File size: 8,108 Bytes
aaecd24
80d9550
dc0116e
2d33d2d
dc0116e
80d9550
 
 
2d33d2d
 
80d9550
 
aaecd24
 
80d9550
2d33d2d
2dfc267
 
b017f95
2d33d2d
b017f95
 
 
 
80d9550
 
2d33d2d
b017f95
 
2d33d2d
80d9550
2d33d2d
 
 
80d9550
2d33d2d
 
b017f95
2d33d2d
 
80d9550
 
2d33d2d
 
 
80d9550
 
 
 
 
b017f95
80d9550
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b017f95
80d9550
 
 
 
 
 
 
 
 
b017f95
 
80d9550
b017f95
80d9550
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
---
pretty_name: NAIP 16-Day City Cubes (materialized tiles)
tags:
- geospatial
- remote-sensing
- earth-observation
- wildfire
- segmentation
task_categories:
- image-segmentation
- image-classification
license: cc-by-4.0
---

# NAIP 16-Day City Cubes (materialized tiles)

![Panel preview](assets/panels/santa_maria_3x3.png)

Each row is a 512×512 chip with **16 layers** (composites, single-band indices, and masks).

### What’s included (no pseudoRGB)
- **RGB composites**: `naip_rgb`, `s2_rgb`, `dem_rgb`
- **Mono S2 layers** (published as single-channel images): `s2_B08`, `s2_MSAVI`, `s2_NDVI`, `s2_NDWI`, `s2_SCL`
- **Other monos**: `naip_ndvi`
- **Semantic masks**: `labels` (task labels), `landfire_family`, `cdl`
- **Metadata**: `tile_id`, `city`, `bbox` (`west,south,east,north`), `chip_px`, `split`, `meta_json`

> **Note:** The dataset intentionally omits `s2_pseudo_rgb`. If you need alternate composites,
> you can compose them on the fly from the published mono layers.

## Loading
```python
from datasets import load_dataset
ds = load_dataset("gdurkin/naip-16d-city-cubes", split="train")
ds[0].keys()
```

To load a single city’s parquet shards directly:
```python
from datasets import load_dataset
city = "Arcadia__California__USA"
pattern = f"hf://datasets/gdurkin/naip-16d-city-cubes/data/city={city}/*.parquet"
ds_city = load_dataset("parquet", data_files=pattern, split="train")
```

## Columns & shapes
- `naip_rgb` _(512×512×3 u8)_: NAIP true color
- `s2_rgb` _(512×512×3 u8)_: Sentinel-2 true color (B04,B03,B02)
- `dem_rgb` _(512×512×3 u8)_: elevation/gradient/aspect visualization
- `naip_ndvi` _(512×512 u8)_: NDVI from NAIP
- `s2_*` _(512×512 u8)_: mono S2 layers (`B08`, `MSAVI`, `NDVI`, `NDWI`, `SCL`)
- `labels`, `landfire_family`, `cdl` _(512×512 u8)_: categorical masks

## Legends

### Labels (task)
| id | name | color |
|--:|:-----|:------|
| 0 | `background` | `#000000` |
| 1 | `road_concrete` | `#C8C8C8` |
| 2 | `pavement` | `#A0A0A0` |
| 3 | `dirt_gravel` | `#96643C` |
| 4 | `grass_dry` | `#E6DC78` |
| 5 | `grass_healthy` | `#50C878` |
| 6 | `vegetation` | `#147814` |
| 7 | `building` | `#FF5050` |
| 8 | `water` | `#4682B4` |
| 11 | `building_res` | `#FF8C8C` |
| 12 | `building_com` | `#FF5A1E` |

### LANDFIRE family
| id | family | color |
|--:|:-------|:------|
| 0 | `background` | `#000000` |
| 1 | `grass` | `#F7E68C` |
| 2 | `shrub` | `#C69842` |
| 3 | `timber` | `#1E781E` |
| 4 | `slash` | `#CE5A32` |
| 9 | `urban` | `#969696` |
| 10 | `snow_ice` | `#C8E6FF` |
| 11 | `agriculture` | `#FFCC66` |
| 12 | `water` | `#4682B4` |
| 13 | `barren` | `#C2B280` |

### CDL (full palette)
The table below lists CDL codes and colors (urban classes are overridden for better visual separation).

