StandardGate`; see
/// `try_standard_gate`.
#[inline]
pub fn standard_gate(&self) -> StandardGate {
self.try_standard_gate()
.expect("the caller is responsible for knowing the correct type")
}
/// Get the contained `StandardGate`, if any.
#[inline]
pub fn try_standard_gate(&self) -> Option<StandardGate> {
match self.discriminant() {
PackedOperationType::StandardGate => ::bytemuck::checked::try_cast(
((self.0 & Self::STANDARD_GATE_MASK) >> Self::DISCRIMINANT_BITS) as u8,
)
.ok(),
_ => None,
}
}
/// Get a safe view onto the packed data within, without assuming ownership.
#[inline]
pub fn view(&self) -> OperationRef {
match self.discriminant() {
PackedOperationType::StandardGate => OperationRef::Standard(self.standard_gate()),
PackedOperationType::Gate => {
let ptr = self.pointer().cast::<PyGate>();
OperationRef::Gate(unsafe { ptr.as_ref() })
}
PackedOperationType::Instruction => {
let ptr = self.pointer().cast::<PyInstruction>();
OperationRef::Instruction(unsafe { ptr.as_ref() })
}
PackedOperationType::Operation => {
let ptr = self.pointer().cast::<PyOperation>();
OperationRef::Operation(unsafe { ptr.as_ref() })
}
}
}
/// Create a `PackedOperation` from a `StandardGate`.
#[inline]
pub fn from_standard(standard: StandardGate) -> Self {
Self((standard as usize) << Self::DISCRIMINANT_BITS)
}
/// Create a `PackedOperation` given a raw pointer to the inner type.
///
/// **Panics** if the given `discriminant` does not correspond to a pointer type.
///
/// SAFETY: the inner pointer must have come from an owning `Box` in the global allocator, whose
/// type matches that indicated by the discriminant. The returned `PackedOperation` takes
/// ownership of the pointed-to data.
#[inline]
unsafe fn from_py_wrapper(discriminant: PackedOperationType, value: NonNull<()>) -> Self {
if discriminant == PackedOperationType::StandardGate {
panic!("given standard-gate discriminant during pointer-type construction")
}
let addr = value.as_ptr() as usize;
assert_eq!(addr & Self::DISCRIMINANT_MASK, 0);
Self(addr | (discriminant as usize))
}
/// Construct a new `PackedOperation` from an owned heap-allocated `PyGate`.
pub fn from_gate(gate: Box<PyGate>) -> Self {
let ptr = NonNull::from(Box::leak(gate)).cast::<()>();
// SAFETY: the `ptr` comes directly from a owning `Box` of the correct type.
unsafe { Self::from_py_wrapper(PackedOperationType::Gate, ptr) }
}
/// Construct a new `PackedOperation` from an owned heap-allocated `PyInstruction`.
pub fn from_instruction(instruction: Box<PyInstruction>) -> Self {
let ptr = NonNull::from(Box::leak(instruction)).cast::<()>();
// SAFETY: the `ptr` comes directly from a owning `Box` of the correct type.
unsafe { Self::from_py_wrapper(PackedOperationType::Instruction, ptr) }
}
/// Construct a new `PackedOperation` from an owned heap-allocated `PyOperation`.
pub fn from_operation(operation: Box<PyOperation>) -> Self {
let ptr = NonNull::from(Box::leak(operation)).cast::<()>();
// SAFETY: the `ptr` comes directly from a owning `Box` of the correct type.
unsafe { Self::from_py_wrapper(PackedOperationType::Operation, ptr) }
}
/// Check equality of the operation, including Python-space checks, if appropriate.
pub fn py_eq(&self, py: Python, other: &PackedOperation) -> PyResult<bool> {
match (self.view(), other.view()) {
(OperationRef::Standard(left), OperationRef::Standard(right)) => Ok(left == right),
(OperationRef::Gate(left), OperationRef::Gate(right)) => {
left.gate.bind(py).eq(&right.gate)
}
(OperationRef::Instruction(left), OperationRef::Instruction(right)) => {
left.instruction.bind(py).eq(&right.instruction)
}
(OperationRef::Operation(left), OperationRef::Operation(right)) => {
left.operation.bind(py).eq(&right.operation)
}
_ => Ok(false),
}
}
/// Copy this operation, including a Python-space deep copy, if required.
pub fn py_deepcopy<'py>(
&self,
py: Python<'py>,
memo: Option<&Bound<'py, PyDict>>,
) -> PyResult<Self> {
let deepcopy = DEEPCOPY.get_bound(py);
match self.view() {
OperationRef::Standard(standard) => Ok(standard.into()),
OperationRef::Gate(gate) => Ok(PyGate {
gate: deepcopy.call1((&gate.gate, memo))?.unbind(),
qubits: gate.qubits,
clbits: gate.clbits,
params: gate.params,
op_name: gate.op_name.clone(),
}
.into()),
OperationRef::Instruction(instruction) => Ok(PyInstruction {
instruction: deepcopy.call1((&instruction.instruction, memo))?.unbind(),
qubits: instruction.qubits,
clbits: instruction.clbits,
params: instruction.params,
control_flow: instruction.control_flow,
op_name: instruction.op_name.clone(),
}
.into()),
OperationRef::Operation(operation) => Ok(PyOperation {
operation: deepcopy.call1((&operation.operation, memo))?.unbind(),
qubits: operation.qubits,
clbits: operation.clbits,
params: operation.params,
op_name: operation.op_name.clone(),
}
.into()),
}
}
/// Copy this operation, including a Python-space call to `copy` on the `Operation` subclass, if
/// any.
pub fn py_copy(&self, py: Python) -> PyResult<Self> {
let copy_attr = intern!(py, "copy");
match self.view() {
OperationRef::Standard(standard) => Ok(standard.into()),
OperationRef::Gate(gate) => Ok(Box::new(PyGate {
gate: gate.gate.call_method0(py, copy_attr)?,
qubits: gate.qubits,
clbits: gate.clbits,
params: gate.params,
op_name: gate.op_name.clone(),
})
.into()),
OperationRef::Instruction(instruction) => Ok(Box::new(PyInstruction {
instruction: instruction.instruction.call_method0(py, copy_attr)?,
qubits: instruction.qubits,
clbits: instruction.clbits,
params: instruction.params,
control_flow: instruction.control_flow,
op_name: instruction.op_name.clone(),
})
.into()),
OperationRef::Operation(operation) => Ok(Box::new(PyOperation {
operation: operation.operation.call_method0(py, copy_attr)?,
qubits: operation.qubits,
clbits: operation.clbits,
params: operation.params,
op_name: operation.op_name.clone(),
})
.into()),
}
}
/// Whether the Python class that we would use to represent the inner `Operation` object in
/// Python space would be an instance of the given Python type. This does not construct the
/// Python-space `Operator` instance if it can be avoided (i.e. for standard gates).
pub fn py_op_is_instance(&self, py_type: &Bound<PyType>) -> PyResult<bool> {
let py = py_type.py();
let py_op = match self.view() {
OperationRef::Standard(standard) => {
return get_std_gate_class(py, standard)?
.bind(py)
.downcast::<PyType>()?
.is_subclass(py_type)
}
OperationRef::Gate(gate) => gate.gate.bind(py),
OperationRef::Instruction(instruction) => instruction.instruction.bind(py),
OperationRef::Operation(operation) => operation.operation.bind(py),
};
py_op.is_instance(py_type)
}
}
impl Operation for PackedOperation {
fn name(&self) -> &str {
let view = self.view();
let name = match view {
OperationRef::Standard(ref standard) => standard.name(),
OperationRef::Gate(gate) => gate.name(),
OperationRef::Instruction(instruction) => instruction.name(),
OperationRef::Operation(operation) => operation.name(),
};
// SAFETY: all of the inner parts of the view are owned by `self`, so it's valid for us to
// forcibly reborrowing up to our own lifetime. We avoid using `<OperationRef as Operation>`
// just to avoid a further _potential_ unsafeness, were its implementation to start doing
// something weird with the lifetimes. `str::from_utf8_unchecked` and
// `slice::from_raw_parts` are both trivially safe because they're being called on immediate
// values from a validated `str`.
unsafe {
::std::str::from_utf8_unchecked(::std::slice::from_raw_parts(name.as_ptr(), name.len()))
}
}
#[inline]
fn num_qubits(&self) -> u32 {
self.view().num_qubits()
}
#[inline]
fn num_clbits(&self) -> u32 {
self.view().num_clbits()
}
#[inline]
fn num_params(&self) -> u32 {
self.view().num_params()
}
#[inline]
fn control_flow(&self) -> bool {
self.view().control_flow()
}
#[inline]
fn matrix(&self, params: &[Param]) -> Option<Array2<Complex64>> {
self.view().matrix(params)
}
#[inline]
fn definition(&self, params: &[Param]) -> Option<CircuitData> {
self.view().definition(params)
}
#[inline]
fn standard_gate(&self) -> Option<StandardGate> {
self.view().standard_gate()
}
#[inline]
fn directive(&self) -> bool {
self.view().directive()
}
}
impl From<StandardGate> for PackedOperation {
#[inline]
fn from(value: StandardGate) -> Self {
Self::from_standard(value)
}
}
macro_rules! impl_packed_operation_from_py {
($type:ty, $constructor:path) => {
impl From<$type> for PackedOperation {
#[inline]
fn from(value: $type) -> Self {
$constructor(Box::new(value))
}
}
impl From<Box<$type>> for PackedOperation {
#[inline]
fn from(value: Box<$type>) -> Self {
$constructor(value)
}
}
};
}
impl_packed_operation_from_py!(PyGate, PackedOperation::from_gate);
impl_packed_operation_from_py!(PyInstruction, PackedOperation::from_instruction);
impl_packed_operation_from_py!(PyOperation, PackedOperation::from_operation);
impl Clone for PackedOperation {
fn clone(&self) -> Self {
match self.view() {
OperationRef::Standard(standard) => Self::from_standard(standard),
OperationRef::Gate(gate) => Self::from_gate(Box::new(gate.to_owned())),
OperationRef::Instruction(instruction) => {
Self::from_instruction(Box::new(instruction.to_owned()))
}
OperationRef::Operation(operation) => {
Self::from_operation(Box::new(operation.to_owned()))
}
}
}
}
impl Drop for PackedOperation {
fn drop(&mut self) {
fn drop_pointer_as<T>(slf: &mut PackedOperation) {
// This should only ever be called when the pointer is valid, but this is defensive just
// to 100% ensure that our `Drop` implementation doesn't panic.
let Some(pointer) = slf.try_pointer() else {
return;
};
// SAFETY: `PackedOperation` asserts ownership over its contents, and the contained
// pointer can only be null if we were already dropped. We set our discriminant to mark
// ourselves as plain old data immediately just as a defensive measure.
let boxed = unsafe { Box::from_raw(pointer.cast::<T>().as_ptr()) };
slf.0 = PackedOperationType::StandardGate as usize;
::std::mem::drop(boxed);
}
match self.discriminant() {
PackedOperationType::StandardGate => (),
PackedOperationType::Gate => drop_pointer_as::<PyGate>(self),
PackedOperationType::Instruction => drop_pointer_as::<PyInstruction>(self),
PackedOperationType::Operation => drop_pointer_as::<PyOperation>(self),
}
}
}
/// The data-at-rest compressed storage format for a circuit instruction.
///
/// Much of the actual data of a `PackedInstruction` is stored in the `CircuitData` (or
/// DAG-equivalent) context objects, and the `PackedInstruction` itself just contains handles to
/// that data. Components of the `PackedInstruction` can be unpacked individually by passing the
/// `CircuitData` object to the relevant getter method. Many `PackedInstruction`s may contain
/// handles to the same data within a `CircuitData` objects; we are re-using what we can.
///
/// A `PackedInstruction` in general cannot be safely mutated outside the context of its
/// `CircuitData`, because the majority of the data is not actually stored here.
#[derive(Clone, Debug)]
pub struct PackedInstruction {
pub op: PackedOperation,
/// The index under which the interner has stored `qubits`.
pub qubits: Interned<[Qubit]>,
/// The index under which the interner has stored `clbits`.
pub clbits: Interned<[Clbit]>,
pub params: Option<Box<SmallVec<[Param; 3]>>>,
pub extra_attrs: Option<Box<ExtraInstructionAttributes>>,
#[cfg(feature = "cache_pygates")]
/// This is hidden in a `OnceCell` because it's just an on-demand cache; we don't create this
/// unless asked for it. A `OnceCell` of a non-null pointer type (like `Py<T>`) is the same
/// size as a pointer and there are no runtime checks on access beyond the initialisation check,
/// which is a simple null-pointer check.
///
/// WARNING: remember that `OnceCell`'s `get_or_init` method is no-reentrant, so the initialiser
/// must not yield the GIL to Python space. We avoid using `GILOnceCell` here because it
/// requires the GIL to even `get` (of course!), which makes implementing `Clone` hard for us.
/// We can revisit once we're on PyO3 0.22+ and have been able to disable its `py-clone`
/// feature.
pub py_op: OnceCell<Py<PyAny>>,
}
impl PackedInstruction {
/// Access the standard gate in this `PackedInstruction`, if it is one. If the instruction
/// refers to a Python-space object, `None` is returned.
#[inline]
pub fn standard_gate(&self) -> Option<StandardGate> {
self.op.try_standard_gate()
}
/// Get a slice view onto the contained parameters.
#[inline]
pub fn params_view(&self) -> &[Param] {
self.params
.as_deref()
.map(SmallVec::as_slice)
.unwrap_or(&[])
}
/// Get a mutable slice view onto the contained parameters.
#[inline]
pub fn params_mut(&mut self) -> &mut [Param] {
self.params
.as_deref_mut()
.map(SmallVec::as_mut_slice)
.unwrap_or(&mut [])
}
/// Does this instruction contain any compile-time symbolic `ParameterExpression`s?
pub fn is_parameterized(&self) -> bool {
self.params_view()
.iter()
.any(|x| matches!(x, Param::ParameterExpression(_)))
}
#[inline]
pub fn condition(&self) -> Option<&Py<PyAny>> {
self.extra_attrs
.as_ref()
.and_then(|extra| extra.condition.as_ref())
}
/// Build a reference to the Python-space operation object (the `Gate`, etc) packed into this
/// instruction. This may construct the reference if the `PackedInstruction` is a standard
/// gate with no already stored operation.
///
/// A standard-gate operation object returned by this function is disconnected from the
/// containing circuit; updates to its parameters, label, duration, unit and condition will not
/// be propagated back.
pub fn unpack_py_op(&self, py: Python) -> PyResult<Py<PyAny>> {
let unpack = || -> PyResult<Py<PyAny>> {
match self.op.view() {
OperationRef::Standard(standard) => standard.create_py_op(
py,
self.params.as_deref().map(SmallVec::as_slice),
self.extra_attrs.as_deref(),
),
OperationRef::Gate(gate) => Ok(gate.gate.clone_ref(py)),
OperationRef::Instruction(instruction) => Ok(instruction.instruction.clone_ref(py)),
OperationRef::Operation(operation) => Ok(operation.operation.clone_ref(py)),
}
};
// `OnceCell::get_or_init` and the non-stabilised `get_or_try_init`, which would otherwise
// be nice here are both non-reentrant. This is a problem if the init yields control to the
// Python interpreter as this one does, since that can allow CPython to freeze the thread
// and for another to attempt the initialisation.
#[cfg(feature = "cache_pygates")]
{
if let Some(ob) = self.py_op.get() {
return Ok(ob.clone_ref(py));
}
}
let out = unpack()?;
#[cfg(feature = "cache_pygates")]
{
// The unpacking operation can cause a thread pause and concurrency, since it can call
// interpreted Python code for a standard gate, so we need to take care that some other
// Python thread might have populated the cache before we do.
let _ = self.py_op.set(out.clone_ref(py));
}
Ok(out)
}
/// Check equality of the operation, including Python-space checks, if appropriate.
pub fn py_op_eq(&self, py: Python, other: &Self) -> PyResult<bool> {
match (self.op.view(), other.op.view()) {
(OperationRef::Standard(left), OperationRef::Standard(right)) => Ok(left == right),
(OperationRef::Gate(left), OperationRef::Gate(right)) => {
left.gate.bind(py).eq(&right.gate)
}
(OperationRef::Instruction(left), OperationRef::Instruction(right)) => {
left.instruction.bind(py).eq(&right.instruction)
}
(OperationRef::Operation(left), OperationRef::Operation(right)) => {
left.operation.bind(py).eq(&right.operation)
}
// Handle the case we end up with a pygate for a standard gate
// this typically only happens if it's a ControlledGate in python
// and we have mutable state set.
(OperationRef::Standard(_left), OperationRef::Gate(right)) => {
self.unpack_py_op(py)?.bind(py).eq(&right.gate)
}
(OperationRef::Gate(left), OperationRef::Standard(_right)) => {
other.unpack_py_op(py)?.bind(py).eq(&left.gate)
}
_ => Ok(false),
}
}
}
| qiskit/crates/circuit/src/packed_instruction.rs/0 | {
"file_path": "qiskit/crates/circuit/src/packed_instruction.rs",
"repo_id": "qiskit",
"token_count": 10795
} | 169 |
[package]
name = "qiskit-qasm3"
version.workspace = true
edition.workspace = true
rust-version.workspace = true
license.workspace = true
[lib]
name = "qiskit_qasm3"
doctest = false
[dependencies]
pyo3.workspace = true
indexmap.workspace = true
hashbrown.workspace = true
oq3_semantics = "0.6.0"
ahash.workspace = true
| qiskit/crates/qasm3/Cargo.toml/0 | {
"file_path": "qiskit/crates/qasm3/Cargo.toml",
"repo_id": "qiskit",
"token_count": 123
} | 170 |
.. _qiskit-compiler:
.. automodule:: qiskit.compiler
:no-members:
:no-inherited-members:
:no-special-members:
| qiskit/docs/apidoc/compiler.rst/0 | {
"file_path": "qiskit/docs/apidoc/compiler.rst",
"repo_id": "qiskit",
"token_count": 53
} | 171 |
.. _qiskit-qobj:
.. automodule:: qiskit.qobj
:no-members:
:no-inherited-members:
:no-special-members:
| qiskit/docs/apidoc/qobj.rst/0 | {
"file_path": "qiskit/docs/apidoc/qobj.rst",
"repo_id": "qiskit",
"token_count": 53
} | 172 |
[build-system]
requires = ["setuptools", "wheel", "setuptools-rust"]
build-backend = "setuptools.build_meta"
[project]
name = "qiskit"
description = "An open-source SDK for working with quantum computers at the level of extended quantum circuits, operators, and primitives."
requires-python = ">=3.8"
license = {text = "Apache 2.0"}
authors = [
{ name = "Qiskit Development Team", email = "[email protected]" },
]
keywords = [
"qiskit",
"quantum circuit",
"quantum computing",
"quantum programming language",
"quantum",
"sdk",
]
classifiers = [
"Environment :: Console",
"Intended Audience :: Developers",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: Apache Software License",
"Operating System :: MacOS",
"Operating System :: Microsoft :: Windows",
"Operating System :: POSIX :: Linux",
"Programming Language :: Python :: 3 :: Only",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
"Topic :: Scientific/Engineering",
]
# These are configured in the `tool.setuptools.dynamic` table.
dynamic = ["version", "readme", "dependencies"]
# If modifying this table, be sure to sync with `requirements-optional.txt` and
# `qiskit.utils.optionals`.
[project.optional-dependencies]
qasm3-import = [
"qiskit-qasm3-import >= 0.1.0",
]
visualization = [
"matplotlib >= 3.3",
"pydot",
"Pillow >= 4.2.1",
"pylatexenc >= 1.4",
"seaborn >= 0.9.0",
]
crosstalk-pass = [
"z3-solver >= 4.7",
]
csp-layout-pass = [
"python-constraint >= 1.4",
]
# This will make the resolution work for installers from PyPI, but `pip install .[all]` will be
# unreliable because `qiskit` will resolve to the PyPI version, so local changes in the
# optionals won't be reflected.
all = ["qiskit[qasm3-import,visualization,crosstalk-pass,csp-layout-pass]"]
[project.urls]
Homepage = "https://www.ibm.com/quantum/qiskit"
Documentation = "https://docs.quantum.ibm.com"
"API Reference" = "https://docs.quantum.ibm.com/api/qiskit"
Repository = "https://github.com/Qiskit/qiskit"
Issues = "https://github.com/Qiskit/qiskit/issues"
Changelog = "https://docs.quantum.ibm.com/api/qiskit/release-notes"
[project.entry-points."qiskit.unitary_synthesis"]
default = "qiskit.transpiler.passes.synthesis.unitary_synthesis:DefaultUnitarySynthesis"
aqc = "qiskit.transpiler.passes.synthesis.aqc_plugin:AQCSynthesisPlugin"
sk = "qiskit.transpiler.passes.synthesis.solovay_kitaev_synthesis:SolovayKitaevSynthesis"
[project.entry-points."qiskit.synthesis"]
"clifford.default" = "qiskit.transpiler.passes.synthesis.hls_plugins:DefaultSynthesisClifford"
"clifford.ag" = "qiskit.transpiler.passes.synthesis.hls_plugins:AGSynthesisClifford"
"clifford.bm" = "qiskit.transpiler.passes.synthesis.hls_plugins:BMSynthesisClifford"
"clifford.greedy" = "qiskit.transpiler.passes.synthesis.hls_plugins:GreedySynthesisClifford"
"clifford.layers" = "qiskit.transpiler.passes.synthesis.hls_plugins:LayerSynthesisClifford"
"clifford.lnn" = "qiskit.transpiler.passes.synthesis.hls_plugins:LayerLnnSynthesisClifford"
"linear_function.default" = "qiskit.transpiler.passes.synthesis.hls_plugins:DefaultSynthesisLinearFunction"
"linear_function.kms" = "qiskit.transpiler.passes.synthesis.hls_plugins:KMSSynthesisLinearFunction"
"linear_function.pmh" = "qiskit.transpiler.passes.synthesis.hls_plugins:PMHSynthesisLinearFunction"
"mcx.n_dirty_i15" = "qiskit.transpiler.passes.synthesis.hls_plugins:MCXSynthesisNDirtyI15"
"mcx.n_clean_m15" = "qiskit.transpiler.passes.synthesis.hls_plugins:MCXSynthesisNCleanM15"
"mcx.1_clean_b95" = "qiskit.transpiler.passes.synthesis.hls_plugins:MCXSynthesis1CleanB95"
"mcx.gray_code" = "qiskit.transpiler.passes.synthesis.hls_plugins:MCXSynthesisGrayCode"
"mcx.noaux_v24" = "qiskit.transpiler.passes.synthesis.hls_plugins:MCXSynthesisNoAuxV24"
"mcx.default" = "qiskit.transpiler.passes.synthesis.hls_plugins:MCXSynthesisDefault"
"permutation.default" = "qiskit.transpiler.passes.synthesis.hls_plugins:BasicSynthesisPermutation"
"permutation.kms" = "qiskit.transpiler.passes.synthesis.hls_plugins:KMSSynthesisPermutation"
"permutation.basic" = "qiskit.transpiler.passes.synthesis.hls_plugins:BasicSynthesisPermutation"
"permutation.acg" = "qiskit.transpiler.passes.synthesis.hls_plugins:ACGSynthesisPermutation"
"qft.full" = "qiskit.transpiler.passes.synthesis.hls_plugins:QFTSynthesisFull"
"qft.line" = "qiskit.transpiler.passes.synthesis.hls_plugins:QFTSynthesisLine"
"qft.default" = "qiskit.transpiler.passes.synthesis.hls_plugins:QFTSynthesisFull"
"permutation.token_swapper" = "qiskit.transpiler.passes.synthesis.hls_plugins:TokenSwapperSynthesisPermutation"
[project.entry-points."qiskit.transpiler.init"]
default = "qiskit.transpiler.preset_passmanagers.builtin_plugins:DefaultInitPassManager"
[project.entry-points."qiskit.transpiler.translation"]
synthesis = "qiskit.transpiler.preset_passmanagers.builtin_plugins:UnitarySynthesisPassManager"
translator = "qiskit.transpiler.preset_passmanagers.builtin_plugins:BasisTranslatorPassManager"
[project.entry-points."qiskit.transpiler.routing"]
basic = "qiskit.transpiler.preset_passmanagers.builtin_plugins:BasicSwapPassManager"
lookahead = "qiskit.transpiler.preset_passmanagers.builtin_plugins:LookaheadSwapPassManager"
none = "qiskit.transpiler.preset_passmanagers.builtin_plugins:NoneRoutingPassManager"
sabre = "qiskit.transpiler.preset_passmanagers.builtin_plugins:SabreSwapPassManager"
stochastic = "qiskit.transpiler.preset_passmanagers.builtin_plugins:StochasticSwapPassManager"
[project.entry-points."qiskit.transpiler.optimization"]
default = "qiskit.transpiler.preset_passmanagers.builtin_plugins:OptimizationPassManager"
[project.entry-points."qiskit.transpiler.layout"]
default = "qiskit.transpiler.preset_passmanagers.builtin_plugins:DefaultLayoutPassManager"
dense = "qiskit.transpiler.preset_passmanagers.builtin_plugins:DenseLayoutPassManager"
sabre = "qiskit.transpiler.preset_passmanagers.builtin_plugins:SabreLayoutPassManager"
trivial = "qiskit.transpiler.preset_passmanagers.builtin_plugins:TrivialLayoutPassManager"
[project.entry-points."qiskit.transpiler.scheduling"]
alap = "qiskit.transpiler.preset_passmanagers.builtin_plugins:AlapSchedulingPassManager"
asap = "qiskit.transpiler.preset_passmanagers.builtin_plugins:AsapSchedulingPassManager"
default = "qiskit.transpiler.preset_passmanagers.builtin_plugins:DefaultSchedulingPassManager"
[tool.setuptools]
include-package-data = true
[tool.setuptools.dynamic]
version = { file = "qiskit/VERSION.txt" }
readme = { file = "README.md", content-type = "text/markdown" }
dependencies = {file = "requirements.txt" }
[tool.setuptools.packages.find]
include = ["qiskit", "qiskit.*"]
[tool.black]
line-length = 100
target-version = ['py38', 'py39', 'py310', 'py311']
[tool.cibuildwheel]
manylinux-x86_64-image = "manylinux2014"
manylinux-i686-image = "manylinux2014"
skip = "pp* cp36-* cp37-* *musllinux* *win32 *i686 cp38-macosx_arm64"
test-skip = "*win32 *linux_i686"
test-command = "python {project}/examples/python/stochastic_swap.py"
# We need to use pre-built versions of Numpy and Scipy in the tests; they have a
# tendency to crash if they're installed from source by `pip install`, and since
# Numpy 1.22 there are no i686 wheels, so we force pip to use older ones without
# restricting any dependencies that Numpy and Scipy might have.
before-test = "pip install --only-binary=numpy,scipy numpy scipy"
# Some jobs locally override the before-build and environment configuration if a
# specific job override is needed. For example tier 1 platforms locally override
# the before-build and environment configuration to enable PGO,
# see: .github/workflows/wheels.yml for the jobs where this is done
environment = 'RUSTUP_TOOLCHAIN="stable"'
[tool.cibuildwheel.linux]
before-all = "yum install -y wget && {package}/tools/install_rust.sh"
environment = 'PATH="$PATH:$HOME/.cargo/bin" CARGO_NET_GIT_FETCH_WITH_CLI="true" RUSTUP_TOOLCHAIN="stable"'
repair-wheel-command = "auditwheel repair -w {dest_dir} {wheel} && pipx run abi3audit --strict --report {wheel}"
[tool.cibuildwheel.macos]
environment = "MACOSX_DEPLOYMENT_TARGET=10.12"
repair-wheel-command = "delocate-wheel --require-archs {delocate_archs} -w {dest_dir} -v {wheel} && pipx run abi3audit --strict --report {wheel}"
[tool.cibuildwheel.windows]
repair-wheel-command = "cp {wheel} {dest_dir}/. && pipx run abi3audit --strict --report {wheel}"
[tool.ruff]
select = [
# Rules in alphabetic order
"C4", # category: flake8-comprehensions
"EXE", # Category: flake8-executable
"F631", # assert-tuple
"F632", # is-literal
"F634", # if-tuple
"F823", # undefined-local
"G", # flake8-logging-format
"T10", # category: flake8-debugger
]
[tool.pylint.main]
extension-pkg-allow-list = [
"numpy",
"qiskit._accelerate",
"qiskit._qasm2",
"qiskit._qasm3",
# We can't allow pylint to load qiskit._qasm2 because it's not able to
# statically resolve the cyclical load of the exception and it bugs out.
"retworkx",
"rustworkx",
"tweedledum",
]
load-plugins = ["pylint.extensions.docparams", "pylint.extensions.docstyle"]
py-version = "3.8" # update it when bumping minimum supported python version
[tool.pylint.basic]
good-names = ["a", "b", "i", "j", "k", "d", "n", "m", "ex", "v", "w", "x", "y", "z", "Run", "_", "logger", "q", "c", "r", "qr", "cr", "qc", "nd", "pi", "op", "b", "ar", "br", "p", "cp", "ax", "dt", "__unittest", "iSwapGate", "mu"]
method-rgx = "(([a-z_][a-z0-9_]{2,49})|(assert[A-Z][a-zA-Z0-9]{2,43})|(test_[_a-zA-Z0-9]{2,}))$"
variable-rgx = "[a-z_][a-z0-9_]{1,30}$"
[tool.pylint.format]
max-line-length = 105 # default 100
[tool.pylint."messages control"]
disable = [
# intentionally disabled:
"spelling", # too noisy
"fixme", # disabled as TODOs would show up as warnings
"protected-access", # disabled as we don't follow the public vs private convention strictly
"duplicate-code", # disabled as it is too verbose
"redundant-returns-doc", # for @abstractmethod, it cannot interpret "pass"
"too-many-lines", "too-many-branches", "too-many-locals", "too-many-nested-blocks", "too-many-statements",
"too-many-instance-attributes", "too-many-arguments", "too-many-public-methods", "too-few-public-methods", "too-many-ancestors",
"unnecessary-pass", # allow for methods with just "pass", for clarity
"unnecessary-dunder-call", # do not want to implement
"no-else-return", # relax "elif" after a clause with a return
"docstring-first-line-empty", # relax docstring style
"import-outside-toplevel", "import-error", # overzealous with our optionals/dynamic packages
"nested-min-max", # this gives false equivalencies if implemented for the current lint version
"consider-using-max-builtin", "consider-using-min-builtin", # unnecessary stylistic opinion
# TODO(#9614): these were added in modern Pylint. Decide if we want to enable them. If so,
# remove from here and fix the issues. Else, move it above this section and add a comment
# with the rationale
"no-member", # for dynamically created members
"not-context-manager",
"unnecessary-lambda-assignment", # do not want to implement
"unspecified-encoding", # do not want to implement
]
enable = [
"use-symbolic-message-instead"
]
[tool.pylint.spelling]
spelling-private-dict-file = ".local-spellings"
[tool.coverage.report]
exclude_also = [
"def __repr__", # Printable epresentational string does not typically execute during testing
"raise NotImplementedError", # Abstract methods are not testable
"raise RuntimeError", # Exceptions for defensive programming that cannot be tested a head
"if TYPE_CHECKING:", # Code that only runs during type checks
"@abstractmethod", # Abstract methods are not testable
]
| qiskit/pyproject.toml/0 | {
"file_path": "qiskit/pyproject.toml",
"repo_id": "qiskit",
"token_count": 4551
} | 173 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Quantum bit and Classical bit objects.
"""
import copy
from qiskit.circuit.exceptions import CircuitError
class Bit:
"""Implement a generic bit.
.. note::
This class should not be instantiated directly. This is just a superclass
for :class:`~.Clbit` and :class:`~.circuit.Qubit`.
"""
__slots__ = {"_register", "_index", "_hash", "_repr"}
def __init__(self, register=None, index=None):
"""Create a new generic bit."""
if (register, index) == (None, None):
self._register = None
self._index = None
# To sidestep the overridden Bit.__hash__ and use the default hash
# algorithm (only new-style Bits), call default object hash method.
self._hash = object.__hash__(self)
else:
try:
index = int(index)
except Exception as ex:
raise CircuitError(
f"index needs to be castable to an int: type {type(index)} was provided"
) from ex
if index < 0:
index += register.size
if index >= register.size:
raise CircuitError(
f"index must be under the size of the register: {index} was provided"
)
self._register = register
self._index = index
self._hash = hash((self._register, self._index))
self._repr = f"{self.__class__.__name__}({self._register}, {self._index})"
def __repr__(self):
"""Return the official string representing the bit."""
if (self._register, self._index) == (None, None):
# Similar to __hash__, use default repr method for new-style Bits.
return object.__repr__(self)
return self._repr
def __hash__(self):
return self._hash
def __eq__(self, other):
if (self._register, self._index) == (None, None):
return other is self
try:
return self._repr == other._repr
except AttributeError:
return False
def __copy__(self):
# Bits are immutable.
return self
def __deepcopy__(self, memo=None):
if (self._register, self._index) == (None, None):
return self
# Old-style bits need special handling for now, since some code seems
# to rely on their registers getting deep-copied.
bit = type(self).__new__(type(self))
bit._register = copy.deepcopy(self._register, memo)
bit._index = self._index
bit._hash = self._hash
bit._repr = self._repr
return bit
| qiskit/qiskit/circuit/bit.py/0 | {
"file_path": "qiskit/qiskit/circuit/bit.py",
"repo_id": "qiskit",
"token_count": 1298
} | 174 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Internal utils for Classical Function Compiler"""
from qiskit.utils.optionals import HAS_TWEEDLEDUM
from qiskit.circuit import QuantumCircuit
from qiskit.circuit.library.standard_gates import (
HGate,
SGate,
SdgGate,
SwapGate,
TGate,
TdgGate,
XGate,
YGate,
ZGate,
)
_QISKIT_OPS = {
"std.h": HGate,
"std.s": SGate,
"std.sdg": SdgGate,
"std.swap": SwapGate,
"std.t": TGate,
"std.tdg": TdgGate,
"std.x": XGate,
"std.y": YGate,
"std.z": ZGate,
}
@HAS_TWEEDLEDUM.require_in_call
def _convert_tweedledum_operator(op):
base_gate = _QISKIT_OPS.get(op.kind())
if base_gate is None:
if op.kind() == "py_operator":
return op.py_op()
else:
raise RuntimeError(f"Unrecognized operator: {op.kind()}")
# TODO: need to deal with cbits too!
if op.num_controls() > 0:
from tweedledum.ir import Qubit # pylint: disable=import-error
qubits = op.qubits()
ctrl_state = ""
for qubit in qubits[: op.num_controls()]:
ctrl_state += f"{int(qubit.polarity() == Qubit.Polarity.positive)}"
return base_gate().control(len(ctrl_state), ctrl_state=ctrl_state[::-1])
return base_gate()
@HAS_TWEEDLEDUM.require_in_call
def tweedledum2qiskit(tweedledum_circuit, name=None, qregs=None):
"""Converts a `Tweedledum <https://github.com/boschmitt/tweedledum>`_
circuit into a Qiskit circuit.
Args:
tweedledum_circuit (tweedledum.ir.Circuit): Tweedledum circuit.
name (str): Name for the resulting Qiskit circuit.
qregs (list(QuantumRegister)): Optional. List of QuantumRegisters on which the
circuit would operate. If not provided, it will create a flat register.
Returns:
QuantumCircuit: The Tweedledum circuit converted to a Qiskit circuit.
Raises:
ClassicalFunctionCompilerError: If a gate in the Tweedledum circuit has no Qiskit equivalent.
"""
if qregs:
qiskit_qc = QuantumCircuit(*qregs, name=name)
else:
qiskit_qc = QuantumCircuit(tweedledum_circuit.num_qubits(), name=name)
from tweedledum.passes import parity_decomp # pylint: disable=import-error
for instruction in parity_decomp(tweedledum_circuit):
gate = _convert_tweedledum_operator(instruction)
qubits = [qubit.uid() for qubit in instruction.qubits()]
qiskit_qc.append(gate, qubits)
return qiskit_qc
| qiskit/qiskit/circuit/classicalfunction/utils.py/0 | {
"file_path": "qiskit/qiskit/circuit/classicalfunction/utils.py",
"repo_id": "qiskit",
"token_count": 1217
} | 175 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Utilities for handling duration of a circuit instruction.
"""
import warnings
from qiskit.circuit import QuantumCircuit
from qiskit.circuit.exceptions import CircuitError
from qiskit.utils.units import apply_prefix
def duration_in_dt(duration_in_sec: float, dt_in_sec: float) -> int:
"""
Return duration in dt.
Args:
duration_in_sec: duration [s] to be converted.
dt_in_sec: duration of dt in seconds used for conversion.
Returns:
Duration in dt.
"""
res = round(duration_in_sec / dt_in_sec)
rounding_error = abs(duration_in_sec - res * dt_in_sec)
if rounding_error > 1e-15:
warnings.warn(
f"Duration is rounded to {res:d} [dt] = {res * dt_in_sec:e} [s] "
f"from {duration_in_sec:e} [s]",
UserWarning,
)
return res
def convert_durations_to_dt(qc: QuantumCircuit, dt_in_sec: float, inplace=True):
"""Convert all the durations in SI (seconds) into those in dt.
Returns a new circuit if `inplace=False`.
Parameters:
qc (QuantumCircuit): Duration of dt in seconds used for conversion.
dt_in_sec (float): Duration of dt in seconds used for conversion.
inplace (bool): All durations are converted inplace or return new circuit.
Returns:
QuantumCircuit: Converted circuit if `inplace = False`, otherwise None.
Raises:
CircuitError: if fail to convert durations.
"""
if inplace:
circ = qc
else:
circ = qc.copy()
for instruction in circ.data:
operation = instruction.operation
if operation.unit == "dt" or operation.duration is None:
continue
if not operation.unit.endswith("s"):
raise CircuitError(f"Invalid time unit: '{operation.unit}'")
duration = operation.duration
if operation.unit != "s":
duration = apply_prefix(duration, operation.unit)
operation.duration = duration_in_dt(duration, dt_in_sec)
operation.unit = "dt"
if circ.duration is not None and circ.unit != "dt":
if not circ.unit.endswith("s"):
raise CircuitError(f"Invalid time unit: '{circ.unit}'")
duration = circ.duration
if circ.unit != "s":
duration = apply_prefix(duration, circ.unit)
circ.duration = duration_in_dt(duration, dt_in_sec)
circ.unit = "dt"
if not inplace:
return circ
else:
return None
| qiskit/qiskit/circuit/duration.py/0 | {
"file_path": "qiskit/qiskit/circuit/duration.py",
"repo_id": "qiskit",
"token_count": 1143
} | 176 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Integer Comparator."""
from __future__ import annotations
import math
from qiskit.circuit import QuantumCircuit, QuantumRegister, AncillaRegister
from qiskit.circuit.exceptions import CircuitError
from ..boolean_logic import OR
from ..blueprintcircuit import BlueprintCircuit
class IntegerComparator(BlueprintCircuit):
r"""Integer Comparator.
Operator compares basis states :math:`|i\rangle_n` against a classically given integer
:math:`L` of fixed value and flips a target qubit if :math:`i \geq L`
(or :math:`<` depending on the parameter ``geq``):
.. math::
|i\rangle_n |0\rangle \mapsto |i\rangle_n |i \geq L\rangle
This operation is based on two's complement implementation of binary subtraction but only
uses carry bits and no actual result bits. If the most significant carry bit
(the results bit) is 1, the :math:`\geq` condition is ``True`` otherwise it is ``False``.
"""
def __init__(
self,
num_state_qubits: int | None = None,
value: int | None = None,
geq: bool = True,
name: str = "cmp",
) -> None:
"""Create a new fixed value comparator circuit.
Args:
num_state_qubits: Number of state qubits. If this is set it will determine the number
of qubits required for the circuit.
value: The fixed value to compare with.
geq: If True, evaluate a ``>=`` condition, else ``<``.
name: Name of the circuit.
"""
super().__init__(name=name)
self._value = None
self._geq = None
self._num_state_qubits = None
self.value = value
self.geq = geq
self.num_state_qubits = num_state_qubits
@property
def value(self) -> int:
"""The value to compare the qubit register to.
Returns:
The value against which the value of the qubit register is compared.
"""
return self._value
@value.setter
def value(self, value: int) -> None:
if value != self._value:
self._invalidate()
self._value = value
@property
def geq(self) -> bool:
"""Return whether the comparator compares greater or less equal.
Returns:
True, if the comparator compares ``>=``, False if ``<``.
"""
return self._geq
@geq.setter
def geq(self, geq: bool) -> None:
"""Set whether the comparator compares greater or less equal.
Args:
geq: If True, the comparator compares ``>=``, if False ``<``.
"""
if geq != self._geq:
self._invalidate()
self._geq = geq
@property
def num_state_qubits(self) -> int:
"""The number of qubits encoding the state for the comparison.
Returns:
The number of state qubits.
"""
return self._num_state_qubits
@num_state_qubits.setter
def num_state_qubits(self, num_state_qubits: int | None) -> None:
"""Set the number of state qubits.
Note that this will change the quantum registers.
Args:
num_state_qubits: The new number of state qubits.
"""
if self._num_state_qubits is None or num_state_qubits != self._num_state_qubits:
self._invalidate() # reset data
self._num_state_qubits = num_state_qubits
if num_state_qubits is not None:
# set the new qubit registers
qr_state = QuantumRegister(num_state_qubits, name="state")
q_compare = QuantumRegister(1, name="compare")
self.qregs = [qr_state, q_compare]
# add ancillas is required
num_ancillas = num_state_qubits - 1
if num_ancillas > 0:
qr_ancilla = AncillaRegister(num_ancillas)
self.add_register(qr_ancilla)
def _get_twos_complement(self) -> list[int]:
"""Returns the 2's complement of ``self.value`` as array.
Returns:
The 2's complement of ``self.value``.
"""
twos_complement = pow(2, self.num_state_qubits) - math.ceil(self.value)
twos_complement = f"{twos_complement:b}".rjust(self.num_state_qubits, "0")
twos_complement = [
1 if twos_complement[i] == "1" else 0 for i in reversed(range(len(twos_complement)))
]
return twos_complement
def _check_configuration(self, raise_on_failure: bool = True) -> bool:
"""Check if the current configuration is valid."""
valid = True
if self._num_state_qubits is None:
valid = False
if raise_on_failure:
raise AttributeError("Number of state qubits is not set.")
if self._value is None:
valid = False
if raise_on_failure:
raise AttributeError("No comparison value set.")
required_num_qubits = 2 * self.num_state_qubits
if self.num_qubits != required_num_qubits:
valid = False
if raise_on_failure:
raise CircuitError("Number of qubits does not match required number of qubits.")
return valid
def _build(self) -> None:
"""If not already built, build the circuit."""
if self._is_built:
return
super()._build()
qr_state = self.qubits[: self.num_state_qubits]
q_compare = self.qubits[self.num_state_qubits]
qr_ancilla = self.qubits[self.num_state_qubits + 1 :]
circuit = QuantumCircuit(*self.qregs, name=self.name)
if self.value <= 0: # condition always satisfied for non-positive values
if self._geq: # otherwise the condition is never satisfied
circuit.x(q_compare)
# condition never satisfied for values larger than or equal to 2^n
elif self.value < pow(2, self.num_state_qubits):
if self.num_state_qubits > 1:
twos = self._get_twos_complement()
for i in range(self.num_state_qubits):
if i == 0:
if twos[i] == 1:
circuit.cx(qr_state[i], qr_ancilla[i])
elif i < self.num_state_qubits - 1:
if twos[i] == 1:
circuit.compose(
OR(2), [qr_state[i], qr_ancilla[i - 1], qr_ancilla[i]], inplace=True
)
else:
circuit.ccx(qr_state[i], qr_ancilla[i - 1], qr_ancilla[i])
else:
if twos[i] == 1:
# OR needs the result argument as qubit not register, thus
# access the index [0]
circuit.compose(
OR(2), [qr_state[i], qr_ancilla[i - 1], q_compare], inplace=True
)
else:
circuit.ccx(qr_state[i], qr_ancilla[i - 1], q_compare)
# flip result bit if geq flag is false
if not self._geq:
circuit.x(q_compare)
# uncompute ancillas state
for i in reversed(range(self.num_state_qubits - 1)):
if i == 0:
if twos[i] == 1:
circuit.cx(qr_state[i], qr_ancilla[i])
else:
if twos[i] == 1:
circuit.compose(
OR(2), [qr_state[i], qr_ancilla[i - 1], qr_ancilla[i]], inplace=True
)
else:
circuit.ccx(qr_state[i], qr_ancilla[i - 1], qr_ancilla[i])
else:
# num_state_qubits == 1 and value == 1:
circuit.cx(qr_state[0], q_compare)
# flip result bit if geq flag is false
if not self._geq:
circuit.x(q_compare)
else:
if not self._geq: # otherwise the condition is never satisfied
circuit.x(q_compare)
self.append(circuit.to_gate(), self.qubits)
| qiskit/qiskit/circuit/library/arithmetic/integer_comparator.py/0 | {
"file_path": "qiskit/qiskit/circuit/library/arithmetic/integer_comparator.py",
"repo_id": "qiskit",
"token_count": 4280
} | 177 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# pylint: disable=invalid-name
# pylint: disable=unused-variable
# pylint: disable=missing-param-doc
# pylint: disable=missing-type-doc
"""
Generic isometries from m to n qubits.
"""
from __future__ import annotations
import math
import numpy as np
from qiskit.circuit.exceptions import CircuitError
from qiskit.circuit.instruction import Instruction
from qiskit.circuit.quantumcircuit import QuantumCircuit
from qiskit.circuit.quantumregister import QuantumRegister
from qiskit.exceptions import QiskitError
from qiskit.quantum_info.operators.predicates import is_isometry
from qiskit._accelerate import isometry as isometry_rs
from .diagonal import Diagonal
from .uc import UCGate
from .mcg_up_to_diagonal import MCGupDiag
_EPS = 1e-10 # global variable used to chop very small numbers to zero
class Isometry(Instruction):
r"""Decomposition of arbitrary isometries from :math:`m` to :math:`n` qubits.
In particular, this allows to decompose unitaries (m=n) and to do state preparation (:math:`m=0`).
The decomposition is based on [1].
References:
1. Iten et al., Quantum circuits for isometries (2016).
`Phys. Rev. A 93, 032318
<https://journals.aps.org/pra/abstract/10.1103/PhysRevA.93.032318>`__.
"""
# Notation: In the following decomposition we label the qubit by
# 0 -> most significant one
# ...
# n -> least significant one
# finally, we convert the labels back to the qubit numbering used in Qiskit
# (using: _get_qubits_by_label)
def __init__(
self,
isometry: np.ndarray,
num_ancillas_zero: int,
num_ancillas_dirty: int,
epsilon: float = _EPS,
) -> None:
r"""
Args:
isometry: An isometry from :math:`m` to :math`n` qubits, i.e., a complex
``np.ndarray`` of dimension :math:`2^n \times 2^m` with orthonormal columns (given
in the computational basis specified by the order of the ancillas
and the input qubits, where the ancillas are considered to be more
significant than the input qubits).
num_ancillas_zero: Number of additional ancillas that start in the state :math:`|0\rangle`
(the :math:`n-m` ancillas required for providing the output of the isometry are
not accounted for here).
num_ancillas_dirty: Number of additional ancillas that start in an arbitrary state.
epsilon: Error tolerance of calculations.
"""
# Convert to numpy array in case not already an array
isometry = np.array(isometry, dtype=complex)
# change a row vector to a column vector (in the case of state preparation)
if len(isometry.shape) == 1:
isometry = isometry.reshape(isometry.shape[0], 1)
self.iso_data = isometry
self.num_ancillas_zero = num_ancillas_zero
self.num_ancillas_dirty = num_ancillas_dirty
self._inverse = None
self._epsilon = epsilon
# Check if the isometry has the right dimension and if the columns are orthonormal
n = math.log2(isometry.shape[0])
m = math.log2(isometry.shape[1])
if not n.is_integer() or n < 0:
raise QiskitError(
"The number of rows of the isometry is not a non negative power of 2."
)
if not m.is_integer() or m < 0:
raise QiskitError(
"The number of columns of the isometry is not a non negative power of 2."
)
if m > n:
raise QiskitError(
"The input matrix has more columns than rows and hence it can't be an isometry."
)
if not is_isometry(isometry, self._epsilon):
raise QiskitError(
"The input matrix has non orthonormal columns and hence it is not an isometry."
)
num_qubits = int(n) + num_ancillas_zero + num_ancillas_dirty
super().__init__("isometry", num_qubits, 0, [isometry])
def _define(self):
# TODO The inverse().inverse() is because there is code to uncompute (_gates_to_uncompute)
# an isometry, but not for generating its decomposition. It would be cheaper to do the
# later here instead.
gate = self.inv_gate()
gate = gate.inverse()
q = QuantumRegister(self.num_qubits, "q")
iso_circuit = QuantumCircuit(q, name="isometry")
iso_circuit.append(gate, q[:])
self.definition = iso_circuit
def inverse(self, annotated: bool = False):
self.params = []
inv = super().inverse(annotated=annotated)
self.params = [self.iso_data]
return inv
def _gates_to_uncompute(self):
"""
Call to create a circuit with gates that take the desired isometry to the first 2^m columns
of the 2^n*2^n identity matrix (see https://arxiv.org/abs/1501.06911)
"""
q = QuantumRegister(self.num_qubits, "q")
circuit = QuantumCircuit(q, name="isometry_to_uncompute")
(
q_input,
q_ancillas_for_output,
q_ancillas_zero,
q_ancillas_dirty,
) = self._define_qubit_role(q)
# Copy the isometry (this is computationally expensive for large isometries but guarantees
# to keep a copyof the input isometry)
remaining_isometry = self.iso_data.astype(complex) # note: "astype" does copy the isometry
diag = []
m = int(math.log2(self.iso_data.shape[1]))
# Decompose the column with index column_index and attache the gate to the circuit object.
# Return the isometry that is left to decompose, where the columns up to index column_index
# correspond to the firstfew columns of the identity matrix up to diag, and hence we only
# have to save a list containing them.
for column_index in range(2**m):
remaining_isometry, diag = self._decompose_column(
circuit, q, diag, remaining_isometry, column_index
)
# extract phase of the state that was sent to the basis state ket(column_index)
diag.append(remaining_isometry[column_index, 0])
# remove first column (which is now stored in diag)
remaining_isometry = remaining_isometry[:, 1:]
if len(diag) > 1 and not isometry_rs.diag_is_identity_up_to_global_phase(
diag, self._epsilon
):
diagonal = Diagonal(np.conj(diag))
circuit.append(diagonal, q_input)
return circuit
def _decompose_column(self, circuit, q, diag, remaining_isometry, column_index):
"""
Decomposes the column with index column_index.
"""
n = int(math.log2(self.iso_data.shape[0]))
for s in range(n):
remaining_isometry, diag = self._disentangle(
circuit, q, diag, remaining_isometry, column_index, s
)
return remaining_isometry, diag
def _disentangle(self, circuit, q, diag, remaining_isometry, column_index, s):
"""
Disentangle the s-th significant qubit (starting with s = 0) into the zero or the one state
(dependent on column_index)
"""
# To shorten the notation, we introduce:
k = column_index
# k_prime is the index of the column with index column_index in the remaining isometry
# (note that we remove columns of the isometry during the procedure for efficiency)
k_prime = 0
v = remaining_isometry
n = int(math.log2(self.iso_data.shape[0]))
# MCG to set one entry to zero (preparation for disentangling with UCGate):
index1 = 2 * isometry_rs.a(k, s + 1) * 2**s + isometry_rs.b(k, s + 1)
index2 = (2 * isometry_rs.a(k, s + 1) + 1) * 2**s + isometry_rs.b(k, s + 1)
target_label = n - s - 1
# Check if a MCG is required
if (
isometry_rs.k_s(k, s) == 0
and isometry_rs.b(k, s + 1) != 0
and np.abs(v[index2, k_prime]) > self._epsilon
):
# Find the MCG, decompose it and apply it to the remaining isometry
gate = isometry_rs.reverse_qubit_state(
[v[index1, k_prime], v[index2, k_prime]], 0, self._epsilon
)
control_labels = [
i
for i, x in enumerate(_get_binary_rep_as_list(k, n))
if x == 1 and i != target_label
]
diagonal_mcg = self._append_mcg_up_to_diagonal(
circuit, q, gate, control_labels, target_label
)
# apply the MCG to the remaining isometry
v = isometry_rs.apply_multi_controlled_gate(v, control_labels, target_label, gate)
# correct for the implementation "up to diagonal"
diag_mcg_inverse = np.conj(diagonal_mcg).astype(complex, copy=False)
v = isometry_rs.apply_diagonal_gate(
v, control_labels + [target_label], diag_mcg_inverse
)
# update the diag according to the applied diagonal gate
diag = isometry_rs.apply_diagonal_gate_to_diag(
diag, control_labels + [target_label], diag_mcg_inverse, n
)
# UCGate to disentangle a qubit:
# Find the UCGate, decompose it and apply it to the remaining isometry
single_qubit_gates = self._find_squs_for_disentangling(v, k, s)
if not isometry_rs.ucg_is_identity_up_to_global_phase(single_qubit_gates, self._epsilon):
control_labels = list(range(target_label))
diagonal_ucg = self._append_ucg_up_to_diagonal(
circuit, q, single_qubit_gates, control_labels, target_label
)
# merge the diagonal into the UCGate for efficient application of both together
diagonal_ucg_inverse = np.conj(diagonal_ucg).astype(complex, copy=False)
single_qubit_gates = isometry_rs.merge_ucgate_and_diag(
single_qubit_gates, diagonal_ucg_inverse
)
# apply the UCGate (with the merged diagonal gate) to the remaining isometry
v = isometry_rs.apply_ucg(v, len(control_labels), single_qubit_gates)
# update the diag according to the applied diagonal gate
diag = isometry_rs.apply_diagonal_gate_to_diag(
diag, control_labels + [target_label], diagonal_ucg_inverse, n
)
# # correct for the implementation "up to diagonal"
# diag_inv = np.conj(diag).tolist()
# _apply_diagonal_gate(v, control_labels + [target_label], diag_inv)
return v, diag
# This method finds the single-qubit gates for a UCGate to disentangle a qubit:
# we consider the n-qubit state v[:,0] starting with k zeros (in the computational basis).
# The qubit with label n-s-1 is disentangled into the basis state k_s(k,s).
def _find_squs_for_disentangling(self, v, k, s):
res = isometry_rs.find_squs_for_disentangling(
v, k, s, self._epsilon, n=int(math.log2(self.iso_data.shape[0]))
)
return res
# Append a UCGate up to diagonal to the circuit circ.
def _append_ucg_up_to_diagonal(self, circ, q, single_qubit_gates, control_labels, target_label):
(
q_input,
q_ancillas_for_output,
q_ancillas_zero,
q_ancillas_dirty,
) = self._define_qubit_role(q)
n = int(math.log2(self.iso_data.shape[0]))
qubits = q_input + q_ancillas_for_output
# Note that we have to reverse the control labels, since controls are provided by
# increasing qubit number toa UCGate by convention
control_qubits = _reverse_qubit_oder(_get_qubits_by_label(control_labels, qubits, n))
target_qubit = _get_qubits_by_label([target_label], qubits, n)[0]
ucg = UCGate(single_qubit_gates, up_to_diagonal=True)
circ.append(ucg, [target_qubit] + control_qubits)
return ucg._get_diagonal()
# Append a MCG up to diagonal to the circuit circ. The diagonal should only act on the control
# and target qubits and not on the ancillas. In principle, it would be allowed to act on the
# dirty ancillas on which we perform the isometry (i.e., on the qubits listed in "qubits"
# below). But for simplicity, the current code version ignores this future optimization
# possibility.
def _append_mcg_up_to_diagonal(self, circ, q, gate, control_labels, target_label):
(
q_input,
q_ancillas_for_output,
q_ancillas_zero,
q_ancillas_dirty,
) = self._define_qubit_role(q)
n = int(math.log2(self.iso_data.shape[0]))
qubits = q_input + q_ancillas_for_output
control_qubits = _reverse_qubit_oder(_get_qubits_by_label(control_labels, qubits, n))
target_qubit = _get_qubits_by_label([target_label], qubits, n)[0]
# The qubits on which we neither act nor control on with the MCG, can be used
# as dirty ancillas
ancilla_dirty_labels = [i for i in range(n) if i not in control_labels + [target_label]]
ancillas_dirty = (
_reverse_qubit_oder(_get_qubits_by_label(ancilla_dirty_labels, qubits, n))
+ q_ancillas_dirty
)
mcg_up_to_diag = MCGupDiag(
gate, len(control_qubits), len(q_ancillas_zero), len(ancillas_dirty)
)
circ.append(
mcg_up_to_diag, [target_qubit] + control_qubits + q_ancillas_zero + ancillas_dirty
)
return mcg_up_to_diag._get_diagonal()
def _define_qubit_role(self, q):
n = int(math.log2(self.iso_data.shape[0]))
m = int(math.log2(self.iso_data.shape[1]))
# Define the role of the qubits
q_input = q[:m]
q_ancillas_for_output = q[m:n]
q_ancillas_zero = q[n : n + self.num_ancillas_zero]
q_ancillas_dirty = q[n + self.num_ancillas_zero :]
return q_input, q_ancillas_for_output, q_ancillas_zero, q_ancillas_dirty
def validate_parameter(self, parameter):
"""Isometry parameter has to be an ndarray."""
if isinstance(parameter, np.ndarray):
return parameter
if isinstance(parameter, (list, int)):
return parameter
else:
raise CircuitError(f"invalid param type {type(parameter)} for gate {self.name}")
def inv_gate(self):
"""Return the adjoint of the unitary."""
if self._inverse is None:
# call to generate the circuit that takes the isometry to the first 2^m columns
# of the 2^n identity matrix
iso_circuit = self._gates_to_uncompute()
# invert the circuit to create the circuit implementing the isometry
self._inverse = iso_circuit.to_instruction()
return self._inverse
# Get the qubits in the list qubits corresponding to the labels listed in labels. The total number
# of qubits is given by num_qubits (and determines the convention for the qubit labeling)
# Remark: We labeled the qubits with decreasing significance. So we have to transform the labels to
# be compatible with the standard convention of Qiskit.
def _get_qubits_by_label(labels, qubits, num_qubits):
return [qubits[num_qubits - label - 1] for label in labels]
def _reverse_qubit_oder(qubits):
return list(reversed(qubits))
# Convert list of binary digits to integer
def _get_binary_rep_as_list(n, num_digits):
binary_string = np.binary_repr(n).zfill(num_digits)
binary = []
for line in binary_string:
for c in line:
binary.append(int(c))
return binary[-num_digits:]
| qiskit/qiskit/circuit/library/generalized_gates/isometry.py/0 | {
"file_path": "qiskit/qiskit/circuit/library/generalized_gates/isometry.py",
"repo_id": "qiskit",
"token_count": 6973
} | 178 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Hidden Linear Function circuit."""
from typing import Union, List
import numpy as np
from qiskit.circuit.quantumcircuit import QuantumCircuit
from qiskit.circuit.exceptions import CircuitError
class HiddenLinearFunction(QuantumCircuit):
r"""Circuit to solve the hidden linear function problem.
The 2D Hidden Linear Function problem is determined by a 2D adjacency
matrix A, where only elements that are nearest-neighbor on a grid have
non-zero entries. Each row/column corresponds to one binary variable
:math:`x_i`.
The hidden linear function problem is as follows:
Consider the quadratic form
.. math::
q(x) = \sum_{i,j=1}^{n}{x_i x_j} ~(\mathrm{mod}~ 4)
and restrict :math:`q(x)` onto the nullspace of A. This results in a linear
function.
.. math::
2 \sum_{i=1}^{n}{z_i x_i} ~(\mathrm{mod}~ 4) \forall x \in \mathrm{Ker}(A)
and the goal is to recover this linear function (equivalently a vector
:math:`[z_0, ..., z_{n-1}]`). There can be multiple solutions.
In [1] it is shown that the present circuit solves this problem
on a quantum computer in constant depth, whereas any corresponding
solution on a classical computer would require circuits that grow
logarithmically with :math:`n`. Thus this circuit is an example
of quantum advantage with shallow circuits.
**Reference Circuit:**
.. plot::
from qiskit.circuit.library import HiddenLinearFunction
from qiskit.visualization.library import _generate_circuit_library_visualization
A = [[1, 1, 0], [1, 0, 1], [0, 1, 1]]
circuit = HiddenLinearFunction(A)
_generate_circuit_library_visualization(circuit)
**Reference:**
[1] S. Bravyi, D. Gosset, R. Koenig, Quantum Advantage with Shallow Circuits, 2017.
`arXiv:1704.00690 <https://arxiv.org/abs/1704.00690>`_
"""
def __init__(self, adjacency_matrix: Union[List[List[int]], np.ndarray]) -> None:
"""Create new HLF circuit.
Args:
adjacency_matrix: a symmetric n-by-n list of 0-1 lists.
n will be the number of qubits.
Raises:
CircuitError: If A is not symmetric.
