Search is not available for this dataset
fact
string | imports
string | filename
string | symbolic_name
string | __index_level_0__
int64 |
---|---|---|---|---|
Variable eval_atom : int -> Prop.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 324 |
Fixpoint eval_formula (f: LForm) : Prop := match f with | LAT a => eval_atom a | LOP o l => eval_op_list (fun f => eval_formula f.(elt)) o l | LIMPL l r => eval_impl_list (fun f => eval_formula f.(elt)) l (eval_formula r.(elt)) end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 325 |
Definition eval_hformula (f: HFormula) := eval_formula f.(elt).
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 326 |
Fixpoint eval_formula_lform (f:LForm): eval_formula f <-> eval_formula (lform f).
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 327 |
Variable AT_is_dec_correct : forall a, AT_is_dec a = true -> eval_atom a \/ ~ eval_atom a.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 328 |
Definition has_literal (m : hmap) (l : literal) := match l with | POS f => has_form m f | NEG f => has_form m f end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 329 |
Definition has_watched_clause (m : hmap) (cl:watched_clause) := Forall (has_literal m) (watch1 cl :: watch2 cl :: unwatched cl).
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 330 |
Definition has_clause (m:hmap) (cl:clause_kind) := match cl with | EMPTY => True | TRUE => True | UNIT l => has_literal m l | CLAUSE cl => has_watched_clause m cl end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 331 |
Definition eval_literal (l:literal) := match l with | POS l => eval_formula l.(elt) | NEG l => eval_formula l.(elt) -> False end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 332 |
Definition eval_literal_rec (l:literal) (P:Prop) := match l with | POS l => eval_formula l.(elt) \/ P | NEG l => eval_formula l.(elt) -> P end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 333 |
Fixpoint eval_literal_list (ls: list literal) := match ls with | nil => False | l::ls => eval_literal_rec l (eval_literal_list ls) end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 334 |
Definition eval_watched_clause (cl: watched_clause) := eval_literal_list (watch1 cl :: watch2 cl :: (unwatched cl)).
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 335 |
Definition eval_clause (cl:clause_kind) := match cl with | EMPTY => False | TRUE => True | UNIT l => eval_literal l | CLAUSE cl => eval_watched_clause cl end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 336 |
Definition ThyP := hmap -> list literal -> option (hmap * list literal).
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 337 |
Definition Thy (P:ThyP) := forall hm hm' cl cl', P hm cl = Some (hm',cl') -> eval_literal_list cl' /\ hmap_order hm hm' /\ Forall (has_literal hm') cl'.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 338 |
Definition iset := IntMap.ptrie (key:=int) unit.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 339 |
Record state : Type := mkstate { fresh_clause_id : int; hconsmap : hmap; arrows : list literal; wneg : iset; defs : iset * iset ; units : IntMap.ptrie (key:=int) (Annot.t bool); unit_stack : list (Annot.t literal); clauses : WMap.t ; }.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 340 |
Definition empty_state m := {| fresh_clause_id := 0; hconsmap := m; arrows := nil; wneg := IntMap.empty unit; defs := (IntMap.empty unit , IntMap.empty unit); units := IntMap.empty (Annot.t bool); unit_stack := nil; clauses := WMap.empty |}.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 341 |
Definition is_impl (o: op) : bool := match o with | IMPL => true | _ => false end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 342 |
Definition is_arrow (f:LForm) : bool := match f with | LIMPL f1 f2 => true | _ => false end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 343 |
Definition is_arrow_lit (l: literal) : bool := match l with | POS f | NEG f => is_arrow f.(elt) end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 344 |
Definition insert_unit (l:Annot.t literal) (st:state) : state := {| fresh_clause_id := fresh_clause_id st; hconsmap := hconsmap st; wneg := wneg st; defs := defs st; arrows := arrows st; units := units st; unit_stack := l:: unit_stack st; clauses := clauses st |}.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 345 |
Definition add_wneg_lit (l: literal) (wn: iset) : iset := match l with | POS _ => wn | NEG f => IntMap.set' (HCons.id f) tt wn end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 346 |
Definition add_wneg_wcl (wn : iset) (cl:watched_clause) : iset := add_wneg_lit (watch2 cl) (add_wneg_lit (watch1 cl) wn) .
