Dataset Viewer
Auto-converted to Parquet
_id
stringlengths
24
24
id
stringlengths
5
121
author
stringlengths
2
42
cardData
stringlengths
2
1.07M
disabled
bool
2 classes
gated
null
lastModified
timestamp[ns]date
2021-02-05 16:03:35
2025-04-14 23:31:54
likes
int64
0
7.69k
trendingScore
float64
-1
158
private
bool
1 class
sha
stringlengths
40
40
description
stringlengths
0
6.67k
downloads
int64
0
5.7M
downloadsAllTime
int64
0
142M
tags
sequencelengths
1
7.92k
createdAt
timestamp[ns]date
2022-03-02 23:29:22
2025-04-14 23:29:56
paperswithcode_id
stringclasses
654 values
citation
stringlengths
0
10.7k
67ec47948647cfa17739af7a
nvidia/OpenCodeReasoning
nvidia
{"license": "cc-by-4.0", "size_categories": ["100K<n<1M"], "pretty_name": "OpenCodeReasoning", "dataset_info": [{"config_name": "split_0", "features": [{"name": "id", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "license", "dtype": "string"}, {"name": "dataset", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "difficulty", "dtype": "string"}, {"name": "solution", "dtype": "string"}], "splits": [{"name": "split_0", "num_bytes": 28108469190, "num_examples": 567850}]}, {"config_name": "split_1", "features": [{"name": "id", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "license", "dtype": "string"}, {"name": "dataset", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "difficulty", "dtype": "string"}, {"name": "solution"}, {"name": "index", "dtype": "string"}], "splits": [{"name": "split_1", "num_bytes": 4722811278, "num_examples": 167405}]}], "configs": [{"config_name": "split_0", "data_files": [{"split": "split_0", "path": "split_0/train-*"}]}, {"config_name": "split_1", "data_files": [{"split": "split_1", "path": "split_1/train-*"}]}], "task_categories": ["text-generation"], "tags": ["synthetic"]}
false
null
2025-04-07T18:22:47
200
158
false
483a88186bc78293f715e0a9f06bc11a37eb6b06
OpenCodeReasoning: Advancing Data Distillation for Competitive Coding Data Overview OpenCodeReasoning is the largest reasoning-based synthetic dataset to date for coding, comprises 735,255 samples in Python across 28,319 unique competitive programming questions. OpenCodeReasoning is designed for supervised fine-tuning (SFT). Technical Report - Discover the methodology and technical details behind OpenCodeReasoning. Github Repo - Access the complete pipeline used to… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/OpenCodeReasoning.
4,347
4,347
[ "task_categories:text-generation", "license:cc-by-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2504.01943", "region:us", "synthetic" ]
2025-04-01T20:07:48
null
null
67d3479522a51de18affff22
nvidia/Llama-Nemotron-Post-Training-Dataset
nvidia
{"license": "cc-by-4.0", "configs": [{"config_name": "SFT", "data_files": [{"split": "code", "path": "SFT/code/*.jsonl"}, {"split": "math", "path": "SFT/math/*.jsonl"}, {"split": "science", "path": "SFT/science/*.jsonl"}, {"split": "chat", "path": "SFT/chat/*.jsonl"}, {"split": "safety", "path": "SFT/safety/*.jsonl"}], "default": true}, {"config_name": "RL", "data_files": [{"split": "instruction_following", "path": "RL/instruction_following/*.jsonl"}]}]}
false
null
2025-04-09T05:35:02
394
61
false
8e1e47a67ced79723ad0735efc5a45f8bb5aabd6
Llama-Nemotron-Post-Training-Dataset-v1.1 Release Update [4/8/2025]: v1.1: We are releasing an additional 2.2M Math and 500K Code Reasoning Data in support of our release of Llama-3.1-Nemotron-Ultra-253B-v1. 🎉 Data Overview This dataset is a compilation of SFT and RL data that supports improvements of math, code, general reasoning, and instruction following capabilities of the original Llama instruct model, in support of NVIDIA’s release of… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/Llama-Nemotron-Post-Training-Dataset.
3,247
3,248
[ "license:cc-by-4.0", "size_categories:1M<n<10M", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "region:us" ]
2025-03-13T21:01:09
null
null
67f3de7c9421ed3129d436cf
agentica-org/DeepCoder-Preview-Dataset
agentica-org
{"dataset_info": [{"config_name": "codeforces", "features": [{"name": "problem", "dtype": "string"}, {"name": "tests", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 778742, "num_examples": 408}], "download_size": 301694, "dataset_size": 778742}, {"config_name": "lcbv5", "features": [{"name": "problem", "dtype": "string"}, {"name": "starter_code", "dtype": "string"}, {"name": "tests", "dtype": "string"}, {"name": "metadata", "struct": [{"name": "func_name", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 5349497203, "num_examples": 599}, {"name": "test", "num_bytes": 3744466075, "num_examples": 279}], "download_size": 5790246998, "dataset_size": 9093963278}, {"config_name": "primeintellect", "features": [{"name": "problem", "dtype": "string"}, {"name": "solutions", "sequence": "string"}, {"name": "tests", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2312671464, "num_examples": 16252}], "download_size": 1159149534, "dataset_size": 2312671464}, {"config_name": "taco", "features": [{"name": "problem", "dtype": "string"}, {"name": "tests", "dtype": "string"}, {"name": "solutions", "sequence": "string"}], "splits": [{"name": "train", "num_bytes": 1657247795, "num_examples": 7436}], "download_size": 862295065, "dataset_size": 1657247795}], "configs": [{"config_name": "codeforces", "data_files": [{"split": "test", "path": "codeforces/test-*"}]}, {"config_name": "lcbv5", "data_files": [{"split": "train", "path": "lcbv5/train-*"}, {"split": "test", "path": "lcbv5/test-*"}]}, {"config_name": "primeintellect", "data_files": [{"split": "train", "path": "primeintellect/train-*"}]}, {"config_name": "taco", "data_files": [{"split": "train", "path": "taco/train-*"}]}], "license": "mit", "language": ["en"], "tags": ["code"], "size_categories": ["10K<n<100K"]}
false
null
2025-04-09T20:43:48
57
57
false
177913a7bd43791646ef6a43645caa3c871ab3db
Data Our training dataset consists of 24K problems paired with their test cases: 7.5K TACO Verified problems. 16K verified coding problems from PrimeIntellect’s SYNTHETIC-1. 600 LiveCodeBench (v5) problems submitted between May 1, 2023 and July 31, 2024. Our test dataset consists of: LiveCodeBench (v5) problems between August 1, 2024 and February 1, 2025. Codeforces problems from Qwen/CodeElo. Format Each row in the dataset contains: problem: The coding problem… See the full description on the dataset page: https://huggingface.co/datasets/agentica-org/DeepCoder-Preview-Dataset.
1,539
1,539
[ "language:en", "license:mit", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "code" ]
2025-04-07T14:17:32
null
null
67edf568d1631250f17528af
open-thoughts/OpenThoughts2-1M
open-thoughts
{"dataset_info": {"features": [{"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "question", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 18986223337, "num_examples": 1143205}], "download_size": 8328411205, "dataset_size": 18986223337}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "tags": ["synthetic", "curator"], "license": "apache-2.0"}
false
null
2025-04-07T21:40:23
109
53
false
40766050d883e0aa951fd3ddee33faf3ad83f26b
OpenThoughts2-1M Open synthetic reasoning dataset with 1M high-quality examples covering math, science, code, and puzzles! OpenThoughts2-1M builds upon our previous OpenThoughts-114k dataset, augmenting it with existing datasets like OpenR1, as well as additional math and code reasoning data. This dataset was used to train OpenThinker2-7B and OpenThinker2-32B. Inspect the content with rich formatting and search & filter capabilities in Curator Viewer. See our blog post… See the full description on the dataset page: https://huggingface.co/datasets/open-thoughts/OpenThoughts2-1M.
9,933
9,933
[ "license:apache-2.0", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "synthetic", "curator" ]
2025-04-03T02:41:44
null
null
67f62a9296e24db82ed27e76
divaroffical/real_estate_ads
divaroffical
{"license": "odbl"}
false
null
2025-04-09T13:10:22
42
42
false
b2427bdbeb3578177165fb52cfc527384fdf6b94
null
271
271
[ "license:odbl", "size_categories:1M<n<10M", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-04-09T08:06:42
null
null
67e9a644ea97f3c65c463bfb
LLM360/MegaMath
LLM360
{"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "tags": ["math", "code", "pre-training", "synthesis"], "size_categories": ["1B<n<10B"]}
false
null
2025-04-09T13:17:50
63
39
false
3cbc64616594d6bc8759abaa0b2a71858f880f0d
MegaMath: Pushing the Limits of Open Math Copora Megamath is part of TxT360, curated by LLM360 Team. We introduce MegaMath, an open math pretraining dataset curated from diverse, math-focused sources, with over 300B tokens. MegaMath is curated via the following three efforts: Revisiting web data: We re-extracted mathematical documents from Common Crawl with math-oriented HTML optimizations, fasttext-based filtering and deduplication, all for acquiring higher-quality data on the… See the full description on the dataset page: https://huggingface.co/datasets/LLM360/MegaMath.
40,081
40,081
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:100M<n<1B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2504.02807", "region:us", "math", "code", "pre-training", "synthesis" ]
2025-03-30T20:15:00
null
null
67f51e10192d5ab08ffab69e
OmniSVG/MMSVG-Illustration
OmniSVG
{"license": "cc-by-nc-sa-4.0"}
false
null
2025-04-09T03:04:41
38
38
false
a35b1ff1253e6aa3cbc2ebda9e29a54736cb4479
OmniSVG: A Unified Scalable Vector Graphics Generation Model ![Project Page] Dataset Card for MMSVG-Illustration Dataset Description This dataset contains SVG illustration examples for training and evaluating SVG models for text-to-SVG and image-to-SVG task. Dataset Structure Features The dataset contains the following fields: Field Name Description id Unique ID for each SVG svg SVG code description Description of the SVG… See the full description on the dataset page: https://huggingface.co/datasets/OmniSVG/MMSVG-Illustration.
449
449
[ "license:cc-by-nc-sa-4.0", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2504.06263", "region:us" ]
2025-04-08T13:01:04
null
null
67f9abed63243ae752060832
openai/mrcr
openai
{"license": "mit"}
false
null
2025-04-14T18:58:12
38
38
false
204b0d4e8d9ca5c0a90bf942fdb2a5969094adc0
OpenAI MRCR: Long context multiple needle in a haystack benchmark OpenAI MRCR (Multi-round co-reference resolution) is a long context dataset for benchmarking an LLM's ability to distinguish between multiple needles hidden in context. This eval is inspired by the MRCR eval first introduced by Gemini (https://arxiv.org/pdf/2409.12640v2). OpenAI MRCR expands the tasks's difficulty and provides opensource data for reproducing results. The task is as follows: The model is given a long… See the full description on the dataset page: https://huggingface.co/datasets/openai/mrcr.
8
8
[ "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2409.12640", "region:us" ]
2025-04-11T23:55:25
null
null
67f505664a7ad6225a4ae9ed
OmniSVG/MMSVG-Icon
OmniSVG
{"license": "cc-by-nc-sa-4.0"}
false
null
2025-04-09T03:03:42
36
36
false
500f7f304c6d758d2f8764bf285440eb929246e3
OmniSVG: A Unified Scalable Vector Graphics Generation Model ![Project Page] Dataset Card for MMSVG-Icon Dataset Description This dataset contains SVG icon examples for training and evaluating SVG models for text-to-SVG and image-to-SVG task. Dataset Structure Features The dataset contains the following fields: Field Name Description id Unique ID for each SVG svg SVG code description Description of the SVG Citation… See the full description on the dataset page: https://huggingface.co/datasets/OmniSVG/MMSVG-Icon.