"""
adjacency_matrix = np.asarray(adjacency_matrix)
if not np.allclose(adjacency_matrix, adjacency_matrix.transpose()):
raise CircuitError("The adjacency matrix must be symmetric.")
num_qubits = len(adjacency_matrix)
circuit = QuantumCircuit(num_qubits, name=f"hlf: {adjacency_matrix}")
circuit.h(range(num_qubits))
for i in range(num_qubits):
for j in range(i + 1, num_qubits):
if adjacency_matrix[i][j]:
circuit.cz(i, j)
for i in range(num_qubits):
if adjacency_matrix[i][i]:
circuit.s(i)
circuit.h(range(num_qubits))
super().__init__(*circuit.qregs, name=circuit.name)
self.compose(circuit.to_gate(), qubits=self.qubits, inplace=True)
| qiskit/qiskit/circuit/library/hidden_linear_function.py/0 | {
"file_path": "qiskit/qiskit/circuit/library/hidden_linear_function.py",
"repo_id": "qiskit",
"token_count": 1384
} | 179 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Standard gates
"""
from .h import HGate, CHGate
from .i import IGate
from .p import PhaseGate, CPhaseGate, MCPhaseGate
from .r import RGate
from .rx import RXGate, CRXGate
from .rxx import RXXGate
from .ry import RYGate, CRYGate
from .ryy import RYYGate
from .rz import RZGate, CRZGate
from .rzz import RZZGate
from .rzx import RZXGate
from .xx_minus_yy import XXMinusYYGate
from .xx_plus_yy import XXPlusYYGate
from .ecr import ECRGate
from .s import SGate, SdgGate, CSGate, CSdgGate
from .swap import SwapGate, CSwapGate
from .iswap import iSwapGate
from .sx import SXGate, SXdgGate, CSXGate
from .dcx import DCXGate
from .t import TGate, TdgGate
from .u import UGate, CUGate
from .u1 import U1Gate, CU1Gate, MCU1Gate
from .u2 import U2Gate
from .u3 import U3Gate, CU3Gate
from .x import XGate, CXGate, CCXGate, C3XGate, C3SXGate, C4XGate, RCCXGate, RC3XGate
from .x import MCXGate, MCXGrayCode, MCXRecursive, MCXVChain
from .y import YGate, CYGate
from .z import ZGate, CZGate, CCZGate
from .global_phase import GlobalPhaseGate
from .multi_control_rotation_gates import mcrx, mcry, mcrz
def get_standard_gate_name_mapping():
"""Return a dictionary mapping the name of standard gates and instructions to an object for
that name."""
from qiskit.circuit.parameter import Parameter
from qiskit.circuit.measure import Measure
from qiskit.circuit.delay import Delay
from qiskit.circuit.reset import Reset
# Standard gates library mapping, multicontrolled gates not included since they're
# variable width
gates = [
IGate(),
SXGate(),
XGate(),
CXGate(),
RZGate(Parameter("λ")),
RGate(Parameter("ϴ"), Parameter("φ")),
Reset(),
C3SXGate(),
CCXGate(),
DCXGate(),
CHGate(),
CPhaseGate(Parameter("ϴ")),
CRXGate(Parameter("ϴ")),
CRYGate(Parameter("ϴ")),
CRZGate(Parameter("ϴ")),
CSwapGate(),
CSXGate(),
CUGate(Parameter("ϴ"), Parameter("φ"), Parameter("λ"), Parameter("γ")),
CU1Gate(Parameter("λ")),
CU3Gate(Parameter("ϴ"), Parameter("φ"), Parameter("λ")),
CYGate(),
CZGate(),
CCZGate(),
GlobalPhaseGate(Parameter("ϴ")),
HGate(),
PhaseGate(Parameter("ϴ")),
RCCXGate(),
RC3XGate(),
RXGate(Parameter("ϴ")),
RXXGate(Parameter("ϴ")),
RYGate(Parameter("ϴ")),
RYYGate(Parameter("ϴ")),
RZZGate(Parameter("ϴ")),
RZXGate(Parameter("ϴ")),
XXMinusYYGate(Parameter("ϴ"), Parameter("β")),
XXPlusYYGate(Parameter("ϴ"), Parameter("β")),
ECRGate(),
SGate(),
SdgGate(),
CSGate(),
CSdgGate(),
SwapGate(),
iSwapGate(),
SXdgGate(),
TGate(),
TdgGate(),
UGate(Parameter("ϴ"), Parameter("φ"), Parameter("λ")),
U1Gate(Parameter("λ")),
U2Gate(Parameter("φ"), Parameter("λ")),
U3Gate(Parameter("ϴ"), Parameter("φ"), Parameter("λ")),
YGate(),
ZGate(),
Delay(Parameter("t")),
Measure(),
]
name_mapping = {gate.name: gate for gate in gates}
return name_mapping
| qiskit/qiskit/circuit/library/standard_gates/__init__.py/0 | {
"file_path": "qiskit/qiskit/circuit/library/standard_gates/__init__.py",
"repo_id": "qiskit",
"token_count": 1562
} | 180 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Two-qubit ZX-rotation gate."""
from __future__ import annotations
import math
from typing import Optional
from qiskit.circuit.gate import Gate
from qiskit.circuit.quantumregister import QuantumRegister
from qiskit.circuit.parameterexpression import ParameterValueType, ParameterExpression
from qiskit._accelerate.circuit import StandardGate
class RZXGate(Gate):
r"""A parametric 2-qubit :math:`Z \otimes X` interaction (rotation about ZX).
This gate is maximally entangling at :math:`\theta = \pi/2`.
The cross-resonance gate (CR) for superconducting qubits implements
a ZX interaction (however other terms are also present in an experiment).
Can be applied to a :class:`~qiskit.circuit.QuantumCircuit`
with the :meth:`~qiskit.circuit.QuantumCircuit.rzx` method.
**Circuit Symbol:**
.. parsed-literal::
┌─────────┐
q_0: ┤0 ├
│ Rzx(θ) │
q_1: ┤1 ├
└─────────┘
**Matrix Representation:**
.. math::
\newcommand{\rotationangle}{\frac{\theta}{2}}
R_{ZX}(\theta)\ q_0, q_1 = \exp\left(-i \frac{\theta}{2} X{\otimes}Z\right) =
\begin{pmatrix}
\cos\left(\rotationangle\right) & 0 & -i\sin\left(\rotationangle\right) & 0 \\
0 & \cos\left(\rotationangle\right) & 0 & i\sin\left(\rotationangle\right) \\
-i\sin\left(\rotationangle\right) & 0 & \cos\left(\rotationangle\right) & 0 \\
0 & i\sin\left(\rotationangle\right) & 0 & \cos\left(\rotationangle\right)
\end{pmatrix}
.. note::
In Qiskit's convention, higher qubit indices are more significant
(little endian convention). In the above example we apply the gate
on (q_0, q_1) which results in the :math:`X \otimes Z` tensor order.
Instead, if we apply it on (q_1, q_0), the matrix will
be :math:`Z \otimes X`:
.. parsed-literal::
┌─────────┐
q_0: ┤1 ├
│ Rzx(θ) │
q_1: ┤0 ├
└─────────┘
.. math::
\newcommand{\rotationangle}{\frac{\theta}{2}}
R_{ZX}(\theta)\ q_1, q_0 = exp(-i \frac{\theta}{2} Z{\otimes}X) =
\begin{pmatrix}
\cos(\rotationangle) & -i\sin(\rotationangle) & 0 & 0 \\
-i\sin(\rotationangle) & \cos(\rotationangle) & 0 & 0 \\
0 & 0 & \cos(\rotationangle) & i\sin(\rotationangle) \\
0 & 0 & i\sin(\rotationangle) & \cos(\rotationangle)
\end{pmatrix}
This is a direct sum of RX rotations, so this gate is equivalent to a
uniformly controlled (multiplexed) RX gate:
.. math::
R_{ZX}(\theta)\ q_1, q_0 =
\begin{pmatrix}
RX(\theta) & 0 \\
0 & RX(-\theta)
\end{pmatrix}
**Examples:**
.. math::
R_{ZX}(\theta = 0) = I
.. math::
R_{ZX}(\theta = 2\pi) = -I
.. math::
R_{ZX}(\theta = \pi) = -i Z \otimes X
.. math::
RZX(\theta = \frac{\pi}{2}) = \frac{1}{\sqrt{2}}
\begin{pmatrix}
1 & 0 & -i & 0 \\
0 & 1 & 0 & i \\
-i & 0 & 1 & 0 \\
0 & i & 0 & 1
\end{pmatrix}
"""
_standard_gate = StandardGate.RZXGate
def __init__(
self, theta: ParameterValueType, label: Optional[str] = None, *, duration=None, unit="dt"
):
"""Create new RZX gate."""
super().__init__("rzx", 2, [theta], label=label, duration=duration, unit=unit)
def _define(self):
"""
gate rzx(theta) a, b { h b; cx a, b; u1(theta) b; cx a, b; h b;}
"""
# pylint: disable=cyclic-import
from qiskit.circuit.quantumcircuit import QuantumCircuit
from .h import HGate
from .x import CXGate
from .rz import RZGate
# q_0: ───────■─────────────■───────
# ┌───┐┌─┴─┐┌───────┐┌─┴─┐┌───┐
# q_1: ┤ H ├┤ X ├┤ Rz(0) ├┤ X ├┤ H ├
# └───┘└───┘└───────┘└───┘└───┘
theta = self.params[0]
q = QuantumRegister(2, "q")
qc = QuantumCircuit(q, name=self.name)
rules = [
(HGate(), [q[1]], []),
(CXGate(), [q[0], q[1]], []),
(RZGate(theta), [q[1]], []),
(CXGate(), [q[0], q[1]], []),
(HGate(), [q[1]], []),
]
for instr, qargs, cargs in rules:
qc._append(instr, qargs, cargs)
self.definition = qc
def control(
self,
num_ctrl_qubits: int = 1,
label: str | None = None,
ctrl_state: str | int | None = None,
annotated: bool | None = None,
):
"""Return a (multi-)controlled-RZX gate.
Args:
num_ctrl_qubits: number of control qubits.
label: An optional label for the gate [Default: ``None``]
ctrl_state: control state expressed as integer,
string (e.g.``'110'``), or ``None``. If ``None``, use all 1s.
annotated: indicates whether the controlled gate should be implemented
as an annotated gate. If ``None``, this is set to ``True`` if
the gate contains free parameters, in which case it cannot
yet be synthesized.
Returns:
ControlledGate: controlled version of this gate.
"""
if annotated is None:
annotated = any(isinstance(p, ParameterExpression) for p in self.params)
gate = super().control(
num_ctrl_qubits=num_ctrl_qubits,
label=label,
ctrl_state=ctrl_state,
annotated=annotated,
)
return gate
def inverse(self, annotated: bool = False):
"""Return inverse RZX gate (i.e. with the negative rotation angle).
Args:
annotated: when set to ``True``, this is typically used to return an
:class:`.AnnotatedOperation` with an inverse modifier set instead of a concrete
:class:`.Gate`. However, for this class this argument is ignored as the inverse
of this gate is always a :class:`.RZXGate` with an inverted parameter value.
Returns:
RZXGate: inverse gate.
"""
return RZXGate(-self.params[0])
def __array__(self, dtype=None, copy=None):
"""Return a numpy.array for the RZX gate."""
import numpy
if copy is False:
raise ValueError("unable to avoid copy while creating an array as requested")
half_theta = float(self.params[0]) / 2
cos = math.cos(half_theta)
isin = 1j * math.sin(half_theta)
return numpy.array(
[[cos, 0, -isin, 0], [0, cos, 0, isin], [-isin, 0, cos, 0], [0, isin, 0, cos]],
dtype=dtype,
)
def power(self, exponent: float, annotated: bool = False):
(theta,) = self.params
return RZXGate(exponent * theta)
def __eq__(self, other):
if isinstance(other, RZXGate):
return self._compare_parameters(other)
return False
| qiskit/qiskit/circuit/library/standard_gates/rzx.py/0 | {
"file_path": "qiskit/qiskit/circuit/library/standard_gates/rzx.py",
"repo_id": "qiskit",
"token_count": 3993
} | 181 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# pylint: disable=bad-docstring-quotes,invalid-name
"""Quantum circuit object."""
from __future__ import annotations
import collections.abc
import copy as _copy
import itertools
import multiprocessing as mp
import typing
from collections import OrderedDict, defaultdict, namedtuple
from typing import (
Union,
Optional,
Tuple,
Type,
TypeVar,
Sequence,
Callable,
Mapping,
Iterable,
Any,
DefaultDict,
Literal,
overload,
)
import numpy as np
from qiskit._accelerate.circuit import CircuitData
from qiskit._accelerate.circuit import StandardGate
from qiskit.exceptions import QiskitError
from qiskit.utils.multiprocessing import is_main_process
from qiskit.circuit.instruction import Instruction
from qiskit.circuit.gate import Gate
from qiskit.circuit.parameter import Parameter
from qiskit.circuit.exceptions import CircuitError
from qiskit.utils import deprecate_func
from . import _classical_resource_map
from .controlflow import ControlFlowOp, _builder_utils
from .controlflow.builder import CircuitScopeInterface, ControlFlowBuilderBlock
from .controlflow.break_loop import BreakLoopOp, BreakLoopPlaceholder
from .controlflow.continue_loop import ContinueLoopOp, ContinueLoopPlaceholder
from .controlflow.for_loop import ForLoopOp, ForLoopContext
from .controlflow.if_else import IfElseOp, IfContext
from .controlflow.switch_case import SwitchCaseOp, SwitchContext
from .controlflow.while_loop import WhileLoopOp, WhileLoopContext
from .classical import expr, types
from .parameterexpression import ParameterExpression, ParameterValueType
from .quantumregister import QuantumRegister, Qubit, AncillaRegister, AncillaQubit
from .classicalregister import ClassicalRegister, Clbit
from .parametertable import ParameterView
from .parametervector import ParameterVector
from .instructionset import InstructionSet
from .operation import Operation
from .register import Register
from .bit import Bit
from .quantumcircuitdata import QuantumCircuitData, CircuitInstruction
from .delay import Delay
from .store import Store
if typing.TYPE_CHECKING:
import qiskit # pylint: disable=cyclic-import
from qiskit.transpiler.layout import TranspileLayout # pylint: disable=cyclic-import
from qiskit.quantum_info.operators.base_operator import BaseOperator
from qiskit.quantum_info.states.statevector import Statevector # pylint: disable=cyclic-import
BitLocations = namedtuple("BitLocations", ("index", "registers"))
# The following types are not marked private to avoid leaking this "private/public" abstraction out
# into the documentation. They are not imported by circuit.__init__, nor are they meant to be.
# Arbitrary type variables for marking up generics.
S = TypeVar("S")
T = TypeVar("T")
# Types that can be coerced to a valid Qubit specifier in a circuit.
QubitSpecifier = Union[
Qubit,
QuantumRegister,
int,
slice,
Sequence[Union[Qubit, int]],
]
# Types that can be coerced to a valid Clbit specifier in a circuit.
ClbitSpecifier = Union[
Clbit,
ClassicalRegister,
int,
slice,
Sequence[Union[Clbit, int]],
]
# Generic type which is either :obj:`~Qubit` or :obj:`~Clbit`, used to specify types of functions
# which operate on either type of bit, but not both at the same time.
BitType = TypeVar("BitType", Qubit, Clbit)
# NOTE:
#
# If you're adding methods or attributes to `QuantumCircuit`, be sure to update the class docstring
# to document them in a suitable place. The class is huge, so we do its documentation manually so
# it has at least some amount of organizational structure.
class QuantumCircuit:
"""Core Qiskit representation of a quantum circuit.
.. note::
For more details setting the :class:`QuantumCircuit` in context of all of the data
structures that go with it, how it fits into the rest of the :mod:`qiskit` package, and the
different regimes of quantum-circuit descriptions in Qiskit, see the module-level
documentation of :mod:`qiskit.circuit`.
Circuit attributes
==================
:class:`QuantumCircuit` has a small number of public attributes, which are mostly older
functionality. Most of its functionality is accessed through methods.
A small handful of the attributes are intentionally mutable, the rest are data attributes that
should be considered immutable.
========================= ======================================================================
Mutable attribute Summary
========================= ======================================================================
:attr:`global_phase` The global phase of the circuit, measured in radians.
:attr:`metadata` Arbitrary user mapping, which Qiskit will preserve through the
transpiler, but otherwise completely ignore.
:attr:`name` An optional string name for the circuit.
========================= ======================================================================
========================= ======================================================================
Immutable data attribute Summary
========================= ======================================================================
:attr:`ancillas` List of :class:`AncillaQubit`\\ s tracked by the circuit.
:attr:`calibrations` Custom user-supplied pulse calibrations for individual instructions.
:attr:`cregs` List of :class:`ClassicalRegister`\\ s tracked by the circuit.
:attr:`clbits` List of :class:`Clbit`\\ s tracked by the circuit.
:attr:`data` List of individual :class:`CircuitInstruction`\\ s that make up the
circuit.
:attr:`duration` Total duration of the circuit, added by scheduling transpiler passes.
:attr:`layout` Hardware layout and routing information added by the transpiler.
:attr:`num_ancillas` The number of ancilla qubits in the circuit.
:attr:`num_clbits` The number of clbits in the circuit.
:attr:`num_captured_vars` Number of captured real-time classical variables.
:attr:`num_declared_vars` Number of locally declared real-time classical variables in the outer
circuit scope.
:attr:`num_input_vars` Number of input real-time classical variables.
:attr:`num_parameters` Number of compile-time :class:`Parameter`\\ s in the circuit.
:attr:`num_qubits` Number of qubits in the circuit.
:attr:`num_vars` Total number of real-time classical variables in the outer circuit
scope.
:attr:`op_start_times` Start times of scheduled operations, added by scheduling transpiler
passes.
:attr:`parameters` Ordered set-like view of the compile-time :class:`Parameter`\\ s
tracked by the circuit.
:attr:`qregs` List of :class:`QuantumRegister`\\ s tracked by the circuit.
:attr:`qubits` List of :class:`Qubit`\\ s tracked by the circuit.
:attr:`unit` The unit of the :attr:`duration` field.
========================= ======================================================================
The core attribute is :attr:`data`. This is a sequence-like object that exposes the
:class:`CircuitInstruction`\\ s contained in an ordered form. You generally should not mutate
this object directly; :class:`QuantumCircuit` is only designed for append-only operations (which
should use :meth:`append`). Most operations that mutate circuits in place should be written as
transpiler passes (:mod:`qiskit.transpiler`).
.. autoattribute:: data
Alongside the :attr:`data`, the :attr:`global_phase` of a circuit can have some impact on its
output, if the circuit is used to describe a :class:`.Gate` that may be controlled. This is
measured in radians and is directly settable.
.. autoattribute:: global_phase
The :attr:`name` of a circuit becomes the name of the :class:`~.circuit.Instruction` or
:class:`.Gate` resulting from :meth:`to_instruction` and :meth:`to_gate` calls, which can be
handy for visualizations.
.. autoattribute:: name
You can attach arbitrary :attr:`metadata` to a circuit. No part of core Qiskit will inspect
this or change its behavior based on metadata, but it will be faithfully passed through the
transpiler, so you can tag your circuits yourself. When serializing a circuit with QPY (see
:mod:`qiskit.qpy`), the metadata will be JSON-serialized and you may need to pass a custom
serializer to handle non-JSON-compatible objects within it (see :func:`.qpy.dump` for more
detail). This field is ignored during export to OpenQASM 2 or 3.
.. autoattribute:: metadata
:class:`QuantumCircuit` exposes data attributes tracking its internal quantum and classical bits
and registers. These appear as Python :class:`list`\\ s, but you should treat them as
immutable; changing them will *at best* have no effect, and more likely will simply corrupt
the internal data of the :class:`QuantumCircuit`.
.. autoattribute:: qregs
.. autoattribute:: cregs
.. autoattribute:: qubits
.. autoattribute:: ancillas
.. autoattribute:: clbits
The :ref:`compile-time parameters <circuit-compile-time-parameters>` present in instructions on
the circuit are available in :attr:`parameters`. This has a canonical order (mostly lexical,
except in the case of :class:`.ParameterVector`), which matches the order that parameters will
be assigned when using the list forms of :meth:`assign_parameters`, but also supports
:class:`set`-like constant-time membership testing.
.. autoattribute:: parameters
The storage of any :ref:`manual pulse-level calibrations <circuit-calibrations>` for individual
instructions on the circuit is in :attr:`calibrations`. This presents as a :class:`dict`, but
should not be mutated directly; use the methods discussed in :ref:`circuit-calibrations`.
.. autoattribute:: calibrations
If you have transpiled your circuit, so you have a physical circuit, you can inspect the
:attr:`layout` attribute for information stored by the transpiler about how the virtual qubits
of the source circuit map to the hardware qubits of your physical circuit, both at the start and
end of the circuit.
.. autoattribute:: layout
If your circuit was also *scheduled* as part of a transpilation, it will expose the individual
timings of each instruction, along with the total :attr:`duration` of the circuit.
.. autoattribute:: duration
.. autoattribute:: unit
.. autoattribute:: op_start_times
Finally, :class:`QuantumCircuit` exposes several simple properties as dynamic read-only numeric
attributes.
.. autoattribute:: num_ancillas
.. autoattribute:: num_clbits
.. autoattribute:: num_captured_vars
.. autoattribute:: num_declared_vars
.. autoattribute:: num_input_vars
.. autoattribute:: num_parameters
.. autoattribute:: num_qubits
.. autoattribute:: num_vars
Creating new circuits
=====================
========================= =====================================================================
Method Summary
========================= =====================================================================
:meth:`__init__` Default constructor of no-instruction circuits.
:meth:`copy` Make a complete copy of an existing circuit.
:meth:`copy_empty_like` Copy data objects from one circuit into a new one without any
instructions.
:meth:`from_instructions` Infer data objects needed from a list of instructions.
:meth:`from_qasm_file` Legacy interface to :func:`.qasm2.load`.
:meth:`from_qasm_str` Legacy interface to :func:`.qasm2.loads`.
========================= =====================================================================
The default constructor (``QuantumCircuit(...)``) produces a circuit with no initial
instructions. The arguments to the default constructor can be used to seed the circuit with
quantum and classical data storage, and to provide a name, global phase and arbitrary metadata.
All of these fields can be expanded later.
.. automethod:: __init__
If you have an existing circuit, you can produce a copy of it using :meth:`copy`, including all
its instructions. This is useful if you want to keep partial circuits while extending another,
or to have a version you can mutate in-place while leaving the prior one intact.
.. automethod:: copy
Similarly, if you want a circuit that contains all the same data objects (bits, registers,
variables, etc) but with none of the instructions, you can use :meth:`copy_empty_like`. This is
quite common when you want to build up a new layer of a circuit to then use apply onto the back
with :meth:`compose`, or to do a full rewrite of a circuit's instructions.
.. automethod:: copy_empty_like
In some cases, it is most convenient to generate a list of :class:`.CircuitInstruction`\\ s
separately to an entire circuit context, and then to build a circuit from this. The
:meth:`from_instructions` constructor will automatically capture all :class:`.Qubit` and
:class:`.Clbit` instances used in the instructions, and create a new :class:`QuantumCircuit`
object that has the correct resources and all the instructions.
.. automethod:: from_instructions
:class:`QuantumCircuit` also still has two constructor methods that are legacy wrappers around
the importers in :mod:`qiskit.qasm2`. These automatically apply :ref:`the legacy compatibility
settings <qasm2-legacy-compatibility>` of :func:`~.qasm2.load` and :func:`~.qasm2.loads`.
.. automethod:: from_qasm_file
.. automethod:: from_qasm_str
Data objects on circuits
========================
.. _circuit-adding-data-objects:
Adding data objects
-------------------
============================= =================================================================
Method Adds this kind of data
============================= =================================================================
:meth:`add_bits` :class:`.Qubit`\\ s and :class:`.Clbit`\\ s.
:meth:`add_register` :class:`.QuantumRegister` and :class:`.ClassicalRegister`.
:meth:`add_var` :class:`~.expr.Var` nodes with local scope and initializers.
:meth:`add_input` :class:`~.expr.Var` nodes that are treated as circuit inputs.
:meth:`add_capture` :class:`~.expr.Var` nodes captured from containing scopes.
:meth:`add_uninitialized_var` :class:`~.expr.Var` nodes with local scope and undefined state.
============================= =================================================================
Typically you add most of the data objects (:class:`.Qubit`, :class:`.Clbit`,
:class:`.ClassicalRegister`, etc) to the circuit as part of using the :meth:`__init__` default
constructor, or :meth:`copy_empty_like`. However, it is also possible to add these afterwards.
Typed classical data, such as standalone :class:`~.expr.Var` nodes (see
:ref:`circuit-repr-real-time-classical`), can be both constructed and added with separate
methods.
New registerless :class:`.Qubit` and :class:`.Clbit` objects are added using :meth:`add_bits`.
These objects must not already be present in the circuit. You can check if a bit exists in the
circuit already using :meth:`find_bit`.
.. automethod:: add_bits
Registers are added to the circuit with :meth:`add_register`. In this method, it is not an
error if some of the bits are already present in the circuit. In this case, the register will
be an "alias" over the bits. This is not generally well-supported by hardware backends; it is
probably best to stay away from relying on it. The registers a given bit is in are part of the
return of :meth:`find_bit`.
.. automethod:: add_register
:ref:`Real-time, typed classical data <circuit-repr-real-time-classical>` is represented on the
circuit by :class:`~.expr.Var` nodes with a well-defined :class:`~.types.Type`. It is possible
to instantiate these separately to a circuit (see :meth:`.Var.new`), but it is often more
convenient to use circuit methods that will automatically manage the types and expression
initialization for you. The two most common methods are :meth:`add_var` (locally scoped
variables) and :meth:`add_input` (inputs to the circuit).
.. automethod:: add_var
.. automethod:: add_input
In addition, there are two lower-level methods that can be useful for programmatic generation of
circuits. When working interactively, you will most likely not need these; most uses of
:meth:`add_uninitialized_var` are part of :meth:`copy_empty_like`, and most uses of
:meth:`add_capture` would be better off using :ref:`the control-flow builder interface
<circuit-control-flow-methods>`.
.. automethod:: add_uninitialized_var
.. automethod:: add_capture
Working with bits and registers
-------------------------------
A :class:`.Bit` instance is, on its own, just a unique handle for circuits to use in their own
contexts. If you have got a :class:`.Bit` instance and a circuit, just can find the contexts
that the bit exists in using :meth:`find_bit`, such as its integer index in the circuit and any
registers it is contained in.
.. automethod:: find_bit
Similarly, you can query a circuit to see if a register has already been added to it by using
:meth:`has_register`.
.. automethod:: has_register
Working with compile-time parameters
------------------------------------
.. seealso::
:ref:`circuit-compile-time-parameters`
A more complete discussion of what compile-time parametrization is, and how it fits into
Qiskit's data model.
Unlike bits, registers, and real-time typed classical data, compile-time symbolic parameters are
not manually added to a circuit. Their presence is inferred by being contained in operations
added to circuits and the global phase. An ordered list of all parameters currently in a
circuit is at :attr:`QuantumCircuit.parameters`.
The most common operation on :class:`.Parameter` instances is to replace them in symbolic
operations with some numeric value, or another symbolic expression. This is done with
:meth:`assign_parameters`.
.. automethod:: assign_parameters
The circuit tracks parameters by :class:`.Parameter` instances themselves, and forbids having
multiple parameters of the same name to avoid some problems when interoperating with OpenQASM or
other external formats. You can use :meth:`has_parameter` and :meth:`get_parameter` to query
the circuit for a parameter with the given string name.
.. automethod:: has_parameter
.. automethod:: get_parameter
.. _circuit-real-time-methods:
Working with real-time typed classical data
-------------------------------------------
.. seealso::
:mod:`qiskit.circuit.classical`
Module-level documentation for how the variable-, expression- and type-systems work, the
objects used to represent them, and the classical operations available.
:ref:`circuit-repr-real-time-classical`
A discussion of how real-time data fits into the entire :mod:`qiskit.circuit` data model
as a whole.
:ref:`circuit-adding-data-objects`
The methods for adding new :class:`~.expr.Var` variables to a circuit after
initialization.
You can retrive a :class:`~.expr.Var` instance attached to a circuit by using its variable name
using :meth:`get_var`, or check if a circuit contains a given variable with :meth:`has_var`.
.. automethod:: get_var
.. automethod:: has_var
There are also several iterator methods that you can use to get the full set of variables
tracked by a circuit. At least one of :meth:`iter_input_vars` and :meth:`iter_captured_vars`
will be empty, as inputs and captures are mutually exclusive. All of the iterators have
corresponding dynamic properties on :class:`QuantumCircuit` that contain their length:
:attr:`num_vars`, :attr:`num_input_vars`, :attr:`num_captured_vars` and
:attr:`num_declared_vars`.
.. automethod:: iter_vars
.. automethod:: iter_input_vars
.. automethod:: iter_captured_vars
.. automethod:: iter_declared_vars
.. _circuit-adding-operations:
Adding operations to circuits
=============================
You can add anything that implements the :class:`.Operation` interface to a circuit as a single
instruction, though most things you will want to add will be :class:`~.circuit.Instruction` or
:class:`~.circuit.Gate` instances.
.. seealso::
:ref:`circuit-operations-instructions`
The :mod:`qiskit.circuit`-level documentation on the different interfaces that Qiskit
uses to define circuit-level instructions.
.. _circuit-append-compose:
Methods to add general operations
---------------------------------
These are the base methods that handle adding any object, including user-defined ones, onto
circuits.
=============== ===============================================================================
Method When to use it
=============== ===============================================================================
:meth:`append` Add an instruction as a single object onto a circuit.
:meth:`_append` Same as :meth:`append`, but a low-level interface that elides almost all error
checking.
:meth:`compose` Inline the instructions from one circuit onto another.
:meth:`tensor` Like :meth:`compose`, but strictly for joining circuits that act on disjoint
qubits.
=============== ===============================================================================
:class:`QuantumCircuit` has two main ways that you will add more operations onto a circuit.
Which to use depends on whether you want to add your object as a single "instruction"
(:meth:`append`), or whether you want to join the instructions from two circuits together
(:meth:`compose`).
A single instruction or operation appears as a single entry in the :attr:`data` of the circuit,
and as a single box when drawn in the circuit visualizers (see :meth:`draw`). A single
instruction is the "unit" that a hardware backend might be defined in terms of (see
:class:`.Target`). An :class:`~.circuit.Instruction` can come with a
:attr:`~.circuit.Instruction.definition`, which is one rule the transpiler (see
:mod:`qiskit.transpiler`) will be able to fall back on to decompose it for hardware, if needed.
An :class:`.Operation` that is not also an :class:`~.circuit.Instruction` can
only be decomposed if it has some associated high-level synthesis method registered for it (see
:mod:`qiskit.transpiler.passes.synthesis.plugin`).
A :class:`QuantumCircuit` alone is not a single :class:`~.circuit.Instruction`; it is rather
more complicated, since it can, in general, represent a complete program with typed classical
memory inputs and outputs, and control flow. Qiskit's (and most hardware's) data model does not
yet have the concept of re-usable callable subroutines with virtual quantum operands. You can
convert simple circuits that act only on qubits with unitary operations into a :class:`.Gate`
using :meth:`to_gate`, and simple circuits acting only on qubits and clbits into a
:class:`~.circuit.Instruction` with :meth:`to_instruction`.
When you have an :class:`.Operation`, :class:`~.circuit.Instruction`, or :class:`.Gate`, add it
to the circuit, specifying the qubit and clbit arguments with :meth:`append`.
.. automethod:: append
:meth:`append` does quite substantial error checking to ensure that you cannot accidentally
break the data model of :class:`QuantumCircuit`. If you are programmatically generating a
circuit from known-good data, you can elide much of this error checking by using the fast-path
appender :meth:`_append`, but at the risk that the caller is responsible for ensuring they are
passing only valid data.
.. automethod:: _append
In other cases, you may want to join two circuits together, applying the instructions from one
circuit onto specified qubits and clbits on another circuit. This "inlining" operation is
called :meth:`compose` in Qiskit. :meth:`compose` is, in general, more powerful than
a :meth:`to_instruction`-plus-:meth:`append` combination for joining two circuits, because it
can also link typed classical data together, and allows for circuit control-flow operations to
be joined onto another circuit.
The downsides to :meth:`compose` are that it is a more complex operation that can involve more
rewriting of the operand, and that it necessarily must move data from one circuit object to
another. If you are building up a circuit for yourself and raw performance is a core goal,
consider passing around your base circuit and having different parts of your algorithm write
directly to the base circuit, rather than building a temporary layer circuit.
.. automethod:: compose
If you are trying to join two circuits that will apply to completely disjoint qubits and clbits,
:meth:`tensor` is a convenient wrapper around manually adding bit objects and calling
:meth:`compose`.
.. automethod:: tensor
As some rules of thumb:
* If you have a single :class:`.Operation`, :class:`~.circuit.Instruction` or :class:`.Gate`,
you should definitely use :meth:`append` or :meth:`_append`.
* If you have a :class:`QuantumCircuit` that represents a single atomic instruction for a larger
circuit that you want to re-use, you probably want to call :meth:`to_instruction` or
:meth:`to_gate`, and then apply the result of that to the circuit using :meth:`append`.
* If you have a :class:`QuantumCircuit` that represents a larger "layer" of another circuit, or
contains typed classical variables or control flow, you should use :meth:`compose` to merge it
onto another circuit.
* :meth:`tensor` is wanted far more rarely than either :meth:`append` or :meth:`compose`.
Internally, it is mostly a wrapper around :meth:`add_bits` and :meth:`compose`.
Some potential pitfalls to beware of:
* Even if you re-use a custom :class:`~.circuit.Instruction` during circuit construction, the
transpiler will generally have to "unroll" each invocation of it to its inner decomposition
before beginning work on it. This should not prevent you from using the
:meth:`to_instruction`-plus-:meth:`append` pattern, as the transpiler will improve in this
regard over time.
* :meth:`compose` will, by default, produce a new circuit for backwards compatibility. This is
more expensive, and not usually what you want, so you should set ``inplace=True``.
* Both :meth:`append` and :meth:`compose` (but not :meth:`_append`) have a ``copy`` keyword
argument that defaults to ``True``. In these cases, the incoming :class:`.Operation`
instances will be copied if Qiskit detects that the objects have mutability about them (such
as taking gate parameters). If you are sure that you will not re-use the objects again in
other places, you should set ``copy=False`` to prevent this copying, which can be a
substantial speed-up for large objects.
Methods to add standard instructions
------------------------------------
The :class:`QuantumCircuit` class has helper methods to add many of the Qiskit standard-library
instructions and gates onto a circuit. These are generally equivalent to manually constructing
an instance of the relevent :mod:`qiskit.circuit.library` object, then passing that to
:meth:`append` with the remaining arguments placed into the ``qargs`` and ``cargs`` fields as
appropriate.
The following methods apply special non-unitary :class:`~.circuit.Instruction` operations to the
circuit:
=============================== ====================================================
:class:`QuantumCircuit` method :mod:`qiskit.circuit` :class:`~.circuit.Instruction`
=============================== ====================================================
:meth:`barrier` :class:`Barrier`
:meth:`delay` :class:`Delay`
:meth:`initialize` :class:`~library.Initialize`
:meth:`measure` :class:`Measure`
:meth:`reset` :class:`Reset`
:meth:`store` :class:`Store`
=============================== ====================================================
These methods apply uncontrolled unitary :class:`.Gate` instances to the circuit:
=============================== ============================================
:class:`QuantumCircuit` method :mod:`qiskit.circuit.library` :class:`.Gate`
=============================== ============================================
:meth:`dcx` :class:`~library.DCXGate`
:meth:`ecr` :class:`~library.ECRGate`
:meth:`h` :class:`~library.HGate`
:meth:`id` :class:`~library.IGate`
:meth:`iswap` :class:`~library.iSwapGate`
:meth:`ms` :class:`~library.MSGate`
:meth:`p` :class:`~library.PhaseGate`
:meth:`pauli` :class:`~library.PauliGate`
:meth:`prepare_state` :class:`~library.StatePreparation`
:meth:`r` :class:`~library.RGate`
:meth:`rcccx` :class:`~library.RC3XGate`
:meth:`rccx` :class:`~library.RCCXGate`
:meth:`rv` :class:`~library.RVGate`
:meth:`rx` :class:`~library.RXGate`
:meth:`rxx` :class:`~library.RXXGate`
:meth:`ry` :class:`~library.RYGate`
:meth:`ryy` :class:`~library.RYYGate`
:meth:`rz` :class:`~library.RZGate`
:meth:`rzx` :class:`~library.RZXGate`
:meth:`rzz` :class:`~library.RZZGate`
:meth:`s` :class:`~library.SGate`
:meth:`sdg` :class:`~library.SdgGate`
:meth:`swap` :class:`~library.SwapGate`
:meth:`sx` :class:`~library.SXGate`
:meth:`sxdg` :class:`~library.SXdgGate`
:meth:`t` :class:`~library.TGate`
:meth:`tdg` :class:`~library.TdgGate`
:meth:`u` :class:`~library.UGate`
:meth:`unitary` :class:`~library.UnitaryGate`
:meth:`x` :class:`~library.XGate`
:meth:`y` :class:`~library.YGate`
:meth:`z` :class:`~library.ZGate`
=============================== ============================================
The following methods apply :class:`Gate` instances that are also controlled gates, so are
direct subclasses of :class:`ControlledGate`:
=============================== ======================================================
:class:`QuantumCircuit` method :mod:`qiskit.circuit.library` :class:`.ControlledGate`
=============================== ======================================================
:meth:`ccx` :class:`~library.CCXGate`
:meth:`ccz` :class:`~library.CCZGate`
:meth:`ch` :class:`~library.CHGate`
:meth:`cp` :class:`~library.CPhaseGate`
:meth:`crx` :class:`~library.CRXGate`
:meth:`cry` :class:`~library.CRYGate`
:meth:`crz` :class:`~library.CRZGate`
:meth:`cs` :class:`~library.CSGate`
:meth:`csdg` :class:`~library.CSdgGate`
:meth:`cswap` :class:`~library.CSwapGate`
:meth:`csx` :class:`~library.CSXGate`
:meth:`cu` :class:`~library.CUGate`
:meth:`cx` :class:`~library.CXGate`
:meth:`cy` :class:`~library.CYGate`
:meth:`cz` :class:`~library.CZGate`
=============================== ======================================================
Finally, these methods apply particular generalized multiply controlled gates to the circuit,
often with eager syntheses. They are listed in terms of the *base* gate they are controlling,
since their exact output is often a synthesized version of a gate.
=============================== =================================================
:class:`QuantumCircuit` method Base :mod:`qiskit.circuit.library` :class:`.Gate`
=============================== =================================================
:meth:`mcp` :class:`~library.PhaseGate`
:meth:`mcrx` :class:`~library.RXGate`
:meth:`mcry` :class:`~library.RYGate`
:meth:`mcrz` :class:`~library.RZGate`
:meth:`mcx` :class:`~library.XGate`
=============================== =================================================
The rest of this section is the API listing of all the individual methods; the tables above are
summaries whose links will jump you to the correct place.
.. automethod:: barrier
.. automethod:: ccx
.. automethod:: ccz
.. automethod:: ch
.. automethod:: cp
.. automethod:: crx
.. automethod:: cry
.. automethod:: crz
.. automethod:: cs
.. automethod:: csdg
.. automethod:: cswap
.. automethod:: csx
.. automethod:: cu
.. automethod:: cx
.. automethod:: cy
.. automethod:: cz
.. automethod:: dcx
.. automethod:: delay
.. automethod:: ecr
.. automethod:: h
.. automethod:: id
.. automethod:: initialize
.. automethod:: iswap
.. automethod:: mcp
.. automethod:: mcrx
.. automethod:: mcry
.. automethod:: mcrz
.. automethod:: mcx
.. automethod:: measure
.. automethod:: ms
.. automethod:: p
.. automethod:: pauli
.. automethod:: prepare_state
.. automethod:: r
.. automethod:: rcccx
.. automethod:: rccx
.. automethod:: reset
.. automethod:: rv
.. automethod:: rx
.. automethod:: rxx
.. automethod:: ry
.. automethod:: ryy
.. automethod:: rz
.. automethod:: rzx
.. automethod:: rzz
.. automethod:: s
.. automethod:: sdg
.. automethod:: store
.. automethod:: swap
.. automethod:: sx
.. automethod:: sxdg
.. automethod:: t
.. automethod:: tdg
.. automethod:: u
.. automethod:: unitary
.. automethod:: x
.. automethod:: y
.. automethod:: z
.. _circuit-control-flow-methods:
Adding control flow to circuits
-------------------------------
.. seealso::
:ref:`circuit-control-flow-repr`
Discussion of how control-flow operations are represented in the whole :mod:`qiskit.circuit`
context.
============================== ================================================================
:class:`QuantumCircuit` method Control-flow instruction
============================== ================================================================
:meth:`if_test` :class:`.IfElseOp` with only a ``True`` body.
:meth:`if_else` :class:`.IfElseOp` with both ``True`` and ``False`` bodies.
:meth:`while_loop` :class:`.WhileLoopOp`.
:meth:`switch` :class:`.SwitchCaseOp`.
:meth:`for_loop` :class:`.ForLoopOp`.
:meth:`break_loop` :class:`.BreakLoopOp`.
:meth:`continue_loop` :class:`.ContinueLoopOp`.
============================== ================================================================
:class:`QuantumCircuit` has corresponding methods for all of the control-flow operations that
are supported by Qiskit. These have two forms for calling them. The first is a very
straightfowards convenience wrapper that takes in the block bodies of the instructions as
:class:`QuantumCircuit` arguments, and simply constructs and appends the corresponding
:class:`.ControlFlowOp`.
The second form, which we strongly recommend you use for constructing control flow, is called
*the builder interface*. Here, the methods take only the real-time discriminant of the
operation, and return `context managers
<https://docs.python.org/3/library/stdtypes.html#typecontextmanager>`__ that you enter using
``with``. You can then use regular :class:`QuantumCircuit` methods within those blocks to build
up the control-flow bodies, and Qiskit will automatically track which of the data resources are
needed for the inner blocks, building the complete :class:`.ControlFlowOp` as you leave the
``with`` statement. It is far simpler and less error-prone to build control flow
programmatically this way.
..
TODO: expand the examples of the builder interface.
.. automethod:: break_loop
.. automethod:: continue_loop
.. automethod:: for_loop
.. automethod:: if_else
.. automethod:: if_test
.. automethod:: switch
.. automethod:: while_loop
Converting circuits to single objects
-------------------------------------
As discussed in :ref:`circuit-append-compose`, you can convert a circuit to either an
:class:`~.circuit.Instruction` or a :class:`.Gate` using two helper methods.
.. automethod:: to_instruction
.. automethod:: to_gate
Helper mutation methods
-----------------------
There are two higher-level methods on :class:`QuantumCircuit` for appending measurements to the
end of a circuit. Note that by default, these also add an extra register.
.. automethod:: measure_active
.. automethod:: measure_all
There are two "subtractive" methods on :class:`QuantumCircuit` as well. This is not a use-case
that :class:`QuantumCircuit` is designed for; typically you should just look to use
:meth:`copy_empty_like` in place of :meth:`clear`, and run :meth:`remove_final_measurements` as
its transpiler-pass form :class:`.RemoveFinalMeasurements`.
.. automethod:: clear
.. automethod:: remove_final_measurements
.. _circuit-calibrations:
Manual calibration of instructions
----------------------------------
:class:`QuantumCircuit` can store :attr:`calibrations` of instructions that define the pulses
used to run them on one particular hardware backend. You can
.. automethod:: add_calibration
.. automethod:: has_calibration_for
Circuit properties
==================
Simple circuit metrics
----------------------
When constructing quantum circuits, there are several properties that help quantify
the "size" of the circuits, and their ability to be run on a noisy quantum device.
Some of these, like number of qubits, are straightforward to understand, while others
like depth and number of tensor components require a bit more explanation. Here we will
explain all of these properties, and, in preparation for understanding how circuits change
when run on actual devices, highlight the conditions under which they change.
Consider the following circuit:
.. plot::
:include-source:
from qiskit import QuantumCircuit
qc = QuantumCircuit(12)
for idx in range(5):
qc.h(idx)
qc.cx(idx, idx+5)
qc.cx(1, 7)
qc.x(8)
qc.cx(1, 9)
qc.x(7)
qc.cx(1, 11)
qc.swap(6, 11)
qc.swap(6, 9)
qc.swap(6, 10)
qc.x(6)
qc.draw('mpl')
From the plot, it is easy to see that this circuit has 12 qubits, and a collection of
Hadamard, CNOT, X, and SWAP gates. But how to quantify this programmatically? Because we
can do single-qubit gates on all the qubits simultaneously, the number of qubits in this
circuit is equal to the :meth:`width` of the circuit::
assert qc.width() == 12
We can also just get the number of qubits directly using :attr:`num_qubits`::
assert qc.num_qubits == 12
.. important::
For a quantum circuit composed from just qubits, the circuit width is equal
to the number of qubits. This is the definition used in quantum computing. However,
for more complicated circuits with classical registers, and classically controlled gates,
this equivalence breaks down. As such, from now on we will not refer to the number of
qubits in a quantum circuit as the width.
It is also straightforward to get the number and type of the gates in a circuit using
:meth:`count_ops`::
qc.count_ops()
.. parsed-literal::
OrderedDict([('cx', 8), ('h', 5), ('x', 3), ('swap', 3)])
We can also get just the raw count of operations by computing the circuits
:meth:`size`::
assert qc.size() == 19
A particularly important circuit property is known as the circuit :meth:`depth`. The depth
of a quantum circuit is a measure of how many "layers" of quantum gates, executed in
parallel, it takes to complete the computation defined by the circuit. Because quantum
gates take time to implement, the depth of a circuit roughly corresponds to the amount of
time it takes the quantum computer to execute the circuit. Thus, the depth of a circuit
is one important quantity used to measure if a quantum circuit can be run on a device.
The depth of a quantum circuit has a mathematical definition as the longest path in a
directed acyclic graph (DAG). However, such a definition is a bit hard to grasp, even for
experts. Fortunately, the depth of a circuit can be easily understood by anyone familiar
with playing `Tetris <https://en.wikipedia.org/wiki/Tetris>`_. Lets see how to compute this
graphically:
.. image:: /source_images/depth.gif
We can verify our graphical result using :meth:`QuantumCircuit.depth`::
assert qc.depth() == 9
.. automethod:: count_ops
.. automethod:: depth
.. automethod:: get_instructions
.. automethod:: num_connected_components
.. automethod:: num_nonlocal_gates
.. automethod:: num_tensor_factors
.. automethod:: num_unitary_factors
.. automethod:: size
.. automethod:: width
Accessing scheduling information
--------------------------------
If a :class:`QuantumCircuit` has been scheduled as part of a transpilation pipeline, the timing
information for individual qubits can be accessed. The whole-circuit timing information is
available through the :attr:`duration`, :attr:`unit` and :attr:`op_start_times` attributes.
.. automethod:: qubit_duration
.. automethod:: qubit_start_time
.. automethod:: qubit_stop_time
Instruction-like methods
========================
..
These methods really shouldn't be on `QuantumCircuit` at all. They're generally more
appropriate as `Instruction` or `Gate` methods. `reverse_ops` shouldn't be a method _full
stop_---it was copying a `DAGCircuit` method from an implementation detail of the original
`SabreLayout` pass in Qiskit.
:class:`QuantumCircuit` also contains a small number of methods that are very
:class:`~.circuit.Instruction`-like in detail. You may well find better integration and more
API support if you first convert your circuit to an :class:`~.circuit.Instruction`
(:meth:`to_instruction`) or :class:`.Gate` (:meth:`to_gate`) as appropriate, then call the
corresponding method.
.. automethod:: control
.. automethod:: inverse
.. automethod:: power
.. automethod:: repeat
.. automethod:: reverse_ops
Visualization
=============
Qiskit includes some drawing tools to give you a quick feel for what your circuit looks like.
This tooling is primarily targeted at producing either a `Matplotlib
<https://matplotlib.org/>`__- or text-based drawing. There is also a lesser-featured LaTeX
backend for drawing, but this is only for simple circuits, and is not as actively maintained.
.. seealso::
:mod:`qiskit.visualization`
The primary documentation for all of Qiskit's visualization tooling.
.. automethod:: draw
In addition to the core :meth:`draw` driver, there are two visualization-related helper methods,
which are mostly useful for quickly unwrapping some inner instructions or reversing the
:ref:`qubit-labelling conventions <circuit-conventions>` in the drawing. For more general
mutation, including basis-gate rewriting, you should use the transpiler
(:mod:`qiskit.transpiler`).
.. automethod:: decompose
.. automethod:: reverse_bits
Internal utilities
==================
These functions are not intended for public use, but were accidentally left documented in the
public API during the 1.0 release. They will be removed in Qiskit 2.0, but will be supported
until then.
.. automethod:: cast
.. automethod:: cbit_argument_conversion
.. automethod:: cls_instances
.. automethod:: cls_prefix
.. automethod:: qbit_argument_conversion
"""
instances = 0
prefix = "circuit"
def __init__(
self,
*regs: Register | int | Sequence[Bit],
name: str | None = None,
global_phase: ParameterValueType = 0,
metadata: dict | None = None,
inputs: Iterable[expr.Var] = (),
captures: Iterable[expr.Var] = (),
declarations: Mapping[expr.Var, expr.Expr] | Iterable[Tuple[expr.Var, expr.Expr]] = (),
):
"""
Default constructor of :class:`QuantumCircuit`.
..
`QuantumCirucit` documents its `__init__` method explicitly, unlike most classes where
it's implicitly appended to the class-level documentation, just because the class is so
huge and has a lot of introductory material to its class docstring.
Args:
regs: The registers to be included in the circuit.
* If a list of :class:`~.Register` objects, represents the :class:`.QuantumRegister`
and/or :class:`.ClassicalRegister` objects to include in the circuit.
For example:
* ``QuantumCircuit(QuantumRegister(4))``
* ``QuantumCircuit(QuantumRegister(4), ClassicalRegister(3))``
* ``QuantumCircuit(QuantumRegister(4, 'qr0'), QuantumRegister(2, 'qr1'))``
* If a list of ``int``, the amount of qubits and/or classical bits to include in
the circuit. It can either be a single int for just the number of quantum bits,
or 2 ints for the number of quantum bits and classical bits, respectively.
For example:
* ``QuantumCircuit(4) # A QuantumCircuit with 4 qubits``
* ``QuantumCircuit(4, 3) # A QuantumCircuit with 4 qubits and 3 classical bits``
* If a list of python lists containing :class:`.Bit` objects, a collection of
:class:`.Bit` s to be added to the circuit.
name: the name of the quantum circuit. If not set, an automatically generated string
will be assigned.
global_phase: The global phase of the circuit in radians.
metadata: Arbitrary key value metadata to associate with the circuit. This gets
stored as free-form data in a dict in the
:attr:`~qiskit.circuit.QuantumCircuit.metadata` attribute. It will not be directly
used in the circuit.
inputs: any variables to declare as ``input`` runtime variables for this circuit. These
should already be existing :class:`.expr.Var` nodes that you build from somewhere
else; if you need to create the inputs as well, use
:meth:`QuantumCircuit.add_input`. The variables given in this argument will be
passed directly to :meth:`add_input`. A circuit cannot have both ``inputs`` and
``captures``.
captures: any variables that that this circuit scope should capture from a containing
scope. The variables given here will be passed directly to :meth:`add_capture`. A
circuit cannot have both ``inputs`` and ``captures``.
declarations: any variables that this circuit should declare and initialize immediately.
You can order this input so that later declarations depend on earlier ones
(including inputs or captures). If you need to depend on values that will be
computed later at runtime, use :meth:`add_var` at an appropriate point in the
circuit execution.
This argument is intended for convenient circuit initialization when you already
have a set of created variables. The variables used here will be directly passed to
:meth:`add_var`, which you can use directly if this is the first time you are
creating the variable.
Raises:
CircuitError: if the circuit name, if given, is not valid.
CircuitError: if both ``inputs`` and ``captures`` are given.
"""
if any(not isinstance(reg, (list, QuantumRegister, ClassicalRegister)) for reg in regs):
# check if inputs are integers, but also allow e.g. 2.0
try:
valid_reg_size = all(reg == int(reg) for reg in regs)
except (ValueError, TypeError):
valid_reg_size = False
if not valid_reg_size:
raise CircuitError(
"Circuit args must be Registers or integers. ("
f"{[type(reg).__name__ for reg in regs]} '{regs}' was "
"provided)"
)
regs = tuple(int(reg) for reg in regs) # cast to int
self._base_name = None
self.name: str
"""A human-readable name for the circuit."""
if name is None:
self._base_name = self._cls_prefix()
self._name_update()
elif not isinstance(name, str):
raise CircuitError(
"The circuit name should be a string (or None to auto-generate a name)."
)
else:
self._base_name = name
self.name = name
self._increment_instances()
# An explicit implementation of the circuit scope builder interface used to dispatch appends
# and the like to the relevant control-flow scope.
self._builder_api = _OuterCircuitScopeInterface(self)
self._op_start_times = None
# A stack to hold the instruction sets that are being built up during for-, if- and
# while-block construction. These are stored as a stripped down sequence of instructions,
# and sets of qubits and clbits, rather than a full QuantumCircuit instance because the
# builder interfaces need to wait until they are completed before they can fill in things
# like `break` and `continue`. This is because these instructions need to "operate" on the
# full width of bits, but the builder interface won't know what bits are used until the end.
self._control_flow_scopes: list[
"qiskit.circuit.controlflow.builder.ControlFlowBuilderBlock"
] = []
self.qregs: list[QuantumRegister] = []
"""A list of the :class:`QuantumRegister`\\ s in this circuit. You should not mutate
this."""
self.cregs: list[ClassicalRegister] = []
"""A list of the :class:`ClassicalRegister`\\ s in this circuit. You should not mutate
this."""
# Dict mapping Qubit or Clbit instances to tuple comprised of 0) the
# corresponding index in circuit.{qubits,clbits} and 1) a list of
# Register-int pairs for each Register containing the Bit and its index
# within that register.
self._qubit_indices: dict[Qubit, BitLocations] = {}
self._clbit_indices: dict[Clbit, BitLocations] = {}
# Data contains a list of instructions and their contexts,
# in the order they were applied.
self._data: CircuitData = CircuitData()
self._ancillas: list[AncillaQubit] = []
self._calibrations: DefaultDict[str, dict[tuple, Any]] = defaultdict(dict)
self.add_register(*regs)
self._layout = None
self.global_phase = global_phase
# Add classical variables. Resolve inputs and captures first because they can't depend on
# anything, but declarations might depend on them.
self._vars_input: dict[str, expr.Var] = {}
self._vars_capture: dict[str, expr.Var] = {}
self._vars_local: dict[str, expr.Var] = {}
for input_ in inputs:
self.add_input(input_)
for capture in captures:
self.add_capture(capture)
if isinstance(declarations, Mapping):
declarations = declarations.items()
for var, initial in declarations:
self.add_var(var, initial)
self.duration: int | float | None = None
"""The total duration of the circuit, set by a scheduling transpiler pass. Its unit is
specified by :attr:`unit`."""
self.unit = "dt"
"""The unit that :attr:`duration` is specified in."""
self.metadata = {} if metadata is None else metadata
"""Arbitrary user-defined metadata for the circuit.
Qiskit will not examine the content of this mapping, but it will pass it through the
transpiler and reattach it to the output, so you can track your own metadata."""
@classmethod
def _from_circuit_data(cls, data: CircuitData) -> typing.Self:
"""A private constructor from rust space circuit data."""
out = QuantumCircuit()
out._data = data
out._qubit_indices = {bit: BitLocations(index, []) for index, bit in enumerate(data.qubits)}
out._clbit_indices = {bit: BitLocations(index, []) for index, bit in enumerate(data.clbits)}
return out
@staticmethod
def from_instructions(
instructions: Iterable[
CircuitInstruction
| tuple[qiskit.circuit.Instruction]
| tuple[qiskit.circuit.Instruction, Iterable[Qubit]]
| tuple[qiskit.circuit.Instruction, Iterable[Qubit], Iterable[Clbit]]
],
*,
qubits: Iterable[Qubit] = (),
clbits: Iterable[Clbit] = (),
name: str | None = None,
global_phase: ParameterValueType = 0,
metadata: dict | None = None,
) -> "QuantumCircuit":
"""Construct a circuit from an iterable of :class:`.CircuitInstruction`\\ s.
Args:
instructions: The instructions to add to the circuit.
qubits: Any qubits to add to the circuit. This argument can be used,
for example, to enforce a particular ordering of qubits.
clbits: Any classical bits to add to the circuit. This argument can be used,
for example, to enforce a particular ordering of classical bits.
name: The name of the circuit.
global_phase: The global phase of the circuit in radians.
metadata: Arbitrary key value metadata to associate with the circuit.
Returns:
The quantum circuit.
"""
circuit = QuantumCircuit(name=name, global_phase=global_phase, metadata=metadata)
added_qubits = set()
added_clbits = set()
if qubits:
qubits = list(qubits)
circuit.add_bits(qubits)
added_qubits.update(qubits)
if clbits:
clbits = list(clbits)
circuit.add_bits(clbits)
added_clbits.update(clbits)
for instruction in instructions:
if not isinstance(instruction, CircuitInstruction):
instruction = CircuitInstruction(*instruction)
qubits = [qubit for qubit in instruction.qubits if qubit not in added_qubits]
clbits = [clbit for clbit in instruction.clbits if clbit not in added_clbits]
circuit.add_bits(qubits)
circuit.add_bits(clbits)
added_qubits.update(qubits)
added_clbits.update(clbits)
circuit._append(instruction)
return circuit
@property
def layout(self) -> Optional[TranspileLayout]:
r"""Return any associated layout information about the circuit
This attribute contains an optional :class:`~.TranspileLayout`
object. This is typically set on the output from :func:`~.transpile`
or :meth:`.PassManager.run` to retain information about the
permutations caused on the input circuit by transpilation.
There are two types of permutations caused by the :func:`~.transpile`
function, an initial layout which permutes the qubits based on the
selected physical qubits on the :class:`~.Target`, and a final layout
which is an output permutation caused by :class:`~.SwapGate`\s
inserted during routing.
"""
return self._layout
@property
def data(self) -> QuantumCircuitData:
"""The circuit data (instructions and context).
Returns:
QuantumCircuitData: a list-like object containing the :class:`.CircuitInstruction`\\ s
for each instruction.
"""
return QuantumCircuitData(self)
@data.setter
def data(self, data_input: Iterable):
"""Sets the circuit data from a list of instructions and context.
Args:
data_input (Iterable): A sequence of instructions with their execution contexts. The
elements must either be instances of :class:`.CircuitInstruction` (preferred), or a
3-tuple of ``(instruction, qargs, cargs)`` (legacy). In the legacy format,
``instruction`` must be an :class:`~.circuit.Instruction`, while ``qargs`` and
``cargs`` must be iterables of :class:`~.circuit.Qubit` or :class:`.Clbit`
specifiers (similar to the allowed forms in calls to :meth:`append`).
"""
# If data_input is QuantumCircuitData(self), clearing self._data
# below will also empty data_input, so make a shallow copy first.
if isinstance(data_input, CircuitData):
data_input = data_input.copy()
else:
data_input = list(data_input)
self._data.clear()
# Repopulate the parameter table with any global-phase entries.
self.global_phase = self.global_phase
if not data_input:
return
if isinstance(data_input[0], CircuitInstruction):
for instruction in data_input:
self.append(instruction, copy=False)
else:
for instruction, qargs, cargs in data_input:
self.append(instruction, qargs, cargs, copy=False)
@property
def op_start_times(self) -> list[int]:
"""Return a list of operation start times.
This attribute is enabled once one of scheduling analysis passes
runs on the quantum circuit.
Returns:
List of integers representing instruction start times.
The index corresponds to the index of instruction in :attr:`QuantumCircuit.data`.
Raises:
AttributeError: When circuit is not scheduled.
"""
if self._op_start_times is None:
raise AttributeError(
"This circuit is not scheduled. "
"To schedule it run the circuit through one of the transpiler scheduling passes."
)
return self._op_start_times
@property
def calibrations(self) -> dict:
"""Return calibration dictionary.
The custom pulse definition of a given gate is of the form
``{'gate_name': {(qubits, params): schedule}}``
"""
return dict(self._calibrations)
@calibrations.setter
def calibrations(self, calibrations: dict):
"""Set the circuit calibration data from a dictionary of calibration definition.
Args:
calibrations (dict): A dictionary of input in the format
``{'gate_name': {(qubits, gate_params): schedule}}``
"""
self._calibrations = defaultdict(dict, calibrations)
def has_calibration_for(self, instruction: CircuitInstruction | tuple):
"""Return True if the circuit has a calibration defined for the instruction context. In this
case, the operation does not need to be translated to the device basis.
"""
if isinstance(instruction, CircuitInstruction):
operation = instruction.operation
qubits = instruction.qubits
else:
operation, qubits, _ = instruction
if not self.calibrations or operation.name not in self.calibrations:
return False
qubits = tuple(self.qubits.index(qubit) for qubit in qubits)
params = []
for p in operation.params:
if isinstance(p, ParameterExpression) and not p.parameters:
params.append(float(p))
else:
params.append(p)
params = tuple(params)
return (qubits, params) in self.calibrations[operation.name]
@property
def metadata(self) -> dict:
"""The user provided metadata associated with the circuit.
The metadata for the circuit is a user provided ``dict`` of metadata
for the circuit. It will not be used to influence the execution or
operation of the circuit, but it is expected to be passed between
all transforms of the circuit (ie transpilation) and that providers will
associate any circuit metadata with the results it returns from
execution of that circuit.
