id
int64 3
39.4k
| title
stringlengths 1
80
| text
stringlengths 2
313k
| paragraphs
listlengths 1
6.47k
| abstract
stringlengths 1
52k
â | wikitext
stringlengths 10
330k
â | date_created
stringlengths 20
20
â | date_modified
stringlengths 20
20
| templates
sequencelengths 0
20
| url
stringlengths 32
653
|
---|---|---|---|---|---|---|---|---|---|
1,892 | é«çåŠæ ¡æ°åŠC/ãã¯ãã« | çç§ã«ãããŠãåã¯å€§ãããšåããæã€éã§ãããšç¿ã£ãã ããã倧ãããšåããæã€éã¯ãåã®ä»ã«ããé床ã颚ã®å¹ãæ¹ãªã©ãããã
äŸãã°ãããå°ç¹ããæå»ã«ããã颚ã®å¹ãæ¹ã¯ã颚éãšé¢šåããæãç«ã€ããã®ããã«ã倧ãããšåããæã€éãå°å
¥ãããšãããããå¹çããæ±ããã
ãã®ããŒãžã§ã¯ã倧ãããšåããæã€éã§ãããã¯ãã«ãæ±ãã
ãŸããå³åœ¢ã®åé¡ã«å¯ŸããŠä»£æ°çãªã¢ãããŒããåããã®ããã¯ãã«ã®å©ç¹ã®äžã€ã§ããã
å¹³é¢äžã®ç¹ S {\displaystyle \mathrm {S} } ããç¹ T {\displaystyle \mathrm {T} } ãžåããç¢å°ãèããããã®ãããªç¢å°ã®ããã«åããæã€ç·åãæåç·åãšããã
ãã®ãšããç¹ S {\displaystyle \mathrm {S} } ãå§ç¹ãç¹ T {\displaystyle \mathrm {T} } ãçµç¹ãšããã
æå¹ç·åã§ã倧ãããšæ¹åãåããã®ã¯ãã¯ãã«ãšããŠåããã®ãšããã
æåç·åã¯äœçœ®ãé·ã(倧ãã)ãåããšããæ
å ±ãæã€ããã¯ãã«ã¯ãæåç·åã®æã€æ
å ±ã®ãã¡ãäœçœ®ã®æ
å ±ãå¿ããŠã倧ãããåãã ãã«çç®ãããã®ãšèããããšãã§ããã
æåç·å S T {\displaystyle \mathrm {ST} } ã§è¡šããããã¯ãã«ã S T â {\displaystyle \mathrm {\vec {ST}} } ãšããããã¯ãã«ã¯äžæåã§ a â {\displaystyle {\vec {a}}} ãªã©ãšè¡šãããããšãããããã¯ãã« a â {\displaystyle {\vec {a}}} ã®å€§ããã | a â | {\displaystyle |{\vec {a}}|} ã§è¡šãã
æåç·å S T {\displaystyle \mathrm {ST} } ãæåç·å S â² T â² {\displaystyle \mathrm {S'T'} } ã«å¯Ÿãã倧ãããçãããåããçãããªããäœçœ®ãéã£ãŠããŠãããã¯ãã«ãšããŠçããã S T â = S â² T â² â {\displaystyle \mathrm {\vec {ST}} =\mathrm {\vec {S'T'}} } ã§ããã
倧ããã 1 ã§ãããã¯ãã«ãåäœãã¯ãã«ãšããã
ãã¯ãã« a â {\displaystyle {\vec {a}}} ã«å¯Ÿãããã¯ãã« a â {\displaystyle {\vec {a}}} ãšæ¹åãéã§ã倧ãããçãããã¯ãã«ãéãã¯ãã«ãšããã â a â {\displaystyle -{\vec {a}}} ãšããã
å§ç¹ãšçµç¹ãçãããã¯ãã«ãé¶ãã¯ãã«ãšããã 0 â {\displaystyle {\vec {0}}} ã§è¡šããä»»æã®ç¹ A {\displaystyle \mathrm {A} } ã«å¯Ÿãã A A â = 0 â {\displaystyle \mathrm {\vec {AA}} ={\vec {0}}} ã§ããããŒããã¯ãã«ã®å€§ãã㯠0 ã§ãåãã¯èããªããã®ãšããã
ãã¯ãã« a â , b â {\displaystyle {\vec {a}},{\vec {b}}} ã«å¯Ÿãã a â = A B â , b â = B C â {\displaystyle {\vec {a}}=\mathrm {\vec {AB}} ,{\vec {b}}=\mathrm {\vec {BC}} } ãšãªãç¹ããšãããã®ãšããã¯ãã«ã®å æ³ã a â + b â = A C â {\displaystyle {\vec {a}}+{\vec {b}}=\mathrm {\vec {AC}} } ã§å®ããã
ãã¯ãã«ã®å æ³ã«ã€ããŠä»¥äžãæãç«ã€ã
ãŸãã a â + 0 â = a â {\displaystyle {\vec {a}}+{\vec {0}}={\vec {a}}} ãšããã
ãã¯ãã« a â , b â {\displaystyle {\vec {a}},{\vec {b}}} ã«å¯Ÿãã a â â b â = a â + ( â b â ) {\displaystyle {\vec {a}}-{\vec {b}}={\vec {a}}+(-{\vec {b}})} ãšããã
ãŒããã¯ãã«ã¯ãªããã¯ãã« a â {\displaystyle {\vec {a}}} ãšå®æ° k {\displaystyle k} ã«å¯Ÿãããã¯ãã«ã®å®æ°å k a â {\displaystyle k{\vec {a}}} ã以äžã®ããã«å®ããã
ãŸããŒããã¯ãã« 0 â {\displaystyle {\vec {0}}} ã«å¯Ÿãã宿°åã k 0 â = 0 â {\displaystyle k{\vec {0}}={\vec {0}}} ã§å®ããã
以äžã®æ§è³ªããªããã€ã
ãŒããã¯ãã«ã§ã¯ãªããã¯ãã« a â , b â ( â 0 â ) {\displaystyle {\vec {a}},{\vec {b}}\,(\neq {\vec {0}})} ã«å¯Ÿãã a â = A A â² â , b â = B B â² â {\displaystyle {\vec {a}}={\vec {\mathrm {AA'} }},{\vec {b}}={\vec {\mathrm {BB'} }}} ãšãªãç¹ããšãã
ãã®ãšããçŽç· A A â² {\displaystyle \mathrm {AA'} } ãšçŽç· B B â² {\displaystyle \mathrm {BB'} } ãå¹³è¡ã§ãããšãããã¯ãã« a â , b â {\displaystyle {\vec {a}},{\vec {b}}} ã¯å¹³è¡ã§ãããšããã a â ⥠b â {\displaystyle {\vec {a}}\parallel {\vec {b}}} ã§è¡šãã
ãŸããçŽç· A A â² {\displaystyle \mathrm {AA'} } ãšçŽç· B B â² {\displaystyle \mathrm {BB'} } ãåçŽã§ãããšãããã¯ãã« a â , b â {\displaystyle {\vec {a}},{\vec {b}}} ã¯åçŽã§ãããšããã a â ⥠b â {\displaystyle {\vec {a}}\perp {\vec {b}}} ã§è¡šãã
ãã¯ãã« a â , b â {\displaystyle {\vec {a}},{\vec {b}}} ãå¹³è¡ã®ãšããæããã«ãçæ¹ã®ãã¯ãã«ã宿°åããã°å€§ãããšåããäžèŽããã®ã§ã
a â ⥠b â ⺠b â = k a â {\displaystyle {\vec {a}}\parallel {\vec {b}}\iff {\vec {b}}=k{\vec {a}}} ãšãªã宿° k {\displaystyle k} ãååšãã
ãæãç«ã€ã
ãã¯ãã« a â , b â {\displaystyle {\vec {a}},{\vec {b}}} ããšãã«ãŒããã¯ãã«ã§ãªã( a â , b â â 0 â {\displaystyle {\vec {a}},{\vec {b}}\neq {\vec {0}}} ) ãå¹³è¡ã§ãªããšããä»»æã®ãã¯ãã« p â {\displaystyle {\vec {p}}} ã«å¯ŸããŠã p â = s a â + t b â {\displaystyle {\vec {p}}=s{\vec {a}}+t{\vec {b}}} ãšãªã宿° s , t {\displaystyle s,t} ãåãããšãã§ããã
蚌æ
a â = O A â , b â = O B â , p â = O P â {\displaystyle {\vec {a}}={\vec {\mathrm {OA} }},{\vec {b}}={\vec {\mathrm {OB} }},{\vec {p}}={\vec {\mathrm {OP} }}} ãšãªãç¹ããšããç¹ P {\displaystyle \mathrm {P} } ãéããçŽç· O B , O A {\displaystyle \mathrm {OB} ,\mathrm {OA} } ã«å¹³è¡ãªçŽç·ãããããã çŽç· O A , O B {\displaystyle \mathrm {OA} ,\mathrm {OB} } ãšäº€ããç¹ããããã S , T {\displaystyle \mathrm {S,T} } ãšçœ®ãã
ãã®ãšãã O S â = s a â , O T â = t b â {\displaystyle {\vec {\mathrm {OS} }}=s{\vec {a}},{\vec {\mathrm {OT} }}=t{\vec {b}}} ãšãªã宿° s , t {\displaystyle s,t} ãåãããšãã§ãããããã§ãåè§åœ¢ O S P T {\displaystyle \mathrm {OSPT} } ã¯å¹³è¡å蟺圢ãªã®ã§ã p â = s a â + t b â {\displaystyle {\vec {p}}=s{\vec {a}}+t{\vec {b}}} ãæãç«ã€ã
ãã¯ãã« a â {\displaystyle {\vec {a}}} ã«å¯ŸããŠã座æšå¹³é¢äžã®åç¹ã O {\displaystyle \mathrm {O} } ãšãããšãã a â = O A â {\displaystyle {\vec {a}}=\mathrm {\vec {OA}} } ãšãªãç¹ A ( a x , a y ) {\displaystyle \mathrm {A} (a_{x},a_{y})} ãåãããšãã§ãããããã§ã ( a x , a y ) {\displaystyle (a_{x},a_{y})} ããã¯ãã« a â {\displaystyle {\vec {a}}} ã®æå衚瀺ãšãã a â = ( a x , a y ) {\displaystyle {\vec {a}}=(a_{x},a_{y})} ããŸãã¯ã瞊ã«äžŠã¹ãŠã a â = ( a x a y ) {\displaystyle {\vec {a}}=\left({\begin{aligned}a_{x}\\a_{y}\end{aligned}}\right)} ãšæžãã
ãã¯ãã« a â , b â {\displaystyle {\vec {a}},{\vec {b}}} ã«å¯ŸããŠã a â = O A â , b â = O B â {\displaystyle {\vec {a}}=\mathrm {\vec {OA}} ,\,{\vec {b}}=\mathrm {\vec {OB}} } ãšãªãç¹ A , B {\displaystyle \mathrm {A} ,\mathrm {B} } ããšãã a â = ( a x , a y ) , b â = ( b x , b y ) {\displaystyle {\vec {a}}=(a_{x},a_{y}),\,{\vec {b}}=(b_{x},b_{y})} ãšãããšã
a â = b â ⺠O A â = O B â ⺠{\displaystyle {\vec {a}}={\vec {b}}\iff {\vec {\mathrm {OA} }}={\vec {\mathrm {OB} }}\iff } ç¹ A , B {\displaystyle \mathrm {A} ,\,\mathrm {B} } ãäžèŽãã ⺠a x = b x {\displaystyle \iff a_{x}=b_{x}} ã〠a y = b y {\displaystyle a_{y}=b_{y}}
ãŸãã a â = ( a x , a y ) {\displaystyle {\vec {a}}=(a_{x},a_{y})} ã«å¯ŸããŠã a â = O A â {\displaystyle {\vec {a}}=\mathrm {\vec {OA}} } ãšãããšãã | a â | {\displaystyle |{\vec {a}}|} ã¯ç·å O A {\displaystyle \mathrm {OA} } ã®é·ããªã®ã§ã
| a â | = a x 2 + a y 2 {\displaystyle |{\vec {a}}|={\sqrt {a_{x}^{2}+a_{y}^{2}}}}
ã§ããã
ãã¯ãã« a â = ( a x , a y ) , b â = ( b x , b y ) {\displaystyle {\vec {a}}=(a_{x},a_{y}),{\vec {b}}=(b_{x},b_{y})} ã«å¯ŸããŠã
a â + b â = ( a x + b x , a y + b y ) {\displaystyle {\vec {a}}+{\vec {b}}=(a_{x}+b_{x},a_{y}+b_{y})}
a â â b â = ( a x â b x , a y â b y ) {\displaystyle {\vec {a}}-{\vec {b}}=(a_{x}-b_{x},a_{y}-b_{y})}
k a â = ( k a x , k a y ) {\displaystyle k{\vec {a}}=(ka_{x},ka_{y})}
ããªããã€ã
ããç¹ãåºæºã«ããŠããã®ç¹ãå§ç¹ãšãããã¯ãã«ã«ã€ããŠèããããšã«ããããã¯ãã«ãçšããŠç¹ã®äœçœ®é¢ä¿ã«ã€ããŠèå¯ããããšãã§ããã
ç¹ã®äœçœ®é¢ä¿åºæºãšãªãç¹ O {\displaystyle {\rm {O}}} ããããããå®ããããã®ãšããç¹ A {\displaystyle {\rm {A}}} ã«å¯ŸããŠããã¯ãã« O A â {\displaystyle {\vec {\rm {OA}}}} ãç¹ A {\displaystyle {\rm {A}}} ã®äœçœ®ãã¯ãã«ãšãããäœçœ®ãã¯ãã« a â {\displaystyle {\vec {a}}} ã§äžããããç¹ A {\displaystyle {\rm {A}}} ã A ( a â ) {\displaystyle \mathrm {A} ({\vec {a}})} ã§è¡šãã
ãŸããç¹ A ( a â ) , B ( b â ) {\displaystyle \mathrm {A} ({\vec {a}}),\,\mathrm {B} ({\vec {b}})} ã®ãšãã A B â = O B â â O A â = b â â a â {\displaystyle {\vec {\rm {AB}}}={\vec {\rm {OB}}}-{\vec {\rm {OA}}}={\vec {b}}-{\vec {a}}} ãæãç«ã€ã
以äžãäœçœ®ãã¯ãã«ã®åºæºç¹ãç¹ O {\displaystyle {\rm {O}}} ãšããã
ç¹ A ( a â ) , B ( b â ) {\displaystyle {\rm {A({\vec {a}}),\,{\rm {B({\vec {b}})}}}}} ãéãç·å A B {\displaystyle \mathrm {AB} } ã m : n {\displaystyle m:n} ã«å
åããç¹ P ( p â ) {\displaystyle \mathrm {P} ({\vec {p}})} ãæ±ããã
A P â = m m + n A B â {\displaystyle {\vec {\mathrm {AP} }}={\frac {m}{m+n}}{\vec {\mathrm {AB} }}} ããã p â â a â = m m + n ( b â â a â ) {\displaystyle {\vec {p}}-{\vec {a}}={\frac {m}{m+n}}({\vec {b}}-{\vec {a}})} ãããã£ãŠã p â = n a â + m b â m + n {\displaystyle {\vec {p}}={\frac {n{\vec {a}}+m{\vec {b}}}{m+n}}} ã§ããã
次ã«ãç¹ A ( a â ) , B ( b â ) {\displaystyle {\rm {A({\vec {a}}),\,{\rm {B({\vec {b}})}}}}} ãéãç·å A B {\displaystyle \mathrm {AB} } ã m : n {\displaystyle m:n} ã«å€åããç¹ Q ( q â ) {\displaystyle \mathrm {Q} ({\vec {q}})} ãæ±ããã
m > n {\displaystyle m>n} ã®å Žåã¯ã A Q â = m m â n A B â {\displaystyle {\vec {\mathrm {AQ} }}={\frac {m}{m-n}}{\vec {\mathrm {AB} }}} ããã q â â a â = m m â n ( b â â a â ) {\displaystyle {\vec {q}}-{\vec {a}}={\frac {m}{m-n}}({\vec {b}}-{\vec {a}})} ãããã£ãŠã q â = â n a â + m b â m â n {\displaystyle {\vec {q}}={\frac {-n{\vec {a}}+m{\vec {b}}}{m-n}}} ã§ããã
m < n {\displaystyle m<n} ã®å Žåã¯ã B Q â = n n â m B A â {\displaystyle {\vec {\mathrm {BQ} }}={\frac {n}{n-m}}{\vec {\mathrm {BA} }}} ã«æ³šæããŠåæ§ã«èšç®ããã°ãåãšåãã q â = â n a â + m b â m â n {\displaystyle {\vec {q}}={\frac {-n{\vec {a}}+m{\vec {b}}}{m-n}}} ãåŸãããã
äžè§åœ¢ A B C {\displaystyle \mathrm {ABC} } ã«å¯Ÿãã A ( a â ) , B ( b â ) , C ( c â ) {\displaystyle \mathrm {A} ({\vec {a}}),\,\mathrm {B} ({\vec {b}}),\,\mathrm {C} ({\vec {c}})} ãšçœ®ãããã®äžè§åœ¢ A B C {\displaystyle \mathrm {ABC} } ã®éå¿ G ( g â ) {\displaystyle \mathrm {G} ({\vec {g}})} ãæ±ããã
ç·å B C {\displaystyle \mathrm {BC} } ã®äžç¹ã M ( m â ) {\displaystyle \mathrm {M} ({\vec {m}})} ãšãããšãç¹ M {\displaystyle \mathrm {M} } ã¯ç·å B C {\displaystyle \mathrm {BC} } ã 1 : 1 {\displaystyle 1:1} ã«å
åããç¹ãªã®ã§ã m â = b â + c â 2 {\displaystyle {\vec {m}}={\frac {{\vec {b}}+{\vec {c}}}{2}}} ã§ããã
ç¹ G {\displaystyle \mathrm {G} } ã¯ç·å A M {\displaystyle \mathrm {AM} } ã 2 : 1 {\displaystyle 2:1} ã«å
åããç¹ãªã®ã§ã g â = a â + b â + c â 3 {\displaystyle {\vec {g}}={\frac {{\vec {a}}+{\vec {b}}+{\vec {c}}}{3}}} ã§ããã
äžè§åœ¢ A B C {\displaystyle \mathrm {ABC} } ã«å¯Ÿãã A ( a â ) , B ( b â ) , C ( c â ) {\displaystyle \mathrm {A} ({\vec {a}}),\,\mathrm {B} ({\vec {b}}),\,\mathrm {C} ({\vec {c}})} ãšçœ®ããããã«ã A B = c , B C = a , C A = b {\displaystyle \mathrm {AB} =c,\,\mathrm {BC} =a,\,\mathrm {CA} =b} ãšçœ®ããäžè§åœ¢ A B C {\displaystyle \mathrm {ABC} } ã®å
å¿ã®äœçœ®ãã¯ãã« I ( i â ) {\displaystyle \mathrm {I} ({\vec {i}})} ãæ±ããã
A {\displaystyle {\rm {A}}} ã®äºçåç·ãšç·å B C {\displaystyle {\rm {BC}}} ã®äº€ç¹ã D ( d â ) {\displaystyle \mathrm {D} ({\vec {d}})} ãšããããã®ãšããäžè§åœ¢ã®äºçåç·ã®æ§è³ªãã B D : D C = c : b {\displaystyle \mathrm {BD} :\mathrm {DC} =c:b} ãããã£ãŠã d â = b b â + c c â b + c {\displaystyle {\vec {d}}={\frac {b{\vec {b}}+c{\vec {c}}}{b+c}}} ã§ããã
ããã§ã A I : I D = B A : B D = c : a c b + c = ( b + c ) : a {\displaystyle \mathrm {AI} :\mathrm {ID} =\mathrm {BA} :\mathrm {BD} =c:{\frac {ac}{b+c}}=(b+c):a} ã§ããã
ãããã£ãŠã i â = a a â + ( b + c ) d â a + b + c = a a â + b b â + c c â a + b + c {\displaystyle {\vec {i}}={\frac {a{\vec {a}}+(b+c){\vec {d}}}{a+b+c}}={\frac {a{\vec {a}}+b{\vec {b}}+c{\vec {c}}}{a+b+c}}} ã§ããã
äžåŠãŸãã¯é«æ ¡ã®çç§ã®ååŠã§ã¯ãååŠçãªä»äºã®å®çŸ©ããªãã£ãããšãããã ããããã®ä»äºã§ã¯ãç§»åæ¹å以å€ã®åã¯ãä»äºã«å¯äžããªãã£ãããã®ãããªåã®ä»äºã®èšç®ãããã¯ãã«ã®èгç¹ããã¿ãã°ãå
ç©ãšããæ°ããæŠå¿µãå®çŸ©ã§ããã
ãã¯ãã« a â , b â {\displaystyle {\vec {a}},{\vec {b}}} ã«å¯Ÿãã a â = O A â , b â = O B â {\displaystyle {\vec {a}}={\vec {\mathrm {OA} }},{\vec {b}}={\vec {\mathrm {OB} }}} ãšãªãç¹ O , A , B {\displaystyle \mathrm {O,A,B} } ããšãããã®ãšãã â A O B {\displaystyle \angle \mathrm {AOB} } ããã¯ãã« a â , b â {\displaystyle {\vec {a}},{\vec {b}}} ã®ãªãè§ãšããã
(å³)
ãã¯ãã« a â , b â {\displaystyle {\vec {a}},{\vec {b}}} ã®ãªãè§ã Ξ {\displaystyle \theta } ãšãããšããå
ç© a â â
b â {\displaystyle {\vec {a}}\cdot {\vec {b}}} ã
ã§å®ããã
å®çŸ©ããããã¯ãã«ã®å
ç©ã¯äžæ¹ã®ãã¯ãã«ãããäžæ¹ã®ãã¯ãã«ã«å°åœ±ãããšãã®ã倧ããã®ç©ã§ãããšèšããã
(å³)
ãã¯ãã« a â , b â {\displaystyle {\vec {a}},{\vec {b}}} ã a â = ( a 1 , a 2 ) , b â = ( b 1 , b 2 ) {\displaystyle {\vec {a}}=(a_{1},a_{2}),{\vec {b}}=(b_{1},b_{2})} ãšæå衚瀺ãããšãã®ãå
ç© a â â
b â {\displaystyle {\vec {a}}\cdot {\vec {b}}} ã«ã€ããŠèããŠã¿ããã
ãã¯ãã« a â , b â {\displaystyle {\vec {a}},{\vec {b}}} ã«å¯Ÿãã a â = O A â , b â = O B â {\displaystyle {\vec {a}}={\vec {\mathrm {OA} }},{\vec {b}}={\vec {\mathrm {OB} }}} ãšãªãç¹ O , A , B {\displaystyle \mathrm {O,A,B} } ããšãããã¯ãã« a â , b â {\displaystyle {\vec {a}},{\vec {b}}} ã®ãªãè§ã Ξ {\displaystyle \theta } ãšããããã®ãšã â³ O A B {\displaystyle \triangle \mathrm {OAB} } ã«å¯ŸãäœåŒŠå®çãçšããŠ
A B 2 = O A 2 + O B 2 â 2 â
O A â
O B cos Ξ {\displaystyle \mathrm {\mathrm {AB} } ^{2}=\mathrm {\mathrm {OA} } ^{2}+\mathrm {\mathrm {OB} } ^{2}-2\cdot \mathrm {\mathrm {OA} } \cdot \mathrm {\mathrm {OB} } \cos \theta }
(å³)
ããã§ã A B = | b â â a â | , O A = | a â | , O B = | b â | {\displaystyle \mathrm {\mathrm {AB} } =|{\vec {b}}-{\vec {a}}|,\mathrm {\mathrm {OA} } =|{\vec {a}}|,\mathrm {\mathrm {OB} } =|{\vec {b}}|} ãšã O A â
O B cos Ξ = | a â | | b â | cos Ξ = a â â
b â {\displaystyle \mathrm {\mathrm {OA} } \cdot \mathrm {\mathrm {OB} } \cos \theta =|{\vec {a}}||{\vec {b}}|\cos \theta ={\vec {a}}\cdot {\vec {b}}} ãã
| b â â a â | 2 = | a â | 2 + | b â | 2 â 2 a â â
b â {\displaystyle |{\vec {b}}-{\vec {a}}|^{2}=|{\vec {a}}|^{2}+|{\vec {b}}|^{2}-2{\vec {a}}\cdot {\vec {b}}} ã§ããã®ã§ã a â â
b â = 1 2 ( | a â | 2 + | b â | 2 â | b â â a â | 2 ) {\displaystyle {\vec {a}}\cdot {\vec {b}}={\frac {1}{2}}(|{\vec {a}}|^{2}+|{\vec {b}}|^{2}-|{\vec {b}}-{\vec {a}}|^{2})} ã§ããã
ããã§ã | a â | 2 = a 1 2 + a 2 2 , | b â | 2 = b 1 2 + b 2 2 , | b â â a â | 2 = | ( b 1 â a 1 , b 2 â a 2 ) | 2 = ( b 1 â a 1 ) 2 + ( b 2 â a 2 ) 2 {\displaystyle |{\vec {a}}|^{2}=a_{1}^{2}+a_{2}^{2},|{\vec {b}}|^{2}=b_{1}^{2}+b_{2}^{2},|{\vec {b}}-{\vec {a}}|^{2}=|(b_{1}-a_{1},b_{2}-a_{2})|^{2}=(b_{1}-a_{1})^{2}+(b_{2}-a_{2})^{2}} ãªã®ã§ãããã代å
¥ããã°
a â â
b â = 1 2 ( | a â | 2 + | b â | 2 â | b â â a â | 2 ) {\displaystyle {\vec {a}}\cdot {\vec {b}}={\frac {1}{2}}(|{\vec {a}}|^{2}+|{\vec {b}}|^{2}-|{\vec {b}}-{\vec {a}}|^{2})} = 1 2 [ ( a 1 2 + a 2 2 ) + ( b 1 2 + b 2 2 ) â ( b 1 â a 1 ) 2 + ( b 2 â a 2 ) 2 ] {\displaystyle ={\frac {1}{2}}\left[(a_{1}^{2}+a_{2}^{2})+(b_{1}^{2}+b_{2}^{2})-(b_{1}-a_{1})^{2}+(b_{2}-a_{2})^{2}\right]} = a 1 b 1 + a 2 b 2 {\displaystyle =a_{1}b_{1}+a_{2}b_{2}} ã§ããã
ãããã£ãŠ a â â
b â = a 1 b 1 + a 2 b 2 {\displaystyle {\vec {a}}\cdot {\vec {b}}=a_{1}b_{1}+a_{2}b_{2}} ãåŸãããã
å
ç©ã®æ§è³ª â ãã¯ãã« a â , b â , c â {\displaystyle {\vec {a}},{\vec {b}},{\vec {c}}} ãšå®æ° k {\displaystyle k} ã«å¯Ÿã以äžãæãç«ã€ã
ãããã¯ãã¯ãã«ãæå衚瀺ããŠèšç®ããã°èšŒæã§ããã
蚌æ â a â = ( a 1 , a 2 ) , b â = ( b 1 , b 2 ) , c â = ( c 1 , c 2 ) {\displaystyle {\vec {a}}=(a_{1},a_{2}),{\vec {b}}=(b_{1},b_{2}),{\vec {c}}=(c_{1},c_{2})} ãšããã
æŒç¿åé¡
A ( a â ) , B ( b â ) {\displaystyle \mathrm {A} ({\vec {a}}),\,\mathrm {B} ({\vec {b}})} ãšããã ãã®ãšããç·åOAã1:3ã«åããç¹ãšãç·åOBã5:2ã«åããç¹ããããããA',B'ãšããã
(1) ãã¯ãã« O A â² â , O B â² â {\displaystyle {\vec {OA'}},\,{\vec {OB'}}} ããã¯ãã« a â , b â {\displaystyle {\vec {a}},\,{\vec {b}}} ãçšããŠããããã
(2) ç·åAB'ãšãBA'ã®äº€ç¹ M ã®äœçœ®ãã¯ãã«ããã¯ãã« a â , b â {\displaystyle {\vec {a}},\,{\vec {b}}} ãçšããŠããããã
ãã¯ãã«
ãšã ãã¯ãã«
ã¯äºãã«1次ç¬ç«ãª2æ¬ã®ãã¯ãã«ãªã®ã§ã ããããçšããŠããããå³åœ¢äžã®ç¹ã衚ãããã¯ãã§ããã
å³åœ¢äžã®ããããã®ç¹ã¯ãç¹Oããã®äœçœ®ãã¯ãã«ã§è¡šãããã äŸãã°ããã¯ãã«
ã¯ãç¹OããèŠãŠ
ãšå¹³è¡ãªæ¹åã®ãã¯ãã«ã§ããããã®å€§ãããã
ã§ããã®ã§ã
ã§è¡šãããã åæ§ã«ããã¯ãã«
ã¯ãç¹OããèŠãŠ
ãšå¹³è¡ãªæ¹åã®ãã¯ãã«ã§ããããã®å€§ãããã
ã§ããã®ã§ã
ã§è¡šãããã
次ã«ãç¹A'ãééããç·åA'Bã«å¹³è¡ãªçŽç·ã ãã¯ãã«
ãš
ãçšããŠèšè¿°ããæ¹æ³ãèããã
ããã§ã¯ã ãã®çŽç·äžã®ç¹ã¯ã ãã宿° s {\displaystyle s} ãçšããŠã
ã§è¡šããããšã«æ³šç®ããã äŸãã°ã
ã®ãšãããã®åŒã衚ãç¹ã¯
ã«çããã
ã®ãšãã
ã«çãããããããçŽç· A'Bäžã®ç¹ã§ããã
ãããã«å
ã»ã©æ±ãã
ãšã
ã®å€ãçšãããšã
ãåŸãããã
åæ§ã«ãç·åAB'äžã®ç¹ã¯ãã宿° t {\displaystyle t} ãçšããŠã
ã§è¡šãããã ããã«å
ã»ã©åŸãå€ã代å
¥ãããšã
ãšãªãã
