Dataset Viewer
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 1 was different: 
country_data: struct<Africa: list<item: struct<country: string, emoji: string, url: string>>, Asia: list<item: struct<country: string, emoji: string, url: string>>, Europe: list<item: struct<country: string, emoji: string, url: string>>, North America: list<item: struct<country: string, emoji: string, url: string>>, South America: list<item: struct<country: string, emoji: string, url: string>>, Oceania: list<item: struct<country: string, emoji: string, url: string>>>
vs
Territory: string
Topic: string
Category: string
Location: string
Impact: string
Reference: string
Units: string
Value: string
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 231, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 3335, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2096, in _head
                  return next(iter(self.iter(batch_size=n)))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2296, in iter
                  for key, example in iterator:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1856, in __iter__
                  for key, pa_table in self._iter_arrow():
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1878, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 520, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                File "pyarrow/table.pxi", line 4116, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 1 was different: 
              country_data: struct<Africa: list<item: struct<country: string, emoji: string, url: string>>, Asia: list<item: struct<country: string, emoji: string, url: string>>, Europe: list<item: struct<country: string, emoji: string, url: string>>, North America: list<item: struct<country: string, emoji: string, url: string>>, South America: list<item: struct<country: string, emoji: string, url: string>>, Oceania: list<item: struct<country: string, emoji: string, url: string>>>
              vs
              Territory: string
              Topic: string
              Category: string
              Location: string
              Impact: string
              Reference: string
              Units: string
              Value: string

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

IFVI Value Factors

IFVI Value Factors Dataset

Hugging Face Dataset
Original Data / Source

Cumulative Download Statistics

Cumulative Download Statistics

๐Ÿ“‘ Navigation Index

๐Ÿ“Š Dataset Overview

๐ŸŒ About The Global Value Factors Explorer Dataset

The Global Value Factors Database, released by the International Foundation for Valuing Impacts during UN Climate Week NYC 2023, provides a set of almost 100,000 "value factors" for converting environmental impacts into monetary terms.

The GVFD covers 430 different environmental impacts across four main categories of impact: air pollution, land use and conversion, waste and water pollution

With the exception of the value factor for greenhouse gas emissions, for which a single value factor is provided ($236/tco2e), the value factors are geographically stratified (in other words, the value factors are both impact-specific and geolocation-specific). In total, there are 268 geolocations in the dataset reflecting all the world's recognised sovereigns as well as some international dependencies. In addition, one set of value factors, air pollution, provides data at the level of US states.

๐Ÿ“Š Data Exploration

To help you get started with exploring and visualizing the data, check out our Data Exploration Jupyter Notebook. This notebook provides a skeleton for loading, analyzing, and visualizing the IFVI Value Factors dataset.

๐Ÿ”‘ Key Parameters

Parameter Value
Value Factors Almost 100,000 "value factors" for converting quantitative environmental data into monetary equivalents (USD)
Geolocations 268 geolocations (all recognized sovereigns plus some dependencies)
US States Value factors for air pollution at the US state level
Impact Categories Air pollution, land use and conversion, waste, water pollution
Methodologies Interim methodologies from IFVI

๐Ÿ“‚ Repository Structure

This repository is organized to facilitate use by policy makers, governmental actors, and other stakeholders:

ifvi_valuefactors_deriv/
โ”œโ”€โ”€ core-data/             # Primary data files - the essential content
โ”‚   โ”œโ”€โ”€ by-policy-domain/  # Data organized by policy domains
โ”‚   โ”œโ”€โ”€ by-region/         # Data organized by geographic regions
โ”‚   โ”œโ”€โ”€ by-impact-type/    # Data organized by environmental impact type
โ”‚   โ””โ”€โ”€ aggregated/        # Consolidated datasets in multiple formats
โ”‚
โ”œโ”€โ”€ documentation/         # All documentation related to the dataset
โ”‚   โ”œโ”€โ”€ data-dictionary/   # Explanations of data fields and values
โ”‚   โ”œโ”€โ”€ methodology/       # Documentation on IFVI methodologies
โ”‚   โ”œโ”€โ”€ policy-briefs/     # Policy-oriented summaries and use cases
โ”‚   โ””โ”€โ”€ technical-guides/  # Technical implementation guides
โ”‚
โ”œโ”€โ”€ tools/                 # Tools and utilities for working with the data
โ”‚   โ”œโ”€โ”€ conversion/        # Tools for data format conversion
โ”‚   โ”œโ”€โ”€ analysis/          # Analysis scripts and notebooks
โ”‚   โ””โ”€โ”€ visualization/     # Visualization tools and templates
โ”‚
โ”œโ”€โ”€ examples/              # Example applications using the dataset
โ”‚
โ”œโ”€โ”€ images/                # Images used in documentation
โ”‚   โ”œโ”€โ”€ cards/             # Card images for visual representation
โ”‚   โ””โ”€โ”€ graphics/          # Graphics and visual elements
โ”‚
โ””โ”€โ”€ resources/             # Additional resources and reference data