214
214
[ "license:cc-by-nc-sa-4.0", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2504.06263", "region:us" ]
2025-04-08T11:15:50
null
null
66212f29fb07c3e05ad0432e
HuggingFaceFW/fineweb
HuggingFaceFW
{"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "FineWeb", "size_categories": ["n>1T"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*/*"}]}, {"config_name": "sample-10BT", "data_files": [{"split": "train", "path": "sample/10BT/*"}]}, {"config_name": "sample-100BT", "data_files": [{"split": "train", "path": "sample/100BT/*"}]}, {"config_name": "sample-350BT", "data_files": [{"split": "train", "path": "sample/350BT/*"}]}, {"config_name": "CC-MAIN-2024-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-51/*"}]}, {"config_name": "CC-MAIN-2024-46", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-46/*"}]}, {"config_name": "CC-MAIN-2024-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-42/*"}]}, {"config_name": "CC-MAIN-2024-38", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-38/*"}]}, {"config_name": "CC-MAIN-2024-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-33/*"}]}, {"config_name": "CC-MAIN-2024-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-30/*"}]}, {"config_name": "CC-MAIN-2024-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-26/*"}]}, {"config_name": "CC-MAIN-2024-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-22/*"}]}, {"config_name": "CC-MAIN-2024-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-18/*"}]}, {"config_name": "CC-MAIN-2024-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-10/*"}]}, {"config_name": "CC-MAIN-2023-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-50/*"}]}, {"config_name": "CC-MAIN-2023-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-40/*"}]}, {"config_name": "CC-MAIN-2023-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-23/*"}]}, {"config_name": "CC-MAIN-2023-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-14/*"}]}, {"config_name": "CC-MAIN-2023-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-06/*"}]}, {"config_name": "CC-MAIN-2022-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-49/*"}]}, {"config_name": "CC-MAIN-2022-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-40/*"}]}, {"config_name": "CC-MAIN-2022-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-33/*"}]}, {"config_name": "CC-MAIN-2022-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-27/*"}]}, {"config_name": "CC-MAIN-2022-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-21/*"}]}, {"config_name": "CC-MAIN-2022-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-05/*"}]}, {"config_name": "CC-MAIN-2021-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-49/*"}]}, {"config_name": "CC-MAIN-2021-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-43/*"}]}, {"config_name": "CC-MAIN-2021-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-39/*"}]}, {"config_name": "CC-MAIN-2021-31", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-31/*"}]}, {"config_name": "CC-MAIN-2021-25", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-25/*"}]}, {"config_name": "CC-MAIN-2021-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-21/*"}]}, {"config_name": "CC-MAIN-2021-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-17/*"}]}, {"config_name": "CC-MAIN-2021-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-10/*"}]}, {"config_name": "CC-MAIN-2021-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-04/*"}]}, {"config_name": "CC-MAIN-2020-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-50/*"}]}, {"config_name": "CC-MAIN-2020-45", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-45/*"}]}, {"config_name": "CC-MAIN-2020-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-40/*"}]}, {"config_name": "CC-MAIN-2020-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-34/*"}]}, {"config_name": "CC-MAIN-2020-29", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-29/*"}]}, {"config_name": "CC-MAIN-2020-24", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-24/*"}]}, {"config_name": "CC-MAIN-2020-16", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-16/*"}]}, {"config_name": "CC-MAIN-2020-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-10/*"}]}, {"config_name": "CC-MAIN-2020-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-05/*"}]}, {"config_name": "CC-MAIN-2019-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-51/*"}]}, {"config_name": "CC-MAIN-2019-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-47/*"}]}, {"config_name": "CC-MAIN-2019-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-43/*"}]}, {"config_name": "CC-MAIN-2019-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-39/*"}]}, {"config_name": "CC-MAIN-2019-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-35/*"}]}, {"config_name": "CC-MAIN-2019-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-30/*"}]}, {"config_name": "CC-MAIN-2019-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-26/*"}]}, {"config_name": "CC-MAIN-2019-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-22/*"}]}, {"config_name": "CC-MAIN-2019-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-18/*"}]}, {"config_name": "CC-MAIN-2019-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-13/*"}]}, {"config_name": "CC-MAIN-2019-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-09/*"}]}, {"config_name": "CC-MAIN-2019-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-04/*"}]}, {"config_name": "CC-MAIN-2018-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-51/*"}]}, {"config_name": "CC-MAIN-2018-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-47/*"}]}, {"config_name": "CC-MAIN-2018-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-43/*"}]}, {"config_name": "CC-MAIN-2018-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-39/*"}]}, {"config_name": "CC-MAIN-2018-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-34/*"}]}, {"config_name": "CC-MAIN-2018-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-30/*"}]}, {"config_name": "CC-MAIN-2018-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-26/*"}]}, {"config_name": "CC-MAIN-2018-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-22/*"}]}, {"config_name": "CC-MAIN-2018-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-17/*"}]}, {"config_name": "CC-MAIN-2018-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-13/*"}]}, {"config_name": "CC-MAIN-2018-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-09/*"}]}, {"config_name": "CC-MAIN-2018-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-05/*"}]}, {"config_name": "CC-MAIN-2017-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-51/*"}]}, {"config_name": "CC-MAIN-2017-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-47/*"}]}, {"config_name": "CC-MAIN-2017-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-43/*"}]}, {"config_name": "CC-MAIN-2017-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-39/*"}]}, {"config_name": "CC-MAIN-2017-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-34/*"}]}, {"config_name": "CC-MAIN-2017-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-30/*"}]}, {"config_name": "CC-MAIN-2017-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-26/*"}]}, {"config_name": "CC-MAIN-2017-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-22/*"}]}, {"config_name": "CC-MAIN-2017-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-17/*"}]}, {"config_name": "CC-MAIN-2017-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-13/*"}]}, {"config_name": "CC-MAIN-2017-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-09/*"}]}, {"config_name": "CC-MAIN-2017-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-04/*"}]}, {"config_name": "CC-MAIN-2016-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-50/*"}]}, {"config_name": "CC-MAIN-2016-44", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-44/*"}]}, {"config_name": "CC-MAIN-2016-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-40/*"}]}, {"config_name": "CC-MAIN-2016-36", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-36/*"}]}, {"config_name": "CC-MAIN-2016-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-30/*"}]}, {"config_name": "CC-MAIN-2016-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-26/*"}]}, {"config_name": "CC-MAIN-2016-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-22/*"}]}, {"config_name": "CC-MAIN-2016-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-18/*"}]}, {"config_name": "CC-MAIN-2016-07", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-07/*"}]}, {"config_name": "CC-MAIN-2015-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-48/*"}]}, {"config_name": "CC-MAIN-2015-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-40/*"}]}, {"config_name": "CC-MAIN-2015-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-35/*"}]}, {"config_name": "CC-MAIN-2015-32", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-32/*"}]}, {"config_name": "CC-MAIN-2015-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-27/*"}]}, {"config_name": "CC-MAIN-2015-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-22/*"}]}, {"config_name": "CC-MAIN-2015-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-18/*"}]}, {"config_name": "CC-MAIN-2015-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-14/*"}]}, {"config_name": "CC-MAIN-2015-11", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-11/*"}]}, {"config_name": "CC-MAIN-2015-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-06/*"}]}, {"config_name": "CC-MAIN-2014-52", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-52/*"}]}, {"config_name": "CC-MAIN-2014-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-49/*"}]}, {"config_name": "CC-MAIN-2014-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-42/*"}]}, {"config_name": "CC-MAIN-2014-41", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-41/*"}]}, {"config_name": "CC-MAIN-2014-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-35/*"}]}, {"config_name": "CC-MAIN-2014-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-23/*"}]}, {"config_name": "CC-MAIN-2014-15", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-15/*"}]}, {"config_name": "CC-MAIN-2014-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-10/*"}]}, {"config_name": "CC-MAIN-2013-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-48/*"}]}, {"config_name": "CC-MAIN-2013-20", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-20/*"}]}]}
false
null
2025-01-31T14:10:44
2,106
23
false
0f039043b23fe1d4eed300b504aa4b4a68f1c7ba
🍷 FineWeb 15 trillion tokens of the finest data the 🌐 web has to offer What is it? The 🍷 FineWeb dataset consists of more than 15T tokens of cleaned and deduplicated english web data from CommonCrawl. The data processing pipeline is optimized for LLM performance and ran on the 🏭 datatrove library, our large scale data processing library. 🍷 FineWeb was originally meant to be a fully open replication of 🦅 RefinedWeb, with a release of the full dataset under… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceFW/fineweb.
193,020
2,418,018
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:10B<n<100B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2306.01116", "arxiv:2109.07445", "arxiv:2406.17557", "doi:10.57967/hf/2493", "region:us" ]
2024-04-18T14:33:13
null
null
67f9a5dde1bb509430e6af04
openai/graphwalks
openai
{"license": "mit"}
false
null
2025-04-14T17:22:42
21
21
false
6fe75ac25ccf55853294fe7995332d4f59d91bfb
GraphWalks: a multi hop reasoning long context benchmark In Graphwalks, the model is given a graph represented by its edge list and asked to perform an operation. Example prompt: You will be given a graph as a list of directed edges. All nodes are at least degree 1. You will also get a description of an operation to perform on the graph. Your job is to execute the operation on the graph and return the set of nodes that the operation results in. If asked for a breadth-first search… See the full description on the dataset page: https://huggingface.co/datasets/openai/graphwalks.
0
0
[ "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-04-11T23:29:33
null
null
63990f21cc50af73d29ecfa3
fka/awesome-chatgpt-prompts
fka
{"license": "cc0-1.0", "tags": ["ChatGPT"], "task_categories": ["question-answering"], "size_categories": ["100K<n<1M"]}
false
null
2025-01-06T00:02:53
7,687
19
false
68ba7694e23014788dcc8ab5afe613824f45a05c
🧠 Awesome ChatGPT Prompts [CSV dataset] This is a Dataset Repository of Awesome ChatGPT Prompts View All Prompts on GitHub License CC-0
10,486
143,797
[ "task_categories:question-answering", "license:cc0-1.0", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "ChatGPT" ]
2022-12-13T23:47:45
null
null
676f70846bf205795346d2be
FreedomIntelligence/medical-o1-reasoning-SFT
FreedomIntelligence
{"license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en", "zh"], "tags": ["medical", "biology"], "configs": [{"config_name": "en", "data_files": "medical_o1_sft.json"}, {"config_name": "zh", "data_files": "medical_o1_sft_Chinese.json"}]}
false
null
2025-02-22T05:15:38
637
18
false
61536c1d80b2c799df6800cc583897b77d2c86d2
News [2025/02/22] We released the distilled dataset from Deepseek-R1 based on medical verifiable problems. You can use it to initialize your models with the reasoning chain from Deepseek-R1. [2024/12/25] We open-sourced the medical reasoning dataset for SFT, built on medical verifiable problems and an LLM verifier. Introduction This dataset is used to fine-tune HuatuoGPT-o1, a medical LLM designed for advanced medical reasoning. This dataset is constructed using GPT-4o… See the full description on the dataset page: https://huggingface.co/datasets/FreedomIntelligence/medical-o1-reasoning-SFT.
