sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A383122
a(n) is the smallest number that can be expressed as the sum of the smallest number of powers with different exponents greater than one in n different ways (for unitary bases, the smallest possible exponents are considered).
[ "1", "16", "17", "65", "80", "105", "139", "193", "329", "313", "336", "410", "477", "273", "553", "461", "436", "1219", "942", "10153", "1595", "1038", "722", "636", "1769", "1344", "2045", "2381", "1805", "2379", "3683", "2365", "1611", "3319", "3815", "4416", "4838", "4029", "3531", "5606", "5789", "4411", "4341", "5849", "7392", "1642", "4885", "8246", "3074", "5251", "5774", "3165", "2498", "12347", "9987", "5405", "8075", "11101", "2346", "6749" ]
[ "nonn", "new" ]
11
1
2
[ "A351062", "A351063", "A351064", "A351065", "A351066", "A383122" ]
null
Alberto Zanoni, Apr 17 2025
2025-04-18T22:24:52
oeisdata/seq/A383/A383122.seq
a03bafd2626c3b4164448c887d26c65d
A383125
Number of cyclic edge cuts in the n-web graph.
[ "8", "48", "2592", "113856" ]
[ "nonn", "more", "new" ]
4
3
1
null
null
Eric W. Weisstein, Apr 17 2025
2025-04-17T08:11:16
oeisdata/seq/A383/A383125.seq
fdcf7188c699fb7118ebf6497a5e42c8
A383131
a(n) is the number of iterations that n requires to reach 1 under the map x -> -x/2 if x is even, 3x + 1 if x is odd; a(n) = -1 if 1 is never reached.
[ "0", "3", "12", "2", "5", "5", "8", "5", "11", "11", "50", "14", "14", "14", "53", "4", "17", "17", "43", "7", "7", "7", "20", "7", "46", "46", "59", "10", "10", "10", "23", "7", "49", "49", "62", "13", "13", "13", "13", "13", "26", "26", "39", "52", "52", "52", "65", "16", "16", "16", "78", "16", "16", "16", "29", "16", "42", "42", "55", "55", "55", "55", "68", "6", "19", "19", "19", "19", "19" ]
[ "nonn", "new" ]
13
1
2
[ "A006577", "A381055", "A383131" ]
null
Ya-Ping Lu, Apr 17 2025
2025-04-19T01:59:17
oeisdata/seq/A383/A383131.seq
00b4b2d73a97e05e6e1354d14e14330a
A383132
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n*k,k) * n^k.
[ "1", "2", "33", "2701", "524993", "181752001", "97735073905", "75179269556672", "78240951854025217", "105806762566689176353", "180297512864534759056001", "377878889913778527874694227", "955217573424445946022789385537", "2865620569274978738097814056365899", "10064763360358683666070320479027168465" ]
[ "nonn", "new" ]
7
0
2
[ "A084771", "A187021", "A331656", "A340971", "A383120", "A383132", "A383133" ]
null
Ilya Gutkovskiy, Apr 17 2025
2025-04-19T05:17:12
oeisdata/seq/A383/A383132.seq
8b5adc546228656376c6976936a64d84
A383133
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(n*k,k) * n^k.
[ "1", "0", "17", "1889", "412225", "151448249", "84430503361", "66535567456546", "70456680210155009", "96530372235620300465", "166169585125820280654001", "351113456811120647774884511", "893491183170443755035588745153", "2695374684029443253628238600963667", "9511442599320236554084097413617603681" ]
[ "nonn", "new" ]
6
0
3
[ "A307885", "A331657", "A340972", "A383121", "A383132", "A383133" ]
null
Ilya Gutkovskiy, Apr 17 2025
2025-04-19T05:22:14
oeisdata/seq/A383/A383133.seq
3ff24537a7f1fa48d8433ddaebac6069
A383134
Array read by ascending antidiagonals: A(n,k) is the length of the arithmetic progression of only primes having difference n and first term prime(k).
[ "2", "1", "1", "2", "3", "1", "1", "1", "2", "1", "2", "3", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "5", "1", "1", "1", "2", "1", "2", "3", "1", "3", "1", "2", "1", "1", "1", "1", "1", "2", "1", "4", "1", "1", "1", "1", "1", "2", "3", "1", "1", "1", "2", "1", "2", "1", "2", "1", "1", "1", "1", "1", "2", "1", "3", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1" ]
[ "nonn", "tabl", "new" ]
12
1
1
[ "A000012", "A006512", "A040976", "A054977", "A088430", "A175191", "A206045", "A237453", "A383134" ]
null
Stefano Spezia, Apr 17 2025
2025-04-18T09:53:25
oeisdata/seq/A383/A383134.seq
02e4abda23fbdba3feba2c540e518a6b
A383136
a(n) = Sum_{k=0..n} k^2 * 2^(n-k) * binomial(n,k).
[ "0", "1", "8", "45", "216", "945", "3888", "15309", "58320", "216513", "787320", "2814669", "9920232", "34543665", "119042784", "406552365", "1377495072", "4634696961", "15496819560", "51526925037", "170465015160", "561372288561", "1841022163728", "6014703091725", "19581781196016", "63546645708225", "205608702558168" ]
[ "nonn", "easy", "new" ]
9
0
3
[ "A027471", "A383136", "A383137", "A383138", "A383139" ]
null
Seiichi Manyama, Apr 17 2025
2025-04-17T12:27:58
oeisdata/seq/A383/A383136.seq
4e68baf6407516237396c3e49026f7b0
A383137
a(n) = Sum_{k=0..n} k^3 * 2^(n-k) * binomial(n,k).
[ "0", "1", "12", "87", "504", "2565", "11988", "52731", "221616", "898857", "3542940", "13640319", "51490728", "191141613", "699376356", "2527001955", "9030245472", "31955015889", "112093661484", "390132432423", "1348223301720", "4629287423061", "15802106905332", "53651151578187", "181257000301584" ]
[ "nonn", "easy", "new" ]
10
0
3
[ "A027471", "A383136", "A383137", "A383138", "A383139" ]
null
Seiichi Manyama, Apr 17 2025
2025-04-17T12:27:54
oeisdata/seq/A383/A383137.seq
28b97935ca8ee782f377ae87e1d404d1
A383138
a(n) = Sum_{k=0..n} k^4 * 2^(n-k) * binomial(n,k).
[ "0", "1", "20", "189", "1320", "7785", "41148", "201285", "929232", "4100625", "17452260", "72098829", "290521080", "1146082041", "4439303820", "16923738645", "63619864992", "236206924065", "867305334708", "3152957079645", "11359168737480", "40589657212041", "143957705302620", "507079568653029" ]
[ "nonn", "easy", "new" ]
10
0
3
[ "A027471", "A383136", "A383137", "A383138", "A383139" ]
null
Seiichi Manyama, Apr 17 2025
2025-04-17T12:27:50
oeisdata/seq/A383/A383138.seq
b0b362481919ed27e301d27c7792d3e4
A383139
a(n) = Sum_{k=0..n} k^5 * 2^(n-k) * binomial(n,k).
[ "0", "1", "36", "447", "3768", "25725", "153468", "832923", "4213296", "20179449", "92510100", "409137399", "1755881064", "7345518453", "30059956332", "120676965075", "476358203232", "1852442299377", "7108046758404", "26948581794351", "101065091563800", "375297714478701", "1381124599327836", "5040775635099147" ]
[ "nonn", "easy", "new" ]
8
0
3
[ "A027471", "A383136", "A383137", "A383138", "A383139" ]
null
Seiichi Manyama, Apr 17 2025
2025-04-17T12:27:44
oeisdata/seq/A383/A383139.seq
70abc524d9ae58167060cdc76585314b
A383140
Triangle read by rows: the coefficients of polynomials (1/3^(m-n)) * Sum_{k=0..m} k^n * 2^(m-k) * binomial(m,k) in the variable m.
[ "1", "0", "1", "0", "2", "1", "0", "2", "6", "1", "0", "-6", "20", "12", "1", "0", "-30", "10", "80", "20", "1", "0", "42", "-320", "270", "220", "30", "1", "0", "882", "-1386", "-770", "1470", "490", "42", "1", "0", "954", "7308", "-15064", "2800", "5180", "952", "56", "1", "0", "-39870", "101826", "-39340", "-61992", "29820", "14364", "1680", "72", "1", "0", "-203958", "-40680", "841770", "-666820", "-86940", "139440", "34020", "2760", "90", "1" ]
[ "sign", "tabl", "new" ]
36
0
5
[ "A000007", "A027471", "A129062", "A133494", "A179929", "A209849", "A212846", "A383136", "A383137", "A383138", "A383139", "A383140" ]
null
Seiichi Manyama, Apr 17 2025
2025-04-18T08:44:25
oeisdata/seq/A383/A383140.seq
06016fc75d031b26767dd6e3047e21c4
A383142
Smallest positive integer with shortest addition-subtraction chain of length n.
[ "1", "2", "3", "5", "7", "11", "19", "29", "53", "87", "151", "267", "461", "811", "1383", "2357", "4277", "7499", "14003", "25931", "44269", "87773", "152947", "271563" ]
[ "nonn", "hard", "more", "new" ]
10
0
2
[ "A003064", "A128998", "A383001", "A383142", "A383143" ]
null
Jinyuan Wang, Apr 17 2025
2025-04-18T10:59:25
oeisdata/seq/A383/A383142.seq
eaf4520aa56a68038b2c0113a2d42521
A383143
Number of positive integers with a shortest addition-subtraction chain of length n.
[ "1", "1", "2", "3", "5", "9", "16", "28", "49", "88", "156", "280", "499", "904", "1639", "2986", "5442", "9936", "18134" ]
[ "nonn", "hard", "more", "new" ]
9
0
3
[ "A003065", "A128998", "A383002", "A383142", "A383143" ]
null
Jinyuan Wang, Apr 17 2025
2025-04-18T10:59:33
oeisdata/seq/A383/A383143.seq
81d2d65b91ee51677a80823332d128a5
A383144
Number of abelian/medial racks of order n, up to isomorphism.
[ "1", "1", "2", "6", "18", "68", "329", "1965", "15455", "155902", "2064870", "35982366", "832699635", "25731050872" ]
[ "hard", "more", "nonn", "new" ]
8
0
3
[ "A165200", "A176077", "A177886", "A178432", "A179010", "A181769", "A181770", "A181771", "A193024", "A196111", "A198147", "A225744", "A226172", "A226173", "A226174", "A226193", "A236146", "A242044", "A242275", "A243931", "A248908", "A254434", "A257351", "A383144", "A383145", "A383146" ]
null
Luc Ta, Apr 17 2025
2025-04-24T16:51:00
oeisdata/seq/A383/A383144.seq
1110fd4108d289e309c9c4d4078ab30e
A383145
Number of GL-racks of order n, up to isomorphism.