"""
return self._metadata
@metadata.setter
def metadata(self, metadata: dict):
"""Update the circuit metadata"""
if not isinstance(metadata, dict):
raise TypeError("Only a dictionary is accepted for circuit metadata")
self._metadata = metadata
def __str__(self) -> str:
return str(self.draw(output="text"))
def __eq__(self, other) -> bool:
if not isinstance(other, QuantumCircuit):
return False
# TODO: remove the DAG from this function
from qiskit.converters import circuit_to_dag
return circuit_to_dag(self, copy_operations=False) == circuit_to_dag(
other, copy_operations=False
)
def __deepcopy__(self, memo=None):
# This is overridden to minimize memory pressure when we don't
# actually need to pickle (i.e. the typical deepcopy case).
# Note:
# This is done here instead of in CircuitData since PyO3
# doesn't include a native way to recursively call
# copy.deepcopy(memo).
cls = self.__class__
result = cls.__new__(cls)
for k in self.__dict__.keys() - {"_data", "_builder_api"}:
setattr(result, k, _copy.deepcopy(self.__dict__[k], memo))
result._builder_api = _OuterCircuitScopeInterface(result)
# Avoids pulling self._data into a Python list
# like we would when pickling.
result._data = self._data.copy(deepcopy=True)
result._data.replace_bits(
qubits=_copy.deepcopy(self._data.qubits, memo),
clbits=_copy.deepcopy(self._data.clbits, memo),
)
return result
@classmethod
def _increment_instances(cls):
cls.instances += 1
@classmethod
@deprecate_func(
since=1.2,
removal_timeline="in the 2.0 release",
additional_msg="This method is only used as an internal helper "
"and will be removed with no replacement.",
)
def cls_instances(cls) -> int:
"""Return the current number of instances of this class,
useful for auto naming."""
return cls.instances
@classmethod
def _cls_instances(cls) -> int:
"""Return the current number of instances of this class,
useful for auto naming."""
return cls.instances
@classmethod
@deprecate_func(
since=1.2,
removal_timeline="in the 2.0 release",
additional_msg="This method is only used as an internal helper "
"and will be removed with no replacement.",
)
def cls_prefix(cls) -> str:
"""Return the prefix to use for auto naming."""
return cls.prefix
@classmethod
def _cls_prefix(cls) -> str:
"""Return the prefix to use for auto naming."""
return cls.prefix
def _name_update(self) -> None:
"""update name of instance using instance number"""
if not is_main_process():
pid_name = f"-{mp.current_process().pid}"
else:
pid_name = ""
self.name = f"{self._base_name}-{self._cls_instances()}{pid_name}"
def has_register(self, register: Register) -> bool:
"""
Test if this circuit has the register r.
Args:
register (Register): a quantum or classical register.
Returns:
bool: True if the register is contained in this circuit.
"""
has_reg = False
if isinstance(register, QuantumRegister) and register in self.qregs:
has_reg = True
elif isinstance(register, ClassicalRegister) and register in self.cregs:
has_reg = True
return has_reg
def reverse_ops(self) -> "QuantumCircuit":
"""Reverse the circuit by reversing the order of instructions.
This is done by recursively reversing all instructions.
It does not invert (adjoint) any gate.
Returns:
QuantumCircuit: the reversed circuit.
Examples:
input:
.. parsed-literal::
┌───┐
q_0: ┤ H ├─────■──────
└───┘┌────┴─────┐
q_1: ─────┤ RX(1.57) ├
└──────────┘
output:
.. parsed-literal::
┌───┐
q_0: ─────■──────┤ H ├
┌────┴─────┐└───┘
q_1: ┤ RX(1.57) ├─────
└──────────┘
"""
reverse_circ = self.copy_empty_like(self.name + "_reverse")
for instruction in reversed(self.data):
reverse_circ._append(instruction.replace(operation=instruction.operation.reverse_ops()))
reverse_circ.duration = self.duration
reverse_circ.unit = self.unit
return reverse_circ
def reverse_bits(self) -> "QuantumCircuit":
"""Return a circuit with the opposite order of wires.
The circuit is "vertically" flipped. If a circuit is
defined over multiple registers, the resulting circuit will have
the same registers but with their order flipped.
This method is useful for converting a circuit written in little-endian
convention to the big-endian equivalent, and vice versa.
Returns:
QuantumCircuit: the circuit with reversed bit order.
Examples:
input:
.. parsed-literal::
┌───┐
a_0: ┤ H ├──■─────────────────
└───┘┌─┴─┐
a_1: ─────┤ X ├──■────────────
└───┘┌─┴─┐
a_2: ──────────┤ X ├──■───────
└───┘┌─┴─┐
b_0: ───────────────┤ X ├──■──
└───┘┌─┴─┐
b_1: ────────────────────┤ X ├
└───┘
output:
.. parsed-literal::
┌───┐
b_0: ────────────────────┤ X ├
┌───┐└─┬─┘
b_1: ───────────────┤ X ├──■──
┌───┐└─┬─┘
a_0: ──────────┤ X ├──■───────
┌───┐└─┬─┘
a_1: ─────┤ X ├──■────────────
┌───┐└─┬─┘
a_2: ┤ H ├──■─────────────────
└───┘
"""
circ = QuantumCircuit(
list(reversed(self.qubits)),
list(reversed(self.clbits)),
name=self.name,
global_phase=self.global_phase,
)
new_qubit_map = circ.qubits[::-1]
new_clbit_map = circ.clbits[::-1]
for reg in reversed(self.qregs):
bits = [new_qubit_map[self.find_bit(qubit).index] for qubit in reversed(reg)]
circ.add_register(QuantumRegister(bits=bits, name=reg.name))
for reg in reversed(self.cregs):
bits = [new_clbit_map[self.find_bit(clbit).index] for clbit in reversed(reg)]
circ.add_register(ClassicalRegister(bits=bits, name=reg.name))
for instruction in self.data:
qubits = [new_qubit_map[self.find_bit(qubit).index] for qubit in instruction.qubits]
clbits = [new_clbit_map[self.find_bit(clbit).index] for clbit in instruction.clbits]
circ._append(instruction.replace(qubits=qubits, clbits=clbits))
return circ
def inverse(self, annotated: bool = False) -> "QuantumCircuit":
"""Invert (take adjoint of) this circuit.
This is done by recursively inverting all gates.
Args:
annotated: indicates whether the inverse gate can be implemented
as an annotated gate.
Returns:
QuantumCircuit: the inverted circuit
Raises:
CircuitError: if the circuit cannot be inverted.
Examples:
input:
.. parsed-literal::
┌───┐
q_0: ┤ H ├─────■──────
└───┘┌────┴─────┐
q_1: ─────┤ RX(1.57) ├
└──────────┘
output:
.. parsed-literal::
┌───┐
q_0: ──────■──────┤ H ├
┌─────┴─────┐└───┘
q_1: ┤ RX(-1.57) ├─────
└───────────┘
"""
inverse_circ = QuantumCircuit(
self.qubits,
self.clbits,
*self.qregs,
*self.cregs,
name=self.name + "_dg",
global_phase=-self.global_phase,
)
for instruction in reversed(self._data):
inverse_circ._append(
instruction.replace(operation=instruction.operation.inverse(annotated=annotated))
)
return inverse_circ
def repeat(self, reps: int, *, insert_barriers: bool = False) -> "QuantumCircuit":
"""Repeat this circuit ``reps`` times.
Args:
reps (int): How often this circuit should be repeated.
insert_barriers (bool): Whether to include barriers between circuit repetitions.
Returns:
QuantumCircuit: A circuit containing ``reps`` repetitions of this circuit.
"""
repeated_circ = QuantumCircuit(
self.qubits, self.clbits, *self.qregs, *self.cregs, name=self.name + f"**{reps}"
)
# benefit of appending instructions: decomposing shows the subparts, i.e. the power
# is actually `reps` times this circuit, and it is currently much faster than `compose`.
if reps > 0:
try: # try to append as gate if possible to not disallow to_gate
inst: Instruction = self.to_gate()
except QiskitError:
inst = self.to_instruction()
for i in range(reps):
repeated_circ._append(inst, self.qubits, self.clbits)
if insert_barriers and i != reps - 1:
repeated_circ.barrier()
return repeated_circ
def power(
self, power: float, matrix_power: bool = False, annotated: bool = False
) -> "QuantumCircuit":
"""Raise this circuit to the power of ``power``.
If ``power`` is a positive integer and both ``matrix_power`` and ``annotated``
are ``False``, this implementation defaults to calling ``repeat``. Otherwise,
the circuit is converted into a gate, and a new circuit, containing this gate
raised to the given power, is returned. The gate raised to the given power is
implemented either as a unitary gate if ``annotated`` is ``False`` or as an
annotated operation if ``annotated`` is ``True``.
Args:
power (float): The power to raise this circuit to.
matrix_power (bool): indicates whether the inner power gate can be implemented
as a unitary gate.
annotated (bool): indicates whether the inner power gate can be implemented
as an annotated operation.
Raises:
CircuitError: If the circuit needs to be converted to a unitary gate, but is
not unitary.
Returns:
QuantumCircuit: A circuit implementing this circuit raised to the power of ``power``.
"""
if (
power >= 0
and isinstance(power, (int, np.integer))
and not matrix_power
and not annotated
):
return self.repeat(power)
# attempt conversion to gate
if self.num_parameters > 0:
raise CircuitError(
"Cannot raise a parameterized circuit to a non-positive power "
"or matrix-power, please bind the free parameters: "
f"{self.parameters}"
)
try:
gate = self.to_gate()
except QiskitError as ex:
raise CircuitError(
"The circuit contains non-unitary operations and cannot be "
"raised to a power. Note that no qiskit.circuit.Instruction "
"objects may be in the circuit for this operation."
) from ex
power_circuit = QuantumCircuit(self.qubits, self.clbits, *self.qregs, *self.cregs)
power_circuit.append(gate.power(power, annotated=annotated), list(range(gate.num_qubits)))
return power_circuit
def control(
self,
num_ctrl_qubits: int = 1,
label: str | None = None,
ctrl_state: str | int | None = None,
annotated: bool = False,
) -> "QuantumCircuit":
"""Control this circuit on ``num_ctrl_qubits`` qubits.
Args:
num_ctrl_qubits (int): The number of control qubits.
label (str): An optional label to give the controlled operation for visualization.
ctrl_state (str or int): The control state in decimal or as a bitstring
(e.g. '111'). If None, use ``2**num_ctrl_qubits - 1``.
annotated: indicates whether the controlled gate should be implemented
as an annotated gate.
Returns:
QuantumCircuit: The controlled version of this circuit.
Raises:
CircuitError: If the circuit contains a non-unitary operation and cannot be controlled.
"""
try:
gate = self.to_gate()
except QiskitError as ex:
raise CircuitError(
"The circuit contains non-unitary operations and cannot be "
"controlled. Note that no qiskit.circuit.Instruction objects may "
"be in the circuit for this operation."
) from ex
controlled_gate = gate.control(num_ctrl_qubits, label, ctrl_state, annotated)
control_qreg = QuantumRegister(num_ctrl_qubits)
controlled_circ = QuantumCircuit(
control_qreg, self.qubits, *self.qregs, name=f"c_{self.name}"
)
controlled_circ.append(controlled_gate, controlled_circ.qubits)
return controlled_circ
def compose(
self,
other: Union["QuantumCircuit", Instruction],
qubits: QubitSpecifier | Sequence[QubitSpecifier] | None = None,
clbits: ClbitSpecifier | Sequence[ClbitSpecifier] | None = None,
front: bool = False,
inplace: bool = False,
wrap: bool = False,
*,
copy: bool = True,
var_remap: Mapping[str | expr.Var, str | expr.Var] | None = None,
inline_captures: bool = False,
) -> Optional["QuantumCircuit"]:
"""Apply the instructions from one circuit onto specified qubits and/or clbits on another.
.. note::
By default, this creates a new circuit object, leaving ``self`` untouched. For most
uses of this function, it is far more efficient to set ``inplace=True`` and modify the
base circuit in-place.
When dealing with realtime variables (:class:`.expr.Var` instances), there are two principal
strategies for using :meth:`compose`:
1. The ``other`` circuit is treated as entirely additive, including its variables. The
variables in ``other`` must be entirely distinct from those in ``self`` (use
``var_remap`` to help with this), and all variables in ``other`` will be declared anew in
the output with matching input/capture/local scoping to how they are in ``other``. This
is generally what you want if you're joining two unrelated circuits.
2. The ``other`` circuit was created as an exact extension to ``self`` to be inlined onto
it, including acting on the existing variables in their states at the end of ``self``.
In this case, ``other`` should be created with all these variables to be inlined declared
as "captures", and then you can use ``inline_captures=True`` in this method to link them.
This is generally what you want if you're building up a circuit by defining layers
on-the-fly, or rebuilding a circuit using layers taken from itself. You might find the
``vars_mode="captures"`` argument to :meth:`copy_empty_like` useful to create each
layer's base, in this case.
Args:
other (qiskit.circuit.Instruction or QuantumCircuit):
(sub)circuit or instruction to compose onto self. If not a :obj:`.QuantumCircuit`,
this can be anything that :obj:`.append` will accept.
qubits (list[Qubit|int]): qubits of self to compose onto.
clbits (list[Clbit|int]): clbits of self to compose onto.
front (bool): If ``True``, front composition will be performed. This is not possible within
control-flow builder context managers.
inplace (bool): If ``True``, modify the object. Otherwise, return composed circuit.
copy (bool): If ``True`` (the default), then the input is treated as shared, and any
contained instructions will be copied, if they might need to be mutated in the
future. You can set this to ``False`` if the input should be considered owned by
the base circuit, in order to avoid unnecessary copies; in this case, it is not
valid to use ``other`` afterward, and some instructions may have been mutated in
place.
var_remap (Mapping): mapping to use to rewrite :class:`.expr.Var` nodes in ``other`` as
they are inlined into ``self``. This can be used to avoid naming conflicts.
Both keys and values can be given as strings or direct :class:`.expr.Var` instances.
If a key is a string, it matches any :class:`~.expr.Var` with the same name. If a
value is a string, whenever a new key matches a it, a new :class:`~.expr.Var` is
created with the correct type. If a value is a :class:`~.expr.Var`, its
:class:`~.expr.Expr.type` must exactly match that of the variable it is replacing.
inline_captures (bool): if ``True``, then all "captured" :class:`~.expr.Var` nodes in
the ``other`` :class:`.QuantumCircuit` are assumed to refer to variables already
declared in ``self`` (as any input/capture/local type), and the uses in ``other``
will apply to the existing variables. If you want to build up a layer for an
existing circuit to use with :meth:`compose`, you might find the
``vars_mode="captures"`` argument to :meth:`copy_empty_like` useful. Any remapping
in ``vars_remap`` occurs before evaluating this variable inlining.
If this is ``False`` (the default), then all variables in ``other`` will be required
to be distinct from those in ``self``, and new declarations will be made for them.
wrap (bool): If True, wraps the other circuit into a gate (or instruction, depending on
whether it contains only unitary instructions) before composing it onto self.
Rather than using this option, it is almost always better to manually control this
yourself by using :meth:`to_instruction` or :meth:`to_gate`, and then call
:meth:`append`.
Returns:
QuantumCircuit: the composed circuit (returns None if inplace==True).
Raises:
CircuitError: if no correct wire mapping can be made between the two circuits, such as
if ``other`` is wider than ``self``.
CircuitError: if trying to emit a new circuit while ``self`` has a partially built
control-flow context active, such as the context-manager forms of :meth:`if_test`,
:meth:`for_loop` and :meth:`while_loop`.
CircuitError: if trying to compose to the front of a circuit when a control-flow builder
block is active; there is no clear meaning to this action.
Examples:
.. code-block:: python
>>> lhs.compose(rhs, qubits=[3, 2], inplace=True)
.. parsed-literal::
┌───┐ ┌─────┐ ┌───┐
lqr_1_0: ───┤ H ├─── rqr_0: ──■──┤ Tdg ├ lqr_1_0: ───┤ H ├───────────────
├───┤ ┌─┴─┐└─────┘ ├───┤
lqr_1_1: ───┤ X ├─── rqr_1: ┤ X ├─────── lqr_1_1: ───┤ X ├───────────────
┌──┴───┴──┐ └───┘ ┌──┴───┴──┐┌───┐
lqr_1_2: ┤ U1(0.1) ├ + = lqr_1_2: ┤ U1(0.1) ├┤ X ├───────
└─────────┘ └─────────┘└─┬─┘┌─────┐
lqr_2_0: ─────■───── lqr_2_0: ─────■───────■──┤ Tdg ├
┌─┴─┐ ┌─┴─┐ └─────┘
lqr_2_1: ───┤ X ├─── lqr_2_1: ───┤ X ├───────────────
└───┘ └───┘
lcr_0: 0 ═══════════ lcr_0: 0 ═══════════════════════
lcr_1: 0 ═══════════ lcr_1: 0 ═══════════════════════
"""
if inplace and front and self._control_flow_scopes:
# If we're composing onto ourselves while in a stateful control-flow builder context,
# there's no clear meaning to composition to the "front" of the circuit.
raise CircuitError(
"Cannot compose to the front of a circuit while a control-flow context is active."
)
if not inplace and self._control_flow_scopes:
# If we're inside a stateful control-flow builder scope, even if we successfully cloned
# the partial builder scope (not simple), the scope wouldn't be controlled by an active
# `with` statement, so the output circuit would be permanently broken.
raise CircuitError(
"Cannot emit a new composed circuit while a control-flow context is active."
)
# Avoid mutating `dest` until as much of the error checking as possible is complete, to
# avoid an in-place composition getting `self` in a partially mutated state for a simple
# error that the user might want to correct in an interactive session.
dest = self if inplace else self.copy()
var_remap = {} if var_remap is None else var_remap
# This doesn't use `functools.cache` so we can access it during the variable remapping of
# instructions. We cache all replacement lookups for a) speed and b) to ensure that
# the same variable _always_ maps to the same replacement even if it's used in different
# places in the recursion tree (such as being a captured variable).
def replace_var(var: expr.Var, cache: Mapping[expr.Var, expr.Var]) -> expr.Var:
# This is closing over an argument to `compose`.
nonlocal var_remap
if out := cache.get(var):
return out
if (replacement := var_remap.get(var)) or (replacement := var_remap.get(var.name)):
if isinstance(replacement, str):
replacement = expr.Var.new(replacement, var.type)
if replacement.type != var.type:
raise CircuitError(
f"mismatched types in replacement for '{var.name}':"
f" '{var.type}' cannot become '{replacement.type}'"
)
else:
replacement = var
cache[var] = replacement
return replacement
# As a special case, allow composing some clbits onto no clbits - normally the destination
# has to be strictly larger. This allows composing final measurements onto unitary circuits.
if isinstance(other, QuantumCircuit):
if not self.clbits and other.clbits:
if dest._control_flow_scopes:
raise CircuitError(
"cannot implicitly add clbits while within a control-flow scope"
)
dest.add_bits(other.clbits)
for reg in other.cregs:
dest.add_register(reg)
if wrap and isinstance(other, QuantumCircuit):
other = (
other.to_gate()
if all(isinstance(ins.operation, Gate) for ins in other.data)
else other.to_instruction()
)
if not isinstance(other, QuantumCircuit):
if qubits is None:
qubits = self.qubits[: other.num_qubits]
if clbits is None:
clbits = self.clbits[: other.num_clbits]
if front:
# Need to keep a reference to the data for use after we've emptied it.
old_data = dest._data.copy(copy_instructions=copy)
dest.clear()
dest.append(other, qubits, clbits, copy=copy)
for instruction in old_data:
dest._append(instruction)
else:
dest.append(other, qargs=qubits, cargs=clbits, copy=copy)
return None if inplace else dest
if other.num_qubits > dest.num_qubits or other.num_clbits > dest.num_clbits:
raise CircuitError(
"Trying to compose with another QuantumCircuit which has more 'in' edges."
)
# Maps bits in 'other' to bits in 'dest'.
mapped_qubits: list[Qubit]
mapped_clbits: list[Clbit]
edge_map: dict[Qubit | Clbit, Qubit | Clbit] = {}
if qubits is None:
mapped_qubits = dest.qubits
edge_map.update(zip(other.qubits, dest.qubits))
else:
mapped_qubits = dest._qbit_argument_conversion(qubits)
if len(mapped_qubits) != other.num_qubits:
raise CircuitError(
f"Number of items in qubits parameter ({len(mapped_qubits)}) does not"
f" match number of qubits in the circuit ({other.num_qubits})."
)
if len(set(mapped_qubits)) != len(mapped_qubits):
raise CircuitError(
f"Duplicate qubits referenced in 'qubits' parameter: '{mapped_qubits}'"
)
edge_map.update(zip(other.qubits, mapped_qubits))
if clbits is None:
mapped_clbits = dest.clbits
edge_map.update(zip(other.clbits, dest.clbits))
else:
mapped_clbits = dest._cbit_argument_conversion(clbits)
if len(mapped_clbits) != other.num_clbits:
raise CircuitError(
f"Number of items in clbits parameter ({len(mapped_clbits)}) does not"
f" match number of clbits in the circuit ({other.num_clbits})."
)
if len(set(mapped_clbits)) != len(mapped_clbits):
raise CircuitError(
f"Duplicate clbits referenced in 'clbits' parameter: '{mapped_clbits}'"
)
edge_map.update(zip(other.clbits, dest._cbit_argument_conversion(clbits)))
for gate, cals in other.calibrations.items():
dest._calibrations[gate].update(cals)
dest.duration = None
dest.unit = "dt"
dest.global_phase += other.global_phase
# This is required to trigger data builds if the `other` is an unbuilt `BlueprintCircuit`,
# so we can the access the complete `CircuitData` object at `_data`.
_ = other.data
def copy_with_remapping(
source, dest, bit_map, var_map, inline_captures, new_qubits=None, new_clbits=None
):
# Copy the instructions from `source` into `dest`, remapping variables in instructions
# according to `var_map`. If `new_qubits` or `new_clbits` are given, the qubits and
# clbits of the source instruction are remapped to those as well.
for var in source.iter_input_vars():
dest.add_input(replace_var(var, var_map))
if inline_captures:
for var in source.iter_captured_vars():
replacement = replace_var(var, var_map)
if not dest.has_var(replace_var(var, var_map)):
if var is replacement:
raise CircuitError(
f"Variable '{var}' to be inlined is not in the base circuit."
" If you wanted it to be automatically added, use"
" `inline_captures=False`."
)
raise CircuitError(
f"Replacement '{replacement}' for variable '{var}' is not in the"
" base circuit. Is the replacement correct?"
)
else:
for var in source.iter_captured_vars():
dest.add_capture(replace_var(var, var_map))
for var in source.iter_declared_vars():
dest.add_uninitialized_var(replace_var(var, var_map))
def recurse_block(block):
# Recurse the remapping into a control-flow block. Note that this doesn't remap the
# clbits within; the story around nested classical-register-based control-flow
# doesn't really work in the current data model, and we hope to replace it with
# `Expr`-based control-flow everywhere.
new_block = block.copy_empty_like()
new_block._vars_input = {}
new_block._vars_capture = {}
new_block._vars_local = {}
# For the recursion, we never want to inline captured variables because we're not
# copying onto a base that has variables.
copy_with_remapping(block, new_block, bit_map, var_map, inline_captures=False)
return new_block
variable_mapper = _classical_resource_map.VariableMapper(
dest.cregs, bit_map, var_map, add_register=dest.add_register
)
def map_vars(op):
n_op = op
is_control_flow = isinstance(n_op, ControlFlowOp)
if (
not is_control_flow
and (condition := getattr(n_op, "condition", None)) is not None
):
n_op = n_op.copy() if n_op is op and copy else n_op
n_op.condition = variable_mapper.map_condition(condition)
elif is_control_flow:
n_op = n_op.replace_blocks(recurse_block(block) for block in n_op.blocks)
if isinstance(n_op, (IfElseOp, WhileLoopOp)):
n_op.condition = variable_mapper.map_condition(n_op.condition)
elif isinstance(n_op, SwitchCaseOp):
n_op.target = variable_mapper.map_target(n_op.target)
elif isinstance(n_op, Store):
n_op = Store(
variable_mapper.map_expr(n_op.lvalue), variable_mapper.map_expr(n_op.rvalue)
)
return n_op.copy() if n_op is op and copy else n_op
instructions = source._data.copy(copy_instructions=copy)
instructions.replace_bits(qubits=new_qubits, clbits=new_clbits)
instructions.map_nonstandard_ops(map_vars)
dest._current_scope().extend(instructions)
append_existing = None
if front:
append_existing = dest._data.copy(copy_instructions=copy)
dest.clear()
copy_with_remapping(
other,
dest,
bit_map=edge_map,
# The actual `Var: Var` map gets built up from the more freeform user input as we
# encounter the variables, since the user might be using string keys to refer to more
# than one variable in separated scopes of control-flow operations.
var_map={},
inline_captures=inline_captures,
new_qubits=mapped_qubits,
new_clbits=mapped_clbits,
)
if append_existing:
dest._current_scope().extend(append_existing)
return None if inplace else dest
def tensor(self, other: "QuantumCircuit", inplace: bool = False) -> Optional["QuantumCircuit"]:
"""Tensor ``self`` with ``other``.
Remember that in the little-endian convention the leftmost operation will be at the bottom
of the circuit. See also
`the docs <https://docs.quantum.ibm.com/build/circuit-construction>`__
for more information.
.. parsed-literal::
┌────────┐ ┌─────┐ ┌─────┐
q_0: ┤ bottom ├ ⊗ q_0: ┤ top ├ = q_0: ─┤ top ├──
└────────┘ └─────┘ ┌┴─────┴─┐
q_1: ┤ bottom ├
└────────┘
Args:
other (QuantumCircuit): The other circuit to tensor this circuit with.
inplace (bool): If ``True``, modify the object. Otherwise return composed circuit.
Examples:
.. plot::
:include-source:
from qiskit import QuantumCircuit
top = QuantumCircuit(1)
top.x(0);
bottom = QuantumCircuit(2)
bottom.cry(0.2, 0, 1);
tensored = bottom.tensor(top)
tensored.draw('mpl')
Returns:
QuantumCircuit: The tensored circuit (returns ``None`` if ``inplace=True``).
"""
num_qubits = self.num_qubits + other.num_qubits
num_clbits = self.num_clbits + other.num_clbits
# If a user defined both circuits with via register sizes and not with named registers
# (e.g. QuantumCircuit(2, 2)) then we have a naming collision, as the registers are by
# default called "q" resp. "c". To still allow tensoring we define new registers of the
# correct sizes.
if (
len(self.qregs) == len(other.qregs) == 1
and self.qregs[0].name == other.qregs[0].name == "q"
):
# check if classical registers are in the circuit
if num_clbits > 0:
dest = QuantumCircuit(num_qubits, num_clbits)
else:
dest = QuantumCircuit(num_qubits)
# handle case if ``measure_all`` was called on both circuits, in which case the
# registers are both named "meas"
elif (
len(self.cregs) == len(other.cregs) == 1
and self.cregs[0].name == other.cregs[0].name == "meas"
):
cr = ClassicalRegister(self.num_clbits + other.num_clbits, "meas")
dest = QuantumCircuit(*other.qregs, *self.qregs, cr)
# Now we don't have to handle any more cases arising from special implicit naming
else:
dest = QuantumCircuit(
other.qubits,
self.qubits,
other.clbits,
self.clbits,
*other.qregs,
*self.qregs,
*other.cregs,
*self.cregs,
)
# compose self onto the output, and then other
dest.compose(other, range(other.num_qubits), range(other.num_clbits), inplace=True)
dest.compose(
self,
range(other.num_qubits, num_qubits),
range(other.num_clbits, num_clbits),
inplace=True,
)
# Replace information from tensored circuit into self when inplace = True
if inplace:
self.__dict__.update(dest.__dict__)
return None
return dest
@property
def qubits(self) -> list[Qubit]:
"""A list of :class:`Qubit`\\ s in the order that they were added. You should not mutate
this."""
return self._data.qubits
@property
def clbits(self) -> list[Clbit]:
"""A list of :class:`Clbit`\\ s in the order that they were added. You should not mutate
this."""
return self._data.clbits
@property
def ancillas(self) -> list[AncillaQubit]:
"""A list of :class:`AncillaQubit`\\ s in the order that they were added. You should not
mutate this."""
return self._ancillas
@property
def num_vars(self) -> int:
"""The number of real-time classical variables in the circuit.
This is the length of the :meth:`iter_vars` iterable."""
return self.num_input_vars + self.num_captured_vars + self.num_declared_vars
@property
def num_input_vars(self) -> int:
"""The number of real-time classical variables in the circuit marked as circuit inputs.
This is the length of the :meth:`iter_input_vars` iterable. If this is non-zero,
:attr:`num_captured_vars` must be zero."""
return len(self._vars_input)
@property
def num_captured_vars(self) -> int:
"""The number of real-time classical variables in the circuit marked as captured from an
enclosing scope.
This is the length of the :meth:`iter_captured_vars` iterable. If this is non-zero,
:attr:`num_input_vars` must be zero."""
return len(self._vars_capture)
@property
def num_declared_vars(self) -> int:
"""The number of real-time classical variables in the circuit that are declared by this
circuit scope, excluding inputs or captures.
This is the length of the :meth:`iter_declared_vars` iterable."""
return len(self._vars_local)
def iter_vars(self) -> typing.Iterable[expr.Var]:
"""Get an iterable over all real-time classical variables in scope within this circuit.
This method will iterate over all variables in scope. For more fine-grained iterators, see
:meth:`iter_declared_vars`, :meth:`iter_input_vars` and :meth:`iter_captured_vars`."""
if self._control_flow_scopes:
builder = self._control_flow_scopes[-1]
return itertools.chain(builder.iter_captured_vars(), builder.iter_local_vars())
return itertools.chain(
self._vars_input.values(), self._vars_capture.values(), self._vars_local.values()
)
def iter_declared_vars(self) -> typing.Iterable[expr.Var]:
"""Get an iterable over all real-time classical variables that are declared with automatic
storage duration in this scope. This excludes input variables (see :meth:`iter_input_vars`)
and captured variables (see :meth:`iter_captured_vars`)."""
if self._control_flow_scopes:
return self._control_flow_scopes[-1].iter_local_vars()
return self._vars_local.values()
def iter_input_vars(self) -> typing.Iterable[expr.Var]:
"""Get an iterable over all real-time classical variables that are declared as inputs to
this circuit scope. This excludes locally declared variables (see
:meth:`iter_declared_vars`) and captured variables (see :meth:`iter_captured_vars`)."""
if self._control_flow_scopes:
return ()
return self._vars_input.values()
def iter_captured_vars(self) -> typing.Iterable[expr.Var]:
"""Get an iterable over all real-time classical variables that are captured by this circuit
scope from a containing scope. This excludes input variables (see :meth:`iter_input_vars`)
and locally declared variables (see :meth:`iter_declared_vars`)."""
if self._control_flow_scopes:
return self._control_flow_scopes[-1].iter_captured_vars()
return self._vars_capture.values()
def __and__(self, rhs: "QuantumCircuit") -> "QuantumCircuit":
"""Overload & to implement self.compose."""
return self.compose(rhs)
def __iand__(self, rhs: "QuantumCircuit") -> "QuantumCircuit":
"""Overload &= to implement self.compose in place."""
self.compose(rhs, inplace=True)
return self
def __xor__(self, top: "QuantumCircuit") -> "QuantumCircuit":
"""Overload ^ to implement self.tensor."""
return self.tensor(top)
def __ixor__(self, top: "QuantumCircuit") -> "QuantumCircuit":
"""Overload ^= to implement self.tensor in place."""
self.tensor(top, inplace=True)
return self
def __len__(self) -> int:
"""Return number of operations in circuit."""
return len(self._data)
@typing.overload
def __getitem__(self, item: int) -> CircuitInstruction: ...
@typing.overload
def __getitem__(self, item: slice) -> list[CircuitInstruction]: ...
def __getitem__(self, item):
"""Return indexed operation."""
return self._data[item]
@staticmethod
@deprecate_func(
since=1.2,
removal_timeline="in the 2.0 release",
additional_msg="This method is only used as an internal helper "
"and will be removed with no replacement.",
)
def cast(value: S, type_: Callable[..., T]) -> Union[S, T]:
"""Best effort to cast value to type. Otherwise, returns the value."""
try:
return type_(value)
except (ValueError, TypeError):
return value
@staticmethod
def _cast(value: S, type_: Callable[..., T]) -> Union[S, T]:
"""Best effort to cast value to type. Otherwise, returns the value."""
try:
return type_(value)
except (ValueError, TypeError):
return value
@deprecate_func(
since=1.2,
removal_timeline="in the 2.0 release",
additional_msg="This method is only used as an internal helper "
"and will be removed with no replacement.",
)
def qbit_argument_conversion(self, qubit_representation: QubitSpecifier) -> list[Qubit]:
"""
Converts several qubit representations (such as indexes, range, etc.)
into a list of qubits.
Args:
qubit_representation: Representation to expand.
Returns:
The resolved instances of the qubits.
"""
return self._qbit_argument_conversion(qubit_representation)
def _qbit_argument_conversion(self, qubit_representation: QubitSpecifier) -> list[Qubit]:
"""
Converts several qubit representations (such as indexes, range, etc.)
into a list of qubits.
Args:
qubit_representation: Representation to expand.
Returns:
The resolved instances of the qubits.
"""
return _bit_argument_conversion(
qubit_representation, self.qubits, self._qubit_indices, Qubit
)
@deprecate_func(
since=1.2,
removal_timeline="in the 2.0 release",
additional_msg="This method is only used as an internal helper "
"and will be removed with no replacement.",
)
def cbit_argument_conversion(self, clbit_representation: ClbitSpecifier) -> list[Clbit]:
"""
Converts several classical bit representations (such as indexes, range, etc.)
into a list of classical bits.
Args:
clbit_representation : Representation to expand.
Returns:
A list of tuples where each tuple is a classical bit.
"""
return self._cbit_argument_conversion(clbit_representation)
def _cbit_argument_conversion(self, clbit_representation: ClbitSpecifier) -> list[Clbit]:
"""
Converts several classical bit representations (such as indexes, range, etc.)
into a list of classical bits.
Args:
clbit_representation: Representation to expand.
Returns:
A list of tuples where each tuple is a classical bit.
"""
return _bit_argument_conversion(
clbit_representation, self.clbits, self._clbit_indices, Clbit
)
def _append_standard_gate(
self,
op: StandardGate,
qargs: Sequence[QubitSpecifier] = (),
params: Sequence[ParameterValueType] = (),
label: str | None = None,
) -> InstructionSet:
"""An internal method to bypass some checking when directly appending a standard gate."""
circuit_scope = self._current_scope()
if params is None:
params = []
expanded_qargs = [self._qbit_argument_conversion(qarg) for qarg in qargs or []]
for param in params:
Gate.validate_parameter(op, param)
instructions = InstructionSet(resource_requester=circuit_scope.resolve_classical_resource)
for qarg, _ in Gate.broadcast_arguments(op, expanded_qargs, []):
self._check_dups(qarg)
instruction = CircuitInstruction.from_standard(op, qarg, params, label=label)
circuit_scope.append(instruction, _standard_gate=True)
instructions._add_ref(circuit_scope.instructions, len(circuit_scope.instructions) - 1)
return instructions
def append(
self,
instruction: Operation | CircuitInstruction,
qargs: Sequence[QubitSpecifier] | None = None,
cargs: Sequence[ClbitSpecifier] | None = None,
*,
copy: bool = True,
) -> InstructionSet:
"""Append one or more instructions to the end of the circuit, modifying the circuit in
place.
The ``qargs`` and ``cargs`` will be expanded and broadcast according to the rules of the
given :class:`~.circuit.Instruction`, and any non-:class:`.Bit` specifiers (such as
integer indices) will be resolved into the relevant instances.
If a :class:`.CircuitInstruction` is given, it will be unwrapped, verified in the context of
this circuit, and a new object will be appended to the circuit. In this case, you may not
pass ``qargs`` or ``cargs`` separately.
Args:
instruction: :class:`~.circuit.Instruction` instance to append, or a
:class:`.CircuitInstruction` with all its context.
qargs: specifiers of the :class:`~.circuit.Qubit`\\ s to attach instruction to.
cargs: specifiers of the :class:`.Clbit`\\ s to attach instruction to.
copy: if ``True`` (the default), then the incoming ``instruction`` is copied before
adding it to the circuit if it contains symbolic parameters, so it can be safely
mutated without affecting other circuits the same instruction might be in. If you
are sure this instruction will not be in other circuits, you can set this ``False``
for a small speedup.
Returns:
qiskit.circuit.InstructionSet: a handle to the :class:`.CircuitInstruction`\\ s that
were actually added to the circuit.
Raises:
CircuitError: if the operation passed is not an instance of :class:`~.circuit.Instruction` .
"""
if isinstance(instruction, CircuitInstruction):
operation = instruction.operation
qargs = instruction.qubits
cargs = instruction.clbits
else:
operation = instruction
# Convert input to instruction
if not isinstance(operation, Operation):
if hasattr(operation, "to_instruction"):
operation = operation.to_instruction()
if not isinstance(operation, Operation):
raise CircuitError("operation.to_instruction() is not an Operation.")
else:
if issubclass(operation, Operation):
raise CircuitError(
"Object is a subclass of Operation, please add () to "
"pass an instance of this object."
)
raise CircuitError(
"Object to append must be an Operation or have a to_instruction() method."
)
circuit_scope = self._current_scope()
# Make copy of parameterized gate instances
if params := getattr(operation, "params", ()):
is_parameter = False
for param in params:
is_parameter = is_parameter or isinstance(param, ParameterExpression)
if isinstance(param, expr.Expr):
param = _validate_expr(circuit_scope, param)
if copy and is_parameter:
operation = _copy.deepcopy(operation)
if isinstance(operation, ControlFlowOp):
# Verify that any variable bindings are valid. Control-flow ops are already enforced
# by the class not to contain 'input' variables.
if bad_captures := {
var
for var in itertools.chain.from_iterable(
block.iter_captured_vars() for block in operation.blocks
)
if not self.has_var(var)
}:
raise CircuitError(
f"Control-flow op attempts to capture '{bad_captures}'"
" which are not in this circuit"
)
expanded_qargs = [self._qbit_argument_conversion(qarg) for qarg in qargs or []]
expanded_cargs = [self._cbit_argument_conversion(carg) for carg in cargs or []]
instructions = InstructionSet(resource_requester=circuit_scope.resolve_classical_resource)
# For Operations that are non-Instructions, we use the Instruction's default method
broadcast_iter = (
operation.broadcast_arguments(expanded_qargs, expanded_cargs)
if isinstance(operation, Instruction)
else Instruction.broadcast_arguments(operation, expanded_qargs, expanded_cargs)
)
base_instruction = CircuitInstruction(operation, (), ())
for qarg, carg in broadcast_iter:
self._check_dups(qarg)
instruction = base_instruction.replace(qubits=qarg, clbits=carg)
circuit_scope.append(instruction)
instructions._add_ref(circuit_scope.instructions, len(circuit_scope.instructions) - 1)
return instructions
# Preferred new style.
@typing.overload
def _append(
self, instruction: CircuitInstruction, *, _standard_gate: bool
) -> CircuitInstruction: ...
# To-be-deprecated old style.
@typing.overload
def _append(
self,
instruction: Operation,
qargs: Sequence[Qubit],
cargs: Sequence[Clbit],
) -> Operation: ...
def _append(self, instruction, qargs=(), cargs=(), *, _standard_gate: bool = False):
"""Append an instruction to the end of the circuit, modifying the circuit in place.
.. warning::
This is an internal fast-path function, and it is the responsibility of the caller to
ensure that all the arguments are valid; there is no error checking here. In
particular:
* all the qubits and clbits must already exist in the circuit and there can be no
duplicates in the list.
* any control-flow operations or classically conditioned instructions must act only on
variables present in the circuit.
* the circuit must not be within a control-flow builder context.
.. note::
This function may be used by callers other than :obj:`.QuantumCircuit` when the caller
is sure that all error-checking, broadcasting and scoping has already been performed,
and the only reference to the circuit the instructions are being appended to is within
that same function. In particular, it is not safe to call
:meth:`QuantumCircuit._append` on a circuit that is received by a function argument.
This is because :meth:`.QuantumCircuit._append` will not recognize the scoping
constructs of the control-flow builder interface.
Args:
instruction: A complete well-formed :class:`.CircuitInstruction` of the operation and
its context to be added.
In the legacy compatibility form, this can be a bare :class:`.Operation`, in which
case ``qargs`` and ``cargs`` must be explicitly given.
qargs: Legacy argument for qubits to attach the bare :class:`.Operation` to. Ignored if
the first argument is in the preferential :class:`.CircuitInstruction` form.
cargs: Legacy argument for clbits to attach the bare :class:`.Operation` to. Ignored if
the first argument is in the preferential :class:`.CircuitInstruction` form.
Returns:
CircuitInstruction: a handle to the instruction that was just added.
:meta public:
"""
if _standard_gate:
self._data.append(instruction)
self.duration = None
self.unit = "dt"
return instruction
old_style = not isinstance(instruction, CircuitInstruction)
if old_style:
instruction = CircuitInstruction(instruction, qargs, cargs)
# If there is a reference to the outer circuit in an
# instruction param the inner rust append method will raise a runtime error.
# When this happens we need to handle the parameters separately.
# This shouldn't happen in practice but 2 tests were doing this and it's not
# explicitly prohibted by the API.
try:
self._data.append(instruction)
except RuntimeError:
params = [
(idx, param.parameters)
for idx, param in enumerate(instruction.operation.params)
if isinstance(param, (ParameterExpression, QuantumCircuit))
]
self._data.append_manual_params(instruction, params)
# Invalidate whole circuit duration if an instruction is added
self.duration = None
self.unit = "dt"
return instruction.operation if old_style else instruction
@typing.overload
def get_parameter(self, name: str, default: T) -> Union[Parameter, T]: ...
# The builtin `types` module has `EllipsisType`, but only from 3.10+!
@typing.overload
def get_parameter(self, name: str, default: type(...) = ...) -> Parameter: ...
# We use a _literal_ `Ellipsis` as the marker value to leave `None` available as a default.
def get_parameter(self, name: str, default: typing.Any = ...) -> Parameter:
"""Retrieve a compile-time parameter that is accessible in this circuit scope by name.
Args:
name: the name of the parameter to retrieve.
default: if given, this value will be returned if the parameter is not present. If it
is not given, a :exc:`KeyError` is raised instead.
Returns:
The corresponding parameter.
Raises:
KeyError: if no default is given, but the parameter does not exist in the circuit.
Examples:
Retrieve a parameter by name from a circuit::
from qiskit.circuit import QuantumCircuit, Parameter
my_param = Parameter("my_param")
# Create a parametrized circuit.
qc = QuantumCircuit(1)
qc.rx(my_param, 0)
# We can use 'my_param' as a parameter, but let's say we've lost the Python object
# and need to retrieve it.
my_param_again = qc.get_parameter("my_param")
assert my_param is my_param_again
Get a variable from a circuit by name, returning some default if it is not present::
assert qc.get_parameter("my_param", None) is my_param
assert qc.get_parameter("unknown_param", None) is None
See also:
:meth:`get_var`
A similar method, but for :class:`.expr.Var` run-time variables instead of
:class:`.Parameter` compile-time parameters.
"""
if (parameter := self._data.get_parameter_by_name(name)) is None:
if default is Ellipsis:
raise KeyError(f"no parameter named '{name}' is present")
return default
return parameter
def has_parameter(self, name_or_param: str | Parameter, /) -> bool:
"""Check whether a parameter object exists in this circuit.
Args:
name_or_param: the parameter, or name of a parameter to check. If this is a
:class:`.Parameter` node, the parameter must be exactly the given one for this
function to return ``True``.
Returns:
whether a matching parameter is assignable in this circuit.
See also:
:meth:`QuantumCircuit.get_parameter`
Retrieve the :class:`.Parameter` instance from this circuit by name.
:meth:`QuantumCircuit.has_var`
A similar method to this, but for run-time :class:`.expr.Var` variables instead of
compile-time :class:`.Parameter`\\ s.
"""
if isinstance(name_or_param, str):
return self.get_parameter(name_or_param, None) is not None
return self.get_parameter(name_or_param.name) == name_or_param
@typing.overload
def get_var(self, name: str, default: T) -> Union[expr.Var, T]: ...
# The builtin `types` module has `EllipsisType`, but only from 3.10+!
@typing.overload
def get_var(self, name: str, default: type(...) = ...) -> expr.Var: ...
# We use a _literal_ `Ellipsis` as the marker value to leave `None` available as a default.
def get_var(self, name: str, default: typing.Any = ...):
"""Retrieve a variable that is accessible in this circuit scope by name.
Args:
name: the name of the variable to retrieve.
default: if given, this value will be returned if the variable is not present. If it
is not given, a :exc:`KeyError` is raised instead.
Returns:
The corresponding variable.
Raises:
KeyError: if no default is given, but the variable does not exist.
Examples:
Retrieve a variable by name from a circuit::
from qiskit.circuit import QuantumCircuit
# Create a circuit and create a variable in it.
qc = QuantumCircuit()
my_var = qc.add_var("my_var", False)
# We can use 'my_var' as a variable, but let's say we've lost the Python object and
# need to retrieve it.
my_var_again = qc.get_var("my_var")
assert my_var is my_var_again
Get a variable from a circuit by name, returning some default if it is not present::
assert qc.get_var("my_var", None) is my_var
assert qc.get_var("unknown_variable", None) is None
See also:
:meth:`get_parameter`
A similar method, but for :class:`.Parameter` compile-time parameters instead of
:class:`.expr.Var` run-time variables.
"""
if (out := self._current_scope().get_var(name)) is not None:
return out
if default is Ellipsis:
raise KeyError(f"no variable named '{name}' is present")
return default
def has_var(self, name_or_var: str | expr.Var, /) -> bool:
"""Check whether a variable is accessible in this scope.
Args:
name_or_var: the variable, or name of a variable to check. If this is a
:class:`.expr.Var` node, the variable must be exactly the given one for this
function to return ``True``.
Returns:
whether a matching variable is accessible.
See also:
:meth:`QuantumCircuit.get_var`
Retrieve the :class:`.expr.Var` instance from this circuit by name.
:meth:`QuantumCircuit.has_parameter`
A similar method to this, but for compile-time :class:`.Parameter`\\ s instead of
run-time :class:`.expr.Var` variables.
"""
if isinstance(name_or_var, str):
return self.get_var(name_or_var, None) is not None
return self.get_var(name_or_var.name, None) == name_or_var
def _prepare_new_var(
self, name_or_var: str | expr.Var, type_: types.Type | None, /
) -> expr.Var:
"""The common logic for preparing and validating a new :class:`~.expr.Var` for the circuit.
The given ``type_`` can be ``None`` if the variable specifier is already a :class:`.Var`,
and must be a :class:`~.types.Type` if it is a string. The argument is ignored if the given
first argument is a :class:`.Var` already.
Returns the validated variable, which is guaranteed to be safe to add to the circuit."""
if isinstance(name_or_var, str):
if type_ is None:
raise CircuitError("the type must be known when creating a 'Var' from a string")
var = expr.Var.new(name_or_var, type_)
else:
var = name_or_var
if not var.standalone:
raise CircuitError(
"cannot add variables that wrap `Clbit` or `ClassicalRegister` instances."
" Use `add_bits` or `add_register` as appropriate."
)
# The `var` is guaranteed to have a name because we already excluded the cases where it's
# wrapping a bit/register.
if (previous := self.get_var(var.name, default=None)) is not None:
if previous == var:
raise CircuitError(f"'{var}' is already present in the circuit")
raise CircuitError(f"cannot add '{var}' as its name shadows the existing '{previous}'")
return var
def add_var(self, name_or_var: str | expr.Var, /, initial: typing.Any) -> expr.Var:
"""Add a classical variable with automatic storage and scope to this circuit.
The variable is considered to have been "declared" at the beginning of the circuit, but it
only becomes initialized at the point of the circuit that you call this method, so it can
depend on variables defined before it.
Args:
name_or_var: either a string of the variable name, or an existing instance of
:class:`~.expr.Var` to re-use. Variables cannot shadow names that are already in
use within the circuit.
initial: the value to initialize this variable with. If the first argument was given
as a string name, the type of the resulting variable is inferred from the initial
expression; to control this more manually, either use :meth:`.Var.new` to manually
construct a new variable with the desired type, or use :func:`.expr.cast` to cast
the initializer to the desired type.
This must be either a :class:`~.expr.Expr` node, or a value that can be lifted to
one using :class:`.expr.lift`.
Returns:
The created variable. If a :class:`~.expr.Var` instance was given, the exact same
object will be returned.
Raises:
CircuitError: if the variable cannot be created due to shadowing an existing variable.
Examples:
Define a new variable given just a name and an initializer expression::
from qiskit.circuit import QuantumCircuit
qc = QuantumCircuit(2)
my_var = qc.add_var("my_var", False)
Reuse a variable that may have been taken from a related circuit, or otherwise
constructed manually, and initialize it to some more complicated expression::
from qiskit.circuit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.circuit.classical import expr, types
my_var = expr.Var.new("my_var", types.Uint(8))
cr1 = ClassicalRegister(8, "cr1")
cr2 = ClassicalRegister(8, "cr2")
qc = QuantumCircuit(QuantumRegister(8), cr1, cr2)
# Get some measurement results into each register.
qc.h(0)
for i in range(1, 8):
qc.cx(0, i)
qc.measure(range(8), cr1)
qc.reset(range(8))
qc.h(0)
for i in range(1, 8):
qc.cx(0, i)
qc.measure(range(8), cr2)
# Now when we add the variable, it is initialized using the real-time state of the
# two classical registers we measured into above.
qc.add_var(my_var, expr.bit_and(cr1, cr2))
"""
# Validate the initializer first to catch cases where the variable to be declared is being
# used in the initializer.
circuit_scope = self._current_scope()
# Convenience method to widen Python integer literals to the right width during the initial
# lift, if the type is already known via the variable.
if (
isinstance(name_or_var, expr.Var)
and name_or_var.type.kind is types.Uint
and isinstance(initial, int)
and not isinstance(initial, bool)
):
coerce_type = name_or_var.type
else:
coerce_type = None
initial = _validate_expr(circuit_scope, expr.lift(initial, coerce_type))
if isinstance(name_or_var, str):
var = expr.Var.new(name_or_var, initial.type)
elif not name_or_var.standalone:
raise CircuitError(
"cannot add variables that wrap `Clbit` or `ClassicalRegister` instances."
)
else:
var = name_or_var
circuit_scope.add_uninitialized_var(var)
try:
# Store is responsible for ensuring the type safety of the initialization.
store = Store(var, initial)
except CircuitError:
circuit_scope.remove_var(var)
raise
circuit_scope.append(CircuitInstruction(store, (), ()))
return var
def add_uninitialized_var(self, var: expr.Var, /):
"""Add a variable with no initializer.
In most cases, you should use :meth:`add_var` to initialize the variable. To use this
function, you must already hold a :class:`~.expr.Var` instance, as the use of the function
typically only makes sense in copying contexts.
.. warning::
Qiskit makes no assertions about what an uninitialized variable will evaluate to at
runtime, and some hardware may reject this as an error.
You should treat this function with caution, and as a low-level primitive that is useful
only in special cases of programmatically rebuilding two like circuits.
Args:
var: the variable to add.
"""
# This function is deliberately meant to be a bit harder to find, to have a long descriptive
# name, and to be a bit less ergonomic than `add_var` (i.e. not allowing the (name, type)
# overload) to discourage people from using it when they should use `add_var`.
#
# This function exists so that there is a method to emulate `copy_empty_like`'s behavior of
# adding uninitialised variables, which there's no obvious way around. We need to be sure
# that _some_ sort of handling of uninitialised variables is taken into account in our
# structures, so that doesn't become a huge edge case, even though we make no assertions
# about the _meaning_ if such an expression was run on hardware.
if self._control_flow_scopes:
raise CircuitError("cannot add an uninitialized variable in a control-flow scope")
if not var.standalone:
raise CircuitError("cannot add a variable wrapping a bit or register to a circuit")
self._builder_api.add_uninitialized_var(var)
def add_capture(self, var: expr.Var):
"""Add a variable to the circuit that it should capture from a scope it will be contained
within.
This method requires a :class:`~.expr.Var` node to enforce that you've got a handle to one,
because you will need to declare the same variable using the same object into the outer
circuit.
This is a low-level method, which is only really useful if you are manually constructing
control-flow operations. You typically will not need to call this method, assuming you
are using the builder interface for control-flow scopes (``with`` context-manager statements
for :meth:`if_test` and the other scoping constructs). The builder interface will
automatically make the inner scopes closures on your behalf by capturing any variables that
are used within them.
Args:
var: the variable to capture from an enclosing scope.
Raises:
CircuitError: if the variable cannot be created due to shadowing an existing variable.
"""
if self._control_flow_scopes:
# Allow manual capturing. Not sure why it'd be useful, but there's a clear expected
# behavior here.
self._control_flow_scopes[-1].use_var(var)
return
if self._vars_input:
raise CircuitError(
"circuits with input variables cannot be enclosed, so cannot be closures"
)
self._vars_capture[var.name] = self._prepare_new_var(var, None)
@typing.overload
def add_input(self, name_or_var: str, type_: types.Type, /) -> expr.Var: ...
@typing.overload
def add_input(self, name_or_var: expr.Var, type_: None = None, /) -> expr.Var: ...
def add_input( # pylint: disable=missing-raises-doc
self, name_or_var: str | expr.Var, type_: types.Type | None = None, /
) -> expr.Var:
"""Register a variable as an input to the circuit.
Args:
name_or_var: either a string name, or an existing :class:`~.expr.Var` node to use as the
input variable.
type_: if the name is given as a string, then this must be a :class:`~.types.Type` to
use for the variable. If the variable is given as an existing :class:`~.expr.Var`,
then this must not be given, and will instead be read from the object itself.
Returns:
the variable created, or the same variable as was passed in.
Raises:
CircuitError: if the variable cannot be created due to shadowing an existing variable.
"""
if self._control_flow_scopes:
raise CircuitError("cannot add an input variable in a control-flow scope")
if self._vars_capture:
raise CircuitError("circuits to be enclosed with captures cannot have input variables")
if isinstance(name_or_var, expr.Var) and type_ is not None:
raise ValueError("cannot give an explicit type with an existing Var")
var = self._prepare_new_var(name_or_var, type_)
self._vars_input[var.name] = var
return var
def add_register(self, *regs: Register | int | Sequence[Bit]) -> None:
"""Add registers."""
if not regs:
return
if any(isinstance(reg, int) for reg in regs):
# QuantumCircuit defined without registers
if len(regs) == 1 and isinstance(regs[0], int):
# QuantumCircuit with anonymous quantum wires e.g. QuantumCircuit(2)
if regs[0] == 0:
regs = ()
else:
regs = (QuantumRegister(regs[0], "q"),)
elif len(regs) == 2 and all(isinstance(reg, int) for reg in regs):
# QuantumCircuit with anonymous wires e.g. QuantumCircuit(2, 3)
if regs[0] == 0:
qregs: tuple[QuantumRegister, ...] = ()
else:
qregs = (QuantumRegister(regs[0], "q"),)
if regs[1] == 0:
cregs: tuple[ClassicalRegister, ...] = ()
else:
cregs = (ClassicalRegister(regs[1], "c"),)
regs = qregs + cregs
else:
raise CircuitError(
"QuantumCircuit parameters can be Registers or Integers."
" If Integers, up to 2 arguments. QuantumCircuit was called"
f" with {(regs,)}."
)
for register in regs:
if isinstance(register, Register) and any(
register.name == reg.name for reg in self.qregs + self.cregs
):
raise CircuitError(f'register name "{register.name}" already exists')
if isinstance(register, AncillaRegister):
for bit in register:
if bit not in self._qubit_indices:
self._ancillas.append(bit)
if isinstance(register, QuantumRegister):
self.qregs.append(register)
for idx, bit in enumerate(register):
if bit in self._qubit_indices:
self._qubit_indices[bit].registers.append((register, idx))
else:
self._data.add_qubit(bit)
self._qubit_indices[bit] = BitLocations(
self._data.num_qubits - 1, [(register, idx)]
)
elif isinstance(register, ClassicalRegister):
self.cregs.append(register)
for idx, bit in enumerate(register):
if bit in self._clbit_indices:
self._clbit_indices[bit].registers.append((register, idx))
else:
self._data.add_clbit(bit)
self._clbit_indices[bit] = BitLocations(
self._data.num_clbits - 1, [(register, idx)]
)
elif isinstance(register, list):
self.add_bits(register)
else:
raise CircuitError("expected a register")
def add_bits(self, bits: Iterable[Bit]) -> None:
"""Add Bits to the circuit."""
duplicate_bits = {
bit for bit in bits if bit in self._qubit_indices or bit in self._clbit_indices
}
if duplicate_bits:
raise CircuitError(f"Attempted to add bits found already in circuit: {duplicate_bits}")
for bit in bits:
if isinstance(bit, AncillaQubit):
self._ancillas.append(bit)
if isinstance(bit, Qubit):
self._data.add_qubit(bit)
self._qubit_indices[bit] = BitLocations(self._data.num_qubits - 1, [])
elif isinstance(bit, Clbit):
self._data.add_clbit(bit)
self._clbit_indices[bit] = BitLocations(self._data.num_clbits - 1, [])
else:
raise CircuitError(
"Expected an instance of Qubit, Clbit, or "
f"AncillaQubit, but was passed {bit}"
)
def find_bit(self, bit: Bit) -> BitLocations:
"""Find locations in the circuit which can be used to reference a given :obj:`~Bit`.
In particular, this function can find the integer index of a qubit, which corresponds to its
hardware index for a transpiled circuit.
.. note::
The circuit index of a :class:`.AncillaQubit` will be its index in :attr:`qubits`, not
:attr:`ancillas`.
Args:
bit (Bit): The bit to locate.
Returns:
namedtuple(int, List[Tuple(Register, int)]): A 2-tuple. The first element (``index``)
contains the index at which the ``Bit`` can be found (in either
:obj:`~QuantumCircuit.qubits`, :obj:`~QuantumCircuit.clbits`, depending on its
type). The second element (``registers``) is a list of ``(register, index)``
pairs with an entry for each :obj:`~Register` in the circuit which contains the
:obj:`~Bit` (and the index in the :obj:`~Register` at which it can be found).
Raises:
CircuitError: If the supplied :obj:`~Bit` was of an unknown type.
CircuitError: If the supplied :obj:`~Bit` could not be found on the circuit.
Examples:
Loop through a circuit, getting the qubit and clbit indices of each operation::
from qiskit.circuit import QuantumCircuit, Qubit
qc = QuantumCircuit(3, 3)
qc.h(0)
qc.cx(0, 1)
qc.cx(1, 2)
qc.measure([0, 1, 2], [0, 1, 2])
# The `.qubits` and `.clbits` fields are not integers.
assert isinstance(qc.data[0].qubits[0], Qubit)
# ... but we can use `find_bit` to retrieve them.
assert qc.find_bit(qc.data[0].qubits[0]).index == 0
simple = [
(
instruction.operation.name,
[qc.find_bit(bit).index for bit in instruction.qubits],
[qc.find_bit(bit).index for bit in instruction.clbits],
)
for instruction in qc.data
]
"""
try:
if isinstance(bit, Qubit):
return self._qubit_indices[bit]
elif isinstance(bit, Clbit):
return self._clbit_indices[bit]
else:
raise CircuitError(f"Could not locate bit of unknown type: {type(bit)}")
except KeyError as err:
raise CircuitError(
f"Could not locate provided bit: {bit}. Has it been added to the QuantumCircuit?"
) from err
def _check_dups(self, qubits: Sequence[Qubit]) -> None:
"""Raise exception if list of qubits contains duplicates."""
squbits = set(qubits)
if len(squbits) != len(qubits):
raise CircuitError("duplicate qubit arguments")
def to_instruction(
self,
parameter_map: dict[Parameter, ParameterValueType] | None = None,
label: str | None = None,
) -> Instruction:
"""Create an :class:`~.circuit.Instruction` out of this circuit.
.. seealso::
:func:`circuit_to_instruction`
The underlying driver of this method.
Args:
parameter_map: For parameterized circuits, a mapping from
parameters in the circuit to parameters to be used in the
instruction. If None, existing circuit parameters will also
parameterize the instruction.
label: Optional gate label.
Returns:
qiskit.circuit.Instruction: a composite instruction encapsulating this circuit (can be
decomposed back).
"""
from qiskit.converters.circuit_to_instruction import circuit_to_instruction
return circuit_to_instruction(self, parameter_map, label=label)
def to_gate(
self,
parameter_map: dict[Parameter, ParameterValueType] | None = None,
label: str | None = None,
) -> Gate:
"""Create a :class:`.Gate` out of this circuit. The circuit must act only qubits and
contain only unitary operations.
.. seealso::
:func:`circuit_to_gate`
The underlying driver of this method.
Args:
parameter_map: For parameterized circuits, a mapping from parameters in the circuit to
parameters to be used in the gate. If ``None``, existing circuit parameters will
also parameterize the gate.
label : Optional gate label.
Returns:
Gate: a composite gate encapsulating this circuit (can be decomposed back).
