Dataset Viewer
Search is not available for this dataset
Year
class label 3
classes | MemberID
int64 4
100M
| LabCount_total
int64 1
111
⌀ | LabCount_months
int64 1
12
⌀ | DrugCount_total
int64 1
84
⌀ | DrugCount_months
int64 1
12
⌀ | no_Claims
int64 0
44
| no_Providers
int64 0
30
| no_Vendors
int64 0
21
| no_PCPs
int64 0
4
| max_CharlsonIndex
int64 0
3
| PayDelay_total
int64 0
6.2k
| PayDelay_max
int64 0
162
| PayDelay_min
int64 0
162
| AgeAtFirstClaim
class label 10
classes | Sex
class label 3
classes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1Y2
| 4 | null | null | null | null | 1 | 1 | 1 | 1 | 0 | 43 | 43 | 43 | 00-9
| 2M
|
0Y1
| 210 | 2 | 1 | 5 | 3 | 8 | 4 | 4 | 2 | 0 | 720 | 162 | 22 | 330-39
| 0?
|
1Y2
| 210 | 1 | 1 | null | null | 6 | 3 | 3 | 1 | 0 | 308 | 128 | 31 | 330-39
| 0?
|
2Y3
| 210 | 1 | 1 | 5 | 4 | 4 | 2 | 2 | 1 | 0 | 143 | 44 | 23 | 330-39
| 0?
|
0Y1
| 3,197 | null | null | 5 | 4 | 5 | 3 | 3 | 1 | 0 | 492 | 162 | 36 | 00-9
| 1F
|
1Y2
| 3,197 | 2 | 1 | 3 | 2 | 5 | 4 | 3 | 1 | 0 | 148 | 34 | 26 | 00-9
| 1F
|
2Y3
| 3,197 | null | null | 6 | 5 | 11 | 3 | 1 | 1 | 1 | 379 | 119 | 21 | 00-9
| 1F
|
1Y2
| 3,457 | null | null | null | null | 1 | 1 | 1 | 1 | 0 | 63 | 63 | 63 | 00-9
| 2M
|
1Y2
| 3,713 | 9 | 2 | 17 | 4 | 10 | 5 | 5 | 2 | 0 | 562 | 118 | 23 | 440-49
| 1F
|
1Y2
| 3,741 | 11 | 5 | 35 | 11 | 20 | 3 | 3 | 1 | 1 | 360 | 36 | 8 | 770-79
| 1F
|
0Y1
| 3,889 | 10 | 1 | 30 | 10 | 13 | 7 | 7 | 1 | 1 | 919 | 162 | 33 | 9?
| 1F
|
2Y3
| 4,048 | 16 | 2 | 1 | 1 | 21 | 10 | 9 | 1 | 1 | 675 | 80 | 0 | 550-59
| 2M
|
0Y1
| 4,187 | null | null | 61 | 10 | 4 | 3 | 3 | 1 | 0 | 340 | 162 | 29 | 550-59
| 1F
|
1Y2
| 5,187 | null | null | null | null | 2 | 1 | 1 | 1 | 0 | 65 | 42 | 23 | 00-9
| 2M
|
2Y3
| 5,187 | 1 | 1 | 10 | 6 | 13 | 4 | 3 | 1 | 1 | 563 | 100 | 16 | 00-9
| 2M
|
1Y2
| 8,213 | 4 | 1 | null | null | 3 | 2 | 2 | 1 | 0 | 144 | 62 | 41 | 110-19
| 2M
|
0Y1
| 9,063 | null | null | 2 | 2 | 4 | 2 | 2 | 1 | 0 | 241 | 68 | 39 | 660-69
| 1F
|
1Y2
| 10,242 | 7 | 2 | 3 | 3 | 14 | 4 | 4 | 2 | 1 | 630 | 106 | 21 | 220-29
| 1F
|
0Y1
| 11,951 | 3 | 1 | null | null | 6 | 3 | 3 | 1 | 0 | 250 | 54 | 32 | 110-19
| 1F
|
1Y2
| 11,951 | 3 | 1 | null | null | 11 | 8 | 8 | 1 | 0 | 608 | 162 | 8 | 110-19
| 1F
|
1Y2
| 14,033 | 1 | 1 | 3 | 2 | 4 | 1 | 1 | 1 | 0 | 101 | 26 | 23 | 110-19
| 1F
|
2Y3
| 14,033 | 2 | 1 | 2 | 1 | 8 | 7 | 7 | 1 | 0 | 330 | 68 | 26 | 110-19
| 1F
|
2Y3
| 14,552 | 1 | 1 | null | null | 8 | 6 | 5 | 1 | 0 | 178 | 37 | 0 | 110-19
| 2M
|
0Y1
| 14,661 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 0 | 153 | 115 | 38 | 00-9
| 0?