For more details on the repository structure, see REPOSITORY_STRUCTURE.md.

๐Ÿ“… Versioning

This repository reflects GVFD Version 1 (October 15th, 2024). It is not guaranteed to be the most recent version. Consult the IFVI website for the latest data and updates. While this repository aims to mirror the original GVFD, using this data for official purposes requires referencing the complete IFVI documentation, which is not included here.

๐Ÿ“œ Licensing

This derivative dataset is subject to the same terms of use as the original database, available in license.md at the repository root. These licensing conditions are stipulated by the International Foundation for Valuing Impacts. At the time of writing, the licensing terms provide for wide use of the data on a complimentary basis (including by account preparers) with limited exclusions to that position for those looking to integrate the data into commercial data products for which licensing charges apply. Questions regarding licensing of the database and requests for clarification regarding allowable uses and any other queries regarding compliance with the terms of their license should be referred to the IFVI.

๐Ÿ—‚๏ธ Data Formatting

The source data has been restructured for various analytical perspectives:

Data Category Description
By Methodology JSON arrays organized by methodology parameters.
By Methodology, By Country Mirrors the source database structure (except Land Use and Conversion, which are split into two files).
By Territory Organizes data geographically by continent, territory, and US state (US states appear in one methodology). JSON files aggregate data from various methodology tabs.

Additional resources:

  • CSV format data.
  • metadata/ folder containing non-data items (e.g., notes from the original database tabs).

๐Ÿ› ๏ธ Data Modifications

No material data changes were made. Modifications are limited to formatting and restructuring for analysis. Two non-material changes (documented in the changelog) are:

  • Removal of US dollar signs for easier database integration.
  • Standardization of 12 country names to more common versions (e.g., "Bahamas, The" to "Bahamas") and mapping all territories to their ISO-3166 Alpha-2 codes for clarity.

๐Ÿ”ง Development and Maintenance

This repository includes scripts for maintaining download statistics and other metadata. To contribute or run these scripts locally:

  1. Install the required dependencies:

    pip install -r requirements.txt
    
  2. Update download statistics manually:

    python3 .github/scripts/update_stats.py
    

The repository is configured with GitHub Actions to automatically update download statistics daily.

๐Ÿ“ Data File Locations

Data Files Root

Aggregated Value Factors

Value Factors by Type/Methodology

Value Factors by Geography

CSV Format Data

๐Ÿ”„ Data By Impact Type

For detailed data organized by environmental impact type, visit the following directories:

๐ŸŒ Country-Specific Data Navigation

๐Ÿ—บ๏ธ Data By Region

Continental Data Directories:

