Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
5
5
corpus-id
stringlengths
9
9
score
float64
1
1
00000
000000000
1
00001
000000001
1
00002
000000002
1
00003
000000003
1
00004
000000004
1
00005
000000005
1
00006
000000006
1
00007
000000007
1
00008
000000008
1
00009
000000009
1
00010
000000010
1
00011
000000011
1
00012
000000012
1
00013
000000013
1
00014
000000014
1
00015
000000015
1
00016
000000016
1
00017
000000017
1
00018
000000018
1
00019
000000019
1
00020
000000020
1
00021
000000021
1
00022
000000022
1
00023
000000023
1
00024
000000024
1
00025
000000025
1
00026
000000026
1
00027
000000027
1
00028
000000028
1
00029
000000029
1
00030
000000030
1
00031
000000031
1
00032
000000032
1
00033
000000033
1
00034
000000034
1
00035
000000035
1
00036
000000036
1
00037
000000037
1
00038
000000038
1
00039
000000039
1
00040
000000040
1
00041
000000041
1
00042
000000042
1
00043
000000043
1
00044
000000044
1
00045
000000045
1
00046
000000046
1
00047
000000047
1
00048
000000048
1
00049
000000049
1
00050
000000050
1
00051
000000051
1
00052
000000052
1
00053
000000053
1
00054
000000054
1
00055
000000055
1
00056
000000056
1
00057
000000057
1
00058
000000058
1
00059
000000059
1
00060
000000060
1
00061
000000061
1
00062
000000062
1
00063
000000063
1
00064
000000064
1
00065
000000065
1
00066
000000066
1
00067
000000067
1
00068
000000068
1
00069
000000069
1
00070
000000070
1
00071
000000071
1
00072
000000072
1
00073
000000073
1
00074
000000074
1
00075
000000075
1
00076
000000076
1
00077
000000077
1
00078
000000078
1
00079
000000079
1
00080
000000080
1
00081
000000081
1
00082
000000082
1
00083
000000083
1
00084
000000084
1
00085
000000085
1
00086
000000086
1
00087
000000087
1
00088
000000088
1
00089
000000089
1
00090
000000090
1
00091
000000091
1
00092
000000092
1
00093
000000093
1
00094
000000094
1
00095
000000095
1
00096
000000096
1
00097
000000097
1
00098
000000098
1
00099
000000099
1
End of preview. Expand in Data Studio

The ChatDoctor-HealthCareMagic-100k dataset comprises 112,000 real-world medical question-and-answer pairs, providing a substantial and diverse collection of authentic medical dialogues. There is a slight risk to this dataset since there are grammatical inconsistencies in many of the questions and answers, but this can potentially help separate strong healthcare retrieval models from weak ones.

Usage

import datasets

# Download the dataset
queries = datasets.load_dataset("embedding-benchmark/ChatDoctor_HealthCareMagic", "queries")
documents = datasets.load_dataset("embedding-benchmark/ChatDoctor_HealthCareMagic", "corpus")
pair_labels = datasets.load_dataset("embedding-benchmark/ChatDoctor_HealthCareMagic", "default")
Downloads last month
54