Dataset Viewer
Auto-converted to Parquet
RGB
stringlengths
8
11
Diameter_mm
float64
10.3
50.4
Length_mm
float64
10.4
126
Price
float64
12.5
35.5
Grams
float64
0.66
22.8
173,83,71
12.854173
124.344716
12.745558
2.093208
194,65,73
19.691503
72.889326
28.393372
2.058056
149,88,83
18.57624
70.002598
12.883802
18.972286
176,97,117
11.584698
115.397449
12.762048
12.163416
169,79,84
13.057843
72.608733
17.193957
3.517994
230,113,110
13.17717
74.633099
17.804173
4.142629
166,86,83
11.88934
12.72516
12.886826
1.412761
64,29,23
12.274089
104.856993
24.878155
2.597257
67,30,25
13.01903
82.913357
17.979015
1.433418
114,60,49
11.667407
105.542468
24.384519
1.593091
188,90,95
11.760369
106.167052
25.059523
1.845072
153,83,84
15.087299
73.226169
24.71828
3.72915
161,36,42
14.49775
75.283255
25.350673
2.828556
146,44,31
14.975967
74.852721
25.186372
3.876451
141,54,37
15.585184
72.28044
25.130842
3.707885
149,94,79
15.593583
112.610944
19.939595
8.274141
81,38,33
14.982925
114.623209
20.867018
8.72092
89,28,51
14.800554
116.69764
20.182736
8.575052
197,128,162
15.258709
10.398529
20.484826
1.901505
129,66,78
16.27673
104.535092
21.619895
11.448605
167,37,43
16.860093
108.381187
22.133004
12.396432
192,74,107
50.385246
30.92992
23.620534
3.338844
192,107,105
21.768073
78.779239
13.879494
5.410758
159,93,97
22.237613
81.927566
14.501892
5.994939
156,69,79
22.128421
87.711698
22.254926
8.910855
135,96,87
21.965449
86.592252
21.43898
8.051821
235,144,108
22.441234
86.510494
22.446937
8.076466
175,83,66
18.845279
70.53584
35.043784
3.345879
209,136,125
19.123145
71.531157
35.14803
3.07425
138,59,65
18.877231
71.590428
35.210291
3.659339
174,87,71
12.989988
125.339447
12.488809
2.373567
189,64,77
19.52287
69.55957
29.135604
2.394366
148,87,85
18.833148
67.178868
13.03585
18.714076
182,97,117
11.005556
114.015464
12.559532
10.846201
170,70,90
12.63471
75.969503
17.583671
3.987869
232,114,113
13.074389
74.154388
17.358051
3.690377
167,92,78
12.36499
13.444827
12.840733
1.61448
70,24,21
11.611039
102.952251
24.606773
2.279359
68,33,24
13.172483
78.941336
17.931058
0.655046
113,65,49
12.058948
104.001243
25.173753
1.876463
195,96,100
12.274868
103.377045
25.051556
2.165227
147,83,86
15.103119
74.311649
25.570548
2.676175
159,33,37
14.143672
74.77368
24.221919
2.97211
147,41,30
15.341675
73.689187
24.874213
3.666655
136,55,42
14.889212
77.443997
24.444209
3.808391
144,93,87
14.139931
116.635221
20.278174
8.21248
83,35,35
14.971257
113.154699
19.959483
8.469036
98,25,47
15.175099
114.993595
20.304461
8.338136
200,127,159
15.161052
12.443663
20.168051
2.24645
132,71,75
16.264106
107.292091
21.884723
12.418521
164,33,53
16.143664
108.276113
21.862203
12.384069
190,79,101
49.460438
28.249484
23.116743
4.184181
193,106,106
22.137109
80.340965
13.877759
5.977012
162,98,101
21.685072
82.035961
14.480449
5.53333
158,75,80
22.200827
85.761777
22.365808
8.253515
140,94,83
21.766134
87.06665
22.090118
8.204931
242,139,100
21.768105
86.261059
21.83329
8.537773
177,90,67
19.155162
70.180548
35.241683
3.316093
218,139,132
18.96638
69.879646
35.333288
2.984702
138,61,63
18.880779
70.487065
34.770345
3.733762
172,81,74
12.889001
126.009203
12.701986
2.328158
190,61,75
20.181047
71.12219
29.465807
2.154069
145,82,85
18.970232
68.477284
13.30501
19.354489
176,103,116
10.726585
111.341107
13.241214
10.061631
169,80,81
12.916822
72.304556
17.703333
4.292773
238,115,113
12.491377
76.420026
17.759518
3.52574
159,87,79
12.48328
12.955576
12.864299
1.585638
64,25,20
12.133689
103.923133
24.982848
1.926923
64,29,23
12.777787
81.883172
17.382439
0.897326
112,57,56
12.365331
107.484613
25.162026
1.891494
189,91,96
11.73245
108.141975
25.125517
2.020622
150,83,82
15.447174
71.638038
24.725173
3.1343
158,34,39
15.028634
76.372325
25.25279
3.73112
142,50,29
14.50153
75.395293
25.288148
3.751228
145,48,39
15.289349
76.243127
24.702343
3.649896
153,98,78
14.846654
115.843549
20.381127
8.360718
87,34,33
15.037169
115.146825
19.932915
8.240381
88,25,46
14.91704
115.919184
20.311947
8.46821
207,125,162
14.865202
10.739143
20.149787
1.863808
137,72,79
16.135409
103.997782
21.853245
11.508413
164,40,47
15.541295
109.139282
21.914655
12.198662
198,79,105
50.203359
31.765933
23.862353
4.665829
198,107,108
22.254012
81.388178
14.041374
5.039903
160,95,95
22.332338
80.091382
14.321138
5.744898
160,75,82
22.317515
88.012751
22.232507
8.422567
141,92,89
22.113113
85.470493
22.039472
7.806887
234,139,99
22.057006
86.182079
21.885912
8.440202
169,87,64
18.93612
71.661134
35.482652
3.4061
211,139,132
18.903416
72.401507
35.399211
3.145776
138,61,59
19.365685
72.684878
35.474394
3.956088
171,80,74
13.226151
125.076671
13.300904
1.818009
191,69,70
19.853412
71.46293
29.31355
1.904516
148,88,87
18.702001
66.649515
12.765445
18.308933
180,99,117
10.347357
111.863368
12.797333
9.406687
162,79,91
12.78518
73.688196
17.804118
3.272592
229,108,116
12.515998
71.932342
17.583715
3.356698
167,83,79
12.146733
12.848786
12.867175
1.488919
70,29,18
11.511108
104.633594
24.637362
2.599097
69,24,24
13.182085
81.178317
17.56087
0.840664
120,60,51
11.793324
104.400035
24.851751
2.076203
End of preview. Expand in Data Studio

