Dataset Viewer
Auto-converted to Parquet
hexsha
stringlengths
40
40
size
int64
6
782k
ext
stringclasses
7 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
237
max_stars_repo_name
stringlengths
6
72
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
sequence
max_stars_count
int64
1
53k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
184
max_issues_repo_name
stringlengths
6
72
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
sequence
max_issues_count
int64
1
27.1k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
184
max_forks_repo_name
stringlengths
6
72
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
sequence
max_forks_count
int64
1
12.2k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
6
782k
avg_line_length
float64
2.75
664k
max_line_length
int64
5
782k
alphanum_fraction
float64
0
1
8a78745915eb3a4aaf90865a024b4d8bafd46ca7
5,151
py
Python
research/gnn/sgcn/postprocess.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
1
2021-11-18T08:17:44.000Z
2021-11-18T08:17:44.000Z
research/gnn/sgcn/postprocess.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
null
null
null
research/gnn/sgcn/postprocess.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
2
2019-09-01T06:17:04.000Z
2019-10-04T08:39:45.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ postprocess. """ import os import argparse import numpy as np from src.ms_utils import calculate_auc from mindspore import context, load_checkpoint def softmax(x): t_max = np.max(x, axis=1, keepdims=True) # returns max of each row and keeps same dims e_x = np.exp(x - t_max) # subtracts each row with its max value t_sum = np.sum(e_x, axis=1, keepdims=True) # returns sum of each row and keeps same dims f_x = e_x / t_sum return f_x def score_model(preds, test_pos, test_neg, weight, bias): """ Score the model on the test set edges in each epoch. Args: epoch (LongTensor): Training epochs. Returns: auc(Float32): AUC result. f1(Float32): F1-Score result. """ score_positive_edges = np.array(test_pos, dtype=np.int32).T score_negative_edges = np.array(test_neg, dtype=np.int32).T test_positive_z = np.concatenate((preds[score_positive_edges[0, :], :], preds[score_positive_edges[1, :], :]), axis=1) test_negative_z = np.concatenate((preds[score_negative_edges[0, :], :], preds[score_negative_edges[1, :], :]), axis=1) # operands could not be broadcast together with shapes (4288,128) (128,3) scores = np.dot(np.concatenate((test_positive_z, test_negative_z), axis=0), weight) + bias probability_scores = np.exp(softmax(scores)) predictions = probability_scores[:, 0]/probability_scores[:, 0:2].sum(1) # predictions = predictions.asnumpy() targets = [0]*len(test_pos) + [1]*len(test_neg) auc, f1 = calculate_auc(targets, predictions) return auc, f1 def get_acc(): """get infer Accuracy.""" parser = argparse.ArgumentParser(description='postprocess') parser.add_argument('--dataset_name', type=str, default='bitcoin-otc', choices=['bitcoin-otc', 'bitcoin-alpha'], help='dataset name') parser.add_argument('--result_path', type=str, default='./ascend310_infer/input/', help='result Files') parser.add_argument('--label_path', type=str, default='', help='y_test npy Files') parser.add_argument('--mask_path', type=str, default='', help='test_mask npy Files') parser.add_argument("--checkpoint_file", type=str, default='sgcn_alpha_f1.ckpt', help="Checkpoint file path.") parser.add_argument("--edge_path", nargs="?", default="./input/bitcoin_alpha.csv", help="Edge list csv.") parser.add_argument("--features-path", nargs="?", default="./input/bitcoin_alpha.csv", help="Edge list csv.") parser.add_argument("--test-size", type=float, default=0.2, help="Test dataset size. Default is 0.2.") parser.add_argument("--seed", type=int, default=42, help="Random seed for sklearn pre-training. Default is 42.") parser.add_argument("--spectral-features", default=True, dest="spectral_features", action="store_true") parser.add_argument("--reduction-iterations", type=int, default=30, help="Number of SVD iterations. Default is 30.") parser.add_argument("--reduction-dimensions", type=int, default=64, help="Number of SVD feature extraction dimensions. Default is 64.") args_opt = parser.parse_args() # Runtime context.set_context(mode=context.GRAPH_MODE, device_target='Ascend', device_id=0) # Create network test_pos = np.load(os.path.join(args_opt.result_path, 'pos_test.npy')) test_neg = np.load(os.path.join(args_opt.result_path, 'neg_test.npy')) # Load parameters from checkpoint into network param_dict = load_checkpoint(args_opt.checkpoint_file) print(type(param_dict)) print(param_dict) print(type(param_dict['regression_weights'])) print(param_dict['regression_weights']) # load_param_into_net(net, param_dict) pred = np.fromfile('./result_Files/repos_0.bin', np.float32) if args_opt.dataset_name == 'bitcoin-otc': pred = pred.reshape(5881, 64) else: pred = pred.reshape(3783, 64) auc, f1 = score_model(pred, test_pos, test_neg, param_dict['regression_weights'].asnumpy(), param_dict['regression_bias'].asnumpy()) print("Test set results:", "auc=", "{:.5f}".format(auc), "f1=", "{:.5f}".format(f1)) if __name__ == '__main__': get_acc()
48.140187
117
0.644729
0a10152195fb9a20741a86fb44035860fed300f4
12,017
py
Python
Packs/Pwned/Integrations/PwnedV2/PwnedV2.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
799
2016-08-02T06:43:14.000Z
2022-03-31T11:10:11.000Z
Packs/Pwned/Integrations/PwnedV2/PwnedV2.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
9,317
2016-08-07T19:00:51.000Z
2022-03-31T21:56:04.000Z
Packs/Pwned/Integrations/PwnedV2/PwnedV2.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
1,297
2016-08-04T13:59:00.000Z
2022-03-31T23:43:06.000Z
from CommonServerPython import * ''' IMPORTS ''' import re import requests # Disable insecure warnings requests.packages.urllib3.disable_warnings() ''' GLOBALS/PARAMS ''' VENDOR = 'Have I Been Pwned? V2' MAX_RETRY_ALLOWED = demisto.params().get('max_retry_time', -1) API_KEY = demisto.params().get('api_key') USE_SSL = not demisto.params().get('insecure', False) BASE_URL = 'https://haveibeenpwned.com/api/v3' HEADERS = { 'hibp-api-key': API_KEY, 'user-agent': 'DBOT-API', 'Content-Type': 'application/json', 'Accept': 'application/json' } DEFAULT_DBOT_SCORE_EMAIL = 2 if demisto.params().get('default_dbot_score_email') == 'SUSPICIOUS' else 3 DEFAULT_DBOT_SCORE_DOMAIN = 2 if demisto.params().get('default_dbot_score_domain') == 'SUSPICIOUS' else 3 SUFFIXES = { "email": '/breachedaccount/', "domain": '/breaches?domain=', "username": '/breachedaccount/', "paste": '/pasteaccount/', "email_truncate_verified": '?truncateResponse=false&includeUnverified=true', "domain_truncate_verified": '&truncateResponse=false&includeUnverified=true', "username_truncate_verified": '?truncateResponse=false&includeUnverified=true' } RETRIES_END_TIME = datetime.min ''' HELPER FUNCTIONS ''' def http_request(method, url_suffix, params=None, data=None): while True: res = requests.request( method, BASE_URL + url_suffix, verify=USE_SSL, params=params, data=data, headers=HEADERS ) if res.status_code != 429: # Rate limit response code break if datetime.now() > RETRIES_END_TIME: return_error('Max retry time has exceeded.') wait_regex = re.search(r'\d+', res.json()['message']) if wait_regex: wait_amount = wait_regex.group() else: demisto.error('failed extracting wait time will use default (5). Res body: {}'.format(res.text)) wait_amount = 5 if datetime.now() + timedelta(seconds=int(wait_amount)) > RETRIES_END_TIME: return_error('Max retry time has exceeded.') time.sleep(int(wait_amount)) if res.status_code == 404: return None if not res.status_code == 200: if not res.status_code == 401: demisto.error( 'Error in API call to Pwned Integration [%d]. Full text: %s' % (res.status_code, res.text)) return_error('Error in API call to Pwned Integration [%d] - %s' % (res.status_code, res.reason)) return None return res.json() def html_description_to_human_readable(breach_description): """ Converting from html description to hr :param breach_description: Description of breach from API response :return: Description string that altered HTML urls to clickable urls for better readability in war-room """ html_link_pattern = re.compile('<a href="(.+?)"(.+?)>(.+?)</a>') patterns_found = html_link_pattern.findall(breach_description) for link in patterns_found: html_actual_address = link[0] html_readable_name = link[2] link_from_desc = '[' + html_readable_name + ']' + '(' + html_actual_address + ')' breach_description = re.sub(html_link_pattern, link_from_desc, breach_description, count=1) return breach_description def data_to_markdown(query_type, query_arg, api_res, api_paste_res=None): records_found = False md = '### Have I Been Pwned query for ' + query_type.lower() + ': *' + query_arg + '*\n' if api_res: records_found = True for breach in api_res: verified_breach = 'Verified' if breach['IsVerified'] else 'Unverified' md += '#### ' + breach['Title'] + ' (' + breach['Domain'] + '): ' + str(breach['PwnCount']) + \ ' records breached [' + verified_breach + ' breach]\n' md += 'Date: **' + breach['BreachDate'] + '**\n\n' md += html_description_to_human_readable(breach['Description']) + '\n' md += 'Data breached: **' + ','.join(breach['DataClasses']) + '**\n' if api_paste_res: records_found = True pastes_list = [] for paste_breach in api_paste_res: paste_entry = \ { 'Source': paste_breach['Source'], 'Title': paste_breach['Title'], 'ID': paste_breach['Id'], 'Date': '', 'Amount of emails in paste': str(paste_breach['EmailCount']) } if paste_breach['Date']: paste_entry['Date'] = paste_breach['Date'].split('T')[0] pastes_list.append(paste_entry) md += tableToMarkdown('The email address was found in the following "Pastes":', pastes_list, ['ID', 'Title', 'Date', 'Source', 'Amount of emails in paste']) if not records_found: md += 'No records found' return md def create_dbot_score_dictionary(indicator_value, indicator_type, dbot_score): return { 'Indicator': indicator_value, 'Type': indicator_type, 'Vendor': VENDOR, 'Score': dbot_score } def create_context_entry(context_type, context_main_value, comp_sites, comp_pastes, malicious_score): context_dict = dict() # dict if context_type == 'email': context_dict['Address'] = context_main_value else: context_dict['Name'] = context_main_value context_dict['Pwned-V2'] = { 'Compromised': { 'Vendor': VENDOR, 'Reporters': ', '.join(comp_sites + comp_pastes) } } if malicious_score == 3: context_dict['Malicious'] = add_malicious_to_context(context_type) return context_dict def add_malicious_to_context(malicious_type): return { 'Vendor': VENDOR, 'Description': 'The ' + malicious_type + ' has been compromised' } def email_to_entry_context(email, api_email_res, api_paste_res): dbot_score = 0 comp_email = dict() # type: dict comp_sites = sorted([item['Title'] for item in api_email_res]) comp_pastes = sorted(set(item['Source'] for item in api_paste_res)) if len(comp_sites) > 0: dbot_score = DEFAULT_DBOT_SCORE_EMAIL email_context = create_context_entry('email', email, comp_sites, comp_pastes, DEFAULT_DBOT_SCORE_EMAIL) comp_email[outputPaths['email']] = email_context comp_email['DBotScore'] = create_dbot_score_dictionary(email, 'email', dbot_score) return comp_email def domain_to_entry_context(domain, api_res): comp_sites = [item['Title'] for item in api_res] comp_sites = sorted(comp_sites) comp_domain = dict() # type: dict dbot_score = 0 if len(comp_sites) > 0: dbot_score = DEFAULT_DBOT_SCORE_DOMAIN domain_context = create_context_entry('domain', domain, comp_sites, [], DEFAULT_DBOT_SCORE_DOMAIN) comp_domain[outputPaths['domain']] = domain_context comp_domain['DBotScore'] = create_dbot_score_dictionary(domain, 'domain', dbot_score) return comp_domain def set_retry_end_time(): global RETRIES_END_TIME if MAX_RETRY_ALLOWED != -1: RETRIES_END_TIME = datetime.now() + timedelta(seconds=int(MAX_RETRY_ALLOWED)) ''' COMMANDS + REQUESTS FUNCTIONS ''' def test_module(args_dict): """ If the http request was successful the test will return OK :return: 3 arrays of outputs """ http_request('GET', SUFFIXES.get("username", '') + 'test') return ['ok'], [None], [None] def pwned_email_command(args_dict): """ Executing the pwned request for emails list, in order to support list input, the function returns 3 lists of outputs :param args_dict: the demisto argument - in this case the email list is needed :return: 3 arrays of outputs """ email_list = argToList(args_dict.get('email', '')) api_email_res_list, api_paste_res_list = pwned_email(email_list) md_list = [] ec_list = [] for email, api_email_res, api_paste_res in zip(email_list, api_email_res_list, api_paste_res_list): md_list.append(data_to_markdown('Email', email, api_email_res, api_paste_res)) ec_list.append(email_to_entry_context(email, api_email_res or [], api_paste_res or [])) return md_list, ec_list, api_email_res_list def pwned_email(email_list): """ Executing the http requests :param email_list: the email list that needed for the http requests :return: 2 arrays of http requests outputs """ api_email_res_list = [] api_paste_res_list = [] for email in email_list: email_suffix = SUFFIXES.get("email") + email + SUFFIXES.get("email_truncate_verified") paste_suffix = SUFFIXES.get("paste") + email api_email_res_list.append(http_request('GET', url_suffix=email_suffix)) api_paste_res_list.append(http_request('GET', url_suffix=paste_suffix)) return api_email_res_list, api_paste_res_list def pwned_domain_command(args_dict): """ Executing the pwned request for domains list, in order to support list input, the function returns 3 lists of outputs :param args_dict: the demisto argument - in this case the domain list is needed :return: 3 arrays of outputs """ domain_list = argToList(args_dict.get('domain', '')) api_res_list = pwned_domain(domain_list) md_list = [] ec_list = [] for domain, api_res in zip(domain_list, api_res_list): md_list.append(data_to_markdown('Domain', domain, api_res)) ec_list.append(domain_to_entry_context(domain, api_res or [])) return md_list, ec_list, api_res_list def pwned_domain(domain_list): """ Executing the http request :param domain_list: the domains list that needed for the http requests :return: an array of http requests outputs """ api_res_list = [] for domain in domain_list: suffix = SUFFIXES.get("domain") + domain + SUFFIXES.get("domain_truncate_verified") api_res_list.append(http_request('GET', url_suffix=suffix)) return api_res_list def pwned_username_command(args_dict): """ Executing the pwned request for usernames list, in order to support list input, the function returns 3 lists of outputs :param args_dict: the demisto argument - in this case the username list is needed :return: 3 arrays of outputs """ username_list = argToList(args_dict.get('username', '')) api_res_list = pwned_username(username_list) md_list = [] ec_list = [] for username, api_res in zip(username_list, api_res_list): md_list.append(data_to_markdown('Username', username, api_res)) ec_list.append(domain_to_entry_context(username, api_res or [])) return md_list, ec_list, api_res_list def pwned_username(username_list): """ Executing the http request :param username_list: the username list that needed for the http requests :return: an array of http requests outputs """ api_res_list = [] for username in username_list: suffix = SUFFIXES.get("username") + username + SUFFIXES.get("username_truncate_verified") api_res_list.append(http_request('GET', url_suffix=suffix)) return api_res_list command = demisto.command() LOG('Command being called is: {}'.format(command)) try: handle_proxy() set_retry_end_time() commands = { 'test-module': test_module, 'email': pwned_email_command, 'pwned-email': pwned_email_command, 'domain': pwned_domain_command, 'pwned-domain': pwned_domain_command, 'pwned-username': pwned_username_command } if command in commands: md_list, ec_list, api_email_res_list = commands[command](demisto.args()) for md, ec, api_paste_res in zip(md_list, ec_list, api_email_res_list): return_outputs(md, ec, api_paste_res) # Log exceptions except Exception as e: return_error(str(e))
