sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
sequencelengths 1
348
| keywords
sequencelengths 1
8
| score
int64 1
2.31k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
sequencelengths 1
128
⌀ | former_ids
sequencelengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-04-28 00:58:08
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A383122 | a(n) is the smallest number that can be expressed as the sum of the smallest number of powers with different exponents greater than one in n different ways (for unitary bases, the smallest possible exponents are considered). | [
"1",
"16",
"17",
"65",
"80",
"105",
"139",
"193",
"329",
"313",
"336",
"410",
"477",
"273",
"553",
"461",
"436",
"1219",
"942",
"10153",
"1595",
"1038",
"722",
"636",
"1769",
"1344",
"2045",
"2381",
"1805",
"2379",
"3683",
"2365",
"1611",
"3319",
"3815",
"4416",
"4838",
"4029",
"3531",
"5606",
"5789",
"4411",
"4341",
"5849",
"7392",
"1642",
"4885",
"8246",
"3074",
"5251",
"5774",
"3165",
"2498",
"12347",
"9987",
"5405",
"8075",
"11101",
"2346",
"6749"
] | [
"nonn",
"new"
] | 11 | 1 | 2 | [
"A351062",
"A351063",
"A351064",
"A351065",
"A351066",
"A383122"
] | null | Alberto Zanoni, Apr 17 2025 | 2025-04-18T22:24:52 | oeisdata/seq/A383/A383122.seq | a03bafd2626c3b4164448c887d26c65d |
A383125 | Number of cyclic edge cuts in the n-web graph. | [
"8",
"48",
"2592",
"113856"
] | [
"nonn",
"more",
"new"
] | 4 | 3 | 1 | null | null | Eric W. Weisstein, Apr 17 2025 | 2025-04-17T08:11:16 | oeisdata/seq/A383/A383125.seq | fdcf7188c699fb7118ebf6497a5e42c8 |
A383131 | a(n) is the number of iterations that n requires to reach 1 under the map x -> -x/2 if x is even, 3x + 1 if x is odd; a(n) = -1 if 1 is never reached. | [
"0",
"3",
"12",
"2",
"5",
"5",
"8",
"5",
"11",
"11",
"50",
"14",
"14",
"14",
"53",
"4",
"17",
"17",
"43",
"7",
"7",
"7",
"20",
"7",
"46",
"46",
"59",
"10",
"10",
"10",
"23",
"7",
"49",
"49",
"62",
"13",
"13",
"13",
"13",
"13",
"26",
"26",
"39",
"52",
"52",
"52",
"65",
"16",
"16",
"16",
"78",
"16",
"16",
"16",
"29",
"16",
"42",
"42",
"55",
"55",
"55",
"55",
"68",
"6",
"19",
"19",
"19",
"19",
"19"
] | [
"nonn",
"new"
] | 13 | 1 | 2 | [
"A006577",
"A381055",
"A383131"
] | null | Ya-Ping Lu, Apr 17 2025 | 2025-04-19T01:59:17 | oeisdata/seq/A383/A383131.seq | 00b4b2d73a97e05e6e1354d14e14330a |
A383132 | a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n*k,k) * n^k. | [
"1",
"2",
"33",
"2701",
"524993",
"181752001",
"97735073905",
"75179269556672",
"78240951854025217",
"105806762566689176353",
"180297512864534759056001",
"377878889913778527874694227",
"955217573424445946022789385537",
"2865620569274978738097814056365899",
"10064763360358683666070320479027168465"
] | [
"nonn",
"new"
] | 7 | 0 | 2 | [
"A084771",
"A187021",
"A331656",
"A340971",
"A383120",
"A383132",
"A383133"
] | null | Ilya Gutkovskiy, Apr 17 2025 | 2025-04-19T05:17:12 | oeisdata/seq/A383/A383132.seq | 8b5adc546228656376c6976936a64d84 |
A383133 | a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(n*k,k) * n^k. | [
"1",
"0",
"17",
"1889",
"412225",
"151448249",
"84430503361",
"66535567456546",
"70456680210155009",
"96530372235620300465",
"166169585125820280654001",
"351113456811120647774884511",
"893491183170443755035588745153",
"2695374684029443253628238600963667",
"9511442599320236554084097413617603681"
] | [
"nonn",
"new"
] | 6 | 0 | 3 | [
"A307885",
"A331657",
"A340972",
"A383121",
"A383132",
"A383133"
] | null | Ilya Gutkovskiy, Apr 17 2025 | 2025-04-19T05:22:14 | oeisdata/seq/A383/A383133.seq | 3ff24537a7f1fa48d8433ddaebac6069 |
A383134 | Array read by ascending antidiagonals: A(n,k) is the length of the arithmetic progression of only primes having difference n and first term prime(k). | [
"2",
"1",
"1",
"2",
"3",
"1",
"1",
"1",
"2",
"1",
"2",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"5",
"1",
"1",
"1",
"2",
"1",
"2",
"3",
"1",
"3",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"4",
"1",
"1",
"1",
"1",
"1",
"2",
"3",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1"
] | [
"nonn",
"tabl",
"new"
] | 12 | 1 | 1 | [
"A000012",
"A006512",
"A040976",
"A054977",
"A088430",
"A175191",
"A206045",
"A237453",
"A383134"
] | null | Stefano Spezia, Apr 17 2025 | 2025-04-18T09:53:25 | oeisdata/seq/A383/A383134.seq | 02e4abda23fbdba3feba2c540e518a6b |
A383136 | a(n) = Sum_{k=0..n} k^2 * 2^(n-k) * binomial(n,k). | [
"0",
"1",
"8",
"45",
"216",
"945",
"3888",
"15309",
"58320",
"216513",
"787320",
"2814669",
"9920232",
"34543665",
"119042784",
"406552365",
"1377495072",
"4634696961",
"15496819560",
"51526925037",
"170465015160",
"561372288561",
"1841022163728",
"6014703091725",
"19581781196016",
"63546645708225",
"205608702558168"
] | [
"nonn",
"easy",
"new"
] | 9 | 0 | 3 | [
"A027471",
"A383136",
"A383137",
"A383138",
"A383139"
] | null | Seiichi Manyama, Apr 17 2025 | 2025-04-17T12:27:58 | oeisdata/seq/A383/A383136.seq | 4e68baf6407516237396c3e49026f7b0 |
A383137 | a(n) = Sum_{k=0..n} k^3 * 2^(n-k) * binomial(n,k). | [
"0",
"1",
"12",
"87",
"504",
"2565",
"11988",
"52731",
"221616",
"898857",
"3542940",
"13640319",
"51490728",
"191141613",
"699376356",
"2527001955",
"9030245472",
"31955015889",
"112093661484",
"390132432423",
"1348223301720",
"4629287423061",
"15802106905332",
"53651151578187",
"181257000301584"
] | [
"nonn",
"easy",
"new"
] | 10 | 0 | 3 | [
"A027471",
"A383136",
"A383137",
"A383138",
"A383139"
] | null | Seiichi Manyama, Apr 17 2025 | 2025-04-17T12:27:54 | oeisdata/seq/A383/A383137.seq | 28b97935ca8ee782f377ae87e1d404d1 |
A383138 | a(n) = Sum_{k=0..n} k^4 * 2^(n-k) * binomial(n,k). | [
"0",
"1",
"20",
"189",
"1320",
"7785",
"41148",
"201285",
"929232",
"4100625",
"17452260",
"72098829",
"290521080",
"1146082041",
"4439303820",
"16923738645",
"63619864992",
"236206924065",
"867305334708",
"3152957079645",
"11359168737480",
"40589657212041",
"143957705302620",
"507079568653029"
] | [
"nonn",
"easy",
"new"
] | 10 | 0 | 3 | [
"A027471",
"A383136",
"A383137",
"A383138",
"A383139"
] | null | Seiichi Manyama, Apr 17 2025 | 2025-04-17T12:27:50 | oeisdata/seq/A383/A383138.seq | b0b362481919ed27e301d27c7792d3e4 |
A383139 | a(n) = Sum_{k=0..n} k^5 * 2^(n-k) * binomial(n,k). | [
"0",
"1",
"36",
"447",
"3768",
"25725",
"153468",
"832923",
"4213296",
"20179449",
"92510100",
"409137399",
"1755881064",
"7345518453",
"30059956332",
"120676965075",
"476358203232",
"1852442299377",
"7108046758404",
"26948581794351",
"101065091563800",
"375297714478701",
"1381124599327836",
"5040775635099147"
] | [
"nonn",
"easy",
"new"
] | 8 | 0 | 3 | [
"A027471",
"A383136",
"A383137",
"A383138",
"A383139"
] | null | Seiichi Manyama, Apr 17 2025 | 2025-04-17T12:27:44 | oeisdata/seq/A383/A383139.seq | 70abc524d9ae58167060cdc76585314b |
A383140 | Triangle read by rows: the coefficients of polynomials (1/3^(m-n)) * Sum_{k=0..m} k^n * 2^(m-k) * binomial(m,k) in the variable m. | [
"1",
"0",
"1",
"0",
"2",
"1",
"0",
"2",
"6",
"1",
"0",
"-6",
"20",
"12",
"1",
"0",
"-30",
"10",
"80",
"20",
"1",
"0",
"42",
"-320",
"270",
"220",
"30",
"1",
"0",
"882",
"-1386",
"-770",
"1470",
"490",
"42",
"1",
"0",
"954",
"7308",
"-15064",
"2800",
"5180",
"952",
"56",
"1",
"0",
"-39870",
"101826",
"-39340",
"-61992",
"29820",
"14364",
"1680",
"72",
"1",
"0",
"-203958",
"-40680",
"841770",
"-666820",
"-86940",
"139440",
"34020",
"2760",
"90",
"1"
] | [
"sign",
"tabl",
"new"
] | 36 | 0 | 5 | [
"A000007",
"A027471",
"A129062",
"A133494",
"A179929",
"A209849",
"A212846",
"A383136",
"A383137",
"A383138",
"A383139",
"A383140"
] | null | Seiichi Manyama, Apr 17 2025 | 2025-04-18T08:44:25 | oeisdata/seq/A383/A383140.seq | 06016fc75d031b26767dd6e3047e21c4 |
A383142 | Smallest positive integer with shortest addition-subtraction chain of length n. | [
"1",
"2",
"3",
"5",
"7",
"11",
"19",
"29",
"53",
"87",
"151",
"267",
"461",
"811",
"1383",
"2357",
"4277",
"7499",
"14003",
"25931",
"44269",
"87773",
"152947",
"271563"
] | [
"nonn",
"hard",
"more",
"new"
] | 10 | 0 | 2 | [
"A003064",
"A128998",
"A383001",
"A383142",
"A383143"
] | null | Jinyuan Wang, Apr 17 2025 | 2025-04-18T10:59:25 | oeisdata/seq/A383/A383142.seq | eaf4520aa56a68038b2c0113a2d42521 |
A383143 | Number of positive integers with a shortest addition-subtraction chain of length n. | [
"1",
"1",
"2",
"3",
"5",
"9",
"16",
"28",
"49",
"88",
"156",
"280",
"499",
"904",
"1639",
"2986",
"5442",
"9936",
"18134"
] | [
"nonn",
"hard",
"more",
"new"
] | 9 | 0 | 3 | [
"A003065",
"A128998",
"A383002",
"A383142",
"A383143"
] | null | Jinyuan Wang, Apr 17 2025 | 2025-04-18T10:59:33 | oeisdata/seq/A383/A383143.seq | 81d2d65b91ee51677a80823332d128a5 |
