Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Libraries:
Datasets
pandas
fiction4sentiment / README.md
PascaleF's picture
Upload dataset
38ff464 verified
metadata
dataset_info:
  features:
    - name: text
      dtype: string
    - name: label
      dtype: float64
    - name: category
      dtype: string
    - name: author
      dtype: string
    - name: id
      dtype: string
    - name: year
      dtype: float64
    - name: org_lang
      dtype: string
    - name: annotator_1
      dtype: float64
    - name: annotator_2
      dtype: float64
    - name: annotator_3
      dtype: float64
    - name: tr_xlm_roberta
      dtype: float64
    - name: vader
      dtype: float64
    - name: __index_level_0__
      dtype: string
  splits:
    - name: train
      num_bytes: 1051007
      num_examples: 6300
  download_size: 326724
  dataset_size: 1051007
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*

Dataset description

A dataset of literary sentences human-annotated for valence (0-10) used for developing multilingual SA

🔬 Data

No. texts No. annotations No. words Period
Fairy tales 3 772 18,597 1837-1847
Hymns 65 2,026 12,798 1798-1873
Prose 1 1,923 30,279 1952
Poetry 40 1,579 11,576 1965

This is the Fiction4 dataset of literary texts, spanning 109 individual texts across 4 genres and two languages (English and Danish) in the 19th and 20th century. The corpus consists of 3 main authors, Sylvia Plath for poetry, Ernest Hemingway for prose and H.C. Andersen for fairytales. Hymns represent a heterogenous colleciton from Danish official church hymnbooks from 1798-1873. The corpus was annotated for valence on a sentence basis by at least 2 annotators/sentence.

Some tags:

  • text: sentence from a literary piece
  • label: human mean annotated score (0-10)
  • category: which literary genre it is [prose, poetry, hymns, fairytales]
  • automatic sentiment scores of the sentences via a model-based & a dictionary based method. Columns=[tr_xlm_roberta, vader]
  • id: parent story or collection of text

Citation

If you want to use this data, please cite our work available here:

@inproceedings{feldkamp_sentiment_2024,
    title = {Sentiment {Below} the {Surface}: {Omissive} and {Evocative} {Strategies} in {Literature} and {Beyond}},
    shorttitle = {Sentiment {Below} the {Surface}},
    booktitle = {Computational {Humanities} {Research} 2024},
    publisher = {CEUR Workshop Proceedings},
    author = {Feldkamp, Pascale and Overgaard, Ea Lindhardt and Nielbo, Kristoffer Laigaard and Bizzoni, Yuri},
    year = {2024},
}