Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
cod_mun
int64
1.1M
5.3M
coef
float64
0.16
2.79
mulher_negra
float64
-1.28
1.32
homem_negro
float64
-1.88
0.53
mulher_branca
float64
-1.07
1.46
superior
float64
0.09
1.89
medio
float64
-0.22
1.02
fundamental
float64
-0.32
0.68
v
float64
-0.01
0.03
idade_
float64
-0
0
1,400,027
1.257401
-0.306034
-0.228474
-0.356249
1.371328
0.400371
0.077729
0.012511
-0.000182
1,400,050
0.964818
0.07526
-0.041925
-0.114593
1.1684
0.373046
0.222042
0.01484
-0.000156
1,400,100
1.161721
-0.40757
-0.16828
-0.253628
1.343399
0.453982
0.176063
0.020483
-0.000186
1,400,159
1.027954
-0.243107
-0.11071
-0.39103
1.307399
0.433196
0.324922
0.014761
-0.000175
1,400,175
1.249188
-0.143825
-0.108771
-0.087176
1.147944
0.530286
0.293665
0.012063
-0.000198
1,400,209
1.024916
-0.252943
-0.160521
-0.183624
1.058029
0.551646
0.307992
0.014379
-0.000183
1,400,233
1.047001
-0.064989
-0.041885
0.017393
0.960866
0.427392
0.122237
0.009718
-0.000176
1,400,282
1.757279
-0.301268
-0.070336
-0.244959
0.844527
0.34605
0.100589
0.00684
-0.000348
1,400,308
1.068458
-0.2236
-0.08119
-0.128158
1.200073
0.397055
0.252702
0.015246
-0.000126
1,400,407
2.001079
-0.442883
-0.253834
-0.427463
0.727499
0.119541
0.083821
0.008183
-0.000189
1,400,456
1.42876
-0.55389
-0.334859
-0.543757
0.968912
0.392665
0.257653
0.016925
-0.000188
1,400,472
1.62622
-0.311983
-0.236864
-0.28983
0.977977
0.360534
0.250641
0.006031
-0.000255
1,400,506
0.737634
-0.147273
-0.061162
0.041482
1.278826
0.381957
0.300652
0.015974
-0.000105
1,400,605
1.340614
-0.212861
-0.085891
-0.026435
1.194292
0.302181
0.254287
0.014345
-0.000366
1,400,704
1.154294
0.182746
0.162788
1.455783
0.533229
-0.042519
0.217482
0.018583
-0.000126
4,200,051
0.953833
-0.687753
-0.44894
-0.133026
0.879324
0.23515
0.137035
0.015561
-0.000163
4,200,101
1.115526
-0.421875
-0.285292
-0.356412
1.043567
0.362544
0.144582
0.013732
-0.000076
4,200,200
1.405891
-0.48847
-0.165148
-0.282886
0.887827
0.39776
0.170722
0.011786
-0.000159
4,200,309
1.488906
-0.160882
-0.030043
-0.176508
0.759014
0.315777
0.157641
0.008392
-0.000115
4,200,408
1.477607
-0.533605
-0.231067
-0.334493
0.948908
0.479081
0.252264
0.012289
-0.000196
4,200,507
1.543167
-0.39576
-0.105918
-0.325695
1.009774
0.355314
0.189745
0.006443
-0.000167
4,200,556
1.535662
-0.311617
-0.076828
-0.373041
0.804509
0.206998
0.138278
0.003992
-0.000071
4,200,606
1.532663
-0.374543
-0.097444
-0.317018
0.763807
0.27922
0.186642
0.006026
-0.000128
4,200,705
1.250699
-0.440282
-0.10612
-0.185591
0.873965
0.293741
0.190693
0.011663
-0.000152
4,200,754
1.106326
-0.286677
-0.128073
-0.241009
1.122684
0.35731
0.212747
0.011616
-0.00013
4,200,804
1.217531
-0.336301
-0.246122
-0.425673
1.107331
0.363451
0.210919
0.007751
-0.000065
4,200,903
1.216418
-0.46944
0.222179
-0.312418
0.973166
0.512298
0.295913
0.014114
-0.000228
4,201,000
1.388417
-0.290106
-0.102119
-0.179964
1.085474
0.467356
0.186021
0.007686
-0.000269
4,201,109
0.815453
-0.282837
0.014298
-0.103304
0.923699
0.410774
0.284559
0.013329
-0.000104
4,201,208
1.84246
-0.682907
-0.043907
-0.383052
0.776584
0.247115
0.232245
0.005445
-0.000166
4,201,257
1.557856
-0.271019
-0.067493
-0.247584
0.636463
0.233915
0.235479
0.006538
-0.000142
4,201,273
1.276641
