Delete loading script
Browse files- chemprot.py +0 -446
chemprot.py
DELETED
@@ -1,446 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""
|
16 |
-
The BioCreative VI Chemical-Protein interaction dataset identifies entities of
|
17 |
-
chemicals and proteins and their likely relation to one other. Compounds are
|
18 |
-
generally agonists (activators) or antagonists (inhibitors) of proteins. The
|
19 |
-
script loads dataset in bigbio schema (using knowledgebase schema: schemas/kb)
|
20 |
-
AND/OR source (default) schema
|
21 |
-
"""
|
22 |
-
import os
|
23 |
-
from typing import Dict, Tuple
|
24 |
-
|
25 |
-
import datasets
|
26 |
-
|
27 |
-
from .bigbiohub import kb_features
|
28 |
-
from .bigbiohub import BigBioConfig
|
29 |
-
from .bigbiohub import Tasks
|
30 |
-
|
31 |
-
_LANGUAGES = ['English']
|
32 |
-
_PUBMED = True
|
33 |
-
_LOCAL = False
|
34 |
-
_CITATION = """\
|
35 |
-
@article{DBLP:journals/biodb/LiSJSWLDMWL16,
|
36 |
-
author = {Krallinger, M., Rabal, O., Lourenço, A.},
|
37 |
-
title = {Overview of the BioCreative VI chemical-protein interaction Track},
|
38 |
-
journal = {Proceedings of the BioCreative VI Workshop,},
|
39 |
-
volume = {141-146},
|
40 |
-
year = {2017},
|
41 |
-
url = {https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vi/track-5/},
|
42 |
-
doi = {},
|
43 |
-
biburl = {},
|
44 |
-
bibsource = {}
|
45 |
-
}
|
46 |
-
"""
|
47 |
-
_DESCRIPTION = """\
|
48 |
-
The BioCreative VI Chemical-Protein interaction dataset identifies entities of
|
49 |
-
chemicals and proteins and their likely relation to one other. Compounds are
|
50 |
-
generally agonists (activators) or antagonists (inhibitors) of proteins.
|
51 |
-
"""
|
52 |
-
|
53 |
-
_DATASETNAME = "chemprot"
|
54 |
-
_DISPLAYNAME = "ChemProt"
|
55 |
-
|
56 |
-
_HOMEPAGE = "https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vi/track-5/"
|
57 |
-
|
58 |
-
_LICENSE = 'Public Domain Mark 1.0'
|
59 |
-
|
60 |
-
_URLs = {
|
61 |
-
"source": "https://huggingface.co/datasets/bigbio/chemprot/resolve/main/ChemProt_Corpus.zip",
|
62 |
-
"bigbio_kb": "https://huggingface.co/datasets/bigbio/chemprot/resolve/main/ChemProt_Corpus.zip",
|
63 |
-
}
|
64 |
-
|
65 |
-
_SUPPORTED_TASKS = [Tasks.RELATION_EXTRACTION, Tasks.NAMED_ENTITY_RECOGNITION]
|
66 |
-
_SOURCE_VERSION = "1.0.0"
|
67 |
-
_BIGBIO_VERSION = "1.0.0"
|
68 |
-
|
69 |
-
|
70 |
-
# Chemprot specific variables
|
71 |
-
# NOTE: There are 3 examples (2 in dev, 1 in training) with CPR:0
|
72 |
-
_GROUP_LABELS = {
|
73 |
-
"CPR:0": "Undefined",
|
74 |
-
"CPR:1": "Part_of",
|
75 |
-
"CPR:2": "Regulator",
|
76 |
-
"CPR:3": "Upregulator",
|
77 |
-
"CPR:4": "Downregulator",
|
78 |
-
"CPR:5": "Agonist",
|
79 |
-
"CPR:6": "Antagonist",
|
80 |
-
"CPR:7": "Modulator",
|
81 |
-
"CPR:8": "Cofactor",
|
82 |
-
"CPR:9": "Substrate",
|
83 |
-
"CPR:10": "Not",
|
84 |
-
}
|
85 |
-
|
86 |
-
|
87 |
-
class ChemprotDataset(datasets.GeneratorBasedBuilder):
|
88 |
-
"""BioCreative VI Chemical-Protein Interaction Task."""