[ "1", "1", "4", "13", "62", "308", "2132", "17268", "189373" ]
[ "hard", "more", "nonn", "new" ]
10
0
3
[ "A165200", "A176077", "A177886", "A178432", "A179010", "A181769", "A181770", "A181771", "A193024", "A196111", "A198147", "A225744", "A226172", "A226173", "A226174", "A226193", "A236146", "A242044", "A242275", "A243931", "A248908", "A254434", "A257351", "A374939", "A374942", "A374943", "A374944", "A374945", "A374946", "A374947", "A383144", "A383145", "A383146" ]
null
Luc Ta, Apr 17 2025
2025-04-25T03:08:23
oeisdata/seq/A383/A383145.seq
393801fbfa9dedc1aa78e0db0539d9e6
A383146
Number of medial GL-racks of order n, up to isomorphism.
[ "1", "1", "4", "13", "61", "298", "2087", "16941", "187160" ]
[ "hard", "more", "nonn", "new" ]
8
0
3
[ "A165200", "A176077", "A177886", "A178432", "A179010", "A181769", "A181770", "A181771", "A193024", "A196111", "A198147", "A225744", "A226172", "A226173", "A226174", "A226193", "A236146", "A242044", "A242275", "A243931", "A248908", "A254434", "A257351", "A374939", "A374942", "A374943", "A374944", "A374945", "A374946", "A374947", "A383144", "A383145", "A383146" ]
null
Luc Ta, Apr 17 2025
2025-04-25T03:08:31
oeisdata/seq/A383/A383146.seq
b87400b1b879ebc4631dea0367284850
A383147
Sum of odd divisors m of n such that there is a divisor d of n with d < m < 2*d.
[ "0", "0", "0", "0", "0", "3", "0", "0", "0", "0", "0", "3", "0", "0", "5", "0", "0", "12", "0", "5", "0", "0", "0", "3", "0", "0", "0", "7", "0", "23", "0", "0", "0", "0", "7", "12", "0", "0", "0", "5", "0", "31", "0", "0", "29", "0", "0", "3", "0", "0", "0", "0", "0", "39", "0", "7", "0", "0", "0", "23", "0", "0", "9", "0", "0", "47", "0", "0", "0", "7", "0", "12", "0", "0", "30", "0", "11", "42", "0", "5", "0", "0", "0", "31", "0", "0", "0", "11", "0", "77", "13", "0", "0", "0", "0" ]
[ "nonn", "new" ]
18
1
6
[ "A000593", "A237270", "A237271", "A237593", "A239657", "A379379", "A383147", "A383209" ]
null
Omar E. Pol, Apr 17 2025
2025-04-25T18:48:18
oeisdata/seq/A383/A383147.seq
cff0fb5f47a8ba596407c7a67bb32a68
A383148
k-facile numbers: Numbers m such that the sum of the divisors of m is equal to 2*m+s where s is a product of distinct divisors of m.
[ "12", "18", "20", "24", "30", "40", "42", "54", "56", "60", "66", "78", "84", "88", "90", "102", "104", "114", "120", "132", "138", "140", "168", "174", "186", "196", "204", "222", "224", "234", "246", "252", "258", "264", "270", "280", "282", "308", "312", "318", "348", "354", "360", "364", "366", "368", "380", "402", "414", "420", "426", "438", "440", "456", "464", "468", "474", "476" ]
[ "nonn", "new" ]
22
1
1
[ "A000203", "A000396", "A005101", "A181595", "A383148" ]
null
Joshua Zelinsky, Apr 17 2025
2025-04-24T18:27:20
oeisdata/seq/A383/A383148.seq
bccfa6402c91903971ea22f2d4eb13bb
A383149
Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = (-1)^k * [m^k] (1/2^(m-n)) * Sum_{k=0..m} k^n * (-1)^m * 3^(m-k) * binomial(m,k).
[ "1", "0", "1", "0", "3", "1", "0", "12", "9", "1", "0", "66", "75", "18", "1", "0", "480", "690", "255", "30", "1", "0", "4368", "7290", "3555", "645", "45", "1", "0", "47712", "88536", "52290", "12705", "1365", "63", "1", "0", "608016", "1223628", "831684", "249585", "36120", "2562", "84", "1", "0", "8855040", "19019664", "14405580", "5073012", "915705", "87696", "4410", "108", "1" ]
[ "nonn", "tabl", "new" ]
35
0
5
[ "A000007", "A001787", "A122704", "A123227", "A129062", "A178987", "A209849", "A383140", "A383149", "A383150", "A383151", "A383152", "A383155", "A383163", "A383164" ]
null
Seiichi Manyama, Apr 18 2025
2025-04-18T08:44:21
oeisdata/seq/A383/A383149.seq
eff235d093ef437e9cb10448b7a719e5
A383150
a(n) = Sum_{k=0..n} k^3 * (-1)^k * 3^(n-k) * binomial(n,k).
[ "0", "-1", "2", "18", "64", "160", "288", "224", "-1024", "-6912", "-28160", "-95744", "-294912", "-851968", "-2351104", "-6266880", "-16252928", "-41222144", "-102629376", "-251527168", "-608174080", "-1453326336", "-3437232128", "-8055160832", "-18723373056", "-43201331200", "-99019128832", "-225586446336" ]
[ "sign", "easy", "new" ]
13
0
3
[ "A001787", "A178987", "A383150", "A383151", "A383152", "A383155" ]
null
Seiichi Manyama, Apr 18 2025
2025-04-18T08:45:24
oeisdata/seq/A383/A383150.seq
7c9c26968814be061ace0c137038934c
A383151
a(n) = Sum_{k=0..n} k^4 * (-1)^k * 3^(n-k) * binomial(n,k).
[ "0", "-1", "10", "36", "40", "-160", "-1152", "-4480", "-13568", "-34560", "-74240", "-123904", "-92160", "425984", "2867200", "11796480", "40763392", "128122880", "378667008", "1070858240", "2928148480", "7795113984", "20300431360", "51900317696", "130610626560", "324219699200", "795206483968", "1929715384320" ]
[ "sign", "easy", "new" ]
18
0
3
[ "A001787", "A178987", "A383150", "A383151", "A383152", "A383155" ]
null
Seiichi Manyama, Apr 18 2025
2025-04-23T16:21:30
oeisdata/seq/A383/A383151.seq
c632c98bfd0182ec23e2989544a42ebe
A383152
a(n) = Sum_{k=0..n} k^5 * (-1)^k * 3^(n-k) * binomial(n,k).
[ "0", "-1", "26", "18", "-272", "-1400", "-4032", "-7168", "-1024", "55296", "294400", "1086976", "3354624", "9132032", "22249472", "47923200", "85983232", "99155968", "-102629376", "-1237712896", "-5688524800", "-20775960576", "-67868033024", "-207022456832", "-602167836672", "-1690304512000", "-4613767954432" ]
[ "sign", "easy", "new" ]
17
0
3
[ "A001787", "A178987", "A383150", "A383151", "A383152", "A383155" ]
null
Seiichi Manyama, Apr 18 2025
2025-04-18T12:10:07
oeisdata/seq/A383/A383152.seq
1061d6a3a92c047ea09528855c1bf79b
A383153
Square array read by antidiagonals: A(m,n) is the number of 2m-by-2n fers-wazir tours.
[ "2", "1", "1", "1", "2", "1", "1", "4", "4", "1", "1", "9", "22", "9", "1", "1", "23", "124", "124", "23", "1", "1", "62", "818", "1620", "818", "62", "1", "1", "170", "6004", "25111", "25111", "6004", "170", "1", "1", "469", "46488", "455219", "882130", "455219", "46488", "469", "1", "1", "1297", "367880", "9103712", "36979379", "36979379", "9103712", "367880", "1297", "1" ]
[ "nonn", "tabl", "new" ]
58
1
1
[ "A339190", "A383153", "A383154" ]
null
Don Knuth, Apr 18 2025
2025-04-25T14:31:07
oeisdata/seq/A383/A383153.seq
36adfc774e55bf3eb4b6776541c6895b
A383154
The number of 2n-by-2n fers-wazir tours.
[ "2", "2", "22", "1620", "882130", "3465050546" ]
[ "nonn", "more", "new" ]
13
1
1
[ "A140519", "A383153", "A383154" ]
null
Don Knuth, Apr 18 2025
2025-04-18T13:57:51
oeisdata/seq/A383/A383154.seq
d5b6fc08e418e963cbd652185c69d2c9
A383155
a(n) = Sum_{k=0..n} k^6 * (-1)^k * 3^(n-k) * binomial(n,k).
[ "0", "-1", "58", "-180", "-1304", "-2920", "1008", "34496", "163840", "525312", "1285120", "2241536", "1124352", "-12113920", "-72052736", "-282378240", "-924581888", "-2699493376", "-7201751040", "-17666670592", "-39507722240", "-77918109696", "-121883328512", "-78622228480", "453588811776", "2904974950400", "11885785120768" ]
[ "sign", "easy", "new" ]
15
0
3
[ "A001787", "A178987", "A383150", "A383151", "A383152", "A383155" ]
null
Seiichi Manyama, Apr 18 2025
2025-04-23T13:24:30
oeisdata/seq/A383/A383155.seq
be46b60b1d637d6eb4d74567473c5ecf
A383156
The sum of the maximum exponents in the prime factorizations of the divisors of n.
[ "0", "1", "1", "3", "1", "3", "1", "6", "3", "3", "1", "7", "1", "3", "3", "10", "1", "7", "1", "7", "3", "3", "1", "13", "3", "3", "6", "7", "1", "7", "1", "15", "3", "3", "3", "13", "1", "3", "3", "13", "1", "7", "1", "7", "7", "3", "1", "21", "3", "7", "3", "7", "1", "13", "3", "13", "3", "3", "1", "15", "1", "3", "7", "21", "3", "7", "1", "7", "3", "7", "1", "22", "1", "3", "7", "7", "3", "7", "1", "21", "10", "3", "1" ]
[ "nonn", "easy", "new" ]
10
1
4
[ "A000005", "A001221", "A001620", "A005117", "A013661", "A033150", "A034444", "A051903", "A073184", "A118914", "A252505", "A306016", "A309307", "A383156", "A383157", "A383158", "A383159" ]
null
Amiram Eldar, Apr 18 2025
2025-04-20T02:39:02
oeisdata/seq/A383/A383156.seq
9f63fb68db5f5346f96b5b85998ba4f9
A383157
a(n) is the numerator of the mean of the maximum exponents in the prime factorizations of the divisors of n.
