Upload test_neurips_2025.py
Browse files- test_neurips_2025.py +220 -0
test_neurips_2025.py
ADDED
|
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import datasets
|
| 3 |
+
import numpy as np
|
| 4 |
+
import ast
|
| 5 |
+
from PIL import Image
|
| 6 |
+
|
| 7 |
+
class NeuripsConfig(datasets.BuilderConfig):
|
| 8 |
+
|
| 9 |
+
def __init__(self, **kwargs):
|
| 10 |
+
super(NeuripsConfig, self).__init__(**kwargs)
|
| 11 |
+
|
| 12 |
+
class NeuripsDataset(datasets.GeneratorBasedBuilder):
|
| 13 |
+
|
| 14 |
+
BUILDER_CONFIGS = [
|
| 15 |
+
NeuripsConfig(
|
| 16 |
+
name="Kenya",
|
| 17 |
+
version=datasets.Version("1.0.0"),
|
| 18 |
+
description="Full dataset, combining both systematically and opportunistically sampled leaves"
|
| 19 |
+
),
|
| 20 |
+
NeuripsConfig(
|
| 21 |
+
name="South_Africa",
|
| 22 |
+
version=datasets.Version("1.0.0"),
|
| 23 |
+
description="Subset containing only systematically sampled leaves"
|
| 24 |
+
),
|
| 25 |
+
NeuripsConfig(
|
| 26 |
+
name="USA_Summer",
|
| 27 |
+
version=datasets.Version("1.0.0"),
|
| 28 |
+
description="Subset containing only opportunistically sampled leaves"
|
| 29 |
+
),
|
| 30 |
+
NeuripsConfig(
|
| 31 |
+
name="USA_Winter",
|
| 32 |
+
version=datasets.Version("1.0.0"),
|
| 33 |
+
description="Subset containing only opportunistically sampled leaves"
|
| 34 |
+
),
|
| 35 |
+
NeuripsConfig(
|
| 36 |
+
name="Species_ID",
|
| 37 |
+
version=datasets.Version("1.0.0"),
|
| 38 |
+
description="Subset containing the DataFrames allowing to link the target encounter rates to a list of species for each country"
|
| 39 |
+
)
|
| 40 |
+
]
|
| 41 |
+
|
| 42 |
+
DEFAULT_CONFIG_NAME = "Kenya"
|
| 43 |
+
|
| 44 |
+
def _info(self):
|
| 45 |
+
#state,state_code,split,num_complete_checklists,target,geometry
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
if self.config.name == "Kenya":
|
| 49 |
+
features = datasets.Features({
|
| 50 |
+
"hotspot_id": datasets.Value("string"),
|
| 51 |
+
"hotspot_name": datasets.Value("string"),
|
| 52 |
+
"lon": datasets.Value("float32"),
|
| 53 |
+
"lat": datasets.Value("float32"),
|
| 54 |
+
"county": datasets.Value("string"),
|
| 55 |
+
"county_code": datasets.Value("string"),
|
| 56 |
+
"state": datasets.Value("string"),
|
| 57 |
+
"state_code": datasets.Value("string"),
|
| 58 |
+
'sat_imagery_path': datasets.Value("string"),
|
| 59 |
+
'environmental_path': datasets.Value("string"),
|
| 60 |
+
"split": datasets.Value("string"),
|
| 61 |
+
"num_complete_checklists" : datasets.Value("int32"),
|
| 62 |
+
"target": datasets.Sequence(feature=datasets.Value("float32"), length=1054),
|
| 63 |
+
"geometry": datasets.Value("string")
|
| 64 |
+
|
| 65 |
+
})
|
| 66 |
+
elif self.config.name == "South_Africa":
|
| 67 |
+
features = datasets.Features({
|
| 68 |
+
"hotspot_id": datasets.Value("string"),
|
| 69 |
+
"hotspot_name": datasets.Value("string"),
|
| 70 |
+
"lon": datasets.Value("float32"),
|
| 71 |
+
"lat": datasets.Value("float32"),
|
| 72 |
+
"county": datasets.Value("string"),
|
| 73 |
+
"county_code": datasets.Value("string"),
|
| 74 |
+
"state": datasets.Value("string"),
|
| 75 |
+
"state_code": datasets.Value("string"),
|
| 76 |
+
'sat_imagery_path': datasets.Value("string"),
|
| 77 |
+
'environmental_path': datasets.Value("string"),
|
| 78 |
+
"split": datasets.Value("string"),
|
| 79 |
+
"num_complete_checklists" : datasets.Value("int32"),
|
| 80 |
+
"target": datasets.Sequence(feature=datasets.Value("float32"), length=1054),