|
1Y2
| 14,661 | 5 | 3 | null | null | 12 | 4 | 4 | 1 | 0 | 637 | 89 | 19 | 00-9
| 0?
|
2Y3
| 14,661 | null | null | 2 | 2 | 3 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 00-9
| 0?
|
0Y1
| 14,701 | null | null | null | null | 3 | 2 | 2 | 1 | 0 | 298 | 162 | 64 | 330-39
| 2M
|
0Y1
| 14,778 | 2 | 1 | 6 | 5 | 6 | 5 | 4 | 2 | 0 | 523 | 162 | 31 | 330-39
| 1F
|
1Y2
| 14,778 | 1 | 1 | 13 | 11 | 8 | 6 | 5 | 2 | 0 | 320 | 83 | 22 | 330-39
| 1F
|
2Y3
| 14,778 | 8 | 3 | 8 | 6 | 8 | 2 | 2 | 1 | 0 | 293 | 62 | 24 | 330-39
| 1F
|
0Y1
| 14,855 | null | null | null | null | 1 | 1 | 1 | 1 | 0 | 38 | 38 | 38 | 330-39
| 1F
|
2Y3
| 14,855 | 1 | 1 | null | null | 2 | 2 | 2 | 1 | 0 | 37 | 20 | 17 | 330-39
| 1F
|
0Y1
| 17,249 | 2 | 1 | null | null | 4 | 1 | 1 | 1 | 0 | 88 | 22 | 22 | 110-19
| 1F
|
1Y2
| 17,249 | null | null | null | null | 2 | 1 | 1 | 1 | 0 | 82 | 41 | 41 | 110-19
| 1F
|
2Y3
| 17,249 | 6 | 1 | null | null | 4 | 3 | 3 | 1 | 0 | 112 | 35 | 23 | 110-19
| 1F
|
0Y1
| 18,190 | 6 | 2 | 15 | 8 | 8 | 4 | 5 | 1 | 1 | 634 | 162 | 15 | 880+
| 1F
|
1Y2
| 18,190 | 6 | 1 | 58 | 12 | 18 | 12 | 9 | 1 | 1 | 925 | 125 | 10 | 880+
| 1F
|
2Y3
| 18,190 | 16 | 2 | 66 | 12 | 24 | 8 | 8 | 1 | 1 | 1,059 | 132 | 0 | 880+
| 1F
|
0Y1
| 18,333 | 6 | 2 | 10 | 7 | 10 | 2 | 2 | 1 | 1 | 338 | 55 | 23 | 880+
| 2M
|
1Y2
| 18,333 | 6 | 1 | 6 | 3 | 10 | 5 | 5 | 1 | 1 | 367 | 139 | 10 | 880+
| 2M
|
0Y1
| 18,514 | 5 | 1 | null | null | 4 | 2 | 2 | 1 | 0 | 149 | 58 | 27 | 550-59
| 1F
|
2Y3
| 18,514 | 5 | 1 | null | null | 4 | 2 | 2 | 1 | 0 | 123 | 78 | 15 | 550-59
| 1F
|
0Y1
| 20,072 | 1 | 1 | 13 | 7 | 14 | 6 | 6 | 1 | 0 | 772 | 162 | 14 | 9?