<details><summary><strong>Click to expand full CDL legend</strong></summary>

| id | class | color |
|--:|:------|:------|
| 0 | `Background` | `000000` |
| 1 | `Corn` | `ffd400` |
| 2 | `Cotton` | `ff2626` |
| 3 | `Rice` | `00a9e6` |
| 4 | `Sorghum` | `ff9e0f` |
| 5 | `Soybeans` | `267300` |
| 6 | `Sunflower` | `ffff00` |
| 10 | `Peanuts` | `70a800` |
| 11 | `Tobacco` | `00af4d` |
| 12 | `Sweet Corn` | `e0a60f` |
| 13 | `Pop or Orn Corn` | `e0a60f` |
| 14 | `Mint` | `80d4ff` |
| 21 | `Barley` | `e2007f` |
| 22 | `Durum Wheat` | `8a6453` |
| 23 | `Spring Wheat` | `d9b56c` |
| 24 | `Winter Wheat` | `a87000` |
| 25 | `Other Small Grains` | `d69dbc` |
| 26 | `Dbl Crop WinWht/Soybeans` | `737300` |
| 27 | `Rye` | `ae017e` |
| 28 | `Oats` | `a15889` |
| 29 | `Millet` | `73004c` |
| 30 | `Speltz` | `d69dbc` |
| 31 | `Canola` | `d1ff00` |
| 32 | `Flaxseed` | `8099ff` |
| 33 | `Safflower` | `d6d600` |
| 34 | `Rape Seed` | `d1ff00` |
| 35 | `Mustard` | `00af4d` |
| 36 | `Alfalfa` | `ffa8e3` |
| 37 | `Other Hay/Non Alfalfa` | `a5f58d` |
| 38 | `Camelina` | `00af4d` |
| 39 | `Buckwheat` | `d69dbc` |
| 41 | `Sugarbeets` | `a900e6` |
| 42 | `Dry Beans` | `a80000` |
| 43 | `Potatoes` | `732600` |
| 44 | `Other Crops` | `00af4d` |
| 45 | `Sugarcane` | `b380ff` |
| 46 | `Sweet Potatoes` | `732600` |
| 47 | `Misc Vegs & Fruits` | `ff6666` |
| 48 | `Watermelons` | `ff6666` |
| 49 | `Onions` | `ffcc66` |
| 50 | `Cucumbers` | `ff6666` |
| 51 | `Chick Peas` | `00af4d` |
| 52 | `Lentils` | `00deb0` |
| 53 | `Peas` | `55ff00` |
| 54 | `Tomatoes` | `f5a27a` |
| 55 | `Caneberries` | `ff6666` |
| 56 | `Hops` | `00af4d` |
| 57 | `Herbs` | `80d4ff` |
| 58 | `Clover/Wildflowers` | `e8beff` |
| 59 | `Sod/Grass Seed` | `b2ffde` |
| 60 | `Switchgrass` | `00af4d` |
| 61 | `Fallow/Idle Cropland` | `bfbf7a` |
| 63 | `Forest` | `95ce93` |
| 64 | `Shrubland` | `c7d79e` |
| 65 | `Barren` | `ccbfa3` |
| 66 | `Cherries` | `ff00ff` |
| 67 | `Peaches` | `ff91ab` |
| 68 | `Apples` | `b90050` |
| 69 | `Grapes` | `704489` |
| 70 | `Christmas Trees` | `007878` |
| 71 | `Other Tree Crops` | `b39c70` |
| 72 | `Citrus` | `ffff80` |
| 74 | `Pecans` | `b6705c` |
| 75 | `Almonds` | `00a884` |
| 76 | `Walnuts` | `ebd6b0` |
| 77 | `Pears` | `b39c70` |
| 81 | `Clouds/No Data` | `f7f7f7` |
| 82 | `Developed` | `9c9c9c` |
| 83 | `Water` | `4d70a3` |
| 87 | `Wetlands` | `80b3b3` |
| 88 | `Nonag/Undefined` | `e9ffbe` |
| 92 | `Aquaculture` | `00ffff` |
| 111 | `Open Water` | `4d70a3` |
| 112 | `Perennial Ice/Snow` | `d4e3fc` |
| 121 | `Developed/Open Space` | `#BDBDBD` |
| 122 | `Developed/Low Intensity` | `#F4B183` |
| 123 | `Developed/Med Intensity` | `#E06666` |
