_id
stringlengths
24
24
id
stringlengths
5
121
author
stringlengths
2
42
cardData
stringlengths
2
1.07M
disabled
bool
2 classes
gated
null
lastModified
timestamp[ns]date
2021-02-05 16:03:35
2025-04-17 23:31:24
likes
int64
0
7.7k
trendingScore
float64
-1
99
private
bool
1 class
sha
stringlengths
40
40
description
stringlengths
0
6.67k
downloads
int64
0
5.74M
downloadsAllTime
int64
0
142M
tags
sequencelengths
1
7.92k
createdAt
timestamp[ns]date
2022-03-02 23:29:22
2025-04-17 23:30:44
paperswithcode_id
stringclasses
654 values
citation
stringlengths
0
10.7k
67ec47948647cfa17739af7a
nvidia/OpenCodeReasoning
nvidia
{"license": "cc-by-4.0", "size_categories": ["100K<n<1M"], "pretty_name": "OpenCodeReasoning", "dataset_info": [{"config_name": "split_0", "features": [{"name": "id", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "license", "dtype": "string"}, {"name": "dataset", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "difficulty", "dtype": "string"}, {"name": "solution", "dtype": "string"}], "splits": [{"name": "split_0", "num_bytes": 28108469190, "num_examples": 567850}]}, {"config_name": "split_1", "features": [{"name": "id", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "license", "dtype": "string"}, {"name": "dataset", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "difficulty", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "index", "dtype": "string"}], "splits": [{"name": "split_1", "num_bytes": 4722811278, "num_examples": 167405}]}], "configs": [{"config_name": "split_0", "data_files": [{"split": "split_0", "path": "split_0/train-*"}]}, {"config_name": "split_1", "data_files": [{"split": "split_1", "path": "split_1/train-*"}]}], "task_categories": ["text-generation"], "tags": ["synthetic"]}
false
null
2025-04-15T16:56:07
234
99
false
c141f0b01e489370f312cd54985b7b02e8dab8da
OpenCodeReasoning: Advancing Data Distillation for Competitive Coding Data Overview OpenCodeReasoning is the largest reasoning-based synthetic dataset to date for coding, comprises 735,255 samples in Python across 28,319 unique competitive programming questions. OpenCodeReasoning is designed for supervised fine-tuning (SFT). Technical Report - Discover the methodology and technical details behind OpenCodeReasoning. Github Repo - Access the complete pipeline used to… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/OpenCodeReasoning.
7,801
7,801
[ "task_categories:text-generation", "license:cc-by-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2504.01943", "region:us", "synthetic" ]
2025-04-01T20:07:48
null
null
67f9abed63243ae752060832
openai/mrcr
openai
{"license": "mit"}
false
null
2025-04-14T18:58:12
89
89
false
204b0d4e8d9ca5c0a90bf942fdb2a5969094adc0
OpenAI MRCR: Long context multiple needle in a haystack benchmark OpenAI MRCR (Multi-round co-reference resolution) is a long context dataset for benchmarking an LLM's ability to distinguish between multiple needles hidden in context. This eval is inspired by the MRCR eval first introduced by Gemini (https://arxiv.org/pdf/2409.12640v2). OpenAI MRCR expands the tasks's difficulty and provides opensource data for reproducing results. The task is as follows: The model is given a long… See the full description on the dataset page: https://huggingface.co/datasets/openai/mrcr.
1,227
1,227
[ "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2409.12640", "region:us" ]
2025-04-11T23:55:25
null
null
67fce65dd1ec7d15ba6a2da3
zwhe99/DeepMath-103K
zwhe99
{"license": "mit", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "final_answer", "dtype": "string"}, {"name": "difficulty", "dtype": "float64"}, {"name": "topic", "dtype": "string"}, {"name": "r1_solution_1", "dtype": "string"}, {"name": "r1_solution_2", "dtype": "string"}, {"name": "r1_solution_3", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4963982703, "num_examples": 103110}], "download_size": 2135928958, "dataset_size": 4963982703}, "task_categories": ["text-generation", "text2text-generation"], "language": ["en"], "tags": ["math", "reasoning", "rl"], "pretty_name": "deepmath-103k", "size_categories": ["100K<n<1M"]}
false
null
2025-04-17T05:12:16
60
60
false
3c5789b105a8cc11865f39fdcb4cb46529fed073
DeepMath-103K 📖 Overview DeepMath-103K is meticulously curated to push the boundaries of mathematical reasoning in language models. Key features include:1. Challenging Problems: DeepMath-103K has a strong focus on difficult mathematical problems (primarily Levels 5-9), significantly raising the complexity bar compared to many existing open datasets. Difficulty… See the full description on the dataset page: https://huggingface.co/datasets/zwhe99/DeepMath-103K.
1,554
1,554
[ "task_categories:text-generation", "task_categories:text2text-generation", "language:en", "license:mit", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2504.11456", "region:us", "math", "reasoning", "rl" ]
2025-04-14T10:41:33
null
null
67f62a9296e24db82ed27e76
divaroffical/real_estate_ads
divaroffical
{"license": "odbl"}
false
null
2025-04-16T08:31:19
50
50
false
bdc2a655ad7955e1cfcf6a7467de85144d5d9099
🏠 Divar Real Estate Ads Dataset 📋 Overview The real_estate_ads dataset contains one million anonymized real estate advertisements collected from the Divar platform, one of the largest classified ads platforms in the Middle East. This comprehensive dataset provides researchers, data scientists, and entrepreneurs with authentic real estate market data to build innovative solutions such as price evaluation models, market analysis tools, and forecasting systems.… See the full description on the dataset page: https://huggingface.co/datasets/divaroffical/real_estate_ads.
1,157
1,157
[ "license:odbl", "size_categories:1M<n<10M", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-04-09T08:06:42
null
null
67f9a5dde1bb509430e6af04
openai/graphwalks
openai
{"license": "mit"}
false
null
2025-04-14T17:22:42
46
46
false
6fe75ac25ccf55853294fe7995332d4f59d91bfb
GraphWalks: a multi hop reasoning long context benchmark In Graphwalks, the model is given a graph represented by its edge list and asked to perform an operation. Example prompt: You will be given a graph as a list of directed edges. All nodes are at least degree 1. You will also get a description of an operation to perform on the graph. Your job is to execute the operation on the graph and return the set of nodes that the operation results in. If asked for a breadth-first search… See the full description on the dataset page: https://huggingface.co/datasets/openai/graphwalks.
616
616
[ "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-04-11T23:29:33
null
null
67d3479522a51de18affff22
nvidia/Llama-Nemotron-Post-Training-Dataset
nvidia
{"license": "cc-by-4.0", "configs": [{"config_name": "SFT", "data_files": [{"split": "code", "path": "SFT/code/*.jsonl"}, {"split": "math", "path": "SFT/math/*.jsonl"}, {"split": "science", "path": "SFT/science/*.jsonl"}, {"split": "chat", "path": "SFT/chat/*.jsonl"}, {"split": "safety", "path": "SFT/safety/*.jsonl"}], "default": true}, {"config_name": "RL", "data_files": [{"split": "instruction_following", "path": "RL/instruction_following/*.jsonl"}]}]}
false
null
2025-04-16T18:05:39
405
41
false
ec1aa9f7d0832333c68283cd70a3df60bb8021db
Llama-Nemotron-Post-Training-Dataset-v1.1 Release Update [4/8/2025]: v1.1: We are releasing an additional 2.2M Math and 500K Code Reasoning Data in support of our release of Llama-3.1-Nemotron-Ultra-253B-v1. 🎉 Data Overview This dataset is a compilation of SFT and RL data that supports improvements of math, code, general reasoning, and instruction following capabilities of the original Llama instruct model, in support of NVIDIA’s release of… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/Llama-Nemotron-Post-Training-Dataset.
5,238
5,249
[ "license:cc-by-4.0", "size_categories:1M<n<10M", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "region:us" ]
2025-03-13T21:01:09
null
null
67e9a644ea97f3c65c463bfb
LLM360/MegaMath
LLM360
{"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "tags": ["math", "code", "pre-training", "synthesis"], "size_categories": ["1B<n<10B"]}
false
null
2025-04-09T13:17:50
69
29
false
3cbc64616594d6bc8759abaa0b2a71858f880f0d
MegaMath: Pushing the Limits of Open Math Copora Megamath is part of TxT360, curated by LLM360 Team. We introduce MegaMath, an open math pretraining dataset curated from diverse, math-focused sources, with over 300B tokens. MegaMath is curated via the following three efforts: Revisiting web data: We re-extracted mathematical documents from Common Crawl with math-oriented HTML optimizations, fasttext-based filtering and deduplication, all for acquiring higher-quality data on the… See the full description on the dataset page: https://huggingface.co/datasets/LLM360/MegaMath.
51,127
51,127
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:100M<n<1B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2504.02807", "region:us", "math", "code", "pre-training", "synthesis" ]
2025-03-30T20:15:00
null
null
67f3de7c9421ed3129d436cf
agentica-org/DeepCoder-Preview-Dataset
agentica-org
{"dataset_info": [{"config_name": "codeforces", "features": [{"name": "problem", "dtype": "string"}, {"name": "tests", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 778742, "num_examples": 408}], "download_size": 301694, "dataset_size": 778742}, {"config_name": "lcbv5", "features": [{"name": "problem", "dtype": "string"}, {"name": "starter_code", "dtype": "string"}, {"name": "tests", "dtype": "string"}, {"name": "metadata", "struct": [{"name": "func_name", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 5349497203, "num_examples": 599}, {"name": "test", "num_bytes": 3744466075, "num_examples": 279}], "download_size": 5790246998, "dataset_size": 9093963278}, {"config_name": "primeintellect", "features": [{"name": "problem", "dtype": "string"}, {"name": "solutions", "sequence": "string"}, {"name": "tests", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2312671464, "num_examples": 16252}], "download_size": 1159149534, "dataset_size": 2312671464}, {"config_name": "taco", "features": [{"name": "problem", "dtype": "string"}, {"name": "tests", "dtype": "string"}, {"name": "solutions", "sequence": "string"}], "splits": [{"name": "train", "num_bytes": 1657247795, "num_examples": 7436}], "download_size": 862295065, "dataset_size": 1657247795}], "configs": [{"config_name": "codeforces", "data_files": [{"split": "test", "path": "codeforces/test-*"}]}, {"config_name": "lcbv5", "data_files": [{"split": "train", "path": "lcbv5/train-*"}, {"split": "test", "path": "lcbv5/test-*"}]}, {"config_name": "primeintellect", "data_files": [{"split": "train", "path": "primeintellect/train-*"}]}, {"config_name": "taco", "data_files": [{"split": "train", "path": "taco/train-*"}]}], "license": "mit", "language": ["en"], "tags": ["code"], "size_categories": ["10K<n<100K"]}
false
null
2025-04-09T20:43:48
65
29
false
177913a7bd43791646ef6a43645caa3c871ab3db
Data Our training dataset consists of 24K problems paired with their test cases: 7.5K TACO Verified problems. 16K verified coding problems from PrimeIntellect’s SYNTHETIC-1. 600 LiveCodeBench (v5) problems submitted between May 1, 2023 and July 31, 2024. Our test dataset consists of: LiveCodeBench (v5) problems between August 1, 2024 and February 1, 2025. Codeforces problems from Qwen/CodeElo. Format Each row in the dataset contains: problem: The coding problem… See the full description on the dataset page: https://huggingface.co/datasets/agentica-org/DeepCoder-Preview-Dataset.
2,633
2,633
[ "language:en", "license:mit", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "code" ]
2025-04-07T14:17:32
null
null
67edf568d1631250f17528af
open-thoughts/OpenThoughts2-1M
open-thoughts
{"dataset_info": {"features": [{"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "question", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 18986223337, "num_examples": 1143205}], "download_size": 8328411205, "dataset_size": 18986223337}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "tags": ["synthetic", "curator"], "license": "apache-2.0"}
false
null
2025-04-07T21:40:23
112
28
false
40766050d883e0aa951fd3ddee33faf3ad83f26b
OpenThoughts2-1M Open synthetic reasoning dataset with 1M high-quality examples covering math, science, code, and puzzles! OpenThoughts2-1M builds upon our previous OpenThoughts-114k dataset, augmenting it with existing datasets like OpenR1, as well as additional math and code reasoning data. This dataset was used to train OpenThinker2-7B and OpenThinker2-32B. Inspect the content with rich formatting and search & filter capabilities in Curator Viewer. See our blog post… See the full description on the dataset page: https://huggingface.co/datasets/open-thoughts/OpenThoughts2-1M.
12,807
12,807
[ "license:apache-2.0", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "synthetic", "curator" ]
2025-04-03T02:41:44
null
null
679dee7e52390b33e5970da6
future-technologies/Universal-Transformers-Dataset
future-technologies
{"task_categories": ["text-classification", "token-classification", "table-question-answering", "question-answering", "zero-shot-classification", "translation", "summarization", "feature-extraction", "text-generation", "text2text-generation", "fill-mask", "sentence-similarity", "text-to-speech", "text-to-audio", "automatic-speech-recognition", "audio-to-audio", "audio-classification", "voice-activity-detection", "depth-estimation", "image-classification", "object-detection", "image-segmentation", "text-to-image", "image-to-text", "image-to-image", "image-to-video", "unconditional-image-generation", "video-classification", "reinforcement-learning", "robotics", "tabular-classification", "tabular-regression", "tabular-to-text", "table-to-text", "multiple-choice", "text-retrieval", "time-series-forecasting", "text-to-video", "visual-question-answering", "zero-shot-image-classification", "graph-ml", "mask-generation", "zero-shot-object-detection", "text-to-3d", "image-to-3d", "image-feature-extraction", "video-text-to-text"], "language": ["ab", "ace", "ady", "af", "alt", "am", "ami", "an", "ang", "anp", "ar", "arc", "ary", "arz", "as", "ast", "atj", "av", "avk", "awa", "ay", "az", "azb", "ba", "ban", "bar", "bbc", "bcl", "be", "bg", "bh", "bi", "bjn", "blk", "bm", "bn", "bo", "bpy", "br", "bs", "bug", "bxr", "ca", "cbk", "cdo", "ce", "ceb", "ch", "chr", "chy", "ckb", "co", "cr", "crh", "cs", "csb", "cu", "cv", "cy", "da", "dag", "de", "dga", "din", "diq", "dsb", "dty", "dv", "dz", "ee", "el", "eml", "en", "eo", "es", "et", "eu", "ext", "fa", "fat", "ff", "fi", "fj", "fo", "fon", "fr", "frp", "frr", "fur", "fy", "ga", "gag", "gan", "gcr", "gd", "gl", "glk", "gn", "gom", "gor", "got", "gpe", "gsw", "gu", "guc", "gur", "guw", "gv", "ha", "hak", "haw", "hbs", "he", "hi", "hif", "hr", "hsb", "ht", "hu", "hy", "hyw", "ia", "id", "ie", "ig", "ik", "ilo", "inh", "io", "is", "it", "iu", "ja", "jam", "jbo", "jv", "ka", "kaa", "kab", "kbd", "kbp", "kcg", "kg", "ki", "kk", "kl", "km", "kn", "ko", "koi", "krc", "ks", "ksh", "ku", "kv", "kw", "ky", "la", "lad", "lb", "lbe", "lez", "lfn", "lg", "li", "lij", "lld", "lmo", "ln", "lo", "lt", "ltg", "lv", "lzh", "mad", "mai", "map", "mdf", "mg", "mhr", "mi", "min", "mk", "ml", "mn", "mni", "mnw", "mr", "mrj", "ms", "mt", "mwl", "my", "myv", "mzn", "nah", "nan", "nap", "nds", "ne", "new", "nia", "nl", "nn", "no", "nov", "nqo", "nrf", "nso", "nv", "ny", "oc", "olo", "om", "or", "os", "pa", "pag", "pam", "pap", "pcd", "pcm", "pdc", "pfl", "pi", "pih", "pl", "pms", "pnb", "pnt", "ps", "pt", "pwn", "qu", "rm", "rmy", "rn", "ro", "ru", "rue", "rup", "rw", "sa", "sah", "sat", "sc", "scn", "sco", "sd", "se", "sg", "sgs", "shi", "shn", "si", "sk", "skr", "sl", "sm", "smn", "sn", "so", "sq", "sr", "srn", "ss", "st", "stq", "su", "sv", "sw", "szl", "szy", "ta", "tay", "tcy", "te", "tet", "tg", "th", "ti", "tk", "tl", "tly", "tn", "to", "tpi", "tr", "trv", "ts", "tt", "tum", "tw", "ty", "tyv", "udm", "ug", "uk", "ur", "uz", "ve", "vec", "vep", "vi", "vls", "vo", "vro", "wa", "war", "wo", "wuu", "xal", "xh", "xmf", "yi", "yo", "yue", "za", "zea", "zgh", "zh", "zu"], "tags": ["tabular", "video", "image", "audio", "text-prompts", "text", "universal", "transformer", "database", "massive-data", "ai", "training", "huggingface", "ai", "artificial-intelligence", "machine-learning", "deep-learning", "transformers", "neural-networks", "text", "image", "audio", "video", "multimodal", "structured-data", "tabular-data", "nlp", "computer-vision", "speech-recognition", "reinforcement-learning", "time-series", "large-language-models", "generative-ai", "huggingface-dataset", "huggingface", "pytorch", "tensorflow", "jax", "pretraining", "finetuning", "self-supervised-learning", "few-shot-learning", "zero-shot-learning", "unsupervised-learning", "meta-learning", "diffusion-models"], "size_categories": ["n>1T"], "pretty_name": "Universal Transformers: Multilingual & Scalable AI Dataset"}
false
null
2025-04-15T13:24:42
48
22
false
70d940db37e4cb645437f892fab8a7e5404bb7bf
Universal Transformer Dataset 💠 A Message from Ujjawal Tyagi (Founder & CEO) "This is more than a dataset..... it’s the start of a new world....." I’m Ujjawal Tyagi, Founder of Lambda Go & GoX AI Platform — proudly born in the land of wisdom, resilience, and rising technology..... India 🇮🇳 What we’ve built here isn’t just numbers, files, or data points..... it’s purpose. It’s a movement. It’s for every developer, researcher, and dreamer who wants to… See the full description on the dataset page: https://huggingface.co/datasets/future-technologies/Universal-Transformers-Dataset.
2,677
2,732
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:table-question-answering", "task_categories:question-answering", "task_categories:zero-shot-classification", "task_categories:translation", "task_categories:summarization", "task_categories:feature-extraction", "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:fill-mask", "task_categories:sentence-similarity", "task_categories:text-to-speech", "task_categories:text-to-audio", "task_categories:automatic-speech-recognition", "task_categories:audio-to-audio", "task_categories:audio-classification", "task_categories:voice-activity-detection", "task_categories:depth-estimation", "task_categories:image-classification", "task_categories:object-detection", "task_categories:image-segmentation", "task_categories:text-to-image", "task_categories:image-to-text", "task_categories:image-to-image", "task_categories:image-to-video", "task_categories:unconditional-image-generation", "task_categories:video-classification", "task_categories:reinforcement-learning", "task_categories:robotics", "task_categories:tabular-classification", "task_categories:tabular-regression", "task_categories:tabular-to-text", "task_categories:table-to-text", "task_categories:multiple-choice", "task_categories:text-retrieval", "task_categories:time-series-forecasting", "task_categories:text-to-video", "task_categories:visual-question-answering", "task_categories:zero-shot-image-classification", "task_categories:graph-ml", "task_categories:mask-generation", "task_categories:zero-shot-object-detection", "task_categories:text-to-3d", "task_categories:image-to-3d", "task_categories:image-feature-extraction", "task_categories:video-text-to-text", "language:ab", "language:ace", "language:ady", "language:af", "language:alt", "language:am", "language:ami", "language:an", "language:ang", "language:anp", "language:ar", "language:arc", "language:ary", "language:arz", "language:as", "language:ast", "language:atj", "language:av", "language:avk", "language:awa", "language:ay", "language:az", "language:azb", "language:ba", "language:ban", "language:bar", "language:bbc", "language:bcl", "language:be", "language:bg", "language:bh", "language:bi", "language:bjn", "language:blk", "language:bm", "language:bn", "language:bo", "language:bpy", "language:br", "language:bs", "language:bug", "language:bxr", "language:ca", "language:cbk", "language:cdo", "language:ce", "language:ceb", "language:ch", "language:chr", "language:chy", "language:ckb", "language:co", "language:cr", "language:crh", "language:cs", "language:csb", "language:cu", "language:cv", "language:cy", "language:da", "language:dag", "language:de", "language:dga", "language:din", "language:diq", "language:dsb", "language:dty", "language:dv", "language:dz", "language:ee", "language:el", "language:eml", "language:en", "language:eo", "language:es", "language:et", "language:eu", "language:ext", "language:fa", "language:fat", "language:ff", "language:fi", "language:fj", "language:fo", "language:fon", "language:fr", "language:frp", "language:frr", "language:fur", "language:fy", "language:ga", "language:gag", "language:gan", "language:gcr", "language:gd", "language:gl", "language:glk", "language:gn", "language:gom", "language:gor", "language:got", "language:gpe", "language:gsw", "language:gu", "language:guc", "language:gur", "language:guw", "language:gv", "language:ha", "language:hak", "language:haw", "language:hbs", "language:he", "language:hi", "language:hif", "language:hr", "language:hsb", "language:ht", "language:hu", "language:hy", "language:hyw", "language:ia", "language:id", "language:ie", "language:ig", "language:ik", "language:ilo", "language:inh", "language:io", "language:is", "language:it", "language:iu", "language:ja", "language:jam", "language:jbo", "language:jv", "language:ka", "language:kaa", "language:kab", "language:kbd", "language:kbp", "language:kcg", "language:kg", "language:ki", "language:kk", "language:kl", "language:km", "language:kn", "language:ko", "language:koi", "language:krc", "language:ks", "language:ksh", "language:ku", "language:kv", "language:kw", "language:ky", "language:la", "language:lad", "language:lb", "language:lbe", "language:lez", "language:lfn", "language:lg", "language:li", "language:lij", "language:lld", "language:lmo", "language:ln", "language:lo", "language:lt", "language:ltg", "language:lv", "language:lzh", "language:mad", "language:mai", "language:map", "language:mdf", "language:mg", "language:mhr", "language:mi", "language:min", "language:mk", "language:ml", "language:mn", "language:mni", "language:mnw", "language:mr", "language:mrj", "language:ms", "language:mt", "language:mwl", "language:my", "language:myv", "language:mzn", "language:nah", "language:nan", "language:nap", "language:nds", "language:ne", "language:new", "language:nia", "language:nl", "language:nn", "language:no", "language:nov", "language:nqo", "language:nrf", "language:nso", "language:nv", "language:ny", "language:oc", "language:olo", "language:om", "language:or", "language:os", "language:pa", "language:pag", "language:pam", "language:pap", "language:pcd", "language:pcm", "language:pdc", "language:pfl", "language:pi", "language:pih", "language:pl", "language:pms", "language:pnb", "language:pnt", "language:ps", "language:pt", "language:pwn", "language:qu", "language:rm", "language:rmy", "language:rn", "language:ro", "language:ru", "language:rue", "language:rup", "language:rw", "language:sa", "language:sah", "language:sat", "language:sc", "language:scn", "language:sco", "language:sd", "language:se", "language:sg", "language:sgs", "language:shi", "language:shn", "language:si", "language:sk", "language:skr", "language:sl", "language:sm", "language:smn", "language:sn", "language:so", "language:sq", "language:sr", "language:srn", "language:ss", "language:st", "language:stq", "language:su", "language:sv", "language:sw", "language:szl", "language:szy", "language:ta", "language:tay", "language:tcy", "language:te", "language:tet", "language:tg", "language:th", "language:ti", "language:tk", "language:tl", "language:tly", "language:tn", "language:to", "language:tpi", "language:tr", "language:trv", "language:ts", "language:tt", "language:tum", "language:tw", "language:ty", "language:tyv", "language:udm", "language:ug", "language:uk", "language:ur", "language:uz", "language:ve", "language:vec", "language:vep", "language:vi", "language:vls", "language:vo", "language:vro", "language:wa", "language:war", "language:wo", "language:wuu", "language:xal", "language:xh", "language:xmf", "language:yi", "language:yo", "language:yue", "language:za", "language:zea", "language:zgh", "language:zh", "language:zu", "size_categories:10M<n<100M", "format:parquet", "modality:text", "modality:tabular", "modality:video", "modality:image", "modality:audio", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "tabular", "video", "image", "audio", "text-prompts", "text", "universal", "transformer", "database", "massive-data", "ai", "training", "huggingface", "artificial-intelligence", "machine-learning", "deep-learning", "transformers", "neural-networks", "multimodal", "structured-data", "tabular-data", "nlp", "computer-vision", "speech-recognition", "reinforcement-learning", "time-series", "large-language-models", "generative-ai", "huggingface-dataset", "pytorch", "tensorflow", "jax", "pretraining", "finetuning", "self-supervised-learning", "few-shot-learning", "zero-shot-learning", "unsupervised-learning", "meta-learning", "diffusion-models" ]
2025-02-01T09:50:54
null
null
676f70846bf205795346d2be
FreedomIntelligence/medical-o1-reasoning-SFT
FreedomIntelligence
{"license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en", "zh"], "tags": ["medical", "biology"], "configs": [{"config_name": "en", "data_files": "medical_o1_sft.json"}, {"config_name": "zh", "data_files": "medical_o1_sft_Chinese.json"}]}
false
null
2025-02-22T05:15:38
644
21
false
61536c1d80b2c799df6800cc583897b77d2c86d2
News [2025/02/22] We released the distilled dataset from Deepseek-R1 based on medical verifiable problems. You can use it to initialize your models with the reasoning chain from Deepseek-R1. [2024/12/25] We open-sourced the medical reasoning dataset for SFT, built on medical verifiable problems and an LLM verifier. Introduction This dataset is used to fine-tune HuatuoGPT-o1, a medical LLM designed for advanced medical reasoning. This dataset is constructed using GPT-4o… See the full description on the dataset page: https://huggingface.co/datasets/FreedomIntelligence/medical-o1-reasoning-SFT.
18,308
57,310
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "language:zh", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2412.18925", "region:us", "medical", "biology" ]
2024-12-28T03:29:08
null
null
63990f21cc50af73d29ecfa3
fka/awesome-chatgpt-prompts
fka
{"license": "cc0-1.0", "tags": ["ChatGPT"], "task_categories": ["question-answering"], "size_categories": ["100K<n<1M"]}
false
null
2025-01-06T00:02:53
7,696
20
false
68ba7694e23014788dcc8ab5afe613824f45a05c
🧠 Awesome ChatGPT Prompts [CSV dataset] This is a Dataset Repository of Awesome ChatGPT Prompts View All Prompts on GitHub License CC-0
10,877
145,557
[ "task_categories:question-answering", "license:cc0-1.0", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "ChatGPT" ]
2022-12-13T23:47:45
null
null
66212f29fb07c3e05ad0432e
HuggingFaceFW/fineweb
HuggingFaceFW
{"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "FineWeb", "size_categories": ["n>1T"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*/*"}]}, {"config_name": "sample-10BT", "data_files": [{"split": "train", "path": "sample/10BT/*"}]}, {"config_name": "sample-100BT", "data_files": [{"split": "train", "path": "sample/100BT/*"}]}, {"config_name": "sample-350BT", "data_files": [{"split": "train", "path": "sample/350BT/*"}]}, {"config_name": "CC-MAIN-2024-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-51/*"}]}, {"config_name": "CC-MAIN-2024-46", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-46/*"}]}, {"config_name": "CC-MAIN-2024-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-42/*"}]}, {"config_name": "CC-MAIN-2024-38", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-38/*"}]}, {"config_name": "CC-MAIN-2024-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-33/*"}]}, {"config_name": "CC-MAIN-2024-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-30/*"}]}, {"config_name": "CC-MAIN-2024-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-26/*"}]}, {"config_name": "CC-MAIN-2024-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-22/*"}]}, {"config_name": "CC-MAIN-2024-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-18/*"}]}, {"config_name": "CC-MAIN-2024-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-10/*"}]}, {"config_name": "CC-MAIN-2023-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-50/*"}]}, {"config_name": "CC-MAIN-2023-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-40/*"}]}, {"config_name": "CC-MAIN-2023-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-23/*"}]}, {"config_name": "CC-MAIN-2023-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-14/*"}]}, {"config_name": "CC-MAIN-2023-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-06/*"}]}, {"config_name": "CC-MAIN-2022-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-49/*"}]}, {"config_name": "CC-MAIN-2022-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-40/*"}]}, {"config_name": "CC-MAIN-2022-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-33/*"}]}, {"config_name": "CC-MAIN-2022-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-27/*"}]}, {"config_name": "CC-MAIN-2022-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-21/*"}]}, {"config_name": "CC-MAIN-2022-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-05/*"}]}, {"config_name": "CC-MAIN-2021-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-49/*"}]}, {"config_name": "CC-MAIN-2021-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-43/*"}]}, {"config_name": "CC-MAIN-2021-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-39/*"}]}, {"config_name": "CC-MAIN-2021-31", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-31/*"}]}, {"config_name": "CC-MAIN-2021-25", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-25/*"}]}, {"config_name": "CC-MAIN-2021-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-21/*"}]}, {"config_name": "CC-MAIN-2021-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-17/*"}]}, {"config_name": "CC-MAIN-2021-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-10/*"}]}, {"config_name": "CC-MAIN-2021-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-04/*"}]}, {"config_name": "CC-MAIN-2020-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-50/*"}]}, {"config_name": "CC-MAIN-2020-45", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-45/*"}]}, {"config_name": "CC-MAIN-2020-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-40/*"}]}, {"config_name": "CC-MAIN-2020-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-34/*"}]}, {"config_name": "CC-MAIN-2020-29", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-29/*"}]}, {"config_name": "CC-MAIN-2020-24", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-24/*"}]}, {"config_name": "CC-MAIN-2020-16", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-16/*"}]}, {"config_name": "CC-MAIN-2020-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-10/*"}]}, {"config_name": "CC-MAIN-2020-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-05/*"}]}, {"config_name": "CC-MAIN-2019-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-51/*"}]}, {"config_name": "CC-MAIN-2019-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-47/*"}]}, {"config_name": "CC-MAIN-2019-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-43/*"}]}, {"config_name": "CC-MAIN-2019-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-39/*"}]}, {"config_name": "CC-MAIN-2019-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-35/*"}]}, {"config_name": "CC-MAIN-2019-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-30/*"}]}, {"config_name": "CC-MAIN-2019-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-26/*"}]}, {"config_name": "CC-MAIN-2019-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-22/*"}]}, {"config_name": "CC-MAIN-2019-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-18/*"}]}, {"config_name": "CC-MAIN-2019-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-13/*"}]}, {"config_name": "CC-MAIN-2019-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-09/*"}]}, {"config_name": "CC-MAIN-2019-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-04/*"}]}, {"config_name": "CC-MAIN-2018-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-51/*"}]}, {"config_name": "CC-MAIN-2018-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-47/*"}]}, {"config_name": "CC-MAIN-2018-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-43/*"}]}, {"config_name": "CC-MAIN-2018-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-39/*"}]}, {"config_name": "CC-MAIN-2018-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-34/*"}]}, {"config_name": "CC-MAIN-2018-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-30/*"}]}, {"config_name": "CC-MAIN-2018-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-26/*"}]}, {"config_name": "CC-MAIN-2018-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-22/*"}]}, {"config_name": "CC-MAIN-2018-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-17/*"}]}, {"config_name": "CC-MAIN-2018-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-13/*"}]}, {"config_name": "CC-MAIN-2018-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-09/*"}]}, {"config_name": "CC-MAIN-2018-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-05/*"}]}, {"config_name": "CC-MAIN-2017-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-51/*"}]}, {"config_name": "CC-MAIN-2017-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-47/*"}]}, {"config_name": "CC-MAIN-2017-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-43/*"}]}, {"config_name": "CC-MAIN-2017-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-39/*"}]}, {"config_name": "CC-MAIN-2017-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-34/*"}]}, {"config_name": "CC-MAIN-2017-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-30/*"}]}, {"config_name": "CC-MAIN-2017-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-26/*"}]}, {"config_name": "CC-MAIN-2017-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-22/*"}]}, {"config_name": "CC-MAIN-2017-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-17/*"}]}, {"config_name": "CC-MAIN-2017-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-13/*"}]}, {"config_name": "CC-MAIN-2017-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-09/*"}]}, {"config_name": "CC-MAIN-2017-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-04/*"}]}, {"config_name": "CC-MAIN-2016-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-50/*"}]}, {"config_name": "CC-MAIN-2016-44", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-44/*"}]}, {"config_name": "CC-MAIN-2016-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-40/*"}]}, {"config_name": "CC-MAIN-2016-36", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-36/*"}]}, {"config_name": "CC-MAIN-2016-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-30/*"}]}, {"config_name": "CC-MAIN-2016-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-26/*"}]}, {"config_name": "CC-MAIN-2016-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-22/*"}]}, {"config_name": "CC-MAIN-2016-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-18/*"}]}, {"config_name": "CC-MAIN-2016-07", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-07/*"}]}, {"config_name": "CC-MAIN-2015-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-48/*"}]}, {"config_name": "CC-MAIN-2015-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-40/*"}]}, {"config_name": "CC-MAIN-2015-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-35/*"}]}, {"config_name": "CC-MAIN-2015-32", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-32/*"}]}, {"config_name": "CC-MAIN-2015-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-27/*"}]}, {"config_name": "CC-MAIN-2015-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-22/*"}]}, {"config_name": "CC-MAIN-2015-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-18/*"}]}, {"config_name": "CC-MAIN-2015-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-14/*"}]}, {"config_name": "CC-MAIN-2015-11", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-11/*"}]}, {"config_name": "CC-MAIN-2015-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-06/*"}]}, {"config_name": "CC-MAIN-2014-52", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-52/*"}]}, {"config_name": "CC-MAIN-2014-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-49/*"}]}, {"config_name": "CC-MAIN-2014-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-42/*"}]}, {"config_name": "CC-MAIN-2014-41", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-41/*"}]}, {"config_name": "CC-MAIN-2014-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-35/*"}]}, {"config_name": "CC-MAIN-2014-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-23/*"}]}, {"config_name": "CC-MAIN-2014-15", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-15/*"}]}, {"config_name": "CC-MAIN-2014-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-10/*"}]}, {"config_name": "CC-MAIN-2013-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-48/*"}]}, {"config_name": "CC-MAIN-2013-20", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-20/*"}]}]}
false
null
2025-01-31T14:10:44
2,111
19
false
0f039043b23fe1d4eed300b504aa4b4a68f1c7ba
🍷 FineWeb 15 trillion tokens of the finest data the 🌐 web has to offer What is it? The 🍷 FineWeb dataset consists of more than 15T tokens of cleaned and deduplicated english web data from CommonCrawl. The data processing pipeline is optimized for LLM performance and ran on the 🏭 datatrove library, our large scale data processing library. 🍷 FineWeb was originally meant to be a fully open replication of 🦅 RefinedWeb, with a release of the full dataset under… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceFW/fineweb.
437,370
2,688,932
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:10B<n<100B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2306.01116", "arxiv:2109.07445", "arxiv:2406.17557", "doi:10.57967/hf/2493", "region:us" ]
2024-04-18T14:33:13
null
null
67ddbf33273db7cb5c4f3f32
UCSC-VLAA/MedReason
UCSC-VLAA
{"license": "apache-2.0", "tags": ["reasoning-datasets-competition", "reasoning-LLMs"]}
false
null
2025-04-10T20:17:26
25
18
false
a4bbf707e122021e74b098f542f2db97a89a9ead
MedReason: Eliciting Factual Medical Reasoning Steps in LLMs via Knowledge Graphs 📃 Paper |🤗 MedReason-8B | 📚 MedReason Data ⚡Introduction MedReason is a large-scale high-quality medical reasoning dataset designed to enable faithful and explainable medical problem-solving in large language models (LLMs). We utilize a structured medical knowledge graph (KG) to convert clinical QA pairs into logical chains of reasoning, or “thinking paths”. Our pipeline generates… See the full description on the dataset page: https://huggingface.co/datasets/UCSC-VLAA/MedReason.
753
753
[ "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2504.00993", "region:us", "reasoning-datasets-competition", "reasoning-LLMs" ]
2025-03-21T19:34:11
null
null
67f65eecc6d6baefc4b193a8
Rapidata/2k-ranked-images-open-image-preferences-v1
Rapidata
{"license": "apache-2.0", "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "elo", "dtype": "int64"}, {"name": "__index_level_0__", "dtype": "int64"}, {"name": "category", "dtype": "string"}, {"name": "subcategory", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 298637443.176, "num_examples": 1999}], "download_size": 290047395, "dataset_size": 298637443.176}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "tags": ["t2i", "preference", "ranking", "rl", "image"], "pretty_name": "2k Ranked Images"}
false
null
2025-04-10T14:35:23
18
17
false
a48acd2f9d8470d8e7388c2efa0cf87ebf09c3bf
2k Ranked Images This dataset contains roughly two thousand images ranked from most preferred to least preferred based on human feedback on pairwise comparisons (>25k responses). The generated images, which are a sample from the open-image-preferences-v1 dataset from the team @data-is-better-together, are rated purely based on aesthetic preference, disregarding the prompt used for generation. We provide the categories of the original dataset for easy filtering. This is a new… See the full description on the dataset page: https://huggingface.co/datasets/Rapidata/2k-ranked-images-open-image-preferences-v1.
113
113
[ "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "t2i", "preference", "ranking", "rl", "image" ]
2025-04-09T11:50:04
null
null
67d1f960012f0ef1ab080a8b
vevotx/Tahoe-100M
vevotx
{"license": "cc0-1.0", "tags": ["biology", "single-cell", "RNA", "chemistry"], "size_categories": ["100M<n<1B"], "configs": [{"config_name": "expression_data", "data_files": "data/train-*", "default": true}, {"config_name": "sample_metadata", "data_files": "metadata/sample_metadata.parquet"}, {"config_name": "gene_metadata", "data_files": "metadata/gene_metadata.parquet"}, {"config_name": "drug_metadata", "data_files": "metadata/drug_metadata.parquet"}, {"config_name": "cell_line_metadata", "data_files": "metadata/cell_line_metadata.parquet"}, {"config_name": "obs_metadata", "data_files": "metadata/obs_metadata.parquet"}], "dataset_info": {"features": [{"name": "genes", "sequence": "int64"}, {"name": "expressions", "sequence": "float32"}, {"name": "drug", "dtype": "string"}, {"name": "sample", "dtype": "string"}, {"name": "BARCODE_SUB_LIB_ID", "dtype": "string"}, {"name": "cell_line_id", "dtype": "string"}, {"name": "moa-fine", "dtype": "string"}, {"name": "canonical_smiles", "dtype": "string"}, {"name": "pubchem_cid", "dtype": "string"}, {"name": "plate", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1693653078843, "num_examples": 95624334}], "download_size": 337644770670, "dataset_size": 1693653078843}}
false
null
2025-04-08T17:51:25
20
16
false
91953459e339ed9f27eb2ed4b6aa7719b2de3c66
Tahoe-100M Tahoe-100M is a giga-scale single-cell perturbation atlas consisting of over 100 million transcriptomic profiles from 50 cancer cell lines exposed to 1,100 small-molecule perturbations. Generated using Vevo Therapeutics' Mosaic high-throughput platform, Tahoe-100M enables deep, context-aware exploration of gene function, cellular states, and drug responses at unprecedented scale and resolution. This dataset is designed to power the development of next-generation AI… See the full description on the dataset page: https://huggingface.co/datasets/vevotx/Tahoe-100M.
6,383
6,383
[ "license:cc0-1.0", "size_categories:100M<n<1B", "format:parquet", "modality:tabular", "modality:text", "modality:timeseries", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "biology", "single-cell", "RNA", "chemistry" ]
2025-03-12T21:15:12
null
null
67f51e10192d5ab08ffab69e
OmniSVG/MMSVG-Illustration
OmniSVG
{"license": "cc-by-nc-sa-4.0"}
false
null
2025-04-09T03:04:41
39
15
false
a35b1ff1253e6aa3cbc2ebda9e29a54736cb4479
OmniSVG: A Unified Scalable Vector Graphics Generation Model ![Project Page] Dataset Card for MMSVG-Illustration Dataset Description This dataset contains SVG illustration examples for training and evaluating SVG models for text-to-SVG and image-to-SVG task. Dataset Structure Features The dataset contains the following fields: Field Name Description id Unique ID for each SVG svg SVG code description Description of the SVG… See the full description on the dataset page: https://huggingface.co/datasets/OmniSVG/MMSVG-Illustration.
921
921
[ "license:cc-by-nc-sa-4.0", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2504.06263", "region:us" ]
2025-04-08T13:01:04
null
null
625552d2b339bb03abe3432d
openai/gsm8k
openai
{"annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced"], "language": ["en"], "license": ["mit"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["text2text-generation"], "task_ids": [], "paperswithcode_id": "gsm8k", "pretty_name": "Grade School Math 8K", "tags": ["math-word-problems"], "dataset_info": [{"config_name": "main", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3963202, "num_examples": 7473}, {"name": "test", "num_bytes": 713732, "num_examples": 1319}], "download_size": 2725633, "dataset_size": 4676934}, {"config_name": "socratic", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5198108, "num_examples": 7473}, {"name": "test", "num_bytes": 936859, "num_examples": 1319}], "download_size": 3164254, "dataset_size": 6134967}], "configs": [{"config_name": "main", "data_files": [{"split": "train", "path": "main/train-*"}, {"split": "test", "path": "main/test-*"}]}, {"config_name": "socratic", "data_files": [{"split": "train", "path": "socratic/train-*"}, {"split": "test", "path": "socratic/test-*"}]}]}
false
null
2024-01-04T12:05:15
697
13
false
e53f048856ff4f594e959d75785d2c2d37b678ee
Dataset Card for GSM8K Dataset Summary GSM8K (Grade School Math 8K) is a dataset of 8.5K high quality linguistically diverse grade school math word problems. The dataset was created to support the task of question answering on basic mathematical problems that require multi-step reasoning. These problems take between 2 and 8 steps to solve. Solutions primarily involve performing a sequence of elementary calculations using basic arithmetic operations (+ − ×÷) to reach the… See the full description on the dataset page: https://huggingface.co/datasets/openai/gsm8k.
412,175
4,526,817
[ "task_categories:text2text-generation", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:mit", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2110.14168", "region:us", "math-word-problems" ]
2022-04-12T10:22:10
gsm8k
null
67f505664a7ad6225a4ae9ed
OmniSVG/MMSVG-Icon
OmniSVG
{"license": "cc-by-nc-sa-4.0"}
false
null
2025-04-09T03:03:42
37
13
false
500f7f304c6d758d2f8764bf285440eb929246e3
OmniSVG: A Unified Scalable Vector Graphics Generation Model ![Project Page] Dataset Card for MMSVG-Icon Dataset Description This dataset contains SVG icon examples for training and evaluating SVG models for text-to-SVG and image-to-SVG task. Dataset Structure Features The dataset contains the following fields: Field Name Description id Unique ID for each SVG svg SVG code description Description of the SVG Citation… See the full description on the dataset page: https://huggingface.co/datasets/OmniSVG/MMSVG-Icon.
394
394
[ "license:cc-by-nc-sa-4.0", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2504.06263", "region:us" ]
2025-04-08T11:15:50
null
null
67fa39f24a13bd97755f08db
Skywork/Skywork-OR1-RL-Data
Skywork
{"dataset_info": {"features": [{"name": "data_source", "dtype": "string"}, {"name": "prompt", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "ability", "dtype": "string"}, {"name": "reward_model", "struct": [{"name": "ground_truth", "dtype": "string"}, {"name": "style", "dtype": "string"}]}, {"name": "extra_info", "struct": [{"name": "index", "dtype": "int64"}, {"name": "model_difficulty", "struct": [{"name": "DeepSeek-R1-Distill-Qwen-1.5B", "dtype": "int64"}, {"name": "DeepSeek-R1-Distill-Qwen-32B", "dtype": "int64"}, {"name": "DeepSeek-R1-Distill-Qwen-7B", "dtype": "int64"}]}]}], "splits": [{"name": "math", "num_bytes": 40461845, "num_examples": 105055}, {"name": "code", "num_bytes": 1474827100, "num_examples": 14057}], "download_size": 823104116, "dataset_size": 1515288945}, "configs": [{"config_name": "default", "data_files": [{"split": "math", "path": "data/math-*"}, {"split": "code", "path": "data/code-*"}]}]}
false
null
2025-04-15T08:31:20
13
13
false
d3dd0aaddf1f74f14d37331b574ebf5746670645
🤔 Skywork-OR1-RL-Data 🔥 News April 15, 2025: We are excited to release our RL training dataset Skywork-OR1-RL-Data For our final training phase, we filtered problems based on their difficulty levels (0-16, higher values indicate harder problems) relative to specific model variants (DeepSeek-R1-Distill-Qwen-{1.5,7,32}B. For each model variant, we excluded problems with difficulty values of 0 and 16 specific to that model from its training data.You can… See the full description on the dataset page: https://huggingface.co/datasets/Skywork/Skywork-OR1-RL-Data.
552
552
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-04-12T10:01:22
null
null
660e7b9b4636ce2b0e77b699
mozilla-foundation/common_voice_17_0
mozilla-foundation
{"pretty_name": "Common Voice Corpus 17.0", "annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced"], "language": ["ab", "af", "am", "ar", "as", "ast", "az", "ba", "bas", "be", "bg", "bn", "br", "ca", "ckb", "cnh", "cs", "cv", "cy", "da", "de", "dv", "dyu", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gl", "gn", "ha", "he", "hi", "hsb", "ht", "hu", "hy", "ia", "id", "ig", "is", "it", "ja", "ka", "kab", "kk", "kmr", "ko", "ky", "lg", "lij", "lo", "lt", "ltg", "lv", "mdf", "mhr", "mk", "ml", "mn", "mr", "mrj", "mt", "myv", "nan", "ne", "nhi", "nl", "nn", "nso", "oc", "or", "os", "pa", "pl", "ps", "pt", "quy", "rm", "ro", "ru", "rw", "sah", "sat", "sc", "sk", "skr", "sl", "sq", "sr", "sv", "sw", "ta", "te", "th", "ti", "tig", "tk", "tok", "tr", "tt", "tw", "ug", "uk", "ur", "uz", "vi", "vot", "yi", "yo", "yue", "zgh", "zh", "zu", "zza"], "language_bcp47": ["zh-CN", "zh-HK", "zh-TW", "sv-SE", "rm-sursilv", "rm-vallader", "pa-IN", "nn-NO", "ne-NP", "nan-tw", "hy-AM", "ga-IE", "fy-NL"], "license": ["cc0-1.0"], "multilinguality": ["multilingual"], "source_datasets": ["extended|common_voice"], "paperswithcode_id": "common-voice", "extra_gated_prompt": "By clicking on \u201cAccess repository\u201d below, you also agree to not attempt to determine the identity of speakers in the Common Voice dataset."}
false
null
2024-06-16T13:50:23
262
12
false
b10d53980ef166bc24ce3358471c1970d7e6b5ec
Dataset Card for Common Voice Corpus 17.0 Dataset Summary The Common Voice dataset consists of a unique MP3 and corresponding text file. Many of the 31175 recorded hours in the dataset also include demographic metadata like age, sex, and accent that can help improve the accuracy of speech recognition engines. The dataset currently consists of 20408 validated hours in 124 languages, but more voices and languages are always added. Take a look at the Languages page to… See the full description on the dataset page: https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0.