| 0?
|
1Y2
| 20,072 | 8 | 2 | 19 | 9 | 41 | 12 | 8 | 1 | 1 | 2,589 | 162 | 13 | 9?
| 0?
|
2Y3
| 20,072 | 1 | 1 | 24 | 9 | 22 | 8 | 6 | 1 | 1 | 758 | 66 | 0 | 9?
| 0?
|
0Y1
| 20,269 | 4 | 1 | null | null | 7 | 3 | 3 | 1 | 0 | 1,134 | 162 | 162 | 00-9
| 0?
|
0Y1
| 20,482 | 17 | 10 | null | null | 36 | 4 | 4 | 1 | 0 | 1,303 | 162 | 21 | 440-49
| 1F
|
1Y2
| 20,482 | 11 | 9 | null | null | 21 | 3 | 3 | 1 | 0 | 452 | 42 | 14 | 440-49
| 1F
|
2Y3
| 20,482 | 15 | 12 | null | null | 44 | 1 | 1 | 1 | 0 | 693 | 30 | 0 | 440-49
| 1F
|
2Y3
| 20,605 | 3 | 1 | null | null | 4 | 3 | 3 | 1 | 0 | 42 | 26 | 0 | 330-39
| 0?
|
0Y1
| 21,207 | 16 | 2 | 27 | 6 | 30 | 10 | 8 | 1 | 1 | 1,806 | 162 | 16 | 880+
| 1F
|
1Y2
| 21,207 | 4 | 3 | 71 | 12 | 16 | 8 | 6 | 1 | 1 | 900 | 123 | 16 | 880+
| 1F
|
2Y3
| 21,549 | null | null | 3 | 1 | 10 | 4 | 4 | 1 | 0 | 387 | 67 | 0 | 330-39
| 2M
|
0Y1
| 23,328 | 4 | 2 | null | null | 7 | 4 | 3 | 1 | 0 | 585 | 127 | 41 | 440-49
| 1F
|
2Y3
| 23,328 | null | null | null | null | 5 | 3 | 2 | 1 | 0 | 119 | 28 | 21 | 440-49
| 1F
|
1Y2
| 25,756 | null | null | 5 | 1 | 2 | 1 | 1 | 1 | 0 | 99 | 53 | 46 | 220-29
| 0?
|
2Y3
| 25,756 | null | null | 7 | 3 | 5 | 1 | 1 | 1 | 0 | 256 | 95 | 23 | 220-29
| 0?
|
0Y1
| 26,116 | null | null | null | null | 1 | 1 | 1 | 1 | 0 | 53 | 53 | 53 | 00-9
| 1F
|
1Y2
| 26,116 | 2 | 1 | 1 | 1 | 5 | 2 | 2 | 1 | 0 | 254 | 128 | 24 | 00-9
| 1F
|
2Y3
| 26,116 | null | null | 5 | 3 | 3 | 1 | 1 | 1 | 0 | 80 | 38 | 14 | 00-9
| 1F
|
2Y3
| 27,130 | 9 | 2 | null | null | 7 | 4 | 4 | 1 | 0 | 32 | 32 | 0 | 220-29
| 1F
|
0Y1
| 27,686 | 4 | 1 | null | null | 3 | 2 | 2 | 1 | 0 | 85 | 29 | 28 | 770-79
| 1F
|
1Y2
| 27,686 | 7 | 2 | 4 | 3 | 14 | 4 | 2 | 1 | 0 | 434 | 71 | 20 | 770-79
| 1F
|
2Y3
| 27,686 | 18 | 2 | 1 | 1 | 15 | 4 | 3 | 1 | 0 | 358 | 42 | 16 | 770-79
| 1F
|
0Y1
| 28,243 | 6 | 1 | 2 | 1 | 6 | 5 | 5 | 1 | 0 | 422 | 162 | 36 | 220-29
| 0?