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 347 |
Definition is_cons (id: int) (l : IntMap.ptrie unit) := match IntMap.get' id l with | Some _ => true | _ => false end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 348 |
Definition set_cons (id:int) (l: IntMap.ptrie unit) := IntMap.set' id tt l.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 349 |
Definition literal_of_bool (b:bool) (f:HFormula) := if b then POS f else NEG f.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 350 |
Fixpoint xrev_map [A B: Type] (f: A -> B) (acc: list B) (l : list A) : list B := match l with | nil => acc | e::l => xrev_map f (f e :: acc) l end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 351 |
Fixpoint xrev_map_filter [A B: Type] (p: A -> bool) (f: A -> B) (acc: list B) (l:list A) : list B := match l with | nil => acc | e::l => xrev_map_filter p f (if p e then f e::acc else acc) l end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 352 |
Definition rev_map [A B: Type] (f: A -> B) := xrev_map f nil.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 353 |
Definition watch_clause_of_list (l :list literal) : option watched_clause := match l with | e1::e2::l => Some {| watch1 := e1 ; watch2 := e2 ; unwatched := l |} | _ => None end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 354 |
Definition cnf_plus_and (l : list HFormula) (f:HFormula) (rst: list watched_clause) := match watch_clause_of_list (xrev_map NEG (POS f::nil) l) with | None => rst | Some cl => cl::rst end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 355 |
Definition cnf_plus_or (l: list HFormula) (f: HFormula) (rst: list watched_clause) := xrev_map (fun fi => {| watch1 := NEG fi ; watch2 := POS f; unwatched := nil |}) rst l.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 356 |
Definition is_classic_or_dec (is_classic: bool) (f: HFormula) := if is_classic then true else f.(is_dec).
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 357 |
Definition cnf_plus_impl (is_classic: bool) (l: list HFormula) (r: HFormula) (f: HFormula) (rst: list watched_clause) : list watched_clause := {| watch1 := NEG r ; watch2 := POS f; unwatched := nil |} :: xrev_map_filter (is_classic_or_dec is_classic) (fun fi => {| watch1 := POS fi ; watch2 := POS f; unwatched := nil |}) rst l.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 358 |
Definition cnf_minus_and (l :list HFormula) (f:HFormula) (rst: list watched_clause) := xrev_map (fun fi => {| watch1 := NEG f ; watch2 := POS fi ; unwatched := nil|}) rst l.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 359 |
Definition cnf_minus_or (l:list HFormula) (f:HFormula) (rst: list watched_clause) := match l with | nil => rst | f1::l' => {| watch1 := NEG f ; watch2 := POS f1 ; unwatched := rev_map POS l' |} :: rst end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 360 |
Definition unit_or (r: HFormula) := match r.(elt) with | _ => (POS r:: nil) end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 361 |
Definition cnf_minus_impl (l:list HFormula) (r: HFormula) (f:HFormula) (rst: list watched_clause) := match watch_clause_of_list (NEG f :: xrev_map NEG (unit_or r) l) with | None => rst | Some wc => wc ::rst end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 362 |
Definition cnf_of_op_plus (is_classic: bool) (o:lop) := match o with | LAND => cnf_plus_and | LOR => cnf_plus_or end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 363 |
Definition cnf_of_op_minus (is_classic: bool) (o:lop) := match o with | LAND => cnf_minus_and | LOR => cnf_minus_or end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 364 |
Variable cnf : forall (pol:bool) (is_classic: bool) (cp cm: IntMap.ptrie (key:= int) unit) (ar:list literal) (acc : list watched_clause) (f: LForm) (hf: HFormula), IntMap.ptrie (key:=int) unit * IntMap.ptrie (key:=int) unit * list literal * list watched_clause.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 365 |