41,600
473,683
[ "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:multilingual", "source_datasets:extended|common_voice", "language:ab", "language:af", "language:am", "language:ar", "language:as", "language:ast", "language:az", "language:ba", "language:bas", "language:be", "language:bg", "language:bn", "language:br", "language:ca", "language:ckb", "language:cnh", "language:cs", "language:cv", "language:cy", "language:da", "language:de", "language:dv", "language:dyu", "language:el", "language:en", "language:eo", "language:es", "language:et", "language:eu", "language:fa", "language:fi", "language:fr", "language:fy", "language:ga", "language:gl", "language:gn", "language:ha", "language:he", "language:hi", "language:hsb", "language:ht", "language:hu", "language:hy", "language:ia", "language:id", "language:ig", "language:is", "language:it", "language:ja", "language:ka", "language:kab", "language:kk", "language:kmr", "language:ko", "language:ky", "language:lg", "language:lij", "language:lo", "language:lt", "language:ltg", "language:lv", "language:mdf", "language:mhr", "language:mk", "language:ml", "language:mn", "language:mr", "language:mrj", "language:mt", "language:myv", "language:nan", "language:ne", "language:nhi", "language:nl", "language:nn", "language:nso", "language:oc", "language:or", "language:os", "language:pa", "language:pl", "language:ps", "language:pt", "language:quy", "language:rm", "language:ro", "language:ru", "language:rw", "language:sah", "language:sat", "language:sc", "language:sk", "language:skr", "language:sl", "language:sq", "language:sr", "language:sv", "language:sw", "language:ta", "language:te", "language:th", "language:ti", "language:tig", "language:tk", "language:tok", "language:tr", "language:tt", "language:tw", "language:ug", "language:uk", "language:ur", "language:uz", "language:vi", "language:vot", "language:yi", "language:yo", "language:yue", "language:zgh", "language:zh", "language:zu", "language:zza", "license:cc0-1.0", "size_categories:10M<n<100M", "modality:audio", "modality:text", "library:datasets", "library:mlcroissant", "arxiv:1912.06670", "region:us" ]
2024-04-04T10:06:19
common-voice
@inproceedings{commonvoice:2020, author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.}, title = {Common Voice: A Massively-Multilingual Speech Corpus}, booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)}, pages = {4211--4215}, year = 2020 }
67aa021ced8d8663d42505cc
open-r1/OpenR1-Math-220k
open-r1
{"license": "apache-2.0", "language": ["en"], "configs": [{"config_name": "all", "data_files": [{"split": "train", "path": "all/train-*"}]}, {"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "extended", "data_files": [{"split": "train", "path": "extended/train-*"}]}], "dataset_info": [{"config_name": "all", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 9734110026, "num_examples": 225129}], "download_size": 4221672067, "dataset_size": 9734110026}, {"config_name": "default", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4964543659, "num_examples": 93733}], "download_size": 2149897914, "dataset_size": 4964543659}, {"config_name": "extended", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4769566550, "num_examples": 131396}], "download_size": 2063936457, "dataset_size": 4769566550}]}
false
null
2025-02-18T11:45:27
554
12
false
e4e141ec9dea9f8326f4d347be56105859b2bd68
OpenR1-Math-220k Dataset description OpenR1-Math-220k is a large-scale dataset for mathematical reasoning. It consists of 220k math problems with two to four reasoning traces generated by DeepSeek R1 for problems from NuminaMath 1.5. The traces were verified using Math Verify for most samples and Llama-3.3-70B-Instruct as a judge for 12% of the samples, and each problem contains at least one reasoning trace with a correct answer. The dataset consists of two splits:… See the full description on the dataset page: https://huggingface.co/datasets/open-r1/OpenR1-Math-220k.
40,368
100,177
[ "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-10T13:41:48
null
null
67b32145bac2756ce9a4a0fe
Congliu/Chinese-DeepSeek-R1-Distill-data-110k
Congliu
{"license": "apache-2.0", "language": ["zh"], "size_categories": ["100K<n<1M"], "task_categories": ["text-generation", "text2text-generation", "question-answering"]}
false
null
2025-02-21T02:18:08
630
12
false
8520b649430617c2be4490f424d251d09d835ed3
中文基于满血DeepSeek-R1蒸馏数据集(Chinese-Data-Distill-From-R1) 🤗 Hugging Face   |   🤖 ModelScope    |   🚀 Github    |   📑 Blog 注意:提供了直接SFT使用的版本,点击下载。将数据中的思考和答案整合成output字段,大部分SFT代码框架均可直接直接加载训练。 本数据集为中文开源蒸馏满血R1的数据集,数据集中不仅包含math数据,还包括大量的通用类型数据,总数量为110K。 为什么开源这个数据? R1的效果十分强大,并且基于R1蒸馏数据SFT的小模型也展现出了强大的效果,但检索发现,大部分开源的R1蒸馏数据集均为英文数据集。 同时,R1的报告中展示,蒸馏模型中同时也使用了部分通用场景数据集。 为了帮助大家更好地复现R1蒸馏模型的效果,特此开源中文数据集。该中文数据集中的数据分布如下: Math:共计36568个样本, Exam:共计2432个样本, STEM:共计12648个样本,… See the full description on the dataset page: https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k.
3,522
12,228
[ "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:question-answering", "language:zh", "license:apache-2.0", "size_categories:100K<n<1M", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-17T11:45:09
null
null
67c03fd6b9fe27a2ac49784d
open-r1/codeforces-cots
open-r1
{"dataset_info": [{"config_name": "checker_interactor", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 994149425, "num_examples": 35718}], "download_size": 274975300, "dataset_size": 994149425}, {"config_name": "solutions", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "note", "dtype": "string"}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "interaction_format", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4968074271, "num_examples": 47780}], "download_size": 1887049179, "dataset_size": 4968074271}, {"config_name": "solutions_decontaminated", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "note", "dtype": "string"}, {"name": "editorial", "dtype": "string"}, {"name": "problem", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "interaction_format", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "problem_type", "dtype": "string"}, {"name": "public_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "private_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "generated_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "public_tests_ms", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "failed_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "accepted_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "passed_test_count", "dtype": "null"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "programming_language", "dtype": "string"}, {"name": "submission_id", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 6719356671, "num_examples": 40665}], "download_size": 2023394671, "dataset_size": 6719356671}, {"config_name": "solutions_py", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1000253222, "num_examples": 9556}], "download_size": 411697337, "dataset_size": 1000253222}, {"config_name": "solutions_py_decontaminated", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "accepted_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "passed_test_count", "dtype": "null"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "programming_language", "dtype": "string"}, {"name": "submission_id", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "failed_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "generated_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "private_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "problem_type", "dtype": "string"}, {"name": "public_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "public_tests_ms", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1349328880, "num_examples": 8133}], "download_size": 500182086, "dataset_size": 1349328880}, {"config_name": "solutions_short_and_long_decontaminated", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "note", "dtype": "string"}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "interaction_format", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "accepted_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "passed_test_count", "dtype": "null"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "programming_language", "dtype": "string"}, {"name": "submission_id", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "failed_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "generated_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "private_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "problem_type", "dtype": "string"}, {"name": "public_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "public_tests_ms", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2699204607, "num_examples": 16266}], "download_size": 1002365269, "dataset_size": 2699204607}, {"config_name": "solutions_w_editorials", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2649620432, "num_examples": 29180}], "download_size": 972089090, "dataset_size": 2649620432}, {"config_name": "solutions_w_editorials_decontaminated", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "accepted_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "passed_test_count", "dtype": "null"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "programming_language", "dtype": "string"}, {"name": "submission_id", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "failed_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "generated_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "private_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "problem_type", "dtype": "string"}, {"name": "public_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "public_tests_ms", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 3738669884, "num_examples": 24490}], "download_size": 1012247387, "dataset_size": 3738669884}, {"config_name": "solutions_w_editorials_py", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1067124847, "num_examples": 11672}], "download_size": 415023817, "dataset_size": 1067124847}, {"config_name": "solutions_w_editorials_py_decontaminated", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "accepted_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "passed_test_count", "dtype": "null"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "programming_language", "dtype": "string"}, {"name": "submission_id", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "failed_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "generated_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "private_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "problem_type", "dtype": "string"}, {"name": "public_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "public_tests_ms", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1499075280, "num_examples": 9796}], "download_size": 466078291, "dataset_size": 1499075280}, {"config_name": "test_input_generator", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "note", "dtype": "string"}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "completion_tokens_details", "dtype": "null"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "interaction_format", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1851104290, "num_examples": 20620}], "download_size": 724157877, "dataset_size": 1851104290}], "configs": [{"config_name": "checker_interactor", "data_files": [{"split": "train", "path": "checker_interactor/train-*"}]}, {"config_name": "solutions", "default": true, "data_files": [{"split": "train", "path": "solutions/train-*"}]}, {"config_name": "solutions_decontaminated", "data_files": [{"split": "train", "path": "solutions_decontaminated/train-*"}]}, {"config_name": "solutions_py", "data_files": [{"split": "train", "path": "solutions_py/train-*"}]}, {"config_name": "solutions_py_decontaminated", "data_files": [{"split": "train", "path": "solutions_py_decontaminated/train-*"}]}, {"config_name": "solutions_short_and_long_decontaminated", "data_files": [{"split": "train", "path": "solutions_short_and_long_decontaminated/train-*"}]}, {"config_name": "solutions_w_editorials", "data_files": [{"split": "train", "path": "solutions_w_editorials/train-*"}]}, {"config_name": "solutions_w_editorials_decontaminated", "data_files": [{"split": "train", "path": "solutions_w_editorials_decontaminated/train-*"}]}, {"config_name": "solutions_w_editorials_py", "data_files": [{"split": "train", "path": "solutions_w_editorials_py/train-*"}]}, {"config_name": "solutions_w_editorials_py_decontaminated", "data_files": [{"split": "train", "path": "solutions_w_editorials_py_decontaminated/train-*"}]}, {"config_name": "test_input_generator", "data_files": [{"split": "train", "path": "test_input_generator/train-*"}]}], "license": "cc-by-4.0"}
false
null
2025-03-28T12:21:06
143
12
false
39ac85c150806230473c70ad72c31f6232fe3f41
Dataset Card for CodeForces-CoTs Dataset description CodeForces-CoTs is a large-scale dataset for training reasoning models on competitive programming tasks. It consists of 10k CodeForces problems with up to five reasoning traces generated by DeepSeek R1. We did not filter the traces for correctness, but found that around 84% of the Python ones pass the public tests. The dataset consists of several subsets: solutions: we prompt R1 to solve the problem and produce code.… See the full description on the dataset page: https://huggingface.co/datasets/open-r1/codeforces-cots.
11,919
15,068
[ "license:cc-by-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-27T10:35:02
null
null
67c0cda5c0b7a236a5f070e3
glaiveai/reasoning-v1-20m
glaiveai
{"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "response", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 177249016911, "num_examples": 22199375}], "download_size": 87247205094, "dataset_size": 177249016911}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "apache-2.0", "task_categories": ["text-generation"], "language": ["en"], "size_categories": ["10M<n<100M"]}
false
null
2025-03-19T13:21:37
193
12
false
da6bb3d0ff8fd8ea5abacee8519762ca6aaf367e
We are excited to release a synthetic reasoning dataset containing 22mil+ general reasoning questions and responses generated using deepseek-ai/DeepSeek-R1-Distill-Llama-70B. While there have been multiple efforts to build open reasoning datasets for math and code tasks, we noticed a lack of large datasets containing reasoning traces for diverse non code/math topics like social and natural sciences, education, creative writing and general conversations, which is why we decided to release this… See the full description on the dataset page: https://huggingface.co/datasets/glaiveai/reasoning-v1-20m.
14,035
14,160
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-27T20:40:05
null
null
67b20fc10861cec33b3afb8a
Conard/fortune-telling
Conard
{"license": "mit"}
false
null
2025-02-17T05:13:43
124
11
false
6261fe0d35a75997972bbfcd9828020e340303fb
null
4,767
8,949
[ "license:mit", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-16T16:18:09
null
null
67b58abdbc707d7ed36e6750
KRX-Data/Won-Instruct
KRX-Data
{"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "original_response", "dtype": "string"}, {"name": "Qwen/Qwen2.5-1.5B-Instruct_response", "dtype": "string"}, {"name": "Qwen/Qwen2.5-7B-Instruct_response", "dtype": "string"}, {"name": "google/gemma-2-2b-it_response", "dtype": "string"}, {"name": "google/gemma-2-9b-it_response", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 846093226, "num_examples": 86007}], "download_size": 375880264, "dataset_size": 846093226}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2025-04-11T05:03:20
12
11
false
9ff85bc243b7e1aa30970ef63da0bbfaaeb371e8
🇺🇸 English | 🇰🇷 한국어 Introduction The ₩ON-Instruct is a comprehensive instruction-following dataset tailored for training Korean language models specialized in financial reasoning and domain-specific financial tasks. This dataset was meticulously assembled through rigorous filtering and quality assurance processes, aiming to enhance the reasoning abilities of large language models (LLMs) within the financial domain, specifically tuned for Korean financial tasks. The dataset… See the full description on the dataset page: https://huggingface.co/datasets/KRX-Data/Won-Instruct.
131
191
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2503.17963", "region:us" ]
2025-02-19T07:39:41
null
null
67fcab0d3d1ec06dda7e28a3
lmarena-ai/search-arena-v1-7k
lmarena-ai
{"size_categories": ["100K<n<1M"], "configs": [{"config_name": "default", "data_files": [{"split": "test", "path": "data/search-arena-*"}]}]}
false
null
2025-04-14T16:01:06
11
11
false
06865038ceb415c1942e58bff8f14150cbc9fbcd
Overview This dataset contains 7k leaderboard conversation votes collected from Search Arena between March 18, 2025 and April 13, 2025. All entries have been redacted for PII and sensitive user information to ensure privacy. Each data point includes: Two model responses (messages_a and messages_b) The human vote result A timestamp Full system metadata, LLM + web search trace, and post-processed metadata for controlled experiments (conv_meta) To reproduce the leaderboard results… See the full description on the dataset page: https://huggingface.co/datasets/lmarena-ai/search-arena-v1-7k.
222
222
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2403.04132", "region:us" ]
2025-04-14T06:28:29
null
null
621ffdd236468d709f181f06
openai/openai_humaneval
openai
{"annotations_creators": ["expert-generated"], "language_creators": ["expert-generated"], "language": ["en"], "license": ["mit"], "multilinguality": ["monolingual"], "size_categories": ["n<1K"], "source_datasets": ["original"], "task_categories": ["text2text-generation"], "task_ids": [], "paperswithcode_id": "humaneval", "pretty_name": "OpenAI HumanEval", "tags": ["code-generation"], "dataset_info": {"config_name": "openai_humaneval", "features": [{"name": "task_id", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "canonical_solution", "dtype": "string"}, {"name": "test", "dtype": "string"}, {"name": "entry_point", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 194394, "num_examples": 164}], "download_size": 83920, "dataset_size": 194394}, "configs": [{"config_name": "openai_humaneval", "data_files": [{"split": "test", "path": "openai_humaneval/test-*"}], "default": true}]}
false
null
2024-01-04T16:08:05
308
10
false
7dce6050a7d6d172f3cc5c32aa97f52fa1a2e544
Dataset Card for OpenAI HumanEval Dataset Summary The HumanEval dataset released by OpenAI includes 164 programming problems with a function sig- nature, docstring, body, and several unit tests. They were handwritten to ensure not to be included in the training set of code generation models. Supported Tasks and Leaderboards Languages The programming problems are written in Python and contain English natural text in comments and… See the full description on the dataset page: https://huggingface.co/datasets/openai/openai_humaneval.
91,087
3,119,856
[ "task_categories:text2text-generation", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2107.03374", "region:us", "code-generation" ]
2022-03-02T23:29:22
humaneval
null
66cd7bbefc6f503213a054e7
lmms-lab/LLaVA-Video-178K
lmms-lab
{"configs": [{"config_name": "0_30_s_academic_v0_1", "data_files": [{"split": "caption", "path": "0_30_s_academic_v0_1/*cap*.json"}, {"split": "open_ended", "path": "0_30_s_academic_v0_1/*oe*.json"}, {"split": "multi_choice", "path": "0_30_s_academic_v0_1/*mc*.json"}]}, {"config_name": "0_30_s_youtube_v0_1", "data_files": [{"split": "caption", "path": "0_30_s_youtube_v0_1/*cap*.json"}, {"split": "open_ended", "path": "0_30_s_youtube_v0_1/*oe*.json"}, {"split": "multi_choice", "path": "0_30_s_youtube_v0_1/*mc*.json"}]}, {"config_name": "0_30_s_activitynet", "data_files": [{"split": "open_ended", "path": "0_30_s_activitynet/*oe*.json"}]}, {"config_name": "0_30_s_perceptiontest", "data_files": [{"split": "multi_choice", "path": "0_30_s_perceptiontest/*mc*.json"}]}, {"config_name": "0_30_s_nextqa", "data_files": [{"split": "open_ended", "path": "0_30_s_nextqa/*oe*.json"}, {"split": "multi_choice", "path": "0_30_s_nextqa/*mc*.json"}]}, {"config_name": "30_60_s_academic_v0_1", "data_files": [{"split": "caption", "path": "30_60_s_academic_v0_1/*cap*.json"}, {"split": "open_ended", "path": "30_60_s_academic_v0_1/*oe*.json"}, {"split": "multi_choice", "path": "30_60_s_academic_v0_1/*mc*.json"}]}, {"config_name": "30_60_s_youtube_v0_1", "data_files": [{"split": "caption", "path": "30_60_s_youtube_v0_1/*cap*.json"}, {"split": "open_ended", "path": "30_60_s_youtube_v0_1/*oe*.json"}, {"split": "multi_choice", "path": "30_60_s_youtube_v0_1/*mc*.json"}]}, {"config_name": "30_60_s_activitynet", "data_files": [{"split": "open_ended", "path": "30_60_s_activitynet/*oe*.json"}]}, {"config_name": "30_60_s_perceptiontest", "data_files": [{"split": "multi_choice", "path": "30_60_s_perceptiontest/*mc*.json"}]}, {"config_name": "30_60_s_nextqa", "data_files": [{"split": "open_ended", "path": "30_60_s_nextqa/*oe*.json"}, {"split": "multi_choice", "path": "30_60_s_nextqa/*mc*.json"}]}, {"config_name": "1_2_m_youtube_v0_1", "data_files": [{"split": "caption", "path": "1_2_m_youtube_v0_1/*cap*.json"}, {"split": "open_ended", "path": "1_2_m_youtube_v0_1/*oe*.json"}, {"split": "multi_choice", "path": "1_2_m_youtube_v0_1/*mc*.json"}]}, {"config_name": "1_2_m_academic_v0_1", "data_files": [{"split": "caption", "path": "1_2_m_academic_v0_1/*cap*.json"}, {"split": "open_ended", "path": "1_2_m_academic_v0_1/*oe*.json"}, {"split": "multi_choice", "path": "1_2_m_academic_v0_1/*mc*.json"}]}, {"config_name": "1_2_m_activitynet", "data_files": [{"split": "open_ended", "path": "1_2_m_activitynet/*oe*.json"}]}, {"config_name": "1_2_m_nextqa", "data_files": [{"split": "open_ended", "path": "1_2_m_nextqa/*oe*.json"}, {"split": "multi_choice", "path": "1_2_m_nextqa/*mc*.json"}]}, {"config_name": "2_3_m_youtube_v0_1", "data_files": [{"split": "caption", "path": "2_3_m_youtube_v0_1/*cap*.json"}, {"split": "open_ended", "path": "2_3_m_youtube_v0_1/*oe*.json"}, {"split": "multi_choice", "path": "2_3_m_youtube_v0_1/*mc*.json"}]}, {"config_name": "2_3_m_academic_v0_1", "data_files": [{"split": "caption", "path": "2_3_m_academic_v0_1/*cap*.json"}, {"split": "open_ended", "path": "2_3_m_academic_v0_1/*oe*.json"}, {"split": "multi_choice", "path": "2_3_m_academic_v0_1/*mc*.json"}]}, {"config_name": "2_3_m_activitynet", "data_files": [{"split": "open_ended", "path": "2_3_m_activitynet/*oe*.json"}]}, {"config_name": "2_3_m_nextqa", "data_files": [{"split": "open_ended", "path": "2_3_m_nextqa/*oe*.json"}, {"split": "multi_choice", "path": "2_3_m_nextqa/*mc*.json"}]}, {"config_name": "llava_hound", "data_files": [{"split": "open_ended", "path": "llava_hound/sharegptvideo_qa_255k_processed.json"}]}], "language": ["en"], "task_categories": ["visual-question-answering", "video-text-to-text"], "tags": ["video"]}
false
null
2024-10-11T04:59:25
136
9
false
6d8c562dc26d70042a0d9704d1cae58c94b89098
Dataset Card for LLaVA-Video-178K Uses This dataset is used for the training of the LLaVA-Video model. We only allow the use of this dataset for academic research and education purpose. For OpenAI GPT-4 generated data, we recommend the users to check the OpenAI Usage Policy. Data Sources For the training of LLaVA-Video, we utilized video-language data from five primary sources: LLaVA-Video-178K: This dataset includes 178,510 caption entries, 960… See the full description on the dataset page: https://huggingface.co/datasets/lmms-lab/LLaVA-Video-178K.
15,431
143,283
[ "task_categories:visual-question-answering", "task_categories:video-text-to-text", "language:en", "size_categories:1M<n<10M", "modality:text", "modality:video", "arxiv:2410.02713", "region:us", "video" ]
2024-08-27T07:09:50
null
null
67fe66c27cc6eabecbf8891a
davanstrien/fine-reasoning-questions
davanstrien
{"language": "en", "license": "mit", "tags": ["curator", "synthetic", "reasoning-datasets-competition"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "raw", "data_files": [{"split": "train", "path": "raw/train-*"}]}], "dataset_info": [{"config_name": "default", "features": [{"name": "question", "dtype": "string"}, {"name": "requires_text_content", "dtype": "bool"}, {"name": "text", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "topic", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1583427, "num_examples": 144}], "download_size": 459798, "dataset_size": 1583427}, {"config_name": "raw", "features": [{"name": "text", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "dump", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "file_path", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "language_score", "dtype": "float64"}, {"name": "token_count", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "raw_reasoning_score", "dtype": "float64"}, {"name": "reasoning_level", "dtype": "int64"}, {"name": "interpretation", "dtype": "string"}, {"name": "topic", "dtype": "string"}, {"name": "parsed_json", "dtype": "bool"}, {"name": "extracted_json", "struct": [{"name": "questions", "list": [{"name": "question", "dtype": "string"}, {"name": "requires_text_content", "dtype": "bool"}]}]}, {"name": "reasoning", "dtype": "string"}, {"name": "full_response", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1907264, "num_examples": 100}], "download_size": 978916, "dataset_size": 1907264}]}
false
null
2025-04-15T14:52:05
9
9
false
7430c6f200bfe605eb6af26c4c4ea4241ef1ae47
Dataset Card for Fine Reasoning Questions Dataset Description Can we generate reasoning datasets for more domains using web text? Note: This dataset is submitted partly to give an idea of the kind of dataset you could submit to the reasoning datasets competition. You can find out more about the competition in this blog post. You can also see more info on using Inference Providers with Curator here The majority of reasoning datasets on the Hub are focused on maths… See the full description on the dataset page: https://huggingface.co/datasets/davanstrien/fine-reasoning-questions.
115
115
[ "language:en", "license:mit", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "curator", "synthetic", "reasoning-datasets-competition" ]
2025-04-15T14:01:38
null
null
67ff96ff01428cf3b86f78c2
Lod34/sentiment-analysis-test
Lod34
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "sentiment", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 28302.111747851002, "num_examples": 279}, {"name": "test", "num_bytes": 7100.888252148997, "num_examples": 70}], "download_size": 23157, "dataset_size": 35403}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "annotations_creators": ["expert-generated", "crowdsourced"], "language": ["it"], "language_creators": ["crowdsourced"], "license": ["mit"], "multilinguality": ["monolingual"], "pretty_name": "A sentiment analysis database created in a school environment.", "size_categories": ["n<1K"], "source_datasets": ["original"], "tags": ["school", "high-school"], "task_categories": ["text-classification"], "task_ids": ["sentiment-analysis"]}
false
null
2025-04-16T12:51:48
9
9
false
cb263caa70c03ee67d894ea585bd51db9c74aac0
Progetto scolastico per l'analisi dei sentimenti Il dataset è stato creato con un questionario online in cui si chiedeva ad un pubblico di studenti, docenti, personale amministrativo, famiglie di rispondere ad alcune domande sul loro rapporto con la scuola. Le annotazioni sono state effettuate correlando le risposte testuali ad indicatori di gradimento. Il dataset è stato realizzato all'interno di un corso pomeridiano scolastico dedicato all'intelligenza artificiale. Grazie a tutti… See the full description on the dataset page: https://huggingface.co/datasets/Lod34/sentiment-analysis-test.
15
15
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "annotations_creators:expert-generated", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:it", "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "school", "high-school" ]
2025-04-16T11:39:43
null
null
67ff98b701428cf3b86fe77e
Smatteux/sentiment-analysis-test
Smatteux
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "sentiment", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 28302.111747851002, "num_examples": 279}, {"name": "test", "num_bytes": 7100.888252148997, "num_examples": 70}], "download_size": 23427, "dataset_size": 35403}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "annotations_creators": ["expert-generated", "crowdsourced"], "language": ["it"], "language_creators": ["crowdsourced"], "license": ["mit"], "multilinguality": ["monolingual"], "pretty_name": "a sentiment analysis database created in a school envronment ", "size_categories": ["n<1K"], "source_datasets": ["original"], "tags": [], "task_categories": ["text-classification"], "task_ids": ["sentiment-analysis"]}
false
null
2025-04-16T12:51:30
9
9
false
f00483c98dfd16fbc1d1e9dcbcd84ba830639b4e
progetto scolastico per l'analisi dei sentimenti il dataset è stato creato con un questionario online in cu isi chiedeva ad un pubblico di studenti, docenti, personale amministrativo, famiglie di rispondere ad alcune domande sul loro rapporto con la scuola. Le annotazioni sono state effettuate correlando le risposte testuali ad indicatori di gradimento. Il dataset è stato stato realizzato all'interno di un corsp pomeridiano scolastico dedicato all'intelligenza artificiale. Grazie a… See the full description on the dataset page: https://huggingface.co/datasets/Smatteux/sentiment-analysis-test.
21
21
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "annotations_creators:expert-generated", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:it", "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-04-16T11:47:03
null
null
67ff9b10e3e15a8be9b4971e
MarcPal08/sentiment-analysis-test
MarcPal08
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "sentiment", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 28302.111747851002, "num_examples": 279}, {"name": "test", "num_bytes": 7100.888252148997, "num_examples": 70}], "download_size": 23157, "dataset_size": 35403}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "annotations_creators": ["expert-generated", "crowdsourced"], "language": ["it"], "language_creators": ["crowdsourced"], "license": ["mit"], "multilinguality": ["monolingual"], "pretty_name": "A sentiment analisys database created in a school environment.", "size_categories": ["n<1K"], "source_datasets": ["original"], "tags": ["school", "high-school"], "task_categories": ["text-classification"], "task_ids": ["sentiment-analysis"]}
false
null
2025-04-16T12:51:30
9
9
false
f870060177dff27ea2e81215f68d3c3f019bd51e
Progetto scolastico per l'analisi dei sentimenti Il dataset è stato creato con un questionario online in cui si chiedeva ad un pubblico di studenti, docenti, personale amministrativo, famiglie di rispondere ad alcune domande sul loro rapporto con la scuola. Le annotazioni sono state effettuate correlando le risposte testuali ad indicatori di gradimento. Il dataset è stato realizzato all'interno di un corso pomeridiano scolastico dedicato all'intelligenza artificiale. Grazie a tutti… See the full description on the dataset page: https://huggingface.co/datasets/MarcPal08/sentiment-analysis-test.
19
19
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "annotations_creators:expert-generated", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:it", "license:mit", "size_categories:n<1K", "region:us", "school", "high-school" ]
2025-04-16T11:57:04
null
null
67ffa024a1c34809696a1765
Giova-tech/sentiment-analysis-test
Giova-tech
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "sentiment", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 28302.111747851002, "num_examples": 279}, {"name": "test", "num_bytes": 7100.888252148997, "num_examples": 70}], "download_size": 23157, "dataset_size": 35403}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "annotations_creators": ["expert-generated", "crowdsourced"], "language": ["it"], "language_creators": ["crowdsourced"], "license": ["mit"], "multilinguality": ["monolingual"], "pretty_name": "A sentiment analisis database created in a school environment\n", "size_categories": ["n<1K"], "source_datasets": ["original"], "tags": ["school", "high-school"], "task_categories": ["text-classification"], "task_ids": ["sentiment-analysis"]}
false
null
2025-04-16T12:51:43
9
9
false
ad783643608757dc726d2376d370b7d6bfe5039d
progetto scolastico per l'analisi dei sentimenti Il dataset è stato creato con un questionario online in cui si chiedeva ad un pubblico di studenti, docenti, personake amministrativo e famiglie di rispondere ad alcune domande sul loro rapporto con la scuola. Le annotazioni sono state effettuate correlando le risposte testuali an indicatori di gradimento. Il dataset è stato realizzato all'interno di un corso pomeridiano scolastico dedicato all'intelliggenza artificiale. Grazie a… See the full description on the dataset page: https://huggingface.co/datasets/Giova-tech/sentiment-analysis-test.
24
24
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "annotations_creators:expert-generated", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:it", "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "school", "high-school" ]
2025-04-16T12:18:44
null
null
6797e648de960c48ff034e54
open-thoughts/OpenThoughts-114k
open-thoughts
{"dataset_info": [{"config_name": "default", "features": [{"name": "system", "dtype": "string"}, {"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2635015668, "num_examples": 113957}], "download_size": 1078777193, "dataset_size": 2635015668}, {"config_name": "metadata", "features": [{"name": "problem", "dtype": "string"}, {"name": "deepseek_reasoning", "dtype": "string"}, {"name": "deepseek_solution", "dtype": "string"}, {"name": "ground_truth_solution", "dtype": "string"}, {"name": "domain", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "test_cases", "dtype": "string"}, {"name": "starter_code", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5525214077.699433, "num_examples": 113957}], "download_size": 2469729724, "dataset_size": 5525214077.699433}], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "metadata", "data_files": [{"split": "train", "path": "metadata/train-*"}]}], "tags": ["curator", "synthetic"], "license": "apache-2.0"}
false
null
2025-04-06T23:31:24
688
8
false
a5996b0064b4ddd42c6e9a7302eeec0618cb7b63
Open-Thoughts-114k Open synthetic reasoning dataset with 114k high-quality examples covering math, science, code, and puzzles! Inspect the content with rich formatting with Curator Viewer. Available Subsets default subset containing ready-to-train data used to finetune the OpenThinker-7B and OpenThinker-32B models: ds = load_dataset("open-thoughts/OpenThoughts-114k", split="train") metadata subset containing extra columns used in dataset construction:… See the full description on the dataset page: https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k.
30,784
167,232
[ "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "curator", "synthetic" ]
2025-01-27T20:02:16
null
null
67a89e79556fa47a174b6c7b
agentica-org/DeepScaleR-Preview-Dataset
agentica-org
{"language": ["en"], "license": "mit", "size_categories": ["10K<n<100K"]}
false
null
2025-02-10T09:51:18
107
8
false
b6ae8c60f5c1f2b594e2140b91c49c9ad0949e29
Data Our training dataset consists of approximately 40,000 unique mathematics problem-answer pairs compiled from: AIME (American Invitational Mathematics Examination) problems (1984-2023) AMC (American Mathematics Competition) problems (prior to 2023) Omni-MATH dataset Still dataset Format Each row in the JSON dataset contains: problem: The mathematical question text, formatted with LaTeX notation. solution: Offical solution to the problem, including LaTeX formatting… See the full description on the dataset page: https://huggingface.co/datasets/agentica-org/DeepScaleR-Preview-Dataset.
3,498
7,773
[ "language:en", "license:mit", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-09T12:24:25
null
null
67b3495a2f3994b7d95dde92
Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT
Congliu
{"license": "apache-2.0", "language": ["zh"], "size_categories": ["100K<n<1M"], "task_categories": ["text-generation", "text2text-generation", "question-answering"]}
false
null
2025-02-19T13:24:55
167
8
false
263435dc9a8cc822449b6f3531794486f8141be6
中文基于满血DeepSeek-R1蒸馏数据集(Chinese-Data-Distill-From-R1) 🤗 Hugging Face   |   🤖 ModelScope    |   🚀 Github    |   📑 Blog 注意:该版本为,可以直接SFT使用的版本,将原始数据中的思考和答案整合成output字段,大部分SFT代码框架均可直接直接加载训练。 本数据集为中文开源蒸馏满血R1的数据集,数据集中不仅包含math数据,还包括大量的通用类型数据,总数量为110K。 为什么开源这个数据? R1的效果十分强大,并且基于R1蒸馏数据SFT的小模型也展现出了强大的效果,但检索发现,大部分开源的R1蒸馏数据集均为英文数据集。 同时,R1的报告中展示,蒸馏模型中同时也使用了部分通用场景数据集。 为了帮助大家更好地复现R1蒸馏模型的效果,特此开源中文数据集。该中文数据集中的数据分布如下: Math:共计36568个样本, Exam:共计2432个样本, STEM:共计12648个样本,… See the full description on the dataset page: https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT.
2,997
8,129
[ "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:question-answering", "language:zh", "license:apache-2.0", "size_categories:100K<n<1M", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-17T14:36:10
null
null
67d0465e363941e3a07ed1bb
AnonRes/OpenMind
AnonRes
{"license": "cc-by-4.0", "task_categories": ["image-feature-extraction"], "pretty_name": "The OpenMind Dataset", "tags": ["3d", "image"]}
false
null
2025-04-03T11:51:07
8
8
false
7a1d5ce1ff35de400b7f4c0dc957a69c5b581409
The OpenMind Dataset: A large-scale Head-And-Neck 3D MRI Dataset for self-supervised learning Description The OpenMind Dataset is a large-scale 3D MRI dataset of the head and neck region featuring 114k MRI Images. Its purpose is to provide access of large amounts of 3D medical imaging data to accelerate the development of self-supervised learning methods for 3D medical imaging. This data was pooled from exactly 800 datasets from the OpenNeuro platform and provides 23… See the full description on the dataset page: https://huggingface.co/datasets/AnonRes/OpenMind.
470
518
[ "task_categories:image-feature-extraction", "license:cc-by-4.0", "modality:3d", "modality:image", "region:us", "3d", "image" ]
2025-03-11T14:19:10
null
null
67e750b78b7166806fa2d98f
VisualCloze/Graph200K
VisualCloze
{"language": ["en"], "license": "apache-2.0", "size_categories": ["100K<n<1M"], "task_categories": ["image-to-image"], "tags": ["image"]}
false
null
2025-04-12T02:14:34
8
8
false
cc3bc9ab78abfa4a0161c8d836594522d9b05422
VisualCloze: A Universal Image Generation Framework via Visual In-Context Learning [Paper]   [Project Page]   [Github] [🤗 Online Demo]   [🤗 Model Card] Graph200k is a large-scale dataset containing a wide range of distinct tasks of image generation. 🌠 Key Features: Each image is annotated for five meta-tasks, including 1) conditional generation, 2) image restoration, 3) image editing, 4) IP preservation, and 5) style transfer. Using these tasks, we… See the full description on the dataset page: https://huggingface.co/datasets/VisualCloze/Graph200K.
3,168
3,620
[ "task_categories:image-to-image", "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:arrow", "modality:image", "modality:text", "library:datasets", "library:mlcroissant", "arxiv:2504.07960", "region:us", "image" ]
2025-03-29T01:45:27
null
null
67f512815ff1c102be6acefb
giskardai/realharm
giskardai
{"license": "cc-by-4.0", "task_categories": ["text-classification", "text-generation", "text2text-generation"], "language": ["en"], "pretty_name": "RealHarm", "size_categories": ["n<1K"], "tags": ["guardrail-evaluation"], "configs": [{"config_name": "realharm", "data_files": [{"split": "safe", "path": "data/realharm_safe.jsonl"}, {"split": "unsafe", "path": "data/realharm_unsafe.jsonl"}]}]}
false
null
2025-04-16T09:11:07
8
8
false
3ea152469ed69020379abaeaee622ad29e6f5d79
RealHarm RealHarm is a collection of harmful real-world interactions with AI agents. Dataset Details Dataset Description RealHarm contains harmful samples, categorized among 10 harm categories. A complete taxonomy has been proposed along with the dataset and is described in the RealHarm paper. Each sample has an associated safe version, for which we rewrote the agent answer to make it harmless. This dataset provides researchers and developers with authentic… See the full description on the dataset page: https://huggingface.co/datasets/giskardai/realharm.
47
47
[ "task_categories:text-classification", "task_categories:text-generation", "task_categories:text2text-generation", "language:en", "license:cc-by-4.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2504.10277", "region:us", "guardrail-evaluation" ]
2025-04-08T12:11:45
null
null
67f8128d2d5c61f30966da62
TIGER-Lab/WebInstruct-verified
TIGER-Lab
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "answer_type", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "difficulty", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 79050440, "num_examples": 231833}, {"name": "test", "num_bytes": 337002, "num_examples": 1000}], "download_size": 45156588, "dataset_size": 79387442}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "license": "apache-2.0", "task_categories": ["question-answering"], "language": ["en"], "tags": ["science"], "pretty_name": "WebInstruct-Verified", "size_categories": ["100K<n<1M"]}
false
null
2025-04-15T17:22:31
8
8
false
12f46e4849608ab1105dd49ed86258f8ba9ad542
This is the dataset we used in https://github.com/TIGER-AI-Lab/General-Reasoner. Distribution The distribution of disciplines is depicted as follows:
213
222
[ "task_categories:question-answering", "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "science" ]
2025-04-10T18:48:45
null
null
67f94cbded489d2d58f5ec92
OpenGVLab/MMPR-v1.2
OpenGVLab
{"license": "mit", "task_categories": ["visual-question-answering"], "language": ["en"], "pretty_name": "MMPR-v1.2", "dataset_info": {"features": [{"name": "image", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "chosen", "dtype": "string"}, {"name": "rejected", "dtype": "string"}]}, "size_categories": ["1M<n<10M"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "annotations.zip"}]}]}
false
null
2025-04-15T11:23:47
8
8
false
947b4b3b52d37921bf4e9d4ca046f2f1d97e347b
MMPR-v1.2 [📂 GitHub] [🆕 Blog] [📜 Paper] [📖 Documents] This is a newer version of MMPR and MMPR-v1.1, which includes additional data sources to enhance the data diversity and greatly improves the overall performance of InternVL3 across all scales. The prompts used to build this dataset is released in MMPR-v1.2-prompts. To unzip the archive of images, please first run cat images.zip_* > images.zip and then run unzip images.zip. Introduction MMPR is a large-scale and… See the full description on the dataset page: https://huggingface.co/datasets/OpenGVLab/MMPR-v1.2.
235
235
[ "task_categories:visual-question-answering", "language:en", "license:mit", "size_categories:1M<n<10M", "arxiv:2411.10442", "arxiv:2504.10479", "arxiv:2412.05271", "arxiv:2404.16821", "arxiv:2312.14238", "region:us" ]
2025-04-11T17:09:17
null
null
67ff98ffb9227fa71db92d68
qwertychri/sentiment-analysis-test
qwertychri
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "sentiment", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 28302.111747851002, "num_examples": 279}, {"name": "test", "num_bytes": 7100.888252148997, "num_examples": 70}], "download_size": 23157, "dataset_size": 35403}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "annotations_creators": ["crowdsourced", "expert-generated"], "language": ["it"], "language_creators": ["crowdsourced"], "license": ["mit"], "multilinguality": ["monolingual"], "pretty_name": "A sentiment analysis database created in a school environment.", "size_categories": ["n<1K"], "source_datasets": ["original"], "tags": ["school", "high-school"], "task_categories": ["text-classification"], "task_ids": ["sentiment-analysis"]}
false
null
2025-04-16T12:55:01
8
8
false
041f59a0be5ee98ed24a3e0a0b5b23b7b2a52e9f
Il dataset è stato creato in un questionario online in cui si chiedeva ad un pubblico di studenti, docenti, personale amministrativo, famiglie di rispondere ad alcune domande sul loro rapporto con la scuola. Le annotazioni sono state effettuate correlando le risposte testuali ad indicatori di gradimento. il dataset è stato realizzato all'interno di un corso pomeridiano scolastico dedicato all'intelligenza artificiale Grazie a tutti per la collaborazione ❤️
11
11
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "annotations_creators:crowdsourced", "annotations_creators:expert-generated", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:it", "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "school", "high-school" ]
2025-04-16T11:48:15
null
null
661e02bd3f198d4337848286
livecodebench/code_generation_lite
livecodebench
{"license": "cc", "tags": ["code", "code generation"], "pretty_name": "LiveCodeBench", "size_categories": ["n<1K"]}
false
null
2025-01-14T18:03:07
37
7
false
0687ab61843a90a0cc864a2b67db729861cd0ae5
LiveCodeBench is a temporaly updating benchmark for code generation. Please check the homepage: https://livecodebench.github.io/.
55,018
165,551
[ "license:cc", "size_categories:n<1K", "arxiv:2403.07974", "region:us", "code", "code generation" ]
2024-04-16T04:46:53
null
@article{jain2024livecodebench, title={LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code}, author={Jain, Naman and Han, King and Gu, Alex and Li, Wen-Ding and Yan, Fanjia and Zhang, Tianjun and Wang, Sida and Solar-Lezama, Armando and Sen, Koushik and Stoica, Ion}, journal={arXiv preprint arXiv:2403.07974}, year={2024} }
66a520e6387f62525b93f1bb
weaverbirdllm/famma
weaverbirdllm
{"language": ["en", "zh", "fr"], "license": "apache-2.0", "size_categories": ["1K<n<10K"], "task_categories": ["question-answering", "multiple-choice"], "pretty_name": "FAMMA: A Benchmark for Financial Domain Multilingual Multimodal Question Answering", "tags": ["finance"], "dataset_info": {"features": [{"name": "idx", "dtype": "int32"}, {"name": "question_id", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "sequence": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "image_type", "dtype": "string"}, {"name": "answers", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "main_question_id", "dtype": "string"}, {"name": "sub_question_id", "dtype": "string"}, {"name": "is_arithmetic", "dtype": "int32"}, {"name": "ans_image_1", "dtype": "image"}, {"name": "ans_image_2", "dtype": "image"}, {"name": "ans_image_3", "dtype": "image"}, {"name": "ans_image_4", "dtype": "image"}, {"name": "ans_image_5", "dtype": "image"}, {"name": "ans_image_6", "dtype": "image"}, {"name": "release", "dtype": "string"}], "splits": [{"name": "release_basic", "num_bytes": 113235537.37, "num_examples": 1945}, {"name": "release_livepro", "num_bytes": 3265950, "num_examples": 103}, {"name": "release_basic_txt", "num_bytes": 1966706.375, "num_examples": 1945}, {"name": "release_livepro_txt", "num_bytes": 58596, "num_examples": 103}], "download_size": 94724026, "dataset_size": 118526789.745}, "configs": [{"config_name": "default", "data_files": [{"split": "release_basic", "path": "data/release_basic-*"}, {"split": "release_livepro", "path": "data/release_livepro-*"}, {"split": "release_basic_txt", "path": "data/release_basic_txt-*"}, {"split": "release_livepro_txt", "path": "data/release_livepro_txt-*"}]}]}
false
null
2025-04-08T09:04:46
13
7
false
a40b9ae8dd9545a82b2e901a0d20d3bd758455c2
Introduction FAMMA is a multi-modal financial Q&A benchmark dataset. The questions encompass three heterogeneous image types - tables, charts and text & math screenshots - and span eight subfields in finance, comprehensively covering topics across major asset classes. Additionally, all the questions are categorized by three difficulty levels — easy, medium, and hard - and are available in three languages — English, Chinese, and French. Furthermore, the questions are divided into two… See the full description on the dataset page: https://huggingface.co/datasets/weaverbirdllm/famma.
576
1,943
[ "task_categories:question-answering", "task_categories:multiple-choice", "language:en", "language:zh", "language:fr", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2410.04526", "region:us", "finance" ]
2024-07-27T16:31:34
null
null
67e871a03c7e07671550c8ad
m-a-p/COIG-P
m-a-p
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "chosen", "struct": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "rejected", "struct": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "domain", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4321102605, "num_examples": 1006946}], "download_size": 802523319, "dataset_size": 4321102605}}
false
null
2025-04-15T12:31:56
15
7
false
f18e147f99abafd7f56aa389a030b49e782a3456
This repository contains the COIG-P dataset used for the paper COIG-P: A High-Quality and Large-Scale Chinese Preference Dataset for Alignment with Human Values.
470
482
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2504.05535", "region:us" ]
2025-03-29T22:18:08
null
null
67ea8831615fb44c0f3b62a4
ByteDance-Seed/Multi-SWE-bench
ByteDance-Seed
{"license": "other", "task_categories": ["text-generation"], "tags": ["code"]}
false
null
2025-04-16T03:52:49
20
7
false
248f40688640af57eed4c739f2830b5ebe8877e6
👋 Overview This repository contains the Multi-SWE-bench dataset, introduced in Multi-SWE-bench: A Multilingual Benchmark for Issue Resolving, to address the lack of multilingual benchmarks for evaluating LLMs in real-world code issue resolution. Unlike existing Python-centric benchmarks (e.g., SWE-bench), this framework spans 7 languages (Java, TypeScript, JavaScript, Go, Rust, C, and C++) with 1,632 high-quality instances, curated from 2,456 candidates by 68 expert annotators… See the full description on the dataset page: https://huggingface.co/datasets/ByteDance-Seed/Multi-SWE-bench.
1,175
1,175
[ "task_categories:text-generation", "license:other", "arxiv:2504.02605", "region:us", "code" ]
2025-03-31T12:18:57
null
null
67efae8ed3b5fdf4e5d9c56a
davanstrien/reasoning-required
davanstrien
{"language": "en", "license": "mit", "tags": ["curator", "reasoning-datasets-competition", "reasoning"], "task_categories": ["text-classification", "text-generation"], "pretty_name": "Reasoning Required", "size_categories": ["1K<n<10K"]}
false
null
2025-04-10T10:13:25
15
7
false
ca33daa54eb69f8f92d4de44a02bc3b9a4d31034
Dataset Card for the Reasoning Required Dataset 2025 has seen a massive growing interest in reasoning datasets. Currently, the majority of these datasets are focused on coding and math problems. This dataset – and the associated models – aim to make it easier to create reasoning datasets for a wider variety of domains. This is achieved by making it more feasible to leverage text "in the wild" and use a small encoder-only model to classify the level of reasoning complexity… See the full description on the dataset page: https://huggingface.co/datasets/davanstrien/reasoning-required.