๐ŸŒ Africa

Country Data Link Country Data Link Country Data Link
๐Ÿ‡ฉ๐Ÿ‡ฟ Algeria JSON ๐Ÿ‡ฆ๐Ÿ‡ด Angola JSON ๐Ÿ‡ง๐Ÿ‡ฏ Benin JSON
๐Ÿ‡ง๐Ÿ‡ผ Botswana JSON ๐Ÿ‡ง๐Ÿ‡ซ Burkina Faso JSON ๐Ÿ‡ง๐Ÿ‡ฎ Burundi JSON
๐Ÿ‡จ๐Ÿ‡ป Cabo Verde JSON ๐Ÿ‡จ๐Ÿ‡ฒ Cameroon JSON ๐Ÿ‡จ๐Ÿ‡ซ Central African Republic JSON
๐Ÿ‡น๐Ÿ‡ฉ Chad JSON ๐Ÿ‡ฐ๐Ÿ‡ฒ Comoros JSON ๐Ÿ‡จ๐Ÿ‡ฉ Congo, Dem. Rep. JSON
๐Ÿ‡จ๐Ÿ‡ฌ Congo, Rep. JSON ๐Ÿ‡จ๐Ÿ‡ฎ Cote d'Ivoire JSON ๐Ÿ‡ฉ๐Ÿ‡ฏ Djibouti JSON
๐Ÿ‡ช๐Ÿ‡ฌ Egypt JSON ๐Ÿ‡ฌ๐Ÿ‡ถ Equatorial Guinea JSON ๐Ÿ‡ช๐Ÿ‡ท Eritrea JSON
๐Ÿ‡ธ๐Ÿ‡ฟ Eswatini JSON ๐Ÿ‡ช๐Ÿ‡น Ethiopia JSON ๐Ÿ‡ฌ๐Ÿ‡ฆ Gabon JSON
๐Ÿ‡ฌ๐Ÿ‡ฒ Gambia JSON ๐Ÿ‡ฌ๐Ÿ‡ญ Ghana JSON ๐Ÿ‡ฌ๐Ÿ‡ณ Guinea JSON
Guinea-Bissau JSON ๐Ÿ‡ฐ๐Ÿ‡ช Kenya JSON ๐Ÿ‡ฑ๐Ÿ‡ธ Lesotho JSON
๐Ÿ‡ฑ๐Ÿ‡ท Liberia JSON ๐Ÿ‡ฑ๐Ÿ‡พ Libya JSON ๐Ÿ‡ฒ๐Ÿ‡ฌ Madagascar JSON
๐Ÿ‡ฒ๐Ÿ‡ผ Malawi JSON ๐Ÿ‡ฒ๐Ÿ‡ฑ Mali JSON ๐Ÿ‡ฒ๐Ÿ‡ท Mauritania JSON
๐Ÿ‡ฒ๐Ÿ‡บ Mauritius JSON ๐Ÿ‡ฒ๐Ÿ‡ฆ Morocco JSON ๐Ÿ‡ฒ๐Ÿ‡ฟ Mozambique JSON
๐Ÿ‡ณ๐Ÿ‡ฆ Namibia JSON ๐Ÿ‡ณ๐Ÿ‡ช Niger JSON ๐Ÿ‡ณ๐Ÿ‡ฌ Nigeria JSON
๐Ÿ‡ท๐Ÿ‡ผ Rwanda JSON ๐Ÿ‡ธ๐Ÿ‡น Sao Tome and Principe JSON ๐Ÿ‡ธ๐Ÿ‡ณ Senegal JSON
๐Ÿ‡ธ๐Ÿ‡จ Seychelles JSON ๐Ÿ‡ธ๐Ÿ‡ฑ Sierra Leone JSON ๐Ÿ‡ธ๐Ÿ‡ด Somalia JSON
๐Ÿ‡ฟ๐Ÿ‡ฆ South Africa JSON ๐Ÿ‡ธ๐Ÿ‡ธ South Sudan JSON ๐Ÿ‡ธ๐Ÿ‡ฉ Sudan JSON
๐Ÿ‡น๐Ÿ‡ฟ Tanzania JSON ๐Ÿ‡น๐Ÿ‡ฌ Togo JSON ๐Ÿ‡น๐Ÿ‡ณ Tunisia JSON
๐Ÿ‡บ๐Ÿ‡ฌ Uganda JSON ๐Ÿ‡ฟ๐Ÿ‡ฒ Zambia JSON ๐Ÿ‡ฟ๐Ÿ‡ผ Zimbabwe JSON