Fixpoint cnf_list (pol:bool) (is_classic: bool) (cp cm: IntMap.ptrie unit) (ar: list literal) (acc: list watched_clause) (l: list HFormula) := match l with | nil => (cp,cm,ar,acc) | f :: l => let '(cp,cm,ar,acc) := cnf pol is_classic cp cm ar acc f.(elt) f in cnf_list pol is_classic cp cm ar acc l end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 366 |
Fixpoint cnf (pol:bool) (is_classic: bool) (cp cm: IntMap.ptrie unit) (ar:list literal) (acc : list watched_clause) (f: LForm) (hf: HFormula) : IntMap.ptrie unit * IntMap.ptrie unit * list literal * list watched_clause := let h := hf.(id) in if is_cons h (if pol then cp else cm) then (cp,cm,ar,acc) else match f with | LAT _ => (cp,cm,ar,acc) | LOP o l => let cp := if pol then set_cons h cp else cp in let cm := if pol then cm else set_cons h cm in let acc := (if pol then cnf_of_op_plus else cnf_of_op_minus) is_classic o l hf acc in cnf_list cnf pol is_classic cp cm ar acc l | LIMPL l r => let ar := if negb (lazy_or is_classic (fun x => List.forallb HCons.is_dec l)) && pol then POS hf::ar else ar in let acc := (if pol then cnf_plus_impl is_classic else cnf_minus_impl) l r hf acc in let '(cp,cm,ar,acc) := cnf_list cnf (negb pol) is_classic cp cm ar acc l in cnf pol is_classic cp cm ar acc r.(elt) r end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 367 |
Definition neg_literal (l: literal) := match l with | POS h => NEG h | NEG h => POS h end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 368 |
Definition is_negative_literal (l:literal) := match l with | POS _ => False | NEG _ => True end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 369 |
Definition eval_ohformula (o : option HFormula) : Prop := match o with | None => False | Some f => eval_hformula f end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 370 |
Definition is_classic (concl: option HFormula) := match concl with | None => true | _ => false end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 371 |
Definition insert_defs (m : IntMap.ptrie unit * IntMap.ptrie unit) (ar : list literal) (st : state ) := {| fresh_clause_id := fresh_clause_id st; hconsmap := hconsmap st; wneg := wneg st; defs := m; arrows := ar; units := units st; unit_stack := unit_stack st; clauses := clauses st |}.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 372 |
Fixpoint removeb [A: Type] (P : A -> bool) (l:list A) := match l with | nil => nil | e::l => if P e then l else e :: (removeb P l) end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 373 |
Definition eq_literal (l1: literal) := match l1 with | POS {| id := i ; |} => fun l2 => match l2 with | POS f' => f'.(id) =? i | NEG _ => false end | NEG {| id := i ; |} => fun l2 => match l2 with | NEG f' => f'.(id) =? i | POS _ => false end end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 374 |
Definition remove_arrow (ar : literal) (st:state) := {| fresh_clause_id := fresh_clause_id st; hconsmap := hconsmap st; wneg := wneg st; defs := defs st; arrows := removeb (eq_literal ar) (arrows st); units := units st; unit_stack := unit_stack st; clauses := clauses st |}.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 375 |
Definition neg_bool (o : option (Annot.t bool)) : option (Annot.t bool) := match o with | None => None | Some b => Some (Annot.map negb b) end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 376 |
Definition find_lit (l: literal) (lit: IntMap.ptrie (Annot.t bool)) : option (Annot.t bool) := match l with | POS l => IntMap.get' l.(id) lit | NEG l => neg_bool (IntMap.get' l.(id) lit) end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 377 |
Definition find_lit' (l: literal) (lit : IntMap.ptrie (Annot.t bool)) : option (Annot.t bool) := (if is_positive_literal l then (fun x => x) else neg_bool) (IntMap.get' (id_of_literal l) lit).
