image
imagewidth (px) 3
1.29k
| latex
stringlengths 3
4.96k
| latex_norm
stringlengths 5
5.62k
| page_id
stringlengths 15
15
| expr_type
stringclasses 2
values |
---|---|---|---|---|
$D=5$
|
$ D = 5 $
|
0304253_page019
|
embedded
|
|
$^*$
|
$ { } ^ { \ast } $
|
0304253_page019
|
embedded
|
|
$U(1)^3$
|
$ U ( 1 ) ^ { 3 } $
|
0304253_page019
|
embedded
|
|
\begin {equation} ds^2=-H^{-2}(t,\vec x\,)dt^2+H^{2/(d-3)}(t,\vec x\,)\,a^2(t)d\vec x\,^2, \label {eq:rnmet} \end {equation}
|
\begin{equation*} d s ^ { 2 } = - H ^ { - 2 } ( t , \vec { x } \, ) d t ^ { 2 } + H ^ { 2 \slash ( d - 3 ) } ( t , \vec { x } \, ) \, a ^ { 2 } ( t ) d \vec { x } \, { } ^ { 2 } , \end{equation*}
|
0304253_page019
|
isolated
|
|
\begin {equation} H(t,\vec x\,)=1+\sum _i\fft {q_i}{(a(t)|\vec x-\vec x_i|)^{d-3}}. \end {equation}
|
\begin{equation*} H ( t , \vec { x } \, ) = 1 + \sum _ { i } \frac { q _ { i } } { ( a ( t ) \vert \vec { x } - \vec { x } _ { i } \vert ) ^ { d - 3 } } . \end{equation*}
|
0304253_page019
|
isolated
|
|
\begin {eqnarray} ds_5^2&=&-(H_1H_2H_3)^{-2/3}dt^2 + (H_1H_2H_3)^{1/3}e^{2\hat gt}d\vec x\,^2, \\ X_i&=&H_i^{-1}(H_1H_2H_3)^{1/3}, \\ A_{(1)}^{1,2}&=&i\left (1-\frac {1}{H_{1,2}}\right )dt,\qquad A_{(1)}^3 = \left (1-\frac {1}{H_3}\right )dt, \end {eqnarray}
|
\begin{align*} d s _ { 5 } ^ { 2 } & = & - ( H _ { 1 } H _ { 2 } H _ { 3 } ) ^ { - 2 \slash 3 } d t ^ { 2 } + ( H _ { 1 } H _ { 2 } H _ { 3 } ) ^ { 1 \slash 3 } e ^ { 2 \hat { g } t } d \vec { x } \, { } ^ { 2 } , \\ X _ { i } & = & H _ { i } ^ { - 1 } ( H _ { 1 } H _ { 2 } H _ { 3 } ) ^ { 1 \slash 3 } , \\ A _ { ( 1 ) } ^ { 1 , 2 } & = & i ( 1 - \frac { 1 } { H _ { 1 , 2 } } ) d t , \qquad A _ { ( 1 ) } ^ { 3 } = ( 1 - \frac { 1 } { H _ { 3 } } ) d t , \end{align*}
|
0304253_page019
|
isolated
|
|
\begin {equation} H_i(t,\vec x\,)=1 + e^{-2\hat {g}t}\sum _j{\frac {q_i^j}{|\vec x-\vec x_j|^2}}. \end {equation}
|
\begin{equation*} H _ { i } ( t , \vec { x } \, ) = 1 + e ^ { - 2 \hat { g } t } \sum _ { j } \frac { q _ { i } ^ { j } } { \vert \vec { x } - \vec { x } _ { j } \vert ^ { 2 } } . \end{equation*}
|
0304253_page019
|
isolated
|
|
$A^1_{(1)}$
|
$ A _ { ( 1 ) } ^ { 1 } $
|
0304253_page020
|
embedded
|
|
$A^2_{(1)}$
|
$ A _ { ( 1 ) } ^ { 2 } $
|
0304253_page020
|
embedded
|
|
$F_{4}$
|
$ F _ { 4 } $
|
0304253_page020
|
embedded
|
|
$A^3_{(1)}$
|
$ A _ { ( 1 ) } ^ { 3 } $
|
0304253_page020
|
embedded
|
|
$^*$
|
$ { } ^ { \ast } $
|
0304253_page020
|
embedded
|
|
$\widetilde \Delta \equiv H^{2/3}\Delta =1+(1-H)\sinh ^2\alpha $