34.042493
120
0.659732
0a8fdb2b5cc10e441111eda628478417245011ef
5,283
py
Python
official/cv/c3d/src/c3d_model.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
official/cv/c3d/src/c3d_model.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
official/cv/c3d/src/c3d_model.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import math import mindspore.nn as nn import mindspore.ops as P from mindspore.common import initializer as init from src.utils import default_recurisive_init, KaimingNormal class C3D(nn.Cell): """ C3D network definition. Args: num_classes (int): Class numbers. Default: 1000. Returns: Tensor, infer output tensor. Examples: >>> C3D(num_classes=1000) """ def __init__(self, num_classes=1000): super(C3D, self).__init__() self.conv1 = nn.Conv3d(in_channels=3, out_channels=64, kernel_size=(3, 3, 3), padding=(1, 1, 1, 1, 1, 1), pad_mode='pad', has_bias=True) self.pool1 = P.MaxPool3D(kernel_size=(1, 2, 2), strides=(1, 2, 2), pad_mode='same') self.conv2 = nn.Conv3d(in_channels=64, out_channels=128, kernel_size=(3, 3, 3), padding=(1, 1, 1, 1, 1, 1), pad_mode='pad', has_bias=True) self.pool2 = P.MaxPool3D(kernel_size=(2, 2, 2), strides=(2, 2, 2), pad_mode='same') self.conv3a = nn.Conv3d(in_channels=128, out_channels=256, kernel_size=(3, 3, 3), padding=(1, 1, 1, 1, 1, 1), pad_mode='pad', has_bias=True) self.conv3b = nn.Conv3d(in_channels=256, out_channels=256, kernel_size=(3, 3, 3), padding=(1, 1, 1, 1, 1, 1), pad_mode='pad', has_bias=True) self.pool3 = P.MaxPool3D(kernel_size=(2, 2, 2), strides=(2, 2, 2), pad_mode='same') self.conv4a = nn.Conv3d(in_channels=256, out_channels=512, kernel_size=(3, 3, 3), padding=(1, 1, 1, 1, 1, 1), pad_mode='pad', has_bias=True) self.conv4b = nn.Conv3d(in_channels=512, out_channels=512, kernel_size=(3, 3, 3), padding=(1, 1, 1, 1, 1, 1), pad_mode='pad', has_bias=True) self.pool4 = P.MaxPool3D(kernel_size=(2, 2, 2), strides=(2, 2, 2), pad_mode='same') self.conv5a = nn.Conv3d(in_channels=512, out_channels=512, kernel_size=(3, 3, 3), padding=(1, 1, 1, 1, 1, 1), pad_mode='pad', has_bias=True) self.conv5b = nn.Conv3d(in_channels=512, out_channels=512, kernel_size=(3, 3, 3), padding=(1, 1, 1, 1, 1, 1), pad_mode='pad', has_bias=True) self.pool5 = P.MaxPool3D(kernel_size=(2, 2, 2), strides=(2, 2, 2), pad_mode='same') self.fc6 = nn.Dense(in_channels=8192, out_channels=4096) self.fc7 = nn.Dense(in_channels=4096, out_channels=4096) self.fc8 = nn.Dense(in_channels=4096, out_channels=num_classes, bias_init=init.Normal(0.02)) self.dropout = nn.Dropout(keep_prob=0.5) self.relu = nn.ReLU() self.pad = nn.Pad(paddings=((0, 0), (0, 0), (1, 0), (1, 0)), mode="CONSTANT") self.__init_weight() def __init_weight(self): default_recurisive_init(self) self.custom_init_weight() def construct(self, x): x = self.relu(self.conv1(x)) x = self.pool1(x) x = self.relu(self.conv2(x)) x = self.pool2(x) x = self.relu(self.conv3a(x)) x = self.relu(self.conv3b(x)) x = self.pool3(x) x = self.relu(self.conv4a(x)) x = self.relu(self.conv4b(x)) x = self.pool4(x) x = self.relu(self.conv5a(x)) x = self.relu(self.conv5b(x)) x = x.view(-1, 512 * 2, 7, 7) x = self.pad(x) x = x.view(-1, 512, 2, 8, 8) x = self.pool5(x) x = x.view(-1, 8192) x = self.relu(self.fc6(x)) x = self.dropout(x) x = self.relu(self.fc7(x)) x = self.dropout(x) logits = self.fc8(x) return logits def custom_init_weight(self): """ Init the weight of Conv3d and Dense in the net. """ for _, cell in self.cells_and_names(): if isinstance(cell, nn.Conv3d): cell.weight.set_data(init.initializer( KaimingNormal(a=math.sqrt(5), mode='fan_out', nonlinearity='relu'), cell.weight.shape, cell.weight.dtype)) if cell.bias is not None: cell.bias.set_data(init.initializer( 'zeros', cell.bias.shape, cell.bias.dtype)) elif isinstance(cell, nn.Dense): cell.weight.set_data(init.initializer( init.Normal(0.01), cell.weight.shape, cell.weight.dtype)) if cell.bias is not None: cell.bias.set_data(init.initializer( 'zeros', cell.bias.shape, cell.bias.dtype))
40.638462
100
0.570509
7c2f595fee4e21dc84c6666b03b2174e6d5731e0
8,108
py
Python
tensorforce/tests/test_model_save_restore.py
gian1312/suchen
df863140fd8df1ac2e195cbdfa4756f09f962270
[ "Apache-2.0" ]
null
null
null
tensorforce/tests/test_model_save_restore.py
gian1312/suchen
df863140fd8df1ac2e195cbdfa4756f09f962270
[ "Apache-2.0" ]
null
null
null
tensorforce/tests/test_model_save_restore.py
gian1312/suchen
df863140fd8df1ac2e195cbdfa4756f09f962270
[ "Apache-2.0" ]
1
2019-11-29T12:28:33.000Z
2019-11-29T12:28:33.000Z
from __future__ import absolute_import from __future__ import print_function from __future__ import division import unittest import pytest from tensorforce import TensorForceError from tensorforce.core.networks import LayeredNetwork from tensorforce.models import DistributionModel from tensorforce.tests.minimal_test import MinimalTest from tensorforce.agents import PPOAgent from tensorforce.execution import Runner import tensorflow as tf import numpy as np from tensorforce.util import SavableComponent import os class SavableNetwork(LayeredNetwork, SavableComponent): """ Minimal implementation of a Network that can be saved and restored independently of the Model. """ def get_savable_variables(self): return super(SavableNetwork, self).get_variables(include_nontrainable=False) def _get_base_variable_scope(self): return self.apply.variable_scope_name def create_environment(spec): return MinimalTest(spec) def create_agent(environment, network_spec): return PPOAgent( update_mode=dict( unit='episodes', batch_size=4, frequency=4 ), memory=dict( type='latest', include_next_states=False, capacity=100 ), step_optimizer=dict( type='adam', learning_rate=1e-3 ), subsampling_fraction=0.3, optimization_steps=20, states=environment.states, actions=environment.actions, network=network_spec ) class TestModelSaveRestore(unittest.TestCase): @pytest.fixture(autouse=True) def initdir(self, tmpdir): tmpdir.chdir() self._tmp_dir_path = str(tmpdir) print("Using %s" % (self._tmp_dir_path, )) def test_save_restore(self): environment_spec = {"float": ()} environment = create_environment(environment_spec) network_spec = [ dict(type='dense', size=32) ] agent = create_agent(environment, network_spec) runner = Runner(agent=agent, environment=environment) runner.run(episodes=100) model_values = agent.model.session.run(agent.model.get_variables( include_submodules=True, include_nontrainable=False )) save_path = agent.model.save(directory=self._tmp_dir_path + "/model") print("Saved at: %s" % (save_path,)) runner.close() agent = create_agent(environment, network_spec) agent.model.restore(directory="", file=save_path) restored_model_values = agent.model.session.run(agent.model.get_variables( include_submodules=True, include_nontrainable=False )) assert len(model_values) == len(restored_model_values) assert all([np.array_equal(v1, v2) for v1, v2 in zip(model_values, restored_model_values)]) agent.close() def test_save_network(self): """ Test to validate that calls to save and restore of a SavableComponent successfully save and restore the component's state. """ environment_spec = {"float": ()} environment = create_environment(environment_spec) network_spec = dict( type=SavableNetwork, layers=[dict(type='dense', size=1)] ) agent = create_agent(environment, network_spec) assert isinstance(agent.model.network, SavableComponent) runner = Runner(agent=agent, environment=environment) runner.run(episodes=100) network_values = agent.model.session.run(agent.model.network.get_variables()) distribution = next(iter(agent.model.distributions.values())) distribution_values = agent.model.session.run(distribution.get_variables()) save_path = self._tmp_dir_path + "/network" agent.model.save_component(component_name=DistributionModel.COMPONENT_NETWORK, save_path=save_path) runner.close() assert os.path.isfile(save_path + ".data-00000-of-00001") assert os.path.isfile(save_path + ".index") agent = create_agent(environment, network_spec) agent.model.restore_component(component_name=DistributionModel.COMPONENT_NETWORK, save_path=save_path) # Ensure only the network variables are loaded restored_network_values = agent.model.session.run(agent.model.network.get_variables(include_nontrainable=True)) distribution = next(iter(agent.model.distributions.values())) restored_distribution_values = agent.model.session.run(distribution.get_variables()) assert len(restored_network_values) == len(network_values) assert all([np.array_equal(v1, v2) for v1, v2 in zip(network_values, restored_network_values)]) assert len(restored_distribution_values) == len(distribution_values) assert not all([np.array_equal(v1, v2) for v1, v2 in zip(distribution_values, restored_distribution_values)]) agent.close() environment.close() def test_pretrain_network(self): """ Simulates training outside of Tensorforce and then loading the parameters in the agent's network. """ environment_spec = {"float": ()} environment = create_environment(environment_spec) size = environment.states["shape"] output_size = 1 save_path = self._tmp_dir_path + "/network" g = tf.Graph() with g.as_default(): x = tf.placeholder(dtype=environment.states["type"], shape=[None, size]) layer = tf.layers.Dense(units=output_size) y = layer(x) y_ = tf.placeholder(dtype=environment.states["type"], shape=[None, output_size]) loss = tf.losses.mean_squared_error(y_, y) optimizer = tf.train.AdamOptimizer(learning_rate=0.1) train_step = optimizer.minimize(loss) batch_size = 64 with tf.Session(graph=g) as sess: sess.run(tf.global_variables_initializer()) for epoch in range(100): batch = np.random.random([batch_size, size]) correct = np.ones(shape=[batch.shape[0], output_size]) loss_value, _ = sess.run([loss, train_step], {x: batch, y_: correct}) if epoch % 10 == 0: print("epoch %d: %f" % (epoch, loss_value)) var_map = { "dense0/apply/linear/apply/W:0": layer.kernel, "dense0/apply/linear/apply/b:0": layer.bias } saver = tf.train.Saver(var_list=var_map) saver.save(sess=sess, write_meta_graph=False, save_path=save_path) network_spec = dict( type=SavableNetwork, layers=[dict(type='dense', size=output_size)], ) agent = create_agent(environment, network_spec) agent.model.restore_component(component_name=agent.model.COMPONENT_NETWORK, save_path=save_path) agent.close() def test_non_savable_component(self): environment_spec = {"float": ()} environment = create_environment(environment_spec) network_spec = [dict(type='dense', size=32)] agent = create_agent(environment, network_spec) expected_message = "Component network must implement SavableComponent but is " with pytest.raises(TensorForceError) as excinfo: agent.model.restore_component(component_name="network", save_path=self._tmp_dir_path + "/network") assert expected_message in str(excinfo.value) with pytest.raises(TensorForceError) as excinfo: agent.model.save_component(component_name="network", save_path=self._tmp_dir_path + "/network") assert expected_message in str(excinfo.value) with pytest.raises(TensorForceError) as excinfo: agent.model.restore_component(component_name="non-existent", save_path=self._tmp_dir_path + "/network") assert "Component non-existent must implement SavableComponent but is None" == str(excinfo.value) agent.close()
39.940887
119
0.662309
7c2f74f5570ad8ece2d2a501cd63b62951484c2c
844
py
Python
guid.py
lihuiba/SoftSAN
1b8ab2cae92b7aac34211909b27d4ebe595275d7
[ "Apache-2.0" ]
1
2015-08-02T09:53:18.000Z
2015-08-02T09:53:18.000Z
guid.py
lihuiba/SoftSAN
1b8ab2cae92b7aac34211909b27d4ebe595275d7
[ "Apache-2.0" ]
null
null
null
guid.py
lihuiba/SoftSAN
1b8ab2cae92b7aac34211909b27d4ebe595275d7
[ "Apache-2.0" ]
2
2018-03-21T04:59:50.000Z
2019-12-03T15:54:17.000Z
import random import messages_pb2 as msg def assign(x, y): x.a=y.a; x.b=y.b; x.c=y.c; x.d=y.d def isZero(x): return (x.a==0 and x.b==0 and x.c==0 and x.d==0) def setZero(x): x.a=0; x.b=0; x.c=0; x.d=0 def toStr(x): return "%08x-%08x-%08x-%08x" % (x.a, x.b, x.c, x.d) def toTuple(x): return (x.a, x.b, x.c, x.d) def fromTuple(x): ret=msg.Guid() ret.a=x[0] ret.b=x[1] ret.c=x[2] ret.d=x[3] return ret def generate(guid=None): ret=guid or msg.Guid() ret.a=random.randint(0, 0xffffffff) ret.b=random.randint(0, 0xffffffff) ret.c=random.randint(0, 0xffffffff) ret.d=random.randint(0, 0xffffffff) return ret def fromStr(s): ret=msg.Guid() s=s.split('-') ret.a=int(s[0], 16) ret.b=int(s[1], 16) ret.c=int(s[2], 16) ret.d=int(s[3], 16) return ret
19.181818
55
0.562796
861c79331c252b7937573a42f8e033c57c978cd9
6,138
py
Python
oneflow/python/test/ops/test_l1loss.py
wanghongsheng01/framework_enflame
debf613e05e3f5ea8084c3e79b60d0dd9e349526
[ "Apache-2.0" ]
2
2021-09-10T00:19:49.000Z
2021-11-16T11:27:20.000Z
oneflow/python/test/ops/test_l1loss.py
duijiudanggecl/oneflow
d2096ae14cf847509394a3b717021e2bd1d72f62
[ "Apache-2.0" ]
1
2021-06-16T08:37:50.000Z
2021-06-16T08:37:50.000Z
oneflow/python/test/ops/test_l1loss.py
duijiudanggecl/oneflow
d2096ae14cf847509394a3b717021e2bd1d72f62
[ "Apache-2.0" ]
1
2021-11-10T07:57:01.000Z
2021-11-10T07:57:01.000Z
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import oneflow as flow import numpy as np import oneflow.typing as tp from test_util import GenArgList import unittest from collections import OrderedDict from typing import Dict import os def _compare_l1loss_with_np( input_shape, target_shape, device_type, machine_ids, device_counts ): input = np.random.random(size=input_shape).astype(np.float32) target = np.random.random(size=target_shape).astype(np.float32) assert device_type in ["cpu", "gpu"] func_config = flow.FunctionConfig() flow.clear_default_session() if device_type == "cpu": flow.config.cpu_device_num(device_counts) else: flow.config.gpu_device_num(device_counts) func_config.default_placement_scope(flow.scope.placement(device_type, machine_ids)) func_config.default_logical_view(flow.scope.consistent_view()) def np_l1loss(np_input, np_target): np_l1 = np.abs(np_target - np_input) np_l1_mean = np.mean(np_l1) np_l1_sum = np.sum(np_l1) np_l1_dict = { "np_l1_loss": np_l1, "np_l1_loss_mean": np_l1_mean, "np_l1_loss_sum": np_l1_sum, } return np_l1_dict def np_l1_loss_diff(np_input, np_target): # Use numpy to compute diff original_shape = np_target.shape elemcnt = np_target.size prediction = np_input.reshape(-1) label = np_target.reshape(-1) prediction_grad = np.zeros((elemcnt)).astype(prediction.dtype) for i in np.arange(elemcnt): diff = prediction[i] - label[i] prediction_grad[i] = np.sign(diff) grad_mean = prediction_grad.reshape(original_shape) / elemcnt # TODO: if you want to get the grad when the reduction = "sum", you can use the follow code # grad_sum = prediction_grad.reshape(original_shape) grad_dict = { "np_grad_mean": grad_mean, } return grad_dict # Use Numpy to compute l1 loss np_out_l1loss_dict = np_l1loss(input, target) # Use Numpy to compute l1 grad np_grad_dict = np_l1_loss_diff(input, target) def assert_prediction_grad(blob: tp.Numpy): # Evaluate the gradient. Here we only test the reduction type == "mean" assert np.allclose(blob, np_grad_dict["np_grad_mean"]) @flow.global_function(type="train", function_config=func_config) def oneflow_l1loss( of_input: tp.Numpy.Placeholder(shape=input.shape), of_target: tp.Numpy.Placeholder(shape=target.shape), ) -> Dict[str, tp.Numpy]: with flow.scope.placement(device_type, "0:0"): v = flow.get_variable( shape=target.shape, dtype=flow.float32, initializer=flow.constant_initializer(0), name="v", ) x_var = of_input + v # watch the diff flow.watch_diff(x_var, assert_prediction_grad) l1loss = flow.nn.L1Loss(x_var, of_target, reduction="none", name="of_l1loss") l1loss_mean = flow.nn.L1Loss( x_var, of_target, reduction="mean", name="of_l1loss_mean" ) l1loss_sum = flow.nn.L1Loss( x_var, of_target, reduction="sum", name="of_l1loss_sum" ) with flow.scope.placement(device_type, "0:0"): # We only test reduction="mean" diff flow.optimizer.SGD( flow.optimizer.PiecewiseConstantScheduler([], [1e-3]), momentum=0 ).minimize(l1loss_mean) return { "of_l1_loss": l1loss, "of_l1_loss_mean": l1loss_mean, "of_l1_loss_sum": l1loss_sum, } of_out_l1loss_dict = oneflow_l1loss(input, target) assert np.allclose( of_out_l1loss_dict["of_l1_loss"], np_out_l1loss_dict["np_l1_loss"] ) assert np.allclose( of_out_l1loss_dict["of_l1_loss_mean"][0], np_out_l1loss_dict["np_l1_loss_mean"] ) assert np.allclose( of_out_l1loss_dict["of_l1_loss_sum"][0], np_out_l1loss_dict["np_l1_loss_sum"] ) def _gen_arg_dict(shape, device_type, machine_ids, device_counts): # Generate a dict to pass parameter to test case arg_dict = OrderedDict() arg_dict["input_shape"] = [shape] arg_dict["target_shape"] = [shape] arg_dict["device_type"] = [device_type] arg_dict["machine_ids"] = [machine_ids] arg_dict["device_counts"] = [device_counts] return arg_dict @flow.unittest.skip_unless_1n1d() class Testl1loss1n1d(flow.unittest.TestCase): def test_l1loss_cpu(test_case): arg_dict = _gen_arg_dict( shape=(16, 3), device_type="cpu", machine_ids="0:0", device_counts=1 ) for arg in GenArgList(arg_dict): _compare_l1loss_with_np(*arg) @unittest.skipIf(os.getenv("ONEFLOW_TEST_CPU_ONLY"), "only test cpu cases") def test_l1loss_gpu(test_case): arg_dict = _gen_arg_dict( shape=(3, 16, 32), device_type="gpu", machine_ids="0:0", device_counts=1 ) for arg in GenArgList(arg_dict): _compare_l1loss_with_np(*arg) @flow.unittest.skip_unless_1n2d() class Testl1loss1n2d(flow.unittest.TestCase): @unittest.skipIf(os.getenv("ONEFLOW_TEST_CPU_ONLY"), "only test cpu cases") def test_l1loss_gpu_1n2d(test_case): arg_dict = _gen_arg_dict( shape=(3, 32, 16), device_type="gpu", machine_ids="0:0-1", device_counts=2 ) for arg in GenArgList(arg_dict): _compare_l1loss_with_np(*arg) if __name__ == "__main__": unittest.main()