"""
from qiskit.converters.circuit_to_gate import circuit_to_gate
return circuit_to_gate(self, parameter_map, label=label)
def decompose(
self,
gates_to_decompose: Type[Gate] | Sequence[Type[Gate]] | Sequence[str] | str | None = None,
reps: int = 1,
) -> "QuantumCircuit":
"""Call a decomposition pass on this circuit,
to decompose one level (shallow decompose).
Args:
gates_to_decompose (type or str or list(type, str)): Optional subset of gates
to decompose. Can be a gate type, such as ``HGate``, or a gate name, such
as 'h', or a gate label, such as 'My H Gate', or a list of any combination
of these. If a gate name is entered, it will decompose all gates with that
name, whether the gates have labels or not. Defaults to all gates in circuit.
reps (int): Optional number of times the circuit should be decomposed.
For instance, ``reps=2`` equals calling ``circuit.decompose().decompose()``.
can decompose specific gates specific time
Returns:
QuantumCircuit: a circuit one level decomposed
"""
# pylint: disable=cyclic-import
from qiskit.transpiler.passes.basis.decompose import Decompose
from qiskit.transpiler.passes.synthesis import HighLevelSynthesis
from qiskit.converters.circuit_to_dag import circuit_to_dag
from qiskit.converters.dag_to_circuit import dag_to_circuit
dag = circuit_to_dag(self, copy_operations=True)
if gates_to_decompose is None:
# We should not rewrite the circuit using HLS when we have gates_to_decompose,
# or else HLS will rewrite all objects with available plugins (e.g., Cliffords,
# PermutationGates, and now also MCXGates)
dag = HighLevelSynthesis().run(dag)
pass_ = Decompose(gates_to_decompose)
for _ in range(reps):
dag = pass_.run(dag)
# do not copy operations, this is done in the conversion with circuit_to_dag
return dag_to_circuit(dag, copy_operations=False)
def draw(
self,
output: str | None = None,
scale: float | None = None,
filename: str | None = None,
style: dict | str | None = None,
interactive: bool = False,
plot_barriers: bool = True,
reverse_bits: bool | None = None,
justify: str | None = None,
vertical_compression: str | None = "medium",
idle_wires: bool | None = None,
with_layout: bool = True,
fold: int | None = None,
# The type of ax is matplotlib.axes.Axes, but this is not a fixed dependency, so cannot be
# safely forward-referenced.
ax: Any | None = None,
initial_state: bool = False,
cregbundle: bool | None = None,
wire_order: list[int] | None = None,
expr_len: int = 30,
):
r"""Draw the quantum circuit. Use the output parameter to choose the drawing format:
**text**: ASCII art TextDrawing that can be printed in the console.
**mpl**: images with color rendered purely in Python using matplotlib.
**latex**: high-quality images compiled via latex.
**latex_source**: raw uncompiled latex output.
.. warning::
Support for :class:`~.expr.Expr` nodes in conditions and :attr:`.SwitchCaseOp.target`
fields is preliminary and incomplete. The ``text`` and ``mpl`` drawers will make a
best-effort attempt to show data dependencies, but the LaTeX-based drawers will skip
these completely.
Args:
output: Select the output method to use for drawing the circuit.
Valid choices are ``text``, ``mpl``, ``latex``, ``latex_source``.
By default, the ``text`` drawer is used unless the user config file
(usually ``~/.qiskit/settings.conf``) has an alternative backend set
as the default. For example, ``circuit_drawer = latex``. If the output
kwarg is set, that backend will always be used over the default in
the user config file.
scale: Scale of image to draw (shrink if ``< 1.0``). Only used by
the ``mpl``, ``latex`` and ``latex_source`` outputs. Defaults to ``1.0``.
filename: File path to save image to. Defaults to ``None`` (result not saved in a file).
style: Style name, file name of style JSON file, or a dictionary specifying the style.
* The supported style names are ``"iqp"`` (default), ``"iqp-dark"``, ``"clifford"``,
``"textbook"`` and ``"bw"``.
* If given a JSON file, e.g. ``my_style.json`` or ``my_style`` (the ``.json``
extension may be omitted), this function attempts to load the style dictionary
from that location. Note, that the JSON file must completely specify the
visualization specifications. The file is searched for in
``qiskit/visualization/circuit/styles``, the current working directory, and
the location specified in ``~/.qiskit/settings.conf``.
* If a dictionary, every entry overrides the default configuration. If the
``"name"`` key is given, the default configuration is given by that style.
For example, ``{"name": "textbook", "subfontsize": 5}`` loads the ``"texbook"``
style and sets the subfontsize (e.g. the gate angles) to ``5``.
* If ``None`` the default style ``"iqp"`` is used or, if given, the default style
specified in ``~/.qiskit/settings.conf``.
interactive: When set to ``True``, show the circuit in a new window
(for ``mpl`` this depends on the matplotlib backend being used
supporting this). Note when used with either the `text` or the
``latex_source`` output type this has no effect and will be silently
ignored. Defaults to ``False``.
reverse_bits: When set to ``True``, reverse the bit order inside
registers for the output visualization. Defaults to ``False`` unless the
user config file (usually ``~/.qiskit/settings.conf``) has an
alternative value set. For example, ``circuit_reverse_bits = True``.
plot_barriers: Enable/disable drawing barriers in the output
circuit. Defaults to ``True``.
justify: Options are ``"left"``, ``"right"`` or ``"none"`` (str).
If anything else is supplied, left justified will be used instead.
It refers to where gates should be placed in the output circuit if
there is an option. ``none`` results in each gate being placed in
its own column. Defaults to ``left``.
vertical_compression: ``high``, ``medium`` or ``low``. It
merges the lines generated by the `text` output so the drawing
will take less vertical room. Default is ``medium``. Only used by
the ``text`` output, will be silently ignored otherwise.
idle_wires: Include idle wires (wires with no circuit elements)
in output visualization. Default is ``True`` unless the
user config file (usually ``~/.qiskit/settings.conf``) has an
alternative value set. For example, ``circuit_idle_wires = False``.
with_layout: Include layout information, with labels on the
physical layout. Default is ``True``.
fold: Sets pagination. It can be disabled using -1. In ``text``,
sets the length of the lines. This is useful when the drawing does
not fit in the console. If None (default), it will try to guess the
console width using ``shutil.get_terminal_size()``. However, if
running in jupyter, the default line length is set to 80 characters.
In ``mpl``, it is the number of (visual) layers before folding.
Default is 25.
ax: Only used by the `mpl` backend. An optional ``matplotlib.axes.Axes``
object to be used for the visualization output. If none is
specified, a new matplotlib Figure will be created and used.
Additionally, if specified there will be no returned Figure since
it is redundant.
initial_state: Adds :math:`|0\rangle` in the beginning of the qubit wires and
:math:`0` to classical wires. Default is ``False``.
cregbundle: If set to ``True``, bundle classical registers.
Default is ``True``, except for when ``output`` is set to ``"text"``.
wire_order: A list of integers used to reorder the display
of the bits. The list must have an entry for every bit with the bits
in the range 0 to (``num_qubits`` + ``num_clbits``).
expr_len: The number of characters to display if an :class:`~.expr.Expr`
is used for the condition in a :class:`.ControlFlowOp`. If this number is exceeded,
the string will be truncated at that number and '...' added to the end.
Returns:
:class:`.TextDrawing` or :class:`matplotlib.figure` or :class:`PIL.Image` or
:class:`str`:
* ``TextDrawing`` (if ``output='text'``)
A drawing that can be printed as ascii art.
* ``matplotlib.figure.Figure`` (if ``output='mpl'``)
A matplotlib figure object for the circuit diagram.
* ``PIL.Image`` (if ``output='latex``')
An in-memory representation of the image of the circuit diagram.
* ``str`` (if ``output='latex_source'``)
The LaTeX source code for visualizing the circuit diagram.
Raises:
VisualizationError: when an invalid output method is selected
ImportError: when the output methods requires non-installed libraries.
Example:
.. plot::
:include-source:
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
qc = QuantumCircuit(1, 1)
qc.h(0)
qc.measure(0, 0)
qc.draw(output='mpl', style={'backgroundcolor': '#EEEEEE'})
"""
# pylint: disable=cyclic-import
from qiskit.visualization import circuit_drawer
return circuit_drawer(
self,
scale=scale,
filename=filename,
style=style,
output=output,
interactive=interactive,
plot_barriers=plot_barriers,
reverse_bits=reverse_bits,
justify=justify,
vertical_compression=vertical_compression,
idle_wires=idle_wires,
with_layout=with_layout,
fold=fold,
ax=ax,
initial_state=initial_state,
cregbundle=cregbundle,
wire_order=wire_order,
expr_len=expr_len,
)
def size(
self,
filter_function: Callable[..., int] = lambda x: not getattr(
x.operation, "_directive", False
),
) -> int:
"""Returns total number of instructions in circuit.
Args:
filter_function (callable): a function to filter out some instructions.
Should take as input a tuple of (Instruction, list(Qubit), list(Clbit)).
By default, filters out "directives", such as barrier or snapshot.
Returns:
int: Total number of gate operations.
"""
return sum(map(filter_function, self._data))
def depth(
self,
filter_function: Callable[[CircuitInstruction], bool] = lambda x: not getattr(
x.operation, "_directive", False
),
) -> int:
"""Return circuit depth (i.e., length of critical path).
.. warning::
This operation is not well defined if the circuit contains control-flow operations.
Args:
filter_function: A function to decide which instructions count to increase depth.
Should take as a single positional input a :class:`CircuitInstruction`.
Instructions for which the function returns ``False`` are ignored in the
computation of the circuit depth. By default, filters out "directives", such as
:class:`.Barrier`.
Returns:
int: Depth of circuit.
Examples:
Simple calculation of total circuit depth::
from qiskit.circuit import QuantumCircuit
qc = QuantumCircuit(4)
qc.h(0)
qc.cx(0, 1)
qc.h(2)
qc.cx(2, 3)
assert qc.depth() == 2
Modifying the previous example to only calculate the depth of multi-qubit gates::
assert qc.depth(lambda instr: len(instr.qubits) > 1) == 1
"""
obj_depths = {
obj: 0 for objects in (self.qubits, self.clbits, self.iter_vars()) for obj in objects
}
def update_from_expr(objects, node):
for var in expr.iter_vars(node):
if var.standalone:
objects.add(var)
else:
objects.update(_builder_utils.node_resources(var).clbits)
for instruction in self._data:
objects = set(itertools.chain(instruction.qubits, instruction.clbits))
if (condition := getattr(instruction.operation, "condition", None)) is not None:
objects.update(_builder_utils.condition_resources(condition).clbits)
if isinstance(condition, expr.Expr):
update_from_expr(objects, condition)
else:
objects.update(_builder_utils.condition_resources(condition).clbits)
elif isinstance(instruction.operation, SwitchCaseOp):
update_from_expr(objects, expr.lift(instruction.operation.target))
elif isinstance(instruction.operation, Store):
update_from_expr(objects, instruction.operation.lvalue)
update_from_expr(objects, instruction.operation.rvalue)
# If we're counting this as adding to depth, do so. If not, it still functions as a
# data synchronisation point between the objects (think "barrier"), so the depths still
# get updated to match the current max over the affected objects.
new_depth = max((obj_depths[obj] for obj in objects), default=0)
if filter_function(instruction):
new_depth += 1
for obj in objects:
obj_depths[obj] = new_depth
return max(obj_depths.values(), default=0)
def width(self) -> int:
"""Return number of qubits plus clbits in circuit.
Returns:
int: Width of circuit.
"""
return self._data.width()
@property
def num_qubits(self) -> int:
"""Return number of qubits."""
return self._data.num_qubits
@property
def num_ancillas(self) -> int:
"""Return the number of ancilla qubits."""
return len(self.ancillas)
@property
def num_clbits(self) -> int:
"""Return number of classical bits."""
return self._data.num_clbits
# The stringified return type is because OrderedDict can't be subscripted before Python 3.9, and
# typing.OrderedDict wasn't added until 3.7.2. It can be turned into a proper type once 3.6
# support is dropped.
def count_ops(self) -> "OrderedDict[Instruction, int]":
"""Count each operation kind in the circuit.
Returns:
OrderedDict: a breakdown of how many operations of each kind, sorted by amount.
"""
ops_dict = self._data.count_ops()
return OrderedDict(ops_dict)
def num_nonlocal_gates(self) -> int:
"""Return number of non-local gates (i.e. involving 2+ qubits).
Conditional nonlocal gates are also included.
"""
return self._data.num_nonlocal_gates()
def get_instructions(self, name: str) -> list[CircuitInstruction]:
"""Get instructions matching name.
Args:
name (str): The name of instruction to.
Returns:
list(tuple): list of (instruction, qargs, cargs).
"""
return [match for match in self._data if match.operation.name == name]
def num_connected_components(self, unitary_only: bool = False) -> int:
"""How many non-entangled subcircuits can the circuit be factored to.
Args:
unitary_only (bool): Compute only unitary part of graph.
Returns:
int: Number of connected components in circuit.
"""
# Convert registers to ints (as done in depth).
bits = self.qubits if unitary_only else (self.qubits + self.clbits)
bit_indices: dict[Qubit | Clbit, int] = {bit: idx for idx, bit in enumerate(bits)}
# Start with each qubit or clbit being its own subgraph.
sub_graphs = [[bit] for bit in range(len(bit_indices))]
num_sub_graphs = len(sub_graphs)
# Here we are traversing the gates and looking to see
# which of the sub_graphs the gate joins together.
for instruction in self._data:
if unitary_only:
args = instruction.qubits
num_qargs = len(args)
else:
args = instruction.qubits + instruction.clbits
num_qargs = len(args) + (
1 if getattr(instruction.operation, "condition", None) else 0
)
if num_qargs >= 2 and not getattr(instruction.operation, "_directive", False):
graphs_touched = []
num_touched = 0
# Controls necessarily join all the cbits in the
# register that they use.
if not unitary_only:
for bit in instruction.operation.condition_bits:
idx = bit_indices[bit]
for k in range(num_sub_graphs):
if idx in sub_graphs[k]:
graphs_touched.append(k)
break
for item in args:
reg_int = bit_indices[item]
for k in range(num_sub_graphs):
if reg_int in sub_graphs[k]:
if k not in graphs_touched:
graphs_touched.append(k)
break
graphs_touched = list(set(graphs_touched))
num_touched = len(graphs_touched)
# If the gate touches more than one subgraph
# join those graphs together and return
# reduced number of subgraphs
if num_touched > 1:
connections = []
for idx in graphs_touched:
connections.extend(sub_graphs[idx])
_sub_graphs = []
for idx in range(num_sub_graphs):
if idx not in graphs_touched:
_sub_graphs.append(sub_graphs[idx])
_sub_graphs.append(connections)
sub_graphs = _sub_graphs
num_sub_graphs -= num_touched - 1
# Cannot go lower than one so break
if num_sub_graphs == 1:
break
return num_sub_graphs
def num_unitary_factors(self) -> int:
"""Computes the number of tensor factors in the unitary
(quantum) part of the circuit only.
"""
return self.num_connected_components(unitary_only=True)
def num_tensor_factors(self) -> int:
"""Computes the number of tensor factors in the unitary
(quantum) part of the circuit only.
Notes:
This is here for backwards compatibility, and will be
removed in a future release of Qiskit. You should call
`num_unitary_factors` instead.
"""
return self.num_unitary_factors()
def copy(self, name: str | None = None) -> typing.Self:
"""Copy the circuit.
Args:
name (str): name to be given to the copied circuit. If None, then the name stays the same.
Returns:
QuantumCircuit: a deepcopy of the current circuit, with the specified name
"""
cpy = self.copy_empty_like(name)
cpy._data = self._data.copy()
return cpy
def copy_empty_like(
self,
name: str | None = None,
*,
vars_mode: Literal["alike", "captures", "drop"] = "alike",
) -> typing.Self:
"""Return a copy of self with the same structure but empty.
That structure includes:
* name, calibrations and other metadata
* global phase
* all the qubits and clbits, including the registers
* the realtime variables defined in the circuit, handled according to the ``vars`` keyword
argument.
.. warning::
If the circuit contains any local variable declarations (those added by the
``declarations`` argument to the circuit constructor, or using :meth:`add_var`), they
may be **uninitialized** in the output circuit. You will need to manually add store
instructions for them (see :class:`.Store` and :meth:`.QuantumCircuit.store`) to
initialize them.
Args:
name: Name for the copied circuit. If None, then the name stays the same.
vars_mode: The mode to handle realtime variables in.
alike
The variables in the output circuit will have the same declaration semantics as
in the original circuit. For example, ``input`` variables in the source will be
``input`` variables in the output circuit.
captures
All variables will be converted to captured variables. This is useful when you
are building a new layer for an existing circuit that you will want to
:meth:`compose` onto the base, since :meth:`compose` can inline captures onto
the base circuit (but not other variables).
drop
The output circuit will have no variables defined.
Returns:
QuantumCircuit: An empty copy of self.
"""
if not (name is None or isinstance(name, str)):
raise TypeError(
f"invalid name for a circuit: '{name}'. The name must be a string or 'None'."
)
cpy = _copy.copy(self)
# copy registers correctly, in copy.copy they are only copied via reference
cpy.qregs = self.qregs.copy()
cpy.cregs = self.cregs.copy()
cpy._builder_api = _OuterCircuitScopeInterface(cpy)
cpy._ancillas = self._ancillas.copy()
cpy._qubit_indices = self._qubit_indices.copy()
cpy._clbit_indices = self._clbit_indices.copy()
if vars_mode == "alike":
# Note that this causes the local variables to be uninitialised, because the stores are
# not copied. This can leave the circuit in a potentially dangerous state for users if
# they don't re-add initializer stores.
cpy._vars_local = self._vars_local.copy()
cpy._vars_input = self._vars_input.copy()
cpy._vars_capture = self._vars_capture.copy()
elif vars_mode == "captures":
cpy._vars_local = {}
cpy._vars_input = {}
cpy._vars_capture = {var.name: var for var in self.iter_vars()}
elif vars_mode == "drop":
cpy._vars_local = {}
cpy._vars_input = {}
cpy._vars_capture = {}
else: # pragma: no cover
raise ValueError(f"unknown vars_mode: '{vars_mode}'")
cpy._data = CircuitData(
self._data.qubits, self._data.clbits, global_phase=self._data.global_phase
)
cpy._calibrations = _copy.deepcopy(self._calibrations)
cpy._metadata = _copy.deepcopy(self._metadata)
if name:
cpy.name = name
return cpy
def clear(self) -> None:
"""Clear all instructions in self.
Clearing the circuits will keep the metadata and calibrations.
.. seealso::
:meth:`copy_empty_like`
A method to produce a new circuit with no instructions and all the same tracking of
quantum and classical typed data, but without mutating the original circuit.
"""
self._data.clear()
# Repopulate the parameter table with any phase symbols.
self.global_phase = self.global_phase
def _create_creg(self, length: int, name: str) -> ClassicalRegister:
"""Creates a creg, checking if ClassicalRegister with same name exists"""
if name in [creg.name for creg in self.cregs]:
save_prefix = ClassicalRegister.prefix
ClassicalRegister.prefix = name
new_creg = ClassicalRegister(length)
ClassicalRegister.prefix = save_prefix
else:
new_creg = ClassicalRegister(length, name)
return new_creg
def _create_qreg(self, length: int, name: str) -> QuantumRegister:
"""Creates a qreg, checking if QuantumRegister with same name exists"""
if name in [qreg.name for qreg in self.qregs]:
save_prefix = QuantumRegister.prefix
QuantumRegister.prefix = name
new_qreg = QuantumRegister(length)
QuantumRegister.prefix = save_prefix
else:
new_qreg = QuantumRegister(length, name)
return new_qreg
def reset(self, qubit: QubitSpecifier) -> InstructionSet:
"""Reset the quantum bit(s) to their default state.
Args:
qubit: qubit(s) to reset.
Returns:
qiskit.circuit.InstructionSet: handle to the added instruction.
"""
from .reset import Reset
return self.append(Reset(), [qubit], [], copy=False)
def store(self, lvalue: typing.Any, rvalue: typing.Any, /) -> InstructionSet:
"""Store the result of the given real-time classical expression ``rvalue`` in the memory
location defined by ``lvalue``.
Typically ``lvalue`` will be a :class:`~.expr.Var` node and ``rvalue`` will be some
:class:`~.expr.Expr` to write into it, but anything that :func:`.expr.lift` can raise to an
:class:`~.expr.Expr` is permissible in both places, and it will be called on them.
Args:
lvalue: a valid specifier for a memory location in the circuit. This will typically be
a :class:`~.expr.Var` node, but you can also write to :class:`.Clbit` or
:class:`.ClassicalRegister` memory locations if your hardware supports it. The
memory location must already be present in the circuit.
rvalue: a real-time classical expression whose result should be written into the given
memory location.
.. seealso::
:class:`~.circuit.Store`
The backing :class:`~.circuit.Instruction` class that represents this operation.
:meth:`add_var`
Create a new variable in the circuit that can be written to with this method.
"""
# As a convenience, lift integer-literal rvalues to the matching width.
lvalue = expr.lift(lvalue)
rvalue_type = (
lvalue.type if isinstance(rvalue, int) and not isinstance(rvalue, bool) else None
)
rvalue = expr.lift(rvalue, rvalue_type)
return self.append(Store(lvalue, rvalue), (), (), copy=False)
def measure(self, qubit: QubitSpecifier, cbit: ClbitSpecifier) -> InstructionSet:
r"""Measure a quantum bit (``qubit``) in the Z basis into a classical bit (``cbit``).
When a quantum state is measured, a qubit is projected in the computational (Pauli Z) basis
to either :math:`\lvert 0 \rangle` or :math:`\lvert 1 \rangle`. The classical bit ``cbit``
indicates the result
of that projection as a ``0`` or a ``1`` respectively. This operation is non-reversible.
Args:
qubit: qubit(s) to measure.
cbit: classical bit(s) to place the measurement result(s) in.
Returns:
qiskit.circuit.InstructionSet: handle to the added instructions.
Raises:
CircuitError: if arguments have bad format.
Examples:
In this example, a qubit is measured and the result of that measurement is stored in the
classical bit (usually expressed in diagrams as a double line):
.. code-block::
from qiskit import QuantumCircuit
circuit = QuantumCircuit(1, 1)
circuit.h(0)
circuit.measure(0, 0)
circuit.draw()
.. parsed-literal::
┌───┐┌─┐
q: ┤ H ├┤M├
└───┘└╥┘
c: 1/══════╩═
0
It is possible to call ``measure`` with lists of ``qubits`` and ``cbits`` as a shortcut
for one-to-one measurement. These two forms produce identical results:
.. code-block::
circuit = QuantumCircuit(2, 2)
circuit.measure([0,1], [0,1])
.. code-block::
circuit = QuantumCircuit(2, 2)
circuit.measure(0, 0)
circuit.measure(1, 1)
Instead of lists, you can use :class:`~qiskit.circuit.QuantumRegister` and
:class:`~qiskit.circuit.ClassicalRegister` under the same logic.
.. code-block::
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
qreg = QuantumRegister(2, "qreg")
creg = ClassicalRegister(2, "creg")
circuit = QuantumCircuit(qreg, creg)
circuit.measure(qreg, creg)
This is equivalent to:
.. code-block::
circuit = QuantumCircuit(qreg, creg)
circuit.measure(qreg[0], creg[0])
circuit.measure(qreg[1], creg[1])
"""
from .measure import Measure
return self.append(Measure(), [qubit], [cbit], copy=False)
def measure_active(self, inplace: bool = True) -> Optional["QuantumCircuit"]:
"""Adds measurement to all non-idle qubits. Creates a new ClassicalRegister with
a size equal to the number of non-idle qubits being measured.
Returns a new circuit with measurements if `inplace=False`.
Args:
inplace (bool): All measurements inplace or return new circuit.
Returns:
QuantumCircuit: Returns circuit with measurements when ``inplace = False``.
"""
from qiskit.converters.circuit_to_dag import circuit_to_dag
if inplace:
circ = self
else:
circ = self.copy()
dag = circuit_to_dag(circ)
qubits_to_measure = [qubit for qubit in circ.qubits if qubit not in dag.idle_wires()]
new_creg = circ._create_creg(len(qubits_to_measure), "measure")
circ.add_register(new_creg)
circ.barrier()
circ.measure(qubits_to_measure, new_creg)
if not inplace:
return circ
else:
return None
def measure_all(
self, inplace: bool = True, add_bits: bool = True
) -> Optional["QuantumCircuit"]:
"""Adds measurement to all qubits.
By default, adds new classical bits in a :obj:`.ClassicalRegister` to store these
measurements. If ``add_bits=False``, the results of the measurements will instead be stored
in the already existing classical bits, with qubit ``n`` being measured into classical bit
``n``.
Returns a new circuit with measurements if ``inplace=False``.
Args:
inplace (bool): All measurements inplace or return new circuit.
add_bits (bool): Whether to add new bits to store the results.
Returns:
QuantumCircuit: Returns circuit with measurements when ``inplace=False``.
Raises:
CircuitError: if ``add_bits=False`` but there are not enough classical bits.
"""
if inplace:
circ = self
else:
circ = self.copy()
if add_bits:
new_creg = circ._create_creg(circ.num_qubits, "meas")
circ.add_register(new_creg)
circ.barrier()
circ.measure(circ.qubits, new_creg)
else:
if circ.num_clbits < circ.num_qubits:
raise CircuitError(
"The number of classical bits must be equal or greater than "
"the number of qubits."
)
circ.barrier()
circ.measure(circ.qubits, circ.clbits[0 : circ.num_qubits])
if not inplace:
return circ
else:
return None
def remove_final_measurements(self, inplace: bool = True) -> Optional["QuantumCircuit"]:
"""Removes final measurements and barriers on all qubits if they are present.
Deletes the classical registers that were used to store the values from these measurements
that become idle as a result of this operation, and deletes classical bits that are
referenced only by removed registers, or that aren't referenced at all but have
become idle as a result of this operation.
Measurements and barriers are considered final if they are
followed by no other operations (aside from other measurements or barriers.)
.. note::
This method has rather complex behavior, particularly around the removal of newly idle
classical bits and registers. It is much more efficient to avoid adding unnecessary
classical data in the first place, rather than trying to remove it later.
.. seealso::
:class:`.RemoveFinalMeasurements`
A transpiler pass that removes final measurements and barriers. This does not
remove the classical data. If this is your goal, you can call that with::
from qiskit.circuit import QuantumCircuit
from qiskit.transpiler.passes import RemoveFinalMeasurements
qc = QuantumCircuit(2, 2)
qc.h(0)
qc.cx(0, 1)
qc.barrier()
qc.measure([0, 1], [0, 1])
pass_ = RemoveFinalMeasurements()
just_bell = pass_(qc)
Args:
inplace (bool): All measurements removed inplace or return new circuit.
Returns:
QuantumCircuit: Returns the resulting circuit when ``inplace=False``, else None.
"""
# pylint: disable=cyclic-import
from qiskit.transpiler.passes import RemoveFinalMeasurements
from qiskit.converters import circuit_to_dag
if inplace:
circ = self
else:
circ = self.copy()
dag = circuit_to_dag(circ)
remove_final_meas = RemoveFinalMeasurements()
new_dag = remove_final_meas.run(dag)
kept_cregs = set(new_dag.cregs.values())
kept_clbits = set(new_dag.clbits)
# Filter only cregs/clbits still in new DAG, preserving original circuit order
cregs_to_add = [creg for creg in circ.cregs if creg in kept_cregs]
clbits_to_add = [clbit for clbit in circ._data.clbits if clbit in kept_clbits]
# Clear cregs and clbits
circ.cregs = []
circ._clbit_indices = {}
# Clear instruction info
circ._data = CircuitData(
qubits=circ._data.qubits, reserve=len(circ._data), global_phase=circ.global_phase
)
# We must add the clbits first to preserve the original circuit
# order. This way, add_register never adds clbits and just
# creates registers that point to them.
circ.add_bits(clbits_to_add)
for creg in cregs_to_add:
circ.add_register(creg)
# Set circ instructions to match the new DAG
for node in new_dag.topological_op_nodes():
# Get arguments for classical condition (if any)
inst = node.op.copy()
circ.append(inst, node.qargs, node.cargs)
if not inplace:
return circ
else:
return None
@staticmethod
def from_qasm_file(path: str) -> "QuantumCircuit":
"""Read an OpenQASM 2.0 program from a file and convert to an instance of
:class:`.QuantumCircuit`.
Args:
path (str): Path to the file for an OpenQASM 2 program
Return:
QuantumCircuit: The QuantumCircuit object for the input OpenQASM 2.
See also:
:func:`.qasm2.load`: the complete interface to the OpenQASM 2 importer.
"""
# pylint: disable=cyclic-import
from qiskit import qasm2
return qasm2.load(
path,
include_path=qasm2.LEGACY_INCLUDE_PATH,
custom_instructions=qasm2.LEGACY_CUSTOM_INSTRUCTIONS,
custom_classical=qasm2.LEGACY_CUSTOM_CLASSICAL,
strict=False,
)
@staticmethod
def from_qasm_str(qasm_str: str) -> "QuantumCircuit":
"""Convert a string containing an OpenQASM 2.0 program to a :class:`.QuantumCircuit`.
Args:
qasm_str (str): A string containing an OpenQASM 2.0 program.
Return:
QuantumCircuit: The QuantumCircuit object for the input OpenQASM 2
See also:
:func:`.qasm2.loads`: the complete interface to the OpenQASM 2 importer.
"""
# pylint: disable=cyclic-import
from qiskit import qasm2
return qasm2.loads(
qasm_str,
include_path=qasm2.LEGACY_INCLUDE_PATH,
custom_instructions=qasm2.LEGACY_CUSTOM_INSTRUCTIONS,
custom_classical=qasm2.LEGACY_CUSTOM_CLASSICAL,
strict=False,
)
@property
def global_phase(self) -> ParameterValueType:
"""The global phase of the current circuit scope in radians."""
if self._control_flow_scopes:
return self._control_flow_scopes[-1].global_phase
return self._data.global_phase
@global_phase.setter
def global_phase(self, angle: ParameterValueType):
"""Set the phase of the current circuit scope.
Args:
angle (float, ParameterExpression): radians
"""
if self._control_flow_scopes:
self._control_flow_scopes[-1].global_phase = angle
else:
self._data.global_phase = angle
@property
def parameters(self) -> ParameterView:
"""The parameters defined in the circuit.
This attribute returns the :class:`.Parameter` objects in the circuit sorted
alphabetically. Note that parameters instantiated with a :class:`.ParameterVector`
are still sorted numerically.
Examples:
The snippet below shows that insertion order of parameters does not matter.
.. code-block:: python
>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant")
>>> circuit = QuantumCircuit(1)
>>> circuit.rx(b, 0)
>>> circuit.rz(elephant, 0)
>>> circuit.ry(a, 0)
>>> circuit.parameters # sorted alphabetically!
ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])
Bear in mind that alphabetical sorting might be unintuitive when it comes to numbers.
The literal "10" comes before "2" in strict alphabetical sorting.
.. code-block:: python
>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")]
>>> circuit = QuantumCircuit(1)
>>> circuit.u(*angles, 0)
>>> circuit.draw()
┌─────────────────────────────┐
q: ┤ U(angle_1,angle_2,angle_10) ├
└─────────────────────────────┘
>>> circuit.parameters
ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])
To respect numerical sorting, a :class:`.ParameterVector` can be used.
.. code-block:: python
>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector
>>> x = ParameterVector("x", 12)
>>> circuit = QuantumCircuit(1)
>>> for x_i in x:
... circuit.rx(x_i, 0)
>>> circuit.parameters
ParameterView([
ParameterVectorElement(x[0]), ParameterVectorElement(x[1]),
ParameterVectorElement(x[2]), ParameterVectorElement(x[3]),
..., ParameterVectorElement(x[11])
])
Returns:
The sorted :class:`.Parameter` objects in the circuit.
"""
# return as parameter view, which implements the set and list interface
return ParameterView(self._data.parameters)
@property
def num_parameters(self) -> int:
"""The number of parameter objects in the circuit."""
return self._data.num_parameters()
def _unsorted_parameters(self) -> set[Parameter]:
"""Efficiently get all parameters in the circuit, without any sorting overhead.
.. warning::
The returned object may directly view onto the ``ParameterTable`` internals, and so
should not be mutated. This is an internal performance detail. Code outside of this
package should not use this method.
"""
# This should be free, by accessing the actual backing data structure of the table, but that
# means that we need to copy it if adding keys from the global phase.
return self._data.unsorted_parameters()
@overload
def assign_parameters(
self,
parameters: Union[Mapping[Parameter, ParameterValueType], Iterable[ParameterValueType]],
inplace: Literal[False] = ...,
*,
flat_input: bool = ...,
strict: bool = ...,
) -> "QuantumCircuit": ...
@overload
def assign_parameters(
self,
parameters: Union[Mapping[Parameter, ParameterValueType], Iterable[ParameterValueType]],
inplace: Literal[True] = ...,
*,
flat_input: bool = ...,
strict: bool = ...,
) -> None: ...
def assign_parameters( # pylint: disable=missing-raises-doc
self,
parameters: Union[Mapping[Parameter, ParameterValueType], Iterable[ParameterValueType]],
inplace: bool = False,
*,
flat_input: bool = False,
strict: bool = True,
) -> Optional["QuantumCircuit"]:
"""Assign parameters to new parameters or values.
If ``parameters`` is passed as a dictionary, the keys should be :class:`.Parameter`
instances in the current circuit. The values of the dictionary can either be numeric values
or new parameter objects.
If ``parameters`` is passed as a list or array, the elements are assigned to the
current parameters in the order of :attr:`parameters` which is sorted
alphabetically (while respecting the ordering in :class:`.ParameterVector` objects).
The values can be assigned to the current circuit object or to a copy of it.
.. note::
When ``parameters`` is given as a mapping, it is permissible to have keys that are
strings of the parameter names; these will be looked up using :meth:`get_parameter`.
You can also have keys that are :class:`.ParameterVector` instances, and in this case,
the dictionary value should be a sequence of values of the same length as the vector.
If you use either of these cases, you must leave the setting ``flat_input=False``;
changing this to ``True`` enables the fast path, where all keys must be
:class:`.Parameter` instances.
Args:
parameters: Either a dictionary or iterable specifying the new parameter values.
inplace: If False, a copy of the circuit with the bound parameters is returned.
If True the circuit instance itself is modified.
flat_input: If ``True`` and ``parameters`` is a mapping type, it is assumed to be
exactly a mapping of ``{parameter: value}``. By default (``False``), the mapping
may also contain :class:`.ParameterVector` keys that point to a corresponding
sequence of values, and these will be unrolled during the mapping, or string keys,
which will be converted to :class:`.Parameter` instances using
:meth:`get_parameter`.
strict: If ``False``, any parameters given in the mapping that are not used in the
circuit will be ignored. If ``True`` (the default), an error will be raised
indicating a logic error.
Raises:
CircuitError: If parameters is a dict and contains parameters not present in the
circuit.
ValueError: If parameters is a list/array and the length mismatches the number of free
parameters in the circuit.
Returns:
A copy of the circuit with bound parameters if ``inplace`` is False, otherwise None.
Examples:
Create a parameterized circuit and assign the parameters in-place.
.. plot::
:include-source:
from qiskit.circuit import QuantumCircuit, Parameter
circuit = QuantumCircuit(2)
params = [Parameter('A'), Parameter('B'), Parameter('C')]
circuit.ry(params[0], 0)
circuit.crx(params[1], 0, 1)
circuit.draw('mpl')
circuit.assign_parameters({params[0]: params[2]}, inplace=True)
circuit.draw('mpl')
Bind the values out-of-place by list and get a copy of the original circuit.
.. plot::
:include-source:
from qiskit.circuit import QuantumCircuit, ParameterVector
circuit = QuantumCircuit(2)
params = ParameterVector('P', 2)
circuit.ry(params[0], 0)
circuit.crx(params[1], 0, 1)
bound_circuit = circuit.assign_parameters([1, 2])
bound_circuit.draw('mpl')
circuit.draw('mpl')
"""
if inplace:
target = self
else:
if not isinstance(parameters, dict):
# We're going to need to access the sorted order wihin the inner Rust method on
# `target`, so warm up our own cache first so that subsequent calls to
# `assign_parameters` on `self` benefit as well.
_ = self._data.parameters
target = self.copy()
target._increment_instances()
target._name_update()
if isinstance(parameters, collections.abc.Mapping):
raw_mapping = parameters if flat_input else self._unroll_param_dict(parameters)
our_parameters = self._data.unsorted_parameters()
if strict and (extras := raw_mapping.keys() - our_parameters):
raise CircuitError(
f"Cannot bind parameters ({', '.join(str(x) for x in extras)}) not present in"
" the circuit."
)
parameter_binds = _ParameterBindsDict(raw_mapping, our_parameters)
target._data.assign_parameters_mapping(parameter_binds)
else:
parameter_binds = _ParameterBindsSequence(target._data.parameters, parameters)
target._data.assign_parameters_iterable(parameters)
# Finally, assign the parameters inside any of the calibrations. We don't track these in
# the `ParameterTable`, so we manually reconstruct things.
def map_calibration(qubits, parameters, schedule):
modified = False
new_parameters = list(parameters)
for i, parameter in enumerate(new_parameters):
if not isinstance(parameter, ParameterExpression):
continue
if not (contained := parameter.parameters & parameter_binds.mapping.keys()):
continue
for to_bind in contained:
parameter = parameter.assign(to_bind, parameter_binds.mapping[to_bind])
if not parameter.parameters:
parameter = parameter.numeric()
if isinstance(parameter, complex):
raise TypeError(f"Calibration cannot use complex number: '{parameter}'")
new_parameters[i] = parameter
modified = True
if modified:
schedule.assign_parameters(parameter_binds.mapping)
return (qubits, tuple(new_parameters)), schedule
target._calibrations = defaultdict(
dict,
(
(
gate,
dict(
map_calibration(qubits, parameters, schedule)
for (qubits, parameters), schedule in calibrations.items()
),
)
for gate, calibrations in target._calibrations.items()
),
)
return None if inplace else target
def _unroll_param_dict(
self, parameter_binds: Mapping[Parameter, ParameterValueType]
) -> Mapping[Parameter, ParameterValueType]:
out = {}
for parameter, value in parameter_binds.items():
if isinstance(parameter, ParameterVector):
if len(parameter) != len(value):
raise CircuitError(
f"Parameter vector '{parameter.name}' has length {len(parameter)},"
f" but was assigned to {len(value)} values."
)
out.update(zip(parameter, value))
elif isinstance(parameter, str):
out[self.get_parameter(parameter)] = value
else:
out[parameter] = value
return out
def barrier(self, *qargs: QubitSpecifier, label=None) -> InstructionSet:
"""Apply :class:`~.library.Barrier`. If ``qargs`` is empty, applies to all qubits
in the circuit.
Args:
qargs (QubitSpecifier): Specification for one or more qubit arguments.
label (str): The string label of the barrier.
Returns:
qiskit.circuit.InstructionSet: handle to the added instructions.
"""
from .barrier import Barrier
if qargs:
# This uses a `dict` not a `set` to guarantee a deterministic order to the arguments.
qubits = tuple(
{q: None for qarg in qargs for q in self._qbit_argument_conversion(qarg)}
)
return self.append(
CircuitInstruction(Barrier(len(qubits), label=label), qubits, ()), copy=False
)
else:
qubits = self.qubits.copy()
return self._current_scope().append(
CircuitInstruction(Barrier(len(qubits), label=label), qubits, ())
)
def delay(
self,
duration: ParameterValueType,
qarg: QubitSpecifier | None = None,
unit: str = "dt",
) -> InstructionSet:
"""Apply :class:`~.circuit.Delay`. If qarg is ``None``, applies to all qubits.
When applying to multiple qubits, delays with the same duration will be created.
Args:
duration (int or float or ParameterExpression): duration of the delay.
qarg (Object): qubit argument to apply this delay.
unit (str): unit of the duration. Supported units: ``'s'``, ``'ms'``, ``'us'``,
``'ns'``, ``'ps'``, and ``'dt'``. Default is ``'dt'``, i.e. integer time unit
depending on the target backend.
Returns:
qiskit.circuit.InstructionSet: handle to the added instructions.
Raises:
CircuitError: if arguments have bad format.
"""
if qarg is None:
qarg = self.qubits
return self.append(Delay(duration, unit=unit), [qarg], [], copy=False)
def h(self, qubit: QubitSpecifier) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.HGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
qubit: The qubit(s) to apply the gate to.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(StandardGate.HGate, [qubit], ())
def ch(
self,
control_qubit: QubitSpecifier,
target_qubit: QubitSpecifier,
label: str | None = None,
ctrl_state: str | int | None = None,
) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.CHGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
control_qubit: The qubit(s) used as the control.
target_qubit: The qubit(s) targeted by the gate.
label: The string label of the gate in the circuit.
ctrl_state:
The control state in decimal, or as a bitstring (e.g. '1'). Defaults to controlling
on the '1' state.
Returns:
A handle to the instructions created.
"""
# if the control state is |1> use the fast Rust version of the gate
if ctrl_state is None or ctrl_state in ["1", 1]:
return self._append_standard_gate(
StandardGate.CHGate, [control_qubit, target_qubit], (), label=label
)
from .library.standard_gates.h import CHGate
return self.append(
CHGate(label=label, ctrl_state=ctrl_state),
[control_qubit, target_qubit],
[],
copy=False,
)
def id(self, qubit: QubitSpecifier) -> InstructionSet: # pylint: disable=invalid-name
"""Apply :class:`~qiskit.circuit.library.IGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
qubit: The qubit(s) to apply the gate to.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(StandardGate.IGate, [qubit], ())
def ms(self, theta: ParameterValueType, qubits: Sequence[QubitSpecifier]) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.MSGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
theta: The angle of the rotation.
qubits: The qubits to apply the gate to.
Returns:
A handle to the instructions created.
"""
# pylint: disable=cyclic-import
from .library.generalized_gates.gms import MSGate
return self.append(MSGate(len(qubits), theta), qubits, copy=False)
def p(self, theta: ParameterValueType, qubit: QubitSpecifier) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.PhaseGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
theta: THe angle of the rotation.
qubit: The qubit(s) to apply the gate to.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(StandardGate.PhaseGate, [qubit], (theta,))
def cp(
self,
theta: ParameterValueType,
control_qubit: QubitSpecifier,
target_qubit: QubitSpecifier,
label: str | None = None,
ctrl_state: str | int | None = None,
) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.CPhaseGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
theta: The angle of the rotation.
control_qubit: The qubit(s) used as the control.
target_qubit: The qubit(s) targeted by the gate.
label: The string label of the gate in the circuit.
ctrl_state:
The control state in decimal, or as a bitstring (e.g. '1'). Defaults to controlling
on the '1' state.
Returns:
A handle to the instructions created.
"""
# if the control state is |1> use the fast Rust version of the gate
if ctrl_state is None or ctrl_state in ["1", 1]:
return self._append_standard_gate(
StandardGate.CPhaseGate, [control_qubit, target_qubit], (theta,), label=label
)
from .library.standard_gates.p import CPhaseGate
return self.append(
CPhaseGate(theta, label=label, ctrl_state=ctrl_state),
[control_qubit, target_qubit],
[],
copy=False,
)
def mcp(
self,
lam: ParameterValueType,
control_qubits: Sequence[QubitSpecifier],
target_qubit: QubitSpecifier,
ctrl_state: str | int | None = None,
) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.MCPhaseGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
lam: The angle of the rotation.
control_qubits: The qubits used as the controls.
target_qubit: The qubit(s) targeted by the gate.
ctrl_state:
The control state in decimal, or as a bitstring (e.g. '1'). Defaults to controlling
on the '1' state.
Returns:
A handle to the instructions created.
"""
from .library.standard_gates.p import MCPhaseGate
num_ctrl_qubits = len(control_qubits)
return self.append(
MCPhaseGate(lam, num_ctrl_qubits, ctrl_state=ctrl_state),
control_qubits[:] + [target_qubit],
[],
copy=False,
)
def r(
self, theta: ParameterValueType, phi: ParameterValueType, qubit: QubitSpecifier
) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.RGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
theta: The angle of the rotation.
phi: The angle of the axis of rotation in the x-y plane.
qubit: The qubit(s) to apply the gate to.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(StandardGate.RGate, [qubit], [theta, phi])
def rv(
self,
vx: ParameterValueType,
vy: ParameterValueType,
vz: ParameterValueType,
qubit: QubitSpecifier,
) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.RVGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Rotation around an arbitrary rotation axis :math:`v`, where :math:`|v|` is the angle of
rotation in radians.
Args:
vx: x-component of the rotation axis.
vy: y-component of the rotation axis.
vz: z-component of the rotation axis.
qubit: The qubit(s) to apply the gate to.
Returns:
A handle to the instructions created.
"""
from .library.generalized_gates.rv import RVGate
return self.append(RVGate(vx, vy, vz), [qubit], [], copy=False)
def rccx(
self,
control_qubit1: QubitSpecifier,
control_qubit2: QubitSpecifier,
target_qubit: QubitSpecifier,
) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.RCCXGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
control_qubit1: The qubit(s) used as the first control.
control_qubit2: The qubit(s) used as the second control.
target_qubit: The qubit(s) targeted by the gate.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(
StandardGate.RCCXGate, [control_qubit1, control_qubit2, target_qubit], ()
)
def rcccx(
self,
control_qubit1: QubitSpecifier,
control_qubit2: QubitSpecifier,
control_qubit3: QubitSpecifier,
target_qubit: QubitSpecifier,
) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.RC3XGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
control_qubit1: The qubit(s) used as the first control.
control_qubit2: The qubit(s) used as the second control.
control_qubit3: The qubit(s) used as the third control.
target_qubit: The qubit(s) targeted by the gate.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(
StandardGate.RC3XGate,
[control_qubit1, control_qubit2, control_qubit3, target_qubit],
(),
)
def rx(
self, theta: ParameterValueType, qubit: QubitSpecifier, label: str | None = None
) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.RXGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
theta: The rotation angle of the gate.
qubit: The qubit(s) to apply the gate to.
label: The string label of the gate in the circuit.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(StandardGate.RXGate, [qubit], [theta], label=label)
def crx(
self,
theta: ParameterValueType,
control_qubit: QubitSpecifier,
target_qubit: QubitSpecifier,
label: str | None = None,
ctrl_state: str | int | None = None,
) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.CRXGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
theta: The angle of the rotation.
control_qubit: The qubit(s) used as the control.
target_qubit: The qubit(s) targeted by the gate.
label: The string label of the gate in the circuit.
ctrl_state:
The control state in decimal, or as a bitstring (e.g. '1'). Defaults to controlling
on the '1' state.
Returns:
A handle to the instructions created.
"""
# if the control state is |1> use the fast Rust version of the gate
if ctrl_state is None or ctrl_state in ["1", 1]:
return self._append_standard_gate(
StandardGate.CRXGate, [control_qubit, target_qubit], [theta], label=label
)
from .library.standard_gates.rx import CRXGate
return self.append(
CRXGate(theta, label=label, ctrl_state=ctrl_state),
[control_qubit, target_qubit],
[],
copy=False,
)
def rxx(
self, theta: ParameterValueType, qubit1: QubitSpecifier, qubit2: QubitSpecifier
) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.RXXGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
theta: The angle of the rotation.
qubit1: The qubit(s) to apply the gate to.
qubit2: The qubit(s) to apply the gate to.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(StandardGate.RXXGate, [qubit1, qubit2], [theta])
def ry(
self, theta: ParameterValueType, qubit: QubitSpecifier, label: str | None = None
) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.RYGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
theta: The rotation angle of the gate.
qubit: The qubit(s) to apply the gate to.
label: The string label of the gate in the circuit.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(StandardGate.RYGate, [qubit], [theta], label=label)
def cry(
self,
theta: ParameterValueType,
control_qubit: QubitSpecifier,
target_qubit: QubitSpecifier,
label: str | None = None,
ctrl_state: str | int | None = None,
) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.CRYGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
theta: The angle of the rotation.
control_qubit: The qubit(s) used as the control.
target_qubit: The qubit(s) targeted by the gate.
label: The string label of the gate in the circuit.
ctrl_state:
The control state in decimal, or as a bitstring (e.g. '1'). Defaults to controlling
on the '1' state.
Returns:
A handle to the instructions created.
"""
# if the control state is |1> use the fast Rust version of the gate
if ctrl_state is None or ctrl_state in ["1", 1]:
return self._append_standard_gate(
StandardGate.CRYGate, [control_qubit, target_qubit], [theta], label=label
)
from .library.standard_gates.ry import CRYGate
return self.append(
CRYGate(theta, label=label, ctrl_state=ctrl_state),
[control_qubit, target_qubit],
[],
copy=False,
)
def ryy(
self, theta: ParameterValueType, qubit1: QubitSpecifier, qubit2: QubitSpecifier
) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.RYYGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
theta: The rotation angle of the gate.
qubit1: The qubit(s) to apply the gate to.
qubit2: The qubit(s) to apply the gate to.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(StandardGate.RYYGate, [qubit1, qubit2], [theta])
def rz(self, phi: ParameterValueType, qubit: QubitSpecifier) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.RZGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
phi: The rotation angle of the gate.
qubit: The qubit(s) to apply the gate to.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(StandardGate.RZGate, [qubit], [phi])
def crz(
self,
theta: ParameterValueType,
control_qubit: QubitSpecifier,
target_qubit: QubitSpecifier,
label: str | None = None,
ctrl_state: str | int | None = None,
) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.CRZGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
theta: The angle of the rotation.
control_qubit: The qubit(s) used as the control.
target_qubit: The qubit(s) targeted by the gate.
label: The string label of the gate in the circuit.
ctrl_state:
The control state in decimal, or as a bitstring (e.g. '1'). Defaults to controlling
on the '1' state.
Returns:
A handle to the instructions created.
"""
# if the control state is |1> use the fast Rust version of the gate
if ctrl_state is None or ctrl_state in ["1", 1]:
return self._append_standard_gate(
StandardGate.CRZGate, [control_qubit, target_qubit], [theta], label=label
)
from .library.standard_gates.rz import CRZGate
return self.append(
CRZGate(theta, label=label, ctrl_state=ctrl_state),
[control_qubit, target_qubit],
[],
copy=False,
)
def rzx(
self, theta: ParameterValueType, qubit1: QubitSpecifier, qubit2: QubitSpecifier
) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.RZXGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
theta: The rotation angle of the gate.
qubit1: The qubit(s) to apply the gate to.
qubit2: The qubit(s) to apply the gate to.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(StandardGate.RZXGate, [qubit1, qubit2], [theta])
def rzz(
self, theta: ParameterValueType, qubit1: QubitSpecifier, qubit2: QubitSpecifier
) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.RZZGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
theta: The rotation angle of the gate.
qubit1: The qubit(s) to apply the gate to.
qubit2: The qubit(s) to apply the gate to.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(StandardGate.RZZGate, [qubit1, qubit2], [theta])
def ecr(self, qubit1: QubitSpecifier, qubit2: QubitSpecifier) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.ECRGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
qubit1, qubit2: The qubits to apply the gate to.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(StandardGate.ECRGate, [qubit1, qubit2], ())
def s(self, qubit: QubitSpecifier) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.SGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
qubit: The qubit(s) to apply the gate to.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(StandardGate.SGate, [qubit], ())
def sdg(self, qubit: QubitSpecifier) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.SdgGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
qubit: The qubit(s) to apply the gate to.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(StandardGate.SdgGate, [qubit], ())
def cs(
self,
control_qubit: QubitSpecifier,
target_qubit: QubitSpecifier,
label: str | None = None,
ctrl_state: str | int | None = None,
) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.CSGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
control_qubit: The qubit(s) used as the control.
target_qubit: The qubit(s) targeted by the gate.
label: The string label of the gate in the circuit.
ctrl_state:
The control state in decimal, or as a bitstring (e.g. '1'). Defaults to controlling
on the '1' state.
Returns:
A handle to the instructions created.
"""
# if the control state is |1> use the fast Rust version of the gate
if ctrl_state is None or ctrl_state in ["1", 1]:
return self._append_standard_gate(
StandardGate.CSGate, [control_qubit, target_qubit], (), label=label
)
from .library.standard_gates.s import CSGate
return self.append(
CSGate(label=label, ctrl_state=ctrl_state),
[control_qubit, target_qubit],
[],
copy=False,
)
def csdg(
self,
control_qubit: QubitSpecifier,
target_qubit: QubitSpecifier,
label: str | None = None,
ctrl_state: str | int | None = None,
) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.CSdgGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
control_qubit: The qubit(s) used as the control.
target_qubit: The qubit(s) targeted by the gate.
label: The string label of the gate in the circuit.
ctrl_state:
The control state in decimal, or as a bitstring (e.g. '1'). Defaults to controlling
on the '1' state.
Returns:
A handle to the instructions created.
"""
# if the control state is |1> use the fast Rust version of the gate
if ctrl_state is None or ctrl_state in ["1", 1]:
return self._append_standard_gate(
StandardGate.CSdgGate, [control_qubit, target_qubit], (), label=label
)
from .library.standard_gates.s import CSdgGate
return self.append(
CSdgGate(label=label, ctrl_state=ctrl_state),
[control_qubit, target_qubit],
[],
copy=False,
)
def swap(self, qubit1: QubitSpecifier, qubit2: QubitSpecifier) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.SwapGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
qubit1, qubit2: The qubits to apply the gate to.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(
StandardGate.SwapGate,
[qubit1, qubit2],
(),
)
def iswap(self, qubit1: QubitSpecifier, qubit2: QubitSpecifier) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.iSwapGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
qubit1, qubit2: The qubits to apply the gate to.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(StandardGate.ISwapGate, [qubit1, qubit2], ())
def cswap(
self,
control_qubit: QubitSpecifier,
target_qubit1: QubitSpecifier,
target_qubit2: QubitSpecifier,
label: str | None = None,
ctrl_state: str | int | None = None,
) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.CSwapGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
control_qubit: The qubit(s) used as the control.
target_qubit1: The qubit(s) targeted by the gate.
target_qubit2: The qubit(s) targeted by the gate.
label: The string label of the gate in the circuit.
ctrl_state:
The control state in decimal, or as a bitstring (e.g. ``'1'``). Defaults to controlling
on the ``'1'`` state.
Returns:
A handle to the instructions created.
"""
# if the control state is |1> use the fast Rust version of the gate
if ctrl_state is None or ctrl_state in ["1", 1]:
return self._append_standard_gate(
StandardGate.CSwapGate,
[control_qubit, target_qubit1, target_qubit2],
(),
label=label,
)
from .library.standard_gates.swap import CSwapGate
return self.append(
CSwapGate(label=label, ctrl_state=ctrl_state),
[control_qubit, target_qubit1, target_qubit2],
[],
copy=False,
)
def sx(self, qubit: QubitSpecifier) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.SXGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
qubit: The qubit(s) to apply the gate to.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(StandardGate.SXGate, [qubit], ())
def sxdg(self, qubit: QubitSpecifier) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.SXdgGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
qubit: The qubit(s) to apply the gate to.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(StandardGate.SXdgGate, [qubit], ())
def csx(
self,
control_qubit: QubitSpecifier,
target_qubit: QubitSpecifier,
label: str | None = None,
ctrl_state: str | int | None = None,
) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.CSXGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
control_qubit: The qubit(s) used as the control.
target_qubit: The qubit(s) targeted by the gate.
label: The string label of the gate in the circuit.
ctrl_state:
The control state in decimal, or as a bitstring (e.g. '1'). Defaults to controlling
on the '1' state.
Returns:
A handle to the instructions created.
"""
# if the control state is |1> use the fast Rust version of the gate
if ctrl_state is None or ctrl_state in ["1", 1]:
return self._append_standard_gate(
StandardGate.CSXGate, [control_qubit, target_qubit], (), label=label
)
from .library.standard_gates.sx import CSXGate
return self.append(
CSXGate(label=label, ctrl_state=ctrl_state),
[control_qubit, target_qubit],
[],
copy=False,
)
def t(self, qubit: QubitSpecifier) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.TGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
qubit: The qubit(s) to apply the gate to.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(StandardGate.TGate, [qubit], ())
def tdg(self, qubit: QubitSpecifier) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.TdgGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
qubit: The qubit(s) to apply the gate to.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(StandardGate.TdgGate, [qubit], ())
def u(
self,
theta: ParameterValueType,
phi: ParameterValueType,
lam: ParameterValueType,
qubit: QubitSpecifier,
) -> InstructionSet:
r"""Apply :class:`~qiskit.circuit.library.UGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
theta: The :math:`\theta` rotation angle of the gate.
phi: The :math:`\phi` rotation angle of the gate.
lam: The :math:`\lambda` rotation angle of the gate.
qubit: The qubit(s) to apply the gate to.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(StandardGate.UGate, [qubit], [theta, phi, lam])
def cu(
self,
theta: ParameterValueType,
phi: ParameterValueType,
lam: ParameterValueType,
gamma: ParameterValueType,
control_qubit: QubitSpecifier,
target_qubit: QubitSpecifier,
label: str | None = None,
ctrl_state: str | int | None = None,
) -> InstructionSet:
r"""Apply :class:`~qiskit.circuit.library.CUGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
theta: The :math:`\theta` rotation angle of the gate.
phi: The :math:`\phi` rotation angle of the gate.
lam: The :math:`\lambda` rotation angle of the gate.
gamma: The global phase applied of the U gate, if applied.
control_qubit: The qubit(s) used as the control.
target_qubit: The qubit(s) targeted by the gate.
label: The string label of the gate in the circuit.
ctrl_state:
The control state in decimal, or as a bitstring (e.g. '1'). Defaults to controlling
on the '1' state.
Returns:
A handle to the instructions created.
"""
# if the control state is |1> use the fast Rust version of the gate
if ctrl_state is None or ctrl_state in ["1", 1]:
return self._append_standard_gate(
StandardGate.CUGate,
[control_qubit, target_qubit],
[theta, phi, lam, gamma],
label=label,
)
from .library.standard_gates.u import CUGate
return self.append(
CUGate(theta, phi, lam, gamma, label=label, ctrl_state=ctrl_state),
[control_qubit, target_qubit],
[],
copy=False,
)
def x(self, qubit: QubitSpecifier, label: str | None = None) -> InstructionSet:
r"""Apply :class:`~qiskit.circuit.library.XGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
qubit: The qubit(s) to apply the gate to.
label: The string label of the gate in the circuit.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(StandardGate.XGate, [qubit], (), label=label)
def cx(
self,
control_qubit: QubitSpecifier,
target_qubit: QubitSpecifier,
label: str | None = None,
ctrl_state: str | int | None = None,
) -> InstructionSet:
r"""Apply :class:`~qiskit.circuit.library.CXGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
control_qubit: The qubit(s) used as the control.
target_qubit: The qubit(s) targeted by the gate.
label: The string label of the gate in the circuit.
ctrl_state:
The control state in decimal, or as a bitstring (e.g. '1'). Defaults to controlling
on the '1' state.
Returns:
A handle to the instructions created.
"""
# if the control state is |1> use the fast Rust version of the gate
if ctrl_state is None or ctrl_state in ["1", 1]:
return self._append_standard_gate(
StandardGate.CXGate,
[control_qubit, target_qubit],
(),
label=label,
)
from .library.standard_gates.x import CXGate
return self.append(
CXGate(label=label, ctrl_state=ctrl_state),
[control_qubit, target_qubit],
[],
copy=False,
)
def dcx(self, qubit1: QubitSpecifier, qubit2: QubitSpecifier) -> InstructionSet:
r"""Apply :class:`~qiskit.circuit.library.DCXGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
qubit1: The qubit(s) to apply the gate to.
qubit2: The qubit(s) to apply the gate to.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(StandardGate.DCXGate, [qubit1, qubit2], ())
def ccx(
self,
control_qubit1: QubitSpecifier,
control_qubit2: QubitSpecifier,
target_qubit: QubitSpecifier,
ctrl_state: str | int | None = None,
) -> InstructionSet:
r"""Apply :class:`~qiskit.circuit.library.CCXGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
control_qubit1: The qubit(s) used as the first control.
control_qubit2: The qubit(s) used as the second control.
target_qubit: The qubit(s) targeted by the gate.
ctrl_state:
The control state in decimal, or as a bitstring (e.g. '1'). Defaults to controlling
on the '1' state.
Returns:
A handle to the instructions created.
"""
# if the control state is |11> use the fast Rust version of the gate
if ctrl_state is None or ctrl_state in ["11", 3]:
return self._append_standard_gate(
StandardGate.CCXGate,
[control_qubit1, control_qubit2, target_qubit],
(),
)
from .library.standard_gates.x import CCXGate
return self.append(
CCXGate(ctrl_state=ctrl_state),
[control_qubit1, control_qubit2, target_qubit],
[],
copy=False,
)
def mcx(
self,
control_qubits: Sequence[QubitSpecifier],
target_qubit: QubitSpecifier,
ancilla_qubits: QubitSpecifier | Sequence[QubitSpecifier] | None = None,
mode: str = "noancilla",
ctrl_state: str | int | None = None,
) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.MCXGate`.
The multi-cX gate can be implemented using different techniques, which use different numbers
of ancilla qubits and have varying circuit depth. These modes are:
- ``'noancilla'``: Requires 0 ancilla qubits.
- ``'recursion'``: Requires 1 ancilla qubit if more than 4 controls are used, otherwise 0.
- ``'v-chain'``: Requires 2 less ancillas than the number of control qubits.
- ``'v-chain-dirty'``: Same as for the clean ancillas (but the circuit will be longer).