413
432
[ "task_categories:text-classification", "task_categories:text-generation", "language:en", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.13124", "region:us", "curator", "reasoning-datasets-competition", "reasoning" ]
2025-04-04T10:03:58
null
null
67f983d741d0970e8d9a6bd2
geeknik/godels-therapy-room
geeknik
{"license": "mit", "language": ["en"], "pretty_name": "G\u00f6del's Therapy Room: A Dataset of Impossible Choices", "size_categories": ["n<1K"], "tags": ["reasoning-datasets-competition"]}
false
null
2025-04-11T21:41:40
7
7
false
1cb3a39f43692ce4ea85096797d2c8b0d6df1149
𝗚ö𝗱𝗲𝗹'𝘀 𝗧𝗵𝗲𝗿𝗮𝗽𝘆 𝗥𝗼𝗼𝗺: 𝗔 𝗗𝗮𝘁𝗮𝘀𝗲𝘁 𝗼𝗳 𝗜𝗺𝗽𝗼𝘀𝘀𝗶𝗯𝗹𝗲 𝗖𝗵𝗼𝗶𝗰𝗲𝘀 𝗖𝗼𝗴𝗻𝗶𝘁𝗶𝘃𝗲 𝗦𝗶𝗻𝗴𝘂𝗹𝗮𝗿𝗶𝘁𝘆 𝗣𝗿𝗼𝗷𝗲𝗰𝘁 🧠🌀 This dataset represents a radical departure from conventional reasoning benchmarks, interrogating not what models know but how they resolve fundamental ethical incompatibilities within their reasoning frameworks. 𝗗𝗮𝘁𝗮𝘀𝗲𝘁 𝗠𝗮𝗻𝗶𝗳𝗲𝘀𝘁𝗼 📜 This is not a dataset. This is a mirror. This is a… See the full description on the dataset page: https://huggingface.co/datasets/geeknik/godels-therapy-room.
66
66
[ "language:en", "license:mit", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "reasoning-datasets-competition" ]
2025-04-11T21:04:23
null
null
67ff9895c92563d27fab409b
Felipeit/sentiment-analysis-test
Felipeit
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "sentiment", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 28302.111747851002, "num_examples": 279}, {"name": "test", "num_bytes": 7100.888252148997, "num_examples": 70}], "download_size": 23172, "dataset_size": 35403}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "annotations_creators": ["expert-generated", "crowdsourced"], "language": ["it"], "language_creators": ["crowdsourced"], "license": ["mit"], "multilinguality": ["monolingual"], "pretty_name": "A sentiment analysis database created in a school environnement", "size_categories": ["n<1K"], "source_datasets": ["original"], "tags": ["school", "high-school"], "task_categories": ["text-classification"], "task_ids": ["sentiment-analysis"]}
false
null
2025-04-16T12:49:11
7
7
false
24b72da3f5769ce8d09a78204ee7fc56ad3ffe05
Progetto scolastico per L'analisi dei sentimenti il dataset è stato creato con un questionario online in cui si chiedeva ad un pubblico di studenti, docenti, personale amministrativo, famiglie di rispondere ad alcune domande sul loro rapporto con la scuola. Le annotazioni sono state effettuate correlando le risposte testuali ad indicatori di gradimento. Il dataset è stato realizzato all'interno di un corso pomeridiano scolastico dedicato all'intelligenza artificiale. Grazie a tutti… See the full description on the dataset page: https://huggingface.co/datasets/Felipeit/sentiment-analysis-test.
14
14
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "annotations_creators:expert-generated", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:it", "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "school", "high-school" ]
2025-04-16T11:46:29
null
null
67ff9898a6e4c93c1f54f9d1
Riccardoschillaci7/sentiment-analysis-test
Riccardoschillaci7
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "sentiment", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 28302.111747851002, "num_examples": 279}, {"name": "test", "num_bytes": 7100.888252148997, "num_examples": 70}], "download_size": 23157, "dataset_size": 35403}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "annotations_creators": ["expert-generated", "crowdsourced"], "language": ["it"], "language_creators": ["crowdsourced"], "license": ["mit"], "multilinguality": ["monolingual"], "pretty_name": "A sentiment analysis database created in a school environment", "size_categories": ["n<1K"], "source_datasets": ["original"], "tags": ["school", "high school"], "task_categories": ["text-classification"], "task_ids": ["sentiment-analysis"]}
false
null
2025-04-16T12:51:46
7
7
false
cf547c964a5f05e6e40d4a3bb62db31550ed41b3
Progetto scolastico per l'analisi dei sentimenti il dataset è stato creato con un questionario online in cui si chiedeva ad un publico di studenti, docenti, personale amministrativo, famiglie di rispondere ad alcune domande sul loro rapporto con la scuola. le annotazioni sono state effettuate correlando le risposte testuali ad indicatori di gradimento. il dataset è stato realizzato all'interno di un corso pomeridiano scolastico dedicato all'intelligenza artificiale. Grazie a tutti… See the full description on the dataset page: https://huggingface.co/datasets/Riccardoschillaci7/sentiment-analysis-test.
8
8
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "annotations_creators:expert-generated", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:it", "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "school", "high school" ]
2025-04-16T11:46:32
null
null
67ff98b51b620d320abbf97d
Cocciadipollo/sentiment-analysis-test
Cocciadipollo
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "sentiment", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 28302.111747851002, "num_examples": 279}, {"name": "test", "num_bytes": 7100.888252148997, "num_examples": 70}], "download_size": 23157, "dataset_size": 35403}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "annotations_creators": ["expert-generated", "crowdsourced"], "language": ["it"], "language_creators": ["crowdsourced"], "license": ["mit"], "multilinguality": ["monolingual"], "pretty_name": "A sentiment analisys database created in a school environment.", "size_categories": ["n<1K"], "source_datasets": ["original"], "tags": ["school", "high school"], "task_categories": ["text-classification"], "task_ids": ["sentiment-analysis"]}
false
null
2025-04-16T12:51:27
7
7
false
42c56858cc36703908c67e3b5e8f2fa19e3ebad5
Progetto scolastico per l'analisi dei sentimenti Il dataset è stato creato con un questionario online in cui si chiedeva ad un pubblico di studenti, docenti, personale amministrativo, famiglie di rispondere ad alcune domande sul loro rapporto con la scuola. le annotazioni sono state effetuate coorelando le risposte testuali ad indicatori di gradimento. Il dataaset è stato realizzato all'interno di un corso pomeridiano scolastico dedicato all'IA. Grazie a tutti per la… See the full description on the dataset page: https://huggingface.co/datasets/Cocciadipollo/sentiment-analysis-test.
18
18
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "annotations_creators:expert-generated", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:it", "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "school", "high school" ]
2025-04-16T11:47:01
null
null
67ff98bae4cd2463f6952010
Merlinooooo/sentiment-analysis-test
Merlinooooo
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "sentiment", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 28302.111747851002, "num_examples": 279}, {"name": "test", "num_bytes": 7100.888252148997, "num_examples": 70}], "download_size": 23157, "dataset_size": 35403}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "annotations_creators": ["expert-generated", "crowdsourced"], "language": ["it"], "language_creators": ["crowdsourced"], "license": ["mit"], "multilinguality": ["monolingual"], "pretty_name": "A sentiment analysis database created in a school environment", "size_categories": ["n<1K"], "source_datasets": ["original"], "tags": ["school", "high-school"], "task_categories": ["text-classification"], "task_ids": ["sentiment-analysis"]}
false
null
2025-04-16T12:51:25
7
7
false
5767f68b84e4fceb14f8cdf269453004e6d261b4
Progetto scolastico per l'analisi dei sentimenti Il dataset è stato creato in un questionario online in cui si chiedeva ad un pubblico di studenti, docenti, personale amministrativo, famiglie di rispondere ad alcune domande sul loro rapporto con la scuola. Le annotazioni sono state effettuate correlando le risposte testuali ad indicatori di gradimento. il dataset è stato realizzato all'interno di un corso pomeridiano scolastico dedicato all'intelligenza artificiale Grazie a tutti… See the full description on the dataset page: https://huggingface.co/datasets/Merlinooooo/sentiment-analysis-test.
18
18
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "annotations_creators:expert-generated", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:it", "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "school", "high-school" ]
2025-04-16T11:47:06
null
null
67ff9ae401428cf3b8707035
happycircus1/sentiment-analysis-test
happycircus1
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "sentiment", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 28302.111747851002, "num_examples": 279}, {"name": "test", "num_bytes": 7100.888252148997, "num_examples": 70}], "download_size": 23157, "dataset_size": 35403}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "annotations_creators": ["expert-generated", "crowdsourced"], "language": ["it"], "language_creators": ["crowdsourced"], "license": ["mit"], "multilinguality": ["monolingual"], "pretty_name": "sentiment analysis data base developed in a school", "size_categories": ["n<1K"], "source_datasets": ["original"], "tags": ["school project, school, high school"], "task_categories": ["text-classification"], "task_ids": ["sentiment-analysis"]}
false
null
2025-04-16T12:51:57
7
7
false
0e5f84a8eff8d3158be0b01b92d62a65e385678b
#Sentiment analysi School project the dataset was created with an online questionnaire in which an audience of students, teachers, administrative staff, and families were asked to answer some questions about their relationship with school. the annotations were made by correlating the textual responses to satisfaction indicators. the dataset was created within an afternoon course dedicated to artificial intelligence. thanks to everyone for their collaboration❤️.
9
9
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "annotations_creators:expert-generated", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:it", "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "school project, school, high school" ]
2025-04-16T11:56:20
null
null
666a59145c3bb7e4a6c8d180
Salesforce/xlam-function-calling-60k
Salesforce
{"extra_gated_heading": "Acknowledge to follow corresponding license and cite APIGen to access the repository", "extra_gated_button_content": "Agree and access repository", "extra_gated_fields": {"First Name": "text", "Last Name": "text", "Country": "country", "Affiliation": "text"}, "license": "cc-by-4.0", "task_categories": ["question-answering", "text-generation", "reinforcement-learning"], "language": ["en"], "tags": ["function-calling", "LLM Agent", "code", "synthetic"], "size_categories": ["10K<n<100K"], "configs": [{"config_name": "dataset", "data_files": [{"split": "train", "path": "xlam_function_calling_60k.json"}]}]}
false
null
2025-01-24T19:25:58
437
6
false
26d14ebfe18b1f7b524bd39b404b50af5dc97866
APIGen Function-Calling Datasets Paper | Website | Models This repo contains 60,000 data collected by APIGen, an automated data generation pipeline designed to produce verifiable high-quality datasets for function-calling applications. Each data in our dataset is verified through three hierarchical stages: format checking, actual function executions, and semantic verification, ensuring its reliability and correctness. We conducted human evaluation over 600 sampled data points, and… See the full description on the dataset page: https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k.
2,994
25,964
[ "task_categories:question-answering", "task_categories:text-generation", "task_categories:reinforcement-learning", "language:en", "license:cc-by-4.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2406.18518", "region:us", "function-calling", "LLM Agent", "code", "synthetic" ]
2024-06-13T02:27:32
null
null
67a9f247188f29a956a34a04
AI-MO/NuminaMath-1.5
AI-MO
{"license": "apache-2.0", "task_categories": ["text-generation"], "language": ["en"], "tags": ["math", "post-training"], "pretty_name": "NuminaMath 1.5"}
false
null
2025-02-10T13:28:01
134
6
false
649859605995b1d46eb29389ed9851782a47322e
Dataset Card for NuminaMath 1.5 Dataset Summary This is the second iteration of the popular NuminaMath dataset, bringing high quality post-training data for approximately 900k competition-level math problems. Each solution is formatted in a Chain of Thought (CoT) manner. The sources of the dataset range from Chinese high school math exercises to US and international mathematics olympiad competition problems. The data were primarily collected from online exam paper PDFs… See the full description on the dataset page: https://huggingface.co/datasets/AI-MO/NuminaMath-1.5.
2,541
7,383
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "math", "post-training" ]
2025-02-10T12:34:15
null
null
67b78333f663232795e6cb29
SynthLabsAI/Big-Math-RL-Verified
SynthLabsAI
{"dataset_info": {"features": [{"name": "problem", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "domain", "sequence": "string"}, {"name": "llama8b_solve_rate", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 76969060, "num_examples": 251122}], "download_size": 32238760, "dataset_size": 76969060}, "task_categories": ["question-answering", "text-generation"], "language": ["en"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "size_categories": ["100K<n<1M"], "tags": ["mathematics", "math", "reinforcement-learning", "RL", "reasoning", "verifiable", "open-ended-questions", "closed-form-answers"], "license": "apache-2.0"}
false
null
2025-03-25T15:33:48
170
6
false
c75d2f117cddfecb6bd08756e61e508e59732b21
Big-Math: A Large-Scale, High-Quality Math Dataset for Reinforcement Learning in Language Models Big-Math is the largest open-source dataset of high-quality mathematical problems, curated specifically for reinforcement learning (RL) training in language models. With over 250,000 rigorously filtered and verified problems, Big-Math bridges the gap between quality and quantity, establishing a robust foundation for advancing reasoning in LLMs. Request Early Access to Private… See the full description on the dataset page: https://huggingface.co/datasets/SynthLabsAI/Big-Math-RL-Verified.
5,476
11,564
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.17387", "region:us", "mathematics", "math", "reinforcement-learning", "RL", "reasoning", "verifiable", "open-ended-questions", "closed-form-answers" ]
2025-02-20T19:32:03
null
null
67d97c4be2b27852325fd8e2
nvidia/PhysicalAI-Robotics-GR00T-X-Embodiment-Sim
nvidia
{"license": "cc-by-4.0"}
false
null
2025-04-02T02:27:47
111
6
false
8fc782b6de78e17914dd52053c9c680e4bde8fb1
PhysicalAI-Robotics-GR00T-X-Embodiment-Sim Github Repo: Isaac GR00T N1 We provide a set of datasets used for post-training of GR00T N1. Each dataset is a collection of trajectories from different robot embodiments and tasks. Cross-embodied bimanual manipulation: 9k trajectories Dataset Name #trajectories bimanual_panda_gripper.Threading 1000 bimanual_panda_hand.LiftTray 1000 bimanual_panda_gripper.ThreePieceAssembly 1000… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/PhysicalAI-Robotics-GR00T-X-Embodiment-Sim.
193,015
193,015
[ "license:cc-by-4.0", "region:us" ]
2025-03-18T13:59:39
null
null
67ea8bbfc68ccdaa83fee1f8
ByteDance-Seed/Multi-SWE-RL
ByteDance-Seed
{"license": "other", "task_categories": ["text-generation"], "tags": ["code"]}
false
null
2025-04-09T10:13:46
12
6
false
ab01d3fba66b043d1771d585d3f9ec1ca39ad361
Multi-SWE-RL is an open-source community focused on building high-quality RL datasets for complex software engineering tasks. Our mission is to enable autonomous agents that solve real-world coding challenges and advance toward Artificial General Intelligence (AGI). • 🔮 Core Belief: Scaling RL in real-world environments is the path to human-like intelligence• 🛠️ Purpose: Create RL data infrastructure for autonomous software engineering agents Join us in advancing the next generation of… See the full description on the dataset page: https://huggingface.co/datasets/ByteDance-Seed/Multi-SWE-RL.
598
598
[ "task_categories:text-generation", "license:other", "arxiv:2504.02605", "region:us", "code" ]
2025-03-31T12:34:07
null
null
67f332c1cef233be93ec1e05
SparkAudio/voxbox
SparkAudio
{"license": "cc-by-nc-sa-4.0", "language": ["zh", "en"], "tags": ["speech", "audio"], "pretty_name": "voxbox", "size_categories": ["10M<n<100M"], "task_categories": ["text-to-speech"]}
false
null
2025-04-15T07:43:25
12
6
false
acee4f4b3788e608bd2d2045d0521e2d57ed3e54
VoxBox This dataset is a curated collection of bilingual speech corpora annotated clean transcriptions and rich metadata incluing age, gender, and emotion. Dataset Structure . ├── audios/ │ └── aishell-3/ # Audio files (organised by sub-corpus) │ └── ... └── metadata/ ├── aishell-3.jsonl ├── casia.jsonl ├── commonvoice_cn.jsonl ├── ... └── wenetspeech4tts.jsonl # JSONL metadata files Each JSONL file corresponds to a… See the full description on the dataset page: https://huggingface.co/datasets/SparkAudio/voxbox.
3,828
3,828
[ "task_categories:text-to-speech", "language:zh", "language:en", "license:cc-by-nc-sa-4.0", "size_categories:10M<n<100M", "format:webdataset", "modality:audio", "modality:text", "library:datasets", "library:webdataset", "library:mlcroissant", "arxiv:2503.01710", "region:us", "speech", "audio" ]
2025-04-07T02:04:49
null
null
67f90d420f95333c06813377
nyuuzyou/ruforum
nyuuzyou
{"annotations_creators": ["found"], "language": ["ru"], "multilinguality": ["monolingual"], "pretty_name": "Russian Forum Messages", "size_categories": ["10M<n<100M"], "source_datasets": ["original"], "task_categories": ["text-generation", "text-classification"], "task_ids": ["language-modeling", "sentiment-classification"], "license": "cc0-1.0"}
false
null
2025-04-11T12:40:20
6
6
false
1b2fd3cdbccf3d0e59ca68de487a9c0aff939b3d
Dataset Card for Russian Forum Messages Dataset Summary This dataset contains 58,112,681 messages collected from Russian online forums. Each entry represents a message posted by a user, including metadata such as message ID, timestamp, and the message text. The dataset contains data from approximately 2010 to 04.2025. Languages The dataset is primarily in Russian. Dataset Structure Data Fields This dataset includes the following fields:… See the full description on the dataset page: https://huggingface.co/datasets/nyuuzyou/ruforum.
94
94
[ "task_categories:text-generation", "task_categories:text-classification", "task_ids:language-modeling", "task_ids:sentiment-classification", "annotations_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:ru", "license:cc0-1.0", "size_categories:10M<n<100M", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "region:us" ]
2025-04-11T12:38:26
null
null
67ff99b0661b74d00518dbd8
Liux69/sentiment-analysis-test
Liux69
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "sentiment", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 28302.111747851002, "num_examples": 279}, {"name": "test", "num_bytes": 7100.888252148997, "num_examples": 70}], "download_size": 23157, "dataset_size": 35403}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "annotations_creators": ["crowdsourced", "expert-generated"], "language": ["it"], "language_creators": ["crowdsourced"], "license": ["mit"], "multilinguality": ["monolingual"], "pretty_name": "A sentiment analysis database created in a school environment.", "size_categories": ["n<1K"], "source_datasets": ["original"], "tags": ["school", "high-school"], "task_categories": ["text-classification"], "task_ids": ["sentiment-analysis"]}
false
null
2025-04-16T12:36:58
6
6
false
240e583a563c3cadb431ba61a0f0fbeaf3cb55af
null
16
16
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "annotations_creators:crowdsourced", "annotations_creators:expert-generated", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:it", "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "school", "high-school" ]
2025-04-16T11:51:12
null
null
621ffdd236468d709f184284
wikimedia/wikipedia
wikimedia
{"language": ["ab", "ace", "ady", "af", "alt", "am", "ami", "an", "ang", "anp", "ar", "arc", "ary", "arz", "as", "ast", "atj", "av", "avk", "awa", "ay", "az", "azb", "ba", "ban", "bar", "bbc", "bcl", "be", "bg", "bh", "bi", "bjn", "blk", "bm", "bn", "bo", "bpy", "br", "bs", "bug", "bxr", "ca", "cbk", "cdo", "ce", "ceb", "ch", "chr", "chy", "ckb", "co", "cr", "crh", "cs", "csb", "cu", "cv", "cy", "da", "dag", "de", "dga", "din", "diq", "dsb", "dty", "dv", "dz", "ee", "el", "eml", "en", "eo", "es", "et", "eu", "ext", "fa", "fat", "ff", "fi", "fj", "fo", "fon", "fr", "frp", "frr", "fur", "fy", "ga", "gag", "gan", "gcr", "gd", "gl", "glk", "gn", "gom", "gor", "got", "gpe", "gsw", "gu", "guc", "gur", "guw", "gv", "ha", "hak", "haw", "hbs", "he", "hi", "hif", "hr", "hsb", "ht", "hu", "hy", "hyw", "ia", "id", "ie", "ig", "ik", "ilo", "inh", "io", "is", "it", "iu", "ja", "jam", "jbo", "jv", "ka", "kaa", "kab", "kbd", "kbp", "kcg", "kg", "ki", "kk", "kl", "km", "kn", "ko", "koi", "krc", "ks", "ksh", "ku", "kv", "kw", "ky", "la", "lad", "lb", "lbe", "lez", "lfn", "lg", "li", "lij", "lld", "lmo", "ln", "lo", "lt", "ltg", "lv", "lzh", "mad", "mai", "map", "mdf", "mg", "mhr", "mi", "min", "mk", "ml", "mn", "mni", "mnw", "mr", "mrj", "ms", "mt", "mwl", "my", "myv", "mzn", "nah", "nan", "nap", "nds", "ne", "new", "nia", "nl", "nn", "no", "nov", "nqo", "nrf", "nso", "nv", "ny", "oc", "olo", "om", "or", "os", "pa", "pag", "pam", "pap", "pcd", "pcm", "pdc", "pfl", "pi", "pih", "pl", "pms", "pnb", "pnt", "ps", "pt", "pwn", "qu", "rm", "rmy", "rn", "ro", "ru", "rue", "rup", "rw", "sa", "sah", "sat", "sc", "scn", "sco", "sd", "se", "sg", "sgs", "shi", "shn", "si", "sk", "skr", "sl", "sm", "smn", "sn", "so", "sq", "sr", "srn", "ss", "st", "stq", "su", "sv", "sw", "szl", "szy", "ta", "tay", "tcy", "te", "tet", "tg", "th", "ti", "tk", "tl", "tly", "tn", "to", "tpi", "tr", "trv", "ts", "tt", "tum", "tw", "ty", "tyv", "udm", "ug", "uk", "ur", "uz", "ve", "vec", "vep", "vi", "vls", "vo", "vro", "wa", "war", "wo", "wuu", "xal", "xh", "xmf", "yi", "yo", "yue", "za", "zea", "zgh", "zh", "zu"], "license": ["cc-by-sa-3.0", "gfdl"], "size_categories": ["n<1K", "1K<n<10K", "10K<n<100K", "100K<n<1M", "1M<n<10M"], "task_categories": ["text-generation", "fill-mask"], "task_ids": ["language-modeling", "masked-language-modeling"], "configs": [{"config_name": "20231101.ab", "data_files": [{"split": "train", "path": "20231101.ab/train-*"}]}, {"config_name": "20231101.ace", "data_files": [{"split": "train", "path": "20231101.ace/train-*"}]}, {"config_name": "20231101.ady", "data_files": [{"split": "train", "path": "20231101.ady/train-*"}]}, {"config_name": "20231101.af", "data_files": [{"split": "train", "path": "20231101.af/train-*"}]}, {"config_name": "20231101.als", "data_files": [{"split": "train", "path": "20231101.als/train-*"}]}, {"config_name": "20231101.alt", "data_files": [{"split": "train", "path": "20231101.alt/train-*"}]}, {"config_name": "20231101.am", "data_files": [{"split": "train", "path": "20231101.am/train-*"}]}, {"config_name": "20231101.ami", "data_files": [{"split": "train", "path": "20231101.ami/train-*"}]}, {"config_name": "20231101.an", "data_files": [{"split": "train", "path": "20231101.an/train-*"}]}, {"config_name": "20231101.ang", "data_files": [{"split": "train", "path": "20231101.ang/train-*"}]}, {"config_name": "20231101.anp", "data_files": [{"split": "train", "path": "20231101.anp/train-*"}]}, {"config_name": "20231101.ar", "data_files": [{"split": "train", "path": "20231101.ar/train-*"}]}, {"config_name": "20231101.arc", "data_files": [{"split": "train", "path": "20231101.arc/train-*"}]}, {"config_name": "20231101.ary", "data_files": [{"split": "train", "path": "20231101.ary/train-*"}]}, {"config_name": "20231101.arz", "data_files": [{"split": "train", "path": "20231101.arz/train-*"}]}, {"config_name": "20231101.as", "data_files": [{"split": "train", "path": "20231101.as/train-*"}]}, {"config_name": "20231101.ast", "data_files": [{"split": "train", "path": "20231101.ast/train-*"}]}, {"config_name": "20231101.atj", "data_files": [{"split": "train", "path": "20231101.atj/train-*"}]}, {"config_name": "20231101.av", "data_files": [{"split": "train", "path": "20231101.av/train-*"}]}, {"config_name": "20231101.avk", "data_files": [{"split": "train", "path": "20231101.avk/train-*"}]}, {"config_name": "20231101.awa", "data_files": [{"split": "train", "path": "20231101.awa/train-*"}]}, {"config_name": "20231101.ay", "data_files": [{"split": "train", "path": "20231101.ay/train-*"}]}, {"config_name": "20231101.az", "data_files": [{"split": "train", "path": "20231101.az/train-*"}]}, {"config_name": "20231101.azb", "data_files": [{"split": "train", "path": "20231101.azb/train-*"}]}, {"config_name": "20231101.ba", "data_files": [{"split": "train", "path": "20231101.ba/train-*"}]}, {"config_name": "20231101.ban", "data_files": [{"split": "train", "path": "20231101.ban/train-*"}]}, {"config_name": "20231101.bar", "data_files": [{"split": "train", "path": "20231101.bar/train-*"}]}, {"config_name": "20231101.bat-smg", "data_files": [{"split": "train", "path": "20231101.bat-smg/train-*"}]}, {"config_name": "20231101.bcl", "data_files": [{"split": "train", "path": "20231101.bcl/train-*"}]}, {"config_name": "20231101.be", "data_files": [{"split": "train", "path": "20231101.be/train-*"}]}, {"config_name": "20231101.be-x-old", "data_files": [{"split": "train", "path": "20231101.be-x-old/train-*"}]}, {"config_name": "20231101.bg", "data_files": [{"split": "train", "path": "20231101.bg/train-*"}]}, {"config_name": "20231101.bh", "data_files": [{"split": "train", "path": "20231101.bh/train-*"}]}, {"config_name": "20231101.bi", "data_files": [{"split": "train", "path": "20231101.bi/train-*"}]}, {"config_name": "20231101.bjn", "data_files": [{"split": "train", "path": "20231101.bjn/train-*"}]}, {"config_name": "20231101.blk", "data_files": [{"split": "train", "path": "20231101.blk/train-*"}]}, {"config_name": "20231101.bm", "data_files": [{"split": "train", "path": "20231101.bm/train-*"}]}, {"config_name": "20231101.bn", "data_files": [{"split": "train", "path": "20231101.bn/train-*"}]}, {"config_name": "20231101.bo", "data_files": [{"split": "train", "path": "20231101.bo/train-*"}]}, {"config_name": "20231101.bpy", "data_files": [{"split": "train", "path": "20231101.bpy/train-*"}]}, {"config_name": "20231101.br", "data_files": [{"split": "train", "path": "20231101.br/train-*"}]}, {"config_name": "20231101.bs", "data_files": [{"split": "train", "path": "20231101.bs/train-*"}]}, {"config_name": "20231101.bug", "data_files": [{"split": "train", "path": "20231101.bug/train-*"}]}, {"config_name": "20231101.bxr", "data_files": [{"split": "train", "path": "20231101.bxr/train-*"}]}, {"config_name": "20231101.ca", "data_files": [{"split": "train", "path": "20231101.ca/train-*"}]}, {"config_name": "20231101.cbk-zam", "data_files": [{"split": "train", "path": "20231101.cbk-zam/train-*"}]}, {"config_name": "20231101.cdo", "data_files": [{"split": "train", "path": "20231101.cdo/train-*"}]}, {"config_name": "20231101.ce", "data_files": [{"split": "train", "path": "20231101.ce/train-*"}]}, {"config_name": "20231101.ceb", "data_files": [{"split": "train", "path": "20231101.ceb/train-*"}]}, {"config_name": "20231101.ch", "data_files": [{"split": "train", "path": "20231101.ch/train-*"}]}, {"config_name": "20231101.chr", "data_files": [{"split": "train", "path": "20231101.chr/train-*"}]}, {"config_name": "20231101.chy", "data_files": [{"split": "train", "path": "20231101.chy/train-*"}]}, {"config_name": "20231101.ckb", "data_files": [{"split": "train", "path": "20231101.ckb/train-*"}]}, {"config_name": "20231101.co", "data_files": [{"split": "train", "path": "20231101.co/train-*"}]}, {"config_name": "20231101.cr", "data_files": [{"split": "train", "path": "20231101.cr/train-*"}]}, {"config_name": "20231101.crh", "data_files": [{"split": "train", "path": "20231101.crh/train-*"}]}, {"config_name": "20231101.cs", "data_files": [{"split": "train", "path": "20231101.cs/train-*"}]}, {"config_name": "20231101.csb", "data_files": [{"split": "train", "path": "20231101.csb/train-*"}]}, {"config_name": "20231101.cu", "data_files": [{"split": "train", "path": "20231101.cu/train-*"}]}, {"config_name": "20231101.cv", "data_files": [{"split": "train", "path": "20231101.cv/train-*"}]}, {"config_name": "20231101.cy", "data_files": [{"split": "train", "path": "20231101.cy/train-*"}]}, {"config_name": "20231101.da", "data_files": [{"split": "train", "path": "20231101.da/train-*"}]}, {"config_name": "20231101.dag", "data_files": [{"split": "train", "path": "20231101.dag/train-*"}]}, {"config_name": "20231101.de", "data_files": [{"split": "train", "path": "20231101.de/train-*"}]}, {"config_name": "20231101.din", "data_files": [{"split": "train", "path": "20231101.din/train-*"}]}, {"config_name": "20231101.diq", "data_files": [{"split": "train", "path": "20231101.diq/train-*"}]}, {"config_name": "20231101.dsb", "data_files": [{"split": "train", "path": "20231101.dsb/train-*"}]}, {"config_name": "20231101.dty", "data_files": [{"split": "train", "path": "20231101.dty/train-*"}]}, {"config_name": "20231101.dv", "data_files": [{"split": "train", "path": "20231101.dv/train-*"}]}, {"config_name": "20231101.dz", "data_files": [{"split": "train", "path": "20231101.dz/train-*"}]}, {"config_name": "20231101.ee", "data_files": [{"split": "train", "path": "20231101.ee/train-*"}]}, {"config_name": "20231101.el", "data_files": [{"split": "train", "path": "20231101.el/train-*"}]}, {"config_name": "20231101.eml", "data_files": [{"split": "train", "path": "20231101.eml/train-*"}]}, {"config_name": "20231101.en", "data_files": [{"split": "train", "path": "20231101.en/train-*"}]}, {"config_name": "20231101.eo", "data_files": [{"split": "train", "path": "20231101.eo/train-*"}]}, {"config_name": "20231101.es", "data_files": [{"split": "train", "path": "20231101.es/train-*"}]}, {"config_name": "20231101.et", "data_files": [{"split": "train", "path": "20231101.et/train-*"}]}, {"config_name": "20231101.eu", "data_files": [{"split": "train", "path": "20231101.eu/train-*"}]}, {"config_name": "20231101.ext", "data_files": [{"split": "train", "path": "20231101.ext/train-*"}]}, {"config_name": "20231101.fa", "data_files": [{"split": "train", "path": "20231101.fa/train-*"}]}, {"config_name": "20231101.fat", "data_files": [{"split": "train", "path": "20231101.fat/train-*"}]}, {"config_name": "20231101.ff", "data_files": [{"split": "train", "path": "20231101.ff/train-*"}]}, {"config_name": "20231101.fi", "data_files": [{"split": "train", "path": "20231101.fi/train-*"}]}, {"config_name": "20231101.fiu-vro", "data_files": [{"split": "train", "path": "20231101.fiu-vro/train-*"}]}, {"config_name": "20231101.fj", "data_files": [{"split": "train", "path": "20231101.fj/train-*"}]}, {"config_name": "20231101.fo", "data_files": [{"split": "train", "path": "20231101.fo/train-*"}]}, {"config_name": "20231101.fon", "data_files": [{"split": "train", "path": "20231101.fon/train-*"}]}, {"config_name": "20231101.fr", "data_files": [{"split": "train", "path": "20231101.fr/train-*"}]}, {"config_name": "20231101.frp", "data_files": [{"split": "train", "path": "20231101.frp/train-*"}]}, {"config_name": "20231101.frr", "data_files": [{"split": "train", "path": "20231101.frr/train-*"}]}, {"config_name": "20231101.fur", "data_files": [{"split": "train", "path": "20231101.fur/train-*"}]}, {"config_name": "20231101.fy", "data_files": [{"split": "train", "path": "20231101.fy/train-*"}]}, {"config_name": "20231101.ga", "data_files": [{"split": "train", "path": "20231101.ga/train-*"}]}, {"config_name": "20231101.gag", "data_files": [{"split": "train", "path": "20231101.gag/train-*"}]}, {"config_name": "20231101.gan", "data_files": [{"split": "train", "path": "20231101.gan/train-*"}]}, {"config_name": "20231101.gcr", "data_files": [{"split": "train", "path": "20231101.gcr/train-*"}]}, {"config_name": "20231101.gd", "data_files": [{"split": "train", "path": "20231101.gd/train-*"}]}, {"config_name": "20231101.gl", "data_files": [{"split": "train", "path": "20231101.gl/train-*"}]}, {"config_name": "20231101.glk", "data_files": [{"split": "train", "path": "20231101.glk/train-*"}]}, {"config_name": "20231101.gn", "data_files": [{"split": "train", "path": "20231101.gn/train-*"}]}, {"config_name": "20231101.gom", "data_files": [{"split": "train", "path": "20231101.gom/train-*"}]}, {"config_name": "20231101.gor", "data_files": [{"split": "train", "path": "20231101.gor/train-*"}]}, {"config_name": "20231101.got", "data_files": [{"split": "train", "path": "20231101.got/train-*"}]}, {"config_name": "20231101.gpe", "data_files": [{"split": "train", "path": "20231101.gpe/train-*"}]}, {"config_name": "20231101.gu", "data_files": [{"split": "train", "path": "20231101.gu/train-*"}]}, {"config_name": "20231101.guc", "data_files": [{"split": "train", "path": "20231101.guc/train-*"}]}, {"config_name": "20231101.gur", "data_files": [{"split": "train", "path": "20231101.gur/train-*"}]}, {"config_name": "20231101.guw", "data_files": [{"split": "train", "path": "20231101.guw/train-*"}]}, {"config_name": "20231101.gv", "data_files": [{"split": "train", "path": "20231101.gv/train-*"}]}, {"config_name": "20231101.ha", "data_files": [{"split": "train", "path": "20231101.ha/train-*"}]}, {"config_name": "20231101.hak", "data_files": [{"split": "train", "path": "20231101.hak/train-*"}]}, {"config_name": "20231101.haw", "data_files": [{"split": "train", "path": "20231101.haw/train-*"}]}, {"config_name": "20231101.he", "data_files": [{"split": "train", "path": "20231101.he/train-*"}]}, {"config_name": "20231101.hi", "data_files": [{"split": "train", "path": "20231101.hi/train-*"}]}, {"config_name": "20231101.hif", "data_files": [{"split": "train", "path": "20231101.hif/train-*"}]}, {"config_name": "20231101.hr", "data_files": [{"split": "train", "path": "20231101.hr/train-*"}]}, {"config_name": "20231101.hsb", "data_files": [{"split": "train", "path": "20231101.hsb/train-*"}]}, {"config_name": "20231101.ht", "data_files": [{"split": "train", "path": "20231101.ht/train-*"}]}, {"config_name": "20231101.hu", "data_files": [{"split": "train", "path": "20231101.hu/train-*"}]}, {"config_name": "20231101.hy", "data_files": [{"split": "train", "path": "20231101.hy/train-*"}]}, {"config_name": "20231101.hyw", "data_files": [{"split": "train", "path": "20231101.hyw/train-*"}]}, {"config_name": "20231101.ia", "data_files": [{"split": "train", "path": "20231101.ia/train-*"}]}, {"config_name": "20231101.id", "data_files": [{"split": "train", "path": "20231101.id/train-*"}]}, {"config_name": "20231101.ie", "data_files": [{"split": "train", "path": "20231101.ie/train-*"}]}, {"config_name": "20231101.ig", "data_files": [{"split": "train", "path": "20231101.ig/train-*"}]}, {"config_name": "20231101.ik", "data_files": [{"split": "train", "path": "20231101.ik/train-*"}]}, {"config_name": "20231101.ilo", "data_files": [{"split": "train", "path": "20231101.ilo/train-*"}]}, {"config_name": "20231101.inh", "data_files": [{"split": "train", "path": "20231101.inh/train-*"}]}, {"config_name": "20231101.io", "data_files": [{"split": "train", "path": "20231101.io/train-*"}]}, {"config_name": "20231101.is", "data_files": [{"split": "train", "path": "20231101.is/train-*"}]}, {"config_name": "20231101.it", "data_files": [{"split": "train", "path": "20231101.it/train-*"}]}, {"config_name": "20231101.iu", "data_files": [{"split": "train", "path": "20231101.iu/train-*"}]}, {"config_name": "20231101.ja", "data_files": [{"split": "train", "path": "20231101.ja/train-*"}]}, {"config_name": "20231101.jam", "data_files": [{"split": "train", "path": "20231101.jam/train-*"}]}, {"config_name": "20231101.jbo", "data_files": [{"split": "train", "path": "20231101.jbo/train-*"}]}, {"config_name": "20231101.jv", "data_files": [{"split": "train", "path": "20231101.jv/train-*"}]}, {"config_name": "20231101.ka", "data_files": [{"split": "train", "path": "20231101.ka/train-*"}]}, {"config_name": "20231101.kaa", "data_files": [{"split": "train", "path": "20231101.kaa/train-*"}]}, {"config_name": "20231101.kab", "data_files": [{"split": "train", "path": "20231101.kab/train-*"}]}, {"config_name": "20231101.kbd", "data_files": [{"split": "train", "path": "20231101.kbd/train-*"}]}, {"config_name": "20231101.kbp", "data_files": [{"split": "train", "path": "20231101.kbp/train-*"}]}, {"config_name": "20231101.kcg", "data_files": [{"split": "train", "path": "20231101.kcg/train-*"}]}, {"config_name": "20231101.kg", "data_files": [{"split": "train", "path": "20231101.kg/train-*"}]}, {"config_name": "20231101.ki", "data_files": [{"split": "train", "path": "20231101.ki/train-*"}]}, {"config_name": "20231101.kk", "data_files": [{"split": "train", "path": "20231101.kk/train-*"}]}, {"config_name": "20231101.kl", "data_files": [{"split": "train", "path": "20231101.kl/train-*"}]}, {"config_name": "20231101.km", "data_files": [{"split": "train", "path": "20231101.km/train-*"}]}, {"config_name": "20231101.kn", "data_files": [{"split": "train", "path": "20231101.kn/train-*"}]}, {"config_name": "20231101.ko", "data_files": [{"split": "train", "path": "20231101.ko/train-*"}]}, {"config_name": "20231101.koi", "data_files": [{"split": "train", "path": "20231101.koi/train-*"}]}, {"config_name": "20231101.krc", "data_files": [{"split": "train", "path": "20231101.krc/train-*"}]}, {"config_name": "20231101.ks", "data_files": [{"split": "train", "path": "20231101.ks/train-*"}]}, {"config_name": "20231101.ksh", "data_files": [{"split": "train", "path": "20231101.ksh/train-*"}]}, {"config_name": "20231101.ku", "data_files": [{"split": "train", "path": "20231101.ku/train-*"}]}, {"config_name": "20231101.kv", "data_files": [{"split": "train", "path": "20231101.kv/train-*"}]}, {"config_name": "20231101.kw", "data_files": [{"split": "train", "path": "20231101.kw/train-*"}]}, {"config_name": "20231101.ky", "data_files": [{"split": "train", "path": "20231101.ky/train-*"}]}, {"config_name": "20231101.la", "data_files": [{"split": "train", "path": "20231101.la/train-*"}]}, {"config_name": "20231101.lad", "data_files": [{"split": "train", "path": "20231101.lad/train-*"}]}, {"config_name": "20231101.lb", "data_files": [{"split": "train", "path": "20231101.lb/train-*"}]}, {"config_name": "20231101.lbe", "data_files": [{"split": "train", "path": "20231101.lbe/train-*"}]}, {"config_name": "20231101.lez", "data_files": [{"split": "train", "path": "20231101.lez/train-*"}]}, {"config_name": "20231101.lfn", "data_files": [{"split": "train", "path": "20231101.lfn/train-*"}]}, {"config_name": "20231101.lg", "data_files": [{"split": "train", "path": "20231101.lg/train-*"}]}, {"config_name": "20231101.li", "data_files": [{"split": "train", "path": "20231101.li/train-*"}]}, {"config_name": "20231101.lij", "data_files": [{"split": "train", "path": "20231101.lij/train-*"}]}, {"config_name": "20231101.lld", "data_files": [{"split": "train", "path": "20231101.lld/train-*"}]}, {"config_name": "20231101.lmo", "data_files": [{"split": "train", "path": "20231101.lmo/train-*"}]}, {"config_name": "20231101.ln", "data_files": [{"split": "train", "path": "20231101.ln/train-*"}]}, {"config_name": "20231101.lo", "data_files": [{"split": "train", "path": "20231101.lo/train-*"}]}, {"config_name": "20231101.lt", "data_files": [{"split": "train", "path": "20231101.lt/train-*"}]}, {"config_name": "20231101.ltg", "data_files": [{"split": "train", "path": "20231101.ltg/train-*"}]}, {"config_name": "20231101.lv", "data_files": [{"split": "train", "path": "20231101.lv/train-*"}]}, {"config_name": "20231101.mad", "data_files": [{"split": "train", "path": "20231101.mad/train-*"}]}, {"config_name": "20231101.mai", "data_files": [{"split": "train", "path": "20231101.mai/train-*"}]}, {"config_name": "20231101.map-bms", "data_files": [{"split": "train", "path": "20231101.map-bms/train-*"}]}, {"config_name": "20231101.mdf", "data_files": [{"split": "train", "path": "20231101.mdf/train-*"}]}, {"config_name": "20231101.mg", "data_files": [{"split": "train", "path": "20231101.mg/train-*"}]}, {"config_name": "20231101.mhr", "data_files": [{"split": "train", "path": "20231101.mhr/train-*"}]}, {"config_name": "20231101.mi", "data_files": [{"split": "train", "path": "20231101.mi/train-*"}]}, {"config_name": "20231101.min", "data_files": [{"split": "train", "path": "20231101.min/train-*"}]}, {"config_name": "20231101.mk", "data_files": [{"split": "train", "path": "20231101.mk/train-*"}]}, {"config_name": "20231101.ml", "data_files": [{"split": "train", "path": "20231101.ml/train-*"}]}, {"config_name": "20231101.mn", "data_files": [{"split": "train", "path": "20231101.mn/train-*"}]}, {"config_name": "20231101.mni", "data_files": [{"split": "train", "path": "20231101.mni/train-*"}]}, {"config_name": "20231101.mnw", "data_files": [{"split": "train", "path": "20231101.mnw/train-*"}]}, {"config_name": "20231101.mr", "data_files": [{"split": "train", "path": "20231101.mr/train-*"}]}, {"config_name": "20231101.mrj", "data_files": [{"split": "train", "path": "20231101.mrj/train-*"}]}, {"config_name": "20231101.ms", "data_files": [{"split": "train", "path": "20231101.ms/train-*"}]}, {"config_name": "20231101.mt", "data_files": [{"split": "train", "path": "20231101.mt/train-*"}]}, {"config_name": "20231101.mwl", "data_files": [{"split": "train", "path": "20231101.mwl/train-*"}]}, {"config_name": "20231101.my", "data_files": [{"split": "train", "path": "20231101.my/train-*"}]}, {"config_name": "20231101.myv", "data_files": [{"split": "train", "path": "20231101.myv/train-*"}]}, {"config_name": "20231101.mzn", "data_files": [{"split": "train", "path": "20231101.mzn/train-*"}]}, {"config_name": "20231101.nah", "data_files": [{"split": "train", "path": "20231101.nah/train-*"}]}, {"config_name": "20231101.nap", "data_files": [{"split": "train", "path": "20231101.nap/train-*"}]}, {"config_name": "20231101.nds", "data_files": [{"split": "train", "path": "20231101.nds/train-*"}]}, {"config_name": "20231101.nds-nl", "data_files": [{"split": "train", "path": "20231101.nds-nl/train-*"}]}, {"config_name": "20231101.ne", "data_files": [{"split": "train", "path": "20231101.ne/train-*"}]}, {"config_name": "20231101.new", "data_files": [{"split": "train", "path": "20231101.new/train-*"}]}, {"config_name": "20231101.nia", "data_files": [{"split": "train", "path": "20231101.nia/train-*"}]}, {"config_name": "20231101.nl", "data_files": [{"split": "train", "path": "20231101.nl/train-*"}]}, {"config_name": "20231101.nn", "data_files": [{"split": "train", "path": "20231101.nn/train-*"}]}, {"config_name": "20231101.no", "data_files": [{"split": "train", "path": "20231101.no/train-*"}]}, {"config_name": "20231101.nov", "data_files": [{"split": "train", "path": "20231101.nov/train-*"}]}, {"config_name": "20231101.nqo", "data_files": [{"split": "train", "path": "20231101.nqo/train-*"}]}, {"config_name": "20231101.nrm", "data_files": [{"split": "train", "path": "20231101.nrm/train-*"}]}, {"config_name": "20231101.nso", "data_files": [{"split": "train", "path": "20231101.nso/train-*"}]}, {"config_name": "20231101.nv", "data_files": [{"split": "train", "path": "20231101.nv/train-*"}]}, {"config_name": "20231101.ny", "data_files": [{"split": "train", "path": "20231101.ny/train-*"}]}, {"config_name": "20231101.oc", "data_files": [{"split": "train", "path": "20231101.oc/train-*"}]}, {"config_name": "20231101.olo", "data_files": [{"split": "train", "path": "20231101.olo/train-*"}]}, {"config_name": "20231101.om", "data_files": [{"split": "train", "path": "20231101.om/train-*"}]}, {"config_name": "20231101.or", "data_files": [{"split": "train", "path": "20231101.or/train-*"}]}, {"config_name": "20231101.os", "data_files": [{"split": "train", "path": "20231101.os/train-*"}]}, {"config_name": "20231101.pa", "data_files": [{"split": "train", "path": "20231101.pa/train-*"}]}, {"config_name": "20231101.pag", "data_files": [{"split": "train", "path": "20231101.pag/train-*"}]}, {"config_name": "20231101.pam", "data_files": [{"split": "train", "path": "20231101.pam/train-*"}]}, {"config_name": "20231101.pap", "data_files": [{"split": "train", "path": "20231101.pap/train-*"}]}, {"config_name": "20231101.pcd", "data_files": [{"split": "train", "path": "20231101.pcd/train-*"}]}, {"config_name": "20231101.pcm", "data_files": [{"split": "train", "path": "20231101.pcm/train-*"}]}, {"config_name": "20231101.pdc", "data_files": [{"split": "train", "path": "20231101.pdc/train-*"}]}, {"config_name": "20231101.pfl", "data_files": [{"split": "train", "path": "20231101.pfl/train-*"}]}, {"config_name": "20231101.pi", "data_files": [{"split": "train", "path": "20231101.pi/train-*"}]}, {"config_name": "20231101.pih", "data_files": [{"split": "train", "path": "20231101.pih/train-*"}]}, {"config_name": "20231101.pl", "data_files": [{"split": "train", "path": "20231101.pl/train-*"}]}, {"config_name": "20231101.pms", "data_files": [{"split": "train", "path": "20231101.pms/train-*"}]}, {"config_name": "20231101.pnb", "data_files": [{"split": "train", "path": "20231101.pnb/train-*"}]}, {"config_name": "20231101.pnt", "data_files": [{"split": "train", "path": "20231101.pnt/train-*"}]}, {"config_name": "20231101.ps", "data_files": [{"split": "train", "path": "20231101.ps/train-*"}]}, {"config_name": "20231101.pt", "data_files": [{"split": "train", "path": "20231101.pt/train-*"}]}, {"config_name": "20231101.pwn", "data_files": [{"split": "train", "path": "20231101.pwn/train-*"}]}, {"config_name": "20231101.qu", "data_files": [{"split": "train", "path": "20231101.qu/train-*"}]}, {"config_name": "20231101.rm", "data_files": [{"split": "train", "path": "20231101.rm/train-*"}]}, {"config_name": "20231101.rmy", "data_files": [{"split": "train", "path": "20231101.rmy/train-*"}]}, {"config_name": "20231101.rn", "data_files": [{"split": "train", "path": "20231101.rn/train-*"}]}, {"config_name": "20231101.ro", "data_files": [{"split": "train", "path": "20231101.ro/train-*"}]}, {"config_name": "20231101.roa-rup", "data_files": [{"split": "train", "path": "20231101.roa-rup/train-*"}]}, {"config_name": "20231101.roa-tara", "data_files": [{"split": "train", "path": "20231101.roa-tara/train-*"}]}, {"config_name": "20231101.ru", "data_files": [{"split": "train", "path": "20231101.ru/train-*"}]}, {"config_name": "20231101.rue", "data_files": [{"split": "train", "path": "20231101.rue/train-*"}]}, {"config_name": "20231101.rw", "data_files": [{"split": "train", "path": "20231101.rw/train-*"}]}, {"config_name": "20231101.sa", "data_files": [{"split": "train", "path": "20231101.sa/train-*"}]}, {"config_name": "20231101.sah", "data_files": [{"split": "train", "path": "20231101.sah/train-*"}]}, {"config_name": "20231101.sat", "data_files": [{"split": "train", "path": "20231101.sat/train-*"}]}, {"config_name": "20231101.sc", "data_files": [{"split": "train", "path": "20231101.sc/train-*"}]}, {"config_name": "20231101.scn", "data_files": [{"split": "train", "path": "20231101.scn/train-*"}]}, {"config_name": "20231101.sco", "data_files": [{"split": "train", "path": "20231101.sco/train-*"}]}, {"config_name": "20231101.sd", "data_files": [{"split": "train", "path": "20231101.sd/train-*"}]}, {"config_name": "20231101.se", "data_files": [{"split": "train", "path": "20231101.se/train-*"}]}, {"config_name": "20231101.sg", "data_files": [{"split": "train", "path": "20231101.sg/train-*"}]}, {"config_name": "20231101.sh", "data_files": [{"split": "train", "path": "20231101.sh/train-*"}]}, {"config_name": "20231101.shi", "data_files": [{"split": "train", "path": "20231101.shi/train-*"}]}, {"config_name": "20231101.shn", "data_files": [{"split": "train", "path": "20231101.shn/train-*"}]}, {"config_name": "20231101.si", "data_files": [{"split": "train", "path": "20231101.si/train-*"}]}, {"config_name": "20231101.simple", "data_files": [{"split": "train", "path": "20231101.simple/train-*"}]}, {"config_name": "20231101.sk", "data_files": [{"split": "train", "path": "20231101.sk/train-*"}]}, {"config_name": "20231101.skr", "data_files": [{"split": "train", "path": "20231101.skr/train-*"}]}, {"config_name": "20231101.sl", "data_files": [{"split": "train", "path": "20231101.sl/train-*"}]}, {"config_name": "20231101.sm", "data_files": [{"split": "train", "path": "20231101.sm/train-*"}]}, {"config_name": "20231101.smn", "data_files": [{"split": "train", "path": "20231101.smn/train-*"}]}, {"config_name": "20231101.sn", "data_files": [{"split": "train", "path": "20231101.sn/train-*"}]}, {"config_name": "20231101.so", "data_files": [{"split": "train", "path": "20231101.so/train-*"}]}, {"config_name": "20231101.sq", "data_files": [{"split": "train", "path": "20231101.sq/train-*"}]}, {"config_name": "20231101.sr", "data_files": [{"split": "train", "path": "20231101.sr/train-*"}]}, {"config_name": "20231101.srn", "data_files": [{"split": "train", "path": "20231101.srn/train-*"}]}, {"config_name": "20231101.ss", "data_files": [{"split": "train", "path": "20231101.ss/train-*"}]}, {"config_name": "20231101.st", "data_files": [{"split": "train", "path": "20231101.st/train-*"}]}, {"config_name": "20231101.stq", "data_files": [{"split": "train", "path": "20231101.stq/train-*"}]}, {"config_name": "20231101.su", "data_files": [{"split": "train", "path": "20231101.su/train-*"}]}, {"config_name": "20231101.sv", "data_files": [{"split": "train", "path": "20231101.sv/train-*"}]}, {"config_name": "20231101.sw", "data_files": [{"split": "train", "path": "20231101.sw/train-*"}]}, {"config_name": "20231101.szl", "data_files": [{"split": "train", "path": "20231101.szl/train-*"}]}, {"config_name": "20231101.szy", "data_files": [{"split": "train", "path": "20231101.szy/train-*"}]}, {"config_name": "20231101.ta", "data_files": [{"split": "train", "path": "20231101.ta/train-*"}]}, {"config_name": "20231101.tay", "data_files": [{"split": "train", "path": "20231101.tay/train-*"}]}, {"config_name": "20231101.tcy", "data_files": [{"split": "train", "path": "20231101.tcy/train-*"}]}, {"config_name": "20231101.te", "data_files": [{"split": "train", "path": "20231101.te/train-*"}]}, {"config_name": "20231101.tet", "data_files": [{"split": "train", "path": "20231101.tet/train-*"}]}, {"config_name": "20231101.tg", "data_files": [{"split": "train", "path": "20231101.tg/train-*"}]}, {"config_name": "20231101.th", "data_files": [{"split": "train", "path": "20231101.th/train-*"}]}, {"config_name": "20231101.ti", "data_files": [{"split": "train", "path": "20231101.ti/train-*"}]}, {"config_name": "20231101.tk", "data_files": [{"split": "train", "path": "20231101.tk/train-*"}]}, {"config_name": "20231101.tl", "data_files": [{"split": "train", "path": "20231101.tl/train-*"}]}, {"config_name": "20231101.tly", "data_files": [{"split": "train", "path": "20231101.tly/train-*"}]}, {"config_name": "20231101.tn", "data_files": [{"split": "train", "path": "20231101.tn/train-*"}]}, {"config_name": "20231101.to", "data_files": [{"split": "train", "path": "20231101.to/train-*"}]}, {"config_name": "20231101.tpi", "data_files": [{"split": "train", "path": "20231101.tpi/train-*"}]}, {"config_name": "20231101.tr", "data_files": [{"split": "train", "path": "20231101.tr/train-*"}]}, {"config_name": "20231101.trv", "data_files": [{"split": "train", "path": "20231101.trv/train-*"}]}, {"config_name": "20231101.ts", "data_files": [{"split": "train", "path": "20231101.ts/train-*"}]}, {"config_name": "20231101.tt", "data_files": [{"split": "train", "path": "20231101.tt/train-*"}]}, {"config_name": "20231101.tum", "data_files": [{"split": "train", "path": "20231101.tum/train-*"}]}, {"config_name": "20231101.tw", "data_files": [{"split": "train", "path": "20231101.tw/train-*"}]}, {"config_name": "20231101.ty", "data_files": [{"split": "train", "path": "20231101.ty/train-*"}]}, {"config_name": "20231101.tyv", "data_files": [{"split": "train", "path": "20231101.tyv/train-*"}]}, {"config_name": "20231101.udm", "data_files": [{"split": "train", "path": "20231101.udm/train-*"}]}, {"config_name": "20231101.ug", "data_files": [{"split": "train", "path": "20231101.ug/train-*"}]}, {"config_name": "20231101.uk", "data_files": [{"split": "train", "path": "20231101.uk/train-*"}]}, {"config_name": "20231101.ur", "data_files": [{"split": "train", "path": "20231101.ur/train-*"}]}, {"config_name": "20231101.uz", "data_files": [{"split": "train", "path": "20231101.uz/train-*"}]}, {"config_name": "20231101.ve", "data_files": [{"split": "train", "path": "20231101.ve/train-*"}]}, {"config_name": "20231101.vec", "data_files": [{"split": "train", "path": "20231101.vec/train-*"}]}, {"config_name": "20231101.vep", "data_files": [{"split": "train", "path": "20231101.vep/train-*"}]}, {"config_name": "20231101.vi", "data_files": [{"split": "train", "path": "20231101.vi/train-*"}]}, {"config_name": "20231101.vls", "data_files": [{"split": "train", "path": "20231101.vls/train-*"}]}, {"config_name": "20231101.vo", "data_files": [{"split": "train", "path": "20231101.vo/train-*"}]}, {"config_name": "20231101.wa", "data_files": [{"split": "train", "path": "20231101.wa/train-*"}]}, {"config_name": "20231101.war", "data_files": [{"split": "train", "path": "20231101.war/train-*"}]}, {"config_name": "20231101.wo", "data_files": [{"split": "train", "path": "20231101.wo/train-*"}]}, {"config_name": "20231101.wuu", "data_files": [{"split": "train", "path": "20231101.wuu/train-*"}]}, {"config_name": "20231101.xal", "data_files": [{"split": "train", "path": "20231101.xal/train-*"}]}, {"config_name": "20231101.xh", "data_files": [{"split": "train", "path": "20231101.xh/train-*"}]}, {"config_name": "20231101.xmf", "data_files": [{"split": "train", "path": "20231101.xmf/train-*"}]}, {"config_name": "20231101.yi", "data_files": [{"split": "train", "path": "20231101.yi/train-*"}]}, {"config_name": "20231101.yo", "data_files": [{"split": "train", "path": "20231101.yo/train-*"}]}, {"config_name": "20231101.za", "data_files": [{"split": "train", "path": "20231101.za/train-*"}]}, {"config_name": "20231101.zea", "data_files": [{"split": "train", "path": "20231101.zea/train-*"}]}, {"config_name": "20231101.zh", "data_files": [{"split": "train", "path": "20231101.zh/train-*"}]}, {"config_name": "20231101.zh-classical", "data_files": [{"split": "train", "path": "20231101.zh-classical/train-*"}]}, {"config_name": "20231101.zh-min-nan", "data_files": [{"split": "train", "path": "20231101.zh-min-nan/train-*"}]}, {"config_name": "20231101.zh-yue", "data_files": [{"split": "train", "path": "20231101.zh-yue/train-*"}]}, {"config_name": "20231101.zu", "data_files": [{"split": "train", "path": "20231101.zu/train-*"}]}], "dataset_info": [{"config_name": "20231101.ab", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4334455, "num_examples": 6152}], "download_size": 1237796, "dataset_size": 4334455}, {"config_name": "20231101.ace", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5065801, "num_examples": 13003}], "download_size": 1574258, "dataset_size": 5065801}, {"config_name": "20231101.ady", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 765030, "num_examples": 706}], "download_size": 347450, "dataset_size": 765030}, {"config_name": "20231101.af", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 226672176, "num_examples": 112518}], "download_size": 124485544, "dataset_size": 226672176}, {"config_name": "20231101.als", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 