33.540984
99
0.665689
865144cd196eb39a73555fc643c117d083a615cc
744
py
Python
Buta Nicolae/threads.py
RazvanBalau/parallel-2020
bd9c0dea6cc70e167320f64632d7a235522dfdb3
[ "MIT" ]
null
null
null
Buta Nicolae/threads.py
RazvanBalau/parallel-2020
bd9c0dea6cc70e167320f64632d7a235522dfdb3
[ "MIT" ]
null
null
null
Buta Nicolae/threads.py
RazvanBalau/parallel-2020
bd9c0dea6cc70e167320f64632d7a235522dfdb3
[ "MIT" ]
23
2020-01-15T15:02:39.000Z
2020-01-15T17:23:03.000Z
import threading from multiprocessing import Queue results = [] results2 = [] def take_numbers(q): print('Enter the numbers:') for i in range(0,3): num1 = int(input('Enter first number: ')) num2 = int(input('Enter second number: ')) q.put(num1) q.put(num2) def add_num(q): for i in range(0,3): num1 = q.get() num2 = q.get() results.append(num1+num2) results2.append(num1-num2) q = Queue() t2 = threading.Thread(target=add_num, args=(q, )) t1 = threading.Thread(target=take_numbers, args=(q, )) t2.start() t1.start() t2.join() t1.join() q.close() for result in results: print ("adunare =", result) for result in results2: print ("scadere =", result)
20.666667
54
0.606183
d4c7b73306f8c0594f64a791f8292624d0ac8d82
11,237
py
Python
Tests/Marketplace/prepare_public_index_for_private_testing.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
799
2016-08-02T06:43:14.000Z
2022-03-31T11:10:11.000Z
Tests/Marketplace/prepare_public_index_for_private_testing.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
9,317
2016-08-07T19:00:51.000Z
2022-03-31T21:56:04.000Z
Tests/Marketplace/prepare_public_index_for_private_testing.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
1,297
2016-08-04T13:59:00.000Z
2022-03-31T23:43:06.000Z
import time import os import sys import shutil import json import argparse from zipfile import ZipFile from contextlib import contextmanager from datetime import datetime from Tests.private_build.upload_packs_private import download_and_extract_index, update_index_with_priced_packs, \ extract_packs_artifacts from Tests.Marketplace.marketplace_services import init_storage_client from Tests.scripts.utils.log_util import install_logging from Tests.scripts.utils import logging_wrapper as logging MAX_SECONDS_TO_WAIT_FOR_LOCK = 600 LOCK_FILE_PATH = 'lock.txt' @contextmanager def lock_and_unlock_dummy_index(public_storage_bucket, dummy_index_lock_path): try: acquire_dummy_index_lock(public_storage_bucket, dummy_index_lock_path) yield except Exception: logging.exception("Error in dummy index lock context manager.") finally: release_dummy_index_lock(public_storage_bucket, dummy_index_lock_path) def change_pack_price_to_zero(path_to_pack_metadata): with open(path_to_pack_metadata, 'r') as pack_metadata_file: pack_metadata = json.load(pack_metadata_file) pack_metadata['price'] = 0 with open(path_to_pack_metadata, 'w') as pack_metadata_file: json.dump(pack_metadata, pack_metadata_file, indent=4) def change_packs_price_to_zero(public_index_folder_path): paths_to_packs_in_merged_index = [pack_dir.path for pack_dir in os.scandir(public_index_folder_path) if pack_dir.is_dir()] for path_to_pack in paths_to_packs_in_merged_index: path_to_pack_metadata = os.path.join(path_to_pack, 'metadata.json') change_pack_price_to_zero(path_to_pack_metadata) def merge_private_index_into_public_index(public_index_folder_path, private_index_folder_path): packs_in_private_index = [pack_dir.name for pack_dir in os.scandir(private_index_folder_path) if pack_dir.is_dir()] for pack_name in packs_in_private_index: path_to_pack_in_private_index = os.path.join(private_index_folder_path, pack_name) path_to_pack_in_public_index = os.path.join(public_index_folder_path, pack_name) shutil.copy(path_to_pack_in_private_index, path_to_pack_in_public_index) def upload_modified_index(public_index_folder_path, extract_destination_path, public_ci_dummy_index_blob, build_number, private_packs): """Upload updated index zip to cloud storage. Args: public_index_folder_path (str): public index folder full path. extract_destination_path (str): extract folder full path. public_ci_dummy_index_blob (Blob): google cloud storage object that represents the dummy index.zip blob. build_number (str): circleCI build number, used as an index revision. private_packs (list): List of private packs and their price. """ with open(os.path.join(public_index_folder_path, "index.json"), "w+") as index_file: for private_pack in private_packs: private_pack['price'] = 0 index = { 'revision': build_number, 'modified': datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%SZ'), 'packs': private_packs } json.dump(index, index_file, indent=4) index_zip_name = os.path.basename(public_index_folder_path) index_zip_path = shutil.make_archive(base_name=public_index_folder_path, format="zip", root_dir=extract_destination_path, base_dir=index_zip_name) try: public_ci_dummy_index_blob.reload() public_ci_dummy_index_blob.cache_control = "no-cache,max-age=0" # disabling caching for index blob public_ci_dummy_index_blob.upload_from_filename(index_zip_path) logging.success("Finished uploading index.zip to storage.") except Exception: logging.exception("Failed in uploading index. Mismatch in index file generation.") sys.exit(1) finally: shutil.rmtree(public_index_folder_path) def option_handler(): """Validates and parses script arguments. Returns: Namespace: Parsed arguments object. """ parser = argparse.ArgumentParser(description="Store packs in cloud storage.") # disable-secrets-detection-start parser.add_argument('-b', '--public_bucket_name', help="CI public bucket name", required=True) parser.add_argument('-pb', '--private_bucket_name', help="CI private bucket name", required=True) parser.add_argument('-s', '--service_account', help=("Path to gcloud service account, is for circleCI usage. " "For local development use your personal account and " "authenticate using Google Cloud SDK by running: " "`gcloud auth application-default login` and leave this parameter blank. " "For more information go to: " "https://googleapis.dev/python/google-api-core/latest/auth.html"), required=False) parser.add_argument('-n', '--ci_build_number', help="CircleCi build number (will be used as hash revision at index file)", required=True) parser.add_argument('-e', '--extract_public_index_path', help="Full path of folder to extract the public index", required=True) parser.add_argument('-sb', '--storage_base_path', help="Storage base path of the directory to upload to.", required=False) parser.add_argument('-p', '--pack_name', help="Modified pack to upload to gcs.") parser.add_argument('-a', '--artifacts_path', help="The full path of packs artifacts", required=True) parser.add_argument('-ea', '--extract_artifacts_path', help="Full path of folder to extract wanted packs", required=True) parser.add_argument('-di', '--dummy_index_dir_path', help="Full path to the dummy index in the private CI bucket", required=True) # disable-secrets-detection-end return parser.parse_args() def is_dummy_index_locked(public_storage_bucket, dummy_index_lock_path): dummy_index_lock_blob = public_storage_bucket.blob(dummy_index_lock_path) return dummy_index_lock_blob.exists() def lock_dummy_index(public_storage_bucket, dummy_index_lock_path): dummy_index_lock_blob = public_storage_bucket.blob(dummy_index_lock_path) with open(LOCK_FILE_PATH, 'w') as lock_file: lock_file.write('locked') with open(LOCK_FILE_PATH, 'rb') as lock_file: dummy_index_lock_blob.upload_from_file(lock_file) def acquire_dummy_index_lock(public_storage_bucket, dummy_index_lock_path): total_seconds_waited = 0 while is_dummy_index_locked(public_storage_bucket, dummy_index_lock_path): if total_seconds_waited >= MAX_SECONDS_TO_WAIT_FOR_LOCK: logging.critical("Error: Failed too long to acquire lock, exceeded max wait time.") sys.exit(1) if total_seconds_waited % 60 == 0: # Printing a message every minute to keep the machine from dying due to no output logging.info("Waiting to acquire lock.") total_seconds_waited += 10 time.sleep(10) lock_dummy_index(public_storage_bucket, dummy_index_lock_path) def release_dummy_index_lock(public_storage_bucket, dummy_index_lock_path): dummy_index_lock_blob = public_storage_bucket.blob(dummy_index_lock_path) dummy_index_lock_blob.delete() os.remove(LOCK_FILE_PATH) def add_private_packs_from_dummy_index(private_packs, dummy_index_blob): downloaded_dummy_index_path = 'current_dummy_index.zip' extracted_dummy_index_path = 'dummy_index' dummy_index_json_path = os.path.join(extracted_dummy_index_path, 'index', 'index.json') dummy_index_blob.download_to_filename(downloaded_dummy_index_path) os.mkdir(extracted_dummy_index_path) if os.path.exists(downloaded_dummy_index_path): with ZipFile(downloaded_dummy_index_path, 'r') as index_zip: index_zip.extractall(extracted_dummy_index_path) with open(dummy_index_json_path) as index_file: index_json = json.load(index_file) packs_from_dummy_index = index_json.get('packs', []) for pack in private_packs: is_pack_in_dummy_index = any( [pack['id'] == dummy_index_pack['id'] for dummy_index_pack in packs_from_dummy_index]) if not is_pack_in_dummy_index: packs_from_dummy_index.append(pack) os.remove(downloaded_dummy_index_path) shutil.rmtree(extracted_dummy_index_path) return packs_from_dummy_index def main(): install_logging('prepare_public_index_for_private_testing.log', logger=logging) upload_config = option_handler() service_account = upload_config.service_account build_number = upload_config.ci_build_number public_bucket_name = upload_config.public_bucket_name private_bucket_name = upload_config.private_bucket_name storage_base_path = upload_config.storage_base_path extract_public_index_path = upload_config.extract_public_index_path changed_pack = upload_config.pack_name extract_destination_path = upload_config.extract_artifacts_path packs_artifacts_path = upload_config.artifacts_path dummy_index_dir_path = upload_config.dummy_index_dir_path dummy_index_path = os.path.join(dummy_index_dir_path, 'index.zip') dummy_index_lock_path = os.path.join(dummy_index_dir_path, 'lock.txt') storage_client = init_storage_client(service_account) public_storage_bucket = storage_client.bucket(public_bucket_name) private_storage_bucket = storage_client.bucket(private_bucket_name) dummy_index_blob = public_storage_bucket.blob(dummy_index_path) with lock_and_unlock_dummy_index(public_storage_bucket, dummy_index_lock_path): extract_packs_artifacts(packs_artifacts_path, extract_destination_path) public_index_folder_path, public_index_blob, _ = download_and_extract_index(public_storage_bucket, extract_public_index_path, storage_base_path) # In order for the packs to be downloaded successfully, their price has to be 0 change_packs_price_to_zero(public_index_folder_path) private_packs, private_index_path, private_index_blob = update_index_with_priced_packs(private_storage_bucket, extract_destination_path, public_index_folder_path, changed_pack, True, storage_base_path) private_packs = add_private_packs_from_dummy_index(private_packs, dummy_index_blob) upload_modified_index(public_index_folder_path, extract_public_index_path, dummy_index_blob, build_number, private_packs) if __name__ == '__main__': main()
48.021368
129
0.707128
be04c82cd5f62929d01752841a8ec17a1254d468
291
py
Python
exercises/pt/exc_01_03_01.py
Jette16/spacy-course
32df0c8f6192de6c9daba89740a28c0537e4d6a0
[ "MIT" ]
2,085
2019-04-17T13:10:40.000Z
2022-03-30T21:51:46.000Z
exercises/pt/exc_01_03_01.py
Jette16/spacy-course
32df0c8f6192de6c9daba89740a28c0537e4d6a0
[ "MIT" ]
79
2019-04-18T14:42:55.000Z
2022-03-07T08:15:43.000Z
exercises/pt/exc_01_03_01.py
Jette16/spacy-course
32df0c8f6192de6c9daba89740a28c0537e4d6a0
[ "MIT" ]
361
2019-04-17T13:34:32.000Z
2022-03-28T04:42:45.000Z
# Importar a classe da língua inglesa (English) e criar um objeto nlp from ____ import ____ nlp = ____ # Processar o texto doc = ____("I like tree kangaroos and narwhals.") # Selecionar o primeiro token first_token = doc[____] # Imprimir o texto do primeito token print(first_token.____)
22.384615
69
0.75945
0775eae440b3ed8a8de73f26dfbbc57343a6323d
6,670
py
Python
text_selection/analyse_zenon_scrape.py
dainst/chronoi-corpus-processing
7f508a7572e1022c4c88d1477db029e6619a1f0c
[ "MIT" ]
null
null
null
text_selection/analyse_zenon_scrape.py
dainst/chronoi-corpus-processing
7f508a7572e1022c4c88d1477db029e6619a1f0c
[ "MIT" ]
null
null
null
text_selection/analyse_zenon_scrape.py
dainst/chronoi-corpus-processing
7f508a7572e1022c4c88d1477db029e6619a1f0c