For the full matrix form of this gate, see the underlying gate documentation.
Args:
control_qubits: The qubits used as the controls.
target_qubit: The qubit(s) targeted by the gate.
ancilla_qubits: The qubits used as the ancillae, if the mode requires them.
mode: The choice of mode, explained further above.
ctrl_state:
The control state in decimal, or as a bitstring (e.g. '1'). Defaults to controlling
on the '1' state.
Returns:
A handle to the instructions created.
Raises:
ValueError: if the given mode is not known, or if too few ancilla qubits are passed.
AttributeError: if no ancilla qubits are passed, but some are needed.
"""
from .library.standard_gates.x import MCXGate, MCXRecursive, MCXVChain
num_ctrl_qubits = len(control_qubits)
available_implementations = {
"noancilla": MCXGate(num_ctrl_qubits, ctrl_state=ctrl_state),
"recursion": MCXRecursive(num_ctrl_qubits, ctrl_state=ctrl_state),
"v-chain": MCXVChain(num_ctrl_qubits, False, ctrl_state=ctrl_state),
"v-chain-dirty": MCXVChain(num_ctrl_qubits, dirty_ancillas=True, ctrl_state=ctrl_state),
# outdated, previous names
"advanced": MCXRecursive(num_ctrl_qubits, ctrl_state=ctrl_state),
"basic": MCXVChain(num_ctrl_qubits, dirty_ancillas=False, ctrl_state=ctrl_state),
"basic-dirty-ancilla": MCXVChain(
num_ctrl_qubits, dirty_ancillas=True, ctrl_state=ctrl_state
),
}
# check ancilla input
if ancilla_qubits:
_ = self._qbit_argument_conversion(ancilla_qubits)
try:
gate = available_implementations[mode]
except KeyError as ex:
all_modes = list(available_implementations.keys())
raise ValueError(
f"Unsupported mode ({mode}) selected, choose one of {all_modes}"
) from ex
if hasattr(gate, "num_ancilla_qubits") and gate.num_ancilla_qubits > 0:
required = gate.num_ancilla_qubits
if ancilla_qubits is None:
raise AttributeError(f"No ancillas provided, but {required} are needed!")
# convert ancilla qubits to a list if they were passed as int or qubit
if not hasattr(ancilla_qubits, "__len__"):
ancilla_qubits = [ancilla_qubits]
if len(ancilla_qubits) < required:
actually = len(ancilla_qubits)
raise ValueError(f"At least {required} ancillas required, but {actually} given.")
# size down if too many ancillas were provided
ancilla_qubits = ancilla_qubits[:required]
else:
ancilla_qubits = []
return self.append(gate, control_qubits[:] + [target_qubit] + ancilla_qubits[:], [])
def y(self, qubit: QubitSpecifier) -> InstructionSet:
r"""Apply :class:`~qiskit.circuit.library.YGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
qubit: The qubit(s) to apply the gate to.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(StandardGate.YGate, [qubit], ())
def cy(
self,
control_qubit: QubitSpecifier,
target_qubit: QubitSpecifier,
label: str | None = None,
ctrl_state: str | int | None = None,
) -> InstructionSet:
r"""Apply :class:`~qiskit.circuit.library.CYGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
control_qubit: The qubit(s) used as the controls.
target_qubit: The qubit(s) targeted by the gate.
label: The string label of the gate in the circuit.
ctrl_state:
The control state in decimal, or as a bitstring (e.g. '1'). Defaults to controlling
on the '1' state.
Returns:
A handle to the instructions created.
"""
# if the control state is |1> use the fast Rust version of the gate
if ctrl_state is None or ctrl_state in ["1", 1]:
return self._append_standard_gate(
StandardGate.CYGate,
[control_qubit, target_qubit],
(),
label=label,
)
from .library.standard_gates.y import CYGate
return self.append(
CYGate(label=label, ctrl_state=ctrl_state),
[control_qubit, target_qubit],
[],
copy=False,
)
def z(self, qubit: QubitSpecifier) -> InstructionSet:
r"""Apply :class:`~qiskit.circuit.library.ZGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
qubit: The qubit(s) to apply the gate to.
Returns:
A handle to the instructions created.
"""
return self._append_standard_gate(StandardGate.ZGate, [qubit], ())
def cz(
self,
control_qubit: QubitSpecifier,
target_qubit: QubitSpecifier,
label: str | None = None,
ctrl_state: str | int | None = None,
) -> InstructionSet:
r"""Apply :class:`~qiskit.circuit.library.CZGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
control_qubit: The qubit(s) used as the controls.
target_qubit: The qubit(s) targeted by the gate.
label: The string label of the gate in the circuit.
ctrl_state:
The control state in decimal, or as a bitstring (e.g. '1'). Defaults to controlling
on the '1' state.
Returns:
A handle to the instructions created.
"""
# if the control state is |1> use the fast Rust version of the gate
if ctrl_state is None or ctrl_state in ["1", 1]:
return self._append_standard_gate(
StandardGate.CZGate, [control_qubit, target_qubit], (), label=label
)
from .library.standard_gates.z import CZGate
return self.append(
CZGate(label=label, ctrl_state=ctrl_state),
[control_qubit, target_qubit],
[],
copy=False,
)
def ccz(
self,
control_qubit1: QubitSpecifier,
control_qubit2: QubitSpecifier,
target_qubit: QubitSpecifier,
label: str | None = None,
ctrl_state: str | int | None = None,
) -> InstructionSet:
r"""Apply :class:`~qiskit.circuit.library.CCZGate`.
For the full matrix form of this gate, see the underlying gate documentation.
Args:
control_qubit1: The qubit(s) used as the first control.
control_qubit2: The qubit(s) used as the second control.
target_qubit: The qubit(s) targeted by the gate.
label: The string label of the gate in the circuit.
ctrl_state:
The control state in decimal, or as a bitstring (e.g. '10'). Defaults to controlling
on the '11' state.
Returns:
A handle to the instructions created.
"""
# if the control state is |11> use the fast Rust version of the gate
if ctrl_state is None or ctrl_state in ["11", 3]:
return self._append_standard_gate(
StandardGate.CCZGate,
[control_qubit1, control_qubit2, target_qubit],
(),
label=label,
)
from .library.standard_gates.z import CCZGate
return self.append(
CCZGate(label=label, ctrl_state=ctrl_state),
[control_qubit1, control_qubit2, target_qubit],
[],
copy=False,
)
def pauli(
self,
pauli_string: str,
qubits: Sequence[QubitSpecifier],
) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.library.PauliGate`.
Args:
pauli_string: A string representing the Pauli operator to apply, e.g. 'XX'.
qubits: The qubits to apply this gate to.
Returns:
A handle to the instructions created.
"""
from qiskit.circuit.library.generalized_gates.pauli import PauliGate
return self.append(PauliGate(pauli_string), qubits, [], copy=False)
def prepare_state(
self,
state: Statevector | Sequence[complex] | str | int,
qubits: Sequence[QubitSpecifier] | None = None,
label: str | None = None,
normalize: bool = False,
) -> InstructionSet:
r"""Prepare qubits in a specific state.
This class implements a state preparing unitary. Unlike
:meth:`.initialize` it does not reset the qubits first.
Args:
state: The state to initialize to, can be either of the following.
* Statevector or vector of complex amplitudes to initialize to.
* Labels of basis states of the Pauli eigenstates Z, X, Y. See
:meth:`.Statevector.from_label`. Notice the order of the labels is reversed with
respect to the qubit index to be applied to. Example label '01' initializes the
qubit zero to :math:`|1\rangle` and the qubit one to :math:`|0\rangle`.
* An integer that is used as a bitmap indicating which qubits to initialize to
:math:`|1\rangle`. Example: setting params to 5 would initialize qubit 0 and qubit
2 to :math:`|1\rangle` and qubit 1 to :math:`|0\rangle`.
qubits: Qubits to initialize. If ``None`` the initialization is applied to all qubits in
the circuit.
label: An optional label for the gate
normalize: Whether to normalize an input array to a unit vector.
Returns:
A handle to the instruction that was just initialized
Examples:
Prepare a qubit in the state :math:`(|0\rangle - |1\rangle) / \sqrt{2}`.
.. code-block::
import numpy as np
from qiskit import QuantumCircuit
circuit = QuantumCircuit(1)
circuit.prepare_state([1/np.sqrt(2), -1/np.sqrt(2)], 0)
circuit.draw()
output:
.. parsed-literal::
┌─────────────────────────────────────┐
q_0: ┤ State Preparation(0.70711,-0.70711) ├
└─────────────────────────────────────┘
Prepare from a string two qubits in the state :math:`|10\rangle`.
The order of the labels is reversed with respect to qubit index.
More information about labels for basis states are in
:meth:`.Statevector.from_label`.
.. code-block::
import numpy as np
from qiskit import QuantumCircuit
circuit = QuantumCircuit(2)
circuit.prepare_state('01', circuit.qubits)
circuit.draw()
output:
.. parsed-literal::
┌─────────────────────────┐
q_0: ┤0 ├
│ State Preparation(0,1) │
q_1: ┤1 ├
└─────────────────────────┘
Initialize two qubits from an array of complex amplitudes
.. code-block::
import numpy as np
from qiskit import QuantumCircuit
circuit = QuantumCircuit(2)
circuit.prepare_state([0, 1/np.sqrt(2), -1.j/np.sqrt(2), 0], circuit.qubits)
circuit.draw()
output:
.. parsed-literal::
┌───────────────────────────────────────────┐
q_0: ┤0 ├
│ State Preparation(0,0.70711,-0.70711j,0) │
q_1: ┤1 ├
└───────────────────────────────────────────┘
"""
# pylint: disable=cyclic-import
from qiskit.circuit.library.data_preparation import StatePreparation
if qubits is None:
qubits = self.qubits
elif isinstance(qubits, (int, np.integer, slice, Qubit)):
qubits = [qubits]
num_qubits = len(qubits) if isinstance(state, int) else None
return self.append(
StatePreparation(state, num_qubits, label=label, normalize=normalize),
qubits,
copy=False,
)
def initialize(
self,
params: Statevector | Sequence[complex] | str | int,
qubits: Sequence[QubitSpecifier] | None = None,
normalize: bool = False,
):
r"""Initialize qubits in a specific state.
Qubit initialization is done by first resetting the qubits to :math:`|0\rangle`
followed by calling :class:`~qiskit.circuit.library.StatePreparation`
class to prepare the qubits in a specified state.
Both these steps are included in the
:class:`~qiskit.circuit.library.Initialize` instruction.
Args:
params: The state to initialize to, can be either of the following.
* Statevector or vector of complex amplitudes to initialize to.
* Labels of basis states of the Pauli eigenstates Z, X, Y. See
:meth:`.Statevector.from_label`. Notice the order of the labels is reversed with
respect to the qubit index to be applied to. Example label ``'01'`` initializes the
qubit zero to :math:`|1\rangle` and the qubit one to :math:`|0\rangle`.
* An integer that is used as a bitmap indicating which qubits to initialize to
:math:`|1\rangle`. Example: setting params to 5 would initialize qubit 0 and qubit
2 to :math:`|1\rangle` and qubit 1 to :math:`|0\rangle`.
qubits: Qubits to initialize. If ``None`` the initialization is applied to all qubits in
the circuit.
normalize: Whether to normalize an input array to a unit vector.
Returns:
A handle to the instructions created.
Examples:
Prepare a qubit in the state :math:`(|0\rangle - |1\rangle) / \sqrt{2}`.
.. code-block::
import numpy as np
from qiskit import QuantumCircuit
circuit = QuantumCircuit(1)
circuit.initialize([1/np.sqrt(2), -1/np.sqrt(2)], 0)
circuit.draw()
output:
.. parsed-literal::
┌──────────────────────────────┐
q_0: ┤ Initialize(0.70711,-0.70711) ├
└──────────────────────────────┘
Initialize from a string two qubits in the state :math:`|10\rangle`.
The order of the labels is reversed with respect to qubit index.
More information about labels for basis states are in
:meth:`.Statevector.from_label`.
.. code-block::
import numpy as np
from qiskit import QuantumCircuit
circuit = QuantumCircuit(2)
circuit.initialize('01', circuit.qubits)
circuit.draw()
output:
.. parsed-literal::
┌──────────────────┐
q_0: ┤0 ├
│ Initialize(0,1) │
q_1: ┤1 ├
└──────────────────┘
Initialize two qubits from an array of complex amplitudes.
.. code-block::
import numpy as np
from qiskit import QuantumCircuit
circuit = QuantumCircuit(2)
circuit.initialize([0, 1/np.sqrt(2), -1.j/np.sqrt(2), 0], circuit.qubits)
circuit.draw()
output:
.. parsed-literal::
┌────────────────────────────────────┐
q_0: ┤0 ├
│ Initialize(0,0.70711,-0.70711j,0) │
q_1: ┤1 ├
└────────────────────────────────────┘
"""
# pylint: disable=cyclic-import
from .library.data_preparation.initializer import Initialize
if qubits is None:
qubits = self.qubits
elif isinstance(qubits, (int, np.integer, slice, Qubit)):
qubits = [qubits]
num_qubits = len(qubits) if isinstance(params, int) else None
return self.append(Initialize(params, num_qubits, normalize), qubits, copy=False)
def unitary(
self,
obj: np.ndarray | Gate | BaseOperator,
qubits: Sequence[QubitSpecifier],
label: str | None = None,
):
"""Apply unitary gate specified by ``obj`` to ``qubits``.
Args:
obj: Unitary operator.
qubits: The circuit qubits to apply the transformation to.
label: Unitary name for backend [Default: None].
Returns:
QuantumCircuit: The quantum circuit.
Example:
Apply a gate specified by a unitary matrix to a quantum circuit
.. code-block:: python
from qiskit import QuantumCircuit
matrix = [[0, 0, 0, 1],
[0, 0, 1, 0],
[1, 0, 0, 0],
[0, 1, 0, 0]]
circuit = QuantumCircuit(2)
circuit.unitary(matrix, [0, 1])
"""
# pylint: disable=cyclic-import
from .library.generalized_gates.unitary import UnitaryGate
gate = UnitaryGate(obj, label=label)
# correctly treat as single-qubit gate if it only acts as 1 qubit, i.e.
# allow a single qubit specifier and enable broadcasting
if gate.num_qubits == 1:
if isinstance(qubits, (int, Qubit)) or len(qubits) > 1:
qubits = [qubits]
return self.append(gate, qubits, [], copy=False)
def _current_scope(self) -> CircuitScopeInterface:
if self._control_flow_scopes:
return self._control_flow_scopes[-1]
return self._builder_api
def _push_scope(
self,
qubits: Iterable[Qubit] = (),
clbits: Iterable[Clbit] = (),
registers: Iterable[Register] = (),
allow_jumps: bool = True,
forbidden_message: Optional[str] = None,
):
"""Add a scope for collecting instructions into this circuit.
This should only be done by the control-flow context managers, which will handle cleaning up
after themselves at the end as well.
Args:
qubits: Any qubits that this scope should automatically use.
clbits: Any clbits that this scope should automatically use.
allow_jumps: Whether this scope allows jumps to be used within it.
forbidden_message: If given, all attempts to add instructions to this scope will raise a
:exc:`.CircuitError` with this message.
"""
self._control_flow_scopes.append(
ControlFlowBuilderBlock(
qubits,
clbits,
parent=self._current_scope(),
registers=registers,
allow_jumps=allow_jumps,
forbidden_message=forbidden_message,
)
)
def _pop_scope(self) -> ControlFlowBuilderBlock:
"""Finish a scope used in the control-flow builder interface, and return it to the caller.
This should only be done by the control-flow context managers, since they naturally
synchronize the creation and deletion of stack elements."""
return self._control_flow_scopes.pop()
def _peek_previous_instruction_in_scope(self) -> CircuitInstruction:
"""Return the instruction 3-tuple of the most recent instruction in the current scope, even
if that scope is currently under construction.
This function is only intended for use by the control-flow ``if``-statement builders, which
may need to modify a previous instruction."""
if self._control_flow_scopes:
return self._control_flow_scopes[-1].peek()
if not self._data:
raise CircuitError("This circuit contains no instructions.")
return self._data[-1]
def _pop_previous_instruction_in_scope(self) -> CircuitInstruction:
"""Return the instruction 3-tuple of the most recent instruction in the current scope, even
if that scope is currently under construction, and remove it from that scope.
This function is only intended for use by the control-flow ``if``-statement builders, which
may need to replace a previous instruction with another.
"""
if self._control_flow_scopes:
return self._control_flow_scopes[-1].pop()
if not self._data:
raise CircuitError("This circuit contains no instructions.")
instruction = self._data.pop()
return instruction
@typing.overload
def while_loop(
self,
condition: tuple[ClassicalRegister | Clbit, int] | expr.Expr,
body: None,
qubits: None,
clbits: None,
*,
label: str | None,
) -> WhileLoopContext: ...
@typing.overload
def while_loop(
self,
condition: tuple[ClassicalRegister | Clbit, int] | expr.Expr,
body: "QuantumCircuit",
qubits: Sequence[QubitSpecifier],
clbits: Sequence[ClbitSpecifier],
*,
label: str | None,
) -> InstructionSet: ...
def while_loop(self, condition, body=None, qubits=None, clbits=None, *, label=None):
"""Create a ``while`` loop on this circuit.
There are two forms for calling this function. If called with all its arguments (with the
possible exception of ``label``), it will create a
:obj:`~qiskit.circuit.controlflow.WhileLoopOp` with the given ``body``. If ``body`` (and
``qubits`` and ``clbits``) are *not* passed, then this acts as a context manager, which
will automatically build a :obj:`~qiskit.circuit.controlflow.WhileLoopOp` when the scope
finishes. In this form, you do not need to keep track of the qubits or clbits you are
using, because the scope will handle it for you.
Example usage::
from qiskit.circuit import QuantumCircuit, Clbit, Qubit
bits = [Qubit(), Qubit(), Clbit()]
qc = QuantumCircuit(bits)
with qc.while_loop((bits[2], 0)):
qc.h(0)
qc.cx(0, 1)
qc.measure(0, 0)
Args:
condition (Tuple[Union[ClassicalRegister, Clbit], int]): An equality condition to be
checked prior to executing ``body``. The left-hand side of the condition must be a
:obj:`~ClassicalRegister` or a :obj:`~Clbit`, and the right-hand side must be an
integer or boolean.
body (Optional[QuantumCircuit]): The loop body to be repeatedly executed. Omit this to
use the context-manager mode.
qubits (Optional[Sequence[Qubit]]): The circuit qubits over which the loop body should
be run. Omit this to use the context-manager mode.
clbits (Optional[Sequence[Clbit]]): The circuit clbits over which the loop body should
be run. Omit this to use the context-manager mode.
label (Optional[str]): The string label of the instruction in the circuit.
Returns:
InstructionSet or WhileLoopContext: If used in context-manager mode, then this should be
used as a ``with`` resource, which will infer the block content and operands on exit.
If the full form is used, then this returns a handle to the instructions created.
Raises:
CircuitError: if an incorrect calling convention is used.
"""
circuit_scope = self._current_scope()
if isinstance(condition, expr.Expr):
condition = _validate_expr(circuit_scope, condition)
else:
condition = (circuit_scope.resolve_classical_resource(condition[0]), condition[1])
if body is None:
if qubits is not None or clbits is not None:
raise CircuitError(
"When using 'while_loop' as a context manager,"
" you cannot pass qubits or clbits."
)
return WhileLoopContext(self, condition, label=label)
elif qubits is None or clbits is None:
raise CircuitError(
"When using 'while_loop' with a body, you must pass qubits and clbits."
)
return self.append(WhileLoopOp(condition, body, label), qubits, clbits, copy=False)
@typing.overload
def for_loop(
self,
indexset: Iterable[int],
loop_parameter: Parameter | None,
body: None,
qubits: None,
clbits: None,
*,
label: str | None,
) -> ForLoopContext: ...
@typing.overload
def for_loop(
self,
indexset: Iterable[int],
loop_parameter: Union[Parameter, None],
body: "QuantumCircuit",
qubits: Sequence[QubitSpecifier],
clbits: Sequence[ClbitSpecifier],
*,
label: str | None,
) -> InstructionSet: ...
def for_loop(
self, indexset, loop_parameter=None, body=None, qubits=None, clbits=None, *, label=None
):
"""Create a ``for`` loop on this circuit.
There are two forms for calling this function. If called with all its arguments (with the
possible exception of ``label``), it will create a
:class:`~qiskit.circuit.ForLoopOp` with the given ``body``. If ``body`` (and
``qubits`` and ``clbits``) are *not* passed, then this acts as a context manager, which,
when entered, provides a loop variable (unless one is given, in which case it will be
reused) and will automatically build a :class:`~qiskit.circuit.ForLoopOp` when the
scope finishes. In this form, you do not need to keep track of the qubits or clbits you are
using, because the scope will handle it for you.
For example::
from qiskit import QuantumCircuit
qc = QuantumCircuit(2, 1)
with qc.for_loop(range(5)) as i:
qc.h(0)
qc.cx(0, 1)
qc.measure(0, 0)
qc.break_loop().c_if(0, True)
Args:
indexset (Iterable[int]): A collection of integers to loop over. Always necessary.
loop_parameter (Optional[Parameter]): The parameter used within ``body`` to which
the values from ``indexset`` will be assigned. In the context-manager form, if this
argument is not supplied, then a loop parameter will be allocated for you and
returned as the value of the ``with`` statement. This will only be bound into the
circuit if it is used within the body.
If this argument is ``None`` in the manual form of this method, ``body`` will be
repeated once for each of the items in ``indexset`` but their values will be
ignored.
body (Optional[QuantumCircuit]): The loop body to be repeatedly executed. Omit this to
use the context-manager mode.
qubits (Optional[Sequence[QubitSpecifier]]): The circuit qubits over which the loop body
should be run. Omit this to use the context-manager mode.
clbits (Optional[Sequence[ClbitSpecifier]]): The circuit clbits over which the loop body
should be run. Omit this to use the context-manager mode.
label (Optional[str]): The string label of the instruction in the circuit.
Returns:
InstructionSet or ForLoopContext: depending on the call signature, either a context
manager for creating the for loop (it will automatically be added to the circuit at the
end of the block), or an :obj:`~InstructionSet` handle to the appended loop operation.
Raises:
CircuitError: if an incorrect calling convention is used.
"""
if body is None:
if qubits is not None or clbits is not None:
raise CircuitError(
"When using 'for_loop' as a context manager, you cannot pass qubits or clbits."
)
return ForLoopContext(self, indexset, loop_parameter, label=label)
elif qubits is None or clbits is None:
raise CircuitError(
"When using 'for_loop' with a body, you must pass qubits and clbits."
)
return self.append(
ForLoopOp(indexset, loop_parameter, body, label), qubits, clbits, copy=False
)
@typing.overload
def if_test(self, condition: tuple[ClassicalRegister | Clbit, int]) -> IfContext: ...
@typing.overload
def if_test(
self,
condition: tuple[ClassicalRegister | Clbit, int],
true_body: "QuantumCircuit",
qubits: Sequence[QubitSpecifier],
clbits: Sequence[ClbitSpecifier],
*,
label: str | None = None,
) -> InstructionSet: ...
def if_test(
self,
condition,
true_body=None,
qubits=None,
clbits=None,
*,
label=None,
):
"""Create an ``if`` statement on this circuit.
There are two forms for calling this function. If called with all its arguments (with the
possible exception of ``label``), it will create a
:obj:`~qiskit.circuit.IfElseOp` with the given ``true_body``, and there will be
no branch for the ``false`` condition (see also the :meth:`.if_else` method). However, if
``true_body`` (and ``qubits`` and ``clbits``) are *not* passed, then this acts as a context
manager, which can be used to build ``if`` statements. The return value of the ``with``
statement is a chainable context manager, which can be used to create subsequent ``else``
blocks. In this form, you do not need to keep track of the qubits or clbits you are using,
because the scope will handle it for you.
For example::
from qiskit.circuit import QuantumCircuit, Qubit, Clbit
bits = [Qubit(), Qubit(), Qubit(), Clbit(), Clbit()]
qc = QuantumCircuit(bits)
qc.h(0)
qc.cx(0, 1)
qc.measure(0, 0)
qc.h(0)
qc.cx(0, 1)
qc.measure(0, 1)
with qc.if_test((bits[3], 0)) as else_:
qc.x(2)
with else_:
qc.h(2)
qc.z(2)
Args:
condition (Tuple[Union[ClassicalRegister, Clbit], int]): A condition to be evaluated in
real time during circuit execution, which, if true, will trigger the evaluation of
``true_body``. Can be specified as either a tuple of a ``ClassicalRegister`` to be
tested for equality with a given ``int``, or as a tuple of a ``Clbit`` to be
compared to either a ``bool`` or an ``int``.
true_body (Optional[QuantumCircuit]): The circuit body to be run if ``condition`` is
true.
qubits (Optional[Sequence[QubitSpecifier]]): The circuit qubits over which the if/else
should be run.
clbits (Optional[Sequence[ClbitSpecifier]]): The circuit clbits over which the if/else
should be run.
label (Optional[str]): The string label of the instruction in the circuit.
Returns:
InstructionSet or IfContext: depending on the call signature, either a context
manager for creating the ``if`` block (it will automatically be added to the circuit at
the end of the block), or an :obj:`~InstructionSet` handle to the appended conditional
operation.
Raises:
CircuitError: If the provided condition references Clbits outside the
enclosing circuit.
CircuitError: if an incorrect calling convention is used.
Returns:
A handle to the instruction created.
"""
circuit_scope = self._current_scope()
if isinstance(condition, expr.Expr):
condition = _validate_expr(circuit_scope, condition)
else:
condition = (circuit_scope.resolve_classical_resource(condition[0]), condition[1])
if true_body is None:
if qubits is not None or clbits is not None:
raise CircuitError(
"When using 'if_test' as a context manager, you cannot pass qubits or clbits."
)
# We can only allow jumps if we're in a loop block, but the default path (no scopes)
# also allows adding jumps to support the more verbose internal mode.
in_loop = bool(self._control_flow_scopes and self._control_flow_scopes[-1].allow_jumps)
return IfContext(self, condition, in_loop=in_loop, label=label)
elif qubits is None or clbits is None:
raise CircuitError("When using 'if_test' with a body, you must pass qubits and clbits.")
return self.append(IfElseOp(condition, true_body, None, label), qubits, clbits, copy=False)
def if_else(
self,
condition: tuple[ClassicalRegister, int] | tuple[Clbit, int] | tuple[Clbit, bool],
true_body: "QuantumCircuit",
false_body: "QuantumCircuit",
qubits: Sequence[QubitSpecifier],
clbits: Sequence[ClbitSpecifier],
label: str | None = None,
) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.IfElseOp`.
.. note::
This method does not have an associated context-manager form, because it is already
handled by the :meth:`.if_test` method. You can use the ``else`` part of that with
something such as::
from qiskit.circuit import QuantumCircuit, Qubit, Clbit
bits = [Qubit(), Qubit(), Clbit()]
qc = QuantumCircuit(bits)
qc.h(0)
qc.cx(0, 1)
qc.measure(0, 0)
with qc.if_test((bits[2], 0)) as else_:
qc.h(0)
with else_:
qc.x(0)
Args:
condition: A condition to be evaluated in real time at circuit execution, which,
if true, will trigger the evaluation of ``true_body``. Can be
specified as either a tuple of a ``ClassicalRegister`` to be
tested for equality with a given ``int``, or as a tuple of a
``Clbit`` to be compared to either a ``bool`` or an ``int``.
true_body: The circuit body to be run if ``condition`` is true.
false_body: The circuit to be run if ``condition`` is false.
qubits: The circuit qubits over which the if/else should be run.
clbits: The circuit clbits over which the if/else should be run.
label: The string label of the instruction in the circuit.
Raises:
CircuitError: If the provided condition references Clbits outside the
enclosing circuit.
Returns:
A handle to the instruction created.
"""
circuit_scope = self._current_scope()
if isinstance(condition, expr.Expr):
condition = _validate_expr(circuit_scope, condition)
else:
condition = (circuit_scope.resolve_classical_resource(condition[0]), condition[1])
return self.append(
IfElseOp(condition, true_body, false_body, label), qubits, clbits, copy=False
)
@typing.overload
def switch(
self,
target: Union[ClbitSpecifier, ClassicalRegister],
cases: None,
qubits: None,
clbits: None,
*,
label: Optional[str],
) -> SwitchContext: ...
@typing.overload
def switch(
self,
target: Union[ClbitSpecifier, ClassicalRegister],
cases: Iterable[Tuple[typing.Any, QuantumCircuit]],
qubits: Sequence[QubitSpecifier],
clbits: Sequence[ClbitSpecifier],
*,
label: Optional[str],
) -> InstructionSet: ...
def switch(self, target, cases=None, qubits=None, clbits=None, *, label=None):
"""Create a ``switch``/``case`` structure on this circuit.
There are two forms for calling this function. If called with all its arguments (with the
possible exception of ``label``), it will create a :class:`.SwitchCaseOp` with the given
case structure. If ``cases`` (and ``qubits`` and ``clbits``) are *not* passed, then this
acts as a context manager, which will automatically build a :class:`.SwitchCaseOp` when the
scope finishes. In this form, you do not need to keep track of the qubits or clbits you are
using, because the scope will handle it for you.
Example usage::
from qiskit.circuit import QuantumCircuit, ClassicalRegister, QuantumRegister
qreg = QuantumRegister(3)
creg = ClassicalRegister(3)
qc = QuantumCircuit(qreg, creg)
qc.h([0, 1, 2])
qc.measure([0, 1, 2], [0, 1, 2])
with qc.switch(creg) as case:
with case(0):
qc.x(0)
with case(1, 2):
qc.z(1)
with case(case.DEFAULT):
qc.cx(0, 1)
Args:
target (Union[ClassicalRegister, Clbit]): The classical value to switch one. This must
be integer-like.
cases (Iterable[Tuple[typing.Any, QuantumCircuit]]): A sequence of case specifiers.
Each tuple defines one case body (the second item). The first item of the tuple can
be either a single integer value, the special value :data:`.CASE_DEFAULT`, or a
tuple of several integer values. Each of the integer values will be tried in turn;
control will then pass to the body corresponding to the first match.
:data:`.CASE_DEFAULT` matches all possible values. Omit in context-manager form.
qubits (Sequence[Qubit]): The circuit qubits over which all case bodies execute. Omit in
context-manager form.
clbits (Sequence[Clbit]): The circuit clbits over which all case bodies execute. Omit in
context-manager form.
label (Optional[str]): The string label of the instruction in the circuit.
Returns:
InstructionSet or SwitchCaseContext: If used in context-manager mode, then this should
be used as a ``with`` resource, which will return an object that can be repeatedly
entered to produce cases for the switch statement. If the full form is used, then this
returns a handle to the instructions created.
Raises:
CircuitError: if an incorrect calling convention is used.
"""
circuit_scope = self._current_scope()
if isinstance(target, expr.Expr):
target = _validate_expr(circuit_scope, target)
else:
target = circuit_scope.resolve_classical_resource(target)
if cases is None:
if qubits is not None or clbits is not None:
raise CircuitError(
"When using 'switch' as a context manager, you cannot pass qubits or clbits."
)
in_loop = bool(self._control_flow_scopes and self._control_flow_scopes[-1].allow_jumps)
return SwitchContext(self, target, in_loop=in_loop, label=label)
if qubits is None or clbits is None:
raise CircuitError("When using 'switch' with cases, you must pass qubits and clbits.")
return self.append(SwitchCaseOp(target, cases, label=label), qubits, clbits, copy=False)
def break_loop(self) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.BreakLoopOp`.
.. warning::
If you are using the context-manager "builder" forms of :meth:`.if_test`,
:meth:`.for_loop` or :meth:`.while_loop`, you can only call this method if you are
within a loop context, because otherwise the "resource width" of the operation cannot be
determined. This would quickly lead to invalid circuits, and so if you are trying to
construct a reusable loop body (without the context managers), you must also use the
non-context-manager form of :meth:`.if_test` and :meth:`.if_else`. Take care that the
:obj:`.BreakLoopOp` instruction must span all the resources of its containing loop, not
just the immediate scope.
Returns:
A handle to the instruction created.
Raises:
CircuitError: if this method was called within a builder context, but not contained
within a loop.
"""
if self._control_flow_scopes:
operation = BreakLoopPlaceholder()
resources = operation.placeholder_resources()
return self.append(operation, resources.qubits, resources.clbits, copy=False)
return self.append(
BreakLoopOp(self.num_qubits, self.num_clbits), self.qubits, self.clbits, copy=False
)
def continue_loop(self) -> InstructionSet:
"""Apply :class:`~qiskit.circuit.ContinueLoopOp`.
.. warning::
If you are using the context-manager "builder" forms of :meth:`.if_test`,
:meth:`.for_loop` or :meth:`.while_loop`, you can only call this method if you are
within a loop context, because otherwise the "resource width" of the operation cannot be
determined. This would quickly lead to invalid circuits, and so if you are trying to
construct a reusable loop body (without the context managers), you must also use the
non-context-manager form of :meth:`.if_test` and :meth:`.if_else`. Take care that the
:class:`~qiskit.circuit.ContinueLoopOp` instruction must span all the resources of its
containing loop, not just the immediate scope.
Returns:
A handle to the instruction created.
Raises:
CircuitError: if this method was called within a builder context, but not contained
within a loop.
"""
if self._control_flow_scopes:
operation = ContinueLoopPlaceholder()
resources = operation.placeholder_resources()
return self.append(operation, resources.qubits, resources.clbits, copy=False)
return self.append(
ContinueLoopOp(self.num_qubits, self.num_clbits), self.qubits, self.clbits, copy=False
)
def add_calibration(
self,
gate: Union[Gate, str],
qubits: Sequence[int],
# Schedule has the type `qiskit.pulse.Schedule`, but `qiskit.pulse` cannot be imported
# while this module is, and so Sphinx will not accept a forward reference to it. Sphinx
# needs the types available at runtime, whereas mypy will accept it, because it handles the
# type checking by static analysis.
schedule,
params: Sequence[ParameterValueType] | None = None,
) -> None:
"""Register a low-level, custom pulse definition for the given gate.
Args:
gate (Union[Gate, str]): Gate information.
qubits (Union[int, Tuple[int]]): List of qubits to be measured.
schedule (Schedule): Schedule information.
params (Optional[List[Union[float, Parameter]]]): A list of parameters.
Raises:
Exception: if the gate is of type string and params is None.
"""
def _format(operand):
try:
# Using float/complex value as a dict key is not good idea.
# This makes the mapping quite sensitive to the rounding error.
# However, the mechanism is already tied to the execution model (i.e. pulse gate)
# and we cannot easily update this rule.
# The same logic exists in DAGCircuit.add_calibration.
evaluated = complex(operand)
if np.isreal(evaluated):
evaluated = float(evaluated.real)
if evaluated.is_integer():
evaluated = int(evaluated)
return evaluated
except TypeError:
# Unassigned parameter
return operand
if isinstance(gate, Gate):
params = gate.params
gate = gate.name
if params is not None:
params = tuple(map(_format, params))
else:
params = ()
self._calibrations[gate][(tuple(qubits), params)] = schedule
# Functions only for scheduled circuits
def qubit_duration(self, *qubits: Union[Qubit, int]) -> float:
"""Return the duration between the start and stop time of the first and last instructions,
excluding delays, over the supplied qubits. Its time unit is ``self.unit``.
Args:
*qubits: Qubits within ``self`` to include.
Returns:
Return the duration between the first start and last stop time of non-delay instructions
"""
return self.qubit_stop_time(*qubits) - self.qubit_start_time(*qubits)
def qubit_start_time(self, *qubits: Union[Qubit, int]) -> float:
"""Return the start time of the first instruction, excluding delays,
over the supplied qubits. Its time unit is ``self.unit``.
Return 0 if there are no instructions over qubits
Args:
*qubits: Qubits within ``self`` to include. Integers are allowed for qubits, indicating
indices of ``self.qubits``.
Returns:
Return the start time of the first instruction, excluding delays, over the qubits
Raises:
CircuitError: if ``self`` is a not-yet scheduled circuit.
"""
if self.duration is None:
# circuit has only delays, this is kind of scheduled
for instruction in self._data:
if not isinstance(instruction.operation, Delay):
raise CircuitError(
"qubit_start_time undefined. Circuit must be scheduled first."
)
return 0
qubits = [self.qubits[q] if isinstance(q, int) else q for q in qubits]
starts = {q: 0 for q in qubits}
dones = {q: False for q in qubits}
for instruction in self._data:
for q in qubits:
if q in instruction.qubits:
if isinstance(instruction.operation, Delay):
if not dones[q]:
starts[q] += instruction.operation.duration
else:
dones[q] = True
if len(qubits) == len([done for done in dones.values() if done]): # all done
return min(start for start in starts.values())
return 0 # If there are no instructions over bits
def qubit_stop_time(self, *qubits: Union[Qubit, int]) -> float:
"""Return the stop time of the last instruction, excluding delays, over the supplied qubits.
Its time unit is ``self.unit``.
Return 0 if there are no instructions over qubits
Args:
*qubits: Qubits within ``self`` to include. Integers are allowed for qubits, indicating
indices of ``self.qubits``.
Returns:
Return the stop time of the last instruction, excluding delays, over the qubits
Raises:
CircuitError: if ``self`` is a not-yet scheduled circuit.
"""
if self.duration is None:
# circuit has only delays, this is kind of scheduled
for instruction in self._data:
if not isinstance(instruction.operation, Delay):
raise CircuitError(
"qubit_stop_time undefined. Circuit must be scheduled first."
)
return 0
qubits = [self.qubits[q] if isinstance(q, int) else q for q in qubits]
stops = {q: self.duration for q in qubits}
dones = {q: False for q in qubits}
for instruction in reversed(self._data):
for q in qubits:
if q in instruction.qubits:
if isinstance(instruction.operation, Delay):
if not dones[q]:
stops[q] -= instruction.operation.duration
else:
dones[q] = True
if len(qubits) == len([done for done in dones.values() if done]): # all done
return max(stop for stop in stops.values())
return 0 # If there are no instructions over bits
class _OuterCircuitScopeInterface(CircuitScopeInterface):
# This is an explicit interface-fulfilling object friend of QuantumCircuit that acts as its
# implementation of the control-flow builder scope methods.
__slots__ = ("circuit",)
def __init__(self, circuit: QuantumCircuit):
self.circuit = circuit
@property
def instructions(self):
return self.circuit._data
def append(self, instruction, *, _standard_gate: bool = False):
# QuantumCircuit._append is semi-public, so we just call back to it.
return self.circuit._append(instruction, _standard_gate=_standard_gate)
def extend(self, data: CircuitData):
self.circuit._data.extend(data)
self.circuit.duration = None
self.circuit.unit = "dt"
def resolve_classical_resource(self, specifier):
# This is slightly different to cbit_argument_conversion, because it should not
# unwrap :obj:`.ClassicalRegister` instances into lists, and in general it should not allow
# iterables or broadcasting. It is expected to be used as a callback for things like
# :meth:`.InstructionSet.c_if` to check the validity of their arguments.
if isinstance(specifier, Clbit):
if specifier not in self.circuit._clbit_indices:
raise CircuitError(f"Clbit {specifier} is not present in this circuit.")
return specifier
if isinstance(specifier, ClassicalRegister):
# This is linear complexity for something that should be constant, but QuantumCircuit
# does not currently keep a hashmap of registers, and requires non-trivial changes to
# how it exposes its registers publically before such a map can be safely stored so it
# doesn't miss updates. (Jake, 2021-11-10).
if specifier not in self.circuit.cregs:
raise CircuitError(f"Register {specifier} is not present in this circuit.")
return specifier
if isinstance(specifier, int):
try:
return self.circuit._data.clbits[specifier]
except IndexError:
raise CircuitError(f"Classical bit index {specifier} is out-of-range.") from None
raise CircuitError(f"Unknown classical resource specifier: '{specifier}'.")
def add_uninitialized_var(self, var):
var = self.circuit._prepare_new_var(var, None)
self.circuit._vars_local[var.name] = var
def remove_var(self, var):
self.circuit._vars_local.pop(var.name)
def get_var(self, name):
if (out := self.circuit._vars_local.get(name)) is not None:
return out
if (out := self.circuit._vars_capture.get(name)) is not None:
return out
return self.circuit._vars_input.get(name)
def use_var(self, var):
if self.get_var(var.name) != var:
raise CircuitError(f"'{var}' is not present in this circuit")
def _validate_expr(circuit_scope: CircuitScopeInterface, node: expr.Expr) -> expr.Expr:
# This takes the `circuit_scope` object as an argument rather than being a circuit method and
# inferring it because we may want to call this several times, and we almost invariably already
# need the interface implementation for something else anyway.
for var in set(expr.iter_vars(node)):
if var.standalone:
circuit_scope.use_var(var)
else:
circuit_scope.resolve_classical_resource(var.var)
return node
class _ParameterBindsDict:
__slots__ = ("mapping", "allowed_keys")
def __init__(self, mapping, allowed_keys):
self.mapping = mapping
self.allowed_keys = allowed_keys
def items(self):
"""Iterator through all the keys in the mapping that we care about. Wrapping the main
mapping allows us to avoid reconstructing a new 'dict', but just use the given 'mapping'
without any copy / reconstruction."""
for parameter, value in self.mapping.items():
if parameter in self.allowed_keys:
yield parameter, value
class _ParameterBindsSequence:
__slots__ = ("parameters", "values", "mapping_cache")
def __init__(self, parameters, values):
self.parameters = parameters
self.values = values
self.mapping_cache = None
def items(self):
"""Iterator through all the keys in the mapping that we care about."""
return zip(self.parameters, self.values)
@property
def mapping(self):
"""Cached version of a mapping. This is only generated on demand."""
if self.mapping_cache is None:
self.mapping_cache = dict(zip(self.parameters, self.values))
return self.mapping_cache
def _bit_argument_conversion(specifier, bit_sequence, bit_set, type_) -> list[Bit]:
"""Get the list of bits referred to by the specifier ``specifier``.
Valid types for ``specifier`` are integers, bits of the correct type (as given in ``type_``), or
iterables of one of those two scalar types. Integers are interpreted as indices into the
sequence ``bit_sequence``. All allowed bits must be in ``bit_set`` (which should implement
fast lookup), which is assumed to contain the same bits as ``bit_sequence``.
Returns:
List[Bit]: a list of the specified bits from ``bits``.
Raises:
CircuitError: if an incorrect type or index is encountered, if the same bit is specified
more than once, or if the specifier is to a bit not in the ``bit_set``.
"""
# The duplication between this function and `_bit_argument_conversion_scalar` is so that fast
# paths return as quickly as possible, and all valid specifiers will resolve without needing to
# try/catch exceptions (which is too slow for inner-loop code).
if isinstance(specifier, type_):
if specifier in bit_set:
return [specifier]
raise CircuitError(f"Bit '{specifier}' is not in the circuit.")
if isinstance(specifier, (int, np.integer)):
try:
return [bit_sequence[specifier]]
except IndexError as ex:
raise CircuitError(
f"Index {specifier} out of range for size {len(bit_sequence)}."
) from ex
# Slices can't raise IndexError - they just return an empty list.
if isinstance(specifier, slice):
return bit_sequence[specifier]
try:
return [
_bit_argument_conversion_scalar(index, bit_sequence, bit_set, type_)
for index in specifier
]
except TypeError as ex:
message = (
f"Incorrect bit type: expected '{type_.__name__}' but got '{type(specifier).__name__}'"
if isinstance(specifier, Bit)
else f"Invalid bit index: '{specifier}' of type '{type(specifier)}'"
)
raise CircuitError(message) from ex
def _bit_argument_conversion_scalar(specifier, bit_sequence, bit_set, type_):
if isinstance(specifier, type_):
if specifier in bit_set:
return specifier
raise CircuitError(f"Bit '{specifier}' is not in the circuit.")
if isinstance(specifier, (int, np.integer)):
try:
return bit_sequence[specifier]
except IndexError as ex:
raise CircuitError(
f"Index {specifier} out of range for size {len(bit_sequence)}."
) from ex
message = (
f"Incorrect bit type: expected '{type_.__name__}' but got '{type(specifier).__name__}'"
if isinstance(specifier, Bit)
else f"Invalid bit index: '{specifier}' of type '{type(specifier)}'"
)
raise CircuitError(message)
| qiskit/qiskit/circuit/quantumcircuit.py/0 | {
"file_path": "qiskit/qiskit/circuit/quantumcircuit.py",
"repo_id": "qiskit",
"token_count": 122980
} | 182 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
=============================================
Circuit Converters (:mod:`qiskit.converters`)
=============================================
.. currentmodule:: qiskit.converters
QuantumCircuit -> circuit components
====================================
.. autofunction:: circuit_to_instruction
.. autofunction:: circuit_to_gate
QuantumCircuit <-> DagCircuit
=============================
.. autofunction:: circuit_to_dag
.. autofunction:: dag_to_circuit
QuantumCircuit <-> DagDependency
================================
.. autofunction:: dagdependency_to_circuit
.. autofunction:: circuit_to_dagdependency
DagCircuit <-> DagDependency
============================
.. autofunction:: dag_to_dagdependency
.. autofunction:: dagdependency_to_dag
"""
from .circuit_to_dag import circuit_to_dag
from .dag_to_circuit import dag_to_circuit
from .circuit_to_instruction import circuit_to_instruction
from .circuit_to_gate import circuit_to_gate
from .circuit_to_dagdependency import circuit_to_dagdependency
from .dagdependency_to_circuit import dagdependency_to_circuit
from .dag_to_dagdependency import dag_to_dagdependency
from .dagdependency_to_dag import dagdependency_to_dag
def isinstanceint(obj):
"""Like isinstance(obj,int), but with casting. Except for strings."""
if isinstance(obj, str):
return False
try:
int(obj)
return True
except TypeError:
return False
def isinstancelist(obj):
"""Like isinstance(obj, list), but with casting. Except for strings and dicts."""
if isinstance(obj, (str, dict)):
return False
try:
list(obj)
return True
except TypeError:
return False
| qiskit/qiskit/converters/__init__.py/0 | {
"file_path": "qiskit/qiskit/converters/__init__.py",
"repo_id": "qiskit",
"token_count": 697
} | 183 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# pylint: disable=redefined-builtin
"""Object to represent the information at a node in the DAGCircuit."""
from __future__ import annotations
from qiskit.exceptions import QiskitError
class DAGDepNode:
"""Object to represent the information at a node in the DAGDependency().
It is used as the return value from `*_nodes()` functions and can
be supplied to functions that take a node.
"""
__slots__ = [
"type",
"_op",
"name",
"_qargs",
"cargs",
"sort_key",
"node_id",
"successors",
"predecessors",
"reachable",
"matchedwith",
"isblocked",
"successorstovisit",
"qindices",
"cindices",
]
def __init__(
self,
type=None,
op=None,
name=None,
qargs=(),
cargs=(),
successors: list[int] | None = None,
predecessors: list[int] | None = None,
reachable=None,
matchedwith: list[int] | None = None,
successorstovisit: list[int] | None = None,
isblocked: bool | None = None,
qindices: list[int] | None = None,
cindices: list[int] | None = None,
nid: int = -1,
):
self.type = type
self._op = op
self.name = name
self._qargs = tuple(qargs) if qargs is not None else ()
self.cargs = tuple(cargs) if cargs is not None else ()
self.node_id = nid
self.sort_key: str = str(self._qargs)
self.successors: list[int] = successors if successors is not None else []
self.predecessors: list[int] = predecessors if predecessors is not None else []
self.reachable = reachable
self.matchedwith: list[int] = matchedwith if matchedwith is not None else []
self.isblocked: bool = isblocked
self.successorstovisit: list[int] = (
successorstovisit if successorstovisit is not None else []
)
self.qindices: list[int] = qindices if qindices is not None else []
self.cindices: list[int] = cindices if cindices is not None else []
@property
def op(self):
"""Returns the Instruction object corresponding to the op for the node, else None"""
if not self.type or self.type != "op":
raise QiskitError(f"The node {str(self)} is not an op node")
return self._op
@op.setter
def op(self, data):
self._op = data
@property
def qargs(self):
"""
Returns list of Qubit, else an empty list.
"""
return self._qargs
@qargs.setter
def qargs(self, new_qargs):
"""Sets the qargs to be the given list of qargs."""
self._qargs = tuple(new_qargs)
self.sort_key = str(new_qargs)
@staticmethod
def semantic_eq(node1, node2):
"""
Check if DAG nodes are considered equivalent, e.g., as a node_match for nx.is_isomorphic.
Args:
node1 (DAGDepNode): A node to compare.
node2 (DAGDepNode): The other node to compare.
Return:
Bool: If node1 == node2
"""
# For barriers, qarg order is not significant so compare as sets
if "barrier" == node1.name == node2.name:
return set(node1._qargs) == set(node2._qargs)
if node1.type == node2.type:
if node1._op == node2._op:
if node1.name == node2.name:
if node1._qargs == node2._qargs:
if node1.cargs == node2.cargs:
if node1.type == "op":
if getattr(node1._op, "condition", None) != getattr(
node2._op, "condition", None
):
return False
return True
return False
def copy(self):
"""
Function to copy a DAGDepNode object.
Returns:
DAGDepNode: a copy of a DAGDepNode object.
"""
dagdepnode = DAGDepNode()
dagdepnode.type = self.type
dagdepnode._op = self.op
dagdepnode.name = self.name
dagdepnode._qargs = self._qargs
dagdepnode.cargs = self.cargs
dagdepnode.node_id = self.node_id
dagdepnode.sort_key = self.sort_key
dagdepnode.successors = self.successors
dagdepnode.predecessors = self.predecessors
dagdepnode.reachable = self.reachable
dagdepnode.isblocked = self.isblocked
dagdepnode.successorstovisit = self.successorstovisit
dagdepnode.qindices = self.qindices
dagdepnode.cindices = self.cindices
dagdepnode.matchedwith = self.matchedwith.copy()
return dagdepnode
| qiskit/qiskit/dagcircuit/dagdepnode.py/0 | {
"file_path": "qiskit/qiskit/dagcircuit/dagdepnode.py",
"repo_id": "qiskit",
"token_count": 2404
} | 184 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2022, 2023, 2024.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Base Estimator V1 and V2 classes"""
from __future__ import annotations
from abc import abstractmethod, ABC
from collections.abc import Iterable, Sequence
from copy import copy
from typing import Generic, TypeVar
from qiskit.circuit import QuantumCircuit
from qiskit.providers import JobV1 as Job
from qiskit.quantum_info.operators import SparsePauliOp
from qiskit.quantum_info.operators.base_operator import BaseOperator
from qiskit.utils.deprecation import deprecate_func
from ..containers import (
DataBin,
EstimatorPubLike,
PrimitiveResult,
PubResult,
)
from ..containers.estimator_pub import EstimatorPub
from . import validation
from .base_primitive import BasePrimitive
from .base_primitive_job import BasePrimitiveJob
T = TypeVar("T", bound=Job)
class BaseEstimatorV1(BasePrimitive, Generic[T]):
r"""Estimator V1 base class.
Base class for Estimator that estimates expectation values of quantum circuits and observables.
An estimator is initialized with an empty parameter set. The estimator is used to
create a :class:`~qiskit.providers.JobV1`, via the
:meth:`qiskit.primitives.Estimator.run()` method. This method is called
with the following parameters
* quantum circuits (:math:`\psi_i(\theta)`): list of (parameterized) quantum circuits
(a list of :class:`~qiskit.circuit.QuantumCircuit` objects).
* observables (:math:`H_j`): a list of :class:`~qiskit.quantum_info.SparsePauliOp`
objects.
* parameter values (:math:`\theta_k`): list of sets of values
to be bound to the parameters of the quantum circuits
(list of list of float).
The method returns a :class:`~qiskit.providers.JobV1` object, calling
:meth:`qiskit.providers.JobV1.result()` yields the
a list of expectation values plus optional metadata like confidence intervals for
the estimation.
.. math::
\langle\psi_i(\theta_k)|H_j|\psi_i(\theta_k)\rangle
Here is an example of how the estimator is used.
.. code-block:: python
from qiskit.primitives import Estimator
from qiskit.circuit.library import RealAmplitudes
from qiskit.quantum_info import SparsePauliOp
psi1 = RealAmplitudes(num_qubits=2, reps=2)
psi2 = RealAmplitudes(num_qubits=2, reps=3)
H1 = SparsePauliOp.from_list([("II", 1), ("IZ", 2), ("XI", 3)])
H2 = SparsePauliOp.from_list([("IZ", 1)])
H3 = SparsePauliOp.from_list([("ZI", 1), ("ZZ", 1)])
theta1 = [0, 1, 1, 2, 3, 5]
theta2 = [0, 1, 1, 2, 3, 5, 8, 13]
theta3 = [1, 2, 3, 4, 5, 6]
estimator = Estimator()
# calculate [ <psi1(theta1)|H1|psi1(theta1)> ]
job = estimator.run([psi1], [H1], [theta1])
job_result = job.result() # It will block until the job finishes.
print(f"The primitive-job finished with result {job_result}"))
# calculate [ <psi1(theta1)|H1|psi1(theta1)>,
# <psi2(theta2)|H2|psi2(theta2)>,
# <psi1(theta3)|H3|psi1(theta3)> ]
job2 = estimator.run([psi1, psi2, psi1], [H1, H2, H3], [theta1, theta2, theta3])
job_result = job2.result()
print(f"The primitive-job finished with result {job_result}")
"""
__hash__ = None
def __init__(
self,
*,
options: dict | None = None,
):
"""
Creating an instance of an Estimator V1, or using one in a ``with`` context opens a session that
holds resources until the instance is ``close()`` ed or the context is exited.
Args:
options: Default options.
"""
super().__init__(options)
def run(
self,
circuits: Sequence[QuantumCircuit] | QuantumCircuit,
observables: Sequence[BaseOperator | str] | BaseOperator | str,
parameter_values: Sequence[Sequence[float]] | Sequence[float] | float | None = None,
**run_options,
) -> T:
"""Run the job of the estimation of expectation value(s).
``circuits``, ``observables``, and ``parameter_values`` should have the same
length. The i-th element of the result is the expectation of observable
.. code-block:: python
obs = observables[i]
for the state prepared by
.. code-block:: python
circ = circuits[i]
with bound parameters
.. code-block:: python
values = parameter_values[i].
Args:
circuits: one or more circuit objects.
observables: one or more observable objects. Several formats are allowed;
importantly, ``str`` should follow the string representation format for
:class:`~qiskit.quantum_info.Pauli` objects.
parameter_values: concrete parameters to be bound.
run_options: runtime options used for circuit execution.
Returns:
The job object of EstimatorResult.
Raises:
TypeError: Invalid argument type given.
ValueError: Invalid argument values given.
"""
# Validation
circuits, observables, parameter_values = validation._validate_estimator_args(
circuits, observables, parameter_values
)
# Options
run_opts = copy(self.options)
run_opts.update_options(**run_options)
return self._run(
circuits,
observables,
parameter_values,
**run_opts.__dict__,
)
@abstractmethod
def _run(
self,
circuits: tuple[QuantumCircuit, ...],
observables: tuple[SparsePauliOp, ...],
parameter_values: tuple[tuple[float, ...], ...],
**run_options,
) -> T:
raise NotImplementedError("The subclass of BaseEstimator must implement `_run` method.")
class BaseEstimator(BaseEstimatorV1[T]):
"""DEPRECATED. Type alias for Estimator V1 base class.
See :class:`.BaseEstimatorV1` for details.
"""
@deprecate_func(
since="1.2",
additional_msg="The `BaseEstimator` class is a type alias for the `BaseEstimatorV1` "
"interface that has been deprecated in favor of explicitly versioned interface classes. "
"It is recommended to migrate all implementations to use `BaseEstimatorV2`. "
"However, for implementations incompatible with `BaseEstimatorV2`, `BaseEstimator` can "
"be replaced with the explicitly versioned `BaseEstimatorV1` class.",
)
def __init__(
self,
*,
options: dict | None = None,
):
"""
Creating an instance of an Estimator, or using one in a ``with`` context opens a session that
holds resources until the instance is ``close()`` ed or the context is exited.
Args:
options: Default options.
"""
super().__init__(options=options)
class BaseEstimatorV2(ABC):
r"""Estimator V2 base class.
An estimator estimates expectation values for provided quantum circuit and
observable combinations.
An Estimator implementation must treat the :meth:`.run` method ``precision=None``
kwarg as using a default ``precision`` value. The default value and methods to
set it can be determined by the Estimator implementor.
"""
@staticmethod
def _make_data_bin(_: EstimatorPub) -> type[DataBin]:
# this method is present for backwards compat. new primitive implementations
# should avoid it.
return DataBin
@abstractmethod
def run(
self, pubs: Iterable[EstimatorPubLike], *, precision: float | None = None
) -> BasePrimitiveJob[PrimitiveResult[PubResult]]:
"""Estimate expectation values for each provided pub (Primitive Unified Bloc).
Args:
pubs: An iterable of pub-like objects, such as tuples ``(circuit, observables)``
or ``(circuit, observables, parameter_values)``.
precision: The target precision for expectation value estimates of each
run Estimator Pub that does not specify its own precision. If None
the estimator's default precision value will be used.
Returns:
A job object that contains results.
"""
| qiskit/qiskit/primitives/base/base_estimator.py/0 | {
"file_path": "qiskit/qiskit/primitives/base/base_estimator.py",
"repo_id": "qiskit",
"token_count": 3448
} | 185 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Base Pub result class
"""
from __future__ import annotations
from typing import Any
from .data_bin import DataBin
class PubResult:
"""Result of Primitive Unified Bloc."""
__slots__ = ("_data", "_metadata")
def __init__(self, data: DataBin, metadata: dict[str, Any] | None = None):
"""Initialize a pub result.
Args:
data: Result data.
metadata: Metadata specific to this pub. Keys are expected to be strings.
"""
self._data = data
self._metadata = metadata or {}
def __repr__(self):
metadata = f", metadata={self.metadata}" if self.metadata else ""
return f"{type(self).__name__}(data={self._data}{metadata})"
@property
def data(self) -> DataBin:
"""Result data for the pub."""
return self._data
@property
def metadata(self) -> dict:
"""Metadata for the pub."""
return self._metadata
| qiskit/qiskit/primitives/containers/pub_result.py/0 | {
"file_path": "qiskit/qiskit/primitives/containers/pub_result.py",
"repo_id": "qiskit",
"token_count": 498
} | 186 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Contains functions used by the basic provider simulators.
"""
from __future__ import annotations
from string import ascii_uppercase, ascii_lowercase
import numpy as np
import qiskit.circuit.library.standard_gates as gates
from qiskit.exceptions import QiskitError
# Single qubit gates supported by ``single_gate_params``.
SINGLE_QUBIT_GATES = {
"U": gates.UGate,
"u": gates.UGate,
"u1": gates.U1Gate,
"u2": gates.U2Gate,
"u3": gates.U3Gate,
"h": gates.HGate,
"p": gates.PhaseGate,
"s": gates.SGate,
"sdg": gates.SdgGate,
"sx": gates.SXGate,
"sxdg": gates.SXdgGate,
"t": gates.TGate,
"tdg": gates.TdgGate,
"x": gates.XGate,
"y": gates.YGate,
"z": gates.ZGate,
"id": gates.IGate,
"i": gates.IGate,
"r": gates.RGate,
"rx": gates.RXGate,
"ry": gates.RYGate,
"rz": gates.RZGate,
}
def single_gate_matrix(gate: str, params: list[float] | None = None) -> np.ndarray:
"""Get the matrix for a single qubit.
Args:
gate: the single qubit gate name
params: the operation parameters op['params']
Returns:
array: A numpy array representing the matrix
Raises:
QiskitError: If a gate outside the supported set is passed in for the
``Gate`` argument.
"""
if params is None:
params = []
if gate in SINGLE_QUBIT_GATES:
gc = SINGLE_QUBIT_GATES[gate]
else:
raise QiskitError(f"Gate is not a valid basis gate for this simulator: {gate}")
return gc(*params).to_matrix()
# Two qubit gates WITHOUT parameters: name -> matrix
TWO_QUBIT_GATES = {
"CX": gates.CXGate().to_matrix(),
"cx": gates.CXGate().to_matrix(),
"ecr": gates.ECRGate().to_matrix(),
"cy": gates.CYGate().to_matrix(),
"cz": gates.CZGate().to_matrix(),
"swap": gates.SwapGate().to_matrix(),
"iswap": gates.iSwapGate().to_matrix(),
"ch": gates.CHGate().to_matrix(),
"cs": gates.CSGate().to_matrix(),
"csdg": gates.CSdgGate().to_matrix(),
"csx": gates.CSXGate().to_matrix(),
"dcx": gates.DCXGate().to_matrix(),
}
# Two qubit gates WITH parameters: name -> class
TWO_QUBIT_GATES_WITH_PARAMETERS = {
"cp": gates.CPhaseGate,
"crx": gates.CRXGate,
"cry": gates.CRYGate,
"crz": gates.CRZGate,
"cu": gates.CUGate,
"cu1": gates.CU1Gate,
"cu3": gates.CU3Gate,
"rxx": gates.RXXGate,
"ryy": gates.RYYGate,
"rzz": gates.RZZGate,
"rzx": gates.RZXGate,
"xx_minus_yy": gates.XXMinusYYGate,
"xx_plus_yy": gates.XXPlusYYGate,
}
# Three qubit gates: name -> matrix
THREE_QUBIT_GATES = {
"ccx": gates.CCXGate().to_matrix(),
"ccz": gates.CCZGate().to_matrix(),
"rccx": gates.RCCXGate().to_matrix(),
"cswap": gates.CSwapGate().to_matrix(),
}
def einsum_matmul_index(gate_indices: list[int], number_of_qubits: int) -> str:
"""Return the index string for Numpy.einsum matrix-matrix multiplication.