|
$ \widetilde { \Delta } \equiv H ^ { 2 \slash 3 } \Delta = 1 + ( 1 - H ) { s i n h } ^ { 2 } \alpha $
|
0304253_page020
|
embedded
|
|
$H^5$
|
$ H ^ { 5 } $
|
0304253_page020
|
embedded
|
|
$\hat g\tau =e^{\hat gt}$
|
$ \hat { g } \tau = e ^ { \hat { g } t } $
|
0304253_page020
|
embedded
|
|
$\widetilde {\cal H}$
|
$ \widetilde { H } $
|
0304253_page020
|
embedded
|
|
$^*$
|
$ { } ^ { \ast } $
|
0304253_page020
|
embedded
|
|
$U(1)$
|
$ U ( 1 ) $
|
0304253_page020
|
embedded
|
|
\begin {equation} ds_{10}^2 = \widetilde \Delta ^{1/2}(-H^{-1}dt^2+e^{2\hat gt} d\vec x\,^2)+\hat g^{-2}\widetilde \Delta ^{-1/2}ds^2(\widetilde H^5), \label {eq:bhten} \end {equation}
|
\begin{equation*} d s _ { 1 0 } ^ { 2 } = \widetilde { \Delta } ^ { 1 \slash 2 } ( - H ^ { - 1 } d t ^ { 2 } + e ^ { 2 \hat { g } t } d \vec { x } \, { } ^ { 2 } ) + \hat { g } ^ { - 2 } \widetilde { \Delta } ^ { - 1 \slash 2 } d s ^ { 2 } ( \widetilde { H } ^ { 5 } ) , \end{equation*}
|
0304253_page020
|
isolated
|
|
\begin {equation} ds^2(\widetilde H^5)=d\alpha ^2+\sinh ^2\alpha \,d\Omega _3^2 +(1-H)\sinh ^2\alpha \,d\alpha ^2+H\cosh ^2\alpha (d\psi -\hat gH^{-1}(1-H)dt)^2 \end {equation}
|
\begin{equation*} d s ^ { 2 } ( \widetilde { H } ^ { 5 } ) = d \alpha ^ { 2 } + { \operatorname { s i n h } } ^ { 2 } \alpha \, d \Omega _ { 3 } ^ { 2 } + ( 1 - H ) { \operatorname { s i n h } } ^ { 2 } \alpha \, d \alpha ^ { 2 } + H { \operatorname { c o s h } } ^ { 2 } \alpha ( d \psi - \hat { g } H ^ { - 1 } ( 1 - H ) d t ) ^ { 2 } \end{equation*}
|
0304253_page020
|
isolated
|
|
\begin {equation} ds^2(H^5)=d\alpha ^2+\sinh ^2\alpha \,d\Omega _3^2+\cosh ^2\alpha \,d\psi ^2. \end {equation}
|
\begin{equation*} d s ^ { 2 } ( H ^ { 5 } ) = d \alpha ^ { 2 } + { \operatorname { s i n h } } ^ { 2 } \alpha \, d \Omega _ { 3 } ^ { 2 } + { \operatorname { c o s h } } ^ { 2 } \alpha \, d \psi ^ { 2 } . \end{equation*}
|
0304253_page020
|
isolated
|
|
\begin {equation} ds_{10}^2 = \widetilde {\cal H}_0^{-1/2}d\vec x\,^2 +\widetilde {\cal H}_0^{1/2}[-\widetilde \Delta H^{-1}d\tau ^2+\tau ^2ds^2(\widetilde H^5)], \label {eq:bhten2} \end {equation}
|
\begin{equation*} d s _ { 1 0 } ^ { 2 } = \widetilde { H } _ { 0 } ^ { - 1 \slash 2 } d \vec { x } \, { } ^ { 2 } + \widetilde { H } _ { 0 } ^ { 1 \slash 2 } [ - \widetilde { \Delta } H ^ { - 1 } d \tau ^ { 2 } + \tau ^ { 2 } d s ^ { 2 } ( \widetilde { H } ^ { 5 } ) ] , \end{equation*}
|
0304253_page020
|
isolated
|
|
