metadata
dataset_info:
features:
- name: example_id
dtype: int64
- name: query
dtype: string
- name: query_id
dtype: int64
- name: product_id
dtype: string
- name: product_locale
dtype: string
- name: esci_label
dtype: string
- name: small_version
dtype: int64
- name: large_version
dtype: int64
- name: split
dtype: string
- name: product_title
dtype: string
- name: product_description
dtype: string
- name: product_bullet_point
dtype: string
- name: product_brand
dtype: string
- name: product_color
dtype: string
- name: source
dtype: string
- name: full_description
dtype: string
- name: Boost Product Index
dtype: int64
- name: description
dtype: string
splits:
- name: train
num_bytes: 130485155
num_examples: 13985
download_size: 58648377
dataset_size: 130485155
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
This dataset is a sample for the Amazon Shopping Queries Dataset
.
This dataset contains queries for which at least 10 products are available. The products if possible are exact
matches to the query intent, or at least substitutes
It was constructed as follows:
import pandas as pd
df_examples = pd.read_parquet("shopping_queries_dataset_examples.parquet")
df_products = pd.read_parquet("shopping_queries_dataset_products.parquet")
df_sources = pd.read_csv("shopping_queries_dataset_sources.csv")
df_examples_products = pd.merge(
df_examples,
df_products,
how="left",
left_on=["product_locale", "product_id"],
right_on=["product_locale", "product_id"],
)
df_examples_products_source = pd.merge(
df_examples_products,
df_sources,
how="left",
left_on=["query_id"],
right_on=["query_id"],
)
list_hits = []
for query_id in tqdm(list_query_id):
df = retrieve_products(query_id, df_examples_products_source)
list_len_desc = []
for row_idx in range(len(df)):
row = df.iloc[row_idx]
full_description = format_product_details(row)
list_len_desc.append(len(full_description))
if len(df) >= 10:
list_hits.append((df, np.mean(list_len_desc)))
# sort by length of full_description
list_hits = sorted(list_hits, key=lambda x: x[1], reverse=True)
df = pd.concat([x[0] for x in list_hits[:1000]])
The auxiliary functions are:
def format_product_details(product):
template = "List of features:\n{features}\n\nDescription:\n{description}"
features = product["product_bullet_point"]
description = product["product_description"]
return template.format(features=features, description=description)
def retrieve_products(query_id, df_examples_products_source):
df = df_examples_products_source[
df_examples_products_source["query_id"] == query_id
]
# product_locale = en
df = df[df["product_locale"] == "us"]
# remove esci_label I
df = df[df["esci_label"] != "I"]
# remove product_description None
df = df[df["product_description"].notnull()]
# remove product_bullet_point None
df = df[df["product_bullet_point"].notnull()]
# if esci_label E > 10, use only those
if df[df["esci_label"] == "E"].shape[0] > 10:
df = df[df["esci_label"] == "E"]
# if esci_label in [E, S ]> 10, use only those
elif df[df["esci_label"].isin(["E", "S"])].shape[0] > 10:
df = df[df["esci_label"].isin(["E", "S
else:
return []
return df