Dataset Viewer
Search is not available for this dataset
age
int64 17
98
| job
class label 12
classes | marital
class label 4
classes | education
class label 8
classes | default
class label 3
classes | housing
class label 3
classes | loan
class label 3
classes | contact
class label 2
classes | month
class label 10
classes | day_of_week
class label 5
classes | duration
int64 0
4.92k
| campaign
int64 1
56
| pdays
int64 0
999
| previous
int64 0
7
| poutcome
class label 3
classes | emp.var.rate
float32 -3.4
1.4
| cons.price.idx
float32 92.2
94.8
| cons.conf.idx
float32 -50.8
-26.9
| euribor3m
float32 0.63
5.05
| nr.employed
float32 4.96k
5.23k
| y
class label 2
classes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
56 | 3housemaid
| 1married
| 4basic.4y
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 261 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
57 | 7services
| 1married
| 7high.school
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 149 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
37 | 7services
| 1married
| 7high.school
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 226 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
40 | 0admin.
| 1married
| 5basic.6y
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 151 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
56 | 7services
| 1married
| 7high.school
| 0no
| 0no
| 1yes
| 1telephone
| 4may
| 0mon
| 307 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
45 | 7services
| 1married
| 6basic.9y
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 198 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
59 | 0admin.
| 1married
| 9professional.course
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 139 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
41 | 1blue-collar
| 1married
| 3unknown
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 217 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
24 | 9technician
| 2single
| 9professional.course
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 380 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
25 | 7services
| 2single
| 7high.school
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 50 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
41 | 1blue-collar
| 1married
| 3unknown
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 55 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
25 | 7services
| 2single
| 7high.school
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 222 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
29 | 1blue-collar
| 2single
| 7high.school
| 0no
| 0no
| 1yes
| 1telephone
| 4may
| 0mon
| 137 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
57 | 3housemaid
| 0divorced
| 4basic.4y
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 293 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
35 | 1blue-collar
| 1married
| 5basic.6y
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 146 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
54 | 5retired
| 1married
| 6basic.9y
| 2unknown
| 1yes
| 1yes
| 1telephone
| 4may
| 0mon
| 174 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
35 | 1blue-collar
| 1married
| 5basic.6y
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 312 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
46 | 1blue-collar
| 1married
| 5basic.6y
| 2unknown
| 1yes
| 1yes
| 1telephone
| 4may
| 0mon
| 440 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
50 | 1blue-collar
| 1married
| 6basic.9y
| 0no
| 1yes
| 1yes
| 1telephone
| 4may
| 0mon
| 353 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
39 | 4management
| 2single
| 6basic.9y
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 195 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
30 | 10unemployed
| 1married
| 7high.school
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 38 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
55 | 1blue-collar
| 1married
| 4basic.4y
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 262 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
55 | 5retired
| 2single
| 7high.school
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 342 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
41 | 9technician
| 2single
| 7high.school
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 181 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
37 | 0admin.
| 1married
| 7high.school
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 172 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
35 | 9technician
| 1married
| 10university.degree
| 0no
| 0no
| 1yes
| 1telephone
| 4may
| 0mon
| 99 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
59 | 9technician
| 1married
| 3unknown
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 93 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
39 | 6self-employed
| 1married
| 6basic.9y
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 233 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
54 | 9technician
| 2single
| 10university.degree
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 255 | 2 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
55 | 11unknown
| 1married
| 10university.degree
| 2unknown
| 2unknown
| 2unknown
| 1telephone
| 4may
| 0mon
| 362 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
46 | 0admin.
| 1married
| 3unknown
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 348 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
59 | 9technician
| 1married
| 3unknown
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 386 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
49 | 1blue-collar
| 1married
| 3unknown
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 73 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
54 | 4management
| 1married
| 4basic.4y
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 230 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
54 | 1blue-collar
| 0divorced
| 4basic.4y
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 208 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
55 | 11unknown
| 1married
| 4basic.4y
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 336 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
34 | 7services
| 1married
| 7high.school
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 365 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
52 | 9technician
| 1married
| 6basic.9y
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 1,666 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
41 | 0admin.