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import argparse import csv import furl import json import re import sys from collections import defaultdict def filter_records_without_url(records: []) -> []: return [r for r in records if any(r.get("urls"))] def build_furl(url: str) -> furl.furl: try: furl_obj = furl.furl(url) if not furl_obj.host: furl_obj = furl.furl("http://" + url) return furl_obj except ValueError: return furl.furl("https://invalid-url.xyz") def determine_host(url: str) -> str: furl_obj = build_furl(url) return re.sub(r"^www[0-9]*\.", "", furl_obj.host) def build_hosts_to_urls(records: []) -> {str: {str}}: result = defaultdict(set) for record in records: for url in record.get("urls"): host = determine_host(url.get("url")) result[host].add(url.get("url")) return result def print_most_common_url_hosts(hosts_to_urls: {}, n: int): hosts = [h for h in hosts_to_urls.keys() if len(hosts_to_urls[h]) > n] hosts = sorted(hosts, key=lambda h: len(hosts_to_urls[h])) for host in hosts: print("% 6d\t%s" % (len(hosts_to_urls[host]), host)) def print_urls_for_host(hosts_to_urls: {}, host: str): urls = hosts_to_urls.get(host, []) for url in urls: print(url) if not any(urls): print(f"No urls for host: '{host}'", file=sys.stderr) def print_how_often_url_patterns_cooccur(records: [{}], pattern1: str, pattern2: str): # It should be ok, to only pattern match the hosts here... ids1 = {r.get("id") for r in records if record_has_matching_url(r, pattern1)} ids2 = {r.get("id") for r in records if record_has_matching_url(r, pattern2)} ids_both = ids1.intersection(ids2) for host, number in {pattern1: len(ids1), pattern2: len(ids2), "both": len(ids_both)}.items(): print(f"{host}: {number}") def record_has_matching_url(record: {}, pattern: str) -> bool: return any(record_get_urls_matching(record, pattern)) def record_get_urls_matching(record: {}, pattern: str) -> [{}]: result = [] for url in record.get("urls"): if any(re.findall(pattern, url.get("url"))): result.append(url) return result def record_remove_urls_not_matching(record: {}, pattern: str): record["urls"] = record_get_urls_matching(record, pattern) def earliest_year(year_strings: [str]) -> str: years = [] for year_s in year_strings: try: years.append(int(year_s)) except ValueError: print(f"Not a string that is a year: '{year_s}'", file=sys.stderr) continue return str(sorted(years)[0]) if any(years) else "" def main(args: argparse.Namespace): with open(args.scrape_file, "r") as file: records = json.load(file) records = filter_records_without_url(records) # filter urls by the user-provided filter list if args.desc_filters: with open(args.desc_filters, "r") as file: filters = file.read().splitlines() for record in records: record["urls"] = [url for url in record.get("urls") if url.get("desc") not in filters] records = filter_records_without_url(records) # print unique hosts or urls, then exit if args.print_host_urls or args.print_common_hosts >= 0: hosts_to_urls = build_hosts_to_urls(records) if args.print_common_hosts >= 0: print_most_common_url_hosts(hosts_to_urls, n=args.print_common_hosts) elif args.print_host_urls: print_urls_for_host(hosts_to_urls, host=args.print_host_urls) exit(0) # check in how many records the two given hosts co-occur, then exit if args.patterns_cooccur: host1, host2 = args.patterns_cooccur.split(",") print_how_often_url_patterns_cooccur(records, host1, host2) exit(0) # do some selection based on a url pattern, remove all non-matching urls from the record if args.select_by_url: pattern = args.select_by_url records = [r for r in records if record_has_matching_url(r, pattern)] for record in records: record_remove_urls_not_matching(record, pattern) # sort the records by id, to be extra sure, that we get the same order every time this is called # print each line as a csv column records = sorted(records, key=lambda r: r.get("id")) writer = csv.writer(sys.stdout, delimiter=",", quoting=csv.QUOTE_ALL) for record in records: to_print = [] if args.print_id: to_print.append(record.get("id", "")) if args.print_url: to_print.append(record.get("urls")[0].get("url") if any(record.get("urls")) else "") if args.print_pub_date: to_print.append(earliest_year(record.get("publicationDates", []))) if args.print_languages: to_print.append("|".join(record.get("languages", []))) writer.writerow(to_print) if __name__ == '__main__': parser = argparse.ArgumentParser( description="Process a file with zenon json records and print some information about them.") parser.add_argument("scrape_file", type=str, help="The file that contains the zenon dumps as json.") parser.add_argument("--desc-filters", type=str, help="A file to filter urls by. Excludes urls with 'desc' fields matching a line in the file.") # these are arguments to print some specific information parser.add_argument("--print-common-hosts", type=int, default=-1, help="Print hosts that appear more than n times in the records urls, then exit.") parser.add_argument("--print-host-urls", type=str, help="Print all urls for the host, then exit.") parser.add_argument("--patterns-cooccur", type=str, help="Format: 'pattern1,pattern2', print how often these occur in single records url fields, then exit.") # these are meant to work together select by a url pattern then print information about the records parser.add_argument("--select-by-url", type=str, help="Give a pattern for a url to select records by.") parser.add_argument("--print-url", action="store_true", help="Print the first of each urls for the selected records. (Ignores other urls present on the records if --select-url is given.)") parser.add_argument("--print-pub-date", action="store_true", help="Print the earliest publication year for each of the selected records.") parser.add_argument("--print-id", action="store_true", help="Print the selected records' ids") parser.add_argument("--print-languages", action="store_true", help="Print the selected records' languages") main(parser.parse_args())
40.670732
192
0.669715
07a919ed87f13258649cbf2c9c6e2971a4de419e
5,568
py
Python
AI_Engine_Development/Feature_Tutorials/07-AI-Engine-Floating-Point/Utils/GenerationLib.py
jlamperez/Vitis-Tutorials
9a5b611caabb5656bbb2879116e032227b164bfd
[ "Apache-2.0" ]
1
2022-03-09T06:15:43.000Z
2022-03-09T06:15:43.000Z
AI_Engine_Development/Feature_Tutorials/07-AI-Engine-Floating-Point/Utils/GenerationLib.py
jlamperez/Vitis-Tutorials
9a5b611caabb5656bbb2879116e032227b164bfd
[ "Apache-2.0" ]
null
null
null
AI_Engine_Development/Feature_Tutorials/07-AI-Engine-Floating-Point/Utils/GenerationLib.py
jlamperez/Vitis-Tutorials
9a5b611caabb5656bbb2879116e032227b164bfd
[ "Apache-2.0" ]
null
null
null
# # Copyright 2020–2021 Xilinx, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np from math import * import random def GenerateTestVector(dtval,pliow,NPhases_s,NStreams_s,NSamples_s,NFrames_s,SeqType_s,Basename_s): print('DtVal : ',dtval.get()) print('PLIO width : ',pliow.get()) print('NPhases : ',NPhases_s.get()) print('NStreams : ',NStreams_s.get()) print('NSamples : ',NSamples_s.get()) print('NFrames : ',NFrames_s.get()) print('Type of Sequence : ',SeqType_s.get()) print('Base filename : ',Basename_s.get()) NPhases = int(NPhases_s.get()) NStreams = int(NStreams_s.get()) LFrame = int(NSamples_s.get()) NFrames = int(NFrames_s.get()) SequenceType = SeqType_s.get() Basename = Basename_s.get() #parameters that should be in the GUI # SequenceType ='Linear' # 'SinCos' 'Linear' 'Random' 'Dirac' # Basename = 'PhaseIn' NSamples = NPhases*NStreams*LFrame*NFrames; NSamples1 = NPhases*NStreams*LFrame*(NFrames+1); # A little longer to allow for delay in streams NBitsData = 32; if( dtval.get() == 'int16'): NBitsData = 16 HasImag = 0 if (dtval.get() == 'cint16'): HasImag = 1 if(SequenceType != 'SinCos' and SequenceType != 'Linear' and SequenceType != 'Random' and SequenceType != 'Dirac'): print ('Unknown Sequence Type') return # Create the overall signal that will be distributed over all streams # it is already separated in phases S = np.zeros((NPhases,int(NSamples1/NPhases),1+HasImag)) for i in range(int(NSamples1/NPhases)): for p in range (NPhases): k = i*NPhases+p if (SequenceType == 'SinCos'): vr = int(5000*cos(6.28*5/(NPhases*NStreams*LFrame)*k)) vi = int(5000*sin(6.28*5/(NPhases*NStreams*LFrame)*k)) elif (SequenceType == 'Linear'): vr = k vi = -k elif (SequenceType == 'Random'): vr = random.randint(-5000,5000) vi = random.randint(-5000,5000) elif (SequenceType == 'Dirac'): vr = 0 vi = 0 if(k%151 == 1): vr = 1 elif(k%151 == 40): vi = 1 elif(k%151 == 81): vr = 2 elif(k%151 == 115): vi = -2 # if(k%311 == 50): # vr = 1 # S[p,i,0] = # if(HasImag==1): # S[p,i,1] = int(5000*sin(6.28*5/(NPhases*NStreams*LFrame)*k)) S[p,i,0] = vr if (HasImag == 1 ): S[p,i,1] = vi PLIOwidth = int(pliow.get()) NSamplesPerLine = int(PLIOwidth/NBitsData) # Data are read in blocks of 128 bits (4 data in cint16) # Create an Input test Vector in TestInputS.txt FileNames = []; # Easiest case: 1 stream per AI Engine if (NStreams == 1): #Creates list of filenames for Phi in range(NPhases): FileNames.append(Basename+'_'+str(Phi)+'.txt') #Open all files fds = [open(path, 'w') for path in FileNames] #Fill all files with the right data for p in range(NPhases): fd = fds[p] for s in range(int(NSamples1/NPhases/NSamplesPerLine)): for d in range(NSamplesPerLine): index = s*NSamplesPerLine + d fd.write(str(int(S[p,index,0]))+' ') if(HasImag): fd.write(str(int(S[p,index,1]))+' ') fd.write('\n') for fd in fds: fd.close() if (NStreams == 2): #Creates list of filenames for Phi in range(NPhases): for Stream in range(NStreams): FileNames.append('PhaseIn_'+str(Phi)+'_'+str(Stream)+'.txt') # Hash table to associate data to streams NSamplesIn128bits = int(128/NBitsData ) H = np.zeros((int(NSamples1/NPhases/2),2)) H = H.astype('int32') index = np.zeros(2) index = index.astype('int32') for s in range(int(NSamples1/NPhases)): k = int(s/NSamplesIn128bits) # Block order i = k%2 # Which streams H[index[i],i] = s index[i] = index[i]+1 #Open all files fds = [open(path, 'w') for path in FileNames] #Fill all files with the right data for p in range(NPhases): for stream in range(2): fd = fds[2*p+stream] for s in range(int(NSamples1/NPhases/NSamplesPerLine/NStreams)): for d in range(NSamplesPerLine): index = s*NSamplesPerLine + d fd.write(str(int(S[p,H[index,stream],0]))+' ') if(HasImag): fd.write(str(int(S[p,H[index,stream],1]))+' ') fd.write('\n') for fd in fds: fd.close()
33.341317
119
0.541667
9c5ca9cec48517b47b0e018883a0875e922d1924
4,921
py
Python
2018/finals/pwn-gdb-as-a-service/web_challenge/challenge/gaas.py
iicarus-bit/google-ctf
4eb8742bca58ff071ff8f6814d41d9ec7eb1db4b
[ "Apache-2.0" ]
2,757
2018-04-28T21:41:36.000Z
2022-03-29T06:33:36.000Z
2018/finals/pwn-gdb-as-a-service/web_challenge/challenge/gaas.py
iicarus-bit/google-ctf
4eb8742bca58ff071ff8f6814d41d9ec7eb1db4b
[ "Apache-2.0" ]
20
2019-07-23T15:29:32.000Z
2022-01-21T12:53:04.000Z
2018/finals/pwn-gdb-as-a-service/web_challenge/challenge/gaas.py
iicarus-bit/google-ctf
4eb8742bca58ff071ff8f6814d41d9ec7eb1db4b
[ "Apache-2.0" ]
449
2018-05-09T05:54:05.000Z
2022-03-30T14:54:18.000Z
#!/usr/bin/env python3 # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from aiohttp import web import capstone import functools from gdbproc import GDBProcess import socketio import asyncio import codecs import os enable_logging = False premium = 'PREMIUM' in os.environ if premium: access_key = os.getenv('PREMIUM_KEY') runnable = ['/home/user/printwebflag'] else: access_key = os.getenv('TRIAL_KEY') runnable = ['/bin/sleep', '20'] MAX_INSN_LEN = 15 capstone_md = capstone.Cs(capstone.CS_ARCH_X86, capstone.CS_MODE_64) sio = socketio.AsyncServer() app = web.Application() sio.attach(app) with open('index.html') as f: index_html = f.read() async def index(request): if not 'key' in request.cookies: return web.Response(status=401, text='permission denied (missing key)', content_type='text/html') if request.cookies['key'] != access_key: return web.Response(status=401, text='permission denied (invalid key)', content_type='text/html') return web.Response(text=index_html, content_type='text/html') app.add_routes([web.get('/', index), web.get('/{name}', index)]) gdb_sessions = {} stop_queue_readers = {} async def on_shutdown(app): await asyncio.gather(delete_gdb_process(sid) for sid in gdb_sessions.keys()) app.on_shutdown.append(on_shutdown) def log(msg): if enable_logging: print('[*] {}'.format(msg)) @sio.on('connect') def connect(sid, environ): log('connected {}'.format(sid)) if not 'key={}'.format(access_key) in environ['HTTP_COOKIE']: log('access_key not found {}'.format(environ['HTTP_COOKIE'])) return False @sio.on('disconnect') async def disconnect(sid): log('disconnected {}'.format(sid)) await delete_gdb_process(sid) async def stop_queue_reader(sid, queue): while True: pkt = await queue.get() await update_all(sid) async def create_gdb_process(sid): stop_queue = asyncio.Queue() gdb_sessions[sid] = await GDBProcess.create(runnable, stop_queue, env={'KEY': access_key}, log_fn=log) loop = asyncio.get_event_loop() stop_queue_readers[sid] = loop.create_task(stop_queue_reader(sid, stop_queue)) async def delete_gdb_process(sid): if sid in gdb_sessions: stop_queue_readers[sid].cancel() del stop_queue_readers[sid] await gdb_sessions[sid].release() del gdb_sessions[sid] @sio.on('start') async def start(sid): await delete_gdb_process(sid) await create_gdb_process(sid) # Reading registers doesn't work on ubuntu 18.04 for some reason. # Step once as a work around step(sid) async def update_all(sid): log('updating sid {}'.format(sid)) regs_task = getregs(sid) maps_task = getmaps(sid) asm_task = getasm(sid, {'addr': await gdb_sessions[sid].get_reg('rip'), 'count': 100}) await asyncio.gather(regs_task, maps_task, asm_task) log('update done') @sio.on('step') def step(sid): gdb_sessions[sid].step() @sio.on('cont') def cont(sid): gdb_sessions[sid].cont() @sio.on('stop') def stop(sid): gdb_sessions[sid].interrupt() async def getregs(sid): regs = await gdb_sessions[sid].get_regs() await sio.emit('regs', regs, room=sid) @sio.on('mem') async def getmem(sid, msg): addr = msg['addr'] count = msg['count'] data = gdb_sessions[sid].read_mem(addr, count) await sio.emit('mem', {'addr': addr, 'data': data}, room=sid) async def getmaps(sid): maps = gdb_sessions[sid].maps() await sio.emit('maps', maps, room=sid) @sio.on('break') async def setbreakpoint(sid, data): addr = data['addr'] await gdb_sessions[sid].set_breakpoint(addr) await sio.emit('breakpoints', gdb_sessions[sid].breakpoints(), room=sid) @sio.on('unbreak') async def rmbreakpoint(sid, data): addr = data['addr'] await gdb_sessions[sid].remove_breakpoint(addr) await sio.emit('breakpoints', gdb_sessions[sid].breakpoints(), room=sid) @sio.on('search') async def search(sid, data): q = data['q'] qtype = data['type'] await sio.emit('search_result', gdb_sessions[sid].search(q.encode(), qtype), room=sid) async def getasm(sid, data): addr = data['addr'] count = data['count'] result = [] for _ in range(count): data = gdb_sessions[sid].read_mem(addr, MAX_INSN_LEN) try: disasm = next(capstone_md.disasm_lite(data, addr)) except StopIteration: break result.append(disasm) addr += disasm[1] await sio.emit('asm', result, room=sid) if __name__ == '__main__': web.run_app(app)
27.960227
104
0.710018
b930187de467bdc99d38231d4b217f6589a62613
2,039
py
Python
starteMessung.py
jkerpe/TroubleBubble
813ad797398b9f338f136bcb96c6c92186d92ebf
[ "MIT" ]
null
null
null
starteMessung.py
jkerpe/TroubleBubble
813ad797398b9f338f136bcb96c6c92186d92ebf
[ "MIT" ]
null
null
null
starteMessung.py
jkerpe/TroubleBubble
813ad797398b9f338f136bcb96c6c92186d92ebf
[ "MIT" ]
1
2021-08-09T14:57:57.000Z
2021-08-09T14:57:57.000Z
from datetime import datetime from pypylon import pylon import nimmAuf import smbus2 import os import argparse import bestimmeVolumen from threading import Thread import time programmstart = time.time() # Argumente parsen (bei Aufruf im Terminal z.B. 'starteMessung.py -n 100' eingeben) ap = argparse.ArgumentParser(description="""Skript zum Aufnehmen von Bildern der Teststrecke und der Volumenbestimmung von Luftblasen""") ap.add_argument("-n", "--number", default=400, type=int, help="Anzahl an Frames die aufgenommen werden sollen. Default: 400 Bilder") ap.add_argument("-fr", "--framerate", default=100, type=int, help="Framerate in fps. Richtwerte: <Flow 3 ml/s:50 fps, 3-6ml/s:100 fps, >6ml/s:200 fps; Default: 100 fps") args = vars(ap.parse_args()) # Argumente des Parsers extrahieren numberOfImagesToGrab = args['number'] framerate = args['framerate'] if __name__ == '__main__': startzeit = time.time() #Test ob Kamera angeschlossen ist devices = pylon.TlFactory.GetInstance().EnumerateDevices() if len(devices) == 0: print("Keine Kamera angeschlossen oder Kamera woanders geöffnet.") return False # Test ob Drucksensor angeschlossen ist try: bus = smbus2.SMBus(0) bus.read_i2c_block_data(0x40, 0, 2) # 2 Bytes empfangen except OSError: print("Kein Drucksensor angeschlossen") exit() # Aus der aktuellen Zeit und den Parametern einen individuellen Ordnernamen generieren dirname = f'{datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}' os.mkdir(dirname) # Ordner erstellen print(f"Ordnername: {dirname}") beginn = time.time()-programmstart # Threads zum Aufnehmen und Verarbeiten starten t_aufnahme = Thread(target=nimmAuf.starte, args=(dirname, numberOfImagesToGrab, framerate, startzeit)) t_tracke = Thread(target=bestimmeVolumen.tracke, args=(dirname, numberOfImagesToGrab)) t_aufnahme.start() t_tracke.start() t_aufnahme.join() t_tracke.join()