Dataset Card for Lip Products Dataset

Dataset Description

This dataset was collected to study relationships between physical characteristics of lip products (tube size, price, color) and their product weight (grams).
It was created as part of a coursework assignment on tabular dataset building and augmentation.

Dataset Summary

  • Small tabular dataset of lip products with physical attributes and weight.
  • Regression target: Grams (net product weight).
  • Includes manually measured samples and synthetic augmentations.

Supported Tasks

  • Regression: Predicting product weight (grams) from physical and retail features.

Dataset Structure

Data Instances

Each row represents one lip product with its features and target weight.

Data Fields

  • RGB (string): Average color of the lip product in "R,G,B" format
  • Diameter_mm (float): Diameter of the product tube in millimeters
  • Length_mm (float): Length of the product tube in millimeters
  • Price (float): Retail price in USD
  • Grams (float): Net product weight in grams (target variable)

Data Splits

  • original: 30 manually measured samples
  • augmented: 350 synthetic samples (via augmentation)

Dataset Creation

Source Data

  • Collected from a personal collection of lip products.
  • Measurements obtained with a ruler and product descriptions.
  • RGB values extracted from swatch photos and averaged.

Preprocessing and Augmentation

Two augmentation strategies were applied:

  1. Numeric Jitter

    • Gaussian noise added to numeric features and RGB channels (±5).
    • Simulates natural measurement and shade variability.
  2. Mixup

    • Convex combinations of pairs of rows.
    • Applied to numeric features and RGB values.
    • Grams clipped to maximum physical capacity:
      ( \text{max grams} \approx \pi \times (Diameter/2)^2 \times Length / 1000 )

Considerations for Using the Data

Limitations

  • Small initial sample size (30).
  • Prices vary regionally and are not inflation-adjusted.
  • RGB approximates perceived color and may differ under different lighting.

Ethical Notes

  • Dataset is non-sensitive, collected from personal items.
  • No private or personally identifiable information is included.
  • Augmentation constrained by physical plausibility.

Additional Information

Dataset Curators

Prepared by cassieli226 for coursework.

Licensing Information

CC BY-NC-SA 4.0
Free for academic and research use, not for commercial purposes.

Contributions

ChatGPT was used to assist with preprocessing, augmentation code (numeric jitter & mixup), and debugging.
All augmentation parameters and physical constraints were designed by the dataset creator.

Example Usage

from datasets import load_dataset

ds = load_dataset("cassieli226/lipproducts-dataset")
print(ds)
print(ds["original"].to_pandas().head())

##Contact: [email protected]
Downloads last month
121