[ "0", "1", "1", "1", "1", "3", "1", "3", "1", "3", "1", "7", "1", "3", "3", "2", "1", "7", "1", "7", "3", "3", "1", "13", "1", "3", "3", "7", "1", "7", "1", "5", "3", "3", "3", "13", "1", "3", "3", "13", "1", "7", "1", "7", "7", "3", "1", "21", "1", "7", "3", "7", "1", "13", "3", "13", "3", "3", "1", "5", "1", "3", "7", "3", "3", "7", "1", "7", "3", "7", "1", "11", "1", "3", "7", "7", "3", "7", "1", "21", "2", "3", "1", "5", "3" ]
[ "nonn", "easy", "frac", "new" ]
10
1
6
[ "A000005", "A001248", "A051903", "A118914", "A308043", "A345231", "A361062", "A383156", "A383157", "A383158" ]
null
Amiram Eldar, Apr 18 2025
2025-04-20T02:39:14
oeisdata/seq/A383/A383157.seq
448f038bf717f5aedd12186906513b37
A383158
a(n) is the denominator of the mean of the maximum exponents in the prime factorizations of the divisors of n.
[ "1", "2", "2", "1", "2", "4", "2", "2", "1", "4", "2", "6", "2", "4", "4", "1", "2", "6", "2", "6", "4", "4", "2", "8", "1", "4", "2", "6", "2", "8", "2", "2", "4", "4", "4", "9", "2", "4", "4", "8", "2", "8", "2", "6", "6", "4", "2", "10", "1", "6", "4", "6", "2", "8", "4", "8", "4", "4", "2", "4", "2", "4", "6", "1", "4", "8", "2", "6", "4", "8", "2", "6", "2", "4", "6", "6", "4", "8", "2", "10", "1", "4", "2", "4", "4", "4", "4" ]
[ "nonn", "easy", "frac", "new" ]
7
1
2
[ "A000005", "A051903", "A056798", "A118914", "A383156", "A383157", "A383158" ]
null
Amiram Eldar, Apr 18 2025
2025-04-20T02:39:40
oeisdata/seq/A383/A383158.seq
b785937053b5aad9edf7d7e6a4674b73
A383159
The sum of the maximum exponents in the prime factorizations of the unitary divisors of n.
[ "0", "1", "1", "2", "1", "3", "1", "3", "2", "3", "1", "5", "1", "3", "3", "4", "1", "5", "1", "5", "3", "3", "1", "7", "2", "3", "3", "5", "1", "7", "1", "5", "3", "3", "3", "6", "1", "3", "3", "7", "1", "7", "1", "5", "5", "3", "1", "9", "2", "5", "3", "5", "1", "7", "3", "7", "3", "3", "1", "11", "1", "3", "5", "6", "3", "7", "1", "5", "3", "7", "1", "8", "1", "3", "5", "5", "3", "7", "1", "9", "4", "3", "1", "11", "3", "3", "3" ]
[ "nonn", "easy", "new" ]
11
1
4
[ "A005117", "A032741", "A034444", "A051903", "A056671", "A077610", "A305611", "A325770", "A365498", "A365499", "A383156", "A383159", "A383160", "A383161" ]
null
Amiram Eldar, Apr 18 2025
2025-04-20T02:40:04
oeisdata/seq/A383/A383159.seq
0c9e730c0ed1cce953b4e2e8bb5674b1
A383160
a(n) is the numerator of the mean of the maximum exponents in the prime factorizations of the unitary divisors of n.
[ "0", "1", "1", "1", "1", "3", "1", "3", "1", "3", "1", "5", "1", "3", "3", "2", "1", "5", "1", "5", "3", "3", "1", "7", "1", "3", "3", "5", "1", "7", "1", "5", "3", "3", "3", "3", "1", "3", "3", "7", "1", "7", "1", "5", "5", "3", "1", "9", "1", "5", "3", "5", "1", "7", "3", "7", "3", "3", "1", "11", "1", "3", "5", "3", "3", "7", "1", "5", "3", "7", "1", "2", "1", "3", "5", "5", "3", "7", "1", "9", "2", "3", "1", "11", "3", "3", "3" ]
[ "nonn", "easy", "frac", "new" ]
9
1
6
[ "A000961", "A001248", "A005117", "A034444", "A051903", "A077610", "A118914", "A126706", "A296082", "A345288", "A383057", "A383058", "A383157", "A383158", "A383159", "A383160", "A383161" ]
null
Amiram Eldar, Apr 18 2025
2025-04-20T02:40:20
oeisdata/seq/A383/A383160.seq
3d6d9fe55a5a05d4952150a43a74af38
A383161
a(n) is the denominator of the mean of the maximum exponents in the prime factorizations of the unitary divisors of n.
[ "1", "2", "2", "1", "2", "4", "2", "2", "1", "4", "2", "4", "2", "4", "4", "1", "2", "4", "2", "4", "4", "4", "2", "4", "1", "4", "2", "4", "2", "8", "2", "2", "4", "4", "4", "2", "2", "4", "4", "4", "2", "8", "2", "4", "4", "4", "2", "4", "1", "4", "4", "4", "2", "4", "4", "4", "4", "4", "2", "8", "2", "4", "4", "1", "4", "8", "2", "4", "4", "8", "2", "1", "2", "4", "4", "4", "4", "8", "2", "4", "1", "4", "2", "8", "4", "4", "4", "4" ]
[ "nonn", "easy", "frac", "new" ]
8
1
2
[ "A034444", "A051903", "A056798", "A077610", "A118914", "A383158", "A383159", "A383160", "A383161" ]
null
Amiram Eldar, Apr 18 2025
2025-04-20T02:38:27
oeisdata/seq/A383/A383161.seq
bd12334096a94cad98b9143f4bd32410
A383163
Expansion of e.g.f. log(1 - (exp(2*x) - 1)/2)^2 / 2.
[ "0", "0", "1", "9", "75", "690", "7290", "88536", "1223628", "19019664", "328908720", "6268688448", "130615236576", "2954657491968", "72128519473920", "1890266313945600", "52937770062975744", "1577901064699594752", "49877742373556336640", "1666688195869095124992", "58704547943954039672832" ]
[ "nonn", "new" ]
12
0
4
[ "A000254", "A383149", "A383163" ]
null
Seiichi Manyama, Apr 18 2025
2025-04-18T10:05:53
oeisdata/seq/A383/A383163.seq
c1abf99705a60bb9195b1650938bfded
A383164
Expansion of e.g.f. -log(1 - (exp(2*x) - 1)/2)^3 / 6.
[ "0", "0", "0", "1", "18", "255", "3555", "52290", "831684", "14405580", "271688580", "5562400800", "123123764808", "2933953637472", "74953425290016", "2044855241694720", "59361121229581440", "1827578437315965696", "59494057195888597248", "2042194772007257103360", "73731225467600254686720" ]
[ "nonn", "new" ]
11
0
5
[ "A000399", "A383149", "A383164", "A383166" ]
null
Seiichi Manyama, Apr 18 2025
2025-04-18T10:10:32
oeisdata/seq/A383/A383164.seq
a73997622f9f2522b788c64e4067a2e1
A383165
Expansion of e.g.f. log(1 + (exp(2*x) - 1)/2)^2 / 2.
[ "0", "0", "1", "3", "3", "-10", "-30", "112", "588", "-2448", "-18960", "87296", "911328", "-4599296", "-61152000", "335523840", "5464904448", "-32363874304", "-627708979200", "3987441516544", "90133968949248", "-610866587369472", "-15823700431503360", "113884455221854208", "3334995367266582528", "-25385597162671308800" ]
[ "sign", "new" ]
10
0
4
[ "A009392", "A209849", "A383163", "A383165" ]
null
Seiichi Manyama, Apr 18 2025
2025-04-18T08:44:46
oeisdata/seq/A383/A383165.seq
f0510b47f341ce8c08a51e577b91b52f
A383166
Expansion of e.g.f. log(1 + (exp(2*x) - 1)/2)^3 / 6.
[ "0", "0", "0", "1", "6", "15", "-15", "-210", "28", "5292", "4140", "-208560", "-369864", "11847264", "33630688", "-917280000", "-3642944640", "92903375616", "479824306944", "-11926470604800", "-76477342307840", "1892813347934208", "14591875555074048", "-363945109924577280", "-3293838565260693504", "83374884181664563200" ]
[ "sign", "new" ]
9
0
5
[ "A209849", "A383164", "A383166" ]
null
Seiichi Manyama, Apr 18 2025
2025-04-18T08:44:42
oeisdata/seq/A383/A383166.seq
a9b8ba869c87f46a2c5423a7cfd36bb0
A383170
Expansion of e.g.f. -log(1 + log(1 - 2*x)/2).
[ "0", "1", "3", "16", "122", "1208", "14704", "212336", "3547984", "67337728", "1430990976", "33664165632", "868592478720", "24390846882816", "740570519159808", "24177326011834368", "844599686386919424", "31438092340685144064", "1242230898248798896128", "51933512200489564962816", "2290351520336982559358976" ]
[ "nonn", "new" ]
11
0
3
[ "A003713", "A227917", "A383170", "A383171", "A383172" ]
null
Seiichi Manyama, Apr 18 2025
2025-04-18T10:16:21
oeisdata/seq/A383/A383170.seq
d1dd1e6d07134eb48f4e70788739a599
A383171
Expansion of e.g.f. log(1 + log(1 - 2*x)/2)^2 / 2.
[ "0", "0", "1", "9", "91", "1090", "15298", "247352", "4537132", "93195696", "2120623984", "52973194560", "1441635171040", "42464913775232", "1346297567292416", "45715740985471744", "1655552663185480448", "63698261991541393408", "2595107348458704209920", "111613055867327344582656" ]
[ "nonn", "new" ]
11
0
4
[ "A341587", "A383163", "A383170", "A383171", "A383172" ]
null
Seiichi Manyama, Apr 18 2025
2025-04-18T10:22:17
oeisdata/seq/A383/A383171.seq
199666d43613f71ebf585fb16347362a
A383172
Expansion of e.g.f. -log(1 + log(1 - 2*x)/2)^3 / 6.