๐ŸŒ Asia

Country Data Link Country Data Link Country Data Link
๐Ÿ‡ฆ๐Ÿ‡ซ Afghanistan JSON ๐Ÿ‡ฆ๐Ÿ‡ฒ Armenia JSON ๐Ÿ‡ฆ๐Ÿ‡ฟ Azerbaijan JSON
๐Ÿ‡ง๐Ÿ‡ญ Bahrain JSON ๐Ÿ‡ง๐Ÿ‡ฉ Bangladesh JSON ๐Ÿ‡ง๐Ÿ‡น Bhutan JSON
๐Ÿ‡ง๐Ÿ‡ณ Brunei Darussalam JSON ๐Ÿ‡ฐ๐Ÿ‡ญ Cambodia JSON ๐Ÿ‡จ๐Ÿ‡ณ China JSON
๐Ÿ‡จ๐Ÿ‡พ Cyprus JSON ๐Ÿ‡ฌ๐Ÿ‡ช Georgia JSON ๐Ÿ‡ญ๐Ÿ‡ฐ Hong Kong SAR, China JSON
๐Ÿ‡ฎ๐Ÿ‡ณ India JSON ๐Ÿ‡ฎ๐Ÿ‡ฉ Indonesia JSON ๐Ÿ‡ฎ๐Ÿ‡ท Iran JSON
๐Ÿ‡ฎ๐Ÿ‡ถ Iraq JSON ๐Ÿ‡ฎ๐Ÿ‡ฑ Israel JSON ๐Ÿ‡ฏ๐Ÿ‡ต Japan JSON
๐Ÿ‡ฏ๐Ÿ‡ด Jordan JSON ๐Ÿ‡ฐ๐Ÿ‡ฟ Kazakhstan JSON ๐Ÿ‡ฐ๐Ÿ‡ต Korea, Dem. People's Rep. JSON
๐Ÿ‡ฐ๐Ÿ‡ท Korea, Rep. JSON ๐Ÿ‡ฐ๐Ÿ‡ผ Kuwait JSON ๐Ÿ‡ฐ๐Ÿ‡ฌ Kyrgyz Republic JSON
๐Ÿ‡ฑ๐Ÿ‡ฆ Lao PDR JSON ๐Ÿ‡ฑ๐Ÿ‡ง Lebanon JSON ๐Ÿ‡ฒ๐Ÿ‡ด Macao SAR, China JSON
๐Ÿ‡ฒ๐Ÿ‡พ Malaysia JSON ๐Ÿ‡ฒ๐Ÿ‡ป Maldives JSON ๐Ÿ‡ฒ๐Ÿ‡ณ Mongolia JSON
๐Ÿ‡ฒ๐Ÿ‡ฒ Myanmar JSON ๐Ÿ‡ณ๐Ÿ‡ต Nepal JSON ๐Ÿ‡ด๐Ÿ‡ฒ Oman JSON
๐Ÿ‡ต๐Ÿ‡ฐ Pakistan JSON ๐Ÿ‡ต๐Ÿ‡ญ Philippines JSON ๐Ÿ‡ถ๐Ÿ‡ฆ Qatar JSON
๐Ÿ‡ธ๐Ÿ‡ฆ Saudi Arabia JSON ๐Ÿ‡ธ๐Ÿ‡ฌ Singapore JSON ๐Ÿ‡ฑ๐Ÿ‡ฐ Sri Lanka JSON
๐Ÿ‡ธ๐Ÿ‡พ Syrian Arab Republic JSON ๐Ÿ‡น๐Ÿ‡ฏ Tajikistan JSON ๐Ÿ‡น๐Ÿ‡ญ Thailand JSON
Timor-Leste JSON ๐Ÿ‡น๐Ÿ‡ท Turkey JSON ๐Ÿ‡น๐Ÿ‡ฒ Turkmenistan JSON
๐Ÿ‡ฆ๐Ÿ‡ช United Arab Emirates JSON ๐Ÿ‡บ๐Ÿ‡ฟ Uzbekistan JSON ๐Ÿ‡ป๐Ÿ‡ณ Vietnam JSON
๐Ÿ‡ต๐Ÿ‡ธ West Bank and Gaza JSON ๐Ÿ‡พ๐Ÿ‡ช Yemen JSON