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 378 |
Fixpoint reduce (lit: IntMap.ptrie (Annot.t bool)) (ann: LitSet.t) (w:literal) (cl : list literal) := match cl with | nil => Annot.mk (UNIT w) ann | e::l => if eq_literal e w then reduce lit ann w l else match find_lit e lit with | None => Annot.mk (CLAUSE {| watch1 := w ; watch2 := e ; unwatched := l |}) ann | Some b => if Annot.elt b then Annot.mk_elt TRUE else reduce lit (LitSet.union (Annot.deps b) ann) w l end end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 379 |
Fixpoint reduce_lits (lit: IntMap.ptrie (Annot.t bool)) (ann: LitSet.t) (cl : list literal) := match cl with | nil => Some (Annot.mk nil ann) | e::cl => match find_lit e lit with | None => match reduce_lits lit ann cl with | None => None | Some l' => Some (Annot.map (fun x => e::x) l') end | Some b => if Annot.elt b then None else reduce_lits lit (LitSet.union (Annot.deps b) ann) cl end end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 380 |
Fixpoint no_dup_clause (cl : list literal) := match cl with | nil => TRUE | e::nil => UNIT e | e1::((e2::l) as l') => if eq_literal e1 e2 then no_dup_clause l' else CLAUSE {| watch1 := e1 ; watch2 := e2 ; unwatched := l |} end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 381 |
Definition opp_literal (l1 l2: literal) : bool := match l1 , l2 with | POS f , NEG f' | NEG f , POS f' => id f =? id f' | _ , _ => false end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 382 |
Definition shorten_clause (l: Annot.t literal) (lit : IntMap.ptrie (Annot.t bool)) (ann : LitSet.t) (cl : watched_clause) := if opp_literal (Annot.elt l) (watch1 cl) then reduce lit (LitSet.union (Annot.deps l) ann) (watch2 cl) (unwatched cl) else if opp_literal (Annot.elt l) (watch2 cl) then reduce lit (LitSet.union (Annot.deps l) ann) (watch1 cl) (unwatched cl) else Annot.mk TRUE LitSet.empty.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 383 |
Definition lhTT := Annot.mk_elt (POS hTT).
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 384 |
Definition normalise_watched_clause (diff_watched: option (Annot.t literal)) (lit : IntMap.ptrie (Annot.t bool)) (ann : LitSet.t) (cl : watched_clause) := match diff_watched with | Some l => shorten_clause l lit ann cl | None => match reduce_lits lit ann (watch1 cl :: watch2 cl :: unwatched cl) with | None => Annot.mk_elt TRUE | Some l => Annot.mk (no_dup_clause (Annot.elt l)) (Annot.deps l) end end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 385 |
Definition add_watched_clause (st : state) (id: int) (acl: Annot.t watched_clause) : state := let cl := Annot.elt acl in let w1 := watch1 cl in let w2 := watch2 cl in let mcl := clauses st in let mcl := WMap.add_clause w1 id acl mcl in let mcl := WMap.add_clause w2 id acl mcl in {| fresh_clause_id := fresh_clause_id st; hconsmap := hconsmap st; arrows := arrows st; wneg := add_wneg_lit w1 (add_wneg_lit w2 (wneg st)); defs := defs st ; units := units st; unit_stack := unit_stack st; clauses := mcl |}.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 386 |
Definition get_fresh_clause_id (st:state) : int * state := let res := fresh_clause_id st in (res,{| fresh_clause_id := res + 1; hconsmap := hconsmap st; wneg := wneg st; arrows := arrows st; defs := defs st; units := units st; unit_stack :=unit_stack st; clauses := clauses st |}).
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 387 |
Definition dresult := result state (hmap * LitSet.t).