34.559322
169
0.703776
b978fbbcd4002601ca1e2723cae4385002e671d8
2,063
py
Python
src/onegov/translator_directory/models/language.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/translator_directory/models/language.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/translator_directory/models/language.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from uuid import uuid4 from sqlalchemy import Index, Column, Text, Table, ForeignKey from sqlalchemy.orm import object_session from onegov.core.orm import Base from onegov.core.orm.types import UUID spoken_association_table = Table( 'spoken_lang_association', Base.metadata, Column( 'translator_id', UUID, ForeignKey('translators.id'), nullable=False), Column('lang_id', UUID, ForeignKey('languages.id'), nullable=False) ) written_association_table = Table( 'written_lang_association', Base.metadata, Column( 'translator_id', UUID, ForeignKey('translators.id'), nullable=False), Column('lang_id', UUID, ForeignKey('languages.id'), nullable=False) ) mother_tongue_association_table = Table( 'mother_tongue_association', Base.metadata, Column( 'translator_id', UUID, ForeignKey('translators.id'), nullable=False), Column('lang_id', UUID, ForeignKey('languages.id'), nullable=False) ) class Language(Base): __tablename__ = 'languages' __table_args__ = ( Index('unique_name', 'name', unique=True), ) id = Column(UUID, primary_key=True, default=uuid4) name = Column(Text, nullable=False) @property def speakers_count(self): session = object_session(self) return session.query( spoken_association_table).filter_by(lang_id=self.id).count() @property def writers_count(self): session = object_session(self) return session.query( written_association_table).filter_by(lang_id=self.id).count() @property def native_speakers_count(self): """Having it as mother tongue...""" session = object_session(self) return session.query( mother_tongue_association_table).filter_by(lang_id=self.id).count() @property def deletable(self): return ( self.speakers_count + self.writers_count + self.native_speakers_count ) == 0
25.469136
79
0.650994
b9b2dd8fc97fddaaa64ec64957043ee8e8088e39
615
py
Python
frappe-bench/apps/erpnext/erpnext/non_profit/doctype/member/member.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
frappe-bench/apps/erpnext/erpnext/non_profit/doctype/member/member.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
frappe-bench/apps/erpnext/erpnext/non_profit/doctype/member/member.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2017, Frappe Technologies Pvt. Ltd. and contributors # For license information, please see license.txt from __future__ import unicode_literals from frappe.model.document import Document from frappe.contacts.address_and_contact import load_address_and_contact class Member(Document): def onload(self): """Load address and contacts in `__onload`""" load_address_and_contact(self) def validate(self): self.validate_email_type(self.email) def validate_email_type(self, email): from frappe.utils import validate_email_add validate_email_add(email.strip(), True)
29.285714
72
0.786992
0ec1afd2facbda8f3febe8ca1dc7c71fb6558f04
1,993
py
Python
packages/watchmen-data-kernel/src/watchmen_data_kernel/meta/external_writer_service.py
Indexical-Metrics-Measure-Advisory/watchmen
c54ec54d9f91034a38e51fd339ba66453d2c7a6d
[ "MIT" ]
null
null
null
packages/watchmen-data-kernel/src/watchmen_data_kernel/meta/external_writer_service.py
Indexical-Metrics-Measure-Advisory/watchmen
c54ec54d9f91034a38e51fd339ba66453d2c7a6d
[ "MIT" ]
null
null
null
packages/watchmen-data-kernel/src/watchmen_data_kernel/meta/external_writer_service.py
Indexical-Metrics-Measure-Advisory/watchmen
c54ec54d9f91034a38e51fd339ba66453d2c7a6d
[ "MIT" ]
null
null
null
from typing import Optional from watchmen_auth import PrincipalService from watchmen_data_kernel.cache import CacheService from watchmen_data_kernel.common import DataKernelException from watchmen_data_kernel.external_writer import find_external_writer_create, register_external_writer_creator from watchmen_meta.common import ask_meta_storage, ask_snowflake_generator from watchmen_meta.system import ExternalWriterService as ExternalWriterStorageService from watchmen_model.common import ExternalWriterId from watchmen_model.system import ExternalWriter def register_external_writer(external_writer: ExternalWriter) -> None: create = find_external_writer_create(external_writer.type) if create is None: raise DataKernelException(f'Creator not found for external writer[{external_writer.dict()}].') register_external_writer_creator(external_writer.writerCode, create()) class ExternalWriterService: def __init__(self, principal_service: PrincipalService): self.principalService = principal_service def find_by_id(self, writer_id: ExternalWriterId) -> Optional[ExternalWriter]: external_writer = CacheService.external_writer().get(writer_id) if external_writer is not None: if external_writer.tenantId != self.principalService.get_tenant_id(): raise DataKernelException( f'External writer[id={writer_id}] not belongs to ' f'current tenant[id={self.principalService.get_tenant_id()}].') register_external_writer(external_writer) return external_writer storage_service = ExternalWriterStorageService( ask_meta_storage(), ask_snowflake_generator(), self.principalService) storage_service.begin_transaction() try: # noinspection PyTypeChecker external_writer: ExternalWriter = storage_service.find_by_id(writer_id) if external_writer is None: return None CacheService.external_writer().put(external_writer) register_external_writer(external_writer) return external_writer finally: storage_service.close_transaction()
41.520833
110
0.831912
16abab9c314c051765ffd991fb6c764e6cf24cb5
235
py
Python
solutions/pic_search/webserver/src/service/theardpool.py
naetimus/bootcamp
0182992df7c54012944b51fe9b70532ab6a0059b
[ "Apache-2.0" ]
1
2020-03-10T07:43:08.000Z
2020-03-10T07:43:08.000Z
solutions/pic_search/webserver/src/service/theardpool.py
naetimus/bootcamp
0182992df7c54012944b51fe9b70532ab6a0059b
[ "Apache-2.0" ]
null
null
null
solutions/pic_search/webserver/src/service/theardpool.py
naetimus/bootcamp
0182992df7c54012944b51fe9b70532ab6a0059b
[ "Apache-2.0" ]
1
2020-04-03T05:24:47.000Z
2020-04-03T05:24:47.000Z
import threading from concurrent.futures import ThreadPoolExecutor from service.train import do_train def thread_runner(thread_num, func, *args): executor = ThreadPoolExecutor(thread_num) f = executor.submit(do_train, *args)
26.111111
49
0.795745
4c0f174360fe29201e22d16e102aa2c61bad20f2
262
py
Python
production/pygsl-0.9.5/testing/__init__.py
juhnowski/FishingRod
457e7afb5cab424296dff95e1acf10ebf70d32a9
[ "MIT" ]
1
2019-07-29T02:53:51.000Z
2019-07-29T02:53:51.000Z
production/pygsl-0.9.5/testing/__init__.py
juhnowski/FishingRod
457e7afb5cab424296dff95e1acf10ebf70d32a9
[ "MIT" ]
1
2021-09-11T14:30:32.000Z
2021-09-11T14:30:32.000Z
Dockerfiles/gedlab-khmer-filter-abund/pymodules/python2.7/lib/python/pygsl/testing/__init__.py
poojavade/Genomics_Docker
829b5094bba18bbe03ae97daf925fee40a8476e8
[ "Apache-2.0" ]
2
2016-12-19T02:27:46.000Z
2019-07-29T02:53:54.000Z
""" Here you find either new implemented modules or alternate implementations of already modules. This directory is intended to have a second implementation beside the main implementation to have a discussion which implementation to favor on the long run. """
37.428571
78
0.80916
5de70a07393091d4b0d1b81bb83f4335c31b6482
3,329
py
Python
Plot/src/test/java/io/deephaven/db/plot/example_plots/PlottingPQ.py
devinrsmith/deephaven-core
3a6930046faf1cd556f62a914ce1cfd7860147b9
[ "MIT" ]
null
null
null
Plot/src/test/java/io/deephaven/db/plot/example_plots/PlottingPQ.py
devinrsmith/deephaven-core
3a6930046faf1cd556f62a914ce1cfd7860147b9
[ "MIT" ]
1
2022-03-03T21:24:40.000Z
2022-03-03T21:24:54.000Z
Plot/src/test/java/io/deephaven/db/plot/example_plots/PlottingPQ.py
devinrsmith/deephaven-core
3a6930046faf1cd556f62a914ce1cfd7860147b9
[ "MIT" ]
null
null
null
import deephaven.TableTools as tt import deephaven.Plot as plt t = tt.emptyTable(50)\ .update("X = i + 5", "XLow = X -1", "XHigh = X + 1", "Y = Math.random() * 5", "YLow = Y - 1", "YHigh = Y + 1", "USym = i % 2 == 0 ? `AAPL` : `MSFT`") p = plt.plot("S1", t, "X", "Y").lineColor("black").show() p2 = plt.plot("S1", t, "X", "Y").plotStyle("bar").gradientVisible(True).show() p3 = plt.plot("S1", t, "X", "Y").plotStyle("scatter").pointColor("black").pointSize(2).show() p4 = plt.plot("S1", t, "X", "Y").plotStyle("area").seriesColor("red").show() p4 = plt.plot3d("S1", t, "X", "X", "Y").show() pBy = plt.plotBy("S1", t, "X", "Y", "USym").show() pBy = plt.plot3dBy("S1", t, "X", "X", "Y", "USym").show() cp = plt.catPlot("S1", t, "X", "Y").lineColor("black").show() cp2 = plt.catPlot("S1", t, "X", "Y").plotStyle("bar").gradientVisible(True).show() cp3 = plt.catPlot("S1", t, "X", "Y").plotStyle("scatter").pointColor("black").pointSize(2).show() cp4 = plt.catPlot("S1", t, "X", "Y").plotStyle("area").seriesColor("red").show() cp = plt.catPlot3d("S1", t, "X", "X", "Y").show() cpBy = plt.catPlotBy("S1", t, "X", "Y", "USym").show() cpBy = plt.catPlot3dBy("S1", t, "X", "X", "Y", "USym").show() pp = plt.piePlot("S1", t, "X", "Y") chp = plt.catHistPlot("S1", t, "X").show() hp = plt.histPlot("S1", t, "X", 5).show() hp = plt.histPlot("S1", t, "X", 0, 10, 5).show() ep = plt.errorBarXY("S1", t, "X", "XLow", "XHigh", "Y", "YLow", "YHigh").show() epBy = plt.errorBarXYBy("S1", t, "X", "XLow", "XHigh", "Y", "YLow", "YHigh", "USym").show() ep2 = plt.errorBarX("S1", t, "X", "XLow", "XHigh", "Y").show() epBy2 = plt.errorBarXBy("S1", t, "X", "XLow", "XHigh", "Y", "USym").show() ep3 = plt.errorBarY("S1", t, "X", "Y", "YLow", "YHigh").show() epBy3 = plt.errorBarYBy("S1", t, "X", "Y", "YLow", "YHigh", "USym").show() doubles = [3, 4, 3, 5, 4, 5] time = 1491946585000000000 t = tt.newTable(tt.col("USym", ["A", "B", "A", "B", "A", "B"]), tt.doubleCol("Open", doubles), tt.doubleCol("High", doubles), tt.doubleCol("Low", doubles), tt.doubleCol("Close", doubles)) t = t.updateView("Time = new DBDateTime(time + (MINUTE * i))") ohlc = plt.ohlcPlot("Test1", t, "Time", "Open", "High", "Low", "Close") ohlcPlotBy = plt.figure().newChart(0)\ .chartTitle("Chart Title")\ .newAxes()\ .xLabel("X")\ .yLabel("Y")\ .ohlcPlotBy("Test1", t, "Time", "Open", "High", "Low", "Close", "USym") categories = ["Samsung", "Others", "Nokia", "Apple", "MSFT"] valuesD = [27.8, 55.3, 16.8, 17.1, 23.1] valuesI = [27, 55, 16, 17, 15] ap = plt.plot("S1", valuesD, valuesI).show() ap = plt.plot3d("S1", valuesI, valuesI, valuesI).show() acp = plt.catPlot("S1", categories, valuesI).show() acp2 = plt.catPlot3d("S1", categories, categories, valuesD).show() achp = plt.catHistPlot("S1", categories).show() app = plt.figure().xLabel("X").yLabel("Y").piePlot("S1", categories, valuesI).pointLabelFormat("{0}").show() aep = plt.errorBarXY("S1", valuesD, valuesD, valuesD, valuesD, valuesD, valuesD).show() aep2 = plt.errorBarX("S1", valuesD, valuesD, valuesD, valuesD).show() aep3 = plt.errorBarY("S1", valuesD, valuesD, valuesD, valuesD).show() hp = plt.histPlot("S1", valuesD, 5).show() hp = plt.histPlot("S1", valuesD, 0, 10, 5).show() hp = plt.histPlot("S1", valuesI, 5).show()
37.829545
153
0.578252
5df79191a02e9cdc36eab83fa9b24e2f2d9fe213
7,695
py
Python
Dockerfiles/gedlab-khmer-filter-abund/pymodules/python2.7/lib/python/apache_libcloud-0.15.1-py2.7.egg/libcloud/test/test_connection.py
poojavade/Genomics_Docker
829b5094bba18bbe03ae97daf925fee40a8476e8
[ "Apache-2.0" ]
1
2019-07-29T02:53:51.000Z
2019-07-29T02:53:51.000Z
libcloud/test/test_connection.py
elastacloud/libcloud
f3792b2dca835c548bdbce0da2eb71bfc9463b72
[ "Apache-2.0" ]
1
2021-09-11T14:30:32.000Z
2021-09-11T14:30:32.000Z
libcloud/test/test_connection.py
elastacloud/libcloud
f3792b2dca835c548bdbce0da2eb71bfc9463b72
[ "Apache-2.0" ]
2
2016-12-19T02:27:46.000Z
2019-07-29T02:53:54.000Z
# -*- coding: utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one or more§ # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import ssl from mock import Mock, call from libcloud.test import unittest from libcloud.common.base import Connection from libcloud.common.base import LoggingConnection class ConnectionClassTestCase(unittest.TestCase): def setUp(self): self.originalConnect = Connection.connect self.originalResponseCls = Connection.responseCls Connection.connect = Mock() Connection.responseCls = Mock() Connection.allow_insecure = True def tearDown(self): Connection.connect = self.originalConnect Connection.responseCls = Connection.responseCls Connection.allow_insecure = True def test_dont_allow_insecure(self): Connection.allow_insecure = True Connection(secure=False) Connection.allow_insecure = False expected_msg = (r'Non https connections are not allowed \(use ' 'secure=True\)') self.assertRaisesRegexp(ValueError, expected_msg, Connection, secure=False) def test_content_length(self): con = Connection() con.connection = Mock() # GET method # No data, no content length should be present con.request('/test', method='GET', data=None) call_kwargs = con.connection.request.call_args[1] self.assertTrue('Content-Length' not in call_kwargs['headers']) # '' as data, no content length should be present con.request('/test', method='GET', data='') call_kwargs = con.connection.request.call_args[1] self.assertTrue('Content-Length' not in call_kwargs['headers']) # 'a' as data, content length should be present (data in GET is not # correct, but anyways) con.request('/test', method='GET', data='a') call_kwargs = con.connection.request.call_args[1] self.assertEqual(call_kwargs['headers']['Content-Length'], '1') # POST, PUT method # No data, content length should be present for method in ['POST', 'PUT', 'post', 'put']: con.request('/test', method=method, data=None) call_kwargs = con.connection.request.call_args[1] self.assertEqual(call_kwargs['headers']['Content-Length'], '0') # '' as data, content length should be present for method in ['POST', 'PUT', 'post', 'put']: con.request('/test', method=method, data='') call_kwargs = con.connection.request.call_args[1] self.assertEqual(call_kwargs['headers']['Content-Length'], '0') # No data, raw request, do not touch Content-Length if present for method in ['POST', 'PUT', 'post', 'put']: con.request('/test', method=method, data=None, headers={'Content-Length': '42'}, raw=True) putheader_call_list = con.connection.putheader.call_args_list self.assertIn(call('Content-Length', '42'), putheader_call_list) # '' as data, raw request, do not touch Content-Length if present for method in ['POST', 'PUT', 'post', 'put']: con.request('/test', method=method, data=None, headers={'Content-Length': '42'}, raw=True) putheader_call_list = con.connection.putheader.call_args_list self.assertIn(call('Content-Length', '42'), putheader_call_list) # 'a' as data, content length should be present for method in ['POST', 'PUT', 'post', 'put']: con.request('/test', method=method, data='a') call_kwargs = con.connection.request.call_args[1] self.assertEqual(call_kwargs['headers']['Content-Length'], '1') def