Dataset Viewer
Auto-converted to Parquet
hotspot_id
stringlengths
7
9
lon
float64
34
41
lat
float64
-4.79
4.4
num_complete_checklists
int64
1
1.13k
bio_1
float64
8.96
29.5
bio_2
float64
6.51
15.6
bio_3
float64
63.5
89.8
bio_4
float64
55.1
170
bio_5
float64
17.3
37.3
bio_6
float64
1.85
23.1
bio_7
float64
9.57
19.4
bio_8
float64
8.91
29.9
bio_9
float64
7.97
29.4
bio_10
float64
9.92
30.5
bio_11
float64
7.97
28.8
bio_12
float64
181
2k
bio_13
float64
42
486
bio_14
float64
0
90
bio_15
float64
30.3
137
bio_16
float64
82
953
bio_17
float64
0
321
bio_18
float64
44
721
bio_19
float64
0
560
split
stringclasses
1 value
L2741113
36.818962
-1.289669
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L10178183
36.818632
-1.242108
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L13141678
36.818557
-1.276387
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L16569272
36.818483
-1.276828
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L2023090
36.819005
-1.280477
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L21274586
36.818258
-1.306197
2
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L17471967
36.818178
-1.276629
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L12494344
36.818013
-1.248502
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L4648003
36.817996
-1.24709
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L20686141
36.817896
-1.346395
1
19.410448
11.984271
72.642952
127.059769
28.278
11.7805
16.497499
20.282583
17.869541
20.806084
17.616375
858
191
18
76.348396
418
58
313
69
train
L16465610
36.817621
-1.319304
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L17001964
36.818245
-1.339927
1
19.410448
11.984271
72.642952
127.059769
28.278
11.7805
16.497499
20.282583
17.869541
20.806084
17.616375
858
191
18
76.348396
418
58
313
69
train
L15396446
36.817458
-1.276132
5
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L2887231
36.819171
-1.288017
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L1762300
36.819244
-1.322828
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L7716049
36.820161
-1.292703
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L21510439
36.82009
-1.355352
1
19.410448
11.984271
72.642952
127.059769
28.278
11.7805
16.497499
20.282583
17.869541
20.806084
17.616375
858
191
18
76.348396
418
58
313
69
train
L21748086
36.820004
-1.299741
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L7822518
36.819933
-1.279387
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L22268769
36.819918
-1.381575
1
19.410448
11.984271
72.642952
127.059769
28.278
11.7805
16.497499
20.282583
17.869541
20.806084
17.616375
858
191
18
76.348396
418
58
313
69
train
L2864165
36.819177
-1.304943
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L6282463
36.819788
-1.271153
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L18284059
36.819724
-1.305329
2
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L15950524
36.819437
-1.280671
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L21139056
36.819426
-1.281223
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L7627102
36.819278
-1.287888
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L5220008
36.817414
-1.280705
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L5137120
36.817281
-1.286206
5
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L16696165
36.8164
-1.34454
7
19.410448
11.984271
72.642952
127.059769
28.278
11.7805
16.497499
20.282583
17.869541
20.806084
17.616375
858
191
18
76.348396
418
58
313
69
train
L16952270
36.816152
-1.274676
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L2484709
36.816098
-1.235937
117
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L9002955
36.816085
-1.273196
2
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L2839890
36.816428
-1.28446
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L1372246
36.815981
-1.275719
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L20101128
36.815876
-1.343038
1
19.410448
11.984271
72.642952
127.059769
28.278
11.7805
16.497499
20.282583
17.869541
20.806084
17.616375
858
191
18
76.348396
418
58
313
69
train
L9754742
36.815605
-1.300861
2
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L2413939
36.815524
-1.28836
2
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L12902086
36.817301
-1.276045
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L18416676
36.816488
-1.228771
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L22883781
36.816569
-1.278011
2
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L23013614
36.817033
-1.247347
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L11980605
36.81653
-1.278249
2
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L18372847
36.816852
-1.345103
1
19.410448
11.984271
72.642952
127.059769
28.278
11.7805
16.497499
20.282583
17.869541
20.806084
17.616375
858
191
18
76.348396
418
58
313
69
train
L16388751
36.816837
-1.247234
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L3144288
36.816721
-1.278233
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L8213676
36.816685
-1.302295
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L1106611
