File size: 6,847 Bytes
6dd5316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import csv
import os
from typing import Dict, List

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME,
                                       DEFAULT_SOURCE_VIEW_NAME, Tasks)

_DATASETNAME = "su_id_asr"
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME

_LANGUAGES = ["sun"]
_LOCAL = False
_CITATION = """\
@inproceedings{sodimana18_sltu,
  author={Keshan Sodimana and Pasindu {De Silva} and Supheakmungkol Sarin and Oddur Kjartansson and Martin Jansche and Knot Pipatsrisawat and Linne Ha},
  title={{A Step-by-Step Process for Building TTS Voices Using Open Source Data and Frameworks for Bangla, Javanese, Khmer, Nepali, Sinhala, and Sundanese}},
  year=2018,
  booktitle={Proc. 6th Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU 2018)},
  pages={66--70},
  doi={10.21437/SLTU.2018-14}
}
"""

_DESCRIPTION = """\
Sundanese ASR training data set containing ~220K utterances.
This dataset was collected by Google in Indonesia.
"""

_HOMEPAGE = "https://indonlp.github.io/nusa-catalogue/card.html?su_id_asr"

_LICENSE = "Attribution-ShareAlike 4.0 International."

_URLs = {
    "su_id_asr_train": "https://drive.google.com/file/d/1-9oCkIQSok_STemyNBLx2EDQXfmWabsU/view?usp=sharing",
    "su_id_asr_dev": "https://drive.google.com/file/d/1IkqEuGrIyKbCSDo9q6F6_r_vkeJ1pcrp/view?usp=sharing",
    "su_id_asr_test": "https://drive.google.com/file/d/1-7aLW9Tzs4lxm9ImWho91FjpgpVC6wAc/view?usp=sharing",
}

_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION]  # example: [Tasks.TRANSLATION, Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"

def download_from_gdrive(url, output_dir):
    """Download a file from Google Drive and save it to the specified directory."""
    file_id = url.split("/d/")[-1].split("/")[0]  # Extract FILE_ID from URL
    gdrive_url = f"https://drive.google.com/uc?id={file_id}"
    output_path = os.path.join(output_dir, f"{file_id}.zip")  # Save file
    gdown.download(gdrive_url, output_path, quiet=False)
    return output_path


class JvIdASR(datasets.GeneratorBasedBuilder):
    """Javanese ASR training data set containing ~185K utterances."""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name="su_id_asr_source",
            version=SOURCE_VERSION,
            description="su_id_asr source schema",
            schema="source",
            subset_id="su_id_asr",
        ),
        SEACrowdConfig(
            name="su_id_asr_seacrowd_sptext",
            version=SEACROWD_VERSION,
            description="su_id_asr Nusantara schema",
            schema="seacrowd_sptext",
            subset_id="su_id_asr",
        ),
    ]

    DEFAULT_CONFIG_NAME = "su_id_asr_source"


    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        
        def download_from_gdrive(url, name):
            # Create a temporary directory for downloads
            with tempfile.TemporaryDirectory() as temp_dir:
                file_id = url.split("/d/")[-1].split("/")[0]
                output_path = os.path.join(temp_dir, f"{name}.zip")
                
                # Download using gdown with fuzzy=True
                gdown.download(url, output_path, fuzzy=True)
                
                # Use dl_manager to extract and manage the downloaded file
                extracted_path = dl_manager.extract(output_path)
                return extracted_path

        # Download and extract all splits
        paths = {
            "train": download_from_gdrive(_URLs["su_id_asr_train"], 'asr_sundanese_train'),
            "dev": download_from_gdrive(_URLs["su_id_asr_dev"], 'asr_sundanese_dev'),
            "test": download_from_gdrive(_URLs["su_id_asr_test"], 'asr_sundanese_test')
        }

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": paths["train"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": paths["dev"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": paths["test"]},
            ),
        ]
    
    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "speaker_id": datasets.Value("string"),
                    "path": datasets.Value("string"),
                    "audio": datasets.Audio(sampling_rate=16_000),
                    "text": datasets.Value("string"),
                }
            )
        elif self.config.schema == "seacrowd_sptext":
            features = schemas.speech_text_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _generate_examples(self, filepath: str):
        tsv_file = os.path.join(filepath, "asr_sundanese", "utt_spk_text.tsv")
        with open(tsv_file, "r") as f:
            tsv_file = csv.reader(f, delimiter="\t")
            for line in tsv_file:
                audio_id, sp_id, text = line[0], line[1], line[2]
                wav_path = os.path.join(filepath, "asr_sundanese", "data", "{}".format(audio_id[:2]), "{}.flac".format(audio_id))

                if os.path.exists(wav_path):
                    if self.config.schema == "source":
                        ex = {
                            "id": audio_id,
                            "speaker_id": sp_id,
                            "path": wav_path,
                            "audio": wav_path,
                            "text": text,
                        }
                        yield audio_id, ex
                    elif self.config.schema == "seacrowd_sptext":
                        ex = {
                            "id": audio_id,
                            "speaker_id": sp_id,
                            "path": wav_path,
                            "audio": wav_path,
                            "text": text,
                            "metadata": {
                                "speaker_age": None,
                                "speaker_gender": None,
                            },
                        }
                        yield audio_id, ex
        f.close()