\begin {equation} \widetilde {\cal H}_0=\lim _{\tau \to 0}\widetilde {\cal H},\qquad \widetilde {\cal H}=1+\fft 1{\hat g^4\tau ^4\widetilde \Delta }. \end {equation}
|
\begin{equation*} \widetilde { H } _ { 0 } = \underset { \tau \rightarrow 0 } { \operatorname { l i m } } \widetilde { H } , \qquad \widetilde { H } = 1 + \frac { 1 } { \hat { g } ^ { 4 } \tau ^ { 4 } \widetilde { \Delta } } . \end{equation*}
|
0304253_page020
|
isolated
|
|
\begin {equation} ds_{10}^2={\cal H}^{-1/2}d\vec x\,^2+{\cal H}^{1/2}(-dt^2+dr^2+r^2d\Omega _4^2), \end {equation}
|
\begin{equation*} d s _ { 1 0 } ^ { 2 } = H ^ { - 1 \slash 2 } d \vec { x } \, { } ^ { 2 } + H ^ { 1 \slash 2 } ( - d t ^ { 2 } + d r ^ { 2 } + r ^ { 2 } d \Omega _ { 4 } ^ { 2 } ) , \end{equation*}
|
0304253_page020
|
isolated
|
|
\begin {equation} {\cal H}=1+\fft 1{\hat g^4|t^2-r^2|^2}. \end {equation}
|
\begin{equation*} H = 1 + \frac { 1 } { \hat { g } ^ { 4 } \vert t ^ { 2 } - r ^ { 2 } \vert ^ { 2 } } . \end{equation*}
|
0304253_page020
|
isolated
|
|
$t\to r$
|
$ t \rightarrow r $
|
0304253_page021
|
embedded
|
|
$t^2>r^2$
|
$ t ^ { 2 } > r ^ { 2 } $
|
0304253_page021
|
embedded
|
|
$t=\tau \cosh \beta $
|
$ t = \tau c o s h \beta $
|
0304253_page021
|
embedded
|
|
$r=\tau \sinh \beta $
|
$ r = \tau s i n h \beta $
|
0304253_page021
|
embedded
|
|
$_5\times H^5$
|
$ { } _ { 5 } \times H ^ { 5 } $
|
0304253_page021
|
embedded
|
|
${\cal H}_0=1/\hat g^4\tau ^4$
|
$ H _ { 0 } = 1 \slash \hat { g } ^ { 4 } \tau ^ { 4 } $
|
0304253_page021
|
embedded
|
|
$D=4$
|
$ D = 4 $
|
0304253_page021
|
embedded
|
|
$U(1)^4$
|
$ U ( 1 ) ^ { 4 } $
|
0304253_page021
|
embedded
|
|
$U(1)^4$
|
$ U ( 1 ) ^ { 4 } $
|
0304253_page021
|
embedded
|
|
$^*$
|
$ { } ^ { \ast } $
|
0304253_page021
|
embedded
|
|
$N=2$
|
$ N = 2 $
|
0304253_page021
|
embedded
|
|
$A_{(1)}$
|
$ A _ { ( 1 ) } $
|
0304253_page021
|
embedded
|
|
\begin {equation} ds_{10}^2={\cal H}_0^{-1/2}d\vec x\,^2+{\cal H}_0^{1/2}[-d\tau ^2 +\tau ^2(d\beta ^2+\sinh ^2\beta \,d\Omega _4^2)], \end {equation}
|
\begin{equation*} d s _ { 1 0 } ^ { 2 } = H _ { 0 } ^ { - 1 \slash 2 } d \vec { x } \, { } ^ { 2 } + H _ { 0 } ^ { 1 \slash 2 } [ - d \tau ^ { 2 } + \tau ^ { 2 } ( d \beta ^ { 2 } + { \operatorname { s i n h } } ^ { 2 } \beta \, d \Omega _ { 4 } ^ { 2 } ) ] , \end{equation*}
|
0304253_page021
|
isolated
|
|
\begin {eqnarray} ds_4^2&=&-(H_1H_2H_3H_4)^{-1/2}dt^2 + (H_1H_2H_3H_4)^{1/2}e^{2\hat gt} d\vec x\,^2,\\ X_i&=&H_i^{-1}(H_1H_2H_3H_4)^{1/4},\\ A_{(1)}^{i}&=&i\left (1-\frac {1}{H_i}\right )dt, \end {eqnarray}
