Datasets:
File size: 8,108 Bytes
aaecd24 80d9550 dc0116e 2d33d2d dc0116e 80d9550 2d33d2d 80d9550 aaecd24 80d9550 2d33d2d 2dfc267 b017f95 2d33d2d b017f95 80d9550 2d33d2d b017f95 2d33d2d 80d9550 2d33d2d 80d9550 2d33d2d b017f95 2d33d2d 80d9550 2d33d2d 80d9550 b017f95 80d9550 b017f95 80d9550 b017f95 80d9550 b017f95 80d9550 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
---
pretty_name: NAIP 16-Day City Cubes (materialized tiles)
tags:
- geospatial
- remote-sensing
- earth-observation
- wildfire
- segmentation
task_categories:
- image-segmentation
- image-classification
license: cc-by-4.0
---
# NAIP 16-Day City Cubes (materialized tiles)

Each row is a 512×512 chip with **16 layers** (composites, single-band indices, and masks).
### What’s included (no pseudoRGB)
- **RGB composites**: `naip_rgb`, `s2_rgb`, `dem_rgb`
- **Mono S2 layers** (published as single-channel images): `s2_B08`, `s2_MSAVI`, `s2_NDVI`, `s2_NDWI`, `s2_SCL`
- **Other monos**: `naip_ndvi`
- **Semantic masks**: `labels` (task labels), `landfire_family`, `cdl`
- **Metadata**: `tile_id`, `city`, `bbox` (`west,south,east,north`), `chip_px`, `split`, `meta_json`
> **Note:** The dataset intentionally omits `s2_pseudo_rgb`. If you need alternate composites,
> you can compose them on the fly from the published mono layers.
## Loading
```python
from datasets import load_dataset
ds = load_dataset("gdurkin/naip-16d-city-cubes", split="train")
ds[0].keys()
```
To load a single city’s parquet shards directly:
```python
from datasets import load_dataset
city = "Arcadia__California__USA"
pattern = f"hf://datasets/gdurkin/naip-16d-city-cubes/data/city={city}/*.parquet"
ds_city = load_dataset("parquet", data_files=pattern, split="train")
```
## Columns & shapes
- `naip_rgb` _(512×512×3 u8)_: NAIP true color
- `s2_rgb` _(512×512×3 u8)_: Sentinel-2 true color (B04,B03,B02)
- `dem_rgb` _(512×512×3 u8)_: elevation/gradient/aspect visualization
- `naip_ndvi` _(512×512 u8)_: NDVI from NAIP
- `s2_*` _(512×512 u8)_: mono S2 layers (`B08`, `MSAVI`, `NDVI`, `NDWI`, `SCL`)
- `labels`, `landfire_family`, `cdl` _(512×512 u8)_: categorical masks
## Legends
### Labels (task)
| id | name | color |
|--:|:-----|:------|
| 0 | `background` | `#000000` |
| 1 | `road_concrete` | `#C8C8C8` |
| 2 | `pavement` | `#A0A0A0` |
| 3 | `dirt_gravel` | `#96643C` |
| 4 | `grass_dry` | `#E6DC78` |
| 5 | `grass_healthy` | `#50C878` |
| 6 | `vegetation` | `#147814` |
| 7 | `building` | `#FF5050` |
| 8 | `water` | `#4682B4` |
| 11 | `building_res` | `#FF8C8C` |
| 12 | `building_com` | `#FF5A1E` |
### LANDFIRE family
| id | family | color |
|--:|:-------|:------|
| 0 | `background` | `#000000` |
| 1 | `grass` | `#F7E68C` |
| 2 | `shrub` | `#C69842` |
| 3 | `timber` | `#1E781E` |
| 4 | `slash` | `#CE5A32` |
| 9 | `urban` | `#969696` |
| 10 | `snow_ice` | `#C8E6FF` |
| 11 | `agriculture` | `#FFCC66` |
| 12 | `water` | `#4682B4` |
| 13 | `barren` | `#C2B280` |
### CDL (full palette)
The table below lists CDL codes and colors (urban classes are overridden for better visual separation).