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 388 |
Definition insert_normalised_clause (id: int) (cl:Annot.t clause_kind) (st: state) : dresult := match cl.(Annot.elt) with | EMPTY => Success (hconsmap st,Annot.deps cl) | UNIT l => Progress (insert_unit (Annot.set cl l) st) | TRUE => Progress st | CLAUSE cl' => Progress (add_watched_clause st id (Annot.set cl cl')) end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 389 |
Definition insert_watched_clause (diff_watched: option (Annot.t literal)) (id: int) (cl: Annot.t watched_clause) (st: state) : dresult := insert_normalised_clause id (normalise_watched_clause diff_watched (units st) (Annot.deps cl) (Annot.elt cl)) st.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 390 |
Definition insert_fresh_watched_clause (cl: watched_clause) (st: state) := let (fr,st') := get_fresh_clause_id st in insert_watched_clause None fr (Annot.mk cl LitSet.empty) st'.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 391 |
Fixpoint fold_update {A : Type} (F : A -> state -> dresult) (l: list A) (st:state) : dresult := match l with | nil => Progress st | e::l => match F e st with | Success p => Success p | Progress st' => fold_update F l st' | Fail s => Fail s end end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 392 |
Fixpoint app_list (l: list (state -> option state)) (st: state) := match l with | nil => Some st | f1::fl => match f1 st with | None => None | Some st' => app_list fl st' end end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 393 |
Definition intro_impl (acc: list literal) (f: LForm) (hf: HFormula) := match f with | LAT a => if hf.(is_dec) then ((NEG hf) :: acc , None) else (acc , Some hf) | LOP o l => if hf.(is_dec) then (NEG hf::acc, None) else (acc, Some hf) | LIMPL l r => if r.(is_dec) then (NEG r :: xrev_map POS acc l, None) else (xrev_map POS acc l, Some r) end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 394 |
Definition cnf_of_literal (l:literal) := cnf (negb (is_positive_literal l)).
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 395 |
Definition augment_cnf (is_classic: bool) (h: literal) (st: state) := let f := form_of_literal h in let '(cp,cm,ar,acc) := (cnf_of_literal h) is_classic (fst (defs st)) (snd (defs st)) (arrows st) nil f.(elt) f in fold_update insert_fresh_watched_clause acc (insert_defs (cp,cm) ar st).
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 396 |
Definition annot_of_literal (h: literal) : LitSet.t := (LitSet.singleton (id_of_literal h) (is_positive_literal h)).
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 397 |
Definition annot_hyp (h: literal) := Annot.mk h (annot_of_literal h).
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 398 |
Definition augment_hyp (is_classic: bool) (h: literal) (st:state) := augment_cnf is_classic h (insert_unit (annot_hyp h) st).
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 399 |
Definition cnf_hyps (is_classic: bool) (l: list literal) (st: state) := fold_update (augment_hyp is_classic) l st.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 400 |
Definition intro_state (st:state) (f: LForm) (hf: HFormula) := let (hs,c) := intro_impl nil f hf in match cnf_hyps (is_classic c) hs st with | Fail f => Fail f | Success p => Success p | Progress st => match c with | None => Progress(st,None) | Some g => match augment_cnf false (NEG g) st with | Fail f => Fail f | Success p => Success p | Progress st' => Progress(st',Some g) end end end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 401 |
Definition add_literal (l:Annot.t literal) (lit : IntMap.ptrie (Annot.t bool)) := IntMap.set' (id_of_literal (Annot.elt l)) (Annot.map is_positive_literal l) lit.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 402 |
Definition is_neg_arrow (l:literal) : bool := match l with | POS _ => false | NEG f => is_arrow f.(elt) end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 403 |
Definition remove_wneg (l:literal) (s:iset) := IntMap.remove' (id_of_literal l) s.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 404 |
Definition insert_literal (l:Annot.t literal) (st: state) : state := {| fresh_clause_id := fresh_clause_id st; hconsmap := hconsmap st; defs := defs st; wneg := remove_wneg (Annot.elt l) (wneg st); arrows := if is_neg_arrow (Annot.elt l) then (Annot.elt l::arrows st) else arrows st; units := add_literal l (units st); unit_stack := unit_stack st; clauses := clauses st |}.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 405 |
Definition is_FF (g: LForm) : bool := match g with | LOP LOR nil => true | _ => false end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 406 |
Definition is_hFF (g: HFormula) := (g.(id) =? 0) && Bool.eqb g.(is_dec) true && is_FF g.(elt).