|
\begin{align*} d s _ { 4 } ^ { 2 } & = & - ( H _ { 1 } H _ { 2 } H _ { 3 } H _ { 4 } ) ^ { - 1 \slash 2 } d t ^ { 2 } + ( H _ { 1 } H _ { 2 } H _ { 3 } H _ { 4 } ) ^ { 1 \slash 2 } e ^ { 2 \hat { g } t } d \vec { x } \, { } ^ { 2 } , \\ X _ { i } & = & H _ { i } ^ { - 1 } ( H _ { 1 } H _ { 2 } H _ { 3 } H _ { 4 } ) ^ { 1 \slash 4 } , \\ A _ { ( 1 ) } ^ { i } & = & i ( 1 - \frac { 1 } { H _ { i } } ) d t , \end{align*}
|
0304253_page021
|
isolated
|
|
\begin {equation} H_i(t,\vec x\,) = 1 + e^{-\hat {g}t}\sum _j{\frac {q_i^j}{|\vec x-\vec x_j|}}. \end {equation}
|
\begin{equation*} H _ { i } ( t , \vec { x } \, ) = 1 + e ^ { - \hat { g } t } \sum _ { j } \frac { q _ { i } ^ { j } } { \vert \vec { x } - \vec { x } _ { j } \vert } . \end{equation*}
|
0304253_page021
|
isolated
|
|
\begin {eqnarray} ds_4^2&=&-H^{-2}dt^2 + H^2e^{2\hat gt}d\vec x\,^2,\\ A_{(1)}&=&i\left (1-\frac {1}{H}\right )dt. \end {eqnarray}
|
\begin{align*} d s _ { 4 } ^ { 2 } & = & - H ^ { - 2 } d t ^ { 2 } + H ^ { 2 } e ^ { 2 \hat { g } t } d \vec { x } \, { } ^ { 2 } , \\ A _ { ( 1 ) } & = & i ( 1 - \frac { 1 } { H } ) d t . \end{align*}
|
0304253_page021
|
isolated
|
|
$D=7$
|
$ D = 7 $
|
0304253_page022
|
embedded
|
|
$U(1)^2$
|
$ U ( 1 ) ^ { 2 } $
|
0304253_page022
|
embedded
|
|
$H_i=H$
|
$ H _ { i } = H $
|
0304253_page022
|
embedded
|
|
$S^5$
|
$ S ^ { 5 } $
|
0304253_page022
|
embedded
|
|
$SO(6)$
|
$ S O ( 6 ) $
|
0304253_page022
|
embedded
|
|
$SO(p,6-p)$
|
$ S O ( p , 6 - p ) $
|
0304253_page022
|
embedded
|
|
\begin {eqnarray} ds_7^2&=&-(H_1H_2)^{-4/5}dt^2 + (H_1H_2)^{1/5}e^{-2igt}d\vec x\,^2,\\ X_i&=&H_i^{-1}(H_1H_2)^{2/5}, \\ A_{(1)}^{1,2}&=&\left (1-\frac {1}{H_{1,2}}\right )dt, \end {eqnarray}
|
\begin{align*} d s _ { 7 } ^ { 2 } & = & - ( H _ { 1 } H _ { 2 } ) ^ { - 4 \slash 5 } d t ^ { 2 } + ( H _ { 1 } H _ { 2 } ) ^ { 1 \slash 5 } e ^ { - 2 i g t } d \vec { x } \, { } ^ { 2 } , \\ X _ { i } & = & H _ { i } ^ { - 1 } ( H _ { 1 } H _ { 2 } ) ^ { 2 \slash 5 } , \\ A _ { ( 1 ) } ^ { 1 , 2 } & = & ( 1 - \frac { 1 } { H _ { 1 , 2 } } ) d t , \end{align*}
|
0304253_page022
|
isolated
|
|
\begin {equation} H_i(t,\vec x\,)=1 + e^{4igt}\sum _j{\frac {q_i^j}{|\vec x-\vec x_j|^4}}. \end {equation}
|
\begin{equation*} H _ { i } ( t , \vec { x } \, ) = 1 + e ^ { 4 i g t } \sum _ { j } \frac { q _ { i } ^ { j } } { \vert \vec { x } - \vec { x } _ { j } \vert ^ { 4 } } . \end{equation*}
|
0304253_page022
|
isolated
|
|