A383144 | Number of abelian/medial racks of order n, up to isomorphism. | [
"1",
"1",
"2",
"6",
"18",
"68",
"329",
"1965",
"15455",
"155902",
"2064870",
"35982366",
"832699635",
"25731050872"
] | [
"hard",
"more",
"nonn",
"new"
] | 8 | 0 | 3 | [
"A165200",
"A176077",
"A177886",
"A178432",
"A179010",
"A181769",
"A181770",
"A181771",
"A193024",
"A196111",
"A198147",
"A225744",
"A226172",
"A226173",
"A226174",
"A226193",
"A236146",
"A242044",
"A242275",
"A243931",
"A248908",
"A254434",
"A257351",
"A383144",
"A383145",
"A383146"
] | null | Luc Ta, Apr 17 2025 | 2025-04-24T16:51:00 | oeisdata/seq/A383/A383144.seq | 1110fd4108d289e309c9c4d4078ab30e |
A383145 | Number of GL-racks of order n, up to isomorphism. | [
"1",
"1",
"4",
"13",
"62",
"308",
"2132",
"17268",
"189373"
] | [
"hard",
"more",
"nonn",
"new"
] | 10 | 0 | 3 | [
"A165200",
"A176077",
"A177886",
"A178432",
"A179010",
"A181769",
"A181770",
"A181771",
"A193024",
"A196111",
"A198147",
"A225744",
"A226172",
"A226173",
"A226174",
"A226193",
"A236146",
"A242044",
"A242275",
"A243931",
"A248908",
"A254434",
"A257351",
"A374939",
"A374942",
"A374943",
"A374944",
"A374945",
"A374946",
"A374947",
"A383144",
"A383145",
"A383146"
] | null | Luc Ta, Apr 17 2025 | 2025-04-25T03:08:23 | oeisdata/seq/A383/A383145.seq | 393801fbfa9dedc1aa78e0db0539d9e6 |
A383146 | Number of medial GL-racks of order n, up to isomorphism. | [
"1",
"1",
"4",
"13",
"61",
"298",
"2087",
"16941",
"187160"
] | [
"hard",
"more",
"nonn",
"new"
] | 8 | 0 | 3 | [
"A165200",
"A176077",
"A177886",
"A178432",
"A179010",
"A181769",
"A181770",
"A181771",
"A193024",
"A196111",
"A198147",
"A225744",
"A226172",
"A226173",
"A226174",
"A226193",
"A236146",
"A242044",
"A242275",
"A243931",
"A248908",
"A254434",
"A257351",
"A374939",
"A374942",
"A374943",
"A374944",
"A374945",
"A374946",
"A374947",
"A383144",
"A383145",
"A383146"
] | null | Luc Ta, Apr 17 2025 | 2025-04-25T03:08:31 | oeisdata/seq/A383/A383146.seq | b87400b1b879ebc4631dea0367284850 |
A383147 | Sum of odd divisors m of n such that there is a divisor d of n with d < m < 2*d. | [
"0",
"0",
"0",
"0",
"0",
"3",
"0",
"0",
"0",
"0",
"0",
"3",
"0",
"0",
"5",
"0",
"0",
"12",
"0",
"5",
"0",
"0",
"0",
"3",
"0",
"0",
"0",
"7",
"0",
"23",
"0",
"0",
"0",
"0",
"7",
"12",
"0",
"0",
"0",
"5",
"0",
"31",
"0",
"0",
"29",
"0",
"0",
"3",
"0",
"0",
"0",
"0",
"0",
"39",
"0",
"7",
"0",
"0",
"0",
"23",
"0",
"0",
"9",
"0",
"0",
"47",
"0",
"0",
"0",
"7",
"0",
"12",
"0",
"0",
"30",
"0",
"11",
"42",
"0",
"5",
"0",
"0",
"0",
"31",
"0",
"0",
"0",
"11",
"0",
"77",
"13",
"0",
"0",
"0",
"0"
] | [
"nonn",
"new"
] | 18 | 1 | 6 | [
"A000593",
"A237270",
"A237271",
"A237593",
"A239657",
"A379379",
"A383147",
"A383209"
] | null | Omar E. Pol, Apr 17 2025 | 2025-04-25T18:48:18 | oeisdata/seq/A383/A383147.seq | cff0fb5f47a8ba596407c7a67bb32a68 |
A383148 | k-facile numbers: Numbers m such that the sum of the divisors of m is equal to 2*m+s where s is a product of distinct divisors of m. | [
"12",
"18",
"20",
"24",
"30",
"40",
"42",
"54",
"56",
"60",
"66",
"78",
"84",
"88",
"90",
"102",
"104",
"114",
"120",
"132",
"138",
"140",
"168",
"174",
"186",
"196",
"204",
"222",
"224",
"234",
"246",
"252",
"258",
"264",
"270",
"280",
"282",
"308",
"312",
"318",
"348",
"354",
"360",
"364",
"366",
"368",
"380",
"402",
"414",
"420",
"426",
"438",
"440",
"456",
"464",
"468",
"474",
"476"
] | [
"nonn",
"new"
] | 22 | 1 | 1 | [
"A000203",
"A000396",
"A005101",
"A181595",
"A383148"
] | null | Joshua Zelinsky, Apr 17 2025 | 2025-04-24T18:27:20 | oeisdata/seq/A383/A383148.seq | bccfa6402c91903971ea22f2d4eb13bb |
A383149 | Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = (-1)^k * [m^k] (1/2^(m-n)) * Sum_{k=0..m} k^n * (-1)^m * 3^(m-k) * binomial(m,k). | [
"1",
"0",
"1",
"0",
"3",
"1",
"0",
"12",
"9",
"1",
"0",
"66",
"75",
"18",
"1",
"0",
"480",
"690",
"255",
"30",
"1",
"0",
"4368",
"7290",
"3555",
"645",
"45",
"1",
"0",
"47712",
"88536",
"52290",
"12705",
"1365",
"63",
"1",
"0",
"608016",
"1223628",
"831684",
"249585",
"36120",
"2562",
"84",
"1",
"0",
"8855040",
"19019664",
"14405580",
"5073012",
"915705",
"87696",
"4410",
"108",
"1"
] | [
"nonn",
"tabl",
"new"
] | 35 | 0 | 5 | [
"A000007",
"A001787",
"A122704",
"A123227",
"A129062",
"A178987",
"A209849",
"A383140",
"A383149",
"A383150",
"A383151",
"A383152",
"A383155",
"A383163",
"A383164"
] | null | Seiichi Manyama, Apr 18 2025 | 2025-04-18T08:44:21 | oeisdata/seq/A383/A383149.seq | eff235d093ef437e9cb10448b7a719e5 |
A383150 | a(n) = Sum_{k=0..n} k^3 * (-1)^k * 3^(n-k) * binomial(n,k). | [
"0",
"-1",
"2",
"18",
"64",
"160",
"288",
"224",
"-1024",
"-6912",
"-28160",
"-95744",
"-294912",
"-851968",
"-2351104",
"-6266880",
"-16252928",
"-41222144",
"-102629376",
"-251527168",
"-608174080",
"-1453326336",
"-3437232128",
"-8055160832",
"-18723373056",
"-43201331200",
"-99019128832",
"-225586446336"
] | [
"sign",
"easy",
"new"
] | 13 | 0 | 3 | [
"A001787",
"A178987",
"A383150",
"A383151",
"A383152",
"A383155"
] | null | Seiichi Manyama, Apr 18 2025 | 2025-04-18T08:45:24 | oeisdata/seq/A383/A383150.seq | 7c9c26968814be061ace0c137038934c |
A383151 | a(n) = Sum_{k=0..n} k^4 * (-1)^k * 3^(n-k) * binomial(n,k). | [
"0",
"-1",
"10",
"36",
"40",
"-160",
"-1152",
"-4480",
"-13568",
"-34560",
"-74240",
"-123904",
"-92160",
"425984",
"2867200",
"11796480",
"40763392",
"128122880",
"378667008",
"1070858240",
"2928148480",
"7795113984",
"20300431360",
"51900317696",
"130610626560",
"324219699200",
"795206483968",
"1929715384320"
] | [
"sign",
"easy",
"new"
] | 18 | 0 | 3 | [
"A001787",
"A178987",
"A383150",
"A383151",
"A383152",
"A383155"
] | null | Seiichi Manyama, Apr 18 2025 | 2025-04-23T16:21:30 | oeisdata/seq/A383/A383151.seq | c632c98bfd0182ec23e2989544a42ebe |
A383152 | a(n) = Sum_{k=0..n} k^5 * (-1)^k * 3^(n-k) * binomial(n,k). | [
"0",
"-1",
"26",
"18",
"-272",
"-1400",
"-4032",
"-7168",
"-1024",
"55296",
"294400",
"1086976",
"3354624",
"9132032",
"22249472",
"47923200",
"85983232",
"99155968",
"-102629376",
"-1237712896",
"-5688524800",
"-20775960576",
"-67868033024",
"-207022456832",
"-602167836672",
"-1690304512000",
"-4613767954432"
] | [
"sign",
"easy",
"new"
] | 17 | 0 | 3 | [
"A001787",
"A178987",
"A383150",
"A383151",
"A383152",
"A383155"
] | null | Seiichi Manyama, Apr 18 2025 | 2025-04-18T12:10:07 | oeisdata/seq/A383/A383152.seq | 1061d6a3a92c047ea09528855c1bf79b |
A383153 | Square array read by antidiagonals: A(m,n) is the number of 2m-by-2n fers-wazir tours. | [
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"4",
"4",
"1",
"1",
"9",
"22",
"9",
"1",
"1",
"23",
"124",
"124",
"23",
"1",
"1",
"62",
"818",
"1620",
"818",
"62",
"1",
"1",
"170",
"6004",
"25111",
"25111",
"6004",
"170",
"1",
"1",
"469",
"46488",
"455219",
"882130",
"455219",
"46488",
"469",
"1",
"1",
"1297",
"367880",
"9103712",
"36979379",
"36979379",
"9103712",
"367880",
"1297",
"1"
] | [
"nonn",
"tabl",
"new"
] | 58 | 1 | 1 | [
"A339190",
"A383153",
"A383154"
] | null | Don Knuth, Apr 18 2025 | 2025-04-25T14:31:07 | oeisdata/seq/A383/A383153.seq | 36adfc774e55bf3eb4b6776541c6895b |
A383154 | The number of 2n-by-2n fers-wazir tours. | [
"2",
"2",
"22",
"1620",
"882130",
"3465050546"
] | [
"nonn",
"more",
"new"
] | 13 | 1 | 1 | [
"A140519",
"A383153",
"A383154"
] | null | Don Knuth, Apr 18 2025 | 2025-04-18T13:57:51 | oeisdata/seq/A383/A383154.seq | d5b6fc08e418e963cbd652185c69d2c9 |
A383155 | a(n) = Sum_{k=0..n} k^6 * (-1)^k * 3^(n-k) * binomial(n,k). | [
"0",
"-1",
"58",
"-180",
"-1304",
"-2920",
"1008",
"34496",
"163840",
"525312",
"1285120",
"2241536",
"1124352",
"-12113920",
"-72052736",
"-282378240",
"-924581888",
"-2699493376",
"-7201751040",
"-17666670592",
"-39507722240",
"-77918109696",
"-121883328512",
"-78622228480",
"453588811776",
"2904974950400",
"11885785120768"
] | [
"sign",
"easy",
"new"
] | 15 | 0 | 3 | [
"A001787",
"A178987",
"A383150",
"A383151",
"A383152",
"A383155"
] | null | Seiichi Manyama, Apr 18 2025 | 2025-04-23T13:24:30 | oeisdata/seq/A383/A383155.seq | be46b60b1d637d6eb4d74567473c5ecf |
A383156 | The sum of the maximum exponents in the prime factorizations of the divisors of n. | [
"0",
"1",
"1",
"3",
"1",
"3",
"1",
"6",
"3",
"3",
"1",
"7",
"1",
"3",
"3",
"10",
"1",
"7",
"1",
"7",
"3",
"3",
"1",
"13",
"3",
"3",
"6",
"7",
"1",
"7",
"1",
"15",
"3",
"3",
"3",
"13",
"1",
"3",
"3",
"13",
"1",
"7",
"1",
"7",
"7",
"3",
"1",
"21",
"3",
"7",
"3",
"7",
"1",
"13",
"3",
"13",
"3",
"3",
"1",
"15",
"1",
"3",
"7",
"21",
"3",
"7",
"1",
"7",
"3",
"7",
"1",
"22",
"1",
"3",