20,410
55,493
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "language:zh", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2412.18925", "region:us", "medical", "biology" ]
2024-12-28T03:29:08
null
null
679dee7e52390b33e5970da6
future-technologies/Universal-Transformers-Dataset
future-technologies
{"task_categories": ["text-classification", "token-classification", "table-question-answering", "question-answering", "zero-shot-classification", "translation", "summarization", "feature-extraction", "text-generation", "text2text-generation", "fill-mask", "sentence-similarity", "text-to-speech", "text-to-audio", "automatic-speech-recognition", "audio-to-audio", "audio-classification", "voice-activity-detection", "depth-estimation", "image-classification", "object-detection", "image-segmentation", "text-to-image", "image-to-text", "image-to-image", "image-to-video", "unconditional-image-generation", "video-classification", "reinforcement-learning", "robotics", "tabular-classification", "tabular-regression", "tabular-to-text", "table-to-text", "multiple-choice", "text-retrieval", "time-series-forecasting", "text-to-video", "visual-question-answering", "zero-shot-image-classification", "graph-ml", "mask-generation", "zero-shot-object-detection", "text-to-3d", "image-to-3d", "image-feature-extraction", "video-text-to-text"], "language": ["ab", "ace", "ady", "af", "alt", "am", "ami", "an", "ang", "anp", "ar", "arc", "ary", "arz", "as", "ast", "atj", "av", "avk", "awa", "ay", "az", "azb", "ba", "ban", "bar", "bbc", "bcl", "be", "bg", "bh", "bi", "bjn", "blk", "bm", "bn", "bo", "bpy", "br", "bs", "bug", "bxr", "ca", "cbk", "cdo", "ce", "ceb", "ch", "chr", "chy", "ckb", "co", "cr", "crh", "cs", "csb", "cu", "cv", "cy", "da", "dag", "de", "dga", "din", "diq", "dsb", "dty", "dv", "dz", "ee", "el", "eml", "en", "eo", "es", "et", "eu", "ext", "fa", "fat", "ff", "fi", "fj", "fo", "fon", "fr", "frp", "frr", "fur", "fy", "ga", "gag", "gan", "gcr", "gd", "gl", "glk", "gn", "gom", "gor", "got", "gpe", "gsw", "gu", "guc", "gur", "guw", "gv", "ha", "hak", "haw", "hbs", "he", "hi", "hif", "hr", "hsb", "ht", "hu", "hy", "hyw", "ia", "id", "ie", "ig", "ik", "ilo", "inh", "io", "is", "it", "iu", "ja", "jam", "jbo", "jv", "ka", "kaa", "kab", "kbd", "kbp", "kcg", "kg", "ki", "kk", "kl", "km", "kn", "ko", "koi", "krc", "ks", "ksh", "ku", "kv", "kw", "ky", "la", "lad", "lb", "lbe", "lez", "lfn", "lg", "li", "lij", "lld", "lmo", "ln", "lo", "lt", "ltg", "lv", "lzh", "mad", "mai", "map", "mdf", "mg", "mhr", "mi", "min", "mk", "ml", "mn", "mni", "mnw", "mr", "mrj", "ms", "mt", "mwl", "my", "myv", "mzn", "nah", "nan", "nap", "nds", "ne", "new", "nia", "nl", "nn", "no", "nov", "nqo", "nrf", "nso", "nv", "ny", "oc", "olo", "om", "or", "os", "pa", "pag", "pam", "pap", "pcd", "pcm", "pdc", "pfl", "pi", "pih", "pl", "pms", "pnb", "pnt", "ps", "pt", "pwn", "qu", "rm", "rmy", "rn", "ro", "ru", "rue", "rup", "rw", "sa", "sah", "sat", "sc", "scn", "sco", "sd", "se", "sg", "sgs", "shi", "shn", "si", "sk", "skr", "sl", "sm", "smn", "sn", "so", "sq", "sr", "srn", "ss", "st", "stq", "su", "sv", "sw", "szl", "szy", "ta", "tay", "tcy", "te", "tet", "tg", "th", "ti", "tk", "tl", "tly", "tn", "to", "tpi", "tr", "trv", "ts", "tt", "tum", "tw", "ty", "tyv", "udm", "ug", "uk", "ur", "uz", "ve", "vec", "vep", "vi", "vls", "vo", "vro", "wa", "war", "wo", "wuu", "xal", "xh", "xmf", "yi", "yo", "yue", "za", "zea", "zgh", "zh", "zu"], "tags": ["tabular", "video", "image", "audio", "text-prompts", "text", "universal", "transformer", "database", "massive-data", "ai", "training", "huggingface", "ai", "artificial-intelligence", "machine-learning", "deep-learning", "transformers", "neural-networks", "text", "image", "audio", "video", "multimodal", "structured-data", "tabular-data", "nlp", "computer-vision", "speech-recognition", "reinforcement-learning", "time-series", "large-language-models", "generative-ai", "huggingface-dataset", "huggingface", "pytorch", "tensorflow", "jax", "pretraining", "finetuning", "self-supervised-learning", "few-shot-learning", "zero-shot-learning", "unsupervised-learning", "meta-learning", "diffusion-models"], "size_categories": ["n>1T"], "pretty_name": "Universal Transformers: Multilingual & Scalable AI Dataset"}
false
null
2025-04-10T05:31:22
36
18
false
1413c5f98f3e6abef3a5c92b45f43ae9cd5c9e0a
Universal Transformer Dataset 💠 A Message from Ujjawal Tyagi (Founder & CEO) "This is more than a dataset..... it’s the start of a new world....." I’m Ujjawal Tyagi, Founder of Lambda Go & GoX AI Platform — proudly born in the land of wisdom, resilience, and rising technology..... India 🇮🇳 What we’ve built here isn’t just numbers, files, or data points..... it’s purpose. It’s a movement. It’s for every developer, researcher, and dreamer who wants to… See the full description on the dataset page: https://huggingface.co/datasets/future-technologies/Universal-Transformers-Dataset.
1,834
1,889
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:table-question-answering", "task_categories:question-answering", "task_categories:zero-shot-classification", "task_categories:translation", "task_categories:summarization", "task_categories:feature-extraction", "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:fill-mask", "task_categories:sentence-similarity", "task_categories:text-to-speech", "task_categories:text-to-audio", "task_categories:automatic-speech-recognition", "task_categories:audio-to-audio", "task_categories:audio-classification", "task_categories:voice-activity-detection", "task_categories:depth-estimation", "task_categories:image-classification", "task_categories:object-detection", "task_categories:image-segmentation", "task_categories:text-to-image", "task_categories:image-to-text", "task_categories:image-to-image", "task_categories:image-to-video", "task_categories:unconditional-image-generation", "task_categories:video-classification", "task_categories:reinforcement-learning", "task_categories:robotics", "task_categories:tabular-classification", "task_categories:tabular-regression", "task_categories:tabular-to-text", "task_categories:table-to-text", "task_categories:multiple-choice", "task_categories:text-retrieval", "task_categories:time-series-forecasting", "task_categories:text-to-video", "task_categories:visual-question-answering", "task_categories:zero-shot-image-classification", "task_categories:graph-ml", "task_categories:mask-generation", "task_categories:zero-shot-object-detection", "task_categories:text-to-3d", "task_categories:image-to-3d", "task_categories:image-feature-extraction", "task_categories:video-text-to-text", "language:ab", "language:ace", "language:ady", "language:af", "language:alt", "language:am", "language:ami", "language:an", "language:ang", "language:anp", "language:ar", "language:arc", "language:ary", "language:arz", "language:as", "language:ast", "language:atj", "language:av", "language:avk", "language:awa", "language:ay", "language:az", "language:azb", "language:ba", "language:ban", "language:bar", "language:bbc", "language:bcl", "language:be", "language:bg", "language:bh", "language:bi", "language:bjn", "language:blk", "language:bm", "language:bn", "language:bo", "language:bpy", "language:br", "language:bs", "language:bug", "language:bxr", "language:ca", "language:cbk", "language:cdo", "language:ce", "language:ceb", "language:ch", "language:chr", "language:chy", "language:ckb", "language:co", "language:cr", "language:crh", "language:cs", "language:csb", "language:cu", "language:cv", "language:cy", "language:da", "language:dag", "language:de", "language:dga", "language:din", "language:diq", "language:dsb", "language:dty", "language:dv", "language:dz", "language:ee", "language:el", "language:eml", "language:en", "language:eo", "language:es", "language:et", "language:eu", "language:ext", "language:fa", "language:fat", "language:ff", "language:fi", "language:fj", "language:fo", "language:fon", "language:fr", "language:frp", "language:frr", "language:fur", "language:fy", "language:ga", "language:gag", "language:gan", "language:gcr", "language:gd", "language:gl", "language:glk", "language:gn", "language:gom", "language:gor", "language:got", "language:gpe", "language:gsw", "language:gu", "language:guc", "language:gur", "language:guw", "language:gv", "language:ha", "language:hak", "language:haw", "language:hbs", "language:he", "language:hi", "language:hif", "language:hr", "language:hsb", "language:ht", "language:hu", "language:hy", "language:hyw", "language:ia", "language:id", "language:ie", "language:ig", "language:ik", "language:ilo", "language:inh", "language:io", "language:is", "language:it", "language:iu", "language:ja", "language:jam", "language:jbo", "language:jv", "language:ka", "language:kaa", "language:kab", "language:kbd", "language:kbp", "language:kcg", "language:kg", "language:ki", "language:kk", "language:kl", "language:km", "language:kn", "language:ko", "language:koi", "language:krc", "language:ks", "language:ksh", "language:ku", "language:kv", "language:kw", "language:ky", "language:la", "language:lad", "language:lb", "language:lbe", "language:lez", "language:lfn", "language:lg", "language:li", "language:lij", "language:lld", "language:lmo", "language:ln", "language:lo", "language:lt", "language:ltg", "language:lv", "language:lzh", "language:mad", "language:mai", "language:map", "language:mdf", "language:mg", "language:mhr", "language:mi", "language:min", "language:mk", "language:ml", "language:mn", "language:mni", "language:mnw", "language:mr", "language:mrj", "language:ms", "language:mt", "language:mwl", "language:my", "language:myv", "language:mzn", "language:nah", "language:nan", "language:nap", "language:nds", "language:ne", "language:new", "language:nia", "language:nl", "language:nn", "language:no", "language:nov", "language:nqo", "language:nrf", "language:nso", "language:nv", "language:ny", "language:oc", "language:olo", "language:om", "language:or", "language:os", "language:pa", "language:pag", "language:pam", "language:pap", "language:pcd", "language:pcm", "language:pdc", "language:pfl", "language:pi", "language:pih", "language:pl", "language:pms", "language:pnb", "language:pnt", "language:ps", "language:pt", "language:pwn", "language:qu", "language:rm", "language:rmy", "language:rn", "language:ro", "language:ru", "language:rue", "language:rup", "language:rw", "language:sa", "language:sah", "language:sat", "language:sc", "language:scn", "language:sco", "language:sd", "language:se", "language:sg", "language:sgs", "language:shi", "language:shn", "language:si", "language:sk", "language:skr", "language:sl", "language:sm", "language:smn", "language:sn", "language:so", "language:sq", "language:sr", "language:srn", "language:ss", "language:st", "language:stq", "language:su", "language:sv", "language:sw", "language:szl", "language:szy", "language:ta", "language:tay", "language:tcy", "language:te", "language:tet", "language:tg", "language:th", "language:ti", "language:tk", "language:tl", "language:tly", "language:tn", "language:to", "language:tpi", "language:tr", "language:trv", "language:ts", "language:tt", "language:tum", "language:tw", "language:ty", "language:tyv", "language:udm", "language:ug", "language:uk", "language:ur", "language:uz", "language:ve", "language:vec", "language:vep", "language:vi", "language:vls", "language:vo", "language:vro", "language:wa", "language:war", "language:wo", "language:wuu", "language:xal", "language:xh", "language:xmf", "language:yi", "language:yo", "language:yue", "language:za", "language:zea", "language:zgh", "language:zh", "language:zu", "size_categories:10M<n<100M", "format:parquet", "modality:text", "modality:tabular", "modality:video", "modality:image", "modality:audio", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "tabular", "video", "image", "audio", "text-prompts", "text", "universal", "transformer", "database", "massive-data", "ai", "training", "huggingface", "artificial-intelligence", "machine-learning", "deep-learning", "transformers", "neural-networks", "multimodal", "structured-data", "tabular-data", "nlp", "computer-vision", "speech-recognition", "reinforcement-learning", "time-series", "large-language-models", "generative-ai", "huggingface-dataset", "pytorch", "tensorflow", "jax", "pretraining", "finetuning", "self-supervised-learning", "few-shot-learning", "zero-shot-learning", "unsupervised-learning", "meta-learning", "diffusion-models" ]
2025-02-01T09:50:54
null
null
625552d2b339bb03abe3432d
openai/gsm8k
openai
{"annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced"], "language": ["en"], "license": ["mit"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["text2text-generation"], "task_ids": [], "paperswithcode_id": "gsm8k", "pretty_name": "Grade School Math 8K", "tags": ["math-word-problems"], "dataset_info": [{"config_name": "main", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3963202, "num_examples": 7473}, {"name": "test", "num_bytes": 713732, "num_examples": 1319}], "download_size": 2725633, "dataset_size": 4676934}, {"config_name": "socratic", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5198108, "num_examples": 7473}, {"name": "test", "num_bytes": 936859, "num_examples": 1319}], "download_size": 3164254, "dataset_size": 6134967}], "configs": [{"config_name": "main", "data_files": [{"split": "train", "path": "main/train-*"}, {"split": "test", "path": "main/test-*"}]}, {"config_name": "socratic", "data_files": [{"split": "train", "path": "socratic/train-*"}, {"split": "test", "path": "socratic/test-*"}]}]}
false
null
2024-01-04T12:05:15
693
17
false
e53f048856ff4f594e959d75785d2c2d37b678ee
Dataset Card for GSM8K Dataset Summary GSM8K (Grade School Math 8K) is a dataset of 8.5K high quality linguistically diverse grade school math word problems. The dataset was created to support the task of question answering on basic mathematical problems that require multi-step reasoning. These problems take between 2 and 8 steps to solve. Solutions primarily involve performing a sequence of elementary calculations using basic arithmetic operations (+ − ×÷) to reach the… See the full description on the dataset page: https://huggingface.co/datasets/openai/gsm8k.