\begin {eqnarray} ds_7^2&=&-H^{-8/5}dt^2 + H^{2/5}e^{-2igt}d\vec x\,^2,\\ X&=&H^{-1/5}, \\ A_{(1)}&=&\left (1-\frac {1}{H}\right )dt. \end {eqnarray}
|
\begin{align*} d s _ { 7 } ^ { 2 } & = & - H ^ { - 8 \slash 5 } d t ^ { 2 } + H ^ { 2 \slash 5 } e ^ { - 2 i g t } d \vec { x } \, { } ^ { 2 } , \\ X & = & H ^ { - 1 \slash 5 } , \\ A _ { ( 1 ) } & = & ( 1 - \frac { 1 } { H } ) d t . \end{align*}
|
0304253_page022
|
isolated
|
|
$H^5$
|
$ H ^ { 5 } $
|
0304253_page023
|
embedded
|
|
$^*$
|
$ { } ^ { \ast } $
|
0304253_page023
|
embedded
|
|
$g$
|
$ g $
|
0304253_page023
|
embedded
|
|
$i\hat g$
|
$ i \hat { g } $
|
0304253_page023
|
embedded
|
|
$D=5$
|
$ D = 5 $
|
0304253_page023
|
embedded
|
|
$\psi ^a_\mu $
|
$ \psi _ { \mu } ^ { a } $
|
0304253_page023
|
embedded
|
|
$A^{[ab]}_\mu $
|
$ A _ { \mu } ^ { [ a b ] } $
|
0304253_page023
|
embedded
|
|
$1/2$
|
$ 1 \slash 2 $
|
0304253_page023
|
embedded
|
|
$\lambda ^{abc}$
|
$ \lambda ^ { a b c } $
|
0304253_page023
|
embedded
|
|
$\varphi ^{abcd}$
|
$ \varphi ^ { a b c d } $
|
0304253_page023
|
embedded
|
|
$a,b,\ldots $
|
$ a , b , \ldots $
|
0304253_page023
|
embedded
|
|
$USp(8)$
|
$ U S p ( 8 ) $
|
0304253_page023
|
embedded
|
|
$E_{6(6)}/USp(8)$
|
$ E _ { 6 ( 6 ) } \slash U S p ( 8 ) $
|
0304253_page023
|
embedded
|
|
$SO(5,1)\subset SL(6,R)\times SL(2,R)\subset E_{6(6)}$
|
$ S O ( 5 , 1 ) \subset S L ( 6 , R ) \times S L ( 2 , R ) \subset E _ { 6 ( 6 ) } $
|
0304253_page023
|
embedded
|
|
${V_{AB}}^{cd}$
|
$ { V _ { A B } } ^ { c d } $
|
0304253_page023
|
embedded
|
|
$SL(6,R)$
|
$ S L ( 6 , R ) $
|
0304253_page023
|
embedded
|
|
$S$
|
$ S $
|
0304253_page023
|
embedded
|
|
$SO(5,1)$
|
$ S O ( 5 , 1 ) $
|
0304253_page023
|
embedded
|
|
$\{\Gamma _I,\Gamma _J\}=2\eta _{IJ}$
|
$ \{ \Gamma _ { I } , \Gamma _ { J } \} = 2 \eta _ { I J } $
|
0304253_page023
|
embedded
|
|
$\eta _{IJ}={\rm diag}(+,+,+,+,+,-)$
|
$ \eta _ { I J } = d i a g ( + , + , + , + , + , - ) $
|
0304253_page023
|
embedded
|
|
$\Gamma _{I\alpha }\equiv \Gamma _I$
|
$ \Gamma _ { I \alpha } \equiv \Gamma _ { I } $
|
0304253_page023
|
embedded
|
|
$\alpha =1$
|
$ \alpha = 1 $
|
0304253_page023
|
embedded
|
|
$\Gamma _{I\alpha }\equiv i\Gamma _I\Gamma _0$
|
$ \Gamma _ { I \alpha } \equiv i \Gamma _ { I } \Gamma _ { 0 } $
|
0304253_page023
|
embedded
|
|
$\alpha =2$
|
$ \alpha = 2 $
|
0304253_page023
|
embedded
|
|
$\Gamma _0$
|
$ \Gamma _ { 0 } $
|
0304253_page023
|
embedded
|
|
$P_\mu {}^{abcd}$
|
$ P _ { \mu } { } ^ { a b c d } $
|
0304253_page023
|
embedded
|
|
${Q_{\mu a}}^b$
|
$ { Q _ { \mu a } } ^ { b } $