ãã®ããã«ããããã®çŽç·äžã®ç¹ã s {\displaystyle s} , t {\displaystyle t} ã çšããŠè¡šãããã æ¬¡ã«ããããã®åŒãåãç¹ã瀺ãããã« s {\displaystyle s} , t {\displaystyle t} ãå®ããã ãã®ããã«ã¯ã
,
ãçãããšãããŠã s {\displaystyle s} , t {\displaystyle t} ã«é¢ããé£ç«æ¹çšåŒãäœãããããè§£ãã°ããã äžã®åŒã§
ã®ä¿æ°ãçãããšãããšã
ãåŸããã
ã®ä¿æ°ãçãããšãããšã
ãåŸãããã ãã®åŒãé£ç«ããŠè§£ããšã
,
ãåŸãããã ãã®åŒã
,
ã®ã©ã¡ããã«ä»£å
¥ãããšãæ±ããäœçœ®ãã¯ãã«ãåŸãããã®ã§ããã 代å
¥ãããšãæ±ãããã¯ãã«ã¯ã
ãšãªãã
ç¹ A ( a â ) {\displaystyle \mathrm {A} ({\vec {a}})} ãéãããã¯ãã« d â ( â 0 â ) {\displaystyle {\vec {d}}\,(\neq {\vec {0}})} ã«å¹³è¡ãªçŽç·ã g {\displaystyle g} ãšããã g {\displaystyle g} äžã®ç¹ã P ( p â ) {\displaystyle \mathrm {P} ({\vec {p}})} ãšãããšã A P â = 0 â {\displaystyle {\vec {\mathrm {AP} }}={\vec {0}}} ãŸã㯠A P â ⥠d â {\displaystyle {\vec {\mathrm {AP} }}\parallel {\vec {d}}} ã ãã
ãšãªã宿° t {\displaystyle t} ãããã
ããªãã¡ã
ãã£ãŠã
ããããçŽç· g {\displaystyle g} ã®ãã¯ãã«æ¹çšåŒ(vector equation)ãšããã d â {\displaystyle {\vec {d}}} ã g {\displaystyle g} ã®æ¹åãã¯ãã«ãšããããŸãã t {\displaystyle t} ãåªä»å€æ°ãšããã
ç¹Aã®åº§æšã ( x 1 , y 1 ) {\displaystyle (x_{1}\ ,\ y_{1})} ã d â = ( a , b ) {\displaystyle {\vec {d}}=(a\ ,\ b)} ãç¹Pã®åº§æšã ( x , y ) {\displaystyle (x\ ,\ y)} ãšãããšããã¯ãã«æ¹çšåŒ p â = a â + t d â {\displaystyle {\vec {p}}={\vec {a}}+t{\vec {d}}} ã¯
ãšãªãããããã£ãŠ
{ x = x 1 + a t y = y 1 + b t {\displaystyle {\begin{cases}x=x_{1}+at\\y=y_{1}+bt\end{cases}}}
ãããçŽç· g {\displaystyle g} ã®åªä»å€æ°è¡šç€ºãšããã
æŒç¿åé¡
ç¹A ( 1 , 2 ) {\displaystyle (1\ ,\ 2)} ãéãã d â = ( 3 , 5 ) {\displaystyle {\vec {d}}=(3\ ,\ 5)} ã«å¹³è¡ãªçŽç·ã®æ¹çšåŒããåªä»å€æ°tãçšããŠè¡šãã
ãŸããtãæ¶å»ããåŒã§è¡šãã
ãã®çŽç·ã®ãã¯ãã«æ¹çšåŒã¯
ãããã£ãŠ
tãæ¶å»ãããšã次ã®ããã«ãªãã
2ç¹ A ( a â ) , B ( b â ) {\displaystyle \mathrm {A} ({\vec {a}}),\,\mathrm {B} ({\vec {b}})} ãéãçŽç·ã®ãã¯ãã«æ¹çšåŒãèããã
çŽç·ABã¯ãç¹Aãéãã A B â = b â â a â {\displaystyle {\vec {AB}}={\vec {b}}-{\vec {a}}} ãæ¹åãã¯ãã«ãšããçŽç·ãšèããããããããã®ãã¯ãã«æ¹çšåŒã¯
ãšãªããããã¯æ¬¡ã®ããã«æžããã
æŒç¿åé¡
2ç¹A ( 2 , 5 ) {\displaystyle (2\ ,\ 5)} ,B ( â 1 , 3 ) {\displaystyle (-1\ ,\ 3)} ãéãçŽç·ã®æ¹çšåŒããåªä»å€æ°tãçšããŠè¡šãã
ãã®çŽç·ã®ãã¯ãã«æ¹çšåŒã¯
ãããã£ãŠ
ç¹Aãéã£ãŠã 0 â {\displaystyle {\vec {0}}} ã§ãªããã¯ãã«ã n â {\displaystyle {\vec {n}}} ã«åçŽãªçŽç·ãgãšãããgäžã®ç¹ãPãšãããšã A P â = 0 â {\displaystyle {\vec {AP}}={\vec {0}}} ãŸã㯠A P â ⥠n â {\displaystyle {\vec {AP}}\perp {\vec {n}}} ã ãã
ã§ããã
ç¹A,Pã®äœçœ®ãã¯ãã«ãããããã a â , p â {\displaystyle {\vec {a}}\ ,\ {\vec {p}}} ãšãããšã A P â = p â â a â {\displaystyle {\vec {AP}}={\vec {p}}-{\vec {a}}} ã ããã(1)ã¯
ãšãªãã(2)ãç¹Aãéã£ãŠã n â {\displaystyle {\vec {n}}} ã«åçŽãªçŽç·gã®ãã¯ãã«æ¹çšåŒã§ããã n â {\displaystyle {\vec {n}}} ããã®çŽç·ã®æ³ç·ãã¯ãã«(ã»ããããã¯ãã«ãnormal vector)ãšããã
ç¹Aã®åº§æšã ( x 1 , y 1 ) {\displaystyle (x_{1}\ ,\ y_{1})} ã n â = ( a , b ) {\displaystyle {\vec {n}}=(a\ ,\ b)} ãç¹Pã®åº§æšã ( x , y ) {\displaystyle (x\ ,\ y)} ãšãããšã p â â a â = ( x â x 1 , y â y 1 ) {\displaystyle {\vec {p}}-{\vec {a}}=(x-x_{1}\ ,\ y-y_{1})} ã ããã(2)ã¯æ¬¡ã®ããã«ãªãã
ãã®æ¹çšåŒã¯ã â a x 1 â b y 1 = c {\displaystyle -ax_{1}-by_{1}=c} ãšãããšã a x + b y + c = 0 {\displaystyle ax+by+c=0} ãšãªããããæ¬¡ã®ããšããããã
çŽç· a x + b y + c = 0 {\displaystyle ax+by+c=0} ã®æ³ç·ãã¯ãã«ã¯ã n â = ( a , b ) {\displaystyle {\vec {n}}=(a\ ,\ b)} ã§ããã
æŒç¿åé¡
ç¹A ( 2 , 5 ) {\displaystyle (2\ ,\ 5)} ãéãã n â = ( 4 , 3 ) {\displaystyle {\vec {n}}=(4\ ,\ 3)} ã«åçŽãªçŽç·ã®æ¹çšåŒãæ±ããã
ã€ãŸã
ãããŸã§ã¯ãå¹³é¢äžã®ãã¯ãã«ã«ã€ããŠèããŠããããããããã¯3次å
空éäžã®ãã¯ãã«ã«ã€ããŠèãããããäžè¬ã«ãã¯ãã«ã¯n次å
(ãŠãŒã¯ãªãã)空éäžã§å®çŸ©ããããšãã§ãããããã®ãããªãã®ã¯é«æ ¡ã§ã¯æ±ããªãã
ä»ãŸã§ã¯ãå¹³é¢äžã®å³åœ¢ããã¯ãã«ãæ°åŒãçšããŠè¡šçŸããæ¹æ³ãåŠãã§æ¥ãã ããã§ãã2次å
ãšã¯ãå¹³é¢ã®ããšã§ãããå¹³é¢äžã®ä»»æã®ç¹ãæå®ããã«ã¯æäœã§ã2以äžã®å®æ°ãå¿
èŠã ãããã®ããã«åŒã°ããŠããã
ãã¡ãã容æã«åããéãã2ã€ä»¥äžã®æ¬¡å
ãæã£ãŠããå³åœ¢ãååšããã äŸãã°ã3次å
ç«äœã®1ã€ã§ããçŽæ¹äœã¯çžŠã暪ãé«ãã®3ã€ã®é·ããæã£ãŠããã®ã§ã3次å
å³åœ¢ãšåŒã°ããã
空éã«1ã€ã®å¹³é¢ããšãããã®äžã«çŽäº€ãã座æšè»ž O x , O y {\displaystyle O_{x}\ ,\ O_{y}} ããšããæ¬¡ã«Oãéããã®å¹³é¢ã«åçŽãªçŽç· O z {\displaystyle O_{z}} ãã²ãããã®çŽç·äžã§ãOãåç¹ãšãã座æšãèããã
ãã®3çŽç· O x , O y , O z {\displaystyle O_{x}\ ,\ O_{y}\ ,\ O_{z}} ã¯ãã©ã®2ã€ãäºãã«åçŽã§ããããããã座æšè»žãšãããããããx軞ãy軞ãz軞ãšããã
ãŸããx軞ãšy軞ãšã§å®ãŸãå¹³é¢ãxyå¹³é¢ãšãããy軞ãšz軞ãšã§å®ãŸãå¹³é¢ãyzå¹³é¢ãšãããz軞ãšx軞ãšã§å®ãŸãå¹³é¢ãzxå¹³é¢ãšããããããã座æšå¹³é¢ãšããã
空éå
ã®ç¹Aã«å¯ŸããŠãAãéã£ãŠå座æšå¹³é¢ã«å¹³è¡ãª3ã€ã®å¹³é¢ãã€ãããããããx軞ãy軞ãz軞ãšäº€ããç¹ã A 1 , A 2 , A 3 {\displaystyle A_{1}\ ,\ A_{2}\ ,\ A_{3}} ãšãã A 1 , A 2 , A 3 {\displaystyle A_{1}\ ,\ A_{2}\ ,\ A_{3}} ã®ããããã®è»žäžã§ã®åº§æšã a 1 , a 2 , a 3 {\displaystyle a_{1}\ ,\ a_{2}\ ,\ a_{3}} ãšããã
ãã®ãšãã3ã€ã®æ°ã®çµ
ãç¹Aã®åº§æšãšããã a 1 {\displaystyle a_{1}} ãx座æšãšããã a 2 {\displaystyle a_{2}} ãy座æšãšããã a 3 {\displaystyle a_{3}} ãz座æšãšããã
ãã®ããã«åº§æšã®å®ãããã空éã座æšç©ºéãšåŒã³ãç¹Oã座æšç©ºéã®åç¹ãšããã
ããã§ã¯ãç¹ã«3次å
空éã®å³åœ¢ã«æ³šç®ããã ãŸãã¯ãã¯ãã«ãçšããåã«3次å
空éã®ç©ºéå³åœ¢ããæ°åŒã«ãã£ãŠèšè¿°ããæ¹æ³ãèå¯ããã
2次å
空éã«ãããŠããã£ãšãç°¡åãªå³åœ¢ã¯çŽç·ã§ããããã®åŒã¯äžè¬çã«
ã§è¡šããããã ( a {\displaystyle a} , b {\displaystyle b} , c {\displaystyle c} ã¯ä»»æã®å®æ°ã) ããã§ x {\displaystyle x} , y {\displaystyle y} ã¯ã2次å
空éã代衚ãã2ã€ã®ãã©ã¡ãŒã¿ãŒã§ããã3次å
空éãçšãããšãã«ã¯ããããã¯3ã€ã®æåã§è¡šããããããšãæåŸ
ãããã
å®éãã®ãããªåŒã§è¡šããããå³åœ¢ã¯ã3次å
空éã§ãåºæ¬çãªå³åœ¢ã§ãããã€ãŸãã
ããäžã®åŒã®é¡äŒŒç©ãšããŠåŸãããã ( a {\displaystyle a} , b {\displaystyle b} , c {\displaystyle c} , d {\displaystyle d} ã¯ä»»æã®å®æ°ã)
ãã®ãããªå³åœ¢ã¯ã©ããªå³åœ¢ã«å¯Ÿå¿ããã ããã?
å®éã«ã¯ãã®å³åœ¢ãç¹åŸŽã¥ããã®ã¯ãåŸã«åŠã¶3次å
ãã¯ãã«ãçšããã®ããã£ãšãç°¡åã§ããã®ã§ãããã¯åŸã«ãŸããããšã«ããã
ãããããã 1ã€ãã®åŒããåããããšã¯ã3次å
空éã®åº§æšã衚ãããã©ã¡ãŒã¿ãŒ
ã®ãã¡ã«1ã€ã®é¢ä¿
ãäžããããšã§ã3次å
空éäžã®å³åœ¢ãæå®ã§ãããšããããšã§ããããã®å Žåã¯ã
ãçšããŠããã
ãã¯ãã«ã䜿ããªããŠãå³åœ¢çè§£éãåŸãããåŒãšããŠã
ãæããããã ( a {\displaystyle a} , b {\displaystyle b} , c {\displaystyle c} , r {\displaystyle r} ã¯ä»»æã®å®æ°ã) ãã®åŒã¯ã2次å
ã§ãããšããã®
ã®åŒã®é¡äŒŒç©ã§ããã2次å
ã®å Žåã¯ãã®åŒã¯ã
äžå¿ ( a , b ) {\displaystyle (a,b)} ååŸ r {\displaystyle r} ã®åã«å¯Ÿå¿ããŠããã 3次å
ã®ãã®åŒã¯ãçµè«ããããšäžå¿ ( a , b , c ) {\displaystyle (a,b,c)} ååŸ r {\displaystyle r} ã®åã«å¯Ÿå¿ããŠããã®ã§ããã
äžã®åŒ
ãæºããããç¹ ( x , y , z ) {\displaystyle (x,y,z)} ãåãããã®ç¹ãšç¹ ( a , b , c ) {\displaystyle (a,b,c)} ãšã®è·é¢ãèããã
空é座æšã«çœ®ãã x {\displaystyle x} 軞ã y {\displaystyle y} 軞ã z {\displaystyle z} 軞ã¯ããããçŽäº€ããŠããã®ã§ã2ç¹ã®è·é¢ã¯3å¹³æ¹ã®å®çãçšããŠ
ã§äžããããã
ããããäžã®åŒããããã§éžãã ç¹ ( x , y , z ) {\displaystyle (x,y,z)} ã¯ãæ¡ä»¶
ãæºãããŠããã®ã§ã2ç¹ã®è·é¢ã¯
ã§ããã ( r > 0 {\displaystyle r>0} ãçšããã)
ãã£ãŠãäžã®åŒãæºããç¹ã¯å
šãŠç¹ ( a , b , c ) {\displaystyle (a,b,c)} ããã®è·é¢ã r {\displaystyle r} ã§ããç¹ã§ãããããã¯äžå¿ ( a , b , c ) {\displaystyle (a,b,c)} ååŸ r {\displaystyle r} ã®åã«ä»ãªããªãã
æŒç¿åé¡
äžå¿
ååŸ
ã®çã®åŒãæ±ããã
ã«ä»£å
¥ããããšã§ã
ãæ±ããããã
æŒç¿åé¡
ãã©ã®ãã㪠çã«å¯Ÿå¿ãããèšç®ããã
ãã®ãããªæ°åŒãçã«å¯Ÿå¿ãããšãã
ã®ä¿æ°ã¯å¿
ãçãããªããŠã¯ãªããªããããã§ãªãå Žåã¯ãã®å³åœ¢ã¯æ¥åäœã«å¯Ÿå¿ããã®ã ããããã¯æå°èŠé ã®ç¯å²å€ã§ããã ããã§ã¯äžã®åŒã¯ãã®æ¡ä»¶ãæºãããŠããã
ããã§ã¯ããã®åŒã
ã®åœ¢ã«æã£ãŠè¡ãããšãéèŠã§ããã
ã®ããããã«ã€ããŠãã®åŒãå¹³æ¹å®æãããšã
ãåŸãããããã£ãŠãäžã®åŒ
ã¯ã äžå¿
ãååŸ
ã®çã«å¯Ÿå¿ããã
次ã«3次å
空éäžã«ããããã¯ãã«ãèå¯ããã 2次å
空éäžã§ã¯ãã¯ãã«ã¯2ã€ã®éã®çµã¿åããã§è¡šããããã ããã¯1ã€ã®ãã¯ãã«ã¯x軞æ¹åã«å¯Ÿå¿ããéãšy軞æ¹åã«å¯Ÿå¿ããéã®2ã€ãæã£ãŠããå¿
èŠããã£ãããã§ããã ãã®ããšããã3次å
空éã®ãã¯ãã«ã¯3ã€ã®éã®çµã¿åããã§æžããããšãäºæ³ãããã ç¹ã« x {\displaystyle x} 軞æ¹åã®æå a {\displaystyle a} , y {\displaystyle y} 軞æ¹åã®æå b {\displaystyle b} , z {\displaystyle z} 軞æ¹åã®æå c {\displaystyle c} ( a {\displaystyle a} , b {\displaystyle b} , c {\displaystyle c} ã¯ä»»æã®å®æ°ã) ã§è¡šãããããã¯ãã«ãã
ãšæžããŠè¡šããããšã«ããã
2次å
å¹³é¢ã§ã¯ ãããã¯ãã«
ã¯ã ( a {\displaystyle a} , b {\displaystyle b} ã¯ä»»æã®å®æ°ã)
ã®2æ¬ã®ãã¯ãã«ãçšããŠã
ã§è¡šããããã 3次å
空éã§ããã®ãããªèšè¿°æ³ããããäžã§çšãããã¯ãã«
ã¯ã
ãçšããŠ
ãšæžããããã¯ãã«ã«å¯Ÿå¿ããŠããã
3次å
ãã¯ãã«ã«å¯ŸããŠã2次å
ãã¯ãã«ã§å®ããå®çŸ©ãæ§è³ªãã»ãŒãã®ãŸãŸæç«ããã
3次å
ãã¯ãã«ã®å æ³ã¯ãããããã®ãã¯ãã«èŠçŽ ãç¬ç«ã«è¶³ãåãããããšã«ãã£ãŠå®çŸ©ããã
ãŸããããããã®ãã¯ãã«ã®èŠçŽ ãå
šãŠçãããã¯ãã«ã"ãã¯ãã«ãšããŠçãã"ãšè¡šçŸããã
æŒç¿åé¡
ãã¯ãã«ã®å
ãèšç®ããã
ãåŸãããã
ãã¯ãã« a â {\displaystyle {\vec {a}}} , b â {\displaystyle {\vec {b}}} éã®ãã¯ãã«ã®å
ç©ãå¹³é¢ã®å Žåãšåæ§ã«
( Ξ {\displaystyle \theta } ã¯ããã¯ãã« a â {\displaystyle {\vec {a}}} , b â {\displaystyle {\vec {b}}} ã®ãªãè§ã)
åé
æ³åã1次ç¬ç«ã®æ§è³ªããã®ãŸãŸæãç«ã€ã ãã ãã3次å
空éã®å
šãŠã®ãã¯ãã«ã匵ãã«ã¯ã3ã€ã®ç·åœ¢ç¬ç«ãªãã¯ãã«ãæã£ãŠæ¥ãå¿
èŠãããã
ãã®ããšã®èšŒæã¯ããããç·å代æ°åŠãªã©ã«è©³ããã
æŒç¿åé¡
2ã€ã®ãã¯ãã«ã®å
ç©
ãèšç®ããã
2次å
ã®å Žåãšåãããã«ããã§ãããããã®èŠçŽ ã¯äºãã«çŽäº€ããåäœãã¯ãã«
ã«ãã£ãŠåŒµãããŠããããã®ãã以åãšåããèŠçŽ ããšã®èšç®ãå¯èœã§ããã
ãšãªãã
ããããã现ããèšç®ãè¡ãªããšã
ãåŸããããããããã®ãã¯ãã«ã
ã«åŸã£ãŠå±éãã
( i {\displaystyle i} , j {\displaystyle j} ã¯1,2,3ã®ã©ããã) ã代å
¥ããããšã§äžã®åŒãèšç®ã§ããã¯ãã§ããã
ãããã i {\displaystyle i} ãš j {\displaystyle j} ãçãããªããšãã«ã¯
ãæãç«ã€ããšãããäžã®å±éããåŸã®9åã®é
ã®ãã¡ã§ã6ã€ã¯
ã«çããã
ãŸãã i {\displaystyle i} ãš j {\displaystyle j} ãçãããšãã«ã¯
ãæãç«ã€ããšãããäžã®åŒ
ã®å±éã¯
ãšãªã£ãŠç¢ºãã«èŠçŽ ããšã®èšç®ãšäžèŽããã
æŒç¿åé¡
2次å
空éã®ãã¯ãã«ã¯2æ¬ã®1次ç¬ç«ãªãã¯ãã«ãããã°ãå¿
ããããã®ç·åœ¢çµåã«ãã£ãŠèšç®ã§ããã¯ãã§ããã
ããã§ã
ãš
ãçšããŠã
ãã
ã®åœ¢ã«æžããŠã¿ãã ( c {\displaystyle c} , d {\displaystyle d} ã¯ãäœããã®å®æ°ã)
2次å
ã®ãã¯ãã«ã®ä¿æ°ãæ±ããåé¡ã§ããã c {\displaystyle c} , d {\displaystyle d} ã®æåããã®ãŸãŸçšãããšã c {\displaystyle c} , d {\displaystyle d} ã®æºããæ¡ä»¶ã¯
ã€ãŸã
ãšãªãããã㯠c {\displaystyle c} , d {\displaystyle d} ã«é¢ããé£ç«1次æ¹çšåŒã§æžãæããããã
ãããè§£ããšã
ãåŸãããã
ãã£ãŠã äžã®åŒã¯
ãšæžãã確ãã«2æ¬ã®ç·åœ¢ç¬ç«ãªãã¯ãã«ã«ãã£ãŠä»ã®ãã¯ãã«ãæžã衚ãããããšãåãã£ãã
ãã®ãããªèšç®ã¯3次å
ãã¯ãã«ã«å¯ŸããŠãå¯èœã§ããããèšç®ææ³ãšããŠ3å
1次é£ç«æ¹çšåŒãæ±ãå¿
èŠããããæå°èŠé ã®ç¯å²å€ã§ãããå®éã®èšç®ææ³ã¯ãç·å代æ°åŠ,ç©çæ°åŠI ç·åœ¢ä»£æ°ãåç
§ã
ãã®è¡šåŒãçšããŠã以åèŠã
ã®å³åœ¢çè§£éãè¿°ã¹ãã
ãã®å³åœ¢äžã®ä»»æã®ç¹ã ( x , y , z ) {\displaystyle (x,y,z)} ã§è¡šããã ãã®ç¹ã¯åç¹Oã«å¯Ÿããäœçœ®ãã¯ãã«ãçšãããš ( x , y , z ) {\displaystyle (x,y,z)} ã§äžããããã 䟿å®ã®ããã« ãã®ãã¯ãã«ã x â {\displaystyle {\vec {x}}} ãšæžãããšã«ããã
äžæ¹ããã¯ãã« a â = ( a , b , c ) {\displaystyle {\vec {a}}=(a,b,c)} ãçšãããšãäžã®åŒã¯ãã¯ãã«ã®å
ç©ãçšã㊠a â â
x â = d {\displaystyle {\vec {a}}\cdot {\vec {x}}=d} ã§äžããããã ã€ãŸãããã®åŒã§è¡šããããå³åœ¢ã¯ãããã¯ãã« a â {\displaystyle {\vec {a}}} ãšã®å
ç©ãäžå®ã«ä¿ã€å³åœ¢ã§ããã ãã®å³åœ¢ã¯ãå®éã«ã¯ a â {\displaystyle {\vec {a}}} ã«çŽäº€ããå¹³é¢ã§äžããããã ãªããªããã®ãããªå¹³é¢äžã®ç¹ã¯ãå¿
ãå¹³é¢äžã®ããäžç¹ã®äœçœ®ãã¯ãã«ã«å ããŠã ãã¯ãã« a â {\displaystyle {\vec {a}}} ã«çŽäº€ãããã¯ãã«ãå ãããã®ã§æžãããšãåºæ¥ãã ãããã ãã¯ãã« a â {\displaystyle {\vec {a}}} ã«çŽäº€ãããã¯ãã«ãš ãã¯ãã« a â {\displaystyle {\vec {a}}} ã®å
ç©ã¯å¿
ã0ã§ããã®ã§ã ãã®ãããªç¹ã®éå㯠ãã¯ãã« a â {\displaystyle {\vec {a}}} ãšäžå®ã®å
ç©ãæã€ã®ã§ããã
ãã£ãŠå
ã®åŒ
ã¯ã ãã¯ãã« a â = ( a , b , c ) {\displaystyle {\vec {a}}=(a,b,c)} ã«çŽäº€ããå¹³é¢ã«å¯Ÿå¿ããããšãåãã£ãã æ¬¡ã« d {\displaystyle d} ããå³åœ¢ã衚ããå¹³é¢ãšãåç¹ãšã®è·é¢ã«é¢ä¿ãããããšã瀺ãã
ç¹ã«ããã¯ãã« a â {\displaystyle {\vec {a}}} ã«æ¯äŸããäœçœ®ãã¯ãã«ãæã€ç¹ x â {\displaystyle {\vec {x}}} ãèããããã®ãšããã®ç¹ãšåç¹ãšã®è·é¢ã¯ã å¹³é¢
ãšåç¹ãšã®è·é¢ã«å¯Ÿå¿ããã ãªããªããäœçœ®ãã¯ãã« x â {\displaystyle {\vec {x}}} ã¯ãåç¹ããå¹³é¢
ã«åçŽã«äžãããç·ã«å¯Ÿå¿ããããã§ããã
ãã®ããšãã仮㫠a â {\displaystyle {\vec {a}}} æ¹åã®åäœãã¯ãã«ã n â {\displaystyle {\vec {n}}} ãšæžããå¹³é¢ãšåç¹ãšã®è·é¢ã m {\displaystyle m} ãšæžããšã x â = m n â {\displaystyle {\vec {x}}=m{\vec {n}}} ãåŸãããã ãã®åŒã
ã«ä»£å
¥ãããšã
ãåŸãããããã£ãŠã d {\displaystyle d} ã¯ã å¹³é¢ãšåç¹ã®è·é¢ m {\displaystyle m} ãšãã¯ãã« a â {\displaystyle {\vec {a}}} ã®å€§ãããããããã®ã§ããã
æŒç¿åé¡
ç¹ã«ãã¯ãã«
ãåããšãã©ã®ãããªåŒãåŸãããŠããã®åŒã¯ ã©ã®ãããªå³åœ¢ã«å¯Ÿå¿ãããã
ãã®ãšã
ã¯ã
ã«å¯Ÿå¿ããã
ãã®åŒã¯ z {\displaystyle z} 座æšã d {\displaystyle d} ã«å¯Ÿå¿ãããã以å€ã® x {\displaystyle x} , y {\displaystyle y} 座æšãä»»æã«åããã å¹³é¢ã«å¯Ÿå¿ããŠãããããã㯠x y {\displaystyle xy} å¹³é¢ã«å¹³è¡ã§ããã x y {\displaystyle xy} å¹³é¢ããã®è·é¢ã d {\displaystyle d} ã§ããå¹³é¢ã§ããã ãŸãã x y {\displaystyle xy} å¹³é¢ãšãã¯ãã«
ã¯çŽäº€ããŠããã®ã§ããã®ããšããããã®åŒã¯æ£ããã
å€ç©ã¯é«æ ¡æ°åŠç¯å²å€ã§å
¥è©Šã«ã¯åºãªãããå€ç©ã¯æ°åŠãç©çãªã©ã«å¿çšã§ãã䟿å©ãªã®ã§ããã§æ±ãã
äžæ¬¡å
ãã¯ãã« a â , b â {\displaystyle {\vec {a}},\,{\vec {b}}} ã«å¯Ÿããå€ç© a â à b â {\displaystyle {\vec {a}}\times {\vec {b}}} ãæ¬¡ãæºãããã®ãšããã
次ã«å€ç©ã®æå衚瀺ãèããŠã¿ããããã®å®çŸ©ããæå衚瀺ãçŽæ¥å°ãã®ã¯é¢åãªã®ã§ã倩äžãçã«æå衚瀺ãäžããŠããããããå€ç©ã®å®çŸ©ãæºããããšã確èªããã
a â = ( a 1 a 2 a 3 ) {\displaystyle {\vec {a}}={\begin{pmatrix}a_{1}\\a_{2}\\a_{3}\end{pmatrix}}} ã b â = ( b 1 b 2 b 3 ) {\displaystyle {\vec {b}}={\begin{pmatrix}b_{1}\\b_{2}\\b_{3}\end{pmatrix}}} ãšãããšãã a â Ã b â = ( a 2 b 3 â a 3 b 2 a 3 b 1 â a 1 b 3 a 1 b 2 â a 2 b 1 ) {\displaystyle {\vec {a}}\times {\vec {b}}={\begin{pmatrix}a_{2}b_{3}-a_{3}b_{2}\\a_{3}b_{1}-a_{1}b_{3}\\a_{1}b_{2}-a_{2}b_{1}\end{pmatrix}}} ã§ããã
ãŸãã¯ã a â à b â {\displaystyle {\vec {a}}\times {\vec {b}}} 㯠a â , b â {\displaystyle {\vec {a}},\,{\vec {b}}} ãããããšåçŽã§ããããšã確èªãããããã¯ã ( a â à b â ) â
a â = 0 {\displaystyle ({\vec {a}}\times {\vec {b}})\cdot {\vec {a}}=0} ãš ( a â Ã b â ) â
b â = 0 {\displaystyle ({\vec {a}}\times {\vec {b}})\cdot {\vec {b}}=0} ã§ããããšãæå衚瀺ã代å
¥ããã°èšŒæã§ããã
次ã«ã | a â à b â | = | a â | | b â | sin Ξ {\displaystyle |{\vec {a}}\times {\vec {b}}|=|{\vec {a}}||{\vec {b}}|\sin \theta } ã蚌æããã | a â à b â | 2 = | a â | 2 | b â | 2 sin 2 Ξ = | â a | 2 | b â | 2 ( 1 â cos 2 Ξ ) {\displaystyle |{\vec {a}}\times {\vec {b}}|^{2}=|{\vec {a}}|^{2}|{\vec {b}}|^{2}\sin ^{2}\theta ={\vec {|}}a|^{2}|{\vec {b}}|^{2}(1-\cos ^{2}\theta )} ãããã§ã cos 2 Ξ = ( a â â
b â ) 2 | a â | 2 | b â | 2 {\displaystyle \cos ^{2}\theta ={\frac {({\vec {a}}\cdot {\vec {b}})^{2}}{|{\vec {a}}|^{2}|{\vec {b}}|^{2}}}} ã代å
¥ãã | a â à b â | 2 = | â a | 2 | b â | 2 â ( a â â
b â ) 2 {\displaystyle |{\vec {a}}\times {\vec {b}}|^{2}={\vec {|}}a|^{2}|{\vec {b}}|^{2}-({\vec {a}}\cdot {\vec {b}})^{2}} ãåŸãããã®åŒã«ãæå衚瀺ã代å
¥ããã°ã䞡蟺ãçããããšã確èªã§ããã
æåŸã«ããã¬ãã³ã°ã®å·Šæã®æ³åã§ a â à b â {\displaystyle {\vec {a}}\times {\vec {b}}} ã¯èŠªæã®æ¹åã§ããããšã確èªããã
a â = ( 1 0 0 ) {\displaystyle {\vec {a}}={\begin{pmatrix}1\\0\\0\end{pmatrix}}} ã b â = ( 0 1 0 ) {\displaystyle {\vec {b}}={\begin{pmatrix}0\\1\\0\end{pmatrix}}} ã®ãšãã a â à b â = ( 0 0 1 ) {\displaystyle {\vec {a}}\times {\vec {b}}={\begin{pmatrix}0\\0\\1\end{pmatrix}}} ã§ããããããããäºçªç®ã®æ§è³ªã確èªã§ããã
å€ç©ã®å¿çš
2ã€ã®ãã¯ãã«ã«åçŽãªãã¯ãã«ãæ±ããããšããªã©ã¯ãå€ç©ã®æå衚瀺ããèšç®ããã°ãé¢åãªèšç®ãããªããŠãæ±ããããã
åé¢äœ O A B C {\displaystyle \mathrm {OABC} } ã®äœç©ã¯ 1 6 | ( O A â à O B â ) â
O C â | {\displaystyle {\frac {1}{6}}|({\vec {\mathrm {OA} }}\times {\vec {\mathrm {OB} }})\cdot {\vec {\mathrm {OC} }}|} ã§ããã å®éã 1 6 | ( O A â à O B â ) â
O C â | = 1 3 | 1 2 O A â à O B â | | h | {\displaystyle {\frac {1}{6}}|({\vec {\mathrm {OA} }}\times {\vec {\mathrm {OB} }})\cdot {\vec {\mathrm {OC} }}|={\frac {1}{3}}\left|{\frac {1}{2}}{\vec {\mathrm {OA} }}\times {\vec {\mathrm {OB} }}\right||h|} ã§ããããã ãã h ã¯ÎABCãåºé¢ãšãããšãã®åé¢äœã®é«ãã§ããã
ãŸããç©çåŠã®ããŒã¬ã³ãåã¯å€ç©ã䜿ããš F â = q v â à B â {\displaystyle {\vec {F}}=q{\vec {v}}\times {\vec {B}}} ãšç°¡æœã«è¡šããã
èŠãæ¹
å³ã®ããã«èŠçŽ ãããåãããã
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "çç§ã«ãããŠãåã¯å€§ãããšåããæã€éã§ãããšç¿ã£ãã ããã倧ãããšåããæã€éã¯ãåã®ä»ã«ããé床ã颚ã®å¹ãæ¹ãªã©ãããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "äŸãã°ãããå°ç¹ããæå»ã«ããã颚ã®å¹ãæ¹ã¯ã颚éãšé¢šåããæãç«ã€ããã®ããã«ã倧ãããšåããæã€éãå°å
¥ãããšãããããå¹çããæ±ããã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãã®ããŒãžã§ã¯ã倧ãããšåããæã€éã§ãããã¯ãã«ãæ±ãã",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãŸããå³åœ¢ã®åé¡ã«å¯ŸããŠä»£æ°çãªã¢ãããŒããåããã®ããã¯ãã«ã®å©ç¹ã®äžã€ã§ããã",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "å¹³é¢äžã®ç¹ S {\\displaystyle \\mathrm {S} } ããç¹ T {\\displaystyle \\mathrm {T} } ãžåããç¢å°ãèããããã®ãããªç¢å°ã®ããã«åããæã€ç·åãæåç·åãšããã",
"title": "å¹³é¢äžã®ãã¯ãã«"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãã®ãšããç¹ S {\\displaystyle \\mathrm {S} } ãå§ç¹ãç¹ T {\\displaystyle \\mathrm {T} } ãçµç¹ãšããã",
