hakatashi's picture
Update README.md
f520e5b
metadata
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: test
        path: data/test-*
      - split: validation
        path: data/validation-*
dataset_info:
  features:
    - name: tag_probs
      sequence: float32
    - name: class
      dtype:
        class_label:
          names:
            '0': not_bookmarked
            '1': bookmarked_public
            '2': bookmarked_private
  splits:
    - name: train
      num_bytes: 4301053452
      num_examples: 179121
    - name: test
      num_bytes: 1433684484
      num_examples: 59707
    - name: validation
      num_bytes: 1433708496
      num_examples: 59708
  download_size: 7351682183
  dataset_size: 7168446432
task_categories:
  - image-classification
  - tabular-classification
tags:
  - art
size_categories:
  - 100K<n<1M

The dataset for training classification model of pixiv artworks by my preference.

Schema

  • tag_probs: List of probabilities for each tag. Preprocessed by RF5/danbooru-pretrained model. The index of each probability corresponds to the index of the tag in the class_names_6000.json file.
  • class:
    • not_bookmarked (0): Generated from images randomly-sampled from animelover/danbooru2022 dataset. The images are filtered in advance to the post with pixiv source.
    • bookmarked_public (1): Generated from publicly bookmarked images of hakatashi.
    • bookmarked_private (2): Generated from privately bookmarked images of hakatashi.

Stats

train:test:validation = 6:2:2

  • not_bookmarked (0): 202,290 images
  • bookmarked_public (1): 73,587 images
  • bookmarked_private (2): 22,659 images

Usage

>>> from datasets import load_dataset

>>> dataset = load_dataset("hakatashi/hakatashi-pixiv-bookmark-deepdanbooru")
>>> dataset
DatasetDict({
    test: Dataset({
        features: ['tag_probs', 'class'],
        num_rows: 59707
    })
    train: Dataset({
        features: ['tag_probs', 'class'],
        num_rows: 179121
    })
    validation: Dataset({
        features: ['tag_probs', 'class'],
        num_rows: 59708
    })
})
>>> dataset['train'].features
{'tag_probs': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None),
 'class': ClassLabel(names=['not_bookmarked', 'bookmarked_public', 'bookmarked_private'], id=None)}