|
1Y2
| 28,243 | 6 | 1 | 5 | 2 | 7 | 5 | 5 | 1 | 0 | 302 | 65 | 22 | 220-29
| 0?
|
2Y3
| 28,243 | null | null | null | null | 5 | 5 | 4 | 1 | 0 | 174 | 56 | 23 | 220-29
| 0?
|
1Y2
| 29,477 | 5 | 2 | 5 | 4 | 10 | 5 | 2 | 1 | 0 | 218 | 55 | 8 | 220-29
| 0?
|
2Y3
| 29,477 | null | null | 2 | 1 | 3 | 2 | 2 | 1 | 0 | 84 | 33 | 25 | 220-29
| 0?
|
2Y3
| 32,317 | null | null | 9 | 3 | 44 | 2 | 2 | 1 | 1 | 638 | 50 | 0 | 770-79
| 1F
|
0Y1
| 32,491 | 9 | 1 | 17 | 7 | 34 | 13 | 7 | 1 | 0 | 1,894 | 162 | 27 | 880+
| 0?
|
1Y2
| 32,491 | 18 | 5 | 33 | 12 | 41 | 11 | 8 | 1 | 2 | 1,282 | 78 | 13 | 880+
| 0?
|
2Y3
| 32,491 | 22 | 5 | 47 | 11 | 44 | 15 | 6 | 1 | 1 | 1,006 | 43 | 0 | 880+
| 0?
|
0Y1
| 33,120 | 11 | 3 | 18 | 6 | 9 | 5 | 5 | 1 | 0 | 475 | 122 | 24 | 9?
| 0?
|
1Y2
| 33,120 | 7 | 2 | 18 | 6 | 39 | 16 | 14 | 1 | 1 | 2,738 | 162 | 22 | 9?
| 0?
|
0Y1
| 33,803 | null | null | 5 | 2 | 6 | 3 | 3 | 1 | 0 | 236 | 68 | 20 | 110-19
| 2M
|
2Y3
| 33,803 | null | null | null | null | 1 | 1 | 1 | 1 | 0 | 37 | 37 | 37 | 110-19
| 2M
|
0Y1
| 34,208 | 10 | 1 | 9 | 6 | 3 | 2 | 2 | 1 | 1 | 115 | 93 | 11 | 330-39
| 1F
|
1Y2
| 34,208 | null | null | 7 | 4 | 5 | 4 | 4 | 1 | 1 | 155 | 72 | 7 | 330-39
| 1F
|
2Y3
| 34,208 | 4 | 2 | 9 | 4 | 12 | 8 | 8 | 1 | 1 | 447 | 78 | 18 | 330-39
| 1F
|
0Y1
| 34,791 | 3 | 1 | 19 | 9 | 10 | 5 | 4 | 2 | 0 | 518 | 162 | 28 | 770-79
| 1F
|
2Y3
| 36,126 | null | null | null | null | 2 | 1 | 1 | 1 | 0 | 36 | 36 | 0 | 440-49
| 1F
|
0Y1
| 36,908 | 3 | 1 | null | null | 4 | 3 | 3 | 1 | 0 | 213 | 70 | 31 | 110-19
| 2M
|
2Y3
| 36,908 | null | null | null | null | 1 | 1 | 1 | 1 | 0 | 35 | 35 | 35 | 110-19
| 2M
|
0Y1
| 39,767 | null | null | null | null | 1 | 1 | 1 | 1 | 0 | 91 | 91 | 91 | 110-19
| 1F
|
1Y2
| 39,767 | null | null | 1 | 1 | 3 | 2 | 2 | 1 | 0 | 212 | 99 | 36 | 110-19
| 1F
|
2Y3
| 40,000 | null | null | null | null | 4 | 2 | 2 | 1 | 1 | 84 | 84 | 0 | 110-19
| 2M
|
2Y3
| 40,717 | 2 | 1 | 2 | 1 | 6 | 4 | 4 | 1 | 1 | 184 | 41 | 15 | 550-59
| 1F
|
0Y1
| 42,216 | 9 | 2 | 19 | 5 | 21 | 8 | 5 | 1 | 0 | 2,228 | 162 | 12 | 660-69
| 0?