The returned indices are to perform a matrix multiplication A.B where
the matrix A is an M-qubit matrix, matrix B is an N-qubit matrix, and
M <= N, and identity matrices are implied on the subsystems where A has no
support on B.
Args:
gate_indices (list[int]): the indices of the right matrix subsystems
to contract with the left matrix.
number_of_qubits (int): the total number of qubits for the right matrix.
Returns:
str: An indices string for the Numpy.einsum function.
"""
mat_l, mat_r, tens_lin, tens_lout = _einsum_matmul_index_helper(gate_indices, number_of_qubits)
# Right indices for the N-qubit input and output tensor
tens_r = ascii_uppercase[:number_of_qubits]
# Combine indices into matrix multiplication string format
# for numpy.einsum function
return f"{mat_l}{mat_r}, {tens_lin}{tens_r}->{tens_lout}{tens_r}"
def einsum_vecmul_index(gate_indices: list[int], number_of_qubits: int) -> str:
"""Return the index string for Numpy.einsum matrix-vector multiplication.
The returned indices are to perform a matrix multiplication A.v where
the matrix A is an M-qubit matrix, vector v is an N-qubit vector, and
M <= N, and identity matrices are implied on the subsystems where A has no
support on v.
Args:
gate_indices (list[int]): the indices of the right matrix subsystems
to contract with the left matrix.
number_of_qubits (int): the total number of qubits for the right matrix.
Returns:
str: An indices string for the Numpy.einsum function.
"""
mat_l, mat_r, tens_lin, tens_lout = _einsum_matmul_index_helper(gate_indices, number_of_qubits)
# Combine indices into matrix multiplication string format
# for numpy.einsum function
return f"{mat_l}{mat_r}, {tens_lin}->{tens_lout}"
def _einsum_matmul_index_helper(
gate_indices: list[int], number_of_qubits: int
) -> tuple[str, str, str, str]:
"""Return the index string for Numpy.einsum matrix multiplication.
The returned indices are to perform a matrix multiplication A.v where
the matrix A is an M-qubit matrix, matrix v is an N-qubit vector, and
M <= N, and identity matrices are implied on the subsystems where A has no
support on v.
Args:
gate_indices (list[int]): the indices of the right matrix subsystems
to contract with the left matrix.
number_of_qubits (int): the total number of qubits for the right matrix.
Returns:
tuple: (mat_left, mat_right, tens_in, tens_out) of index strings for
that may be combined into a Numpy.einsum function string.
Raises:
QiskitError: if the total number of qubits plus the number of
contracted indices is greater than 26.
"""
# Since we use ASCII alphabet for einsum index labels we are limited
# to 26 total free left (lowercase) and 26 right (uppercase) indexes.
# The rank of the contracted tensor reduces this as we need to use that
# many characters for the contracted indices
if len(gate_indices) + number_of_qubits > 26:
raise QiskitError("Total number of free indexes limited to 26")
# Indices for N-qubit input tensor
tens_in = ascii_lowercase[:number_of_qubits]
# Indices for the N-qubit output tensor
tens_out = list(tens_in)
# Left and right indices for the M-qubit multiplying tensor
mat_left = ""
mat_right = ""
# Update left indices for mat and output
for pos, idx in enumerate(reversed(gate_indices)):
mat_left += ascii_lowercase[-1 - pos]
mat_right += tens_in[-1 - idx]
tens_out[-1 - idx] = ascii_lowercase[-1 - pos]
tens_out = "".join(tens_out)
# Combine indices into matrix multiplication string format
# for numpy.einsum function
return mat_left, mat_right, tens_in, tens_out
| qiskit/qiskit/providers/basic_provider/basic_provider_tools.py/0 | {
"file_path": "qiskit/qiskit/providers/basic_provider/basic_provider_tools.py",
"repo_id": "qiskit",
"token_count": 2928
} | 187 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Fake backend supporting OpenPulse.
"""
import warnings
from qiskit.providers.models.backendconfiguration import (
GateConfig,
PulseBackendConfiguration,
UchannelLO,
)
from qiskit.providers.models.pulsedefaults import PulseDefaults, Command
from qiskit.qobj import PulseQobjInstruction
from .fake_backend import FakeBackend
class FakeOpenPulse3Q(FakeBackend):
"""Trivial extension of the FakeOpenPulse2Q."""
def __init__(self):
configuration = PulseBackendConfiguration(
backend_name="fake_openpulse_3q",
backend_version="0.0.0",
n_qubits=3,
meas_levels=[0, 1, 2],
basis_gates=["u1", "u2", "u3", "cx", "id"],
simulator=False,
local=True,
conditional=True,
open_pulse=True,
memory=False,
max_shots=65536,
gates=[GateConfig(name="TODO", parameters=[], qasm_def="TODO")],
coupling_map=[[0, 1], [1, 2]],
n_registers=3,
n_uchannels=3,
u_channel_lo=[
[UchannelLO(q=0, scale=1.0 + 0.0j)],
[UchannelLO(q=0, scale=-1.0 + 0.0j), UchannelLO(q=1, scale=1.0 + 0.0j)],
[UchannelLO(q=0, scale=1.0 + 0.0j)],
],
qubit_lo_range=[[4.5, 5.5], [4.5, 5.5], [4.5, 5.5]],
meas_lo_range=[[6.0, 7.0], [6.0, 7.0], [6.0, 7.0]],
dt=1.3333,
dtm=10.5,
rep_times=[100, 250, 500, 1000],
meas_map=[[0, 1, 2]],
channel_bandwidth=[
[-0.2, 0.4],
[-0.3, 0.3],
[-0.3, 0.3],
[-0.02, 0.02],
[-0.02, 0.02],
[-0.02, 0.02],
[-0.2, 0.4],
[-0.3, 0.3],
[-0.3, 0.3],
],
meas_kernels=["kernel1"],
discriminators=["max_1Q_fidelity"],
acquisition_latency=[[100, 100], [100, 100], [100, 100]],
conditional_latency=[
[100, 1000],
[1000, 100],
[100, 1000],
[100, 1000],
[1000, 100],
[100, 1000],
[1000, 100],
[100, 1000],
[1000, 100],
],
channels={
"acquire0": {"type": "acquire", "purpose": "acquire", "operates": {"qubits": [0]}},
"acquire1": {"type": "acquire", "purpose": "acquire", "operates": {"qubits": [1]}},
"acquire2": {"type": "acquire", "purpose": "acquire", "operates": {"qubits": [2]}},
"d0": {"type": "drive", "purpose": "drive", "operates": {"qubits": [0]}},
"d1": {"type": "drive", "purpose": "drive", "operates": {"qubits": [1]}},
"d2": {"type": "drive", "purpose": "drive", "operates": {"qubits": [2]}},
"m0": {"type": "measure", "purpose": "measure", "operates": {"qubits": [0]}},
"m1": {"type": "measure", "purpose": "measure", "operates": {"qubits": [1]}},
"m2": {"type": "measure", "purpose": "measure", "operates": {"qubits": [2]}},
"u0": {
"type": "control",
"purpose": "cross-resonance",
"operates": {"qubits": [0, 1]},
},
"u1": {
"type": "control",
"purpose": "cross-resonance",
"operates": {"qubits": [1, 0]},
},
"u2": {
"type": "control",
"purpose": "cross-resonance",
"operates": {"qubits": [2, 1]},
},
},
)
with warnings.catch_warnings():
# The class PulseQobjInstruction is deprecated
warnings.filterwarnings("ignore", category=DeprecationWarning, module="qiskit")
self._defaults = PulseDefaults.from_dict(
{
"qubit_freq_est": [4.9, 5.0, 4.8],
"meas_freq_est": [6.5, 6.6, 6.4],
"buffer": 10,
"pulse_library": [
{"name": "x90p_d0", "samples": 2 * [0.1 + 0j]},
{"name": "x90p_d1", "samples": 2 * [0.1 + 0j]},
{"name": "x90p_d2", "samples": 2 * [0.1 + 0j]},
{"name": "x90m_d0", "samples": 2 * [-0.1 + 0j]},
{"name": "x90m_d1", "samples": 2 * [-0.1 + 0j]},
{"name": "x90m_d2", "samples": 2 * [-0.1 + 0j]},
{"name": "y90p_d0", "samples": 2 * [0.1j]},
{"name": "y90p_d1", "samples": 2 * [0.1j]},
{"name": "y90p_d2", "samples": 2 * [0.1j]},
{"name": "xp_d0", "samples": 2 * [0.2 + 0j]},
{"name": "ym_d0", "samples": 2 * [-0.2j]},
{"name": "xp_d1", "samples": 2 * [0.2 + 0j]},
{"name": "ym_d1", "samples": 2 * [-0.2j]},
{"name": "cr90p_u0", "samples": 9 * [0.1 + 0j]},
{"name": "cr90m_u0", "samples": 9 * [-0.1 + 0j]},
{"name": "cr90p_u1", "samples": 9 * [0.1 + 0j]},
{"name": "cr90m_u1", "samples": 9 * [-0.1 + 0j]},
{"name": "measure_m0", "samples": 10 * [0.1 + 0j]},
{"name": "measure_m1", "samples": 10 * [0.1 + 0j]},
{"name": "measure_m2", "samples": 10 * [0.1 + 0j]},
],
"cmd_def": [
Command.from_dict(
{
"name": "u1",
"qubits": [0],
"sequence": [
PulseQobjInstruction(
name="fc", ch="d0", t0=0, phase="-P0"
).to_dict()
],
}
).to_dict(),
Command.from_dict(
{
"name": "u1",
"qubits": [1],
"sequence": [
PulseQobjInstruction(
name="fc", ch="d1", t0=0, phase="-P0"
).to_dict()
],
}
).to_dict(),
Command.from_dict(
{
"name": "u1",
"qubits": [2],
"sequence": [
PulseQobjInstruction(
name="fc", ch="d2", t0=0, phase="-P0"
).to_dict()
],
}
).to_dict(),
Command.from_dict(
{
"name": "u2",
"qubits": [0],
"sequence": [
PulseQobjInstruction(
name="fc", ch="d0", t0=0, phase="-P1"
).to_dict(),
PulseQobjInstruction(name="y90p_d0", ch="d0", t0=0).to_dict(),
PulseQobjInstruction(
name="fc", ch="d0", t0=2, phase="-P0"
).to_dict(),
],
}
).to_dict(),
Command.from_dict(
{
"name": "u2",
"qubits": [1],
"sequence": [
PulseQobjInstruction(
name="fc", ch="d1", t0=0, phase="-P1"
).to_dict(),
PulseQobjInstruction(name="y90p_d1", ch="d1", t0=0).to_dict(),
PulseQobjInstruction(
name="fc", ch="d1", t0=2, phase="-P0"
).to_dict(),
],
}
).to_dict(),
Command.from_dict(
{
"name": "u2",
"qubits": [2],
"sequence": [
PulseQobjInstruction(
name="fc", ch="d2", t0=0, phase="-P1"
).to_dict(),
PulseQobjInstruction(name="y90p_d2", ch="d2", t0=0).to_dict(),
PulseQobjInstruction(
name="fc", ch="d2", t0=2, phase="-P0"
).to_dict(),
],
}
).to_dict(),
Command.from_dict(
{
"name": "u3",
"qubits": [0],
"sequence": [
PulseQobjInstruction(
name="fc", ch="d0", t0=0, phase="-P2"
).to_dict(),
PulseQobjInstruction(name="x90p_d0", ch="d0", t0=0).to_dict(),
PulseQobjInstruction(
name="fc", ch="d0", t0=2, phase="-P0"
).to_dict(),
PulseQobjInstruction(name="x90m_d0", ch="d0", t0=2).to_dict(),
PulseQobjInstruction(
name="fc", ch="d0", t0=4, phase="-P1"
).to_dict(),
],
}
).to_dict(),
Command.from_dict(
{
"name": "u3",
"qubits": [1],
"sequence": [
PulseQobjInstruction(
name="fc", ch="d1", t0=0, phase="-P2"
).to_dict(),
PulseQobjInstruction(name="x90p_d1", ch="d1", t0=0).to_dict(),
PulseQobjInstruction(
name="fc", ch="d1", t0=2, phase="-P0"
).to_dict(),
PulseQobjInstruction(name="x90m_d1", ch="d1", t0=2).to_dict(),
PulseQobjInstruction(
name="fc", ch="d1", t0=4, phase="-P1"
).to_dict(),
],
}
).to_dict(),
Command.from_dict(
{
"name": "u3",
"qubits": [2],
"sequence": [
PulseQobjInstruction(
name="fc", ch="d2", t0=0, phase="-P2"
).to_dict(),
PulseQobjInstruction(name="x90p_d2", ch="d2", t0=0).to_dict(),
PulseQobjInstruction(
name="fc", ch="d2", t0=2, phase="-P0"
).to_dict(),
PulseQobjInstruction(name="x90m_d2", ch="d2", t0=2).to_dict(),
PulseQobjInstruction(
name="fc", ch="d2", t0=4, phase="-P1"
).to_dict(),
],
}
).to_dict(),
Command.from_dict(
{
"name": "cx",
"qubits": [0, 1],
"sequence": [
PulseQobjInstruction(
name="fc", ch="d0", t0=0, phase=1.57
).to_dict(),
PulseQobjInstruction(name="ym_d0", ch="d0", t0=0).to_dict(),
PulseQobjInstruction(name="xp_d0", ch="d0", t0=11).to_dict(),
PulseQobjInstruction(name="x90p_d1", ch="d1", t0=0).to_dict(),
PulseQobjInstruction(name="cr90p_u0", ch="u0", t0=2).to_dict(),
PulseQobjInstruction(name="cr90m_u0", ch="u0", t0=13).to_dict(),
],
}
).to_dict(),
Command.from_dict(
{
"name": "cx",
"qubits": [1, 2],
"sequence": [
PulseQobjInstruction(
name="fc", ch="d1", t0=0, phase=1.57
).to_dict(),
PulseQobjInstruction(name="ym_d1", ch="d1", t0=0).to_dict(),
PulseQobjInstruction(name="xp_d1", ch="d1", t0=11).to_dict(),
PulseQobjInstruction(name="x90p_d2", ch="d2", t0=0).to_dict(),
PulseQobjInstruction(name="cr90p_u1", ch="u1", t0=2).to_dict(),
PulseQobjInstruction(name="cr90m_u1", ch="u1", t0=13).to_dict(),
],
}
).to_dict(),
Command.from_dict(
{
"name": "measure",
"qubits": [0, 1, 2],
"sequence": [
PulseQobjInstruction(
name="measure_m0", ch="m0", t0=0
).to_dict(),
PulseQobjInstruction(
name="measure_m1", ch="m1", t0=0
).to_dict(),
PulseQobjInstruction(
name="measure_m2", ch="m2", t0=0
).to_dict(),
PulseQobjInstruction(
name="acquire",
duration=10,
t0=0,
qubits=[0, 1, 2],
memory_slot=[0, 1, 2],
).to_dict(),
],
}
).to_dict(),
],
}
)
super().__init__(configuration)
def defaults(self): # pylint: disable=missing-function-docstring
return self._defaults
| qiskit/qiskit/providers/fake_provider/fake_openpulse_3q.py/0 | {
"file_path": "qiskit/qiskit/providers/fake_provider/fake_openpulse_3q.py",
"repo_id": "qiskit",
"token_count": 11721
} | 188 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Base class for a provider."""
from abc import ABC, abstractmethod
from qiskit.providers.exceptions import QiskitBackendNotFoundError
from qiskit.utils import deprecate_func
class Provider:
"""Base common type for all versioned Provider abstract classes.
Note this class should not be inherited from directly, it is intended
to be used for type checking. When implementing a provider you should use
the versioned abstract classes as the parent class and not this class
directly.
"""
version = 0
@deprecate_func(
since=1.1,
additional_msg="The abstract Provider and ProviderV1 classes are deprecated and will be "
"removed in 2.0. You can just remove it as the parent class and a `get_backend` "
"method that returns the backends from `self.backend`.",
)
def __init__(self):
pass
class ProviderV1(Provider, ABC):
"""Base class for a Backend Provider."""
version = 1
@deprecate_func(
since=1.1,
additional_msg="The abstract Provider and ProviderV1 classes are deprecated and will be "
"removed in 2.0. You can just remove it as the parent class and a `get_backend` "
"method that returns the backends from `self.backend`.",
)
def get_backend(self, name=None, **kwargs):
"""Return a single backend matching the specified filtering.
Args:
name (str): name of the backend.
**kwargs: dict used for filtering.
Returns:
Backend: a backend matching the filtering.
Raises:
QiskitBackendNotFoundError: if no backend could be found or
more than one backend matches the filtering criteria.
"""
backends = self.backends(name, **kwargs)
if len(backends) > 1:
raise QiskitBackendNotFoundError("More than one backend matches the criteria")
if not backends:
raise QiskitBackendNotFoundError("No backend matches the criteria")
return backends[0]
@abstractmethod
def backends(self, name=None, **kwargs):
"""Return a list of backends matching the specified filtering.
Args:
name (str): name of the backend.
**kwargs: dict used for filtering.
Returns:
list[Backend]: a list of Backends that match the filtering
criteria.
"""
pass
def __eq__(self, other):
"""Equality comparison.
By default, it is assumed that two `Providers` from the same class are
equal. Subclassed providers can override this behavior.
"""
return type(self).__name__ == type(other).__name__
| qiskit/qiskit/providers/provider.py/0 | {
"file_path": "qiskit/qiskit/providers/provider.py",
"repo_id": "qiskit",
"token_count": 1148
} | 189 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""The phase instructions update the modulation phase of pulses played on a channel.
This includes ``SetPhase`` instructions which lock the modulation to a particular phase
at that moment, and ``ShiftPhase`` instructions which increase the existing phase by a
relative amount.
"""
from typing import Optional, Union, Tuple
from qiskit.circuit import ParameterExpression
from qiskit.pulse.channels import PulseChannel
from qiskit.pulse.instructions.instruction import Instruction
from qiskit.pulse.exceptions import PulseError
class ShiftPhase(Instruction):
r"""The shift phase instruction updates the modulation phase of proceeding pulses played on the
same :py:class:`~qiskit.pulse.channels.Channel`. It is a relative increase in phase determined
by the ``phase`` operand.
In particular, a PulseChannel creates pulses of the form
.. math::
Re[\exp(i 2\pi f jdt + \phi) d_j].
The ``ShiftPhase`` instruction causes :math:`\phi` to be increased by the instruction's
``phase`` operand. This will affect all pulses following on the same channel.
The qubit phase is tracked in software, enabling instantaneous, nearly error-free Z-rotations
by using a ShiftPhase to update the frame tracking the qubit state.
"""
def __init__(
self,
phase: Union[complex, ParameterExpression],
channel: PulseChannel,
name: Optional[str] = None,
):
"""Instantiate a shift phase instruction, increasing the output signal phase on ``channel``
by ``phase`` [radians].
Args:
phase: The rotation angle in radians.
channel: The channel this instruction operates on.
name: Display name for this instruction.
"""
super().__init__(operands=(phase, channel), name=name)
def _validate(self):
"""Called after initialization to validate instruction data.
Raises:
PulseError: If the input ``channel`` is not type :class:`PulseChannel`.
"""
if not isinstance(self.channel, PulseChannel):
raise PulseError(f"Expected a pulse channel, got {self.channel} instead.")
@property
def phase(self) -> Union[complex, ParameterExpression]:
"""Return the rotation angle enacted by this instruction in radians."""
return self.operands[0]
@property
def channel(self) -> PulseChannel:
"""Return the :py:class:`~qiskit.pulse.channels.Channel` that this instruction is
scheduled on.
"""
return self.operands[1]
@property
def channels(self) -> Tuple[PulseChannel]:
"""Returns the channels that this schedule uses."""
return (self.channel,)
@property
def duration(self) -> int:
"""Duration of this instruction."""
return 0
class SetPhase(Instruction):
r"""The set phase instruction sets the phase of the proceeding pulses on that channel
to ``phase`` radians.
In particular, a PulseChannel creates pulses of the form
.. math::
Re[\exp(i 2\pi f jdt + \phi) d_j]
The ``SetPhase`` instruction sets :math:`\phi` to the instruction's ``phase`` operand.
"""
def __init__(
self,
phase: Union[complex, ParameterExpression],
channel: PulseChannel,
name: Optional[str] = None,
):
"""Instantiate a set phase instruction, setting the output signal phase on ``channel``
to ``phase`` [radians].
Args:
phase: The rotation angle in radians.
channel: The channel this instruction operates on.
name: Display name for this instruction.
"""
super().__init__(operands=(phase, channel), name=name)
def _validate(self):
"""Called after initialization to validate instruction data.
Raises:
PulseError: If the input ``channel`` is not type :class:`PulseChannel`.
"""
if not isinstance(self.channel, PulseChannel):
raise PulseError(f"Expected a pulse channel, got {self.channel} instead.")
@property
def phase(self) -> Union[complex, ParameterExpression]:
"""Return the rotation angle enacted by this instruction in radians."""
return self.operands[0]
@property
def channel(self) -> PulseChannel:
"""Return the :py:class:`~qiskit.pulse.channels.Channel` that this instruction is
scheduled on.
"""
return self.operands[1]
@property
def channels(self) -> Tuple[PulseChannel]:
"""Returns the channels that this schedule uses."""
return (self.channel,)
@property
def duration(self) -> int:
"""Duration of this instruction."""
return 0
| qiskit/qiskit/pulse/instructions/phase.py/0 | {
"file_path": "qiskit/qiskit/pulse/instructions/phase.py",
"repo_id": "qiskit",
"token_count": 1802
} | 190 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# pylint: disable=cyclic-import
"""
=========
Schedules
=========
.. currentmodule:: qiskit.pulse
Schedules are Pulse programs. They describe instruction sequences for the control hardware.
The Schedule is one of the most fundamental objects to this pulse-level programming module.
A ``Schedule`` is a representation of a *program* in Pulse. Each schedule tracks the time of each
instruction occuring in parallel over multiple signal *channels*.
.. autosummary::
:toctree: ../stubs/
Schedule
ScheduleBlock
"""
from __future__ import annotations
import abc
import copy
import functools
import itertools
import multiprocessing as mp
import sys
import warnings
from collections.abc import Callable, Iterable
from typing import List, Tuple, Union, Dict, Any, Sequence
import numpy as np
import rustworkx as rx
from qiskit.circuit import ParameterVector
from qiskit.circuit.parameter import Parameter
from qiskit.circuit.parameterexpression import ParameterExpression, ParameterValueType
from qiskit.pulse.channels import Channel
from qiskit.pulse.exceptions import PulseError, UnassignedReferenceError
from qiskit.pulse.instructions import Instruction, Reference
from qiskit.pulse.utils import instruction_duration_validation
from qiskit.pulse.reference_manager import ReferenceManager
from qiskit.utils.multiprocessing import is_main_process
from qiskit.utils import deprecate_arg
Interval = Tuple[int, int]
"""An interval type is a tuple of a start time (inclusive) and an end time (exclusive)."""
TimeSlots = Dict[Channel, List[Interval]]
"""List of timeslots occupied by instructions for each channel."""
class Schedule:
"""A quantum program *schedule* with exact time constraints for its instructions, operating
over all input signal *channels* and supporting special syntaxes for building.
Pulse program representation for the original Qiskit Pulse model [1].
Instructions are not allowed to overlap in time
on the same channel. This overlap constraint is immediately
evaluated when a new instruction is added to the ``Schedule`` object.
It is necessary to specify the absolute start time and duration
for each instruction so as to deterministically fix its execution time.
The ``Schedule`` program supports some syntax sugar for easier programming.
- Appending an instruction to the end of a channel
.. code-block:: python
sched = Schedule()
sched += Play(Gaussian(160, 0.1, 40), DriveChannel(0))
- Appending an instruction shifted in time by a given amount
.. code-block:: python
sched = Schedule()
sched += Play(Gaussian(160, 0.1, 40), DriveChannel(0)) << 30
- Merge two schedules
.. code-block:: python
sched1 = Schedule()
sched1 += Play(Gaussian(160, 0.1, 40), DriveChannel(0))
sched2 = Schedule()
sched2 += Play(Gaussian(160, 0.1, 40), DriveChannel(1))
sched2 = sched1 | sched2
A :obj:`.PulseError` is immediately raised when the overlap constraint is violated.
In the schedule representation, we cannot parametrize the duration of instructions.
Thus, we need to create a new schedule object for each duration.
To parametrize an instruction's duration, the :class:`~qiskit.pulse.ScheduleBlock`
representation may be used instead.
References:
[1]: https://arxiv.org/abs/2004.06755
"""
# Prefix to use for auto naming.
prefix = "sched"
# Counter to count instance number.
instances_counter = itertools.count()
def __init__(
self,
*schedules: "ScheduleComponent" | tuple[int, "ScheduleComponent"],
name: str | None = None,
metadata: dict | None = None,
):
"""Create an empty schedule.
Args:
*schedules: Child Schedules of this parent Schedule. May either be passed as
the list of schedules, or a list of ``(start_time, schedule)`` pairs.
name: Name of this schedule. Defaults to an autogenerated string if not provided.
metadata: Arbitrary key value metadata to associate with the schedule. This gets
stored as free-form data in a dict in the
:attr:`~qiskit.pulse.Schedule.metadata` attribute. It will not be directly
used in the schedule.
Raises:
TypeError: if metadata is not a dict.
"""
from qiskit.pulse.parameter_manager import ParameterManager
if name is None:
name = self.prefix + str(next(self.instances_counter))
if sys.platform != "win32" and not is_main_process():
name += f"-{mp.current_process().pid}"
self._name = name
self._parameter_manager = ParameterManager()
if not isinstance(metadata, dict) and metadata is not None:
raise TypeError("Only a dictionary or None is accepted for schedule metadata")
self._metadata = metadata or {}
self._duration = 0
# These attributes are populated by ``_mutable_insert``
self._timeslots: TimeSlots = {}
self._children: list[tuple[int, "ScheduleComponent"]] = []
for sched_pair in schedules:
try:
time, sched = sched_pair
except TypeError:
# recreate as sequence starting at 0.
time, sched = 0, sched_pair
self._mutable_insert(time, sched)
@classmethod
def initialize_from(cls, other_program: Any, name: str | None = None) -> "Schedule":
"""Create new schedule object with metadata of another schedule object.
Args:
other_program: Qiskit program that provides metadata to new object.
name: Name of new schedule. Name of ``schedule`` is used by default.
Returns:
New schedule object with name and metadata.
Raises:
PulseError: When `other_program` does not provide necessary information.
"""
try:
name = name or other_program.name
if other_program.metadata:
metadata = other_program.metadata.copy()
else:
metadata = None
return cls(name=name, metadata=metadata)
except AttributeError as ex:
raise PulseError(
f"{cls.__name__} cannot be initialized from the program data "
f"{other_program.__class__.__name__}."
) from ex
@property
def name(self) -> str:
"""Name of this Schedule"""
return self._name
@property
def metadata(self) -> dict[str, Any]:
"""The user provided metadata associated with the schedule.
User provided ``dict`` of metadata for the schedule.
The metadata contents do not affect the semantics of the program
but are used to influence the execution of the schedule. It is expected
to be passed between all transforms of the schedule and that providers
will associate any schedule metadata with the results it returns from the
execution of that schedule.
"""
return self._metadata
@metadata.setter
def metadata(self, metadata):
"""Update the schedule metadata"""
if not isinstance(metadata, dict) and metadata is not None:
raise TypeError("Only a dictionary or None is accepted for schedule metadata")
self._metadata = metadata or {}
@property
def timeslots(self) -> TimeSlots:
"""Time keeping attribute."""
return self._timeslots
@property
def duration(self) -> int:
"""Duration of this schedule."""
return self._duration
@property
def start_time(self) -> int:
"""Starting time of this schedule."""
return self.ch_start_time(*self.channels)
@property
def stop_time(self) -> int:
"""Stopping time of this schedule."""
return self.duration
@property
def channels(self) -> tuple[Channel, ...]:
"""Returns channels that this schedule uses."""
return tuple(self._timeslots.keys())
@property
def children(self) -> tuple[tuple[int, "ScheduleComponent"], ...]:
"""Return the child schedule components of this ``Schedule`` in the
order they were added to the schedule.
Notes:
Nested schedules are returned as-is. If you want to collect only instructions,
use :py:meth:`~Schedule.instructions` instead.
Returns:
A tuple, where each element is a two-tuple containing the initial
scheduled time of each ``NamedValue`` and the component
itself.
"""
return tuple(self._children)
@property
def instructions(self) -> tuple[tuple[int, Instruction], ...]:
"""Get the time-ordered instructions from self."""
def key(time_inst_pair):
inst = time_inst_pair[1]
return time_inst_pair[0], inst.duration, sorted(chan.name for chan in inst.channels)
return tuple(sorted(self._instructions(), key=key))
@property
def parameters(self) -> set[Parameter]:
"""Parameters which determine the schedule behavior."""
return self._parameter_manager.parameters
def ch_duration(self, *channels: Channel) -> int:
"""Return the time of the end of the last instruction over the supplied channels.
Args:
*channels: Channels within ``self`` to include.
"""
return self.ch_stop_time(*channels)
def ch_start_time(self, *channels: Channel) -> int:
"""Return the time of the start of the first instruction over the supplied channels.
Args:
*channels: Channels within ``self`` to include.
"""
try:
chan_intervals = (self._timeslots[chan] for chan in channels if chan in self._timeslots)
return min(intervals[0][0] for intervals in chan_intervals)
except ValueError:
# If there are no instructions over channels
return 0
def ch_stop_time(self, *channels: Channel) -> int:
"""Return maximum start time over supplied channels.
Args:
*channels: Channels within ``self`` to include.
"""
try:
chan_intervals = (self._timeslots[chan] for chan in channels if chan in self._timeslots)
return max(intervals[-1][1] for intervals in chan_intervals)
except ValueError:
# If there are no instructions over channels
return 0
def _instructions(self, time: int = 0):
"""Iterable for flattening Schedule tree.
Args:
time: Shifted time due to parent.
Yields:
Iterable[Tuple[int, Instruction]]: Tuple containing the time each
:class:`~qiskit.pulse.Instruction`
starts at and the flattened :class:`~qiskit.pulse.Instruction` s.
"""
for insert_time, child_sched in self.children:
yield from child_sched._instructions(time + insert_time)
def shift(self, time: int, name: str | None = None, inplace: bool = False) -> "Schedule":
"""Return a schedule shifted forward by ``time``.
Args:
time: Time to shift by.
name: Name of the new schedule. Defaults to the name of self.
inplace: Perform operation inplace on this schedule. Otherwise
return a new ``Schedule``.
"""
if inplace:
return self._mutable_shift(time)
return self._immutable_shift(time, name=name)
def _immutable_shift(self, time: int, name: str | None = None) -> "Schedule":
"""Return a new schedule shifted forward by `time`.
Args:
time: Time to shift by
name: Name of the new schedule if call was mutable. Defaults to name of self
"""
shift_sched = Schedule.initialize_from(self, name)
shift_sched.insert(time, self, inplace=True)
return shift_sched
def _mutable_shift(self, time: int) -> "Schedule":
"""Return this schedule shifted forward by `time`.
Args:
time: Time to shift by
Raises:
PulseError: if ``time`` is not an integer.
"""
if not isinstance(time, int):
raise PulseError("Schedule start time must be an integer.")
timeslots = {}
for chan, ch_timeslots in self._timeslots.items():
timeslots[chan] = [(ts[0] + time, ts[1] + time) for ts in ch_timeslots]
_check_nonnegative_timeslot(timeslots)
self._duration = self._duration + time
self._timeslots = timeslots
self._children = [(orig_time + time, child) for orig_time, child in self.children]
return self
def insert(
self,
start_time: int,
schedule: "ScheduleComponent",
name: str | None = None,
inplace: bool = False,
) -> "Schedule":
"""Return a new schedule with ``schedule`` inserted into ``self`` at ``start_time``.
Args:
start_time: Time to insert the schedule.
schedule: Schedule to insert.
name: Name of the new schedule. Defaults to the name of self.
inplace: Perform operation inplace on this schedule. Otherwise
return a new ``Schedule``.
"""
if inplace:
return self._mutable_insert(start_time, schedule)
return self._immutable_insert(start_time, schedule, name=name)
def _mutable_insert(self, start_time: int, schedule: "ScheduleComponent") -> "Schedule":
"""Mutably insert `schedule` into `self` at `start_time`.
Args:
start_time: Time to insert the second schedule.
schedule: Schedule to mutably insert.
"""
self._add_timeslots(start_time, schedule)
self._children.append((start_time, schedule))
self._parameter_manager.update_parameter_table(schedule)
return self
def _immutable_insert(
self,
start_time: int,
schedule: "ScheduleComponent",
name: str | None = None,
) -> "Schedule":
"""Return a new schedule with ``schedule`` inserted into ``self`` at ``start_time``.
Args:
start_time: Time to insert the schedule.
schedule: Schedule to insert.
name: Name of the new ``Schedule``. Defaults to name of ``self``.
"""
new_sched = Schedule.initialize_from(self, name)
new_sched._mutable_insert(0, self)
new_sched._mutable_insert(start_time, schedule)
return new_sched
def append(
self, schedule: "ScheduleComponent", name: str | None = None, inplace: bool = False
) -> "Schedule":
r"""Return a new schedule with ``schedule`` inserted at the maximum time over
all channels shared between ``self`` and ``schedule``.
.. math::
t = \textrm{max}(\texttt{x.stop_time} |\texttt{x} \in
\texttt{self.channels} \cap \texttt{schedule.channels})
Args:
schedule: Schedule to be appended.
name: Name of the new ``Schedule``. Defaults to name of ``self``.
inplace: Perform operation inplace on this schedule. Otherwise
return a new ``Schedule``.
"""
common_channels = set(self.channels) & set(schedule.channels)
time = self.ch_stop_time(*common_channels)
return self.insert(time, schedule, name=name, inplace=inplace)
def filter(
self,
*filter_funcs: Callable,
channels: Iterable[Channel] | None = None,
instruction_types: Iterable[abc.ABCMeta] | abc.ABCMeta = None,
time_ranges: Iterable[tuple[int, int]] | None = None,
intervals: Iterable[Interval] | None = None,
check_subroutine: bool = True,
) -> "Schedule":
"""Return a new ``Schedule`` with only the instructions from this ``Schedule`` which pass
though the provided filters; i.e. an instruction will be retained iff every function in
``filter_funcs`` returns ``True``, the instruction occurs on a channel type contained in
``channels``, the instruction type is contained in ``instruction_types``, and the period
over which the instruction operates is *fully* contained in one specified in
``time_ranges`` or ``intervals``.
If no arguments are provided, ``self`` is returned.
Args:
filter_funcs: A list of Callables which take a (int, Union['Schedule', Instruction])
tuple and return a bool.
channels: For example, ``[DriveChannel(0), AcquireChannel(0)]``.
instruction_types: For example, ``[PulseInstruction, AcquireInstruction]``.
time_ranges: For example, ``[(0, 5), (6, 10)]``.
intervals: For example, ``[(0, 5), (6, 10)]``.
check_subroutine: Set `True` to individually filter instructions inside of a subroutine
defined by the :py:class:`~qiskit.pulse.instructions.Call` instruction.
"""
from qiskit.pulse.filters import composite_filter, filter_instructions
filters = composite_filter(channels, instruction_types, time_ranges, intervals)
filters.extend(filter_funcs)
return filter_instructions(
self, filters=filters, negate=False, recurse_subroutines=check_subroutine
)
def exclude(
self,
*filter_funcs: Callable,
channels: Iterable[Channel] | None = None,
instruction_types: Iterable[abc.ABCMeta] | abc.ABCMeta = None,
time_ranges: Iterable[tuple[int, int]] | None = None,
intervals: Iterable[Interval] | None = None,
check_subroutine: bool = True,
) -> "Schedule":
"""Return a ``Schedule`` with only the instructions from this Schedule *failing*
at least one of the provided filters.
This method is the complement of :py:meth:`~Schedule.filter`, so that::
self.filter(args) | self.exclude(args) == self
Args:
filter_funcs: A list of Callables which take a (int, Union['Schedule', Instruction])
tuple and return a bool.
channels: For example, ``[DriveChannel(0), AcquireChannel(0)]``.
instruction_types: For example, ``[PulseInstruction, AcquireInstruction]``.
time_ranges: For example, ``[(0, 5), (6, 10)]``.
intervals: For example, ``[(0, 5), (6, 10)]``.
check_subroutine: Set `True` to individually filter instructions inside of a subroutine
defined by the :py:class:`~qiskit.pulse.instructions.Call` instruction.
"""
from qiskit.pulse.filters import composite_filter, filter_instructions
filters = composite_filter(channels, instruction_types, time_ranges, intervals)
filters.extend(filter_funcs)
return filter_instructions(
self, filters=filters, negate=True, recurse_subroutines=check_subroutine
)
def _add_timeslots(self, time: int, schedule: "ScheduleComponent") -> None:
"""Update all time tracking within this schedule based on the given schedule.
Args:
time: The time to insert the schedule into self.
schedule: The schedule to insert into self.
Raises:
PulseError: If timeslots overlap or an invalid start time is provided.
"""
if not np.issubdtype(type(time), np.integer):
raise PulseError("Schedule start time must be an integer.")
other_timeslots = _get_timeslots(schedule)
self._duration = max(self._duration, time + schedule.duration)
for channel in schedule.channels:
if channel not in self._timeslots:
if time == 0:
self._timeslots[channel] = copy.copy(other_timeslots[channel])
else:
self._timeslots[channel] = [
(i[0] + time, i[1] + time) for i in other_timeslots[channel]
]
continue
for idx, interval in enumerate(other_timeslots[channel]):
if interval[0] + time >= self._timeslots[channel][-1][1]:
# Can append the remaining intervals
self._timeslots[channel].extend(
[(i[0] + time, i[1] + time) for i in other_timeslots[channel][idx:]]
)
break
try:
interval = (interval[0] + time, interval[1] + time)
index = _find_insertion_index(self._timeslots[channel], interval)
self._timeslots[channel].insert(index, interval)
except PulseError as ex:
raise PulseError(
f"Schedule(name='{schedule.name or ''}') cannot be inserted into "
f"Schedule(name='{self.name or ''}') at "
f"time {time} because its instruction on channel {channel} scheduled from time "
f"{interval[0]} to {interval[1]} overlaps with an existing instruction."
) from ex
_check_nonnegative_timeslot(self._timeslots)
def _remove_timeslots(self, time: int, schedule: "ScheduleComponent"):
"""Delete the timeslots if present for the respective schedule component.
Args:
time: The time to remove the timeslots for the ``schedule`` component.
schedule: The schedule to insert into self.
Raises:
PulseError: If timeslots overlap or an invalid start time is provided.
"""
if not isinstance(time, int):
raise PulseError("Schedule start time must be an integer.")
for channel in schedule.channels:
if channel not in self._timeslots:
raise PulseError(f"The channel {channel} is not present in the schedule")
channel_timeslots = self._timeslots[channel]
other_timeslots = _get_timeslots(schedule)
for interval in other_timeslots[channel]:
if channel_timeslots:
interval = (interval[0] + time, interval[1] + time)
index = _interval_index(channel_timeslots, interval)
if channel_timeslots[index] == interval:
channel_timeslots.pop(index)
continue
raise PulseError(
f"Cannot find interval ({interval[0]}, {interval[1]}) to remove from "
f"channel {channel} in Schedule(name='{schedule.name}')."
)
if not channel_timeslots:
self._timeslots.pop(channel)
def _replace_timeslots(self, time: int, old: "ScheduleComponent", new: "ScheduleComponent"):
"""Replace the timeslots of ``old`` if present with the timeslots of ``new``.
Args:
time: The time to remove the timeslots for the ``schedule`` component.
old: Instruction to replace.
new: Instruction to replace with.
"""
self._remove_timeslots(time, old)
self._add_timeslots(time, new)
def _renew_timeslots(self):
"""Regenerate timeslots based on current instructions."""
self._timeslots.clear()
for t0, inst in self.instructions:
self._add_timeslots(t0, inst)
def replace(
self,
old: "ScheduleComponent",
new: "ScheduleComponent",
inplace: bool = False,
) -> "Schedule":
"""Return a ``Schedule`` with the ``old`` instruction replaced with a ``new``
instruction.
The replacement matching is based on an instruction equality check.
.. code-block::
from qiskit import pulse
d0 = pulse.DriveChannel(0)
sched = pulse.Schedule()
old = pulse.Play(pulse.Constant(100, 1.0), d0)
new = pulse.Play(pulse.Constant(100, 0.1), d0)
sched += old
sched = sched.replace(old, new)
assert sched == pulse.Schedule(new)
Only matches at the top-level of the schedule tree. If you wish to
perform this replacement over all instructions in the schedule tree.
Flatten the schedule prior to running::
.. code-block::
sched = pulse.Schedule()
sched += pulse.Schedule(old)
sched = sched.flatten()
sched = sched.replace(old, new)
assert sched == pulse.Schedule(new)
Args:
old: Instruction to replace.
new: Instruction to replace with.
inplace: Replace instruction by mutably modifying this ``Schedule``.
Returns:
The modified schedule with ``old`` replaced by ``new``.
Raises:
PulseError: If the ``Schedule`` after replacements will has a timing overlap.
"""
from qiskit.pulse.parameter_manager import ParameterManager
new_children = []
new_parameters = ParameterManager()
for time, child in self.children:
if child == old:
new_children.append((time, new))
new_parameters.update_parameter_table(new)
else:
new_children.append((time, child))
new_parameters.update_parameter_table(child)
if inplace:
self._children = new_children
self._parameter_manager = new_parameters
self._renew_timeslots()
return self
else:
try:
new_sched = Schedule.initialize_from(self)
for time, inst in new_children:
new_sched.insert(time, inst, inplace=True)
return new_sched
except PulseError as err:
raise PulseError(
f"Replacement of {old} with {new} results in overlapping instructions."
) from err
def is_parameterized(self) -> bool:
"""Return True iff the instruction is parameterized."""
return self._parameter_manager.is_parameterized()
def assign_parameters(
self,
value_dict: dict[
ParameterExpression | ParameterVector | str,
ParameterValueType | Sequence[ParameterValueType],
],
inplace: bool = True,
) -> "Schedule":
"""Assign the parameters in this schedule according to the input.
Args:
value_dict: A mapping from parameters or parameter names (parameter vector
or parameter vector name) to either numeric values (list of numeric values)
or another parameter expression (list of parameter expressions).
inplace: Set ``True`` to override this instance with new parameter.
Returns:
Schedule with updated parameters.
"""
if not inplace:
new_schedule = copy.deepcopy(self)
return new_schedule.assign_parameters(value_dict, inplace=True)
return self._parameter_manager.assign_parameters(pulse_program=self, value_dict=value_dict)
def get_parameters(self, parameter_name: str) -> list[Parameter]:
"""Get parameter object bound to this schedule by string name.
Because different ``Parameter`` objects can have the same name,
this method returns a list of ``Parameter`` s for the provided name.
Args:
parameter_name: Name of parameter.
Returns:
Parameter objects that have corresponding name.
"""
return self._parameter_manager.get_parameters(parameter_name)
def __len__(self) -> int:
"""Return number of instructions in the schedule."""
return len(self.instructions)
def __add__(self, other: "ScheduleComponent") -> "Schedule":
"""Return a new schedule with ``other`` inserted within ``self`` at ``start_time``."""
return self.append(other)
def __or__(self, other: "ScheduleComponent") -> "Schedule":
"""Return a new schedule which is the union of `self` and `other`."""
return self.insert(0, other)
def __lshift__(self, time: int) -> "Schedule":
"""Return a new schedule which is shifted forward by ``time``."""
return self.shift(time)
def __eq__(self, other: object) -> bool:
"""Test if two Schedule are equal.
Equality is checked by verifying there is an equal instruction at every time
in ``other`` for every instruction in this ``Schedule``.
.. warning::
This does not check for logical equivalency. Ie.,
```python
>>> Delay(10, DriveChannel(0)) + Delay(10, DriveChannel(0))
== Delay(20, DriveChannel(0))
False
```
"""
# 0. type check, we consider Instruction is a subtype of schedule
if not isinstance(other, (type(self), Instruction)):
return False
# 1. channel check
if set(self.channels) != set(other.channels):
return False
# 2. size check
if len(self.instructions) != len(other.instructions):
return False
# 3. instruction check
return all(
self_inst == other_inst
for self_inst, other_inst in zip(self.instructions, other.instructions)
)
def __repr__(self) -> str:
name = format(self._name) if self._name else ""
instructions = ", ".join([repr(instr) for instr in self.instructions[:50]])
if len(self.instructions) > 25:
instructions += ", ..."
return f'{self.__class__.__name__}({instructions}, name="{name}")'
def _require_schedule_conversion(function: Callable) -> Callable:
"""A method decorator to convert schedule block to pulse schedule.
This conversation is performed for backward compatibility only if all durations are assigned.
"""
@functools.wraps(function)
def wrapper(self, *args, **kwargs):
from qiskit.pulse.transforms import block_to_schedule
return function(block_to_schedule(self), *args, **kwargs)
return wrapper
class ScheduleBlock:
"""Time-ordered sequence of instructions with alignment context.
:class:`.ScheduleBlock` supports lazy scheduling of context instructions,
i.e. their timeslots is always generated at runtime.
This indicates we can parametrize instruction durations as well as
other parameters. In contrast to :class:`.Schedule` being somewhat static,
:class:`.ScheduleBlock` is a dynamic representation of a pulse program.
.. rubric:: Pulse Builder
The Qiskit pulse builder is a domain specific language that is developed on top of
the schedule block. Use of the builder syntax will improve the workflow of
pulse programming. See :ref:`pulse_builder` for a user guide.
.. rubric:: Alignment contexts
A schedule block is always relatively scheduled.
Instead of taking individual instructions with absolute execution time ``t0``,
the schedule block defines a context of scheduling and instructions
under the same context are scheduled in the same manner (alignment).
Several contexts are available in :ref:`pulse_alignments`.
A schedule block is instantiated with one of these alignment contexts.
The default context is :class:`AlignLeft`, for which all instructions are left-justified,
in other words, meaning they use as-soon-as-possible scheduling.
If you need an absolute-time interval in between instructions, you can explicitly
insert :class:`~qiskit.pulse.instructions.Delay` instructions.
.. rubric:: Nested blocks
A schedule block can contain other nested blocks with different alignment contexts.
This enables advanced scheduling, where a subset of instructions is
locally scheduled in a different manner.
Note that a :class:`.Schedule` instance cannot be directly added to a schedule block.
To add a :class:`.Schedule` instance, wrap it in a :class:`.Call` instruction.
This is implicitly performed when a schedule is added through the :ref:`pulse_builder`.
.. rubric:: Unsupported operations
Because the schedule block representation lacks timeslots, it cannot
perform particular :class:`.Schedule` operations such as :meth:`insert` or :meth:`shift` that
require instruction start time ``t0``.
In addition, :meth:`exclude` and :meth:`filter` methods are not supported
because these operations may identify the target instruction with ``t0``.
Except for these operations, :class:`.ScheduleBlock` provides full compatibility
with :class:`.Schedule`.
.. rubric:: Subroutine
The timeslots-free representation offers much greater flexibility for writing pulse programs.
Because :class:`.ScheduleBlock` only cares about the ordering of the child blocks
we can add an undefined pulse sequence as a subroutine of the main program.
If your program contains the same sequence multiple times, this representation may
reduce the memory footprint required by the program construction.
Such a subroutine is realized by the special compiler directive
:class:`~qiskit.pulse.instructions.Reference` that is defined by
a unique set of reference key strings to the subroutine.
The (executable) subroutine is separately stored in the main program.
Appended reference directives are resolved when the main program is executed.
Subroutines must be assigned through :meth:`assign_references` before execution.
One way to reference a subroutine in a schedule is to use the pulse
builder's :func:`~qiskit.pulse.builder.reference` function to declare an
unassigned reference. In this example, the program is called with the
reference key "grand_child". You can call a subroutine without specifying
a substantial program.
.. code-block::
from qiskit import pulse
from qiskit.circuit.parameter import Parameter
amp1 = Parameter("amp1")
amp2 = Parameter("amp2")
with pulse.build() as sched_inner:
pulse.play(pulse.Constant(100, amp1), pulse.DriveChannel(0))
with pulse.build() as sched_outer:
with pulse.align_right():
pulse.reference("grand_child")
pulse.play(pulse.Constant(200, amp2), pulse.DriveChannel(0))
Now you assign the inner pulse program to this reference.
.. code-block::
sched_outer.assign_references({("grand_child", ): sched_inner})
print(sched_outer.parameters)
.. parsed-literal::
{Parameter(amp1), Parameter(amp2)}
The outer program now has the parameter ``amp2`` from the inner program,
indicating that the inner program's data has been made available to the
outer program.
The program calling the "grand_child" has a reference program description
which is accessed through :attr:`ScheduleBlock.references`.
.. code-block::
print(sched_outer.references)
.. parsed-literal::
ReferenceManager:
- ('grand_child',): ScheduleBlock(Play(Constant(duration=100, amp=amp1,...
Finally, you may want to call this program from another program.
Here we try a different approach to define subroutine. Namely, we call
a subroutine from the root program with the actual program ``sched2``.
.. code-block::
amp3 = Parameter("amp3")
with pulse.build() as main:
pulse.play(pulse.Constant(300, amp3), pulse.DriveChannel(0))
pulse.call(sched_outer, name="child")
print(main.parameters)
.. parsed-literal::
{Parameter(amp1), Parameter(amp2), Parameter(amp3}
This implicitly creates a reference named "child" within
the root program and assigns ``sched_outer`` to it.
Note that the root program is only aware of its direct references.
.. code-block::
print(main.references)
.. parsed-literal::
ReferenceManager:
- ('child',): ScheduleBlock(ScheduleBlock(ScheduleBlock(Play(Con...
As you can see the main program cannot directly assign a subroutine to the "grand_child" because
this subroutine is not called within the root program, i.e. it is indirectly called by "child".
However, the returned :class:`.ReferenceManager` is a dict-like object, and you can still
reach to "grand_child" via the "child" program with the following chained dict access.
.. code-block::
main.references[("child", )].references[("grand_child", )]
Note that :attr:`ScheduleBlock.parameters` still collects all parameters
also from the subroutine once it's assigned.
"""
__slots__ = (
"_parent",
"_name",
"_reference_manager",
"_parameter_manager",
"_alignment_context",
"_blocks",
"_metadata",
)
# Prefix to use for auto naming.
prefix = "block"
# Counter to count instance number.
instances_counter = itertools.count()
def __init__(
self, name: str | None = None, metadata: dict | None = None, alignment_context=None
):
"""Create an empty schedule block.
Args:
name: Name of this schedule. Defaults to an autogenerated string if not provided.
metadata: Arbitrary key value metadata to associate with the schedule. This gets
stored as free-form data in a dict in the
:attr:`~qiskit.pulse.ScheduleBlock.metadata` attribute. It will not be directly
used in the schedule.
alignment_context (AlignmentKind): ``AlignmentKind`` instance that manages
scheduling of instructions in this block.
Raises:
TypeError: if metadata is not a dict.
"""
from qiskit.pulse.parameter_manager import ParameterManager
from qiskit.pulse.transforms import AlignLeft
if name is None:
name = self.prefix + str(next(self.instances_counter))
if sys.platform != "win32" and not is_main_process():
name += f"-{mp.current_process().pid}"
# This points to the parent schedule object in the current scope.
# Note that schedule block can be nested without referencing, e.g. .append(child_block),
# and parent=None indicates the root program of the current scope.
# The nested schedule block objects should not have _reference_manager and
# should refer to the one of the root program.
# This also means referenced program should be assigned to the root program, not to child.
self._parent: ScheduleBlock | None = None
self._name = name
self._parameter_manager = ParameterManager()
self._reference_manager = ReferenceManager()
self._alignment_context = alignment_context or AlignLeft()
self._blocks: list["BlockComponent"] = []
# get parameters from context
self._parameter_manager.update_parameter_table(self._alignment_context)
if not isinstance(metadata, dict) and metadata is not None:
raise TypeError("Only a dictionary or None is accepted for schedule metadata")
self._metadata = metadata or {}
@classmethod
def initialize_from(cls, other_program: Any, name: str | None = None) -> "ScheduleBlock":
"""Create new schedule object with metadata of another schedule object.
Args:
other_program: Qiskit program that provides metadata to new object.
name: Name of new schedule. Name of ``block`` is used by default.
Returns:
New block object with name and metadata.
Raises:
PulseError: When ``other_program`` does not provide necessary information.
"""
try:
name = name or other_program.name
if other_program.metadata:
metadata = other_program.metadata.copy()
else:
metadata = None
try:
alignment_context = other_program.alignment_context
except AttributeError:
alignment_context = None
return cls(name=name, metadata=metadata, alignment_context=alignment_context)
except AttributeError as ex:
raise PulseError(
f"{cls.__name__} cannot be initialized from the program data "
f"{other_program.__class__.__name__}."
) from ex
@property
def name(self) -> str:
"""Return name of this schedule"""
return self._name
@property
def metadata(self) -> dict[str, Any]:
"""The user provided metadata associated with the schedule.
User provided ``dict`` of metadata for the schedule.
The metadata contents do not affect the semantics of the program
but are used to influence the execution of the schedule. It is expected
to be passed between all transforms of the schedule and that providers
will associate any schedule metadata with the results it returns from the
execution of that schedule.
"""
return self._metadata
@metadata.setter
def metadata(self, metadata):
"""Update the schedule metadata"""
if not isinstance(metadata, dict) and metadata is not None:
raise TypeError("Only a dictionary or None is accepted for schedule metadata")
self._metadata = metadata or {}
@property
def alignment_context(self):
"""Return alignment instance that allocates block component to generate schedule."""
return self._alignment_context
def is_schedulable(self) -> bool:
"""Return ``True`` if all durations are assigned."""
# check context assignment
for context_param in self._alignment_context._context_params:
if isinstance(context_param, ParameterExpression):
return False
# check duration assignment
for elm in self.blocks:
if isinstance(elm, ScheduleBlock):
if not elm.is_schedulable():
return False
else:
try:
if not isinstance(elm.duration, int):
return False
except UnassignedReferenceError:
return False
return True
@property
@_require_schedule_conversion
def duration(self) -> int:
"""Duration of this schedule block."""
return self.duration
@property
def channels(self) -> tuple[Channel, ...]:
"""Returns channels that this schedule block uses."""
chans: set[Channel] = set()
for elm in self.blocks:
if isinstance(elm, Reference):
raise UnassignedReferenceError(
f"This schedule contains unassigned reference {elm.ref_keys} "
"and channels are ambiguous. Please assign the subroutine first."
)
chans = chans | set(elm.channels)
return tuple(chans)
@property
@_require_schedule_conversion
def instructions(self) -> tuple[tuple[int, Instruction]]:
"""Get the time-ordered instructions from self."""
return self.instructions
@property
def blocks(self) -> tuple["BlockComponent", ...]:
"""Get the block elements added to self.
.. note::
The sequence of elements is returned in order of addition. Because the first element is
schedule first, e.g. FIFO, the returned sequence is roughly time-ordered.
However, in the parallel alignment context, especially in
the as-late-as-possible scheduling, or :class:`.AlignRight` context,
the actual timing of when the instructions are issued is unknown until
the :class:`.ScheduleBlock` is scheduled and converted into a :class:`.Schedule`.
"""
blocks = []
for elm in self._blocks:
if isinstance(elm, Reference):
elm = self.references.get(elm.ref_keys, None) or elm
blocks.append(elm)
return tuple(blocks)
@property
def parameters(self) -> set[Parameter]:
"""Return unassigned parameters with raw names."""
# Need new object not to mutate parameter_manager.parameters
out_params = set()
out_params |= self._parameter_manager.parameters
for subroutine in self.references.values():
if subroutine is None:
continue
out_params |= subroutine.parameters
return out_params
@property
def references(self) -> ReferenceManager:
"""Return a reference manager of the current scope."""
if self._parent is not None:
return self._parent.references
return self._reference_manager
@_require_schedule_conversion
def ch_duration(self, *channels: Channel) -> int:
"""Return the time of the end of the last instruction over the supplied channels.
Args:
*channels: Channels within ``self`` to include.
"""
return self.ch_duration(*channels)
def append(
self, block: "BlockComponent", name: str | None = None, inplace: bool = True
) -> "ScheduleBlock":
"""Return a new schedule block with ``block`` appended to the context block.
The execution time is automatically assigned when the block is converted into schedule.
Args:
block: ScheduleBlock to be appended.
name: Name of the new ``Schedule``. Defaults to name of ``self``.
inplace: Perform operation inplace on this schedule. Otherwise,
return a new ``Schedule``.
Returns:
Schedule block with appended schedule.
Raises:
PulseError: When invalid schedule type is specified.
"""
if not isinstance(block, (ScheduleBlock, Instruction)):
raise PulseError(
f"Appended `schedule` {block.__class__.__name__} is invalid type. "
"Only `Instruction` and `ScheduleBlock` can be accepted."
)
if not inplace:
schedule = copy.deepcopy(self)
schedule._name = name or self.name
schedule.append(block, inplace=True)
return schedule
if isinstance(block, Reference) and block.ref_keys not in self.references:
self.references[block.ref_keys] = None
elif isinstance(block, ScheduleBlock):
block = copy.deepcopy(block)
# Expose subroutines to the current main scope.
# Note that this 'block' is not called.
# The block is just directly appended to the current scope.
if block.is_referenced():
if block._parent is not None:
# This is an edge case:
# If this is not a parent, block.references points to the parent's reference
# where subroutine not referred within the 'block' may exist.
# Move only references existing in the 'block'.
# See 'test.python.pulse.test_reference.TestReference.test_appending_child_block'
for ref in _get_references(block._blocks):
self.references[ref.ref_keys] = block.references[ref.ref_keys]
else:
# Avoid using dict.update and explicitly call __set_item__ for validation.
# Reference manager of appended block is cleared because of data reduction.
for ref_keys, ref in block._reference_manager.items():
self.references[ref_keys] = ref
block._reference_manager.clear()
# Now switch the parent because block is appended to self.
block._parent = self
self._blocks.append(block)
self._parameter_manager.update_parameter_table(block)
return self
def filter(
self,
*filter_funcs: Callable[..., bool],
channels: Iterable[Channel] | None = None,
instruction_types: Iterable[abc.ABCMeta] | abc.ABCMeta = None,
check_subroutine: bool = True,
):
"""Return a new ``ScheduleBlock`` with only the instructions from this ``ScheduleBlock``
which pass though the provided filters; i.e. an instruction will be retained if
every function in ``filter_funcs`` returns ``True``, the instruction occurs on
a channel type contained in ``channels``, and the instruction type is contained
in ``instruction_types``.
.. warning::
Because ``ScheduleBlock`` is not aware of the execution time of
the context instructions, filtering out some instructions may
change the execution time of the remaining instructions.
If no arguments are provided, ``self`` is returned.
Args:
filter_funcs: A list of Callables which take a ``Instruction`` and return a bool.
channels: For example, ``[DriveChannel(0), AcquireChannel(0)]``.
instruction_types: For example, ``[PulseInstruction, AcquireInstruction]``.
check_subroutine: Set `True` to individually filter instructions inside a subroutine
defined by the :py:class:`~qiskit.pulse.instructions.Call` instruction.
Returns:
``ScheduleBlock`` consisting of instructions that matches with filtering condition.
"""
from qiskit.pulse.filters import composite_filter, filter_instructions
filters = composite_filter(channels, instruction_types)
filters.extend(filter_funcs)
return filter_instructions(
self, filters=filters, negate=False, recurse_subroutines=check_subroutine
)
def exclude(
self,
*filter_funcs: Callable[..., bool],
channels: Iterable[Channel] | None = None,
instruction_types: Iterable[abc.ABCMeta] | abc.ABCMeta = None,
check_subroutine: bool = True,
):
"""Return a new ``ScheduleBlock`` with only the instructions from this ``ScheduleBlock``
*failing* at least one of the provided filters.
This method is the complement of :py:meth:`~ScheduleBlock.filter`, so that::
self.filter(args) + self.exclude(args) == self in terms of instructions included.
.. warning::
Because ``ScheduleBlock`` is not aware of the execution time of
the context instructions, excluding some instructions may
change the execution time of the remaining instructions.
Args:
filter_funcs: A list of Callables which take a ``Instruction`` and return a bool.
channels: For example, ``[DriveChannel(0), AcquireChannel(0)]``.
instruction_types: For example, ``[PulseInstruction, AcquireInstruction]``.
check_subroutine: Set `True` to individually filter instructions inside of a subroutine
defined by the :py:class:`~qiskit.pulse.instructions.Call` instruction.
Returns:
``ScheduleBlock`` consisting of instructions that do not match with
at least one of filtering conditions.
"""
from qiskit.pulse.filters import composite_filter, filter_instructions
filters = composite_filter(channels, instruction_types)
filters.extend(filter_funcs)
return filter_instructions(
self, filters=filters, negate=True, recurse_subroutines=check_subroutine
)
def replace(
self,
old: "BlockComponent",
new: "BlockComponent",
inplace: bool = True,
) -> "ScheduleBlock":
"""Return a ``ScheduleBlock`` with the ``old`` component replaced with a ``new``
component.