376,445
4,450,266
[ "task_categories:text2text-generation", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:mit", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2110.14168", "region:us", "math-word-problems" ]
2022-04-12T10:22:10
gsm8k
null
67f36644e11bd4b05579ee18
nisten/battlefield-medic-sharegpt
nisten
{"license": "mit"}
false
null
2025-04-08T19:45:29
18
16
false
b6c3a005a6fa14567cbf3f3556e8080b5f9622d0
🏥⚔️ Synthetic Battlefield Medical Conversations For the multilingual version (non-sharegpt foormat) that includes the title columns go here https://huggingface.co/datasets/nisten/battlefield-medic-multilingual Over 3000 conversations incorporating 2000+ human diseases and over 1000 battlefield injuries from various scenarios Author: Nisten Tahiraj License: MIT This dataset consists of highly detailed synthetic conversations… See the full description on the dataset page: https://huggingface.co/datasets/nisten/battlefield-medic-sharegpt.
289
289
[ "license:mit", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-04-07T05:44:36
null
null
67c0cda5c0b7a236a5f070e3
glaiveai/reasoning-v1-20m
glaiveai
{"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "response", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 177249016911, "num_examples": 22199375}], "download_size": 87247205094, "dataset_size": 177249016911}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "apache-2.0", "task_categories": ["text-generation"], "language": ["en"], "size_categories": ["10M<n<100M"]}
false
null
2025-03-19T13:21:37
188
15
false
da6bb3d0ff8fd8ea5abacee8519762ca6aaf367e
We are excited to release a synthetic reasoning dataset containing 22mil+ general reasoning questions and responses generated using deepseek-ai/DeepSeek-R1-Distill-Llama-70B. While there have been multiple efforts to build open reasoning datasets for math and code tasks, we noticed a lack of large datasets containing reasoning traces for diverse non code/math topics like social and natural sciences, education, creative writing and general conversations, which is why we decided to release this… See the full description on the dataset page: https://huggingface.co/datasets/glaiveai/reasoning-v1-20m.
12,780
12,904
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-27T20:40:05
null
null
67d1f960012f0ef1ab080a8b
vevotx/Tahoe-100M
vevotx
{"license": "cc0-1.0", "tags": ["biology", "single-cell", "RNA", "chemistry"], "size_categories": ["100M<n<1B"], "configs": [{"config_name": "expression_data", "data_files": "data/train-*", "default": true}, {"config_name": "sample_metadata", "data_files": "metadata/sample_metadata.parquet"}, {"config_name": "gene_metadata", "data_files": "metadata/gene_metadata.parquet"}, {"config_name": "drug_metadata", "data_files": "metadata/drug_metadata.parquet"}, {"config_name": "cell_line_metadata", "data_files": "metadata/cell_line_metadata.parquet"}, {"config_name": "obs_metadata", "data_files": "metadata/obs_metadata.parquet"}], "dataset_info": {"features": [{"name": "genes", "sequence": "int64"}, {"name": "expressions", "sequence": "float32"}, {"name": "drug", "dtype": "string"}, {"name": "sample", "dtype": "string"}, {"name": "BARCODE_SUB_LIB_ID", "dtype": "string"}, {"name": "cell_line_id", "dtype": "string"}, {"name": "moa-fine", "dtype": "string"}, {"name": "canonical_smiles", "dtype": "string"}, {"name": "pubchem_cid", "dtype": "string"}, {"name": "plate", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1693653078843, "num_examples": 95624334}], "download_size": 337644770670, "dataset_size": 1693653078843}}
false
null
2025-04-08T17:51:25
18
15
false
91953459e339ed9f27eb2ed4b6aa7719b2de3c66
Tahoe-100M Tahoe-100M is a giga-scale single-cell perturbation atlas consisting of over 100 million transcriptomic profiles from 50 cancer cell lines exposed to 1,100 small-molecule perturbations. Generated using Vevo Therapeutics' Mosaic high-throughput platform, Tahoe-100M enables deep, context-aware exploration of gene function, cellular states, and drug responses at unprecedented scale and resolution. This dataset is designed to power the development of next-generation AI… See the full description on the dataset page: https://huggingface.co/datasets/vevotx/Tahoe-100M.
4,847
4,847
[ "license:cc0-1.0", "size_categories:100M<n<1B", "format:parquet", "modality:tabular", "modality:text", "modality:timeseries", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "biology", "single-cell", "RNA", "chemistry" ]
2025-03-12T21:15:12
null
null
67f65eecc6d6baefc4b193a8
Rapidata/2k-ranked-images-open-image-preferences-v1
Rapidata
{"license": "apache-2.0", "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "elo", "dtype": "int64"}, {"name": "__index_level_0__", "dtype": "int64"}, {"name": "category", "dtype": "string"}, {"name": "subcategory", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 298637443.176, "num_examples": 1999}], "download_size": 290047395, "dataset_size": 298637443.176}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "tags": ["t2i", "preference", "ranking", "rl", "image"], "pretty_name": "2k Ranked Images"}
false
null
2025-04-10T14:35:23
15
15
false
a48acd2f9d8470d8e7388c2efa0cf87ebf09c3bf
2k Ranked Images This dataset contains roughly two thousand images ranked from most preferred to least preferred based on human feedback on pairwise comparisons (>25k responses). The generated images, which are a sample from the open-image-preferences-v1 dataset from the team @data-is-better-together, are rated purely based on aesthetic preference, disregarding the prompt used for generation. We provide the categories of the original dataset for easy filtering. This is a new… See the full description on the dataset page: https://huggingface.co/datasets/Rapidata/2k-ranked-images-open-image-preferences-v1.
50
50
[ "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "t2i", "preference", "ranking", "rl", "image" ]
2025-04-09T11:50:04
null
null
67ddbf33273db7cb5c4f3f32
UCSC-VLAA/MedReason
UCSC-VLAA
{"license": "apache-2.0", "tags": ["reasoning-datasets-competition", "reasoning-LLMs"]}
false
null
2025-04-10T20:17:26
15
14
false
a4bbf707e122021e74b098f542f2db97a89a9ead
MedReason: Eliciting Factual Medical Reasoning Steps in LLMs via Knowledge Graphs 📃 Paper |🤗 MedReason-8B | 📚 MedReason Data ⚡Introduction MedReason is a large-scale high-quality medical reasoning dataset designed to enable faithful and explainable medical problem-solving in large language models (LLMs). We utilize a structured medical knowledge graph (KG) to convert clinical QA pairs into logical chains of reasoning, or “thinking paths”. Our pipeline generates… See the full description on the dataset page: https://huggingface.co/datasets/UCSC-VLAA/MedReason.
436
436
[ "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2504.00993", "region:us", "reasoning-datasets-competition", "reasoning-LLMs" ]
2025-03-21T19:34:11
null
null
67e871a03c7e07671550c8ad
m-a-p/COIG-P
m-a-p
null
false
null
2025-04-09T09:02:31
14
14
false
be2b1e8308c3e92cbf84685dbd98ce1cd06e34ce
This repository contains the COIG-P dataset used for the paper COIG-P: A High-Quality and Large-Scale Chinese Preference Dataset for Alignment with Human Values.
221
233
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2504.05535", "region:us" ]
2025-03-29T22:18:08
null
null
67aa021ced8d8663d42505cc
open-r1/OpenR1-Math-220k
open-r1
{"license": "apache-2.0", "language": ["en"], "configs": [{"config_name": "all", "data_files": [{"split": "train", "path": "all/train-*"}]}, {"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "extended", "data_files": [{"split": "train", "path": "extended/train-*"}]}], "dataset_info": [{"config_name": "all", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 9734110026, "num_examples": 225129}], "download_size": 4221672067, "dataset_size": 9734110026}, {"config_name": "default", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4964543659, "num_examples": 93733}], "download_size": 2149897914, "dataset_size": 4964543659}, {"config_name": "extended", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4769566550, "num_examples": 131396}], "download_size": 2063936457, "dataset_size": 4769566550}]}
false
null
2025-02-18T11:45:27
550
13
false
e4e141ec9dea9f8326f4d347be56105859b2bd68
OpenR1-Math-220k Dataset description OpenR1-Math-220k is a large-scale dataset for mathematical reasoning. It consists of 220k math problems with two to four reasoning traces generated by DeepSeek R1 for problems from NuminaMath 1.5. The traces were verified using Math Verify for most samples and Llama-3.3-70B-Instruct as a judge for 12% of the samples, and each problem contains at least one reasoning trace with a correct answer. The dataset consists of two splits:… See the full description on the dataset page: https://huggingface.co/datasets/open-r1/OpenR1-Math-220k.
40,726
95,086
[ "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-10T13:41:48
null
null
67b32145bac2756ce9a4a0fe
Congliu/Chinese-DeepSeek-R1-Distill-data-110k
Congliu
{"license": "apache-2.0", "language": ["zh"], "size_categories": ["100K<n<1M"], "task_categories": ["text-generation", "text2text-generation", "question-answering"]}
false
null
2025-02-21T02:18:08
625
13
false
8520b649430617c2be4490f424d251d09d835ed3
中文基于满血DeepSeek-R1蒸馏数据集(Chinese-Data-Distill-From-R1) 🤗 Hugging Face   |   🤖 ModelScope    |   🚀 Github    |   📑 Blog 注意:提供了直接SFT使用的版本,点击下载。将数据中的思考和答案整合成output字段,大部分SFT代码框架均可直接直接加载训练。 本数据集为中文开源蒸馏满血R1的数据集,数据集中不仅包含math数据,还包括大量的通用类型数据,总数量为110K。 为什么开源这个数据? R1的效果十分强大,并且基于R1蒸馏数据SFT的小模型也展现出了强大的效果,但检索发现,大部分开源的R1蒸馏数据集均为英文数据集。 同时,R1的报告中展示,蒸馏模型中同时也使用了部分通用场景数据集。 为了帮助大家更好地复现R1蒸馏模型的效果,特此开源中文数据集。该中文数据集中的数据分布如下: Math:共计36568个样本, Exam:共计2432个样本, STEM:共计12648个样本,… See the full description on the dataset page: https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k.
