Dataset Viewer
Auto-converted to Parquet
image
imagewidth (px)
256
256
slide_id
stringclasses
77 values
patch_id
stringlengths
7
15
biological_class
stringclasses
6 values
medical_center
stringclasses
4 values
case_017
advent.5989
ADVENT
VALSET1_UKK
case_017
advent.5275
ADVENT
VALSET1_UKK
case_017
advent.6133
ADVENT
VALSET1_UKK
case_017
advent.5526
ADVENT
VALSET1_UKK
case_017
advent.5779
ADVENT
VALSET1_UKK
case_017
advent.6014
ADVENT
VALSET1_UKK
case_017
advent.5319
ADVENT
VALSET1_UKK
case_017
advent.5715
ADVENT
VALSET1_UKK
case_017
advent.5226
ADVENT
VALSET1_UKK
case_017
advent.5932
ADVENT
VALSET1_UKK
case_017
advent.5520
ADVENT
VALSET1_UKK
case_017
advent.5708
ADVENT
VALSET1_UKK
case_017
advent.6011
ADVENT
VALSET1_UKK
case_017
advent.5740
ADVENT
VALSET1_UKK
case_017
advent.5739
ADVENT
VALSET1_UKK
case_017
advent.5745
ADVENT
VALSET1_UKK
case_017
advent.5127
ADVENT
VALSET1_UKK
case_017
advent.5537
ADVENT
VALSET1_UKK
case_017
advent.5769
ADVENT
VALSET1_UKK
case_017
advent.6138
ADVENT
VALSET1_UKK
case_017
advent.5550
ADVENT
VALSET1_UKK
case_017
advent.5929
ADVENT
VALSET1_UKK
case_017
advent.5385
ADVENT
VALSET1_UKK
case_017
advent.5648
ADVENT
VALSET1_UKK
case_017
advent.5760
ADVENT
VALSET1_UKK
case_017
advent.5964
ADVENT
VALSET1_UKK
case_017
advent.5408
ADVENT
VALSET1_UKK
case_017
advent.5333
ADVENT
VALSET1_UKK
case_017
advent.5787
ADVENT
VALSET1_UKK
case_017
advent.5974
ADVENT
VALSET1_UKK
case_017
advent.5193
ADVENT
VALSET1_UKK
case_017
advent.5411
ADVENT
VALSET1_UKK
case_017
advent.5880
ADVENT
VALSET1_UKK
case_017
advent.5168
ADVENT
VALSET1_UKK
case_017
advent.5380
ADVENT
VALSET1_UKK
case_017
advent.6038
ADVENT
VALSET1_UKK
case_017
advent.6000
ADVENT
VALSET1_UKK
case_017
advent.6033
ADVENT
VALSET1_UKK
case_017
advent.5434
ADVENT
VALSET1_UKK
case_017
advent.6132
ADVENT
VALSET1_UKK
case_017
advent.6055
ADVENT
VALSET1_UKK
case_017
advent.5512
ADVENT
VALSET1_UKK
case_017
advent.5886
ADVENT
VALSET1_UKK
case_017
advent.5925
ADVENT
VALSET1_UKK
case_017
advent.5859
ADVENT
VALSET1_UKK
case_017
advent.5260
ADVENT
VALSET1_UKK
case_017
advent.5823
ADVENT
VALSET1_UKK
case_017
advent.6061
ADVENT
VALSET1_UKK