"7",
"7",
"3",
"7",
"1",
"21",
"10",
"3",
"1"
] | [
"nonn",
"easy",
"new"
] | 10 | 1 | 4 | [
"A000005",
"A001221",
"A001620",
"A005117",
"A013661",
"A033150",
"A034444",
"A051903",
"A073184",
"A118914",
"A252505",
"A306016",
"A309307",
"A383156",
"A383157",
"A383158",
"A383159"
] | null | Amiram Eldar, Apr 18 2025 | 2025-04-20T02:39:02 | oeisdata/seq/A383/A383156.seq | 9f63fb68db5f5346f96b5b85998ba4f9 |
A383157 | a(n) is the numerator of the mean of the maximum exponents in the prime factorizations of the divisors of n. | [
"0",
"1",
"1",
"1",
"1",
"3",
"1",
"3",
"1",
"3",
"1",
"7",
"1",
"3",
"3",
"2",
"1",
"7",
"1",
"7",
"3",
"3",
"1",
"13",
"1",
"3",
"3",
"7",
"1",
"7",
"1",
"5",
"3",
"3",
"3",
"13",
"1",
"3",
"3",
"13",
"1",
"7",
"1",
"7",
"7",
"3",
"1",
"21",
"1",
"7",
"3",
"7",
"1",
"13",
"3",
"13",
"3",
"3",
"1",
"5",
"1",
"3",
"7",
"3",
"3",
"7",
"1",
"7",
"3",
"7",
"1",
"11",
"1",
"3",
"7",
"7",
"3",
"7",
"1",
"21",
"2",
"3",
"1",
"5",
"3"
] | [
"nonn",
"easy",
"frac",
"new"
] | 10 | 1 | 6 | [
"A000005",
"A001248",
"A051903",
"A118914",
"A308043",
"A345231",
"A361062",
"A383156",
"A383157",
"A383158"
] | null | Amiram Eldar, Apr 18 2025 | 2025-04-20T02:39:14 | oeisdata/seq/A383/A383157.seq | 448f038bf717f5aedd12186906513b37 |
A383158 | a(n) is the denominator of the mean of the maximum exponents in the prime factorizations of the divisors of n. | [
"1",
"2",
"2",
"1",
"2",
"4",
"2",
"2",
"1",
"4",
"2",
"6",
"2",
"4",
"4",
"1",
"2",
"6",
"2",
"6",
"4",
"4",
"2",
"8",
"1",
"4",
"2",
"6",
"2",
"8",
"2",
"2",
"4",
"4",
"4",
"9",
"2",
"4",
"4",
"8",
"2",
"8",
"2",
"6",
"6",
"4",
"2",
"10",
"1",
"6",
"4",
"6",
"2",
"8",
"4",
"8",
"4",
"4",
"2",
"4",
"2",
"4",
"6",
"1",
"4",
"8",
"2",
"6",
"4",
"8",
"2",
"6",
"2",
"4",
"6",
"6",
"4",
"8",
"2",
"10",
"1",
"4",
"2",
"4",
"4",
"4",
"4"
] | [
"nonn",
"easy",
"frac",
"new"
] | 7 | 1 | 2 | [
"A000005",
"A051903",
"A056798",
"A118914",
"A383156",
"A383157",
"A383158"
] | null | Amiram Eldar, Apr 18 2025 | 2025-04-20T02:39:40 | oeisdata/seq/A383/A383158.seq | b785937053b5aad9edf7d7e6a4674b73 |
A383159 | The sum of the maximum exponents in the prime factorizations of the unitary divisors of n. | [
"0",
"1",
"1",
"2",
"1",
"3",
"1",
"3",
"2",
"3",
"1",
"5",
"1",
"3",
"3",
"4",
"1",
"5",
"1",
"5",
"3",
"3",
"1",
"7",
"2",
"3",
"3",
"5",
"1",
"7",
"1",
"5",
"3",
"3",
"3",
"6",
"1",
"3",
"3",
"7",
"1",
"7",
"1",
"5",
"5",
"3",
"1",
"9",
"2",
"5",
"3",
"5",
"1",
"7",
"3",
"7",
"3",
"3",
"1",
"11",
"1",
"3",
"5",
"6",
"3",
"7",
"1",
"5",
"3",
"7",
"1",
"8",
"1",
"3",
"5",
"5",
"3",
"7",
"1",
"9",
"4",
"3",
"1",
"11",
"3",
"3",
"3"
] | [
"nonn",
"easy",
"new"
] | 11 | 1 | 4 | [
"A005117",
"A032741",
"A034444",
"A051903",
"A056671",
"A077610",
"A305611",
"A325770",
"A365498",
"A365499",
"A383156",
"A383159",
"A383160",
"A383161"
] | null | Amiram Eldar, Apr 18 2025 | 2025-04-20T02:40:04 | oeisdata/seq/A383/A383159.seq | 0c9e730c0ed1cce953b4e2e8bb5674b1 |
A383160 | a(n) is the numerator of the mean of the maximum exponents in the prime factorizations of the unitary divisors of n. | [
"0",
"1",
"1",
"1",
"1",
"3",
"1",
"3",
"1",
"3",
"1",
"5",
"1",
"3",
"3",
"2",
"1",
"5",
"1",
"5",
"3",
"3",
"1",
"7",
"1",
"3",
"3",
"5",
"1",
"7",
"1",
"5",
"3",
"3",
"3",
"3",
"1",
"3",
"3",
"7",
"1",
"7",
"1",
"5",
"5",
"3",
"1",
"9",
"1",
"5",
"3",
"5",
"1",
"7",
"3",
"7",
"3",
"3",
"1",
"11",
"1",
"3",
"5",
"3",
"3",
"7",
"1",
"5",
"3",
"7",
"1",
"2",
"1",
"3",
"5",
"5",
"3",
"7",
"1",
"9",
"2",
"3",
"1",
"11",
"3",
"3",
"3"
] | [
"nonn",
"easy",
"frac",
"new"
] | 9 | 1 | 6 | [
"A000961",
"A001248",
"A005117",
"A034444",
"A051903",
"A077610",
"A118914",
"A126706",
"A296082",
"A345288",
"A383057",
"A383058",
"A383157",
"A383158",
"A383159",
"A383160",
"A383161"
] | null | Amiram Eldar, Apr 18 2025 | 2025-04-20T02:40:20 | oeisdata/seq/A383/A383160.seq | 3d6d9fe55a5a05d4952150a43a74af38 |
A383161 | a(n) is the denominator of the mean of the maximum exponents in the prime factorizations of the unitary divisors of n. | [
"1",
"2",
"2",
"1",
"2",
"4",
"2",
"2",
"1",
"4",
"2",
"4",
"2",
"4",
"4",
"1",
"2",
"4",
"2",
"4",
"4",
"4",
"2",
"4",
"1",
"4",
"2",
"4",
"2",
"8",
"2",
"2",
"4",
"4",
"4",
"2",
"2",
"4",
"4",
"4",
"2",
"8",
"2",
"4",
"4",
"4",
"2",
"4",
"1",
"4",
"4",
"4",
"2",
"4",
"4",
"4",
"4",
"4",
"2",
"8",
"2",
"4",
"4",
"1",
"4",
"8",
"2",
"4",
"4",
"8",
"2",
"1",
"2",
"4",
"4",
"4",
"4",
"8",
"2",
"4",
"1",
"4",
"2",
"8",
"4",
"4",
"4",
"4"
] | [
"nonn",
"easy",
"frac",
"new"
] | 8 | 1 | 2 | [
"A034444",
"A051903",
"A056798",
"A077610",
"A118914",
"A383158",
"A383159",
"A383160",
"A383161"
] | null | Amiram Eldar, Apr 18 2025 | 2025-04-20T02:38:27 | oeisdata/seq/A383/A383161.seq | bd12334096a94cad98b9143f4bd32410 |
A383163 | Expansion of e.g.f. log(1 - (exp(2*x) - 1)/2)^2 / 2. | [
"0",
"0",
"1",
"9",
"75",
"690",
"7290",
"88536",
"1223628",
"19019664",
"328908720",
"6268688448",
"130615236576",
"2954657491968",
"72128519473920",
"1890266313945600",
"52937770062975744",
"1577901064699594752",
"49877742373556336640",
"1666688195869095124992",
"58704547943954039672832"
] | [
"nonn",
"new"
] | 12 | 0 | 4 | [
"A000254",
"A383149",
"A383163"
] | null | Seiichi Manyama, Apr 18 2025 | 2025-04-18T10:05:53 | oeisdata/seq/A383/A383163.seq | c1abf99705a60bb9195b1650938bfded |
A383164 | Expansion of e.g.f. -log(1 - (exp(2*x) - 1)/2)^3 / 6. | [
"0",
"0",
"0",
"1",
"18",
"255",
"3555",
"52290",
"831684",
"14405580",
"271688580",
"5562400800",
"123123764808",
"2933953637472",
"74953425290016",
"2044855241694720",
"59361121229581440",
"1827578437315965696",
"59494057195888597248",
"2042194772007257103360",
"73731225467600254686720"
] | [
"nonn",
"new"
] | 11 | 0 | 5 | [
"A000399",
"A383149",
"A383164",
"A383166"
] | null | Seiichi Manyama, Apr 18 2025 | 2025-04-18T10:10:32 | oeisdata/seq/A383/A383164.seq | a73997622f9f2522b788c64e4067a2e1 |
A383165 | Expansion of e.g.f. log(1 + (exp(2*x) - 1)/2)^2 / 2. | [
"0",
"0",
"1",
"3",
"3",
"-10",
"-30",
"112",
"588",
"-2448",
"-18960",
"87296",
"911328",
"-4599296",
"-61152000",
"335523840",
"5464904448",
"-32363874304",
"-627708979200",
"3987441516544",
"90133968949248",
"-610866587369472",
"-15823700431503360",
"113884455221854208",
"3334995367266582528",
"-25385597162671308800"
] | [
"sign",
"new"
] | 10 | 0 | 4 | [
"A009392",
"A209849",
"A383163",
"A383165"
] | null | Seiichi Manyama, Apr 18 2025 | 2025-04-18T08:44:46 | oeisdata/seq/A383/A383165.seq | f0510b47f341ce8c08a51e577b91b52f |
A383166 | Expansion of e.g.f. log(1 + (exp(2*x) - 1)/2)^3 / 6. | [
"0",
"0",
"0",
"1",
"6",
"15",
"-15",
"-210",
"28",
"5292",
"4140",
"-208560",
"-369864",
"11847264",
"33630688",
"-917280000",
"-3642944640",
"92903375616",
"479824306944",
"-11926470604800",
"-76477342307840",
"1892813347934208",
"14591875555074048",
"-363945109924577280",
"-3293838565260693504",
"83374884181664563200"
] | [
"sign",
"new"
] | 9 | 0 | 5 | [
"A209849",
"A383164",
"A383166"
] | null | Seiichi Manyama, Apr 18 2025 | 2025-04-18T08:44:42 | oeisdata/seq/A383/A383166.seq | a9b8ba869c87f46a2c5423a7cfd36bb0 |
A383170 | Expansion of e.g.f. -log(1 + log(1 - 2*x)/2). | [
"0",
"1",
"3",
"16",
"122",
"1208",
"14704",
"212336",
"3547984",
"67337728",
"1430990976",
"33664165632",
"868592478720",
"24390846882816",
"740570519159808",
"24177326011834368",
"844599686386919424",
"31438092340685144064",
"1242230898248798896128",
"51933512200489564962816",
"2290351520336982559358976"
] | [
"nonn",
"new"
] | 11 | 0 | 3 | [
"A003713",
"A227917",
"A383170",
"A383171",
"A383172"
] | null | Seiichi Manyama, Apr 18 2025 | 2025-04-18T10:16:21 | oeisdata/seq/A383/A383170.seq | d1dd1e6d07134eb48f4e70788739a599 |
A383171 | Expansion of e.g.f. log(1 + log(1 - 2*x)/2)^2 / 2. | [
"0",
"0",
"1",
"9",
"91",
"1090",
"15298",
"247352",
"4537132",
"93195696",
"2120623984",
"52973194560",
"1441635171040",
"42464913775232",
"1346297567292416",
"45715740985471744",
"1655552663185480448",
"63698261991541393408",
"2595107348458704209920",
"111613055867327344582656"
] | [
"nonn",
"new"
] | 11 | 0 | 4 | [
"A341587",
"A383163",
"A383170",
"A383171",
"A383172"
] | null | Seiichi Manyama, Apr 18 2025 | 2025-04-18T10:22:17 | oeisdata/seq/A383/A383171.seq | 199666d43613f71ebf585fb16347362a |
A383172 | Expansion of e.g.f. -log(1 + log(1 - 2*x)/2)^3 / 6. | [
"0",
"0",
"0",
"1",
"18",
"295",
"5115",
"96838",
"2012724",
"45825148",
"1137703140",
"30643915984",
"891001127016",
"27835772321344",
"930387252759328",
"33141746095999552",
"1253756533365348992",
"50210676392866266880",
"2122613151692627299584",
