Dataset Viewer
Auto-converted to Parquet
id
stringlengths
23
59
messages
listlengths
1
1
integral_diff_1_0_ffeb121168
[ { "content": "You are given the derivative of a function: F'(x) = -2*exp(x)\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_1_1_20d9b3e2b3
[ { "content": "You are given the derivative of a function: F'(x) = 6*x\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_1_2_9bbb6f0789
[ { "content": "You are given the derivative of a function: F'(x) = x**x*log(x) + x**x\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_1_3_835584a98a
[ { "content": "You are given the derivative of a function: F'(x) = 4*x**3\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_1_4_6167a5bbc6
[ { "content": "You are given the derivative of a function: F'(x) = -sin(sqrt(x))/(2*sqrt(x))\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_1_5_00a3b6181d
[ { "content": "You are given the derivative of a function: F'(x) = 2*x\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_1_6_9d6b0081ce
[ { "content": "You are given the derivative of a function: F'(x) = -4*sin(4*x)\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_1_7_35054d14fe
[ { "content": "You are given the derivative of a function: F'(x) = -sin(x)/4\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_1_8_a5c9565ac8
[ { "content": "You are given the derivative of a function: F'(x) = -sin(2*x)\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_1_9_418e84023a
[ { "content": "You are given the derivative of a function: F'(x) = -sin(x)\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_1_10_60fa3d8f99
[ { "content": "You are given the derivative of a function: F'(x) = cos(x)/4\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_1_11_cd13a2a3ac
[ { "content": "You are given the derivative of a function: F'(x) = 2/x\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_1_12_dd3fe9ad0a
[ { "content": "You are given the derivative of a function: F'(x) = 3/x\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_1_13_8be32560c1
[ { "content": "You are given the derivative of a function: F'(x) = 2/(3*x**(2/3))\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_1_14_68db587cdd
[ { "content": "You are given the derivative of a function: F'(x) = sin(x)*sin(cos(x))\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_1_15_9579fa9e6e
[ { "content": "You are given the derivative of a function: F'(x) = -3*cos(3*x)\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_1_16_69c8ec9735
[ { "content": "You are given the derivative of a function: F'(x) = -sin(x - 1)\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_1_17_a61bcb7650
[ { "content": "You are given the derivative of a function: F'(x) = 1/(4*sqrt(x))\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_1_18_b532f43a2b
[ { "content": "You are given the derivative of a function: F'(x) = -sin(x)/(2*sqrt(cos(x)))\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_1_19_15894ec601
[ { "content": "You are given the derivative of a function: F'(x) = -2*x*sin(x**2)\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_0_0_ac3f3131cc
[ { "content": "You are given the derivative of a function: F'(x) = cos(x)\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_0_1_8cd2e357f5
[ { "content": "You are given the derivative of a function: F'(x) = -sin(x)\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_0_2_044f869c41
[ { "content": "You are given the derivative of a function: F'(x) = exp(x)\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_0_3_69f1073b33
[ { "content": "You are given the derivative of a function: F'(x) = 3*x**2\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_0_4_cd4112294f
[ { "content": "You are given the derivative of a function: F'(x) = 1/(4*x**(3/4))\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_0_5_7503d67bf4
[ { "content": "You are given the derivative of a function: F'(x) = 1/x\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_0_6_1722067d18
[ { "content": "You are given the derivative of a function: F'(x) = 1/(3*x**(2/3))\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_0_7_673a00becd
[ { "content": "You are given the derivative of a function: F'(x) = 2*x\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_0_4b95f14a40
[ { "content": "You are given the derivative of a function: F'(x) = (x*cos(x) - sin(x))/x**2\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_1_dd44d3c202
[ { "content": "You are given the derivative of a function: F'(x) = exp(x + exp(x) - 1)\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_2_9c9c201fa3
[ { "content": "You are given the derivative of a function: F'(x) = x**(sin(x) - 1)*(x*log(x)*cos(x) + sin(x))\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_3_d7ed82e71b
[ { "content": "You are given the derivative of a function: F'(x) = 2*x*exp(x**2)\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_4_30aa6c127f
[ { "content": "You are given the derivative of a function: F'(x) = sin(sin(x))*sin(cos(sin(x)))*cos(x)\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_5_d9e8b781dc
[ { "content": "You are given the derivative of a function: F'(x) = 3*x**(x**3 + 2)*log(x) + x**(x**3 + 2)\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_6_ffcf965291
[ { "content": "You are given the derivative of a function: F'(x) = 4*x**(1/3)/3\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_7_c0ebec2b8d
[ { "content": "You are given the derivative of a function: F'(x) = -2*sin(2*x)\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_8_56583d05b1
[ { "content": "You are given the derivative of a function: F'(x) = -2*cos(x)\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_9_20d7d955aa
[ { "content": "You are given the derivative of a function: F'(x) = sqrt(2)*cos(x)/(4*sin(x)**(3/4))\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_10_bd628366c7
[ { "content": "You are given the derivative of a function: F'(x) = x*exp(x) + exp(x)\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_11_16aa4de1bb
[ { "content": "You are given the derivative of a function: F'(x) = 2*x\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_12_25c5b98092
[ { "content": "You are given the derivative of a function: F'(x) = 4*x\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_13_a3076addb6
[ { "content": "You are given the derivative of a function: F'(x) = 2*exp(2*x)\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_14_6cf490eda9
[ { "content": "You are given the derivative of a function: F'(x) = 3*x**x*log(x) + 3*x**x\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_15_75ef0622ad
[ { "content": "You are given the derivative of a function: F'(x) = 1 - sin(x)\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_16_53320b366e
[ { "content": "You are given the derivative of a function: F'(x) = -6*sin(2*x)*cos(2*x)**2\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_17_8ad5179481
[ { "content": "You are given the derivative of a function: F'(x) = -x*sin(x) + cos(x)\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_18_947f07b24d
[ { "content": "You are given the derivative of a function: F'(x) = 3*sin(x + 2)\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_19_bb965af13a
[ { "content": "You are given the derivative of a function: F'(x) = log(x) + 1\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_20_d8f06ac2f9
[ { "content": "You are given the derivative of a function: F'(x) = 6*x\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_21_2e0213c1d2
[ { "content": "You are given the derivative of a function: F'(x) = 2*x + 1\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_22_821f3b8f0c
[ { "content": "You are given the derivative of a function: F'(x) = (1 - x)*exp(-x)\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_23_963663836f