|
1Y2
| 42,395 | null | null | null | null | 6 | 3 | 2 | 1 | 1 | 144 | 35 | 16 | 330-39
| 0?
|
2Y3
| 42,395 | 18 | 3 | null | null | 44 | 15 | 11 | 1 | 1 | 1,533 | 162 | 0 | 330-39
| 0?
|
1Y2
| 42,758 | 26 | 4 | null | null | 43 | 15 | 13 | 1 | 2 | 3,253 | 162 | 21 | 660-69
| 2M
|
2Y3
| 42,758 | null | null | null | null | 44 | 10 | 10 | 1 | 1 | 4,320 | 162 | 0 | 660-69
| 2M
|
0Y1
| 43,452 | 4 | 2 | null | null | 6 | 3 | 3 | 1 | 0 | 251 | 87 | 30 | 330-39
| 1F
|
0Y1
| 43,467 | null | null | null | null | 1 | 1 | 1 | 1 | 0 | 43 | 43 | 43 | 440-49
| 2M
|
2Y3
| 47,061 | 23 | 5 | 13 | 9 | 33 | 10 | 10 | 1 | 0 | 1,541 | 146 | 15 | 770-79
| 2M
|
0Y1
| 47,103 | 9 | 1 | 7 | 6 | 8 | 4 | 4 | 1 | 1 | 686 | 162 | 30 | 770-79
| 0?
|
1Y2
| 47,103 | 13 | 2 | 37 | 10 | 40 | 19 | 15 | 1 | 1 | 2,389 | 162 | 15 | 770-79
| 0?
|
2Y3
| 47,103 | 7 | 1 | 8 | 4 | 15 | 7 | 5 | 1 | 0 | 494 | 86 | 20 | 770-79
| 0?
|
1Y2
| 47,211 | 16 | 2 | null | null | 14 | 6 | 6 | 1 | 0 | 1,292 | 162 | 23 | 550-59
| 1F
|
End of preview. Expand
in Data Studio
Dataset Card for Heritage Health Prize
It is often believed that this piece of data can be found at here and here, although we have not yet figured out what this piece of data is really used for.
To save time, we directly follow the preprocessing script here. More specifically, we used the following script to produce this Hugging Face dataset.
"""
Preprocessing based on: https://github.com/truongkhanhduy95/Heritage-Health-Prize
"""
import zipfile
from os import path
from urllib import request
import numpy as np
import pandas as pd
column_names = ['MemberID', 'ProviderID', 'Sex', 'AgeAtFirstClaim']
claims_cat_names = ['PrimaryConditionGroup', 'Specialty', 'ProcedureGroup', 'PlaceSvc']
def preprocess_claims(df_claims):
df_claims.loc[df_claims['PayDelay'] == '162+', 'PayDelay'] = 162
df_claims['PayDelay'] = df_claims['PayDelay'].astype(int)
df_claims.loc[df_claims['DSFS'] == '0- 1 month', 'DSFS'] = 1
df_claims.loc[df_claims['DSFS'] == '1- 2 months', 'DSFS'] = 2
df_claims.loc[df_claims['DSFS'] == '2- 3 months', 'DSFS'] = 3
df_claims.loc[df_claims['DSFS'] == '3- 4 months', 'DSFS'] = 4
df_claims.loc[df_claims['DSFS'] == '4- 5 months', 'DSFS'] = 5
df_claims.loc[df_claims['DSFS'] == '5- 6 months', 'DSFS'] = 6
df_claims.loc[df_claims['DSFS'] == '6- 7 months', 'DSFS'] = 7
df_claims.loc[df_claims['DSFS'] == '7- 8 months', 'DSFS'] = 8
df_claims.loc[df_claims['DSFS'] == '8- 9 months', 'DSFS'] = 9
df_claims.loc[df_claims['DSFS'] == '9-10 months', 'DSFS'] = 10
df_claims.loc[df_claims['DSFS'] == '10-11 months', 'DSFS'] = 11
df_claims.loc[df_claims['DSFS'] == '11-12 months', 'DSFS'] = 12
df_claims.loc[df_claims['CharlsonIndex'] == '0', 'CharlsonIndex'] = 0
df_claims.loc[df_claims['CharlsonIndex'] == '1-2', 'CharlsonIndex'] = 1
df_claims.loc[df_claims['CharlsonIndex'] == '3-4', 'CharlsonIndex'] = 2