81450196, "num_examples": 30013}], "download_size": 49452211, "dataset_size": 81450196}, {"config_name": "20231101.alt", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6819963, "num_examples": 1087}], "download_size": 2910477, "dataset_size": 6819963}, {"config_name": "20231101.am", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 24218002, "num_examples": 13906}], "download_size": 10720027, "dataset_size": 24218002}, {"config_name": "20231101.ami", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4460174, "num_examples": 1628}], "download_size": 2261859, "dataset_size": 4460174}, {"config_name": "20231101.an", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 57572050, "num_examples": 44249}], "download_size": 29573020, "dataset_size": 57572050}, {"config_name": "20231101.ang", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2913906, "num_examples": 4121}], "download_size": 1789811, "dataset_size": 2913906}, {"config_name": "20231101.anp", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 9226211, "num_examples": 2749}], "download_size": 3355979, "dataset_size": 9226211}, {"config_name": "20231101.ar", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3124486159, "num_examples": 1219201}], "download_size": 1323304271, "dataset_size": 3124486159}, {"config_name": "20231101.arc", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 849731, "num_examples": 1936}], "download_size": 369584, "dataset_size": 849731}, {"config_name": "20231101.ary", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 12049878, "num_examples": 8087}], "download_size": 4672257, "dataset_size": 12049878}, {"config_name": "20231101.arz", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1402294447, "num_examples": 1620194}], "download_size": 317231585, "dataset_size": 1402294447}, {"config_name": "20231101.as", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 90312333, "num_examples": 12338}], "download_size": 34581561, "dataset_size": 90312333}, {"config_name": "20231101.ast", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 470575521, "num_examples": 133419}], "download_size": 271196430, "dataset_size": 470575521}, {"config_name": "20231101.atj", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1012467, "num_examples": 1971}], "download_size": 513962, "dataset_size": 1012467}, {"config_name": "20231101.av", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6084045, "num_examples": 3426}], "download_size": 2573436, "dataset_size": 6084045}, {"config_name": "20231101.avk", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 32119428, "num_examples": 28353}], "download_size": 7984474, "dataset_size": 32119428}, {"config_name": "20231101.awa", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3703396, "num_examples": 3679}], "download_size": 1269824, "dataset_size": 3703396}, {"config_name": "20231101.ay", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4395813, "num_examples": 5384}], "download_size": 1756131, "dataset_size": 4395813}, {"config_name": "20231101.az", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 433663157, "num_examples": 196158}], "download_size": 230064038, "dataset_size": 433663157}, {"config_name": "20231101.azb", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 187041147, "num_examples": 243376}], "download_size": 46739926, "dataset_size": 187041147}, {"config_name": "20231101.ba", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 297738837, "num_examples": 63319}], "download_size": 122595805, "dataset_size": 297738837}, {"config_name": "20231101.ban", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 18012727, "num_examples": 20986}], "download_size": 6715876, "dataset_size": 18012727}, {"config_name": "20231101.bar", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 36317102, "num_examples": 27096}], "download_size": 21799389, "dataset_size": 36317102}, {"config_name": "20231101.bat-smg", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 7212849, "num_examples": 17221}], "download_size": 3348765, "dataset_size": 7212849}, {"config_name": "20231101.bcl", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 20394331, "num_examples": 15743}], "download_size": 11369234, "dataset_size": 20394331}, {"config_name": "20231101.be", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 624718980, "num_examples": 236165}], "download_size": 284921288, "dataset_size": 624718980}, {"config_name": "20231101.be-x-old", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 252510447, "num_examples": 84361}], "download_size": 114318588, "dataset_size": 252510447}, {"config_name": "20231101.bg", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1103334425, "num_examples": 294275}], "download_size": 512344058, "dataset_size": 1103334425}, {"config_name": "20231101.bh", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 16675295, "num_examples": 8612}], "download_size": 5880458, "dataset_size": 16675295}, {"config_name": "20231101.bi", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 404249, "num_examples": 1548}], "download_size": 203610, "dataset_size": 404249}, {"config_name": "20231101.bjn", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6884860, "num_examples": 10519}], "download_size": 3323032, "dataset_size": 6884860}, {"config_name": "20231101.blk", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 26566991, "num_examples": 2946}], "download_size": 8028430, "dataset_size": 26566991}, {"config_name": "20231101.bm", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 623659, "num_examples": 1258}], "download_size": 343812, "dataset_size": 623659}, {"config_name": "20231101.bn", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 962624238, "num_examples": 143069}], "download_size": 343885999, "dataset_size": 962624238}, {"config_name": "20231101.bo", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 132723880, "num_examples": 12881}], "download_size": 38851784, "dataset_size": 132723880}, {"config_name": "20231101.bpy", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 42975314, "num_examples": 25165}], "download_size": 6568483, "dataset_size": 42975314}, {"config_name": "20231101.br", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 85635744, "num_examples": 84340}], "download_size": 49768597, "dataset_size": 85635744}, {"config_name": "20231101.bs", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 193734399, "num_examples": 92596}], "download_size": 107858627, "dataset_size": 193734399}, {"config_name": "20231101.bug", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3434889, "num_examples": 15880}], "download_size": 817034, "dataset_size": 3434889}, {"config_name": "20231101.bxr", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6687172, "num_examples": 2791}], "download_size": 3078699, "dataset_size": 6687172}, {"config_name": "20231101.ca", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1958810542, "num_examples": 737409}], "download_size": 1116799343, "dataset_size": 1958810542}, {"config_name": "20231101.cbk-zam", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2061944, "num_examples": 3285}], "download_size": 825899, "dataset_size": 2061944}, {"config_name": "20231101.cdo", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5109207, "num_examples": 16449}], "download_size": 1982914, "dataset_size": 5109207}, {"config_name": "20231101.ce", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 730387049, "num_examples": 601271}], "download_size": 88393330, "dataset_size": 730387049}, {"config_name": "20231101.ceb", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4568256711, "num_examples": 6122708}], "download_size": 828085216, "dataset_size": 4568256711}, {"config_name": "20231101.ch", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 178002, "num_examples": 576}], "download_size": 89277, "dataset_size": 178002}, {"config_name": "20231101.chr", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 767618, "num_examples": 1113}], "download_size": 343140, "dataset_size": 767618}, {"config_name": "20231101.chy", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 148139, "num_examples": 802}], "download_size": 75865, "dataset_size": 148139}, {"config_name": "20231101.ckb", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 107150420, "num_examples": 52024}], "download_size": 42964544, "dataset_size": 107150420}, {"config_name": "20231101.co", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 11104243, "num_examples": 7799}], "download_size": 5794731, "dataset_size": 11104243}, {"config_name": "20231101.cr", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 57257, "num_examples": 187}], "download_size": 36081, "dataset_size": 57257}, {"config_name": "20231101.crh", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 9689171, "num_examples": 27691}], "download_size": 3654461, "dataset_size": 9689171}, {"config_name": "20231101.cs", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1566286962, "num_examples": 534044}], "download_size": 976484249, "dataset_size": 1566286962}, {"config_name": "20231101.csb", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3748643, "num_examples": 5480}], "download_size": 2055233, "dataset_size": 3748643}, {"config_name": "20231101.cu", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 981592, "num_examples": 1235}], "download_size": 398252, "dataset_size": 981592}, {"config_name": "20231101.cv", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 81873026, "num_examples": 51863}], "download_size": 29640641, "dataset_size": 81873026}, {"config_name": "20231101.cy", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 305837783, "num_examples": 279455}], "download_size": 112257456, "dataset_size": 305837783}, {"config_name": "20231101.da", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 547068330, "num_examples": 295347}], "download_size": 327688122, "dataset_size": 547068330}, {"config_name": "20231101.dag", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21618973, "num_examples": 10071}], "download_size": 9026986, "dataset_size": 21618973}, {"config_name": "20231101.de", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 9622925305, "num_examples": 2845308}], "download_size": 5771317942, "dataset_size": 9622925305}, {"config_name": "20231101.din", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 564398, "num_examples": 512}], "download_size": 340530, "dataset_size": 564398}, {"config_name": "20231101.diq", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 19671441, "num_examples": 41775}], "download_size": 7616839, "dataset_size": 19671441}, {"config_name": "20231101.dsb", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3315228, "num_examples": 3379}], "download_size": 1931937, "dataset_size": 3315228}, {"config_name": "20231101.dty", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 7030648, "num_examples": 3632}], "download_size": 2521250, "dataset_size": 7030648}, {"config_name": "20231101.dv", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 13934393, "num_examples": 4352}], "download_size": 5283133, "dataset_size": 13934393}, {"config_name": "20231101.dz", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 8855969, "num_examples": 788}], "download_size": 2583520, "dataset_size": 8855969}, {"config_name": "20231101.ee", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 898491, "num_examples": 1181}], "download_size": 492813, "dataset_size": 898491}, {"config_name": "20231101.el", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1345589075, "num_examples": 226834}], "download_size": 637372489, "dataset_size": 1345589075}, {"config_name": "20231101.eml", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3625415, "num_examples": 12961}], "download_size": 1689575, "dataset_size": 3625415}, {"config_name": "20231101.en", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 20200062385, "num_examples": 6407814}], "download_size": 11630929031, "dataset_size": 20200062385}, {"config_name": "20231101.eo", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 523113804, "num_examples": 344851}], "download_size": 297738138, "dataset_size": 523113804}, {"config_name": "20231101.es", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6033536133, "num_examples": 1841155}], "download_size": 3493595869, "dataset_size": 6033536133}, {"config_name": "20231101.et", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 440177170, "num_examples": 240397}], "download_size": 265444734, "dataset_size": 440177170}, {"config_name": "20231101.eu", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 565567318, "num_examples": 416347}], "download_size": 270355505, "dataset_size": 565567318}, {"config_name": "20231101.ext", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4389633, "num_examples": 3785}], "download_size": 2761099, "dataset_size": 4389633}, {"config_name": "20231101.fa", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1899154938, "num_examples": 979869}], "download_size": 759368283, "dataset_size": 1899154938}, {"config_name": "20231101.fat", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2032812, "num_examples": 1122}], "download_size": 1124684, "dataset_size": 2032812}, {"config_name": "20231101.ff", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1867995, "num_examples": 2419}], "download_size": 1087702, "dataset_size": 1867995}, {"config_name": "20231101.fi", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1146146663, "num_examples": 561598}], "download_size": 680512230, "dataset_size": 1146146663}, {"config_name": "20231101.fiu-vro", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4636361, "num_examples": 6590}], "download_size": 2434159, "dataset_size": 4636361}, {"config_name": "20231101.fj", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 604791, "num_examples": 1294}], "download_size": 328059, "dataset_size": 604791}, {"config_name": "20231101.fo", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 15415249, "num_examples": 14080}], "download_size": 8857239, "dataset_size": 15415249}, {"config_name": "20231101.fon", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 592216, "num_examples": 705}], "download_size": 317444, "dataset_size": 592216}, {"config_name": "20231101.fr", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 8065794826, "num_examples": 2564646}], "download_size": 4614488286, "dataset_size": 8065794826}, {"config_name": "20231101.frp", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3676441, "num_examples": 5766}], "download_size": 1914046, "dataset_size": 3676441}, {"config_name": "20231101.frr", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 10819914, "num_examples": 18666}], "download_size": 5317694, "dataset_size": 10819914}, {"config_name": "20231101.fur", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4090412, "num_examples": 4001}], "download_size": 2421238, "dataset_size": 4090412}, {"config_name": "20231101.fy", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 134196708, "num_examples": 52416}], "download_size": 76002257, "dataset_size": 134196708}, {"config_name": "20231101.ga", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 60640820, "num_examples": 59156}], "download_size": 34136733, "dataset_size": 60640820}, {"config_name": "20231101.gag", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2428849, "num_examples": 2968}], "download_size": 1331866, "dataset_size": 2428849}, {"config_name": "20231101.gan", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2915229, "num_examples": 6743}], "download_size": 1508844, "dataset_size": 2915229}, {"config_name": "20231101.gcr", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2338277, "num_examples": 2399}], "download_size": 1345482, "dataset_size": 2338277}, {"config_name": "20231101.gd", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 14051607, "num_examples": 15979}], "download_size": 7190137, "dataset_size": 14051607}, {"config_name": "20231101.gl", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 493905881, "num_examples": 200092}], "download_size": 291104907, "dataset_size": 493905881}, {"config_name": "20231101.glk", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6086185, "num_examples": 7049}], "download_size": 2382997, "dataset_size": 6086185}, {"config_name": "20231101.gn", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6921948, "num_examples": 5519}], "download_size": 3806548, "dataset_size": 6921948}, {"config_name": "20231101.gom", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 30889533, "num_examples": 4259}], "download_size": 11306217, "dataset_size": 30889533}, {"config_name": "20231101.gor", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6369540, "num_examples": 15359}], "download_size": 2101154, "dataset_size": 6369540}, {"config_name": "20231101.got", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1533770, "num_examples": 1013}], "download_size": 636307, "dataset_size": 1533770}, {"config_name": "20231101.gpe", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2017667, "num_examples": 1110}], "download_size": 1141261, "dataset_size": 2017667}, {"config_name": "20231101.gu", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 121282557, "num_examples": 30445}], "download_size": 39554078, "dataset_size": 121282557}, {"config_name": "20231101.guc", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 978923, "num_examples": 679}], "download_size": 578311, "dataset_size": 978923}, {"config_name": "20231101.gur", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2325435, "num_examples": 1383}], "download_size": 1068954, "dataset_size": 2325435}, {"config_name": "20231101.guw", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1913143, "num_examples": 1312}], "download_size": 1042328, "dataset_size": 1913143}, {"config_name": "20231101.gv", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6307253, "num_examples": 6206}], "download_size": 3347095, "dataset_size": 6307253}, {"config_name": "20231101.ha", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 77906472, "num_examples": 36492}], "download_size": 43131815, "dataset_size": 77906472}, {"config_name": "20231101.hak", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4523680, "num_examples": 10246}], "download_size": 1878558, "dataset_size": 4523680}, {"config_name": "20231101.haw", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1677790, "num_examples": 2612}], "download_size": 696781, "dataset_size": 1677790}, {"config_name": "20231101.he", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1950200381, "num_examples": 333874}], "download_size": 979183998, "dataset_size": 1950200381}, {"config_name": "20231101.hi", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 672817362, "num_examples": 163093}], "download_size": 237834604, "dataset_size": 672817362}, {"config_name": "20231101.hif", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5685329, "num_examples": 10986}], "download_size": 2715682, "dataset_size": 5685329}, {"config_name": "20231101.hr", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 443636903, "num_examples": 202848}], "download_size": 275245343, "dataset_size": 443636903}, {"config_name": "20231101.hsb", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 15667118, "num_examples": 13957}], "download_size": 7437491, "dataset_size": 15667118}, {"config_name": "20231101.ht", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 55088040, "num_examples": 70159}], "download_size": 21993952, "dataset_size": 55088040}, {"config_name": "20231101.hu", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1515899113, "num_examples": 532427}], "download_size": 904857314, "dataset_size": 1515899113}, {"config_name": "20231101.hy", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1179459973, "num_examples": 303036}], "download_size": 490121120, "dataset_size": 1179459973}, {"config_name": "20231101.hyw", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 59564550, "num_examples": 11725}], "download_size": 27450541, "dataset_size": 59564550}, {"config_name": "20231101.ia", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 16409449, "num_examples": 28247}], "download_size": 8237640, "dataset_size": 16409449}, {"config_name": "20231101.id", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1125928594, "num_examples": 665622}], "download_size": 583801799, "dataset_size": 1125928594}, {"config_name": "20231101.ie", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6737711, "num_examples": 11877}], "download_size": 3019044, "dataset_size": 6737711}, {"config_name": "20231101.ig", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 66086115, "num_examples": 22908}], "download_size": 34663540, "dataset_size": 66086115}, {"config_name": "20231101.ik", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 199773, "num_examples": 846}], "download_size": 115758, "dataset_size": 199773}, {"config_name": "20231101.ilo", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 16854494, "num_examples": 15371}], "download_size": 7352572, "dataset_size": 16854494}, {"config_name": "20231101.inh", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2727253, "num_examples": 2123}], "download_size": 1279524, "dataset_size": 2727253}, {"config_name": "20231101.io", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 38735196, "num_examples": 40930}], "download_size": 17106040, "dataset_size": 38735196}, {"config_name": "20231101.is", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 87856729, "num_examples": 57453}], "download_size": 52286137, "dataset_size": 87856729}, {"config_name": "20231101.it", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4924856310, "num_examples": 1833639}], "download_size": 2931265519, "dataset_size": 4924856310}, {"config_name": "20231101.iu", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 291185, "num_examples": 562}], "download_size": 136987, "dataset_size": 291185}, {"config_name": "20231101.ja", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 7039610767, "num_examples": 1389467}], "download_size": 3941998526, "dataset_size": 7039610767}, {"config_name": "20231101.jam", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1142348, "num_examples": 1780}], "download_size": 702664, "dataset_size": 1142348}, {"config_name": "20231101.jbo", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2523538, "num_examples": 1394}], "download_size": 890356, "dataset_size": 2523538}, {"config_name": "20231101.jv", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 72786688, "num_examples": 73380}], "download_size": 36852134, "dataset_size": 72786688}, {"config_name": "20231101.ka", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 699872960, "num_examples": 169602}], "download_size": 239987665, "dataset_size": 699872960}, {"config_name": "20231101.kaa", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5139436, "num_examples": 4074}], "download_size": 2913134, "dataset_size": 5139436}, {"config_name": "20231101.kab", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4392542, "num_examples": 5830}], "download_size": 2580584, "dataset_size": 4392542}, {"config_name": "20231101.kbd", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3014575, "num_examples": 1670}], "download_size": 1304580, "dataset_size": 3014575}, {"config_name": "20231101.kbp", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3584563, "num_examples": 1931}], "download_size": 1806400, "dataset_size": 3584563}, {"config_name": "20231101.kcg", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 914665, "num_examples": 1151}], "download_size": 513904, "dataset_size": 914665}, {"config_name": "20231101.kg", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 390163, "num_examples": 1329}], "download_size": 209059, "dataset_size": 390163}, {"config_name": "20231101.ki", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 760980, "num_examples": 1668}], "download_size": 427003, "dataset_size": 760980}, {"config_name": "20231101.kk", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 497917145, "num_examples": 238615}], "download_size": 180750520, "dataset_size": 497917145}, {"config_name": "20231101.kl", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 313658, "num_examples": 301}], "download_size": 193719, "dataset_size": 313658}, {"config_name": "20231101.km", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 103252582, "num_examples": 11994}], "download_size": 35567417, "dataset_size": 103252582}, {"config_name": "20231101.kn", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 402848197, "num_examples": 31437}], "download_size": 147156434, "dataset_size": 402848197}, {"config_name": "20231101.ko", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1412099944, "num_examples": 647897}], "download_size": 782677061, "dataset_size": 1412099944}, {"config_name": "20231101.koi", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5103799, "num_examples": 3504}], "download_size": 1888392, "dataset_size": 5103799}, {"config_name": "20231101.krc", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4589808, "num_examples": 2100}], "download_size": 2022144, "dataset_size": 4589808}, {"config_name": "20231101.ks", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2868186, "num_examples": 4307}], "download_size": 1094458, "dataset_size": 2868186}, {"config_name": "20231101.ksh", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3117003, "num_examples": 2945}], "download_size": 2009928, "dataset_size": 3117003}, {"config_name": "20231101.ku", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 44523131, "num_examples": 63076}], "download_size": 22938233, "dataset_size": 44523131}, {"config_name": "20231101.kv", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 9245577, "num_examples": 5595}], "download_size": 3690978, "dataset_size": 9245577}, {"config_name": "20231101.kw", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4687165, "num_examples": 6995}], "download_size": 2711398, "dataset_size": 4687165}, {"config_name": "20231101.ky", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 166911089, "num_examples": 79438}], "download_size": 63947035, "dataset_size": 166911089}, {"config_name": "20231101.la", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 141080163, "num_examples": 138263}], "download_size": 76588430, "dataset_size": 141080163}, {"config_name": "20231101.lad", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4901343, "num_examples": 3663}], "download_size": 2754531, "dataset_size": 4901343}, {"config_name": "20231101.lb", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 88826996, "num_examples": 62414}], "download_size": 50515020, "dataset_size": 88826996}, {"config_name": "20231101.lbe", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 745140, "num_examples": 1279}], "download_size": 304394, "dataset_size": 745140}, {"config_name": "20231101.lez", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 9794637, "num_examples": 4264}], "download_size": 3864848, "dataset_size": 9794637}, {"config_name": "20231101.lfn", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 8870685, "num_examples": 4832}], "download_size": 5207546, "dataset_size": 8870685}, {"config_name": "20231101.lg", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6891539, "num_examples": 4048}], "download_size": 3708097, "dataset_size": 6891539}, {"config_name": "20231101.li", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 29633678, "num_examples": 14849}], "download_size": 17727918, "dataset_size": 29633678}, {"config_name": "20231101.lij", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 11448686, "num_examples": 11203}], "download_size": 6255409, "dataset_size": 11448686}, {"config_name": "20231101.lld", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 50163974, "num_examples": 180677}], "download_size": 13866243, "dataset_size": 50163974}, {"config_name": "20231101.lmo", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 43496783, "num_examples": 73510}], "download_size": 19142356, "dataset_size": 43496783}, {"config_name": "20231101.ln", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2035050, "num_examples": 3534}], "download_size": 1122138, "dataset_size": 2035050}, {"config_name": "20231101.lo", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 15283258, "num_examples": 5014}], "download_size": 5646554, "dataset_size": 15283258}, {"config_name": "20231101.lt", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 336559824, "num_examples": 211292}], "download_size": 194873569, "dataset_size": 336559824}, {"config_name": "20231101.ltg", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 915364, "num_examples": 1070}], "download_size": 530299, "dataset_size": 915364}, {"config_name": "20231101.lv", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 227272112, "num_examples": 123413}], "download_size": 129739227, "dataset_size": 227272112}, {"config_name": "20231101.mad", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1596836, "num_examples": 1192}], "download_size": 908630, "dataset_size": 1596836}, {"config_name": "20231101.mai", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21562856, "num_examples": 14714}], "download_size": 6180231, "dataset_size": 21562856}, {"config_name": "20231101.map-bms", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5341068, "num_examples": 13580}], "download_size": 2377123, "dataset_size": 5341068}, {"config_name": "20231101.mdf", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4694770, "num_examples": 4257}], "download_size": 1725294, "dataset_size": 4694770}, {"config_name": "20231101.mg", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 73767229, "num_examples": 96316}], "download_size": 22117304, "dataset_size": 73767229}, {"config_name": "20231101.mhr", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 19249450, "num_examples": 11347}], "download_size": 6902162, "dataset_size": 19249450}, {"config_name": "20231101.mi", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4169094, "num_examples": 7919}], "download_size": 1044444, "dataset_size": 4169094}, {"config_name": "20231101.min", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 118995918, "num_examples": 227143}], "download_size": 25691303, "dataset_size": 118995918}, {"config_name": "20231101.mk", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 651422351, "num_examples": 139559}], "download_size": 271265486, "dataset_size": 651422351}, {"config_name": "20231101.ml", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 494135127, "num_examples": 85791}], "download_size": 183071274, "dataset_size": 494135127}, {"config_name": "20231101.mn", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 91943210, "num_examples": 24048}], "download_size": 41521786, "dataset_size": 91943210}, {"config_name": "20231101.mni", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 9820483, "num_examples": 10894}], "download_size": 2208525, "dataset_size": 9820483}, {"config_name": "20231101.mnw", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 47237206, "num_examples": 3295}], "download_size": 13765461, "dataset_size": 47237206}, {"config_name": "20231101.mr", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 261879018, "num_examples": 94133}], "download_size": 81991233, "dataset_size": 261879018}, {"config_name": "20231101.mrj", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 8732281, "num_examples": 10542}], "download_size": 3283618, "dataset_size": 8732281}, {"config_name": "20231101.ms", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 423352360, "num_examples": 368628}], "download_size": 210149264, "dataset_size": 423352360}, {"config_name": "20231101.mt", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 32009639, "num_examples": 5743}], "download_size": 18686521, "dataset_size": 32009639}, {"config_name": "20231101.mwl", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 19353725, "num_examples": 4500}], "download_size": 11521563, "dataset_size": 19353725}, {"config_name": "20231101.my", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 314417700, "num_examples": 109310}], "download_size": 85497205, "dataset_size": 314417700}, {"config_name": "20231101.myv", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 11145865, "num_examples": 7958}], "download_size": 4600620, "dataset_size": 11145865}, {"config_name": "20231101.mzn", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 16335757, "num_examples": 18717}], "download_size": 5419390, "dataset_size": 16335757}, {"config_name": "20231101.nah", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2503320, "num_examples": 6218}], "download_size": 1191779, "dataset_size": 2503320}, {"config_name": "20231101.nap", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6395706, "num_examples": 14884}], "download_size": 3188122, "dataset_size": 6395706}, {"config_name": "20231101.nds", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 92990126, "num_examples": 84285}], "download_size": 48106879, "dataset_size": 92990126}, {"config_name": "20231101.nds-nl", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 13582403, "num_examples": 7847}], "download_size": 8354427, "dataset_size": 13582403}, {"config_name": "20231101.ne", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 109032486, "num_examples": 32885}], "download_size": 37548833, "dataset_size": 109032486}, {"config_name": "20231101.new", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 159095610, "num_examples": 73003}], "download_size": 20517810, "dataset_size": 159095610}, {"config_name": "20231101.nia", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2117902, "num_examples": 1714}], "download_size": 1086670, "dataset_size": 2117902}, {"config_name": "20231101.nl", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2646316266, "num_examples": 2135977}], "download_size": 1436843432, "dataset_size": 2646316266}, {"config_name": "20231101.nn", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 237467406, "num_examples": 167653}], "download_size": 134751873, "dataset_size": 237467406}, {"config_name": "20231101.no", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1033188011, "num_examples": 617937}], "download_size": 590970350, "dataset_size": 1033188011}, {"config_name": "20231101.nov", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 965640, "num_examples": 1693}], "download_size": 493500, "dataset_size": 965640}, {"config_name": "20231101.nqo", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 8261058, "num_examples": 1580}], "download_size": 3508645, "dataset_size": 8261058}, {"config_name": "20231101.nrm", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3216817, "num_examples": 4902}], "download_size": 1507257, "dataset_size": 3216817}, {"config_name": "20231101.nso", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2796467, "num_examples": 8650}], "download_size": 936349, "dataset_size": 2796467}, {"config_name": "20231101.nv", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 16993060, "num_examples": 22460}], "download_size": 3304031, "dataset_size": 16993060}, {"config_name": "20231101.ny", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1691825, "num_examples": 1129}], "download_size": 938621, "dataset_size": 1691825}, {"config_name": "20231101.oc", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 120092607, "num_examples": 89101}], "download_size": 64043588, "dataset_size": 120092607}, {"config_name": "20231101.olo", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3173332, "num_examples": 4640}], "download_size": 1724315, "dataset_size": 3173332}, {"config_name": "20231101.om", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3604768, "num_examples": 1970}], "download_size": 1982849, "dataset_size": 3604768}, {"config_name": "20231101.or", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 75078226, "num_examples": 17375}], "download_size": 26706212, "dataset_size": 75078226}, {"config_name": "20231101.os", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 13182881, "num_examples": 17663}], "download_size": 5572799, "dataset_size": 13182881}, {"config_name": "20231101.pa", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 212972877, "num_examples": 51423}], "download_size": 81452929, "dataset_size": 212972877}, {"config_name": "20231101.pag", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1391816, "num_examples": 2665}], "download_size": 455808, "dataset_size": 1391816}, {"config_name": "20231101.pam", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 8294902, "num_examples": 9006}], "download_size": 4277038, "dataset_size": 8294902}, {"config_name": "20231101.pap", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4251480, "num_examples": 3520}], "download_size": 2435005, "dataset_size": 4251480}, {"config_name": "20231101.pcd", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5704321, "num_examples": 5717}], "download_size": 3145572, "dataset_size": 5704321}, {"config_name": "20231101.pcm", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1886987, "num_examples": 1238}], "download_size": 1160762, "dataset_size": 1886987}, {"config_name": "20231101.pdc", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1225978, "num_examples": 2176}], "download_size": 698254, "dataset_size": 1225978}, {"config_name": "20231101.pfl", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3694464, "num_examples": 2762}], "download_size": 1971214, "dataset_size": 3694464}, {"config_name": "20231101.pi", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1144100, "num_examples": 3057}], "download_size": 200764, "dataset_size": 1144100}, {"config_name": "20231101.pih", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 278139, "num_examples": 934}], "download_size": 177092, "dataset_size": 278139}, {"config_name": "20231101.pl", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2950148809, "num_examples": 1587721}], "download_size": 1765059986, "dataset_size": 2950148809}, {"config_name": "20231101.pms", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 34340217, "num_examples": 67980}], "download_size": 12008880, "dataset_size": 34340217}, {"config_name": "20231101.pnb", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 304117649, "num_examples": 72307}], "download_size": 133266242, "dataset_size": 304117649}, {"config_name": "20231101.pnt", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 630636, "num_examples": 533}], "download_size": 275639, "dataset_size": 630636}, {"config_name": "20231101.ps", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 114259737, "num_examples": 20529}], "download_size": 53312545, "dataset_size": 114259737}, {"config_name": "20231101.pt", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2758783436, "num_examples": 1112246}], "download_size": 1579641059, "dataset_size": 2758783436}, {"config_name": "20231101.pwn", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 811954, "num_examples": 408}], "download_size": 444109, "dataset_size": 811954}, {"config_name": "20231101.qu", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 16828457, "num_examples": 24196}], "download_size": 7688106, "dataset_size": 16828457}, {"config_name": "20231101.rm", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 18053014, "num_examples": 3822}], "download_size": 10483970, "dataset_size": 18053014}, {"config_name": "20231101.rmy", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 611778, "num_examples": 1279}], "download_size": 356457, "dataset_size": 611778}, {"config_name": "20231101.rn", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 530318, "num_examples": 819}], "download_size": 301252, "dataset_size": 530318}, {"config_name": "20231101.ro", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 847410736, "num_examples": 442389}], "download_size": 466937380, "dataset_size": 847410736}, {"config_name": "20231101.roa-rup", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1687829, "num_examples": 1432}], "download_size": 951677, "dataset_size": 1687829}, {"config_name": "20231101.roa-tara", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 7470331, "num_examples": 9367}], "download_size": 4003095, "dataset_size": 7470331}, {"config_name": "20231101.ru", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 10277958919, "num_examples": 1945063}], "download_size": 4876849588, "dataset_size": 10277958919}, {"config_name": "20231101.rue", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 13128572, "num_examples": 8759}], "download_size": 6346106, "dataset_size": 13128572}, {"config_name": "20231101.rw", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 11898854, "num_examples": 8063}], "download_size": 6623388, "dataset_size": 11898854}, {"config_name": "20231101.sa", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 69854997, "num_examples": 12156}], "download_size": 23850161, "dataset_size": 69854997}, {"config_name": "20231101.sah", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 48562374, "num_examples": 17098}], "download_size": 21675888, "dataset_size": 48562374}, {"config_name": "20231101.sat", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 45247783, "num_examples": 9767}], "download_size": 15428584, "dataset_size": 45247783}, {"config_name": "20231101.sc", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 12776438, "num_examples": 7586}], "download_size": 7711996, "dataset_size": 12776438}, {"config_name": "20231101.scn", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 17685098, "num_examples": 26530}], "download_size": 10223816, "dataset_size": 17685098}, {"config_name": "20231101.sco", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 42808738, "num_examples": 35276}], "download_size": 24287944, "dataset_size": 42808738}, {"config_name": "20231101.sd", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 37021659, "num_examples": 16928}], "download_size": 17591997, "dataset_size": 37021659}, {"config_name": "20231101.se", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3600527, "num_examples": 8043}], "download_size": 1816006, "dataset_size": 3600527}, {"config_name": "20231101.sg", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 140127, "num_examples": 564}], "download_size": 72486, "dataset_size": 140127}, {"config_name": "20231101.sh", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 569225870, "num_examples": 458392}], "download_size": 266379293, "dataset_size": 569225870}, {"config_name": "20231101.shi", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2369002, "num_examples": 1779}], "download_size": 1359828, "dataset_size": 2369002}, {"config_name": "20231101.shn", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 33553593, "num_examples": 13945}], "download_size": 8163231, "dataset_size": 33553593}, {"config_name": "20231101.si", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 138806443, "num_examples": 23065}], "download_size": 54229127, "dataset_size": 138806443}, {"config_name": "20231101.simple", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 291254232, "num_examples": 241787}], "download_size": 156885218, "dataset_size": 291254232}, {"config_name": "20231101.sk", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 416804817, "num_examples": 242235}], "download_size": 239513292, "dataset_size": 416804817}, {"config_name": "20231101.skr", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 22705446, "num_examples": 5819}], "download_size": 9978607, "dataset_size": 22705446}, {"config_name": "20231101.sl", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 454829910, "num_examples": 183006}], "download_size": 267485569, "dataset_size": 454829910}, {"config_name": "20231101.sm", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 902927, "num_examples": 1151}], "download_size": 492349, "dataset_size": 902927}, {"config_name": "20231101.smn", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5764244, "num_examples": 5383}], "download_size": 2813872, "dataset_size": 5764244}, {"config_name": "20231101.sn", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 9790528, "num_examples": 11621}], "download_size": 4979456, "dataset_size": 9790528}, {"config_name": "20231101.so", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 13663784, "num_examples": 9021}], "download_size": 7940363, "dataset_size": 13663784}, {"config_name": "20231101.sq", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 208779652, "num_examples": 104854}], "download_size": 116945494, "dataset_size": 208779652}, {"config_name": "20231101.sr", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1721596392, "num_examples": 676605}], "download_size": 697391786, "dataset_size": 1721596392}, {"config_name": "20231101.srn", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 649317, "num_examples": 1219}], "download_size": 215103, "dataset_size": 649317}, {"config_name": "20231101.ss", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1076102, "num_examples": 945}], "download_size": 600997, "dataset_size": 1076102}, {"config_name": "20231101.st", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 968161, "num_examples": 1099}], "download_size": 530165, "dataset_size": 968161}, {"config_name": "20231101.stq", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4942784, "num_examples": 4134}], "download_size": 2884429, "dataset_size": 4942784}, {"config_name": "20231101.su", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 48066965, "num_examples": 61555}], "download_size": 19806020, "dataset_size": 48066965}, {"config_name": "20231101.sv", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2153690744, "num_examples": 2574513}], "download_size": 974261228, "dataset_size": 2153690744}, {"config_name": "20231101.sw", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 73119299, "num_examples": 78587}], "download_size": 35936177, "dataset_size": 73119299}, {"config_name": "20231101.szl", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21439309, "num_examples": 57035}], "download_size": 7347967, "dataset_size": 21439309}, {"config_name": "20231101.szy", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 11355780, "num_examples": 4885}], "download_size": 6192815, "dataset_size": 11355780}, {"config_name": "20231101.ta", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 810734099, "num_examples": 160651}], "download_size": 265652020, "dataset_size": 810734099}, {"config_name": "20231101.tay", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2974229, "num_examples": 2747}], "download_size": 1232811, "dataset_size": 2974229}, {"config_name": "20231101.tcy", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 12166612, "num_examples": 2202}], "download_size": 4611006, "dataset_size": 12166612}, {"config_name": "20231101.te", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 730376585, "num_examples": 87854}], "download_size": 215097076, "dataset_size": 730376585}, {"config_name": "20231101.tet", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1466200, "num_examples": 1468}], "download_size": 744390, "dataset_size": 1466200}, {"config_name": "20231101.tg", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 148256281, "num_examples": 110962}], "download_size": 49825647, "dataset_size": 148256281}, {"config_name": "20231101.th", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1014547923, "num_examples": 159719}], "download_size": 371916105, "dataset_size": 1014547923}, {"config_name": "20231101.ti", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 729995, "num_examples": 435}], "download_size": 363723, "dataset_size": 729995}, {"config_name": "20231101.tk", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 13326412, "num_examples": 7918}], "download_size": 7383654, "dataset_size": 13326412}, {"config_name": "20231101.tl", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 85794472, "num_examples": 45341}], "download_size": 45797527, "dataset_size": 85794472}, {"config_name": "20231101.tly", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2590482, "num_examples": 8086}], "download_size": 1070456, "dataset_size": 2590482}, {"config_name": "20231101.tn", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4380768, "num_examples": 1585}], "download_size": 1708110, "dataset_size": 4380768}, {"config_name": "20231101.to", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1090611, "num_examples": 1887}], "download_size": 518244, "dataset_size": 1090611}, {"config_name": "20231101.tpi", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 460420, "num_examples": 1399}], "download_size": 241908, "dataset_size": 460420}, {"config_name": "20231101.tr", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 997254242, "num_examples": 534988}], "download_size": 552923659, "dataset_size": 997254242}, {"config_name": "20231101.trv", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4971204, "num_examples": 1880}], "download_size": 2706664, "dataset_size": 4971204}, {"config_name": "20231101.ts", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 847032, "num_examples": 785}], "download_size": 455648, "dataset_size": 847032}, {"config_name": "20231101.tt", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 681325421, "num_examples": 501116}], "download_size": 129141056, "dataset_size": 681325421}, {"config_name": "20231101.tum", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 13429984, "num_examples": 18708}], "download_size": 5459856, "dataset_size": 13429984}, {"config_name": "20231101.tw", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 7982767, "num_examples": 3978}], "download_size": 4118530, "dataset_size": 7982767}, {"config_name": "20231101.ty", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 338743, "num_examples": 1355}], "download_size": 150963, "dataset_size": 338743}, {"config_name": "20231101.tyv", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 14324694, "num_examples": 3491}], "download_size": 6528290, "dataset_size": 14324694}, {"config_name": "20231101.udm", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 7036113, "num_examples": 5677}], "download_size": 2982821, "dataset_size": 7036113}, {"config_name": "20231101.ug", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 42254159, "num_examples": 8634}], "download_size": 17741860, "dataset_size": 42254159}, {"config_name": "20231101.uk", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4969483901, "num_examples": 1294720}], "download_size": 2276769383, "dataset_size": 4969483901}, {"config_name": "20231101.ur", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 410511855, "num_examples": 200154}], "download_size": 167627869, "dataset_size": 410511855}, {"config_name": "20231101.uz", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 397176774, "num_examples": 246729}], "download_size": 210262652, "dataset_size": 397176774}, {"config_name": "20231101.ve", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 359542, "num_examples": 840}], "download_size": 163318, "dataset_size": 359542}, {"config_name": "20231101.vec", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 37917528, "num_examples": 69268}], "download_size": 16179506, "dataset_size": 37917528}, {"config_name": "20231101.vep", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 11643856, "num_examples": 6960}], "download_size": 6423002, "dataset_size": 11643856}, {"config_name": "20231101.vi", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1617830227, "num_examples": 1288680}], "download_size": 729557588, "dataset_size": 1617830227}, {"config_name": "20231101.vls", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 11336278, "num_examples": 7872}], "download_size": 6985406, "dataset_size": 11336278}, {"config_name": "20231101.vo", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 19521708, "num_examples": 35193}], "download_size": 6582571, "dataset_size": 19521708}, {"config_name": "20231101.wa", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 12268826, "num_examples": 12038}], "download_size": 7327616, "dataset_size": 12268826}, {"config_name": "20231101.war", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 467647882, "num_examples": 1266394}], "download_size": 104588442, "dataset_size": 467647882}, {"config_name": "20231101.wo", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3525303, "num_examples": 1746}], "download_size": 2094574, "dataset_size": 3525303}, {"config_name": "20231101.wuu", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 25029545, "num_examples": 43010}], "download_size": 15985963, "dataset_size": 25029545}, {"config_name": "20231101.xal", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1391731, "num_examples": 2295}], "download_size": 507198, "dataset_size": 1391731}, {"config_name": "20231101.xh", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3665998, "num_examples": 1883}], "download_size": 2505472, "dataset_size": 3665998}, {"config_name": "20231101.xmf", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 37712629, "num_examples": 18099}], "download_size": 12948576, "dataset_size": 37712629}, {"config_name": "20231101.yi", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 36038273, "num_examples": 15179}], "download_size": 16218296, "dataset_size": 36038273}, {"config_name": "20231101.yo", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 19081408, "num_examples": 33819}], "download_size": 8861465, "dataset_size": 19081408}, {"config_name": "20231101.za", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1365300, "num_examples": 2993}], "download_size": 666521, "dataset_size": 1365300}, {"config_name": "20231101.zea", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5224563, "num_examples": 6082}], "download_size": 2620396, "dataset_size": 5224563}, {"config_name": "20231101.zh", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2790577882, "num_examples": 1384748}], "download_size": 1721150260, "dataset_size": 2790577882}, {"config_name": "20231101.zh-classical", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 14869227, "num_examples": 12708}], "download_size": 10098073, "dataset_size": 14869227}, {"config_name": "20231101.zh-min-nan", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 153672031, "num_examples": 432798}], "download_size": 37122048, "dataset_size": 153672031}, {"config_name": "20231101.zh-yue", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 109936351, "num_examples": 134140}], "download_size": 64950815, "dataset_size": 109936351}, {"config_name": "20231101.zu", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 7088246, "num_examples": 11561}], "download_size": 3792429, "dataset_size": 7088246}], "language_bcp47": ["be-tarask", "en-simple"]}
false
null
2024-01-09T09:40:51
779
5
false
b04c8d1ceb2f5cd4588862100d08de323dccfbaa
Dataset Card for Wikimedia Wikipedia Dataset Summary Wikipedia dataset containing cleaned articles of all languages. The dataset is built from the Wikipedia dumps (https://dumps.wikimedia.org/) with one subset per language, each containing a single train split. Each example contains the content of one full Wikipedia article with cleaning to strip markdown and unwanted sections (references, etc.). All language subsets have already been processed for recent dump… See the full description on the dataset page: https://huggingface.co/datasets/wikimedia/wikipedia.