|
0304253_page023
|
embedded
|
|
$\tilde {V}_{cd}{}^{AB}$
|
$ \widetilde { V } _ { c d } { } ^ { A B } $
|
0304253_page023
|
embedded
|
|
$V_{AB}{}^{cd}$
|
$ V _ { A B } { } ^ { c d } $
|
0304253_page023
|
embedded
|
|
$S$
|
$ S $
|
0304253_page023
|
embedded
|
|
$\hat T_{ij}$
|
$ \hat { T } _ { i j } $
|
0304253_page023
|
embedded
|
|
$SL(6,R)/SO(5,1)$
|
$ S L ( 6 , R ) \slash S O ( 5 , 1 ) $
|
0304253_page023
|
embedded
|
|
$g\to i\hat g$
|
$ g \rightarrow i \hat { g } $
|
0304253_page023
|
embedded
|
|
$F_{(2)} \to -i\hat F_{(2)}$
|
$ F _ { ( 2 ) } \rightarrow - i \hat { F } _ { ( 2 ) } $
|
0304253_page023
|
embedded
|
|
$1/2$
|
$ 1 \slash 2 $
|
0304253_page023
|
embedded
|
|
\begin {eqnarray} U^{IJ}{}_{KL}&=&2{S_{[K}}^{[I}{S_{L]}}^{J]},\qquad V^{IJab}=\fft 18(\Gamma ^{KL})^{ab}{U^{IJ}}_{KL},\\ U_{I\alpha }{}^{J\beta }&=&S_I{}^J\delta _\alpha {}^\beta ,\qquad V_{I\alpha }{}^{ab}=\fft 1{2\sqrt {2}}(\Gamma _{K\beta })^{ab}U_{I\alpha }{}^{K\beta }, \end {eqnarray}
|
\begin{align*} U ^ { I J } { } _ { K L } & = & 2 { S _ { [ K } } ^ { [ I } { S _ { L ] } } ^ { J ] } , \qquad V ^ { I J a b } = \frac { 1 } { 8 } ( \Gamma ^ { K L } ) ^ { a b } { U ^ { I J } } _ { K L } , \\ U _ { I \alpha } { } ^ { J \beta } & = & S _ { I } { } ^ { J } \delta _ { \alpha } { } ^ { \beta } , \qquad V _ { I \alpha } { } ^ { a b } = \frac { 1 } { 2 \sqrt { 2 } } ( \Gamma _ { K \beta } ) ^ { a b } U _ { I \alpha } { } ^ { K \beta } , \end{align*}
|
0304253_page023
|
isolated
|
|
\begin {equation} \tilde {V}_{cd}{}^{AB}D_{\mu }{V_{AB}}^{ab}=2{Q_{\mu [c}}^{[a}\delta _{d]}^{b]} + {P_{\mu }}^{ab}{}_{cd}, \end {equation}
|
\begin{equation*} \widetilde { V } _ { c d } { } ^ { A B } D _ { \mu } { V _ { A B } } ^ { a b } = 2 { Q _ { \mu [ c } } ^ { [ a } \delta _ { d ] } ^ { b ] } + { P _ { \mu } } ^ { a b } { } _ { c d } , \end{equation*}
|
0304253_page023
|
isolated
|
|
\begin {eqnarray} {T^a}_{bcd}&=&(2V^{IKae}\tilde {V}_{beJK}-V_{J\alpha }{}^{ae}\tilde V_{be}{}^{I\alpha })\eta ^{JL}\tilde {V}_{cdIL}, \\ T_{ab}&=&{T^c}_{abc}. \end {eqnarray}
|
\begin{align*} { T ^ { a } } _ { b c d } & = & ( 2 V ^ { I K a e } \widetilde { V } _ { b e J K } - V _ { J \alpha } { } ^ { a e } \widetilde { V } _ { b e } { } ^ { I \alpha } ) \eta ^ { J L } \widetilde { V } _ { c d I L } , \\ T _ { a b } & = & { T ^ { c } } _ { a b c } . \end{align*}
|
0304253_page023
|
isolated
|
|
\begin {equation} (\hat T^{-1})^{ij}=S_I{}^iS_J{}^j\eta ^{IJ}. \end {equation}
|