"94470824166941637093376"
] | [
"nonn",
"new"
] | 10 | 0 | 5 | [
"A341588",
"A383164",
"A383170",
"A383171",
"A383172"
] | null | Seiichi Manyama, Apr 18 2025 | 2025-04-18T08:44:28 | oeisdata/seq/A383/A383172.seq | a4177df8c5dd281840e933f98f8be9b0 |
A383173 | Decimal expansion of the area of the biggest little decagon. | [
"7",
"4",
"9",
"1",
"3",
"7",
"3",
"4",
"5",
"8",
"7",
"7",
"8",
"3",
"0",
"2",
"7",
"0",
"6",
"2",
"2",
"7",
"1",
"9",
"8",
"2",
"7",
"8",
"8",
"2",
"7",
"0",
"1",
"4",
"5",
"1",
"9",
"4",
"9",
"1",
"5",
"2",
"5",
"8",
"0",
"8",
"1",
"5",
"0",
"2",
"5",
"4",
"5",
"7",
"7",
"2",
"1",
"0",
"5",
"5",
"3",
"8",
"2",
"3",
"2",
"4",
"2",
"9",
"2",
"7",
"8",
"5",
"6",
"1",
"1",
"1",
"9",
"0",
"0",
"7",
"7",
"5",
"1",
"9",
"8",
"6",
"0",
"3",
"7",
"2",
"5",
"7",
"6",
"8",
"5",
"8",
"6",
"8",
"5",
"8",
"7",
"7",
"2",
"7",
"5",
"6",
"7",
"7",
"8",
"9",
"3",
"0",
"8",
"6",
"7",
"7",
"6",
"2",
"3"
] | [
"nonn",
"cons",
"new"
] | 7 | 1 | 1 | [
"A111969",
"A381252",
"A383173"
] | null | Eric W. Weisstein, Apr 18 2025 | 2025-04-20T08:40:11 | oeisdata/seq/A383/A383173.seq | 3902cceab8050a4105088c7c63dba86f |
A383175 | Number of compositions of n such that any fixed point k can be k different colors. | [
"1",
"1",
"2",
"5",
"10",
"22",
"48",
"101",
"213",
"450",
"945",
"1961",
"4064",
"8385",
"17242",
"35332",
"72141",
"146924",
"298552",
"605377",
"1225277",
"2475912",
"4995754",
"10067848",
"20267680",
"40762951",
"81916919",
"164504411",
"330155437",
"662265817",
"1327860471",
"2661376529",
"5332341881",
"10680912173"
] | [
"nonn",
"easy",
"new"
] | 13 | 0 | 3 | [
"A011782",
"A088305",
"A238349",
"A238350",
"A238351",
"A335713",
"A352512",
"A383175"
] | null | John Tyler Rascoe, Apr 18 2025 | 2025-04-21T16:27:11 | oeisdata/seq/A383/A383175.seq | 8fea309d1fda96b8bd8298beeae4bbde |
A383176 | If p = A002313(n) is a prime such that p = x^2 + y^2, then a(n) is the largest integer k that satisfies x^2 + y^2 - k*x*y > 0. | [
"1",
"2",
"2",
"4",
"2",
"6",
"2",
"3",
"2",
"3",
"2",
"2",
"10",
"3",
"2",
"3",
"2",
"2",
"6",
"2",
"2",
"14",
"7",
"2",
"4",
"16",
"2",
"2",
"3",
"8",
"2",
"2",
"2",
"3",
"2",
"2",
"2",
"3",
"20",
"6",
"2",
"2",
"3",
"5",
"2",
"4",
"2",
"2",
"2",
"2",
"24",
"3",
"5",
"2",
"2",
"6",
"2",
"4",
"2",
"26",
"5",
"2",
"13",
"3",
"2",
"2",
"2",
"2",
"5",
"2",
"3",
"2",
"7",
"5",
"2",
"2",
"2",
"3",
"2",
"7",
"5",
"2",
"2",
"3"
] | [
"nonn",
"new"
] | 19 | 1 | 2 | [
"A002313",
"A002330",
"A002331",
"A383176"
] | null | Gonzalo Martínez, Apr 18 2025 | 2025-04-27T01:12:35 | oeisdata/seq/A383/A383176.seq | 7383abfe9e830f5dd91dc24359d08ff3 |
A383190 | a(2n) and a(2n+1) are the square spiral numbers of the position on which the (n+1)th domino is placed, when tiling the plane by placing the dominos always as near as possible to the origin and so that no two dominos share a long side. Inverse permutation of A383191. | [
"0",
"1",
"3",
"4",
"5",
"6",
"7",
"22",
"2",
"11",
"8",
"9",
"10",
"27",
"14",
"13",
"18",
"17",
"15",
"16",
"19",
"20",
"21",
"44",
"23",
"46",
"12",
"29",
"24",
"25",
"33",
"34",
"39",
"40",
"45",
"76",
"28",
"53",
"32",
"31",
"38",
"37",
"26",
"51",
"35",
"36",
"41",
"42",
"43",
"74",
"47",
"78",
"52",
"85",
"60",
"59",
"68",
"67",
"61",
"62",
"69",
"70",
"75",
"114",
"77",
"116",
"30",
"55",
"48",
"49",
"54",
"87",
"58",
"57",
"66",
"65"
] | [
"nonn",
"new"
] | 20 | 0 | 3 | [
"A174344",
"A316328",
"A383190",
"A383191"
] | null | M. F. Hasler, Apr 18 2025 | 2025-04-23T10:35:15 | oeisdata/seq/A383/A383190.seq | 8c36f39c5cb2e770db3864c19e7348c2 |
A383191 | a(n) is the number on the n-th position on the square spiral on the plane tiled with dominoes always placed nearest to the origin and so that no two dominos share a long side. Inverse permutation of A383190. | [
"0",
"1",
"8",
"2",
"3",
"4",
"5",
"6",
"10",
"11",
"12",
"9",
"26",
"15",
"14",
"18",
"19",
"17",
"16",
"20",
"21",
"22",
"7",
"24",
"28",
"29",
"42",
"13",
"36",
"27",
"66",
"39",
"38",
"30",
"31",
"44",
"45",
"41",
"40",
"32",
"33",
"46",
"47",
"48",
"23",
"34",
"25",
"50",
"68",
"69",
"76",
"43",
"52",
"37",
"70",
"67",
"108",
"73",
"72",
"55",
"54",
"58",
"59",
"80",
"81",
"75",
"74",
"57",
"56",
"60",
"61",
"84",
"85",
"86",
"49",
"62"
] | [
"nonn",
"new"
] | 13 | 0 | 3 | [
"A174344",
"A316328",
"A316667",
"A383190",
"A383191"
] | null | M. F. Hasler, Apr 18 2025 | 2025-04-23T10:35:36 | oeisdata/seq/A383/A383191.seq | 3f9b94064b18d9c2d90800da699e8261 |
A383196 | Expansion of e.g.f. (1/(1 - 3*x)^(1/3) - 1)^3 / 6. | [
"0",
"0",
"0",
"1",
"24",
"520",
"11880",
"295960",
"8090880",
"242280640",
"7912262400",
"280384720000",
"10727852889600",
"441104638374400",
"19407654326860800",
"910140650683264000",
"45332366929833984000",
"2390437704451084288000",
"133060566042200788992000",
"7797805996570952986624000"
] | [
"nonn",
"new"
] | 8 | 0 | 5 | [
"A001754",
"A035119",
"A143169",
"A371080",
"A383196"
] | null | Seiichi Manyama, Apr 19 2025 | 2025-04-19T10:03:38 | oeisdata/seq/A383/A383196.seq | 5ff144e7eabed98c0b77e4d1037584a1 |
A383197 | Number of positive integers with n digits in which adjacent digits differ by at most 2. | [
"9",
"41",
"188",
"867",
"4010",
"18574",
"86096",
"399225",
"1851529",
"8587802",
"39833891",
"184770640",
"857073208",
"3975623218",
"18441391129",
"85542653145",
"396800342804",
"1840608838251",
"8537899488042",
"39604141848678",
"183708898915088",
"852157340908409",
"3952841397780937",
"18335763176322738"
] | [
"nonn",
"base",
"easy",
"new"
] | 17 | 1 | 1 | [
"A235163",
"A383197",
"A383198",
"A383199",
"A383200",
"A383201",
"A383202"
] | null | Edwin Hermann, Apr 19 2025 | 2025-04-23T13:10:04 | oeisdata/seq/A383/A383197.seq | db14b75ff51e69749e2a07f8ee8ce42f |
A383198 | Number of positive integers with n digits in which adjacent digits differ by at most 3. | [
"9",
"54",
"328",
"2000",
"12202",
"74458",
"454366",
"2772710",
"16920138",
"103253214",
"630091042",
"3845059318",
"23464039746",
"143186649814",
"873780342786",
"5332145758694",
"32538816680050",
"198564450196598",
"1211717109125762",
"7394366670845606",
"45123286657530514",
"275359755529253142"
] | [
"nonn",
"base",
"easy",
"new"
] | 9 | 1 | 1 | [
"A235163",
"A383197",
"A383198",
"A383199",
"A383200",
"A383201",
"A383202"
] | null | Edwin Hermann, Apr 19 2025 | 2025-04-24T17:36:03 | oeisdata/seq/A383/A383198.seq | d20750c30b94493db3e9ab707d4eca59 |
A383199 | Number of positive integers with n digits in which adjacent digits differ by at most 4. | [
"9",
"65",
"475",
"3465",
"25282",
"184463",
"1345887",
"9819916",
"71648478",
"522764591",
"3814216651",
"27829445433",
"203050351876",
"1481504383412",
"10809413614854",
"78868091114176",
"575440631436879",
"4198553757680021",
"30633661742154286",
"223510591001999469",
"1630787227154056312"
] | [
"nonn",
"base",
"easy",
"new"
] | 11 | 1 | 1 | [
"A235163",
"A383197",
"A383198",
"A383199",
"A383200",
"A383201",
"A383202"
] | null | Edwin Hermann, Apr 19 2025 | 2025-04-24T17:35:49 | oeisdata/seq/A383/A383199.seq | 0967cae534d0ff7d8a8c230963d0d135 |
A383203 | Expansion of e.g.f. f(x) * exp(f(x)), where f(x) = (exp(2*x) - 1)/2. | [
"0",
"1",
"4",
"19",
"104",
"641",
"4380",
"32803",
"266768",
"2337505",
"21925236",
"218946003",
"2316939256",
"25878593313",
"304020964876",
"3745210267939",
"48248600421664",
"648460085178689",
"9072650530778084",
"131884007007981075",
"1988341404357799048",
"31040812899065995073",
"501049583881525932028"
] | [
"nonn",
"new"
] | 9 | 0 | 3 | [
"A154602",
"A383203"
] | null | Seiichi Manyama, Apr 19 2025 | 2025-04-19T10:05:04 | oeisdata/seq/A383/A383203.seq | 90f43e78acefe02bf7ddbde67f06b357 |
A383204 | Expansion of e.g.f. f(x)^2 * exp(f(x)) / 2, where f(x) = (exp(2*x) - 1)/2. | [
"0",
"0",
"1",
"9",
"70",
"550",
"4531",
"39515",
"365324",
"3575820",
"36971461",
"402741581",
"4610187154",
"55316069874",
"694067320311",
"9087012399007",
"123889735839000",
"1755654433460248",
"25816120675972105",
"393285627390135313",
"6198118449550830302",
"100916786871955767998",
"1695424878199285059003"
] | [
"nonn",
"new"
] | 7 | 0 | 4 | [
"A154602",
"A383204"
] | null | Seiichi Manyama, Apr 19 2025 | 2025-04-19T10:04:10 | oeisdata/seq/A383/A383204.seq | dea61c70da77c30d4f1a5ead912f598c |
A383205 | Expansion of e.g.f. f(x)^3 * exp(f(x)) / 6, where f(x) = (exp(2*x) - 1)/2. | [
"0",
"0",
"0",
"1",
"16",
"190",
"2080",
"22491",
"247072",
"2792476",
"32659840",
"396255541",
"4991365808",
"65268062938",
"885442472096",
"12451577262671",
"181326192307264",
"2731564737248696",
"42522062246582784",
"683301050932028777",
"11322975536640636240",
