Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Formats:
json
Sub-tasks:
document-retrieval
Size:
10K - 100K
Tags:
text-retrieval
Dataset Viewer
query-id
stringlengths 5
5
| corpus-id
stringlengths 9
9
| score
float64 1
1
|
---|---|---|
00000
|
000000000
| 1 |
00001
|
000000001
| 1 |
00002
|
000000002
| 1 |
00003
|
000000003
| 1 |
00004
|
000000004
| 1 |
00005
|
000000005
| 1 |
00006
|
000000006
| 1 |
00007
|
000000007
| 1 |
00008
|
000000008
| 1 |
00009
|
000000009
| 1 |
00010
|
000000010
| 1 |
00011
|
000000011
| 1 |
00012
|
000000012
| 1 |
00013
|
000000013
| 1 |
00014
|
000000014
| 1 |
00015
|
000000015
| 1 |
00016
|
000000016
| 1 |
00017
|
000000017
| 1 |
00018
|
000000018
| 1 |
00019
|
000000019
| 1 |
00020
|
000000020
| 1 |
00021
|
000000021
| 1 |
00022
|
000000022
| 1 |
00023
|
000000023
| 1 |
00024
|
000000024
| 1 |
00025
|
000000025
| 1 |
00026
|
000000026
| 1 |
00027
|
000000027
| 1 |
00028
|
000000028
| 1 |
00029
|
000000029
| 1 |
00030
|
000000030
| 1 |
00031
|
000000031
| 1 |
00032
|
000000032
| 1 |
00033
|
000000033
| 1 |
00034
|
000000034
| 1 |
00035
|
000000035
| 1 |
00036
|
000000036
| 1 |
00037
|
000000037
| 1 |
00038
|
000000038
| 1 |
00039
|
000000039
| 1 |
00040
|
000000040
| 1 |
00041
|
000000041
| 1 |
00042
|
000000042
| 1 |
00043
|
000000043
| 1 |
00044
|
000000044
| 1 |
00045
|
000000045
| 1 |
00046
|
000000046
| 1 |
00047
|
000000047
| 1 |
00048
|
000000048
| 1 |
00049
|
000000049
| 1 |
00050
|
000000050
| 1 |
00051
|
000000051
| 1 |
00052
|
000000052
| 1 |
00053
|
000000053
| 1 |
00054
|
000000054
| 1 |
00055
|
000000055
| 1 |
00056
|
000000056
| 1 |
00057
|
000000057
| 1 |
00058
|
000000058
| 1 |
00059
|
000000059
| 1 |
00060
|
000000060
| 1 |
00061
|
000000061
| 1 |
00062
|
000000062
| 1 |
00063
|
000000063
| 1 |
00064
|
000000064
| 1 |
00065
|
000000065
| 1 |
00066
|
000000066
| 1 |
00067
|
000000067
| 1 |
00068
|
000000068
| 1 |
00069
|
000000069
| 1 |
00070
|
000000070
| 1 |
00071
|
000000071
| 1 |
00072
|
000000072
| 1 |
00073
|
000000073
| 1 |
00074
|
000000074
| 1 |
00075
|
000000075
| 1 |
00076
|
000000076
| 1 |
00077
|
000000077
| 1 |
00078
|
000000078
| 1 |
00079
|
000000079
| 1 |
00080
|
000000080
| 1 |
00081
|
000000081
| 1 |
00082
|
000000082
| 1 |
00083
|
000000083
| 1 |
00084
|
000000084
| 1 |
00085
|
000000085
| 1 |
00086
|
000000086
| 1 |
00087
|
000000087
| 1 |
00088
|
000000088
| 1 |
00089
|
000000089
| 1 |
00090
|
000000090
| 1 |
00091
|
000000091
| 1 |
00092
|
000000092
| 1 |
00093
|
000000093
| 1 |
00094
|
000000094
| 1 |
00095
|
000000095
| 1 |
00096
|
000000096
| 1 |
00097
|
000000097
| 1 |
00098
|
000000098
| 1 |
00099
|
000000099
| 1 |
End of preview. Expand
in Data Studio
The ChatDoctor-HealthCareMagic-100k dataset comprises 112,000 real-world medical question-and-answer pairs, providing a substantial and diverse collection of authentic medical dialogues. There is a slight risk to this dataset since there are grammatical inconsistencies in many of the questions and answers, but this can potentially help separate strong healthcare retrieval models from weak ones.
Usage
import datasets
# Download the dataset
queries = datasets.load_dataset("embedding-benchmark/ChatDoctor_HealthCareMagic", "queries")
documents = datasets.load_dataset("embedding-benchmark/ChatDoctor_HealthCareMagic", "corpus")
pair_labels = datasets.load_dataset("embedding-benchmark/ChatDoctor_HealthCareMagic", "default")
- Downloads last month
- 54