test_cache_busting(self): params1 = {'foo1': 'bar1', 'foo2': 'bar2'} params2 = [('foo1', 'bar1'), ('foo2', 'bar2')] con = Connection() con.connection = Mock() con.pre_connect_hook = Mock() con.pre_connect_hook.return_value = {}, {} con.cache_busting = False con.request(action='/path', params=params1) args, kwargs = con.pre_connect_hook.call_args self.assertFalse('cache-busting' in args[0]) self.assertEqual(args[0], params1) con.request(action='/path', params=params2) args, kwargs = con.pre_connect_hook.call_args self.assertFalse('cache-busting' in args[0]) self.assertEqual(args[0], params2) con.cache_busting = True con.request(action='/path', params=params1) args, kwargs = con.pre_connect_hook.call_args self.assertTrue('cache-busting' in args[0]) con.request(action='/path', params=params2) args, kwargs = con.pre_connect_hook.call_args self.assertTrue('cache-busting' in args[0][len(params2)]) def test_context_is_reset_after_request_has_finished(self): context = {'foo': 'bar'} def responseCls(connection, response): connection.called = True self.assertEqual(connection.context, context) con = Connection() con.called = False con.connection = Mock() con.responseCls = responseCls con.set_context(context) self.assertEqual(con.context, context) con.request('/') # Context should have been reset self.assertTrue(con.called) self.assertEqual(con.context, {}) # Context should also be reset if a method inside request throws con = Connection() con.connection = Mock() con.set_context(context) self.assertEqual(con.context, context) con.connection.request = Mock(side_effect=ssl.SSLError()) try: con.request('/') except ssl.SSLError: pass self.assertEqual(con.context, {}) con.connection = Mock() con.set_context(context) self.assertEqual(con.context, context) con.responseCls = Mock(side_effect=ValueError()) try: con.request('/') except ValueError: pass self.assertEqual(con.context, {}) def test_log_curl(self): url = '/test/path' body = None headers = {} con = LoggingConnection() con.protocol = 'http' con.host = 'example.com' con.port = 80 for method in ['GET', 'POST', 'PUT', 'DELETE']: cmd = con._log_curl(method=method, url=url, body=body, headers=headers) self.assertEqual(cmd, 'curl -i -X %s --compress http://example.com:80/test/path' % (method)) # Should use --head for head requests cmd = con._log_curl(method='HEAD', url=url, body=body, headers=headers) self.assertEqual(cmd, 'curl -i --head --compress http://example.com:80/test/path') if __name__ == '__main__': sys.exit(unittest.main())
36.995192
94
0.624172
f8d46f993d25bd7f9f34660f23bf18928f5a3963
5,672
py
Python
module/classification_package/src/utils.py
fishial/Object-Detection-Model
4792f65ea785156a8e240d9cdbbc0c9d013ea0bb
[ "CC0-1.0" ]
1
2022-01-03T14:00:17.000Z
2022-01-03T14:00:17.000Z
module/classification_package/src/utils.py
fishial/Object-Detection-Model
4792f65ea785156a8e240d9cdbbc0c9d013ea0bb
[ "CC0-1.0" ]
null
null
null
module/classification_package/src/utils.py
fishial/Object-Detection-Model
4792f65ea785156a8e240d9cdbbc0c9d013ea0bb
[ "CC0-1.0" ]
1
2021-12-21T09:50:53.000Z
2021-12-21T09:50:53.000Z
import numpy as np import logging import numbers import torch import math import json import sys from torch.optim.lr_scheduler import LambdaLR from torchvision.transforms.functional import pad class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count class ConstantLRSchedule(LambdaLR): """ Constant learning rate schedule. """ def __init__(self, optimizer, last_epoch=-1): super(ConstantLRSchedule, self).__init__(optimizer, lambda _: 1.0, last_epoch=last_epoch) class WarmupConstantSchedule(LambdaLR): """ Linear warmup and then constant. Linearly increases learning rate schedule from 0 to 1 over `warmup_steps` training steps. Keeps learning rate schedule equal to 1. after warmup_steps. """ def __init__(self, optimizer, warmup_steps, last_epoch=-1): self.warmup_steps = warmup_steps super(WarmupConstantSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch) def lr_lambda(self, step): if step < self.warmup_steps: return float(step) / float(max(1.0, self.warmup_steps)) return 1. class WarmupLinearSchedule(LambdaLR): """ Linear warmup and then linear decay. Linearly increases learning rate from 0 to 1 over `warmup_steps` training steps. Linearly decreases learning rate from 1. to 0. over remaining `t_total - warmup_steps` steps. """ def __init__(self, optimizer, warmup_steps, t_total, last_epoch=-1): self.warmup_steps = warmup_steps self.t_total = t_total super(WarmupLinearSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch) def lr_lambda(self, step): if step < self.warmup_steps: return float(step) / float(max(1, self.warmup_steps)) return max(0.0, float(self.t_total - step) / float(max(1.0, self.t_total - self.warmup_steps))) class WarmupCosineSchedule(LambdaLR): """ Linear warmup and then cosine decay. Linearly increases learning rate from 0 to 1 over `warmup_steps` training steps. Decreases learning rate from 1. to 0. over remaining `t_total - warmup_steps` steps following a cosine curve. If `cycles` (default=0.5) is different from default, learning rate follows cosine function after warmup. """ def __init__(self, optimizer, warmup_steps, t_total, cycles=.5, last_epoch=-1): self.warmup_steps = warmup_steps self.t_total = t_total self.cycles = cycles super(WarmupCosineSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch) def lr_lambda(self, step): if step < self.warmup_steps: return float(step) / float(max(1.0, self.warmup_steps)) # progress after warmup progress = float(step - self.warmup_steps) / float(max(1, self.t_total - self.warmup_steps)) return max(0.0, 0.5 * (1. + math.cos(math.pi * float(self.cycles) * 2.0 * progress))) def get_padding(image): w, h = image.size max_wh = np.max([w, h]) h_padding = (max_wh - w) / 2 v_padding = (max_wh - h) / 2 l_pad = h_padding if h_padding % 1 == 0 else h_padding + 0.5 t_pad = v_padding if v_padding % 1 == 0 else v_padding + 0.5 r_pad = h_padding if h_padding % 1 == 0 else h_padding - 0.5 b_pad = v_padding if v_padding % 1 == 0 else v_padding - 0.5 padding = (int(l_pad), int(t_pad), int(r_pad), int(b_pad)) return padding class NewPad(object): def __init__(self, fill=0, padding_mode='constant'): assert isinstance(fill, (numbers.Number, str, tuple)) assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'] self.fill = fill self.padding_mode = padding_mode def __call__(self, img): """ Args: img (PIL Image): Image to be padded. Returns: PIL Image: Padded image. """ return pad(img, get_padding(img), self.fill, self.padding_mode) def __repr__(self): return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'. \ format(self.fill, self.padding_mode) def find_device(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") return device def read_json(data): with open(data) as f: return json.load(f) def save_json(data, path): with open(path, 'w', encoding='utf-8') as f: json.dump(data, f) def setup_logger(): logger = logging.getLogger('train') logger.setLevel(logging.INFO) if len(logger.handlers) == 0: formatter = logging.Formatter('%(asctime)s | %(message)s') ch = logging.StreamHandler(stream=sys.stdout) ch.setFormatter(formatter) logger.addHandler(ch) return logger def adjust_learning_rate(optimizer, epoch, lr): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" lr = lr * (0.1 ** (epoch // 30)) for param_group in optimizer.param_groups: param_group['lr'] = lr def save_checkpoint(model, path): torch.save(model.state_dict(), path) def reverse_norm_image(image): MEAN = torch.tensor([0.485, 0.456, 0.406]) STD = torch.tensor([0.229, 0.224, 0.225]) reverse_image = image * STD[:, None, None] + MEAN[:, None, None] return reverse_image.permute(1, 2, 0).cpu().numpy()
33.761905
117
0.653738
5d1d5be9e9e0382909fb3777ed89becc272c0e93
767
py
Python
Kapitel_1/_1_public_private.py
Geralonx/Classes_Tutorial
9499db8159efce1e3c38975b66a9c649631c6727
[ "MIT" ]
1
2020-12-24T15:42:54.000Z
2020-12-24T15:42:54.000Z
Kapitel_1/_1_public_private.py
Geralonx/Classes_Tutorial
9499db8159efce1e3c38975b66a9c649631c6727
[ "MIT" ]
null
null
null
Kapitel_1/_1_public_private.py
Geralonx/Classes_Tutorial
9499db8159efce1e3c38975b66a9c649631c6727
[ "MIT" ]
null
null
null
# --- Klassendeklaration mit Konstruktor --- # class PC: def __init__(self, cpu, gpu, ram): self.cpu = cpu self.gpu = gpu self.__ram = ram # --- Instanziierung einer Klasse ---# # --- Ich bevorzuge die Initialisierung mit den Keywords --- # pc_instanz = PC(cpu='Ryzen 7', gpu='RTX2070Super', ram='GSkill') # --- Zugriff auf normale _public_ Attribute --- # print(pc_instanz.cpu) print(pc_instanz.gpu) # --- Zugriff auf ein _privates_ Attribut --- # # Auskommentiert, da es einen AttributeError schmeißt. # print(pc_instanz.__ram) # --- Zugriff auf das Instanz-Dictionary, um die Inhalte jener Instanz zu erhalten. --- # print(pc_instanz.__dict__) # --- Zugriff auf das eigentlich _private_ Attribut. --- # print(pc_instanz._PC__ram)
29.5
89
0.684485
5d66ef032fbd2dcf091b5ffde482a5d596613146
1,940
py
Python
bin/write2cly.py
docdiesel/smartmetertools
3b7449c7a9069696af078631aa5440f53d0f57bc
[ "MIT" ]
1
2019-05-30T08:28:31.000Z
2019-05-30T08:28:31.000Z
bin/write2cly.py
docdiesel/smartmetertools
3b7449c7a9069696af078631aa5440f53d0f57bc
[ "MIT" ]
null
null
null
bin/write2cly.py
docdiesel/smartmetertools
3b7449c7a9069696af078631aa5440f53d0f57bc
[ "MIT" ]
null
null
null
#!/usr/bin/python3 ## write2cly.py - reads json (generated by sml_reader.py) from stdin ## - writes values to Corlysis time series InfluxDB ## ## Writes data from smart meter to time series database (InfluxDB) ## at Corlysis.com [1]. You need to configure your database and token ## in the config section. ## ## [1] https://corlysis.com/ ##==== license section ======== ## This code is under MIT License: Copyright (C) 2019 Bernd Künnen ## License details see https://choosealicense.com/licenses/mit/ ##==== config section ======== # define corlysis settings here - set db and token at least cly_base_url = 'https://corlysis.com:8086/write' cly_parameters = { "db": "energy", "u" : "token", "p" : "placeyourtokenhere", "precision": "ms"} # assign readable field names config = { "1.8.0": "Bezug", "2.8.0": "Einspeisung", "16.7.0": "Wirkleistung" } ##==== code section ==== no need to change lines below ==== ##-- import libraries import json, sys, requests import requests import time # load json from stdin try: myjson = json.load(sys.stdin) except: sys.stderr.write('!! error loading json') exit(1) # decode json try: line = "meter_data " # add each meter value to line for obis in myjson['data']: key = config[obis] # set human readable field name value = myjson['data'][obis] # get value from smart meter line += key + '=' + str(value) + ',' # add key=value to insert line # cut off last comma line = line[:-1] # add timestamp as unix timestamp in ms line += ' ' + str(int(time.time()*1000)) #+ '\n' # post data into time series database; http response should be 204 r = requests.post(cly_base_url, params=cly_parameters, data=line) if r.status_code != 204 : sys.stderr.write(r.status_code) sys.stderr.write(r.content) # catch if input is no valid json except: sys.stderr.write('!!error: no data block in json') exit(2)
25.526316
71
0.652062
53df3216d619040fc2551d1e35eda4fe2e177604
3,868
py
Python
WifiEnigma/BattleAI/question.py
Puzzlebox-IMT/Puzzlebox
6b80e22a4aee3228140692bd6352de18b2f6a96d
[ "MIT" ]
null
null
null
WifiEnigma/BattleAI/question.py
Puzzlebox-IMT/Puzzlebox
6b80e22a4aee3228140692bd6352de18b2f6a96d
[ "MIT" ]
null
null
null
WifiEnigma/BattleAI/question.py
Puzzlebox-IMT/Puzzlebox
6b80e22a4aee3228140692bd6352de18b2f6a96d
[ "MIT" ]
null
null
null
import mysql.connector import random from voice import synthetize_voice, delete_wav def AllQuestionAI(id_theme): i = 0 #CONNEXION A LA BDD conn = mysql.connector.connect(host="localhost", user="phpmyadmin", password="Vince@Mysql1997", database="Puzzlebox") cursor = conn.cursor() #EXECUTER LA REQUETE AVEC LA BDD query = ("SELECT * FROM Question INNER JOIN themes_questions ON Question.ID_QUESTION = themes_questions.ID_QUESTION WHERE ID_THEME=%s") cursor.execute(query, (id_theme, )) #RECUPERATION DES INFORMATIONS rows = cursor.fetchall() if rows: for line in rows: i += 1 enonce = line[1] proposition1 = line[2] proposition2 = line[3] proposition3 = line[4] proposition4 = line[5] reponse = line[5] print("*******************************************************************************") print(" QUESTION ",i," ") print("*******************************************************************************") print("ENONCE : ", enonce) print("PROPOSITION 1 : ", proposition1) print("PROPOSITION 2 : ", proposition2) print("PROPOSITION 3 : ", proposition3) print("PROPOSITION 4 : ", proposition4) print("REPONSE : ", reponse) else: print("Ce thème ne contient pas de questions") def questionAI(id_theme): i = 0 #CONNEXION A LA BDD conn = mysql.connector.connect(host="localhost", user="phpmyadmin", password="Vince@Mysql1997", database="Puzzlebox") cursor = conn.cursor() #EXECUTER LA REQUETE AVEC LA BDD query = ("SELECT * FROM Question INNER JOIN themes_questions ON Question.ID_QUESTION = themes_questions.ID_QUESTION WHERE ID_THEME=%s") cursor.execute(query, (id_theme, )) #RECUPERATION DES INFORMATIONS rows = cursor.fetchall() if rows: nb_rows = len(rows) num_question = random.randint(1, nb_rows) #L'index de la liste commence à zéro, il faut donc décaler d'un le numéro num_question = num_question - 1 question = rows[num_question] result = [] #Tab which stores the query results #RECUPERATION DES TUPLES result.append(question[1]) result.append(question[2]) result.append(question[3]) result.append(question[4]) result.append(question[5]) result.append(question[5]) #This last one is the answer print("*******************************************************************************") print(" QUESTION ",num_question+1," ") print("*******************************************************************************") print("ENONCE : ", result[0]) print("PROPOSITION 1 : ", result[1]) print("PROPOSITION 2 : ", result[2]) print("PROPOSITION 3 : ", result[3]) print("PROPOSITION 4 : ", result[4]) print("REPONSE : ", result[5]) #complete_question = ''.join(complete_question) #Convert tuple into string return result else: print("Ce thème ne contient pas de questions") def tell_question(question): synthetize_voice(question[0]) for i in range(1,5) : num_prop = "Proposition {} ".format(i) num_prop = ''.join(num_prop) line = ''.join(question[i]) line = num_prop + line synthetize_voice(line) delete_wav() def quiz(): counter = 1 while(counter <= 5): questionAI(1) if (__name__ == '__main__'): result = questionAI(1) tell_question(result)
31.447154
140
0.520941
54e3b8446107d9bccd2d0bc314395d7a3117387b
7,069
py
Python
src/resources/clients/python_client/visitstate.py
visit-dav/vis
c08bc6e538ecd7d30ddc6399ec3022b9e062127e
[ "BSD-3-Clause" ]
226
2018-12-29T01:13:49.000Z
2022-03-30T19:16:31.000Z
src/resources/clients/python_client/visitstate.py
visit-dav/vis
c08bc6e538ecd7d30ddc6399ec3022b9e062127e
[ "BSD-3-Clause" ]
5,100
2019-01-14T18:19:25.000Z
2022-03-31T23:08:36.000Z
src/resources/clients/python_client/visitstate.py
visit-dav/vis
c08bc6e538ecd7d30ddc6399ec3022b9e062127e
[ "BSD-3-Clause" ]
84
2019-01-24T17:41:50.000Z
2022-03-10T10:01:46.000Z
