Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
age
int64
17
98
job
class label
12 classes
marital
class label
4 classes
education
class label
8 classes
default
class label
3 classes
housing
class label
3 classes
loan
class label
3 classes
contact
class label
2 classes
month
class label
10 classes
day_of_week
class label
5 classes
duration
int64
0
4.92k
campaign
int64
1
56
pdays
int64
0
999
previous
int64
0
7
poutcome
class label
3 classes
emp.var.rate
float32
-3.4
1.4
cons.price.idx
float32
92.2
94.8
cons.conf.idx
float32
-50.8
-26.9
euribor3m
float32
0.63
5.05
nr.employed
float32
4.96k
5.23k
y
class label
2 classes
56
3housemaid
1married
4basic.4y
0no
0no
0no
1telephone
4may
0mon
261
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
57
7services
1married
7high.school
2unknown
0no
0no
1telephone
4may
0mon
149
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
37
7services
1married
7high.school
0no
1yes
0no
1telephone
4may
0mon
226
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
40
0admin.
1married
5basic.6y
0no
0no
0no
1telephone
4may
0mon
151
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
56
7services
1married
7high.school
0no
0no
1yes
1telephone
4may
0mon
307
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
45
7services
1married
6basic.9y
2unknown
0no
0no
1telephone
4may
0mon
198
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
59
0admin.
1married
9professional.course
0no
0no
0no
1telephone
4may
0mon
139
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
41
1blue-collar
1married
3unknown
2unknown
0no
0no
1telephone
4may
0mon
217
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
24
9technician
2single
9professional.course
0no
1yes
0no
1telephone
4may
0mon
380
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
25
7services
2single
7high.school
0no
1yes
0no
1telephone
4may
0mon
50
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
41
1blue-collar
1married
3unknown
2unknown
0no
0no
1telephone
4may
0mon
55
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
25
7services
2single
7high.school
0no
1yes
0no
1telephone
4may
0mon
222
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
29
1blue-collar
2single
7high.school
0no
0no
1yes
1telephone
4may
0mon
137
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
57
3housemaid
0divorced
4basic.4y
0no
1yes
0no
1telephone
4may
0mon
293
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
35
1blue-collar
1married
5basic.6y
0no
1yes
0no
1telephone
4may
0mon
146
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
54
5retired
1married
6basic.9y
2unknown
1yes
1yes
1telephone
4may
0mon
174
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
35
1blue-collar
1married
5basic.6y
0no
1yes
0no
1telephone
4may
0mon
312
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
46
1blue-collar
1married
5basic.6y
2unknown
1yes
1yes
1telephone
4may
0mon
440
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
50
1blue-collar
1married
6basic.9y
0no
1yes
1yes
1telephone
4may
0mon
353
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
39
4management
2single
6basic.9y
2unknown
0no
0no
1telephone
4may
0mon
195
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
30
10unemployed
1married
7high.school
0no
0no
0no
1telephone
4may
0mon
38
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
55
1blue-collar
1married
4basic.4y
2unknown
1yes
0no
1telephone
4may
0mon
262
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
55
5retired
2single
7high.school
0no
1yes
0no
1telephone
4may
0mon
342
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
41
9technician
2single
7high.school
0no
1yes
0no
1telephone
4may
0mon
181
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
37
0admin.
1married
7high.school
0no
1yes
0no
1telephone
4may
0mon
172
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
35
9technician
1married
10university.degree
0no
0no
1yes
1telephone
4may
0mon
99
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
59
9technician
1married
3unknown
0no
1yes
0no
1telephone
4may
0mon
93
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
39
6self-employed
1married
6basic.9y
2unknown
0no
0no
1telephone
4may
0mon
233
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
54
9technician
2single
10university.degree
2unknown
0no
0no
1telephone
4may
0mon
255
2
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
55
11unknown
1married
10university.degree
2unknown
2unknown
2unknown
1telephone
4may
0mon
362
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
46
0admin.
1married
3unknown
0no
0no
0no
1telephone
4may
0mon
348
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
59
9technician
1married
3unknown
0no
1yes
0no
1telephone
4may
0mon
386
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
49
1blue-collar
1married
3unknown
0no
0no
0no
1telephone
4may
0mon
73
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
54
4management
1married
4basic.4y
2unknown
1yes
0no
1telephone
4may
0mon
230
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
54
1blue-collar
0divorced
4basic.4y
0no
0no
0no
1telephone
4may
0mon
208
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
55
11unknown
1married
4basic.4y
2unknown
1yes
0no
1telephone
4may
0mon
336
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
34
7services
1married
7high.school
0no
0no
0no
1telephone
4may
0mon
365
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
52
9technician
1married
6basic.9y
0no
1yes
0no
1telephone
4may
0mon
1,666
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
41
0admin.
1married
10university.degree
0no
1yes
0no
1telephone
4may
0mon
577
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
56
9technician
1married
4basic.4y
0no
1yes
0no
1telephone
4may
0mon
137
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
58
4management
3unknown
10university.degree
0no
1yes
0no
1telephone
4may
0mon
366
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
32
2entrepreneur
1married
7high.school
0no
1yes
0no
1telephone
4may
0mon
314
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
38
0admin.
2single
9professional.course
0no
0no
0no
1telephone
4may
0mon
160
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
57
0admin.
1married
10university.degree
0no
0no
1yes
1telephone
4may
0mon
212
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
44
0admin.
1married
10university.degree
2unknown
1yes
0no
1telephone
4may
0mon
188
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
42
9technician
2single
9professional.course
2unknown
0no
0no
1telephone
4may
0mon
22
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
57
0admin.
1married
10university.degree
0no
1yes
1yes
1telephone
4may
0mon
616
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
40
1blue-collar
1married
6basic.9y
0no
0no
1yes
1telephone
4may
0mon
178
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
35
0admin.
1married