3,993
11,935
[ "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:question-answering", "language:zh", "license:apache-2.0", "size_categories:100K<n<1M", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-17T11:45:09
null
null
621ffdd236468d709f181f06
openai/openai_humaneval
openai
{"annotations_creators": ["expert-generated"], "language_creators": ["expert-generated"], "language": ["en"], "license": ["mit"], "multilinguality": ["monolingual"], "size_categories": ["n<1K"], "source_datasets": ["original"], "task_categories": ["text2text-generation"], "task_ids": [], "paperswithcode_id": "humaneval", "pretty_name": "OpenAI HumanEval", "tags": ["code-generation"], "dataset_info": {"config_name": "openai_humaneval", "features": [{"name": "task_id", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "canonical_solution", "dtype": "string"}, {"name": "test", "dtype": "string"}, {"name": "entry_point", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 194394, "num_examples": 164}], "download_size": 83920, "dataset_size": 194394}, "configs": [{"config_name": "openai_humaneval", "data_files": [{"split": "test", "path": "openai_humaneval/test-*"}], "default": true}]}
false
null
2024-01-04T16:08:05
304
12
false
7dce6050a7d6d172f3cc5c32aa97f52fa1a2e544
Dataset Card for OpenAI HumanEval Dataset Summary The HumanEval dataset released by OpenAI includes 164 programming problems with a function sig- nature, docstring, body, and several unit tests. They were handwritten to ensure not to be included in the training set of code generation models. Supported Tasks and Leaderboards Languages The programming problems are written in Python and contain English natural text in comments and… See the full description on the dataset page: https://huggingface.co/datasets/openai/openai_humaneval.
92,914
3,107,060
[ "task_categories:text2text-generation", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2107.03374", "region:us", "code-generation" ]
2022-03-02T23:29:22
humaneval
null
660e7b9b4636ce2b0e77b699
mozilla-foundation/common_voice_17_0
mozilla-foundation
{"pretty_name": "Common Voice Corpus 17.0", "annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced"], "language": ["ab", "af", "am", "ar", "as", "ast", "az", "ba", "bas", "be", "bg", "bn", "br", "ca", "ckb", "cnh", "cs", "cv", "cy", "da", "de", "dv", "dyu", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gl", "gn", "ha", "he", "hi", "hsb", "ht", "hu", "hy", "ia", "id", "ig", "is", "it", "ja", "ka", "kab", "kk", "kmr", "ko", "ky", "lg", "lij", "lo", "lt", "ltg", "lv", "mdf", "mhr", "mk", "ml", "mn", "mr", "mrj", "mt", "myv", "nan", "ne", "nhi", "nl", "nn", "nso", "oc", "or", "os", "pa", "pl", "ps", "pt", "quy", "rm", "ro", "ru", "rw", "sah", "sat", "sc", "sk", "skr", "sl", "sq", "sr", "sv", "sw", "ta", "te", "th", "ti", "tig", "tk", "tok", "tr", "tt", "tw", "ug", "uk", "ur", "uz", "vi", "vot", "yi", "yo", "yue", "zgh", "zh", "zu", "zza"], "language_bcp47": ["zh-CN", "zh-HK", "zh-TW", "sv-SE", "rm-sursilv", "rm-vallader", "pa-IN", "nn-NO", "ne-NP", "nan-tw", "hy-AM", "ga-IE", "fy-NL"], "license": ["cc0-1.0"], "multilinguality": ["multilingual"], "source_datasets": ["extended|common_voice"], "paperswithcode_id": "common-voice", "extra_gated_prompt": "By clicking on \u201cAccess repository\u201d below, you also agree to not attempt to determine the identity of speakers in the Common Voice dataset."}
false
null
2024-06-16T13:50:23
261
12
false
b10d53980ef166bc24ce3358471c1970d7e6b5ec
Dataset Card for Common Voice Corpus 17.0 Dataset Summary The Common Voice dataset consists of a unique MP3 and corresponding text file. Many of the 31175 recorded hours in the dataset also include demographic metadata like age, sex, and accent that can help improve the accuracy of speech recognition engines. The dataset currently consists of 20408 validated hours in 124 languages, but more voices and languages are always added. Take a look at the Languages page to… See the full description on the dataset page: https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0.
40,908
469,635
[ "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:multilingual", "source_datasets:extended|common_voice", "language:ab", "language:af", "language:am", "language:ar", "language:as", "language:ast", "language:az", "language:ba", "language:bas", "language:be", "language:bg", "language:bn", "language:br", "language:ca", "language:ckb", "language:cnh", "language:cs", "language:cv", "language:cy", "language:da", "language:de", "language:dv", "language:dyu", "language:el", "language:en", "language:eo", "language:es", "language:et", "language:eu", "language:fa", "language:fi", "language:fr", "language:fy", "language:ga", "language:gl", "language:gn", "language:ha", "language:he", "language:hi", "language:hsb", "language:ht", "language:hu", "language:hy", "language:ia", "language:id", "language:ig", "language:is", "language:it", "language:ja", "language:ka", "language:kab", "language:kk", "language:kmr", "language:ko", "language:ky", "language:lg", "language:lij", "language:lo", "language:lt", "language:ltg", "language:lv", "language:mdf", "language:mhr", "language:mk", "language:ml", "language:mn", "language:mr", "language:mrj", "language:mt", "language:myv", "language:nan", "language:ne", "language:nhi", "language:nl", "language:nn", "language:nso", "language:oc", "language:or", "language:os", "language:pa", "language:pl", "language:ps", "language:pt", "language:quy", "language:rm", "language:ro", "language:ru", "language:rw", "language:sah", "language:sat", "language:sc", "language:sk", "language:skr", "language:sl", "language:sq", "language:sr", "language:sv", "language:sw", "language:ta", "language:te", "language:th", "language:ti", "language:tig", "language:tk", "language:tok", "language:tr", "language:tt", "language:tw", "language:ug", "language:uk", "language:ur", "language:uz", "language:vi", "language:vot", "language:yi", "language:yo", "language:yue", "language:zgh", "language:zh", "language:zu", "language:zza", "license:cc0-1.0", "size_categories:10M<n<100M", "modality:audio", "modality:text", "library:datasets", "library:mlcroissant", "arxiv:1912.06670", "region:us" ]
2024-04-04T10:06:19
common-voice
@inproceedings{commonvoice:2020, author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.}, title = {Common Voice: A Massively-Multilingual Speech Corpus}, booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)}, pages = {4211--4215}, year = 2020 }
67efae8ed3b5fdf4e5d9c56a
davanstrien/reasoning-required
davanstrien
{"language": "en", "license": "mit", "tags": ["curator", "reasoning-datasets-competition", "reasoning"], "task_categories": ["text-classification", "text-generation"], "pretty_name": "Reasoning Required", "size_categories": ["1K<n<10K"]}
false
null
2025-04-10T10:13:25
12
12
false
ca33daa54eb69f8f92d4de44a02bc3b9a4d31034
Dataset Card for the Reasoning Required Dataset 2025 has seen a massive growing interest in reasoning datasets. Currently, the majority of these datasets are focused on coding and math problems. This dataset – and the associated models – aim to make it easier to create reasoning datasets for a wider variety of domains. This is achieved by making it more feasible to leverage text "in the wild" and use a small encoder-only model to classify the level of reasoning complexity… See the full description on the dataset page: https://huggingface.co/datasets/davanstrien/reasoning-required.
254
273
[ "task_categories:text-classification", "task_categories:text-generation", "language:en", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.13124", "region:us", "curator", "reasoning-datasets-competition", "reasoning" ]
2025-04-04T10:03:58
null
null
67a89e79556fa47a174b6c7b
agentica-org/DeepScaleR-Preview-Dataset
agentica-org
{"language": ["en"], "license": "mit", "size_categories": ["10K<n<100K"]}
false
null
2025-02-10T09:51:18
103
11
false
b6ae8c60f5c1f2b594e2140b91c49c9ad0949e29
Data Our training dataset consists of approximately 40,000 unique mathematics problem-answer pairs compiled from: AIME (American Invitational Mathematics Examination) problems (1984-2023) AMC (American Mathematics Competition) problems (prior to 2023) Omni-MATH dataset Still dataset Format Each row in the JSON dataset contains: problem: The mathematical question text, formatted with LaTeX notation. solution: Offical solution to the problem, including LaTeX formatting… See the full description on the dataset page: https://huggingface.co/datasets/agentica-org/DeepScaleR-Preview-Dataset.
3,600
7,435
[ "language:en", "license:mit", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-09T12:24:25
null
null
6791fcbb49c4df6d798ca7c9
cais/hle
cais
{"license": "mit", "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "image", "dtype": "string"}, {"name": "image_preview", "dtype": "image"}, {"name": "answer", "dtype": "string"}, {"name": "answer_type", "dtype": "string"}, {"name": "author_name", "dtype": "string"}, {"name": "rationale", "dtype": "string"}, {"name": "rationale_image", "dtype": "image"}, {"name": "raw_subject", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "canary", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 284635618, "num_examples": 2500}], "download_size": 274582371, "dataset_size": 284635618}, "configs": [{"config_name": "default", "data_files": [{"split": "test", "path": "data/test-*"}]}]}
false
null
2025-04-04T04:00:14
303
10
false
1e33bd2d1346480b397ad94845067c4a088a33d3
Humanity's Last Exam 🌐 Website | 📄 Paper | GitHub Center for AI Safety & Scale AI Humanity's Last Exam (HLE) is a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. Humanity's Last Exam consists of 2,500 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of… See the full description on the dataset page: https://huggingface.co/datasets/cais/hle.
7,899
19,532
[ "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-01-23T08:24:27
null
null
67c03fd6b9fe27a2ac49784d
open-r1/codeforces-cots
open-r1
{"dataset_info": [{"config_name": "checker_interactor", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 994149425, "num_examples": 35718}], "download_size": 274975300, "dataset_size": 994149425}, {"config_name": "solutions", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "note", "dtype": "string"}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "interaction_format", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4968074271, "num_examples": 47780}], "download_size": 1887049179, "dataset_size": 4968074271}, {"config_name": "solutions_decontaminated", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "note", "dtype": "string"}, {"name": "editorial", "dtype": "string"}, {"name": "problem", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "interaction_format", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "problem_type", "dtype": "string"}, {"name": "public_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "private_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "generated_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "public_tests_ms", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "failed_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "accepted_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "passed_test_count", "dtype": "null"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "programming_language", "dtype": "string"}, {"name": "submission_id", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 6719356671, "num_examples": 40665}], "download_size": 2023394671, "dataset_size": 6719356671}, {"config_name": "solutions_py", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1000253222, "num_examples": 9556}], "download_size": 411697337, "dataset_size": 1000253222}, {"config_name": "solutions_py_decontaminated", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "accepted_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "passed_test_count", "dtype": "null"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "programming_language", "dtype": "string"}, {"name": "submission_id", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "failed_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "generated_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "private_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "problem_type", "dtype": "string"}, {"name": "public_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "public_tests_ms", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1349328880, "num_examples": 8133}], "download_size": 500182086, "dataset_size": 1349328880}, {"config_name": "solutions_short_and_long_decontaminated", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "note", "dtype": "string"}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "interaction_format", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "accepted_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "passed_test_count", "dtype": "null"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "programming_language", "dtype": "string"}, {"name": "submission_id", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "failed_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "generated_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "private_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "problem_type", "dtype": "string"}, {"name": "public_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "public_tests_ms", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2699204607, "num_examples": 16266}], "download_size": 1002365269, "dataset_size": 2699204607}, {"config_name": "solutions_w_editorials", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2649620432, "num_examples": 29180}], "download_size": 972089090, "dataset_size": 2649620432}, {"config_name": "solutions_w_editorials_decontaminated", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "accepted_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "passed_test_count", "dtype": "null"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "programming_language", "dtype": "string"}, {"name": "submission_id", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "failed_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "generated_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "private_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "problem_type", "dtype": "string"}, {"name": "public_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "public_tests_ms", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 3738669884, "num_examples": 24490}], "download_size": 1012247387, "dataset_size": 3738669884}, {"config_name": "solutions_w_editorials_py", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1067124847, "num_examples": 11672}], "download_size": 415023817, "dataset_size": 1067124847}, {"config_name": "solutions_w_editorials_py_decontaminated", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "accepted_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "passed_test_count", "dtype": "null"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "programming_language", "dtype": "string"}, {"name": "submission_id", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "failed_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "generated_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "private_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "problem_type", "dtype": "string"}, {"name": "public_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "public_tests_ms", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1499075280, "num_examples": 9796}], "download_size": 466078291, "dataset_size": 1499075280}, {"config_name": "test_input_generator", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "note", "dtype": "string"}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "completion_tokens_details", "dtype": "null"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "interaction_format", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1851104290, "num_examples": 20620}], "download_size": 724157877, "dataset_size": 1851104290}], "configs": [{"config_name": "checker_interactor", "data_files": [{"split": "train", "path": "checker_interactor/train-*"}]}, {"config_name": "solutions", "default": true, "data_files": [{"split": "train", "path": "solutions/train-*"}]}, {"config_name": "solutions_decontaminated", "data_files": [{"split": "train", "path": "solutions_decontaminated/train-*"}]}, {"config_name": "solutions_py", "data_files": [{"split": "train", "path": "solutions_py/train-*"}]}, {"config_name": "solutions_py_decontaminated", "data_files": [{"split": "train", "path": "solutions_py_decontaminated/train-*"}]}, {"config_name": "solutions_short_and_long_decontaminated", "data_files": [{"split": "train", "path": "solutions_short_and_long_decontaminated/train-*"}]}, {"config_name": "solutions_w_editorials", "data_files": [{"split": "train", "path": "solutions_w_editorials/train-*"}]}, {"config_name": "solutions_w_editorials_decontaminated", "data_files": [{"split": "train", "path": "solutions_w_editorials_decontaminated/train-*"}]}, {"config_name": "solutions_w_editorials_py", "data_files": [{"split": "train", "path": "solutions_w_editorials_py/train-*"}]}, {"config_name": "solutions_w_editorials_py_decontaminated", "data_files": [{"split": "train", "path": "solutions_w_editorials_py_decontaminated/train-*"}]}, {"config_name": "test_input_generator", "data_files": [{"split": "train", "path": "test_input_generator/train-*"}]}], "license": "cc-by-4.0"}
false
null
2025-03-28T12:21:06
139
10
false
39ac85c150806230473c70ad72c31f6232fe3f41
Dataset Card for CodeForces-CoTs Dataset description CodeForces-CoTs is a large-scale dataset for training reasoning models on competitive programming tasks. It consists of 10k CodeForces problems with up to five reasoning traces generated by DeepSeek R1. We did not filter the traces for correctness, but found that around 84% of the Python ones pass the public tests. The dataset consists of several subsets: solutions: we prompt R1 to solve the problem and produce code.… See the full description on the dataset page: https://huggingface.co/datasets/open-r1/codeforces-cots.
