Dataset Viewer
Auto-converted to Parquet
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 1 was different: 
image_path: list<item: string>
depth_path: list<item: string>
normal_path: list<item: string>
vs
image_path: list<item: string>
depth_path: list<item: string>
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 228, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
                  return next(iter(self.iter(batch_size=n)))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
                  for key, example in iterator:
                                      ^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 531, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/table.pxi", line 5039, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 1 was different: 
              image_path: list<item: string>
              depth_path: list<item: string>
              normal_path: list<item: string>
              vs
              image_path: list<item: string>
              depth_path: list<item: string>

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

DA2: Depth Anything in Any Direction

Page Paper GitHub HuggingFace Demo

DA2 predicts dense, scale-invariant distance from a single 360° panorama in an end-to-end manner, with remarkable geometric fidelity and strong zero-shot generalization.

teaser

🎮 Usage

  1. Download the datasets (please see here for the environment setup):
cd [YOUR_DATA_DIR]
huggingface-cli login
hf download --repo-type dataset haodongli/DA-2 --local-dir [YOUR_DATA_DIR]
  1. Merge parts into one *.tar.gz file:

    DATASET_NAME in [hypersim_pano, vkitti_pano, mvs_synth_pano, unreal4k_pano, 3d-ken-burns_pano, dynamic_replica_v2_pano]

cat [DATASET_NAME].tar.gz [DATASET_NAME]/part_*
  1. Check the MD5:
md5sum -c [DATASET_NAME]_checksum.md5
  1. If correct, then we can unzip it:
tar -zxvf [DATASET_NAME].tar.gz
  1. The data samples will be exported in [DATASET_NAME]/.

🎓 Citation

If you find these datasets useful, please consider citing 🌹:

@article{li2025depth,
  title={DA $\^{} 2$: Depth Anything in Any Direction},
  author={Li, Haodong and Zheng, Wangguangdong and He, Jing and Liu, Yuhao and Lin, Xin and Yang, Xin and Chen, Ying-Cong and Guo, Chunchao},
  journal={arXiv preprint arXiv:2509.26618},
  year={2025}
}

@inproceedings{roberts2021hypersim,
  title={Hypersim: A photorealistic synthetic dataset for holistic indoor scene understanding},
  author={Roberts, Mike and Ramapuram, Jason and Ranjan, Anurag and Kumar, Atulit and Bautista, Miguel Angel and Paczan, Nathan and Webb, Russ and Susskind, Joshua M},
  booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
  pages={10912--10922},
  year={2021}
}

@article{cabon2020virtual,
  title={Virtual kitti 2},
  author={Cabon, Yohann and Murray, Naila and Humenberger, Martin},
  journal={arXiv preprint arXiv:2001.10773},
  year={2020}
}

@inproceedings{huang2018deepmvs,
  title={Deepmvs: Learning multi-view stereopsis},
  author={Huang, Po-Han and Matzen, Kevin and Kopf, Johannes and Ahuja, Narendra and Huang, Jia-Bin},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={2821--2830},
  year={2018}
}

@inproceedings{tosi2021smd,
  title={Smd-nets: Stereo mixture density networks},
  author={Tosi, Fabio and Liao, Yiyi and Schmitt, Carolin and Geiger, Andreas},
  booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
  pages={8942--8952},
  year={2021}
}

@article{niklaus20193d,
  title={3d ken burns effect from a single image},
  author={Niklaus, Simon and Mai, Long and Yang, Jimei and Liu, Feng},
  journal={ACM Transactions on Graphics (ToG)},
  volume={38},
  number={6},
  pages={1--15},
  year={2019},
  publisher={ACM New York, NY, USA}
}

@inproceedings{karaev2023dynamicstereo,
  title={Dynamicstereo: Consistent dynamic depth from stereo videos},
  author={Karaev, Nikita and Rocco, Ignacio and Graham, Benjamin and Neverova, Natalia and Vedaldi, Andrea and Rupprecht, Christian},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={13229--13239},
  year={2023}
}
Downloads last month
330