๐ŸŒ Europe

Country Data Link Country Data Link Country Data Link
๐Ÿ‡ฆ๐Ÿ‡ฑ Albania JSON ๐Ÿ‡ฆ๐Ÿ‡ฉ Andorra JSON ๐Ÿ‡ฆ๐Ÿ‡น Austria JSON
๐Ÿ‡ง๐Ÿ‡พ Belarus JSON ๐Ÿ‡ง๐Ÿ‡ช Belgium JSON ๐Ÿ‡ง๐Ÿ‡ฆ Bosnia and Herzegovina JSON
๐Ÿ‡ง๐Ÿ‡ฌ Bulgaria JSON ๐Ÿ‡ฌ๐Ÿ‡ฌ Channel Islands JSON ๐Ÿ‡ญ๐Ÿ‡ท Croatia JSON
๐Ÿ‡จ๐Ÿ‡ฟ Czechia JSON ๐Ÿ‡ฉ๐Ÿ‡ฐ Denmark JSON ๐Ÿ‡ช๐Ÿ‡ช Estonia JSON
๐Ÿ‡ซ๐Ÿ‡ด Faroe Islands JSON ๐Ÿ‡ซ๐Ÿ‡ฎ Finland JSON ๐Ÿ‡ซ๐Ÿ‡ท France JSON
๐Ÿ‡ฉ๐Ÿ‡ช Germany JSON ๐Ÿ‡ฌ๐Ÿ‡ฎ Gibraltar JSON ๐Ÿ‡ฌ๐Ÿ‡ท Greece JSON
๐Ÿ‡ฌ๐Ÿ‡ฑ Greenland JSON ๐Ÿ‡ญ๐Ÿ‡บ Hungary JSON ๐Ÿ‡ฎ๐Ÿ‡ธ Iceland JSON
๐Ÿ‡ฎ๐Ÿ‡ช Ireland JSON ๐Ÿ‡ฎ๐Ÿ‡ฒ Isle of Man JSON ๐Ÿ‡ฎ๐Ÿ‡น Italy JSON
๐Ÿ‡ฝ๐Ÿ‡ฐ Kosovo JSON ๐Ÿ‡ฑ๐Ÿ‡ป Latvia JSON ๐Ÿ‡ฑ๐Ÿ‡ฎ Liechtenstein JSON
๐Ÿ‡ฑ๐Ÿ‡น Lithuania JSON ๐Ÿ‡ฑ๐Ÿ‡บ Luxembourg JSON ๐Ÿ‡ฒ๐Ÿ‡น Malta JSON
๐Ÿ‡ฒ๐Ÿ‡ฉ Moldova JSON ๐Ÿ‡ฒ๐Ÿ‡จ Monaco JSON ๐Ÿ‡ฒ๐Ÿ‡ช Montenegro JSON
๐Ÿ‡ณ๐Ÿ‡ฑ Netherlands JSON ๐Ÿ‡ฒ๐Ÿ‡ฐ North Macedonia JSON ๐Ÿ‡ณ๐Ÿ‡ด Norway JSON
๐Ÿ‡ต๐Ÿ‡ฑ Poland JSON ๐Ÿ‡ต๐Ÿ‡น Portugal JSON ๐Ÿ‡ท๐Ÿ‡ด Romania JSON
๐Ÿ‡ท๐Ÿ‡บ Russian Federation JSON ๐Ÿ‡ธ๐Ÿ‡ฒ San Marino JSON ๐Ÿ‡ท๐Ÿ‡ธ Serbia JSON
๐Ÿ‡ธ๐Ÿ‡ฐ Slovak Republic JSON ๐Ÿ‡ธ๐Ÿ‡ฎ Slovenia JSON ๐Ÿ‡ช๐Ÿ‡ธ Spain JSON
๐Ÿ‡ธ๐Ÿ‡ช Sweden JSON ๐Ÿ‡จ๐Ÿ‡ญ Switzerland JSON ๐Ÿ‡บ๐Ÿ‡ฆ Ukraine JSON
๐Ÿ‡ฌ๐Ÿ‡ง United Kingdom JSON

