Datasets:
metadata
dataset_info:
features:
- name: id
dtype: string
- name: meeting_id
dtype: string
- name: speaker_id
dtype: string
- name: start_time
dtype: float64
- name: end_time
dtype: float64
- name: duration
dtype: float64
- name: has_audio
dtype: bool
- name: has_video
dtype: bool
- name: has_lip_video
dtype: bool
- name: disfluency_type
dtype: string
- name: transcript
dtype: string
- name: audio
dtype: string
- name: video
dtype: string
- name: video_format
struct:
- name: fps
dtype: float64
- name: audio_format
struct:
- name: sampling_rate
dtype: int64
- name: lip_video
dtype: string
- name: lip_video_format
struct:
- name: fps
dtype: float64
splits:
- name: train
num_bytes: 8928921
num_examples: 35731
download_size: 3572005
dataset_size: 8928921
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
task_categories:
- automatic-speech-recognition
language:
- en
tags:
- audio-visual
- paralinguistic
- disfluencies
size_categories:
- 10K<n<100K
pretty_name: AMI Disfluency Laughter Dataset
AMI DisfluencyLaughter Dataset
This dataset contains segmented audio and video clips which extract from AMI Meeting Corpus. The segmented audio/videos created in this dataset are mainly the disfluencies and laughter events, extracted from original recordings.
General information about this dataset:
- Number of recordings: 35,731
- Has audio: True
- Has video: True
- Has lip video: True
Dataset({
features: ['id', 'meeting_id', 'speaker_id', 'start_time', 'end_time', 'duration', 'has_audio', 'has_video', 'has_lip_video', 'disfluency_type', 'transcript', 'audio', 'video', 'lip_video'],
num_rows: 35731
})
Dataset Structure
The dataset contains the following metadata:
{
"id" : "unique segment id of the recordings",
"meeting_id" : "meeting id the clips corresponding",
"speaker_id" : "speaker id the clips corresponding",
"start_time": "start timestamp of the disfluency/laughter event",
"end_time": "end timestamp of the disfluency/laughter event",
"duration": "duration of the event",
"has_audio": "",
"has_video": "",
"has_lip_video":"",
"disfluency_type": "Type of disfluency based on AMI annotation, type=laugh if it is laughter",
"transcript":"the transcribed word corresponding to this disfluency, <laugh> if it is laughter",
"audio": "path to the audio file",
"video": "path to the video file",
"lip_video": "path to the lip video"
}