-0.360998
-0.034459
-0.204231
0.735257
0.163672
0.202846
0.011129
-0.000104
4,201,307
1.381732
-0.291851
-0.066936
-0.312064
0.895701
0.291808
0.152009
0.008487
-0.000088
4,201,406
1.269054
-0.382662
-0.127524
-0.377086
1.060093
0.392858
0.181374
0.014475
-0.000141
4,201,505
1.216336
-0.229719
-0.10327
-0.232074
0.778788
0.279319
0.100953
0.009304
-0.0001
4,201,604
1.234943
-0.189863
-0.206903
-0.347602
0.741015
0.16161
0.136615
0.014057
-0.000069
4,201,653
1.391826
-0.398463
-0.104669
-0.194549
1.00202
0.29561
0.208899
0.004554
-0.000121
4,201,703
1.545395
-0.292735
0.042184
-0.18545
0.641985
0.171216
0.087394
0.004676
-0.000087
4,201,802
1.360206
-0.329698
-0.304882
-0.219025
0.822441
0.472477
0.189106
0.013646
-0.000223
4,201,901
1.543954
-0.727371
-0.250082
-0.292576
0.650608
0.258244
0.129701
0.008028
-0.000105
4,201,950
1.370179
-0.478125
-0.048052
-0.315537
0.951212
0.344415
0.129849
0.009896
-0.000142
4,202,008
1.532218
-0.424995
-0.101383
-0.352479
0.98104
0.361331
0.200278
0.017069
-0.000181
4,202,057
1.343555
-0.375196
-0.093073
-0.308345
0.844315
0.354572
0.231352
0.009575
-0.000153
4,202,073
1.271954
-0.55208
-0.089015
-0.372605
1.045363
0.313291
0.183241
0.008855
-0.000093
4,202,081
0.726158
-0.097683
-0.087495
-0.236315
0.975079
0.368287
0.25206
0.011406
0.000025
4,202,099
1.674967
-0.500634
-0.21208
-0.133058
0.691928
0.212354
0.057268
0.000572
-0.000209
4,202,107
1.555366
-0.461575
-0.054076
-0.385552
0.929337
0.371323
0.120827
0.008799
-0.000141
4,202,131
1.131248
-0.200054
-0.122001
-0.08306
0.856049
0.270449
0.105676
0.007441
-0.000156
4,202,156
1.162186
-0.345249
-0.330566
-0.113084
0.664468
0.235666
0.167526
0.012075
-0.000121
4,202,206
1.53732
-0.227491
-0.167799
-0.283231
0.791162
0.249979
0.108789
0.005124
-0.000104
4,202,305
1.824002
-0.486786
-0.100982
-0.373291
0.758565
0.239101
0.120978
0.010468
-0.000234
4,202,404
1.47788
-0.434856
-0.137122
-0.336167
0.980314
0.348181
0.136906
0.015599
-0.000157
4,202,438
1.079691
-0.323607
-0.160769
-0.230977
1.022431
0.329246
0.158558
0.005466
-0.00007
4,202,453
1.51752
-0.413115
-0.092177
-0.322823
0.73857
0.301054
0.143004
0.013968
-0.000147
4,202,503
1.194085
-0.312149
-0.164798
-0.346081
1.112331
0.393225
0.202977
0.01171
-0.000152
4,202,537
1.260116
-0.437057
-0.102307
-0.391138
0.915952
0.338492
0.32452
0.010338
-0.000064
4,202,578
1.8151
-0.442366
-0.21096
-0.161941
0.529892
0.016761
-0.004517
-0.000167
-0.000135
4,202,602
1.313705
-0.415761
-0.142795
-0.349224
0.774576
0.279382
0.052748
0.012369
-0.000145
4,202,701
1.791258
-0.459694
-0.045225
-0.362479
0.584275
0.182509
0.130335
0.005973
-0.000155
4,202,800
1.236433
-0.423528
-0.102111
-0.325683
0.816227
0.304736
0.193839
0.013211
-0.000093
4,202,859
1.741827
-0.722494
-0.154512
-0.316536
0.575167
0.333645
0.16476
0.005861
-0.00017
4,202,875
0.691761
-0.064177
-0.107485
-0.333159
0.989865
0.244585
0.267848
0.018113
-0.000079
4,202,909
1.935139
-0.477518
-0.137682
-0.374709
0.800565
0.283921
0.124432
0.012652
-0.000282
4,203,006
1.2867
-0.414766
-0.161127
-0.336281
1.08393
0.379556
0.16503
0.01319
-0.000132
4,203,105
1.14673
-0.413579
-0.16088
-0.280538
0.887436
0.265142
0.22219
0.010907
-0.000059
4,203,154
1.243714
-0.364382
-0.064716
-0.271869
0.994175
0.46134
0.176917
