|
--- |
|
license: apache-2.0 |
|
task_categories: |
|
- text-classification |
|
language: |
|
- en |
|
--- |
|
|
|
``` |
|
! pip install python-Levenshtein |
|
! pip install fuzzywuzzy |
|
|
|
import pandas as pd |
|
from datasets import load_dataset |
|
from fuzzywuzzy import fuzz |
|
|
|
dataset_name_list = [ |
|
"mteb/sts12-sts", |
|
"mteb/sts13-sts", |
|
"mteb/sts14-sts", |
|
"mteb/sts15-sts", |
|
"mteb/sts16-sts", |
|
"mteb/stsbenchmark-sts", |
|
"mteb/sickr-sts", |
|
] |
|
dataset_dict = { _[5:-4]:load_dataset(_) for _ in dataset_name_list} |
|
|
|
|
|
df_list = [] |
|
for dataset_name, datasetDict in dataset_dict.items(): |
|
for split_name, dataset in datasetDict.items(): |
|
df = pd.DataFrame(dataset) |
|
df = df[['sentence1', 'sentence2', 'score']] |
|
df['dataset'] = dataset_name |
|
df['split'] = split_name |
|
|
|
df = df[['dataset', 'split', 'sentence1', 'sentence2', 'score']] |
|
|
|
df_list.append(df) |
|
df = pd.concat(df_list, axis=0) |
|
|
|
def text_sim(sent0, sent1): |
|
is_str = False |
|
if isinstance(sent0, str): |
|
sent0 = [sent0] |
|
sent1 = [sent1] |
|
is_str = True |
|
scores = [] |
|
for s1, s2 in zip(sent0, sent1): |
|
set1 = set(s1.split(' ')) |
|
# print(set1) |
|
set2 = set(s2.split(' ')) |
|
# print(set2) |
|
# 计算交集和并集 |
|
intersection = set1.intersection(set2) |
|
union = set1.union(set2) |
|
|
|
# 计算雅可比相似度 |
|
similarity = len(intersection) / len(union) |
|
|
|
scores.append(similarity ) |
|
return scores[0] if is_str else scores |
|
|
|
print(text_sim('hello', 'hello world')) |
|
|
|
df['text_sim'] = df.apply(lambda row :int(text_sim(row['sentence1'].lower(), row['sentence2'].lower()) * 100 + 0.5) / 100, axis=1) |
|
df['fuzz_sim'] = df.apply(lambda row :fuzz.ratio(row['sentence1'].lower(), row['sentence2'].lower()) / 100, axis=1) |
|
df['scaled_score'] = df.apply(lambda row : row['score'] / 5, axis=1) |
|
``` |