Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
open-domain-qa
Languages:
English
Size:
10K - 100K
License:
Dataset Viewer (First 5GB)
The table and auto-converted Parquet files contain data up to 5GB, since the original files row groups are too big to be displayed. The recommended row group size is 100-300MB in-memory.
Full Screen Viewer
Full Screen
id
stringlengths 16
20
| document
dict | question
dict | long_answer_candidates
sequence | annotations
sequence |
---|---|---|---|---|
4549465242785278785 | {"html":"<!DOCTYPE html>\n<HTML class=\"client-js ve-not-available\" lang=\"en\" dir=\"ltr\"><HEAD>\(...TRUNCATED) | {"text":"when is the last episode of season 8 of the walking dead","tokens":["when","is","the","last(...TRUNCATED) | {"end_byte":[57620,53883,54388,56148,56129,55557,56249,56364,56522,56674,56962,57130,57392,57603,585(...TRUNCATED) | {"id":["6782080525527814293"],"long_answer":[{"candidate_index":92,"end_byte":96948,"end_token":3538(...TRUNCATED) |
-2543388002166163252 | {"html":"<!DOCTYPE html>\n<HTML class=\"client-js ve-not-available\" lang=\"en\" dir=\"ltr\"><HEAD>\(...TRUNCATED) | {"text":"in greek mythology who was the goddess of spring growth","tokens":["in","greek","mythology"(...TRUNCATED) | {"end_byte":[62898,58933,59089,59894,60156,60254,60446,60618,60763,62753,62882,63581,63565,81194,640(...TRUNCATED) | {"id":["7719528322202775345"],"long_answer":[{"candidate_index":58,"end_byte":84070,"end_token":965,(...TRUNCATED) |
5985355041383167183 | {"html":"<!DOCTYPE html>\n<HTML class=\"client-js ve-not-available\" lang=\"en\" dir=\"ltr\"><HEAD>\(...TRUNCATED) | {"text":"benefits of colonial life for single celled organisms","tokens":["benefits","of","colonial"(...TRUNCATED) | {"end_byte":[54151,54966,55845,59144,60541,59465,59860,60535,60529,60523,61333,62062,63676,64953,652(...TRUNCATED) | {"id":["13676402902866580638"],"long_answer":[{"candidate_index":-1,"end_byte":-1,"end_token":-1,"st(...TRUNCATED) |
-2975172535563055798 | {"html":"<!DOCTYPE html>\n<HTML class=\"client-js ve-not-available\" lang=\"en\" dir=\"ltr\"><HEAD>\(...TRUNCATED) | {"text":"how many season of the man in the high castle","tokens":["how","many","season","of","the","(...TRUNCATED) | {"end_byte":[49862,43135,44219,44200,44344,44592,45535,45516,45073,45173,45425,45787,45986,45967,460(...TRUNCATED) | {"id":["7446307064203576492"],"long_answer":[{"candidate_index":0,"end_byte":49862,"end_token":473,"(...TRUNCATED) |
-1052334833502528495 | {"html":"<!DOCTYPE html>\n<HTML class=\"client-js ve-not-available\" lang=\"en\" dir=\"ltr\"><HEAD>\(...TRUNCATED) | {"text":"who was the first ministry head of state in nigeria","tokens":["who","was","the","first","m(...TRUNCATED) | {"end_byte":[48170,42667,43557,46355,46343,43856,43850,44088,44082,44283,44277,44828,44822,44816,453(...TRUNCATED) | {"id":["3569531263672159632"],"long_answer":[{"candidate_index":-1,"end_byte":-1,"end_token":-1,"sta(...TRUNCATED) |
-6252343352866892945 | {"html":"<!DOCTYPE html>\n<HTML class=\"client-js ve-not-available\" lang=\"en\" dir=\"ltr\"><HEAD>\(...TRUNCATED) | {"text":"how many nominations does game of thrones have","tokens":["how","many","nominations","does"(...TRUNCATED) | {"end_byte":[72681,71528,71516,56981,57278,57727,57478,57472,58144,57895,57889,58548,58299,58952,587(...TRUNCATED) | {"id":["14840975513360924403"],"long_answer":[{"candidate_index":-1,"end_byte":-1,"end_token":-1,"st(...TRUNCATED) |
5847589205369456560 | {"html":"<!DOCTYPE html>\n<HTML class=\"client-js ve-not-available\" lang=\"en\" dir=\"ltr\"><HEAD>\(...TRUNCATED) | {"text":"what is the name of the most important jewish text","tokens":["what","is","the","name","of"(...TRUNCATED) | {"end_byte":[80027,60701,60859,63809,63133,63128,63123,63308,63786,64896,64873,64369,64786,66390,656(...TRUNCATED) | {"id":["17072764687132696888"],"long_answer":[{"candidate_index":127,"end_byte":133367,"end_token":4(...TRUNCATED) |