import sys class RPCType(object): CloseRPC = 0 DetachRPC = 1 AddWindowRPC = 2 DeleteWindowRPC = 3 SetWindowLayoutRPC = 4 SetActiveWindowRPC = 5 ClearWindowRPC = 6 ClearAllWindowsRPC = 7 OpenDatabaseRPC = 8 CloseDatabaseRPC = 9 ActivateDatabaseRPC = 10 CheckForNewStatesRPC = 11 CreateDatabaseCorrelationRPC = 12 AlterDatabaseCorrelationRPC = 13 DeleteDatabaseCorrelationRPC = 14 ReOpenDatabaseRPC = 15 ReplaceDatabaseRPC = 16 OverlayDatabaseRPC = 17 OpenComputeEngineRPC = 18 CloseComputeEngineRPC = 19 AnimationSetNFramesRPC = 20 AnimationPlayRPC = 21 AnimationReversePlayRPC = 22 AnimationStopRPC = 23 TimeSliderNextStateRPC = 24 TimeSliderPreviousStateRPC = 25 SetTimeSliderStateRPC = 26 SetActiveTimeSliderRPC = 27 AddPlotRPC = 28 SetPlotFrameRangeRPC = 29 DeletePlotKeyframeRPC = 30 MovePlotKeyframeRPC = 31 DeleteActivePlotsRPC = 32 HideActivePlotsRPC = 33 DrawPlotsRPC = 34 DisableRedrawRPC = 35 RedrawRPC = 36 SetActivePlotsRPC = 37 ChangeActivePlotsVarRPC = 38 AddOperatorRPC = 39 AddInitializedOperatorRPC = 40 PromoteOperatorRPC = 41 DemoteOperatorRPC = 42 RemoveOperatorRPC = 43 RemoveLastOperatorRPC = 44 RemoveAllOperatorsRPC = 45 SaveWindowRPC = 46 SetDefaultPlotOptionsRPC = 47 SetPlotOptionsRPC = 48 SetDefaultOperatorOptionsRPC = 49 SetOperatorOptionsRPC = 50 WriteConfigFileRPC = 51 ConnectToMetaDataServerRPC = 52 IconifyAllWindowsRPC = 53 DeIconifyAllWindowsRPC = 54 ShowAllWindowsRPC = 55 HideAllWindowsRPC = 56 UpdateColorTableRPC = 57 SetAnnotationAttributesRPC = 58 SetDefaultAnnotationAttributesRPC = 59 ResetAnnotationAttributesRPC = 60 SetKeyframeAttributesRPC = 61 SetPlotSILRestrictionRPC = 62 SetViewAxisArrayRPC = 63 SetViewCurveRPC = 64 SetView2DRPC = 65 SetView3DRPC = 66 ResetPlotOptionsRPC = 67 ResetOperatorOptionsRPC = 68 SetAppearanceRPC = 69 ProcessExpressionsRPC = 70 SetLightListRPC = 71 SetDefaultLightListRPC = 72 ResetLightListRPC = 73 SetAnimationAttributesRPC = 74 SetWindowAreaRPC = 75 PrintWindowRPC = 76 ResetViewRPC = 77 RecenterViewRPC = 78 ToggleAllowPopupRPC = 79 ToggleMaintainViewModeRPC = 80 ToggleBoundingBoxModeRPC = 81 ToggleCameraViewModeRPC = 82 TogglePerspectiveViewRPC = 83 ToggleSpinModeRPC = 84 ToggleLockTimeRPC = 85 ToggleLockToolsRPC = 86 ToggleLockViewModeRPC = 87 ToggleFullFrameRPC = 88 UndoViewRPC = 89 RedoViewRPC = 90 InvertBackgroundRPC = 91 ClearPickPointsRPC = 92 SetWindowModeRPC = 93 EnableToolRPC = 94 SetToolUpdateModeRPC = 95 CopyViewToWindowRPC = 96 CopyLightingToWindowRPC = 97 CopyAnnotationsToWindowRPC = 98 CopyPlotsToWindowRPC = 99 ClearCacheRPC = 100 ClearCacheForAllEnginesRPC = 101 SetViewExtentsTypeRPC = 102 ClearRefLinesRPC = 103 SetRenderingAttributesRPC = 104 QueryRPC = 105 CloneWindowRPC = 106 SetMaterialAttributesRPC = 107 SetDefaultMaterialAttributesRPC = 108 ResetMaterialAttributesRPC = 109 SetPlotDatabaseStateRPC = 110 DeletePlotDatabaseKeyframeRPC = 111 MovePlotDatabaseKeyframeRPC = 112 ClearViewKeyframesRPC = 113 DeleteViewKeyframeRPC = 114 MoveViewKeyframeRPC = 115 SetViewKeyframeRPC = 116 OpenMDServerRPC = 117 EnableToolbarRPC = 118 HideToolbarsRPC = 119 HideToolbarsForAllWindowsRPC = 120 ShowToolbarsRPC = 121 ShowToolbarsForAllWindowsRPC = 122 SetToolbarIconSizeRPC = 123 SaveViewRPC = 124 SetGlobalLineoutAttributesRPC = 125 SetPickAttributesRPC = 126 ExportColorTableRPC = 127 ExportEntireStateRPC = 128 ImportEntireStateRPC = 129 ImportEntireStateWithDifferentSourcesRPC = 130 ResetPickAttributesRPC = 131 AddAnnotationObjectRPC = 132 HideActiveAnnotationObjectsRPC = 133 DeleteActiveAnnotationObjectsRPC = 134 RaiseActiveAnnotationObjectsRPC = 135 LowerActiveAnnotationObjectsRPC = 136 SetAnnotationObjectOptionsRPC = 137 SetDefaultAnnotationObjectListRPC = 138 ResetAnnotationObjectListRPC = 139 ResetPickLetterRPC = 140 SetDefaultPickAttributesRPC = 141 ChooseCenterOfRotationRPC = 142 SetCenterOfRotationRPC = 143 SetQueryOverTimeAttributesRPC = 144 SetDefaultQueryOverTimeAttributesRPC = 145 ResetQueryOverTimeAttributesRPC = 146 ResetLineoutColorRPC = 147 SetInteractorAttributesRPC = 148 SetDefaultInteractorAttributesRPC = 149 ResetInteractorAttributesRPC = 150 GetProcInfoRPC = 151 SendSimulationCommandRPC = 152 UpdateDBPluginInfoRPC = 153 ExportDBRPC = 154 SetTryHarderCyclesTimesRPC = 155 OpenClientRPC = 156 OpenGUIClientRPC = 157 OpenCLIClientRPC = 158 SuppressQueryOutputRPC = 159 SetQueryFloatFormatRPC = 160 SetMeshManagementAttributesRPC = 161 SetDefaultMeshManagementAttributesRPC = 162 ResetMeshManagementAttributesRPC = 163 ResizeWindowRPC = 164 MoveWindowRPC = 165 MoveAndResizeWindowRPC = 166 SetStateLoggingRPC = 167 ConstructDataBinningRPC = 168 RequestMetaDataRPC = 169 SetTreatAllDBsAsTimeVaryingRPC = 170 SetCreateMeshQualityExpressionsRPC = 171 SetCreateTimeDerivativeExpressionsRPC = 172 SetCreateVectorMagnitudeExpressionsRPC = 173 CopyActivePlotsRPC = 174 SetPlotFollowsTimeRPC = 175 TurnOffAllLocksRPC = 176 SetDefaultFileOpenOptionsRPC = 177 SetSuppressMessagesRPC = 178 ApplyNamedSelectionRPC = 179 CreateNamedSelectionRPC = 180 DeleteNamedSelectionRPC = 181 LoadNamedSelectionRPC = 182 SaveNamedSelectionRPC = 183 SetNamedSelectionAutoApplyRPC = 184 UpdateNamedSelectionRPC = 185 InitializeNamedSelectionVariablesRPC = 186 MenuQuitRPC = 187 SetPlotDescriptionRPC = 188 MovePlotOrderTowardFirstRPC = 189 MovePlotOrderTowardLastRPC = 190 SetPlotOrderToFirstRPC = 191 SetPlotOrderToLastRPC = 192 RenamePickLabelRPC = 193 GetQueryParametersRPC = 194 DDTConnectRPC = 195 DDTFocusRPC = 196 ReleaseToDDTRPC = 197 MaxRPC = 198
34.651961
54
0.660914
4ad523fc14942dd490ad41c526c6171f60967ac3
476
py
Python
Backend/models/risklayerPrognosis.py
dbvis-ukon/coronavis
f00374ac655c9d68541183d28ede6fe5536581dc
[ "Apache-2.0" ]
15
2020-04-24T20:18:11.000Z
2022-01-31T21:05:05.000Z
Backend/models/risklayerPrognosis.py
dbvis-ukon/coronavis
f00374ac655c9d68541183d28ede6fe5536581dc
[ "Apache-2.0" ]
2
2021-05-19T07:15:09.000Z
2022-03-07T08:29:34.000Z
Backend/models/risklayerPrognosis.py
dbvis-ukon/coronavis
f00374ac655c9d68541183d28ede6fe5536581dc
[ "Apache-2.0" ]
4
2020-04-27T16:20:13.000Z
2021-02-23T10:39:42.000Z
from db import db class RisklayerPrognosis(db.Model): __tablename__ = 'risklayer_prognosis' datenbestand = db.Column(db.TIMESTAMP, primary_key=True, nullable=False) prognosis = db.Column(db.Float, nullable=False) # class RisklayerPrognosisSchema(SQLAlchemyAutoSchema): # class Meta: # strict = True # model = RisklayerPrognosis # # timestamp = fields.Timestamp(data_key="datenbestand") # prognosis = fields.Number(data_key="prognosis")
28
76
0.72479
ab2add18b201d727e235b13fba3fa52b34c35680
404
py
Python
TreeModelLib/BelowgroundCompetition/__init__.py
jvollhueter/pyMANGA-1
414204a394d44405225b4b8224b19464c1006f1d
[ "MIT" ]
null
null
null
TreeModelLib/BelowgroundCompetition/__init__.py
jvollhueter/pyMANGA-1
414204a394d44405225b4b8224b19464c1006f1d
[ "MIT" ]
null
null
null
TreeModelLib/BelowgroundCompetition/__init__.py
jvollhueter/pyMANGA-1
414204a394d44405225b4b8224b19464c1006f1d
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Nov 8 15:25:03 2018 @author: bathmann """ from .BelowgroundCompetition import BelowgroundCompetition from .SimpleTest import SimpleTest from .FON import FON from .OGSWithoutFeedback import OGSWithoutFeedback from .OGSLargeScale3D import OGSLargeScale3D from .OGS.helpers import CellInformation from .FixedSalinity import FixedSalinity
25.25
58
0.799505
dbcc6f4ccb0dabce5252e1dd4108228b2c863f99
721
py
Python
web/web-lemonthinker/src/app/app.py
NoXLaw/RaRCTF2021-Challenges-Public
1a1b094359b88f8ebbc83a6b26d27ffb2602458f
[ "MIT" ]
2
2021-08-09T17:08:12.000Z
2021-08-09T17:08:17.000Z
web/web-lemonthinker/src/app/app.py
NoXLaw/RaRCTF2021-Challenges-Public
1a1b094359b88f8ebbc83a6b26d27ffb2602458f
[ "MIT" ]
null
null
null
web/web-lemonthinker/src/app/app.py
NoXLaw/RaRCTF2021-Challenges-Public
1a1b094359b88f8ebbc83a6b26d27ffb2602458f
[ "MIT" ]
1
2021-10-09T16:51:56.000Z
2021-10-09T16:51:56.000Z
from flask import Flask, request, redirect, url_for import os import random import string import time # lemonthink clean = time.time() app = Flask(__name__) chars = list(string.ascii_letters + string.digits) @app.route('/') def main(): return open("index.html").read() @app.route('/generate', methods=['POST']) def upload(): global clean if time.time() - clean > 60: os.system("rm static/images/*") clean = time.time() text = request.form.getlist('text')[0] text = text.replace("\"", "") filename = "".join(random.choices(chars,k=8)) + ".png" os.system(f"python3 generate.py {filename} \"{text}\"") return redirect(url_for('static', filename='images/' + filename), code=301)
28.84
79
0.653259
91da549f96f9ccca48e20a796a48546be83febae
206
py
Python
exercises/ja/exc_03_16_01.py
Jette16/spacy-course
32df0c8f6192de6c9daba89740a28c0537e4d6a0
[ "MIT" ]
2,085
2019-04-17T13:10:40.000Z
2022-03-30T21:51:46.000Z
exercises/ja/exc_03_16_01.py
Jette16/spacy-course
32df0c8f6192de6c9daba89740a28c0537e4d6a0
[ "MIT" ]
79
2019-04-18T14:42:55.000Z
2022-03-07T08:15:43.000Z
exercises/ja/exc_03_16_01.py
Jette16/spacy-course
32df0c8f6192de6c9daba89740a28c0537e4d6a0
[ "MIT" ]
361
2019-04-17T13:34:32.000Z
2022-03-28T04:42:45.000Z
import spacy nlp = spacy.load("ja_core_news_sm") text = ( "チックフィレイはジョージア州カレッジパークに本社を置く、" "チキンサンドを専門とするアメリカのファストフードレストランチェーンです。" ) # トークナイズのみ行う doc = nlp(text) print([token.text for token in doc])
17.166667
42
0.73301
f482d9773506167246440d9307b62395f61caa1a
2,353
py
Python
ais3-pre-exam-2022-writeup/Misc/JeetQode/chall/problems/astmath.py
Jimmy01240397/balsn-2021-writeup
91b71dfbddc1c214552280b12979a82ee1c3cb7e
[ "MIT" ]
null
null
null
ais3-pre-exam-2022-writeup/Misc/JeetQode/chall/problems/astmath.py
Jimmy01240397/balsn-2021-writeup
91b71dfbddc1c214552280b12979a82ee1c3cb7e
[ "MIT" ]
null
null
null
ais3-pre-exam-2022-writeup/Misc/JeetQode/chall/problems/astmath.py
Jimmy01240397/balsn-2021-writeup
91b71dfbddc1c214552280b12979a82ee1c3cb7e
[ "MIT" ]
null
null
null
from problem import Problem from typing import Any, Tuple from random import randint import ast import json def gen_num(): return str(randint(1, 9)) def gen_op(): return "+-*/"[randint(0, 3)] def gen_expr(depth): if randint(0, depth) == 0: l = gen_expr(depth + 1) r = gen_expr(depth + 1) op = gen_op() return f"({l}{op}{r})" return f"({gen_num()})" class ASTMath(Problem): @property def name(self) -> str: return "AST Math" @property def desciption(self) -> str: return """ Input: An AST of Python's arithmetic expression (only +,-,*,/) Output: Result number Examples: Input: {"body": {"left": {"value": 1, "kind": null, "lineno": 1, "col_offset": 0, "end_lineno": 1, "end_col_offset": 1}, "op": "<_ast.Add object at 0x7f0387ccde20>", "right": {"value": 2, "kind": null, "lineno": 1, "col_offset": 2, "end_lineno": 1, "end_col_offset": 3}, "lineno": 1, "col_offset": 0, "end_lineno": 1, "end_col_offset": 3}} Output: 3 Input: {"body": {"left": {"left": {"value": 8, "kind": null, "lineno": 1, "col_offset": 1, "end_lineno": 1, "end_col_offset": 2}, "op": "<_ast.Mult object at 0x7f20eb76aee0>", "right": {"value": 7, "kind": null, "lineno": 1, "col_offset": 3, "end_lineno": 1, "end_col_offset": 4}, "lineno": 1, "col_offset": 1, "end_lineno": 1, "end_col_offset": 4}, "op": "<_ast.Sub object at 0x7f20eb76ae80>", "right": {"left": {"value": 6, "kind": null, "lineno": 1, "col_offset": 7, "end_lineno": 1, "end_col_offset": 8}, "op": "<_ast.Mult object at 0x7f20eb76aee0>", "right": {"value": 3, "kind": null, "lineno": 1, "col_offset": 9, "end_lineno": 1, "end_col_offset": 10}, "lineno": 1, "col_offset": 7, "end_lineno": 1, "end_col_offset": 10}, "lineno": 1, "col_offset": 0, "end_lineno": 1, "end_col_offset": 11}} Output: 38 """ @property def rounds(self) -> int: return 10 def dumps(self, x): return json.dumps( x, default=lambda x: x.__dict__ if len(x.__dict__) else str(x) ) def generate_testcase(self) -> Tuple[bool, Any]: l = gen_expr(1) r = gen_expr(1) op = gen_op() expr = f"{l}{op}{r}" try: result = eval(expr) except ZeroDivisionError: return self.generate_testcase() return ast.parse(expr, mode="eval"), result
37.349206
800
0.592435
beaa8784fc43c71bc8bb5120744ac9a157c4e2a7
2,387
py
Python
PathPlanning/run.py
CandleStein/VAlg
43aecdd351954d316f132793cf069b70bf2e5cc2
[ "MIT" ]
null
null
null
PathPlanning/run.py
CandleStein/VAlg
43aecdd351954d316f132793cf069b70bf2e5cc2
[ "MIT" ]
null
null
null
PathPlanning/run.py
CandleStein/VAlg
43aecdd351954d316f132793cf069b70bf2e5cc2
[ "MIT" ]
1
2020-09-25T18:31:34.000Z
2020-09-25T18:31:34.000Z
from planning_framework import path import cv2 as cv import numpy as np import argparse import matplotlib.pyplot as plt parser = argparse.ArgumentParser(description="Path Planning Visualisation") parser.add_argument( "-n", "--n_heuristic", default=2, help="Heuristic for A* Algorithm (default = 2). 0 for Dijkstra's Algorithm", ) args = parser.parse_args() N_H = int(args.n_heuristic) drawing = False # true if mouse is pressed mode = "obs" # if True, draw rectangle. Press 'm' to toggle to curve ix, iy = -1, -1 sx, sy = 0, 0 dx, dy = 50, 50 # mouse callback function def draw(event, x, y, flags, param): global mode, sx, sy, dx, dy, drawing if event == cv.EVENT_LBUTTONDOWN: drawing = True elif event == cv.EVENT_MOUSEMOVE: if drawing == True: if mode == "obs": cv.rectangle(img, (x - 5, y - 5), (x + 5, y + 5), (255, 255, 255), -1) elif event == cv.EVENT_LBUTTONUP: drawing = False if mode == "obs": cv.rectangle(img, (x - 5, y - 5), (x + 5, y + 5), (255, 255, 255), -1) elif mode == "src": cv.circle(img, (x, y), 5, (255, 0, 0), -1) sx, sy = x, y elif mode == "dst": cv.circle(img, (x, y), 5, (0, 255, 0), -1) dx, dy = x, y img = np.zeros((512, 512, 3), np.uint8) inv_im = np.ones(img.shape) * 255 cv.namedWindow("Draw the Occupancy Map") cv.setMouseCallback("Draw the Occupancy Map", draw) while 1: cv.imshow("Draw the Occupancy Map", inv_im - img) if cv.waitKey(20) & 0xFF == 27: break cv.destroyAllWindows() mode = "src" img_ = img cv.namedWindow("Set the Starting Point") cv.setMouseCallback("Set the Starting Point", draw) while 1: cv.imshow("Set the Starting Point", inv_im - img) if cv.waitKey(20) & 0xFF == 27: break # cv.waitKey(20) cv.destroyAllWindows() mode = "dst" end = "Set the End Point" cv.namedWindow(end) cv.setMouseCallback(end, draw) while cv.getWindowProperty(end, 0) >= 0: cv.imshow(end, inv_im - img) if cv.waitKey(20) & 0xFF == 27: break cv.destroyAllWindows() img = cv.resize(img_, (50, 50), interpolation=cv.INTER_AREA) inv_img = np.ones(img.shape) np.savetxt("map.txt", np.array(img[:, :, 0])) plt.imshow(inv_img - img) start = np.array([sx, sy]) * 50 // 512 end = np.array([dx, dy]) * 50 // 512 path(start, end, N_H)
26.820225
86
0.607038
fe7996f8bc015e9c1e0a7458bde9909f14df8fbf
316
py
Python
ScapyDoS-main/simp.py
Zusyaku/Termux-And-Lali-Linux-V2
b1a1b0841d22d4bf2cc7932b72716d55f070871e
[ "Apache-2.0" ]
2
2021-11-17T03:35:03.000Z
2021-12-08T06:00:31.000Z
ScapyDoS-main/simp.py
Zusyaku/Termux-And-Lali-Linux-V2
b1a1b0841d22d4bf2cc7932b72716d55f070871e
[ "Apache-2.0" ]
null
null
null
ScapyDoS-main/simp.py
Zusyaku/Termux-And-Lali-Linux-V2
b1a1b0841d22d4bf2cc7932b72716d55f070871e
[ "Apache-2.0" ]
2
2021-11-05T18:07:48.000Z
2022-02-24T21:25:07.000Z
from scapy.all import * src = input("Source IP: ") target = input("Target IP: ") i=1 while True: for srcport in range(1, 65535): ip = IP(src=src, dst=target) tcp = TCP(sport=srcport, dport=80) pkt = ip / tcp send(pkt, inter= .0001) print("Packet Sent ", i) i=i+1
22.571429
42
0.550633
a3b8b5beaa0f8d8ecd98462fe75b978547dc1472
4,248
py
Python
Python X/Dictionaries in python.py
nirobio/puzzles
fda8c84d8eefd93b40594636fb9b7f0fde02b014
[ "MIT" ]
null
null
null
Python X/Dictionaries in python.py
nirobio/puzzles
fda8c84d8eefd93b40594636fb9b7f0fde02b014
[ "MIT" ]
null
null
null
Python X/Dictionaries in python.py
nirobio/puzzles
fda8c84d8eefd93b40594636fb9b7f0fde02b014
[ "MIT" ]
null
null
null