10university.degree
0no
1yes
0no
1telephone
4may
0mon
355
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
45
1blue-collar
1married
6basic.9y
0no
1yes
0no
1telephone
4may
0mon
225
2
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
54
0admin.
1married
7high.school
0no
0no
0no
1telephone
4may
0mon
160
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
39
3housemaid
1married
4basic.4y
0no
0no
1yes
1telephone
4may
0mon
266
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
60
0admin.
1married
7high.school
0no
0no
0no
1telephone
4may
0mon
253
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
53
0admin.
2single
9professional.course
0no
0no
0no
1telephone
4may
0mon
179
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
55
1blue-collar
1married
4basic.4y
2unknown
0no
0no
1telephone
4may
0mon
269
2
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
55
9technician
1married
9professional.course
2unknown
1yes
0no
1telephone
4may
0mon
135
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
50
4management
1married
10university.degree
2unknown
0no
1yes
1telephone
4may
0mon
161
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
45
7services
1married
7high.school
2unknown
1yes
0no
1telephone
4may
0mon
787
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
55
10unemployed
1married
9professional.course
2unknown
1yes
1yes
1telephone
4may
0mon
145
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
25
9technician
2single
10university.degree
0no
1yes
0no
1telephone
4may
0mon
174
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
47
2entrepreneur
1married
10university.degree
2unknown
0no
0no
1telephone
4may
0mon
449
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
51
1blue-collar
1married
6basic.9y
0no
1yes
0no
1telephone
4may
0mon
812
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
42
1blue-collar
1married
5basic.6y
2unknown
1yes
0no
1telephone
4may
0mon
164
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
42
1blue-collar
1married
5basic.6y
2unknown
0no
0no
1telephone
4may
0mon
366
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
48
0admin.
1married
7high.school
0no
0no
0no
1telephone
4may
0mon
357
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
37
0admin.
1married
10university.degree
0no
0no
0no
1telephone
4may
0mon
232
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
44
1blue-collar
2single
6basic.9y
0no
1yes
0no
1telephone
4may
0mon
91
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
33
0admin.
1married
3unknown
0no
1yes
0no
1telephone
4may
0mon
273
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
56
0admin.
1married
6basic.9y
0no
1yes
0no
1telephone
4may
0mon
158
2
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
44
1blue-collar
2single
4basic.4y
2unknown
1yes
1yes
1telephone
4may
0mon
177
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
41
4management
1married
5basic.6y
0no
0no
0no
1telephone
4may
0mon
200
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
44
4management
0divorced
10university.degree
0no
1yes
0no
1telephone
4may
0mon
172
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
47
0admin.
1married
10university.degree
2unknown
1yes
0no
1telephone
4may
0mon
176
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
57
11unknown
1married
3unknown
2unknown
0no
0no
1telephone
4may
0mon
211
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
37
0admin.
1married
10university.degree
2unknown
1yes
0no
1telephone
4may
0mon
214
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
41
1blue-collar
0divorced
4basic.4y
2unknown
1yes
0no
1telephone
4may
0mon
1,575
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
1yes
55
9technician
1married
10university.degree
0no
0no
0no
1telephone
4may
0mon
349
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
33
7services
1married
7high.school
2unknown
1yes
0no
1telephone
4may
0mon
337
2
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
55
4management
1married
3unknown
2unknown
1yes
0no
1telephone
4may
0mon
272
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
42
1blue-collar
1married
6basic.9y
2unknown
0no
0no
1telephone
4may
0mon
208
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
50
1blue-collar
1married
4basic.4y
2unknown
1yes
0no
1telephone
4may
0mon
193
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
51
1blue-collar
1married
4basic.4y
2unknown
2unknown
2unknown
1telephone
4may
0mon
212
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
38
0admin.
1married
7high.school
2unknown
0no
0no
1telephone
4may
0mon
165
2
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
49
2entrepreneur
1married
10university.degree
2unknown
1yes
0no
1telephone
4may
0mon
1,042
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
1yes
38
9technician
2single
10university.degree
0no
0no
1yes
1telephone
4may
0mon
20
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
31
0admin.
0divorced
7high.school
0no
0no
0no
1telephone
4may
0mon
246
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
41
4management
1married
5basic.6y
0no
0no
0no
1telephone
4may
0mon
529
2
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
39
0admin.
1married
10university.degree
0no
1yes
1yes
1telephone
4may
0mon
192
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
49
9technician
1married
6basic.9y
0no
0no
0no
1telephone
4may
0mon
1,467
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
1yes
34
0admin.
1married
7high.school
0no
1yes
0no
1telephone
4may
0mon
188
2
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
35
0admin.
1married
10university.degree
0no
1yes
0no
1telephone
4may
0mon
180
2
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
57
11unknown
1married
3unknown
2unknown
1yes
0no
1telephone
4may
0mon
48
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
60
0admin.
1married
3unknown
2unknown
0no
1yes
1telephone
4may
0mon
213
2
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
33
10unemployed
1married
6basic.9y
0no
0no
0no
1telephone
4may
0mon
545
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
42
1blue-collar
1married
5basic.6y
0no
0no
1yes
1telephone
4may
0mon
583
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
45
7services
1married
9professional.course
0no
1yes
0no
1telephone
4may
0mon
221
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
42
4management
1married
10university.degree
0no
0no
0no
1telephone
4may
0mon
426
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
53
0admin.
0divorced
10university.degree
2unknown
0no
0no
1telephone
4may
0mon
287
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
37
9technician
2single
9professional.course
0no
0no
0no
1telephone
4may
0mon
197
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
44
1blue-collar
1married
5basic.6y
0no
0no
0no
1telephone
4may
0mon
257
1
999
0
4nonexistent
1.1
93.994003
-36.400002
4.857
5,191
0no
End of preview. Expand in Data Studio