df_claims.loc[df_claims['CharlsonIndex'] == '5+', 'CharlsonIndex'] = 3
df_claims.loc[df_claims['LengthOfStay'] == '1 day', 'LengthOfStay'] = 1
df_claims.loc[df_claims['LengthOfStay'] == '2 days', 'LengthOfStay'] = 2
df_claims.loc[df_claims['LengthOfStay'] == '3 days', 'LengthOfStay'] = 3
df_claims.loc[df_claims['LengthOfStay'] == '4 days', 'LengthOfStay'] = 4
df_claims.loc[df_claims['LengthOfStay'] == '5 days', 'LengthOfStay'] = 5
df_claims.loc[df_claims['LengthOfStay'] == '6 days', 'LengthOfStay'] = 6
df_claims.loc[df_claims['LengthOfStay'] == '1- 2 weeks', 'LengthOfStay'] = 11
df_claims.loc[df_claims['LengthOfStay'] == '2- 4 weeks', 'LengthOfStay'] = 21
df_claims.loc[df_claims['LengthOfStay'] == '4- 8 weeks', 'LengthOfStay'] = 42
df_claims.loc[df_claims['LengthOfStay'] == '26+ weeks', 'LengthOfStay'] = 180
df_claims['LengthOfStay'].fillna('?', inplace=True)
# df_claims['LengthOfStay'] = df_claims['LengthOfStay'].astype(int)
for cat_name in claims_cat_names:
df_claims[cat_name].fillna('?', inplace=True)
# df_claims = pd.get_dummies(df_claims, columns=claims_cat_names, prefix_sep='=')
oh = [col for col in df_claims if '=' in col]
agg = {
'ProviderID': ['count', 'nunique'],
'Vendor': 'nunique',
'PCP': 'nunique',
'CharlsonIndex': 'max',
# 'PlaceSvc': 'nunique',
# 'Specialty': 'nunique',
# 'PrimaryConditionGroup': 'nunique',
# 'ProcedureGroup': 'nunique',
'PayDelay': ['sum', 'max', 'min']
}
for col in oh:
agg[col] = 'sum'
df_group = df_claims.groupby(['Year', 'MemberID'])
df_claims = df_group.agg(agg).reset_index()
df_claims.columns = [
'Year', 'MemberID', 'no_Claims', 'no_Providers', 'no_Vendors', 'no_PCPs',
'max_CharlsonIndex', 'PayDelay_total', 'PayDelay_max', 'PayDelay_min'
] + oh
return df_claims
def preprocess_drugs(df_drugs):
df_drugs.drop(columns=['DSFS'], inplace=True)
# df_drugs['DSFS'] = df_drugs['DSFS'].apply(lambda x: int(x.split('-')[0])+1)
df_drugs['DrugCount'] = df_drugs['DrugCount'].apply(lambda x: int(x.replace('+', '')))
df_drugs = df_drugs.groupby(['Year', 'MemberID']).agg({'DrugCount': ['sum', 'count']}).reset_index()
df_drugs.columns = ['Year', 'MemberID', 'DrugCount_total', 'DrugCount_months']
print('df_drugs.shape = ', df_drugs.shape)
return df_drugs
def preprocess_labs(df_labs):
df_labs.drop(columns=['DSFS'], inplace=True)
# df_labs['DSFS'] = df_labs['DSFS'].apply(lambda x: int(x.split('-')[0])+1)
df_labs['LabCount'] = df_labs['LabCount'].apply(lambda x: int(x.replace('+', '')))
df_labs = df_labs.groupby(['Year', 'MemberID']).agg({'LabCount': ['sum', 'count']}).reset_index()
df_labs.columns = ['Year', 'MemberID', 'LabCount_total', 'LabCount_months']
print('df_labs.shape = ', df_labs.shape)
return df_labs
def preprocess_members(df_members):
df_members['AgeAtFirstClaim'].fillna('?', inplace=True)
df_members['Sex'].fillna('?', inplace=True)