[ "0", "0", "0", "1", "18", "295", "5115", "96838", "2012724", "45825148", "1137703140", "30643915984", "891001127016", "27835772321344", "930387252759328", "33141746095999552", "1253756533365348992", "50210676392866266880", "2122613151692627299584", "94470824166941637093376" ]
[ "nonn", "new" ]
10
0
5
[ "A341588", "A383164", "A383170", "A383171", "A383172" ]
null
Seiichi Manyama, Apr 18 2025
2025-04-18T08:44:28
oeisdata/seq/A383/A383172.seq
a4177df8c5dd281840e933f98f8be9b0
A383173
Decimal expansion of the area of the biggest little decagon.
[ "7", "4", "9", "1", "3", "7", "3", "4", "5", "8", "7", "7", "8", "3", "0", "2", "7", "0", "6", "2", "2", "7", "1", "9", "8", "2", "7", "8", "8", "2", "7", "0", "1", "4", "5", "1", "9", "4", "9", "1", "5", "2", "5", "8", "0", "8", "1", "5", "0", "2", "5", "4", "5", "7", "7", "2", "1", "0", "5", "5", "3", "8", "2", "3", "2", "4", "2", "9", "2", "7", "8", "5", "6", "1", "1", "1", "9", "0", "0", "7", "7", "5", "1", "9", "8", "6", "0", "3", "7", "2", "5", "7", "6", "8", "5", "8", "6", "8", "5", "8", "7", "7", "2", "7", "5", "6", "7", "7", "8", "9", "3", "0", "8", "6", "7", "7", "6", "2", "3" ]
[ "nonn", "cons", "new" ]
7
1
1
[ "A111969", "A381252", "A383173" ]
null
Eric W. Weisstein, Apr 18 2025
2025-04-20T08:40:11
oeisdata/seq/A383/A383173.seq
3902cceab8050a4105088c7c63dba86f
A383175
Number of compositions of n such that any fixed point k can be k different colors.
[ "1", "1", "2", "5", "10", "22", "48", "101", "213", "450", "945", "1961", "4064", "8385", "17242", "35332", "72141", "146924", "298552", "605377", "1225277", "2475912", "4995754", "10067848", "20267680", "40762951", "81916919", "164504411", "330155437", "662265817", "1327860471", "2661376529", "5332341881", "10680912173" ]
[ "nonn", "easy", "new" ]
13
0
3
[ "A011782", "A088305", "A238349", "A238350", "A238351", "A335713", "A352512", "A383175" ]
null
John Tyler Rascoe, Apr 18 2025
2025-04-21T16:27:11
oeisdata/seq/A383/A383175.seq
8fea309d1fda96b8bd8298beeae4bbde
A383176
If p = A002313(n) is a prime such that p = x^2 + y^2, then a(n) is the largest integer k that satisfies x^2 + y^2 - k*x*y > 0.
[ "1", "2", "2", "4", "2", "6", "2", "3", "2", "3", "2", "2", "10", "3", "2", "3", "2", "2", "6", "2", "2", "14", "7", "2", "4", "16", "2", "2", "3", "8", "2", "2", "2", "3", "2", "2", "2", "3", "20", "6", "2", "2", "3", "5", "2", "4", "2", "2", "2", "2", "24", "3", "5", "2", "2", "6", "2", "4", "2", "26", "5", "2", "13", "3", "2", "2", "2", "2", "5", "2", "3", "2", "7", "5", "2", "2", "2", "3", "2", "7", "5", "2", "2", "3" ]
[ "nonn", "new" ]
19
1
2
[ "A002313", "A002330", "A002331", "A383176" ]
null
Gonzalo Martínez, Apr 18 2025
2025-04-27T01:12:35
oeisdata/seq/A383/A383176.seq
7383abfe9e830f5dd91dc24359d08ff3
A383190
a(2n) and a(2n+1) are the square spiral numbers of the position on which the (n+1)th domino is placed, when tiling the plane by placing the dominos always as near as possible to the origin and so that no two dominos share a long side. Inverse permutation of A383191.
[ "0", "1", "3", "4", "5", "6", "7", "22", "2", "11", "8", "9", "10", "27", "14", "13", "18", "17", "15", "16", "19", "20", "21", "44", "23", "46", "12", "29", "24", "25", "33", "34", "39", "40", "45", "76", "28", "53", "32", "31", "38", "37", "26", "51", "35", "36", "41", "42", "43", "74", "47", "78", "52", "85", "60", "59", "68", "67", "61", "62", "69", "70", "75", "114", "77", "116", "30", "55", "48", "49", "54", "87", "58", "57", "66", "65" ]
[ "nonn", "new" ]
20
0
3
[ "A174344", "A316328", "A383190", "A383191" ]
null
M. F. Hasler, Apr 18 2025
2025-04-23T10:35:15
oeisdata/seq/A383/A383190.seq
8c36f39c5cb2e770db3864c19e7348c2
A383191
a(n) is the number on the n-th position on the square spiral on the plane tiled with dominoes always placed nearest to the origin and so that no two dominos share a long side. Inverse permutation of A383190.
[ "0", "1", "8", "2", "3", "4", "5", "6", "10", "11", "12", "9", "26", "15", "14", "18", "19", "17", "16", "20", "21", "22", "7", "24", "28", "29", "42", "13", "36", "27", "66", "39", "38", "30", "31", "44", "45", "41", "40", "32", "33", "46", "47", "48", "23", "34", "25", "50", "68", "69", "76", "43", "52", "37", "70", "67", "108", "73", "72", "55", "54", "58", "59", "80", "81", "75", "74", "57", "56", "60", "61", "84", "85", "86", "49", "62" ]
[ "nonn", "new" ]
13
0
3
[ "A174344", "A316328", "A316667", "A383190", "A383191" ]
null
M. F. Hasler, Apr 18 2025
2025-04-23T10:35:36
oeisdata/seq/A383/A383191.seq
3f9b94064b18d9c2d90800da699e8261
A383196
Expansion of e.g.f. (1/(1 - 3*x)^(1/3) - 1)^3 / 6.
[ "0", "0", "0", "1", "24", "520", "11880", "295960", "8090880", "242280640", "7912262400", "280384720000", "10727852889600", "441104638374400", "19407654326860800", "910140650683264000", "45332366929833984000", "2390437704451084288000", "133060566042200788992000", "7797805996570952986624000" ]
[ "nonn", "new" ]
8
0
5
[ "A001754", "A035119", "A143169", "A371080", "A383196" ]
null
Seiichi Manyama, Apr 19 2025
2025-04-19T10:03:38
oeisdata/seq/A383/A383196.seq
5ff144e7eabed98c0b77e4d1037584a1
A383197
Number of positive integers with n digits in which adjacent digits differ by at most 2.
[ "9", "41", "188", "867", "4010", "18574", "86096", "399225", "1851529", "8587802", "39833891", "184770640", "857073208", "3975623218", "18441391129", "85542653145", "396800342804", "1840608838251", "8537899488042", "39604141848678", "183708898915088", "852157340908409", "3952841397780937", "18335763176322738" ]
[ "nonn", "base", "easy", "new" ]
17
1
1
[ "A235163", "A383197", "A383198", "A383199", "A383200", "A383201", "A383202" ]
null
Edwin Hermann, Apr 19 2025
2025-04-23T13:10:04
oeisdata/seq/A383/A383197.seq
db14b75ff51e69749e2a07f8ee8ce42f
A383198
Number of positive integers with n digits in which adjacent digits differ by at most 3.
[ "9", "54", "328", "2000", "12202", "74458", "454366", "2772710", "16920138", "103253214", "630091042", "3845059318", "23464039746", "143186649814", "873780342786", "5332145758694", "32538816680050", "198564450196598", "1211717109125762", "7394366670845606", "45123286657530514", "275359755529253142" ]
[ "nonn", "base", "easy", "new" ]
9
1
1
[ "A235163", "A383197", "A383198", "A383199", "A383200", "A383201", "A383202" ]
null
Edwin Hermann, Apr 19 2025
2025-04-24T17:36:03
oeisdata/seq/A383/A383198.seq
d20750c30b94493db3e9ab707d4eca59
A383199
Number of positive integers with n digits in which adjacent digits differ by at most 4.
[ "9", "65", "475", "3465", "25282", "184463", "1345887", "9819916", "71648478", "522764591", "3814216651", "27829445433", "203050351876", "1481504383412", "10809413614854", "78868091114176", "575440631436879", "4198553757680021", "30633661742154286", "223510591001999469", "1630787227154056312" ]
[ "nonn", "base", "easy", "new" ]
11
1
1
[ "A235163", "A383197", "A383198", "A383199", "A383200", "A383201", "A383202" ]
null
Edwin Hermann, Apr 19 2025
2025-04-24T17:35:49
oeisdata/seq/A383/A383199.seq
0967cae534d0ff7d8a8c230963d0d135
A383203
Expansion of e.g.f. f(x) * exp(f(x)), where f(x) = (exp(2*x) - 1)/2.
[ "0", "1", "4", "19", "104", "641", "4380", "32803", "266768", "2337505", "21925236", "218946003", "2316939256", "25878593313", "304020964876", "3745210267939", "48248600421664", "648460085178689", "9072650530778084", "131884007007981075", "1988341404357799048", "31040812899065995073", "501049583881525932028" ]
[ "nonn", "new" ]
9
0
3
[ "A154602", "A383203" ]
null
Seiichi Manyama, Apr 19 2025
2025-04-19T10:05:04
oeisdata/seq/A383/A383203.seq
90f43e78acefe02bf7ddbde67f06b357
A383204
Expansion of e.g.f. f(x)^2 * exp(f(x)) / 2, where f(x) = (exp(2*x) - 1)/2.
[ "0", "0", "1", "9", "70", "550", "4531", "39515", "365324", "3575820", "36971461", "402741581", "4610187154", "55316069874", "694067320311", "9087012399007", "123889735839000", "1755654433460248", "25816120675972105", "393285627390135313", "6198118449550830302", "100916786871955767998", "1695424878199285059003" ]
[ "nonn", "new" ]
7
0
4
[ "A154602", "A383204" ]
null
Seiichi Manyama, Apr 19 2025
2025-04-19T10:04:10
oeisdata/seq/A383/A383204.seq
dea61c70da77c30d4f1a5ead912f598c
A383205
Expansion of e.g.f. f(x)^3 * exp(f(x)) / 6, where f(x) = (exp(2*x) - 1)/2.