"title": "å¹³é¢äžã®ãã¯ãã«"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "æå¹ç·åã§ã倧ãããšæ¹åãåããã®ã¯ãã¯ãã«ãšããŠåããã®ãšããã",
"title": "å¹³é¢äžã®ãã¯ãã«"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "æåç·åã¯äœçœ®ãé·ã(倧ãã)ãåããšããæ
å ±ãæã€ããã¯ãã«ã¯ãæåç·åã®æã€æ
å ±ã®ãã¡ãäœçœ®ã®æ
å ±ãå¿ããŠã倧ãããåãã ãã«çç®ãããã®ãšèããããšãã§ããã",
"title": "å¹³é¢äžã®ãã¯ãã«"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "æåç·å S T {\\displaystyle \\mathrm {ST} } ã§è¡šããããã¯ãã«ã S T â {\\displaystyle \\mathrm {\\vec {ST}} } ãšããããã¯ãã«ã¯äžæåã§ a â {\\displaystyle {\\vec {a}}} ãªã©ãšè¡šãããããšãããããã¯ãã« a â {\\displaystyle {\\vec {a}}} ã®å€§ããã | a â | {\\displaystyle |{\\vec {a}}|} ã§è¡šãã",
"title": "å¹³é¢äžã®ãã¯ãã«"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "æåç·å S T {\\displaystyle \\mathrm {ST} } ãæåç·å S â² T â² {\\displaystyle \\mathrm {S'T'} } ã«å¯Ÿãã倧ãããçãããåããçãããªããäœçœ®ãéã£ãŠããŠãããã¯ãã«ãšããŠçããã S T â = S â² T â² â {\\displaystyle \\mathrm {\\vec {ST}} =\\mathrm {\\vec {S'T'}} } ã§ããã",
"title": "å¹³é¢äžã®ãã¯ãã«"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "倧ããã 1 ã§ãããã¯ãã«ãåäœãã¯ãã«ãšããã",
"title": "å¹³é¢äžã®ãã¯ãã«"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãã¯ãã« a â {\\displaystyle {\\vec {a}}} ã«å¯Ÿãããã¯ãã« a â {\\displaystyle {\\vec {a}}} ãšæ¹åãéã§ã倧ãããçãããã¯ãã«ãéãã¯ãã«ãšããã â a â {\\displaystyle -{\\vec {a}}} ãšããã",
"title": "å¹³é¢äžã®ãã¯ãã«"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "å§ç¹ãšçµç¹ãçãããã¯ãã«ãé¶ãã¯ãã«ãšããã 0 â {\\displaystyle {\\vec {0}}} ã§è¡šããä»»æã®ç¹ A {\\displaystyle \\mathrm {A} } ã«å¯Ÿãã A A â = 0 â {\\displaystyle \\mathrm {\\vec {AA}} ={\\vec {0}}} ã§ããããŒããã¯ãã«ã®å€§ãã㯠0 ã§ãåãã¯èããªããã®ãšããã",
"title": "å¹³é¢äžã®ãã¯ãã«"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãã¯ãã« a â , b â {\\displaystyle {\\vec {a}},{\\vec {b}}} ã«å¯Ÿãã a â = A B â , b â = B C â {\\displaystyle {\\vec {a}}=\\mathrm {\\vec {AB}} ,{\\vec {b}}=\\mathrm {\\vec {BC}} } ãšãªãç¹ããšãããã®ãšããã¯ãã«ã®å æ³ã a â + b â = A C â {\\displaystyle {\\vec {a}}+{\\vec {b}}=\\mathrm {\\vec {AC}} } ã§å®ããã",
"title": "å¹³é¢äžã®ãã¯ãã«"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãã¯ãã«ã®å æ³ã«ã€ããŠä»¥äžãæãç«ã€ã",
"title": "å¹³é¢äžã®ãã¯ãã«"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ãŸãã a â + 0 â = a â {\\displaystyle {\\vec {a}}+{\\vec {0}}={\\vec {a}}} ãšããã",
"title": "å¹³é¢äžã®ãã¯ãã«"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ãã¯ãã« a â , b â {\\displaystyle {\\vec {a}},{\\vec {b}}} ã«å¯Ÿãã a â â b â = a â + ( â b â ) {\\displaystyle {\\vec {a}}-{\\vec {b}}={\\vec {a}}+(-{\\vec {b}})} ãšããã",
"title": "å¹³é¢äžã®ãã¯ãã«"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ãŒããã¯ãã«ã¯ãªããã¯ãã« a â {\\displaystyle {\\vec {a}}} ãšå®æ° k {\\displaystyle k} ã«å¯Ÿãããã¯ãã«ã®å®æ°å k a â {\\displaystyle k{\\vec {a}}} ã以äžã®ããã«å®ããã",
"title": "å¹³é¢äžã®ãã¯ãã«"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ãŸããŒããã¯ãã« 0 â {\\displaystyle {\\vec {0}}} ã«å¯Ÿãã宿°åã k 0 â = 0 â {\\displaystyle k{\\vec {0}}={\\vec {0}}} ã§å®ããã",
"title": "å¹³é¢äžã®ãã¯ãã«"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "以äžã®æ§è³ªããªããã€ã",
"title": "å¹³é¢äžã®ãã¯ãã«"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ãŒããã¯ãã«ã§ã¯ãªããã¯ãã« a â , b â ( â 0 â ) {\\displaystyle {\\vec {a}},{\\vec {b}}\\,(\\neq {\\vec {0}})} ã«å¯Ÿãã a â = A A â² â , b â = B B â² â {\\displaystyle {\\vec {a}}={\\vec {\\mathrm {AA'} }},{\\vec {b}}={\\vec {\\mathrm {BB'} }}} ãšãªãç¹ããšãã",
"title": "ãã¯ãã«ã®å¹³è¡ã»åçŽ"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ãã®ãšããçŽç· A A â² {\\displaystyle \\mathrm {AA'} } ãšçŽç· B B â² {\\displaystyle \\mathrm {BB'} } ãå¹³è¡ã§ãããšãããã¯ãã« a â , b â {\\displaystyle {\\vec {a}},{\\vec {b}}} ã¯å¹³è¡ã§ãããšããã a â ⥠b â {\\displaystyle {\\vec {a}}\\parallel {\\vec {b}}} ã§è¡šãã",
"title": "ãã¯ãã«ã®å¹³è¡ã»åçŽ"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ãŸããçŽç· A A â² {\\displaystyle \\mathrm {AA'} } ãšçŽç· B B â² {\\displaystyle \\mathrm {BB'} } ãåçŽã§ãããšãããã¯ãã« a â , b â {\\displaystyle {\\vec {a}},{\\vec {b}}} ã¯åçŽã§ãããšããã a â ⥠b â {\\displaystyle {\\vec {a}}\\perp {\\vec {b}}} ã§è¡šãã",
"title": "ãã¯ãã«ã®å¹³è¡ã»åçŽ"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ãã¯ãã« a â , b â {\\displaystyle {\\vec {a}},{\\vec {b}}} ãå¹³è¡ã®ãšããæããã«ãçæ¹ã®ãã¯ãã«ã宿°åããã°å€§ãããšåããäžèŽããã®ã§ã",
"title": "ãã¯ãã«ã®å¹³è¡ã»åçŽ"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "a â ⥠b â ⺠b â = k a â {\\displaystyle {\\vec {a}}\\parallel {\\vec {b}}\\iff {\\vec {b}}=k{\\vec {a}}} ãšãªã宿° k {\\displaystyle k} ãååšãã",
"title": "ãã¯ãã«ã®å¹³è¡ã»åçŽ"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ãæãç«ã€ã",
"title": "ãã¯ãã«ã®å¹³è¡ã»åçŽ"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ãã¯ãã« a â , b â {\\displaystyle {\\vec {a}},{\\vec {b}}} ããšãã«ãŒããã¯ãã«ã§ãªã( a â , b â â 0 â {\\displaystyle {\\vec {a}},{\\vec {b}}\\neq {\\vec {0}}} ) ãå¹³è¡ã§ãªããšããä»»æã®ãã¯ãã« p â {\\displaystyle {\\vec {p}}} ã«å¯ŸããŠã p â = s a â + t b â {\\displaystyle {\\vec {p}}=s{\\vec {a}}+t{\\vec {b}}} ãšãªã宿° s , t {\\displaystyle s,t} ãåãããšãã§ããã",
"title": "ãã¯ãã«ã®åè§£"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "蚌æ",
"title": "ãã¯ãã«ã®åè§£"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "a â = O A â , b â = O B â , p â = O P â {\\displaystyle {\\vec {a}}={\\vec {\\mathrm {OA} }},{\\vec {b}}={\\vec {\\mathrm {OB} }},{\\vec {p}}={\\vec {\\mathrm {OP} }}} ãšãªãç¹ããšããç¹ P {\\displaystyle \\mathrm {P} } ãéããçŽç· O B , O A {\\displaystyle \\mathrm {OB} ,\\mathrm {OA} } ã«å¹³è¡ãªçŽç·ãããããã çŽç· O A , O B {\\displaystyle \\mathrm {OA} ,\\mathrm {OB} } ãšäº€ããç¹ããããã S , T {\\displaystyle \\mathrm {S,T} } ãšçœ®ãã",
"title": "ãã¯ãã«ã®åè§£"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ãã®ãšãã O S â = s a â , O T â = t b â {\\displaystyle {\\vec {\\mathrm {OS} }}=s{\\vec {a}},{\\vec {\\mathrm {OT} }}=t{\\vec {b}}} ãšãªã宿° s , t {\\displaystyle s,t} ãåãããšãã§ãããããã§ãåè§åœ¢ O S P T {\\displaystyle \\mathrm {OSPT} } ã¯å¹³è¡å蟺圢ãªã®ã§ã p â = s a â + t b â {\\displaystyle {\\vec {p}}=s{\\vec {a}}+t{\\vec {b}}} ãæãç«ã€ã",
"title": "ãã¯ãã«ã®åè§£"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ãã¯ãã« a â {\\displaystyle {\\vec {a}}} ã«å¯ŸããŠã座æšå¹³é¢äžã®åç¹ã O {\\displaystyle \\mathrm {O} } ãšãããšãã a â = O A â {\\displaystyle {\\vec {a}}=\\mathrm {\\vec {OA}} } ãšãªãç¹ A ( a x , a y ) {\\displaystyle \\mathrm {A} (a_{x},a_{y})} ãåãããšãã§ãããããã§ã ( a x , a y ) {\\displaystyle (a_{x},a_{y})} ããã¯ãã« a â {\\displaystyle {\\vec {a}}} ã®æå衚瀺ãšãã a â = ( a x , a y ) {\\displaystyle {\\vec {a}}=(a_{x},a_{y})} ããŸãã¯ã瞊ã«äžŠã¹ãŠã a â = ( a x a y ) {\\displaystyle {\\vec {a}}=\\left({\\begin{aligned}a_{x}\\\\a_{y}\\end{aligned}}\\right)} ãšæžãã",
"title": "ãã¯ãã«ã®æå衚瀺"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ãã¯ãã« a â , b â {\\displaystyle {\\vec {a}},{\\vec {b}}} ã«å¯ŸããŠã a â = O A â , b â = O B â {\\displaystyle {\\vec {a}}=\\mathrm {\\vec {OA}} ,\\,{\\vec {b}}=\\mathrm {\\vec {OB}} } ãšãªãç¹ A , B {\\displaystyle \\mathrm {A} ,\\mathrm {B} } ããšãã a â = ( a x , a y ) , b â = ( b x , b y ) {\\displaystyle {\\vec {a}}=(a_{x},a_{y}),\\,{\\vec {b}}=(b_{x},b_{y})} ãšãããšã",
"title": "ãã¯ãã«ã®æå衚瀺"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "a â = b â ⺠O A â = O B â ⺠{\\displaystyle {\\vec {a}}={\\vec {b}}\\iff {\\vec {\\mathrm {OA} }}={\\vec {\\mathrm {OB} }}\\iff } ç¹ A , B {\\displaystyle \\mathrm {A} ,\\,\\mathrm {B} } ãäžèŽãã ⺠a x = b x {\\displaystyle \\iff a_{x}=b_{x}} ã〠a y = b y {\\displaystyle a_{y}=b_{y}}",
"title": "ãã¯ãã«ã®æå衚瀺"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "ãŸãã a â = ( a x , a y ) {\\displaystyle {\\vec {a}}=(a_{x},a_{y})} ã«å¯ŸããŠã a â = O A â {\\displaystyle {\\vec {a}}=\\mathrm {\\vec {OA}} } ãšãããšãã | a â | {\\displaystyle |{\\vec {a}}|} ã¯ç·å O A {\\displaystyle \\mathrm {OA} } ã®é·ããªã®ã§ã",
"title": "ãã¯ãã«ã®æå衚瀺"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "| a â | = a x 2 + a y 2 {\\displaystyle |{\\vec {a}}|={\\sqrt {a_{x}^{2}+a_{y}^{2}}}}",
"title": "ãã¯ãã«ã®æå衚瀺"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "ã§ããã",
"title": "ãã¯ãã«ã®æå衚瀺"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "",
"title": "ãã¯ãã«ã®æå衚瀺"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "ãã¯ãã« a â = ( a x , a y ) , b â = ( b x , b y ) {\\displaystyle {\\vec {a}}=(a_{x},a_{y}),{\\vec {b}}=(b_{x},b_{y})} ã«å¯ŸããŠã",
"title": "ãã¯ãã«ã®æå衚瀺"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "a â + b â = ( a x + b x , a y + b y ) {\\displaystyle {\\vec {a}}+{\\vec {b}}=(a_{x}+b_{x},a_{y}+b_{y})}",
"title": "ãã¯ãã«ã®æå衚瀺"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "a â â b â = ( a x â b x , a y â b y ) {\\displaystyle {\\vec {a}}-{\\vec {b}}=(a_{x}-b_{x},a_{y}-b_{y})}",
"title": "ãã¯ãã«ã®æå衚瀺"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "k a â = ( k a x , k a y ) {\\displaystyle k{\\vec {a}}=(ka_{x},ka_{y})}",
"title": "ãã¯ãã«ã®æå衚瀺"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "ããªããã€ã",
"title": "ãã¯ãã«ã®æå衚瀺"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "ããç¹ãåºæºã«ããŠããã®ç¹ãå§ç¹ãšãããã¯ãã«ã«ã€ããŠèããããšã«ããããã¯ãã«ãçšããŠç¹ã®äœçœ®é¢ä¿ã«ã€ããŠèå¯ããããšãã§ããã",
"title": "äœçœ®ãã¯ãã«"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ç¹ã®äœçœ®é¢ä¿åºæºãšãªãç¹ O {\\displaystyle {\\rm {O}}} ããããããå®ããããã®ãšããç¹ A {\\displaystyle {\\rm {A}}} ã«å¯ŸããŠããã¯ãã« O A â {\\displaystyle {\\vec {\\rm {OA}}}} ãç¹ A {\\displaystyle {\\rm {A}}} ã®äœçœ®ãã¯ãã«ãšãããäœçœ®ãã¯ãã« a â {\\displaystyle {\\vec {a}}} ã§äžããããç¹ A {\\displaystyle {\\rm {A}}} ã A ( a â ) {\\displaystyle \\mathrm {A} ({\\vec {a}})} ã§è¡šãã",
"title": "äœçœ®ãã¯ãã«"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "ãŸããç¹ A ( a â ) , B ( b â ) {\\displaystyle \\mathrm {A} ({\\vec {a}}),\\,\\mathrm {B} ({\\vec {b}})} ã®ãšãã A B â = O B â â O A â = b â â a â {\\displaystyle {\\vec {\\rm {AB}}}={\\vec {\\rm {OB}}}-{\\vec {\\rm {OA}}}={\\vec {b}}-{\\vec {a}}} ãæãç«ã€ã",
"title": "äœçœ®ãã¯ãã«"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "以äžãäœçœ®ãã¯ãã«ã®åºæºç¹ãç¹ O {\\displaystyle {\\rm {O}}} ãšããã",
"title": "äœçœ®ãã¯ãã«"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "ç¹ A ( a â ) , B ( b â ) {\\displaystyle {\\rm {A({\\vec {a}}),\\,{\\rm {B({\\vec {b}})}}}}} ãéãç·å A B {\\displaystyle \\mathrm {AB} } ã m : n {\\displaystyle m:n} ã«å
åããç¹ P ( p â ) {\\displaystyle \\mathrm {P} ({\\vec {p}})} ãæ±ããã",
"title": "äœçœ®ãã¯ãã«"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "A P â = m m + n A B â {\\displaystyle {\\vec {\\mathrm {AP} }}={\\frac {m}{m+n}}{\\vec {\\mathrm {AB} }}} ããã p â â a â = m m + n ( b â â a â ) {\\displaystyle {\\vec {p}}-{\\vec {a}}={\\frac {m}{m+n}}({\\vec {b}}-{\\vec {a}})} ãããã£ãŠã p â = n a â + m b â m + n {\\displaystyle {\\vec {p}}={\\frac {n{\\vec {a}}+m{\\vec {b}}}{m+n}}} ã§ããã",
"title": "äœçœ®ãã¯ãã«"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "次ã«ãç¹ A ( a â ) , B ( b â ) {\\displaystyle {\\rm {A({\\vec {a}}),\\,{\\rm {B({\\vec {b}})}}}}} ãéãç·å A B {\\displaystyle \\mathrm {AB} } ã m : n {\\displaystyle m:n} ã«å€åããç¹ Q ( q â ) {\\displaystyle \\mathrm {Q} ({\\vec {q}})} ãæ±ããã",
"title": "äœçœ®ãã¯ãã«"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "m > n {\\displaystyle m>n} ã®å Žåã¯ã A Q â = m m â n A B â {\\displaystyle {\\vec {\\mathrm {AQ} }}={\\frac {m}{m-n}}{\\vec {\\mathrm {AB} }}} ããã q â â a â = m m â n ( b â â a â ) {\\displaystyle {\\vec {q}}-{\\vec {a}}={\\frac {m}{m-n}}({\\vec {b}}-{\\vec {a}})} ãããã£ãŠã q â = â n a â + m b â m â n {\\displaystyle {\\vec {q}}={\\frac {-n{\\vec {a}}+m{\\vec {b}}}{m-n}}} ã§ããã",
"title": "äœçœ®ãã¯ãã«"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "m < n {\\displaystyle m<n} ã®å Žåã¯ã B Q â = n n â m B A â {\\displaystyle {\\vec {\\mathrm {BQ} }}={\\frac {n}{n-m}}{\\vec {\\mathrm {BA} }}} ã«æ³šæããŠåæ§ã«èšç®ããã°ãåãšåãã q â = â n a â + m b â m â n {\\displaystyle {\\vec {q}}={\\frac {-n{\\vec {a}}+m{\\vec {b}}}{m-n}}} ãåŸãããã",
"title": "äœçœ®ãã¯ãã«"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "äžè§åœ¢ A B C {\\displaystyle \\mathrm {ABC} } ã«å¯Ÿãã A ( a â ) , B ( b â ) , C ( c â ) {\\displaystyle \\mathrm {A} ({\\vec {a}}),\\,\\mathrm {B} ({\\vec {b}}),\\,\\mathrm {C} ({\\vec {c}})} ãšçœ®ãããã®äžè§åœ¢ A B C {\\displaystyle \\mathrm {ABC} } ã®éå¿ G ( g â ) {\\displaystyle \\mathrm {G} ({\\vec {g}})} ãæ±ããã",
"title": "äœçœ®ãã¯ãã«"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "ç·å B C {\\displaystyle \\mathrm {BC} } ã®äžç¹ã M ( m â ) {\\displaystyle \\mathrm {M} ({\\vec {m}})} ãšãããšãç¹ M {\\displaystyle \\mathrm {M} } ã¯ç·å B C {\\displaystyle \\mathrm {BC} } ã 1 : 1 {\\displaystyle 1:1} ã«å
åããç¹ãªã®ã§ã m â = b â + c â 2 {\\displaystyle {\\vec {m}}={\\frac {{\\vec {b}}+{\\vec {c}}}{2}}} ã§ããã",
"title": "äœçœ®ãã¯ãã«"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "ç¹ G {\\displaystyle \\mathrm {G} } ã¯ç·å A M {\\displaystyle \\mathrm {AM} } ã 2 : 1 {\\displaystyle 2:1} ã«å
åããç¹ãªã®ã§ã g â = a â + b â + c â 3 {\\displaystyle {\\vec {g}}={\\frac {{\\vec {a}}+{\\vec {b}}+{\\vec {c}}}{3}}} ã§ããã",
"title": "äœçœ®ãã¯ãã«"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "äžè§åœ¢ A B C {\\displaystyle \\mathrm {ABC} } ã«å¯Ÿãã A ( a â ) , B ( b â ) , C ( c â ) {\\displaystyle \\mathrm {A} ({\\vec {a}}),\\,\\mathrm {B} ({\\vec {b}}),\\,\\mathrm {C} ({\\vec {c}})} ãšçœ®ããããã«ã A B = c , B C = a , C A = b {\\displaystyle \\mathrm {AB} =c,\\,\\mathrm {BC} =a,\\,\\mathrm {CA} =b} ãšçœ®ããäžè§åœ¢ A B C {\\displaystyle \\mathrm {ABC} } ã®å
å¿ã®äœçœ®ãã¯ãã« I ( i â ) {\\displaystyle \\mathrm {I} ({\\vec {i}})} ãæ±ããã",
"title": "äœçœ®ãã¯ãã«"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "A {\\displaystyle {\\rm {A}}} ã®äºçåç·ãšç·å B C {\\displaystyle {\\rm {BC}}} ã®äº€ç¹ã D ( d â ) {\\displaystyle \\mathrm {D} ({\\vec {d}})} ãšããããã®ãšããäžè§åœ¢ã®äºçåç·ã®æ§è³ªãã B D : D C = c : b {\\displaystyle \\mathrm {BD} :\\mathrm {DC} =c:b} ãããã£ãŠã d â = b b â + c c â b + c {\\displaystyle {\\vec {d}}={\\frac {b{\\vec {b}}+c{\\vec {c}}}{b+c}}} ã§ããã",
"title": "äœçœ®ãã¯ãã«"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ããã§ã A I : I D = B A : B D = c : a c b + c = ( b + c ) : a {\\displaystyle \\mathrm {AI} :\\mathrm {ID} =\\mathrm {BA} :\\mathrm {BD} =c:{\\frac {ac}{b+c}}=(b+c):a} ã§ããã",
"title": "äœçœ®ãã¯ãã«"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "ãããã£ãŠã i â = a a â + ( b + c ) d â a + b + c = a a â + b b â + c c â a + b + c {\\displaystyle {\\vec {i}}={\\frac {a{\\vec {a}}+(b+c){\\vec {d}}}{a+b+c}}={\\frac {a{\\vec {a}}+b{\\vec {b}}+c{\\vec {c}}}{a+b+c}}} ã§ããã",
"title": "äœçœ®ãã¯ãã«"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "äžåŠãŸãã¯é«æ ¡ã®çç§ã®ååŠã§ã¯ãååŠçãªä»äºã®å®çŸ©ããªãã£ãããšãããã ããããã®ä»äºã§ã¯ãç§»åæ¹å以å€ã®åã¯ãä»äºã«å¯äžããªãã£ãããã®ãããªåã®ä»äºã®èšç®ãããã¯ãã«ã®èгç¹ããã¿ãã°ãå
ç©ãšããæ°ããæŠå¿µãå®çŸ©ã§ããã",
"title": "ãã¯ãã«ã®å
ç©"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "ãã¯ãã« a â , b â {\\displaystyle {\\vec {a}},{\\vec {b}}} ã«å¯Ÿãã a â = O A â , b â = O B â {\\displaystyle {\\vec {a}}={\\vec {\\mathrm {OA} }},{\\vec {b}}={\\vec {\\mathrm {OB} }}} ãšãªãç¹ O , A , B {\\displaystyle \\mathrm {O,A,B} } ããšãããã®ãšãã â A O B {\\displaystyle \\angle \\mathrm {AOB} } ããã¯ãã« a â , b â {\\displaystyle {\\vec {a}},{\\vec {b}}} ã®ãªãè§ãšããã",
"title": "ãã¯ãã«ã®å
ç©"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "(å³)",
"title": "ãã¯ãã«ã®å
ç©"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "ãã¯ãã« a â , b â {\\displaystyle {\\vec {a}},{\\vec {b}}} ã®ãªãè§ã Ξ {\\displaystyle \\theta } ãšãããšããå
ç© a â â
b â {\\displaystyle {\\vec {a}}\\cdot {\\vec {b}}} ã",
"title": "ãã¯ãã«ã®å