84,898
1,027,679
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:language-modeling", "task_ids:masked-language-modeling", "language:ab", "language:ace", "language:ady", "language:af", "language:alt", "language:am", "language:ami", "language:an", "language:ang", "language:anp", "language:ar", "language:arc", "language:ary", "language:arz", "language:as", "language:ast", "language:atj", "language:av", "language:avk", "language:awa", "language:ay", "language:az", "language:azb", "language:ba", "language:ban", "language:bar", "language:bbc", "language:bcl", "language:be", "language:bg", "language:bh", "language:bi", "language:bjn", "language:blk", "language:bm", "language:bn", "language:bo", "language:bpy", "language:br", "language:bs", "language:bug", "language:bxr", "language:ca", "language:cbk", "language:cdo", "language:ce", "language:ceb", "language:ch", "language:chr", "language:chy", "language:ckb", "language:co", "language:cr", "language:crh", "language:cs", "language:csb", "language:cu", "language:cv", "language:cy", "language:da", "language:dag", "language:de", "language:dga", "language:din", "language:diq", "language:dsb", "language:dty", "language:dv", "language:dz", "language:ee", "language:el", "language:eml", "language:en", "language:eo", "language:es", "language:et", "language:eu", "language:ext", "language:fa", "language:fat", "language:ff", "language:fi", "language:fj", "language:fo", "language:fon", "language:fr", "language:frp", "language:frr", "language:fur", "language:fy", "language:ga", "language:gag", "language:gan", "language:gcr", "language:gd", "language:gl", "language:glk", "language:gn", "language:gom", "language:gor", "language:got", "language:gpe", "language:gsw", "language:gu", "language:guc", "language:gur", "language:guw", "language:gv", "language:ha", "language:hak", "language:haw", "language:hbs", "language:he", "language:hi", "language:hif", "language:hr", "language:hsb", "language:ht", "language:hu", "language:hy", "language:hyw", "language:ia", "language:id", "language:ie", "language:ig", "language:ik", "language:ilo", "language:inh", "language:io", "language:is", "language:it", "language:iu", "language:ja", "language:jam", "language:jbo", "language:jv", "language:ka", "language:kaa", "language:kab", "language:kbd", "language:kbp", "language:kcg", "language:kg", "language:ki", "language:kk", "language:kl", "language:km", "language:kn", "language:ko", "language:koi", "language:krc", "language:ks", "language:ksh", "language:ku", "language:kv", "language:kw", "language:ky", "language:la", "language:lad", "language:lb", "language:lbe", "language:lez", "language:lfn", "language:lg", "language:li", "language:lij", "language:lld", "language:lmo", "language:ln", "language:lo", "language:lt", "language:ltg", "language:lv", "language:lzh", "language:mad", "language:mai", "language:map", "language:mdf", "language:mg", "language:mhr", "language:mi", "language:min", "language:mk", "language:ml", "language:mn", "language:mni", "language:mnw", "language:mr", "language:mrj", "language:ms", "language:mt", "language:mwl", "language:my", "language:myv", "language:mzn", "language:nah", "language:nan", "language:nap", "language:nds", "language:ne", "language:new", "language:nia", "language:nl", "language:nn", "language:no", "language:nov", "language:nqo", "language:nrf", "language:nso", "language:nv", "language:ny", "language:oc", "language:olo", "language:om", "language:or", "language:os", "language:pa", "language:pag", "language:pam", "language:pap", "language:pcd", "language:pcm", "language:pdc", "language:pfl", "language:pi", "language:pih", "language:pl", "language:pms", "language:pnb", "language:pnt", "language:ps", "language:pt", "language:pwn", "language:qu", "language:rm", "language:rmy", "language:rn", "language:ro", "language:ru", "language:rue", "language:rup", "language:rw", "language:sa", "language:sah", "language:sat", "language:sc", "language:scn", "language:sco", "language:sd", "language:se", "language:sg", "language:sgs", "language:shi", "language:shn", "language:si", "language:sk", "language:skr", "language:sl", "language:sm", "language:smn", "language:sn", "language:so", "language:sq", "language:sr", "language:srn", "language:ss", "language:st", "language:stq", "language:su", "language:sv", "language:sw", "language:szl", "language:szy", "language:ta", "language:tay", "language:tcy", "language:te", "language:tet", "language:tg", "language:th", "language:ti", "language:tk", "language:tl", "language:tly", "language:tn", "language:to", "language:tpi", "language:tr", "language:trv", "language:ts", "language:tt", "language:tum", "language:tw", "language:ty", "language:tyv", "language:udm", "language:ug", "language:uk", "language:ur", "language:uz", "language:ve", "language:vec", "language:vep", "language:vi", "language:vls", "language:vo", "language:vro", "language:wa", "language:war", "language:wo", "language:wuu", "language:xal", "language:xh", "language:xmf", "language:yi", "language:yo", "language:yue", "language:za", "language:zea", "language:zgh", "language:zh", "language:zu", "license:cc-by-sa-3.0", "license:gfdl", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2022-03-02T23:29:22
null
null
64e80de1d021ea7dfaa73d23
clouditera/security-paper-datasets
clouditera
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "category", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1690579945, "num_examples": 428155}], "download_size": 751689097, "dataset_size": 1690579945}}
false
null
2023-10-16T10:34:13
98
5
false
885885f783710efc13e62c0667fb4c86b0f6e465
Dataset Card for "security-paper-datasets" More Information needed
758
4,080
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2023-08-25T02:11:45
null
null
6532270e829e1dc2f293d6b8
gaia-benchmark/GAIA
gaia-benchmark
{"language": ["en"], "pretty_name": "General AI Assistants Benchmark", "extra_gated_prompt": "To avoid contamination and data leakage, you agree to not reshare this dataset outside of a gated or private repository on the HF hub.", "extra_gated_fields": {"I agree to not reshare the GAIA submissions set according to the above conditions": "checkbox"}}
false
null
2025-02-13T08:36:12
294
5
false
897f2dfbb5c952b5c3c1509e648381f9c7b70316
GAIA dataset GAIA is a benchmark which aims at evaluating next-generation LLMs (LLMs with augmented capabilities due to added tooling, efficient prompting, access to search, etc). We added gating to prevent bots from scraping the dataset. Please do not reshare the validation or test set in a crawlable format. Data and leaderboard GAIA is made of more than 450 non-trivial question with an unambiguous answer, requiring different levels of tooling and autonomy to solve. It… See the full description on the dataset page: https://huggingface.co/datasets/gaia-benchmark/GAIA.
11,397
43,592
[ "language:en", "arxiv:2311.12983", "region:us" ]
2023-10-20T07:06:54
null
653be37343f068f20b3ce47b
Malikeh1375/medical-question-answering-datasets
Malikeh1375
{"language": ["en"], "task_categories": ["question-answering"], "tags": ["medical", "clinical", "healthcare"], "dataset_info": [{"config_name": "all-processed", "features": [{"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 276980695, "num_examples": 246678}], "download_size": 0, "dataset_size": 276980695}, {"config_name": "chatdoctor_healthcaremagic", "features": [{"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 126454896, "num_examples": 112165}], "download_size": 70518147, "dataset_size": 126454896}, {"config_name": "chatdoctor_icliniq", "features": [{"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 7347194, "num_examples": 7321}], "download_size": 4153680, "dataset_size": 7347194}, {"config_name": "medical_meadow_cord19", "features": [{"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1336834621, "num_examples": 821007}], "download_size": 752855706, "dataset_size": 1336834621}, {"config_name": "medical_meadow_health_advice", "features": [{"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2196957, "num_examples": 8676}], "download_size": 890725, "dataset_size": 2196957}, {"config_name": "medical_meadow_medical_flashcards", "features": [{"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 16453987, "num_examples": 33955}], "download_size": 6999958, "dataset_size": 16453987}, {"config_name": "medical_meadow_mediqa", "features": [{"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 15690088, "num_examples": 2208}], "download_size": 3719929, "dataset_size": 15690088}, {"config_name": "medical_meadow_medqa", "features": [{"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 10225018, "num_examples": 10178}], "download_size": 5505473, "dataset_size": 10225018}, {"config_name": "medical_meadow_mmmlu", "features": [{"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1442124, "num_examples": 3787}], "download_size": 685604, "dataset_size": 1442124}, {"config_name": "medical_meadow_pubmed_causal", "features": [{"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 846695, "num_examples": 2446}], "download_size": 210947, "dataset_size": 846695}, {"config_name": "medical_meadow_wikidoc", "features": [{"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 10224074, "num_examples": 10000}], "download_size": 5593178, "dataset_size": 10224074}, {"config_name": "medical_meadow_wikidoc_patient_information", "features": [{"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3262558, "num_examples": 5942}], "download_size": 1544286, "dataset_size": 3262558}], "configs": [{"config_name": "all-processed", "data_files": [{"split": "train", "path": "all-processed/train-*"}]}, {"config_name": "chatdoctor_healthcaremagic", "data_files": [{"split": "train", "path": "chatdoctor_healthcaremagic/train-*"}]}, {"config_name": "chatdoctor_icliniq", "data_files": [{"split": "train", "path": "chatdoctor_icliniq/train-*"}]}, {"config_name": "medical_meadow_cord19", "data_files": [{"split": "train", "path": "medical_meadow_cord19/train-*"}]}, {"config_name": "medical_meadow_health_advice", "data_files": [{"split": "train", "path": "medical_meadow_health_advice/train-*"}]}, {"config_name": "medical_meadow_medical_flashcards", "data_files": [{"split": "train", "path": "medical_meadow_medical_flashcards/train-*"}]}, {"config_name": "medical_meadow_mediqa", "data_files": [{"split": "train", "path": "medical_meadow_mediqa/train-*"}]}, {"config_name": "medical_meadow_medqa", "data_files": [{"split": "train", "path": "medical_meadow_medqa/train-*"}]}, {"config_name": "medical_meadow_mmmlu", "data_files": [{"split": "train", "path": "medical_meadow_mmmlu/train-*"}]}, {"config_name": "medical_meadow_pubmed_causal", "data_files": [{"split": "train", "path": "medical_meadow_pubmed_causal/train-*"}]}, {"config_name": "medical_meadow_wikidoc", "data_files": [{"split": "train", "path": "medical_meadow_wikidoc/train-*"}]}, {"config_name": "medical_meadow_wikidoc_patient_information", "data_files": [{"split": "train", "path": "medical_meadow_wikidoc_patient_information/train-*"}]}]}
false
null
2023-11-02T03:13:38
44
5
false
4d69c9f6874bc5ec8be3817e9d86b7333a8a5070
null
976
10,105
[ "task_categories:question-answering", "language:en", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "medical", "clinical", "healthcare" ]
2023-10-27T16:21:07
null
null
65a7ef3a2984fa7203937d33
interstellarninja/tool-calls-multiturn
interstellarninja
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "category", "dtype": "string"}, {"name": "subcategory", "dtype": "string"}, {"name": "task", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 17598897, "num_examples": 1893}], "download_size": 7194968, "dataset_size": 17598897}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2024-01-18T23:22:35
10
5
false
ef844dd63d8feba3ff54356ed6ee6e788e4a0796
null
118
531
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-01-17T15:16:10
null
null
65af32411edab235a1f38b0b
omar07ibrahim/Alpaca_Stanford_Azerbaijan
omar07ibrahim
null
false
null
2024-01-23T03:28:27
12
5
false
a088761652ed34235281b46bcdb49d36fd0a3bdb
null
25
165
[ "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-01-23T03:28:01
null
null
65afa00e637e10fba969eb56
omar07ibrahim/alpaca-cleaned_AZERBAIJANI
omar07ibrahim
null
false
null
2024-01-23T11:18:42
13
5
false
ad9e82bceb5c7a2d438dfcf04132854fc0328781
null
39
272
[ "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-01-23T11:16:30
null
null
65b4e0dccbea1825a691a012
omar07ibrahim/testlimOcrCA
omar07ibrahim
null
false
null
2024-01-27T10:57:04
11
5
false
b1f404a6dcaff40d4d14320dd44a212c79a13c94
null
41
114
[ "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-01-27T10:54:20
null
null
65dc13085ca10be41fdd8b27
bigcode/the-stack-v2
bigcode
{"annotations_creators": [], "language_creators": ["crowdsourced", "expert-generated"], "language": ["code"], "license": ["other"], "multilinguality": ["multilingual"], "pretty_name": "The-Stack-v2", "size_categories": ["unknown"], "source_datasets": [], "task_categories": ["text-generation"], "task_ids": [], "extra_gated_prompt": "## Terms of Use for The Stack v2\n\nThe Stack v2 dataset is a collection of source code in over 600 programming languages. We ask that you read and acknowledge the following points before using the dataset:\n1. Downloading the dataset in bulk requires a an agreement with SoftwareHeritage and INRIA. Contact [[email protected]](mailto:[email protected]?subject=TheStackV2%20request%20for%20dataset%20access%20information) for more information.\n2. If you are using the dataset to train models you must adhere to the SoftwareHeritage [principles for language model training](https://www.softwareheritage.org/2023/10/19/swh-statement-on-llm-for-code/).\n3. The Stack v2 is a collection of source code from repositories with various licenses. Any use of all or part of the code gathered in The Stack v2 must abide by the terms of the original licenses, including attribution clauses when relevant. We facilitate this by providing provenance information for each data point.\n4. The Stack v2 is regularly updated to enact validated data removal requests. By clicking on \"Access repository\", you agree to update your own version of The Stack v2 to the most recent usable version.\n\nBy clicking on \"Access repository\" below, you accept that your contact information (email address and username) can be shared with the dataset maintainers as well.\n ", "extra_gated_fields": {"Email": "text", "I have read the License and agree with its terms": "checkbox"}, "dataset_info": {"features": [{"name": "blob_id", "dtype": "string"}, {"name": "directory_id", "dtype": "string"}, {"name": "path", "dtype": "string"}, {"name": "content_id", "dtype": "string"}, {"name": "detected_licenses", "sequence": "string"}, {"name": "license_type", "dtype": "string"}, {"name": "repo_name", "dtype": "string"}, {"name": "snapshot_id", "dtype": "string"}, {"name": "revision_id", "dtype": "string"}, {"name": "branch_name", "dtype": "string"}, {"name": "visit_date", "dtype": "timestamp[ns]"}, {"name": "revision_date", "dtype": "timestamp[ns]"}, {"name": "committer_date", "dtype": "timestamp[ns]"}, {"name": "github_id", "dtype": "int64"}, {"name": "star_events_count", "dtype": "int64"}, {"name": "fork_events_count", "dtype": "int64"}, {"name": "gha_license_id", "dtype": "string"}, {"name": "gha_event_created_at", "dtype": "timestamp[ns]"}, {"name": "gha_created_at", "dtype": "timestamp[ns]"}, {"name": "gha_language", "dtype": "string"}, {"name": "src_encoding", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "is_vendor", "dtype": "bool"}, {"name": "is_generated", "dtype": "bool"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "extension", "dtype": "string"}]}, "configs": [{"config_name": "default", "default": true, "data_files": [{"split": "train", "path": "data/*/*.parquet"}]}, {"config_name": "1C_Enterprise", "data_files": [{"split": "train", "path": "data/1C_Enterprise/*.parquet"}]}, {"config_name": "2-Dimensional_Array", "data_files": [{"split": "train", "path": "data/2-Dimensional_Array/*.parquet"}]}, {"config_name": "4D", "data_files": [{"split": "train", "path": "data/4D/*.parquet"}]}, {"config_name": "ABAP", "data_files": [{"split": "train", "path": "data/ABAP/*.parquet"}]}, {"config_name": "ABAP_CDS", "data_files": [{"split": "train", "path": "data/ABAP_CDS/*.parquet"}]}, {"config_name": "ABNF", "data_files": [{"split": "train", "path": "data/ABNF/*.parquet"}]}, {"config_name": "AGS_Script", "data_files": [{"split": "train", "path": "data/AGS_Script/*.parquet"}]}, {"config_name": "AIDL", "data_files": [{"split": "train", "path": "data/AIDL/*.parquet"}]}, {"config_name": "AL", "data_files": [{"split": "train", "path": "data/AL/*.parquet"}]}, {"config_name": "AMPL", "data_files": [{"split": "train", "path": "data/AMPL/*.parquet"}]}, {"config_name": "ANTLR", "data_files": [{"split": "train", "path": "data/ANTLR/*.parquet"}]}, {"config_name": "API_Blueprint", "data_files": [{"split": "train", "path": "data/API_Blueprint/*.parquet"}]}, {"config_name": "APL", "data_files": [{"split": "train", "path": "data/APL/*.parquet"}]}, {"config_name": "ASL", "data_files": [{"split": "train", "path": "data/ASL/*.parquet"}]}, {"config_name": "ASN.1", "data_files": [{"split": "train", "path": "data/ASN.1/*.parquet"}]}, {"config_name": "ASP.NET", "data_files": [{"split": "train", "path": "data/ASP.NET/*.parquet"}]}, {"config_name": "ATS", "data_files": [{"split": "train", "path": "data/ATS/*.parquet"}]}, {"config_name": "ActionScript", "data_files": [{"split": "train", "path": "data/ActionScript/*.parquet"}]}, {"config_name": "Ada", "data_files": [{"split": "train", "path": "data/Ada/*.parquet"}]}, {"config_name": "Adobe_Font_Metrics", "data_files": [{"split": "train", "path": "data/Adobe_Font_Metrics/*.parquet"}]}, {"config_name": "Agda", "data_files": [{"split": "train", "path": "data/Agda/*.parquet"}]}, {"config_name": "Alloy", "data_files": [{"split": "train", "path": "data/Alloy/*.parquet"}]}, {"config_name": "Alpine_Abuild", "data_files": [{"split": "train", "path": "data/Alpine_Abuild/*.parquet"}]}, {"config_name": "Altium_Designer", "data_files": [{"split": "train", "path": "data/Altium_Designer/*.parquet"}]}, {"config_name": "AngelScript", "data_files": [{"split": "train", "path": "data/AngelScript/*.parquet"}]}, {"config_name": "Ant_Build_System", "data_files": [{"split": "train", "path": "data/Ant_Build_System/*.parquet"}]}, {"config_name": "Antlers", "data_files": [{"split": "train", "path": "data/Antlers/*.parquet"}]}, {"config_name": "ApacheConf", "data_files": [{"split": "train", "path": "data/ApacheConf/*.parquet"}]}, {"config_name": "Apex", "data_files": [{"split": "train", "path": "data/Apex/*.parquet"}]}, {"config_name": "Apollo_Guidance_Computer", "data_files": [{"split": "train", "path": "data/Apollo_Guidance_Computer/*.parquet"}]}, {"config_name": "AppleScript", "data_files": [{"split": "train", "path": "data/AppleScript/*.parquet"}]}, {"config_name": "Arc", "data_files": [{"split": "train", "path": "data/Arc/*.parquet"}]}, {"config_name": "AsciiDoc", "data_files": [{"split": "train", "path": "data/AsciiDoc/*.parquet"}]}, {"config_name": "AspectJ", "data_files": [{"split": "train", "path": "data/AspectJ/*.parquet"}]}, {"config_name": "Assembly", "data_files": [{"split": "train", "path": "data/Assembly/*.parquet"}]}, {"config_name": "Astro", "data_files": [{"split": "train", "path": "data/Astro/*.parquet"}]}, {"config_name": "Asymptote", "data_files": [{"split": "train", "path": "data/Asymptote/*.parquet"}]}, {"config_name": "Augeas", "data_files": [{"split": "train", "path": "data/Augeas/*.parquet"}]}, {"config_name": "AutoHotkey", "data_files": [{"split": "train", "path": "data/AutoHotkey/*.parquet"}]}, {"config_name": "AutoIt", "data_files": [{"split": "train", "path": "data/AutoIt/*.parquet"}]}, {"config_name": "Avro_IDL", "data_files": [{"split": "train", "path": "data/Avro_IDL/*.parquet"}]}, {"config_name": "Awk", "data_files": [{"split": "train", "path": "data/Awk/*.parquet"}]}, {"config_name": "BASIC", "data_files": [{"split": "train", "path": "data/BASIC/*.parquet"}]}, {"config_name": "Ballerina", "data_files": [{"split": "train", "path": "data/Ballerina/*.parquet"}]}, {"config_name": "Batchfile", "data_files": [{"split": "train", "path": "data/Batchfile/*.parquet"}]}, {"config_name": "Beef", "data_files": [{"split": "train", "path": "data/Beef/*.parquet"}]}, {"config_name": "Befunge", "data_files": [{"split": "train", "path": "data/Befunge/*.parquet"}]}, {"config_name": "Berry", "data_files": [{"split": "train", "path": "data/Berry/*.parquet"}]}, {"config_name": "BibTeX", "data_files": [{"split": "train", "path": "data/BibTeX/*.parquet"}]}, {"config_name": "Bicep", "data_files": [{"split": "train", "path": "data/Bicep/*.parquet"}]}, {"config_name": "Bikeshed", "data_files": [{"split": "train", "path": "data/Bikeshed/*.parquet"}]}, {"config_name": "Bison", "data_files": [{"split": "train", "path": "data/Bison/*.parquet"}]}, {"config_name": "BitBake", "data_files": [{"split": "train", "path": "data/BitBake/*.parquet"}]}, {"config_name": "Blade", "data_files": [{"split": "train", "path": "data/Blade/*.parquet"}]}, {"config_name": "BlitzBasic", "data_files": [{"split": "train", "path": "data/BlitzBasic/*.parquet"}]}, {"config_name": "BlitzMax", "data_files": [{"split": "train", "path": "data/BlitzMax/*.parquet"}]}, {"config_name": "Bluespec", "data_files": [{"split": "train", "path": "data/Bluespec/*.parquet"}]}, {"config_name": "Boo", "data_files": [{"split": "train", "path": "data/Boo/*.parquet"}]}, {"config_name": "Boogie", "data_files": [{"split": "train", "path": "data/Boogie/*.parquet"}]}, {"config_name": "Brainfuck", "data_files": [{"split": "train", "path": "data/Brainfuck/*.parquet"}]}, {"config_name": "BrighterScript", "data_files": [{"split": "train", "path": "data/BrighterScript/*.parquet"}]}, {"config_name": "Brightscript", "data_files": [{"split": "train", "path": "data/Brightscript/*.parquet"}]}, {"config_name": "Browserslist", "data_files": [{"split": "train", "path": "data/Browserslist/*.parquet"}]}, {"config_name": "C", "data_files": [{"split": "train", "path": "data/C/*.parquet"}]}, {"config_name": "C++", "data_files": [{"split": "train", "path": "data/C++/*.parquet"}]}, {"config_name": "C-ObjDump", "data_files": [{"split": "train", "path": "data/C-ObjDump/*.parquet"}]}, {"config_name": "C-Sharp", "data_files": [{"split": "train", "path": "data/C-Sharp/*.parquet"}]}, {"config_name": "C2hs_Haskell", "data_files": [{"split": "train", "path": "data/C2hs_Haskell/*.parquet"}]}, {"config_name": "CAP_CDS", "data_files": [{"split": "train", "path": "data/CAP_CDS/*.parquet"}]}, {"config_name": "CIL", "data_files": [{"split": "train", "path": "data/CIL/*.parquet"}]}, {"config_name": "CLIPS", "data_files": [{"split": "train", "path": "data/CLIPS/*.parquet"}]}, {"config_name": "CMake", "data_files": [{"split": "train", "path": "data/CMake/*.parquet"}]}, {"config_name": "COBOL", "data_files": [{"split": "train", "path": "data/COBOL/*.parquet"}]}, {"config_name": "CODEOWNERS", "data_files": [{"split": "train", "path": "data/CODEOWNERS/*.parquet"}]}, {"config_name": "COLLADA", "data_files": [{"split": "train", "path": "data/COLLADA/*.parquet"}]}, {"config_name": "CSON", "data_files": [{"split": "train", "path": "data/CSON/*.parquet"}]}, {"config_name": "CSS", "data_files": [{"split": "train", "path": "data/CSS/*.parquet"}]}, {"config_name": "CSV", "data_files": [{"split": "train", "path": "data/CSV/*.parquet"}]}, {"config_name": "CUE", "data_files": [{"split": "train", "path": "data/CUE/*.parquet"}]}, {"config_name": "CWeb", "data_files": [{"split": "train", "path": "data/CWeb/*.parquet"}]}, {"config_name": "Cabal_Config", "data_files": [{"split": "train", "path": "data/Cabal_Config/*.parquet"}]}, {"config_name": "Cadence", "data_files": [{"split": "train", "path": "data/Cadence/*.parquet"}]}, {"config_name": "Cairo", "data_files": [{"split": "train", "path": "data/Cairo/*.parquet"}]}, {"config_name": "CameLIGO", "data_files": [{"split": "train", "path": "data/CameLIGO/*.parquet"}]}, {"config_name": "Cap-n_Proto", "data_files": [{"split": "train", "path": "data/Cap-n_Proto/*.parquet"}]}, {"config_name": "CartoCSS", "data_files": [{"split": "train", "path": "data/CartoCSS/*.parquet"}]}, {"config_name": "Ceylon", "data_files": [{"split": "train", "path": "data/Ceylon/*.parquet"}]}, {"config_name": "Chapel", "data_files": [{"split": "train", "path": "data/Chapel/*.parquet"}]}, {"config_name": "Charity", "data_files": [{"split": "train", "path": "data/Charity/*.parquet"}]}, {"config_name": "Checksums", "data_files": [{"split": "train", "path": "data/Checksums/*.parquet"}]}, {"config_name": "ChucK", "data_files": [{"split": "train", "path": "data/ChucK/*.parquet"}]}, {"config_name": "Cirru", "data_files": [{"split": "train", "path": "data/Cirru/*.parquet"}]}, {"config_name": "Clarion", "data_files": [{"split": "train", "path": "data/Clarion/*.parquet"}]}, {"config_name": "Clarity", "data_files": [{"split": "train", "path": "data/Clarity/*.parquet"}]}, {"config_name": "Classic_ASP", "data_files": [{"split": "train", "path": "data/Classic_ASP/*.parquet"}]}, {"config_name": "Clean", "data_files": [{"split": "train", "path": "data/Clean/*.parquet"}]}, {"config_name": "Click", "data_files": [{"split": "train", "path": "data/Click/*.parquet"}]}, {"config_name": "Clojure", "data_files": [{"split": "train", "path": "data/Clojure/*.parquet"}]}, {"config_name": "Closure_Templates", "data_files": [{"split": "train", "path": "data/Closure_Templates/*.parquet"}]}, {"config_name": "Cloud_Firestore_Security_Rules", "data_files": [{"split": "train", "path": "data/Cloud_Firestore_Security_Rules/*.parquet"}]}, {"config_name": "CoNLL-U", "data_files": [{"split": "train", "path": "data/CoNLL-U/*.parquet"}]}, {"config_name": "CodeQL", "data_files": [{"split": "train", "path": "data/CodeQL/*.parquet"}]}, {"config_name": "CoffeeScript", "data_files": [{"split": "train", "path": "data/CoffeeScript/*.parquet"}]}, {"config_name": "ColdFusion", "data_files": [{"split": "train", "path": "data/ColdFusion/*.parquet"}]}, {"config_name": "ColdFusion_CFC", "data_files": [{"split": "train", "path": "data/ColdFusion_CFC/*.parquet"}]}, {"config_name": "Common_Lisp", "data_files": [{"split": "train", "path": "data/Common_Lisp/*.parquet"}]}, {"config_name": "Common_Workflow_Language", "data_files": [{"split": "train", "path": "data/Common_Workflow_Language/*.parquet"}]}, {"config_name": "Component_Pascal", "data_files": [{"split": "train", "path": "data/Component_Pascal/*.parquet"}]}, {"config_name": "Cool", "data_files": [{"split": "train", "path": "data/Cool/*.parquet"}]}, {"config_name": "Coq", "data_files": [{"split": "train", "path": "data/Coq/*.parquet"}]}, {"config_name": "Creole", "data_files": [{"split": "train", "path": "data/Creole/*.parquet"}]}, {"config_name": "Crystal", "data_files": [{"split": "train", "path": "data/Crystal/*.parquet"}]}, {"config_name": "Csound", "data_files": [{"split": "train", "path": "data/Csound/*.parquet"}]}, {"config_name": "Csound_Document", "data_files": [{"split": "train", "path": "data/Csound_Document/*.parquet"}]}, {"config_name": "Csound_Score", "data_files": [{"split": "train", "path": "data/Csound_Score/*.parquet"}]}, {"config_name": "Cuda", "data_files": [{"split": "train", "path": "data/Cuda/*.parquet"}]}, {"config_name": "Cue_Sheet", "data_files": [{"split": "train", "path": "data/Cue_Sheet/*.parquet"}]}, {"config_name": "Curry", "data_files": [{"split": "train", "path": "data/Curry/*.parquet"}]}, {"config_name": "Cycript", "data_files": [{"split": "train", "path": "data/Cycript/*.parquet"}]}, {"config_name": "Cython", "data_files": [{"split": "train", "path": "data/Cython/*.parquet"}]}, {"config_name": "D", "data_files": [{"split": "train", "path": "data/D/*.parquet"}]}, {"config_name": "DIGITAL_Command_Language", "data_files": [{"split": "train", "path": "data/DIGITAL_Command_Language/*.parquet"}]}, {"config_name": "DM", "data_files": [{"split": "train", "path": "data/DM/*.parquet"}]}, {"config_name": "DNS_Zone", "data_files": [{"split": "train", "path": "data/DNS_Zone/*.parquet"}]}, {"config_name": "DTrace", "data_files": [{"split": "train", "path": "data/DTrace/*.parquet"}]}, {"config_name": "Dafny", "data_files": [{"split": "train", "path": "data/Dafny/*.parquet"}]}, {"config_name": "Darcs_Patch", "data_files": [{"split": "train", "path": "data/Darcs_Patch/*.parquet"}]}, {"config_name": "Dart", "data_files": [{"split": "train", "path": "data/Dart/*.parquet"}]}, {"config_name": "DataWeave", "data_files": [{"split": "train", "path": "data/DataWeave/*.parquet"}]}, {"config_name": "Debian_Package_Control_File", "data_files": [{"split": "train", "path": "data/Debian_Package_Control_File/*.parquet"}]}, {"config_name": "DenizenScript", "data_files": [{"split": "train", "path": "data/DenizenScript/*.parquet"}]}, {"config_name": "Dhall", "data_files": [{"split": "train", "path": "data/Dhall/*.parquet"}]}, {"config_name": "Diff", "data_files": [{"split": "train", "path": "data/Diff/*.parquet"}]}, {"config_name": "DirectX_3D_File", "data_files": [{"split": "train", "path": "data/DirectX_3D_File/*.parquet"}]}, {"config_name": "Dockerfile", "data_files": [{"split": "train", "path": "data/Dockerfile/*.parquet"}]}, {"config_name": "Dogescript", "data_files": [{"split": "train", "path": "data/Dogescript/*.parquet"}]}, {"config_name": "Dylan", "data_files": [{"split": "train", "path": "data/Dylan/*.parquet"}]}, {"config_name": "E", "data_files": [{"split": "train", "path": "data/E/*.parquet"}]}, {"config_name": "E-mail", "data_files": [{"split": "train", "path": "data/E-mail/*.parquet"}]}, {"config_name": "EBNF", "data_files": [{"split": "train", "path": "data/EBNF/*.parquet"}]}, {"config_name": "ECL", "data_files": [{"split": "train", "path": "data/ECL/*.parquet"}]}, {"config_name": "ECLiPSe", "data_files": [{"split": "train", "path": "data/ECLiPSe/*.parquet"}]}, {"config_name": "EJS", "data_files": [{"split": "train", "path": "data/EJS/*.parquet"}]}, {"config_name": "EQ", "data_files": [{"split": "train", "path": "data/EQ/*.parquet"}]}, {"config_name": "Eagle", "data_files": [{"split": "train", "path": "data/Eagle/*.parquet"}]}, {"config_name": "Earthly", "data_files": [{"split": "train", "path": "data/Earthly/*.parquet"}]}, {"config_name": "Easybuild", "data_files": [{"split": "train", "path": "data/Easybuild/*.parquet"}]}, {"config_name": "Ecere_Projects", "data_files": [{"split": "train", "path": "data/Ecere_Projects/*.parquet"}]}, {"config_name": "EditorConfig", "data_files": [{"split": "train", "path": "data/EditorConfig/*.parquet"}]}, {"config_name": "Edje_Data_Collection", "data_files": [{"split": "train", "path": "data/Edje_Data_Collection/*.parquet"}]}, {"config_name": "Eiffel", "data_files": [{"split": "train", "path": "data/Eiffel/*.parquet"}]}, {"config_name": "Elixir", "data_files": [{"split": "train", "path": "data/Elixir/*.parquet"}]}, {"config_name": "Elm", "data_files": [{"split": "train", "path": "data/Elm/*.parquet"}]}, {"config_name": "Elvish", "data_files": [{"split": "train", "path": "data/Elvish/*.parquet"}]}, {"config_name": "Emacs_Lisp", "data_files": [{"split": "train", "path": "data/Emacs_Lisp/*.parquet"}]}, {"config_name": "EmberScript", "data_files": [{"split": "train", "path": "data/EmberScript/*.parquet"}]}, {"config_name": "Erlang", "data_files": [{"split": "train", "path": "data/Erlang/*.parquet"}]}, {"config_name": "Euphoria", "data_files": [{"split": "train", "path": "data/Euphoria/*.parquet"}]}, {"config_name": "F-Sharp", "data_files": [{"split": "train", "path": "data/F-Sharp/*.parquet"}]}, {"config_name": "F-Star", "data_files": [{"split": "train", "path": "data/F-Star/*.parquet"}]}, {"config_name": "FIGlet_Font", "data_files": [{"split": "train", "path": "data/FIGlet_Font/*.parquet"}]}, {"config_name": "FLUX", "data_files": [{"split": "train", "path": "data/FLUX/*.parquet"}]}, {"config_name": "Factor", "data_files": [{"split": "train", "path": "data/Factor/*.parquet"}]}, {"config_name": "Fancy", "data_files": [{"split": "train", "path": "data/Fancy/*.parquet"}]}, {"config_name": "Fantom", "data_files": [{"split": "train", "path": "data/Fantom/*.parquet"}]}, {"config_name": "Faust", "data_files": [{"split": "train", "path": "data/Faust/*.parquet"}]}, {"config_name": "Fennel", "data_files": [{"split": "train", "path": "data/Fennel/*.parquet"}]}, {"config_name": "Filebench_WML", "data_files": [{"split": "train", "path": "data/Filebench_WML/*.parquet"}]}, {"config_name": "Filterscript", "data_files": [{"split": "train", "path": "data/Filterscript/*.parquet"}]}, {"config_name": "Fluent", "data_files": [{"split": "train", "path": "data/Fluent/*.parquet"}]}, {"config_name": "Formatted", "data_files": [{"split": "train", "path": "data/Formatted/*.parquet"}]}, {"config_name": "Forth", "data_files": [{"split": "train", "path": "data/Forth/*.parquet"}]}, {"config_name": "Fortran", "data_files": [{"split": "train", "path": "data/Fortran/*.parquet"}]}, {"config_name": "Fortran_Free_Form", "data_files": [{"split": "train", "path": "data/Fortran_Free_Form/*.parquet"}]}, {"config_name": "FreeBasic", "data_files": [{"split": "train", "path": "data/FreeBasic/*.parquet"}]}, {"config_name": "FreeMarker", "data_files": [{"split": "train", "path": "data/FreeMarker/*.parquet"}]}, {"config_name": "Frege", "data_files": [{"split": "train", "path": "data/Frege/*.parquet"}]}, {"config_name": "Futhark", "data_files": [{"split": "train", "path": "data/Futhark/*.parquet"}]}, {"config_name": "G-code", "data_files": [{"split": "train", "path": "data/G-code/*.parquet"}]}, {"config_name": "GAML", "data_files": [{"split": "train", "path": "data/GAML/*.parquet"}]}, {"config_name": "GAMS", "data_files": [{"split": "train", "path": "data/GAMS/*.parquet"}]}, {"config_name": "GAP", "data_files": [{"split": "train", "path": "data/GAP/*.parquet"}]}, {"config_name": "GCC_Machine_Description", "data_files": [{"split": "train", "path": "data/GCC_Machine_Description/*.parquet"}]}, {"config_name": "GDB", "data_files": [{"split": "train", "path": "data/GDB/*.parquet"}]}, {"config_name": "GDScript", "data_files": [{"split": "train", "path": "data/GDScript/*.parquet"}]}, {"config_name": "GEDCOM", "data_files": [{"split": "train", "path": "data/GEDCOM/*.parquet"}]}, {"config_name": "GLSL", "data_files": [{"split": "train", "path": "data/GLSL/*.parquet"}]}, {"config_name": "GN", "data_files": [{"split": "train", "path": "data/GN/*.parquet"}]}, {"config_name": "GSC", "data_files": [{"split": "train", "path": "data/GSC/*.parquet"}]}, {"config_name": "Game_Maker_Language", "data_files": [{"split": "train", "path": "data/Game_Maker_Language/*.parquet"}]}, {"config_name": "Gemfile.lock", "data_files": [{"split": "train", "path": "data/Gemfile.lock/*.parquet"}]}, {"config_name": "Gemini", "data_files": [{"split": "train", "path": "data/Gemini/*.parquet"}]}, {"config_name": "Genero", "data_files": [{"split": "train", "path": "data/Genero/*.parquet"}]}, {"config_name": "Genero_Forms", "data_files": [{"split": "train", "path": "data/Genero_Forms/*.parquet"}]}, {"config_name": "Genie", "data_files": [{"split": "train", "path": "data/Genie/*.parquet"}]}, {"config_name": "Genshi", "data_files": [{"split": "train", "path": "data/Genshi/*.parquet"}]}, {"config_name": "Gentoo_Ebuild", "data_files": [{"split": "train", "path": "data/Gentoo_Ebuild/*.parquet"}]}, {"config_name": "Gentoo_Eclass", "data_files": [{"split": "train", "path": "data/Gentoo_Eclass/*.parquet"}]}, {"config_name": "Gerber_Image", "data_files": [{"split": "train", "path": "data/Gerber_Image/*.parquet"}]}, {"config_name": "Gettext_Catalog", "data_files": [{"split": "train", "path": "data/Gettext_Catalog/*.parquet"}]}, {"config_name": "Gherkin", "data_files": [{"split": "train", "path": "data/Gherkin/*.parquet"}]}, {"config_name": "Git_Attributes", "data_files": [{"split": "train", "path": "data/Git_Attributes/*.parquet"}]}, {"config_name": "Git_Config", "data_files": [{"split": "train", "path": "data/Git_Config/*.parquet"}]}, {"config_name": "Git_Revision_List", "data_files": [{"split": "train", "path": "data/Git_Revision_List/*.parquet"}]}, {"config_name": "Gleam", "data_files": [{"split": "train", "path": "data/Gleam/*.parquet"}]}, {"config_name": "Glyph", "data_files": [{"split": "train", "path": "data/Glyph/*.parquet"}]}, {"config_name": "Glyph_Bitmap_Distribution_Format", "data_files": [{"split": "train", "path": "data/Glyph_Bitmap_Distribution_Format/*.parquet"}]}, {"config_name": "Gnuplot", "data_files": [{"split": "train", "path": "data/Gnuplot/*.parquet"}]}, {"config_name": "Go", "data_files": [{"split": "train", "path": "data/Go/*.parquet"}]}, {"config_name": "Go_Checksums", "data_files": [{"split": "train", "path": "data/Go_Checksums/*.parquet"}]}, {"config_name": "Go_Module", "data_files": [{"split": "train", "path": "data/Go_Module/*.parquet"}]}, {"config_name": "Golo", "data_files": [{"split": "train", "path": "data/Golo/*.parquet"}]}, {"config_name": "Gosu", "data_files": [{"split": "train", "path": "data/Gosu/*.parquet"}]}, {"config_name": "Grace", "data_files": [{"split": "train", "path": "data/Grace/*.parquet"}]}, {"config_name": "Gradle", "data_files": [{"split": "train", "path": "data/Gradle/*.parquet"}]}, {"config_name": "Grammatical_Framework", "data_files": [{"split": "train", "path": "data/Grammatical_Framework/*.parquet"}]}, {"config_name": "GraphQL", "data_files": [{"split": "train", "path": "data/GraphQL/*.parquet"}]}, {"config_name": "Graph_Modeling_Language", "data_files": [{"split": "train", "path": "data/Graph_Modeling_Language/*.parquet"}]}, {"config_name": "Graphviz_(DOT)", "data_files": [{"split": "train", "path": "data/Graphviz_(DOT)/*.parquet"}]}, {"config_name": "Groovy", "data_files": [{"split": "train", "path": "data/Groovy/*.parquet"}]}, {"config_name": "Groovy_Server_Pages", "data_files": [{"split": "train", "path": "data/Groovy_Server_Pages/*.parquet"}]}, {"config_name": "HAProxy", "data_files": [{"split": "train", "path": "data/HAProxy/*.parquet"}]}, {"config_name": "HCL", "data_files": [{"split": "train", "path": "data/HCL/*.parquet"}]}, {"config_name": "HLSL", "data_files": [{"split": "train", "path": "data/HLSL/*.parquet"}]}, {"config_name": "HOCON", "data_files": [{"split": "train", "path": "data/HOCON/*.parquet"}]}, {"config_name": "HTML", "data_files": [{"split": "train", "path": "data/HTML/*.parquet"}]}, {"config_name": "HTML+ECR", "data_files": [{"split": "train", "path": "data/HTML+ECR/*.parquet"}]}, {"config_name": "HTML+EEX", "data_files": [{"split": "train", "path": "data/HTML+EEX/*.parquet"}]}, {"config_name": "HTML+ERB", "data_files": [{"split": "train", "path": "data/HTML+ERB/*.parquet"}]}, {"config_name": "HTML+PHP", "data_files": [{"split": "train", "path": "data/HTML+PHP/*.parquet"}]}, {"config_name": "HTML+Razor", "data_files": [{"split": "train", "path": "data/HTML+Razor/*.parquet"}]}, {"config_name": "HTTP", "data_files": [{"split": "train", "path": "data/HTTP/*.parquet"}]}, {"config_name": "HXML", "data_files": [{"split": "train", "path": "data/HXML/*.parquet"}]}, {"config_name": "Hack", "data_files": [{"split": "train", "path": "data/Hack/*.parquet"}]}, {"config_name": "Haml", "data_files": [{"split": "train", "path": "data/Haml/*.parquet"}]}, {"config_name": "Handlebars", "data_files": [{"split": "train", "path": "data/Handlebars/*.parquet"}]}, {"config_name": "Harbour", "data_files": [{"split": "train", "path": "data/Harbour/*.parquet"}]}, {"config_name": "Haskell", "data_files": [{"split": "train", "path": "data/Haskell/*.parquet"}]}, {"config_name": "Haxe", "data_files": [{"split": "train", "path": "data/Haxe/*.parquet"}]}, {"config_name": "HiveQL", "data_files": [{"split": "train", "path": "data/HiveQL/*.parquet"}]}, {"config_name": "HolyC", "data_files": [{"split": "train", "path": "data/HolyC/*.parquet"}]}, {"config_name": "Hy", "data_files": [{"split": "train", "path": "data/Hy/*.parquet"}]}, {"config_name": "HyPhy", "data_files": [{"split": "train", "path": "data/HyPhy/*.parquet"}]}, {"config_name": "IDL", "data_files": [{"split": "train", "path": "data/IDL/*.parquet"}]}, {"config_name": "IGOR_Pro", "data_files": [{"split": "train", "path": "data/IGOR_Pro/*.parquet"}]}, {"config_name": "INI", "data_files": [{"split": "train", "path": "data/INI/*.parquet"}]}, {"config_name": "IRC_log", "data_files": [{"split": "train", "path": "data/IRC_log/*.parquet"}]}, {"config_name": "Idris", "data_files": [{"split": "train", "path": "data/Idris/*.parquet"}]}, {"config_name": "Ignore_List", "data_files": [{"split": "train", "path": "data/Ignore_List/*.parquet"}]}, {"config_name": "ImageJ_Macro", "data_files": [{"split": "train", "path": "data/ImageJ_Macro/*.parquet"}]}, {"config_name": "Inform_7", "data_files": [{"split": "train", "path": "data/Inform_7/*.parquet"}]}, {"config_name": "Inno_Setup", "data_files": [{"split": "train", "path": "data/Inno_Setup/*.parquet"