<details><summary><strong>Click to expand full CDL legend</strong></summary>
| id | class | color |
|--:|:------|:------|
| 0 | `Background` | `000000` |
| 1 | `Corn` | `ffd400` |
| 2 | `Cotton` | `ff2626` |
| 3 | `Rice` | `00a9e6` |
| 4 | `Sorghum` | `ff9e0f` |
| 5 | `Soybeans` | `267300` |
| 6 | `Sunflower` | `ffff00` |
| 10 | `Peanuts` | `70a800` |
| 11 | `Tobacco` | `00af4d` |
| 12 | `Sweet Corn` | `e0a60f` |
| 13 | `Pop or Orn Corn` | `e0a60f` |
| 14 | `Mint` | `80d4ff` |
| 21 | `Barley` | `e2007f` |
| 22 | `Durum Wheat` | `8a6453` |
| 23 | `Spring Wheat` | `d9b56c` |
| 24 | `Winter Wheat` | `a87000` |
| 25 | `Other Small Grains` | `d69dbc` |
| 26 | `Dbl Crop WinWht/Soybeans` | `737300` |
| 27 | `Rye` | `ae017e` |
| 28 | `Oats` | `a15889` |
| 29 | `Millet` | `73004c` |
| 30 | `Speltz` | `d69dbc` |
| 31 | `Canola` | `d1ff00` |
| 32 | `Flaxseed` | `8099ff` |
| 33 | `Safflower` | `d6d600` |
| 34 | `Rape Seed` | `d1ff00` |
| 35 | `Mustard` | `00af4d` |
| 36 | `Alfalfa` | `ffa8e3` |
| 37 | `Other Hay/Non Alfalfa` | `a5f58d` |
| 38 | `Camelina` | `00af4d` |
| 39 | `Buckwheat` | `d69dbc` |
| 41 | `Sugarbeets` | `a900e6` |
| 42 | `Dry Beans` | `a80000` |
| 43 | `Potatoes` | `732600` |
| 44 | `Other Crops` | `00af4d` |
| 45 | `Sugarcane` | `b380ff` |
| 46 | `Sweet Potatoes` | `732600` |
| 47 | `Misc Vegs & Fruits` | `ff6666` |
| 48 | `Watermelons` | `ff6666` |
| 49 | `Onions` | `ffcc66` |
| 50 | `Cucumbers` | `ff6666` |
| 51 | `Chick Peas` | `00af4d` |
| 52 | `Lentils` | `00deb0` |
| 53 | `Peas` | `55ff00` |
| 54 | `Tomatoes` | `f5a27a` |
| 55 | `Caneberries` | `ff6666` |
| 56 | `Hops` | `00af4d` |
| 57 | `Herbs` | `80d4ff` |
| 58 | `Clover/Wildflowers` | `e8beff` |
| 59 | `Sod/Grass Seed` | `b2ffde` |
| 60 | `Switchgrass` | `00af4d` |
| 61 | `Fallow/Idle Cropland` | `bfbf7a` |
| 63 | `Forest` | `95ce93` |
| 64 | `Shrubland` | `c7d79e` |
| 65 | `Barren` | `ccbfa3` |
| 66 | `Cherries` | `ff00ff` |
| 67 | `Peaches` | `ff91ab` |
| 68 | `Apples` | `b90050` |
| 69 | `Grapes` | `704489` |
| 70 | `Christmas Trees` | `007878` |
| 71 | `Other Tree Crops` | `b39c70` |
| 72 | `Citrus` | `ffff80` |
| 74 | `Pecans` | `b6705c` |
| 75 | `Almonds` | `00a884` |
| 76 | `Walnuts` | `ebd6b0` |
| 77 | `Pears` | `b39c70` |
| 81 | `Clouds/No Data` | `f7f7f7` |
| 82 | `Developed` | `9c9c9c` |
| 83 | `Water` | `4d70a3` |
| 87 | `Wetlands` | `80b3b3` |
| 88 | `Nonag/Undefined` | `e9ffbe` |
| 92 | `Aquaculture` | `00ffff` |
| 111 | `Open Water` | `4d70a3` |
| 112 | `Perennial Ice/Snow` | `d4e3fc` |
| 121 | `Developed/Open Space` | `#BDBDBD` |
| 122 | `Developed/Low Intensity` | `#F4B183` |
| 123 | `Developed/Med Intensity` | `#E06666` |