| 124 | `Developed/High Intensity` | `#A61C00` |
| 131 | `Barren` | `ccbfa3` |
| 141 | `Deciduous Forest` | `95ce93` |
| 142 | `Evergreen Forest` | `95ce93` |
| 143 | `Mixed Forest` | `95ce93` |
| 152 | `Shrubland` | `c7d79e` |
| 176 | `Grass/Pasture` | `e9ffbe` |
| 190 | `Woody Wetlands` | `80b3b3` |
| 195 | `Herbaceous Wetlands` | `80b3b3` |
| 204 | `Pistachios` | `00ff8c` |
| 205 | `Triticale` | `d69dbc` |
| 206 | `Carrots` | `ff6666` |
| 207 | `Asparagus` | `ff6666` |
| 208 | `Garlic` | `ff6666` |
| 209 | `Cantaloupes` | `ff6666` |
| 210 | `Prunes` | `ff91ab` |
| 211 | `Olives` | `344a34` |
| 212 | `Oranges` | `e67525` |
| 213 | `Honeydew Melons` | `ff6666` |
| 214 | `Broccoli` | `ff6666` |
| 215 | `Avocados` | `66994d` |
| 216 | `Peppers` | `ff6666` |
| 217 | `Pomegranates` | `b39c70` |
| 218 | `Nectarines` | `ff91ab` |
| 219 | `Greens` | `ff6666` |
| 220 | `Plums` | `ff91ab` |
| 221 | `Strawberries` | `ff6666` |
| 222 | `Squash` | `ff6666` |
| 223 | `Apricots` | `ff91ab` |
| 224 | `Vetch` | `00af4d` |
| 225 | `Dbl Crop WinWht/Corn` | `ffd400` |
| 226 | `Dbl Crop Oats/Corn` | `ffd400` |
| 227 | `Lettuce` | `ff6666` |
| 228 | `Dbl Crop Triticale/Corn` | `ffd400` |
| 229 | `Pumpkins` | `ff6666` |
| 230 | `Dbl Crop Lettuce/Durum Wht` | `8a6453` |
| 231 | `Dbl Crop Lettuce/Cantaloupe` | `ff6666` |
| 232 | `Dbl Crop Lettuce/Cotton` | `ff2626` |
| 233 | `Dbl Crop Lettuce/Barley` | `e2007f` |
| 234 | `Dbl Crop Durum Wht/Sorghum` | `ff9e0f` |
| 235 | `Dbl Crop Barley/Sorghum` | `ff9e0f` |
| 236 | `Dbl Crop WinWht/Sorghum` | `a87000` |
| 237 | `Dbl Crop Barley/Corn` | `ffd400` |
| 238 | `Dbl Crop WinWht/Cotton` | `a87000` |
| 239 | `Dbl Crop Soybeans/Cotton` | `267300` |
| 240 | `Dbl Crop Soybeans/Oats` | `267300` |
| 241 | `Dbl Crop Corn/Soybeans` | `ffd400` |
| 242 | `Blueberries` | `000099` |
| 243 | `Cabbage` | `ff6666` |
| 244 | `Cauliflower` | `ff6666` |
| 245 | `Celery` | `ff6666` |
| 246 | `Radishes` | `ff6666` |
| 247 | `Turnips` | `ff6666` |
| 248 | `Eggplants` | `ff6666` |
| 249 | `Gourds` | `ff6666` |
| 250 | `Cranberries` | `ff6666` |
| 254 | `Dbl Crop Barley/Soybeans` | `267300` |
</details>


## Coverage
<!-- COVERAGE-TABLE:BEGIN -->

**Coverage**
- rows: **24,792**
- S2 mono policy: `?`

| column | rows | pct |
|---|---:|---:|
| `cdl` | 24,792 | 100.0% |
| `dem_rgb` | 24,792 | 100.0% |
| `labels` | 24,792 | 100.0% |
| `landfire_family` | 24,792 | 100.0% |
| `naip_ndvi` | 24,792 | 100.0% |
| `naip_rgb` | 24,792 | 100.0% |
| `s2_B08` | 24,792 | 100.0% |
| `s2_MSAVI` | 24,792 | 100.0% |
| `s2_NDVI` | 24,792 | 100.0% |
| `s2_NDWI` | 24,792 | 100.0% |
| `s2_SCL` | 24,792 | 100.0% |
| `s2_rgb` | 24,792 | 100.0% |

<!-- COVERAGE-TABLE:END -->