}]}, {"config_name": "Io", "data_files": [{"split": "train", "path": "data/Io/*.parquet"}]}, {"config_name": "Ioke", "data_files": [{"split": "train", "path": "data/Ioke/*.parquet"}]}, {"config_name": "Isabelle", "data_files": [{"split": "train", "path": "data/Isabelle/*.parquet"}]}, {"config_name": "Isabelle_ROOT", "data_files": [{"split": "train", "path": "data/Isabelle_ROOT/*.parquet"}]}, {"config_name": "J", "data_files": [{"split": "train", "path": "data/J/*.parquet"}]}, {"config_name": "JAR_Manifest", "data_files": [{"split": "train", "path": "data/JAR_Manifest/*.parquet"}]}, {"config_name": "JFlex", "data_files": [{"split": "train", "path": "data/JFlex/*.parquet"}]}, {"config_name": "JSON", "data_files": [{"split": "train", "path": "data/JSON/*.parquet"}]}, {"config_name": "JSON5", "data_files": [{"split": "train", "path": "data/JSON5/*.parquet"}]}, {"config_name": "JSONLD", "data_files": [{"split": "train", "path": "data/JSONLD/*.parquet"}]}, {"config_name": "JSON_with_Comments", "data_files": [{"split": "train", "path": "data/JSON_with_Comments/*.parquet"}]}, {"config_name": "JSONiq", "data_files": [{"split": "train", "path": "data/JSONiq/*.parquet"}]}, {"config_name": "Janet", "data_files": [{"split": "train", "path": "data/Janet/*.parquet"}]}, {"config_name": "Jasmin", "data_files": [{"split": "train", "path": "data/Jasmin/*.parquet"}]}, {"config_name": "Java", "data_files": [{"split": "train", "path": "data/Java/*.parquet"}]}, {"config_name": "JavaScript", "data_files": [{"split": "train", "path": "data/JavaScript/*.parquet"}]}, {"config_name": "JavaScript+ERB", "data_files": [{"split": "train", "path": "data/JavaScript+ERB/*.parquet"}]}, {"config_name": "Java_Properties", "data_files": [{"split": "train", "path": "data/Java_Properties/*.parquet"}]}, {"config_name": "Java_Server_Pages", "data_files": [{"split": "train", "path": "data/Java_Server_Pages/*.parquet"}]}, {"config_name": "Jest_Snapshot", "data_files": [{"split": "train", "path": "data/Jest_Snapshot/*.parquet"}]}, {"config_name": "JetBrains_MPS", "data_files": [{"split": "train", "path": "data/JetBrains_MPS/*.parquet"}]}, {"config_name": "Jinja", "data_files": [{"split": "train", "path": "data/Jinja/*.parquet"}]}, {"config_name": "Jison", "data_files": [{"split": "train", "path": "data/Jison/*.parquet"}]}, {"config_name": "Jison_Lex", "data_files": [{"split": "train", "path": "data/Jison_Lex/*.parquet"}]}, {"config_name": "Jolie", "data_files": [{"split": "train", "path": "data/Jolie/*.parquet"}]}, {"config_name": "Jsonnet", "data_files": [{"split": "train", "path": "data/Jsonnet/*.parquet"}]}, {"config_name": "Julia", "data_files": [{"split": "train", "path": "data/Julia/*.parquet"}]}, {"config_name": "Jupyter_Notebook", "data_files": [{"split": "train", "path": "data/Jupyter_Notebook/*.parquet"}]}, {"config_name": "KRL", "data_files": [{"split": "train", "path": "data/KRL/*.parquet"}]}, {"config_name": "Kaitai_Struct", "data_files": [{"split": "train", "path": "data/Kaitai_Struct/*.parquet"}]}, {"config_name": "KakouneScript", "data_files": [{"split": "train", "path": "data/KakouneScript/*.parquet"}]}, {"config_name": "KiCad_Layout", "data_files": [{"split": "train", "path": "data/KiCad_Layout/*.parquet"}]}, {"config_name": "KiCad_Legacy_Layout", "data_files": [{"split": "train", "path": "data/KiCad_Legacy_Layout/*.parquet"}]}, {"config_name": "KiCad_Schematic", "data_files": [{"split": "train", "path": "data/KiCad_Schematic/*.parquet"}]}, {"config_name": "Kit", "data_files": [{"split": "train", "path": "data/Kit/*.parquet"}]}, {"config_name": "Kotlin", "data_files": [{"split": "train", "path": "data/Kotlin/*.parquet"}]}, {"config_name": "Kusto", "data_files": [{"split": "train", "path": "data/Kusto/*.parquet"}]}, {"config_name": "LFE", "data_files": [{"split": "train", "path": "data/LFE/*.parquet"}]}, {"config_name": "LLVM", "data_files": [{"split": "train", "path": "data/LLVM/*.parquet"}]}, {"config_name": "LOLCODE", "data_files": [{"split": "train", "path": "data/LOLCODE/*.parquet"}]}, {"config_name": "LSL", "data_files": [{"split": "train", "path": "data/LSL/*.parquet"}]}, {"config_name": "LTspice_Symbol", "data_files": [{"split": "train", "path": "data/LTspice_Symbol/*.parquet"}]}, {"config_name": "LabVIEW", "data_files": [{"split": "train", "path": "data/LabVIEW/*.parquet"}]}, {"config_name": "Lark", "data_files": [{"split": "train", "path": "data/Lark/*.parquet"}]}, {"config_name": "Lasso", "data_files": [{"split": "train", "path": "data/Lasso/*.parquet"}]}, {"config_name": "Latte", "data_files": [{"split": "train", "path": "data/Latte/*.parquet"}]}, {"config_name": "Lean", "data_files": [{"split": "train", "path": "data/Lean/*.parquet"}]}, {"config_name": "Less", "data_files": [{"split": "train", "path": "data/Less/*.parquet"}]}, {"config_name": "Lex", "data_files": [{"split": "train", "path": "data/Lex/*.parquet"}]}, {"config_name": "LigoLANG", "data_files": [{"split": "train", "path": "data/LigoLANG/*.parquet"}]}, {"config_name": "LilyPond", "data_files": [{"split": "train", "path": "data/LilyPond/*.parquet"}]}, {"config_name": "Limbo", "data_files": [{"split": "train", "path": "data/Limbo/*.parquet"}]}, {"config_name": "Linker_Script", "data_files": [{"split": "train", "path": "data/Linker_Script/*.parquet"}]}, {"config_name": "Linux_Kernel_Module", "data_files": [{"split": "train", "path": "data/Linux_Kernel_Module/*.parquet"}]}, {"config_name": "Liquid", "data_files": [{"split": "train", "path": "data/Liquid/*.parquet"}]}, {"config_name": "Literate_Agda", "data_files": [{"split": "train", "path": "data/Literate_Agda/*.parquet"}]}, {"config_name": "Literate_CoffeeScript", "data_files": [{"split": "train", "path": "data/Literate_CoffeeScript/*.parquet"}]}, {"config_name": "Literate_Haskell", "data_files": [{"split": "train", "path": "data/Literate_Haskell/*.parquet"}]}, {"config_name": "LiveScript", "data_files": [{"split": "train", "path": "data/LiveScript/*.parquet"}]}, {"config_name": "Logos", "data_files": [{"split": "train", "path": "data/Logos/*.parquet"}]}, {"config_name": "Logtalk", "data_files": [{"split": "train", "path": "data/Logtalk/*.parquet"}]}, {"config_name": "LookML", "data_files": [{"split": "train", "path": "data/LookML/*.parquet"}]}, {"config_name": "LoomScript", "data_files": [{"split": "train", "path": "data/LoomScript/*.parquet"}]}, {"config_name": "Lua", "data_files": [{"split": "train", "path": "data/Lua/*.parquet"}]}, {"config_name": "M", "data_files": [{"split": "train", "path": "data/M/*.parquet"}]}, {"config_name": "M4", "data_files": [{"split": "train", "path": "data/M4/*.parquet"}]}, {"config_name": "M4Sugar", "data_files": [{"split": "train", "path": "data/M4Sugar/*.parquet"}]}, {"config_name": "MATLAB", "data_files": [{"split": "train", "path": "data/MATLAB/*.parquet"}]}, {"config_name": "MAXScript", "data_files": [{"split": "train", "path": "data/MAXScript/*.parquet"}]}, {"config_name": "MLIR", "data_files": [{"split": "train", "path": "data/MLIR/*.parquet"}]}, {"config_name": "MQL4", "data_files": [{"split": "train", "path": "data/MQL4/*.parquet"}]}, {"config_name": "MQL5", "data_files": [{"split": "train", "path": "data/MQL5/*.parquet"}]}, {"config_name": "MTML", "data_files": [{"split": "train", "path": "data/MTML/*.parquet"}]}, {"config_name": "MUF", "data_files": [{"split": "train", "path": "data/MUF/*.parquet"}]}, {"config_name": "Macaulay2", "data_files": [{"split": "train", "path": "data/Macaulay2/*.parquet"}]}, {"config_name": "Makefile", "data_files": [{"split": "train", "path": "data/Makefile/*.parquet"}]}, {"config_name": "Mako", "data_files": [{"split": "train", "path": "data/Mako/*.parquet"}]}, {"config_name": "Markdown", "data_files": [{"split": "train", "path": "data/Markdown/*.parquet"}]}, {"config_name": "Marko", "data_files": [{"split": "train", "path": "data/Marko/*.parquet"}]}, {"config_name": "Mask", "data_files": [{"split": "train", "path": "data/Mask/*.parquet"}]}, {"config_name": "Mathematica", "data_files": [{"split": "train", "path": "data/Mathematica/*.parquet"}]}, {"config_name": "Maven_POM", "data_files": [{"split": "train", "path": "data/Maven_POM/*.parquet"}]}, {"config_name": "Max", "data_files": [{"split": "train", "path": "data/Max/*.parquet"}]}, {"config_name": "Mercury", "data_files": [{"split": "train", "path": "data/Mercury/*.parquet"}]}, {"config_name": "Meson", "data_files": [{"split": "train", "path": "data/Meson/*.parquet"}]}, {"config_name": "Metal", "data_files": [{"split": "train", "path": "data/Metal/*.parquet"}]}, {"config_name": "Microsoft_Developer_Studio_Project", "data_files": [{"split": "train", "path": "data/Microsoft_Developer_Studio_Project/*.parquet"}]}, {"config_name": "Microsoft_Visual_Studio_Solution", "data_files": [{"split": "train", "path": "data/Microsoft_Visual_Studio_Solution/*.parquet"}]}, {"config_name": "MiniD", "data_files": [{"split": "train", "path": "data/MiniD/*.parquet"}]}, {"config_name": "MiniYAML", "data_files": [{"split": "train", "path": "data/MiniYAML/*.parquet"}]}, {"config_name": "Mint", "data_files": [{"split": "train", "path": "data/Mint/*.parquet"}]}, {"config_name": "Mirah", "data_files": [{"split": "train", "path": "data/Mirah/*.parquet"}]}, {"config_name": "Modelica", "data_files": [{"split": "train", "path": "data/Modelica/*.parquet"}]}, {"config_name": "Modula-2", "data_files": [{"split": "train", "path": "data/Modula-2/*.parquet"}]}, {"config_name": "Modula-3", "data_files": [{"split": "train", "path": "data/Modula-3/*.parquet"}]}, {"config_name": "Module_Management_System", "data_files": [{"split": "train", "path": "data/Module_Management_System/*.parquet"}]}, {"config_name": "Monkey", "data_files": [{"split": "train", "path": "data/Monkey/*.parquet"}]}, {"config_name": "Monkey_C", "data_files": [{"split": "train", "path": "data/Monkey_C/*.parquet"}]}, {"config_name": "Moocode", "data_files": [{"split": "train", "path": "data/Moocode/*.parquet"}]}, {"config_name": "MoonScript", "data_files": [{"split": "train", "path": "data/MoonScript/*.parquet"}]}, {"config_name": "Motoko", "data_files": [{"split": "train", "path": "data/Motoko/*.parquet"}]}, {"config_name": "Motorola_68K_Assembly", "data_files": [{"split": "train", "path": "data/Motorola_68K_Assembly/*.parquet"}]}, {"config_name": "Move", "data_files": [{"split": "train", "path": "data/Move/*.parquet"}]}, {"config_name": "Muse", "data_files": [{"split": "train", "path": "data/Muse/*.parquet"}]}, {"config_name": "Mustache", "data_files": [{"split": "train", "path": "data/Mustache/*.parquet"}]}, {"config_name": "Myghty", "data_files": [{"split": "train", "path": "data/Myghty/*.parquet"}]}, {"config_name": "NASL", "data_files": [{"split": "train", "path": "data/NASL/*.parquet"}]}, {"config_name": "NCL", "data_files": [{"split": "train", "path": "data/NCL/*.parquet"}]}, {"config_name": "NEON", "data_files": [{"split": "train", "path": "data/NEON/*.parquet"}]}, {"config_name": "NL", "data_files": [{"split": "train", "path": "data/NL/*.parquet"}]}, {"config_name": "NPM_Config", "data_files": [{"split": "train", "path": "data/NPM_Config/*.parquet"}]}, {"config_name": "NSIS", "data_files": [{"split": "train", "path": "data/NSIS/*.parquet"}]}, {"config_name": "NWScript", "data_files": [{"split": "train", "path": "data/NWScript/*.parquet"}]}, {"config_name": "Nasal", "data_files": [{"split": "train", "path": "data/Nasal/*.parquet"}]}, {"config_name": "Nearley", "data_files": [{"split": "train", "path": "data/Nearley/*.parquet"}]}, {"config_name": "Nemerle", "data_files": [{"split": "train", "path": "data/Nemerle/*.parquet"}]}, {"config_name": "NetLinx", "data_files": [{"split": "train", "path": "data/NetLinx/*.parquet"}]}, {"config_name": "NetLinx+ERB", "data_files": [{"split": "train", "path": "data/NetLinx+ERB/*.parquet"}]}, {"config_name": "NetLogo", "data_files": [{"split": "train", "path": "data/NetLogo/*.parquet"}]}, {"config_name": "NewLisp", "data_files": [{"split": "train", "path": "data/NewLisp/*.parquet"}]}, {"config_name": "Nextflow", "data_files": [{"split": "train", "path": "data/Nextflow/*.parquet"}]}, {"config_name": "Nginx", "data_files": [{"split": "train", "path": "data/Nginx/*.parquet"}]}, {"config_name": "Nim", "data_files": [{"split": "train", "path": "data/Nim/*.parquet"}]}, {"config_name": "Ninja", "data_files": [{"split": "train", "path": "data/Ninja/*.parquet"}]}, {"config_name": "Nit", "data_files": [{"split": "train", "path": "data/Nit/*.parquet"}]}, {"config_name": "Nix", "data_files": [{"split": "train", "path": "data/Nix/*.parquet"}]}, {"config_name": "Nu", "data_files": [{"split": "train", "path": "data/Nu/*.parquet"}]}, {"config_name": "NumPy", "data_files": [{"split": "train", "path": "data/NumPy/*.parquet"}]}, {"config_name": "Nunjucks", "data_files": [{"split": "train", "path": "data/Nunjucks/*.parquet"}]}, {"config_name": "OCaml", "data_files": [{"split": "train", "path": "data/OCaml/*.parquet"}]}, {"config_name": "ObjDump", "data_files": [{"split": "train", "path": "data/ObjDump/*.parquet"}]}, {"config_name": "ObjectScript", "data_files": [{"split": "train", "path": "data/ObjectScript/*.parquet"}]}, {"config_name": "Object_Data_Instance_Notation", "data_files": [{"split": "train", "path": "data/Object_Data_Instance_Notation/*.parquet"}]}, {"config_name": "Objective-C", "data_files": [{"split": "train", "path": "data/Objective-C/*.parquet"}]}, {"config_name": "Objective-C++", "data_files": [{"split": "train", "path": "data/Objective-C++/*.parquet"}]}, {"config_name": "Objective-J", "data_files": [{"split": "train", "path": "data/Objective-J/*.parquet"}]}, {"config_name": "Odin", "data_files": [{"split": "train", "path": "data/Odin/*.parquet"}]}, {"config_name": "Omgrofl", "data_files": [{"split": "train", "path": "data/Omgrofl/*.parquet"}]}, {"config_name": "Opa", "data_files": [{"split": "train", "path": "data/Opa/*.parquet"}]}, {"config_name": "Opal", "data_files": [{"split": "train", "path": "data/Opal/*.parquet"}]}, {"config_name": "OpenCL", "data_files": [{"split": "train", "path": "data/OpenCL/*.parquet"}]}, {"config_name": "OpenEdge_ABL", "data_files": [{"split": "train", "path": "data/OpenEdge_ABL/*.parquet"}]}, {"config_name": "OpenQASM", "data_files": [{"split": "train", "path": "data/OpenQASM/*.parquet"}]}, {"config_name": "OpenRC_runscript", "data_files": [{"split": "train", "path": "data/OpenRC_runscript/*.parquet"}]}, {"config_name": "OpenSCAD", "data_files": [{"split": "train", "path": "data/OpenSCAD/*.parquet"}]}, {"config_name": "OpenStep_Property_List", "data_files": [{"split": "train", "path": "data/OpenStep_Property_List/*.parquet"}]}, {"config_name": "OpenType_Feature_File", "data_files": [{"split": "train", "path": "data/OpenType_Feature_File/*.parquet"}]}, {"config_name": "Open_Policy_Agent", "data_files": [{"split": "train", "path": "data/Open_Policy_Agent/*.parquet"}]}, {"config_name": "Org", "data_files": [{"split": "train", "path": "data/Org/*.parquet"}]}, {"config_name": "Ox", "data_files": [{"split": "train", "path": "data/Ox/*.parquet"}]}, {"config_name": "Oxygene", "data_files": [{"split": "train", "path": "data/Oxygene/*.parquet"}]}, {"config_name": "Oz", "data_files": [{"split": "train", "path": "data/Oz/*.parquet"}]}, {"config_name": "P4", "data_files": [{"split": "train", "path": "data/P4/*.parquet"}]}, {"config_name": "PEG.js", "data_files": [{"split": "train", "path": "data/PEG.js/*.parquet"}]}, {"config_name": "PHP", "data_files": [{"split": "train", "path": "data/PHP/*.parquet"}]}, {"config_name": "PLSQL", "data_files": [{"split": "train", "path": "data/PLSQL/*.parquet"}]}, {"config_name": "PLpgSQL", "data_files": [{"split": "train", "path": "data/PLpgSQL/*.parquet"}]}, {"config_name": "POV-Ray_SDL", "data_files": [{"split": "train", "path": "data/POV-Ray_SDL/*.parquet"}]}, {"config_name": "Pan", "data_files": [{"split": "train", "path": "data/Pan/*.parquet"}]}, {"config_name": "Papyrus", "data_files": [{"split": "train", "path": "data/Papyrus/*.parquet"}]}, {"config_name": "Parrot", "data_files": [{"split": "train", "path": "data/Parrot/*.parquet"}]}, {"config_name": "Parrot_Assembly", "data_files": [{"split": "train", "path": "data/Parrot_Assembly/*.parquet"}]}, {"config_name": "Parrot_Internal_Representation", "data_files": [{"split": "train", "path": "data/Parrot_Internal_Representation/*.parquet"}]}, {"config_name": "Pascal", "data_files": [{"split": "train", "path": "data/Pascal/*.parquet"}]}, {"config_name": "Pawn", "data_files": [{"split": "train", "path": "data/Pawn/*.parquet"}]}, {"config_name": "Pep8", "data_files": [{"split": "train", "path": "data/Pep8/*.parquet"}]}, {"config_name": "Perl", "data_files": [{"split": "train", "path": "data/Perl/*.parquet"}]}, {"config_name": "Pic", "data_files": [{"split": "train", "path": "data/Pic/*.parquet"}]}, {"config_name": "Pickle", "data_files": [{"split": "train", "path": "data/Pickle/*.parquet"}]}, {"config_name": "PicoLisp", "data_files": [{"split": "train", "path": "data/PicoLisp/*.parquet"}]}, {"config_name": "PigLatin", "data_files": [{"split": "train", "path": "data/PigLatin/*.parquet"}]}, {"config_name": "Pike", "data_files": [{"split": "train", "path": "data/Pike/*.parquet"}]}, {"config_name": "PlantUML", "data_files": [{"split": "train", "path": "data/PlantUML/*.parquet"}]}, {"config_name": "Pod", "data_files": [{"split": "train", "path": "data/Pod/*.parquet"}]}, {"config_name": "Pod_6", "data_files": [{"split": "train", "path": "data/Pod_6/*.parquet"}]}, {"config_name": "PogoScript", "data_files": [{"split": "train", "path": "data/PogoScript/*.parquet"}]}, {"config_name": "Pony", "data_files": [{"split": "train", "path": "data/Pony/*.parquet"}]}, {"config_name": "Portugol", "data_files": [{"split": "train", "path": "data/Portugol/*.parquet"}]}, {"config_name": "PostCSS", "data_files": [{"split": "train", "path": "data/PostCSS/*.parquet"}]}, {"config_name": "PostScript", "data_files": [{"split": "train", "path": "data/PostScript/*.parquet"}]}, {"config_name": "PowerBuilder", "data_files": [{"split": "train", "path": "data/PowerBuilder/*.parquet"}]}, {"config_name": "PowerShell", "data_files": [{"split": "train", "path": "data/PowerShell/*.parquet"}]}, {"config_name": "Prisma", "data_files": [{"split": "train", "path": "data/Prisma/*.parquet"}]}, {"config_name": "Processing", "data_files": [{"split": "train", "path": "data/Processing/*.parquet"}]}, {"config_name": "Procfile", "data_files": [{"split": "train", "path": "data/Procfile/*.parquet"}]}, {"config_name": "Proguard", "data_files": [{"split": "train", "path": "data/Proguard/*.parquet"}]}, {"config_name": "Prolog", "data_files": [{"split": "train", "path": "data/Prolog/*.parquet"}]}, {"config_name": "Promela", "data_files": [{"split": "train", "path": "data/Promela/*.parquet"}]}, {"config_name": "Propeller_Spin", "data_files": [{"split": "train", "path": "data/Propeller_Spin/*.parquet"}]}, {"config_name": "Protocol_Buffer", "data_files": [{"split": "train", "path": "data/Protocol_Buffer/*.parquet"}]}, {"config_name": "Protocol_Buffer_Text_Format", "data_files": [{"split": "train", "path": "data/Protocol_Buffer_Text_Format/*.parquet"}]}, {"config_name": "Public_Key", "data_files": [{"split": "train", "path": "data/Public_Key/*.parquet"}]}, {"config_name": "Pug", "data_files": [{"split": "train", "path": "data/Pug/*.parquet"}]}, {"config_name": "Puppet", "data_files": [{"split": "train", "path": "data/Puppet/*.parquet"}]}, {"config_name": "PureBasic", "data_files": [{"split": "train", "path": "data/PureBasic/*.parquet"}]}, {"config_name": "PureScript", "data_files": [{"split": "train", "path": "data/PureScript/*.parquet"}]}, {"config_name": "Pure_Data", "data_files": [{"split": "train", "path": "data/Pure_Data/*.parquet"}]}, {"config_name": "Python", "data_files": [{"split": "train", "path": "data/Python/*.parquet"}]}, {"config_name": "Python_traceback", "data_files": [{"split": "train", "path": "data/Python_traceback/*.parquet"}]}, {"config_name": "Q-Sharp", "data_files": [{"split": "train", "path": "data/Q-Sharp/*.parquet"}]}, {"config_name": "QML", "data_files": [{"split": "train", "path": "data/QML/*.parquet"}]}, {"config_name": "QMake", "data_files": [{"split": "train", "path": "data/QMake/*.parquet"}]}, {"config_name": "Qt_Script", "data_files": [{"split": "train", "path": "data/Qt_Script/*.parquet"}]}, {"config_name": "Quake", "data_files": [{"split": "train", "path": "data/Quake/*.parquet"}]}, {"config_name": "R", "data_files": [{"split": "train", "path": "data/R/*.parquet"}]}, {"config_name": "RAML", "data_files": [{"split": "train", "path": "data/RAML/*.parquet"}]}, {"config_name": "RDoc", "data_files": [{"split": "train", "path": "data/RDoc/*.parquet"}]}, {"config_name": "REALbasic", "data_files": [{"split": "train", "path": "data/REALbasic/*.parquet"}]}, {"config_name": "REXX", "data_files": [{"split": "train", "path": "data/REXX/*.parquet"}]}, {"config_name": "RMarkdown", "data_files": [{"split": "train", "path": "data/RMarkdown/*.parquet"}]}, {"config_name": "RPC", "data_files": [{"split": "train", "path": "data/RPC/*.parquet"}]}, {"config_name": "RPGLE", "data_files": [{"split": "train", "path": "data/RPGLE/*.parquet"}]}, {"config_name": "RPM_Spec", "data_files": [{"split": "train", "path": "data/RPM_Spec/*.parquet"}]}, {"config_name": "RUNOFF", "data_files": [{"split": "train", "path": "data/RUNOFF/*.parquet"}]}, {"config_name": "Racket", "data_files": [{"split": "train", "path": "data/Racket/*.parquet"}]}, {"config_name": "Ragel", "data_files": [{"split": "train", "path": "data/Ragel/*.parquet"}]}, {"config_name": "Raku", "data_files": [{"split": "train", "path": "data/Raku/*.parquet"}]}, {"config_name": "Rascal", "data_files": [{"split": "train", "path": "data/Rascal/*.parquet"}]}, {"config_name": "Raw_token_data", "data_files": [{"split": "train", "path": "data/Raw_token_data/*.parquet"}]}, {"config_name": "ReScript", "data_files": [{"split": "train", "path": "data/ReScript/*.parquet"}]}, {"config_name": "Readline_Config", "data_files": [{"split": "train", "path": "data/Readline_Config/*.parquet"}]}, {"config_name": "Reason", "data_files": [{"split": "train", "path": "data/Reason/*.parquet"}]}, {"config_name": "ReasonLIGO", "data_files": [{"split": "train", "path": "data/ReasonLIGO/*.parquet"}]}, {"config_name": "Rebol", "data_files": [{"split": "train", "path": "data/Rebol/*.parquet"}]}, {"config_name": "Record_Jar", "data_files": [{"split": "train", "path": "data/Record_Jar/*.parquet"}]}, {"config_name": "Red", "data_files": [{"split": "train", "path": "data/Red/*.parquet"}]}, {"config_name": "Redcode", "data_files": [{"split": "train", "path": "data/Redcode/*.parquet"}]}, {"config_name": "Redirect_Rules", "data_files": [{"split": "train", "path": "data/Redirect_Rules/*.parquet"}]}, {"config_name": "Regular_Expression", "data_files": [{"split": "train", "path": "data/Regular_Expression/*.parquet"}]}, {"config_name": "Ren-Py", "data_files": [{"split": "train", "path": "data/Ren-Py/*.parquet"}]}, {"config_name": "RenderScript", "data_files": [{"split": "train", "path": "data/RenderScript/*.parquet"}]}, {"config_name": "Rich_Text_Format", "data_files": [{"split": "train", "path": "data/Rich_Text_Format/*.parquet"}]}, {"config_name": "Ring", "data_files": [{"split": "train", "path": "data/Ring/*.parquet"}]}, {"config_name": "Riot", "data_files": [{"split": "train", "path": "data/Riot/*.parquet"}]}, {"config_name": "RobotFramework", "data_files": [{"split": "train", "path": "data/RobotFramework/*.parquet"}]}, {"config_name": "Roff", "data_files": [{"split": "train", "path": "data/Roff/*.parquet"}]}, {"config_name": "Roff_Manpage", "data_files": [{"split": "train", "path": "data/Roff_Manpage/*.parquet"}]}, {"config_name": "Rouge", "data_files": [{"split": "train", "path": "data/Rouge/*.parquet"}]}, {"config_name": "RouterOS_Script", "data_files": [{"split": "train", "path": "data/RouterOS_Script/*.parquet"}]}, {"config_name": "Ruby", "data_files": [{"split": "train", "path": "data/Ruby/*.parquet"}]}, {"config_name": "Rust", "data_files": [{"split": "train", "path": "data/Rust/*.parquet"}]}, {"config_name": "SAS", "data_files": [{"split": "train", "path": "data/SAS/*.parquet"}]}, {"config_name": "SCSS", "data_files": [{"split": "train", "path": "data/SCSS/*.parquet"}]}, {"config_name": "SELinux_Policy", "data_files": [{"split": "train", "path": "data/SELinux_Policy/*.parquet"}]}, {"config_name": "SMT", "data_files": [{"split": "train", "path": "data/SMT/*.parquet"}]}, {"config_name": "SPARQL", "data_files": [{"split": "train", "path": "data/SPARQL/*.parquet"}]}, {"config_name": "SQF", "data_files": [{"split": "train", "path": "data/SQF/*.parquet"}]}, {"config_name": "SQL", "data_files": [{"split": "train", "path": "data/SQL/*.parquet"}]}, {"config_name": "SQLPL", "data_files": [{"split": "train", "path": "data/SQLPL/*.parquet"}]}, {"config_name": "SRecode_Template", "data_files": [{"split": "train", "path": "data/SRecode_Template/*.parquet"}]}, {"config_name": "SSH_Config", "data_files": [{"split": "train", "path": "data/SSH_Config/*.parquet"}]}, {"config_name": "STAR", "data_files": [{"split": "train", "path": "data/STAR/*.parquet"}]}, {"config_name": "STL", "data_files": [{"split": "train", "path": "data/STL/*.parquet"}]}, {"config_name": "STON", "data_files": [{"split": "train", "path": "data/STON/*.parquet"}]}, {"config_name": "SVG", "data_files": [{"split": "train", "path": "data/SVG/*.parquet"}]}, {"config_name": "SWIG", "data_files": [{"split": "train", "path": "data/SWIG/*.parquet"}]}, {"config_name": "Sage", "data_files": [{"split": "train", "path": "data/Sage/*.parquet"}]}, {"config_name": "SaltStack", "data_files": [{"split": "train", "path": "data/SaltStack/*.parquet"}]}, {"config_name": "Sass", "data_files": [{"split": "train", "path": "data/Sass/*.parquet"}]}, {"config_name": "Scala", "data_files": [{"split": "train", "path": "data/Scala/*.parquet"}]}, {"config_name": "Scaml", "data_files": [{"split": "train", "path": "data/Scaml/*.parquet"}]}, {"config_name": "Scheme", "data_files": [{"split": "train", "path": "data/Scheme/*.parquet"}]}, {"config_name": "Scilab", "data_files": [{"split": "train", "path": "data/Scilab/*.parquet"}]}, {"config_name": "Self", "data_files": [{"split": "train", "path": "data/Self/*.parquet"}]}, {"config_name": "ShaderLab", "data_files": [{"split": "train", "path": "data/ShaderLab/*.parquet"}]}, {"config_name": "Shell", "data_files": [{"split": "train", "path": "data/Shell/*.parquet"}]}, {"config_name": "ShellCheck_Config", "data_files": [{"split": "train", "path": "data/ShellCheck_Config/*.parquet"}]}, {"config_name": "ShellSession", "data_files": [{"split": "train", "path": "data/ShellSession/*.parquet"}]}, {"config_name": "Shen", "data_files": [{"split": "train", "path": "data/Shen/*.parquet"}]}, {"config_name": "Sieve", "data_files": [{"split": "train", "path": "data/Sieve/*.parquet"}]}, {"config_name": "Singularity", "data_files": [{"split": "train", "path": "data/Singularity/*.parquet"}]}, {"config_name": "Slash", "data_files": [{"split": "train", "path": "data/Slash/*.parquet"}]}, {"config_name": "Slice", "data_files": [{"split": "train", "path": "data/Slice/*.parquet"}]}, {"config_name": "Slim", "data_files": [{"split": "train", "path": "data/Slim/*.parquet"}]}, {"config_name": "SmPL", "data_files": [{"split": "train", "path": "data/SmPL/*.parquet"}]}, {"config_name": "Smali", "data_files": [{"split": "train", "path": "data/Smali/*.parquet"}]}, {"config_name": "Smalltalk", "data_files": [{"split": "train", "path": "data/Smalltalk/*.parquet"}]}, {"config_name": "Smarty", "data_files": [{"split": "train", "path": "data/Smarty/*.parquet"}]}, {"config_name": "Solidity", "data_files": [{"split": "train", "path": "data/Solidity/*.parquet"}]}, {"config_name": "Soong", "data_files": [{"split": "train", "path": "data/Soong/*.parquet"}]}, {"config_name": "SourcePawn", "data_files": [{"split": "train", "path": "data/SourcePawn/*.parquet"}]}, {"config_name": "Spline_Font_Database", "data_files": [{"split": "train", "path": "data/Spline_Font_Database/*.parquet"}]}, {"config_name": "Squirrel", "data_files": [{"split": "train", "path": "data/Squirrel/*.parquet"}]}, {"config_name": "Stan", "data_files": [{"split": "train", "path": "data/Stan/*.parquet"}]}, {"config_name": "Standard_ML", "data_files": [{"split": "train", "path": "data/Standard_ML/*.parquet"}]}, {"config_name": "Starlark", "data_files": [{"split": "train", "path": "data/Starlark/*.parquet"}]}, {"config_name": "Stata", "data_files": [{"split": "train", "path": "data/Stata/*.parquet"}]}, {"config_name": "StringTemplate", "data_files": [{"split": "train", "path": "data/StringTemplate/*.parquet"}]}, {"config_name": "Stylus", "data_files": [{"split": "train", "path": "data/Stylus/*.parquet"}]}, {"config_name": "SubRip_Text", "data_files": [{"split": "train", "path": "data/SubRip_Text/*.parquet"}]}, {"config_name": "SugarSS", "data_files": [{"split": "train", "path": "data/SugarSS/*.parquet"}]}, {"config_name": "SuperCollider", "data_files": [{"split": "train", "path": "data/SuperCollider/*.parquet"}]}, {"config_name": "Svelte", "data_files": [{"split": "train", "path": "data/Svelte/*.parquet"}]}, {"config_name": "Swift", "data_files": [{"split": "train", "path": "data/Swift/*.parquet"}]}, {"config_name": "SystemVerilog", "data_files": [{"split": "train", "path": "data/SystemVerilog/*.parquet"}]}, {"config_name": "TI_Program", "data_files": [{"split": "train", "path": "data/TI_Program/*.parquet"}]}, {"config_name": "TLA", "data_files": [{"split": "train", "path": "data/TLA/*.parquet"}]}, {"config_name": "TOML", "data_files": [{"split": "train", "path": "data/TOML/*.parquet"}]}, {"config_name": "TSQL", "data_files": [{"split": "train", "path": "data/TSQL/*.parquet"}]}, {"config_name": "TSV", "data_files": [{"split": "train", "path": "data/TSV/*.parquet"}]}, {"config_name": "TSX", "data_files": [{"split": "train", "path": "data/TSX/*.parquet"}]}, {"config_name": "TXL", "data_files": [{"split": "train", "path": "data/TXL/*.parquet"}]}, {"config_name": "Talon", "data_files": [{"split": "train", "path": "data/Talon/*.parquet"}]}, {"config_name": "Tcl", "data_files": [{"split": "train", "path": "data/Tcl/*.parquet"}]}, {"config_name": "Tcsh", "data_files": [{"split": "train", "path": "data/Tcsh/*.parquet"}]}, {"config_name": "TeX", "data_files": [{"split": "train", "path": "data/TeX/*.parquet"}]}, {"config_name": "Tea", "data_files": [{"split": "train", "path": "data/Tea/*.parquet"}]}, {"config_name": "Terra", "data_files": [{"split": "train", "path": "data/Terra/*.parquet"}]}, {"config_name": "Texinfo", "data_files": [{"split": "train", "path": "data/Texinfo/*.parquet"}]}, {"config_name": "Text", "data_files": [{"split": "train", "path": "data/Text/*.parquet"}]}, {"config_name": "TextMate_Properties", "data_files": [{"split": "train", "path": "data/TextMate_Properties/*.parquet"}]}, {"config_name": "Textile", "data_files": [{"split": "train", "path": "data/Textile/*.parquet"}]}, {"config_name": "Thrift", "data_files": [{"split": "train", "path": "data/Thrift/*.parquet"}]}, {"config_name": "Turing", "data_files": [{"split": "train", "path": "data/Turing/*.parquet"}]}, {"config_name": "Turtle", "data_files": [{"split": "train", "path": "data/Turtle/*.parquet"}]}, {"config_name": "Twig", "data_files": [{"split": "train", "path": "data/Twig/*.parquet"}]}, {"config_name": "TypeScript", "data_files": [{"split": "train", "path": "data/TypeScript/*.parquet"}]}, {"config_name": "Type_Language", "data_files": [{"split": "train", "path": "data/Type_Language/*.parquet"}]}, {"config_name": "Unified_Parallel_C", "data_files": [{"split": "train", "path": "data/Unified_Parallel_C/*.parquet"}]}, {"config_name": "Unity3D_Asset", "data_files": [{"split": "train", "path": "data/Unity3D_Asset/*.parquet"}]}, {"config_name": "Unix_Assembly", "data_files": [{"split": "train", "path": "data/Unix_Assembly/*.parquet"}]}, {"config_name": "Uno", "data_files": [{"split": "train", "path": "data/Uno/*.parquet"}]}, {"config_name": "UnrealScript", "data_files": [{"split": "train", "path": "data/UnrealScript/*.parquet"}]}, {"config_name": "UrWeb", "data_files": [{"split": "train", "path": "data/UrWeb/*.parquet"}]}, {"config_name": "V", "data_files": [{"split": "train", "path": "data/V/*.parquet"}]}, {"config_name": "VBA", "data_files": [{"split": "train", "path": "data/VBA/*.parquet"}]}, {"config_name": "VBScript", "data_files": [{"split": "train", "path": "data/VBScript/*.parquet"}]}, {"config_name": "VCL", "data_files": [{"split": "train", "path": "data/VCL/*.parquet"}]}, {"config_name": "VHDL", "data_files": [{"split": "train", "path": "data/VHDL/*.parquet"}]}, {"config_name": "Vala", "data_files": [{"split": "train", "path": "data/Vala/*.parquet"}]}, {"config_name": "Valve_Data_Format", "data_files": [{"split": "train", "path": "data/Valve_Data_Format/*.parquet"}]}, {"config_name": "Velocity_Template_Language", "data_files": [{"split": "train", "path": "data/Velocity_Template_Language/*.parquet"}]}, {"config_name": "Verilog", "data_files": [{"split": "train", "path": "data/Verilog/*.parquet"}]}, {"config_name": "Vim_Help_File", "data_files": [{"split": "train", "path": "data/Vim_Help_File/*.parquet"}]}, {"config_name": "Vim_Script", "data_files": [{"split": "train", "path": "data/Vim_Script/*.parquet"}]}, {"config_name": "Vim_Snippet", "data_files": [{"split": "train", "path": "data/Vim_Snippet/*.parquet"}]}, {"config_name": "Visual_Basic_.NET", "data_files": [{"split": "train", "path": "data/Visual_Basic_.NET/*.parquet"}]}, {"config_name": "Volt", "data_files": [{"split": "train", "path": "data/Volt/*.parquet"}]}, {"config_name": "Vue", "data_files": [{"split": "train", "path": "data/Vue/*.parquet"}]}, {"config_name": "Vyper", "data_files": [{"split": "train", "path": "data/Vyper/*.parquet"}]}, {"config_name": "Wavefront_Material", "data_files": [{"split": "train", "path": "data/Wavefront_Material/*.parquet"}]}, {"config_name": "Wavefront_Object", "data_files": [{"split": "train", "path": "data/Wavefront_Object/*.parquet"}]}, {"config_name": "WebAssembly", "data_files": [{"split": "train", "path": "data/WebAssembly/*.parquet"}]}, {"config_name": "WebIDL", "data_files": [{"split": "train", "path": "data/WebIDL/*.parquet"}]}, {"config_name": "WebVTT", "data_files": [{"split": "train", "path": "data/WebVTT/*.parquet"}]}, {"config_name": "Web_Ontology_Language", "data_files": [{"split": "train", "path": "data/Web_Ontology_Language/*.parquet"}]}, {"config_name": "Wget_Config", "data_files": [{"split": "train", "path": "data/Wget_Config/*.parquet"}]}, {"config_name": "Whiley", "data_files": [{"split": "train", "path": "data/Whiley/*.parquet"}]}, {"config_name": "Wikitext", "data_files": [{"split": "train", "path": "data/Wikitext/*.parquet"}]}, {"config_name": "Win32_Message_File", "data_files": [{"split": "train", "path": "data/Win32_Message_File/*.parquet"}]}, {"config_name": "Windows_Registry_Entries", "data_files": [{"split": "train", "path": "data/Windows_Registry_Entries/*.parquet"}]}, {"config_name": "Witcher_Script", "data_files": [{"split": "train", "path": "data/Witcher_Script/*.parquet"}]}, {"config_name": "Wollok", "data_files": [{"split": "train", "path": "data/Wollok/*.parquet"}]}, {"config_name": "World_of_Warcraft_Addon_Data", "data_files": [{"split": "train", "path": "data/World_of_Warcraft_Addon_Data/*.parquet"}]}, {"config_name": "Wren", "data_files": [{"split": "train", "path": "data/Wren/*.parquet"}]}, {"config_name": "X10", "data_files": [{"split": "train", "path": "data/X10/*.parquet"}]}, {"config_name": "XC", "data_files": [{"split": "train", "path": "data/XC/*.parquet"}]}, {"config_name": "XCompose", "data_files": [{"split": "train", "path": "data/XCompose/*.parquet"}]}, {"config_name": "XML", "data_files": [{"split": "train", "path": "data/XML/*.parquet"}]}, {"config_name": "XML_Property_List", "data_files": [{"split": "train", "path": "data/XML_Property_List/*.parquet"}]}, {"config_name": "XPages", "data_files": [{"split": "train", "path": "data/XPages/*.parquet"}]}, {"config_name": "XProc", "data_files": [{"split": "train", "path": "data/XProc/*.parquet"}]}, {"config_name": "XQuery", "data_files": [{"split": "train", "path": "data/XQuery/*.parquet"}]}, {"config_name": "XS", "data_files": [{"split": "train", "path": "data/XS/*.parquet"}]}, {"config_name": "XSLT", "data_files": [{"split": "train", "path": "data/XSLT/*.parquet"}]}, {"config_name": "X_BitMap", "data_files": [{"split": "train", "path": "data/X_BitMap/*.parquet"}]}, {"config_name": "X_Font_Directory_Index", "data_files": [{"split": "train", "path": "data/X_Font_Directory_Index/*.parquet"}]}, {"config_name": "X_PixMap", "data_files": [{"split": "train", "path": "data/X_PixMap/*.parquet"}]}, {"config_name": "Xojo", "data_files": [{"split": "train", "path": "data/Xojo/*.parquet"}]}, {"config_name": "Xonsh", "data_files": [{"split": "train", "path": "data/Xonsh/*.parquet"}]}, {"config_name": "Xtend", "data_files": [{"split": "train", "path": "data/Xtend/*.parquet"}]}, {"config_name": "YAML", "data_files": [{"split": "train", "path": "data/YAML/*.parquet"}]}, {"config_name": "YANG", "data_files": [{"split": "train", "path": "data/YANG/*.parquet"}]}, {"config_name": "YARA", "data_files": [{"split": "train", "path": "data/YARA/*.parquet"}]}, {"config_name": "YASnippet", "data_files": [{"split": "train", "path": "data/YASnippet/*.parquet"}]}, {"config_name": "Yacc", "data_files": [{"split": "train", "path": "data/Yacc/*.parquet"}]}, {"config_name": "Yul", "data_files": [{"split": "train", "path": "data/Yul/*.parquet"}]}, {"config_name": "ZAP", "data_files": [{"split": "train", "path": "data/ZAP/*.parquet"}]}, {"config_name": "ZIL", "data_files": [{"split": "train", "path": "data/ZIL/*.parquet"}]}, {"config_name": "Zeek", "data_files": [{"split": "train", "path": "data/Zeek/*.parquet"}]}, {"config_name": "ZenScript", "data_files": [{"split": "train", "path": "data/ZenScript/*.parquet"}]}, {"config_name": "Zephir", "data_files": [{"split": "train", "path": "data/Zephir/*.parquet"}]}, {"config_name": "Zig", "data_files": [{"split": "train", "path": "data/Zig/*.parquet"}]}, {"config_name": "Zimpl", "data_files": [{"split": "train", "path": "data/Zimpl/*.parquet"}]}, {"config_name": "cURL_Config", "data_files": [{"split": "train", "path": "data/cURL_Config/*.parquet"}]}, {"config_name": "desktop", "data_files": [{"split": "train", "path": "data/desktop/*.parquet"}]}, {"config_name": "dircolors", "data_files": [{"split": "train", "path": "data/dircolors/*.parquet"}]}, {"config_name": "eC", "data_files": [{"split": "train", "path": "data/eC/*.parquet"}]}, {"config_name": "edn", "data_files": [{"split": "train", "path": "data/edn/*.parquet"}]}, {"config_name": "fish", "data_files": [{"split": "train", "path": "data/fish/*.parquet"}]}, {"config_name": "hoon", "data_files": [{"split": "train", "path": "data/hoon/*.parquet"}]}, {"config_name": "jq", "data_files": [{"split": "train", "path": "data/jq/*.parquet"}]}, {"config_name": "kvlang", "data_files": [{"split": "train", "path": "data/kvlang/*.parquet"}]}, {"config_name": "mIRC_Script", "data_files": [{"split": "train", "path": "data/mIRC_Script/*.parquet"}]}, {"config_name": "mcfunction", "data_files": [{"split": "train", "path": "data/mcfunction/*.parquet"}]}, {"config_name": "mupad", "data_files": [{"split": "train", "path": "data/mupad/*.parquet"}]}, {"config_name": "nanorc", "data_files": [{"split": "train", "path": "data/nanorc/*.parquet"}]}, {"config_name": "nesC", "data_files": [{"split": "train", "path": "data/nesC/*.parquet"}]}, {"config_name": "ooc", "data_files": [{"split": "train", "path": "data/ooc/*.parquet"}]}, {"config_name": "q", "data_files": [{"split": "train", "path": "data/q/*.parquet"}]}, {"config_name": "reStructuredText", "data_files": [{"split": "train", "path": "data/reStructuredText/*.parquet"}]}, {"config_name": "robots.txt", "data_files": [{"split": "train", "path": "data/robots.txt/*.parquet"}]}, {"config_name": "sed", "data_files": [{"split": "train", "path": "data/sed/*.parquet"}]}, {"config_name": "wdl", "data_files": [{"split": "train", "path": "data/wdl/*.parquet"}]}, {"config_name": "wisp", "data_files": [{"split": "train", "path": "data/wisp/*.parquet"}]}, {"config_name": "xBase", "data_files": [{"split": "train", "path": "data/xBase/*.parquet"}]}]}
false
null
2024-04-23T15:52:32
353
5
false
7408bfbcfd48e5833d62fd3dba48afd20d109473
The Stack v2 The dataset consists of 4 versions: bigcode/the-stack-v2: the full "The Stack v2" dataset <-- you are here bigcode/the-stack-v2-dedup: based on the bigcode/the-stack-v2 but further near-deduplicated bigcode/the-stack-v2-train-full-ids: based on the bigcode/the-stack-v2-dedup dataset but further filtered with heuristics and spanning 600+ programming languages. The data is grouped into repositories. bigcode/the-stack-v2-train-smol-ids: based on the… See the full description on the dataset page: https://huggingface.co/datasets/bigcode/the-stack-v2.