case_017
advent.6059
ADVENT
VALSET1_UKK
case_017
advent.5979
ADVENT
VALSET1_UKK
case_017
advent.5405
ADVENT
VALSET1_UKK
case_017
advent.6066
ADVENT
VALSET1_UKK
case_017
advent.6118
ADVENT
VALSET1_UKK
case_017
advent.5237
ADVENT
VALSET1_UKK
case_017
advent.5474
ADVENT
VALSET1_UKK
case_017
advent.5517
ADVENT
VALSET1_UKK
case_017
advent.5796
ADVENT
VALSET1_UKK
case_017
advent.5191
ADVENT
VALSET1_UKK
case_017
advent.6104
ADVENT
VALSET1_UKK
case_017
advent.5830
ADVENT
VALSET1_UKK
case_017
advent.5273
ADVENT
VALSET1_UKK
case_017
advent.5252
ADVENT
VALSET1_UKK
case_017
advent.5293
ADVENT
VALSET1_UKK
case_017
advent.5844
ADVENT
VALSET1_UKK
case_017
advent.6122
ADVENT
VALSET1_UKK
case_017
advent.5635
ADVENT
VALSET1_UKK
case_017
advent.5500
ADVENT
VALSET1_UKK
case_017
advent.5149
ADVENT
VALSET1_UKK
case_017
advent.5532
ADVENT
VALSET1_UKK
case_017
advent.5768
ADVENT
VALSET1_UKK
case_017
advent.5235
ADVENT
VALSET1_UKK
case_017
advent.5551
ADVENT
VALSET1_UKK
case_017
advent.5128
ADVENT
VALSET1_UKK
case_017
advent.5632
ADVENT
VALSET1_UKK
case_017
advent.5699
ADVENT
VALSET1_UKK
case_017
advent.5496
ADVENT
VALSET1_UKK
case_017
advent.6069
ADVENT
VALSET1_UKK
case_017
advent.5957
ADVENT
VALSET1_UKK
case_017
advent.5758
ADVENT
VALSET1_UKK
case_017
advent.5940
ADVENT
VALSET1_UKK
case_017
advent.5137
ADVENT
VALSET1_UKK
case_017
advent.5484
ADVENT
VALSET1_UKK
case_017
advent.5664
ADVENT
VALSET1_UKK
case_017
advent.5538
ADVENT
VALSET1_UKK
case_017
advent.5360
ADVENT
VALSET1_UKK
case_017
advent.5153
ADVENT
VALSET1_UKK
case_017
advent.5223
ADVENT
VALSET1_UKK
case_017
advent.5865
ADVENT
VALSET1_UKK
case_017
advent.5514
ADVENT
VALSET1_UKK
case_017
advent.5968
ADVENT
VALSET1_UKK
case_017
advent.5855
ADVENT
VALSET1_UKK
case_017
advent.5864
ADVENT
VALSET1_UKK
case_017
advent.5210
ADVENT
VALSET1_UKK
case_017
advent.5866
ADVENT
VALSET1_UKK
case_017
advent.5617
ADVENT
VALSET1_UKK
case_017
advent.5949
ADVENT
VALSET1_UKK
case_017
advent.6007
ADVENT
VALSET1_UKK
case_017
advent.5753
ADVENT
VALSET1_UKK
case_017
advent.6039
ADVENT
VALSET1_UKK
case_017
advent.5802
ADVENT
VALSET1_UKK
End of preview. Expand in Data Studio