[ "0", "0", "0", "1", "16", "190", "2080", "22491", "247072", "2792476", "32659840", "396255541", "4991365808", "65268062938", "885442472096", "12451577262671", "181326192307264", "2731564737248696", "42522062246582784", "683301050932028777", "11322975536640636240", "193300021823406703990", "3396381539718451143200" ]
[ "nonn", "new" ]
7
0
5
[ "A154602", "A383205" ]
null
Seiichi Manyama, Apr 19 2025
2025-04-19T10:03:29
oeisdata/seq/A383/A383205.seq
b82135b49135a4bf58ab9bb9f2fd670b
A383206
Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = Sum_{j=k..n} 2^(n-j) * Stirling2(n,j) * Stirling2(j,k).
[ "1", "0", "1", "0", "3", "1", "0", "11", "9", "1", "0", "49", "71", "18", "1", "0", "257", "575", "245", "30", "1", "0", "1539", "4957", "3120", "625", "45", "1", "0", "10299", "45829", "39697", "11480", "1330", "63", "1", "0", "75905", "454015", "517790", "201677", "33250", "2506", "84", "1", "0", "609441", "4804191", "6999785", "3513762", "770007", "81774", "4326", "108", "1" ]
[ "nonn", "tabl", "new" ]
11
0
5
[ "A000007", "A004211", "A130191", "A380228", "A383206", "A383207", "A383208" ]
null
Seiichi Manyama, Apr 19 2025
2025-04-19T10:04:05
oeisdata/seq/A383/A383206.seq
2a5b883974d1e689b6b16d6028a27e64
A383207
Expansion of e.g.f. (exp(f(x)) - 1)^2 / 2, where f(x) = (exp(2*x) - 1)/2.
[ "0", "0", "1", "9", "71", "575", "4957", "45829", "454015", "4804191", "54094749", "645720757", "8142419727", "108110708511", "1506969153757", "21993472779461", "335257957315199", "5325979566073919", "87999598425114045", "1509471498829147637", "26835040585117438415", "493677094649876461759", "9384926300821643459133" ]
[ "nonn", "new" ]
9
0
4
[ "A000558", "A383206", "A383207" ]
null
Seiichi Manyama, Apr 19 2025
2025-04-19T10:04:14
oeisdata/seq/A383/A383207.seq
c26309b6d936535663680bb36987d700
A383208
Expansion of e.g.f. (exp(f(x)) - 1)^3 / 6, where f(x) = (exp(2*x) - 1)/2.
[ "0", "0", "0", "1", "18", "245", "3120", "39697", "517790", "6999785", "98520060", "1445923149", "22129416210", "352932509085", "5859167661256", "101122879922313", "1811960841148774", "33662625853200337", "647550189266734452", "12881675626292023173", "264677402162135670554", "5610552395871699336453" ]
[ "nonn", "new" ]
8
0
5
[ "A000559", "A383206", "A383208" ]
null
Seiichi Manyama, Apr 19 2025
2025-04-19T10:04:18
oeisdata/seq/A383/A383208.seq
57b73a4753c5f5f7106df4dcfa7c2254
A383209
Irregular triangle read by rows in which row n lists the odd divisors m of n such that there is a divisor d of n with d < m < 2*d, or 0 if such odd divisors do not exist.
[ "0", "0", "0", "0", "0", "3", "0", "0", "0", "0", "0", "3", "0", "0", "5", "0", "0", "3", "9", "0", "5", "0", "0", "0", "3", "0", "0", "0", "7", "0", "3", "5", "15", "0", "0", "0", "0", "7", "3", "9", "0", "0", "0", "5", "0", "3", "7", "21", "0", "0", "5", "9", "15", "0", "0", "3", "0", "0", "0", "0", "0", "3", "9", "27", "0", "7", "0", "0", "0", "3", "5", "15", "0", "0", "9", "0", "0", "3", "11", "33", "0", "0", "0", "7", "0", "3", "9", "0", "0", "5", "25", "0", "11", "3", "39" ]
[ "nonn", "tabf", "new" ]
26
1
6
[ "A027750", "A237593", "A239657", "A379288", "A379374", "A379461", "A383147", "A383209" ]
null
Omar E. Pol, Apr 19 2025
2025-04-27T15:06:20
oeisdata/seq/A383/A383209.seq
bf7499be6ff27b701a0bb0257142221b
A383211
Numbers of the form p^e where p is prime and e > 1 is squarefree.
[ "4", "8", "9", "25", "27", "32", "49", "64", "121", "125", "128", "169", "243", "289", "343", "361", "529", "729", "841", "961", "1024", "1331", "1369", "1681", "1849", "2048", "2187", "2197", "2209", "2809", "3125", "3481", "3721", "4489", "4913", "5041", "5329", "6241", "6859", "6889", "7921", "8192", "9409", "10201", "10609", "11449", "11881", "12167" ]
[ "nonn", "new" ]
6
1
1
[ "A053810", "A144338", "A383211", "A383266" ]
null
Peter Luschny, Apr 21 2025
2025-04-22T02:42:59
oeisdata/seq/A383/A383211.seq
477ca3c00b28421373a164a1967b3347
A383212
a(n) = permanent of the n-th principal submatrix of the rectangular array whose odd-numbered rows are (2,1,2,1,2,1,2,1,...) and even-numbered rows are (1,2,1,2,1,2,1,2,...).
[ "1", "2", "5", "24", "132", "1032", "8820", "95616", "1106496", "15327360", "223560000", "3768768000", "66305952000", "1316927808000", "27127003680000", "620221722624000", "14638710417408000", "378633583448064000", "10073602372700160000", "290788929384726528000", "8609476463579013120000", "274361332654900592640000", "8946658680536444313600000" ]
[ "nonn", "new" ]
18
0
2
[ "A204252", "A383212" ]
null
Clark Kimberling, Apr 19 2025
2025-04-24T09:01:55
oeisdata/seq/A383/A383212.seq
ebd385abe2a7cc993a7a119e6b99610c
A383213
a(n) = number of distinct prime factors of binomial(2n,n+1).
[ "0", "1", "2", "2", "4", "3", "4", "4", "5", "5", "6", "6", "6", "7", "6", "7", "9", "8", "10", "9", "10", "10", "10", "9", "10", "10", "11", "11", "12", "13", "12", "12", "14", "14", "14", "14", "14", "14", "16", "14", "16", "15", "16", "17", "16", "17", "18", "17", "18", "18", "18", "18", "20", "18", "20", "19", "19", "20", "20", "21", "21", "21", "21", "21", "23", "22", "24", "23", "23", "23" ]
[ "nonn", "new" ]
20
1
3
[ "A000984", "A001221", "A067434", "A383213", "A383214" ]
null
Clark Kimberling, Apr 19 2025
2025-04-26T20:30:09
oeisdata/seq/A383/A383213.seq
5389de9f4d718f8164bb101c403d469d
A383215
Primes p preceded and followed by gaps whose difference (absolute value) is greater than log(p).
[ "7", "29", "31", "113", "127", "139", "149", "181", "191", "199", "223", "241", "283", "307", "317", "331", "347", "419", "421", "431", "467", "521", "523", "541", "619", "641", "661", "673", "773", "809", "811", "821", "829", "853", "863", "877", "887", "907", "953", "967", "1009", "1021", "1031", "1049", "1051", "1061", "1069", "1087", "1129", "1151", "1153", "1213", "1259", "1277" ]
[ "nonn", "new" ]
14
1
1
[ "A068985", "A383215", "A383216" ]
null
Alain Rocchelli, Apr 19 2025
2025-04-28T00:58:08
oeisdata/seq/A383/A383215.seq
7e140ea70f4a943cb2d33c4f19deae51
A383216
Primes p which are preceded and followed by gaps whose difference is greater than 2*log(p).
[ "113", "127", "523", "887", "907", "1087", "1129", "1151", "1277", "1327", "1361", "1669", "1693", "1931", "1951", "1973", "2203", "2311", "2333", "2477", "2557", "2971", "2999", "3163", "3251", "3299", "3469", "4049", "4297", "4327", "4523", "4547", "4783", "4861", "5119", "5147", "5237", "5351", "5381", "5531", "5557", "5591", "5749", "5779", "5981" ]
[ "nonn", "new" ]
11
1
1
[ "A092553", "A383215", "A383216" ]
null
Alain Rocchelli, Apr 19 2025
2025-04-26T19:39:40
oeisdata/seq/A383/A383216.seq
bd1fb16ab8199b9c94fc55368aa295d8
A383217
Lexicographically earliest strictly increasing sequence such that no term is a substring of the product of all previous terms.
[ "1", "2", "3", "4", "5", "6", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "25", "26", "27", "28", "29", "30", "32", "33", "34", "35", "36", "37", "40", "41", "44", "45", "46", "48", "49", "53", "54", "55", "56", "57", "59", "61", "63", "64", "65", "66", "67", "68", "69", "70", "71", "76", "79", "80", "84", "85", "87", "90", "91", "97", "98" ]
[ "nonn", "base", "new" ]
8
1
2
[ "A033180", "A383217", "A383218" ]
null
Dominic McCarty, Apr 19 2025
2025-04-19T18:07:27
oeisdata/seq/A383/A383217.seq
aa2ce0f0772886f96b3d1d59238a3d4c
A383218
The product of the first n terms of A383217.
[ "1", "2", "6", "24", "120", "720", "5760", "51840", "518400", "5702400", "68428800", "889574400", "12454041600", "186810624000", "2988969984000", "50812489728000", "914624815104000", "17377871486976000", "347557429739520000", "7298706024529920000", "160571532539658240000", "3693145248412139520000" ]
[ "nonn", "base", "new" ]
5
1
2
[ "A033180", "A383217", "A383218" ]
null
Dominic McCarty, Apr 19 2025
2025-04-19T18:07:34
oeisdata/seq/A383/A383218.seq
320642fd5e8fa7259d0287ac13f5ae1a
A383220
Integers k such that rad(k)*2^(k/rad(k)) + 1 is prime where rad = A007947.
[ "1", "2", "3", "5", "6", "11", "14", "15", "20", "21", "23", "24", "26", "29", "30", "33", "35", "39", "41", "44", "51", "53", "65", "68", "69", "74", "78", "83", "86", "88", "89", "90", "95", "105", "111", "113", "114", "116", "117", "119", "125", "126", "131", "134", "135", "138", "140", "141", "146", "147", "153", "155", "156", "158", "165", "168", "171", "173", "174", "179" ]
[ "nonn", "new" ]
8
1
2
[ "A002234", "A003557", "A005384", "A007947", "A383220" ]
null
Juri-Stepan Gerasimov, Apr 19 2025
2025-04-27T18:11:42
oeisdata/seq/A383/A383220.seq
46f26baaf604c351faa321281234eb7d
A383221
Coefficient of x^3 in expansion of (x+2) * (x+5) * ... * (x+3*n-1).