-779398336021950751 | {"html":"<!DOCTYPE html>\n<HTML class=\"client-js ve-not-available\" lang=\"en\" dir=\"ltr\"><HEAD>\(...TRUNCATED) | {"text":"until we meet again filipino soap episode 10","tokens":["until","we","meet","again","filipi(...TRUNCATED) | {"end_byte":[59146,54709,55237,55394,55504,55576,55784,55765,55682,55710,55759,55930,56110,56238,564(...TRUNCATED) | {"id":["8882372654595768334"],"long_answer":[{"candidate_index":-1,"end_byte":-1,"end_token":-1,"sta(...TRUNCATED) |
2966400022502400195 | {"html":"<!DOCTYPE html>\n<HTML class=\"client-js ve-not-available\" lang=\"en\" dir=\"ltr\"><HEAD>\(...TRUNCATED) | {"text":"what is the name of spain's most famous soccer team","tokens":["what","is","the","name","of(...TRUNCATED) | {"end_byte":[62134,57997,58682,58737,58922,59097,59184,59280,59334,59470,59919,59893,59660,60051,614(...TRUNCATED) | {"id":["6941694715118069526"],"long_answer":[{"candidate_index":25,"end_byte":64845,"end_token":537,(...TRUNCATED) |
3542596469291219966 | {"html":"<!DOCTYPE html>\n<HTML class=\"client-js ve-not-available\" lang=\"en\" dir=\"ltr\"><HEAD>\(...TRUNCATED) | {"text":"when was the first robot used in surgery","tokens":["when","was","the","first","robot","use(...TRUNCATED) | {"end_byte":[48854,48837,50378,51550,52173,52382,57345,58747,59279,60114,60854,61775,64182,66389,670(...TRUNCATED) | {"id":["11764659222333308910"],"long_answer":[{"candidate_index":43,"end_byte":93526,"end_token":396(...TRUNCATED) |
End of preview. Expand
in Dataset Viewer.
Dataset Card for Natural Questions
Dataset Summary
The NQ corpus contains questions from real users, and it requires QA systems to read and comprehend an entire Wikipedia article that may or may not contain the answer to the question. The inclusion of real user questions, and the requirement that solutions should read an entire page to find the answer, cause NQ to be a more realistic and challenging task than prior QA datasets.
Supported Tasks and Leaderboards
https://ai.google.com/research/NaturalQuestions
Languages
en
Dataset Structure
Data Instances
- Size of downloaded dataset files: 45.07 GB
- Size of the generated dataset: 99.80 GB
- Total amount of disk used: 144.87 GB
An example of 'train' looks as follows. This is a toy example.
{
"id": "797803103760793766",
"document": {
"title": "Google",
"url": "http://www.wikipedia.org/Google",
"html": "<html><body><h1>Google Inc.</h1><p>Google was founded in 1998 By:<ul><li>Larry</li><li>Sergey</li></ul></p></body></html>",
"tokens":[
{"token": "<h1>", "start_byte": 12, "end_byte": 16, "is_html": True},
{"token": "Google", "start_byte": 16, "end_byte": 22, "is_html": False},
{"token": "inc", "start_byte": 23, "end_byte": 26, "is_html": False},
{"token": ".", "start_byte": 26, "end_byte": 27, "is_html": False},
{"token": "</h1>", "start_byte": 27, "end_byte": 32, "is_html": True},
{"token": "<p>", "start_byte": 32, "end_byte": 35, "is_html": True},
{"token": "Google", "start_byte": 35, "end_byte": 41, "is_html": False},
{"token": "was", "start_byte": 42, "end_byte": 45, "is_html": False},
{"token": "founded", "start_byte": 46, "end_byte": 53, "is_html": False},
{"token": "in", "start_byte": 54, "end_byte": 56, "is_html": False},
{"token": "1998", "start_byte": 57, "end_byte": 61, "is_html": False},
{"token": "by", "start_byte": 62, "end_byte": 64, "is_html": False},
{"token": ":", "start_byte": 64, "end_byte": 65, "is_html": False},
{"token": "<ul>", "start_byte": 65, "end_byte": 69, "is_html": True},
{"token": "<li>", "start_byte": 69, "end_byte": 73, "is_html": True},
{"token": "Larry", "start_byte": 73, "end_byte": 78, "is_html": False},
{"token": "</li>", "start_byte": 78, "end_byte": 83, "is_html": True},