36.816667
-1.283333
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L22169556
36.81687
-1.280085
2
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L21876287
36.821213
-1.307553
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L935496
36.827416
-1.269933
6
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L3047027
36.826869
-1.282375
2
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L5136062
36.826652
-1.254864
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L2864390
36.826558
-1.305029
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L22497023
36.826504
-1.287199
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L16937478
36.827598
-1.235347
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L19971900
36.825731
-1.238814
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L22888978
36.825492
-1.302713
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L7900996
36.825214
-1.276244
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L16940255
36.825196
-1.285143
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L5604179
36.825922
-1.359514
1
19.410448
11.984271
72.642952
127.059769
28.278
11.7805
16.497499
20.282583
17.869541
20.806084
17.616375
858
191
18
76.348396
418
58
313
69
train
L9876687
36.828215
-1.288095
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L17783850
36.831133
-1.255033
3
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L17784363
36.831037
-1.25504
2
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L21862776
36.830956
-1.287922
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L10593664
36.8309
-1.237
2
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L9799385
36.830765
-1.385021
1
19.410448
11.984271
72.642952
127.059769
28.278
11.7805
16.497499
20.282583
17.869541
20.806084
17.616375
858
191
18
76.348396
418
58
313
69
train
L17120771
36.830133
-1.353367
1
19.410448
11.984271
72.642952
127.059769
28.278
11.7805
16.497499
20.282583
17.869541
20.806084
17.616375
858
191
18
76.348396
418
58
313
69
train
L1762293
36.828085
-1.306352
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L23056268
36.830104
-1.264135
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L9079665
36.829346
-1.253819
2
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L20728264
36.829278
-1.388991
4
19.410448
11.984271
72.642952
127.059769
28.278
11.7805
16.497499
20.282583
17.869541
20.806084
17.616375
858
191
18
76.348396
418
58
313
69
train
L18532622
36.829257
-1.282857
2
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L5541120
36.828254
-1.330122
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L16135306
36.821156
-1.278361
4
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L14049669
36.82505
-1.328536
13
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L5397187
36.824828
-1.285197
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L22532789
36.822127
-1.277189
2
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L6584975
36.822106
-1.277418
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L16133388
36.82204
-1.28271
4
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L11459027
36.821972
-1.221528
2
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L11301062
36.821972
-1.221745
2
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L3754825
36.822358
-1.30909
2
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L16818226
36.821643
-1.294195
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L8494683
36.821587
-1.331705
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L2594079
36.821537
-1.296362
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L17341937
36.821507
-1.302366
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L8554648
36.821498
-1.280567
2
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L22428338
36.821479
-1.280825
2
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L22315715
36.824935
-1.287667
5
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L21864295
36.822359
-1.276502
2
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L1232901
36.822395
-1.274996
6
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L21565303
36.82475
-1.227294
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L5756183
36.824523
-1.285057
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L16062813
36.824399
-1.224626
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L19299149
36.824384
-1.321162
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L2161507
36.822395
-1.28186
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L18716920
36.823471
-1.350477
2
19.410448
11.984271
72.642952
127.059769
28.278
11.7805
16.497499
20.282583
17.869541
20.806084
17.616375
858
191
18
76.348396
418
58
313
69
train
L22193215
36.823136
-1.289588
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L18417049
36.823053
-1.284356
1
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
L2892710
36.822889
-1.258348
3
18.55077
11.607208
72.533722
128.514023
27.334
11.3315
16.002499
19.492958
16.945126
19.960833
16.728167
1,008
236
23
78.986977
504
75
376
86
train
End of preview. Expand in Data Studio