|
89 |
-
|
90 |
-
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
91 |
-
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
92 |
-
|
93 |
-
BUILDER_CONFIGS = [
|
94 |
-
BigBioConfig(
|
95 |
-
name="chemprot_full_source",
|
96 |
-
version=SOURCE_VERSION,
|
97 |
-
description="chemprot source schema",
|
98 |
-
schema="source",
|
99 |
-
subset_id="chemprot_full",
|
100 |
-
),
|
101 |
-
BigBioConfig(
|
102 |
-
name="chemprot_shared_task_eval_source",
|
103 |
-
version=SOURCE_VERSION,
|
104 |
-
description="chemprot source schema with only the relation types that were used in the shared task evaluation",
|
105 |
-
schema="source",
|
106 |
-
subset_id="chemprot_shared_task_eval",
|
107 |
-
),
|
108 |
-
BigBioConfig(
|
109 |
-
name="chemprot_bigbio_kb",
|
110 |
-
version=BIGBIO_VERSION,
|
111 |
-
description="chemprot BigBio schema",
|
112 |
-
schema="bigbio_kb",
|
113 |
-
subset_id="chemprot",
|
114 |
-
),
|
115 |
-
]
|
116 |
-
|
117 |
-
DEFAULT_CONFIG_NAME = "chemprot_full_source"
|
118 |
-
|
119 |
-
def _info(self):
|
120 |
-
|
121 |
-
if self.config.schema == "source":
|
122 |
-
features = datasets.Features(
|
123 |
-
{
|
124 |
-
"pmid": datasets.Value("string"),
|
125 |
-
"text": datasets.Value("string"),
|
126 |
-
"entities": datasets.Sequence(
|
127 |
-
{
|
128 |
-
"id": datasets.Value("string"),
|
129 |
-
"type": datasets.Value("string"),
|
130 |
-
"text": datasets.Value("string"),
|
131 |
-
"offsets": datasets.Sequence(datasets.Value("int64")),
|
132 |
-
}
|
133 |
-
),
|
134 |
-
"relations": datasets.Sequence(
|
135 |
-
{
|
136 |
-
"type": datasets.Value("string"),
|
137 |
-
"arg1": datasets.Value("string"),
|
138 |
-
"arg2": datasets.Value("string"),
|
139 |
-
}
|
140 |
-
),
|
141 |
-
}
|
142 |
-
)
|
143 |
-
|
144 |
-
elif self.config.schema == "bigbio_kb":
|
145 |
-
features = kb_features
|
146 |
-
|
147 |
-
return datasets.DatasetInfo(
|
148 |
-
description=_DESCRIPTION,
|
149 |
-
features=features,
|
150 |
-
homepage=_HOMEPAGE,
|
151 |
-
license=str(_LICENSE),
|
152 |
-
citation=_CITATION,
|
153 |
-
)
|
154 |
-
|
155 |
-
def _split_generators(self, dl_manager):
|
156 |
-
"""Returns SplitGenerators."""
|
157 |
-
my_urls = _URLs[self.config.schema]
|
158 |
-
data_dir = dl_manager.download_and_extract(my_urls)
|
159 |
-
|
160 |
-
# Extract each of the individual folders
|
161 |
-
# NOTE: omitting "extract" call cause it uses a new folder
|
162 |
-
train_path = dl_manager.extract(
|
163 |
-
os.path.join(data_dir, "ChemProt_Corpus/chemprot_training.zip")
|
164 |
-
)
|
165 |
-
test_path = dl_manager.extract(
|
166 |
-
os.path.join(data_dir, "ChemProt_Corpus/chemprot_test_gs.zip")
|
167 |
-
)
|
168 |
-
dev_path = dl_manager.extract(
|
169 |
-
os.path.join(data_dir, "ChemProt_Corpus/chemprot_development.zip")
|
170 |
-
)
|
171 |
-
sample_path = dl_manager.extract(
|
172 |
-
os.path.join(data_dir, "ChemProt_Corpus/chemprot_sample.zip")
|
173 |
-
)
|
174 |
-
|
175 |
-
return [
|
176 |
-
datasets.SplitGenerator(
|
177 |
-
name="sample", # should be a named split : /