PathoROB

Preprint | Code | Licenses | Cite

PathoROB is a benchmark for the robustness of pathology foundation models (FMs) to non-biological medical center differences.

PathoROB pipeline

PathoROB contains four datasets covering 28 biological classes from 34 medical centers and three metrics:

  1. Robustness Index: Measures the ability of an FM to capture biological features while ignoring non-biological features.
  2. Average Performance Drop (APD): Measures the impact of non-biological features on the generalization performance of downstream models.
  3. Clustering Score: Measures the effect of non-biological features on the quality of k-means clusters.
PathoROB overview

How to use

Check out our PathoROB GitHub repository.

Latest updates

  • September 2025: PathoROB is now available on Hugging Face and GitHub.

Licenses

The PathoROB datasets were subsampled from public sources. Therefore, we redistribute each PathoROB dataset under the license of its original data source. You can run PathoROB on any subset of datasets with licenses suitable for your application.

Acknowledgements

We want to thank the authors of the original datasets for making their data publicly available.

Contact

If you have questions or feedback, please contact:

How to cite

If you find PathoROB useful, please cite our preprint:

@article{koemen2025pathorob,
    title={Towards Robust Foundation Models for Digital Pathology},
    author={K{\"o}men, Jonah and de Jong, Edwin D and Hense, Julius and Marienwald, Hannah and Dippel, Jonas and Naumann, Philip and Marcus, Eric and Ruff, Lukas and Alber, Maximilian and Teuwen, Jonas and others},
    journal={arXiv preprint arXiv:2507.17845},
    year={2025}
}

Please also cite the source publications of all PathoROB datasets that you use:

@article{bejnordi2017camelyon16,
    title={Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer},
    author={Ehteshami Bejnordi, Babak and Veta, Mitko and Johannes van Diest, Paul and van Ginneken, Bram and Karssemeijer, Nico and Litjens, Geert and van der Laak, Jeroen A. W. M. and and the CAMELYON16 Consortium},
    journal={JAMA},
    year={2017},
    volume={318},
    number={22},
    pages={2199-2210},
    doi={10.1001/jama.2017.14585}
}
@article{bandi19camelyon17,
    title={From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge},
    author={Bándi, Péter and Geessink, Oscar and Manson, Quirine and Van Dijk, Marcory and Balkenhol, Maschenka and Hermsen, Meyke and Ehteshami Bejnordi, Babak and Lee, Byungjae and Paeng, Kyunghyun and Zhong, Aoxiao and Li, Quanzheng and Zanjani, Farhad Ghazvinian and Zinger, Svitlana and Fukuta, Keisuke and Komura, Daisuke and Ovtcharov, Vlado and Cheng, Shenghua and Zeng, Shaoqun and Thagaard, Jeppe and Dahl, Anders B. and Lin, Huangjing and Chen, Hao and Jacobsson, Ludwig and Hedlund, Martin and Çetin, Melih and Halıcı, Eren and Jackson, Hunter and Chen, Richard and Both, Fabian and Franke, Jörg and Küsters-Vandevelde, Heidi and Vreuls, Willem and Bult, Peter and van Ginneken, Bram and van der Laak, Jeroen and Litjens, Geert},
    journal={IEEE Transactions on Medical Imaging}, 
    year={2019},
    volume={38},
    number={2},
    pages={550-560},
    doi={10.1109/TMI.2018.2867350}
}
  • TCGA (Source: TCGA-UT, License: CC-BY-NC-SA 4.0)
@article{komura22tcga-ut,
    title={Universal encoding of pan-cancer histology by deep texture representations},
    author={Daisuke Komura and Akihiro Kawabe and Keisuke Fukuta and Kyohei Sano and Toshikazu Umezaki and Hirotomo Koda and Ryohei Suzuki and Ken Tominaga and Mieko Ochi and Hiroki Konishi and Fumiya Masakado and Noriyuki Saito and Yasuyoshi Sato and Takumi Onoyama and Shu Nishida and Genta Furuya and Hiroto Katoh and Hiroharu Yamashita and Kazuhiro Kakimi and Yasuyuki Seto and Tetsuo Ushiku and Masashi Fukayama and Shumpei Ishikawa},
    journal={Cell Reports},
    year={2022},
    volume={38},
    number={9},
    pages={110424},
    doi={10.1016/j.celrep.2022.110424}
}
@article{tolkach2023esca,
    title={Artificial intelligence for tumour tissue detection and histological regression grading in oesophageal adenocarcinomas: a retrospective algorithm development and validation study},
    author={Tolkach, Yuri and Wolgast, Lisa Marie and Damanakis, Alexander and Pryalukhin, Alexey and Schallenberg, Simon and Hulla, Wolfgang and Eich, Marie-Lisa and Schroeder, Wolfgang and Mukhopadhyay, Anirban and Fuchs, Moritz and others},
    journal={The Lancet Digital Health},
    year={2023},
    volume={5},
    number={5},
    pages={e265-e275},
    publisher={Elsevier}
}
Downloads last month
46

Collection including bifold-pathomics/PathoROB-tolkach_esca