ç©"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "ã§å®ããã",
"title": "ãã¯ãã«ã®å
ç©"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "å®çŸ©ããããã¯ãã«ã®å
ç©ã¯äžæ¹ã®ãã¯ãã«ãããäžæ¹ã®ãã¯ãã«ã«å°åœ±ãããšãã®ã倧ããã®ç©ã§ãããšèšããã",
"title": "ãã¯ãã«ã®å
ç©"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "(å³)",
"title": "ãã¯ãã«ã®å
ç©"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "ãã¯ãã« a â , b â {\\displaystyle {\\vec {a}},{\\vec {b}}} ã a â = ( a 1 , a 2 ) , b â = ( b 1 , b 2 ) {\\displaystyle {\\vec {a}}=(a_{1},a_{2}),{\\vec {b}}=(b_{1},b_{2})} ãšæå衚瀺ãããšãã®ãå
ç© a â â
b â {\\displaystyle {\\vec {a}}\\cdot {\\vec {b}}} ã«ã€ããŠèããŠã¿ããã",
"title": "ãã¯ãã«ã®å
ç©"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "ãã¯ãã« a â , b â {\\displaystyle {\\vec {a}},{\\vec {b}}} ã«å¯Ÿãã a â = O A â , b â = O B â {\\displaystyle {\\vec {a}}={\\vec {\\mathrm {OA} }},{\\vec {b}}={\\vec {\\mathrm {OB} }}} ãšãªãç¹ O , A , B {\\displaystyle \\mathrm {O,A,B} } ããšãããã¯ãã« a â , b â {\\displaystyle {\\vec {a}},{\\vec {b}}} ã®ãªãè§ã Ξ {\\displaystyle \\theta } ãšããããã®ãšã â³ O A B {\\displaystyle \\triangle \\mathrm {OAB} } ã«å¯ŸãäœåŒŠå®çãçšããŠ",
"title": "ãã¯ãã«ã®å
ç©"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "A B 2 = O A 2 + O B 2 â 2 â
O A â
O B cos Ξ {\\displaystyle \\mathrm {\\mathrm {AB} } ^{2}=\\mathrm {\\mathrm {OA} } ^{2}+\\mathrm {\\mathrm {OB} } ^{2}-2\\cdot \\mathrm {\\mathrm {OA} } \\cdot \\mathrm {\\mathrm {OB} } \\cos \\theta }",
"title": "ãã¯ãã«ã®å
ç©"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "(å³)",
"title": "ãã¯ãã«ã®å
ç©"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "ããã§ã A B = | b â â a â | , O A = | a â | , O B = | b â | {\\displaystyle \\mathrm {\\mathrm {AB} } =|{\\vec {b}}-{\\vec {a}}|,\\mathrm {\\mathrm {OA} } =|{\\vec {a}}|,\\mathrm {\\mathrm {OB} } =|{\\vec {b}}|} ãšã O A â
O B cos Ξ = | a â | | b â | cos Ξ = a â â
b â {\\displaystyle \\mathrm {\\mathrm {OA} } \\cdot \\mathrm {\\mathrm {OB} } \\cos \\theta =|{\\vec {a}}||{\\vec {b}}|\\cos \\theta ={\\vec {a}}\\cdot {\\vec {b}}} ãã",
"title": "ãã¯ãã«ã®å
ç©"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "| b â â a â | 2 = | a â | 2 + | b â | 2 â 2 a â â
b â {\\displaystyle |{\\vec {b}}-{\\vec {a}}|^{2}=|{\\vec {a}}|^{2}+|{\\vec {b}}|^{2}-2{\\vec {a}}\\cdot {\\vec {b}}} ã§ããã®ã§ã a â â
b â = 1 2 ( | a â | 2 + | b â | 2 â | b â â a â | 2 ) {\\displaystyle {\\vec {a}}\\cdot {\\vec {b}}={\\frac {1}{2}}(|{\\vec {a}}|^{2}+|{\\vec {b}}|^{2}-|{\\vec {b}}-{\\vec {a}}|^{2})} ã§ããã",
"title": "ãã¯ãã«ã®å
ç©"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "ããã§ã | a â | 2 = a 1 2 + a 2 2 , | b â | 2 = b 1 2 + b 2 2 , | b â â a â | 2 = | ( b 1 â a 1 , b 2 â a 2 ) | 2 = ( b 1 â a 1 ) 2 + ( b 2 â a 2 ) 2 {\\displaystyle |{\\vec {a}}|^{2}=a_{1}^{2}+a_{2}^{2},|{\\vec {b}}|^{2}=b_{1}^{2}+b_{2}^{2},|{\\vec {b}}-{\\vec {a}}|^{2}=|(b_{1}-a_{1},b_{2}-a_{2})|^{2}=(b_{1}-a_{1})^{2}+(b_{2}-a_{2})^{2}} ãªã®ã§ãããã代å
¥ããã°",
"title": "ãã¯ãã«ã®å
ç©"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "a â â
b â = 1 2 ( | a â | 2 + | b â | 2 â | b â â a â | 2 ) {\\displaystyle {\\vec {a}}\\cdot {\\vec {b}}={\\frac {1}{2}}(|{\\vec {a}}|^{2}+|{\\vec {b}}|^{2}-|{\\vec {b}}-{\\vec {a}}|^{2})} = 1 2 [ ( a 1 2 + a 2 2 ) + ( b 1 2 + b 2 2 ) â ( b 1 â a 1 ) 2 + ( b 2 â a 2 ) 2 ] {\\displaystyle ={\\frac {1}{2}}\\left[(a_{1}^{2}+a_{2}^{2})+(b_{1}^{2}+b_{2}^{2})-(b_{1}-a_{1})^{2}+(b_{2}-a_{2})^{2}\\right]} = a 1 b 1 + a 2 b 2 {\\displaystyle =a_{1}b_{1}+a_{2}b_{2}} ã§ããã",
"title": "ãã¯ãã«ã®å
ç©"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "ãããã£ãŠ a â â
b â = a 1 b 1 + a 2 b 2 {\\displaystyle {\\vec {a}}\\cdot {\\vec {b}}=a_{1}b_{1}+a_{2}b_{2}} ãåŸãããã",
"title": "ãã¯ãã«ã®å
ç©"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "å
ç©ã®æ§è³ª â ãã¯ãã« a â , b â , c â {\\displaystyle {\\vec {a}},{\\vec {b}},{\\vec {c}}} ãšå®æ° k {\\displaystyle k} ã«å¯Ÿã以äžãæãç«ã€ã",
"title": "ãã¯ãã«ã®å
ç©"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "ãããã¯ãã¯ãã«ãæå衚瀺ããŠèšç®ããã°èšŒæã§ããã",
"title": "ãã¯ãã«ã®å
ç©"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "蚌æ â a â = ( a 1 , a 2 ) , b â = ( b 1 , b 2 ) , c â = ( c 1 , c 2 ) {\\displaystyle {\\vec {a}}=(a_{1},a_{2}),{\\vec {b}}=(b_{1},b_{2}),{\\vec {c}}=(c_{1},c_{2})} ãšããã",
"title": "ãã¯ãã«ã®å
ç©"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "æŒç¿åé¡",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "A ( a â ) , B ( b â ) {\\displaystyle \\mathrm {A} ({\\vec {a}}),\\,\\mathrm {B} ({\\vec {b}})} ãšããã ãã®ãšããç·åOAã1:3ã«åããç¹ãšãç·åOBã5:2ã«åããç¹ããããããA',B'ãšããã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "(1) ãã¯ãã« O A â² â , O B â² â {\\displaystyle {\\vec {OA'}},\\,{\\vec {OB'}}} ããã¯ãã« a â , b â {\\displaystyle {\\vec {a}},\\,{\\vec {b}}} ãçšããŠããããã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "(2) ç·åAB'ãšãBA'ã®äº€ç¹ M ã®äœçœ®ãã¯ãã«ããã¯ãã« a â , b â {\\displaystyle {\\vec {a}},\\,{\\vec {b}}} ãçšããŠããããã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "ãã¯ãã«",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "ãšã ãã¯ãã«",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "ã¯äºãã«1次ç¬ç«ãª2æ¬ã®ãã¯ãã«ãªã®ã§ã ããããçšããŠããããå³åœ¢äžã®ç¹ã衚ãããã¯ãã§ããã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "å³åœ¢äžã®ããããã®ç¹ã¯ãç¹Oããã®äœçœ®ãã¯ãã«ã§è¡šãããã äŸãã°ããã¯ãã«",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "ã¯ãç¹OããèŠãŠ",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "ãšå¹³è¡ãªæ¹åã®ãã¯ãã«ã§ããããã®å€§ãããã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "ã§ããã®ã§ã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "ã§è¡šãããã åæ§ã«ããã¯ãã«",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "ã¯ãç¹OããèŠãŠ",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "ãšå¹³è¡ãªæ¹åã®ãã¯ãã«ã§ããããã®å€§ãããã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "ã§ããã®ã§ã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "ã§è¡šãããã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "次ã«ãç¹A'ãééããç·åA'Bã«å¹³è¡ãªçŽç·ã ãã¯ãã«",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "ãš",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "ãçšããŠèšè¿°ããæ¹æ³ãèããã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "ããã§ã¯ã ãã®çŽç·äžã®ç¹ã¯ã ãã宿° s {\\displaystyle s} ãçšããŠã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "ã§è¡šããããšã«æ³šç®ããã äŸãã°ã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "ã®ãšãããã®åŒã衚ãç¹ã¯",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "ã«çããã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "ã®ãšãã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "ã«çãããããããçŽç· A'Bäžã®ç¹ã§ããã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "ãããã«å
ã»ã©æ±ãã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "ãšã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 104,
"tag": "p",
"text": "ã®å€ãçšãããšã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 105,
"tag": "p",
"text": "ãåŸãããã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 106,
"tag": "p",
"text": "åæ§ã«ãç·åAB'äžã®ç¹ã¯ãã宿° t {\\displaystyle t} ãçšããŠã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 107,
"tag": "p",
"text": "ã§è¡šãããã ããã«å
ã»ã©åŸãå€ã代å
¥ãããšã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 108,
"tag": "p",
"text": "ãšãªãã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 109,
"tag": "p",
"text": "ãã®ããã«ããããã®çŽç·äžã®ç¹ã s {\\displaystyle s} , t {\\displaystyle t} ã çšããŠè¡šãããã æ¬¡ã«ããããã®åŒãåãç¹ã瀺ãããã« s {\\displaystyle s} , t {\\displaystyle t} ãå®ããã ãã®ããã«ã¯ã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 110,
"tag": "p",
"text": ",",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 111,
"tag": "p",
"text": "ãçãããšãããŠã s {\\displaystyle s} , t {\\displaystyle t} ã«é¢ããé£ç«æ¹çšåŒãäœãããããè§£ãã°ããã äžã®åŒã§",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 112,
"tag": "p",
"text": "ã®ä¿æ°ãçãããšãããšã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 113,
"tag": "p",
"text": "ãåŸããã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 114,
"tag": "p",
"text": "ã®ä¿æ°ãçãããšãããšã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 115,
"tag": "p",
"text": "ãåŸãããã ãã®åŒãé£ç«ããŠè§£ããšã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 116,
"tag": "p",
"text": ",",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 117,
"tag": "p",
"text": "ãåŸãããã ãã®åŒã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 118,
"tag": "p",
"text": ",",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 119,
"tag": "p",
"text": "ã®ã©ã¡ããã«ä»£å
¥ãããšãæ±ããäœçœ®ãã¯ãã«ãåŸãããã®ã§ããã 代å
¥ãããšãæ±ãããã¯ãã«ã¯ã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 120,
"tag": "p",
"text": "ãšãªãã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 121,
"tag": "p",
"text": "ç¹ A ( a â ) {\\displaystyle \\mathrm {A} ({\\vec {a}})} ãéãããã¯ãã« d â ( â 0 â ) {\\displaystyle {\\vec {d}}\\,(\\neq {\\vec {0}})} ã«å¹³è¡ãªçŽç·ã g {\\displaystyle g} ãšããã g {\\displaystyle g} äžã®ç¹ã P ( p â ) {\\displaystyle \\mathrm {P} ({\\vec {p}})} ãšãããšã A P â = 0 â {\\displaystyle {\\vec {\\mathrm {AP} }}={\\vec {0}}} ãŸã㯠A P â ⥠d â {\\displaystyle {\\vec {\\mathrm {AP} }}\\parallel {\\vec {d}}} ã ãã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 122,
"tag": "p",
"text": "ãšãªã宿° t {\\displaystyle t} ãããã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 123,
"tag": "p",
"text": "ããªãã¡ã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 124,
"tag": "p",
"text": "ãã£ãŠã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 125,
"tag": "p",
"text": "ããããçŽç· g {\\displaystyle g} ã®ãã¯ãã«æ¹çšåŒ(vector equation)ãšããã d â {\\displaystyle {\\vec {d}}} ã g {\\displaystyle g} ã®æ¹åãã¯ãã«ãšããããŸãã t {\\displaystyle t} ãåªä»å€æ°ãšããã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 126,
"tag": "p",
"text": "ç¹Aã®åº§æšã ( x 1 , y 1 ) {\\displaystyle (x_{1}\\ ,\\ y_{1})} ã d â = ( a , b ) {\\displaystyle {\\vec {d}}=(a\\ ,\\ b)} ãç¹Pã®åº§æšã ( x , y ) {\\displaystyle (x\\ ,\\ y)} ãšãããšããã¯ãã«æ¹çšåŒ p â = a â + t d â {\\displaystyle {\\vec {p}}={\\vec {a}}+t{\\vec {d}}} ã¯",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 127,
"tag": "p",
"text": "ãšãªãããããã£ãŠ",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 128,
"tag": "p",
"text": "{ x = x 1 + a t y = y 1 + b t {\\displaystyle {\\begin{cases}x=x_{1}+at\\\\y=y_{1}+bt\\end{cases}}}",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 129,
"tag": "p",
"text": "ãããçŽç· g {\\displaystyle g} ã®åªä»å€æ°è¡šç€ºãšããã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 130,
"tag": "p",
"text": "",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 131,
"tag": "p",
"text": "",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 132,
"tag": "p",
"text": "æŒç¿åé¡",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 133,
"tag": "p",
"text": "ç¹A ( 1 , 2 ) {\\displaystyle (1\\ ,\\ 2)} ãéãã d â = ( 3 , 5 ) {\\displaystyle {\\vec {d}}=(3\\ ,\\ 5)} ã«å¹³è¡ãªçŽç·ã®æ¹çšåŒããåªä»å€æ°tãçšããŠè¡šãã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 134,
"tag": "p",
"text": "ãŸããtãæ¶å»ããåŒã§è¡šãã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 135,
"tag": "p",
"text": "ãã®çŽç·ã®ãã¯ãã«æ¹çšåŒã¯",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 136,
"tag": "p",
"text": "ãããã£ãŠ",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 137,
"tag": "p",
"text": "tãæ¶å»ãããšã次ã®ããã«ãªãã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 138,
"tag": "p",
"text": "",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 139,
"tag": "p",
"text": "2ç¹ A ( a â ) , B ( b â ) {\\displaystyle \\mathrm {A} ({\\vec {a}}),\\,\\mathrm {B} ({\\vec {b}})} ãéãçŽç·ã®ãã¯ãã«æ¹çšåŒãèããã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 140,
"tag": "p",
"text": "çŽç·ABã¯ãç¹Aãéãã A B â = b â â a â {\\displaystyle {\\vec {AB}}={\\vec {b}}-{\\vec {a}}} ãæ¹åãã¯ãã«ãšããçŽç·ãšèããããããããã®ãã¯ãã«æ¹çšåŒã¯",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 141,
"tag": "p",
"text": "ãšãªããããã¯æ¬¡ã®ããã«æžããã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 142,
"tag": "p",
"text": "",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 143,
"tag": "p",
"text": "æŒç¿åé¡",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 144,
"tag": "p",
"text": "2ç¹A ( 2 , 5 ) {\\displaystyle (2\\ ,\\ 5)} ,B ( â 1 , 3 ) {\\displaystyle (-1\\ ,\\ 3)} ãéãçŽç·ã®æ¹çšåŒããåªä»å€æ°tãçšããŠè¡šãã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 145,
"tag": "p",
"text": "ãã®çŽç·ã®ãã¯ãã«æ¹çšåŒã¯",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 146,
"tag": "p",
"text": "ãããã£ãŠ",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 147,
"tag": "p",
"text": "",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 148,
"tag": "p",
"text": "ç¹Aãéã£ãŠã 0 â {\\displaystyle {\\vec {0}}} ã§ãªããã¯ãã«ã n â {\\displaystyle {\\vec {n}}} ã«åçŽãªçŽç·ãgãšãããgäžã®ç¹ãPãšãããšã A P â = 0 â {\\displaystyle {\\vec {AP}}={\\vec {0}}} ãŸã㯠A P â ⥠n â {\\displaystyle {\\vec {AP}}\\perp {\\vec {n}}} ã ãã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 149,
"tag": "p",
"text": "ã§ããã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 150,
"tag": "p",
"text": "ç¹A,Pã®äœçœ®ãã¯ãã«ãããããã a â , p â {\\displaystyle {\\vec {a}}\\ ,\\ {\\vec {p}}} ãšãããšã A P â = p â â a â {\\displaystyle {\\vec {AP}}={\\vec {p}}-{\\vec {a}}} ã ããã(1)ã¯",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 151,
"tag": "p",
"text": "ãšãªãã(2)ãç¹Aãéã£ãŠã n â {\\displaystyle {\\vec {n}}} ã«åçŽãªçŽç·gã®ãã¯ãã«æ¹çšåŒã§ããã n â {\\displaystyle {\\vec {n}}} ããã®çŽç·ã®æ³ç·ãã¯ãã«(ã»ããããã¯ãã«ãnormal vector)ãšããã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 152,
"tag": "p",
"text": "ç¹Aã®åº§æšã ( x 1 , y 1 ) {\\displaystyle (x_{1}\\ ,\\ y_{1})} ã n â = ( a , b ) {\\displaystyle {\\vec {n}}=(a\\ ,\\ b)} ãç¹Pã®åº§æšã ( x , y ) {\\displaystyle (x\\ ,\\ y)} ãšãããšã p â â a â = ( x â x 1 , y â y 1 ) {\\displaystyle {\\vec {p}}-{\\vec {a}}=(x-x_{1}\\ ,\\ y-y_{1})} ã ããã(2)ã¯æ¬¡ã®ããã«ãªãã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 153,
"tag": "p",
"text": "ãã®æ¹çšåŒã¯ã â a x 1 â b y 1 = c {\\displaystyle -ax_{1}-by_{1}=c} ãšãããšã a x + b y + c = 0 {\\displaystyle ax+by+c=0} ãšãªããããæ¬¡ã®ããšããããã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 154,
"tag": "p",
"text": "çŽç· a x + b y + c = 0 {\\displaystyle ax+by+c=0} ã®æ³ç·ãã¯ãã«ã¯ã n â = ( a , b ) {\\displaystyle {\\vec {n}}=(a\\ ,\\ b)} ã§ããã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 155,
"tag": "p",
"text": "",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 156,
"tag": "p",
"text": "æŒç¿åé¡",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 157,
"tag": "p",
"text": "ç¹A ( 2 , 5 ) {\\displaystyle (2\\ ,\\ 5)} ãéãã n â = ( 4 , 3 ) {\\displaystyle {\\vec {n}}=(4\\ ,\\ 3)} ã«åçŽãªçŽç·ã®æ¹çšåŒãæ±ããã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 158,
"tag": "p",
"text": "ã€ãŸã",
"title": "ãã¯ãã«æ¹çšåŒ"
},
{
"paragraph_id": 159,
"tag": "p",
"text": "ãããŸã§ã¯ãå¹³é¢äžã®ãã¯ãã«ã«ã€ããŠèããŠããããããããã¯3次å
空éäžã®ãã¯ãã«ã«ã€ããŠèãããããäžè¬ã«ãã¯ãã«ã¯n次å
(ãŠãŒã¯ãªãã)空éäžã§å®çŸ©ããããšãã§ãããããã®ãããªãã®ã¯é«æ ¡ã§ã¯æ±ããªãã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 160,
"tag": "p",
"text": "ä»ãŸã§ã¯ãå¹³é¢äžã®å³åœ¢ããã¯ãã«ãæ°åŒãçšããŠè¡šçŸããæ¹æ³ãåŠãã§æ¥ãã ããã§ãã2次å
ãšã¯ãå¹³é¢ã®ããšã§ãããå¹³é¢äžã®ä»»æã®ç¹ãæå®ããã«ã¯æäœã§ã2以äžã®å®æ°ãå¿
èŠã ãããã®ããã«åŒã°ããŠããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 161,
"tag": "p",
"text": "ãã¡ãã容æã«åããéãã2ã€ä»¥äžã®æ¬¡å
ãæã£ãŠããå³åœ¢ãååšããã äŸãã°ã3次å
ç«äœã®1ã€ã§ããçŽæ¹äœã¯çžŠã暪ãé«ãã®3ã€ã®é·ããæã£ãŠããã®ã§ã3次å
å³åœ¢ãšåŒã°ããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 162,
"tag": "p",
"text": "空éã«1ã€ã®å¹³é¢ããšãããã®äžã«çŽäº€ãã座æšè»ž O x , O y {\\displaystyle O_{x}\\ ,\\ O_{y}} ããšããæ¬¡ã«Oãéããã®å¹³é¢ã«åçŽãªçŽç· O z {\\displaystyle O_{z}} ãã²ãããã®çŽç·äžã§ãOãåç¹ãšãã座æšãèããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 163,
