Dataset Viewer

The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.

Rayleigh-Bénard Convection Dataset

This dataset contains data for Rayleigh-Bénard convection at different Rayleigh numbers. The data includes velocity fields and temperature distributions on a 128×128 grid.

Dataset Description

The dataset consists of .npz files containing:

  • vx: x-component of velocity field
  • vy: y-component of velocity field
  • temp: temperature field
  • time: time points

Sample Data Stats

Installation and Download

pip install -r requirements.txt

Download the dataset

from huggingface_hub import hf_hub_download
import os
os.makedirs("./rb_data", exist_ok=True)

# Download Ra=12,000 dataset
hf_hub_download(
    repo_id="your-username/rb-flow-visualization",
    filename="data/data_12e3.npz",
    local_dir="./rb_data",
    repo_type="dataset"
)

Dataset Loader Details

The dataset loader (dataloader.py) provides two main classes:

  1. RBFlowDataset: A PyTorch Dataset class that handles:

    • Loading and preprocessing of .npz files
    • Single frame access
    • Sequence extraction
    • Statistical information
  2. load_rb_flow_data: A utility function that creates a DataLoader with:

    • Batch processing
    • Data shuffling
    • Multi-worker support

Accessing Data Statistics

dataset = RBFlowDataset('data/data_12e3.npz')
stats = dataset.stats  # Dictionary containing field statistics
print(f"VX range: {stats['vx_min']} to {stats['vx_max']}")
print(f"Temperature mean: {stats['temp_mean']}")

Basic Usage

from dataloader import load_rb_flow_data

# Load the dataset
dataloader, dataset = load_rb_flow_data(
    data_path='data/data_12e3.npz',  # or data_20e3.npz
    batch_size=32,
    shuffle=True
)

# Iterate through batches
for batch in dataloader:
    vx = batch['vx']  # Shape: [batch_size, nx, ny]
    vy = batch['vy']
    temp = batch['temp']
    # Your processing here

Loading Sequences

from dataloader import RBFlowDataset

# Initialize dataset
dataset = RBFlowDataset('data/data_12e3.npz')

# Get a sequence of frames
sequence = dataset.get_sequence(start_idx=0, length=10)
vx_sequence = sequence['vx']  # Shape: [10, nx, ny]

Visualization Tools

The repository includes tools for creating various visualizations of the flow fields.

Creating Animations

from visualize import RBFlowVisualizer

# Initialize visualizer
viz = RBFlowVisualizer('data/data_12e3.npz')

# Create velocity field animation
viz.create_velocity_animation(
    output_path='velocity_animation.gif',
    fps=30,
    skip=3  # Arrow density (smaller = denser)
)

# Create temperature field animation
viz.create_animation('temp', 'temperature_animation.gif', fps=30)

Testing

The repository includes a comprehensive test suite (test_functionality.py) that verifies all functionality:

python test_functionality.py

The test suite checks:

  1. Dataset loading and access

    • Basic loading functionality
    • Frame access
    • Sequence extraction
    • Data shapes and types
  2. Data Processing

    • Normalization
    • Statistics computation
    • Batch processing
    • Sequence bounds checking
  3. Visualization

    • Temperature field animations
    • Velocity field animations
    • File generation and saving

Running Individual Tests

import unittest
from test_functionality import TestRBFlowTools

# Run specific test
suite = unittest.TestLoader().loadTestsFromName('test_dataset_loading_12k', TestRBFlowTools)
unittest.TextTestRunner(verbosity=2).run(suite)

Citation

If you use this dataset or code in your research, please cite:

@article{rahman2024pretraining,
  title={Pretraining Codomain Attention Neural Operators for Solving Multiphysics PDEs},
  author={Rahman, Md Ashiqur and George, Robert Joseph and Elleithy, Mogab and Leibovici, Daniel and Li, Zongyi and Bonev, Boris and White, Colin and Berner, Julius and Yeh, Raymond A and Kossaifi, Jean and Azizzadenesheli, Kamyar and Anandkumar, Anima},
  journal={Advances in Neural Information Processing Systems},
  volume={37}
  year={2024}
}
Downloads last month
160