\begin{equation*} ( \hat { T } ^ { - 1 } ) ^ { i j } = S _ { I } { } ^ { i } S _ { J } { } ^ { j } \eta ^ { I J } . \end{equation*}
|
0304253_page023
|
isolated
|
|
\begin {eqnarray} \delta \psi _{\mu a}&=&D_{\mu }\epsilon _a - \fft {2i}{45}\hat g T_{ab}\gamma _{\mu }\epsilon ^b +\fft {i}6 (\gamma _\mu {}^{\nu \rho } -4\delta _\mu ^\nu \gamma ^{\rho })\hat F_{\nu \rho ab}\epsilon ^b,\\ \delta \lambda _{abc}&=&\sqrt {2}\gamma ^{\mu }P_{\mu \, abcd}\epsilon ^d -\fft {i}{\sqrt {2}}\hat g T_{d[abc]}\epsilon ^d +\fft {3i}{2\sqrt {2}}\gamma ^{\mu \nu }\hat F_{\mu \nu [ab}\epsilon _{c]}, \end {eqnarray}
|
\begin{align*} \delta \psi _ { \mu a } & = & D _ { \mu } \epsilon _ { a } - \frac { 2 i } { 4 5 } \hat { g } T _ { a b } \gamma _ { \mu } \epsilon ^ { b } + \frac { i } { 6 } ( \gamma _ { \mu } { } ^ { \nu \rho } - 4 \delta _ { \mu } ^ { \nu } \gamma ^ { \rho } ) \hat { F } _ { \nu \rho a b } \epsilon ^ { b } , \\ \delta \lambda _ { a b c } & = & \sqrt { 2 } \gamma ^ { \mu } P _ { \mu \, a b c d } \epsilon ^ { d } - \frac { i } { \sqrt { 2 } } \hat { g } T _ { d [ a b c ] } \epsilon ^ { d } + \frac { 3 i } { 2 \sqrt { 2 } } \gamma ^ { \mu \nu } \hat { F } _ { \mu \nu [ a b } \epsilon _ { c ] } , \end{align*}
|
0304253_page023
|
isolated
|
|
$^*$
|
$ { } ^ { \ast } $
|
0304253_page024
|
embedded
|
|
$\times $
|
$ \times $
|
0304253_page024
|
embedded
|
|
$^*$
|
$ { } ^ { \ast } $
|
0304253_page024
|
embedded
|
|
$^*$
|
$ { } ^ { \ast } $
|
0304253_page024
|
embedded
|
|
$D=5$
|
$ D = 5 $
|
0304253_page024
|
embedded
|
|
\begin {eqnarray} \hat F_{\mu \nu ab}&=&\hat F_{\mu \nu IJ}{V^{IJ}}_{ab}= \ft 14\hat F_{\mu \nu }^{ij}\eta _{im}\eta _{jn}S_K{}^mS_L{}^n(\Gamma _{KL})^{ab} ,\\ D_{\mu }\epsilon _a&=&\partial _{\mu } \epsilon _a + {Q_{\mu a}}^b\epsilon _b. \end {eqnarray}
|
\begin{align*} \hat { F } _ { \mu \nu a b } & = & \hat { F } _ { \mu \nu I J } { V ^ { I J } } _ { a b } = \frac { 1 } { 4 } \hat { F } _ { \mu \nu } ^ { i j } \eta _ { i m } \eta _ { j n } S _ { K } { } ^ { m } S _ { L } { } ^ { n } ( \Gamma _ { K L } ) ^ { a b } , \\ D _ { \mu } \epsilon _ { a } & = & \partial _ { \mu } \epsilon _ { a } + { Q _ { \mu a } } ^ { b } \epsilon _ { b } . \end{align*}
|
0304253_page024
|
isolated
|
|
$S^7$
|
$ S ^ { 7 } $
|
0304253_page026
|
embedded
|
|
$_7\times S^4$
|
$ { } _ { 7 } \times S ^ { 4 } $
|
0304253_page026
|
embedded
|
|
$_7\times S^4$
|
$ { } _ { 7 } \times S ^ { 4 } $
|
0304253_page026
|
embedded
|
|
$N=1$
|
$ N = 1 $
|
0304253_page026
|
embedded
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.