Dataset Viewer
Search is not available for this dataset
image
imagewidth (px) 640
640
| label
class label 24
classes | district
class label 24
classes |
---|---|---|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
|
0Adalar
| 0Adalar
|
End of preview. Expand
in Data Studio
Istanbul Districts Image Dataset
A comprehensive dataset of 104,024 street-level images from 39 districts of Istanbul, Turkey. This dataset is designed for machine learning and computer vision applications, particularly for location classification tasks.
Dataset Overview
- Total Images: 104,024
- Districts: 39 districts of Istanbul
- Split: 80% training (
83,000 images), 20% testing (21,000 images) - Top 5 Districts by Image Count:
- Fatih: 13,103 images
- Beşiktaş: 11,155 images
- Eyüpsultan: 10,810 images
- Üsküdar: 8,993 images
- Kâğıthane: 8,978 images
Features
Each image in the dataset includes:
image
: The image filelabel
: District category (0-38)district
: District name as string
Usage
Load the dataset using the Hugging Face Datasets library:
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("your-username/repository-name")
# Access train and test sets
train_dataset = dataset["train"]
test_dataset = dataset["test"]
# Access an example
image = train_dataset[0]["image"]
district = train_dataset[0]["district"]
Sample Model Training
Here's a quick example using Vision Transformer for district classification:
from transformers import AutoImageProcessor, AutoModelForImageClassification
from datasets import load_dataset
# Load dataset
dataset = load_dataset("your-username/repository-name")
# Image processor and model
processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
model = AutoModelForImageClassification.from_pretrained(
"google/vit-base-patch16-224",
num_labels=39,
id2label={i: district for i, district in enumerate(dataset["train"].features["district"].names)}
)
# Prepare dataset
def preprocess_data(examples):
return processor(images=examples["image"], return_tensors="pt")
train_dataset = dataset["train"].map(preprocess_data, batched=True)
# Continue with model training...
Source
This dataset contains street-level images collected from various districts of Istanbul, Turkey. The images were gathered and processed for use in the GeoGuessr project.
License
This dataset is available for educational and research purposes. For commercial use, please contact the author.
Citation
If you use this dataset in your research, please cite:
@dataset{istanbul_districts_2023,
author = {EREN FAZLIOĞLU},
title = {Istanbul Districts Image Dataset},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/datasets/erenfazlioglu}
}
- Downloads last month
- 101