0.009109
-0.00016
4,203,204
1.545731
-0.444969
-0.161995
-0.351559
0.782062
0.209767
0.118542
0.010325
-0.000078
4,203,253
0.739645
-0.2128
0.000185
-0.235599
1.025065
0.359181
0.289247
0.012513
-0.000061
4,203,303
1.148384
-0.373302
-0.154524
-0.296446
0.796305
0.330497
0.234906
0.009497
-0.000123
4,203,402
1.032383
-0.169816
-0.05916
-0.28672
0.961762
0.469615
0.132865
0.009414
-0.000134
4,203,501
1.044079
-0.328597
-0.19353
-0.257728
1.09976
0.563495
0.185891
0.009235
-0.000053
4,203,600
1.260812
-0.456704
-0.0945
-0.427151
1.068022
0.435242
0.257405
0.014254
-0.000161
4,203,709
1.293858
-0.441531
-0.005284
-0.305849
0.796232
0.206466
0.200232
0.010607
-0.000052
4,203,808
0.850788
-0.344224
-0.129575
-0.267466
1.077106
0.46911
0.289078
0.016997
-0.000099
4,203,907
1.426642
-0.403698
-0.15493
-0.320908
0.906741
0.264209
0.148113
0.010561
-0.000138
4,203,956
1.420285
-0.517545
-0.177474
-0.400039
0.740716
0.255498
0.141887
0.012263
-0.000126
4,204,004
1.177307
-0.408013
-0.186766
-0.402799
1.027994
0.367678
0.256195
0.013136
-0.000093
4,204,103
1.164344
-0.129048
-0.095892
-0.270062
1.065462
0.354901
0.191138
0.010306
-0.000104
4,204,152
0.957836
-0.387465
-0.383553
-0.390612
1.131031
0.482875
0.265631
0.018012
-0.000269
4,204,178
0.797781
-0.279915
-0.184156
-0.07301
1.161981
0.577809
0.533608
0.00939
-0.000079
4,204,194
1.081497
-0.319521
-0.208807
-0.181772
0.949581
0.461248
0.070319
0.010056
-0.000131
4,204,202
1.368499
-0.445563
-0.140214
-0.378462
1.054
0.406114
0.157323
0.015394
-0.000148
4,204,251
1.451811
-0.430121
-0.129299
-0.431326
0.82446
0.274827
0.117534
0.012622
-0.000134
4,204,301
1.213373
-0.292908
-0.103386
-0.32413
0.970674
0.344255
0.180261
0.013762
-0.00009
4,204,350
1.336952
-0.306742
-0.107811
-0.337779
0.906509
0.386775
0.203056
0.010374
-0.000124
4,204,400
1.332056
-0.554526
-0.326265
-0.368296
0.733774
0.269017
0.17717
0.012797
-0.000129
4,204,459
1.325212
-0.512631
-0.431946
-0.143686
0.865915
0.431841
0.335308
0.00973
-0.000193
4,204,509
1.537263
-0.382795
-0.103925
-0.270267
0.733413
0.253551
0.139693
0.009564
-0.000147
4,204,558
1.004383
-0.38446
-0.100722
-0.410653
0.887602
0.491664
0.234901
0.015672
-0.000085
4,204,608
1.327145
-0.498509
-0.131065
-0.408209
1.026771
0.367013
0.156746
0.016302
-0.000134
4,204,707
1.534851
-0.43829
-0.211444
-0.391508
0.929279
0.188592
0.126036
0.01237
-0.000169
4,204,756
1.336603
-0.124455
-0.623287
-0.452925
0.725495
0.04718
0.015307
0.010226
-0.000043
4,204,806
1.082241
-0.373369
-0.16613
-0.273892
0.960325
0.423279
0.200023
0.014133
-0.000104
4,204,905
1.27529
-0.404105
-0.103814
-0.277751
0.840762
0.301483
0.127467
0.009472
-0.000095
4,205,001
0.862907
-0.383153
-0.176632
-0.314292
1.236023
0.59099
0.250934
0.016847
-0.000089
4,205,100
1.359559
-0.159528
0.137591
-0.20769
0.84285
0.3717
0.1957
0.007804
-0.000119
4,205,159
1.642662
-0.297598
-0.065086
-0.190144
0.672586
0.255058
0.138431
0.008634
-0.00024
4,205,175
1.40971
-0.671373
-0.405165
-0.315265
0.926937
0.512078
0.568262
0.012183
-0.000274
4,205,191
1.012808
-0.391069
-0.26455
-0.307737
0.786802
0.278903
0.28569
0.016032
-0.000089
4,205,209
1.242662
-0.466451
-0.349228
-0.426101
0.873962
0.379505
0.177064
0.010035
-0.00008
End of preview. Expand in Data Studio