# df_members = pd.get_dummies(
# df_members, columns=['AgeAtFirstClaim', 'Sex'], prefix_sep='='
# )
print('df_members.shape = ', df_members.shape)
return df_members
# request.urlretrieve('https://foreverdata.org/1015/content/HHP_release3.zip', 'HHP_release3.zip')
zf = zipfile.ZipFile('HHP_release3.zip')
df_claims = preprocess_claims(pd.read_csv(zf.open('Claims.csv'), sep=','))
df_drugs = preprocess_drugs(pd.read_csv(zf.open('DrugCount.csv'), sep=','))
df_labs = preprocess_labs(pd.read_csv(zf.open('LabCount.csv'), sep=','))
df_members = preprocess_members(pd.read_csv(zf.open('Members.csv'), sep=','))
df_labs_drugs = pd.merge(df_labs, df_drugs, on=['MemberID', 'Year'], how='outer')
df_labs_drugs_claims = pd.merge(df_labs_drugs, df_claims, on=['MemberID', 'Year'], how='outer')
df_health = pd.merge(df_labs_drugs_claims, df_members, on=['MemberID'], how='outer')
# df_health.drop(['Year', 'MemberID'], axis=1, inplace=True)
# df_health.fillna(0, inplace=True)
# Convert continuous columns to float
continuous_columns = ["MemberID", "LabCount_total", 'LabCount_months',
'DrugCount_total',
'DrugCount_months',
'no_Claims',
'no_Providers',
'no_Vendors',
'no_PCPs',
'max_CharlsonIndex',
'PayDelay_total',
'PayDelay_max',
'PayDelay_min']
for col in continuous_columns:
df_health[col] = pd.to_numeric(df_health[col], errors='coerce')
# Define categorical columns
categorical_columns = [
'Year', 'AgeAtFirstClaim',
'Sex'
]
# Dictionary to store category mappings
category_mappings = {}
for col in categorical_columns:
# Convert train column to category and extract categories
df_health[col] = df_health[col].astype("category")
category_mappings[col] = df_health[col].cat.categories.to_list() # Store category order
# Convert to integer codes
df_health[col] = df_health[col].cat.codes
from datasets import Dataset, DatasetDict, Features, Value, ClassLabel
# Define Hugging Face dataset schema
hf_features = Features({
"Year": ClassLabel(names=category_mappings["Year"]),
"AgeAtFirstClaim": ClassLabel(names=category_mappings["AgeAtFirstClaim"]),
"Sex": ClassLabel(names=category_mappings["Sex"]),
**{col: Value("int64") for col in continuous_columns}
})
hf_features = Features({
col: Value("int64") if col in continuous_columns else
ClassLabel(names=category_mappings[col])
for col in df_health.columns
})
from datasets import DatasetDict
# Store in a dataset dictionary
hf_dataset = DatasetDict({"train": Dataset.from_pandas(df_health, features=hf_features)})
# Print dataset structure
print(hf_dataset)
The printed output could look like
DatasetDict({
train: Dataset({
features: ['Year', 'MemberID', 'LabCount_total', 'LabCount_months', 'DrugCount_total', 'DrugCount_months', 'no_Claims', 'no_Providers', 'no_Vendors', 'no_PCPs', 'max_CharlsonIndex', 'PayDelay_total', 'PayDelay_max', 'PayDelay_min', 'AgeAtFirstClaim', 'Sex'],
num_rows: 218415
})
})
We may still update this dataset, once we figure out more.
- Downloads last month
- 4