|
178 |
-
gen_kwargs={
|
179 |
-
"filepath": os.path.join(sample_path, "chemprot_sample"),
|
180 |
-
"abstract_file": "chemprot_sample_abstracts.tsv",
|
181 |
-
"entity_file": "chemprot_sample_entities.tsv",
|
182 |
-
"relation_file": "chemprot_sample_relations.tsv",
|
183 |
-
"gold_standard_file": "chemprot_sample_gold_standard.tsv",
|
184 |
-
"split": "sample",
|
185 |
-
},
|
186 |
-
),
|
187 |
-
datasets.SplitGenerator(
|
188 |
-
name=datasets.Split.TRAIN,
|
189 |
-
gen_kwargs={
|
190 |
-
"filepath": os.path.join(train_path, "chemprot_training"),
|
191 |
-
"abstract_file": "chemprot_training_abstracts.tsv",
|
192 |
-
"entity_file": "chemprot_training_entities.tsv",
|
193 |
-
"relation_file": "chemprot_training_relations.tsv",
|
194 |
-
"gold_standard_file": "chemprot_training_gold_standard.tsv",
|
195 |
-
"split": "train",
|
196 |
-
},
|
197 |
-
),
|
198 |
-
datasets.SplitGenerator(
|
199 |
-
name=datasets.Split.TEST,
|
200 |
-
gen_kwargs={
|
201 |
-
"filepath": os.path.join(test_path, "chemprot_test_gs"),
|
202 |
-
"abstract_file": "chemprot_test_abstracts_gs.tsv",
|
203 |
-
"entity_file": "chemprot_test_entities_gs.tsv",
|
204 |
-
"relation_file": "chemprot_test_relations_gs.tsv",
|
205 |
-
"gold_standard_file": "chemprot_test_gold_standard.tsv",
|
206 |
-
"split": "test",
|
207 |
-
},
|
208 |
-
),
|
209 |
-
datasets.SplitGenerator(
|
210 |
-
name=datasets.Split.VALIDATION,
|
211 |
-
gen_kwargs={
|
212 |
-
"filepath": os.path.join(dev_path, "chemprot_development"),
|
213 |
-
"abstract_file": "chemprot_development_abstracts.tsv",
|
214 |
-
"entity_file": "chemprot_development_entities.tsv",
|
215 |
-
"relation_file": "chemprot_development_relations.tsv",
|
216 |
-
"gold_standard_file": "chemprot_development_gold_standard.tsv",
|
217 |
-
"split": "dev",
|
218 |
-
},
|
219 |
-
),
|
220 |
-
]
|
221 |
-
|
222 |
-
def _generate_examples(
|
223 |
-
self,
|
224 |
-
filepath,
|
225 |
-
abstract_file,
|
226 |
-
entity_file,
|
227 |
-
relation_file,
|
228 |
-
gold_standard_file,
|
229 |
-
split,
|
230 |
-
):
|
231 |
-
"""Yields examples as (key, example) tuples."""
|
232 |
-
if self.config.schema == "source":
|
233 |
-
abstracts = self._get_abstract(os.path.join(filepath, abstract_file))
|
234 |
-
|
235 |
-
entities, entity_id = self._get_entities(
|
236 |
-
os.path.join(filepath, entity_file)
|
237 |
-
)
|
238 |
-
|
239 |
-
if self.config.subset_id == "chemprot_full":
|
240 |
-
relations = self._get_relations(os.path.join(filepath, relation_file))
|
241 |
-
elif self.config.subset_id == "chemprot_shared_task_eval":
|
242 |
-
relations = self._get_relations_gs(
|
243 |
-
os.path.join(filepath, gold_standard_file)
|
244 |
-
)
|
245 |
-
else:
|
246 |
-
raise ValueError(self.config)
|
247 |
-
|
248 |
-
for id_, pmid in enumerate(abstracts.keys()):
|
249 |
-
yield id_, {
|
250 |
-
"pmid": pmid,
|
251 |
-
"text": abstracts[pmid],
|
252 |
-
"entities": entities[pmid],
|
253 |
-
"relations": relations.get(pmid, []),
|
254 |
-
}
|
255 |
-
|
256 |
-
elif self.config.schema == "bigbio_kb":