"tag": "p",
"text": "ãã®3çŽç· O x , O y , O z {\\displaystyle O_{x}\\ ,\\ O_{y}\\ ,\\ O_{z}} ã¯ãã©ã®2ã€ãäºãã«åçŽã§ããããããã座æšè»žãšãããããããx軞ãy軞ãz軞ãšããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 164,
"tag": "p",
"text": "ãŸããx軞ãšy軞ãšã§å®ãŸãå¹³é¢ãxyå¹³é¢ãšãããy軞ãšz軞ãšã§å®ãŸãå¹³é¢ãyzå¹³é¢ãšãããz軞ãšx軞ãšã§å®ãŸãå¹³é¢ãzxå¹³é¢ãšããããããã座æšå¹³é¢ãšããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 165,
"tag": "p",
"text": "空éå
ã®ç¹Aã«å¯ŸããŠãAãéã£ãŠå座æšå¹³é¢ã«å¹³è¡ãª3ã€ã®å¹³é¢ãã€ãããããããx軞ãy軞ãz軞ãšäº€ããç¹ã A 1 , A 2 , A 3 {\\displaystyle A_{1}\\ ,\\ A_{2}\\ ,\\ A_{3}} ãšãã A 1 , A 2 , A 3 {\\displaystyle A_{1}\\ ,\\ A_{2}\\ ,\\ A_{3}} ã®ããããã®è»žäžã§ã®åº§æšã a 1 , a 2 , a 3 {\\displaystyle a_{1}\\ ,\\ a_{2}\\ ,\\ a_{3}} ãšããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 166,
"tag": "p",
"text": "ãã®ãšãã3ã€ã®æ°ã®çµ",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 167,
"tag": "p",
"text": "ãç¹Aã®åº§æšãšããã a 1 {\\displaystyle a_{1}} ãx座æšãšããã a 2 {\\displaystyle a_{2}} ãy座æšãšããã a 3 {\\displaystyle a_{3}} ãz座æšãšããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 168,
"tag": "p",
"text": "ãã®ããã«åº§æšã®å®ãããã空éã座æšç©ºéãšåŒã³ãç¹Oã座æšç©ºéã®åç¹ãšããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 169,
"tag": "p",
"text": "ããã§ã¯ãç¹ã«3次å
空éã®å³åœ¢ã«æ³šç®ããã ãŸãã¯ãã¯ãã«ãçšããåã«3次å
空éã®ç©ºéå³åœ¢ããæ°åŒã«ãã£ãŠèšè¿°ããæ¹æ³ãèå¯ããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 170,
"tag": "p",
"text": "2次å
空éã«ãããŠããã£ãšãç°¡åãªå³åœ¢ã¯çŽç·ã§ããããã®åŒã¯äžè¬çã«",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 171,
"tag": "p",
"text": "ã§è¡šããããã ( a {\\displaystyle a} , b {\\displaystyle b} , c {\\displaystyle c} ã¯ä»»æã®å®æ°ã) ããã§ x {\\displaystyle x} , y {\\displaystyle y} ã¯ã2次å
空éã代衚ãã2ã€ã®ãã©ã¡ãŒã¿ãŒã§ããã3次å
空éãçšãããšãã«ã¯ããããã¯3ã€ã®æåã§è¡šããããããšãæåŸ
ãããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 172,
"tag": "p",
"text": "å®éãã®ãããªåŒã§è¡šããããå³åœ¢ã¯ã3次å
空éã§ãåºæ¬çãªå³åœ¢ã§ãããã€ãŸãã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 173,
"tag": "p",
"text": "ããäžã®åŒã®é¡äŒŒç©ãšããŠåŸãããã ( a {\\displaystyle a} , b {\\displaystyle b} , c {\\displaystyle c} , d {\\displaystyle d} ã¯ä»»æã®å®æ°ã)",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 174,
"tag": "p",
"text": "ãã®ãããªå³åœ¢ã¯ã©ããªå³åœ¢ã«å¯Ÿå¿ããã ããã?",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 175,
"tag": "p",
"text": "å®éã«ã¯ãã®å³åœ¢ãç¹åŸŽã¥ããã®ã¯ãåŸã«åŠã¶3次å
ãã¯ãã«ãçšããã®ããã£ãšãç°¡åã§ããã®ã§ãããã¯åŸã«ãŸããããšã«ããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 176,
"tag": "p",
"text": "ãããããã 1ã€ãã®åŒããåããããšã¯ã3次å
空éã®åº§æšã衚ãããã©ã¡ãŒã¿ãŒ",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 177,
"tag": "p",
"text": "ã®ãã¡ã«1ã€ã®é¢ä¿",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 178,
"tag": "p",
"text": "ãäžããããšã§ã3次å
空éäžã®å³åœ¢ãæå®ã§ãããšããããšã§ããããã®å Žåã¯ã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 179,
"tag": "p",
"text": "ãçšããŠããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 180,
"tag": "p",
"text": "ãã¯ãã«ã䜿ããªããŠãå³åœ¢çè§£éãåŸãããåŒãšããŠã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 181,
"tag": "p",
"text": "ãæããããã ( a {\\displaystyle a} , b {\\displaystyle b} , c {\\displaystyle c} , r {\\displaystyle r} ã¯ä»»æã®å®æ°ã) ãã®åŒã¯ã2次å
ã§ãããšããã®",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 182,
"tag": "p",
"text": "ã®åŒã®é¡äŒŒç©ã§ããã2次å
ã®å Žåã¯ãã®åŒã¯ã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 183,
"tag": "p",
"text": "äžå¿ ( a , b ) {\\displaystyle (a,b)} ååŸ r {\\displaystyle r} ã®åã«å¯Ÿå¿ããŠããã 3次å
ã®ãã®åŒã¯ãçµè«ããããšäžå¿ ( a , b , c ) {\\displaystyle (a,b,c)} ååŸ r {\\displaystyle r} ã®åã«å¯Ÿå¿ããŠããã®ã§ããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 184,
"tag": "p",
"text": "äžã®åŒ",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 185,
"tag": "p",
"text": "ãæºããããç¹ ( x , y , z ) {\\displaystyle (x,y,z)} ãåãããã®ç¹ãšç¹ ( a , b , c ) {\\displaystyle (a,b,c)} ãšã®è·é¢ãèããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 186,
"tag": "p",
"text": "空é座æšã«çœ®ãã x {\\displaystyle x} 軞ã y {\\displaystyle y} 軞ã z {\\displaystyle z} 軞ã¯ããããçŽäº€ããŠããã®ã§ã2ç¹ã®è·é¢ã¯3å¹³æ¹ã®å®çãçšããŠ",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 187,
"tag": "p",
"text": "ã§äžããããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 188,
"tag": "p",
"text": "ããããäžã®åŒããããã§éžãã ç¹ ( x , y , z ) {\\displaystyle (x,y,z)} ã¯ãæ¡ä»¶",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 189,
"tag": "p",
"text": "ãæºãããŠããã®ã§ã2ç¹ã®è·é¢ã¯",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 190,
"tag": "p",
"text": "ã§ããã ( r > 0 {\\displaystyle r>0} ãçšããã)",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 191,
"tag": "p",
"text": "ãã£ãŠãäžã®åŒãæºããç¹ã¯å
šãŠç¹ ( a , b , c ) {\\displaystyle (a,b,c)} ããã®è·é¢ã r {\\displaystyle r} ã§ããç¹ã§ãããããã¯äžå¿ ( a , b , c ) {\\displaystyle (a,b,c)} ååŸ r {\\displaystyle r} ã®åã«ä»ãªããªãã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 192,
"tag": "p",
"text": "",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 193,
"tag": "p",
"text": "æŒç¿åé¡",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 194,
"tag": "p",
"text": "äžå¿",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 195,
"tag": "p",
"text": "ååŸ",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 196,
"tag": "p",
"text": "ã®çã®åŒãæ±ããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 197,
"tag": "p",
"text": "ã«ä»£å
¥ããããšã§ã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 198,
"tag": "p",
"text": "ãæ±ããããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 199,
"tag": "p",
"text": "æŒç¿åé¡",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 200,
"tag": "p",
"text": "ãã©ã®ãã㪠çã«å¯Ÿå¿ãããèšç®ããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 201,
"tag": "p",
"text": "ãã®ãããªæ°åŒãçã«å¯Ÿå¿ãããšãã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 202,
"tag": "p",
"text": "ã®ä¿æ°ã¯å¿
ãçãããªããŠã¯ãªããªããããã§ãªãå Žåã¯ãã®å³åœ¢ã¯æ¥åäœã«å¯Ÿå¿ããã®ã ããããã¯æå°èŠé ã®ç¯å²å€ã§ããã ããã§ã¯äžã®åŒã¯ãã®æ¡ä»¶ãæºãããŠããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 203,
"tag": "p",
"text": "ããã§ã¯ããã®åŒã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 204,
"tag": "p",
"text": "ã®åœ¢ã«æã£ãŠè¡ãããšãéèŠã§ããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 205,
"tag": "p",
"text": "ã®ããããã«ã€ããŠãã®åŒãå¹³æ¹å®æãããšã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 206,
"tag": "p",
"text": "ãåŸãããããã£ãŠãäžã®åŒ",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 207,
"tag": "p",
"text": "ã¯ã äžå¿",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 208,
"tag": "p",
"text": "ãååŸ",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 209,
"tag": "p",
"text": "ã®çã«å¯Ÿå¿ããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 210,
"tag": "p",
"text": "次ã«3次å
空éäžã«ããããã¯ãã«ãèå¯ããã 2次å
空éäžã§ã¯ãã¯ãã«ã¯2ã€ã®éã®çµã¿åããã§è¡šããããã ããã¯1ã€ã®ãã¯ãã«ã¯x軞æ¹åã«å¯Ÿå¿ããéãšy軞æ¹åã«å¯Ÿå¿ããéã®2ã€ãæã£ãŠããå¿
èŠããã£ãããã§ããã ãã®ããšããã3次å
空éã®ãã¯ãã«ã¯3ã€ã®éã®çµã¿åããã§æžããããšãäºæ³ãããã ç¹ã« x {\\displaystyle x} 軞æ¹åã®æå a {\\displaystyle a} , y {\\displaystyle y} 軞æ¹åã®æå b {\\displaystyle b} , z {\\displaystyle z} 軞æ¹åã®æå c {\\displaystyle c} ( a {\\displaystyle a} , b {\\displaystyle b} , c {\\displaystyle c} ã¯ä»»æã®å®æ°ã) ã§è¡šãããããã¯ãã«ãã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 211,
"tag": "p",
"text": "ãšæžããŠè¡šããããšã«ããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 212,
"tag": "p",
"text": "2次å
å¹³é¢ã§ã¯ ãããã¯ãã«",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 213,
"tag": "p",
"text": "ã¯ã ( a {\\displaystyle a} , b {\\displaystyle b} ã¯ä»»æã®å®æ°ã)",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 214,
"tag": "p",
"text": "ã®2æ¬ã®ãã¯ãã«ãçšããŠã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 215,
"tag": "p",
"text": "ã§è¡šããããã 3次å
空éã§ããã®ãããªèšè¿°æ³ããããäžã§çšãããã¯ãã«",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 216,
"tag": "p",
"text": "ã¯ã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 217,
"tag": "p",
"text": "ãçšããŠ",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 218,
"tag": "p",
"text": "ãšæžããããã¯ãã«ã«å¯Ÿå¿ããŠããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 219,
"tag": "p",
"text": "3次å
ãã¯ãã«ã«å¯ŸããŠã2次å
ãã¯ãã«ã§å®ããå®çŸ©ãæ§è³ªãã»ãŒãã®ãŸãŸæç«ããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 220,
"tag": "p",
"text": "3次å
ãã¯ãã«ã®å æ³ã¯ãããããã®ãã¯ãã«èŠçŽ ãç¬ç«ã«è¶³ãåãããããšã«ãã£ãŠå®çŸ©ããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 221,
"tag": "p",
"text": "ãŸããããããã®ãã¯ãã«ã®èŠçŽ ãå
šãŠçãããã¯ãã«ã\"ãã¯ãã«ãšããŠçãã\"ãšè¡šçŸããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 222,
"tag": "p",
"text": "æŒç¿åé¡",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 223,
"tag": "p",
"text": "ãã¯ãã«ã®å",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 224,
"tag": "p",
"text": "ãèšç®ããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 225,
"tag": "p",
"text": "ãåŸãããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 226,
"tag": "p",
"text": "",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 227,
"tag": "p",
"text": "ãã¯ãã« a â {\\displaystyle {\\vec {a}}} , b â {\\displaystyle {\\vec {b}}} éã®ãã¯ãã«ã®å
ç©ãå¹³é¢ã®å Žåãšåæ§ã«",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 228,
"tag": "p",
"text": "( Ξ {\\displaystyle \\theta } ã¯ããã¯ãã« a â {\\displaystyle {\\vec {a}}} , b â {\\displaystyle {\\vec {b}}} ã®ãªãè§ã)",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 229,
"tag": "p",
"text": "åé
æ³åã1次ç¬ç«ã®æ§è³ªããã®ãŸãŸæãç«ã€ã ãã ãã3次å
空éã®å
šãŠã®ãã¯ãã«ã匵ãã«ã¯ã3ã€ã®ç·åœ¢ç¬ç«ãªãã¯ãã«ãæã£ãŠæ¥ãå¿
èŠãããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 230,
"tag": "p",
"text": "",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 231,
"tag": "p",
"text": "ãã®ããšã®èšŒæã¯ããããç·å代æ°åŠãªã©ã«è©³ããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 232,
"tag": "p",
"text": "æŒç¿åé¡",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 233,
"tag": "p",
"text": "2ã€ã®ãã¯ãã«ã®å
ç©",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 234,
"tag": "p",
"text": "ãèšç®ããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 235,
"tag": "p",
"text": "2次å
ã®å Žåãšåãããã«ããã§ãããããã®èŠçŽ ã¯äºãã«çŽäº€ããåäœãã¯ãã«",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 236,
"tag": "p",
"text": "ã«ãã£ãŠåŒµãããŠããããã®ãã以åãšåããèŠçŽ ããšã®èšç®ãå¯èœã§ããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 237,
"tag": "p",
"text": "ãšãªãã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 238,
"tag": "p",
"text": "ããããã现ããèšç®ãè¡ãªããšã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 239,
"tag": "p",
"text": "ãåŸããããããããã®ãã¯ãã«ã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 240,
"tag": "p",
"text": "ã«åŸã£ãŠå±éãã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 241,
"tag": "p",
"text": "( i {\\displaystyle i} , j {\\displaystyle j} ã¯1,2,3ã®ã©ããã) ã代å
¥ããããšã§äžã®åŒãèšç®ã§ããã¯ãã§ããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 242,
"tag": "p",
"text": "ãããã i {\\displaystyle i} ãš j {\\displaystyle j} ãçãããªããšãã«ã¯",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 243,
"tag": "p",
"text": "ãæãç«ã€ããšãããäžã®å±éããåŸã®9åã®é
ã®ãã¡ã§ã6ã€ã¯",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 244,
"tag": "p",
"text": "ã«çããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 245,
"tag": "p",
"text": "ãŸãã i {\\displaystyle i} ãš j {\\displaystyle j} ãçãããšãã«ã¯",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 246,
"tag": "p",
"text": "ãæãç«ã€ããšãããäžã®åŒ",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 247,
"tag": "p",
"text": "ã®å±éã¯",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 248,
"tag": "p",
"text": "ãšãªã£ãŠç¢ºãã«èŠçŽ ããšã®èšç®ãšäžèŽããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 249,
"tag": "p",
"text": "æŒç¿åé¡",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 250,
"tag": "p",
"text": "2次å
空éã®ãã¯ãã«ã¯2æ¬ã®1次ç¬ç«ãªãã¯ãã«ãããã°ãå¿
ããããã®ç·åœ¢çµåã«ãã£ãŠèšç®ã§ããã¯ãã§ããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 251,
"tag": "p",
"text": "ããã§ã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 252,
"tag": "p",
"text": "ãš",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 253,
"tag": "p",
"text": "ãçšããŠã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 254,
"tag": "p",
"text": "ãã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 255,
"tag": "p",
"text": "ã®åœ¢ã«æžããŠã¿ãã ( c {\\displaystyle c} , d {\\displaystyle d} ã¯ãäœããã®å®æ°ã)",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 256,
"tag": "p",
"text": "2次å
ã®ãã¯ãã«ã®ä¿æ°ãæ±ããåé¡ã§ããã c {\\displaystyle c} , d {\\displaystyle d} ã®æåããã®ãŸãŸçšãããšã c {\\displaystyle c} , d {\\displaystyle d} ã®æºããæ¡ä»¶ã¯",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 257,
"tag": "p",
"text": "ã€ãŸã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 258,
"tag": "p",
"text": "ãšãªãããã㯠c {\\displaystyle c} , d {\\displaystyle d} ã«é¢ããé£ç«1次æ¹çšåŒã§æžãæããããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 259,
"tag": "p",
"text": "ãããè§£ããšã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 260,
"tag": "p",
"text": "ãåŸãããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 261,
"tag": "p",
"text": "ãã£ãŠã äžã®åŒã¯",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 262,
"tag": "p",
"text": "ãšæžãã確ãã«2æ¬ã®ç·åœ¢ç¬ç«ãªãã¯ãã«ã«ãã£ãŠä»ã®ãã¯ãã«ãæžã衚ãããããšãåãã£ãã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 263,
"tag": "p",
"text": "",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 264,
"tag": "p",
"text": "ãã®ãããªèšç®ã¯3次å
ãã¯ãã«ã«å¯ŸããŠãå¯èœã§ããããèšç®ææ³ãšããŠ3å
1次é£ç«æ¹çšåŒãæ±ãå¿
èŠããããæå°èŠé ã®ç¯å²å€ã§ãããå®éã®èšç®ææ³ã¯ãç·å代æ°åŠ,ç©çæ°åŠI ç·åœ¢ä»£æ°ãåç
§ã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 265,
"tag": "p",
"text": "",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 266,
"tag": "p",
"text": "ãã®è¡šåŒãçšããŠã以åèŠã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 267,
"tag": "p",
"text": "ã®å³åœ¢çè§£éãè¿°ã¹ãã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 268,
"tag": "p",
"text": "ãã®å³åœ¢äžã®ä»»æã®ç¹ã ( x , y , z ) {\\displaystyle (x,y,z)} ã§è¡šããã ãã®ç¹ã¯åç¹Oã«å¯Ÿããäœçœ®ãã¯ãã«ãçšãããš ( x , y , z ) {\\displaystyle (x,y,z)} ã§äžããããã 䟿å®ã®ããã« ãã®ãã¯ãã«ã x â {\\displaystyle {\\vec {x}}} ãšæžãããšã«ããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 269,
"tag": "p",
"text": "äžæ¹ããã¯ãã« a â = ( a , b , c ) {\\displaystyle {\\vec {a}}=(a,b,c)} ãçšãããšãäžã®åŒã¯ãã¯ãã«ã®å
ç©ãçšã㊠a â â
x â = d {\\displaystyle {\\vec {a}}\\cdot {\\vec {x}}=d} ã§äžããããã ã€ãŸãããã®åŒã§è¡šããããå³åœ¢ã¯ãããã¯ãã« a â {\\displaystyle {\\vec {a}}} ãšã®å
ç©ãäžå®ã«ä¿ã€å³åœ¢ã§ããã ãã®å³åœ¢ã¯ãå®éã«ã¯ a â {\\displaystyle {\\vec {a}}} ã«çŽäº€ããå¹³é¢ã§äžããããã ãªããªããã®ãããªå¹³é¢äžã®ç¹ã¯ãå¿
ãå¹³é¢äžã®ããäžç¹ã®äœçœ®ãã¯ãã«ã«å ããŠã ãã¯ãã« a â {\\displaystyle {\\vec {a}}} ã«çŽäº€ãããã¯ãã«ãå ãããã®ã§æžãããšãåºæ¥ãã ãããã ãã¯ãã« a â {\\displaystyle {\\vec {a}}} ã«çŽäº€ãããã¯ãã«ãš ãã¯ãã« a â {\\displaystyle {\\vec {a}}} ã®å
ç©ã¯å¿
ã0ã§ããã®ã§ã ãã®ãããªç¹ã®éå㯠ãã¯ãã« a â {\\displaystyle {\\vec {a}}} ãšäžå®ã®å
ç©ãæã€ã®ã§ããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 270,
"tag": "p",
"text": "ãã£ãŠå
ã®åŒ",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 271,
"tag": "p",
"text": "ã¯ã ãã¯ãã« a â = ( a , b , c ) {\\displaystyle {\\vec {a}}=(a,b,c)} ã«çŽäº€ããå¹³é¢ã«å¯Ÿå¿ããããšãåãã£ãã æ¬¡ã« d {\\displaystyle d} ããå³åœ¢ã衚ããå¹³é¢ãšãåç¹ãšã®è·é¢ã«é¢ä¿ãããããšã瀺ãã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 272,
"tag": "p",
"text": "ç¹ã«ããã¯ãã« a â {\\displaystyle {\\vec {a}}} ã«æ¯äŸããäœçœ®ãã¯ãã«ãæã€ç¹ x â {\\displaystyle {\\vec {x}}} ãèããããã®ãšããã®ç¹ãšåç¹ãšã®è·é¢ã¯ã å¹³é¢",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 273,