[ { "content": "You are given the derivative of a function: F'(x) = -sin(sin(x) - 2)*cos(x)\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_24_5f9c64e03c
[ { "content": "You are given the derivative of a function: F'(x) = 2*x**x*log(x) + 2*x**x\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_25_117dd39f19
[ { "content": "You are given the derivative of a function: F'(x) = -2*sqrt(2)/sqrt(-x)\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_26_361a07e3b0
[ { "content": "You are given the derivative of a function: F'(x) = cos(x) - 1\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_27_852e914950
[ { "content": "You are given the derivative of a function: F'(x) = 4*exp(x + 1)\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
integral_diff_2_28_408ef46058
[ { "content": "You are given the derivative of a function: F'(x) = 2*sin(x)*sin(2*cos(x))\n\nYour task is to find **an antiderivative** F(x) such that its derivative is equal to the given expression.\n\n**Output Format:** Your answer should be the expression for F(x), written in **SymPy syntax**. Do not omit any symbols (e.g., always use `*` for multiplication).\nExample: `sin(2*x)/2` (do **NOT** include quotes or backticks).", "role": "user" } ]
abprogramsimulation_diff_0_0_f831b22510
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: #B #A #B #B\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_1_4f912eb479
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: B# B# B# B#\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_2_e51086a3b7
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: #B #B #B #A\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_3_48705121bf
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: B# A# A# #B\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_4_441dff22c4
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: #A A# A# B#\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_5_d739ab1561
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: #B A# A# A#\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_6_2b5d7e03af
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: A# B# #A B#\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_7_705cccebf5
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: A# B# #A A#\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_8_7bc30fd4cb
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: A# B# #A #A\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_9_cc8f5473b2
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: #A B# B# B#\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_10_ce47de4cd2
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: A# #A B# B#\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_11_2c8492b8ea
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: #A #B #A B#\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_12_8ff88d1788
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: B# #B B# A#\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_13_3987e7bf8d
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: #A A# B# B#\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_14_e4c28940e4
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: #B A# A# #B\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_15_b9965339f8
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: #A #A #A B#\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_16_1141acc5b8
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: A# B# B# A#\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_17_e002a86668
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: #A #B B# A#\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_18_52ba7632d6
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: B# #B #B #B\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_19_27d67d49b7
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: B# A# #A #B\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_20_d11623297e
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: B# #A #B #B\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_21_003a8544f6
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: A# A# #B #A\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_22_2b5ae1ab51
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: #A B# A# A#\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_23_aabdc4fd1b
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: A# B# A# B#\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_24_6ee5467eb7
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: B# A# #B A#\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_25_0db350026b
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: A# #B B# B#\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_26_d7670383f9
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: A# A# #A A#\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_27_44e2082359
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: B# #A #A #B\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_28_90923e6bbb
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: A# #A A# A#\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_0_29_0c73ed44b0
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: #A A# #B B#\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_1_0_2d8eda3563
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: #B #A #B #B #B\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_1_1_07f384bb2b
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: A# #B #A #A #A\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_1_2_378185fa06
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: #B #B #B #A #B\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_1_3_64bd7f42d6
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: #A B# B# A# A#\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_1_4_1260967016
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: #A A# A# B# #A\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_1_5_c6f3b1bbc4
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: A# #A #B B# #B\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_1_6_886d9a0279
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: A# A# B# #B B#\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_1_7_34a113ba5d
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: A# B# #A A# B#\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_1_8_b1cde89a4a
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: #A A# A# B# B#\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_1_9_afe9f48506
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: A# #B A# #A #B\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_1_10_a5bc37e8d1
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: B# A# #B #B B#\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_1_11_9d7178c468
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: #A B# A# #A B#\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
abprogramsimulation_diff_1_12_1b2a967049
[ { "content": "A::B is a system with 4 tokens: `A#`, `#A`, `B#` and `#B`.\n\nAn A::B program is a sequence of tokens, e.g., `B# A# #B #A B#`.\n\nTo *compute* a program, we must rewrite neighbor tokens, using the rules (whenever two neighbor tokens have their `#` facing each-other, they must be rewritten according to the corresponding rule) :\n+ `A# #A` ... becomes ... `` (nothing)\n+ `A# #B` ... becomes ... `#B A#`\n+ `B# #A` ... becomes ... `#A B#`\n+ `B# #B` ... becomes ... `` (nothing)\n\nPlease give the final state of the program: A# A# #A #A #B\nAn example for output format: `B# A# A#`\n", "role": "user" } ]
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
0