metadata
license: cc-by-nc-4.0
task_categories:
- object-detection
tags:
- shagai
size_categories:
- n<1K
dataset_info:
features:
- name: image
dtype: image
- name: objects
struct:
- name: bbox
sequence:
sequence: int64
- name: categories
sequence: int64
splits:
- name: train
num_bytes: 4647508
num_examples: 644
- name: validation
num_bytes: 2000239
num_examples: 277
download_size: 6398185
dataset_size: 6647747
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
Shagai
Object detection dataset for identifying the shape of shagai (ankle of a sheep).
Checkout our original Github Repo.
Dataset info
Dataset contains total of 921 images with 3680 objects. Each image has exactly 4 objects.
Categories:
- horse
- camel
- sheep
- goat
Splits:
- Training: 644 images, 2573 objects,
{0: 644, 1: 642, 2: 668, 3: 619}
(obj. class) - Validation: 277 images, 1107 objects,
{0: 302, 1: 245, 2: 281, 3: 279}
(obj. class)
Credits
This dataset was created with contributions from Amarsaikhan Batjargal, Bandikhuu Baasanjav, and Bilguun Ochirbat, students of the National University of Mongolia.
Citation
@misc{shagai2018,
author = {Ochirbat, Bilguun and Batjargal, Amarsaikhan and Baasanjav, Bandikhuu},
title = {{Detect the shape of shagai using RetinaNet}},
howpublished = {\url{https://github.com/bilguun0203/ankle-bone-recognition}},
year = {2018},
month = {July}
}