12,548
13,879
[ "license:cc-by-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-27T10:35:02
null
null
67e90b135e63bac35a2dbaf0
MohamedRashad/Quran-Recitations
MohamedRashad
{"dataset_info": {"features": [{"name": "source", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "audio", "dtype": "audio"}], "splits": [{"name": "train", "num_bytes": 49579449331.918, "num_examples": 124689}], "download_size": 33136131149, "dataset_size": 49579449331.918}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "task_categories": ["automatic-speech-recognition", "text-to-speech"], "language": ["ar"], "size_categories": ["100K<n<1M"]}
false
null
2025-03-30T11:19:54
38
10
false
65ee6114d526c02f7f96d696bb254a2dd666270c
Quran-Recitations Dataset Overview The Quran-Recitations dataset is a rich and reverent collection of Quranic verses, meticulously paired with their respective recitations by esteemed Qaris. This dataset serves as a valuable resource for researchers, developers, and students interested in Quranic studies, speech recognition, audio analysis, and Islamic applications. Dataset Structure source: The name of the Qari (reciter) who performed… See the full description on the dataset page: https://huggingface.co/datasets/MohamedRashad/Quran-Recitations.
1,282
1,282
[ "task_categories:automatic-speech-recognition", "task_categories:text-to-speech", "language:ar", "size_categories:100K<n<1M", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-03-30T09:12:51
null
null
67f332c1cef233be93ec1e05
SparkAudio/voxbox
SparkAudio
{"license": "cc-by-nc-sa-4.0", "language": ["zh", "en"], "tags": ["speech", "audio"], "pretty_name": "voxbox", "size_categories": ["10M<n<100M"], "task_categories": ["text-to-speech"]}
false
null
2025-04-11T05:04:07
10
10
false
e746936c2be2ba1af85f59a1ecdb5d563a77ca3e
VoxBox This dataset is a curated collection of bilingual speech corpora annotated clean transcriptions and rich metadata incluing age, gender, and emotion. Dataset Structure . ├── audios/ │ └── aishell-3/ # Audio files (organised by sub-corpus) │ └── ... └── metadata/ ├── aishell-3.jsonl ├── casia.jsonl ├── commonvoice_cn.jsonl ├── ... └── wenetspeech4tts.jsonl # JSONL metadata files Each JSONL file corresponds to a… See the full description on the dataset page: https://huggingface.co/datasets/SparkAudio/voxbox.
996
996
[ "task_categories:text-to-speech", "language:zh", "language:en", "license:cc-by-nc-sa-4.0", "size_categories:10M<n<100M", "format:webdataset", "modality:audio", "modality:text", "library:datasets", "library:webdataset", "library:mlcroissant", "arxiv:2503.01710", "region:us", "speech", "audio" ]
2025-04-07T02:04:49
null
null
67b20fc10861cec33b3afb8a
Conard/fortune-telling
Conard
{"license": "mit"}
false
null
2025-02-17T05:13:43
119
9
false
6261fe0d35a75997972bbfcd9828020e340303fb
null
4,949
8,463
[ "license:mit", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-16T16:18:09
null
null
67b58abdbc707d7ed36e6750
KRX-Data/Won-Instruct
KRX-Data
{"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "original_response", "dtype": "string"}, {"name": "Qwen/Qwen2.5-1.5B-Instruct_response", "dtype": "string"}, {"name": "Qwen/Qwen2.5-7B-Instruct_response", "dtype": "string"}, {"name": "google/gemma-2-2b-it_response", "dtype": "string"}, {"name": "google/gemma-2-9b-it_response", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 846093226, "num_examples": 86007}], "download_size": 375880264, "dataset_size": 846093226}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2025-04-11T05:03:20
10
9
false
9ff85bc243b7e1aa30970ef63da0bbfaaeb371e8
🇺🇸 English | 🇰🇷 한국어 Introduction The ₩ON-Instruct is a comprehensive instruction-following dataset tailored for training Korean language models specialized in financial reasoning and domain-specific financial tasks. This dataset was meticulously assembled through rigorous filtering and quality assurance processes, aiming to enhance the reasoning abilities of large language models (LLMs) within the financial domain, specifically tuned for Korean financial tasks. The dataset… See the full description on the dataset page: https://huggingface.co/datasets/KRX-Data/Won-Instruct.
9
69
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2503.17963", "region:us" ]
2025-02-19T07:39:41
null
null
67cd6c25b770987b3f80af97
a-m-team/AM-DeepSeek-R1-Distilled-1.4M
a-m-team
{"license": "cc-by-nc-4.0", "task_categories": ["text-generation"], "language": ["zh", "en"], "tags": ["code", "math", "reasoning", "thinking", "deepseek-r1", "distill"], "size_categories": ["1M<n<10M"], "configs": [{"config_name": "am_0.5M", "data_files": "am_0.5M.jsonl.zst", "features": [{"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "info", "struct": [{"name": "answer_content", "dtype": "string"}, {"name": "reference_answer", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "test_case", "struct": [{"name": "test_code", "dtype": "string"}, {"name": "test_entry_point", "dtype": "string"}]}, {"name": "think_content", "dtype": "string"}]}, {"name": "role", "dtype": "string"}]}]}, {"config_name": "am_0.9M", "data_files": "am_0.9M.jsonl.zst", "features": [{"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "info", "struct": [{"name": "answer_content", "dtype": "string"}, {"name": "reference_answer", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "test_case", "struct": [{"name": "test_code", "dtype": "string"}, {"name": "test_entry_point", "dtype": "string"}]}, {"name": "think_content", "dtype": "string"}]}, {"name": "role", "dtype": "string"}]}]}, {"config_name": "am_0.9M_sample_1k", "data_files": "am_0.9M_sample_1k.jsonl", "features": [{"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "info", "struct": [{"name": "answer_content", "dtype": "string"}, {"name": "reference_answer", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "test_case", "struct": [{"name": "test_code", "dtype": "string"}, {"name": "test_entry_point", "dtype": "string"}]}, {"name": "think_content", "dtype": "string"}]}, {"name": "role", "dtype": "string"}]}]}]}
false
null
2025-03-30T01:30:08
117
9
false
53531c06634904118a2dcd83961918c4d69d1cdf
For more open-source datasets, models, and methodologies, please visit our GitHub repository. AM-DeepSeek-R1-Distilled-1.4M is a large-scale general reasoning task dataset composed of high-quality and challenging reasoning problems. These problems are collected from numerous open-source datasets, semantically deduplicated, and cleaned to eliminate test set contamination. All responses in the dataset are distilled from the reasoning model (mostly DeepSeek-R1) and have undergone rigorous… See the full description on the dataset page: https://huggingface.co/datasets/a-m-team/AM-DeepSeek-R1-Distilled-1.4M.
11,894
12,320
[ "task_categories:text-generation", "language:zh", "language:en", "license:cc-by-nc-4.0", "size_categories:1M<n<10M", "arxiv:2503.19633", "region:us", "code", "math", "reasoning", "thinking", "deepseek-r1", "distill" ]
2025-03-09T10:23:33
null
null
6532270e829e1dc2f293d6b8
gaia-benchmark/GAIA
gaia-benchmark
{"language": ["en"], "pretty_name": "General AI Assistants Benchmark", "extra_gated_prompt": "To avoid contamination and data leakage, you agree to not reshare this dataset outside of a gated or private repository on the HF hub.", "extra_gated_fields": {"I agree to not reshare the GAIA submissions set according to the above conditions": "checkbox"}}
false
null
2025-02-13T08:36:12
292
8
false
897f2dfbb5c952b5c3c1509e648381f9c7b70316
GAIA dataset GAIA is a benchmark which aims at evaluating next-generation LLMs (LLMs with augmented capabilities due to added tooling, efficient prompting, access to search, etc). We added gating to prevent bots from scraping the dataset. Please do not reshare the validation or test set in a crawlable format. Data and leaderboard GAIA is made of more than 450 non-trivial question with an unambiguous answer, requiring different levels of tooling and autonomy to solve. It… See the full description on the dataset page: https://huggingface.co/datasets/gaia-benchmark/GAIA.
10,622
41,576
[ "language:en", "arxiv:2311.12983", "region:us" ]
2023-10-20T07:06:54
null
6797e648de960c48ff034e54
open-thoughts/OpenThoughts-114k
open-thoughts
{"dataset_info": [{"config_name": "default", "features": [{"name": "system", "dtype": "string"}, {"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2635015668, "num_examples": 113957}], "download_size": 1078777193, "dataset_size": 2635015668}, {"config_name": "metadata", "features": [{"name": "problem", "dtype": "string"}, {"name": "deepseek_reasoning", "dtype": "string"}, {"name": "deepseek_solution", "dtype": "string"}, {"name": "ground_truth_solution", "dtype": "string"}, {"name": "domain", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "test_cases", "dtype": "string"}, {"name": "starter_code", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5525214077.699433, "num_examples": 113957}], "download_size": 2469729724, "dataset_size": 5525214077.699433}], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "metadata", "data_files": [{"split": "train", "path": "metadata/train-*"}]}], "tags": ["curator", "synthetic"], "license": "apache-2.0"}
false
null
2025-04-06T23:31:24
688
8
false
a5996b0064b4ddd42c6e9a7302eeec0618cb7b63
Open-Thoughts-114k Open synthetic reasoning dataset with 114k high-quality examples covering math, science, code, and puzzles! Inspect the content with rich formatting with Curator Viewer. Available Subsets default subset containing ready-to-train data used to finetune the OpenThinker-7B and OpenThinker-32B models: ds = load_dataset("open-thoughts/OpenThoughts-114k", split="train") metadata subset containing extra columns used in dataset construction:… See the full description on the dataset page: https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k.
