Dataset Viewer
Auto-converted to Parquet
image
imagewidth (px)
256
256
slide_id
stringlengths
23
23
patch_id
stringclasses
880 values
biological_class
stringclasses
21 values
medical_center
stringclasses
26 values
TCGA-E9-A1R5-01Z-00-DX1
0_0_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
0_1_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
0_2_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
0_3_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
0_4_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
0_5_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
0_6_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
0_7_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
0_8_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
0_9_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
1_0_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
1_1_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
1_2_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
1_3_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
1_4_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
1_5_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
1_6_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
1_7_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
1_8_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
1_9_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
2_0_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
2_1_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
2_2_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
2_3_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
2_4_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
2_5_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
2_6_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
2_7_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
2_8_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A1R5-01Z-00-DX1
2_9_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
0_0_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
0_1_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
0_2_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
0_3_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
0_4_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
0_5_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
0_6_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
0_7_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
0_8_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
0_9_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
1_0_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
1_1_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
1_2_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
1_3_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
1_4_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
1_5_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
1_6_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
1_7_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
1_8_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
1_9_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
2_0_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
2_1_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
2_2_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
2_3_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
2_4_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
2_5_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
2_6_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
2_7_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
2_8_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JS-01Z-00-DX1
2_9_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
0_0_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
0_1_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
0_2_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
0_3_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
0_4_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
0_5_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
0_6_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
0_7_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
0_8_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
0_9_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
1_0_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
1_1_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
1_2_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
1_3_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
1_4_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
1_5_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
1_6_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
1_7_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
1_8_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
1_9_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
2_0_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
2_1_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
2_2_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
2_3_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
2_4_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
2_5_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
2_6_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
2_7_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
2_8_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A2JT-01Z-00-DX1
2_9_516
Breast_invasive_carcinoma
Asterand
TCGA-E9-A54X-01Z-00-DX1
0_0_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A54X-01Z-00-DX1
0_1_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A54X-01Z-00-DX1
0_2_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A54X-01Z-00-DX1
0_3_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A54X-01Z-00-DX1
0_4_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A54X-01Z-00-DX1
0_5_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A54X-01Z-00-DX1
0_6_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A54X-01Z-00-DX1
0_7_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A54X-01Z-00-DX1
0_8_521
Breast_invasive_carcinoma
Asterand
TCGA-E9-A54X-01Z-00-DX1
0_9_521
Breast_invasive_carcinoma
Asterand
End of preview. Expand in Data Studio

PathoROB

Preprint | Code | Licenses | Cite

PathoROB is a benchmark for the robustness of pathology foundation models (FMs) to non-biological medical center differences.

PathoROB pipeline

PathoROB contains four datasets covering 28 biological classes from 34 medical centers and three metrics:

  1. Robustness Index: Measures the ability of an FM to capture biological features while ignoring non-biological features.
  2. Average Performance Drop (APD): Measures the impact of non-biological features on the generalization performance of downstream models.
  3. Clustering Score: Measures the effect of non-biological features on the quality of k-means clusters.
PathoROB overview

How to use

Check out our PathoROB GitHub repository.

Latest updates

  • September 2025: PathoROB is now available on Hugging Face and GitHub.

Licenses

The PathoROB datasets were subsampled from public sources. Therefore, we redistribute each PathoROB dataset under the license of its original data source. You can run PathoROB on any subset of datasets with licenses suitable for your application.

Acknowledgements

We want to thank the authors of the original datasets for making their data publicly available.

Contact

If you have questions or feedback, please contact:

How to cite

If you find PathoROB useful, please cite our preprint:

@article{koemen2025pathorob,
    title={Towards Robust Foundation Models for Digital Pathology},
    author={K{\"o}men, Jonah and de Jong, Edwin D and Hense, Julius and Marienwald, Hannah and Dippel, Jonas and Naumann, Philip and Marcus, Eric and Ruff, Lukas and Alber, Maximilian and Teuwen, Jonas and others},
    journal={arXiv preprint arXiv:2507.17845},
    year={2025}
}

Please also cite the source publications of all PathoROB datasets that you use:

@article{bejnordi2017camelyon16,
    title={Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer},
    author={Ehteshami Bejnordi, Babak and Veta, Mitko and Johannes van Diest, Paul and van Ginneken, Bram and Karssemeijer, Nico and Litjens, Geert and van der Laak, Jeroen A. W. M. and and the CAMELYON16 Consortium},
    journal={JAMA},
    year={2017},
    volume={318},
    number={22},
    pages={2199-2210},
    doi={10.1001/jama.2017.14585}
}
@article{bandi19camelyon17,
    title={From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge},
    author={Bándi, Péter and Geessink, Oscar and Manson, Quirine and Van Dijk, Marcory and Balkenhol, Maschenka and Hermsen, Meyke and Ehteshami Bejnordi, Babak and Lee, Byungjae and Paeng, Kyunghyun and Zhong, Aoxiao and Li, Quanzheng and Zanjani, Farhad Ghazvinian and Zinger, Svitlana and Fukuta, Keisuke and Komura, Daisuke and Ovtcharov, Vlado and Cheng, Shenghua and Zeng, Shaoqun and Thagaard, Jeppe and Dahl, Anders B. and Lin, Huangjing and Chen, Hao and Jacobsson, Ludwig and Hedlund, Martin and Çetin, Melih and Halıcı, Eren and Jackson, Hunter and Chen, Richard and Both, Fabian and Franke, Jörg and Küsters-Vandevelde, Heidi and Vreuls, Willem and Bult, Peter and van Ginneken, Bram and van der Laak, Jeroen and Litjens, Geert},
    journal={IEEE Transactions on Medical Imaging}, 
    year={2019},
    volume={38},
    number={2},
    pages={550-560},
    doi={10.1109/TMI.2018.2867350}
}
  • TCGA (Source: TCGA-UT, License: CC-BY-NC-SA 4.0)
@article{komura22tcga-ut,
    title={Universal encoding of pan-cancer histology by deep texture representations},
    author={Daisuke Komura and Akihiro Kawabe and Keisuke Fukuta and Kyohei Sano and Toshikazu Umezaki and Hirotomo Koda and Ryohei Suzuki and Ken Tominaga and Mieko Ochi and Hiroki Konishi and Fumiya Masakado and Noriyuki Saito and Yasuyoshi Sato and Takumi Onoyama and Shu Nishida and Genta Furuya and Hiroto Katoh and Hiroharu Yamashita and Kazuhiro Kakimi and Yasuyuki Seto and Tetsuo Ushiku and Masashi Fukayama and Shumpei Ishikawa},
    journal={Cell Reports},
    year={2022},
    volume={38},
    number={9},
    pages={110424},
    doi={10.1016/j.celrep.2022.110424}
}
@article{tolkach2023esca,
    title={Artificial intelligence for tumour tissue detection and histological regression grading in oesophageal adenocarcinomas: a retrospective algorithm development and validation study},
    author={Tolkach, Yuri and Wolgast, Lisa Marie and Damanakis, Alexander and Pryalukhin, Alexey and Schallenberg, Simon and Hulla, Wolfgang and Eich, Marie-Lisa and Schroeder, Wolfgang and Mukhopadhyay, Anirban and Fuchs, Moritz and others},
    journal={The Lancet Digital Health},
    year={2023},
    volume={5},
    number={5},
    pages={e265-e275},
    publisher={Elsevier}
}
Downloads last month
590

Collection including bifold-pathomics/PathoROB-tcga