"193300021823406703990",
"3396381539718451143200"
] | [
"nonn",
"new"
] | 7 | 0 | 5 | [
"A154602",
"A383205"
] | null | Seiichi Manyama, Apr 19 2025 | 2025-04-19T10:03:29 | oeisdata/seq/A383/A383205.seq | b82135b49135a4bf58ab9bb9f2fd670b |
A383206 | Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = Sum_{j=k..n} 2^(n-j) * Stirling2(n,j) * Stirling2(j,k). | [
"1",
"0",
"1",
"0",
"3",
"1",
"0",
"11",
"9",
"1",
"0",
"49",
"71",
"18",
"1",
"0",
"257",
"575",
"245",
"30",
"1",
"0",
"1539",
"4957",
"3120",
"625",
"45",
"1",
"0",
"10299",
"45829",
"39697",
"11480",
"1330",
"63",
"1",
"0",
"75905",
"454015",
"517790",
"201677",
"33250",
"2506",
"84",
"1",
"0",
"609441",
"4804191",
"6999785",
"3513762",
"770007",
"81774",
"4326",
"108",
"1"
] | [
"nonn",
"tabl",
"new"
] | 11 | 0 | 5 | [
"A000007",
"A004211",
"A130191",
"A380228",
"A383206",
"A383207",
"A383208"
] | null | Seiichi Manyama, Apr 19 2025 | 2025-04-19T10:04:05 | oeisdata/seq/A383/A383206.seq | 2a5b883974d1e689b6b16d6028a27e64 |
A383207 | Expansion of e.g.f. (exp(f(x)) - 1)^2 / 2, where f(x) = (exp(2*x) - 1)/2. | [
"0",
"0",
"1",
"9",
"71",
"575",
"4957",
"45829",
"454015",
"4804191",
"54094749",
"645720757",
"8142419727",
"108110708511",
"1506969153757",
"21993472779461",
"335257957315199",
"5325979566073919",
"87999598425114045",
"1509471498829147637",
"26835040585117438415",
"493677094649876461759",
"9384926300821643459133"
] | [
"nonn",
"new"
] | 9 | 0 | 4 | [
"A000558",
"A383206",
"A383207"
] | null | Seiichi Manyama, Apr 19 2025 | 2025-04-19T10:04:14 | oeisdata/seq/A383/A383207.seq | c26309b6d936535663680bb36987d700 |
A383208 | Expansion of e.g.f. (exp(f(x)) - 1)^3 / 6, where f(x) = (exp(2*x) - 1)/2. | [
"0",
"0",
"0",
"1",
"18",
"245",
"3120",
"39697",
"517790",
"6999785",
"98520060",
"1445923149",
"22129416210",
"352932509085",
"5859167661256",
"101122879922313",
"1811960841148774",
"33662625853200337",
"647550189266734452",
"12881675626292023173",
"264677402162135670554",
"5610552395871699336453"
] | [
"nonn",
"new"
] | 8 | 0 | 5 | [
"A000559",
"A383206",
"A383208"
] | null | Seiichi Manyama, Apr 19 2025 | 2025-04-19T10:04:18 | oeisdata/seq/A383/A383208.seq | 57b73a4753c5f5f7106df4dcfa7c2254 |
A383209 | Irregular triangle read by rows in which row n lists the odd divisors m of n such that there is a divisor d of n with d < m < 2*d, or 0 if such odd divisors do not exist. | [
"0",
"0",
"0",
"0",
"0",
"3",
"0",
"0",
"0",
"0",
"0",
"3",
"0",
"0",
"5",
"0",
"0",
"3",
"9",
"0",
"5",
"0",
"0",
"0",
"3",
"0",
"0",
"0",
"7",
"0",
"3",
"5",
"15",
"0",
"0",
"0",
"0",
"7",
"3",
"9",
"0",
"0",
"0",
"5",
"0",
"3",
"7",
"21",
"0",
"0",
"5",
"9",
"15",
"0",
"0",
"3",
"0",
"0",
"0",
"0",
"0",
"3",
"9",
"27",
"0",
"7",
"0",
"0",
"0",
"3",
"5",
"15",
"0",
"0",
"9",
"0",
"0",
"3",
"11",
"33",
"0",
"0",
"0",
"7",
"0",
"3",
"9",
"0",
"0",
"5",
"25",
"0",
"11",
"3",
"39"
] | [
"nonn",
"tabf",
"new"
] | 26 | 1 | 6 | [
"A027750",
"A237593",
"A239657",
"A379288",
"A379374",
"A379461",
"A383147",
"A383209"
] | null | Omar E. Pol, Apr 19 2025 | 2025-04-27T15:06:20 | oeisdata/seq/A383/A383209.seq | bf7499be6ff27b701a0bb0257142221b |
A383211 | Numbers of the form p^e where p is prime and e > 1 is squarefree. | [
"4",
"8",
"9",
"25",
"27",
"32",
"49",
"64",
"121",
"125",
"128",
"169",
"243",
"289",
"343",
"361",
"529",
"729",
"841",
"961",
"1024",
"1331",
"1369",
"1681",
"1849",
"2048",
"2187",
"2197",
"2209",
"2809",
"3125",
"3481",
"3721",
"4489",
"4913",
"5041",
"5329",
"6241",
"6859",
"6889",
"7921",
"8192",
"9409",
"10201",
"10609",
"11449",
"11881",
"12167"
] | [
"nonn",
"new"
] | 6 | 1 | 1 | [
"A053810",
"A144338",
"A383211",
"A383266"
] | null | Peter Luschny, Apr 21 2025 | 2025-04-22T02:42:59 | oeisdata/seq/A383/A383211.seq | 477ca3c00b28421373a164a1967b3347 |
A383212 | a(n) = permanent of the n-th principal submatrix of the rectangular array whose odd-numbered rows are (2,1,2,1,2,1,2,1,...) and even-numbered rows are (1,2,1,2,1,2,1,2,...). | [
"1",
"2",
"5",
"24",
"132",
"1032",
"8820",
"95616",
"1106496",
"15327360",
"223560000",
"3768768000",
"66305952000",
"1316927808000",
"27127003680000",
"620221722624000",
"14638710417408000",
"378633583448064000",
"10073602372700160000",
"290788929384726528000",
"8609476463579013120000",
"274361332654900592640000",
"8946658680536444313600000"
] | [
"nonn",
"new"
] | 18 | 0 | 2 | [
"A204252",
"A383212"
] | null | Clark Kimberling, Apr 19 2025 | 2025-04-24T09:01:55 | oeisdata/seq/A383/A383212.seq | ebd385abe2a7cc993a7a119e6b99610c |
A383213 | a(n) = number of distinct prime factors of binomial(2n,n+1). | [
"0",
"1",
"2",
"2",
"4",
"3",
"4",
"4",
"5",
"5",
"6",
"6",
"6",
"7",
"6",
"7",
"9",
"8",
"10",
"9",
"10",
"10",
"10",
"9",
"10",
"10",
"11",
"11",
"12",
"13",
"12",
"12",
"14",
"14",
"14",
"14",
"14",
"14",
"16",
"14",
"16",
"15",
"16",
"17",
"16",
"17",
"18",
"17",
"18",
"18",
"18",
"18",
"20",
"18",
"20",
"19",
"19",
"20",
"20",
"21",
"21",
"21",
"21",
"21",
"23",
"22",
"24",
"23",
"23",
"23"
] | [
"nonn",
"new"
] | 20 | 1 | 3 | [
"A000984",
"A001221",
"A067434",
"A383213",
"A383214"
] | null | Clark Kimberling, Apr 19 2025 | 2025-04-26T20:30:09 | oeisdata/seq/A383/A383213.seq | 5389de9f4d718f8164bb101c403d469d |
A383215 | Primes p preceded and followed by gaps whose difference (absolute value) is greater than log(p). | [
"7",
"29",
"31",
"113",
"127",
"139",
"149",
"181",
"191",
"199",
"223",
"241",
"283",
"307",
"317",
"331",
"347",
"419",
"421",
"431",
"467",
"521",
"523",
"541",
"619",
"641",
"661",
"673",
"773",
"809",
"811",
"821",
"829",
"853",
"863",
"877",
"887",
"907",
"953",
"967",
"1009",
"1021",
"1031",
"1049",
"1051",
"1061",
"1069",
"1087",
"1129",
"1151",
"1153",
"1213",
"1259",
"1277"
] | [
"nonn",
"new"
] | 14 | 1 | 1 | [
"A068985",
"A383215",
"A383216"
] | null | Alain Rocchelli, Apr 19 2025 | 2025-04-28T00:58:08 | oeisdata/seq/A383/A383215.seq | 7e140ea70f4a943cb2d33c4f19deae51 |
A383216 | Primes p which are preceded and followed by gaps whose difference is greater than 2*log(p). | [
"113",
"127",
"523",
"887",
"907",
"1087",
"1129",
"1151",
"1277",
"1327",
"1361",
"1669",
"1693",
"1931",
"1951",
"1973",
"2203",
"2311",
"2333",
"2477",
"2557",
"2971",
"2999",
"3163",
"3251",
"3299",
"3469",
"4049",
"4297",
"4327",
"4523",
"4547",
"4783",
"4861",
"5119",
"5147",
"5237",
"5351",
"5381",
"5531",
"5557",
"5591",
"5749",
"5779",
"5981"
] | [
"nonn",
"new"
] | 11 | 1 | 1 | [
"A092553",
"A383215",
"A383216"
] | null | Alain Rocchelli, Apr 19 2025 | 2025-04-26T19:39:40 | oeisdata/seq/A383/A383216.seq | bd1fb16ab8199b9c94fc55368aa295d8 |
A383217 | Lexicographically earliest strictly increasing sequence such that no term is a substring of the product of all previous terms. | [
"1",
"2",
"3",
"4",
"5",
"6",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"25",
"26",
"27",
"28",
"29",
"30",
"32",
"33",
"34",
"35",
"36",
"37",
"40",
"41",
"44",
"45",
"46",
"48",
"49",
"53",
"54",
"55",
"56",
"57",
"59",
"61",
"63",
"64",
"65",
"66",
"67",
"68",
"69",
"70",
"71",
"76",
"79",
"80",
"84",
"85",
"87",
"90",
"91",
"97",
"98"
] | [
"nonn",
"base",
"new"
] | 8 | 1 | 2 | [
"A033180",
"A383217",
"A383218"
] | null | Dominic McCarty, Apr 19 2025 | 2025-04-19T18:07:27 | oeisdata/seq/A383/A383217.seq | aa2ce0f0772886f96b3d1d59238a3d4c |
A383218 | The product of the first n terms of A383217. | [
"1",
"2",
"6",
"24",
"120",
"720",
"5760",
"51840",
"518400",
"5702400",
"68428800",
"889574400",
"12454041600",
"186810624000",
"2988969984000",
"50812489728000",
"914624815104000",
"17377871486976000",
"347557429739520000",
"7298706024529920000",
"160571532539658240000",
"3693145248412139520000"
] | [
"nonn",
"base",
"new"
] | 5 | 1 | 2 | [
"A033180",
"A383217",
"A383218"
] | null | Dominic McCarty, Apr 19 2025 | 2025-04-19T18:07:34 | oeisdata/seq/A383/A383218.seq | 320642fd5e8fa7259d0287ac13f5ae1a |
A383220 | Integers k such that rad(k)*2^(k/rad(k)) + 1 is prime where rad = A007947. | [
"1",
"2",
"3",
"5",
"6",
"11",
"14",
"15",
"20",
"21",
"23",
"24",
"26",
"29",
"30",
"33",
"35",
"39",
"41",
"44",
"51",
"53",
"65",
"68",
"69",
"74",
"78",
"83",
"86",
"88",
"89",
"90",
"95",
"105",
"111",
"113",
"114",
"116",
"117",
"119",
"125",
"126",
"131",
"134",
"135",
"138",
"140",
"141",
"146",
"147",
"153",
"155",
"156",
"158",
"165",
"168",
"171",
"173",
"174",
"179"
] | [
"nonn",
"new"
] | 8 | 1 | 2 | [
"A002234",
"A003557",
"A005384",
"A007947",
"A383220"
] | null | Juri-Stepan Gerasimov, Apr 19 2025 | 2025-04-27T18:11:42 | oeisdata/seq/A383/A383220.seq | 46f26baaf604c351faa321281234eb7d |