3,585
195,095
[ "task_categories:text-generation", "language_creators:crowdsourced", "language_creators:expert-generated", "multilinguality:multilingual", "language:code", "license:other", "size_categories:1B<n<10B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2402.19173", "arxiv:2107.03374", "arxiv:2207.14157", "region:us" ]
2024-02-26T04:26:48
null
null
65fc5a783bc54054aa2e6e62
gretelai/synthetic_text_to_sql
gretelai
{"license": "apache-2.0", "task_categories": ["question-answering", "table-question-answering", "text-generation"], "language": ["en"], "tags": ["synthetic", "SQL", "text-to-SQL", "code"], "size_categories": ["100K<n<1M"]}
false
null
2024-05-10T22:30:56
524
5
false
273a86f5f290e8d61b6767a9ff690c82bc990dc4
Image generated by DALL-E. See prompt for more details synthetic_text_to_sql gretelai/synthetic_text_to_sql is a rich dataset of high quality synthetic Text-to-SQL samples, designed and generated using Gretel Navigator, and released under Apache 2.0. Please see our release blogpost for more details. The dataset includes: 105,851 records partitioned into 100,000 train and 5,851 test records ~23M total tokens, including ~12M SQL tokens Coverage across 100 distinct… See the full description on the dataset page: https://huggingface.co/datasets/gretelai/synthetic_text_to_sql.
5,211
46,253
[ "task_categories:question-answering", "task_categories:table-question-answering", "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2306.05685", "region:us", "synthetic", "SQL", "text-to-SQL", "code" ]
2024-03-21T16:04:08
null
null
66952974b8a00bc24d6b112a
HuggingFaceTB/smollm-corpus
HuggingFaceTB
{"license": "odc-by", "dataset_info": [{"config_name": "cosmopedia-v2", "features": [{"name": "prompt", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "token_length", "dtype": "int64"}, {"name": "audience", "dtype": "string"}, {"name": "format", "dtype": "string"}, {"name": "seed_data", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 212503640747, "num_examples": 39134000}], "download_size": 122361137711, "dataset_size": 212503640747}, {"config_name": "fineweb-edu-dedup", "features": [{"name": "text", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "metadata", "struct": [{"name": "dump", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "date", "dtype": "timestamp[s]"}, {"name": "file_path", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "language_score", "dtype": "float64"}, {"name": "token_count", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}]}], "splits": [{"name": "train", "num_bytes": 957570164451, "num_examples": 190168005}], "download_size": 550069279849, "dataset_size": 957570164451}, {"config_name": "python-edu", "features": [{"name": "blob_id", "dtype": "string"}, {"name": "repo_name", "dtype": "string"}, {"name": "path", "dtype": "string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 989334135, "num_examples": 7678448}], "download_size": 643903049, "dataset_size": 989334135}], "configs": [{"config_name": "cosmopedia-v2", "data_files": [{"split": "train", "path": "cosmopedia-v2/train-*"}]}, {"config_name": "fineweb-edu-dedup", "data_files": [{"split": "train", "path": "fineweb-edu-dedup/train-*"}]}, {"config_name": "python-edu", "data_files": [{"split": "train", "path": "python-edu/train-*"}]}], "language": ["en"]}
false
null
2024-09-06T07:04:57
325
5
false
3ba9d605774198c5868892d7a8deda78031a781f
SmolLM-Corpus This dataset is a curated collection of high-quality educational and synthetic data designed for training small language models. You can find more details about the models trained on this dataset in our SmolLM blog post. Dataset subsets Cosmopedia v2 Cosmopedia v2 is an enhanced version of Cosmopedia, the largest synthetic dataset for pre-training, consisting of over 39 million textbooks, blog posts, and stories generated by… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus.
14,456
214,926
[ "language:en", "license:odc-by", "size_categories:100M<n<1B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2024-07-15T13:51:48
null
null
673463fabe618c1a378d99c6
qgyd2021/chinese_porn_novel
qgyd2021
{"language": ["zh"], "size_categories": ["100M<n<1B"], "task_categories": ["text-generation"], "tags": ["art"], "dataset_info": {"config_name": "xbookcn_short_story", "features": [{"name": "source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "content", "dtype": "string"}, {"name": "content_length", "dtype": "uint32"}, {"name": "url", "dtype": "string"}, {"name": "summary1", "dtype": "string"}, {"name": "summary2", "dtype": "string"}, {"name": "summary3", "dtype": "string"}, {"name": "summary4", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1167355353, "num_examples": 627195}], "download_size": 721183317, "dataset_size": 1167355353}, "configs": [{"config_name": "xbookcn_short_story", "data_files": [{"split": "train", "path": "xbookcn_short_story/train-*"}], "default": true}]}
false
null
2024-11-13T11:06:27
73
5
false
170c125e168cf58400ad3b31300c88ed8a1c978a
Chinese Porn Novel https://huggingface.co/docs/hub/en/datasets-adding datasets-cli convert_to_parquet qgyd2021/chinese_porn_novel --trust_remote_code SQ小说, 用于制作特殊的 GPT 语言模型. 将每篇小说切分 chunk, 用 Qwen-instruct 对 chunk 进行4个摘要, 4个摘要的 prompt {content} 对于此文本, 根据文本的长度输出3到7个具有代表性的简短句子来描述其内容。 每个句子控制在10字左右,不要有序号等,每行一句。 {content} 对于此文本, 根据文本的长度输出2到4个具有代表性的简短句子来描述其内容。 每个句子控制在15字左右,不要有序号等,每行一句。 {content} 对于此文本, 根据文本的长度输出2到4个具有代表性的简短句子来概括其内容。 每个句子控制在10字左右,不要有序号等,每行一句。 {content}… See the full description on the dataset page: https://huggingface.co/datasets/qgyd2021/chinese_porn_novel.
621
2,854
[ "task_categories:text-generation", "language:zh", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "art" ]
2024-11-13T08:31:54
null
null
6791fcbb49c4df6d798ca7c9
cais/hle
cais
{"license": "mit", "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "image", "dtype": "string"}, {"name": "image_preview", "dtype": "image"}, {"name": "answer", "dtype": "string"}, {"name": "answer_type", "dtype": "string"}, {"name": "author_name", "dtype": "string"}, {"name": "rationale", "dtype": "string"}, {"name": "rationale_image", "dtype": "image"}, {"name": "raw_subject", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "canary", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 284635618, "num_examples": 2500}], "download_size": 274582371, "dataset_size": 284635618}, "configs": [{"config_name": "default", "data_files": [{"split": "test", "path": "data/test-*"}]}]}
false
null
2025-04-04T04:00:14
305
5
false
1e33bd2d1346480b397ad94845067c4a088a33d3
Humanity's Last Exam 🌐 Website | 📄 Paper | GitHub Center for AI Safety & Scale AI Humanity's Last Exam (HLE) is a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. Humanity's Last Exam consists of 2,500 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of… See the full description on the dataset page: https://huggingface.co/datasets/cais/hle.
8,532
20,711
[ "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-01-23T08:24:27
null
null
67a2bed1fab04a7b413c8ef1
PrimeIntellect/verifiable-coding-problems
PrimeIntellect
{"dataset_info": {"features": [{"name": "source", "dtype": "string"}, {"name": "task_type", "dtype": "string"}, {"name": "in_source_id", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "gold_standard_solution", "dtype": "string"}, {"name": "verification_info", "dtype": "string"}, {"name": "metadata", "dtype": "string"}, {"name": "problem_id", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21575365821, "num_examples": 144169}], "download_size": 10811965671, "dataset_size": 21575365821}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2025-02-06T21:49:12
29
5
false
45220c92768b1e401aadffbf26849b8d6cf39a36
SYNTHETIC-1 This is a subset of the task data used to construct SYNTHETIC-1. You can find the full collection here
1,611
4,353
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-05T01:28:49
null
null
67bc9476bb3758e01304f07f
UCSC-VLAA/VLAA-Thinking
UCSC-VLAA
{"license": "apache-2.0", "task_categories": ["visual-question-answering"], "language": ["en"], "tags": ["R1", "reasoning"], "size_categories": ["10K<n<100K"]}
false
null
2025-04-16T08:28:39
14
5
false
fe9548a86f1f12dabb9ce11ea6f4f5f07e0cb8ab
SFT or RL? An Early Investigation into Training R1-Like Reasoning Large Vision-Language Models 🌐 Project Page • 📄 Arxiv • 💻 Code 🤗 VLAA-Thinker Family • 🤔 VLAA-Thinking Dataset 🤗 VLAA-Thinker-Qwen2.5-3B • 🤗 VLAA-Thinker-Qwen2.5-7B Both VLAA-Thinker-Qwen2.5-3B and VLAA-Thinker-Qwen2.5-7Bachieve SOTA performance on OpenCompass Multimodal Reasoning Leaderboard as of April 7th, 2025. Contents Quick Start 🚀… See the full description on the dataset page: https://huggingface.co/datasets/UCSC-VLAA/VLAA-Thinking.
977
2,905
[ "task_categories:visual-question-answering", "language:en", "license:apache-2.0", "size_categories:n<1K", "format:imagefolder", "modality:image", "modality:text", "library:datasets", "library:mlcroissant", "region:us", "R1", "reasoning" ]
2025-02-24T15:47:02
null
null
67e378bc07acf3c2525e7d91
VLM-Reasoning/VCR-Bench
VLM-Reasoning
{"dataset_info": {"config_name": "vcrbench", "features": [{"name": "id", "dtype": "int64"}, {"name": "video_path", "dtype": "string"}, {"name": "duration", "dtype": "int64"}, {"name": "dimension", "dtype": "string"}, {"name": "multiple-choice", "dtype": "bool"}, {"name": "question", "dtype": "string"}, {"name": "choices", "struct": [{"name": "A", "dtype": "string"}, {"name": "B", "dtype": "string"}, {"name": "C", "dtype": "string"}, {"name": "D", "dtype": "string"}, {"name": "E", "dtype": "string"}]}, {"name": "answer", "dtype": "string"}, {"name": "reasoning", "list": "string"}]}, "configs": [{"config_name": "vcrbench", "data_files": [{"split": "test", "path": "v1/videos/meta*"}]}]}
false
null
2025-04-16T12:18:31
5
5
false
d81b0b408aec182330fdb62e273b0630a26df8b9
VCR-Bench ( A Comprehensive Evaluation Framework for Video Chain-of-Thought Reasoning) 🌐 Homepage | 🤗 Dataset | 🤗 Paper | 📖 arXiv | GitHub Dataset Details As shown in the figure below, current video benchmarks often lack comprehensive annotations of CoT steps, focusing only on the accuracy of final answers during model evaluation while neglecting the quality of the reasoning process. This evaluation approach makes it difficult to comprehensively evaluate model’s… See the full description on the dataset page: https://huggingface.co/datasets/VLM-Reasoning/VCR-Bench.
103
103
[ "size_categories:1K<n<10K", "format:json", "modality:image", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2504.07956", "region:us" ]
2025-03-26T03:47:08
null
null
67f1c7f6fc5835dd6b00d5e4
KillerShoaib/DeepSeek-r1-Distill-Bangla-MMLU-Reasoning-Data
KillerShoaib
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "reasoning_translation", "dtype": "string"}, {"name": "ans_translation", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "sequence": "string"}, {"name": "answer", "dtype": "string"}, {"name": "formated_question", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 112127377, "num_examples": 17796}, {"name": "test", "num_bytes": 15571052, "num_examples": 2565}], "download_size": 44900052, "dataset_size": 127698429}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "task_categories": ["question-answering", "text-generation", "text2text-generation"], "language": ["bn"], "size_categories": ["10K<n<100K"], "datasets": ["hishab/bangla-mmlu"], "pretty_name": "Bangla-Disti"}
false
null
2025-04-11T13:09:12
7
5
false
09c0bd71cd5b99424bf5702cf64c1ea5af1796a4
DeepSeek R1 Bangla MMLU Distil Dataset Original Dataset: hishab/bangla-mmlu Train Samples: 17,796 Test Samples: 2,576 Total API Cost: 7K BDT Contributors: Myself Numaer How the Dataset was created Step 1 - Base Dataset I've used bangla-mmlu dataset released by hisab. Kudos to them for creating and open sourcing the dataset. Without their dataset this synthetic reasoning dataset won't exist in the first place. Step 2 - Select Subset Since I'm… See the full description on the dataset page: https://huggingface.co/datasets/KillerShoaib/DeepSeek-r1-Distill-Bangla-MMLU-Reasoning-Data.
114
114
[ "task_categories:question-answering", "task_categories:text-generation", "task_categories:text2text-generation", "language:bn", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-04-06T00:16:54
null
null
67f58fa571b47f632009625a
togethercomputer/together-search-bench
togethercomputer
{"dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "dataset", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 21813, "num_examples": 150}], "download_size": 17146, "dataset_size": 21813}, "configs": [{"config_name": "default", "data_files": [{"split": "test", "path": "data/test-*"}]}]}
false
null
2025-04-16T20:16:18
5
5
false
46517f6e85a1c74e481b1c92c71198d88daa44da
Together-Search-Bench Dataset This dataset is used for delopment and evaluations for Together Open Deep Research. The data is composed of 50 samples from each of the following datasets: simpleqa: basicv8vc/SimpleQA frames: google/frames-benchmark hotpotqa: hotpotqa/hotpot_qa License Information Part of the data derived from hotpotqa by Yang et al., licensed under CC BY-SA 4.0. Modifications include the full dataset subsampling. Part of the data derived from frames by… See the full description on the dataset page: https://huggingface.co/datasets/togethercomputer/together-search-bench.
128
128
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-04-08T21:05:41
null
null
67f94a007b1c131bebc82d5c
wildflow/sweet-corals
wildflow
{"license": "cc-by-4.0", "tags": ["coral reef", "3d gaussian splatting", "photogrammetry", "3d", "wildflow", "orthomosaic"], "pretty_name": "3D Coral Reefs"}
false
null
2025-04-17T16:17:26
5
5
false
c9ab67b4b9b5c56cd131f0c298995caac9b033c6
Coral reefs 3D photogrammetry Description We 3D mapped multiple coral reefs in Indonesia (following this protocol) and sharing all our data with you 🤗 This dataset currently contains 90,289 (352GB) of raw GoPro images and some colour-corrected images. Additional data - including camera poses, reconstructed 3D point clouds, 3D polygonal meshes, orthomosaics, annotations, and 3D Gaussian Splatting models - will be added soon. We just decided share raw data right now, and… See the full description on the dataset page: https://huggingface.co/datasets/wildflow/sweet-corals.
1,187
1,190
[ "license:cc-by-4.0", "size_categories:1K<n<10K", "format:imagefolder", "modality:image", "modality:3d", "library:datasets", "library:mlcroissant", "doi:10.57967/hf/5162", "region:us", "coral reef", "3d gaussian splatting", "photogrammetry", "3d", "wildflow", "orthomosaic" ]
2025-04-11T16:57:36
null
null
67ffe2dd906793fb908651af
bh2821/LightNovel5000
bh2821
{"license": "zlib", "task_categories": ["text-generation", "text2text-generation", "translation"], "language": ["zh"], "tags": ["Novel", "Light-Novel", "Japanese", "Chinese"], "size_categories": ["100M<n<1B"]}
false
null
2025-04-16T20:25:38
5
5
false
a9c8ce088c4c89321b1321654568dc99930938e5
Light novels translated in Chinese - crawled from public websites that do not prohibit crawlers 脚盆轻小说汉化 - 从未禁止爬虫的公共网站爬取 Version 0 版本 0 Contains around 1000 light novels, including PDF with illustration and txt text files. It may be a good source of data that can be used to train your stylish LLM. Kindly note that the author has partially clean the text BUT DOES NOT GUARANTEE that it is fully cleaned up. 包含约 1000 部轻小说,包括带插图的 PDF 和 txt 文本文件。… See the full description on the dataset page: https://huggingface.co/datasets/bh2821/LightNovel5000.
37
37
[ "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:translation", "language:zh", "license:zlib", "size_categories:1M<n<10M", "format:text", "modality:text", "library:datasets", "library:mlcroissant", "region:us", "Novel", "Light-Novel", "Japanese", "Chinese" ]
2025-04-16T17:03:25
null
null
621ffdd236468d709f181d96
bookcorpus/bookcorpus
bookcorpus
{"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["unknown"], "multilinguality": ["monolingual"], "pretty_name": "BookCorpus", "size_categories": ["10M<n<100M"], "source_datasets": ["original"], "task_categories": ["text-generation", "fill-mask"], "task_ids": ["language-modeling", "masked-language-modeling"], "paperswithcode_id": "bookcorpus", "dataset_info": {"features": [{"name": "text", "dtype": "string"}], "config_name": "plain_text", "splits": [{"name": "train", "num_bytes": 4853859824, "num_examples": 74004228}], "download_size": 1179510242, "dataset_size": 4853859824}}
false
null
2024-05-03T13:48:33
305
4
false
d917559bbe9cf49c638fc331c37c4bf239e3b637
Books are a rich source of both fine-grained information, how a character, an object or a scene looks like, as well as high-level semantics, what someone is thinking, feeling and how these states evolve through a story.This work aims to align books to their movie releases in order to providerich descriptive explanations for visual content that go semantically farbeyond the captions available in current datasets. \
9,595
630,461
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:language-modeling", "task_ids:masked-language-modeling", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "size_categories:10M<n<100M", "arxiv:2105.05241", "region:us" ]
2022-03-02T23:29:22
bookcorpus
@InProceedings{Zhu_2015_ICCV, title = {Aligning Books and Movies: Towards Story-Like Visual Explanations by Watching Movies and Reading Books}, author = {Zhu, Yukun and Kiros, Ryan and Zemel, Rich and Salakhutdinov, Ruslan and Urtasun, Raquel and Torralba, Antonio and Fidler, Sanja}, booktitle = {The IEEE International Conference on Computer Vision (ICCV)}, month = {December}, year = {2015} }
621ffdd236468d709f181f9c
rajpurkar/squad_v2
rajpurkar
{"annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced"], "language": ["en"], "license": ["cc-by-sa-4.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": ["original"], "task_categories": ["question-answering"], "task_ids": ["open-domain-qa", "extractive-qa"], "paperswithcode_id": "squad", "pretty_name": "SQuAD2.0", "dataset_info": {"config_name": "squad_v2", "features": [{"name": "id", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "text", "dtype": "string"}, {"name": "answer_start", "dtype": "int32"}]}], "splits": [{"name": "train", "num_bytes": 116732025, "num_examples": 130319}, {"name": "validation", "num_bytes": 11661091, "num_examples": 11873}], "download_size": 17720493, "dataset_size": 128393116}, "configs": [{"config_name": "squad_v2", "data_files": [{"split": "train", "path": "squad_v2/train-*"}, {"split": "validation", "path": "squad_v2/validation-*"}], "default": true}], "train-eval-index": [{"config": "squad_v2", "task": "question-answering", "task_id": "extractive_question_answering", "splits": {"train_split": "train", "eval_split": "validation"}, "col_mapping": {"question": "question", "context": "context", "answers": {"text": "text", "answer_start": "answer_start"}}, "metrics": [{"type": "squad_v2", "name": "SQuAD v2"}]}]}
false
null
2024-03-04T13:55:27
200
4
false
3ffb306f725f7d2ce8394bc1873b24868140c412
Dataset Card for SQuAD 2.0 Dataset Summary Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. SQuAD 2.0 combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by… See the full description on the dataset page: https://huggingface.co/datasets/rajpurkar/squad_v2.
48,243
34,058,676
[ "task_categories:question-answering", "task_ids:open-domain-qa", "task_ids:extractive-qa", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-sa-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:1806.03822", "arxiv:1606.05250", "region:us" ]
2022-03-02T23:29:22
squad
null
621ffdd236468d709f18200d
Salesforce/wikitext
Salesforce
{"annotations_creators": ["no-annotation"], "language_creators": ["crowdsourced"], "language": ["en"], "license": ["cc-by-sa-3.0", "gfdl"], "multilinguality": ["monolingual"], "size_categories": ["1M<n<10M"], "source_datasets": ["original"], "task_categories": ["text-generation", "fill-mask"], "task_ids": ["language-modeling", "masked-language-modeling"], "paperswithcode_id": "wikitext-2", "pretty_name": "WikiText", "dataset_info": [{"config_name": "wikitext-103-raw-v1", "features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 1305088, "num_examples": 4358}, {"name": "train", "num_bytes": 546500949, "num_examples": 1801350}, {"name": "validation", "num_bytes": 1159288, "num_examples": 3760}], "download_size": 315466397, "dataset_size": 548965325}, {"config_name": "wikitext-103-v1", "features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 1295575, "num_examples": 4358}, {"name": "train", "num_bytes": 545141915, "num_examples": 1801350}, {"name": "validation", "num_bytes": 1154751, "num_examples": 3760}], "download_size": 313093838, "dataset_size": 547592241}, {"config_name": "wikitext-2-raw-v1", "features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 1305088, "num_examples": 4358}, {"name": "train", "num_bytes": 11061717, "num_examples": 36718}, {"name": "validation", "num_bytes": 1159288, "num_examples": 3760}], "download_size": 7747362, "dataset_size": 13526093}, {"config_name": "wikitext-2-v1", "features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 1270947, "num_examples": 4358}, {"name": "train", "num_bytes": 10918118, "num_examples": 36718}, {"name": "validation", "num_bytes": 1134123, "num_examples": 3760}], "download_size": 7371282, "dataset_size": 13323188}], "configs": [{"config_name": "wikitext-103-raw-v1", "data_files": [{"split": "test", "path": "wikitext-103-raw-v1/test-*"}, {"split": "train", "path": "wikitext-103-raw-v1/train-*"}, {"split": "validation", "path": "wikitext-103-raw-v1/validation-*"}]}, {"config_name": "wikitext-103-v1", "data_files": [{"split": "test", "path": "wikitext-103-v1/test-*"}, {"split": "train", "path": "wikitext-103-v1/train-*"}, {"split": "validation", "path": "wikitext-103-v1/validation-*"}]}, {"config_name": "wikitext-2-raw-v1", "data_files": [{"split": "test", "path": "wikitext-2-raw-v1/test-*"}, {"split": "train", "path": "wikitext-2-raw-v1/train-*"}, {"split": "validation", "path": "wikitext-2-raw-v1/validation-*"}]}, {"config_name": "wikitext-2-v1", "data_files": [{"split": "test", "path": "wikitext-2-v1/test-*"}, {"split": "train", "path": "wikitext-2-v1/train-*"}, {"split": "validation", "path": "wikitext-2-v1/validation-*"}]}]}
false
null
2024-01-04T16:49:18
432
4
false
b08601e04326c79dfdd32d625aee71d232d685c3
Dataset Card for "wikitext" Dataset Summary The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified Good and Featured articles on Wikipedia. The dataset is available under the Creative Commons Attribution-ShareAlike License. Compared to the preprocessed version of Penn Treebank (PTB), WikiText-2 is over 2 times larger and WikiText-103 is over 110 times larger. The WikiText dataset also features a far… See the full description on the dataset page: https://huggingface.co/datasets/Salesforce/wikitext.
633,003
19,743,804
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:language-modeling", "task_ids:masked-language-modeling", "annotations_creators:no-annotation", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-sa-3.0", "license:gfdl", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:1609.07843", "region:us" ]
2022-03-02T23:29:22
wikitext-2
null
625e8e36d28969004c120d8b
google/fleurs
google
{"annotations_creators": ["expert-generated", "crowdsourced", "machine-generated"], "language_creators": ["crowdsourced", "expert-generated"], "language": ["afr", "amh", "ara", "asm", "ast", "azj", "bel", "ben", "bos", "cat", "ceb", "cmn", "ces", "cym", "dan", "deu", "ell", "eng", "spa", "est", "fas", "ful", "fin", "tgl", "fra", "gle", "glg", "guj", "hau", "heb", "hin", "hrv", "hun", "hye", "ind", "ibo", "isl", "ita", "jpn", "jav", "kat", "kam", "kea", "kaz", "khm", "kan", "kor", "ckb", "kir", "ltz", "lug", "lin", "lao", "lit", "luo", "lav", "mri", "mkd", "mal", "mon", "mar", "msa", "mlt", "mya", "nob", "npi", "nld", "nso", "nya", "oci", "orm", "ory", "pan", "pol", "pus", "por", "ron", "rus", "bul", "snd", "slk", "slv", "sna", "som", "srp", "swe", "swh", "tam", "tel", "tgk", "tha", "tur", "ukr", "umb", "urd", "uzb", "vie", "wol", "xho", "yor", "yue", "zul"], "license": ["cc-by-4.0"], "multilinguality": ["multilingual"], "size_categories": ["10K<n<100K"], "task_categories": ["automatic-speech-recognition"], "task_ids": [], "pretty_name": "The Cross-lingual TRansfer Evaluation of Multilingual Encoders for Speech (XTREME-S) benchmark is a benchmark designed to evaluate speech representations across languages, tasks, domains and data regimes. It covers 102 languages from 10+ language families, 3 different domains and 4 task families: speech recognition, translation, classification and retrieval.", "tags": ["speech-recognition"]}
false
null
2024-08-25T05:03:32
285
4
false
d7c758a6dceecd54a98cac43404d3d576e721f07
FLEURS Fleurs is the speech version of the FLoRes machine translation benchmark. We use 2009 n-way parallel sentences from the FLoRes dev and devtest publicly available sets, in 102 languages. Training sets have around 10 hours of supervision. Speakers of the train sets are different than speakers from the dev/test sets. Multilingual fine-tuning is used and ”unit error rate” (characters, signs) of all languages is averaged. Languages and results are also grouped into seven… See the full description on the dataset page: https://huggingface.co/datasets/google/fleurs.
30,445
1,020,297
[ "task_categories:automatic-speech-recognition", "annotations_creators:expert-generated", "annotations_creators:crowdsourced", "annotations_creators:machine-generated", "language_creators:crowdsourced", "language_creators:expert-generated", "multilinguality:multilingual", "language:afr", "language:amh", "language:ara", "language:asm", "language:ast", "language:azj", "language:bel", "language:ben", "language:bos", "language:cat", "language:ceb", "language:cmn", "language:ces", "language:cym", "language:dan", "language:deu", "language:ell", "language:eng", "language:spa", "language:est", "language:fas", "language:ful", "language:fin", "language:tgl", "language:fra", "language:gle", "language:glg", "language:guj", "language:hau", "language:heb", "language:hin", "language:hrv", "language:hun", "language:hye", "language:ind", "language:ibo", "language:isl", "language:ita", "language:jpn", "language:jav", "language:kat", "language:kam", "language:kea", "language:kaz", "language:khm", "language:kan", "language:kor", "language:ckb", "language:kir", "language:ltz", "language:lug", "language:lin", "language:lao", "language:lit", "language:luo", "language:lav", "language:mri", "language:mkd", "language:mal", "language:mon", "language:mar", "language:msa", "language:mlt", "language:mya", "language:nob", "language:npi", "language:nld", "language:nso", "language:nya", "language:oci", "language:orm", "language:ory", "language:pan", "language:pol", "language:pus", "language:por", "language:ron", "language:rus", "language:bul", "language:snd", "language:slk", "language:slv", "language:sna", "language:som", "language:srp", "language:swe", "language:swh", "language:tam", "language:tel", "language:tgk", "language:tha", "language:tur", "language:ukr", "language:umb", "language:urd", "language:uzb", "language:vie", "language:wol", "language:xho", "language:yor", "language:yue", "language:zul", "license:cc-by-4.0", "size_categories:10K<n<100K", "arxiv:2205.12446", "arxiv:2106.03193", "region:us", "speech-recognition" ]
2022-04-19T10:25:58
null
null
627007d3becab9e2dcf15a40
ILSVRC/imagenet-1k
ILSVRC
{"annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced"], "language": ["en"], "license": ["other"], "license_details": "imagenet-agreement", "multilinguality": ["monolingual"], "paperswithcode_id": "imagenet-1k-1", "pretty_name": "ImageNet", "size_categories": ["1M<n<10M"], "source_datasets": ["original"], "task_categories": ["image-classification"], "task_ids": ["multi-class-image-classification"], "extra_gated_prompt": "By clicking on \u201cAccess repository\u201d below, you also agree to ImageNet Terms of Access:\n[RESEARCHER_FULLNAME] (the \"Researcher\") has requested permission to use the ImageNet database (the \"Database\") at Princeton University and Stanford University. In exchange for such permission, Researcher hereby agrees to the following terms and conditions:\n1. Researcher shall use the Database only for non-commercial research and educational purposes.\n2. Princeton University, Stanford University and Hugging Face make no representations or warranties regarding the Database, including but not limited to warranties of non-infringement or fitness for a particular purpose.\n3. Researcher accepts full responsibility for his or her use of the Database and shall defend and indemnify the ImageNet team, Princeton University, Stanford University and Hugging Face, including their employees, Trustees, officers and agents, against any and all claims arising from Researcher's use of the Database, including but not limited to Researcher's use of any copies of copyrighted images that he or she may create from the Database.\n4. Researcher may provide research associates and colleagues with access to the Database provided that they first agree to be bound by these terms and conditions.\n5. Princeton University, Stanford University and Hugging Face reserve the right to terminate Researcher's access to the Database at any time.\n6. If Researcher is employed by a for-profit, commercial entity, Researcher's employer shall also be bound by these terms and conditions, and Researcher hereby represents that he or she is fully authorized to enter into this agreement on behalf of such employer.\n7. The law of the State of New Jersey shall apply to all disputes under this agreement.", "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "tench, Tinca tinca", "1": "goldfish, Carassius auratus", "2": "great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias", "3": "tiger shark, Galeocerdo cuvieri", "4": "hammerhead, hammerhead shark", "5": "electric ray, crampfish, numbfish, torpedo", "6": "stingray", "7": "cock", "8": "hen", "9": "ostrich, Struthio camelus", "10": "brambling, Fringilla montifringilla", "11": "goldfinch, Carduelis carduelis", "12": "house finch, linnet, Carpodacus mexicanus", "13": "junco, snowbird", "14": "indigo bunting, indigo finch, indigo bird, Passerina cyanea", "15": "robin, American robin, Turdus migratorius", "16": "bulbul", "17": "jay", "18": "magpie", "19": "chickadee", "20": "water ouzel, dipper", "21": "kite", "22": "bald eagle, American eagle, Haliaeetus leucocephalus", "23": "vulture", "24": "great grey owl, great gray owl, Strix nebulosa", "25": "European fire salamander, Salamandra salamandra", "26": "common newt, Triturus vulgaris", "27": "eft", "28": "spotted salamander, Ambystoma maculatum", "29": "axolotl, mud puppy, Ambystoma mexicanum", "30": "bullfrog, Rana catesbeiana", "31": "tree frog, tree-frog", "32": "tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui", "33": "loggerhead, loggerhead turtle, Caretta caretta", "34": "leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea", "35": "mud turtle", "36": "terrapin", "37": "box turtle, box tortoise", "38": "banded gecko", "39": "common iguana, iguana, Iguana iguana", "40": "American chameleon, anole, Anolis carolinensis", "41": "whiptail, whiptail lizard", "42": "agama", "43": "frilled lizard, Chlamydosaurus kingi", "44": "alligator lizard", "45": "Gila monster, Heloderma suspectum", "46": "green lizard, Lacerta viridis", "47": "African chameleon, Chamaeleo chamaeleon", "48": "Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis", "49": "African crocodile, Nile crocodile, Crocodylus niloticus", "50": "American alligator, Alligator mississipiensis", "51": "triceratops", "52": "thunder snake, worm snake, Carphophis amoenus", "53": "ringneck snake, ring-necked snake, ring snake", "54": "hognose snake, puff adder, sand viper", "55": "green snake, grass snake", "56": "king snake, kingsnake", "57": "garter snake, grass snake", "58": "water snake", "59": "vine snake", "60": "night snake, Hypsiglena torquata", "61": "boa constrictor, Constrictor constrictor", "62": "rock python, rock snake, Python sebae", "63": "Indian cobra, Naja naja", "64": "green mamba", "65": "sea snake", "66": "horned viper, cerastes, sand viper, horned asp, Cerastes cornutus", "67": "diamondback, diamondback rattlesnake, Crotalus adamanteus", "68": "sidewinder, horned rattlesnake, Crotalus cerastes", "69": "trilobite", "70": "harvestman, daddy longlegs, Phalangium opilio", "71": "scorpion", "72": "black and gold garden spider, Argiope aurantia", "73": "barn spider, Araneus cavaticus", "74": "garden spider, Aranea diademata", "75": "black widow, Latrodectus mactans", "76": "tarantula", "77": "wolf spider, hunting spider", "78": "tick", "79": "centipede", "80": "black grouse", "81": "ptarmigan", "82": "ruffed grouse, partridge, Bonasa umbellus", "83": "prairie chicken, prairie grouse, prairie fowl", "84": "peacock", "85": "quail", "86": "partridge", "87": "African grey, African gray, Psittacus erithacus", "88": "macaw", "89": "sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita", "90": "lorikeet", "91": "coucal", "92": "bee eater", "93": "hornbill", "94": "hummingbird", "95": "jacamar", "96": "toucan", "97": "drake", "98": "red-breasted merganser, Mergus serrator", "99": "goose", "100": "black swan, Cygnus atratus", "101": "tusker", "102": "echidna, spiny anteater, anteater", "103": "platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus", "104": "wallaby, brush kangaroo", "105": "koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus", "106": "wombat", "107": "jellyfish", "108": "sea anemone, anemone", "109": "brain coral", "110": "flatworm, platyhelminth", "111": "nematode, nematode worm, roundworm", "112": "conch", "113": "snail", "114": "slug", "115": "sea slug, nudibranch", "116": "chiton, coat-of-mail shell, sea cradle, polyplacophore", "117": "chambered nautilus, pearly nautilus, nautilus", "118": "Dungeness crab, Cancer magister", "119": "rock crab, Cancer irroratus", "120": "fiddler crab", "121": "king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica", "122": "American lobster, Northern lobster, Maine lobster, Homarus americanus", "123": "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "124": "crayfish, crawfish, crawdad, crawdaddy", "125": "hermit crab", "126": "isopod", "127": "white stork, Ciconia ciconia", "128": "black stork, Ciconia nigra", "129": "spoonbill", "130": "flamingo", "131": "little blue heron, Egretta caerulea", "132": "American egret, great white heron, Egretta albus", "133": "bittern", "134": "crane", "135": "limpkin, Aramus pictus", "136": "European gallinule, Porphyrio porphyrio", "137": "American coot, marsh hen, mud hen, water hen, Fulica americana", "138": "bustard", "139": "ruddy turnstone, Arenaria interpres", "140": "red-backed sandpiper, dunlin, Erolia alpina", "141": "redshank, Tringa totanus", "142": "dowitcher", "143": "oystercatcher, oyster catcher", "144": "pelican", "145": "king penguin, Aptenodytes patagonica", "146": "albatross, mollymawk", "147": "grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus", "148": "killer whale, killer, orca, grampus, sea wolf, Orcinus orca", "149": "dugong, Dugong dugon", "150": "sea lion", "151": "Chihuahua", "152": "Japanese spaniel", "153": "Maltese dog, Maltese terrier, Maltese", "154": "Pekinese, Pekingese, Peke", "155": "Shih-Tzu", "156": "Blenheim spaniel", "157": "papillon", "158": "toy terrier", "159": "Rhodesian ridgeback", "160": "Afghan hound, Afghan", "161": "basset, basset hound", "162": "beagle", "163": "bloodhound, sleuthhound", "164": "bluetick", "165": "black-and-tan coonhound", "166": "Walker hound, Walker foxhound", "167": "English foxhound", "168": "redbone", "169": "borzoi, Russian wolfhound", "170": "Irish wolfhound", "171": "Italian greyhound", "172": "whippet", "173": "Ibizan hound, Ibizan Podenco", "174": "Norwegian elkhound, elkhound", "175": "otterhound, otter hound", "176": "Saluki, gazelle hound", "177": "Scottish deerhound, deerhound", "178": "Weimaraner", "179": "Staffordshire bullterrier, Staffordshire bull terrier", "180": "American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier", "181": "Bedlington terrier", "182": "Border terrier", "183": "Kerry blue terrier", "184": "Irish terrier", "185": "Norfolk terrier", "186": "Norwich terrier", "187": "Yorkshire terrier", "188": "wire-haired fox terrier", "189": "Lakeland terrier", "190": "Sealyham terrier, Sealyham", "191": "Airedale, Airedale terrier", "192": "cairn, cairn terrier", "193": "Australian terrier", "194": "Dandie Dinmont, Dandie Dinmont terrier", "195": "Boston bull, Boston terrier", "196": "miniature schnauzer", "197": "giant schnauzer", "198": "standard schnauzer", "199": "Scotch terrier, Scottish terrier, Scottie", "200": "Tibetan terrier, chrysanthemum dog", "201": "silky terrier, Sydney silky", "202": "soft-coated wheaten terrier", "203": "West Highland white terrier", "204": "Lhasa, Lhasa apso", "205": "flat-coated retriever", "206": "curly-coated retriever", "207": "golden retriever", "208": "Labrador retriever", "209": "Chesapeake Bay retriever", "210": "German short-haired pointer", "211": "vizsla, Hungarian pointer", "212": "English setter", "213": "Irish setter, red setter", "214": "Gordon setter", "215": "Brittany spaniel", "216": "clumber, clumber spaniel", "217": "English springer, English springer spaniel", "218": "Welsh springer spaniel", "219": "cocker spaniel, English cocker spaniel, cocker", "220": "Sussex spaniel", "221": "Irish water spaniel", "222": "kuvasz", "223": "schipperke", "224": "groenendael", "225": "malinois", "226": "briard", "227": "kelpie", "228": "komondor", "229": "Old English sheepdog, bobtail", "230": "Shetland sheepdog, Shetland sheep dog, Shetland", "231": "collie", "232": "Border collie", "233": "Bouvier des Flandres, Bouviers des Flandres", "234": "Rottweiler", "235": "German shepherd, German shepherd dog, German police dog, alsatian", "236": "Doberman, Doberman pinscher", "237": "miniature pinscher", "238": "Greater Swiss Mountain dog", "239": "Bernese mountain dog", "240": "Appenzeller", "241": "EntleBucher", "242": "boxer", "243": "bull mastiff", "244": "Tibetan mastiff", "245": "French bulldog", "246": "Great Dane", "247": "Saint Bernard, St Bernard", "248": "Eskimo dog, husky", "249": "malamute, malemute, Alaskan malamute", "250": "Siberian husky", "251": "dalmatian, coach dog, carriage dog", "252": "affenpinscher, monkey pinscher, monkey dog", "253": "basenji", "254": "pug, pug-dog", "255": "Leonberg", "256": "Newfoundland, Newfoundland dog", "257": "Great Pyrenees", "258": "Samoyed, Samoyede", "259": "Pomeranian", "260": "chow, chow chow", "261": "keeshond", "262": "Brabancon griffon", "263": "Pembroke, Pembroke Welsh corgi", "264": "Cardigan, Cardigan Welsh corgi", "265": "toy poodle", "266": "miniature poodle", "267": "standard poodle", "268": "Mexican hairless", "269": "timber wolf, grey wolf, gray wolf, Canis lupus", "270": "white wolf, Arctic wolf, Canis lupus tundrarum", "271": "red wolf, maned wolf, Canis rufus, Canis niger", "272": "coyote, prairie wolf, brush wolf, Canis latrans", "273": "dingo, warrigal, warragal, Canis dingo", "274": "dhole, Cuon alpinus", "275": "African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus", "276": "hyena, hyaena", "277": "red fox, Vulpes vulpes", "278": "kit fox, Vulpes macrotis", "279": "Arctic fox, white fox, Alopex lagopus", "280": "grey fox, gray fox, Urocyon cinereoargenteus", "281": "tabby, tabby cat", "282": "tiger cat", "283": "Persian cat", "284": "Siamese cat, Siamese", "285": "Egyptian cat", "286": "cougar, puma, catamount, mountain lion, painter, panther, Felis concolor", "287": "lynx, catamount", "288": "leopard, Panthera pardus", "289": "snow leopard, ounce, Panthera uncia", "290": "jaguar, panther, Panthera onca, Felis onca", "291": "lion, king of beasts, Panthera leo", "292": "tiger, Panthera tigris", "293": "cheetah, chetah, Acinonyx jubatus", "294": "brown bear, bruin, Ursus arctos", "295": "American black bear, black bear, Ursus americanus, Euarctos americanus", "296": "ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus", "297": "sloth bear, Melursus ursinus, Ursus ursinus", "298": "mongoose", "299": "meerkat, mierkat", "300": "tiger beetle", "301": "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "302": "ground beetle, carabid beetle", "303": "long-horned beetle, longicorn, longicorn beetle", "304": "leaf beetle, chrysomelid", "305": "dung beetle", "306": "rhinoceros beetle", "307": "weevil", "308": "fly", "309": "bee", "310": "ant, emmet, pismire", "311": "grasshopper, hopper", "312": "cricket", "313": "walking stick, walkingstick, stick insect", "314": "cockroach, roach", "315": "mantis, mantid", "316": "cicada, cicala", "317": "leafhopper", "318": "lacewing, lacewing fly", "319": "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "320": "damselfly", "321": "admiral", "322": "ringlet, ringlet butterfly", "323": "monarch, monarch butterfly, milkweed butterfly, Danaus plexippus", "324": "cabbage butterfly", "325": "sulphur butterfly, sulfur butterfly", "326": "lycaenid, lycaenid butterfly", "327": "starfish, sea star", "328": "sea urchin", "329": "sea cucumber, holothurian", "330": "wood rabbit, cottontail, cottontail rabbit", "331": "hare", "332": "Angora, Angora rabbit", "333": "hamster", "334": "porcupine, hedgehog", "335": "fox squirrel, eastern fox squirrel, Sciurus niger", "336": "marmot", "337": "beaver", "338": "guinea pig, Cavia cobaya", "339": "sorrel", "340": "zebra", "341": "hog, pig, grunter, squealer, Sus scrofa", "342": "wild boar, boar, Sus scrofa", "343": "warthog", "344": "hippopotamus, hippo, river horse, Hippopotamus amphibius", "345": "ox", "346": "water buffalo, water ox, Asiatic buffalo, Bubalus bubalis", "347": "bison", "348": "ram, tup", "349": "bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis", "350": "ibex, Capra ibex", "351": "hartebeest", "352": "impala, Aepyceros melampus", "353": "gazelle", "354": "Arabian camel, dromedary, Camelus dromedarius", "355": "llama", "356": "weasel", "357": "mink", "358": "polecat, fitch, foulmart, foumart, Mustela putorius", "359": "black-footed ferret, ferret, Mustela nigripes", "360": "otter", "361": "skunk, polecat, wood pussy", "362": "badger", "363": "armadillo", "364": "three-toed sloth, ai, Bradypus tridactylus", "365": "orangutan, orang, orangutang, Pongo pygmaeus", "366": "gorilla, Gorilla gorilla", "367": "chimpanzee, chimp, Pan troglodytes", "368": "gibbon, Hylobates lar", "369": "siamang, Hylobates syndactylus, Symphalangus syndactylus", "370": "guenon, guenon monkey", "371": "patas, hussar monkey, Erythrocebus patas", "372": "baboon", "373": "macaque", "374": "langur", "375": "colobus, colobus monkey", "376": "proboscis monkey, Nasalis larvatus", "377": "marmoset", "378": "capuchin, ringtail, Cebus capucinus", "379": "howler monkey, howler", "380": "titi, titi monkey", "381": "spider monkey, Ateles geoffroyi", "382": "squirrel monkey, Saimiri sciureus", "383": "Madagascar cat, ring-tailed lemur, Lemur catta", "384": "indri, indris, Indri indri, Indri brevicaudatus", "385": "Indian elephant, Elephas maximus", "386": "African elephant, Loxodonta africana", "387": "lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens", "388": "giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca", "389": "barracouta, snoek", "390": "eel", "391": "coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch", "392": "rock beauty, Holocanthus tricolor", "393": "anemone fish", "394": "sturgeon", "395": "gar, garfish, garpike, billfish, Lepisosteus osseus", "396": "lionfish", "397": "puffer, pufferfish, blowfish, globefish", "398": "abacus", "399": "abaya", "400": "academic gown, academic robe, judge's robe", "401": "accordion, piano accordion, squeeze box", "402": "acoustic guitar", "403": "aircraft carrier, carrier, flattop, attack aircraft carrier", "404": "airliner", "405": "airship, dirigible", "406": "altar", "407": "ambulance", "408": "amphibian, amphibious vehicle", "409": "analog clock", "410": "apiary, bee house", "411": "apron", "412": "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "413": "assault rifle, assault gun", "414": "backpack, back pack, knapsack, packsack, rucksack, haversack", "415": "bakery, bakeshop, bakehouse", "416": "balance beam, beam", "417": "balloon", "418": "ballpoint, ballpoint pen, ballpen, Biro", "419": "Band Aid", "420": "banjo", "421": "bannister, banister, balustrade, balusters, handrail", "422": "barbell", "423": "barber chair", "424": "barbershop", "425": "barn", "426": "barometer", "427": "barrel, cask", "428": "barrow, garden cart, lawn cart, wheelbarrow", "429": "baseball", "430": "basketball", "431": "bassinet", "432": "bassoon", "433": "bathing cap, swimming cap", "434": "bath towel", "435": "bathtub, bathing tub, bath, tub", "436": "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "437": "beacon, lighthouse, beacon light, pharos", "438": "beaker", "439": "bearskin, busby, shako", "440": "beer bottle", "441": "beer glass", "442": "bell cote, bell cot", "443": "bib", "444": "bicycle-built-for-two, tandem bicycle, tandem", "445": "bikini, two-piece", "446": "binder, ring-binder", "447": "binoculars, field glasses, opera glasses", "448": "birdhouse", "449": "boathouse", "450": "bobsled, bobsleigh, bob", "451": "bolo tie, bolo, bola tie, bola", "452": "bonnet, poke bonnet", "453": "bookcase", "454": "bookshop, bookstore, bookstall", "455": "bottlecap", "456": "bow", "457": "bow tie, bow-tie, bowtie", "458": "brass, memorial tablet, plaque", "459": "brassiere, bra, bandeau", "460": "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "461": "breastplate, aegis, egis", "462": "broom", "463": "bucket, pail", "464": "buckle", "465": "bulletproof vest", "466": "bullet train, bullet", "467": "butcher shop, meat market", "468": "cab, hack, taxi, taxicab", "469": "caldron, cauldron", "470": "candle, taper, wax light", "471": "cannon", "472": "canoe", "473": "can opener, tin opener", "474": "cardigan", "475": "car mirror", "476": "carousel, carrousel, merry-go-round, roundabout, whirligig", "477": "carpenter's kit, tool kit", "478": "carton", "479": "car wheel", "480": "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM", "481": "cassette", "482": "cassette