Dataset Card for Bank Marketing (additional)

This dataset is a precise version of UCI Bank Marketing

We first created the default bank marketing dataset, as seen here. Then we further run the following Python script to create this additional portion.

# Define feature types
continuous_columns = ["age", "duration", "campaign", "pdays", "previous",
                      "emp.var.rate", "cons.price.idx", "cons.conf.idx",
                      "euribor3m", "nr.employed"]

categorical_columns = ["job", "marital", "education", "default", "housing", "loan",
                       "contact", "month", "day_of_week", "poutcome", "y"]

# Extract category mappings from the reference dataset (bank-additional)
category_mappings_additional = {col: reference_categories[col] for col in categorical_columns}


hf_features_additional = Features({
    "age": Value("int64"),
    "job": ClassLabel(names=category_mappings_additional["job"]),
    "marital": ClassLabel(names=category_mappings_additional["marital"]),
    "education": ClassLabel(names=category_mappings_additional["education"]),
    "default": ClassLabel(names=category_mappings_additional["default"]),
    "housing": ClassLabel(names=category_mappings_additional["housing"]),
    "loan": ClassLabel(names=category_mappings_additional["loan"]),
    "contact": ClassLabel(names=category_mappings_additional["contact"]),
    "month": ClassLabel(names=category_mappings_additional["month"]),
    "day_of_week": ClassLabel(names=category_mappings_additional["day_of_week"]),
    "duration": Value("int64"),
    "campaign": Value("int64"),
    "pdays": Value("int64"),
    "previous": Value("int64"),
    "poutcome": ClassLabel(names=category_mappings_additional["poutcome"]),
    "emp.var.rate": Value("float32"),
    "cons.price.idx": Value("float32"),
    "cons.conf.idx": Value("float32"),
    "euribor3m": Value("float32"),
    "nr.employed": Value("float32"),
    "y": ClassLabel(names=category_mappings_additional["y"])  # Target column
})

# Convert pandas DataFrame to Hugging Face Dataset
hf_dataset_additional = Dataset.from_pandas(df_additional, features=hf_features_additional)

# Print dataset structure
print(hf_dataset_additional)

The printed output could look like

Dataset({
    features: ['age', 'job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'day_of_week', 'duration', 'campaign', 'pdays', 'previous', 'poutcome', 'emp.var.rate', 'cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed', 'y'],
    num_rows: 41188
})
Downloads last month
7