Args:
old: Schedule block component to replace.
new: Schedule block component to replace with.
inplace: Replace instruction by mutably modifying this ``ScheduleBlock``.
Returns:
The modified schedule block with ``old`` replaced by ``new``.
"""
if not inplace:
schedule = copy.deepcopy(self)
return schedule.replace(old, new, inplace=True)
if old not in self._blocks:
# Avoid unnecessary update of reference and parameter manager
return self
# Temporarily copies references
all_references = ReferenceManager()
if isinstance(new, ScheduleBlock):
new = copy.deepcopy(new)
all_references.update(new.references)
new._reference_manager.clear()
new._parent = self
for ref_key, subroutine in self.references.items():
if ref_key in all_references:
warnings.warn(
f"Reference {ref_key} conflicts with substituted program {new.name}. "
"Existing reference has been replaced with new reference.",
UserWarning,
)
continue
all_references[ref_key] = subroutine
# Regenerate parameter table by regenerating elements.
# Note that removal of parameters in old is not sufficient,
# because corresponding parameters might be also used in another block element.
self._parameter_manager.clear()
self._parameter_manager.update_parameter_table(self._alignment_context)
new_elms = []
for elm in self._blocks:
if elm == old:
elm = new
self._parameter_manager.update_parameter_table(elm)
new_elms.append(elm)
self._blocks = new_elms
# Regenerate reference table
# Note that reference is attached to the outer schedule if nested.
# Thus, this investigates all references within the scope.
self.references.clear()
root = self
while root._parent is not None:
root = root._parent
for ref in _get_references(root._blocks):
self.references[ref.ref_keys] = all_references[ref.ref_keys]
return self
def is_parameterized(self) -> bool:
"""Return True iff the instruction is parameterized."""
return any(self.parameters)
def is_referenced(self) -> bool:
"""Return True iff the current schedule block contains reference to subroutine."""
return len(self.references) > 0
def assign_parameters(
self,
value_dict: dict[
ParameterExpression | ParameterVector | str,
ParameterValueType | Sequence[ParameterValueType],
],
inplace: bool = True,
) -> "ScheduleBlock":
"""Assign the parameters in this schedule according to the input.
Args:
value_dict: A mapping from parameters or parameter names (parameter vector
or parameter vector name) to either numeric values (list of numeric values)
or another parameter expression (list of parameter expressions).
inplace: Set ``True`` to override this instance with new parameter.
Returns:
Schedule with updated parameters.
Raises:
PulseError: When the block is nested into another block.
"""
if not inplace:
new_schedule = copy.deepcopy(self)
return new_schedule.assign_parameters(value_dict, inplace=True)
# Update parameters in the current scope
self._parameter_manager.assign_parameters(pulse_program=self, value_dict=value_dict)
for subroutine in self._reference_manager.values():
# Also assigning parameters to the references associated with self.
# Note that references are always stored in the root program.
# So calling assign_parameters from nested block doesn't update references.
if subroutine is None:
continue
subroutine.assign_parameters(value_dict=value_dict, inplace=True)
return self
def assign_references(
self,
subroutine_dict: dict[str | tuple[str, ...], "ScheduleBlock"],
inplace: bool = True,
) -> "ScheduleBlock":
"""Assign schedules to references.
It is only capable of assigning a schedule block to immediate references
which are directly referred within the current scope.
Let's see following example:
.. code-block:: python
from qiskit import pulse
with pulse.build() as subroutine:
pulse.delay(10, pulse.DriveChannel(0))
with pulse.build() as sub_prog:
pulse.reference("A")
with pulse.build() as main_prog:
pulse.reference("B")
In above example, the ``main_prog`` can refer to the subroutine "root::B" and the
reference of "B" to program "A", i.e., "B::A", is not defined in the root namespace.
This prevents breaking the reference "root::B::A" by the assignment of "root::B".
For example, if a user could indirectly assign "root::B::A" from the root program,
one can later assign another program to "root::B" that doesn't contain "A" within it.
In this situation, a reference "root::B::A" would still live in
the reference manager of the root.
However, the subroutine "root::B::A" would no longer be used in the actual pulse program.
To assign subroutine "A" to ``nested_prog`` as a nested subprogram of ``main_prog``,
you must first assign "A" of the ``sub_prog``,
and then assign the ``sub_prog`` to the ``main_prog``.
.. code-block:: python
sub_prog.assign_references({("A", ): nested_prog}, inplace=True)
main_prog.assign_references({("B", ): sub_prog}, inplace=True)
Alternatively, you can also write
.. code-block:: python
main_prog.assign_references({("B", ): sub_prog}, inplace=True)
main_prog.references[("B", )].assign_references({"A": nested_prog}, inplace=True)
Here :attr:`.references` returns a dict-like object, and you can
mutably update the nested reference of the particular subroutine.
.. note::
Assigned programs are deep-copied to prevent an unexpected update.
Args:
subroutine_dict: A mapping from reference key to schedule block of the subroutine.
inplace: Set ``True`` to override this instance with new subroutine.
Returns:
Schedule block with assigned subroutine.
Raises:
PulseError: When reference key is not defined in the current scope.
"""
if not inplace:
new_schedule = copy.deepcopy(self)
return new_schedule.assign_references(subroutine_dict, inplace=True)
for key, subroutine in subroutine_dict.items():
if key not in self.references:
unassigned_keys = ", ".join(map(repr, self.references.unassigned()))
raise PulseError(
f"Reference instruction with {key} doesn't exist "
f"in the current scope: {unassigned_keys}"
)
self.references[key] = copy.deepcopy(subroutine)
return self
def get_parameters(self, parameter_name: str) -> list[Parameter]:
"""Get parameter object bound to this schedule by string name.
Note that we can define different parameter objects with the same name,
because these different objects are identified by their unique uuid.
For example,
.. code-block:: python
from qiskit import pulse, circuit
amp1 = circuit.Parameter("amp")
amp2 = circuit.Parameter("amp")
with pulse.build() as sub_prog:
pulse.play(pulse.Constant(100, amp1), pulse.DriveChannel(0))
with pulse.build() as main_prog:
pulse.call(sub_prog, name="sub")
pulse.play(pulse.Constant(100, amp2), pulse.DriveChannel(0))
main_prog.get_parameters("amp")
This returns a list of two parameters ``amp1`` and ``amp2``.
Args:
parameter_name: Name of parameter.
Returns:
Parameter objects that have corresponding name.
"""
matched = [p for p in self.parameters if p.name == parameter_name]
return matched
def __len__(self) -> int:
"""Return number of instructions in the schedule."""
return len(self.blocks)
def __eq__(self, other: object) -> bool:
"""Test if two ScheduleBlocks are equal.
Equality is checked by verifying there is an equal instruction at every time
in ``other`` for every instruction in this ``ScheduleBlock``. This check is
performed by converting the instruction representation into directed acyclic graph,
in which execution order of every instruction is evaluated correctly across all channels.
Also ``self`` and ``other`` should have the same alignment context.
.. warning::
This does not check for logical equivalency. Ie.,
```python
>>> Delay(10, DriveChannel(0)) + Delay(10, DriveChannel(0))
== Delay(20, DriveChannel(0))
False
```
"""
# 0. type check
if not isinstance(other, type(self)):
return False
# 1. transformation check
if self.alignment_context != other.alignment_context:
return False
# 2. size check
if len(self) != len(other):
return False
# 3. instruction check with alignment
from qiskit.pulse.transforms.dag import block_to_dag as dag
if not rx.is_isomorphic_node_match(dag(self), dag(other), lambda x, y: x == y):
return False
return True
def __repr__(self) -> str:
name = format(self._name) if self._name else ""
blocks = ", ".join([repr(instr) for instr in self.blocks[:50]])
if len(self.blocks) > 25:
blocks += ", ..."
return (
f'{self.__class__.__name__}({blocks}, name="{name}",'
f" transform={repr(self.alignment_context)})"
)
def __add__(self, other: "BlockComponent") -> "ScheduleBlock":
"""Return a new schedule with ``other`` inserted within ``self`` at ``start_time``."""
return self.append(other)
def _common_method(*classes):
"""A function decorator to attach the function to specified classes as a method.
.. note:: For developer: A method attached through this decorator may hurt readability
of the codebase, because the method may not be detected by a code editor.
Thus, this decorator should be used to a limited extent, i.e. huge helper method.
By using this decorator wisely, we can reduce code maintenance overhead without
losing readability of the codebase.
"""
def decorator(method):
@functools.wraps(method)
def wrapper(*args, **kwargs):
return method(*args, **kwargs)
for cls in classes:
setattr(cls, method.__name__, wrapper)
return method
return decorator
@deprecate_arg("show_barriers", new_alias="plot_barriers", since="1.1.0", pending=True)
@_common_method(Schedule, ScheduleBlock)
def draw(
self,
style: dict[str, Any] | None = None,
backend=None, # importing backend causes cyclic import
time_range: tuple[int, int] | None = None,
time_unit: str = "dt",
disable_channels: list[Channel] | None = None,
show_snapshot: bool = True,
show_framechange: bool = True,
show_waveform_info: bool = True,
plot_barrier: bool = True,
plotter: str = "mpl2d",
axis: Any | None = None,
show_barrier: bool = True,
):
"""Plot the schedule.
Args:
style: Stylesheet options. This can be dictionary or preset stylesheet classes. See
:py:class:`~qiskit.visualization.pulse_v2.stylesheets.IQXStandard`,
:py:class:`~qiskit.visualization.pulse_v2.stylesheets.IQXSimple`, and
:py:class:`~qiskit.visualization.pulse_v2.stylesheets.IQXDebugging` for details of
preset stylesheets.
backend (Optional[BaseBackend]): Backend object to play the input pulse program.
If provided, the plotter may use to make the visualization hardware aware.
time_range: Set horizontal axis limit. Tuple ``(tmin, tmax)``.
time_unit: The unit of specified time range either ``dt`` or ``ns``.
The unit of `ns` is available only when ``backend`` object is provided.
disable_channels: A control property to show specific pulse channel.
Pulse channel instances provided as a list are not shown in the output image.
show_snapshot: Show snapshot instructions.
show_framechange: Show frame change instructions. The frame change represents
instructions that modulate phase or frequency of pulse channels.
show_waveform_info: Show additional information about waveforms such as their name.
plot_barrier: Show barrier lines.
plotter: Name of plotter API to generate an output image.
One of following APIs should be specified::
mpl2d: Matplotlib API for 2D image generation.
Matplotlib API to generate 2D image. Charts are placed along y axis with
vertical offset. This API takes matplotlib.axes.Axes as ``axis`` input.
``axis`` and ``style`` kwargs may depend on the plotter.
axis: Arbitrary object passed to the plotter. If this object is provided,
the plotters use a given ``axis`` instead of internally initializing
a figure object. This object format depends on the plotter.
See plotter argument for details.
show_barrier: DEPRECATED. Show barrier lines.
Returns:
Visualization output data.
The returned data type depends on the ``plotter``.
If matplotlib family is specified, this will be a ``matplotlib.pyplot.Figure`` data.
"""
# pylint: disable=cyclic-import
from qiskit.visualization import pulse_drawer
del show_barrier
return pulse_drawer(
program=self,
style=style,
backend=backend,
time_range=time_range,
time_unit=time_unit,
disable_channels=disable_channels,
show_snapshot=show_snapshot,
show_framechange=show_framechange,
show_waveform_info=show_waveform_info,
plot_barrier=plot_barrier,
plotter=plotter,
axis=axis,
)
def _interval_index(intervals: list[Interval], interval: Interval) -> int:
"""Find the index of an interval.
Args:
intervals: A sorted list of non-overlapping Intervals.
interval: The interval for which the index into intervals will be found.
Returns:
The index of the interval.
Raises:
PulseError: If the interval does not exist.
"""
index = _locate_interval_index(intervals, interval)
found_interval = intervals[index]
if found_interval != interval:
raise PulseError(f"The interval: {interval} does not exist in intervals: {intervals}")
return index
def _locate_interval_index(intervals: list[Interval], interval: Interval, index: int = 0) -> int:
"""Using binary search on start times, find an interval.
Args:
intervals: A sorted list of non-overlapping Intervals.
interval: The interval for which the index into intervals will be found.
index: A running tally of the index, for recursion. The user should not pass a value.
Returns:
The index into intervals that new_interval would be inserted to maintain
a sorted list of intervals.
"""
if not intervals or len(intervals) == 1:
return index
mid_idx = len(intervals) // 2
mid = intervals[mid_idx]
if interval[1] <= mid[0] and (interval != mid):
return _locate_interval_index(intervals[:mid_idx], interval, index=index)
else:
return _locate_interval_index(intervals[mid_idx:], interval, index=index + mid_idx)
def _find_insertion_index(intervals: list[Interval], new_interval: Interval) -> int:
"""Using binary search on start times, return the index into `intervals` where the new interval
belongs, or raise an error if the new interval overlaps with any existing ones.
Args:
intervals: A sorted list of non-overlapping Intervals.
new_interval: The interval for which the index into intervals will be found.
Returns:
The index into intervals that new_interval should be inserted to maintain a sorted list
of intervals.
Raises:
PulseError: If new_interval overlaps with the given intervals.
"""
index = _locate_interval_index(intervals, new_interval)
if index < len(intervals):
if _overlaps(intervals[index], new_interval):
raise PulseError("New interval overlaps with existing.")
return index if new_interval[1] <= intervals[index][0] else index + 1
return index
def _overlaps(first: Interval, second: Interval) -> bool:
"""Return True iff first and second overlap.
Note: first.stop may equal second.start, since Interval stop times are exclusive.
"""
if first[0] == second[0] == second[1]:
# They fail to overlap if one of the intervals has duration 0
return False
if first[0] > second[0]:
first, second = second, first
return second[0] < first[1]
def _check_nonnegative_timeslot(timeslots: TimeSlots):
"""Test that a channel has no negative timeslots.
Raises:
PulseError: If a channel timeslot is negative.
"""
for chan, chan_timeslots in timeslots.items():
if chan_timeslots:
if chan_timeslots[0][0] < 0:
raise PulseError(f"An instruction on {chan} has a negative starting time.")
def _get_timeslots(schedule: "ScheduleComponent") -> TimeSlots:
"""Generate timeslots from given schedule component.
Args:
schedule: Input schedule component.
Raises:
PulseError: When invalid schedule type is specified.
"""
if isinstance(schedule, Instruction):
duration = schedule.duration
instruction_duration_validation(duration)
timeslots = {channel: [(0, duration)] for channel in schedule.channels}
elif isinstance(schedule, Schedule):
timeslots = schedule.timeslots
else:
raise PulseError(f"Invalid schedule type {type(schedule)} is specified.")
return timeslots
def _get_references(block_elms: list["BlockComponent"]) -> set[Reference]:
"""Recursively get reference instructions in the current scope.
Args:
block_elms: List of schedule block elements to investigate.
Returns:
A set of unique reference instructions.
"""
references = set()
for elm in block_elms:
if isinstance(elm, ScheduleBlock):
references |= _get_references(elm._blocks)
elif isinstance(elm, Reference):
references.add(elm)
return references
# These type aliases are defined at the bottom of the file, because as of 2022-01-18 they are
# imported into other parts of Terra. Previously, the aliases were at the top of the file and used
# forwards references within themselves. This was fine within the same file, but causes scoping
# issues when the aliases are imported into different scopes, in which the `ForwardRef` instances
# would no longer resolve. Instead, we only use forward references in the annotations of _this_
# file to reference the aliases, which are guaranteed to resolve in scope, so the aliases can all be
# concrete.
ScheduleComponent = Union[Schedule, Instruction]
"""An element that composes a pulse schedule."""
BlockComponent = Union[ScheduleBlock, Instruction]
"""An element that composes a pulse schedule block."""
| qiskit/qiskit/pulse/schedule.py/0 | {
"file_path": "qiskit/qiskit/pulse/schedule.py",
"repo_id": "qiskit",
"token_count": 28401
} | 191 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2021, 2022.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Binary IO for any value objects, such as numbers, string, parameters."""
from __future__ import annotations
import collections.abc
import struct
import uuid
import numpy as np
import symengine
from symengine.lib.symengine_wrapper import ( # pylint: disable = no-name-in-module
load_basic,
)
from qiskit.circuit import CASE_DEFAULT, Clbit, ClassicalRegister
from qiskit.circuit.classical import expr, types
from qiskit.circuit.parameter import Parameter
from qiskit.circuit.parameterexpression import ParameterExpression
from qiskit.circuit.parametervector import ParameterVector, ParameterVectorElement
from qiskit.qpy import common, formats, exceptions, type_keys
def _write_parameter(file_obj, obj):
name_bytes = obj.name.encode(common.ENCODE)
file_obj.write(struct.pack(formats.PARAMETER_PACK, len(name_bytes), obj.uuid.bytes))
file_obj.write(name_bytes)
def _write_parameter_vec(file_obj, obj):
name_bytes = obj._vector._name.encode(common.ENCODE)
file_obj.write(
struct.pack(
formats.PARAMETER_VECTOR_ELEMENT_PACK,
len(name_bytes),
len(obj._vector),
obj.uuid.bytes,
obj._index,
)
)
file_obj.write(name_bytes)
def _write_parameter_expression(file_obj, obj, use_symengine, *, version):
if use_symengine:
expr_bytes = obj._symbol_expr.__reduce__()[1][0]
else:
from sympy import srepr, sympify
expr_bytes = srepr(sympify(obj._symbol_expr)).encode(common.ENCODE)
param_expr_header_raw = struct.pack(
formats.PARAMETER_EXPR_PACK, len(obj._parameter_symbols), len(expr_bytes)
)
file_obj.write(param_expr_header_raw)
file_obj.write(expr_bytes)
for symbol, value in obj._parameter_symbols.items():
symbol_key = type_keys.Value.assign(symbol)
# serialize key
if symbol_key == type_keys.Value.PARAMETER_VECTOR:
symbol_data = common.data_to_binary(symbol, _write_parameter_vec)
else:
symbol_data = common.data_to_binary(symbol, _write_parameter)
# serialize value
if value == symbol._symbol_expr:
value_key = symbol_key
value_data = bytes()
else:
value_key, value_data = dumps_value(value, version=version, use_symengine=use_symengine)
elem_header = struct.pack(
formats.PARAM_EXPR_MAP_ELEM_V3_PACK,
symbol_key,
value_key,
len(value_data),
)
file_obj.write(elem_header)
file_obj.write(symbol_data)
file_obj.write(value_data)
class _ExprWriter(expr.ExprVisitor[None]):
__slots__ = ("file_obj", "clbit_indices", "standalone_var_indices", "version")
def __init__(self, file_obj, clbit_indices, standalone_var_indices, version):
self.file_obj = file_obj
self.clbit_indices = clbit_indices
self.standalone_var_indices = standalone_var_indices
self.version = version
def visit_generic(self, node, /):
raise exceptions.QpyError(f"unhandled Expr object '{node}'")
def visit_var(self, node, /):
self.file_obj.write(type_keys.Expression.VAR)
_write_expr_type(self.file_obj, node.type)
if node.standalone:
self.file_obj.write(type_keys.ExprVar.UUID)
self.file_obj.write(
struct.pack(
formats.EXPR_VAR_UUID_PACK,
*formats.EXPR_VAR_UUID(self.standalone_var_indices[node]),
)
)
elif isinstance(node.var, Clbit):
self.file_obj.write(type_keys.ExprVar.CLBIT)
self.file_obj.write(
struct.pack(
formats.EXPR_VAR_CLBIT_PACK,
*formats.EXPR_VAR_CLBIT(self.clbit_indices[node.var]),
)
)
elif isinstance(node.var, ClassicalRegister):
self.file_obj.write(type_keys.ExprVar.REGISTER)
self.file_obj.write(
struct.pack(
formats.EXPR_VAR_REGISTER_PACK, *formats.EXPR_VAR_REGISTER(len(node.var.name))
)
)
self.file_obj.write(node.var.name.encode(common.ENCODE))
else:
raise exceptions.QpyError(f"unhandled Var object '{node.var}'")
def visit_value(self, node, /):
self.file_obj.write(type_keys.Expression.VALUE)
_write_expr_type(self.file_obj, node.type)
if node.value is True or node.value is False:
self.file_obj.write(type_keys.ExprValue.BOOL)
self.file_obj.write(
struct.pack(formats.EXPR_VALUE_BOOL_PACK, *formats.EXPR_VALUE_BOOL(node.value))
)
elif isinstance(node.value, int):
self.file_obj.write(type_keys.ExprValue.INT)
if node.value == 0:
num_bytes = 0
buffer = b""
else:
# This wastes a byte for `-(2 ** (8*n - 1))` for natural `n`, but they'll still
# decode fine so it's not worth another special case. They'll encode to
# b"\xff\x80\x00\x00...", but we could encode them to b"\x80\x00\x00...".
num_bytes = (node.value.bit_length() // 8) + 1
buffer = node.value.to_bytes(num_bytes, "big", signed=True)
self.file_obj.write(
struct.pack(formats.EXPR_VALUE_INT_PACK, *formats.EXPR_VALUE_INT(num_bytes))
)
self.file_obj.write(buffer)
else:
raise exceptions.QpyError(f"unhandled Value object '{node.value}'")
def visit_cast(self, node, /):
self.file_obj.write(type_keys.Expression.CAST)
_write_expr_type(self.file_obj, node.type)
self.file_obj.write(
struct.pack(formats.EXPRESSION_CAST_PACK, *formats.EXPRESSION_CAST(node.implicit))
)
node.operand.accept(self)
def visit_unary(self, node, /):
self.file_obj.write(type_keys.Expression.UNARY)
_write_expr_type(self.file_obj, node.type)
self.file_obj.write(
struct.pack(formats.EXPRESSION_UNARY_PACK, *formats.EXPRESSION_UNARY(node.op.value))
)
node.operand.accept(self)
def visit_binary(self, node, /):
self.file_obj.write(type_keys.Expression.BINARY)
_write_expr_type(self.file_obj, node.type)
self.file_obj.write(
struct.pack(formats.EXPRESSION_BINARY_PACK, *formats.EXPRESSION_BINARY(node.op.value))
)
node.left.accept(self)
node.right.accept(self)
def visit_index(self, node, /):
if self.version < 12:
raise exceptions.UnsupportedFeatureForVersion(
"the 'Index' expression", required=12, target=self.version
)
self.file_obj.write(type_keys.Expression.INDEX)
_write_expr_type(self.file_obj, node.type)
node.target.accept(self)
node.index.accept(self)
def _write_expr(
file_obj,
node: expr.Expr,
clbit_indices: collections.abc.Mapping[Clbit, int],
standalone_var_indices: collections.abc.Mapping[expr.Var, int],
version: int,
):
node.accept(_ExprWriter(file_obj, clbit_indices, standalone_var_indices, version))
def _write_expr_type(file_obj, type_: types.Type):
if type_.kind is types.Bool:
file_obj.write(type_keys.ExprType.BOOL)
elif type_.kind is types.Uint:
file_obj.write(type_keys.ExprType.UINT)
file_obj.write(
struct.pack(formats.EXPR_TYPE_UINT_PACK, *formats.EXPR_TYPE_UINT(type_.width))
)
else:
raise exceptions.QpyError(f"unhandled Type object '{type_};")
def _read_parameter(file_obj):
data = formats.PARAMETER(
*struct.unpack(formats.PARAMETER_PACK, file_obj.read(formats.PARAMETER_SIZE))
)
param_uuid = uuid.UUID(bytes=data.uuid)
name = file_obj.read(data.name_size).decode(common.ENCODE)
return Parameter(name, uuid=param_uuid)
def _read_parameter_vec(file_obj, vectors):
data = formats.PARAMETER_VECTOR_ELEMENT(
*struct.unpack(
formats.PARAMETER_VECTOR_ELEMENT_PACK,
file_obj.read(formats.PARAMETER_VECTOR_ELEMENT_SIZE),
),
)
param_uuid = uuid.UUID(bytes=data.uuid)
name = file_obj.read(data.vector_name_size).decode(common.ENCODE)
if name not in vectors:
vectors[name] = (ParameterVector(name, data.vector_size), set())
vector = vectors[name][0]
if vector[data.index].uuid != param_uuid:
vectors[name][1].add(data.index)
vector._params[data.index] = ParameterVectorElement(vector, data.index, uuid=param_uuid)
return vector[data.index]
def _read_parameter_expression(file_obj):
data = formats.PARAMETER_EXPR(
*struct.unpack(formats.PARAMETER_EXPR_PACK, file_obj.read(formats.PARAMETER_EXPR_SIZE))
)
from sympy.parsing.sympy_parser import parse_expr
expr_ = symengine.sympify(parse_expr(file_obj.read(data.expr_size).decode(common.ENCODE)))
symbol_map = {}
for _ in range(data.map_elements):
elem_data = formats.PARAM_EXPR_MAP_ELEM(
*struct.unpack(
formats.PARAM_EXPR_MAP_ELEM_PACK,
file_obj.read(formats.PARAM_EXPR_MAP_ELEM_SIZE),
)
)
symbol = _read_parameter(file_obj)
elem_key = type_keys.Value(elem_data.type)
binary_data = file_obj.read(elem_data.size)
if elem_key == type_keys.Value.INTEGER:
value = struct.unpack("!q", binary_data)
elif elem_key == type_keys.Value.FLOAT:
value = struct.unpack("!d", binary_data)
elif elem_key == type_keys.Value.COMPLEX:
value = complex(*struct.unpack(formats.COMPLEX_PACK, binary_data))
elif elem_key == type_keys.Value.PARAMETER:
value = symbol._symbol_expr
elif elem_key == type_keys.Value.PARAMETER_EXPRESSION:
value = common.data_from_binary(binary_data, _read_parameter_expression)
else:
raise exceptions.QpyError(f"Invalid parameter expression map type: {elem_key}")
symbol_map[symbol] = value
return ParameterExpression(symbol_map, expr_)
def _read_parameter_expression_v3(file_obj, vectors, use_symengine):
data = formats.PARAMETER_EXPR(
*struct.unpack(formats.PARAMETER_EXPR_PACK, file_obj.read(formats.PARAMETER_EXPR_SIZE))
)
payload = file_obj.read(data.expr_size)
if use_symengine:
expr_ = load_basic(payload)
else:
from sympy.parsing.sympy_parser import parse_expr
expr_ = symengine.sympify(parse_expr(payload.decode(common.ENCODE)))
symbol_map = {}
for _ in range(data.map_elements):
elem_data = formats.PARAM_EXPR_MAP_ELEM_V3(
*struct.unpack(
formats.PARAM_EXPR_MAP_ELEM_V3_PACK,
file_obj.read(formats.PARAM_EXPR_MAP_ELEM_V3_SIZE),
)
)
symbol_key = type_keys.Value(elem_data.symbol_type)
if symbol_key == type_keys.Value.PARAMETER:
symbol = _read_parameter(file_obj)
elif symbol_key == type_keys.Value.PARAMETER_VECTOR:
symbol = _read_parameter_vec(file_obj, vectors)
else:
raise exceptions.QpyError(f"Invalid parameter expression map type: {symbol_key}")
elem_key = type_keys.Value(elem_data.type)
binary_data = file_obj.read(elem_data.size)
if elem_key == type_keys.Value.INTEGER:
value = struct.unpack("!q", binary_data)
elif elem_key == type_keys.Value.FLOAT:
value = struct.unpack("!d", binary_data)
elif elem_key == type_keys.Value.COMPLEX:
value = complex(*struct.unpack(formats.COMPLEX_PACK, binary_data))
elif elem_key in (type_keys.Value.PARAMETER, type_keys.Value.PARAMETER_VECTOR):
value = symbol._symbol_expr
elif elem_key == type_keys.Value.PARAMETER_EXPRESSION:
value = common.data_from_binary(
binary_data,
_read_parameter_expression_v3,
vectors=vectors,
use_symengine=use_symengine,
)
else:
raise exceptions.QpyError(f"Invalid parameter expression map type: {elem_key}")
symbol_map[symbol] = value
return ParameterExpression(symbol_map, expr_)
def _read_expr(
file_obj,
clbits: collections.abc.Sequence[Clbit],
cregs: collections.abc.Mapping[str, ClassicalRegister],
standalone_vars: collections.abc.Sequence[expr.Var],
) -> expr.Expr:
# pylint: disable=too-many-return-statements
type_key = file_obj.read(formats.EXPRESSION_DISCRIMINATOR_SIZE)
type_ = _read_expr_type(file_obj)
if type_key == type_keys.Expression.VAR:
var_type_key = file_obj.read(formats.EXPR_VAR_DISCRIMINATOR_SIZE)
if var_type_key == type_keys.ExprVar.UUID:
payload = formats.EXPR_VAR_UUID._make(
struct.unpack(formats.EXPR_VAR_UUID_PACK, file_obj.read(formats.EXPR_VAR_UUID_SIZE))
)
return standalone_vars[payload.var_index]
if var_type_key == type_keys.ExprVar.CLBIT:
payload = formats.EXPR_VAR_CLBIT._make(
struct.unpack(
formats.EXPR_VAR_CLBIT_PACK, file_obj.read(formats.EXPR_VAR_CLBIT_SIZE)
)
)
return expr.Var(clbits[payload.index], type_)
if var_type_key == type_keys.ExprVar.REGISTER:
payload = formats.EXPR_VAR_REGISTER._make(
struct.unpack(
formats.EXPR_VAR_REGISTER_PACK, file_obj.read(formats.EXPR_VAR_REGISTER_SIZE)
)
)
name = file_obj.read(payload.reg_name_size).decode(common.ENCODE)
return expr.Var(cregs[name], type_)
raise exceptions.QpyError("Invalid classical-expression Var key '{var_type_key}'")
if type_key == type_keys.Expression.VALUE:
value_type_key = file_obj.read(formats.EXPR_VALUE_DISCRIMINATOR_SIZE)
if value_type_key == type_keys.ExprValue.BOOL:
payload = formats.EXPR_VALUE_BOOL._make(
struct.unpack(
formats.EXPR_VALUE_BOOL_PACK, file_obj.read(formats.EXPR_VALUE_BOOL_SIZE)
)
)
return expr.Value(payload.value, type_)
if value_type_key == type_keys.ExprValue.INT:
payload = formats.EXPR_VALUE_INT._make(
struct.unpack(
formats.EXPR_VALUE_INT_PACK, file_obj.read(formats.EXPR_VALUE_INT_SIZE)
)
)
return expr.Value(
int.from_bytes(file_obj.read(payload.num_bytes), "big", signed=True), type_
)
raise exceptions.QpyError("Invalid classical-expression Value key '{value_type_key}'")
if type_key == type_keys.Expression.CAST:
payload = formats.EXPRESSION_CAST._make(
struct.unpack(formats.EXPRESSION_CAST_PACK, file_obj.read(formats.EXPRESSION_CAST_SIZE))
)
return expr.Cast(
_read_expr(file_obj, clbits, cregs, standalone_vars), type_, implicit=payload.implicit
)
if type_key == type_keys.Expression.UNARY:
payload = formats.EXPRESSION_UNARY._make(
struct.unpack(
formats.EXPRESSION_UNARY_PACK, file_obj.read(formats.EXPRESSION_UNARY_SIZE)
)
)
return expr.Unary(
expr.Unary.Op(payload.opcode),
_read_expr(file_obj, clbits, cregs, standalone_vars),
type_,
)
if type_key == type_keys.Expression.BINARY:
payload = formats.EXPRESSION_BINARY._make(
struct.unpack(
formats.EXPRESSION_BINARY_PACK, file_obj.read(formats.EXPRESSION_BINARY_SIZE)
)
)
return expr.Binary(
expr.Binary.Op(payload.opcode),
_read_expr(file_obj, clbits, cregs, standalone_vars),
_read_expr(file_obj, clbits, cregs, standalone_vars),
type_,
)
if type_key == type_keys.Expression.INDEX:
return expr.Index(
_read_expr(file_obj, clbits, cregs, standalone_vars),
_read_expr(file_obj, clbits, cregs, standalone_vars),
type_,
)
raise exceptions.QpyError(f"Invalid classical-expression Expr key '{type_key}'")
def _read_expr_type(file_obj) -> types.Type:
type_key = file_obj.read(formats.EXPR_TYPE_DISCRIMINATOR_SIZE)
if type_key == type_keys.ExprType.BOOL:
return types.Bool()
if type_key == type_keys.ExprType.UINT:
elem = formats.EXPR_TYPE_UINT._make(
struct.unpack(formats.EXPR_TYPE_UINT_PACK, file_obj.read(formats.EXPR_TYPE_UINT_SIZE))
)
return types.Uint(elem.width)
raise exceptions.QpyError(f"Invalid classical-expression Type key '{type_key}'")
def read_standalone_vars(file_obj, num_vars):
"""Read the ``num_vars`` standalone variable declarations from the file.
Args:
file_obj (File): a file-like object to read from.
num_vars (int): the number of variables to read.
Returns:
tuple[dict, list]: the first item is a mapping of the ``ExprVarDeclaration`` type keys to
the variables defined by that type key, and the second is the total order of variable
declarations.
"""
read_vars = {
type_keys.ExprVarDeclaration.INPUT: [],
type_keys.ExprVarDeclaration.CAPTURE: [],
type_keys.ExprVarDeclaration.LOCAL: [],
}
var_order = []
for _ in range(num_vars):
data = formats.EXPR_VAR_DECLARATION._make(
struct.unpack(
formats.EXPR_VAR_DECLARATION_PACK,
file_obj.read(formats.EXPR_VAR_DECLARATION_SIZE),
)
)
type_ = _read_expr_type(file_obj)
name = file_obj.read(data.name_size).decode(common.ENCODE)
var = expr.Var(uuid.UUID(bytes=data.uuid_bytes), type_, name=name)
read_vars[data.usage].append(var)
var_order.append(var)
return read_vars, var_order
def _write_standalone_var(file_obj, var, type_key):
name = var.name.encode(common.ENCODE)
file_obj.write(
struct.pack(
formats.EXPR_VAR_DECLARATION_PACK,
*formats.EXPR_VAR_DECLARATION(var.var.bytes, type_key, len(name)),
)
)
_write_expr_type(file_obj, var.type)
file_obj.write(name)
def write_standalone_vars(file_obj, circuit):
"""Write the standalone variables out from a circuit.
Args:
file_obj (File): the file-like object to write to.
circuit (QuantumCircuit): the circuit to take the variables from.
Returns:
dict[expr.Var, int]: a mapping of the variables written to the index that they were written
at.
"""
index = 0
out = {}
for var in circuit.iter_input_vars():
_write_standalone_var(file_obj, var, type_keys.ExprVarDeclaration.INPUT)
out[var] = index
index += 1
for var in circuit.iter_captured_vars():
_write_standalone_var(file_obj, var, type_keys.ExprVarDeclaration.CAPTURE)
out[var] = index
index += 1
for var in circuit.iter_declared_vars():
_write_standalone_var(file_obj, var, type_keys.ExprVarDeclaration.LOCAL)
out[var] = index
index += 1
return out
def dumps_value(
obj,
*,
version,
index_map=None,
use_symengine=False,
standalone_var_indices=None,
):
"""Serialize input value object.
Args:
obj (any): Arbitrary value object to serialize.
version (int): the target QPY version for the dump.
index_map (dict): Dictionary with two keys, "q" and "c". Each key has a value that is a
dictionary mapping :class:`.Qubit` or :class:`.Clbit` instances (respectively) to their
integer indices.
use_symengine (bool): If True, symbolic objects will be serialized using symengine's
native mechanism. This is a faster serialization alternative, but not supported in all
platforms. Please check that your target platform is supported by the symengine library
before setting this option, as it will be required by qpy to deserialize the payload.
standalone_var_indices (dict): Dictionary that maps standalone :class:`.expr.Var` entries to
the index that should be used to refer to them.
Returns:
tuple: TypeKey and binary data.
Raises:
QpyError: Serializer for given format is not ready.
"""
type_key = type_keys.Value.assign(obj)
if type_key == type_keys.Value.INTEGER:
binary_data = struct.pack("!q", obj)
elif type_key == type_keys.Value.FLOAT:
binary_data = struct.pack("!d", obj)
elif type_key == type_keys.Value.COMPLEX:
binary_data = struct.pack(formats.COMPLEX_PACK, obj.real, obj.imag)
elif type_key == type_keys.Value.NUMPY_OBJ:
binary_data = common.data_to_binary(obj, np.save)
elif type_key == type_keys.Value.STRING:
binary_data = obj.encode(common.ENCODE)
elif type_key in (type_keys.Value.NULL, type_keys.Value.CASE_DEFAULT):
binary_data = b""
elif type_key == type_keys.Value.PARAMETER_VECTOR:
binary_data = common.data_to_binary(obj, _write_parameter_vec)
elif type_key == type_keys.Value.PARAMETER:
binary_data = common.data_to_binary(obj, _write_parameter)
elif type_key == type_keys.Value.PARAMETER_EXPRESSION:
binary_data = common.data_to_binary(
obj, _write_parameter_expression, use_symengine=use_symengine, version=version
)
elif type_key == type_keys.Value.EXPRESSION:
clbit_indices = {} if index_map is None else index_map["c"]
standalone_var_indices = {} if standalone_var_indices is None else standalone_var_indices
binary_data = common.data_to_binary(
obj,
_write_expr,
clbit_indices=clbit_indices,
standalone_var_indices=standalone_var_indices,
version=version,
)
else:
raise exceptions.QpyError(f"Serialization for {type_key} is not implemented in value I/O.")
return type_key, binary_data
def write_value(
file_obj, obj, *, version, index_map=None, use_symengine=False, standalone_var_indices=None
):
"""Write a value to the file like object.
Args:
file_obj (File): A file like object to write data.
obj (any): Value to write.
version (int): the target QPY version for the dump.
index_map (dict): Dictionary with two keys, "q" and "c". Each key has a value that is a
dictionary mapping :class:`.Qubit` or :class:`.Clbit` instances (respectively) to their
integer indices.
use_symengine (bool): If True, symbolic objects will be serialized using symengine's
native mechanism. This is a faster serialization alternative, but not supported in all
platforms. Please check that your target platform is supported by the symengine library
before setting this option, as it will be required by qpy to deserialize the payload.
standalone_var_indices (dict): Dictionary that maps standalone :class:`.expr.Var` entries to
the index that should be used to refer to them.
"""
type_key, data = dumps_value(
obj,
version=version,
index_map=index_map,
use_symengine=use_symengine,
standalone_var_indices=standalone_var_indices,
)
common.write_generic_typed_data(file_obj, type_key, data)
def loads_value(
type_key,
binary_data,
version,
vectors,
*,
clbits=(),
cregs=None,
use_symengine=False,
standalone_vars=(),
):
"""Deserialize input binary data to value object.
Args:
type_key (ValueTypeKey): Type enum information.
binary_data (bytes): Data to deserialize.
version (int): QPY version.
vectors (dict): ParameterVector in current scope.
clbits (Sequence[Clbit]): Clbits in the current scope.
cregs (Mapping[str, ClassicalRegister]): Classical registers in the current scope.
use_symengine (bool): If True, symbolic objects will be de-serialized using symengine's
native mechanism. This is a faster serialization alternative, but not supported in all
platforms. Please check that your target platform is supported by the symengine library
before setting this option, as it will be required by qpy to deserialize the payload.
standalone_vars (Sequence[Var]): standalone :class:`.expr.Var` nodes in the order that they
were declared by the circuit header.
Returns:
any: Deserialized value object.
Raises:
QpyError: Serializer for given format is not ready.
"""
# pylint: disable=too-many-return-statements
if isinstance(type_key, bytes):
type_key = type_keys.Value(type_key)
if type_key == type_keys.Value.INTEGER:
return struct.unpack("!q", binary_data)[0]
if type_key == type_keys.Value.FLOAT:
return struct.unpack("!d", binary_data)[0]
if type_key == type_keys.Value.COMPLEX:
return complex(*struct.unpack(formats.COMPLEX_PACK, binary_data))
if type_key == type_keys.Value.NUMPY_OBJ:
return common.data_from_binary(binary_data, np.load)
if type_key == type_keys.Value.STRING:
return binary_data.decode(common.ENCODE)
if type_key == type_keys.Value.NULL:
return None
if type_key == type_keys.Value.CASE_DEFAULT:
return CASE_DEFAULT
if type_key == type_keys.Value.PARAMETER_VECTOR:
return common.data_from_binary(binary_data, _read_parameter_vec, vectors=vectors)
if type_key == type_keys.Value.PARAMETER:
return common.data_from_binary(binary_data, _read_parameter)
if type_key == type_keys.Value.PARAMETER_EXPRESSION:
if version < 3:
return common.data_from_binary(binary_data, _read_parameter_expression)
else:
return common.data_from_binary(
binary_data,
_read_parameter_expression_v3,
vectors=vectors,
use_symengine=use_symengine,
)
if type_key == type_keys.Value.EXPRESSION:
return common.data_from_binary(
binary_data,
_read_expr,
clbits=clbits,
cregs=cregs or {},
standalone_vars=standalone_vars,
)
raise exceptions.QpyError(f"Serialization for {type_key} is not implemented in value I/O.")
def read_value(
file_obj,
version,
vectors,
*,
clbits=(),
cregs=None,
use_symengine=False,
standalone_vars=(),
):
"""Read a value from the file like object.
Args:
file_obj (File): A file like object to write data.
version (int): QPY version.
vectors (dict): ParameterVector in current scope.
clbits (Sequence[Clbit]): Clbits in the current scope.
cregs (Mapping[str, ClassicalRegister]): Classical registers in the current scope.
use_symengine (bool): If True, symbolic objects will be de-serialized using symengine's
native mechanism. This is a faster serialization alternative, but not supported in all
platforms. Please check that your target platform is supported by the symengine library
before setting this option, as it will be required by qpy to deserialize the payload.
standalone_vars (Sequence[expr.Var]): standalone variables in the order they were defined in
the QPY payload.
Returns:
any: Deserialized value object.
"""
type_key, data = common.read_generic_typed_data(file_obj)
return loads_value(
type_key,
data,
version,
vectors,
clbits=clbits,
cregs=cregs,
use_symengine=use_symengine,
standalone_vars=standalone_vars,
)
| qiskit/qiskit/qpy/binary_io/value.py/0 | {
"file_path": "qiskit/qiskit/qpy/binary_io/value.py",
"repo_id": "qiskit",
"token_count": 12950
} | 192 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Choi-matrix representation of a Quantum Channel.
"""
from __future__ import annotations
import copy as _copy
import math
import numpy as np
from qiskit import _numpy_compat
from qiskit.circuit.quantumcircuit import QuantumCircuit
from qiskit.circuit.instruction import Instruction
from qiskit.exceptions import QiskitError
from qiskit.quantum_info.operators.channel.quantum_channel import QuantumChannel
from qiskit.quantum_info.operators.op_shape import OpShape
from qiskit.quantum_info.operators.channel.superop import SuperOp
from qiskit.quantum_info.operators.channel.transformations import _to_choi
from qiskit.quantum_info.operators.channel.transformations import _bipartite_tensor
from qiskit.quantum_info.operators.mixins import generate_apidocs
from qiskit.quantum_info.operators.base_operator import BaseOperator
class Choi(QuantumChannel):
r"""Choi-matrix representation of a Quantum Channel.
The Choi-matrix representation of a quantum channel :math:`\mathcal{E}`
is a matrix
.. math::
\Lambda = \sum_{i,j} |i\rangle\!\langle j|\otimes
\mathcal{E}\left(|i\rangle\!\langle j|\right)
Evolution of a :class:`~qiskit.quantum_info.DensityMatrix`
:math:`\rho` with respect to the Choi-matrix is given by
.. math::
\mathcal{E}(\rho) = \mbox{Tr}_{1}\left[\Lambda
(\rho^T \otimes \mathbb{I})\right]
where :math:`\mbox{Tr}_1` is the :func:`partial_trace` over subsystem 1.
See reference [1] for further details.
References:
1. C.J. Wood, J.D. Biamonte, D.G. Cory, *Tensor networks and graphical calculus
for open quantum systems*, Quant. Inf. Comp. 15, 0579-0811 (2015).
`arXiv:1111.6950 [quant-ph] <https://arxiv.org/abs/1111.6950>`_
"""
def __init__(
self,
data: QuantumCircuit | Instruction | BaseOperator | np.ndarray,
input_dims: int | tuple | None = None,
output_dims: int | tuple | None = None,
):
"""Initialize a quantum channel Choi matrix operator.
Args:
data (QuantumCircuit or
Instruction or
BaseOperator or
matrix): data to initialize superoperator.
input_dims (tuple): the input subsystem dimensions.
[Default: None]
output_dims (tuple): the output subsystem dimensions.
[Default: None]
Raises:
QiskitError: if input data cannot be initialized as a
Choi matrix.
Additional Information:
If the input or output dimensions are None, they will be
automatically determined from the input data. If the input data is
a Numpy array of shape (4**N, 4**N) qubit systems will be used. If
the input operator is not an N-qubit operator, it will assign a
single subsystem with dimension specified by the shape of the input.
"""
# If the input is a raw list or matrix we assume that it is
# already a Choi matrix.
if isinstance(data, (list, np.ndarray)):
# Initialize from raw numpy or list matrix.
choi_mat = np.asarray(data, dtype=complex)
# Determine input and output dimensions
dim_l, dim_r = choi_mat.shape
if dim_l != dim_r:
raise QiskitError("Invalid Choi-matrix input.")
if input_dims:
input_dim = np.prod(input_dims)
if output_dims:
output_dim = np.prod(output_dims)
if output_dims is None and input_dims is None:
output_dim = int(math.sqrt(dim_l))
input_dim = dim_l // output_dim
elif input_dims is None:
input_dim = dim_l // output_dim
elif output_dims is None:
output_dim = dim_l // input_dim
# Check dimensions
if input_dim * output_dim != dim_l:
raise QiskitError("Invalid shape for input Choi-matrix.")
op_shape = OpShape.auto(
dims_l=output_dims, dims_r=input_dims, shape=(output_dim, input_dim)
)
else:
# Otherwise we initialize by conversion from another Qiskit
# object into the QuantumChannel.
if isinstance(data, (QuantumCircuit, Instruction)):
# If the input is a Terra QuantumCircuit or Instruction we
# convert it to a SuperOp
data = SuperOp._init_instruction(data)
else:
# We use the QuantumChannel init transform to initialize
# other objects into a QuantumChannel or Operator object.
data = self._init_transformer(data)
op_shape = data._op_shape
output_dim, input_dim = op_shape.shape
# Now that the input is an operator we convert it to a Choi object
rep = getattr(data, "_channel_rep", "Operator")
choi_mat = _to_choi(rep, data._data, input_dim, output_dim)
super().__init__(choi_mat, op_shape=op_shape)
def __array__(self, dtype=None, copy=_numpy_compat.COPY_ONLY_IF_NEEDED):
dtype = self.data.dtype if dtype is None else dtype
return np.array(self.data, dtype=dtype, copy=copy)
@property
def _bipartite_shape(self):
"""Return the shape for bipartite matrix"""
return (self._input_dim, self._output_dim, self._input_dim, self._output_dim)
def _evolve(self, state, qargs=None):
return SuperOp(self)._evolve(state, qargs)
# ---------------------------------------------------------------------
# BaseOperator methods
# ---------------------------------------------------------------------
def conjugate(self):
ret = _copy.copy(self)
ret._data = np.conj(self._data)
return ret
def transpose(self):
ret = _copy.copy(self)
ret._op_shape = self._op_shape.transpose()
# Make bipartite matrix
d_in, d_out = self.dim
data = np.reshape(self._data, (d_in, d_out, d_in, d_out))
# Swap input and output indices on bipartite matrix
data = np.transpose(data, (1, 0, 3, 2))
ret._data = np.reshape(data, (d_in * d_out, d_in * d_out))
return ret
def compose(self, other: Choi, qargs: list | None = None, front: bool = False) -> Choi:
if qargs is None:
qargs = getattr(other, "qargs", None)
if qargs is not None:
return Choi(SuperOp(self).compose(other, qargs=qargs, front=front))
if not isinstance(other, Choi):
other = Choi(other)
new_shape = self._op_shape.compose(other._op_shape, qargs, front)
output_dim, input_dim = new_shape.shape
if front:
first = np.reshape(other._data, other._bipartite_shape)
second = np.reshape(self._data, self._bipartite_shape)
else:
first = np.reshape(self._data, self._bipartite_shape)
second = np.reshape(other._data, other._bipartite_shape)
# Contract Choi matrices for composition
data = np.reshape(
np.einsum("iAjB,AkBl->ikjl", first, second),
(input_dim * output_dim, input_dim * output_dim),
)
ret = Choi(data)
ret._op_shape = new_shape
return ret
def tensor(self, other: Choi) -> Choi:
if not isinstance(other, Choi):
other = Choi(other)
return self._tensor(self, other)
def expand(self, other: Choi) -> Choi:
if not isinstance(other, Choi):
other = Choi(other)
return self._tensor(other, self)
@classmethod
def _tensor(cls, a, b):
ret = _copy.copy(a)
ret._op_shape = a._op_shape.tensor(b._op_shape)
ret._data = _bipartite_tensor(
a._data, b.data, shape1=a._bipartite_shape, shape2=b._bipartite_shape
)
return ret
# Update docstrings for API docs
generate_apidocs(Choi)
| qiskit/qiskit/quantum_info/operators/channel/choi.py/0 | {
"file_path": "qiskit/qiskit/quantum_info/operators/channel/choi.py",
"repo_id": "qiskit",
"token_count": 3743
} | 193 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Mixin for gate operator interface.
"""
import sys
from abc import ABC, abstractmethod
if sys.version_info >= (3, 11):
from typing import Self
else:
from typing_extensions import Self
class AdjointMixin(ABC):
"""Abstract Mixin for operator adjoint and transpose operations.
This class defines the following methods
- :meth:`transpose`
- :meth:`conjugate`
- :meth:`adjoint`
The following abstract methods must be implemented by subclasses
using this mixin
- ``conjugate(self)``
- ``transpose(self)``
"""
def adjoint(self) -> Self:
"""Return the adjoint of the CLASS."""
return self.conjugate().transpose()
@abstractmethod
def conjugate(self) -> Self:
"""Return the conjugate of the CLASS."""
@abstractmethod
def transpose(self) -> Self:
"""Return the transpose of the CLASS."""
| qiskit/qiskit/quantum_info/operators/mixins/adjoint.py/0 | {
"file_path": "qiskit/qiskit/quantum_info/operators/mixins/adjoint.py",
"repo_id": "qiskit",
"token_count": 471
} | 194 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2022
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Optimized list of Pauli operators
"""
from __future__ import annotations
from collections import defaultdict
from typing import Literal
import numpy as np
import rustworkx as rx
from qiskit.circuit.quantumcircuit import QuantumCircuit
from qiskit.exceptions import QiskitError
from qiskit.quantum_info.operators.custom_iterator import CustomIterator
from qiskit.quantum_info.operators.mixins import GroupMixin, LinearMixin
from qiskit.quantum_info.operators.symplectic.base_pauli import BasePauli
from qiskit.quantum_info.operators.symplectic.clifford import Clifford
from qiskit.quantum_info.operators.symplectic.pauli import Pauli
class PauliList(BasePauli, LinearMixin, GroupMixin):
r"""List of N-qubit Pauli operators.
This class is an efficient representation of a list of
:class:`Pauli` operators. It supports 1D numpy array indexing
returning a :class:`Pauli` for integer indexes or a
:class:`PauliList` for slice or list indices.
**Initialization**
A PauliList object can be initialized in several ways.
``PauliList(list[str])``
where strings are same representation with :class:`~qiskit.quantum_info.Pauli`.
``PauliList(Pauli) and PauliList(list[Pauli])``
where Pauli is :class:`~qiskit.quantum_info.Pauli`.
``PauliList.from_symplectic(z, x, phase)``
where ``z`` and ``x`` are 2 dimensional boolean ``numpy.ndarrays`` and ``phase`` is
an integer in ``[0, 1, 2, 3]``.
For example,
.. code-block::
import numpy as np
from qiskit.quantum_info import Pauli, PauliList
# 1. init from list[str]
pauli_list = PauliList(["II", "+ZI", "-iYY"])
print("1. ", pauli_list)
pauli1 = Pauli("iXI")
pauli2 = Pauli("iZZ")
# 2. init from Pauli
print("2. ", PauliList(pauli1))
# 3. init from list[Pauli]
print("3. ", PauliList([pauli1, pauli2]))
# 4. init from np.ndarray
z = np.array([[True, True], [False, False]])
x = np.array([[False, True], [True, False]])
phase = np.array([0, 1])
pauli_list = PauliList.from_symplectic(z, x, phase)
print("4. ", pauli_list)
.. parsed-literal::
1. ['II', 'ZI', '-iYY']
2. ['iXI']
3. ['iXI', 'iZZ']
4. ['YZ', '-iIX']
**Data Access**
The individual Paulis can be accessed and updated using the ``[]``
operator which accepts integer, lists, or slices for selecting subsets
of PauliList. If integer is given, it returns Pauli not PauliList.
.. code-block::
pauli_list = PauliList(["XX", "ZZ", "IZ"])
print("Integer: ", repr(pauli_list[1]))
print("List: ", repr(pauli_list[[0, 2]]))
print("Slice: ", repr(pauli_list[0:2]))
.. parsed-literal::
Integer: Pauli('ZZ')
List: PauliList(['XX', 'IZ'])
Slice: PauliList(['XX', 'ZZ'])
**Iteration**
Rows in the Pauli table can be iterated over like a list. Iteration can
also be done using the label or matrix representation of each row using the
:meth:`label_iter` and :meth:`matrix_iter` methods.
"""
# Set the max number of qubits * paulis before string truncation
__truncate__ = 2000
def __init__(self, data: Pauli | list):
"""Initialize the PauliList.
Args:
data (Pauli or list): input data for Paulis. If input is a list each item in the list
must be a Pauli object or Pauli str.
Raises:
QiskitError: if input array is invalid shape.
Additional Information:
The input array is not copied so multiple Pauli tables
can share the same underlying array.
"""
if isinstance(data, BasePauli):
base_z, base_x, base_phase = data._z, data._x, data._phase
else:
# Conversion as iterable of Paulis
base_z, base_x, base_phase = self._from_paulis(data)
# Initialize BasePauli
super().__init__(base_z, base_x, base_phase)
# ---------------------------------------------------------------------
# Representation conversions
# ---------------------------------------------------------------------
@property
def settings(self):
"""Return settings."""
return {"data": self.to_labels()}
def __array__(self, dtype=None, copy=None):
"""Convert to numpy array"""
if copy is False:
raise ValueError("cannot provide a matrix without calculation")
shape = (len(self),) + 2 * (2**self.num_qubits,)
ret = np.zeros(shape, dtype=complex)
for i, mat in enumerate(self.matrix_iter()):
ret[i] = mat
return ret if dtype is None else ret.astype(dtype, copy=False)
@staticmethod
def _from_paulis(data):
"""Construct a PauliList from a list of Pauli data.
Args:
data (iterable): list of Pauli data.
Returns:
PauliList: the constructed PauliList.
Raises:
QiskitError: If the input list is empty or contains invalid
Pauli strings.
"""
if not isinstance(data, (list, tuple, set, np.ndarray)):
data = [data]
num_paulis = len(data)
if num_paulis == 0:
raise QiskitError("Input Pauli list is empty.")
paulis = []
for i in data:
if not isinstance(i, Pauli):
paulis.append(Pauli(i))
else:
paulis.append(i)
num_qubits = paulis[0].num_qubits
base_z = np.zeros((num_paulis, num_qubits), dtype=bool)
base_x = np.zeros((num_paulis, num_qubits), dtype=bool)
base_phase = np.zeros(num_paulis, dtype=int)
for i, pauli in enumerate(paulis):
if pauli.num_qubits != num_qubits:
raise ValueError(
f"The {i}th Pauli is defined over {pauli.num_qubits} qubits, "
f"but num_qubits == {num_qubits} was expected."
)
base_z[i] = pauli._z
base_x[i] = pauli._x
base_phase[i] = pauli._phase.item()
return base_z, base_x, base_phase
def __repr__(self):
"""Display representation."""
return self._truncated_str(True)
def __str__(self):
"""Print representation."""
return self._truncated_str(False)
def _truncated_str(self, show_class):
stop = self._num_paulis
if self.__truncate__ and self.num_qubits > 0:
max_paulis = self.__truncate__ // self.num_qubits
if self._num_paulis > max_paulis:
stop = max_paulis
labels = [str(self[i]) for i in range(stop)]
prefix = "PauliList(" if show_class else ""
tail = ")" if show_class else ""
if stop != self._num_paulis:
suffix = ", ...]" + tail
else:
suffix = "]" + tail
list_str = np.array2string(
np.array(labels), threshold=stop + 1, separator=", ", prefix=prefix, suffix=suffix
)
return prefix + list_str[:-1] + suffix
def __eq__(self, other):
"""Entrywise comparison of Pauli equality."""
if not isinstance(other, PauliList):
other = PauliList(other)
if not isinstance(other, BasePauli):
return False
return self._eq(other)
def equiv(self, other: PauliList | Pauli) -> np.ndarray:
"""Entrywise comparison of Pauli equivalence up to global phase.
Args:
other (PauliList or Pauli): a comparison object.
Returns:
np.ndarray: An array of ``True`` or ``False`` for entrywise equivalence
of the current table.
"""
if not isinstance(other, PauliList):
other = PauliList(other)
return np.all(self.z == other.z, axis=1) & np.all(self.x == other.x, axis=1)
# ---------------------------------------------------------------------
# Direct array access
# ---------------------------------------------------------------------
@property
def phase(self):
"""Return the phase exponent of the PauliList."""
# Convert internal ZX-phase convention to group phase convention
return np.mod(self._phase - self._count_y(dtype=self._phase.dtype), 4)
@phase.setter
def phase(self, value):
# Convert group phase convetion to internal ZX-phase convention
self._phase[:] = np.mod(value + self._count_y(dtype=self._phase.dtype), 4)
@property
def x(self):
"""The x array for the symplectic representation."""
return self._x
@x.setter
def x(self, val):
self._x[:] = val
@property
def z(self):
"""The z array for the symplectic representation."""
return self._z
@z.setter
def z(self, val):
self._z[:] = val
# ---------------------------------------------------------------------
# Size Properties
# ---------------------------------------------------------------------
@property
def shape(self):
"""The full shape of the :meth:`array`"""
return self._num_paulis, self.num_qubits
@property
def size(self):
"""The number of Pauli rows in the table."""
return self._num_paulis
def __len__(self):
"""Return the number of Pauli rows in the table."""
return self._num_paulis
# ---------------------------------------------------------------------
# Pauli Array methods
# ---------------------------------------------------------------------
def __getitem__(self, index):
"""Return a view of the PauliList."""
# Returns a view of specified rows of the PauliList
# This supports all slicing operations the underlying array supports.
if isinstance(index, tuple):
if len(index) == 1:
index = index[0]
elif len(index) > 2:
raise IndexError(f"Invalid PauliList index {index}")
# Row-only indexing
if isinstance(index, (int, np.integer)):
# Single Pauli
return Pauli(
BasePauli(
self._z[np.newaxis, index],
self._x[np.newaxis, index],
self._phase[np.newaxis, index],
)
)
elif isinstance(index, (slice, list, np.ndarray)):
# Sub-Table view
return PauliList(BasePauli(self._z[index], self._x[index], self._phase[index]))
# Row and Qubit indexing
return PauliList((self._z[index], self._x[index], 0))
def __setitem__(self, index, value):
"""Update PauliList."""
if isinstance(index, tuple):
if len(index) == 1:
row, qubit = index[0], None
elif len(index) > 2:
raise IndexError(f"Invalid PauliList index {index}")
else:
row, qubit = index
else:
row, qubit = index, None
# Modify specified rows of the PauliList
if not isinstance(value, PauliList):
value = PauliList(value)
# It's not valid to set a single item with a sequence, even if the sequence is length 1.
phase = value._phase.item() if isinstance(row, (int, np.integer)) else value._phase
if qubit is None:
self._z[row] = value._z
self._x[row] = value._x
self._phase[row] = phase
else:
self._z[row, qubit] = value._z
self._x[row, qubit] = value._x
self._phase[row] += phase
self._phase %= 4
def delete(self, ind: int | list, qubit: bool = False) -> PauliList:
"""Return a copy with Pauli rows deleted from table.
When deleting qubits the qubit index is the same as the
column index of the underlying :attr:`X` and :attr:`Z` arrays.
Args:
ind (int or list): index(es) to delete.
qubit (bool): if ``True`` delete qubit columns, otherwise delete
Pauli rows (Default: ``False``).
Returns:
PauliList: the resulting table with the entries removed.
Raises:
QiskitError: if ``ind`` is out of bounds for the array size or
number of qubits.
"""
if isinstance(ind, int):
ind = [ind]
if len(ind) == 0:
return PauliList.from_symplectic(self._z, self._x, self.phase)
# Row deletion
if not qubit:
if max(ind) >= len(self):
raise QiskitError(
f"Indices {ind} are not all less than the size"
f" of the PauliList ({len(self)})"
)
z = np.delete(self._z, ind, axis=0)
x = np.delete(self._x, ind, axis=0)
phase = np.delete(self._phase, ind)
return PauliList(BasePauli(z, x, phase))
# Column (qubit) deletion
if max(ind) >= self.num_qubits:
raise QiskitError(
f"Indices {ind} are not all less than the number of"
f" qubits in the PauliList ({self.num_qubits})"
)
z = np.delete(self._z, ind, axis=1)
x = np.delete(self._x, ind, axis=1)
# Use self.phase, not self._phase as deleting qubits can change the
# ZX phase convention
return PauliList.from_symplectic(z, x, self.phase)
def insert(self, ind: int, value: PauliList, qubit: bool = False) -> PauliList:
"""Insert Paulis into the table.