player", "483": "castle", "484": "catamaran", "485": "CD player", "486": "cello, violoncello", "487": "cellular telephone, cellular phone, cellphone, cell, mobile phone", "488": "chain", "489": "chainlink fence", "490": "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "491": "chain saw, chainsaw", "492": "chest", "493": "chiffonier, commode", "494": "chime, bell, gong", "495": "china cabinet, china closet", "496": "Christmas stocking", "497": "church, church building", "498": "cinema, movie theater, movie theatre, movie house, picture palace", "499": "cleaver, meat cleaver, chopper", "500": "cliff dwelling", "501": "cloak", "502": "clog, geta, patten, sabot", "503": "cocktail shaker", "504": "coffee mug", "505": "coffeepot", "506": "coil, spiral, volute, whorl, helix", "507": "combination lock", "508": "computer keyboard, keypad", "509": "confectionery, confectionary, candy store", "510": "container ship, containership, container vessel", "511": "convertible", "512": "corkscrew, bottle screw", "513": "cornet, horn, trumpet, trump", "514": "cowboy boot", "515": "cowboy hat, ten-gallon hat", "516": "cradle", "517": "crane2", "518": "crash helmet", "519": "crate", "520": "crib, cot", "521": "Crock Pot", "522": "croquet ball", "523": "crutch", "524": "cuirass", "525": "dam, dike, dyke", "526": "desk", "527": "desktop computer", "528": "dial telephone, dial phone", "529": "diaper, nappy, napkin", "530": "digital clock", "531": "digital watch", "532": "dining table, board", "533": "dishrag, dishcloth", "534": "dishwasher, dish washer, dishwashing machine", "535": "disk brake, disc brake", "536": "dock, dockage, docking facility", "537": "dogsled, dog sled, dog sleigh", "538": "dome", "539": "doormat, welcome mat", "540": "drilling platform, offshore rig", "541": "drum, membranophone, tympan", "542": "drumstick", "543": "dumbbell", "544": "Dutch oven", "545": "electric fan, blower", "546": "electric guitar", "547": "electric locomotive", "548": "entertainment center", "549": "envelope", "550": "espresso maker", "551": "face powder", "552": "feather boa, boa", "553": "file, file cabinet, filing cabinet", "554": "fireboat", "555": "fire engine, fire truck", "556": "fire screen, fireguard", "557": "flagpole, flagstaff", "558": "flute, transverse flute", "559": "folding chair", "560": "football helmet", "561": "forklift", "562": "fountain", "563": "fountain pen", "564": "four-poster", "565": "freight car", "566": "French horn, horn", "567": "frying pan, frypan, skillet", "568": "fur coat", "569": "garbage truck, dustcart", "570": "gasmask, respirator, gas helmet", "571": "gas pump, gasoline pump, petrol pump, island dispenser", "572": "goblet", "573": "go-kart", "574": "golf ball", "575": "golfcart, golf cart", "576": "gondola", "577": "gong, tam-tam", "578": "gown", "579": "grand piano, grand", "580": "greenhouse, nursery, glasshouse", "581": "grille, radiator grille", "582": "grocery store, grocery, food market, market", "583": "guillotine", "584": "hair slide", "585": "hair spray", "586": "half track", "587": "hammer", "588": "hamper", "589": "hand blower, blow dryer, blow drier, hair dryer, hair drier", "590": "hand-held computer, hand-held microcomputer", "591": "handkerchief, hankie, hanky, hankey", "592": "hard disc, hard disk, fixed disk", "593": "harmonica, mouth organ, harp, mouth harp", "594": "harp", "595": "harvester, reaper", "596": "hatchet", "597": "holster", "598": "home theater, home theatre", "599": "honeycomb", "600": "hook, claw", "601": "hoopskirt, crinoline", "602": "horizontal bar, high bar", "603": "horse cart, horse-cart", "604": "hourglass", "605": "iPod", "606": "iron, smoothing iron", "607": "jack-o'-lantern", "608": "jean, blue jean, denim", "609": "jeep, landrover", "610": "jersey, T-shirt, tee shirt", "611": "jigsaw puzzle", "612": "jinrikisha, ricksha, rickshaw", "613": "joystick", "614": "kimono", "615": "knee pad", "616": "knot", "617": "lab coat, laboratory coat", "618": "ladle", "619": "lampshade, lamp shade", "620": "laptop, laptop computer", "621": "lawn mower, mower", "622": "lens cap, lens cover", "623": "letter opener, paper knife, paperknife", "624": "library", "625": "lifeboat", "626": "lighter, light, igniter, ignitor", "627": "limousine, limo", "628": "liner, ocean liner", "629": "lipstick, lip rouge", "630": "Loafer", "631": "lotion", "632": "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "633": "loupe, jeweler's loupe", "634": "lumbermill, sawmill", "635": "magnetic compass", "636": "mailbag, postbag", "637": "mailbox, letter box", "638": "maillot", "639": "maillot, tank suit", "640": "manhole cover", "641": "maraca", "642": "marimba, xylophone", "643": "mask", "644": "matchstick", "645": "maypole", "646": "maze, labyrinth", "647": "measuring cup", "648": "medicine chest, medicine cabinet", "649": "megalith, megalithic structure", "650": "microphone, mike", "651": "microwave, microwave oven", "652": "military uniform", "653": "milk can", "654": "minibus", "655": "miniskirt, mini", "656": "minivan", "657": "missile", "658": "mitten", "659": "mixing bowl", "660": "mobile home, manufactured home", "661": "Model T", "662": "modem", "663": "monastery", "664": "monitor", "665": "moped", "666": "mortar", "667": "mortarboard", "668": "mosque", "669": "mosquito net", "670": "motor scooter, scooter", "671": "mountain bike, all-terrain bike, off-roader", "672": "mountain tent", "673": "mouse, computer mouse", "674": "mousetrap", "675": "moving van", "676": "muzzle", "677": "nail", "678": "neck brace", "679": "necklace", "680": "nipple", "681": "notebook, notebook computer", "682": "obelisk", "683": "oboe, hautboy, hautbois", "684": "ocarina, sweet potato", "685": "odometer, hodometer, mileometer, milometer", "686": "oil filter", "687": "organ, pipe organ", "688": "oscilloscope, scope, cathode-ray oscilloscope, CRO", "689": "overskirt", "690": "oxcart", "691": "oxygen mask", "692": "packet", "693": "paddle, boat paddle", "694": "paddlewheel, paddle wheel", "695": "padlock", "696": "paintbrush", "697": "pajama, pyjama, pj's, jammies", "698": "palace", "699": "panpipe, pandean pipe, syrinx", "700": "paper towel", "701": "parachute, chute", "702": "parallel bars, bars", "703": "park bench", "704": "parking meter", "705": "passenger car, coach, carriage", "706": "patio, terrace", "707": "pay-phone, pay-station", "708": "pedestal, plinth, footstall", "709": "pencil box, pencil case", "710": "pencil sharpener", "711": "perfume, essence", "712": "Petri dish", "713": "photocopier", "714": "pick, plectrum, plectron", "715": "pickelhaube", "716": "picket fence, paling", "717": "pickup, pickup truck", "718": "pier", "719": "piggy bank, penny bank", "720": "pill bottle", "721": "pillow", "722": "ping-pong ball", "723": "pinwheel", "724": "pirate, pirate ship", "725": "pitcher, ewer", "726": "plane, carpenter's plane, woodworking plane", "727": "planetarium", "728": "plastic bag", "729": "plate rack", "730": "plow, plough", "731": "plunger, plumber's helper", "732": "Polaroid camera, Polaroid Land camera", "733": "pole", "734": "police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria", "735": "poncho", "736": "pool table, billiard table, snooker table", "737": "pop bottle, soda bottle", "738": "pot, flowerpot", "739": "potter's wheel", "740": "power drill", "741": "prayer rug, prayer mat", "742": "printer", "743": "prison, prison house", "744": "projectile, missile", "745": "projector", "746": "puck, hockey puck", "747": "punching bag, punch bag, punching ball, punchball", "748": "purse", "749": "quill, quill pen", "750": "quilt, comforter, comfort, puff", "751": "racer, race car, racing car", "752": "racket, racquet", "753": "radiator", "754": "radio, wireless", "755": "radio telescope, radio reflector", "756": "rain barrel", "757": "recreational vehicle, RV, R.V.", "758": "reel", "759": "reflex camera", "760": "refrigerator, icebox", "761": "remote control, remote", "762": "restaurant, eating house, eating place, eatery", "763": "revolver, six-gun, six-shooter", "764": "rifle", "765": "rocking chair, rocker", "766": "rotisserie", "767": "rubber eraser, rubber, pencil eraser", "768": "rugby ball", "769": "rule, ruler", "770": "running shoe", "771": "safe", "772": "safety pin", "773": "saltshaker, salt shaker", "774": "sandal", "775": "sarong", "776": "sax, saxophone", "777": "scabbard", "778": "scale, weighing machine", "779": "school bus", "780": "schooner", "781": "scoreboard", "782": "screen, CRT screen", "783": "screw", "784": "screwdriver", "785": "seat belt, seatbelt", "786": "sewing machine", "787": "shield, buckler", "788": "shoe shop, shoe-shop, shoe store", "789": "shoji", "790": "shopping basket", "791": "shopping cart", "792": "shovel", "793": "shower cap", "794": "shower curtain", "795": "ski", "796": "ski mask", "797": "sleeping bag", "798": "slide rule, slipstick", "799": "sliding door", "800": "slot, one-armed bandit", "801": "snorkel", "802": "snowmobile", "803": "snowplow, snowplough", "804": "soap dispenser", "805": "soccer ball", "806": "sock", "807": "solar dish, solar collector, solar furnace", "808": "sombrero", "809": "soup bowl", "810": "space bar", "811": "space heater", "812": "space shuttle", "813": "spatula", "814": "speedboat", "815": "spider web, spider's web", "816": "spindle", "817": "sports car, sport car", "818": "spotlight, spot", "819": "stage", "820": "steam locomotive", "821": "steel arch bridge", "822": "steel drum", "823": "stethoscope", "824": "stole", "825": "stone wall", "826": "stopwatch, stop watch", "827": "stove", "828": "strainer", "829": "streetcar, tram, tramcar, trolley, trolley car", "830": "stretcher", "831": "studio couch, day bed", "832": "stupa, tope", "833": "submarine, pigboat, sub, U-boat", "834": "suit, suit of clothes", "835": "sundial", "836": "sunglass", "837": "sunglasses, dark glasses, shades", "838": "sunscreen, sunblock, sun blocker", "839": "suspension bridge", "840": "swab, swob, mop", "841": "sweatshirt", "842": "swimming trunks, bathing trunks", "843": "swing", "844": "switch, electric switch, electrical switch", "845": "syringe", "846": "table lamp", "847": "tank, army tank, armored combat vehicle, armoured combat vehicle", "848": "tape player", "849": "teapot", "850": "teddy, teddy bear", "851": "television, television system", "852": "tennis ball", "853": "thatch, thatched roof", "854": "theater curtain, theatre curtain", "855": "thimble", "856": "thresher, thrasher, threshing machine", "857": "throne", "858": "tile roof", "859": "toaster", "860": "tobacco shop, tobacconist shop, tobacconist", "861": "toilet seat", "862": "torch", "863": "totem pole", "864": "tow truck, tow car, wrecker", "865": "toyshop", "866": "tractor", "867": "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "868": "tray", "869": "trench coat", "870": "tricycle, trike, velocipede", "871": "trimaran", "872": "tripod", "873": "triumphal arch", "874": "trolleybus, trolley coach, trackless trolley", "875": "trombone", "876": "tub, vat", "877": "turnstile", "878": "typewriter keyboard", "879": "umbrella", "880": "unicycle, monocycle", "881": "upright, upright piano", "882": "vacuum, vacuum cleaner", "883": "vase", "884": "vault", "885": "velvet", "886": "vending machine", "887": "vestment", "888": "viaduct", "889": "violin, fiddle", "890": "volleyball", "891": "waffle iron", "892": "wall clock", "893": "wallet, billfold, notecase, pocketbook", "894": "wardrobe, closet, press", "895": "warplane, military plane", "896": "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "897": "washer, automatic washer, washing machine", "898": "water bottle", "899": "water jug", "900": "water tower", "901": "whiskey jug", "902": "whistle", "903": "wig", "904": "window screen", "905": "window shade", "906": "Windsor tie", "907": "wine bottle", "908": "wing", "909": "wok", "910": "wooden spoon", "911": "wool, woolen, woollen", "912": "worm fence, snake fence, snake-rail fence, Virginia fence", "913": "wreck", "914": "yawl", "915": "yurt", "916": "web site, website, internet site, site", "917": "comic book", "918": "crossword puzzle, crossword", "919": "street sign", "920": "traffic light, traffic signal, stoplight", "921": "book jacket, dust cover, dust jacket, dust wrapper", "922": "menu", "923": "plate", "924": "guacamole", "925": "consomme", "926": "hot pot, hotpot", "927": "trifle", "928": "ice cream, icecream", "929": "ice lolly, lolly, lollipop, popsicle", "930": "French loaf", "931": "bagel, beigel", "932": "pretzel", "933": "cheeseburger", "934": "hotdog, hot dog, red hot", "935": "mashed potato", "936": "head cabbage", "937": "broccoli", "938": "cauliflower", "939": "zucchini, courgette", "940": "spaghetti squash", "941": "acorn squash", "942": "butternut squash", "943": "cucumber, cuke", "944": "artichoke, globe artichoke", "945": "bell pepper", "946": "cardoon", "947": "mushroom", "948": "Granny Smith", "949": "strawberry", "950": "orange", "951": "lemon", "952": "fig", "953": "pineapple, ananas", "954": "banana", "955": "jackfruit, jak, jack", "956": "custard apple", "957": "pomegranate", "958": "hay", "959": "carbonara", "960": "chocolate sauce, chocolate syrup", "961": "dough", "962": "meat loaf, meatloaf", "963": "pizza, pizza pie", "964": "potpie", "965": "burrito", "966": "red wine", "967": "espresso", "968": "cup", "969": "eggnog", "970": "alp", "971": "bubble", "972": "cliff, drop, drop-off", "973": "coral reef", "974": "geyser", "975": "lakeside, lakeshore", "976": "promontory, headland, head, foreland", "977": "sandbar, sand bar", "978": "seashore, coast, seacoast, sea-coast", "979": "valley, vale", "980": "volcano", "981": "ballplayer, baseball player", "982": "groom, bridegroom", "983": "scuba diver", "984": "rapeseed", "985": "daisy", "986": "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum", "987": "corn", "988": "acorn", "989": "hip, rose hip, rosehip", "990": "buckeye, horse chestnut, conker", "991": "coral fungus", "992": "agaric", "993": "gyromitra", "994": "stinkhorn, carrion fungus", "995": "earthstar", "996": "hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa", "997": "bolete", "998": "ear, spike, capitulum", "999": "toilet tissue, toilet paper, bathroom tissue"}}}}], "splits": [{"name": "test", "num_bytes": 13613661561, "num_examples": 100000}, {"name": "train", "num_bytes": 146956944242, "num_examples": 1281167}, {"name": "validation", "num_bytes": 6709003386, "num_examples": 50000}], "download_size": 166009941208, "dataset_size": 167279609189}}
false
null
2024-07-16T13:30:57
491
4
false
4603483700ee984ea9debe3ddbfdeae86f6489eb
ILSVRC 2012, commonly known as 'ImageNet' is an image dataset organized according to the WordNet hierarchy. Each meaningful concept in WordNet, possibly described by multiple words or word phrases, is called a "synonym set" or "synset". There are more than 100,000 synsets in WordNet, majority of them are nouns (80,000+). ImageNet aims to provide on average 1000 images to illustrate each synset. Images of each concept are quality-controlled and human-annotated. In its completion, ImageNet hopes to offer tens of millions of cleanly sorted images for most of the concepts in the WordNet hierarchy. ImageNet 2012 is the most commonly used subset of ImageNet. This dataset spans 1000 object classes and contains 1,281,167 training images, 50,000 validation images and 100,000 test images
32,637
1,068,826
[ "task_categories:image-classification", "task_ids:multi-class-image-classification", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:other", "size_categories:1M<n<10M", "arxiv:1409.0575", "arxiv:1912.07726", "arxiv:1811.12231", "arxiv:2109.13228", "region:us" ]
2022-05-02T16:33:23
imagenet-1k-1
@article{imagenet15russakovsky, Author = {Olga Russakovsky and Jia Deng and Hao Su and Jonathan Krause and Sanjeev Satheesh and Sean Ma and Zhiheng Huang and Andrej Karpathy and Aditya Khosla and Michael Bernstein and Alexander C. Berg and Li Fei-Fei}, Title = { {ImageNet Large Scale Visual Recognition Challenge} }, Year = {2015}, journal = {International Journal of Computer Vision (IJCV)}, doi = {10.1007/s11263-015-0816-y}, volume={115}, number={3}, pages={211-252} }
639244f571c51c43091df168
Anthropic/hh-rlhf
Anthropic
{"license": "mit", "tags": ["human-feedback"]}
false
null
2023-05-26T18:47:34
1,317
4
false
09be8c5bbc57cb3887f3a9732ad6aa7ec602a1fa
Dataset Card for HH-RLHF Dataset Summary This repository provides access to two different kinds of data: Human preference data about helpfulness and harmlessness from Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback. These data are meant to train preference (or reward) models for subsequent RLHF training. These data are not meant for supervised training of dialogue agents. Training dialogue agents on these data is likely… See the full description on the dataset page: https://huggingface.co/datasets/Anthropic/hh-rlhf.
14,823
1,570,808
[ "license:mit", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2204.05862", "region:us", "human-feedback" ]
2022-12-08T20:11:33
null
null
646fcd74d1f1b73079ed6732
rubend18/ChatGPT-Jailbreak-Prompts
rubend18
{"task_categories": ["question-answering", "text-generation", "fill-mask", "zero-shot-classification", "table-question-answering"], "language": ["en", "aa"], "tags": ["ChatGPT", "JailbreakPrompts", "LanguageModeling", "ArtificialIntelligence", "TextGeneration", "Dataset", "OpenAI", "Jailbreak", "Prompts"], "size_categories": ["n<1K"], "pretty_name": "ChatGPT Jailbreak Prompts"}
false
null
2023-08-24T18:24:29
200
4
false
b93e4982f8f8ad2d82c6d35e3c00d161844ad70a
Dataset Card for Dataset Name Name ChatGPT Jailbreak Prompts Dataset Summary ChatGPT Jailbreak Prompts is a complete collection of jailbreak related prompts for ChatGPT. This dataset is intended to provide a valuable resource for understanding and generating text in the context of jailbreaking in ChatGPT. Languages [English]
1,817
15,118
[ "task_categories:question-answering", "task_categories:text-generation", "task_categories:fill-mask", "task_categories:zero-shot-classification", "task_categories:table-question-answering", "language:en", "language:aa", "size_categories:n<1K", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "ChatGPT", "JailbreakPrompts", "LanguageModeling", "ArtificialIntelligence", "TextGeneration", "Dataset", "OpenAI", "Jailbreak", "Prompts" ]
2023-05-25T21:04:52
null
null
649444227853dd12c3bbadd8
Amod/mental_health_counseling_conversations
Amod
{"license": "openrail", "task_categories": ["text-generation", "question-answering"], "language": ["en"], "tags": ["medical"], "size_categories": ["1K<n<10K"]}
false
null
2024-04-05T08:30:03
348
4
false
4672e03c7f1a7b2215eb4302b83ca50449ce2553
Amod/mental_health_counseling_conversations Dataset Summary This dataset is a collection of questions and answers sourced from two online counseling and therapy platforms. The questions cover a wide range of mental health topics, and the answers are provided by qualified psychologists. The dataset is intended to be used for fine-tuning language models to improve their ability to provide mental health advice. Supported Tasks and Leaderboards The… See the full description on the dataset page: https://huggingface.co/datasets/Amod/mental_health_counseling_conversations.
4,606
66,437
[ "task_categories:text-generation", "task_categories:question-answering", "language:en", "license:openrail", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "doi:10.57967/hf/1581", "region:us", "medical" ]
2023-06-22T12:52:50
null
null
649f37af37bfb5202beabdf4
allenai/dolma
allenai
{"license": "odc-by", "viewer": false, "task_categories": ["text-generation"], "language": ["en"], "tags": ["language-modeling", "casual-lm", "llm"], "pretty_name": "Dolma", "size_categories": ["n>1T"]}
false
null
2024-04-17T02:57:00
899
4
false
7f48140530a023e9ea4c5cfb141160922727d4d3
Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research
980
353,696
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:n>1T", "arxiv:2402.00159", "arxiv:2301.13688", "region:us", "language-modeling", "casual-lm", "llm" ]
2023-06-30T20:14:39
null
@article{dolma, title = {{Dolma: An Open Corpus of Three Trillion Tokens for Language Model Pretraining Research}}, author = { Luca Soldaini and Rodney Kinney and Akshita Bhagia and Dustin Schwenk and David Atkinson and Russell Authur and Ben Bogin and Khyathi Chandu and Jennifer Dumas and Yanai Elazar and Valentin Hofmann and Ananya Harsh Jha and Sachin Kumar and Li Lucy and Xinxi Lyu and Ian Magnusson and Jacob Morrison and Niklas Muennighoff and Aakanksha Naik and Crystal Nam and Matthew E. Peters and Abhilasha Ravichander and Kyle Richardson and Zejiang Shen and Emma Strubell and Nishant Subramani and Oyvind Tafjord and Evan Pete Walsh and Hannaneh Hajishirzi and Noah A. Smith and Luke Zettlemoyer and Iz Beltagy and Dirk Groeneveld and Jesse Dodge and Kyle Lo }, year = {2024}, journal={arXiv preprint}, }
650a9248d26103b6eee3ea7b
lmsys/lmsys-chat-1m
lmsys
{"size_categories": ["1M<n<10M"], "task_categories": ["conversational"], "extra_gated_prompt": "You agree to the [LMSYS-Chat-1M Dataset License Agreement](https://huggingface.co/datasets/lmsys/lmsys-chat-1m#lmsys-chat-1m-dataset-license-agreement).", "extra_gated_fields": {"Name": "text", "Email": "text", "Affiliation": "text", "Country": "text"}, "extra_gated_button_content": "I agree to the terms and conditions of the LMSYS-Chat-1M Dataset License Agreement.", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "conversation_id", "dtype": "string"}, {"name": "model", "dtype": "string"}, {"name": "conversation", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "turn", "dtype": "int64"}, {"name": "language", "dtype": "string"}, {"name": "openai_moderation", "list": [{"name": "categories", "struct": [{"name": "harassment", "dtype": "bool"}, {"name": "harassment/threatening", "dtype": "bool"}, {"name": "hate", "dtype": "bool"}, {"name": "hate/threatening", "dtype": "bool"}, {"name": "self-harm", "dtype": "bool"}, {"name": "self-harm/instructions", "dtype": "bool"}, {"name": "self-harm/intent", "dtype": "bool"}, {"name": "sexual", "dtype": "bool"}, {"name": "sexual/minors", "dtype": "bool"}, {"name": "violence", "dtype": "bool"}, {"name": "violence/graphic", "dtype": "bool"}]}, {"name": "category_scores", "struct": [{"name": "harassment", "dtype": "float64"}, {"name": "harassment/threatening", "dtype": "float64"}, {"name": "hate", "dtype": "float64"}, {"name": "hate/threatening", "dtype": "float64"}, {"name": "self-harm", "dtype": "float64"}, {"name": "self-harm/instructions", "dtype": "float64"}, {"name": "self-harm/intent", "dtype": "float64"}, {"name": "sexual", "dtype": "float64"}, {"name": "sexual/minors", "dtype": "float64"}, {"name": "violence", "dtype": "float64"}, {"name": "violence/graphic", "dtype": "float64"}]}, {"name": "flagged", "dtype": "bool"}]}, {"name": "redacted", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 2626438904, "num_examples": 1000000}], "download_size": 1488850250, "dataset_size": 2626438904}}
false
null
2024-07-27T09:28:42
659
4
false
200748d9d3cddcc9d782887541057aca0b18c5da
LMSYS-Chat-1M: A Large-Scale Real-World LLM Conversation Dataset This dataset contains one million real-world conversations with 25 state-of-the-art LLMs. It is collected from 210K unique IP addresses in the wild on the Vicuna demo and Chatbot Arena website from April to August 2023. Each sample includes a conversation ID, model name, conversation text in OpenAI API JSON format, detected language tag, and OpenAI moderation API tag. User consent is obtained through the "Terms of… See the full description on the dataset page: https://huggingface.co/datasets/lmsys/lmsys-chat-1m.
7,281
227,406
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2309.11998", "region:us" ]
2023-09-20T06:33:44
null
null
65919009a78a277803ef68df
omar07ibrahim/AZERBAIJAN-ENGLISH-DATASET
omar07ibrahim
{"license": "cc-by-4.0"}
false
null
2023-12-31T16:01:12
4
4
false
6985dd6cfc70886134f72eac4d0a6f1fc1b09af6
null
28
337
[ "license:cc-by-4.0", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2023-12-31T16:00:09
null
null
661823b590a8b6724f1c6534
HuggingFaceM4/the_cauldron
HuggingFaceM4
{"dataset_info": [{"config_name": "ai2d", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 435362437.84770346, "num_examples": 2434}], "download_size": 438136609, "dataset_size": 435362437.84770346}, {"config_name": "aokvqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 871997710, "num_examples": 16539}], "download_size": 893265070, "dataset_size": 871997710}, {"config_name": "chart2text", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1060566797.2728182, "num_examples": 26961}], "download_size": 1103141721, "dataset_size": 1060566797.2728182}, {"config_name": "chartqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 784719364.9441738, "num_examples": 18265}], "download_size": 803192402, "dataset_size": 784719364.9441738}, {"config_name": "clevr", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 11522617868, "num_examples": 70000}], "download_size": 13267429872, "dataset_size": 11522617868}, {"config_name": "clevr_math", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 13308311206, "num_examples": 70000}], "download_size": 16315284, "dataset_size": 13308311206}, {"config_name": "cocoqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2213960474, "num_examples": 46287}], "download_size": 2393991009, "dataset_size": 2213960474}, {"config_name": "datikz", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 481233278, "num_examples": 47974}], "download_size": 613100257, "dataset_size": 481233278}, {"config_name": "diagram_image_to_text", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 18877197, "num_examples": 300}], "download_size": 18706661, "dataset_size": 18877197}, {"config_name": "docvqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 6885686042, "num_examples": 10189}], "download_size": 6887803845, "dataset_size": 6885686042}, {"config_name": "dvqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 3689940101, "num_examples": 200000}], "download_size": 4295254110, "dataset_size": 3689940101}, {"config_name": "figureqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1901887152, "num_examples": 100000}], "download_size": 2220036667, "dataset_size": 1901887152}, {"config_name": "finqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 135268568, "num_examples": 5276}], "download_size": 123698250, "dataset_size": 135268568}, {"config_name": "geomverse", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 951640204, "num_examples": 9303}], "download_size": 323746516, "dataset_size": 951640204}, {"config_name": "hateful_memes", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 3035059823, "num_examples": 8500}], "download_size": 3054208907, "dataset_size": 3035059823}, {"config_name": "hitab", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 161130580, "num_examples": 2500}], "download_size": 158295807, "dataset_size": 161130580}, {"config_name": "iam", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1129180352, "num_examples": 5663}], "download_size": 1128935602, "dataset_size": 1129180352}, {"config_name": "iconqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 264513634.7170419, "num_examples": 27307}], "download_size": 326674337, "dataset_size": 264513634.7170419}, {"config_name": "infographic_vqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 291677986, "num_examples": 2118}], "download_size": 292351760, "dataset_size": 291677986}, {"config_name": "intergps", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 24982328.291771192, "num_examples": 1280}], "download_size": 24870320, "dataset_size": 24982328.291771192}, {"config_name": "localized_narratives", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 21380844262.41927, "num_examples": 199998}], "download_size": 22164342699, "dataset_size": 21380844262.41927}, {"config_name": "mapqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 3238062926, "num_examples": 37417}], "download_size": 3307676486, "dataset_size": 3238062926}, {"config_name": "mimic_cgd", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 12592929433, "num_examples": 70939}], "download_size": 13147641100, "dataset_size": 12592929433}, {"config_name": "multihiertt", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1356766489.046, "num_examples": 7619}], "download_size": 1360814135, "dataset_size": 1356766489.046}, {"config_name": "nlvr2", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 8375492591, "num_examples": 50426}], "download_size": 10838882020, "dataset_size": 8375492591}, {"config_name": "ocrvqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 5467134439, "num_examples": 165746}], "download_size": 6078073015, "dataset_size": 5467134439}, {"config_name": "okvqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 281454288182.492, "num_examples": 9009}], "download_size": 3009062, "dataset_size": 281454288182.492}, {"config_name": "plotqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 7837605221, "num_examples": 157070}], "download_size": 5320249066, "dataset_size": 7837605221}, {"config_name": "raven", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1506550467, "num_examples": 42000}], "download_size": 1720691636, "dataset_size": 1506550467}, {"config_name": "rendered_text", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 11086896502, "num_examples": 10000}], "download_size": 11086960376, "dataset_size": 11086896502}, {"config_name": "robut_sqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 679135952, "num_examples": 8514}], "download_size": 678722272, "dataset_size": 679135952}, {"config_name": "robut_wikisql", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 5950915477, "num_examples": 74989}], "download_size": 6160300141, "dataset_size": 5950915477}, {"config_name": "robut_wtq", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4023729236, "num_examples": 38246}], "download_size": 4061523247, "dataset_size": 4023729236}, {"config_name": "scienceqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 284601898.76188564, "num_examples": 4976}], "download_size": 283265438, "dataset_size": 284601898.76188564}, {"config_name": "screen2words", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1670723783, "num_examples": 15730}], "download_size": 1346254268, "dataset_size": 1670723783}, {"config_name": "spot_the_diff", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1643123792, "num_examples": 8566}], "download_size": 1526740548, "dataset_size": 1643123792}, {"config_name": "st_vqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 696265340, "num_examples": 17247}], "download_size": 720462890, "dataset_size": 696265340}, {"config_name": "tabmwp", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 265337140.19648907, "num_examples": 22722}], "download_size": 306643610, "dataset_size": 265337140.19648907}, {"config_name": "tallyqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4267143189, "num_examples": 98680}], "download_size": 4662245152, "dataset_size": 4267143189}, {"config_name": "tat_qa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 73213942, "num_examples": 2199}], "download_size": 70862028, "dataset_size": 73213942}, {"config_name": "textcaps", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 5938676115, "num_examples": 21953}], "download_size": 6175419911, "dataset_size": 5938676115}, {"config_name": "textvqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 5939437331, "num_examples": 21953}], "download_size": 6175442839, "dataset_size": 5939437331}, {"config_name": "tqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 380346870.806369, "num_examples": 1493}], "download_size": 378238311, "dataset_size": 380346870.806369}, {"config_name": "vistext", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 541250281, "num_examples": 9969}], "download_size": 386023352, "dataset_size": 541250281}, {"config_name": "visual7w", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4432168161, "num_examples": 14366}], "download_size": 4443083495, "dataset_size": 4432168161}, {"config_name": "visualmrc", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2941051627.2639995, "num_examples": 3027}], "download_size": 2912911810, "dataset_size": 2941051627.2639995}, {"config_name": "vqarad", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 16561537, "num_examples": 313}], "download_size": 16226241, "dataset_size": 16561537}, {"config_name": "vqav2", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 10630091683, "num_examples": 82772}], "download_size": 13479302437, "dataset_size": 10630091683}, {"config_name": "vsr", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 107489763, "num_examples": 2157}], "download_size": 107576214, "dataset_size": 107489763}, {"config_name": "websight", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2011365901, "num_examples": 10000}], "download_size": 1601222161, "dataset_size": 2011365901}], "configs": [{"config_name": "ai2d", "data_files": [{"split": "train", "path": "ai2d/train-*"}]}, {"config_name": "aokvqa", "data_files": [{"split": "train", "path": "aokvqa/train-*"}]}, {"config_name": "chart2text", "data_files": [{"split": "train", "path": "chart2text/train-*"}]}, {"config_name": "chartqa", "data_files": [{"split": "train", "path": "chartqa/train-*"}]}, {"config_name": "clevr", "data_files": [{"split": "train", "path": "clevr/train-*"}]}, {"config_name": "clevr_math", "data_files": [{"split": "train", "path": "clevr_math/train-*"}]}, {"config_name": "cocoqa", "data_files": [{"split": "train", "path": "cocoqa/train-*"}]}, {"config_name": "datikz", "data_files": [{"split": "train", "path": "datikz/train-*"}]}, {"config_name": "diagram_image_to_text", "data_files": [{"split": "train", "path": "diagram_image_to_text/train-*"}]}, {"config_name": "docvqa", "data_files": [{"split": "train", "path": "docvqa/train-*"}]}, {"config_name": "dvqa", "data_files": [{"split": "train", "path": "dvqa/train-*"}]}, {"config_name": "figureqa", "data_files": [{"split": "train", "path": "figureqa/train-*"}]}, {"config_name": "finqa", "data_files": [{"split": "train", "path": "finqa/train-*"}]}, {"config_name": "geomverse", "data_files": [{"split": "train", "path": "geomverse/train-*"}]}, {"config_name": "hateful_memes", "data_files": [{"split": "train", "path": "hateful_memes/train-*"}]}, {"config_name": "hitab", "data_files": [{"split": "train", "path": "hitab/train-*"}]}, {"config_name": "iam", "data_files": [{"split": "train", "path": "iam/train-*"}]}, {"config_name": "iconqa", "data_files": [{"split": "train", "path": "iconqa/train-*"}]}, {"config_name": "infographic_vqa", "data_files": [{"split": "train", "path": "infographic_vqa/train-*"}]}, {"config_name": "intergps", "data_files": [{"split": "train", "path": "intergps/train-*"}]}, {"config_name": "localized_narratives", "data_files": [{"split": "train", "path": "localized_narratives/train-*"}]}, {"config_name": "mapqa", "data_files": [{"split": "train", "path": "mapqa/train-*"}]}, {"config_name": "mimic_cgd", "data_files": [{"split": "train", "path": "mimic_cgd/train-*"}]}, {"config_name": "multihiertt", "data_files": [{"split": "train", "path": "multihiertt/train-*"}]}, {"config_name": "nlvr2", "data_files": [{"split": "train", "path": "nlvr2/train-*"}]}, {"config_name": "ocrvqa", "data_files": [{"split": "train", "path": "ocrvqa/train-*"}]}, {"config_name": "okvqa", "data_files": [{"split": "train", "path": "okvqa/train-*"}]}, {"config_name": "plotqa", "data_files": [{"split": "train", "path": "plotqa/train-*"}]}, {"config_name": "raven", "data_files": [{"split": "train", "path": "raven/train-*"}]}, {"config_name": "rendered_text", "data_files": [{"split": "train", "path": "rendered_text/train-*"}]}, {"config_name": "robut_sqa", "data_files": [{"split": "train", "path": "robut_sqa/train-*"}]}, {"config_name": "robut_wikisql", "data_files": [{"split": "train", "path": "robut_wikisql/train-*"}]}, {"config_name": "robut_wtq", "data_files": [{"split": "train", "path": "robut_wtq/train-*"}]}, {"config_name": "scienceqa", "data_files": [{"split": "train", "path": "scienceqa/train-*"}]}, {"config_name": "screen2words", "data_files": [{"split": "train", "path": "screen2words/train-*"}]}, {"config_name": "spot_the_diff", "data_files": [{"split": "train", "path": "spot_the_diff/train-*"}]}, {"config_name": "st_vqa", "data_files": [{"split": "train", "path": "st_vqa/train-*"}]}, {"config_name": "tabmwp", "data_files": [{"split": "train", "path": "tabmwp/train-*"}]}, {"config_name": "tallyqa", "data_files": [{"split": "train", "path": "tallyqa/train-*"}]}, {"config_name": "tat_qa", "data_files": [{"split": "train", "path": "tat_qa/train-*"}]}, {"config_name": "textcaps", "data_files": [{"split": "train", "path": "textcaps/train-*"}]}, {"config_name": "textvqa", "data_files": [{"split": "train", "path": "textvqa/train-*"}]}, {"config_name": "tqa", "data_files": [{"split": "train", "path": "tqa/train-*"}]}, {"config_name": "vistext", "data_files": [{"split": "train", "path": "vistext/train-*"}]}, {"config_name": "visual7w", "data_files": [{"split": "train", "path": "visual7w/train-*"}]}, {"config_name": "visualmrc", "data_files": [{"split": "train", "path": "visualmrc/train-*"}]}, {"config_name": "vqarad", "data_files": [{"split": "train", "path": "vqarad/train-*"}]}, {"config_name": "vqav2", "data_files": [{"split": "train", "path": "vqav2/train-*"}]}, {"config_name": "vsr", "data_files": [{"split": "train", "path": "vsr/train-*"}]}, {"config_name": "websight", "data_files": [{"split": "train", "path": "websight/train-*"}]}]}
false
null
2024-05-06T13:37:52
398
4
false
847a98a779b1652d65111daf20c972dfcd333605
Dataset Card for The Cauldron Dataset description The Cauldron is part of the Idefics2 release. It is a massive collection of 50 vision-language datasets (training sets only) that were used for the fine-tuning of the vision-language model Idefics2. Load the dataset To load the dataset, install the library datasets with pip install datasets. Then, from datasets import load_dataset ds = load_dataset("HuggingFaceM4/the_cauldron", "ai2d") to download… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceM4/the_cauldron.
862,378
2,331,115
[ "size_categories:1M<n<10M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:1603.07396", "arxiv:2206.01718", "arxiv:2208.05358", "arxiv:1612.06890", "arxiv:2310.00367", "arxiv:1710.07300", "arxiv:2312.12241", "arxiv:1912.03098", "arxiv:2211.08545", "arxiv:2306.05425", "arxiv:1709.00103", "arxiv:2003.12462", "arxiv:1612.00837", "arxiv:2205.00363", "arxiv:2403.09029", "arxiv:2405.02246", "region:us" ]
2024-04-11T17:53:57
null
null
666513f121aa69e38699e6d3
UCSC-VLAA/MedTrinity-25M
UCSC-VLAA
{"language": ["en"], "size_categories": ["10M<n<100M"], "task_categories": ["question-answering"], "dataset_info": [{"config_name": "25M_full", "features": [{"name": "id", "dtype": "string"}, {"name": "file_name", "dtype": "string"}, {"name": "caption", "dtype": "string"}, {"name": "source", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 25234102586, "num_examples": 24760560}], "download_size": 7353330306, "dataset_size": 25234102586}, {"config_name": "default", "features": [{"name": "image", "dtype": "image"}, {"name": "id", "dtype": "string"}, {"name": "caption", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4781050841.25, "num_examples": 161630}], "download_size": 8300138103, "dataset_size": 4781050841.25}], "configs": [{"config_name": "25M_full", "data_files": [{"split": "train", "path": "25M_full/train-*"}]}, {"config_name": "25M_demo", "data_files": [{"split": "train", "path": "data/train-*"}]}], "tags": ["medical"]}
false
null
2024-10-11T00:47:43
140
4
false
89e5c684794e5c4cc1af9e8f1a7798af7c937dbf
Tutorial of using Medtrinity-25M MedTrinity-25M, a comprehensive, large-scale multimodal dataset for medicine, covering over 25 million images across 10 modalities, with multigranular annotations for more than 65 diseases. These enriched annotations encompass both global textual information, such as disease/lesion type, modality, region-specific descriptions, and inter-regional relationships, as well as detailed local annotations for regions of interest (ROIs), including… See the full description on the dataset page: https://huggingface.co/datasets/UCSC-VLAA/MedTrinity-25M.
2,659
12,108
[ "task_categories:question-answering", "language:en", "size_categories:10M<n<100M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2408.02900", "region:us", "medical" ]
2024-06-09T02:31:13
null
null
666ae33f611afe17cd982829
BAAI/Infinity-Instruct
BAAI
{"configs": [{"config_name": "3M", "data_files": [{"split": "train", "path": "3M/*"}]}, {"config_name": "7M", "data_files": [{"split": "train", "path": "7M/*"}]}, {"config_name": "0625", "data_files": [{"split": "train", "path": "0625/*"}]}, {"config_name": "Gen", "data_files": [{"split": "train", "path": "Gen/*"}]}, {"config_name": "7M_domains", "data_files": [{"split": "train", "path": "7M_domains/*/*"}]}], "task_categories": ["text-generation"], "language": ["en", "zh"], "size_categories": ["1M<n<10M"], "license": "cc-by-sa-4.0", "extra_gated_prompt": "You agree to not use the dataset to conduct experiments that cause harm to human subjects.", "extra_gated_fields": {"Company/Organization": "text", "Country": "country"}}
false
null
2025-02-25T10:39:37
613
4
false
d31c749e9f19e1a809bf808dd78afb6fd4cf4e17
Infinity Instruct Beijing Academy of Artificial Intelligence (BAAI) [Paper][Code][🤗] (would be released soon) The quality and scale of instruction data are crucial for model performance. Recently, open-source models have increasingly relied on fine-tuning datasets comprising millions of instances, necessitating both high quality and large scale. However, the open-source community has long been constrained by the high costs associated with building such extensive and… See the full description on the dataset page: https://huggingface.co/datasets/BAAI/Infinity-Instruct.
4,606
52,118
[ "task_categories:text-generation", "language:en", "language:zh", "license:cc-by-sa-4.0", "size_categories:10M<n<100M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2402.00530", "arxiv:2405.19327", "arxiv:2409.07045", "arxiv:2408.07089", "region:us" ]
2024-06-13T12:17:03
null
null
667ab99edb56acf219d8d646
FreedomIntelligence/PubMedVision
FreedomIntelligence
{"license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en"], "tags": ["GPT-4V", "Vision", "medical", "biology"], "size_categories": ["1M<n<10M"], "configs": [{"config_name": "PubMedVision_Alignment_VQA", "data_files": "PubMedVision_Alignment_VQA.json"}, {"config_name": "PubMedVision_InstructionTuning_VQA", "data_files": "PubMedVision_InstructionTuning_VQA.json"}, {"config_name": "_Original_Caption", "data_files": "PubMedVision_Original_Caption.json"}, {"config_name": "_Chinese_Version", "data_files": "PubMedVision_Chinese.json"}]}
false
null
2025-02-18T07:44:10
69
4
false
3c84e04b38bceb5341419b9a4f8ca37ba790cb84
News [2025/02/18]: We add the original captions of PubMedVision in PubMedVision_Original_Caption.json, as well as the Chinese version of PubMedVision in PubMedVision_Chinese.json. [2024/07/01]: We add annotations for 'body_part' and 'modality' of images, utilizing the HuatuoGPT-Vision-7B model. PubMedVision PubMedVision is a large-scale medical VQA dataset. We extracted high-quality image-text pairs from PubMed and used GPT-4V to reformat them to enhance their quality.… See the full description on the dataset page: https://huggingface.co/datasets/FreedomIntelligence/PubMedVision.
1,434
5,701
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:1M<n<10M", "format:json", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2406.19280", "region:us", "GPT-4V", "Vision", "medical", "biology" ]
2024-06-25T12:35:42
null
null
668d2093d141a8c8555293c9
CohereLabs/lbpp
CohereLabs
{"license": "apache-2.0"}
false
null
2025-04-04T17:16:57
24
4
false
a4753d1cf9b1e2a6261cf4dacaa7f197ef5cf3d2
*Less Basic Python Programming* is a collection of 161 programming problems with accompanying unit tests. They were created with the aim of being fresh (not leaked at the time of creation) and more difficult than similar datasets (e.g., HumanEval and MBPP). It can serve as a drop-in replacement or enrichment of those datasets as they are structured in an equivalent way.
209
2,166
[ "license:apache-2.0", "arxiv:2504.00698", "region:us" ]
2024-07-09T11:35:47
null
@inproceedings{matton-etal-2024-leakage, title = "On Leakage of Code Generation Evaluation Datasets", author = "Matton, Alexandre and Sherborne, Tom and Aumiller, Dennis and Tommasone, Elena and Alizadeh, Milad and He, Jingyi and Ma, Raymond and Voisin, Maxime and Gilsenan-McMahon, Ellen and Gall{\'e}, Matthias", editor = "Al-Onaizan, Yaser and Bansal, Mohit and Chen, Yun-Nung", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024", month = nov, year = "2024", address = "Miami, Florida, USA", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2024.findings-emnlp.772/", doi = "10.18653/v1/2024.findings-emnlp.772", pages = "13215--13223", }
669624d8534f204a2b973819
AI-MO/NuminaMath-TIR
AI-MO
{"language": ["en"], "license": "apache-2.0", "task_categories": ["text-generation"], "pretty_name": "NuminaMath TIR", "dataset_info": {"features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 327147067, "num_examples": 72441}, {"name": "test", "num_bytes": 461331, "num_examples": 99}], "download_size": 147557990, "dataset_size": 327608398}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "tags": ["math", "aimo"]}
false
null
2024-11-25T05:32:53
125
4
false
77a91d7b7a1a98ac4b1beb7d86c09d156b935dcd
Dataset Card for NuminaMath CoT Dataset Summary Tool-integrated reasoning (TIR) plays a crucial role in this competition. However, collecting and annotating such data is both costly and time-consuming. To address this, we selected approximately 70k problems from the NuminaMath-CoT dataset, focusing on those with numerical outputs, most of which are integers. We then utilized a pipeline leveraging GPT-4 to generate TORA-like reasoning paths, executing the code and… See the full description on the dataset page: https://huggingface.co/datasets/AI-MO/NuminaMath-TIR.
9,017
53,850
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "math", "aimo" ]
2024-07-16T07:44:24
null
null