๐ŸŒŽ North America

Country Data Link Country Data Link Country Data Link
๐Ÿ‡ฆ๐Ÿ‡ฌ Antigua and Barbuda JSON ๐Ÿ‡ฆ๐Ÿ‡ผ Aruba JSON ๐Ÿ‡ง๐Ÿ‡ธ Bahamas JSON
๐Ÿ‡ง๐Ÿ‡ง Barbados JSON ๐Ÿ‡ง๐Ÿ‡ฟ Belize JSON ๐Ÿ‡ง๐Ÿ‡ฒ Bermuda JSON
๐Ÿ‡ป๐Ÿ‡ฌ British Virgin Islands JSON ๐Ÿ‡จ๐Ÿ‡ฆ Canada JSON ๐Ÿ‡ฐ๐Ÿ‡พ Cayman Islands JSON
๐Ÿ‡จ๐Ÿ‡ท Costa Rica JSON ๐Ÿ‡จ๐Ÿ‡บ Cuba JSON ๐Ÿ‡จ๐Ÿ‡ผ Curacao JSON
๐Ÿ‡ฉ๐Ÿ‡ฒ Dominica JSON ๐Ÿ‡ฉ๐Ÿ‡ด Dominican Republic JSON ๐Ÿ‡ธ๐Ÿ‡ป El Salvador JSON
๐Ÿ‡ฌ๐Ÿ‡ฉ Grenada JSON ๐Ÿ‡ฌ๐Ÿ‡น Guatemala JSON ๐Ÿ‡ญ๐Ÿ‡น Haiti JSON
๐Ÿ‡ญ๐Ÿ‡ณ Honduras JSON ๐Ÿ‡ฏ๐Ÿ‡ฒ Jamaica JSON ๐Ÿ‡ฒ๐Ÿ‡ฝ Mexico JSON
๐Ÿ‡ณ๐Ÿ‡ฎ Nicaragua JSON ๐Ÿ‡ต๐Ÿ‡ฆ Panama JSON ๐Ÿ‡ต๐Ÿ‡ท Puerto Rico JSON
๐Ÿ‡ธ๐Ÿ‡ฝ Sint Maarten (Dutch part) JSON ๐Ÿ‡ฐ๐Ÿ‡ณ St. Kitts and Nevis JSON ๐Ÿ‡ฑ๐Ÿ‡จ St. Lucia JSON
๐Ÿ‡ฒ๐Ÿ‡ซ St. Martin (French part) JSON ๐Ÿ‡ป๐Ÿ‡จ St. Vincent and the Grenadines JSON ๐Ÿ‡น๐Ÿ‡น Trinidad and Tobago JSON
๐Ÿ‡น๐Ÿ‡จ Turks and Caicos Islands JSON ๐Ÿ‡บ๐Ÿ‡ธ United States JSON ๐Ÿ‡ป๐Ÿ‡ฎ Virgin Islands (U.S.) JSON

๐ŸŒ Oceania

Country Data Link Country Data Link Country Data Link
๐Ÿ‡ฆ๐Ÿ‡ธ American Samoa JSON ๐Ÿ‡ฆ๐Ÿ‡บ Australia JSON ๐Ÿ‡ซ๐Ÿ‡ฏ Fiji JSON
๐Ÿ‡ต๐Ÿ‡ซ French Polynesia JSON ๐Ÿ‡ฌ๐Ÿ‡บ Guam JSON ๐Ÿ‡ฐ๐Ÿ‡ฎ Kiribati JSON
๐Ÿ‡ฒ๐Ÿ‡ญ Marshall Islands JSON ๐Ÿ‡ซ๐Ÿ‡ฒ Micronesia, Fed. Sts. JSON ๐Ÿ‡ณ๐Ÿ‡ท Nauru JSON
๐Ÿ‡ณ๐Ÿ‡จ New Caledonia JSON ๐Ÿ‡ณ๐Ÿ‡ฟ New Zealand JSON ๐Ÿ‡ฒ๐Ÿ‡ต Northern Mariana Islands JSON
๐Ÿ‡ต๐Ÿ‡ผ Palau JSON ๐Ÿ‡ต๐Ÿ‡ฌ Papua New Guinea JSON ๐Ÿ‡ผ๐Ÿ‡ธ Samoa JSON
๐Ÿ‡ธ๐Ÿ‡ง Solomon Islands JSON ๐Ÿ‡น๐Ÿ‡ด Tonga JSON ๐Ÿ‡น๐Ÿ‡ป Tuvalu JSON
๐Ÿ‡ป๐Ÿ‡บ Vanuatu JSON

๐ŸŒŽ South America

Country Data Link Country Data Link Country Data Link
๐Ÿ‡ฆ๐Ÿ‡ท Argentina JSON ๐Ÿ‡ง๐Ÿ‡ด Bolivia JSON ๐Ÿ‡ง๐Ÿ‡ท Brazil JSON
๐Ÿ‡จ๐Ÿ‡ฑ Chile JSON ๐Ÿ‡จ๐Ÿ‡ด Colombia JSON ๐Ÿ‡ช๐Ÿ‡จ Ecuador JSON
๐Ÿ‡ฌ๐Ÿ‡พ Guyana JSON ๐Ÿ‡ต๐Ÿ‡พ Paraguay JSON ๐Ÿ‡ต๐Ÿ‡ช Peru JSON
๐Ÿ‡ธ๐Ÿ‡ท Suriname JSON ๐Ÿ‡บ๐Ÿ‡พ Uruguay JSON ๐Ÿ‡ป๐Ÿ‡ช Venezuela JSON
Downloads last month
1,429

Space using danielrosehill/ifvi_valuefactors_deriv 1