When inserting qubits the qubit index is the same as the
column index of the underlying :attr:`X` and :attr:`Z` arrays.
Args:
ind (int): index to insert at.
value (PauliList): values to insert.
qubit (bool): if ``True`` insert qubit columns, otherwise insert
Pauli rows (Default: ``False``).
Returns:
PauliList: the resulting table with the entries inserted.
Raises:
QiskitError: if the insertion index is invalid.
"""
if not isinstance(ind, int):
raise QiskitError("Insert index must be an integer.")
if not isinstance(value, PauliList):
value = PauliList(value)
# Row insertion
size = self._num_paulis
if not qubit:
if ind > size:
raise QiskitError(
f"Index {ind} is larger than the number of rows in the" f" PauliList ({size})."
)
base_z = np.insert(self._z, ind, value._z, axis=0)
base_x = np.insert(self._x, ind, value._x, axis=0)
base_phase = np.insert(self._phase, ind, value._phase)
return PauliList(BasePauli(base_z, base_x, base_phase))
# Column insertion
if ind > self.num_qubits:
raise QiskitError(
f"Index {ind} is greater than number of qubits"
f" in the PauliList ({self.num_qubits})"
)
if len(value) == 1:
# Pad blocks to correct size
value_x = np.vstack(size * [value.x])
value_z = np.vstack(size * [value.z])
value_phase = np.vstack(size * [value.phase])
elif len(value) == size:
# Blocks are already correct size
value_x = value.x
value_z = value.z
value_phase = value.phase
else:
# Blocks are incorrect size
raise QiskitError(
"Input PauliList must have a single row, or"
" the same number of rows as the Pauli Table"
f" ({size})."
)
# Build new array by blocks
z = np.hstack([self.z[:, :ind], value_z, self.z[:, ind:]])
x = np.hstack([self.x[:, :ind], value_x, self.x[:, ind:]])
phase = self.phase + value_phase
return PauliList.from_symplectic(z, x, phase)
def argsort(self, weight: bool = False, phase: bool = False) -> np.ndarray:
"""Return indices for sorting the rows of the table.
The default sort method is lexicographic sorting by qubit number.
By using the `weight` kwarg the output can additionally be sorted
by the number of non-identity terms in the Pauli, where the set of
all Paulis of a given weight are still ordered lexicographically.
Args:
weight (bool): Optionally sort by weight if ``True`` (Default: ``False``).
phase (bool): Optionally sort by phase before weight or order
(Default: ``False``).
Returns:
array: the indices for sorting the table.
"""
# Get order of each Pauli using
# I => 0, X => 1, Y => 2, Z => 3
x = self.x
z = self.z
order = 1 * (x & ~z) + 2 * (x & z) + 3 * (~x & z)
phases = self.phase
# Optionally get the weight of Pauli
# This is the number of non identity terms
if weight:
weights = np.sum(x | z, axis=1)
# To preserve ordering between successive sorts we
# are use the 'stable' sort method
indices = np.arange(self._num_paulis)
# Initial sort by phases
sort_inds = phases.argsort(kind="stable")
indices = indices[sort_inds]
order = order[sort_inds]
if phase:
phases = phases[sort_inds]
if weight:
weights = weights[sort_inds]
# Sort by order
for i in range(self.num_qubits):
sort_inds = order[:, i].argsort(kind="stable")
order = order[sort_inds]
indices = indices[sort_inds]
if weight:
weights = weights[sort_inds]
if phase:
phases = phases[sort_inds]
# If using weights we implement a sort by total number
# of non-identity Paulis
if weight:
sort_inds = weights.argsort(kind="stable")
indices = indices[sort_inds]
phases = phases[sort_inds]
# If sorting by phase we perform a final sort by the phase value
# of each pauli
if phase:
indices = indices[phases.argsort(kind="stable")]
return indices
def sort(self, weight: bool = False, phase: bool = False) -> PauliList:
"""Sort the rows of the table.
The default sort method is lexicographic sorting by qubit number.
By using the `weight` kwarg the output can additionally be sorted
by the number of non-identity terms in the Pauli, where the set of
all Paulis of a given weight are still ordered lexicographically.
**Example**
Consider sorting all a random ordering of all 2-qubit Paulis
.. code-block::
from numpy.random import shuffle
from qiskit.quantum_info.operators import PauliList
# 2-qubit labels
labels = ['II', 'IX', 'IY', 'IZ', 'XI', 'XX', 'XY', 'XZ',
'YI', 'YX', 'YY', 'YZ', 'ZI', 'ZX', 'ZY', 'ZZ']
# Shuffle Labels
shuffle(labels)
pt = PauliList(labels)
print('Initial Ordering')
print(pt)
# Lexicographic Ordering
srt = pt.sort()
print('Lexicographically sorted')
print(srt)
# Weight Ordering
srt = pt.sort(weight=True)
print('Weight sorted')
print(srt)
.. parsed-literal::
Initial Ordering
['YX', 'ZZ', 'XZ', 'YI', 'YZ', 'II', 'XX', 'XI', 'XY', 'YY', 'IX', 'IZ',
'ZY', 'ZI', 'ZX', 'IY']
Lexicographically sorted
['II', 'IX', 'IY', 'IZ', 'XI', 'XX', 'XY', 'XZ', 'YI', 'YX', 'YY', 'YZ',
'ZI', 'ZX', 'ZY', 'ZZ']
Weight sorted
['II', 'IX', 'IY', 'IZ', 'XI', 'YI', 'ZI', 'XX', 'XY', 'XZ', 'YX', 'YY',
'YZ', 'ZX', 'ZY', 'ZZ']
Args:
weight (bool): optionally sort by weight if ``True`` (Default: ``False``).
phase (bool): Optionally sort by phase before weight or order
(Default: ``False``).
Returns:
PauliList: a sorted copy of the original table.
"""
return self[self.argsort(weight=weight, phase=phase)]
def unique(self, return_index: bool = False, return_counts: bool = False) -> PauliList:
"""Return unique Paulis from the table.
**Example**
.. code-block::
from qiskit.quantum_info.operators import PauliList
pt = PauliList(['X', 'Y', '-X', 'I', 'I', 'Z', 'X', 'iZ'])
unique = pt.unique()
print(unique)
.. parsed-literal::
['X', 'Y', '-X', 'I', 'Z', 'iZ']
Args:
return_index (bool): If ``True``, also return the indices that
result in the unique array.
(Default: ``False``)
return_counts (bool): If ``True``, also return the number of times
each unique item appears in the table.
Returns:
PauliList: unique
the table of the unique rows.
unique_indices: np.ndarray, optional
The indices of the first occurrences of the unique values in
the original array. Only provided if ``return_index`` is ``True``.
unique_counts: np.array, optional
The number of times each of the unique values comes up in the
original array. Only provided if ``return_counts`` is ``True``.
"""
# Check if we need to stack the phase array
if np.any(self._phase != self._phase[0]):
# Create a single array of Pauli's and phases for calling np.unique on
# so that we treat different phased Pauli's as unique
array = np.hstack([self._z, self._x, self.phase.reshape((self.phase.shape[0], 1))])
else:
# All Pauli's have the same phase so we only need to sort the array
array = np.hstack([self._z, self._x])
# Get indexes of unique entries
if return_counts:
_, index, counts = np.unique(array, return_index=True, return_counts=True, axis=0)
else:
_, index = np.unique(array, return_index=True, axis=0)
# Sort the index so we return unique rows in the original array order
sort_inds = index.argsort()
index = index[sort_inds]
unique = PauliList(BasePauli(self._z[index], self._x[index], self._phase[index]))
# Concatenate return tuples
ret = (unique,)
if return_index:
ret += (index,)
if return_counts:
ret += (counts[sort_inds],)
if len(ret) == 1:
return ret[0]
return ret
# ---------------------------------------------------------------------
# BaseOperator methods
# ---------------------------------------------------------------------
def tensor(self, other: PauliList) -> PauliList:
"""Return the tensor product with each Pauli in the list.
Args:
other (PauliList): another PauliList.
Returns:
PauliList: the list of tensor product Paulis.
Raises:
QiskitError: if other cannot be converted to a PauliList, does
not have either 1 or the same number of Paulis as
the current list.
"""
if not isinstance(other, PauliList):
other = PauliList(other)
return PauliList(super().tensor(other))
def expand(self, other: PauliList) -> PauliList:
"""Return the expand product of each Pauli in the list.
Args:
other (PauliList): another PauliList.
Returns:
PauliList: the list of tensor product Paulis.
Raises:
QiskitError: if other cannot be converted to a PauliList, does
not have either 1 or the same number of Paulis as
the current list.
"""
if not isinstance(other, PauliList):
other = PauliList(other)
if len(other) not in [1, len(self)]:
raise QiskitError(
"Incompatible PauliLists. Other list must "
"have either 1 or the same number of Paulis."
)
return PauliList(super().expand(other))
def compose(
self,
other: PauliList,
qargs: None | list = None,
front: bool = False,
inplace: bool = False,
) -> PauliList:
"""Return the composition self∘other for each Pauli in the list.
Args:
other (PauliList): another PauliList.
qargs (None or list): qubits to apply dot product on (Default: ``None``).
front (bool): If True use `dot` composition method [default: ``False``].
inplace (bool): If ``True`` update in-place (default: ``False``).
Returns:
PauliList: the list of composed Paulis.
Raises:
QiskitError: if other cannot be converted to a PauliList, does
not have either 1 or the same number of Paulis as
the current list, or has the wrong number of qubits
for the specified ``qargs``.
"""
if qargs is None:
qargs = getattr(other, "qargs", None)
if not isinstance(other, PauliList):
other = PauliList(other)
if len(other) not in [1, len(self)]:
raise QiskitError(
"Incompatible PauliLists. Other list must "
"have either 1 or the same number of Paulis."
)
return PauliList(super().compose(other, qargs=qargs, front=front, inplace=inplace))
def dot(self, other: PauliList, qargs: None | list = None, inplace: bool = False) -> PauliList:
"""Return the composition other∘self for each Pauli in the list.
Args:
other (PauliList): another PauliList.
qargs (None or list): qubits to apply dot product on (Default: ``None``).
inplace (bool): If True update in-place (default: ``False``).
Returns:
PauliList: the list of composed Paulis.
Raises:
QiskitError: if other cannot be converted to a PauliList, does
not have either 1 or the same number of Paulis as
the current list, or has the wrong number of qubits
for the specified ``qargs``.
"""
return self.compose(other, qargs=qargs, front=True, inplace=inplace)
def _add(self, other, qargs=None):
"""Append two PauliLists.
If ``qargs`` are specified the other operator will be added
assuming it is identity on all other subsystems.
Args:
other (PauliList): another table.
qargs (None or list): optional subsystems to add on
(Default: ``None``)
Returns:
PauliList: the concatenated list ``self`` + ``other``.
"""
if qargs is None:
qargs = getattr(other, "qargs", None)
if not isinstance(other, PauliList):
other = PauliList(other)
self._op_shape._validate_add(other._op_shape, qargs)
base_phase = np.hstack((self._phase, other._phase))
if qargs is None or (sorted(qargs) == qargs and len(qargs) == self.num_qubits):
base_z = np.vstack([self._z, other._z])
base_x = np.vstack([self._x, other._x])
else:
# Pad other with identity and then add
padded = BasePauli(
np.zeros((other.size, self.num_qubits), dtype=bool),
np.zeros((other.size, self.num_qubits), dtype=bool),
np.zeros(other.size, dtype=int),
)
padded = padded.compose(other, qargs=qargs, inplace=True)
base_z = np.vstack([self._z, padded._z])
base_x = np.vstack([self._x, padded._x])
return PauliList(BasePauli(base_z, base_x, base_phase))
def _multiply(self, other):
"""Multiply each Pauli in the list by a phase.
Args:
other (complex or array): a complex number in [1, -1j, -1, 1j]
Returns:
PauliList: the list of Paulis other * self.
Raises:
QiskitError: if the phase is not in the set [1, -1j, -1, 1j].
"""
return PauliList(super()._multiply(other))
def conjugate(self):
"""Return the conjugate of each Pauli in the list."""
return PauliList(super().conjugate())
def transpose(self):
"""Return the transpose of each Pauli in the list."""
return PauliList(super().transpose())
def adjoint(self):
"""Return the adjoint of each Pauli in the list."""
return PauliList(super().adjoint())
def inverse(self):
"""Return the inverse of each Pauli in the list."""
return PauliList(super().adjoint())
# ---------------------------------------------------------------------
# Utility methods
# ---------------------------------------------------------------------
def commutes(self, other: BasePauli, qargs: list | None = None) -> bool:
"""Return True for each Pauli that commutes with other.
Args:
other (PauliList): another PauliList operator.
qargs (list): qubits to apply dot product on (default: ``None``).
Returns:
bool: ``True`` if Paulis commute, ``False`` if they anti-commute.
"""
if qargs is None:
qargs = getattr(other, "qargs", None)
if not isinstance(other, BasePauli):
other = PauliList(other)
return super().commutes(other, qargs=qargs)
def anticommutes(self, other: BasePauli, qargs: list | None = None) -> bool:
"""Return ``True`` if other Pauli that anticommutes with other.
Args:
other (PauliList): another PauliList operator.
qargs (list): qubits to apply dot product on (default: ``None``).
Returns:
bool: ``True`` if Paulis anticommute, ``False`` if they commute.
"""
return np.logical_not(self.commutes(other, qargs=qargs))
def commutes_with_all(self, other: PauliList) -> np.ndarray:
"""Return indexes of rows that commute ``other``.
If ``other`` is a multi-row Pauli list the returned vector indexes rows
of the current PauliList that commute with *all* Paulis in other.
If no rows satisfy the condition the returned array will be empty.
Args:
other (PauliList): a single Pauli or multi-row PauliList.
Returns:
array: index array of the commuting rows.
"""
return self._commutes_with_all(other)
def anticommutes_with_all(self, other: PauliList) -> np.ndarray:
"""Return indexes of rows that commute other.
If ``other`` is a multi-row Pauli list the returned vector indexes rows
of the current PauliList that anti-commute with *all* Paulis in other.
If no rows satisfy the condition the returned array will be empty.
Args:
other (PauliList): a single Pauli or multi-row PauliList.
Returns:
array: index array of the anti-commuting rows.
"""
return self._commutes_with_all(other, anti=True)
def _commutes_with_all(self, other, anti=False):
"""Return row indexes that commute with all rows in another PauliList.
Args:
other (PauliList): a PauliList.
anti (bool): if ``True`` return rows that anti-commute, otherwise
return rows that commute (Default: ``False``).
Returns:
array: index array of commuting or anti-commuting row.
"""
if not isinstance(other, PauliList):
other = PauliList(other)
comms = self.commutes(other[0])
(inds,) = np.where(comms == int(not anti))
for pauli in other[1:]:
comms = self[inds].commutes(pauli)
(new_inds,) = np.where(comms == int(not anti))
if new_inds.size == 0:
# No commuting rows
return new_inds
inds = inds[new_inds]
return inds
def evolve(
self,
other: Pauli | Clifford | QuantumCircuit,
qargs: list | None = None,
frame: Literal["h", "s"] = "h",
) -> Pauli:
r"""Performs either Heisenberg (default) or Schrödinger picture
evolution of the Pauli by a Clifford and returns the evolved Pauli.
Schrödinger picture evolution can be chosen by passing parameter ``frame='s'``.
This option yields a faster calculation.
Heisenberg picture evolves the Pauli as :math:`P^\prime = C^\dagger.P.C`.
Schrödinger picture evolves the Pauli as :math:`P^\prime = C.P.C^\dagger`.
Args:
other (Pauli or Clifford or QuantumCircuit): The Clifford operator to evolve by.
qargs (list): a list of qubits to apply the Clifford to.
frame (string): ``'h'`` for Heisenberg (default) or ``'s'`` for Schrödinger framework.
Returns:
PauliList: the Pauli :math:`C^\dagger.P.C` (Heisenberg picture)
or the Pauli :math:`C.P.C^\dagger` (Schrödinger picture).
Raises:
QiskitError: if the Clifford number of qubits and qargs don't match.
"""
from qiskit.circuit import Instruction
if qargs is None:
qargs = getattr(other, "qargs", None)
if not isinstance(other, (BasePauli, Instruction, QuantumCircuit, Clifford)):
# Convert to a PauliList
other = PauliList(other)
return PauliList(super().evolve(other, qargs=qargs, frame=frame))
def to_labels(self, array: bool = False):
r"""Convert a PauliList to a list Pauli string labels.
For large PauliLists converting using the ``array=True``
kwarg will be more efficient since it allocates memory for
the full Numpy array of labels in advance.
.. list-table:: Pauli Representations
:header-rows: 1
* - Label
- Symplectic
- Matrix
* - ``"I"``
- :math:`[0, 0]`
- :math:`\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}`
* - ``"X"``
- :math:`[1, 0]`
- :math:`\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}`
* - ``"Y"``
- :math:`[1, 1]`
- :math:`\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}`
* - ``"Z"``
- :math:`[0, 1]`
- :math:`\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}`
Args:
array (bool): return a Numpy array if ``True``, otherwise
return a list (Default: ``False``).
Returns:
list or array: The rows of the PauliList in label form.
"""
if (self.phase == 1).any():
prefix_len = 2
elif (self.phase > 0).any():
prefix_len = 1
else:
prefix_len = 0
str_len = self.num_qubits + prefix_len
ret = np.zeros(self.size, dtype=f"<U{str_len}")
iterator = self.label_iter()
for i in range(self.size):
ret[i] = next(iterator)
if array:
return ret
return ret.tolist()
def to_matrix(self, sparse: bool = False, array: bool = False) -> list:
r"""Convert to a list or array of Pauli matrices.
For large PauliLists converting using the ``array=True``
kwarg will be more efficient since it allocates memory a full
rank-3 Numpy array of matrices in advance.
.. list-table:: Pauli Representations
:header-rows: 1
* - Label
- Symplectic
- Matrix
* - ``"I"``
- :math:`[0, 0]`
- :math:`\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}`
* - ``"X"``
- :math:`[1, 0]`
- :math:`\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}`
* - ``"Y"``
- :math:`[1, 1]`
- :math:`\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}`
* - ``"Z"``
- :math:`[0, 1]`
- :math:`\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}`
Args:
sparse (bool): if ``True`` return sparse CSR matrices, otherwise
return dense Numpy arrays (Default: ``False``).
array (bool): return as rank-3 numpy array if ``True``, otherwise
return a list of Numpy arrays (Default: ``False``).
Returns:
list: A list of dense Pauli matrices if ``array=False` and ``sparse=False`.
list: A list of sparse Pauli matrices if ``array=False`` and ``sparse=True``.
array: A dense rank-3 array of Pauli matrices if ``array=True``.
"""
if not array:
# We return a list of Numpy array matrices
return list(self.matrix_iter(sparse=sparse))
# For efficiency we also allow returning a single rank-3
# array where first index is the Pauli row, and second two
# indices are the matrix indices
dim = 2**self.num_qubits
ret = np.zeros((self.size, dim, dim), dtype=complex)
iterator = self.matrix_iter(sparse=sparse)
for i in range(self.size):
ret[i] = next(iterator)
return ret
# ---------------------------------------------------------------------
# Custom Iterators
# ---------------------------------------------------------------------
def label_iter(self):
"""Return a label representation iterator.
This is a lazy iterator that converts each row into the string
label only as it is used. To convert the entire table to labels use
the :meth:`to_labels` method.
Returns:
LabelIterator: label iterator object for the PauliList.
"""
class LabelIterator(CustomIterator):
"""Label representation iteration and item access."""
def __repr__(self):
return f"<PauliList_label_iterator at {hex(id(self))}>"
def __getitem__(self, key):
return self.obj._to_label(self.obj._z[key], self.obj._x[key], self.obj._phase[key])
return LabelIterator(self)
def matrix_iter(self, sparse: bool = False):
"""Return a matrix representation iterator.
This is a lazy iterator that converts each row into the Pauli matrix
representation only as it is used. To convert the entire table to
matrices use the :meth:`to_matrix` method.
Args:
sparse (bool): optionally return sparse CSR matrices if ``True``,
otherwise return Numpy array matrices
(Default: ``False``)
Returns:
MatrixIterator: matrix iterator object for the PauliList.
"""
class MatrixIterator(CustomIterator):
"""Matrix representation iteration and item access."""
def __repr__(self):
return f"<PauliList_matrix_iterator at {hex(id(self))}>"
def __getitem__(self, key):
return self.obj._to_matrix(
self.obj._z[key], self.obj._x[key], self.obj._phase[key], sparse=sparse
)
return MatrixIterator(self)
# ---------------------------------------------------------------------
# Class methods
# ---------------------------------------------------------------------
@classmethod
def from_symplectic(
cls, z: np.ndarray, x: np.ndarray, phase: np.ndarray | None = 0
) -> PauliList:
"""Construct a PauliList from a symplectic data.
Args:
z (np.ndarray): 2D boolean Numpy array.
x (np.ndarray): 2D boolean Numpy array.
phase (np.ndarray or None): Optional, 1D integer array from Z_4.
Returns:
PauliList: the constructed PauliList.
"""
base_z, base_x, base_phase = cls._from_array(z, x, phase)
return cls(BasePauli(base_z, base_x, base_phase))
def _noncommutation_graph(self, qubit_wise):
"""Create an edge list representing the non-commutation graph (Pauli Graph).
An edge (i, j) is present if i and j are not commutable.
Args:
qubit_wise (bool): whether the commutation rule is applied to the whole operator,
or on a per-qubit basis.
Returns:
list[tuple[int,int]]: A list of pairs of indices of the PauliList that are not commutable.
"""
# convert a Pauli operator into int vector where {I: 0, X: 2, Y: 3, Z: 1}
mat1 = np.array(
[op.z + 2 * op.x for op in self],
dtype=np.int8,
)
mat2 = mat1[:, None]
# This is 0 (false-y) iff one of the operators is the identity and/or both operators are the
# same. In other cases, it is non-zero (truth-y).
qubit_anticommutation_mat = (mat1 * mat2) * (mat1 - mat2)
# 'adjacency_mat[i, j]' is True iff Paulis 'i' and 'j' do not commute in the given strategy.
if qubit_wise:
adjacency_mat = np.logical_or.reduce(qubit_anticommutation_mat, axis=2)
else:
# Don't commute if there's an odd number of element-wise anti-commutations.
adjacency_mat = np.logical_xor.reduce(qubit_anticommutation_mat, axis=2)
# Convert into list where tuple elements are non-commuting operators. We only want to
# results from one triangle to avoid symmetric duplications.
return list(zip(*np.where(np.triu(adjacency_mat, k=1))))
def noncommutation_graph(self, qubit_wise: bool) -> rx.PyGraph:
"""Create the non-commutation graph of this PauliList.
This transforms the measurement operator grouping problem into graph coloring problem. The
constructed graph contains one node for each Pauli. The nodes will be connecting for any two
Pauli terms that do _not_ commute.
Args:
qubit_wise (bool): whether the commutation rule is applied to the whole operator,
or on a per-qubit basis.
Returns:
rustworkx.PyGraph: the non-commutation graph with nodes for each Pauli and edges
indicating a non-commutation relation. Each node will hold the index of the Pauli
term it corresponds to in its data. The edges of the graph hold no data.
"""
edges = self._noncommutation_graph(qubit_wise)
graph = rx.PyGraph()
graph.add_nodes_from(range(self.size))
graph.add_edges_from_no_data(edges)
return graph
def _commuting_groups(self, qubit_wise: bool) -> dict[int, list[int]]:
"""Partition a PauliList into sets of commuting Pauli strings.
This is the internal logic of the public ``PauliList.group_commuting`` method which returns
a mapping of colors to Pauli indices. The same logic is re-used by
``SparsePauliOp.group_commuting``.
Args:
qubit_wise (bool): whether the commutation rule is applied to the whole operator,
or on a per-qubit basis.
Returns:
dict[int, list[int]]: Dictionary of color indices mapping to a list of Pauli indices.
"""
graph = self.noncommutation_graph(qubit_wise)
# Keys in coloring_dict are nodes, values are colors
coloring_dict = rx.graph_greedy_color(graph)
groups = defaultdict(list)
for idx, color in coloring_dict.items():
groups[color].append(idx)
return groups
def group_qubit_wise_commuting(self) -> list[PauliList]:
"""Partition a PauliList into sets of mutually qubit-wise commuting Pauli strings.
Returns:
list[PauliList]: List of PauliLists where each PauliList contains commutable Pauli operators.
"""
return self.group_commuting(qubit_wise=True)
def group_commuting(self, qubit_wise: bool = False) -> list[PauliList]:
"""Partition a PauliList into sets of commuting Pauli strings.
Args:
qubit_wise (bool): whether the commutation rule is applied to the whole operator,
or on a per-qubit basis. For example:
.. code-block:: python
>>> from qiskit.quantum_info import PauliList
>>> op = PauliList(["XX", "YY", "IZ", "ZZ"])
>>> op.group_commuting()
[PauliList(['XX', 'YY']), PauliList(['IZ', 'ZZ'])]
>>> op.group_commuting(qubit_wise=True)
[PauliList(['XX']), PauliList(['YY']), PauliList(['IZ', 'ZZ'])]
Returns:
list[PauliList]: List of PauliLists where each PauliList contains commuting Pauli operators.
"""
groups = self._commuting_groups(qubit_wise)
return [self[group] for group in groups.values()]
| qiskit/qiskit/quantum_info/operators/symplectic/pauli_list.py/0 | {
"file_path": "qiskit/qiskit/quantum_info/operators/symplectic/pauli_list.py",
"repo_id": "qiskit",
"token_count": 20680
} | 195 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Statevector quantum state class.
"""
from __future__ import annotations
import copy as _copy
import math
import re
from numbers import Number
import numpy as np
from qiskit import _numpy_compat
from qiskit.circuit.quantumcircuit import QuantumCircuit
from qiskit.circuit.instruction import Instruction
from qiskit.exceptions import QiskitError
from qiskit.quantum_info.states.quantum_state import QuantumState
from qiskit.quantum_info.operators.mixins.tolerances import TolerancesMixin
from qiskit.quantum_info.operators.operator import Operator, BaseOperator
from qiskit.quantum_info.operators.symplectic import Pauli, SparsePauliOp
from qiskit.quantum_info.operators.op_shape import OpShape
from qiskit.quantum_info.operators.predicates import matrix_equal
from qiskit._accelerate.pauli_expval import (
expval_pauli_no_x,
expval_pauli_with_x,
)
class Statevector(QuantumState, TolerancesMixin):
"""Statevector class"""
def __init__(
self,
data: np.ndarray | list | Statevector | Operator | QuantumCircuit | Instruction,
dims: int | tuple | list | None = None,
):
"""Initialize a statevector object.
Args:
data (np.array or list or Statevector or Operator or QuantumCircuit or
qiskit.circuit.Instruction):
Data from which the statevector can be constructed. This can be either a complex
vector, another statevector, a ``Operator`` with only one column or a
``QuantumCircuit`` or ``Instruction``. If the data is a circuit or instruction,
the statevector is constructed by assuming that all qubits are initialized to the
zero state.
dims (int or tuple or list): Optional. The subsystem dimension of
the state (See additional information).
Raises:
QiskitError: if input data is not valid.
Additional Information:
The ``dims`` kwarg can be None, an integer, or an iterable of
integers.
* ``Iterable`` -- the subsystem dimensions are the values in the list
with the total number of subsystems given by the length of the list.
* ``Int`` or ``None`` -- the length of the input vector
specifies the total dimension of the density matrix. If it is a
power of two the state will be initialized as an N-qubit state.
If it is not a power of two the state will have a single
d-dimensional subsystem.
"""
if isinstance(data, (list, np.ndarray)):
# Finally we check if the input is a raw vector in either a
# python list or numpy array format.
self._data = np.asarray(data, dtype=complex)
elif isinstance(data, Statevector):
self._data = data._data
if dims is None:
dims = data._op_shape._dims_l
elif isinstance(data, Operator):
# We allow conversion of column-vector operators to Statevectors
input_dim, _ = data.dim
if input_dim != 1:
raise QiskitError("Input Operator is not a column-vector.")
self._data = np.ravel(data.data)
elif isinstance(data, (QuantumCircuit, Instruction)):
self._data = Statevector.from_instruction(data).data
else:
raise QiskitError("Invalid input data format for Statevector")
# Check that the input is a numpy vector or column-vector numpy
# matrix. If it is a column-vector matrix reshape to a vector.
ndim = self._data.ndim
shape = self._data.shape
if ndim != 1:
if ndim == 2 and shape[1] == 1:
self._data = np.reshape(self._data, shape[0])
shape = self._data.shape
elif ndim != 2 or shape[1] != 1:
raise QiskitError("Invalid input: not a vector or column-vector.")
super().__init__(op_shape=OpShape.auto(shape=shape, dims_l=dims, num_qubits_r=0))
def __array__(self, dtype=None, copy=_numpy_compat.COPY_ONLY_IF_NEEDED):
dtype = self.data.dtype if dtype is None else dtype
return np.array(self.data, dtype=dtype, copy=copy)
def __eq__(self, other):
return super().__eq__(other) and np.allclose(
self._data, other._data, rtol=self.rtol, atol=self.atol
)
def __repr__(self):
prefix = "Statevector("
pad = len(prefix) * " "
return (
f"{prefix}{np.array2string(self._data, separator=', ', prefix=prefix)},\n{pad}"
f"dims={self._op_shape.dims_l()})"
)
@property
def settings(self) -> dict:
"""Return settings."""
return {"data": self._data, "dims": self._op_shape.dims_l()}
def draw(self, output: str | None = None, **drawer_args):
"""Return a visualization of the Statevector.
**repr**: ASCII TextMatrix of the state's ``__repr__``.
**text**: ASCII TextMatrix that can be printed in the console.
**latex**: An IPython Latex object for displaying in Jupyter Notebooks.
**latex_source**: Raw, uncompiled ASCII source to generate array using LaTeX.
**qsphere**: Matplotlib figure, rendering of statevector using `plot_state_qsphere()`.
**hinton**: Matplotlib figure, rendering of statevector using `plot_state_hinton()`.
**bloch**: Matplotlib figure, rendering of statevector using `plot_bloch_multivector()`.
**city**: Matplotlib figure, rendering of statevector using `plot_state_city()`.
**paulivec**: Matplotlib figure, rendering of statevector using `plot_state_paulivec()`.
Args:
output (str): Select the output method to use for drawing the
state. Valid choices are `repr`, `text`, `latex`, `latex_source`,
`qsphere`, `hinton`, `bloch`, `city`, or `paulivec`. Default is `repr`.
Default can be changed by adding the line ``state_drawer = <default>`` to
``~/.qiskit/settings.conf`` under ``[default]``.
drawer_args: Arguments to be passed directly to the relevant drawing
function or constructor (`TextMatrix()`, `array_to_latex()`,
`plot_state_qsphere()`, `plot_state_hinton()` or `plot_bloch_multivector()`).
See the relevant function under `qiskit.visualization` for that function's
documentation.
Returns:
:class:`matplotlib.Figure` or :class:`str` or
:class:`TextMatrix` or :class:`IPython.display.Latex`:
Drawing of the Statevector.
Raises:
ValueError: when an invalid output method is selected.
Examples:
Plot one of the Bell states
.. plot::
:include-source:
from numpy import sqrt
from qiskit.quantum_info import Statevector
sv=Statevector([1/sqrt(2), 0, 0, -1/sqrt(2)])
sv.draw(output='hinton')
"""
# pylint: disable=cyclic-import
from qiskit.visualization.state_visualization import state_drawer
return state_drawer(self, output=output, **drawer_args)
def _ipython_display_(self):
out = self.draw()
if isinstance(out, str):
print(out)
else:
from IPython.display import display
display(out)
def __getitem__(self, key: int | str) -> np.complex128:
"""Return Statevector item either by index or binary label
Args:
key (int or str): index or corresponding binary label, e.g. '01' = 1.
Returns:
numpy.complex128: Statevector item.
Raises:
QiskitError: if key is not valid.
"""
if isinstance(key, str):
try:
key = int(key, 2)
except ValueError:
raise QiskitError(f"Key '{key}' is not a valid binary string.") from None
if isinstance(key, int):
if key >= self.dim:
raise QiskitError(f"Key {key} is greater than Statevector dimension {self.dim}.")
if key < 0:
raise QiskitError(f"Key {key} is not a valid positive value.")
return self._data[key]
else:
raise QiskitError("Key must be int or a valid binary string.")
def __iter__(self):
yield from self._data
def __len__(self):
return len(self._data)
@property
def data(self) -> np.ndarray:
"""Return data."""
return self._data
def is_valid(self, atol: float | None = None, rtol: float | None = None) -> bool:
"""Return True if a Statevector has norm 1."""
if atol is None:
atol = self.atol
if rtol is None:
rtol = self.rtol
norm = np.linalg.norm(self.data)
return np.allclose(norm, 1, rtol=rtol, atol=atol)
def to_operator(self) -> Operator:
"""Convert state to a rank-1 projector operator"""
mat = np.outer(self.data, np.conj(self.data))
return Operator(mat, input_dims=self.dims(), output_dims=self.dims())
def conjugate(self) -> Statevector:
"""Return the conjugate of the operator."""
return Statevector(np.conj(self.data), dims=self.dims())
def trace(self) -> np.float64:
"""Return the trace of the quantum state as a density matrix."""
return np.sum(np.abs(self.data) ** 2)
def purity(self) -> np.float64:
"""Return the purity of the quantum state."""
# For a valid statevector the purity is always 1, however if we simply
# have an arbitrary vector (not correctly normalized) then the
# purity is equivalent to the trace squared:
# P(|psi>) = Tr[|psi><psi|psi><psi|] = |<psi|psi>|^2
return self.trace() ** 2
def tensor(self, other: Statevector) -> Statevector:
"""Return the tensor product state self ⊗ other.
Args:
other (Statevector): a quantum state object.
Returns:
Statevector: the tensor product operator self ⊗ other.
Raises:
QiskitError: if other is not a quantum state.
"""
if not isinstance(other, Statevector):
other = Statevector(other)
ret = _copy.copy(self)
ret._op_shape = self._op_shape.tensor(other._op_shape)
ret._data = np.kron(self._data, other._data)
return ret
def inner(self, other: Statevector) -> np.complex128:
r"""Return the inner product of self and other as
:math:`\langle self| other \rangle`.
Args:
other (Statevector): a quantum state object.
Returns:
np.complex128: the inner product of self and other, :math:`\langle self| other \rangle`.
Raises:
QiskitError: if other is not a quantum state or has different dimension.
"""
if not isinstance(other, Statevector):
other = Statevector(other)
if self.dims() != other.dims():
raise QiskitError(
f"Statevector dimensions do not match: {self.dims()} and {other.dims()}."
)
inner = np.vdot(self.data, other.data)
return inner
def expand(self, other: Statevector) -> Statevector:
"""Return the tensor product state other ⊗ self.
Args:
other (Statevector): a quantum state object.
Returns:
Statevector: the tensor product state other ⊗ self.
Raises:
QiskitError: if other is not a quantum state.
"""
if not isinstance(other, Statevector):
other = Statevector(other)
ret = _copy.copy(self)
ret._op_shape = self._op_shape.expand(other._op_shape)
ret._data = np.kron(other._data, self._data)
return ret
def _add(self, other):
"""Return the linear combination self + other.
Args:
other (Statevector): a quantum state object.
Returns:
Statevector: the linear combination self + other.
Raises:
QiskitError: if other is not a quantum state, or has
incompatible dimensions.
"""
if not isinstance(other, Statevector):
other = Statevector(other)
self._op_shape._validate_add(other._op_shape)
ret = _copy.copy(self)
ret._data = self.data + other.data
return ret
def _multiply(self, other):
"""Return the scalar multiplied state self * other.
Args:
other (complex): a complex number.
Returns:
Statevector: the scalar multiplied state other * self.
Raises:
QiskitError: if other is not a valid complex number.
"""
if not isinstance(other, Number):
raise QiskitError("other is not a number")
ret = _copy.copy(self)
ret._data = other * self.data
return ret
def evolve(
self, other: Operator | QuantumCircuit | Instruction, qargs: list[int] | None = None
) -> Statevector:
"""Evolve a quantum state by the operator.
Args:
other (Operator | QuantumCircuit | circuit.Instruction): The operator to evolve by.
qargs (list): a list of Statevector subsystem positions to apply
the operator on.
Returns:
Statevector: the output quantum state.
Raises:
QiskitError: if the operator dimension does not match the
specified Statevector subsystem dimensions.
"""
if qargs is None:
qargs = getattr(other, "qargs", None)
# Get return vector
ret = _copy.copy(self)
# Evolution by a circuit or instruction
if isinstance(other, QuantumCircuit):
other = other.to_instruction()
if isinstance(other, Instruction):
if self.num_qubits is None:
raise QiskitError("Cannot apply QuantumCircuit to non-qubit Statevector.")
return self._evolve_instruction(ret, other, qargs=qargs)
# Evolution by an Operator
if not isinstance(other, Operator):
dims = self.dims(qargs=qargs)
other = Operator(other, input_dims=dims, output_dims=dims)
# check dimension
if self.dims(qargs) != other.input_dims():
raise QiskitError(
"Operator input dimensions are not equal to statevector subsystem dimensions."
)
return Statevector._evolve_operator(ret, other, qargs=qargs)
def equiv(
self, other: Statevector, rtol: float | None = None, atol: float | None = None
) -> bool:
"""Return True if other is equivalent as a statevector up to global phase.
.. note::
If other is not a Statevector, but can be used to initialize a statevector object,
this will check that Statevector(other) is equivalent to the current statevector up
to global phase.
Args:
other (Statevector): an object from which a ``Statevector`` can be constructed.
rtol (float): relative tolerance value for comparison.
atol (float): absolute tolerance value for comparison.
Returns:
bool: True if statevectors are equivalent up to global phase.
"""
if not isinstance(other, Statevector):
try:
other = Statevector(other)
except QiskitError:
return False
if self.dim != other.dim:
return False
if atol is None:
atol = self.atol
if rtol is None:
rtol = self.rtol
return matrix_equal(self.data, other.data, ignore_phase=True, rtol=rtol, atol=atol)
def reverse_qargs(self) -> Statevector:
r"""Return a Statevector with reversed subsystem ordering.
For a tensor product state this is equivalent to reversing the order
of tensor product subsystems. For a statevector
:math:`|\psi \rangle = |\psi_{n-1} \rangle \otimes ... \otimes |\psi_0 \rangle`
the returned statevector will be
:math:`|\psi_{0} \rangle \otimes ... \otimes |\psi_{n-1} \rangle`.
Returns:
Statevector: the Statevector with reversed subsystem order.
"""
ret = _copy.copy(self)
axes = tuple(range(self._op_shape._num_qargs_l - 1, -1, -1))
ret._data = np.reshape(
np.transpose(np.reshape(self.data, self._op_shape.tensor_shape), axes),
self._op_shape.shape,
)
ret._op_shape = self._op_shape.reverse()
return ret
def _expectation_value_pauli(self, pauli, qargs=None):
"""Compute the expectation value of a Pauli.
Args:
pauli (Pauli): a Pauli operator to evaluate expval of.
qargs (None or list): subsystems to apply operator on.
Returns:
complex: the expectation value.
"""
n_pauli = len(pauli)
if qargs is None:
qubits = np.arange(n_pauli)
else:
qubits = np.array(qargs)
x_mask = np.dot(1 << qubits, pauli.x)
z_mask = np.dot(1 << qubits, pauli.z)
pauli_phase = (-1j) ** pauli.phase if pauli.phase else 1
if x_mask + z_mask == 0:
return pauli_phase * np.linalg.norm(self.data)
if x_mask == 0:
return pauli_phase * expval_pauli_no_x(self.data, self.num_qubits, z_mask)
x_max = qubits[pauli.x][-1]
y_phase = (-1j) ** pauli._count_y()
y_phase = y_phase[0]
return pauli_phase * expval_pauli_with_x(
self.data, self.num_qubits, z_mask, x_mask, y_phase, x_max
)
def expectation_value(
self, oper: BaseOperator | QuantumCircuit | Instruction, qargs: None | list[int] = None
) -> complex:
"""Compute the expectation value of an operator.
Args:
oper (Operator): an operator to evaluate expval of.
qargs (None or list): subsystems to apply operator on.
Returns:
complex: the expectation value.
"""
if isinstance(oper, Pauli):
return self._expectation_value_pauli(oper, qargs)
if isinstance(oper, SparsePauliOp):
return sum(
coeff * self._expectation_value_pauli(Pauli((z, x)), qargs)
for z, x, coeff in zip(oper.paulis.z, oper.paulis.x, oper.coeffs)
)
val = self.evolve(oper, qargs=qargs)
conj = self.conjugate()
return np.dot(conj.data, val.data)
def probabilities(
self, qargs: None | list[int] = None, decimals: None | int = None
) -> np.ndarray:
"""Return the subsystem measurement probability vector.
Measurement probabilities are with respect to measurement in the
computation (diagonal) basis.
Args:
qargs (None or list): subsystems to return probabilities for,
if None return for all subsystems (Default: None).
decimals (None or int): the number of decimal places to round
values. If None no rounding is done (Default: None).
Returns:
np.array: The Numpy vector array of probabilities.
Examples:
Consider a 2-qubit product state
:math:`|\\psi\\rangle=|+\\rangle\\otimes|0\\rangle`.
.. code-block::
from qiskit.quantum_info import Statevector
psi = Statevector.from_label('+0')
# Probabilities for measuring both qubits
probs = psi.probabilities()
print('probs: {}'.format(probs))
# Probabilities for measuring only qubit-0
probs_qubit_0 = psi.probabilities([0])
print('Qubit-0 probs: {}'.format(probs_qubit_0))
# Probabilities for measuring only qubit-1
probs_qubit_1 = psi.probabilities([1])
print('Qubit-1 probs: {}'.format(probs_qubit_1))
.. parsed-literal::
probs: [0.5 0. 0.5 0. ]
Qubit-0 probs: [1. 0.]
Qubit-1 probs: [0.5 0.5]
We can also permute the order of qubits in the ``qargs`` list
to change the qubit position in the probabilities output
.. code-block::
from qiskit.quantum_info import Statevector
psi = Statevector.from_label('+0')
# Probabilities for measuring both qubits
probs = psi.probabilities([0, 1])
print('probs: {}'.format(probs))
# Probabilities for measuring both qubits
# but swapping qubits 0 and 1 in output
probs_swapped = psi.probabilities([1, 0])
print('Swapped probs: {}'.format(probs_swapped))
.. parsed-literal::
probs: [0.5 0. 0.5 0. ]
Swapped probs: [0.5 0.5 0. 0. ]
"""
probs = self._subsystem_probabilities(
np.abs(self.data) ** 2, self._op_shape.dims_l(), qargs=qargs
)
# to account for roundoff errors, we clip
probs = np.clip(probs, a_min=0, a_max=1)
if decimals is not None:
probs = probs.round(decimals=decimals)
return probs
def reset(self, qargs: list[int] | None = None) -> Statevector:
"""Reset state or subsystems to the 0-state.
Args:
qargs (list or None): subsystems to reset, if None all
subsystems will be reset to their 0-state
(Default: None).
Returns:
Statevector: the reset state.
Additional Information:
If all subsystems are reset this will return the ground state
on all subsystems. If only a some subsystems are reset this
function will perform a measurement on those subsystems and
evolve the subsystems so that the collapsed post-measurement
states are rotated to the 0-state. The RNG seed for this
sampling can be set using the :meth:`seed` method.
"""
if qargs is None:
# Resetting all qubits does not require sampling or RNG
ret = _copy.copy(self)
state = np.zeros(self._op_shape.shape, dtype=complex)
state[0] = 1
ret._data = state
return ret
# Sample a single measurement outcome
dims = self.dims(qargs)
probs = self.probabilities(qargs)
sample = self._rng.choice(len(probs), p=probs, size=1)
# Convert to projector for state update
proj = np.zeros(len(probs), dtype=complex)
proj[sample] = 1 / np.sqrt(probs[sample])
# Rotate outcome to 0
reset = np.eye(len(probs))
reset[0, 0] = 0
reset[sample, sample] = 0
reset[0, sample] = 1
# compose with reset projection
reset = np.dot(reset, np.diag(proj))
return self.evolve(Operator(reset, input_dims=dims, output_dims=dims), qargs=qargs)
@classmethod
def from_label(cls, label: str) -> Statevector:
"""Return a tensor product of Pauli X,Y,Z eigenstates.
.. list-table:: Single-qubit state labels
:header-rows: 1
* - Label
- Statevector
* - ``"0"``
- :math:`[1, 0]`
* - ``"1"``
- :math:`[0, 1]`
* - ``"+"``
- :math:`[1 / \\sqrt{2}, 1 / \\sqrt{2}]`
* - ``"-"``
- :math:`[1 / \\sqrt{2}, -1 / \\sqrt{2}]`
* - ``"r"``
- :math:`[1 / \\sqrt{2}, i / \\sqrt{2}]`
* - ``"l"``
- :math:`[1 / \\sqrt{2}, -i / \\sqrt{2}]`
Args:
label (string): a eigenstate string ket label (see table for
allowed values).
Returns:
Statevector: The N-qubit basis state density matrix.
Raises:
QiskitError: if the label contains invalid characters, or the
length of the label is larger than an explicitly
specified num_qubits.
"""
# Check label is valid
if re.match(r"^[01rl\-+]+$", label) is None:
raise QiskitError("Label contains invalid characters.")
# We can prepare Z-eigenstates by converting the computational
# basis bit-string to an integer and preparing that unit vector
# However, for X-basis states, we will prepare a Z-eigenstate first
# then apply Hadamard gates to rotate 0 and 1s to + and -.
z_label = label
xy_states = False
if re.match("^[01]+$", label) is None:
# We have X or Y eigenstates so replace +,r with 0 and
# -,l with 1 and prepare the corresponding Z state
xy_states = True
z_label = z_label.replace("+", "0")
z_label = z_label.replace("r", "0")
z_label = z_label.replace("-", "1")
z_label = z_label.replace("l", "1")
# Initialize Z eigenstate vector
num_qubits = len(label)
data = np.zeros(1 << num_qubits, dtype=complex)
pos = int(z_label, 2)
data[pos] = 1
state = Statevector(data)
if xy_states:
# Apply hadamards to all qubits in X eigenstates
x_mat = np.array([[1, 1], [1, -1]], dtype=complex) / math.sqrt(2)
# Apply S.H to qubits in Y eigenstates
y_mat = np.dot(np.diag([1, 1j]), x_mat)
for qubit, char in enumerate(reversed(label)):
if char in ["+", "-"]:
state = state.evolve(x_mat, qargs=[qubit])
elif char in ["r", "l"]:
state = state.evolve(y_mat, qargs=[qubit])
return state
@staticmethod
def from_int(i: int, dims: int | tuple | list) -> Statevector:
"""Return a computational basis statevector.
Args:
i (int): the basis state element.
dims (int or tuple or list): The subsystem dimensions of the statevector
(See additional information).
Returns:
Statevector: The computational basis state :math:`|i\\rangle`.
Additional Information:
The ``dims`` kwarg can be an integer or an iterable of integers.
* ``Iterable`` -- the subsystem dimensions are the values in the list
with the total number of subsystems given by the length of the list.
* ``Int`` -- the integer specifies the total dimension of the
state. If it is a power of two the state will be initialized
as an N-qubit state. If it is not a power of two the state
will have a single d-dimensional subsystem.
"""
size = np.prod(dims)
state = np.zeros(size, dtype=complex)
state[i] = 1.0
return Statevector(state, dims=dims)
@classmethod
def from_instruction(cls, instruction: Instruction | QuantumCircuit) -> Statevector:
"""Return the output statevector of an instruction.
The statevector is initialized in the state :math:`|{0,\\ldots,0}\\rangle` of the
same number of qubits as the input instruction or circuit, evolved
by the input instruction, and the output statevector returned.
Args:
instruction (qiskit.circuit.Instruction or QuantumCircuit): instruction or circuit
Returns:
Statevector: The final statevector.
Raises:
QiskitError: if the instruction contains invalid instructions for
the statevector simulation.
"""
# Convert circuit to an instruction
if isinstance(instruction, QuantumCircuit):
instruction = instruction.to_instruction()
# Initialize an the statevector in the all |0> state
init = np.zeros(2**instruction.num_qubits, dtype=complex)
init[0] = 1.0
vec = Statevector(init, dims=instruction.num_qubits * (2,))
return Statevector._evolve_instruction(vec, instruction)
def to_dict(self, decimals: None | int = None) -> dict:
r"""Convert the statevector to dictionary form.
This dictionary representation uses a Ket-like notation where the
dictionary keys are qudit strings for the subsystem basis vectors.
If any subsystem has a dimension greater than 10 comma delimiters are
inserted between integers so that subsystems can be distinguished.
Args:
decimals (None or int): the number of decimal places to round
values. If None no rounding is done
(Default: None).
Returns:
dict: the dictionary form of the Statevector.
Example:
The ket-form of a 2-qubit statevector
:math:`|\psi\rangle = |-\rangle\otimes |0\rangle`
.. code-block::
from qiskit.quantum_info import Statevector
psi = Statevector.from_label('-0')
print(psi.to_dict())
.. parsed-literal::
{'00': (0.7071067811865475+0j), '10': (-0.7071067811865475+0j)}
For non-qubit subsystems the integer range can go from 0 to 9. For
example in a qutrit system
.. code-block::
import numpy as np
from qiskit.quantum_info import Statevector
vec = np.zeros(9)
vec[0] = 1 / np.sqrt(2)
vec[-1] = 1 / np.sqrt(2)
psi = Statevector(vec, dims=(3, 3))
print(psi.to_dict())
.. parsed-literal::
{'00': (0.7071067811865475+0j), '22': (0.7071067811865475+0j)}
For large subsystem dimensions delimiters are required. The
following example is for a 20-dimensional system consisting of
a qubit and 10-dimensional qudit.
.. code-block::
import numpy as np
from qiskit.quantum_info import Statevector
vec = np.zeros(2 * 10)
vec[0] = 1 / np.sqrt(2)
vec[-1] = 1 / np.sqrt(2)
psi = Statevector(vec, dims=(2, 10))
print(psi.to_dict())
.. parsed-literal::
{'00': (0.7071067811865475+0j), '91': (0.7071067811865475+0j)}
"""
return self._vector_to_dict(
self.data, self._op_shape.dims_l(), decimals=decimals, string_labels=True
)
@staticmethod
def _evolve_operator(statevec, oper, qargs=None):
"""Evolve a qudit statevector"""
new_shape = statevec._op_shape.compose(oper._op_shape, qargs=qargs)
if qargs is None:
# Full system evolution
statevec._data = np.dot(oper._data, statevec._data)
statevec._op_shape = new_shape
return statevec
# Get transpose axes
num_qargs = statevec._op_shape.num_qargs[0]
indices = [num_qargs - 1 - i for i in reversed(qargs)]
axes = indices + [i for i in range(num_qargs) if i not in indices]
axes_inv = np.argsort(axes).tolist()
# Calculate contraction dimensions
contract_dim = oper._op_shape.shape[1]
contract_shape = (contract_dim, statevec._op_shape.shape[0] // contract_dim)
# Reshape and transpose input array for contraction
tensor = np.transpose(
np.reshape(statevec.data, statevec._op_shape.tensor_shape),
axes,
)
tensor_shape = tensor.shape
# Perform contraction
tensor = np.reshape(
np.dot(oper.data, np.reshape(tensor, contract_shape)),
tensor_shape,
)
# Transpose back to original subsystem spec and flatten
statevec._data = np.reshape(np.transpose(tensor, axes_inv), new_shape.shape[0])
# Update dimension
statevec._op_shape = new_shape
return statevec
@staticmethod
def _evolve_instruction(statevec, obj, qargs=None):
"""Update the current Statevector by applying an instruction."""
from qiskit.circuit.reset import Reset
from qiskit.circuit.barrier import Barrier
# pylint complains about a cyclic import since the following Initialize file
# imports the StatePreparation, which again requires the Statevector (this file),
# but as this is a local import, it's not actually an issue and can be ignored
# pylint: disable=cyclic-import
from qiskit.circuit.library.data_preparation.initializer import Initialize
mat = Operator._instruction_to_matrix(obj)
if mat is not None:
# Perform the composition and inplace update the current state
# of the operator
return Statevector._evolve_operator(statevec, Operator(mat), qargs=qargs)
# Special instruction types
if isinstance(obj, Reset):
statevec._data = statevec.reset(qargs)._data
return statevec
if isinstance(obj, Barrier):
return statevec
if isinstance(obj, Initialize):
# state is initialized to labels in the initialize object
if all(isinstance(param, str) for param in obj.params):
initialization = Statevector.from_label("".join(obj.params))._data
# state is initialized to an integer
# here we're only checking the length as (1) a length-1 object necessarily means the
# state is described by an integer (as labels were already covered) and (2) the int
# was cast to a complex and we cannot do an int typecheck anyways
elif len(obj.params) == 1:
state = int(np.real(obj.params[0]))
initialization = Statevector.from_int(state, (2,) * obj.num_qubits)._data
# state is initialized to the statevector
else:
initialization = np.asarray(obj.params, dtype=complex)
if qargs is None:
statevec._data = initialization
else:
# if we act on a subsystem we first need to reset and then apply the
# state preparation
statevec._data = statevec.reset(qargs)._data
mat = np.zeros((2 ** len(qargs), 2 ** len(qargs)), dtype=complex)
mat[:, 0] = initialization
statevec = Statevector._evolve_operator(statevec, Operator(mat), qargs=qargs)
return statevec
# If the instruction doesn't have a matrix defined we use its
# circuit decomposition definition if it exists, otherwise we
# cannot compose this gate and raise an error.
if obj.definition is None:
raise QiskitError(f"Cannot apply Instruction: {obj.name}")
if not isinstance(obj.definition, QuantumCircuit):
raise QiskitError(
f"{obj.name} instruction definition is {type(obj.definition)}; expected QuantumCircuit"
)
if obj.definition.global_phase:
statevec._data *= np.exp(1j * float(obj.definition.global_phase))
qubits = {qubit: i for i, qubit in enumerate(obj.definition.qubits)}
for instruction in obj.definition:
if instruction.clbits:
raise QiskitError(
f"Cannot apply instruction with classical bits: {instruction.operation.name}"
)
# Get the integer position of the flat register
if qargs is None:
new_qargs = [qubits[tup] for tup in instruction.qubits]
else:
new_qargs = [qargs[qubits[tup]] for tup in instruction.qubits]
Statevector._evolve_instruction(statevec, instruction.operation, qargs=new_qargs)
return statevec
| qiskit/qiskit/quantum_info/states/statevector.py/0 | {
"file_path": "qiskit/qiskit/quantum_info/states/statevector.py",
"repo_id": "qiskit",
"token_count": 16511
} | 196 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2022.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# pylint: disable=cyclic-import
"""Routines for computing expectation values from sampled distributions"""
import numpy as np
from qiskit._accelerate.sampled_exp_val import sampled_expval_float, sampled_expval_complex
from qiskit.exceptions import QiskitError
from .distributions import QuasiDistribution, ProbDistribution
# A list of valid diagonal operators
OPERS = {"Z", "I", "0", "1"}
def sampled_expectation_value(dist, oper):
"""Computes expectation value from a sampled distribution
Note that passing a raw dict requires bit-string keys.
Parameters:
dist (Counts or QuasiDistribution or ProbDistribution or dict): Input sampled distribution
oper (str or Pauli or PauliOp or PauliSumOp or SparsePauliOp): The operator for
the observable
Returns:
float: The expectation value
Raises:
QiskitError: if the input distribution or operator is an invalid type
"""
from .counts import Counts
from qiskit.quantum_info import Pauli, SparsePauliOp
# This should be removed when these return bit-string keys
if isinstance(dist, (QuasiDistribution, ProbDistribution)):
dist = dist.binary_probabilities()
if not isinstance(dist, (Counts, dict)):
raise QiskitError("Invalid input distribution type")
if isinstance(oper, str):
oper_strs = [oper.upper()]
coeffs = np.asarray([1.0])
elif isinstance(oper, Pauli):
oper_strs = [oper.to_label()]
coeffs = np.asarray([1.0])
elif isinstance(oper, SparsePauliOp):
oper_strs = oper.paulis.to_labels()
coeffs = np.asarray(oper.coeffs)
else:
raise QiskitError("Invalid operator type")
# Do some validation here
bitstring_len = len(next(iter(dist)))
if any(len(op) != bitstring_len for op in oper_strs):
raise QiskitError(
f"One or more operators not same length ({bitstring_len}) as input bitstrings"
)
for op in oper_strs:
if set(op).difference(OPERS):
raise QiskitError(f"Input operator {op} is not diagonal")
# Dispatch to Rust routines
if coeffs.dtype == np.dtype(complex).type:
return sampled_expval_complex(oper_strs, coeffs, dist)
else:
return sampled_expval_float(oper_strs, coeffs, dist)
| qiskit/qiskit/result/sampled_expval.py/0 | {
"file_path": "qiskit/qiskit/result/sampled_expval.py",
"repo_id": "qiskit",
"token_count": 1057
} | 197 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017 - 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Module containing cnot circuits"""
from .cnot_synth import synth_cnot_count_full_pmh
from .linear_depth_lnn import synth_cnot_depth_line_kms
from .linear_matrix_utils import (
random_invertible_binary_matrix,
calc_inverse_matrix,
check_invertible_binary_matrix,
binary_matmul,
)
# This is re-import is kept for compatibility with Terra 0.23. Eligible for deprecation in 0.25+.
# pylint: disable=cyclic-import,wrong-import-order
from qiskit.synthesis.linear_phase import synth_cnot_phase_aam as graysynth
| qiskit/qiskit/synthesis/linear/__init__.py/0 | {
"file_path": "qiskit/qiskit/synthesis/linear/__init__.py",
"repo_id": "qiskit",
"token_count": 322
} | 198 |
# This code is part of Qiskit.
#
# (C) Copyright IBM 2024
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Synthesis of a reverse permutation for LNN connectivity.
"""
from qiskit.circuit import QuantumCircuit
from qiskit._accelerate.synthesis.permutation import (
synth_permutation_reverse_lnn_kms as synth_permutation_reverse_lnn_kms_inner,
)
def _append_cx_stage1(qc, n):
"""A single layer of CX gates."""
for i in range(n // 2):
qc.cx(2 * i, 2 * i + 1)
for i in range((n + 1) // 2 - 1):
qc.cx(2 * i + 2, 2 * i + 1)
return qc
def _append_cx_stage2(qc, n):
"""A single layer of CX gates."""
for i in range(n // 2):
qc.cx(2 * i + 1, 2 * i)
for i in range((n + 1) // 2 - 1):
qc.cx(2 * i + 1, 2 * i + 2)
return qc
def _append_reverse_permutation_lnn_kms(qc: QuantumCircuit, num_qubits: int) -> None:
"""
Append reverse permutation to a QuantumCircuit for linear nearest-neighbor architectures
using Kutin, Moulton, Smithline method.
Synthesis algorithm for reverse permutation from [1], section 5.
This algorithm synthesizes the reverse permutation on :math:`n` qubits over
a linear nearest-neighbor architecture using CX gates with depth :math:`2 * n + 2`.
Args:
qc: The original quantum circuit.
num_qubits: The number of qubits.
Returns:
The quantum circuit with appended reverse permutation.
References:
1. Kutin, S., Moulton, D. P., Smithline, L.,
*Computation at a distance*, Chicago J. Theor. Comput. Sci., vol. 2007, (2007),
`arXiv:quant-ph/0701194 <https://arxiv.org/abs/quant-ph/0701194>`_
"""
for _ in range((num_qubits + 1) // 2):
_append_cx_stage1(qc, num_qubits)
_append_cx_stage2(qc, num_qubits)
if (num_qubits % 2) == 0:
_append_cx_stage1(qc, num_qubits)
def synth_permutation_reverse_lnn_kms(num_qubits: int) -> QuantumCircuit:
"""
Synthesize reverse permutation for linear nearest-neighbor architectures using
Kutin, Moulton, Smithline method.
Synthesis algorithm for reverse permutation from [1], section 5.
This algorithm synthesizes the reverse permutation on :math:`n` qubits over
a linear nearest-neighbor architecture using CX gates with depth :math:`2 * n + 2`.
Args:
num_qubits: The number of qubits.
Returns:
The synthesized quantum circuit.
References:
1. Kutin, S., Moulton, D. P., Smithline, L.,
*Computation at a distance*, Chicago J. Theor. Comput. Sci., vol. 2007, (2007),
`arXiv:quant-ph/0701194 <https://arxiv.org/abs/quant-ph/0701194>`_
"""
# Call Rust implementation
return QuantumCircuit._from_circuit_data(synth_permutation_reverse_lnn_kms_inner(num_qubits))
| qiskit/qiskit/synthesis/permutation/permutation_reverse_lnn.py/0 | {
"file_path": "qiskit/qiskit/synthesis/permutation/permutation_reverse_lnn.py",
"repo_id": "qiskit",
"token_count": 1233
} | 199 |
Subsets and Splits