Datasets:
metadata
license: mit
task_categories:
- text-classification
language:
- en
tags:
- fake-news
- real-news
- binary-classification
- transformers
pretty_name: Fake New News Detection Dataset
size_categories:
- 10K<n<100K
license: mit task_categories: - text-classification language: - en tags: - fake-news - real-news - binary-classification - transformers pretty_name: Fake New News Detection Dataset size_categories: - 10K<n<100K
NewsFineTuning
A combined dataset of fake and true news articles for binary classification.
Files
train.csv
– 70% training dataval.csv
– 15% validation datatest.csv
– 15% test data
Each CSV contains:
title
— Article titletext
— Full article contentsubject
— Topic categorydate
— Published datelabel
—0
= Real,1
= Fake
Task
This dataset is ideal for:
- Fake news detection
- Binary classification
- Fine-tuning transformers (e.g., DistilBERT)
Load with Datasets
from datasets import load_dataset
dataset = load_dataset("declan101/NewsFineTuning")