A383221 | Coefficient of x^3 in expansion of (x+2) * (x+5) * ... * (x+3*n-1). | [
"0",
"0",
"0",
"1",
"26",
"595",
"14155",
"363944",
"10206700",
"312193524",
"10380710220",
"373619597736",
"14490750497432",
"603032132116336",
"26818416624389936",
"1269883590624201344",
"63806666669904903808",
"3391580011320726010880",
"190174443042558311293440",
"11220246602286014617751040"
] | [
"nonn",
"new"
] | 7 | 0 | 5 | [
"A225470",
"A383221"
] | null | Seiichi Manyama, Apr 20 2025 | 2025-04-20T08:40:40 | oeisdata/seq/A383/A383221.seq | c6d3d626ae03bbfdd72830474511690b |
A383222 | Coefficient of x^4 in expansion of (x+2) * (x+5) * ... * (x+3*n-1). | [
"0",
"0",
"0",
"0",
"1",
"40",
"1275",
"39655",
"1276009",
"43382934",
"1570298610",
"60630265740",
"2495678898636",
"109326548645600",
"5085420626585936",
"250576924194171120",
"13046999027750243984",
"716156618057417103008",
"41347880768363832470304",
"2505655766070932929630464"
] | [
"nonn",
"new"
] | 7 | 0 | 6 | [
"A225470",
"A383222"
] | null | Seiichi Manyama, Apr 20 2025 | 2025-04-20T08:40:36 | oeisdata/seq/A383/A383222.seq | e8503b36f1533fe034fb09134f2d5f08 |
A383223 | Number of integer solutions to Product_{k=1..n} (4 + c(k)) = 4 * Product_{k=1..n} c(k) with 0 < c(k) <= c(k+1). | [
"0",
"2",
"15",
"375",
"28901",
"5185573"
] | [
"nonn",
"more",
"new"
] | 5 | 1 | 2 | [
"A263207",
"A375787",
"A380749",
"A381644",
"A382672",
"A383223"
] | null | Zhining Yang, Apr 19 2025 | 2025-04-27T05:56:54 | oeisdata/seq/A383/A383223.seq | ed5f86cb83c4df86ebbc2c3af98d96a9 |
A383227 | a(n) is the product of first n even numbers not divisible by 5 (cf. A217562) | [
"1",
"2",
"8",
"48",
"384",
"4608",
"64512",
"1032192",
"18579456",
"408748032",
"9809952768",
"255058771968",
"7141645615104",
"228532659683328",
"7770110429233152",
"279723975452393472",
"10629511067190951936",
"446439464822019981312",
"19643336452168879177728",
"903593476799768442175488",
"43372486886388885224423424"
] | [
"nonn",
"new"
] | 8 | 0 | 2 | [
"A217562",
"A356858",
"A383227"
] | null | Stefano Spezia, Apr 20 2025 | 2025-04-21T17:05:33 | oeisdata/seq/A383/A383227.seq | 563e6cddff133efd665648e566220a0a |
A383228 | a(n) is the number of cases where both j and k (1 <= j < k <= n), are divisors of Sum_{i=j..k} i^i. | [
"0",
"0",
"0",
"1",
"1",
"2",
"2",
"2",
"3",
"3",
"3",
"3",
"3",
"3",
"4",
"4",
"5",
"5",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"7",
"7",
"7",
"7",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"9",
"9",
"10",
"11",
"11",
"11",
"11",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"14",
"14",
"14",
"14",
"15",
"15",
"15",
"16",
"16",
"16",
"16",
"16",
"16",
"16",
"17",
"17",
"17",
"17",
"17",
"17",
"17",
"17",
"17",
"17",
"17"
] | [
"nonn",
"new"
] | 20 | 1 | 6 | [
"A000312",
"A001923",
"A128981",
"A383228"
] | null | Jean-Marc Rebert, Apr 20 2025 | 2025-04-22T07:49:18 | oeisdata/seq/A383/A383228.seq | 0a3c1fec736f3d8202d0936b265e2776 |
A383231 | Expansion of e.g.f. f(x) * log(f(x)), where f(x) = 1/(1 - 5*x)^(1/5). | [
"0",
"1",
"7",
"83",
"1394",
"30330",
"810756",
"25710012",
"943434288",
"39324264624",
"1835297984160",
"94813760519136",
"5371462318747392",
"331125138305434368",
"22065681276731119104",
"1580617232453691210240",
"121117633854691036502016",
"9885823380533972300470272",
"856279708828545483688808448"
] | [
"nonn",
"new"
] | 8 | 0 | 3 | [
"A004041",
"A024216",
"A024382",
"A383231",
"A383232",
"A383233",
"A383234"
] | null | Seiichi Manyama, Apr 20 2025 | 2025-04-20T08:57:13 | oeisdata/seq/A383/A383231.seq | e89c953c6f09dd06448b4d169186cabc |
A383232 | Expansion of e.g.f. f(x)^2 * log(f(x)), where f(x) = 1/(1 - 5*x)^(1/5). | [
"0",
"1",
"9",
"122",
"2242",
"52180",
"1471692",
"48790608",
"1859539344",
"80109265824",
"3849497255520",
"204138860091264",
"11842095171021696",
"745962168915065088",
"50708105952635996928",
"3699802551156676392960",
"288399758863879774476288",
"23919432333548949807869952",
"2103184085769044913951461376"
] | [
"nonn",
"new"
] | 8 | 0 | 3 | [
"A383231",
"A383232",
"A383233",
"A383234"
] | null | Seiichi Manyama, Apr 20 2025 | 2025-04-20T08:57:09 | oeisdata/seq/A383/A383232.seq | 6241beba3ecb939b393ddb7e987560b0 |
A383233 | Expansion of e.g.f. f(x)^3 * log(f(x)), where f(x) = 1/(1 - 5*x)^(1/5). | [
"0",
"1",
"11",
"167",
"3318",
"81930",
"2423208",
"83582568",
"3295488816",
"146241365904",
"7214605476480",
"391735046081664",
"23216763331632384",
"1491431668108800768",
"103230214859003968512",
"7659080261784464808960",
"606407304545822037952512",
"51033731719180664212641792",
"4549228202963725560906891264"
] | [
"nonn",
"new"
] | 13 | 0 | 3 | [
"A383231",
"A383232",
"A383233",
"A383234"
] | null | Seiichi Manyama, Apr 20 2025 | 2025-04-20T10:39:38 | oeisdata/seq/A383/A383233.seq | 467038ecaa06b02f2849739ad5ec11d8 |
A383234 | Expansion of e.g.f. f(x)^4 * log(f(x)), where f(x) = 1/(1 - 5*x)^(1/5). | [
"0",
"1",
"13",
"218",
"4646",
"121080",
"3741144",
"133863792",
"5447294352",
"248518603584",
"12566268267840",
"697632464382336",
"42189230206182528",
"2760816706845539328",
"194381535085933095936",
"14652311175996819978240",
"1177370323796943823325184",
"100466288729505689717809152"
] | [
"nonn",
"new"
] | 7 | 0 | 3 | [
"A383231",
"A383232",
"A383233",
"A383234"
] | null | Seiichi Manyama, Apr 20 2025 | 2025-04-20T08:40:53 | oeisdata/seq/A383/A383234.seq | 7107bef1eabbcadc835482d59c33ce22 |
A383235 | Triangle read by rows: T(n,k) = 2*floor(k/2)*T(n-1,k) + T(n-1,k-1), 0 <= k <= n. | [
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"2",
"1",
"0",
"0",
"4",
"4",
"1",
"0",
"0",
"8",
"12",
"8",
"1",
"0",
"0",
"16",
"32",
"44",
"12",
"1",
"0",
"0",
"32",
"80",
"208",
"92",
"18",
"1",
"0",
"0",
"64",
"192",
"912",
"576",
"200",
"24",
"1",
"0",
"0",
"128",
"448",
"3840",
"3216",
"1776",
"344",
"32",
"1",
"0",
"0",
"256",
"1024",
"15808",
"16704",
"13872",
"3840",
"600",
"40",
"1"
] | [
"nonn",
"tabl",
"new"
] | 12 | 0 | 9 | [
"A000079",
"A001787",
"A007472",
"A007590",
"A048993",
"A100575",
"A158681",
"A383235"
] | null | Ven Popov, Apr 20 2025. | 2025-04-24T13:26:59 | oeisdata/seq/A383/A383235.seq | c4f2641c84f06bab672053ffc3a43041 |
A383236 | The least number of applications of Ackermann-Péter functions to reach n, starting from 0. | [
"1",
"2",
"3",
"4",
"4",
"5",
"5",
"6",
"6",
"7",
"7",
"8",
"5",
"6",
"7",
"8",
"8",
"9",
"9",
"10",
"9",
"10",
"10",
"11",
"10",
"11",
"11",
"12",
"6",
"7",
"8",
"9",
"10",
"11",
"11",
"12",
"11",
"12",
"12",
"13",
"12",
"13",
"13",
"14",
"12",
"13",
"13",
"14",
"13",
"14",
"14",
"15",
"13",
"14",
"14",
"15",
"14",
"15",
"15",
"16",
"7",
"8",
"9",
"10"
] | [
"nonn",
"look",
"new"
] | 20 | 1 | 2 | [
"A143796",
"A368423",
"A383236"
] | null | Hendrik Ballhausen, Apr 20 2025 | 2025-04-24T13:34:55 | oeisdata/seq/A383/A383236.seq | 302999f7dff310f03b7ef61c8005e50a |
A383237 | Primes p such that x^5+x+1 has no roots modulo p. | [
"2",
"29",
"41",
"47",
"71",
"131",
"179",
"197",
"233",
"239",
"257",
"269",
"311",
"353",
"443",
"461",
"491",
"509",
"587",
"647",
"653",
"683",
"761",
"857",
"863",
"887",
"929",
"947",
"1013",
"1061",
"1223",
"1277",
"1283",
"1289",
"1301",
"1361",
"1373",
"1409",
"1427",
"1439",
"1499",
"1511",
"1559",
"1619",
"1637",
"1733",
"1823",
"1973",
"1979"
] | [
"nonn",
"new"
] | 11 | 1 | 1 | [
"A003627",
"A383237"
] | null | Jayde S. Massmann, Apr 20 2025 | 2025-04-24T13:22:49 | oeisdata/seq/A383/A383237.seq | cca30d3fde094657d68247a5fd870943 |
A383255 | Number of n X n {0,1,2,3} matrices having no 1's to the right of any 0's and no 3's above any 2's. | [
"1",
"4",
"194",
"107080",
"672498596",
"48104236145168",
"39202958861329453384",
"364022757339778569993689888",
"38513979937284562006371342202842000",
"46429021191757554279412904483559912259714112",
"637737721080296383894709847744103523361428384973270816"
] | [
"nonn",
"new"
] | 13 | 0 | 2 | [
"A002416",
"A006506",
"A014235",
"A060757",
"A181213",
"A213977",
"A381857",
"A383255"
] | null | John Tyler Rascoe, Apr 20 2025 | 2025-04-23T14:57:45 | oeisdata/seq/A383/A383255.seq | 3562c878bc234934c9845c610a7097b0 |
A383256 | Number of n X n matrices of nonnegative entries with all columns summing to n and no horizontally adjacent zeros. | [
"1",
"1",
"7",
"343",
"125465",
"366908001",
"8698468668251",
"1708834003295306868",
"2810884261025802145414705",
"39088555382409783097546399456477",
"4626844513673581956954679383115038810744",
"4688191496359773864437279635019555242588548880831"
] | [
"nonn",
"new"
] | 10 | 0 | 3 | [
"A008300",
"A120733",
"A145839",
"A261780",
"A382923",
"A383256"