"tag": "p",
"text": "ãšåç¹ãšã®è·é¢ã«å¯Ÿå¿ããã ãªããªããäœçœ®ãã¯ãã« x â {\\displaystyle {\\vec {x}}} ã¯ãåç¹ããå¹³é¢",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 274,
"tag": "p",
"text": "ã«åçŽã«äžãããç·ã«å¯Ÿå¿ããããã§ããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 275,
"tag": "p",
"text": "ãã®ããšãã仮㫠a â {\\displaystyle {\\vec {a}}} æ¹åã®åäœãã¯ãã«ã n â {\\displaystyle {\\vec {n}}} ãšæžããå¹³é¢ãšåç¹ãšã®è·é¢ã m {\\displaystyle m} ãšæžããšã x â = m n â {\\displaystyle {\\vec {x}}=m{\\vec {n}}} ãåŸãããã ãã®åŒã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 276,
"tag": "p",
"text": "ã«ä»£å
¥ãããšã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 277,
"tag": "p",
"text": "ãåŸãããããã£ãŠã d {\\displaystyle d} ã¯ã å¹³é¢ãšåç¹ã®è·é¢ m {\\displaystyle m} ãšãã¯ãã« a â {\\displaystyle {\\vec {a}}} ã®å€§ãããããããã®ã§ããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 278,
"tag": "p",
"text": "",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 279,
"tag": "p",
"text": "",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 280,
"tag": "p",
"text": "æŒç¿åé¡",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 281,
"tag": "p",
"text": "ç¹ã«ãã¯ãã«",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 282,
"tag": "p",
"text": "ãåããšãã©ã®ãããªåŒãåŸãããŠããã®åŒã¯ ã©ã®ãããªå³åœ¢ã«å¯Ÿå¿ãããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 283,
"tag": "p",
"text": "ãã®ãšã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 284,
"tag": "p",
"text": "ã¯ã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 285,
"tag": "p",
"text": "ã«å¯Ÿå¿ããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 286,
"tag": "p",
"text": "ãã®åŒã¯ z {\\displaystyle z} 座æšã d {\\displaystyle d} ã«å¯Ÿå¿ãããã以å€ã® x {\\displaystyle x} , y {\\displaystyle y} 座æšãä»»æã«åããã å¹³é¢ã«å¯Ÿå¿ããŠãããããã㯠x y {\\displaystyle xy} å¹³é¢ã«å¹³è¡ã§ããã x y {\\displaystyle xy} å¹³é¢ããã®è·é¢ã d {\\displaystyle d} ã§ããå¹³é¢ã§ããã ãŸãã x y {\\displaystyle xy} å¹³é¢ãšãã¯ãã«",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 287,
"tag": "p",
"text": "ã¯çŽäº€ããŠããã®ã§ããã®ããšããããã®åŒã¯æ£ããã",
"title": "空é座æšãšãã¯ãã«"
},
{
"paragraph_id": 288,
"tag": "p",
"text": "å€ç©ã¯é«æ ¡æ°åŠç¯å²å€ã§å
¥è©Šã«ã¯åºãªãããå€ç©ã¯æ°åŠãç©çãªã©ã«å¿çšã§ãã䟿å©ãªã®ã§ããã§æ±ãã",
"title": "çºå±:å€ç©"
},
{
"paragraph_id": 289,
"tag": "p",
"text": "äžæ¬¡å
ãã¯ãã« a â , b â {\\displaystyle {\\vec {a}},\\,{\\vec {b}}} ã«å¯Ÿããå€ç© a â à b â {\\displaystyle {\\vec {a}}\\times {\\vec {b}}} ãæ¬¡ãæºãããã®ãšããã",
"title": "çºå±:å€ç©"
},
{
"paragraph_id": 290,
"tag": "p",
"text": "次ã«å€ç©ã®æå衚瀺ãèããŠã¿ããããã®å®çŸ©ããæå衚瀺ãçŽæ¥å°ãã®ã¯é¢åãªã®ã§ã倩äžãçã«æå衚瀺ãäžããŠããããããå€ç©ã®å®çŸ©ãæºããããšã確èªããã",
"title": "çºå±:å€ç©"
},
{
"paragraph_id": 291,
"tag": "p",
"text": "a â = ( a 1 a 2 a 3 ) {\\displaystyle {\\vec {a}}={\\begin{pmatrix}a_{1}\\\\a_{2}\\\\a_{3}\\end{pmatrix}}} ã b â = ( b 1 b 2 b 3 ) {\\displaystyle {\\vec {b}}={\\begin{pmatrix}b_{1}\\\\b_{2}\\\\b_{3}\\end{pmatrix}}} ãšãããšãã a â Ã b â = ( a 2 b 3 â a 3 b 2 a 3 b 1 â a 1 b 3 a 1 b 2 â a 2 b 1 ) {\\displaystyle {\\vec {a}}\\times {\\vec {b}}={\\begin{pmatrix}a_{2}b_{3}-a_{3}b_{2}\\\\a_{3}b_{1}-a_{1}b_{3}\\\\a_{1}b_{2}-a_{2}b_{1}\\end{pmatrix}}} ã§ããã",
"title": "çºå±:å€ç©"
},
{
"paragraph_id": 292,
"tag": "p",
"text": "ãŸãã¯ã a â à b â {\\displaystyle {\\vec {a}}\\times {\\vec {b}}} 㯠a â , b â {\\displaystyle {\\vec {a}},\\,{\\vec {b}}} ãããããšåçŽã§ããããšã確èªãããããã¯ã ( a â à b â ) â
a â = 0 {\\displaystyle ({\\vec {a}}\\times {\\vec {b}})\\cdot {\\vec {a}}=0} ãš ( a â Ã b â ) â
b â = 0 {\\displaystyle ({\\vec {a}}\\times {\\vec {b}})\\cdot {\\vec {b}}=0} ã§ããããšãæå衚瀺ã代å
¥ããã°èšŒæã§ããã",
"title": "çºå±:å€ç©"
},
{
"paragraph_id": 293,
"tag": "p",
"text": "次ã«ã | a â à b â | = | a â | | b â | sin Ξ {\\displaystyle |{\\vec {a}}\\times {\\vec {b}}|=|{\\vec {a}}||{\\vec {b}}|\\sin \\theta } ã蚌æããã | a â à b â | 2 = | a â | 2 | b â | 2 sin 2 Ξ = | â a | 2 | b â | 2 ( 1 â cos 2 Ξ ) {\\displaystyle |{\\vec {a}}\\times {\\vec {b}}|^{2}=|{\\vec {a}}|^{2}|{\\vec {b}}|^{2}\\sin ^{2}\\theta ={\\vec {|}}a|^{2}|{\\vec {b}}|^{2}(1-\\cos ^{2}\\theta )} ãããã§ã cos 2 Ξ = ( a â â
b â ) 2 | a â | 2 | b â | 2 {\\displaystyle \\cos ^{2}\\theta ={\\frac {({\\vec {a}}\\cdot {\\vec {b}})^{2}}{|{\\vec {a}}|^{2}|{\\vec {b}}|^{2}}}} ã代å
¥ãã | a â à b â | 2 = | â a | 2 | b â | 2 â ( a â â
b â ) 2 {\\displaystyle |{\\vec {a}}\\times {\\vec {b}}|^{2}={\\vec {|}}a|^{2}|{\\vec {b}}|^{2}-({\\vec {a}}\\cdot {\\vec {b}})^{2}} ãåŸãããã®åŒã«ãæå衚瀺ã代å
¥ããã°ã䞡蟺ãçããããšã確èªã§ããã",
"title": "çºå±:å€ç©"
},
{
"paragraph_id": 294,
"tag": "p",
"text": "æåŸã«ããã¬ãã³ã°ã®å·Šæã®æ³åã§ a â à b â {\\displaystyle {\\vec {a}}\\times {\\vec {b}}} ã¯èŠªæã®æ¹åã§ããããšã確èªããã",
"title": "çºå±:å€ç©"
},
{
"paragraph_id": 295,
"tag": "p",
"text": "a â = ( 1 0 0 ) {\\displaystyle {\\vec {a}}={\\begin{pmatrix}1\\\\0\\\\0\\end{pmatrix}}} ã b â = ( 0 1 0 ) {\\displaystyle {\\vec {b}}={\\begin{pmatrix}0\\\\1\\\\0\\end{pmatrix}}} ã®ãšãã a â à b â = ( 0 0 1 ) {\\displaystyle {\\vec {a}}\\times {\\vec {b}}={\\begin{pmatrix}0\\\\0\\\\1\\end{pmatrix}}} ã§ããããããããäºçªç®ã®æ§è³ªã確èªã§ããã",
"title": "çºå±:å€ç©"
},
{
"paragraph_id": 296,
"tag": "p",
"text": "å€ç©ã®å¿çš",
"title": "çºå±:å€ç©"
},
{
"paragraph_id": 297,
"tag": "p",
"text": "2ã€ã®ãã¯ãã«ã«åçŽãªãã¯ãã«ãæ±ããããšããªã©ã¯ãå€ç©ã®æå衚瀺ããèšç®ããã°ãé¢åãªèšç®ãããªããŠãæ±ããããã",
"title": "çºå±:å€ç©"
},
{
"paragraph_id": 298,
"tag": "p",
"text": "åé¢äœ O A B C {\\displaystyle \\mathrm {OABC} } ã®äœç©ã¯ 1 6 | ( O A â à O B â ) â
O C â | {\\displaystyle {\\frac {1}{6}}|({\\vec {\\mathrm {OA} }}\\times {\\vec {\\mathrm {OB} }})\\cdot {\\vec {\\mathrm {OC} }}|} ã§ããã å®éã 1 6 | ( O A â à O B â ) â
O C â | = 1 3 | 1 2 O A â à O B â | | h | {\\displaystyle {\\frac {1}{6}}|({\\vec {\\mathrm {OA} }}\\times {\\vec {\\mathrm {OB} }})\\cdot {\\vec {\\mathrm {OC} }}|={\\frac {1}{3}}\\left|{\\frac {1}{2}}{\\vec {\\mathrm {OA} }}\\times {\\vec {\\mathrm {OB} }}\\right||h|} ã§ããããã ãã h ã¯ÎABCãåºé¢ãšãããšãã®åé¢äœã®é«ãã§ããã",
"title": "çºå±:å€ç©"
},
{
"paragraph_id": 299,
"tag": "p",
"text": "ãŸããç©çåŠã®ããŒã¬ã³ãåã¯å€ç©ã䜿ããš F â = q v â à B â {\\displaystyle {\\vec {F}}=q{\\vec {v}}\\times {\\vec {B}}} ãšç°¡æœã«è¡šããã",
"title": "çºå±:å€ç©"
},
{
"paragraph_id": 300,
"tag": "p",
"text": "",
"title": "çºå±:å€ç©"
},
{
"paragraph_id": 301,
"tag": "p",
"text": "èŠãæ¹",
"title": "çºå±:å€ç©"
},
{
"paragraph_id": 302,
"tag": "p",
"text": "å³ã®ããã«èŠçŽ ãããåãããã",
"title": "çºå±:å€ç©"
},
{
"paragraph_id": 303,
"tag": "p",
"text": "",
"title": "çºå±:å€ç©"
},
{
"paragraph_id": 304,
"tag": "p",
"text": "",
"title": "ã³ã©ã ãªã©"
}
] | çç§ã«ãããŠãåã¯å€§ãããšåããæã€éã§ãããšç¿ã£ãã ããã倧ãããšåããæã€éã¯ãåã®ä»ã«ããé床ã颚ã®å¹ãæ¹ãªã©ãããã äŸãã°ãããå°ç¹ããæå»ã«ããã颚ã®å¹ãæ¹ã¯ã颚éãšé¢šåããæãç«ã€ããã®ããã«ã倧ãããšåããæã€éãå°å
¥ãããšãããããå¹çããæ±ããã ãã®ããŒãžã§ã¯ã倧ãããšåããæã€éã§ãããã¯ãã«ãæ±ãã ãŸããå³åœ¢ã®åé¡ã«å¯ŸããŠä»£æ°çãªã¢ãããŒããåããã®ããã¯ãã«ã®å©ç¹ã®äžã€ã§ããã | {{pathnav|frame=1|ã¡ã€ã³ããŒãž|é«çåŠæ ¡ã®åŠç¿|é«çåŠæ ¡æ°åŠ|é«çåŠæ ¡æ°åŠC|pagename=ãã¯ãã«|small=1}}
çç§ã«ãããŠãåã¯å€§ãããšåããæã€éã§ãããšç¿ã£ãã ããã倧ãããšåããæã€éã¯ãåã®ä»ã«ããé床ã颚ã®å¹ãæ¹ãªã©ãããã
äŸãã°ãããå°ç¹ããæå»ã«ããã颚ã®å¹ãæ¹ã¯ã颚éãšé¢šåããæãç«ã€ããã®ããã«ã倧ãããšåããæã€éãå°å
¥ãããšãããããå¹çããæ±ããã
ãã®ããŒãžã§ã¯ã倧ãããšåããæã€éã§ãã'''ãã¯ãã«'''ãæ±ãã
ãŸããå³åœ¢ã®åé¡ã«å¯ŸããŠä»£æ°çãªã¢ãããŒããåããã®ããã¯ãã«ã®å©ç¹ã®äžã€ã§ããã
==å¹³é¢äžã®ãã¯ãã«==
[[ãã¡ã€ã«:SameVectors.png|ãµã ãã€ã«]]
å¹³é¢äžã®ç¹ <math>\mathrm{S}</math> ããç¹ <math>\mathrm{T}</math> ãžåããç¢å°ãèããããã®ãããªç¢å°ã®ããã«åããæã€ç·åã'''æåç·å'''ãšããã
ãã®ãšããç¹ <math>\mathrm{S}</math> ã'''å§ç¹'''ãç¹ <math>\mathrm{T}</math> ã'''çµç¹'''ãšããã
æåç·åã§ã倧ãããšæ¹åãåããã®ã¯ãã¯ãã«ãšããŠåããã®ãšããã
æåç·åã¯äœçœ®ãé·ãïŒå€§ããïŒãåããšããæ
å ±ãæã€ããã¯ãã«ã¯ãæåç·åã®æã€æ
å ±ã®ãã¡ã'''äœçœ®'''ã®æ
å ±ãå¿ããŠã'''倧ãã'''ã'''åã'''ã ãã«çç®ãããã®ãšèããããšãã§ããã
æåç·å <math>\mathrm{ST}</math> ã§è¡šããããã¯ãã«ã <math>\mathrm{\vec{ST}}</math> ãšããããã¯ãã«ã¯äžæåã§ <math>\vec a</math> ãªã©ãšè¡šãããããšããã<ref>ãŸãã¯ã倪æåã§ <math>\bold a</math> ãªã©ãšè¡šèšãããããšããããããããæ¥æ¬ã®é«çåŠæ ¡ã倧åŠå
¥è©Šã§ã¯ <math>\vec \cdot</math> ãã»ãšãã©ã§ããã</ref>ããã¯ãã« <math>\vec a</math> ã®å€§ããã <math>|\vec a|</math> ã§è¡šãã
æåç·å <math>\mathrm{ST}</math>ãæåç·å <math>\mathrm{S'T'}</math> ã«å¯Ÿãã倧ãããçãããåããçãããªããäœçœ®ãéã£ãŠããŠãããã¯ãã«ãšããŠçããã<math>\mathrm{\vec{ST}} = \mathrm{\vec{S'T'}}</math> ã§ããã<ref>ãã¯ãã«ãšããŠçãããŠããæåç·åãšããŠçãããšã¯éããªã</ref>
倧ããã 1 ã§ãããã¯ãã«ã'''åäœãã¯ãã«'''ãšããã
[[ãã¡ã€ã«:Vector-negation.png|ãµã ãã€ã«|ãã¯ãã« <math>\vec A</math> ã®éãã¯ãã«]]
ãã¯ãã« <math>\vec a</math> ã«å¯Ÿãããã¯ãã« <math>\vec a</math> ãšæ¹åã'''é'''ã§ã倧ãããçãããã¯ãã«ã'''éãã¯ãã«'''ãšããã<math>-\vec a</math> ãšããã
å§ç¹ãšçµç¹ãçãããã¯ãã«ã'''é¶ãã¯ãã«'''ãšããã<math>\vec 0 </math> ã§è¡šããä»»æã®ç¹ <math>\mathrm{A}</math> ã«å¯Ÿãã<math>\mathrm{\vec{AA}} = \vec 0</math> ã§ããããŒããã¯ãã«ã®å€§ãã㯠0 ã§ãåãã¯èããªããã®ãšããã
=== ãã¯ãã«ã®å æ³ ===
[[ãã¡ã€ã«:Vector addition explain.svg|ãµã ãã€ã«|ãã¯ãã«ã®å]]
ãã¯ãã« <math>\vec a, \vec b</math> ã«å¯Ÿãã<math>\vec a = \mathrm{\vec{AB}}, \vec b = \mathrm{\vec{BC}}</math> ãšãªãç¹ããšãããã®ãšããã¯ãã«ã®å æ³ã <math>\vec a + \vec b = \mathrm{\vec{AC}}</math> ã§å®ããã
ãã¯ãã«ã®å æ³ã«ã€ããŠä»¥äžãæãç«ã€ã
* <math>\vec a + \vec b = \vec b + \vec a</math>
* <math>(\vec a + \vec b) + \vec c = \vec a +(\vec b + \vec c)</math>
[[ãã¡ã€ã«:Vector commutative.svg|ãµã ãã€ã«|ãã¯ãã«ã®å æ³ã¯å¯æã§ãã]]
ãŸãã<math>\vec a + \vec 0 = \vec a</math> ãšããã
=== ãã¯ãã«ã®æžæ³ ===
ãã¯ãã« <math>\vec a, \vec b</math> ã«å¯Ÿãã <math>\vec a - \vec b = \vec a+ (-\vec b)</math> ãšããã
[[ãã¡ã€ã«:Vector's subtraction.svg|ãµã ãã€ã«|ãã¯ãã«ã®æžæ³]]
=== ãã¯ãã«ã®å®æ°å ===
ãŒããã¯ãã«ã¯ãªããã¯ãã« <math>\vec a</math> ãšå®æ° <math>k</math> ã«å¯Ÿãããã¯ãã«ã®å®æ°å <math>k\vec a</math> ã以äžã®ããã«å®ããã
# <math>k > 0</math> ã®ãšãããã¯ãã« <math>\vec a</math> ãšæ¹åãåãã§ã倧ããã <math>k</math> åããããã¯ãã«
# <math>k = 0</math> ã®ãšãããŒããã¯ãã« <math>\vec 0</math>
# <math>k < 0</math> ã®ãšããéãã¯ãã« <math>-\vec a</math> ãšæ¹åãåãã§ã倧ããã <math>k</math> åããããã¯ãã«
ãŸããŒããã¯ãã« <math>\vec 0</math> ã«å¯Ÿãã宿°åã <math>k\vec 0 = \vec 0</math> ã§å®ããã
以äžã®æ§è³ªããªããã€ã
* <math>(k+l)\vec a = k\vec a + l\vec a</math>
* <math>k(\vec a + \vec b) = k\vec a + k\vec b</math>
* <math>(kl)\vec a = k(l\vec a)</math>
== ãã¯ãã«ã®å¹³è¡ã»åçŽ ==
ãŒããã¯ãã«ã§ã¯ãªããã¯ãã« <math>\vec a, \vec b \, (\neq \vec 0)</math> ã«å¯Ÿãã<math>\vec a = \vec{\mathrm{AA'}}, \vec b = \vec{\mathrm{BB'}}</math> ãšãªãç¹ããšãã
ãã®ãšããçŽç· <math>\mathrm{AA'}</math> ãšçŽç· <math>\mathrm{BB'}</math> ãå¹³è¡ã§ãããšãããã¯ãã« <math>\vec a, \vec b</math> ã¯å¹³è¡ã§ãããšããã <math>\vec a \parallel \vec b</math> ã§è¡šãã
ãŸããçŽç· <math>\mathrm{AA'}</math> ãšçŽç· <math>\mathrm{BB'}</math> ãåçŽã§ãããšãããã¯ãã« <math>\vec a, \vec b</math> ã¯åçŽã§ãããšããã<math>\vec a \perp \vec b</math> ã§è¡šãã
ãã¯ãã« <math>\vec a, \vec b</math> ãå¹³è¡ã®ãšããæããã«ãçæ¹ã®ãã¯ãã«ã宿°åããã°å€§ãããšåããäžèŽããã®ã§ã
<math>\vec a \parallel \vec b \iff \vec b = k\vec a</math> ãšãªã宿° <math>k</math> ãååšãã
ãæãç«ã€ã[[ãã¡ã€ã«:Scalar multiplication of vectors.png|ãµã ãã€ã«|337x337ãã¯ã»ã«|ãã¯ãã«ã®å®æ°å]]
== ãã¯ãã«ã®åè§£ ==
ãã¯ãã« <math>\vec a, \vec b</math> ããšãã«ãŒããã¯ãã«ã§ãªã(<math>\vec a, \vec b \neq \vec 0</math>) ãå¹³è¡ã§ãªããšããä»»æã®ãã¯ãã« <math>\vec p</math> ã«å¯ŸããŠã <math>\vec p = s\vec a + t \vec b</math> ãšãªã宿° <math>s,t</math> ãåãããšãã§ããã
'''蚌æ'''<!-- å³ -->
<math>\vec a = \vec{\mathrm{OA}},\vec b = \vec{\mathrm{OB}},\vec p = \vec{\mathrm{OP}}</math> ãšãªãç¹ããšããç¹ <math>\mathrm{P}</math> ãéããçŽç· <math>\mathrm{OB},\mathrm{OA}</math> ã«å¹³è¡ãªçŽç·ãããããã çŽç· <math>\mathrm{OA},\mathrm{OB}</math> ãšäº€ããç¹ããããã <math>\mathrm{S,T}</math> ãšçœ®ãã
ãã®ãšãã <math>\vec \mathrm{OS} = s\vec a,\vec \mathrm{OT} = t\vec b</math> ãšãªã宿° <math>s,t</math> ãåãããšãã§ãããããã§ãåè§åœ¢ <math>\mathrm{OSPT}</math> ã¯å¹³è¡å蟺圢ãªã®ã§ã <math>\vec p = s\vec a + t \vec b</math> ãæãç«ã€ã
== ãã¯ãã«ã®æå衚瀺 ==
ãã¯ãã« <math>\vec a</math> ã«å¯ŸããŠã座æšå¹³é¢äžã®åç¹ã <math>\mathrm O</math> ãšãããšãã<math>\vec a = \mathrm{\vec{OA}}</math> ãšãªãç¹ <math>\mathrm A(a_x,a_y)</math> ãåãããšãã§ãããããã§ã <math>(a_x,a_y)</math> ããã¯ãã« <math>\vec a</math> ã®æå衚瀺ãšãã <math>\vec a = (a_x,a_y)</math>ããŸãã¯ã瞊ã«äžŠã¹ãŠã <math>\vec a = \left(\begin{align}a_x\\a_y\end{align}\right)</math> ãšæžãã
ãã¯ãã« <math>\vec a , \vec b</math> ã«å¯ŸããŠã<math>\vec a = \mathrm{\vec{OA}},\, \vec b = \mathrm{\vec{OB}}</math> ãšãªãç¹ <math>\mathrm{A},\mathrm{B}</math> ããšãã<math>\vec a = (a_x,a_y),\, \vec b = (b_x,b_y)</math> ãšãããšã
<math>\vec a = \vec b \iff \vec{\mathrm{OA}} = \vec{\mathrm{OB}} \iff </math>ç¹ <math>\mathrm A ,\, \mathrm B</math> ãäžèŽãã <math>\iff a_x = b_x </math> ã〠<math>a_y = b_y</math>
ãŸãã <math>\vec a = (a_x, a_y)</math> ã«å¯ŸããŠã<math>\vec a = \mathrm{\vec{OA}}</math> ãšãããšãã <math>|\vec a|</math> ã¯ç·å <math>\mathrm{OA}</math> ã®é·ããªã®ã§ã
<math>|\vec a| = \sqrt{a_x^2 + a_y ^2}</math>
ã§ããã
[[ãã¡ã€ã«:Vector in 2D space.png|ãµã ãã€ã«]]
ãã¯ãã« <math>\vec a = (a_x, a_y) ,\vec b = (b_x,b_y)</math> ã«å¯ŸããŠã
<math>\vec a + \vec b = (a_x + b_x, a_y + b_y)</math>
<math>\vec a - \vec b = (a_x-b_x,a_y-b_y)</math>
<math>k\vec a = (ka_x , ka_y)</math>
ããªããã€ã
==äœçœ®ãã¯ãã«==
ããç¹ãåºæºã«ããŠããã®ç¹ãå§ç¹ãšãããã¯ãã«ã«ã€ããŠèããããšã«ããããã¯ãã«ãçšããŠç¹ã®äœçœ®é¢ä¿ã«ã€ããŠèå¯ããããšãã§ããã
ç¹ã®äœçœ®é¢ä¿åºæºãšãªãç¹ <math>\rm O</math> ããããããå®ããããã®ãšããç¹ <math>\rm A</math> ã«å¯ŸããŠããã¯ãã« <math>\vec{\rm {OA }}</math> ãç¹ <math>\rm A</math> ã®äœçœ®ãã¯ãã«ãšãããäœçœ®ãã¯ãã« <math>\vec{a}</math> ã§äžããããç¹ <math>\rm A</math> ã <math>\mathrm{A}(\vec a)</math> ã§è¡šãã
ãŸããç¹ <math>\mathrm A (\vec a),\,\mathrm B(\vec b)</math> ã®ãšãã<math>\vec{\rm{AB}} = \vec{\rm{OB}} - \vec{\rm{OA}} = \vec b- \vec a</math> ãæãç«ã€ã
=== å
åç¹ã»å€åç¹ã®äœçœ®ãã¯ãã« ===
以äžãäœçœ®ãã¯ãã«ã®åºæºç¹ãç¹ <math>\rm O</math> ãšããã
ç¹ <math>\rm A (\vec a),\,\rm B(\vec b)</math> ãéãç·å <math>\mathrm{AB}</math> ã <math>m:n</math> ã«å
åããç¹ <math>\mathrm{P}(\vec p)</math> ãæ±ããã<!-- å³ -->
<math>\vec{\mathrm{AP}} = \frac{m}{m+n}\vec{\mathrm{AB}}</math> ããã<math>\vec p - \vec a = \frac{m}{m+n}(\vec b - \vec a)</math> ãããã£ãŠã<math>\vec p = \frac{n\vec a + m\vec b}{m+n}</math> ã§ããã<ref><math>\vec p =\frac{m}{m+n}(\vec b - \vec a) + \vec a = \left(1-\frac{m}{m+n}\right)\vec a + \frac{m}{m+n}\vec b = \frac{n\vec a + m\vec b}{m+n} </math></ref>
次ã«ãç¹ <math>\rm A (\vec a),\,\rm B(\vec b)</math> ãéãç·å <math>\mathrm{AB}</math> ã <math>m:n</math> ã«å€åããç¹ <math>\mathrm{Q}(\vec q)</math> ãæ±ããã<!-- å³ -->
<math>m > n</math> ã®å Žåã¯ã <math>\vec{\mathrm{AQ}} = \frac{m}{m-n}\vec{\mathrm{AB}}</math> ããã<math>\vec q - \vec a = \frac{m}{m-n}(\vec b - \vec a) </math> ãããã£ãŠã<math>\vec q = \frac{-n\vec a + m\vec b}{m-n}</math> ã§ããã<ref><math>\vec q = \frac{m}{m-n}(\vec b - \vec a) + \vec a = \left(1-\frac{m}{m-n}\right)\vec a + \frac{m}{m-n}\vec b = \frac{-n\vec a + m\vec b}{m-n} </math></ref>
<math>m < n</math> ã®å Žåã¯ã<math>\vec{\mathrm{BQ}} = \frac{n}{n-m}\vec{\mathrm{BA}}</math> ã«æ³šæããŠåæ§ã«èšç®ããã°ãåãšåãã <math>\vec q = \frac{-n\vec a + m\vec b}{m-n}</math> ãåŸãããã<ref><math>m = n</math> ã®å Žåãã€ãŸãç·åã <math>1:1</math> ã«å€åããç¹ã¯ååšããªãããªããªããä»»æã®ç·åABã«å¯ŸããŠAP:BP=1:1ãšãªãç¹Pã¯ç·åABã®çŽè§äºçåç·äžã«ããããç¹Pãç·åABäžã«ããå Žåãããã¯å
åç¹ã§ãããç¹Pãç·åABäžã«ãªãå Žåãããã¯å€åç¹ã§ã¯ããããªãã</ref>
=== äžè§åœ¢ã®éå¿ã®äœçœ®ãã¯ãã« ===
äžè§åœ¢ <math>\mathrm{ABC}</math> ã«å¯Ÿãã <math>\mathrm{A}(\vec a),\, \mathrm{B}(\vec b),\, \mathrm{C}(\vec c)</math> ãšçœ®ãããã®äžè§åœ¢ <math>\mathrm{ABC}</math> ã®éå¿ <math>\mathrm{G}({\vec g})</math> ãæ±ããã<!-- å³ -->
ç·å <math>\mathrm{BC}</math> ã®äžç¹ã <math>\mathrm{M}(\vec m)</math> ãšãããšãç¹ <math>\mathrm M</math> ã¯ç·å <math>\mathrm{BC}</math> ã <math>1:1</math> ã«å
åããç¹ãªã®ã§ã <math>\vec m = \frac{\vec b + \vec c}{2}</math> ã§ããã