29,582
163,025
[ "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "curator", "synthetic" ]
2025-01-27T20:02:16
null
null
67a2bed1fab04a7b413c8ef1
PrimeIntellect/verifiable-coding-problems
PrimeIntellect
{"dataset_info": {"features": [{"name": "source", "dtype": "string"}, {"name": "task_type", "dtype": "string"}, {"name": "in_source_id", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "gold_standard_solution", "dtype": "string"}, {"name": "verification_info", "dtype": "string"}, {"name": "metadata", "dtype": "string"}, {"name": "problem_id", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21575365821, "num_examples": 144169}], "download_size": 10811965671, "dataset_size": 21575365821}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2025-02-06T21:49:12
28
8
false
45220c92768b1e401aadffbf26849b8d6cf39a36
SYNTHETIC-1 This is a subset of the task data used to construct SYNTHETIC-1. You can find the full collection here
1,383
4,011
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-05T01:28:49
null
null
67a53267784a1ad88b781d7f
CohereLabs/kaleidoscope
CohereLabs
{"dataset_info": {"features": [{"name": "language", "dtype": "string"}, {"name": "country", "dtype": "string"}, {"name": "file_name", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "license", "dtype": "string"}, {"name": "level", "dtype": "string"}, {"name": "category_en", "dtype": "string"}, {"name": "category_original_lang", "dtype": "string"}, {"name": "original_question_num", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "image_png", "dtype": "string"}, {"name": "image_information", "dtype": "string"}, {"name": "image_type", "dtype": "string"}, {"name": "parallel_question_id", "dtype": "string"}, {"name": "image", "dtype": "string"}, {"name": "general_category_en", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 15519985, "num_examples": 20911}], "download_size": 4835304, "dataset_size": 15519985}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "apache-2.0", "language": ["ar", "bn", "hr", "nl", "en", "fr", "de", "hi", "hu", "lt", "ne", "fa", "pt", "ru", "sr", "es", "te", "uk"], "modality": ["text", "image"]}
false
null
2025-04-10T12:17:21
8
8
false
6b9de3ab925e3e8540a1929337e62c44c4febe1b
Kaleidoscope (18 Languages) Dataset Description The Kaleidoscope Benchmark is a global collection of multiple-choice questions sourced from real-world exams, with the goal of evaluating multimodal and multilingual understanding in VLMs. The collected exams are in a Multiple-choice question answering (MCQA) format which provides a structured framework for evaluation by prompting models with predefined answer choices, closely mimicking conventional human testing… See the full description on the dataset page: https://huggingface.co/datasets/CohereLabs/kaleidoscope.
50
156
[ "language:ar", "language:bn", "language:hr", "language:nl", "language:en", "language:fr", "language:de", "language:hi", "language:hu", "language:lt", "language:ne", "language:fa", "language:pt", "language:ru", "language:sr", "language:es", "language:te", "language:uk", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2504.07072", "region:us" ]
2025-02-06T22:06:31
null
null
67aa648e91e6f5eb545e854e
allenai/olmOCR-mix-0225
allenai
{"license": "odc-by", "configs": [{"config_name": "00_documents", "data_files": [{"split": "train_s2pdf", "path": ["train-s2pdf.parquet"]}, {"split": "eval_s2pdf", "path": ["eval-s2pdf.parquet"]}]}, {"config_name": "01_books", "data_files": [{"split": "train_iabooks", "path": ["train-iabooks.parquet"]}, {"split": "eval_iabooks", "path": ["eval-iabooks.parquet"]}]}]}
false
null
2025-02-25T09:36:14
117
8
false
a602926844ed47c43439627fd16d3de45b39e494
olmOCR-mix-0225 olmOCR-mix-0225 is a dataset of ~250,000 PDF pages which have been OCRed into plain-text in a natural reading order using gpt-4o-2024-08-06 and a special prompting strategy that preserves any born-digital content from each page. This dataset can be used to train, fine-tune, or evaluate your own OCR document pipeline. Quick links: 📃 Paper 🤗 Model 🛠️ Code 🎮 Demo Data Mix Table 1: Training set composition by source Source Unique… See the full description on the dataset page: https://huggingface.co/datasets/allenai/olmOCR-mix-0225.
2,814
7,263
[ "license:odc-by", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-10T20:41:50
null
null
67ea8831615fb44c0f3b62a4
ByteDance-Seed/Multi-SWE-bench
ByteDance-Seed
{"license": "other", "task_categories": ["text-generation"], "tags": ["code"]}
false
null
2025-04-13T02:55:31
16
8
false
68e134be1721821bd4f380d0ed3c14c34fc770cb
👋 Overview This repository contains the Multi-SWE-bench dataset, introduced in Multi-SWE-bench: A Multilingual Benchmark for Issue Resolving, to address the lack of multilingual benchmarks for evaluating LLMs in real-world code issue resolution. Unlike existing Python-centric benchmarks (e.g., SWE-bench), this framework spans 7 languages (Java, TypeScript, JavaScript, Go, Rust, C, and C++) with 1,632 high-quality instances, curated from 2,456 candidates by 68 expert annotators… See the full description on the dataset page: https://huggingface.co/datasets/ByteDance-Seed/Multi-SWE-bench.
701
701
[ "task_categories:text-generation", "license:other", "arxiv:2504.02605", "region:us", "code" ]
2025-03-31T12:18:57
null
null
67ed3a6474b2ca50ce15839c
Rapidata/text-2-video-human-preferences-pika2.2
Rapidata
{"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "video1", "dtype": "string"}, {"name": "video2", "dtype": "string"}, {"name": "weighted_results1_Alignment", "dtype": "float64"}, {"name": "weighted_results2_Alignment", "dtype": "float64"}, {"name": "detailedResults_Alignment", "dtype": "string"}, {"name": "weighted_results1_Coherence", "dtype": "float64"}, {"name": "weighted_results2_Coherence", "dtype": "float64"}, {"name": "detailedResults_Coherence", "dtype": "string"}, {"name": "weighted_results1_Preference", "dtype": "float64"}, {"name": "weighted_results2_Preference", "dtype": "float64"}, {"name": "detailedResults_Preference", "dtype": "string"}, {"name": "file_name1", "dtype": "string"}, {"name": "file_name2", "dtype": "string"}, {"name": "model1", "dtype": "string"}, {"name": "model2", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 14265505, "num_examples": 1732}], "download_size": 1930994, "dataset_size": 14265505}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "apache-2.0", "task_categories": ["video-classification", "text-to-video", "text-classification"], "language": ["en"], "tags": ["videos", "t2v", "text-2-video", "text2video", "text-to-video", "human", "annotations", "preferences", "likert", "coherence", "alignment", "wan", "wan 2.1", "veo2", "veo", "pikka", "alpha", "sora", "hunyuan"], "pretty_name": "Pika 2.2 Human Preferences", "size_categories": ["1K<n<10K"]}
false
null
2025-04-08T12:00:02
8
8
false
c4a85460413a0d99ce9b481cf4e68bbabbcb7a30
Rapidata Video Generation Pika 2.2 Human Preference In this dataset, ~756k human responses from ~29k human annotators were collected to evaluate Pika 2.2 video generation model on our benchmark. This dataset was collected in ~1 day total using the Rapidata Python API, accessible to anyone and ideal for large scale data annotation. Explore our latest model rankings on our website. If you get value from this dataset and would like to see more in the future, please consider… See the full description on the dataset page: https://huggingface.co/datasets/Rapidata/text-2-video-human-preferences-pika2.2.
101
101
[ "task_categories:video-classification", "task_categories:text-to-video", "task_categories:text-classification", "language:en", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:tabular", "modality:text", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "videos", "t2v", "text-2-video", "text2video", "text-to-video", "human", "annotations", "preferences", "likert", "coherence", "alignment", "wan", "wan 2.1", "veo2", "veo", "pikka", "alpha", "sora", "hunyuan" ]
2025-04-02T13:23:48
null
null
661e02bd3f198d4337848286
livecodebench/code_generation_lite
livecodebench
{"license": "cc", "tags": ["code", "code generation"], "pretty_name": "LiveCodeBench", "size_categories": ["n<1K"]}
false
null
2025-01-14T18:03:07
34
7
false
0687ab61843a90a0cc864a2b67db729861cd0ae5
LiveCodeBench is a temporaly updating benchmark for code generation. Please check the homepage: https://livecodebench.github.io/.
51,218
156,734
[ "license:cc", "size_categories:n<1K", "arxiv:2403.07974", "region:us", "code", "code generation" ]
2024-04-16T04:46:53
null
@article{jain2024livecodebench, title={LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code}, author={Jain, Naman and Han, King and Gu, Alex and Li, Wen-Ding and Yan, Fanjia and Zhang, Tianjun and Wang, Sida and Solar-Lezama, Armando and Sen, Koushik and Stoica, Ion}, journal={arXiv preprint arXiv:2403.07974}, year={2024} }
667ee649a7d8b1deba8d4f4c
proj-persona/PersonaHub
proj-persona
{"license": "cc-by-nc-sa-4.0", "task_categories": ["text-generation", "text-classification", "token-classification", "fill-mask", "table-question-answering", "text2text-generation"], "language": ["en", "zh"], "tags": ["synthetic", "text", "math", "reasoning", "instruction", "tool"], "size_categories": ["100M<n<1B"], "configs": [{"config_name": "math", "data_files": "math.jsonl"}, {"config_name": "instruction", "data_files": "instruction.jsonl"}, {"config_name": "reasoning", "data_files": "reasoning.jsonl"}, {"config_name": "knowledge", "data_files": "knowledge.jsonl"}, {"config_name": "npc", "data_files": "npc.jsonl"}, {"config_name": "tool", "data_files": "tool.jsonl"}, {"config_name": "persona", "data_files": "persona.jsonl"}, {"config_name": "elite_persona", "data_files": [{"split": "train", "path": "ElitePersonas/*"}]}]}
false
null
2025-03-04T22:01:42
557
7
false
600b0189027c804fc9373b4de4875c171656a4df
Scaling Synthetic Data Creation with 1,000,000,000 Personas This repo releases data introduced in our paper Scaling Synthetic Data Creation with 1,000,000,000 Personas: We propose a novel persona-driven data synthesis methodology that leverages various perspectives within a large language model (LLM) to create diverse synthetic data. To fully exploit this methodology at scale, we introduce PERSONA HUB – a collection of 1 billion diverse personas automatically curated from web data.… See the full description on the dataset page: https://huggingface.co/datasets/proj-persona/PersonaHub.
5,310
46,320
[ "task_categories:text-generation", "task_categories:text-classification", "task_categories:token-classification", "task_categories:fill-mask", "task_categories:table-question-answering", "task_categories:text2text-generation", "language:en", "language:zh", "license:cc-by-nc-sa-4.0", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2406.20094", "region:us", "synthetic", "text", "math", "reasoning", "instruction", "tool" ]
2024-06-28T16:35:21
null
null
66a520e6387f62525b93f1bb
weaverbirdllm/famma
weaverbirdllm
{"language": ["en", "zh", "fr"], "license": "apache-2.0", "size_categories": ["1K<n<10K"], "task_categories": ["question-answering", "multiple-choice"], "pretty_name": "FAMMA: A Benchmark for Financial Domain Multilingual Multimodal Question Answering", "tags": ["finance"], "dataset_info": {"features": [{"name": "idx", "dtype": "int32"}, {"name": "question_id", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "sequence": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "image_type", "dtype": "string"}, {"name": "answers", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "main_question_id", "dtype": "string"}, {"name": "sub_question_id", "dtype": "string"}, {"name": "is_arithmetic", "dtype": "int32"}, {"name": "ans_image_1", "dtype": "image"}, {"name": "ans_image_2", "dtype": "image"}, {"name": "ans_image_3", "dtype": "image"}, {"name": "ans_image_4", "dtype": "image"}, {"name": "ans_image_5", "dtype": "image"}, {"name": "ans_image_6", "dtype": "image"}, {"name": "release", "dtype": "string"}], "splits": [{"name": "release_basic", "num_bytes": 113235537.37, "num_examples": 1945}, {"name": "release_livepro", "num_bytes": 3265950, "num_examples": 103}, {"name": "release_basic_txt", "num_bytes": 1966706.375, "num_examples": 1945}, {"name": "release_livepro_txt", "num_bytes": 58596, "num_examples": 103}], "download_size": 94724026, "dataset_size": 118526789.745}, "configs": [{"config_name": "default", "data_files": [{"split": "release_basic", "path": "data/release_basic-*"}, {"split": "release_livepro", "path": "data/release_livepro-*"}, {"split": "release_basic_txt", "path": "data/release_basic_txt-*"}, {"split": "release_livepro_txt", "path": "data/release_livepro_txt-*"}]}]}
false
null
2025-04-08T09:04:46
13
7
false
a40b9ae8dd9545a82b2e901a0d20d3bd758455c2
Introduction FAMMA is a multi-modal financial Q&A benchmark dataset. The questions encompass three heterogeneous image types - tables, charts and text & math screenshots - and span eight subfields in finance, comprehensively covering topics across major asset classes. Additionally, all the questions are categorized by three difficulty levels — easy, medium, and hard - and are available in three languages — English, Chinese, and French. Furthermore, the questions are divided into two… See the full description on the dataset page: https://huggingface.co/datasets/weaverbirdllm/famma.