[ "0", "0", "0", "1", "26", "595", "14155", "363944", "10206700", "312193524", "10380710220", "373619597736", "14490750497432", "603032132116336", "26818416624389936", "1269883590624201344", "63806666669904903808", "3391580011320726010880", "190174443042558311293440", "11220246602286014617751040" ]
[ "nonn", "new" ]
7
0
5
[ "A225470", "A383221" ]
null
Seiichi Manyama, Apr 20 2025
2025-04-20T08:40:40
oeisdata/seq/A383/A383221.seq
c6d3d626ae03bbfdd72830474511690b
A383222
Coefficient of x^4 in expansion of (x+2) * (x+5) * ... * (x+3*n-1).
[ "0", "0", "0", "0", "1", "40", "1275", "39655", "1276009", "43382934", "1570298610", "60630265740", "2495678898636", "109326548645600", "5085420626585936", "250576924194171120", "13046999027750243984", "716156618057417103008", "41347880768363832470304", "2505655766070932929630464" ]
[ "nonn", "new" ]
7
0
6
[ "A225470", "A383222" ]
null
Seiichi Manyama, Apr 20 2025
2025-04-20T08:40:36
oeisdata/seq/A383/A383222.seq
e8503b36f1533fe034fb09134f2d5f08
A383223
Number of integer solutions to Product_{k=1..n} (4 + c(k)) = 4 * Product_{k=1..n} c(k) with 0 < c(k) <= c(k+1).
[ "0", "2", "15", "375", "28901", "5185573" ]
[ "nonn", "more", "new" ]
5
1
2
[ "A263207", "A375787", "A380749", "A381644", "A382672", "A383223" ]
null
Zhining Yang, Apr 19 2025
2025-04-27T05:56:54
oeisdata/seq/A383/A383223.seq
ed5f86cb83c4df86ebbc2c3af98d96a9
A383227
a(n) is the product of first n even numbers not divisible by 5 (cf. A217562)
[ "1", "2", "8", "48", "384", "4608", "64512", "1032192", "18579456", "408748032", "9809952768", "255058771968", "7141645615104", "228532659683328", "7770110429233152", "279723975452393472", "10629511067190951936", "446439464822019981312", "19643336452168879177728", "903593476799768442175488", "43372486886388885224423424" ]
[ "nonn", "new" ]
8
0
2
[ "A217562", "A356858", "A383227" ]
null
Stefano Spezia, Apr 20 2025
2025-04-21T17:05:33
oeisdata/seq/A383/A383227.seq
563e6cddff133efd665648e566220a0a
A383228
a(n) is the number of cases where both j and k (1 <= j < k <= n), are divisors of Sum_{i=j..k} i^i.
[ "0", "0", "0", "1", "1", "2", "2", "2", "3", "3", "3", "3", "3", "3", "4", "4", "5", "5", "6", "6", "6", "6", "6", "6", "6", "7", "7", "7", "7", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "9", "9", "10", "11", "11", "11", "11", "12", "12", "12", "12", "12", "12", "12", "14", "14", "14", "14", "15", "15", "15", "16", "16", "16", "16", "16", "16", "16", "17", "17", "17", "17", "17", "17", "17", "17", "17", "17", "17" ]
[ "nonn", "new" ]
20
1
6
[ "A000312", "A001923", "A128981", "A383228" ]
null
Jean-Marc Rebert, Apr 20 2025
2025-04-22T07:49:18
oeisdata/seq/A383/A383228.seq
0a3c1fec736f3d8202d0936b265e2776
A383231
Expansion of e.g.f. f(x) * log(f(x)), where f(x) = 1/(1 - 5*x)^(1/5).
[ "0", "1", "7", "83", "1394", "30330", "810756", "25710012", "943434288", "39324264624", "1835297984160", "94813760519136", "5371462318747392", "331125138305434368", "22065681276731119104", "1580617232453691210240", "121117633854691036502016", "9885823380533972300470272", "856279708828545483688808448" ]
[ "nonn", "new" ]
8
0
3
[ "A004041", "A024216", "A024382", "A383231", "A383232", "A383233", "A383234" ]
null
Seiichi Manyama, Apr 20 2025
2025-04-20T08:57:13
oeisdata/seq/A383/A383231.seq
e89c953c6f09dd06448b4d169186cabc
A383232
Expansion of e.g.f. f(x)^2 * log(f(x)), where f(x) = 1/(1 - 5*x)^(1/5).
[ "0", "1", "9", "122", "2242", "52180", "1471692", "48790608", "1859539344", "80109265824", "3849497255520", "204138860091264", "11842095171021696", "745962168915065088", "50708105952635996928", "3699802551156676392960", "288399758863879774476288", "23919432333548949807869952", "2103184085769044913951461376" ]
[ "nonn", "new" ]
8
0
3
[ "A383231", "A383232", "A383233", "A383234" ]
null
Seiichi Manyama, Apr 20 2025
2025-04-20T08:57:09
oeisdata/seq/A383/A383232.seq
6241beba3ecb939b393ddb7e987560b0
A383233
Expansion of e.g.f. f(x)^3 * log(f(x)), where f(x) = 1/(1 - 5*x)^(1/5).
[ "0", "1", "11", "167", "3318", "81930", "2423208", "83582568", "3295488816", "146241365904", "7214605476480", "391735046081664", "23216763331632384", "1491431668108800768", "103230214859003968512", "7659080261784464808960", "606407304545822037952512", "51033731719180664212641792", "4549228202963725560906891264" ]
[ "nonn", "new" ]
13
0
3
[ "A383231", "A383232", "A383233", "A383234" ]
null
Seiichi Manyama, Apr 20 2025
2025-04-20T10:39:38
oeisdata/seq/A383/A383233.seq
467038ecaa06b02f2849739ad5ec11d8
A383234
Expansion of e.g.f. f(x)^4 * log(f(x)), where f(x) = 1/(1 - 5*x)^(1/5).
[ "0", "1", "13", "218", "4646", "121080", "3741144", "133863792", "5447294352", "248518603584", "12566268267840", "697632464382336", "42189230206182528", "2760816706845539328", "194381535085933095936", "14652311175996819978240", "1177370323796943823325184", "100466288729505689717809152" ]
[ "nonn", "new" ]
7
0
3
[ "A383231", "A383232", "A383233", "A383234" ]
null
Seiichi Manyama, Apr 20 2025
2025-04-20T08:40:53
oeisdata/seq/A383/A383234.seq
7107bef1eabbcadc835482d59c33ce22
A383235
Triangle read by rows: T(n,k) = 2*floor(k/2)*T(n-1,k) + T(n-1,k-1), 0 <= k <= n.
[ "1", "0", "1", "0", "0", "1", "0", "0", "2", "1", "0", "0", "4", "4", "1", "0", "0", "8", "12", "8", "1", "0", "0", "16", "32", "44", "12", "1", "0", "0", "32", "80", "208", "92", "18", "1", "0", "0", "64", "192", "912", "576", "200", "24", "1", "0", "0", "128", "448", "3840", "3216", "1776", "344", "32", "1", "0", "0", "256", "1024", "15808", "16704", "13872", "3840", "600", "40", "1" ]
[ "nonn", "tabl", "new" ]
12
0
9
[ "A000079", "A001787", "A007472", "A007590", "A048993", "A100575", "A158681", "A383235" ]
null
Ven Popov, Apr 20 2025.
2025-04-24T13:26:59
oeisdata/seq/A383/A383235.seq
c4f2641c84f06bab672053ffc3a43041
A383236
The least number of applications of Ackermann-Péter functions to reach n, starting from 0.
[ "1", "2", "3", "4", "4", "5", "5", "6", "6", "7", "7", "8", "5", "6", "7", "8", "8", "9", "9", "10", "9", "10", "10", "11", "10", "11", "11", "12", "6", "7", "8", "9", "10", "11", "11", "12", "11", "12", "12", "13", "12", "13", "13", "14", "12", "13", "13", "14", "13", "14", "14", "15", "13", "14", "14", "15", "14", "15", "15", "16", "7", "8", "9", "10" ]
[ "nonn", "look", "new" ]
20
1
2
[ "A143796", "A368423", "A383236" ]
null
Hendrik Ballhausen, Apr 20 2025
2025-04-24T13:34:55
oeisdata/seq/A383/A383236.seq
302999f7dff310f03b7ef61c8005e50a
A383237
Primes p such that x^5+x+1 has no roots modulo p.
[ "2", "29", "41", "47", "71", "131", "179", "197", "233", "239", "257", "269", "311", "353", "443", "461", "491", "509", "587", "647", "653", "683", "761", "857", "863", "887", "929", "947", "1013", "1061", "1223", "1277", "1283", "1289", "1301", "1361", "1373", "1409", "1427", "1439", "1499", "1511", "1559", "1619", "1637", "1733", "1823", "1973", "1979" ]
[ "nonn", "new" ]
11
1
1
[ "A003627", "A383237" ]
null
Jayde S. Massmann, Apr 20 2025
2025-04-24T13:22:49
oeisdata/seq/A383/A383237.seq
cca30d3fde094657d68247a5fd870943
A383255
Number of n X n {0,1,2,3} matrices having no 1's to the right of any 0's and no 3's above any 2's.
[ "1", "4", "194", "107080", "672498596", "48104236145168", "39202958861329453384", "364022757339778569993689888", "38513979937284562006371342202842000", "46429021191757554279412904483559912259714112", "637737721080296383894709847744103523361428384973270816" ]
[ "nonn", "new" ]
13
0
2
[ "A002416", "A006506", "A014235", "A060757", "A181213", "A213977", "A381857", "A383255" ]
null
John Tyler Rascoe, Apr 20 2025
2025-04-23T14:57:45
oeisdata/seq/A383/A383255.seq
3562c878bc234934c9845c610a7097b0
A383256
Number of n X n matrices of nonnegative entries with all columns summing to n and no horizontally adjacent zeros.
[ "1", "1", "7", "343", "125465", "366908001", "8698468668251", "1708834003295306868", "2810884261025802145414705", "39088555382409783097546399456477", "4626844513673581956954679383115038810744", "4688191496359773864437279635019555242588548880831" ]
[ "nonn", "new" ]
10
0
3
[ "A008300", "A120733", "A145839", "A261780", "A382923", "A383256" ]
null
John Tyler Rascoe, Apr 21 2025
2025-04-23T17:02:34
oeisdata/seq/A383/A383256.seq
41ca71d0c44fc52446a4e63aee51386d
A383258
LCM-transform of A064664 (the inverse of the EKG-sequence).