|
| 81 |
+
"geometry": datasets.Value("string")
|
| 82 |
+
})
|
| 83 |
+
elif self.config.name == "USA_Summer":
|
| 84 |
+
features = datasets.Features({
|
| 85 |
+
"hotspot_id": datasets.Value("string"),
|
| 86 |
+
"hotspot_name": datasets.Value("string"),
|
| 87 |
+
"lon": datasets.Value("float32"),
|
| 88 |
+
"lat": datasets.Value("float32"),
|
| 89 |
+
"county": datasets.Value("string"),
|
| 90 |
+
"county_code": datasets.Value("string"),
|
| 91 |
+
"state": datasets.Value("string"),
|
| 92 |
+
"state_code": datasets.Value("string"),
|
| 93 |
+
'sat_imagery_path': datasets.Value("string"),
|
| 94 |
+
'environmental_path': datasets.Value("string"),
|
| 95 |
+
"split": datasets.Value("string"),
|
| 96 |
+
"num_complete_checklists" : datasets.Value("int32"),
|
| 97 |
+
"target": datasets.Sequence(feature=datasets.Value("float32"), length=1054),
|
| 98 |
+
"geometry": datasets.Value("string")
|
| 99 |
+
})
|
| 100 |
+
elif self.config.name == "USA_Winter":
|
| 101 |
+
features = datasets.Features({
|
| 102 |
+
"hotspot_id": datasets.Value("string"),
|
| 103 |
+
"hotspot_name": datasets.Value("string"),
|
| 104 |
+
"lon": datasets.Value("float32"),
|
| 105 |
+
"lat": datasets.Value("float32"),
|
| 106 |
+
"county": datasets.Value("string"),
|
| 107 |
+
"county_code": datasets.Value("string"),
|
| 108 |
+
"state": datasets.Value("string"),
|
| 109 |
+
"state_code": datasets.Value("string"),
|
| 110 |
+
'sat_imagery_path': datasets.Value("string"),
|
| 111 |
+
'environmental_path': datasets.Value("string"),
|
| 112 |
+
"split": datasets.Value("string"),
|
| 113 |
+
"num_complete_checklists" : datasets.Value("int32"),
|
| 114 |
+
"target": datasets.Sequence(feature=datasets.Value("float32"), length=1054),
|
| 115 |
+
"geometry": datasets.Value("string")
|
| 116 |
+
})
|
| 117 |
+
elif self.config.name == "Species_ID":
|
| 118 |
+
features = datasets.Features({
|
| 119 |
+
"scientific_name": datasets.Value("string"),
|
| 120 |
+
"ebird_code": datasets.Value("string"),
|
| 121 |
+
"inat_preview": datasets.Value("string"),
|
| 122 |
+
"target_value_index" : datasets.Value("int32"),
|
| 123 |
+
})
|
| 124 |
+
else:
|
| 125 |
+
raise ValueError(f"Unsupported config: {self.config.name}")
|
| 126 |
+
|
| 127 |
+
return datasets.DatasetInfo(
|
| 128 |
+
description="The SITTELLE Benchmark Dataset",
|
| 129 |
+
features=features,
|
| 130 |
+
supervised_keys=None,
|
| 131 |
+
homepage="https://huggingface.co/datasets/imageomics/invasive_plants_hawaii",
|
| 132 |
+
license="MIT",
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
def _split_generators(self, dl_manager):
|
| 136 |
+
if self.config.name == "Kenya":
|
| 137 |
+
train_csv = "Kenya/train_split.csv"
|
| 138 |
+
test_csv = "Kenya/test_split.csv"
|
| 139 |
+
val_csv = "Kenya/valid_split.csv"
|
| 140 |
+
return [
|
| 141 |
+
datasets.SplitGenerator(name="train", gen_kwargs={"filepath": train_csv}),
|
| 142 |
+
datasets.SplitGenerator(name="val", gen_kwargs={"filepath": test_csv}),
|
| 143 |
+
datasets.SplitGenerator(name="test", gen_kwargs={"filepath": val_csv}),
|
| 144 |
+
]
|
| 145 |
+
elif self.config.name == "South_Africa":
|
| 146 |
+
train_csv = "Kenya/train_split.csv"
|
| 147 |
+
test_csv = "Kenya/test_split.csv"
|
| 148 |
+
val_csv = "Kenya/valid_split.csv"
|
| 149 |
+
return [
|
| 150 |
+
datasets.SplitGenerator(name="train", gen_kwargs={"filepath": train_csv}),
|
| 151 |
+