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# dictionaries, look-up tables & key-value pairs\n", "# d = {} OR d = dict()\n", "# e.g. d = {\"George\": 24, \"Tom\": 32}\n", "\n", "d = {}\n", "\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "d[\"George\"] = 24" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "d[\"Tom\"] = 32\n", "d[\"Jenny\"] = 16" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'George': 24, 'Tom': 32, 'Jenny': 16}\n" ] } ], "source": [ "print(d)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'Jenny' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-5-0bdfff196d23>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0md\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mJenny\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mNameError\u001b[0m: name 'Jenny' is not defined" ] } ], "source": [ "print(d[Jenny])" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "32\n" ] } ], "source": [ "print(d[\"Tom\"])" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "d[\"Jenny\"] = 20" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "20\n" ] } ], "source": [ "print(d[\"Jenny\"])" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "# keys are strings or numbers \n", "\n", "d[10] = 100" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "100\n" ] } ], "source": [ "print(d[10])" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "# how to iterate over key-value pairs" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "key:\n", "George\n", "value:\n", "24\n", "\n", "key:\n", "Tom\n", "value:\n", "32\n", "\n", "key:\n", "Jenny\n", "value:\n", "20\n", "\n", "key:\n", "10\n", "value:\n", "100\n", "\n" ] } ], "source": [ " for key, value in d.items():\n", " print(\"key:\")\n", " print(key)\n", " print(\"value:\")\n", " print(value)\n", " print(\"\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }
18.88
354
0.439266
4367a493fbe503c8a8ff6c69a39f88b75c5407aa
125
py
Python
kts/core/types.py
konodyuk/kts
3af5ccbf1d2089cb41d171626fcde4b0ba5aa8a7
[ "MIT" ]
18
2019-02-14T13:10:07.000Z
2021-11-26T07:10:13.000Z
kts/core/types.py
konodyuk/kts
3af5ccbf1d2089cb41d171626fcde4b0ba5aa8a7
[ "MIT" ]
2
2019-02-17T14:06:42.000Z
2019-09-15T18:05:54.000Z
kts/core/types.py
konodyuk/kts
3af5ccbf1d2089cb41d171626fcde4b0ba5aa8a7
[ "MIT" ]
2
2019-09-15T13:12:42.000Z
2020-04-15T14:05:54.000Z
from typing import Union import pandas as pd from kts.core.frame import KTSFrame AnyFrame = Union[pd.DataFrame, KTSFrame]
15.625
40
0.792
717864c0c5586a731d9e7b34b779d6af81159c7a
4,509
py
Python
slcyGeneral.py
mirrorcoloured/slcypi
c47975b3523f770d12a521c82e2dfca181e3f35b
[ "MIT" ]
null
null
null
slcyGeneral.py
mirrorcoloured/slcypi
c47975b3523f770d12a521c82e2dfca181e3f35b
[ "MIT" ]
null
null
null
slcyGeneral.py
mirrorcoloured/slcypi
c47975b3523f770d12a521c82e2dfca181e3f35b
[ "MIT" ]
null
null
null
# Python 2.7.1 import RPi.GPIO as GPIO from twython import Twython import time import sys import os import pygame APP_KEY='zmmlyAJzMDIntLpDYmSH98gbw' APP_SECRET='ksfSVa2hxvTQKYy4UR9tjpb57CAynMJDsygz9qOyzlH24NVwpW' OAUTH_TOKEN='794094183841566720-BagrHW91yH8C3Mdh9SOlBfpL6wrSVRW' OAUTH_TOKEN_SECRET='d0Uucq2dkSHrFHZGLM1X8Hw05d80ajKYGl1zTRxZQSKTm' applepislcy = Twython(APP_KEY, APP_SECRET, OAUTH_TOKEN, OAUTH_TOKEN_SECRET) ### GENERAL ### def Cleanup(): GPIO.cleanup() def Sleep(seconds): """Puts the program to sleep""" time.sleep(seconds) def Alert(channel): """Simple alert function for testing event interrupts""" print('Alert on channel',channel) def TimeString(): """Returns the current time""" t = time.localtime() return str(t[0])+'.'+str(t[1])+'.'+str(t[2])+'.'+str(t[3])+'.'+str(t[4])+'.'+str(t[5]) def LoadPins(mapping,inp): """Organizes an input into a pin mapping dict mapping <list>, ['IA','IB'] inp <dict>, <list>, <int> {'IA':1,'IB':2}, [1,2] """ if type(inp) is int and len(mapping) == 1: return {mapping[0]:inp} elif type(inp) is list and len(mapping) == len(inp): o = {} for i in range(len(inp)): o[mapping[i]] = inp[i] return o elif type(inp) is dict: return inp else: print('Invalid input for pins:',inp,type(inp)) print('Expected:',mapping) return {} def BoolToSign(inp): """Converts boolean bits into signed bits 0 -> -1 1 -> 1""" return (inp * 2) - 1 def SignToBool(inp): """Converts signed bits into boolean bits -1 -> 0 1 -> 1""" return (inp + 1) / 2 ### PYGAME ### def WindowSetup(size=(300,50),caption='',text='',background=(0,0,0),foreground=(255,255,255)): """Sets up a pygame window to take keyboard input size <tuple>, width by height caption <str>, window title bar text <str>, text to display in window, accepts \n background <tuple>, foreground <tuple>, (r,g,b) color """ pygame.init() screen = pygame.display.set_mode(size,0,32) pygame.display.set_caption(caption) myfont = pygame.font.SysFont('Monospace',15) labels = [] lines = text.split('\n') for line in lines: labels.append(myfont.render(line,1,foreground)) screen.fill(background) y = 0 for label in labels: screen.blit(label, (0,y)) y += 15 pygame.display.update() def InputLoop(eventmap): """Begins a pygame loop, mapping key inputs to functions eventmap <dict>, {pygame.K_t:myfunction} """ index = 0 while True: events = pygame.event.get() for event in events: if event.type == pygame.KEYDOWN: #print("{0}: You pressed {1:c}".format ( index , event.key )) if event.key in eventmap: eventmap[event.key]() elif event.type == pygame.QUIT: pygame.quit() sys.exit() def InputLoopDemo(): def dog(): print('woof') def cat(): print('meow') def fish(): print('blub') WindowSetup(caption='pet simulator',text='d for dog\nc for cat\nf for fish') InputLoop({pygame.K_d:dog, pygame.K_c:cat, pygame.K_f:fish}) ### TWITTER ### def Tweet(twit,statustext): """Tweets a message twit <Twython>, create with Twython(APP_KEY, APP_SECRET, OAUTH_TOKEN, OAUTH_TOKEN_SECRET) statustext <str>, must be <= 140 characters """ if len(statustext) > 140: print('ERROR: Character limit 140 exceeded:',len(statustext)) else: twit.update_status(status=statustext) def TweetPicture(twit,file,statustext): """Tweets a message with a picture twit <Twython>, create with Twython(APP_KEY, APP_SECRET, OAUTH_TOKEN, OAUTH_TOKEN_SECRET) file <str>, path and filename to picture statustext <str>, must be <= 140 characters """ photo = open(file, 'rb') response = twitter.upload_media(media=photo) twit.update_status(status=statustext, media_ids=[response['media_id']]) def TweetVideo(twit,file,statustext): """Tweets a message with a video twit <Twython>, create with Twython(APP_KEY, APP_SECRET, OAUTH_TOKEN, OAUTH_TOKEN_SECRET) file <str>, path and filename to video statustext <str>, must be <= 140 characters """ video = open(file, 'rb') response = twitter.upload_video(media=video, media_type='video/mp4') twit.update_status(status=statustext, media_ids=[response['media_id']])
30.883562
94
0.635174
71ad91d94d2021895fed2197ad1e1027179c068d
5,844
py
Python
oneflow/python/test/ops/test_object_bbox_scale.py
caishenghang/oneflow
db239cc9f98e551823bf6ce2d4395bd5c339b1c5
[ "Apache-2.0" ]
2
2021-09-10T00:19:49.000Z
2021-11-16T11:27:20.000Z
oneflow/python/test/ops/test_object_bbox_scale.py
duijiudanggecl/oneflow
d2096ae14cf847509394a3b717021e2bd1d72f62
[ "Apache-2.0" ]
null
null
null
oneflow/python/test/ops/test_object_bbox_scale.py
duijiudanggecl/oneflow
d2096ae14cf847509394a3b717021e2bd1d72f62
[ "Apache-2.0" ]
1
2021-11-10T07:57:01.000Z
2021-11-10T07:57:01.000Z
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest import os import random import cv2 import numpy as np import oneflow as flow import oneflow.typing as oft def _random_sample_images(anno_file, image_dir, batch_size): from pycocotools.coco import COCO image_files = [] image_ids = [] batch_group_id = -1 coco = COCO(anno_file) img_ids = coco.getImgIds() while len(image_files) < batch_size: rand_img_id = random.choice(img_ids) img_h = coco.imgs[rand_img_id]["height"] img_w = coco.imgs[rand_img_id]["width"] group_id = int(img_h / img_w) if batch_group_id == -1: batch_group_id = group_id if group_id != batch_group_id: continue anno_ids = coco.getAnnIds(imgIds=[rand_img_id]) if len(anno_ids) == 0: continue image_files.append(os.path.join(image_dir, coco.imgs[rand_img_id]["file_name"])) image_ids.append(rand_img_id) assert len(image_files) == len(image_ids) images = [cv2.imread(image_file).astype(np.single) for image_file in image_files] bbox_list = _get_images_bbox_list(coco, image_ids) return images, bbox_list def _get_images_bbox_list(coco, image_ids): bbox_list = [] for img_id in image_ids: anno_ids = coco.getAnnIds(imgIds=[img_id]) anno_ids = list( filter(lambda anno_id: coco.anns[anno_id]["iscrowd"] == 0, anno_ids) ) bbox_array = np.array( [coco.anns[anno_id]["bbox"] for anno_id in anno_ids], dtype=np.single ) bbox_list.append(bbox_array) return bbox_list def _get_images_static_shape(images): image_shapes = [image.shape for image in images] image_static_shape = np.amax(image_shapes, axis=0) assert isinstance( image_static_shape, np.ndarray ), "image_shapes: {}, image_static_shape: {}".format( str(image_shapes), str(image_static_shape) ) image_static_shape = image_static_shape.tolist() image_static_shape.insert(0, len(image_shapes)) return image_static_shape def _get_bbox_static_shape(bbox_list): bbox_shapes = [bbox.shape for bbox in bbox_list] bbox_static_shape = np.amax(bbox_shapes, axis=0) assert isinstance( bbox_static_shape, np.ndarray ), "bbox_shapes: {}, bbox_static_shape: {}".format( str(bbox_shapes), str(bbox_static_shape) ) bbox_static_shape = bbox_static_shape.tolist() bbox_static_shape.insert(0, len(bbox_list)) return bbox_static_shape def _of_target_resize_bbox_scale(images, bbox_list, target_size, max_size): image_shape = _get_images_static_shape(images) bbox_shape = _get_bbox_static_shape(bbox_list) flow.clear_default_session() func_config = flow.FunctionConfig() func_config.default_data_type(flow.float) func_config.default_logical_view(flow.scope.mirrored_view()) @flow.global_function(function_config=func_config) def target_resize_bbox_scale_job( image_def: oft.ListListNumpy.Placeholder( shape=tuple(image_shape), dtype=flow.float ), bbox_def: oft.ListListNumpy.Placeholder( shape=tuple(bbox_shape), dtype=flow.float ), ): images_buffer = flow.tensor_list_to_tensor_buffer(image_def) resized_images_buffer, new_size, scale = flow.image_target_resize( images_buffer, target_size=target_size, max_size=max_size ) bbox_buffer = flow.tensor_list_to_tensor_buffer(bbox_def) scaled_bbox = flow.object_bbox_scale(bbox_buffer, scale) scaled_bbox_list = flow.tensor_buffer_to_tensor_list( scaled_bbox, shape=bbox_shape[1:], dtype=flow.float ) return scaled_bbox_list, new_size input_image_list = [np.expand_dims(image, axis=0) for image in images] input_bbox_list = [np.expand_dims(bbox, axis=0) for bbox in bbox_list] output_bbox_list, output_image_size = target_resize_bbox_scale_job( [input_image_list], [input_bbox_list] ).get() return output_bbox_list.numpy_lists()[0], output_image_size.numpy_list()[0] def _compare_bbox_scale( test_case, anno_file, image_dir, batch_size, target_size, max_size, print_debug_info=False, ): images, bbox_list = _random_sample_images(anno_file, image_dir, batch_size) of_bbox_list, image_size_list = _of_target_resize_bbox_scale( images, bbox_list, target_size, max_size ) for image, bbox, of_bbox, image_size in zip( images, bbox_list, of_bbox_list, image_size_list ): w, h = image_size oh, ow = image.shape[0:2] scale_h = h / oh scale_w = w / ow bbox[:, 0] *= scale_w bbox[:, 1] *= scale_h bbox[:, 2] *= scale_w bbox[:, 3] *= scale_h test_case.assertTrue(np.allclose(bbox, of_bbox)) @flow.unittest.skip_unless_1n1d() class TestObjectBboxScale(flow.unittest.TestCase): def test_object_bbox_scale(test_case): _compare_bbox_scale( test_case, "/dataset/mscoco_2017/annotations/instances_val2017.json", "/dataset/mscoco_2017/val2017", 4, 800, 1333, ) if __name__ == "__main__": unittest.main()
32.287293
88
0.688912
1ce550dcd34ad1e54a6bb3af57029219d257f4d1
742
py
Python
source/blog/migrations/0004_postcomments.py
JakubGutowski/PersonalBlog
96122b36486f7e874c013e50d939732a43db309f
[ "BSD-3-Clause" ]
null
null
null
source/blog/migrations/0004_postcomments.py
JakubGutowski/PersonalBlog
96122b36486f7e874c013e50d939732a43db309f
[ "BSD-3-Clause" ]
null
null
null
source/blog/migrations/0004_postcomments.py
JakubGutowski/PersonalBlog
96122b36486f7e874c013e50d939732a43db309f
[ "BSD-3-Clause" ]
null
null
null
# Generated by Django 2.0.5 on 2018-07-02 19:46 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('blog', '0003_blogpost_author'), ] operations = [ migrations.CreateModel( name='PostComments', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nick', models.CharField(max_length=20)), ('comment', models.CharField(max_length=140)), ('post', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='blog.BlogPost')), ], ), ]
30.916667
115
0.58221
1cecb4c2f3b6f24c919644faa0e058b12f679c06
273
py
Python
src/flocker/blueprints/red/__init__.py
Muxelmann/home-projects
85bd06873174b9c5c6276160988c19b460370db8
[ "MIT" ]
null
null
null
src/flocker/blueprints/red/__init__.py
Muxelmann/home-projects
85bd06873174b9c5c6276160988c19b460370db8
[ "MIT" ]
null
null
null
src/flocker/blueprints/red/__init__.py
Muxelmann/home-projects
85bd06873174b9c5c6276160988c19b460370db8
[ "MIT" ]
null
null
null
import os from flask import Blueprint, render_template def create_bp(): bp_red = Blueprint('red', __name__, url_prefix='/red') @bp_red.route('/index/') @bp_red.route('/') def index(): return render_template('red/index.html') return bp_red
22.75
58
0.652015
1c073d575249e6f524c3e4fa1ac84edb0ff05cc7
984
py
Python
UAS/UAS 11 & 12/main.py
Archedar/UAS
3237d9304026340acc93c8f36b358578dc0ae66f
[ "BSD-Source-Code" ]
null
null
null
UAS/UAS 11 & 12/main.py
Archedar/UAS
3237d9304026340acc93c8f36b358578dc0ae66f
[ "BSD-Source-Code" ]
null
null
null
UAS/UAS 11 & 12/main.py
Archedar/UAS
3237d9304026340acc93c8f36b358578dc0ae66f
[ "BSD-Source-Code" ]
null
null
null
#Main Program from Class import Barang import Menu histori = list() listBarang = [ Barang('Rinso', 5000, 20), Barang('Sabun', 3000, 20), Barang('Pulpen', 2500, 20), Barang('Tisu', 10000, 20), Barang('Penggaris', 1000, 20) ] while True: print(''' Menu 1. Tampilkan Barang 2. Tambahkan Barang 3. Tambah Stock Barang 4. Hapus Barang 5. Cari Barang Berdasarkan Keyword 6. Hitung Barang Belanjaan 7. Histori Keluar Masuk Barang 0. Keluar Program ''') choice = input('Masukan No Menu: ') if choice == '1': Menu.menu1(listBarang) elif choice == '2': Menu.menu2(listBarang, histori) elif choice == '3': Menu.menu3(listBarang, histori) elif choice == '4': Menu.menu4(listBarang, histori) elif choice == '5': Menu.menu5(listBarang) elif choice == '6': Menu.menu6(listBarang, histori) elif choice == '7': Menu.menu7(histori) elif choice == '0': print('Keluar Program') break else: print('Invalid Input!')
20.93617
37
0.645325
98d7520f9994f6836e73faaf42f63009eee0dc64
697
py
Python
project/cli/event.py
DanielGrams/gsevp
e94034f7b64de76f38754b56455e83092378261f
[ "MIT" ]
1
2021-06-01T14:49:18.000Z
2021-06-01T14:49:18.000Z
project/cli/event.py
DanielGrams/gsevp
e94034f7b64de76f38754b56455e83092378261f
[ "MIT" ]
286
2020-12-04T14:13:00.000Z
2022-03-09T19:05:16.000Z
project/cli/event.py
DanielGrams/gsevpt
a92f71694388e227e65ed1b24446246ee688d00e
[ "MIT" ]
null
null
null
import click from flask.cli import AppGroup from project import app, db from project.dateutils import berlin_tz from project.services.event import ( get_recurring_events, update_event_dates_with_recurrence_rule, ) event_cli = AppGroup("event") @event_cli.command("update-recurring-dates") def update_recurring_dates(): # Setting the timezone is neccessary for cli command db.session.execute("SET timezone TO :val;", {"val": berlin_tz.zone}) events = get_recurring_events() for event in events: update_event_dates_with_recurrence_rule(event) db.session.commit() click.echo(f"{len(events)} event(s) were updated.") app.cli.add_command(event_cli)
24.034483
72
0.746055
End of preview. Expand in Data Studio

Dataset Card for "the-stack-dedup-python-deu_Latn"

More Information needed

Downloads last month
9