] | null | John Tyler Rascoe, Apr 21 2025 | 2025-04-23T17:02:34 | oeisdata/seq/A383/A383256.seq | 41ca71d0c44fc52446a4e63aee51386d |
A383258 | LCM-transform of A064664 (the inverse of the EKG-sequence). | [
"1",
"2",
"5",
"3",
"1",
"2",
"7",
"2",
"1",
"3",
"1",
"1",
"1",
"13",
"11",
"17",
"1",
"1",
"37",
"1",
"1",
"19",
"43",
"2",
"1",
"3",
"1",
"1",
"1",
"23",
"61",
"31",
"1",
"2",
"5",
"1",
"67",
"1",
"29",
"1",
"1",
"1",
"3",
"41",
"1",
"1",
"89",
"1",
"1",
"1",
"1",
"47",
"1",
"1",
"53",
"7",
"1",
"1",
"107",
"1",
"1",
"1",
"1",
"2",
"1",
"59",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"71",
"1",
"1",
"151",
"1",
"1",
"73",
"1",
"1",
"1",
"1",
"1",
"79",
"167",
"83",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"197"
] | [
"nonn",
"new"
] | 14 | 1 | 2 | [
"A064413",
"A064664",
"A064954",
"A265576",
"A368900",
"A383258"
] | null | Antti Karttunen, Apr 21 2025 | 2025-04-21T11:15:51 | oeisdata/seq/A383/A383258.seq | 39d33e0ac6da2b58fcfa0f656e2fea63 |
A383259 | a(n) is the excess of even composites over odd composites in the first n positive integers. | [
"0",
"0",
"0",
"1",
"1",
"2",
"2",
"3",
"2",
"3",
"3",
"4",
"4",
"5",
"4",
"5",
"5",
"6",
"6",
"7",
"6",
"7",
"7",
"8",
"7",
"8",
"7",
"8",
"8",
"9",
"9",
"10",
"9",
"10",
"9",
"10",
"10",
"11",
"10",
"11",
"11",
"12",
"12",
"13",
"12",
"13",
"13",
"14",
"13",
"14",
"13",
"14",
"14",
"15",
"14",
"15",
"14",
"15",
"15",
"16",
"16",
"17",
"16",
"17",
"16",
"17",
"17",
"18",
"17",
"18",
"18",
"19",
"19",
"20"
] | [
"nonn",
"easy",
"new"
] | 13 | 1 | 6 | [
"A000034",
"A000720",
"A002808",
"A066247",
"A071904",
"A383037",
"A383259"
] | null | Felix Huber, Apr 24 2025 | 2025-04-25T20:38:05 | oeisdata/seq/A383/A383259.seq | d68d5cbfbf6b4c0b93faf8e7b2f8434e |
A383260 | Expansion of e.g.f. f(x) * exp(f(x)), where f(x) = (exp(3*x) - 1)/3. | [
"0",
"1",
"5",
"30",
"211",
"1691",
"15126",
"148975",
"1599401",
"18563832",
"231317677",
"3076301471",
"43448641176",
"648950825173",
"10212710942609",
"168797691270438",
"2921824286030527",
"52833169082034839",
"995732022426733782",
"19519908917429511307",
"397294691005861642805",
"8381466690394292755896"
] | [
"nonn",
"new"
] | 13 | 0 | 3 | [
"A024216",
"A138378",
"A383203",
"A383260",
"A383261",
"A383262"
] | null | Seiichi Manyama, Apr 21 2025 | 2025-04-21T09:53:11 | oeisdata/seq/A383/A383260.seq | 70c47c38cb39c1192f988f4c70b770f4 |
A383261 | Expansion of e.g.f. f(x) * exp(2 * f(x)), where f(x) = (exp(3*x) - 1)/3. | [
"0",
"1",
"7",
"57",
"527",
"5441",
"61959",
"770281",
"10364671",
"149854545",
"2313932471",
"37963374329",
"658873048623",
"12050610195937",
"231496456566631",
"4657345160220681",
"97873704021590111",
"2143496712532350833",
"48821033290172899095",
"1154261436241093805593",
"28279753601438144211343"
] | [
"nonn",
"new"
] | 9 | 0 | 3 | [
"A024395",
"A383260",
"A383261"
] | null | Seiichi Manyama, Apr 21 2025 | 2025-04-21T09:54:00 | oeisdata/seq/A383/A383261.seq | a08f460c8b0fbab071b00a663fa891a3 |
A383262 | Expansion of e.g.f. f(x)^2 * exp(f(x)) / 2, where f(x) = (exp(3*x) - 1)/3. | [
"0",
"0",
"1",
"12",
"123",
"1270",
"13776",
"158718",
"1944685",
"25294338",
"348340491",
"5064749074",
"77528735868",
"1246096312188",
"20976610875949",
"368984700979440",
"6767792258171547",
"129182459141936566",
"2561529454871582772",
"52676675861728386114",
"1121762199908797394977"
] | [
"nonn",
"new"
] | 11 | 0 | 4 | [
"A003128",
"A286721",
"A383204",
"A383262"
] | null | Seiichi Manyama, Apr 21 2025 | 2025-04-21T09:55:09 | oeisdata/seq/A383/A383262.seq | f4d2993b16891d1dae25aaf7d8fb36fb |
A383263 | Union of prime powers (A246655) and numbers that are not squarefree (A013929). | [
"2",
"3",
"4",
"5",
"7",
"8",
"9",
"11",
"12",
"13",
"16",
"17",
"18",
"19",
"20",
"23",
"24",
"25",
"27",
"28",
"29",
"31",
"32",
"36",
"37",
"40",
"41",
"43",
"44",
"45",
"47",
"48",
"49",
"50",
"52",
"53",
"54",
"56",
"59",
"60",
"61",
"63",
"64",
"67",
"68",
"71",
"72",
"73",
"75",
"76",
"79",
"80",
"81",
"83",
"84",
"88",
"89",
"90",
"92",
"96",
"97",
"98",
"99",
"100",
"101",
"103"
] | [
"nonn",
"new"
] | 8 | 1 | 1 | [
"A013929",
"A246655",
"A363597",
"A383263"
] | null | Peter Luschny, Apr 27 2025 | 2025-04-27T15:02:20 | oeisdata/seq/A383/A383263.seq | dd6b8c0bd7633a871b3caaaf67b7c175 |
A383264 | Numbers whose vSPD is not squarefree, where vSPD(n) is the valuation of the smallest prime divisor for n >= 2. | [
"16",
"48",
"80",
"81",
"112",
"144",
"176",
"208",
"240",
"256",
"272",
"304",
"336",
"368",
"400",
"405",
"432",
"464",
"496",
"512",
"528",
"560",
"567",
"592",
"624",
"625",
"656",
"688",
"720",
"752",
"768",
"784",
"816",
"848",
"880",
"891",
"912",
"944",
"976",
"1008",
"1040",
"1053",
"1072",
"1104",
"1136",
"1168",
"1200",
"1232",
"1264",
"1280",
"1296"
] | [
"nonn",
"easy",
"new"
] | 22 | 1 | 1 | [
"A008683",
"A013929",
"A067029",
"A383264"
] | null | Peter Luschny, Apr 25 2025 | 2025-04-26T08:27:53 | oeisdata/seq/A383/A383264.seq | 83e01d31e95306b0a643e972404c5894 |
A383265 | a(n) = Sum_{k=0..n} A383266(n, k). | [
"0",
"2",
"7",
"14",
"24",
"35",
"48",
"63",
"81",
"101",
"122",
"145",
"170",
"197",
"226",
"257",
"292",
"327",
"364",
"403",
"444",
"487",
"532",
"579",
"628",
"680",
"733",
"789",
"846",
"905",
"966",
"1029",
"1095",
"1162",
"1231",
"1302",
"1376",
"1451",
"1528",
"1607",
"1688",
"1771",
"1856",
"1943",
"2032",
"2123",
"2216",
"2311",
"2408",
"2508",
"2609"
] | [
"nonn",
"new"
] | 5 | 0 | 2 | [
"A383265",
"A383266"
] | null | Peter Luschny, Apr 21 2025 | 2025-04-21T16:04:25 | oeisdata/seq/A383/A383265.seq | 0f018042c024fdaf911dffc386b5fb40 |
A383266 | Triangle read by rows: For n, k >= 2 T(n, k) is defined as the exponent of the highest power e of k such that k^e <= n. Otherwise T(n, 0) = n^2 and T(n, 1) = n. | [
"0",
"1",
"1",
"4",
"2",
"1",
"9",
"3",
"1",
"1",
"16",
"4",
"2",
"1",
"1",
"25",
"5",
"2",
"1",
"1",
"1",
"36",
"6",
"2",
"1",
"1",
"1",
"1",
"49",
"7",
"2",
"1",
"1",
"1",
"1",
"1",
"64",
"8",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"81",
"9",
"3",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"100",
"10",
"3",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"121",
"11",
"3",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"144",
"12",
"3",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1"
] | [
"nonn",
"tabl",
"new"
] | 7 | 0 | 4 | [
"A000196",
"A383265",
"A383266"
] | null | Peter Luschny, Apr 21 2025 | 2025-04-21T17:08:49 | oeisdata/seq/A383/A383266.seq | e6412498774c23d0766334fdb4156935 |
A383271 | Number of primes (excluding n) that may be generated by replacing any binary digit of n with a digit from 0 to 1. | [
"0",
"0",
"1",
"1",
"1",
"1",
"2",
"2",
"0",
"2",
"2",
"1",
"1",
"1",
"0",
"3",
"1",
"1",
"2",
"3",
"0",
"4",
"1",
"3",
"0",
"2",
"0",
"3",
"1",
"2",
"1",
"2",
"0",
"2",
"1",
"2",
"1",
"2",
"0",
"3",
"1",
"1",
"1",
"4",
"0",
"5",
"1",
"1",
"0",
"2",
"0",
"2",
"1",
"2",
"0",
"2",
"0",
"3",
"1",
"1",
"1",
"2",
"0",
"4",
"0",
"3",
"2",
"3",
"0",
"3",
"1",
"4",
"1",
"1",
"0",
"5",
"0",
"4",
"1",
"1",
"0",
"4",
"1",
"2",
"0",
"0",
"0",
"3",
"1",
"1"
] | [
"nonn",
"base",
"new"
] | 27 | 0 | 7 | [
"A070939",
"A145667",
"A209252",
"A352942",
"A383271"
] | null | Michael S. Branicky, Apr 21 2025 | 2025-04-23T19:31:05 | oeisdata/seq/A383/A383271.seq | 90af0b86eb34029de4e2dd474e7d824f |
A383272 | Positions of records in A383271. | [
"0",
"2",
"6",
"15",
"21",
"45",
"111",
"261",
"1605",
"1995",
"4935",
"8295",
"69825",
"268155",
"550725",
"4574955",
"12024855",
"39867135",
"398467245",
"1698754365",
"16351800465"
] | [
"nonn",
"base",
"new"
] | 19 | 1 | 2 | [
"A276694",
"A322743",
"A383271",
"A383272"
] | null | Michael S. Branicky, Apr 21 2025 | 2025-04-23T02:38:52 | oeisdata/seq/A383/A383272.seq | bdbfebccceb4887776cd21e2aa932ca1 |
A383274 | a(n) = Sum_{i,j = 0..n} C(n, i)^2*C(n, j)^2*C(i+j, i)*2^(i+j). | [
"1",
"13",
"441",
"20629",
"1119361",
"66116013",
"4126228569",
"267666251733",
"17868312820737",
"1219477111897933",
"84701899713767161",
"5967906378862013973",
"425503428034568158081",
"30642774518964618986989",
"2225692868157573335052441",
"162858794856607965831417429",
"11993850186156155815298686977"
] | [
"nonn",
"new"
] | 32 | 0 | 2 | [
"A005259",
"A383274"
] | null | Zhi-Wei Sun, Apr 26 2025 | 2025-04-27T11:27:14 | oeisdata/seq/A383/A383274.seq | 56a47e654723c32da7e17c6140f826e0 |
A383275 | Number of compositions of n such that any part 1 can be k different colors where k is the current record having appeared in the composition. | [
"1",
"1",
"2",
"5",
"14",
"42",
"134",
"454",
"1634",