| 1married
| 10university.degree
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 577 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
56 | 9technician
| 1married
| 4basic.4y
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 137 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
58 | 4management
| 3unknown
| 10university.degree
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 366 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
32 | 2entrepreneur
| 1married
| 7high.school
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 314 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
38 | 0admin.
| 2single
| 9professional.course
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 160 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
57 | 0admin.
| 1married
| 10university.degree
| 0no
| 0no
| 1yes
| 1telephone
| 4may
| 0mon
| 212 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
44 | 0admin.
| 1married
| 10university.degree
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 188 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
42 | 9technician
| 2single
| 9professional.course
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 22 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
57 | 0admin.
| 1married
| 10university.degree
| 0no
| 1yes
| 1yes
| 1telephone
| 4may
| 0mon
| 616 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
40 | 1blue-collar
| 1married
| 6basic.9y
| 0no
| 0no
| 1yes
| 1telephone
| 4may
| 0mon
| 178 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
35 | 0admin.
| 1married
| 10university.degree
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 355 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
45 | 1blue-collar
| 1married
| 6basic.9y
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 225 | 2 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
54 | 0admin.
| 1married
| 7high.school
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 160 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
39 | 3housemaid
| 1married
| 4basic.4y
| 0no
| 0no
| 1yes
| 1telephone
| 4may
| 0mon
| 266 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
60 | 0admin.
| 1married
| 7high.school
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 253 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
53 | 0admin.
| 2single
| 9professional.course
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 179 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
55 | 1blue-collar
| 1married
| 4basic.4y
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 269 | 2 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
55 | 9technician
| 1married
| 9professional.course
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 135 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
50 | 4management
| 1married
| 10university.degree
| 2unknown
| 0no
| 1yes
| 1telephone
| 4may
| 0mon
| 161 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
45 | 7services
| 1married
| 7high.school
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 787 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
55 | 10unemployed
| 1married
| 9professional.course
| 2unknown
| 1yes
| 1yes
| 1telephone
| 4may
| 0mon
| 145 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
25 | 9technician
| 2single
| 10university.degree
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 174 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
47 | 2entrepreneur
| 1married
| 10university.degree
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 449 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
51 | 1blue-collar
| 1married
| 6basic.9y
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 812 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
42 | 1blue-collar
| 1married
| 5basic.6y
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 164 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
42 | 1blue-collar
| 1married
| 5basic.6y
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 366 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
48 | 0admin.
| 1married
| 7high.school
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 357 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
37 | 0admin.
| 1married
| 10university.degree
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 232 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
44 | 1blue-collar
| 2single
| 6basic.9y
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 91 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
33 | 0admin.
| 1married
| 3unknown
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 273 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
56 | 0admin.
| 1married
| 6basic.9y
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 158 | 2 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
44 | 1blue-collar
| 2single
| 4basic.4y
| 2unknown
| 1yes
| 1yes
| 1telephone
| 4may
| 0mon
| 177 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
41 | 4management
| 1married
| 5basic.6y
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 200 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
44 | 4management
| 0divorced
| 10university.degree
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 172 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
47 | 0admin.
| 1married
| 10university.degree
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 176 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
57 | 11unknown
| 1married
| 3unknown
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 211 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
37 | 0admin.
| 1married
| 10university.degree
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 214 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
41 | 1blue-collar
| 0divorced
| 4basic.4y
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 1,575 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 1yes
|
55 | 9technician
| 1married
| 10university.degree
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 349 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
33 | 7services
| 1married
| 7high.school
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 337 | 2 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
55 | 4management
| 1married
| 3unknown
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 272 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
42 | 1blue-collar
| 1married
| 6basic.9y
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 208 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
50 | 1blue-collar
| 1married
| 4basic.4y
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 193 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
51 | 1blue-collar
| 1married
| 4basic.4y
| 2unknown
| 2unknown
| 2unknown
| 1telephone
| 4may
| 0mon
| 212 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
38 | 0admin.
| 1married
| 7high.school
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 165 | 2 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
49 | 2entrepreneur
| 1married
| 10university.degree
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 1,042 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 1yes
|
38 | 9technician
| 2single
| 10university.degree
| 0no
| 0no
| 1yes
| 1telephone
| 4may
| 0mon
| 20 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
31 | 0admin.