[ "1", "2", "5", "3", "1", "2", "7", "2", "1", "3", "1", "1", "1", "13", "11", "17", "1", "1", "37", "1", "1", "19", "43", "2", "1", "3", "1", "1", "1", "23", "61", "31", "1", "2", "5", "1", "67", "1", "29", "1", "1", "1", "3", "41", "1", "1", "89", "1", "1", "1", "1", "47", "1", "1", "53", "7", "1", "1", "107", "1", "1", "1", "1", "2", "1", "59", "2", "1", "1", "1", "1", "1", "1", "1", "1", "71", "1", "1", "151", "1", "1", "73", "1", "1", "1", "1", "1", "79", "167", "83", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "197" ]
[ "nonn", "new" ]
14
1
2
[ "A064413", "A064664", "A064954", "A265576", "A368900", "A383258" ]
null
Antti Karttunen, Apr 21 2025
2025-04-21T11:15:51
oeisdata/seq/A383/A383258.seq
39d33e0ac6da2b58fcfa0f656e2fea63
A383259
a(n) is the excess of even composites over odd composites in the first n positive integers.
[ "0", "0", "0", "1", "1", "2", "2", "3", "2", "3", "3", "4", "4", "5", "4", "5", "5", "6", "6", "7", "6", "7", "7", "8", "7", "8", "7", "8", "8", "9", "9", "10", "9", "10", "9", "10", "10", "11", "10", "11", "11", "12", "12", "13", "12", "13", "13", "14", "13", "14", "13", "14", "14", "15", "14", "15", "14", "15", "15", "16", "16", "17", "16", "17", "16", "17", "17", "18", "17", "18", "18", "19", "19", "20" ]
[ "nonn", "easy", "new" ]
13
1
6
[ "A000034", "A000720", "A002808", "A066247", "A071904", "A383037", "A383259" ]
null
Felix Huber, Apr 24 2025
2025-04-25T20:38:05
oeisdata/seq/A383/A383259.seq
d68d5cbfbf6b4c0b93faf8e7b2f8434e
A383260
Expansion of e.g.f. f(x) * exp(f(x)), where f(x) = (exp(3*x) - 1)/3.
[ "0", "1", "5", "30", "211", "1691", "15126", "148975", "1599401", "18563832", "231317677", "3076301471", "43448641176", "648950825173", "10212710942609", "168797691270438", "2921824286030527", "52833169082034839", "995732022426733782", "19519908917429511307", "397294691005861642805", "8381466690394292755896" ]
[ "nonn", "new" ]
13
0
3
[ "A024216", "A138378", "A383203", "A383260", "A383261", "A383262" ]
null
Seiichi Manyama, Apr 21 2025
2025-04-21T09:53:11
oeisdata/seq/A383/A383260.seq
70c47c38cb39c1192f988f4c70b770f4
A383261
Expansion of e.g.f. f(x) * exp(2 * f(x)), where f(x) = (exp(3*x) - 1)/3.
[ "0", "1", "7", "57", "527", "5441", "61959", "770281", "10364671", "149854545", "2313932471", "37963374329", "658873048623", "12050610195937", "231496456566631", "4657345160220681", "97873704021590111", "2143496712532350833", "48821033290172899095", "1154261436241093805593", "28279753601438144211343" ]
[ "nonn", "new" ]
9
0
3
[ "A024395", "A383260", "A383261" ]
null
Seiichi Manyama, Apr 21 2025
2025-04-21T09:54:00
oeisdata/seq/A383/A383261.seq
a08f460c8b0fbab071b00a663fa891a3
A383262
Expansion of e.g.f. f(x)^2 * exp(f(x)) / 2, where f(x) = (exp(3*x) - 1)/3.
[ "0", "0", "1", "12", "123", "1270", "13776", "158718", "1944685", "25294338", "348340491", "5064749074", "77528735868", "1246096312188", "20976610875949", "368984700979440", "6767792258171547", "129182459141936566", "2561529454871582772", "52676675861728386114", "1121762199908797394977" ]
[ "nonn", "new" ]
11
0
4
[ "A003128", "A286721", "A383204", "A383262" ]
null
Seiichi Manyama, Apr 21 2025
2025-04-21T09:55:09
oeisdata/seq/A383/A383262.seq
f4d2993b16891d1dae25aaf7d8fb36fb
A383263
Union of prime powers (A246655) and numbers that are not squarefree (A013929).
[ "2", "3", "4", "5", "7", "8", "9", "11", "12", "13", "16", "17", "18", "19", "20", "23", "24", "25", "27", "28", "29", "31", "32", "36", "37", "40", "41", "43", "44", "45", "47", "48", "49", "50", "52", "53", "54", "56", "59", "60", "61", "63", "64", "67", "68", "71", "72", "73", "75", "76", "79", "80", "81", "83", "84", "88", "89", "90", "92", "96", "97", "98", "99", "100", "101", "103" ]
[ "nonn", "new" ]
8
1
1
[ "A013929", "A246655", "A363597", "A383263" ]
null
Peter Luschny, Apr 27 2025
2025-04-27T15:02:20
oeisdata/seq/A383/A383263.seq
dd6b8c0bd7633a871b3caaaf67b7c175
A383264
Numbers whose vSPD is not squarefree, where vSPD(n) is the valuation of the smallest prime divisor for n >= 2.
[ "16", "48", "80", "81", "112", "144", "176", "208", "240", "256", "272", "304", "336", "368", "400", "405", "432", "464", "496", "512", "528", "560", "567", "592", "624", "625", "656", "688", "720", "752", "768", "784", "816", "848", "880", "891", "912", "944", "976", "1008", "1040", "1053", "1072", "1104", "1136", "1168", "1200", "1232", "1264", "1280", "1296" ]
[ "nonn", "easy", "new" ]
22
1
1
[ "A008683", "A013929", "A067029", "A383264" ]
null
Peter Luschny, Apr 25 2025
2025-04-26T08:27:53
oeisdata/seq/A383/A383264.seq
83e01d31e95306b0a643e972404c5894
A383265
a(n) = Sum_{k=0..n} A383266(n, k).
[ "0", "2", "7", "14", "24", "35", "48", "63", "81", "101", "122", "145", "170", "197", "226", "257", "292", "327", "364", "403", "444", "487", "532", "579", "628", "680", "733", "789", "846", "905", "966", "1029", "1095", "1162", "1231", "1302", "1376", "1451", "1528", "1607", "1688", "1771", "1856", "1943", "2032", "2123", "2216", "2311", "2408", "2508", "2609" ]
[ "nonn", "new" ]
5
0
2
[ "A383265", "A383266" ]
null
Peter Luschny, Apr 21 2025
2025-04-21T16:04:25
oeisdata/seq/A383/A383265.seq
0f018042c024fdaf911dffc386b5fb40
A383266
Triangle read by rows: For n, k >= 2 T(n, k) is defined as the exponent of the highest power e of k such that k^e <= n. Otherwise T(n, 0) = n^2 and T(n, 1) = n.
[ "0", "1", "1", "4", "2", "1", "9", "3", "1", "1", "16", "4", "2", "1", "1", "25", "5", "2", "1", "1", "1", "36", "6", "2", "1", "1", "1", "1", "49", "7", "2", "1", "1", "1", "1", "1", "64", "8", "3", "1", "1", "1", "1", "1", "1", "81", "9", "3", "2", "1", "1", "1", "1", "1", "1", "100", "10", "3", "2", "1", "1", "1", "1", "1", "1", "1", "121", "11", "3", "2", "1", "1", "1", "1", "1", "1", "1", "1", "144", "12", "3", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1" ]
[ "nonn", "tabl", "new" ]
7
0
4
[ "A000196", "A383265", "A383266" ]
null
Peter Luschny, Apr 21 2025
2025-04-21T17:08:49
oeisdata/seq/A383/A383266.seq
e6412498774c23d0766334fdb4156935
A383271
Number of primes (excluding n) that may be generated by replacing any binary digit of n with a digit from 0 to 1.
[ "0", "0", "1", "1", "1", "1", "2", "2", "0", "2", "2", "1", "1", "1", "0", "3", "1", "1", "2", "3", "0", "4", "1", "3", "0", "2", "0", "3", "1", "2", "1", "2", "0", "2", "1", "2", "1", "2", "0", "3", "1", "1", "1", "4", "0", "5", "1", "1", "0", "2", "0", "2", "1", "2", "0", "2", "0", "3", "1", "1", "1", "2", "0", "4", "0", "3", "2", "3", "0", "3", "1", "4", "1", "1", "0", "5", "0", "4", "1", "1", "0", "4", "1", "2", "0", "0", "0", "3", "1", "1" ]
[ "nonn", "base", "new" ]
27
0
7
[ "A070939", "A145667", "A209252", "A352942", "A383271" ]
null
Michael S. Branicky, Apr 21 2025
2025-04-23T19:31:05
oeisdata/seq/A383/A383271.seq
90af0b86eb34029de4e2dd474e7d824f
A383272
Positions of records in A383271.
[ "0", "2", "6", "15", "21", "45", "111", "261", "1605", "1995", "4935", "8295", "69825", "268155", "550725", "4574955", "12024855", "39867135", "398467245", "1698754365", "16351800465" ]
[ "nonn", "base", "new" ]
19
1
2
[ "A276694", "A322743", "A383271", "A383272" ]
null
Michael S. Branicky, Apr 21 2025
2025-04-23T02:38:52
oeisdata/seq/A383/A383272.seq
bdbfebccceb4887776cd21e2aa932ca1
A383274
a(n) = Sum_{i,j = 0..n} C(n, i)^2*C(n, j)^2*C(i+j, i)*2^(i+j).
[ "1", "13", "441", "20629", "1119361", "66116013", "4126228569", "267666251733", "17868312820737", "1219477111897933", "84701899713767161", "5967906378862013973", "425503428034568158081", "30642774518964618986989", "2225692868157573335052441", "162858794856607965831417429", "11993850186156155815298686977" ]
[ "nonn", "new" ]
32
0
2
[ "A005259", "A383274" ]
null
Zhi-Wei Sun, Apr 26 2025
2025-04-27T11:27:14
oeisdata/seq/A383/A383274.seq
56a47e654723c32da7e17c6140f826e0
A383275
Number of compositions of n such that any part 1 can be k different colors where k is the current record having appeared in the composition.
