The Dataset Viewer has been disabled on this dataset.

Document OCR using dots.ocr

This dataset contains OCR results from images in biglam/bpl-card-catalog using DoTS.ocr, a compact 1.7B multilingual model.

Processing Details

Configuration

  • Image Column: image
  • Output Column: markdown
  • Dataset Split: train
  • Batch Size: 128
  • Prompt Mode: layout-all
  • Max Model Length: 8,192 tokens
  • Max Output Tokens: 8,192
  • GPU Memory Utilization: 80.0%

Model Information

DoTS.ocr is a compact multilingual document parsing model that excels at:

  • 🌍 100+ Languages - Multilingual document support
  • 📊 Table extraction - Structured data recognition
  • 📐 Formulas - Mathematical notation preservation
  • 📝 Layout-aware - Reading order and structure preservation
  • Fast inference - 2-3x faster than native HF with vLLM
  • 🎯 Compact - Only 1.7B parameters

Dataset Structure

The dataset contains all original columns plus:

  • markdown: The extracted text in markdown format
  • inference_info: JSON list tracking all OCR models applied to this dataset

Usage

from datasets import load_dataset
import json

# Load the dataset
dataset = load_dataset("{output_dataset_id}", split="train")

# Access the markdown text
for example in dataset:
    print(example["markdown"])
    break

# View all OCR models applied to this dataset
inference_info = json.loads(dataset[0]["inference_info"])
for info in inference_info:
    print(f"Column: {info['column_name']} - Model: {info['model_id']}")

Reproduction

This dataset was generated using the uv-scripts/ocr DoTS OCR script:

uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/dots-ocr.py \
    biglam/bpl-card-catalog \
    <output-dataset> \
    --image-column image \
    --batch-size 128 \
    --prompt-mode layout-all \
    --max-model-len 8192 \
    --max-tokens 8192 \
    --gpu-memory-utilization 0.8

Performance

  • Processing Speed: ~1.9 images/second
  • GPU Configuration: vLLM with 80% GPU memory utilization

Generated with 🤖 UV Scripts

Downloads last month
8