Mapa da Discriminação Racial no Brasil

Este dataset contém coeficientes de discriminação racial por município no Brasil, calculados a partir de dados do Censo Demográfico.

Mapa da Discriminação Racial no Brasil

Variáveis

  • cod_mun: Código do município (IBGE)
  • coef: Coeficiente base (intercepto) para cada município
  • mulher_negra: Coeficiente para mulheres negras
  • homem_negro: Coeficiente para homens negros
  • mulher_branca: Coeficiente para mulheres brancas
  • superior: Coeficiente para pessoas com ensino superior
  • medio: Coeficiente para pessoas com ensino médio
  • fundamental: Coeficiente para pessoas com ensino fundamental
  • idade: Coeficiente para idade
  • idade_2: Coeficiente para idade ao quadrado (efeito não-linear da idade)

Interpretação

Os coeficientes representam a magnitude da discriminação racial e de gênero em cada município. Valores negativos indicam maior discriminação, enquanto valores positivos indicam menor discriminação.

Exemplos de interpretação:

  • Um coeficiente negativo para mulher_negra indica discriminação contra mulheres negras naquele município
  • Um coeficiente positivo para superior indica menor discriminação para pessoas com ensino superior
  • O coeficiente idade mostra como a discriminação varia com a idade
  • O coeficiente idade_2 captura efeitos não-lineares da idade na discriminação

Metodologia

Os coeficientes foram calculados usando modelos estatísticos que controlam para:

  • Nível educacional
  • Idade
  • Gênero
  • Raça/cor

Uso

Este dataset pode ser usado para:

  • Mapear a distribuição geográfica da discriminação racial no Brasil
  • Identificar municípios com maior/menor discriminação
  • Analisar como a discriminação varia com características demográficas
  • Monitorar mudanças na discriminação ao longo do tempo
Downloads last month
14