ç¹ <math>\mathrm{G}</math> ã¯ç·å <math>\mathrm{AM}</math> ã <math>2:1</math> ã«å
åããç¹ãªã®ã§ã <math>\vec g = \frac{\vec a + \vec b + \vec c}{3}</math> ã§ããã<ref><math>\vec g = \frac{\vec a + 2\vec m}{2+1} = \frac{\vec a + \vec b + \vec c}{3}</math></ref>
=== äžè§åœ¢ã®å
å¿ã®äœçœ®ãã¯ãã« ===
äžè§åœ¢ <math>\mathrm{ABC}</math> ã«å¯Ÿãã <math>\mathrm{A}(\vec a),\, \mathrm{B}(\vec b),\, \mathrm{C}(\vec c)</math> ãšçœ®ããããã«ã<math>\mathrm{AB} = c,\,\mathrm{BC} = a,\, \mathrm{CA} = b</math> ãšçœ®ããäžè§åœ¢ <math>\mathrm{ABC}</math> ã®å
å¿ã®äœçœ®ãã¯ãã« <math>\mathrm{I}(\vec i)</math> ãæ±ããã<ref>ããã§ãç·åã®é·ããšé ç¹ã®äœçœ®ãã¯ãã«ãåãã¢ã«ãã¡ãããã§çœ®ããŠããããèšå· <math>\vec \bullet</math> ã®ã€ããŠãããã®ã¯ããã¯ãã«ãèšå· <math>\vec \bullet</math> ã®ã€ããŠããªããã®ã¯å®æ°ã§ããããšã«æ³šæããã</ref><!-- å³ -->
<math>\rm A</math> ã®äºçåç·ãšç·å <math>\rm{BC}</math> ã®äº€ç¹ã <math>\mathrm{D}(\vec d)</math> ãšããããã®ãšããäžè§åœ¢ã®äºçåç·ã®æ§è³ªãã<math>\mathrm{BD}:\mathrm{DC} = c:b</math> ãããã£ãŠã<math>\vec d = \frac{b\vec b + c\vec c}{b+c}</math> ã§ããã
ããã§ã<math>\mathrm{AI}:\mathrm{ID} = \mathrm{BA}:\mathrm{BD} = c:\frac{ac}{b+c} = (b+c):a</math><ref><math>\mathrm{BD}:\mathrm{DC} = c:b</math> ãã <math>\mathrm{BD} = \frac{c}{b+c}a</math></ref> ã§ããã
ãããã£ãŠã<math>\vec i = \frac{a\vec a + (b+c)\vec d}{a+b+c} = \frac{a\vec a + b\vec b + c\vec c}{a+b+c}</math> ã§ããã
== ãã¯ãã«ã®å
ç© ==
äžåŠãŸãã¯é«æ ¡ã®çç§ã®ååŠã§ã¯ãååŠçãªä»äºã®å®çŸ©ããªãã£ãããšãããã ããããã®ä»äºã§ã¯ãç§»åæ¹å以å€ã®åã¯ãä»äºã«å¯äžããªãã£ãããã®ãããªåã®ä»äºã®èšç®ãããã¯ãã«ã®èгç¹ããã¿ãã°ãå
ç©ãšããæ°ããæŠå¿µãå®çŸ©ã§ããã<ref>[[ç©çæ°åŠI]]ãªã©ãåç
§</ref><ref>ããã¯ãå
âç©âãšããååãã€ããŠãããã宿°ã®âç©âãšã¯æ§åãéããåçŽã«å®æ°ã®ç©ããã¯ãã«ã«æ¡åŒµãããã®ãå
ç©ãšããããã§ã¯ãªãã宿°ã®ç©ã¯å®æ°ãã宿°ãžã®æŒç®ã§ãããããã¯ãã«ã®å
ç©ã¯ãã¯ãã«ãã宿°ãžã®æŒç®ã§ããã</ref>
ãã¯ãã« <math>
\vec a,\vec b
</math> ã«å¯Ÿãã <math>\vec a = \vec{\mathrm{OA}}, \vec b = \vec{\mathrm{OB}}</math> ãšãªãç¹ <math>\mathrm{O,A,B}</math> ããšãããã®ãšãã <math>\angle \mathrm{AOB}</math> ã'''ãã¯ãã« <math>
\vec a,\vec b
</math> ã®ãªãè§'''ãšããã
(å³)
ãã¯ãã« <math>
\vec a,\vec b
</math> ã®ãªãè§ã <math>\theta</math> ãšãããšããå
ç© <math>\vec a \cdot \vec b</math> ã
:<math>
\vec a \cdot \vec b = |\vec a||\vec b| \cos \theta
</math>
ã§å®ããã<ref>å
ç© <math>\vec a \cdot \vec b</math> ã <math>\vec a \vec b</math> ã <math>\vec a \times \vec b</math> ã®ããã«è¡šèšããŠã¯ãããªãã<math>\vec a \times \vec b</math> ã¯ãã¯ãã«ã®å€ç©ïŒç¯å²å€ïŒã衚ãã</ref>
å®çŸ©ããããã¯ãã«ã®å
ç©ã¯äžæ¹ã®ãã¯ãã«ãããäžæ¹ã®ãã¯ãã«ã«å°åœ±ãããšãã®ã倧ããã®ç©ã§ãããšèšããã
(å³)
=== æå衚瀺ãããå
ç© ===
ãã¯ãã« <math>
\vec a,\vec b
</math> ã <math>\vec a = (a_1,a_2),\vec b = (b_1,b_2)</math> ãšæå衚瀺ãããšãã®ãå
ç© <math>\vec a \cdot \vec b</math> ã«ã€ããŠèããŠã¿ããã
ãã¯ãã« <math>
\vec a,\vec b
</math> ã«å¯Ÿãã <math>\vec a = \vec{\mathrm{OA}}, \vec b = \vec{\mathrm{OB}}</math> ãšãªãç¹ <math>\mathrm{O,A,B}</math> ããšãããã¯ãã« <math>
\vec a,\vec b
</math> ã®ãªãè§ã <math>\theta </math> ãšããããã®ãšã <math>\triangle \mathrm{OAB}</math> ã«å¯ŸãäœåŒŠå®çãçšããŠ
<math>\mathrm{\mathrm{AB}}^2 = \mathrm{\mathrm{OA}}^2 + \mathrm{\mathrm{OB}}^2 - 2 \cdot \mathrm{\mathrm{OA}} \cdot \mathrm{\mathrm{OB}} \cos \theta </math>
(å³)
ããã§ã <math>\mathrm{\mathrm{AB}} = |\vec b - \vec a|,\mathrm{\mathrm{OA}} = |\vec a|,\mathrm{\mathrm{OB}} = |\vec b|</math> ãšã<math>\mathrm{\mathrm{OA}} \cdot \mathrm{\mathrm{OB}} \cos \theta = |\vec a||\vec b|\cos\theta = \vec a \cdot \vec b</math> ãã
<math>|\vec b - \vec a|^2 = |\vec a|^2 + |\vec b|^2 - 2 \vec a \cdot \vec b</math> ã§ããã®ã§ã <math>\vec a \cdot \vec b = \frac{1}{2}(|\vec a|^2 + |\vec b|^2 - |\vec b - \vec a|^2)</math> ã§ããã
ããã§ã <math>|\vec a|^2 = a_1^2 + a_2^2,|\vec b|^2 = b_1^2 + b_2^2,|\vec b - \vec a|^2 = |(b_1 - a_1, b_2 - a_2)|^2 = (b_1 - a_1)^2 + (b_2 - a_2)^2</math> ãªã®ã§ãããã代å
¥ããã°
<math>\vec a \cdot \vec b = \frac{1}{2}(|\vec a|^2 + |\vec b|^2 - |\vec b - \vec a|^2)</math> <math>= \frac{1}{2}\left[(a_1^2 + a_2^2) + (b_1^2 + b_2^2 )- (b_1 - a_1)^2 + (b_2 - a_2)^2\right] </math> <math>= a_1b_1 + a_2b_2 </math> ã§ããã
ãããã£ãŠ <math>\vec a \cdot \vec b = a_1b_1 + a_2b_2</math> ãåŸãããã
=== å
ç©ã®æ§è³ª ===
{{math_theorem|å
ç©ã®æ§è³ª|ãã¯ãã« <math> {\vec {a}},{\vec {b}},{\vec {c}}</math> ãšå®æ° <math> k</math> ã«å¯Ÿã以äžãæãç«ã€ã
#<math> {\vec {a}}\cdot {\vec {b}}={\vec {b}}\cdot {\vec {a}}</math>
#<math> {\vec {a}}\cdot ({\vec {b}}+{\vec {c}})={\vec {a}}\cdot {\vec {b}}+{\vec {a}}\cdot {\vec {c}}</math>
#<math> (k{\vec {a}})\cdot {\vec {b}}=k({\vec {a}}\cdot {\vec {b}})</math>
#<math> 0\leq {\vec {a}}\cdot {\vec {a}}=|{\vec {a}}|^{2}</math>}}
ãããã¯ãã¯ãã«ãæå衚瀺ããŠèšç®ããã°èšŒæã§ããã
{{Math proof|
<math>\vec a = (a_1,a_2),\vec b = (b_1,b_2),\vec c = (c_1,c_2)</math> ãšããã
#<math>\vec a \cdot \vec b = a_1b_1+a_2b_2 = \vec b \cdot \vec a</math>
#<math>{\vec {a}}\cdot ({\vec {b}}+{\vec {c}})=(a_1,a_2)\cdot(b_1+c_1,b_2+c_2) = (a_1b_1+a_1c_1 )+ (a_2b_2+a_2c_2 ) = {\vec {a}}\cdot {\vec {b}}+{\vec {a}}\cdot {\vec {c}}</math>
#<math>(k{\vec {a}})\cdot {\vec {b}}= (ka_1,ka_2)\cdot (b_1,b_2) =k(a_1b_1+a_2b_2) = k({\vec {a}}\cdot {\vec {b}})</math>
#<math>{\vec {a}}\cdot {\vec {a}} = a_1^2 + a_2^2 = |{\vec {a}}|^{2} \ge 0</math>}}
== ãã¯ãã«æ¹çšåŒ ==
{{æŒç¿åé¡|
<math>\mathrm A (\vec a),\, \mathrm B (\vec b)</math>ãšããã
ãã®ãšããç·åOAã1:3ã«åããç¹ãšãç·åOBã5:2ã«åããç¹ããããããA',B'ãšããã
(1) ãã¯ãã« <math>\vec {OA'},\, \vec {OB'}</math> ããã¯ãã«<math>\vec a,\, \vec b</math>ãçšããŠããããã
(2) ç·åAB'ãšãBA'ã®äº€ç¹ M ã®äœçœ®ãã¯ãã«ããã¯ãã«<math>\vec a,\, \vec b</math>ãçšããŠããããã|
ãã¯ãã«
:<math>
\vec a
</math>
ãšã
ãã¯ãã«
:<math>
\vec b
</math>
ã¯äºãã«1次ç¬ç«ãª2æ¬ã®ãã¯ãã«ãªã®ã§ã
ããããçšããŠããããå³åœ¢äžã®ç¹ã衚ãããã¯ãã§ããã
å³åœ¢äžã®ããããã®ç¹ã¯ãç¹Oããã®äœçœ®ãã¯ãã«ã§è¡šãããã
äŸãã°ããã¯ãã«
:<math>
\vec {OA'}
</math>
ã¯ãç¹OããèŠãŠ
:<math>
\vec a
</math>
ãšå¹³è¡ãªæ¹åã®ãã¯ãã«ã§ããããã®å€§ãããã
:<math>
\frac 1 4
</math>
ã§ããã®ã§ã
:<math>
\vec {OA'}= \frac 1 4 \vec a
</math>
ã§è¡šãããã
åæ§ã«ããã¯ãã«
:<math>
\vec {OB'}
</math>
ã¯ãç¹OããèŠãŠ
:<math>
\vec b
</math>
ãšå¹³è¡ãªæ¹åã®ãã¯ãã«ã§ããããã®å€§ãããã
:<math>
\frac 2 7
</math>
ã§ããã®ã§ã
:<math>
\vec {OB'}= \frac 2 7 \vec b
</math>
ã§è¡šãããã
次ã«ãç¹A'ãééããç·åA'Bã«å¹³è¡ãªçŽç·ã
ãã¯ãã«
:<math>
\vec a
</math>
ãš
:<math>
\vec b
</math>
ãçšããŠèšè¿°ããæ¹æ³ãèããã
ããã§ã¯ã
ãã®çŽç·äžã®ç¹ã¯ã
ãã宿°<math>s</math>ãçšããŠã
:<math>
\vec{OA'}
+ s(\vec {A'B})
</math>
ã§è¡šããããšã«æ³šç®ããã
äŸãã°ã
:<math>
s=0
</math>
ã®ãšãããã®åŒã衚ãç¹ã¯
:<math>
\vec{OA'}
</math>
ã«çããã
:<math>
s = 1
</math>
ã®ãšãã
:<math>
\vec {OB}
</math>
ã«çãããããããçŽç·
A'Bäžã®ç¹ã§ããã
ãããã«å
ã»ã©æ±ãã
:<math>
\vec {OA'}
</math>
ãšã
:<math>
\vec{OB}
</math>
ã®å€ãçšãããšã
:<math>
\vec{OA'}
+ s(\vec {A'B})
</math>
:<math>
= \frac 1 4 \vec a + s(\vec b - \frac 1 4 \vec a)
</math>
:<math>
= \frac 1 4 (1 -s ) \vec a + s \vec b
</math>
ãåŸãããã
åæ§ã«ãç·åAB'äžã®ç¹ã¯ãã宿°
<math>t</math>ãçšããŠã
:<math>
\vec {OB'} + t\vec{B' A}
</math>
ã§è¡šãããã
ããã«å
ã»ã©åŸãå€ã代å
¥ãããšã
:<math>
\vec {OB'} + t\vec{B' A}
</math>
:<math>
= \frac 2 7 \vec b + t(\vec a - \frac 2 7 \vec b)
</math>
:<math>
=(1-t) \frac 2 7 \vec b + t \vec a
</math>
ãšãªãã
ãã®ããã«ããããã®çŽç·äžã®ç¹ã<math>s</math>,<math>t</math>ã
çšããŠè¡šãããã
次ã«ããããã®åŒãåãç¹ã瀺ãããã«
<math>s</math>,<math>t</math>ãå®ããã
ãã®ããã«ã¯ã
:<math>
\vec{OM}= \frac 1 4 (1 -s ) \vec a + s \vec b
</math>
,
:<math>
\vec{OM}=(1-t) \frac 2 7 \vec b + t \vec a
</math>
ãçãããšãããŠã
<math>s</math>,<math>t</math>ã«é¢ããé£ç«æ¹çšåŒãäœãããããè§£ãã°ããã
äžã®åŒã§
:<math>
\vec a
</math>
ã®ä¿æ°ãçãããšãããšã
:<math>
\frac 1 4 (1-s) = t
</math>
ãåŸããã
:<math>
\vec b
</math>
ã®ä¿æ°ãçãããšãããšã
:<math>
\frac 2 7 (1-t) = s
</math>
ãåŸãããã
ãã®åŒãé£ç«ããŠè§£ããšã
:<math>
s = \frac 3 {13}
</math>
,
:<math>
t = \frac 5 {26}
</math>
ãåŸãããã
ãã®åŒã
:<math>
\vec{OM}= \frac 1 4 (1 -s ) \vec a + s \vec b
</math>
,
:<math>
\vec{OM} =(1-t) \frac 2 7 \vec b + t \vec a
</math>
ã®ã©ã¡ããã«ä»£å
¥ãããšãæ±ããäœçœ®ãã¯ãã«ãåŸãããã®ã§ããã
代å
¥ãããšãæ±ãããã¯ãã«ã¯ã
:<math>
\vec{OM}= \frac 1 4 (1 -\frac 3 {13} ) \vec a + \frac 3 {13} \vec b
</math>
:<math>
= \frac 5 {26} \vec a + \frac 3 {13} \vec b
</math>
ãšãªãã
:çã
:<math>
\vec{OA'} = \frac 1 4 \vec a
</math>
:<math>
\vec {OB'}= \frac 2 7 \vec b
</math>
:<math>
\vec {OM} = \frac 5 {26} \vec a + \frac 3 {13} \vec b
</math>}}
===== åªä»å€æ°ã䜿ã£ãçŽç·ã®ãã¯ãã«æ¹çšåŒ =====
ç¹ <math>\mathrm{A}(\vec a)</math> ãéãããã¯ãã« <math>\vec {d} \, (\neq \vec 0)</math> ã«å¹³è¡ãªçŽç·ã <math>g</math> ãšããã<math>g</math> äžã®ç¹ã <math>\mathrm{P}(\vec p)</math> ãšãããšã<math>\vec \mathrm{AP} = \vec {0}</math>ãŸãã¯<math>\vec \mathrm{AP} \parallel \vec d</math> ã ãã
:<math>\vec \mathrm{AP} = t \vec {d}</math><!-- å³ -->
ãšãªã宿° <math>t</math> ãããã
ããªãã¡ã
:<math>\vec {p} - \vec {a} = t \vec {d}</math>
ãã£ãŠã
:<math>\vec {p} = \vec {a} + t \vec {d}</math>
ããããçŽç· <math>g</math> ã®'''ãã¯ãã«æ¹çšåŒ'''ïŒvector equationïŒãšããã <math>\vec{d}</math> ã <math>g</math> ã®'''æ¹åãã¯ãã«'''ãšããããŸãã<math>t</math> ã{{Ruby|'''åªä»å€æ°'''|ã°ããããžããã}}ãšããã
ç¹Aã®åº§æšã<math>(x_1\ ,\ y_1)</math>ã<math>\vec{d} = (a\ ,\ b)</math>ãç¹Pã®åº§æšã<math>(x\ , \ y)</math>ãšãããšããã¯ãã«æ¹çšåŒ <math>\vec {p} = \vec {a} + t \vec {d}</math> ã¯
:<math>(x\ , \ y) = (x_1\ , \ y_1) + t (a\ , \ b) </math>
ãšãªãããããã£ãŠ
<math>\begin{cases} x = x_1 +at \\ y = y_1 +bt\end{cases}</math>
ãããçŽç· <math>g</math> ã®'''åªä»å€æ°è¡šç€º'''ãšããã
{{æŒç¿åé¡|
ç¹A<math>(1\ ,\ 2)</math>ãéãã<math>\vec{d} = (3\ ,\ 5)</math>ã«å¹³è¡ãªçŽç·ã®æ¹çšåŒããåªä»å€æ°tãçšããŠè¡šãã
ãŸããtãæ¶å»ããåŒã§è¡šãã|
ãã®çŽç·ã®ãã¯ãã«æ¹çšåŒã¯
:<math>(x\ , \ y) = (1\ , \ 2) + t (3\ , \ 5) = (1+3t\ , \ 2+5t)</math>
ãããã£ãŠ
:<math>x = 1+3t\ ,\ y = 2+5t</math>
tãæ¶å»ãããšã次ã®ããã«ãªãã
:<math>5x-3y+1=0</math>}}
2ç¹ <math>\mathrm{A}(\vec a),\, \mathrm{B}(\vec b)</math> ãéãçŽç·ã®ãã¯ãã«æ¹çšåŒãèããã
çŽç·ABã¯ãç¹Aãéãã<math>\vec{AB} = \vec{b} - \vec{a}</math>ãæ¹åãã¯ãã«ãšããçŽç·ãšèããããããããã®ãã¯ãã«æ¹çšåŒã¯
:<math>\vec {p} = \vec {a} + t \left(\vec{b} - \vec{a} \right)</math>
ãšãªããããã¯æ¬¡ã®ããã«æžããã
:<math>\vec {p} = (1-t) \vec {a} + t \vec{b}</math>
{{æŒç¿åé¡|
2ç¹A<math>(2\ ,\ 5)</math>ïŒB<math>(-1\ ,\ 3)</math>ãéãçŽç·ã®æ¹çšåŒããåªä»å€æ°tãçšããŠè¡šãã|
ãã®çŽç·ã®ãã¯ãã«æ¹çšåŒã¯
:<math>(x\ , \ y) = (1-t)(2\ , \ 5) + t (-1\ , \ 3) = (2-3t\ , \ 5-2t)</math>
ãããã£ãŠ
:<math>x = 2-3t\ ,\ y = 5-2t</math>}}
===== å
ç©ã䜿ã£ãçŽç·ã®ãã¯ãã«æ¹çšåŒ =====
ç¹Aãéã£ãŠã<math>\vec {0}</math>ã§ãªããã¯ãã«ã<math>\vec {n}</math>ã«åçŽãªçŽç·ãgãšãããgäžã®ç¹ãPãšãããšã<math>\vec {AP} = \vec {0}</math>ãŸãã¯<math>\vec {AP} \perp \vec {n}</math>ã ãã
:<math>\vec {AP} \cdot \vec {n} =0</math>âŠ(1)
ã§ããã
ç¹A,Pã®äœçœ®ãã¯ãã«ãããããã<math>\vec{a}\ ,\ \vec{p}</math>ãšãããšã<math>\vec {AP} = \vec {p} - \vec {a}</math>ã ããã(1)ã¯
:<math>\vec {n} \cdot (\vec {p} - \vec {a}) = 0</math>âŠ(2)
ãšãªãã(2)ãç¹Aãéã£ãŠã<math>\vec {n}</math>ã«åçŽãªçŽç·gã®ãã¯ãã«æ¹çšåŒã§ããã<math>\vec{n}</math>ããã®çŽç·ã®'''æ³ç·ãã¯ãã«'''ïŒã»ããããã¯ãã«ãnormal vectorïŒãšããã
ç¹Aã®åº§æšã<math>(x_1\ ,\ y_1)</math>ã<math>\vec{n} = (a\ ,\ b)</math>ãç¹Pã®åº§æšã<math>(x\ , \ y)</math>ãšãããšã<math>\vec {p} - \vec {a} = (x-x_1\ , \ y-y_1)</math>ã ããã(2)ã¯æ¬¡ã®ããã«ãªãã
<center><math>a(x-x_1)+b(y-y_1)=0</math></center>
ãã®æ¹çšåŒã¯ã<math>-ax_1-by_1=c</math>ãšãããšã<math>ax+by+c=0</math>ãšãªããããæ¬¡ã®ããšããããã
'''çŽç·<math>ax+by+c=0</math>ã®æ³ç·ãã¯ãã«ã¯ã<math>\vec{n} = (a\ ,\ b)</math>ã§ããã'''
{{æŒç¿åé¡|
ç¹A<math>(2\ ,\ 5)</math>ãéãã<math>\vec{n} = (4\ ,\ 3)</math>ã«åçŽãªçŽç·ã®æ¹çšåŒãæ±ããã|:<math>4(x-2)+3(y-5)=0</math>
ã€ãŸã
:<math>4x+3y-23=0</math>}}
==空é座æšãšãã¯ãã«==
ãããŸã§ã¯ãå¹³é¢äžã®ãã¯ãã«ã«ã€ããŠèããŠããããããããã¯ïŒæ¬¡å
空éäžã®ãã¯ãã«ã«ã€ããŠèãããããäžè¬ã«ãã¯ãã«ã¯n次å
(ãŠãŒã¯ãªãã)空éäžã§å®çŸ©ããããšãã§ãããããã®ãããªãã®ã¯é«æ ¡ã§ã¯æ±ããªãã
=====空éåº§æš =====
ä»ãŸã§ã¯ãå¹³é¢äžã®å³åœ¢ããã¯ãã«ãæ°åŒãçšããŠè¡šçŸããæ¹æ³ãåŠãã§æ¥ãã
ããã§ãã2次å
ãšã¯ãå¹³é¢ã®ããšã§ãããå¹³é¢äžã®ä»»æã®ç¹ãæå®ããã«ã¯æäœã§ã2以äžã®å®æ°ãå¿
èŠã ãããã®ããã«åŒã°ããŠããã
ãã¡ãã容æã«åããéãã2ã€ä»¥äžã®æ¬¡å
ãæã£ãŠããå³åœ¢ãååšããã
äŸãã°ã3次å
ç«äœã®1ã€ã§ããçŽæ¹äœã¯çžŠã暪ãé«ãã®3ã€ã®é·ããæã£ãŠããã®ã§ã3次å
å³åœ¢ãšåŒã°ããã
空éã«1ã€ã®å¹³é¢ããšãããã®äžã«çŽäº€ãã座æšè»ž<math>O_x\ , \ O_y</math>ããšããæ¬¡ã«Oãéããã®å¹³é¢ã«åçŽãªçŽç·<math>O_z</math>ãã²ãããã®çŽç·äžã§ãOãåç¹ãšãã座æšãèããã
ãã®3çŽç·<math>O_x\ , \ O_y\ , \ O_z</math>ã¯ãã©ã®2ã€ãäºãã«åçŽã§ããããããã'''座æšè»ž'''ãšããããããã'''x軞ãy軞ãz軞'''ãšããã
ãŸããx軞ãšy軞ãšã§å®ãŸãå¹³é¢ã'''xyå¹³é¢'''ãšãããy軞ãšz軞ãšã§å®ãŸãå¹³é¢ã'''yzå¹³é¢'''ãšãããz軞ãšx軞ãšã§å®ãŸãå¹³é¢ã'''zxå¹³é¢'''ãšããããããã'''座æšå¹³é¢'''ãšããã
空éå
ã®ç¹Aã«å¯ŸããŠãAãéã£ãŠå座æšå¹³é¢ã«å¹³è¡ãª3ã€ã®å¹³é¢ãã€ãããããããx軞ãy軞ãz軞ãšäº€ããç¹ã<math>A_1\ , \ A_2\ , \ A_3</math>ãšãã<math>A_1\ , \ A_2\ , \ A_3</math>ã®ããããã®è»žäžã§ã®åº§æšã<math>a_1\ , \ a_2\ , \ a_3</math>ãšããã
ãã®ãšãã3ã€ã®æ°ã®çµ
:<math>(a_1\ , \ a_2\ , \ a_3)</math>
ãç¹Aã®'''座æš'''ãšããã<math>a_1</math>ã'''x座æš'''ãšããã<math>a_2</math>ã'''y座æš'''ãšããã<math>a_3</math>ã'''z座æš'''ãšããã
ãã®ããã«åº§æšã®å®ãããã空éã'''座æšç©ºé'''ãšåŒã³ãç¹Oã座æšç©ºéã®'''åç¹'''ãšããã
=====çé¢ã®æ¹çšåŒ =====
ããã§ã¯ãç¹ã«3次å
空éã®å³åœ¢ã«æ³šç®ããã
ãŸãã¯ãã¯ãã«ãçšããåã«3次å
空éã®ç©ºéå³åœ¢ããæ°åŒã«ãã£ãŠèšè¿°ããæ¹æ³ãèå¯ããã
2次å
空éã«ãããŠããã£ãšãç°¡åãªå³åœ¢ã¯çŽç·ã§ããããã®åŒã¯äžè¬çã«
:<math>
a x + by = c
</math>
ã§è¡šããããã
(<math>a</math>,<math>b</math>,<math>c</math>ã¯ä»»æã®å®æ°ã)
ããã§<math>x</math>,<math>y</math>ã¯ã2次å
空éã代衚ãã2ã€ã®ãã©ã¡ãŒã¿ãŒã§ããã3次å
空éãçšãããšãã«ã¯ããããã¯3ã€ã®æåã§è¡šããããããšãæåŸ
ãããã
å®éãã®ãããªåŒã§è¡šããããå³åœ¢ã¯ã3次å
空éã§ãåºæ¬çãªå³åœ¢ã§ãããã€ãŸãã
:<math>
a x + by + cz = d
</math>
ããäžã®åŒã®é¡äŒŒç©ãšããŠåŸãããã
(<math>a</math>,<math>b</math>,<math>c</math>,<math>d</math>ã¯ä»»æã®å®æ°ã)
ãã®ãããªå³åœ¢ã¯ã©ããªå³åœ¢ã«å¯Ÿå¿ããã ããã?
å®éã«ã¯ãã®å³åœ¢ãç¹åŸŽã¥ããã®ã¯ãåŸã«åŠã¶3次å
ãã¯ãã«ãçšããã®ããã£ãšãç°¡åã§ããã®ã§ãããã¯åŸã«ãŸããããšã«ããã
ãããããã 1ã€ãã®åŒããåããããšã¯ã3次å
空éã®åº§æšã衚ãããã©ã¡ãŒã¿ãŒ
:<math>
x,y,z
</math>
ã®ãã¡ã«1ã€ã®é¢ä¿
:<math>
f(x,y,z)=0
</math>
ãäžããããšã§ã3次å
空éäžã®å³åœ¢ãæå®ã§ãããšããããšã§ããããã®å Žåã¯ã
:<math>
f(x,y,z) =a x + by + cz - d
</math>
ãçšããŠããã
ãã¯ãã«ã䜿ããªããŠãå³åœ¢çè§£éãåŸãããåŒãšããŠã
:<math>
(x -a)^2 +
(y -b)^2 +
(z -c)^2
= r^2
</math>
ãæããããã
(<math>a</math>,<math>b</math>,<math>c</math>,<math>r</math>ã¯ä»»æã®å®æ°ã)
ãã®åŒã¯ã2次å
ã§ãããšããã®
:<math>
(x -a)^2 +
(y -b)^2 +
= r^2
</math>
ã®åŒã®é¡äŒŒç©ã§ããã2次å
ã®å Žåã¯ãã®åŒã¯ã
äžå¿<math>
(a,b)
</math>ååŸ<math>
r
</math>ã®åã«å¯Ÿå¿ããŠããã
3次å
ã®ãã®åŒã¯ãçµè«ããããšäžå¿<math>
(a,b,c)
</math>ååŸ<math>
r
</math>ã®åã«å¯Ÿå¿ããŠããã®ã§ããã
*説æ
äžã®åŒ
:<math>
(x -a)^2 +
(y -b)^2 +
(z -c)^2
= r^2
</math>
ãæºããããç¹<math>
(x,y,z)
</math>ãåãããã®ç¹ãšç¹<math>
(a,b,c)
</math>ãšã®è·é¢ãèããã
空é座æšã«çœ®ãã<math>x</math>軞ã
<math>y</math>軞ã
<math>z</math>軞ã¯ããããçŽäº€ããŠããã®ã§ã2ç¹ã®è·é¢ã¯3å¹³æ¹ã®å®çãçšããŠ
:<math>
\sqrt{ (x -a)^2 + (y -b)^2 + (z -c)^2 }
</math>
ã§äžããããã
ããããäžã®åŒããããã§éžãã ç¹<math>
(x,y,z)
</math>ã¯ãæ¡ä»¶
:<math>
(x -a)^2 +
(y -b)^2 +
(z -c)^2
= r^2
</math>
ãæºãããŠããã®ã§ã2ç¹ã®è·é¢ã¯
:<math>
\sqrt{ (x -a)^2 + (y -b)^2 + (z -c)^2 }
</math>
:<math>
= \sqrt{r^2}
</math>
:<math>
= r
</math>
ã§ããã
(<math>r>0</math>ãçšããã)
ãã£ãŠãäžã®åŒãæºããç¹ã¯å
šãŠç¹<math>
(a,b,c)
</math>ããã®è·é¢ã<math>
r
</math>ã§ããç¹ã§ãããããã¯äžå¿<math>
(a,b,c)
</math>ååŸ<math>
r
</math>ã®åã«ä»ãªããªãã
{{æŒç¿åé¡|
äžå¿
:<math>
(3,7,-2)
</math>
ååŸ
:<math>
1
</math>
ã®çã®åŒãæ±ããã|:<math>
(x -a)^2 +
(y -b)^2 +
(z -c)^2
= r^2
</math>
ã«ä»£å
¥ããããšã§ã
:<math>
(x -3)^2 +
(y -7)^2 +
(z +2)^2
= 1
</math>
ãæ±ããããã}}
{{æŒç¿åé¡|
:<math>
x ^ 2 + 2x + y ^ 2 - 8y + z ^ 2 + 6z - 9 = 0
</math>
ãã©ã®ãããª
çã«å¯Ÿå¿ãããèšç®ããã|ãã®ãããªæ°åŒãçã«å¯Ÿå¿ãããšãã
:<math>
x^2,
y^2,
z^2
</math>
ã®ä¿æ°ã¯å¿
ãçãããªããŠã¯ãªããªããããã§ãªãå Žåã¯ãã®å³åœ¢ã¯æ¥åäœã«å¯Ÿå¿ããã®ã ããããã¯æå°èŠé ã®ç¯å²å€ã§ããã
ããã§ã¯äžã®åŒã¯ãã®æ¡ä»¶ãæºãããŠããã
ããã§ã¯ããã®åŒã
:<math>
(x -a)^2 +
(y -b)^2 +
(z -c)^2
= r^2
</math>
ã®åœ¢ã«æã£ãŠè¡ãããšãéèŠã§ããã
:<math>
x,y,z
</math>
ã®ããããã«ã€ããŠãã®åŒãå¹³æ¹å®æãããšã
:<math>
x ^ 2 + 2x + y ^ 2 - 8y + z ^ 2 + 6z - 9 = 0
</math>
:<math>
(x +1 ) ^2 - 1 + (y -4) ^2 -16 +(z +3)^2 -9 -9=0
</math>
:<math>
(x +1 ) ^2 + (y -4) ^2 +(z +3)^2 = 35
</math>
ãåŸãããããã£ãŠãäžã®åŒ
:<math>
x ^ 2 + 2x + y ^ 2 - 8y + z ^ 2 + 6z - 9 = 0
</math>
ã¯ã
äžå¿
:<math>
(-1,4,-3)