219
1,557
[ "task_categories:question-answering", "task_categories:multiple-choice", "language:en", "language:zh", "language:fr", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2410.04526", "region:us", "finance" ]
2024-07-27T16:31:34
null
null
67ae5cb70100bb7fb11fdb31
getomni-ai/ocr-benchmark
getomni-ai
{"license": "mit", "size_categories": ["1K<n<10K"]}
false
null
2025-02-21T06:34:31
49
7
false
4ed0d95271ca00107726230f7a0944ed9e90d897
OmniAI OCR Benchmark A comprehensive benchmark that compares OCR and data extraction capabilities of different multimodal LLMs such as gpt-4o and gemini-2.0, evaluating both text and JSON extraction accuracy. Benchmark Results (Feb 2025) | Source Code
3,590
5,204
[ "license:mit", "size_categories:1K<n<10K", "format:imagefolder", "modality:image", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
2025-02-13T20:57:27
null
null
67d6f73ef789a7b68967193d
starriver030515/FUSION-Finetune-12M
starriver030515
{"license": "apache-2.0", "task_categories": ["question-answering", "visual-question-answering", "table-question-answering"], "language": ["en", "zh"], "configs": [{"config_name": "ALLaVA", "data_files": [{"split": "train", "path": "examples/ALLaVA*"}]}, {"config_name": "ArxivQA", "data_files": [{"split": "train", "path": "examples/ArxivQA*"}]}, {"config_name": "CLEVR", "data_files": [{"split": "train", "path": "examples/CLEVR*"}]}, {"config_name": "ChartQA", "data_files": [{"split": "train", "path": "examples/ChartQA*"}]}, {"config_name": "DVQA", "data_files": [{"split": "train", "path": "examples/DVQA*"}]}, {"config_name": "DataEngine", "data_files": [{"split": "train", "path": "examples/DataEngine*"}]}, {"config_name": "DocMatix", "data_files": [{"split": "train", "path": "examples/DocMatix*"}]}, {"config_name": "GeoQA", "data_files": [{"split": "train", "path": "examples/GeoQA*"}]}, {"config_name": "LNQA", "data_files": [{"split": "train", "path": "examples/LNQA*"}]}, {"config_name": "LVISInstruct", "data_files": [{"split": "train", "path": "examples/LVISInstruct*"}]}, {"config_name": "MMathCoT", "data_files": [{"split": "train", "path": "examples/MMathCoT*"}]}, {"config_name": "MathVision", "data_files": [{"split": "train", "path": "examples/MathVision*"}]}, {"config_name": "MulBerry", "data_files": [{"split": "train", "path": "examples/MulBerry*"}]}, {"config_name": "PixmoAskModelAnything", "data_files": [{"split": "train", "path": "examples/PixmoAskModelAnything*"}]}, {"config_name": "PixmoCap", "data_files": [{"split": "train", "path": "examples/PixmoCap*"}]}, {"config_name": "PixmoCapQA", "data_files": [{"split": "train", "path": "examples/PixmoCapQA*"}]}, {"config_name": "PixmoDocChart", "data_files": [{"split": "train", "path": "examples/PixmoDocChart*"}]}, {"config_name": "PixmoDocDiagram", "data_files": [{"split": "train", "path": "examples/PixmoDocDiagram*"}]}, {"config_name": "PixmoDocTable", "data_files": [{"split": "train", "path": "examples/PixmoDocTable*"}]}, {"config_name": "SynthChoice", "data_files": [{"split": "train", "path": "examples/SynthChoice*"}]}, {"config_name": "SynthConvLong", "data_files": [{"split": "train", "path": "examples/SynthConvLong*"}]}, {"config_name": "SynthConvShort", "data_files": [{"split": "train", "path": "examples/SynthConvShort*"}]}, {"config_name": "SynthContrastLong", "data_files": [{"split": "train", "path": "examples/SynthContrastLong*"}]}, {"config_name": "SynthContrastShort", "data_files": [{"split": "train", "path": "examples/SynthContrastShort*"}]}, {"config_name": "SynthReasoning", "data_files": [{"split": "train", "path": "examples/SynthReasoning*"}]}, {"config_name": "SynthTextQA", "data_files": [{"split": "train", "path": "examples/SynthTextQA*"}]}, {"config_name": "SynthDog", "data_files": [{"split": "train", "path": "examples/SynthDog*"}]}], "dataset_info": [{"config_name": "ALLaVA", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}, {"config_name": "ArxivQA", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}, {"config_name": "CLEVR", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}, {"config_name": "ChartQA", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}, {"config_name": "DVQA", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}, {"config_name": "DataEngine", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}, {"config_name": "GeoQA", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}, {"config_name": "LNQA", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}, {"config_name": "LVISInstruct", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}, {"config_name": "DocMatix", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}, {"config_name": "MMathCoT", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}, {"config_name": "MathVision", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}, {"config_name": "MulBerry", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}, {"config_name": "PixmoAskModelAnything", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}, {"config_name": "PixmoCap", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}, {"config_name": "PixmoCapQA", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}, {"config_name": "PixmoDocChart", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}, {"config_name": "PixmoDocDiagram", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}, {"config_name": "PixmoDocTable", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}, {"config_name": "SynthChoice", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}, {"config_name": "SynthConvLong", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}, {"config_name": "SynthConvShort", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}, {"config_name": "SynthContrastLong", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}, {"config_name": "SynthContrastShort", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}, {"config_name": "SynthReasoning", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}, {"config_name": "SynthTextQA", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}, {"config_name": "SynthDog", "features": [{"name": "id", "dtype": "string"}, {"name": "QA", "dtype": "string"}, {"name": "image", "dtype": "image"}]}], "size_categories": ["10M<n<100M"]}
false
null
2025-04-12T06:43:43
9
7
false
5e9ace80ee08f925bc979391b8493004eca45edb
FUSION-12M Dataset Please see paper & website for more information: comming soon~ comming soon~ Overview FUSION-12M is a large-scale, diverse multimodal instruction-tuning dataset used to train FUSION-3B and FUSION-8B models. It builds upon Cambrian-1 by significantly expanding both the quantity and variety of data, particularly in areas such as OCR, mathematical reasoning, and synthetic high-quality Q&A data. The goal is to provide a high-quality and high-volume… See the full description on the dataset page: https://huggingface.co/datasets/starriver030515/FUSION-Finetune-12M.
738
738
[ "task_categories:question-answering", "task_categories:visual-question-answering", "task_categories:table-question-answering", "language:en", "language:zh", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-03-16T16:07:26
null
null
67ea45bbcb39affecc10763e
virtuoussy/Multi-subject-RLVR
virtuoussy
{"license": "apache-2.0", "task_categories": ["question-answering"], "language": ["en"]}
false
null
2025-04-02T10:29:40
51
7
false
5be8ffa52bf3ccbfe0d4f601ddee1183cb1be0ab
Multi-subject data for paper "Expanding RL with Verifiable Rewards Across Diverse Domains". we use a multi-subject multiple-choice QA dataset ExamQA (Yu et al., 2021). Originally written in Chinese, ExamQA covers at least 48 first-level subjects. We remove the distractors and convert each instance into a free-form QA pair. This dataset consists of 638k college-level instances, with both questions and objective answers written by domain experts for examination purposes. We also use GPT-4o-mini… See the full description on the dataset page: https://huggingface.co/datasets/virtuoussy/Multi-subject-RLVR.
959
959
[ "task_categories:question-answering", "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2503.23829", "region:us" ]
2025-03-31T07:35:23
null
null
67f3e39c1ed031d0a1658cd5
Rapidata/Reve-AI-Halfmoon_t2i_human_preference
Rapidata
{"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "image1", "dtype": "image"}, {"name": "image2", "dtype": "image"}, {"name": "model1", "dtype": "string"}, {"name": "model2", "dtype": "string"}, {"name": "weighted_results_image1_preference", "dtype": "float32"}, {"name": "weighted_results_image2_preference", "dtype": "float32"}, {"name": "detailed_results_preference", "dtype": "string"}, {"name": "weighted_results_image1_coherence", "dtype": "float32"}, {"name": "weighted_results_image2_coherence", "dtype": "float32"}, {"name": "detailed_results_coherence", "dtype": "string"}, {"name": "weighted_results_image1_alignment", "dtype": "float32"}, {"name": "weighted_results_image2_alignment", "dtype": "float32"}, {"name": "detailed_results_alignment", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 32462670063, "num_examples": 13000}], "download_size": 6565441182, "dataset_size": 32462670063}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "cdla-permissive-2.0", "task_categories": ["text-to-image", "image-to-text", "image-classification", "reinforcement-learning"], "language": ["en"], "tags": ["Human", "Preference", "Coherence", "Alignment", "country", "language", "flux", "midjourney", "dalle3", "stabeldiffusion", "alignment", "flux1.1", "flux1", "imagen3", "aurora", "lumina", "recraft", "recraft v2", "ideogram", "frames", "reve ai", "halfmoon"], "size_categories": ["100K<n<1M"], "pretty_name": "Halfmoon vs. OpenAI 4o / Ideogram V2 / Recraft V2 / Lumina-15-2-25 / Frames-23-1-25 / Aurora / imagen-3 / Flux-1.1-pro / Flux-1-pro / Dalle-3 / Midjourney-5.2 / Stabel-Diffusion-3 - Human Preference Dataset"}
false
null
2025-04-08T11:55:08
7
7
false
5903def06796885ec2c1278abeebfa774f901c30
Rapidata Reve AI Halfmoon Preference This T2I dataset contains over 195k human responses from over 51k individual annotators, collected in just ~1 Day using the Rapidata Python API, accessible to anyone and ideal for large scale evaluation. Evaluating Reve AI Halfmoon across three categories: preference, coherence, and alignment. Explore our latest model rankings on our website. If you get value from this dataset and would like to see more in the future, please consider liking… See the full description on the dataset page: https://huggingface.co/datasets/Rapidata/Reve-AI-Halfmoon_t2i_human_preference.
44
44
[ "task_categories:text-to-image", "task_categories:image-to-text", "task_categories:image-classification", "task_categories:reinforcement-learning", "language:en", "license:cdla-permissive-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "Human", "Preference", "Coherence", "Alignment", "country", "language", "flux", "midjourney", "dalle3", "stabeldiffusion", "alignment", "flux1.1", "flux1", "imagen3", "aurora", "lumina", "recraft", "recraft v2", "ideogram", "frames", "reve ai", "halfmoon" ]
2025-04-07T14:39:24
null
null
End of preview. Expand in Data Studio

NEW Changes Feb 27th

  • Added new fields on the models split: downloadsAllTime, safetensors, gguf

  • Added new field on the datasets split: downloadsAllTime

  • Added new split: papers which is all of the Daily Papers

Updated Daily

Downloads last month
4,922

Data Sourcing report

powered
by Spawning.ai

No elements in this dataset have been identified as either opted-out, or opted-in, by their creator.

Spaces using cfahlgren1/hub-stats 11