"6245",
"25321",
"108779",
"494443",
"2374288",
"12024257",
"64100444",
"358948674",
"2106756217",
"12931155910",
"82823317389",
"552400947902",
"3829070637080",
"27534807426150",
"205066734143893",
"1579309451332366",
"12559941159979791",
"103013928588389695"
] | [
"nonn",
"easy",
"new"
] | 12 | 0 | 3 | [
"A000108",
"A011782",
"A088305",
"A382312",
"A382991",
"A383101",
"A383175",
"A383275"
] | null | John Tyler Rascoe, Apr 21 2025 | 2025-04-24T09:39:13 | oeisdata/seq/A383/A383275.seq | 167b6a068c4654dc99287a2d568d2a3e |
A383276 | Numbers of the form A034444(k) * k. | [
"1",
"4",
"6",
"8",
"10",
"14",
"16",
"18",
"22",
"24",
"26",
"32",
"34",
"38",
"40",
"46",
"48",
"50",
"54",
"56",
"58",
"60",
"62",
"64",
"72",
"74",
"80",
"82",
"84",
"86",
"88",
"94",
"96",
"98",
"104",
"106",
"112",
"118",
"122",
"128",
"132",
"134",
"136",
"140",
"142",
"144",
"146",
"152",
"156",
"158",
"160",
"162",
"166",
"176",
"178",
"180",
"184",
"192",
"194",
"200"
] | [
"nonn",
"easy",
"new"
] | 12 | 1 | 2 | [
"A005087",
"A007814",
"A034444",
"A036438",
"A100484",
"A138929",
"A151821",
"A298473",
"A383276",
"A383277",
"A383278",
"A383279"
] | null | Amiram Eldar, Apr 21 2025 | 2025-04-26T03:33:22 | oeisdata/seq/A383/A383276.seq | 9efed28e953519d4453e9c35af06efa4 |
A383277 | The number of divisors d of n for which A034444(d)*d is equal to n. | [
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0"
] | [
"nonn",
"easy",
"new"
] | 7 | 1 | null | [
"A005087",
"A007814",
"A034444",
"A327166",
"A383276",
"A383277",
"A383278",
"A383279"
] | null | Amiram Eldar, Apr 21 2025 | 2025-04-22T02:46:10 | oeisdata/seq/A383/A383277.seq | b2b1d8c25f9d78827dcc50cfeed78add |
A383278 | The number of integers k such that A034444(k) * k <= n. | [
"1",
"1",
"1",
"2",
"2",
"3",
"3",
"4",
"4",
"5",
"5",
"5",
"5",
"6",
"6",
"7",
"7",
"8",
"8",
"8",
"8",
"9",
"9",
"10",
"10",
"11",
"11",
"11",
"11",
"11",
"11",
"12",
"12",
"13",
"13",
"13",
"13",
"14",
"14",
"15",
"15",
"15",
"15",
"15",
"15",
"16",
"16",
"17",
"17",
"18",
"18",
"18",
"18",
"19",
"19",
"20",
"20",
"21",
"21",
"22",
"22",
"23",
"23",
"24",
"24",
"24",
"24",
"24",
"24",
"24",
"24"
] | [
"nonn",
"easy",
"new"
] | 11 | 1 | 4 | [
"A034444",
"A087197",
"A345288",
"A356005",
"A383276",
"A383277",
"A383278",
"A383279"
] | null | Amiram Eldar, Apr 21 2025 | 2025-04-22T02:47:18 | oeisdata/seq/A383/A383278.seq | fa7eb3f5290cbd13d780bbae99e9b2dd |
A383279 | The unique solution to x * A034444(x) = A383276(n). | [
"1",
"2",
"3",
"4",
"5",
"7",
"8",
"9",
"11",
"6",
"13",
"16",
"17",
"19",
"10",
"23",
"12",
"25",
"27",
"14",
"29",
"15",
"31",
"32",
"18",
"37",
"20",
"41",
"21",
"43",
"22",
"47",
"24",
"49",
"26",
"53",
"28",
"59",
"61",
"64",
"33",
"67",
"34",
"35",
"71",
"36",
"73",
"38",
"39",
"79",
"40",
"81",
"83",
"44",
"89",
"45",
"46",
"48",
"97",
"50",
"101",
"51",
"103",
"52",
"107",
"54",
"109"
] | [
"nonn",
"easy",
"new"
] | 10 | 1 | 2 | [
"A000265",
"A005087",
"A007814",
"A034444",
"A383276",
"A383277",
"A383278",
"A383279"
] | null | Amiram Eldar, Apr 21 2025 | 2025-04-22T02:43:27 | oeisdata/seq/A383/A383279.seq | 5f1e908aab5e6cf92da2d08906d584e3 |
A383280 | a(n) = (3/2)^n * Sum_{k=0..n} (1/6)^k * (2*k)! * (n-k)! * binomial(n,k)^2. | [
"1",
"2",
"9",
"72",
"954",
"19980",
"624510",
"27420120",
"1607036760",
"120942324720",
"11351106055800",
"1298791163577600",
"177888712528573200",
"28728740092874421600",
"5401708378739722249200",
"1169716267087957140552000",
"288993599402729842084464000",
"80796133625685147464322528000"
] | [
"nonn",
"new"
] | 15 | 0 | 2 | [
"A000681",
"A001499",
"A383280"
] | null | Seiichi Manyama, Apr 22 2025 | 2025-04-24T04:22:44 | oeisdata/seq/A383/A383280.seq | 79ee57fee2b899e39d385d945db6bba6 |
A383281 | a(n) = Sum_{k=0..n} (2*k+1) * (1/2)^(n+k) * (2*k)! * (n-k)! * binomial(n,k)^2. | [
"1",
"2",
"11",
"120",
"2202",
"61260",
"2407770",
"127116360",
"8680455000",
"744631438320",
"78393873940200",
"9938444069030400",
"1493483322288157200",
"262511581007832156000",
"53360641241377862792400",
"12420661873849173800856000",
"3282370875452495120806512000",
"977378127650967704776130016000"
] | [
"nonn",
"new"
] | 16 | 0 | 2 | [
"A002018",
"A383281"
] | null | Seiichi Manyama, Apr 22 2025 | 2025-04-24T04:34:28 | oeisdata/seq/A383/A383281.seq | 2fe6871b660170469a02255d806853fd |
A383282 | a(n) = Sum_{k=0..n} (2*k+1) * (-1/2)^(n+k) * (2*k)! * (n-k)! * binomial(n,k)^2. | [
"1",
"1",
"5",
"51",
"906",
"24690",
"956790",
"49993650",
"3387124440",
"288755250840",
"30247310482200",
"3818739956308200",
"571858101118458000",
"100218359688123877200",
"20319306632495415745200",
"4719164981053010642154000",
"1244680987088062472732784000",
"369981708267221405777101680000"
] | [
"nonn",
"new"
] | 13 | 0 | 3 | [
"A383281",
"A383282"
] | null | Seiichi Manyama, Apr 22 2025 | 2025-04-24T04:37:56 | oeisdata/seq/A383/A383282.seq | 49323e257bc53f5d253e10a3dc7569f7 |
A383284 | Lexicographically earliest infinite sequence such that a(i) = a(j) => A265576(i) = A265576(j), for all i, j >= 1, where A265576 is the LCM-transform of EKG-sequence. | [
"1",
"2",
"2",
"3",
"1",
"3",
"1",
"2",
"4",
"1",
"1",
"1",
"5",
"1",
"1",
"1",
"2",
"1",
"6",
"1",
"1",
"3",
"1",
"4",
"1",
"1",
"7",
"1",
"1",
"1",
"2",
"8",
"1",
"1",
"1",
"9",
"1",
"1",
"1",
"1",
"1",
"10",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"5",
"1",
"1",
"1",
"1",
"1",
"11",
"1",
"1",
"1",
"12",
"1",
"1",
"1",
"2",
"1",
"13",
"1",
"1",
"1",
"1",
"1",
"1",
"14",
"1",
"1",
"3",
"1",
"1",
"1",
"15",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"16",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"17"
] | [
"nonn",
"new"
] | 12 | 1 | 2 | [
"A000720",
"A064413",
"A064423",
"A265576",
"A383284",
"A383285"
] | null | Antti Karttunen, Apr 22 2025 | 2025-04-22T09:09:42 | oeisdata/seq/A383/A383284.seq | 55d55dea9ff85006f967d55106b58063 |
A383285 | Positions of terms > 1 in A265576, where A265576 is the LCM-transform of EKG-sequence. | [
"2",
"3",
"4",
"6",
"8",
"9",
"13",
"17",
"19",
"22",
"24",
"27",
"31",
"32",
"36",
"42",
"50",
"56",
"60",
"64",
"66",
"73",
"76",
"80",
"88",
"99",
"106",
"112",
"114",
"122",
"124",
"127",
"133",
"137",
"150",
"159",
"166",
"171",
"181",
"188",
"196",
"202",
"206",
"215",
"232",
"235",
"240",
"252",
"258",
"263",
"278",
"286",
"290",
"296",
"304",
"313",
"319",
"327",
"335",
"343",
"359",
"362",
"370",
"376",
"380",
"400",
"419",
"429",
"437",
"443"
] | [
"nonn",
"new"
] | 10 | 1 | 1 | [
"A064413",
"A064423",
"A265576",
"A383284",
"A383285",
"A383295"
] | null | Antti Karttunen, Apr 22 2025 | 2025-04-22T15:26:27 | oeisdata/seq/A383/A383285.seq | b3879e39a842ff950c8c898a209a2df4 |
A383292 | Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^(2*s) + 1/p^(3*s)). | [
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"3",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"3",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"3",
"2",
"1",
"3",
"2",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"4",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"3",
"2",
"2",
"1",
"2",
"1",
"3",
"1",
"3",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"3",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"6",
"1",
"1",
"2",
"2",
"1",
"1",
"1",
"3",
"3",
"1",
"1",
"2",
"1",
"1",
"1",
"3",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"3",
"1",
"2",
"2",
"4"
] | [
"nonn",
"mult",
"easy",
"new"
] | 18 | 1 | 4 | [
"A001694",
"A046100",
"A073184",
"A095691",
"A330595",
"A365498",
"A365552",
"A368105",
"A380922",
"A383292"
] | null | Vaclav Kotesovec, Apr 22 2025 | 2025-04-22T14:17:11 | oeisdata/seq/A383/A383292.seq | c26a2c15ef62306e5801aac6653f3114 |
A383293 | Exponential of Mangoldt function applied to EKG-sequence: a(n) = A014963(A064413(n)). | [
"1",
"2",
"2",
"1",
"3",
"3",
"1",
"2",
"1",
"5",
"1",
"1",
"1",
"7",
"1",
"1",
"2",
"1",
"1",
"11",
"1",
"3",
"1",
"5",
"1",
"1",
"1",
"13",
"1",
"1",
"2",
"1",
"17",
"1",
"1",
"1",
"19",
"1",
"1",
"1",
"1",
"1",
"23",
"1",
"1",
"1",
"1",
"1",
"1",
"7",
"1",
"1",
"1",
"1",
"1",
"1",
"29",
"1",
"1",
"1",
"31",
"1",
"1",
"2",
"1",
"1",
"37",
"1",
"1",
"1",
"1",
"1",
"1",
"41",
"1",
"3",
"1",
"1",
"1",
"1",
"43",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"47",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"53"
] | [
"nonn",
"new"
] | 7 | 1 | 2 | [
"A014963",
"A064413",
"A265576",
"A383293",
"A383294"
] | null | Antti Karttunen, Apr 22 2025 | 2025-04-22T13:33:23 | oeisdata/seq/A383/A383293.seq | 9c6eeb49dc6f74eec39a39244533aa09 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.