{"token": "<li>", "start_byte": 83, "end_byte": 87, "is_html": True},
{"token": "Sergey", "start_byte": 87, "end_byte": 92, "is_html": False},
{"token": "</li>", "start_byte": 92, "end_byte": 97, "is_html": True},
{"token": "</ul>", "start_byte": 97, "end_byte": 102, "is_html": True},
{"token": "</p>", "start_byte": 102, "end_byte": 106, "is_html": True}
],
},
"question" :{
"text": "who founded google",
"tokens": ["who", "founded", "google"]
},
"long_answer_candidates": [
{"start_byte": 32, "end_byte": 106, "start_token": 5, "end_token": 22, "top_level": True},
{"start_byte": 65, "end_byte": 102, "start_token": 13, "end_token": 21, "top_level": False},
{"start_byte": 69, "end_byte": 83, "start_token": 14, "end_token": 17, "top_level": False},
{"start_byte": 83, "end_byte": 92, "start_token": 17, "end_token": 20 , "top_level": False}
],
"annotations": [{
"id": "6782080525527814293",
"long_answer": {"start_byte": 32, "end_byte": 106, "start_token": 5, "end_token": 22, "candidate_index": 0},
"short_answers": [
{"start_byte": 73, "end_byte": 78, "start_token": 15, "end_token": 16, "text": "Larry"},
{"start_byte": 87, "end_byte": 92, "start_token": 18, "end_token": 19, "text": "Sergey"}
],
"yes_no_answer": -1
}]
}
Data Fields
The data fields are the same among all splits.
default
id
: astring
feature.document
a dictionary feature containing:title
: astring
feature.url
: astring
feature.html
: astring
feature.tokens
: a dictionary feature containing:token
: astring
feature.is_html
: abool
feature.start_byte
: aint64
feature.end_byte
: aint64
feature.
question
: a dictionary feature containing:text
: astring
feature.tokens
: alist
ofstring
features.
long_answer_candidates
: a dictionary feature containing:start_token
: aint64
feature.end_token
: aint64
feature.start_byte
: aint64
feature.end_byte
: aint64
feature.top_level
: abool
feature.
annotations
: a dictionary feature containing:id
: astring
feature.long_answers
: a dictionary feature containing:start_token
: aint64
feature.end_token
: aint64
feature.start_byte
: aint64
feature.end_byte
: aint64
feature.candidate_index
: aint64
feature.
short_answers
: a dictionary feature containing:start_token
: aint64
feature.end_token
: aint64
feature.start_byte
: aint64
feature.end_byte
: aint64
feature.text
: astring
feature.
yes_no_answer
: a classification label, with possible values includingNO
(0),YES
(1).
Data Splits
name | train | validation |
---|---|---|
default | 307373 | 7830 |
dev | N/A | 7830 |
Dataset Creation
Curation Rationale
Source Data
Initial Data Collection and Normalization
Who are the source language producers?
Annotations
Annotation process
Who are the annotators?
Personal and Sensitive Information
Considerations for Using the Data
Social Impact of Dataset
Discussion of Biases
Other Known Limitations
Additional Information
Dataset Curators
Licensing Information
Creative Commons Attribution-ShareAlike 3.0 Unported.
Citation Information
@article{47761,
title = {Natural Questions: a Benchmark for Question Answering Research},
author = {Tom Kwiatkowski and Jennimaria Palomaki and Olivia Redfield and Michael Collins and Ankur Parikh and Chris Alberti and Danielle Epstein and Illia Polosukhin and Matthew Kelcey and Jacob Devlin and Kenton Lee and Kristina N. Toutanova and Llion Jones and Ming-Wei Chang and Andrew Dai and Jakob Uszkoreit and Quoc Le and Slav Petrov},
year = {2019},
journal = {Transactions of the Association of Computational Linguistics}
}
Contributions
- Downloads last month
- 3,612
Homepage:
ai.google.com
Repository:
github.com
Paper:
research.google
Size of downloaded dataset files:
45.07 GB
Size of the auto-converted Parquet files (First 5GB per split):
4.49 GB
Number of rows (First 5GB per split):
26,299
Models trained or fine-tuned on google-research-datasets/natural_questions
Sentence Similarity
•
Updated
•
69.5M
•
•
2.85k