| 0divorced
| 7high.school
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 246 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
41 | 4management
| 1married
| 5basic.6y
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 529 | 2 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
39 | 0admin.
| 1married
| 10university.degree
| 0no
| 1yes
| 1yes
| 1telephone
| 4may
| 0mon
| 192 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
49 | 9technician
| 1married
| 6basic.9y
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 1,467 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 1yes
|
34 | 0admin.
| 1married
| 7high.school
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 188 | 2 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
35 | 0admin.
| 1married
| 10university.degree
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 180 | 2 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
57 | 11unknown
| 1married
| 3unknown
| 2unknown
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 48 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
60 | 0admin.
| 1married
| 3unknown
| 2unknown
| 0no
| 1yes
| 1telephone
| 4may
| 0mon
| 213 | 2 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
33 | 10unemployed
| 1married
| 6basic.9y
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 545 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
42 | 1blue-collar
| 1married
| 5basic.6y
| 0no
| 0no
| 1yes
| 1telephone
| 4may
| 0mon
| 583 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
45 | 7services
| 1married
| 9professional.course
| 0no
| 1yes
| 0no
| 1telephone
| 4may
| 0mon
| 221 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
42 | 4management
| 1married
| 10university.degree
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 426 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
53 | 0admin.
| 0divorced
| 10university.degree
| 2unknown
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 287 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
37 | 9technician
| 2single
| 9professional.course
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 197 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
44 | 1blue-collar
| 1married
| 5basic.6y
| 0no
| 0no
| 0no
| 1telephone
| 4may
| 0mon
| 257 | 1 | 999 | 0 | 4nonexistent
| 1.1 | 93.994003 | -36.400002 | 4.857 | 5,191 | 0no
|
End of preview. Expand
in Data Studio
Dataset Card for Bank Marketing (additional)
This dataset is a precise version of UCI Bank Marketing
We first created the default bank marketing dataset, as seen here. Then we further run the following Python script to create this additional portion.
# Define feature types
continuous_columns = ["age", "duration", "campaign", "pdays", "previous",
"emp.var.rate", "cons.price.idx", "cons.conf.idx",
"euribor3m", "nr.employed"]
categorical_columns = ["job", "marital", "education", "default", "housing", "loan",
"contact", "month", "day_of_week", "poutcome", "y"]
# Extract category mappings from the reference dataset (bank-additional)
category_mappings_additional = {col: reference_categories[col] for col in categorical_columns}
hf_features_additional = Features({
"age": Value("int64"),
"job": ClassLabel(names=category_mappings_additional["job"]),
"marital": ClassLabel(names=category_mappings_additional["marital"]),
"education": ClassLabel(names=category_mappings_additional["education"]),
"default": ClassLabel(names=category_mappings_additional["default"]),
"housing": ClassLabel(names=category_mappings_additional["housing"]),
"loan": ClassLabel(names=category_mappings_additional["loan"]),
"contact": ClassLabel(names=category_mappings_additional["contact"]),
"month": ClassLabel(names=category_mappings_additional["month"]),
"day_of_week": ClassLabel(names=category_mappings_additional["day_of_week"]),
"duration": Value("int64"),
"campaign": Value("int64"),
"pdays": Value("int64"),
"previous": Value("int64"),
"poutcome": ClassLabel(names=category_mappings_additional["poutcome"]),
"emp.var.rate": Value("float32"),
"cons.price.idx": Value("float32"),
"cons.conf.idx": Value("float32"),
"euribor3m": Value("float32"),
"nr.employed": Value("float32"),
"y": ClassLabel(names=category_mappings_additional["y"]) # Target column
})
# Convert pandas DataFrame to Hugging Face Dataset
hf_dataset_additional = Dataset.from_pandas(df_additional, features=hf_features_additional)
# Print dataset structure
print(hf_dataset_additional)
The printed output could look like
Dataset({
features: ['age', 'job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'day_of_week', 'duration', 'campaign', 'pdays', 'previous', 'poutcome', 'emp.var.rate', 'cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed', 'y'],
num_rows: 41188
})
- Downloads last month
- 7