|
257 |
-
|
258 |
-
abstracts = self._get_abstract(os.path.join(filepath, abstract_file))
|
259 |
-
entities, entity_id = self._get_entities(
|
260 |
-
os.path.join(filepath, entity_file)
|
261 |
-
)
|
262 |
-
relations = self._get_relations(
|
263 |
-
os.path.join(filepath, relation_file), is_mapped=True
|
264 |
-
)
|
265 |
-
|
266 |
-
uid = 0
|
267 |
-
for id_, pmid in enumerate(abstracts.keys()):
|
268 |
-
data = {
|
269 |
-
"id": str(uid),
|
270 |
-
"document_id": str(pmid),
|
271 |
-
"passages": [],
|
272 |
-
"entities": [],
|
273 |
-
"relations": [],
|
274 |
-
"events": [],
|
275 |
-
"coreferences": [],
|
276 |
-
}
|
277 |
-
uid += 1
|
278 |
-
|
279 |
-
data["passages"] = [
|
280 |
-
{
|
281 |
-
"id": str(uid),
|
282 |
-
"type": "title and abstract",
|
283 |
-
"text": [abstracts[pmid]],
|
284 |
-
"offsets": [[0, len(abstracts[pmid])]],
|
285 |
-
}
|
286 |
-
]
|
287 |
-
uid += 1
|
288 |
-
|
289 |
-
entity_to_id = {}
|
290 |
-
for entity in entities[pmid]:
|
291 |
-
_text = entity["text"]
|
292 |
-
entity.update({"text": [_text]})
|
293 |
-
entity_to_id[entity["id"]] = str(uid)
|
294 |
-
entity.update({"id": str(uid)})
|
295 |
-
_offsets = entity["offsets"]
|
296 |
-
entity.update({"offsets": [_offsets]})
|
297 |
-
entity["normalized"] = []
|
298 |
-
data["entities"].append(entity)
|
299 |
-
uid += 1
|
300 |
-
|
301 |
-
for relation in relations.get(pmid, []):
|
302 |
-
relation["arg1_id"] = entity_to_id[relation.pop("arg1")]
|
303 |
-
relation["arg2_id"] = entity_to_id[relation.pop("arg2")]
|
304 |
-
relation.update({"id": str(uid)})
|
305 |
-
relation["normalized"] = []
|
306 |
-
data["relations"].append(relation)
|
307 |
-
uid += 1
|
308 |
-
|
309 |
-
yield id_, data
|
310 |
-
|
311 |
-
@staticmethod
|
312 |
-
def _get_abstract(abs_filename: str) -> Dict[str, str]:
|
313 |
-
"""
|
314 |
-
For each document in PubMed ID (PMID) in the ChemProt abstract data file, return the abstract. Data is tab-separated.
|
315 |
-
|
316 |
-
:param filename: `*_abstracts.tsv from ChemProt
|
317 |
-
|
318 |
-
:returns Dictionary with PMID keys and abstract text as values.
|
319 |
-
"""
|
320 |
-
with open(abs_filename, "r") as f:
|
321 |
-
contents = [i.strip() for i in f.readlines()]
|
322 |
-
|
323 |
-
# PMID is the first column, Abstract is last
|
324 |
-
return {
|
325 |
-
doc.split("\t")[0]: "\n".join(doc.split("\t")[1:]) for doc in contents
|
326 |
-
} # Includes title as line 1
|
327 |
-
|
328 |
-
@staticmethod
|
329 |
-
def _get_entities(ents_filename: str) -> Tuple[Dict[str, str]]:
|
330 |
-
"""
|
331 |
-
For each document in the corpus, return entity annotations per PMID.
|
332 |
-
Each column in the entity file is as follows:
|
333 |
-
(1) PMID
|
334 |
-
(2) Entity Number
|
335 |
-
(3) Entity Type (Chemical, Gene-Y, Gene-N)
|
336 |
-
(4) Start index
|
337 |
-
(5) End index
|
338 |
-
(6) Actual text of entity
|
339 |
-
|
340 |
-
:param ents_filename: `_*entities.tsv` file from ChemProt
|
341 |
-
|
342 |
-
:returns: Dictionary with PMID keys and entity annotations.