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 407 |
Definition is_unsat (lit: IntMap.ptrie (Annot.t bool)) (l:Annot.t literal) : option LitSet.t := match Annot.elt l with | POS l' => if is_hFF l' then Some (Annot.deps l) else match IntMap.get' l'.(id) lit with | Some b => if Annot.lift negb b then Some (LitSet.union (Annot.deps b) (Annot.deps l)) else None | None => None end | NEG l' => match IntMap.get' l'.(id) lit with | Some b => if Annot.elt b then Some (LitSet.union (Annot.deps b) (Annot.deps l)) else None | None => None end end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 408 |
Definition is_goal (goal : HFormula) (l:literal) : option int := match l with | POS f => if f.(id) =? goal.(id) then Some f.(id) else None | NEG _ => None end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 409 |
Definition is_goalb (goal : HFormula) (l:literal) : bool := match l with | POS f => f.(id) =? goal.(id) | NEG _ => false end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 410 |
Definition success (goal: option HFormula) (lit: IntMap.ptrie (Annot.t bool)) (l:Annot.t literal) := match goal with | None => is_unsat lit l | Some g => if is_goalb g (Annot.elt l) then Some (Annot.deps l) else is_unsat lit l end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 411 |
Definition set_unit_stack (l : list (Annot.t literal)) (st : state) := {| fresh_clause_id := fresh_clause_id st; hconsmap := hconsmap st; wneg := wneg st; defs := defs st; arrows := arrows st ; units := units st; unit_stack := l; clauses := clauses st |}.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 412 |
Definition add_arrow (l: literal) (st:state) := {| fresh_clause_id := fresh_clause_id st; hconsmap := hconsmap st; defs := defs st; wneg := wneg st; arrows := l:: arrows st ; units := units st; unit_stack := unit_stack st; clauses := clauses st |}.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 413 |
Definition extract_unit (st:state) := match unit_stack st with | nil => None | e::us => Some(e , set_unit_stack us st) end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 414 |
Definition remove_watched_clause (id:int) (cl:watched_clause) (st: state) := let cls := WMap.remove_watched_id (watch2 cl) id (WMap.remove_watched_id (watch1 cl) id (clauses st)) in {| fresh_clause_id := fresh_clause_id st; hconsmap := hconsmap st; arrows := arrows st; wneg := wneg st; defs := defs st; units := units st; unit_stack := unit_stack st; clauses := cls |}.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 415 |
Definition update_watched_clause (l : Annot.t literal) (id : int) (cl: Annot.t watched_clause) (st: dresult) : dresult := match st with | Fail f => Fail f | Success p => Success p | Progress st => insert_watched_clause (Some l) id cl (remove_watched_clause id (Annot.elt cl) st) end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 416 |
Definition shorten_clauses (l: Annot.t literal) (cl : WMap.watch_map) (st:state) := WMap.fold_watch_map (fun acc i k => update_watched_clause l i k acc) cl (Progress st).
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 417 |
Fixpoint unit_propagation (n:nat) (concl: option HFormula) (st: state) : dresult := match n with | O => Fail OutOfFuel | S n => match extract_unit st with | None => Progress st | Some(l,st) => match success concl (units st) l with | Some deps => Success (hconsmap st,deps) | None => let st := insert_literal l st in let lelt := Annot.elt l in let lc := WMap.find_clauses lelt (clauses st) in match shorten_clauses l lc st with | Success d => Success d | Progress st => unit_propagation n concl st | Fail f => Fail f end end end end.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 418 |
Definition units_has_literal (m: hmap) (u: IntMap.ptrie (Annot.t bool)) (l : Annot.t literal) := IntMap.get' (Annot.lift id_of_literal l) u = Some (Annot.map is_positive_literal l) /\ Annot.lift (has_literal m) l.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 419 |
Definition forall_units (P: Annot.t literal -> Prop) (m: hmap) (u: IntMap.ptrie (Annot.t bool)) := forall l, units_has_literal m u l -> P l.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 420 |
Definition eval_units (m : hmap) (u : IntMap.ptrie (Annot.t bool)) := forall_units (Annot.lift eval_literal) m u.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 421 |
Definition eval_stack (lst : list (Annot.t literal)) : Prop := List.Forall (Annot.lift eval_literal) lst.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 422 |
Definition eval_clauses (h : WMap.t) := WMap.Forall (Annot.lift eval_watched_clause) h.
|
Cdcl.PatriciaR Cdcl.KeyInt Cdcl.ReifClasses Cdcl.Lib Bool Setoid ZifyBool ZArith Uint63 Lia List Cdcl.Syntax Cdcl.Clause
|
fbesson-itauto/theories/Formula
|
fbesson-itauto
| 423 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.