[ "1", "1", "2", "5", "14", "42", "134", "454", "1634", "6245", "25321", "108779", "494443", "2374288", "12024257", "64100444", "358948674", "2106756217", "12931155910", "82823317389", "552400947902", "3829070637080", "27534807426150", "205066734143893", "1579309451332366", "12559941159979791", "103013928588389695" ]
[ "nonn", "easy", "new" ]
12
0
3
[ "A000108", "A011782", "A088305", "A382312", "A382991", "A383101", "A383175", "A383275" ]
null
John Tyler Rascoe, Apr 21 2025
2025-04-24T09:39:13
oeisdata/seq/A383/A383275.seq
167b6a068c4654dc99287a2d568d2a3e
A383276
Numbers of the form A034444(k) * k.
[ "1", "4", "6", "8", "10", "14", "16", "18", "22", "24", "26", "32", "34", "38", "40", "46", "48", "50", "54", "56", "58", "60", "62", "64", "72", "74", "80", "82", "84", "86", "88", "94", "96", "98", "104", "106", "112", "118", "122", "128", "132", "134", "136", "140", "142", "144", "146", "152", "156", "158", "160", "162", "166", "176", "178", "180", "184", "192", "194", "200" ]
[ "nonn", "easy", "new" ]
12
1
2
[ "A005087", "A007814", "A034444", "A036438", "A100484", "A138929", "A151821", "A298473", "A383276", "A383277", "A383278", "A383279" ]
null
Amiram Eldar, Apr 21 2025
2025-04-26T03:33:22
oeisdata/seq/A383/A383276.seq
9efed28e953519d4453e9c35af06efa4
A383277
The number of divisors d of n for which A034444(d)*d is equal to n.
[ "1", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0" ]
[ "nonn", "easy", "new" ]
7
1
null
[ "A005087", "A007814", "A034444", "A327166", "A383276", "A383277", "A383278", "A383279" ]
null
Amiram Eldar, Apr 21 2025
2025-04-22T02:46:10
oeisdata/seq/A383/A383277.seq
b2b1d8c25f9d78827dcc50cfeed78add
A383278
The number of integers k such that A034444(k) * k <= n.
[ "1", "1", "1", "2", "2", "3", "3", "4", "4", "5", "5", "5", "5", "6", "6", "7", "7", "8", "8", "8", "8", "9", "9", "10", "10", "11", "11", "11", "11", "11", "11", "12", "12", "13", "13", "13", "13", "14", "14", "15", "15", "15", "15", "15", "15", "16", "16", "17", "17", "18", "18", "18", "18", "19", "19", "20", "20", "21", "21", "22", "22", "23", "23", "24", "24", "24", "24", "24", "24", "24", "24" ]
[ "nonn", "easy", "new" ]
11
1
4
[ "A034444", "A087197", "A345288", "A356005", "A383276", "A383277", "A383278", "A383279" ]
null
Amiram Eldar, Apr 21 2025
2025-04-22T02:47:18
oeisdata/seq/A383/A383278.seq
fa7eb3f5290cbd13d780bbae99e9b2dd
A383279
The unique solution to x * A034444(x) = A383276(n).
[ "1", "2", "3", "4", "5", "7", "8", "9", "11", "6", "13", "16", "17", "19", "10", "23", "12", "25", "27", "14", "29", "15", "31", "32", "18", "37", "20", "41", "21", "43", "22", "47", "24", "49", "26", "53", "28", "59", "61", "64", "33", "67", "34", "35", "71", "36", "73", "38", "39", "79", "40", "81", "83", "44", "89", "45", "46", "48", "97", "50", "101", "51", "103", "52", "107", "54", "109" ]
[ "nonn", "easy", "new" ]
10
1
2
[ "A000265", "A005087", "A007814", "A034444", "A383276", "A383277", "A383278", "A383279" ]
null
Amiram Eldar, Apr 21 2025
2025-04-22T02:43:27
oeisdata/seq/A383/A383279.seq
5f1e908aab5e6cf92da2d08906d584e3
A383280
a(n) = (3/2)^n * Sum_{k=0..n} (1/6)^k * (2*k)! * (n-k)! * binomial(n,k)^2.
[ "1", "2", "9", "72", "954", "19980", "624510", "27420120", "1607036760", "120942324720", "11351106055800", "1298791163577600", "177888712528573200", "28728740092874421600", "5401708378739722249200", "1169716267087957140552000", "288993599402729842084464000", "80796133625685147464322528000" ]
[ "nonn", "new" ]
15
0
2
[ "A000681", "A001499", "A383280" ]
null
Seiichi Manyama, Apr 22 2025
2025-04-24T04:22:44
oeisdata/seq/A383/A383280.seq
79ee57fee2b899e39d385d945db6bba6
A383281
a(n) = Sum_{k=0..n} (2*k+1) * (1/2)^(n+k) * (2*k)! * (n-k)! * binomial(n,k)^2.
[ "1", "2", "11", "120", "2202", "61260", "2407770", "127116360", "8680455000", "744631438320", "78393873940200", "9938444069030400", "1493483322288157200", "262511581007832156000", "53360641241377862792400", "12420661873849173800856000", "3282370875452495120806512000", "977378127650967704776130016000" ]
[ "nonn", "new" ]
16
0
2
[ "A002018", "A383281" ]
null
Seiichi Manyama, Apr 22 2025
2025-04-24T04:34:28
oeisdata/seq/A383/A383281.seq
2fe6871b660170469a02255d806853fd
A383282
a(n) = Sum_{k=0..n} (2*k+1) * (-1/2)^(n+k) * (2*k)! * (n-k)! * binomial(n,k)^2.
[ "1", "1", "5", "51", "906", "24690", "956790", "49993650", "3387124440", "288755250840", "30247310482200", "3818739956308200", "571858101118458000", "100218359688123877200", "20319306632495415745200", "4719164981053010642154000", "1244680987088062472732784000", "369981708267221405777101680000" ]
[ "nonn", "new" ]
13
0
3
[ "A383281", "A383282" ]
null
Seiichi Manyama, Apr 22 2025
2025-04-24T04:37:56
oeisdata/seq/A383/A383282.seq
49323e257bc53f5d253e10a3dc7569f7
A383284
Lexicographically earliest infinite sequence such that a(i) = a(j) => A265576(i) = A265576(j), for all i, j >= 1, where A265576 is the LCM-transform of EKG-sequence.
[ "1", "2", "2", "3", "1", "3", "1", "2", "4", "1", "1", "1", "5", "1", "1", "1", "2", "1", "6", "1", "1", "3", "1", "4", "1", "1", "7", "1", "1", "1", "2", "8", "1", "1", "1", "9", "1", "1", "1", "1", "1", "10", "1", "1", "1", "1", "1", "1", "1", "5", "1", "1", "1", "1", "1", "11", "1", "1", "1", "12", "1", "1", "1", "2", "1", "13", "1", "1", "1", "1", "1", "1", "14", "1", "1", "3", "1", "1", "1", "15", "1", "1", "1", "1", "1", "1", "1", "16", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "17" ]
[ "nonn", "new" ]
12
1
2
[ "A000720", "A064413", "A064423", "A265576", "A383284", "A383285" ]
null
Antti Karttunen, Apr 22 2025
2025-04-22T09:09:42
oeisdata/seq/A383/A383284.seq
55d55dea9ff85006f967d55106b58063
A383285
Positions of terms > 1 in A265576, where A265576 is the LCM-transform of EKG-sequence.
[ "2", "3", "4", "6", "8", "9", "13", "17", "19", "22", "24", "27", "31", "32", "36", "42", "50", "56", "60", "64", "66", "73", "76", "80", "88", "99", "106", "112", "114", "122", "124", "127", "133", "137", "150", "159", "166", "171", "181", "188", "196", "202", "206", "215", "232", "235", "240", "252", "258", "263", "278", "286", "290", "296", "304", "313", "319", "327", "335", "343", "359", "362", "370", "376", "380", "400", "419", "429", "437", "443" ]
[ "nonn", "new" ]
10
1
1
[ "A064413", "A064423", "A265576", "A383284", "A383285", "A383295" ]
null
Antti Karttunen, Apr 22 2025
2025-04-22T15:26:27
oeisdata/seq/A383/A383285.seq
b3879e39a842ff950c8c898a209a2df4
A383292
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^(2*s) + 1/p^(3*s)).
[ "1", "1", "1", "2", "1", "1", "1", "3", "2", "1", "1", "2", "1", "1", "1", "3", "1", "2", "1", "2", "1", "1", "1", "3", "2", "1", "3", "2", "1", "1", "1", "3", "1", "1", "1", "4", "1", "1", "1", "3", "1", "1", "1", "2", "2", "1", "1", "3", "2", "2", "1", "2", "1", "3", "1", "3", "1", "1", "1", "2", "1", "1", "2", "3", "1", "1", "1", "2", "1", "1", "1", "6", "1", "1", "2", "2", "1", "1", "1", "3", "3", "1", "1", "2", "1", "1", "1", "3", "1", "2", "1", "2", "1", "1", "1", "3", "1", "2", "2", "4" ]
[ "nonn", "mult", "easy", "new" ]
18
1
4
[ "A001694", "A046100", "A073184", "A095691", "A330595", "A365498", "A365552", "A368105", "A380922", "A383292" ]
null
Vaclav Kotesovec, Apr 22 2025
2025-04-22T14:17:11
oeisdata/seq/A383/A383292.seq
c26a2c15ef62306e5801aac6653f3114
A383293
Exponential of Mangoldt function applied to EKG-sequence: a(n) = A014963(A064413(n)).
[ "1", "2", "2", "1", "3", "3", "1", "2", "1", "5", "1", "1", "1", "7", "1", "1", "2", "1", "1", "11", "1", "3", "1", "5", "1", "1", "1", "13", "1", "1", "2", "1", "17", "1", "1", "1", "19", "1", "1", "1", "1", "1", "23", "1", "1", "1", "1", "1", "1", "7", "1", "1", "1", "1", "1", "1", "29", "1", "1", "1", "31", "1", "1", "2", "1", "1", "37", "1", "1", "1", "1", "1", "1", "41", "1", "3", "1", "1", "1", "1", "43", "1", "1", "1", "1", "1", "1", "1", "47", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "53" ]
[ "nonn", "new" ]
7
1
2
[ "A014963", "A064413", "A265576", "A383293", "A383294" ]
null
Antti Karttunen, Apr 22 2025
2025-04-22T13:33:23
oeisdata/seq/A383/A383293.seq
9c6eeb49dc6f74eec39a39244533aa09