|
343 |
-
"""
|
344 |
-
with open(ents_filename, "r") as f:
|
345 |
-
contents = [i.strip() for i in f.readlines()]
|
346 |
-
|
347 |
-
entities = {}
|
348 |
-
entity_id = {}
|
349 |
-
|
350 |
-
for line in contents:
|
351 |
-
|
352 |
-
pmid, idx, label, start_offset, end_offset, name = line.split("\t")
|
353 |
-
|
354 |
-
# Populate entity dictionary
|
355 |
-
if pmid not in entities:
|
356 |
-
entities[pmid] = []
|
357 |
-
|
358 |
-
ann = {
|
359 |
-
"offsets": [int(start_offset), int(end_offset)],
|
360 |
-
"text": name,
|
361 |
-
"type": label,
|
362 |
-
"id": idx,
|
363 |
-
}
|
364 |
-
|
365 |
-
entities[pmid].append(ann)
|
366 |
-
|
367 |
-
# Populate entity mapping
|
368 |
-
entity_id.update({idx: name})
|
369 |
-
|
370 |
-
return entities, entity_id
|
371 |
-
|
372 |
-
@staticmethod
|
373 |
-
def _get_relations(rel_filename: str, is_mapped: bool = False) -> Dict[str, str]:
|
374 |
-
"""For each document in the ChemProt corpus, create an annotation for all relationships.
|
375 |
-
|
376 |
-
:param is_mapped: Whether to convert into NL the relation tags. Default is OFF
|
377 |
-
"""
|
378 |
-
with open(rel_filename, "r") as f:
|
379 |
-
contents = [i.strip() for i in f.readlines()]
|
380 |
-
|
381 |
-
relations = {}
|
382 |
-
|
383 |
-
for line in contents:
|
384 |
-
pmid, label, _, _, arg1, arg2 = line.split("\t")
|
385 |
-
arg1 = arg1.split("Arg1:")[-1]
|
386 |
-
arg2 = arg2.split("Arg2:")[-1]
|
387 |
-
|
388 |
-
if pmid not in relations:
|
389 |
-
relations[pmid] = []
|
390 |
-
|
391 |
-
if is_mapped:
|
392 |
-
label = _GROUP_LABELS[label]
|
393 |
-
|
394 |
-
ann = {
|
395 |
-
"type": label,
|
396 |
-
"arg1": arg1,
|
397 |
-
"arg2": arg2,
|
398 |
-
}
|
399 |
-
|
400 |
-
relations[pmid].append(ann)
|
401 |
-
|
402 |
-
return relations
|
403 |
-
|
404 |
-
@staticmethod
|
405 |
-
def _get_relations_gs(rel_filename: str, is_mapped: bool = False) -> Dict[str, str]:
|
406 |
-
"""
|
407 |
-
For each document in the ChemProt corpus, create an annotation for the gold-standard relationships.
|
408 |
-
|
409 |
-
The columns include:
|
410 |
-
(1) PMID
|
411 |
-
(2) Relationship Label (CPR)
|
412 |
-
(3) Used in shared task
|
413 |
-
(3) Interactor Argument 1 Entity Identifier
|
414 |
-
(4) Interactor Argument 2 Entity Identifier
|
415 |
-
|
416 |
-
Gold standard includes CPRs 3-9. Relationships are always Gene + Protein.
|
417 |
-
Unlike entities, there is no counter, hence once must be made
|
418 |
-
|
419 |
-
:param rel_filename: Gold standard file name
|
420 |
-
:param ent_dict: Entity Identifier to text
|
421 |
-
"""
|
422 |
-
with open(rel_filename, "r") as f:
|
423 |
-
contents = [i.strip() for i in f.readlines()]
|
424 |
-
|
425 |
-
relations = {}
|
426 |
-
|
427 |
-
for line in contents:
|
428 |
-
pmid, label, arg1, arg2 = line.split("\t")
|
429 |
-
arg1 = arg1.split("Arg1:")[-1]
|
430 |
-
arg2 = arg2.split("Arg2:")[-1]
|
431 |
-
|
432 |
-
if pmid not in relations:
|
433 |
-
relations[pmid] = []
|
434 |
-
|
435 |
-
if is_mapped:
|
436 |
-
label = _GROUP_LABELS[label]
|
437 |
-
|
438 |
-
ann = {
|
439 |
-
"type": label,
|
440 |
-
"arg1": arg1,
|
441 |
-
"arg2": arg2,
|
442 |
-
}
|
443 |
-
|
444 |
-
relations[pmid].append(ann)
|
445 |
-
|
446 |
-
return relations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|