datasets.SplitGenerator(name="val", gen_kwargs={"filepath": test_csv}),
|
| 152 |
+
datasets.SplitGenerator(name="test", gen_kwargs={"filepath": val_csv}),
|
| 153 |
+
]
|
| 154 |
+
elif self.config.name == "USA_Summer":
|
| 155 |
+
train_csv = "Kenya/train_split.csv"
|
| 156 |
+
test_csv = "Kenya/test_split.csv"
|
| 157 |
+
val_csv = "Kenya/valid_split.csv"
|
| 158 |
+
return [
|
| 159 |
+
datasets.SplitGenerator(name="train", gen_kwargs={"filepath": train_csv}),
|
| 160 |
+
datasets.SplitGenerator(name="val", gen_kwargs={"filepath": test_csv}),
|
| 161 |
+
datasets.SplitGenerator(name="test", gen_kwargs={"filepath": val_csv}),
|
| 162 |
+
]
|
| 163 |
+
elif self.config.name == "USA_Winter":
|
| 164 |
+
train_csv = "Kenya/train_split.csv"
|
| 165 |
+
test_csv = "Kenya/test_split.csv"
|
| 166 |
+
val_csv = "Kenya/valid_split.csv"
|
| 167 |
+
return [
|
| 168 |
+
datasets.SplitGenerator(name="train", gen_kwargs={"filepath": train_csv}),
|
| 169 |
+
datasets.SplitGenerator(name="val", gen_kwargs={"filepath": test_csv}),
|
| 170 |
+
datasets.SplitGenerator(name="test", gen_kwargs={"filepath": val_csv}),
|
| 171 |
+
]
|
| 172 |
+
elif self.config.name == "Species_ID":
|
| 173 |
+
kenya_csv = "Kenya/species_id_kenya.csv"
|
| 174 |
+
southafrica_csv = "Kenya/species_id_kenya.csv"
|
| 175 |
+
usasummer_csv = "Kenya/species_id_kenya.csv"
|
| 176 |
+
usawinter_csv = "Kenya/species_id_kenya.csv"
|
| 177 |
+
return [
|
| 178 |
+
datasets.SplitGenerator(name="Kenya", gen_kwargs={"filepath": kenya_csv}),
|
| 179 |
+
datasets.SplitGenerator(name="South_Africa", gen_kwargs={"filepath": southafrica_csv}),
|
| 180 |
+
datasets.SplitGenerator(name="USA_Summer", gen_kwargs={"filepath": usasummer_csv}),
|
| 181 |
+
datasets.SplitGenerator(name="USA_Winter", gen_kwargs={"filepath": usawinter_csv}),
|
| 182 |
+
]
|
| 183 |
+
else:
|
| 184 |
+
raise ValueError(f"Unknown config: {self.config.name}")
|
| 185 |
+
|
| 186 |
+
def _generate_examples(self, filepath):
|
| 187 |
+
if self.config.name in ["Kenya", "South_Africa", "USA_Summer", "USA_Winter"]:
|
| 188 |
+
df_metadata = pd.read_csv(filepath)
|
| 189 |
+
df_metadata["target"] = df_metadata["target"].apply(ast.literal_eval).apply(lambda x: list(map(float, x)))
|
| 190 |
+
for idx in range(len(df_metadata)):
|
| 191 |
+
row = df_metadata.iloc[idx]
|
| 192 |
+
yield idx, {
|
| 193 |
+
"hotspot_id": row['hotspot_id'],
|
| 194 |
+
"hotspot_name": row['hotspot_name'],
|
| 195 |
+
"lon": row['lon'],
|
| 196 |
+
"lat": row['lat'],
|
| 197 |
+
"county": row['county'],
|
| 198 |
+
"county_code": row['county_code'],
|
| 199 |
+
"state": row['state'],
|
| 200 |
+
"state_code": row['state_code'],
|
| 201 |
+
'sat_imagery_path': row['sat_imagery_path'],
|
| 202 |
+
'environmental_path': row['environmental_path'],
|
| 203 |
+
"split": row['split'],
|
| 204 |
+
"num_complete_checklists" : row['num_complete_checklists'],
|
| 205 |
+
"target": row['target'],
|
| 206 |
+
"geometry": row['geometry']
|
| 207 |
+
}
|
| 208 |
+
|
| 209 |
+
if self.config.name == "Species_ID":
|
| 210 |
+
print("Species ID!")
|
| 211 |
+
df_metadata = pd.read_csv(filepath)
|
| 212 |
+
for idx in range(len(df_metadata)):
|
| 213 |
+
row = df_metadata.iloc[idx]
|
| 214 |
+
|
| 215 |
+
yield idx, {
|
| 216 |
+
"scientific_name": row['scientific_name'],
|
| 217 |
+
"ebird_code": row['ebird_code'],
|
| 218 |
+
"inat_preview": row['inat_preview'],
|
| 219 |
+
"target_value_index" : row['target_value_index'],
|
| 220 |
+
}
|