license: cc-by-nc-4.0

BATIS: Benchmarking Bayesian Approaches for Improving Species Distribution Models

This repository contains the dataset used in experiments shown in BATIS: Benchmarking Bayesian Approaches for Improving Species Distribution Models (preprint). To download the dataset, you can use the load_dataset function from HuggingFace. For example :

from datasets import load_dataset

# Training Split for Kenya
training_kenya = load_dataset("cathv/batis_benchmark_2025", name="Kenya", split="train")

# Validation Split for South Africa
validation_south_africa = load_dataset("cathv/batis_benchmark_2025", name="South_Africa", split="val")

# Test Split for USA-Summer
test_usa_summer = load_dataset("cathv/batis_benchmark_2025", name="USA_Summer", split="test")

The code to reproduce the experiments presented in the paper is available in our GitHub repository. Please note that the checklists data is NOT AVAILABLE in this current repository, in order to comply with the eBird Data Access Terms of Use . If you are interested in downloading the checklists data, please formulate a request for access to the eBird team.

⚠️ !!! ERRATUM IN THE MAIN PAPER !!! ⚠️

We would like to apologize to the reviewers for a typo in Table 1 of the main paper. The table incorrectly suggests that hundreds of thousands of species can be observed in the United States during summer, and nearly 50,000 in winter. While many birders would surely dream of such an extraordinary high avian biodiversity, these numbers are clearly far from the reality. The values intended for the number_of_hotspots column were unfortunately placed in the number_of_species column. The first table of the Appendix reports the appropriate numbers, but we also include it here to avoid any confusion :

Region Date Range Number of Checklists Number of Hotspots Number of Species Species List
Kenya (KE) 2010-01-01 to 2023-12-31 44,852 8,551 1,054 Avibase
South Africa (ZA) 2018-01-01 to 2024-06-17 498,867 6,643 755 BirdLife
USA-Winter (US-W) 2022-12-01 to 2023-01-31 3,673,742 45,882 670 ABA 1-2
USA-Summer (US-S) 2022-06-01 to 2022-07-31 3,920,846 98,443 670 ABA 1-2

Dataset Configurations and Splits

The dataset contains the following four configurations :

  • Kenya : Containing the data used to train our models for predicting bird species distribution in Kenya.
  • South Africa : Containing the data used to train our models for predicting bird species distribution in South Africa.
  • USA-Winter : Containing the data used to train our models for predicting bird species distribution in the United States of America during the winter season.
  • USA-Summer : Containing the data used to train our models for predicting bird species distribution in the United States of America during the summer season.

Each subset can be further divided into train, test and split. These splits are the same as the one we used in our paper, and were generated by following the pre-processing pipeline described in our paper, which can be easily reproduced by re-using our code.

Dataset Structure

/batis_benchmark_2025/
    Kenya/
        images.tar.gz
        environmental.tar.gz
        targets.tar.gz
        train_filtered.csv
        test_filtered.csv
        valid_filtered.csv
    South_Africa/
        images.tar.gz
        environmental.tar.gz
        targets.tar.gz
        train_filtered.csv
        test_filtered.csv
        valid_filtered.csv
    USA_Winter/
        images/
          images_{aa}
          ...
          images_{ad}
          
        environmental.tar.gz
        targets.tar.gz
        train_filtered.csv
        test_filtered.csv
        valid_filtered.csv
    USA_Summer/
        images/
            images_{aa}
            ...
            images_{af}
        images.tar.gz
        environmental.tar.gz
        targets.tar.gz
        train_filtered.csv
        test_filtered.csv
        valid_filtered.csv
    Species_ID/
        species_list_kenya.csv
        species_list_south_africa.csv
        species_list_usa.csv

The files train_filtered.csv, test_filtered.csv and valid_filtered.csv are containing the informations one can see from the Dataset Viewer. The archives targets, images, environmental are respectively containing the target vectors (i.e., the estimated ground truth encounter rate probability). The Species_ID/ folder contains the species list files for each subset.

Data Fields

  • hotspot_id : The unique ID associated with a given hotspot. The hotspot_idvalue can be used to upload date coming from either targets, environmental or variance, as they are all formulated as
/batis_benchmark_2025/
    images/
        {hotspot_id_1}.tar.gz
        ...
        {hotspot_id_n}.tar.gz
    environmental/
        {hotspot_id_1}.tar.gz
        ...
        {hotspot_id_1}.tar.gz
    targets/
        {hotspot_id_1}.tar.gz
        ...
        {hotspot_id_1}.tar.gz
  • lon : Longitude coordinate of the hotspot
  • latitude : Latitude coordinate of the hotspot
  • num_complete_checklists : Number of complete checklists collected in that hotspot
  • bio_1 to bio_19: Environmental covariates values associated with that hotspot, extracted from the WorldClim model. For more details on each of these variables, please refer to Table 5 of the appendix.
  • split : The split associated with that hotspot (either train, valid or test)

Authors

Licenses

The BATIS Benchmark is released under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.

The use of our dataset should also comply with the following:

Downloads last month
85