| 124 | `Developed/High Intensity` | `#A61C00` |
| 131 | `Barren` | `ccbfa3` |
| 141 | `Deciduous Forest` | `95ce93` |
| 142 | `Evergreen Forest` | `95ce93` |
| 143 | `Mixed Forest` | `95ce93` |
| 152 | `Shrubland` | `c7d79e` |
| 176 | `Grass/Pasture` | `e9ffbe` |
| 190 | `Woody Wetlands` | `80b3b3` |
| 195 | `Herbaceous Wetlands` | `80b3b3` |
| 204 | `Pistachios` | `00ff8c` |
| 205 | `Triticale` | `d69dbc` |
| 206 | `Carrots` | `ff6666` |
| 207 | `Asparagus` | `ff6666` |
| 208 | `Garlic` | `ff6666` |
| 209 | `Cantaloupes` | `ff6666` |
| 210 | `Prunes` | `ff91ab` |
| 211 | `Olives` | `344a34` |
| 212 | `Oranges` | `e67525` |
| 213 | `Honeydew Melons` | `ff6666` |
| 214 | `Broccoli` | `ff6666` |
| 215 | `Avocados` | `66994d` |
| 216 | `Peppers` | `ff6666` |
| 217 | `Pomegranates` | `b39c70` |
| 218 | `Nectarines` | `ff91ab` |
| 219 | `Greens` | `ff6666` |
| 220 | `Plums` | `ff91ab` |
| 221 | `Strawberries` | `ff6666` |
| 222 | `Squash` | `ff6666` |
| 223 | `Apricots` | `ff91ab` |
| 224 | `Vetch` | `00af4d` |
| 225 | `Dbl Crop WinWht/Corn` | `ffd400` |
| 226 | `Dbl Crop Oats/Corn` | `ffd400` |
| 227 | `Lettuce` | `ff6666` |
| 228 | `Dbl Crop Triticale/Corn` | `ffd400` |
| 229 | `Pumpkins` | `ff6666` |
| 230 | `Dbl Crop Lettuce/Durum Wht` | `8a6453` |
| 231 | `Dbl Crop Lettuce/Cantaloupe` | `ff6666` |
| 232 | `Dbl Crop Lettuce/Cotton` | `ff2626` |
| 233 | `Dbl Crop Lettuce/Barley` | `e2007f` |
| 234 | `Dbl Crop Durum Wht/Sorghum` | `ff9e0f` |
| 235 | `Dbl Crop Barley/Sorghum` | `ff9e0f` |
| 236 | `Dbl Crop WinWht/Sorghum` | `a87000` |
| 237 | `Dbl Crop Barley/Corn` | `ffd400` |
| 238 | `Dbl Crop WinWht/Cotton` | `a87000` |
| 239 | `Dbl Crop Soybeans/Cotton` | `267300` |
| 240 | `Dbl Crop Soybeans/Oats` | `267300` |
| 241 | `Dbl Crop Corn/Soybeans` | `ffd400` |
| 242 | `Blueberries` | `000099` |
| 243 | `Cabbage` | `ff6666` |
| 244 | `Cauliflower` | `ff6666` |
| 245 | `Celery` | `ff6666` |
| 246 | `Radishes` | `ff6666` |
| 247 | `Turnips` | `ff6666` |
| 248 | `Eggplants` | `ff6666` |
| 249 | `Gourds` | `ff6666` |
| 250 | `Cranberries` | `ff6666` |
| 254 | `Dbl Crop Barley/Soybeans` | `267300` |
</details>
## Coverage
<!-- COVERAGE-TABLE:BEGIN -->
**Coverage**
- rows: **24,792**
- S2 mono policy: `?`
| column | rows | pct |
|---|---:|---:|
| `cdl` | 24,792 | 100.0% |
| `dem_rgb` | 24,792 | 100.0% |
| `labels` | 24,792 | 100.0% |
| `landfire_family` | 24,792 | 100.0% |
| `naip_ndvi` | 24,792 | 100.0% |
| `naip_rgb` | 24,792 | 100.0% |
| `s2_B08` | 24,792 | 100.0% |
| `s2_MSAVI` | 24,792 | 100.0% |
| `s2_NDVI` | 24,792 | 100.0% |
| `s2_NDWI` | 24,792 | 100.0% |
| `s2_SCL` | 24,792 | 100.0% |
| `s2_rgb` | 24,792 | 100.0% |
<!-- COVERAGE-TABLE:END -->
|