</math>
ãååŸ
:<math>
\sqrt{35}
</math>
ã®çã«å¯Ÿå¿ããã}}
=====空éã«ããããã¯ãã«=====
次ã«3次å
空éäžã«ããããã¯ãã«ãèå¯ããã
2次å
空éäžã§ã¯ãã¯ãã«ã¯2ã€ã®éã®çµã¿åããã§è¡šããããã
ããã¯1ã€ã®ãã¯ãã«ã¯x軞æ¹åã«å¯Ÿå¿ããéãšy軞æ¹åã«å¯Ÿå¿ããéã®2ã€ãæã£ãŠããå¿
èŠããã£ãããã§ããã
ãã®ããšããã3次å
空éã®ãã¯ãã«ã¯3ã€ã®éã®çµã¿åããã§æžããããšãäºæ³ãããã
ç¹ã«<math>x</math>軞æ¹åã®æå<math>a</math>,
<math>y</math>軞æ¹åã®æå<math>b</math>,
<math>z</math>軞æ¹åã®æå<math>c</math>
(<math>a</math>,<math>b</math>,<math>c</math>ã¯ä»»æã®å®æ°ã)
ã§è¡šãããããã¯ãã«ãã
:<math>
(a,b,c)
</math>
ãšæžããŠè¡šããããšã«ããã
2次å
å¹³é¢ã§ã¯
ãããã¯ãã«
:<math>
\vec a =(a,b)
</math>
ã¯ã
(<math>a</math>,<math>b</math>ã¯ä»»æã®å®æ°ã)
:<math>
\vec e _1 = (1,0)
</math>
:<math>
\vec e _2 = (0,1)
</math>
ã®2æ¬ã®ãã¯ãã«ãçšããŠã
:<math>
\vec a = a\vec e _1 + b\vec e _2
</math>
ã§è¡šããããã
3次å
空éã§ããã®ãããªèšè¿°æ³ããããäžã§çšãããã¯ãã«
:<math>
\vec a = (a,b,c)
</math>
ã¯ã
:<math>
\vec e _1 = (1,0,0)
</math>
:<math>
\vec e _2 = (0,1,0)
</math>
:<math>
\vec e _3 = (0,0,1)
</math>
ãçšããŠ
:<math>
\vec a = a \vec e _1 + b \vec e _2 + c\vec e _3
</math>
ãšæžããããã¯ãã«ã«å¯Ÿå¿ããŠããã
3次å
ãã¯ãã«ã«å¯ŸããŠã2次å
ãã¯ãã«ã§å®ããå®çŸ©ãæ§è³ªãã»ãŒãã®ãŸãŸæç«ããã
3次å
ãã¯ãã«ã®å æ³ã¯ãããããã®ãã¯ãã«èŠçŽ ãç¬ç«ã«è¶³ãåãããããšã«ãã£ãŠå®çŸ©ããã
:<math>
(x _1,y _1,z _1)+(x _2,y _2,z _2)
</math>
:<math>
=
(x _1+x _2,y _1+y _2,z _1+z _2)
</math>
ãŸããããããã®ãã¯ãã«ã®èŠçŽ ãå
šãŠçãããã¯ãã«ã"ãã¯ãã«ãšããŠçãã"ãšè¡šçŸããã
{{æŒç¿åé¡|
ãã¯ãã«ã®å
:<math>
(1,2,3)+(4,5,6)
</math>
ãèšç®ããã|:<math>
(1,2,3)+(4,5,6)
</math>
:<math>
=(1+4,2+5,3+6)
</math>
:<math>
=(5,7,9)
</math>
ãåŸãããã}}
=====空éãã¯ãã«ã®å
ç©=====
ãã¯ãã«<math>\vec a</math>,<math>\vec b</math>éã®ãã¯ãã«ã®å
ç©ãå¹³é¢ã®å Žåãšåæ§ã«
:<math>
\vec a \cdot\vec b
= |\vec a||\vec b| \cos \theta
</math>
(<math>\theta</math>ã¯ããã¯ãã«<math>\vec a</math>,<math>\vec b</math>ã®ãªãè§ã)
åé
æ³åã1次ç¬ç«ã®æ§è³ªããã®ãŸãŸæãç«ã€ã
ãã ãã3次å
空éã®å
šãŠã®ãã¯ãã«ã匵ãã«ã¯ã3ã€ã®ç·åœ¢ç¬ç«ãªãã¯ãã«ãæã£ãŠæ¥ãå¿
èŠãããã
*泚æ
ãã®ããšã®èšŒæã¯ãããã[[ç·å代æ°åŠ]]ãªã©ã«è©³ããã
{{æŒç¿åé¡|
2ã€ã®ãã¯ãã«ã®å
ç©
:<math>
(1,2,3) \cdot
(4,5,6)
</math>
ãèšç®ããã|
2次å
ã®å Žåãšåãããã«ããã§ãããããã®èŠçŽ ã¯äºãã«çŽäº€ããåäœãã¯ãã«
:<math>
\vec e _1\ ,\ \vec e _2\ ,\ \vec e _3
</math>
ã«ãã£ãŠåŒµãããŠããããã®ãã以åãšåããèŠçŽ ããšã®èšç®ãå¯èœã§ããã
:<math>
(1,2,3) \cdot
(4,5,6)
</math>
:<math>
=1\times 4 + 2 \times 5 + 3 \times 6
</math>
:<math>
= 32
</math>
ãšãªãã
ããããã现ããèšç®ãè¡ãªããšã
:<math>
(1,2,3) \cdot
(4,5,6)
</math>
:<math>
=( \vec e _1
+2\vec e _2
+3\vec e _3)
\cdot
(4\vec e _1
+5\vec e _2
+6\vec e _3)
</math>
ãåŸããããããããã®ãã¯ãã«ã
:<math>
(a+b+c)(x+y+z)
= (ax+ay+az + bx+by+bz+cx+cy+cz)
</math>
ã«åŸã£ãŠå±éãã
:<math>
\vec e _ i \cdot \vec e _j
</math>
(<math>i</math>,<math>j</math>ã¯1,2,3ã®ã©ããã)
ã代å
¥ããããšã§äžã®åŒãèšç®ã§ããã¯ãã§ããã
ãããã
<math>i</math>ãš<math>j</math>ãçãããªããšãã«ã¯
:<math>
\vec e _ i \cdot \vec e _j
</math>
:<math>
=0
</math>
ãæãç«ã€ããšãããäžã®å±éããåŸã®9åã®é
ã®ãã¡ã§ã6ã€ã¯
:<math>
0
</math>
ã«çããã
ãŸãã
<math>i</math>ãš<math>j</math>ãçãããšãã«ã¯
:<math>
\vec e _ i \cdot \vec e _j
</math>
:<math>
=1
</math>
ãæãç«ã€ããšãããäžã®åŒ
:<math>
=( \vec e _1
+2\vec e _2
+3\vec e _3)
\cdot
(4\vec e _1
+5\vec e _2
+6\vec e _3)
</math>
ã®å±éã¯
:<math>
= 4 + 2 \times 5 + 3 \times 6
</math>
:<math>
= 32
</math>
ãšãªã£ãŠç¢ºãã«èŠçŽ ããšã®èšç®ãšäžèŽããã}}
{{æŒç¿åé¡|
2次å
空éã®ãã¯ãã«ã¯2æ¬ã®1次ç¬ç«ãªãã¯ãã«ãããã°ãå¿
ããããã®ç·åœ¢çµåã«ãã£ãŠèšç®ã§ããã¯ãã§ããã
ããã§ã
:<math>
\vec a _1= (1,2)
</math>
ãš
:<math>
\vec a _2= (-5,3)
</math>
ãçšããŠã
:<math>
\vec b = (10,7)
</math>
ãã
:<math>
\vec b = c \vec a _1
+d \vec a _2
</math>
ã®åœ¢ã«æžããŠã¿ãã
(<math>c</math>,<math>d</math>ã¯ãäœããã®å®æ°ã)|2次å
ã®ãã¯ãã«ã®ä¿æ°ãæ±ããåé¡ã§ããã
<math>c</math>,<math>d</math>ã®æåããã®ãŸãŸçšãããšã<math>c</math>,<math>d</math>ã®æºããæ¡ä»¶ã¯
:<math>
c(1,2) + d(-5,3)
= (10,7)
</math>
ã€ãŸã
:<math>
(c-5d , 2c + 3d) =(10,7)
</math>
ãšãªããããã¯
<math>c</math>,<math>d</math>ã«é¢ããé£ç«1次æ¹çšåŒã§æžãæããããã
:<math>\begin{cases}
c -5d = 10\\
2c + 3d = 7
\end{cases}</math>
ãããè§£ããšã
:<math>
c = 5
</math>
:<math>
d = -1
</math>
ãåŸãããã
ãã£ãŠã
äžã®åŒã¯
:<math>
5(1,2) -(-5,3)
= (10,7)
</math>
ãšæžãã確ãã«2æ¬ã®ç·åœ¢ç¬ç«ãªãã¯ãã«ã«ãã£ãŠä»ã®ãã¯ãã«ãæžã衚ãããããšãåãã£ãã
*泚æ
ãã®ãããªèšç®ã¯3次å
ãã¯ãã«ã«å¯ŸããŠãå¯èœã§ããããèšç®ææ³ãšããŠ3å
1次é£ç«æ¹çšåŒãæ±ãå¿
èŠããããæå°èŠé ã®ç¯å²å€ã§ãããå®éã®èšç®ææ³ã¯ã[[ç·å代æ°åŠ]],[[ç©çæ°åŠI ç·åœ¢ä»£æ°]]ãåç
§ã}}
ãã®è¡šåŒãçšããŠã以åèŠã
:<math>
a x + by + cz = d
</math>
ã®å³åœ¢çè§£éãè¿°ã¹ãã
ãã®å³åœ¢äžã®ä»»æã®ç¹ã<math>
(x,y,z)
</math>ã§è¡šããã
ãã®ç¹ã¯åç¹Oã«å¯Ÿããäœçœ®ãã¯ãã«ãçšãããš<math>
(x,y,z)
</math>ã§äžããããã
䟿å®ã®ããã«
ãã®ãã¯ãã«ã<math>
\vec x
</math>ãšæžãããšã«ããã
äžæ¹ããã¯ãã«<math>
\vec a = (a,b,c)
</math>ãçšãããšãäžã®åŒã¯ãã¯ãã«ã®å
ç©ãçšããŠ<math>
\vec a \cdot \vec x = d
</math>ã§äžããããã
ã€ãŸãããã®åŒã§è¡šããããå³åœ¢ã¯ãããã¯ãã«
<math>
\vec a
</math>
ãšã®å
ç©ãäžå®ã«ä¿ã€å³åœ¢ã§ããã
ãã®å³åœ¢ã¯ãå®éã«ã¯
<math>
\vec a
</math>
ã«çŽäº€ããå¹³é¢ã§äžããããã
ãªããªããã®ãããªå¹³é¢äžã®ç¹ã¯ãå¿
ãå¹³é¢äžã®ããäžç¹ã®äœçœ®ãã¯ãã«ã«å ããŠã
ãã¯ãã«
<math>
\vec a
</math>
ã«çŽäº€ãããã¯ãã«ãå ãããã®ã§æžãããšãåºæ¥ãã
ãããã
ãã¯ãã«
<math>
\vec a
</math>
ã«çŽäº€ãããã¯ãã«ãš
ãã¯ãã«
<math>
\vec a
</math>
ã®å
ç©ã¯å¿
ã0ã§ããã®ã§ã
ãã®ãããªç¹ã®éåã¯
ãã¯ãã«
<math>
\vec a
</math>
ãšäžå®ã®å
ç©ãæã€ã®ã§ããã
ãã£ãŠå
ã®åŒ
:<math>
a x + by + cz = d
</math>
ã¯ã
ãã¯ãã«<math>
\vec a =(a,b,c)
</math>ã«çŽäº€ããå¹³é¢ã«å¯Ÿå¿ããããšãåãã£ãã
次ã«<math>d</math>ããå³åœ¢ã衚ããå¹³é¢ãšãåç¹ãšã®è·é¢ã«é¢ä¿ãããããšã瀺ãã
ç¹ã«ããã¯ãã«<math>
\vec a
</math>ã«æ¯äŸããäœçœ®ãã¯ãã«ãæã€ç¹<math>
\vec x
</math>ãèããããã®ãšããã®ç¹ãšåç¹ãšã®è·é¢ã¯ã
å¹³é¢
:<math>
a x + by + cz = d
</math>
ãšåç¹ãšã®è·é¢ã«å¯Ÿå¿ããã
ãªããªããäœçœ®ãã¯ãã«<math>
\vec x
</math>ã¯ãåç¹ããå¹³é¢
:<math>
a x + by + cz = d
</math>
ã«åçŽã«äžãããç·ã«å¯Ÿå¿ããããã§ããã
ãã®ããšããä»®ã«<math>
\vec a
</math>æ¹åã®åäœãã¯ãã«ã<math>
\vec n
</math>ãšæžããå¹³é¢ãšåç¹ãšã®è·é¢ã<math>
m
</math>ãšæžããšã<math>
\vec x = m \vec n
</math>ãåŸãããã
ãã®åŒã
:<math>
\vec a \cdot \vec x = d
</math>
ã«ä»£å
¥ãããšã
:<math>
\vec a \cdot m\vec n = d
</math>
:<math>
m|\vec a| = d
</math>
ãåŸãããããã£ãŠã<math>
d
</math>ã¯ã
å¹³é¢ãšåç¹ã®è·é¢<math>
m
</math>ãšãã¯ãã«<math>
\vec a
</math>ã®å€§ãããããããã®ã§ããã
<!-- äžã§ã¯å²åäžè¬çã«3次å
ã®å¹³é¢ãæ±ã£ãããã㯠-->
<!-- å°ãé£ããå
容ã§ãã£ããå®éã®æå°èŠé ã§ã¯ããå°ã -->
<!-- ç°¡åãªå
容ã -->
{{æŒç¿åé¡|
ç¹ã«ãã¯ãã«
:<math>
\vec a = (0,0,1)
</math>
ãåããšãã©ã®ãããªåŒãåŸãããŠããã®åŒã¯
ã©ã®ãããªå³åœ¢ã«å¯Ÿå¿ãããã|ãã®ãšã
:<math>
\vec a \cdot \vec x = d
</math>
ã¯ã
:<math>
(0,0,1)\cdot (x,y,z) = d
</math>
:<math>
z =d
</math>
ã«å¯Ÿå¿ããã
ãã®åŒã¯<math>z</math>座æšã<math>d</math>ã«å¯Ÿå¿ãããã以å€ã®<math>x</math>,<math>y</math>座æšãä»»æã«åããã
å¹³é¢ã«å¯Ÿå¿ããŠããããããã¯
<math>xy</math>å¹³é¢ã«å¹³è¡ã§ããã
<math>xy</math>å¹³é¢ããã®è·é¢ã<math>d</math>ã§ããå¹³é¢ã§ããã
ãŸãã<math>xy</math>å¹³é¢ãšãã¯ãã«
:<math>
\vec a = (0,0,1)
</math>
ã¯çŽäº€ããŠããã®ã§ããã®ããšããããã®åŒã¯æ£ããã}}
:ç
:: <math>xy</math>å¹³é¢ã«å¹³è¡ã§ããã<math>xy</math>å¹³é¢ããã®è·é¢ã<math>d</math>ã§ããå¹³é¢ã
== çºå±:å€ç© ==
å€ç©ã¯é«æ ¡æ°åŠç¯å²å€ã§å
¥è©Šã«ã¯åºãªãããå€ç©ã¯æ°åŠãç©çãªã©ã«å¿çšã§ãã䟿å©ãªã®ã§ããã§æ±ãã
äžæ¬¡å
ãã¯ãã« <math>\vec a ,\, \vec b</math> ã«å¯Ÿããå€ç© <math>\vec a \times \vec b</math> ãæ¬¡ãæºãããã®ãšããã
# <math>\vec a \times \vec b</math> 㯠<math>\vec a ,\, \vec b</math> ãããããšåçŽ<ref>æ°åŒã§è¡šããš <math>\vec a \times \vec b \perp \vec a </math> ã〠<math>\vec a \times \vec b \perp \vec b </math></ref>
# ãã¬ãã³ã°ã®å·Šæã®æ³åã®æ Œå¥œãããããã®ãšããäžæã <math>\vec a</math> ã人差ãæã <math>\vec b</math> ããšãããšãã<math>\vec a \times \vec b</math> ã¯èŠªæã®æ¹åã§ããã
# ãã¯ãã« <math>\vec a ,\, \vec b</math> ã®ãªãè§ã <math>\theta</math> ãšããã<math>|\vec a \times \vec b| = |\vec a ||\vec b|
\sin\theta</math><ref><math>|\vec a ||\vec b|
\sin\theta</math> ã¯ãã¯ãã« <math>\vec a ,\, \vec b</math> ã®äœãå¹³è¡å蟺圢ã®é¢ç©ã«çããã</ref>
[[ãã¡ã€ã«:Cross product parallelogram.svg|ãµã ãã€ã«|å€ç©ã®æ¹åã衚ããå³ãäžã®âèšå·ããªãããããã¯ãã¯ãã«ã§ããã]]
次ã«å€ç©ã®æå衚瀺ãèããŠã¿ããããã®å®çŸ©ããæå衚瀺ãçŽæ¥å°ãã®ã¯é¢åãªã®ã§ã倩äžãçã«æå衚瀺ãäžããŠããããããå€ç©ã®å®çŸ©ãæºããããšã確èªããã
<math>\vec a = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}</math> ã<math>\vec b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}</math> ãšãããšãã<math>\vec a \times \vec b = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}</math> ã§ããã
ãŸãã¯ã<math>\vec a \times \vec b</math> 㯠<math>\vec a ,\, \vec b</math> ãããããšåçŽã§ããããšã確èªãããããã¯ã<math>(\vec a \times \vec b) \cdot \vec a = 0</math> ãš <math>(\vec a \times \vec b) \cdot \vec b = 0</math> ã§ããããšãæå衚瀺ã代å
¥ããã°èšŒæã§ããã
次ã«ã <math>|\vec a \times \vec b| = |\vec a ||\vec b|
\sin\theta</math> ã蚌æããã<math>|\vec a \times \vec b|^2 = |\vec a |^2|\vec b|^2
\sin^2\theta = \vec | a |^2|\vec b|^2
(1-\cos^2\theta)</math> ãããã§ã <math>\cos^2 \theta = \frac{(\vec a \cdot \vec b)^2}{|\vec a|^2|\vec b|^2}</math> ã代å
¥ãã<math>|\vec a \times \vec b|^2 = \vec |a |^2|\vec b|^2
-(\vec a \cdot \vec b)^2</math> ãåŸãããã®åŒã«ãæå衚瀺ã代å
¥ããã°ã䞡蟺ãçããããšã確èªã§ããã
æåŸã«ããã¬ãã³ã°ã®å·Šæã®æ³åã§ <math>\vec a \times \vec b</math> ã¯èŠªæã®æ¹åã§ããããšã確èªããã
<math>\vec a = \begin{pmatrix} 1 \\ 0 \\ 0\end{pmatrix}</math>ã <math>\vec b = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}</math> ã®ãšãã<math>\vec a \times \vec b = \begin{pmatrix} 0\\ 0 \\ 1 \end{pmatrix}</math> ã§ããããããããäºçªç®ã®æ§è³ªã確èªã§ããã
'''å€ç©ã®å¿çš'''
2ã€ã®ãã¯ãã«ã«åçŽãªãã¯ãã«ãæ±ããããšããªã©ã¯ãå€ç©ã®æå衚瀺ããèšç®ããã°ãé¢åãªèšç®ãããªããŠãæ±ããããã
åé¢äœ <math> \mathrm{OABC}</math> ã®äœç©ã¯ <math> \frac 1 6 |(\vec \mathrm{OA} \times \vec \mathrm{OB})\cdot \vec \mathrm{OC} | </math>
ã§ããã
å®éã <math> \frac 1 6 |(\vec \mathrm{OA} \times \vec \mathrm{OB})\cdot \vec \mathrm{OC} | = \frac 1 3 \left|\frac 1 2 \vec \mathrm{OA} \times \vec \mathrm{OB}\right||h|</math>ã§ããããã ãã h ã¯ÎABCãåºé¢ãšãããšãã®åé¢äœã®é«ãã§ããã
ãŸããç©çåŠã®ããŒã¬ã³ãåã¯å€ç©ã䜿ããš <math>\vec F = q\vec v \times \vec B</math> ãšç°¡æœã«è¡šããã
'''èŠãæ¹'''
å³ã®ããã«èŠçŽ ãããåãããã
[[ãã¡ã€ã«:Cross product mnemonic a b.svg|ãã¬ãŒã ãªã]]
== ã³ã©ã ãªã© ==
{{ã³ã©ã |ãã¯ãã«ã®çè«ã®æŽå²|2=[[File:WilliamRowanHamilton.jpeg|thumb|ããã«ãã³]]
è€çŽ æ°ãšãã¯ãã«ã®çè«ã¯ããããç¬ç«ããçè«ãšããŠæããããŠããããæŽå²çã«ã¯ããã«ãã³ã«ãã£ãŠè€çŽ æ°ãæ¡åŒµããåå
æ°ãçºèŠãããåå
æ°ãå
ã«ã®ãã¹ãªã©ã«ãã£ãŠãã¯ãã«ãçºèŠãããã
[[w:åå
æ°|åå
æ°]]ã¯ã
:a ïŒ bi ïŒ cj ïŒ dk (a,b,c,dã¯å®æ°)
ã®ããã«ã宿°ãš3ã€ã®èæ°åäœi,j,kããã¡ããŠè¡šãããæ°ã§ããã
ããã§ãi,j,k 㯠i^2=-1, j^2=-1, k^2=-1 ãæºããæ°ã§ãi,j,k ã¯äºãã«ç°ãªãã
宿°ã®åäœ1åã«å ããŠãããã«3ã€ã®åäœ i, ãj,ã k ããã£ãŠããã®ã§ãåèšã§4åã®åäœãããã®ã§åå
æ°ãšããããããã§ããã
ããŠãããã«ãã³ã«ããåå
æ°ã®çºèŠåŸãããã«ç ç©¶ãé²ããšãå³åœ¢ãç©çåŠãªã©ã®åé¡ãè§£ãããã«ã¯ 2ä¹ããŠ-1ã«ãªãæ§è³ªã¯ã»ãšãã©ã®ç©ºéã»ç«äœïŒ3次å
ã®å³åœ¢ïŒã®åé¡ãè§£ãå¿çšã®å Žåã«ã¯äžèŠã§ããããšãåãããåŠæ ¡æè²ã®å Žã§ã¯ãã¯ãã«ãšè€çŽ æ°ãå¥ã
ã«æããããã«ãªã£ãããã§ããã
ãããŠãåå
æ°ã®å
¬åŒã®ãã¡ããã¯ãã«ã§ãé¡äŒŒã®å
¬åŒãæãç«ã€å Žåã«ã¯ããã®åå
æ°ã®å
¬åŒããã¯ãã«çšã«æ¹è¯ãããŠãã¯ãã«ã®å
¬åŒãšããŠèŒžå
¥ãããã®ã§ãçµæçã«ããã«ãã³ã¯ãã¯ãã«ã®å
¬åŒã®çºèŠè
ãšããŠã玹ä»ãããããšã«ãªã£ãã
ãŸããåå
æ°ã¯çŸä»£ã§ã¯3DCGãªã©ã®åéã§å¿çšãããŠããã}}
== èæ³š ==
<references/>
{{DEFAULTSORT:ãããšããã€ããããããC ãžããšã}}
[[Category:é«çåŠæ ¡æ°åŠC|ãžããšã]] | 2005-05-03T07:08:24Z | 2023-10-31T10:22:04Z | [
"ãã³ãã¬ãŒã:æŒç¿åé¡",
"ãã³ãã¬ãŒã:Ruby",
"ãã³ãã¬ãŒã:ã³ã©ã ",
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:Math theorem",
"ãã³ãã¬ãŒã:Math proof"
] | https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E6%95%B0%E5%AD%A6C/%E3%83%99%E3%82%AF%E3%83%88%E3%83%AB |
1,893 | æ§èª²çš(2013幎床-2021幎床)é«çåŠæ ¡æ°åŠC | æ°åŠCã¯
ããæ§æãããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ°åŠCã¯",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ããæ§æãããã",
"title": ""
}
] | æ°åŠC㯠ãã¯ãã«
å¹³é¢äžã®æ²ç·
è€çŽ æ°å¹³é¢
æ°åŠçãªè¡šçŸã®å·¥å€« ããæ§æãããã | {{pathnav|é«çåŠæ ¡ã®åŠç¿|é«çåŠæ ¡æ°åŠ|frame=1}}
æ°åŠCã¯
*[[é«çåŠæ ¡æ°åŠB/ãã¯ãã«|ãã¯ãã«]]
*[[é«çåŠæ ¡æ°åŠIII/å¹³é¢äžã®æ²ç·|å¹³é¢äžã®æ²ç·]]
*[[é«çåŠæ ¡æ°åŠIII/è€çŽ æ°å¹³é¢|è€çŽ æ°å¹³é¢]]
*[[é«çåŠæ ¡æ°åŠC/æ°åŠçãªè¡šçŸã®å·¥å€«|æ°åŠçãªè¡šçŸã®å·¥å€«]]
ããæ§æãããã
{{DEFAULTSORT:æ§2 ãããšããã€ããããããC}}
[[Category:é«çåŠæ ¡æè²]]
[[Category:é«çåŠæ ¡æ°åŠC|*]]
[[Category:æ°åŠæè²]] | 2005-05-03T07:35:52Z | 2023-12-09T21:37:53Z | [
"ãã³ãã¬ãŒã:Pathnav"
] | https://ja.wikibooks.org/wiki/%E6%97%A7%E8%AA%B2%E7%A8%8B(2013%E5%B9%B4%E5%BA%A6-2021%E5%B9%B4%E5%BA%A6)%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E6%95%B0%E5%AD%A6C |
1,894 | æ§èª²çš(-2012幎床)é«çåŠæ ¡æ°åŠC/è¡å | é«çåŠæ ¡æ°åŠC > è¡å
æ¬é
ã¯é«çåŠæ ¡æ°åŠCã®è¡åã®è§£èª¬ã§ããã
1次æ¹çšåŒ
ããæ¬¡ã®ãããªèšæ³ã§è¡šããŠã¿ãã
ããããå匷ããã®ã¯ãé£ç«æ¹çšåŒãšãã¯ãã«ãšã®é¢ä¿ã§ããããããèå¯ããããããããã«ããããã«è¡å(ããããã€)ãšããéãå°å
¥ããã
ãã¯ãã« ( x y ) {\displaystyle {\begin{pmatrix}x\\y\end{pmatrix}}} ã«ã æŒç® ( 1 2 2 3 ) {\displaystyle {\begin{pmatrix}1&2\\2&3\end{pmatrix}}} ãæœããŠ(ãã®æŒç®ã®å
容ãããããããã説æãããè¡åãã§ãã)ã çãã®ãã¯ãã« ( 1 2 ) {\displaystyle {\begin{pmatrix}1\\2\end{pmatrix}}} ãåŸãããšãã衚çŸã«æžãæããã
ãŸãããã®ãããªèšæ³ããããããæ¬¡ã«èª¬æããè¡å(ããããã€ãè±:matrix)ãšããéãæ°ãã«å®çŸ©ããã
ãŸããè¡åã©ããã®ç©ã®å®çŸ©ãã
ã¯ã
ãšçããããšå®ããã äœæ
ãã®ããã«å®ããã®ããèãããã 2ã€ã®é£ç«æ¹çšåŒ
ã«ãããŠãäžéç倿°p,qãæ¶å»ããŠã倿°x,yã«é¢ããäžã€ã®é£ç«æ¹çšåŒãšæžãçŽããš
ãšãªãã å®éãäž2åŒã®p,qã«ãäž2åŒã代å
¥ããŠæŽé ããã°ããã èªè
ã¯ä»£å
¥ããŠç¢ºèªããã ãããè¡å衚çŸãããš
仿¹ã2ã€ã®é£ç«æ¹çšåŒãè¡åãçšããŠæžãçŽããš
äžã®åŒãäžã®åŒã«ã圢åŒçã«ä»£å
¥ãããš
2ã€ã®è¡å衚çŸåŒãæ¯èŒããã°ã è¡åã®ç©ã®å®ãæ¹ã®åçæ§ãåããã ããã
ç©ã®å®çŸ©åŒã¯ãäžèŠãããšè€éããã«èŠããããããã«è£å©ç·ã
ã®ããã«åŒããŠã¿ãã°åããããã«ãããšãã°åæåŸã®2è¡1åã ( c e + d g ) {\displaystyle {\begin{pmatrix}&\\ce+dg&\qquad \end{pmatrix}}} ã¯ãåæåã®2è¡ãã®ããããã®æå ( c d ) {\displaystyle {\begin{pmatrix}&\\c&d\end{pmatrix}}} ãšãåæåã®1åç® ( e g ) {\displaystyle {\begin{pmatrix}e&\\g&\end{pmatrix}}} ã®æåãšããæããŠè¶³ãããã®ã«ãªã£ãŠããã
äžè¬ã«ãç©ã®åæåŸã®xè¡yåãã¯ãåæåã®xè¡ãã®ããããã®æåãšãåæåã®yåç®ã®ããããã®æåãšããæããŠè¶³ããçµæã«ãªã£ãŠããã
è¡åã©ããã®ç©ã¯ãé åºã«ãã£ãŠçµæãç°ãªãã ããšãã°è¡åA,Bã
ãšãããšãã
ããããã
ãšãªãã
ãã®ããã«ãäžè¬ã®è¡åAãšè¡åBã®ç©ã¯ãäžè¬ã«
ãšãªãã
äžè¿°ã®äŸã¯ã2å
é£ç«äžæ¬¡æ¹çšåŒãåŒ2åã®å Žåã«çžåœããè¡åã ã£ãããäžè¬ã«é£ç«æ¹çšåŒã®å
ã®æ°ã¯2åãšã¯éããªãããæ¹çšåŒã®æ°ã2åãšã¯éããªãã®ã§ãä»ã®å Žåã«ãè¡åãå®çŸ©ã§ããããã«ãè¡åã®å®çŸ©ãæ¡åŒµããã
ã€ãã®ããã«ãæ°å€ã瞊暪ã«äžŠã¹ãŠãããããã®æ®µã®æåã®åæ°ãçãããã®ã è¡å(ããããã€ãè±:matrix) ãšåŒã¶ã
äŸãã°ã
ã¯è¡åã§ããã
ãã£ãœãã
ã¯ãæåã®åæ°ãäžèŽããªãã®ã§ãè¡åã§ã¯ãªãã
è¡åã®äžéšã®ã暪ã«äžŠãã æ°å€ã®ãããŸãã è¡(ããããè±:row) ãšããã瞊ã«äžŠãã æ°å€ã®ãããŸãã å(ãã€ãè±:column) ãšãããããããã®æ°å€ã æå(ããã¶ããè±:element) ãšåŒã¶ã
äŸãã°ã
ã¯2è¡ã3åãããªãè¡åã§ããã
è¡æ°ãmã§ãåæ°ãnã®è¡åã mÃnè¡å ã®ããã«åŒã³ãç¹ã«è¡æ°ãšåæ°ãçããnã§ããè¡åãªãã° næ¬¡æ£æ¹è¡å ãšåŒã¶ã
äŸãã°ã
㯠2Ã3è¡å ã§ããã
第 i è¡ç¬¬ j åã®æåã (i, j) æåãšããã
äŸãã°ã
ã® (2, 1) æåã¯4ã§ããã
ã2ã€ã®è¡åãçããããšã¯ãè¡æ°ãšåæ°ãçããããã€å¯Ÿå¿ãã (i, j) æåããã¹ãŠçããããšãšå®ããã
ã€ãŸãã ( a b c d ) = ( e f g h ) {\displaystyle {\begin{pmatrix}a&&b\\c&&d\\\end{pmatrix}}={\begin{pmatrix}e&&f\\g&&h\\\end{pmatrix}}} ãšã¯ã a = e , b = f , c = g , d = h {\displaystyle a=e,b=f,c=g,d=h} ã§ããã
ãã 1è¡ãããªãè¡åãè¡ãã¯ãã«(ããããã¯ãã«ãè±:row vector)ãšããããã 1åãããªãåãã¯ãã«(ãã€ãã¯ãã«ãè±:column vector )ãšããã
ãã®è¡åã®å®çŸ©ã¯ããã¯ãã«ã®å®çŸ©ãæ¡åŒµãããã®ã«ãªã£ãŠããã
ããšãã°ãã¯ãã«(aãb)ãš(cãd)ã®å
ç© ac+bdã¯ãè¡åã®èšæ³ã䜿ããšã
ãšæžããã
å³èŸºã® ( a c + b d ) {\displaystyle {\begin{pmatrix}ac+bd\end{pmatrix}}} ã¯ã1è¡1åã®è¡åã§ããããã®ããã«ãè¡åã§ã¯ã1è¡1åã®è¡åãèªããã
è¡åã®ç©ã® (i, j) æåã®å€ã¯ãå·ŠåŽã®è¡åã® i è¡ã®ãã¯ãã«ãšãå³åŽã®è¡åã®ç¬¬ j åã®ãã¯ãã«ã®å
ç©ã§ããã
ããšãã°ãè¡å A = ( a b c d ) {\displaystyle A={\begin{pmatrix}a&b\\c&d\end{pmatrix}}} ãš B = ( e f g h ) {\displaystyle B={\begin{pmatrix}e&f\\g&h\end{pmatrix}}} ã®ç© A B = ( a e + b g a f + b h c e + d g c f + d h ) {\displaystyle AB={\begin{pmatrix}ae+bg&af+bh\\ce+dg&cf+dh\end{pmatrix}}} ã®(1, 2) æåã§ãã a f + b h {\displaystyle af+bh} ã¯ã
ãã¯ãã« ( a b ) {\displaystyle {\begin{pmatrix}a&b\end{pmatrix}}} ãš ãã¯ãã« ( f h ) {\displaystyle {\begin{pmatrix}f\\h\end{pmatrix}}} ãšã® å
ç©ã«ãªã£ãŠããã
ãã®ããã«èãããšããè¡åããšã¯ããã¯ãã«ã䞊ã¹ããã®ããšãèšããã(ãã ã䞊ã¹ããã¯ãã«ã®æ¬¡å
ã¯åãæ¬¡å
ã§ãªããã°ãªããªãã)
ããããã°ãé£ç«1次æ¹çšåŒã
ã¯ãè¡åãçšããŠ
ãšè¡šããã
äŸé¡
次ã®w, x, y, zã®å€ãæ±ããã
ããããã
è¡åã®åã»å·®ã»å®æ°åã®å®çŸ©ã¯ã次ã®ããã«ããã¯ãã«ã®åã»å·®ã»å®æ°åãšäŒŒããããªæ§è³ªãæã€ã
è¡åã®åã®å®çŸ©ã¯ãåèŠçŽ ããšã«è¶³ãåãããããšå®çŸ©ãããã
è¡åã®å·®ã®å®çŸ©ã¯ãåèŠçŽ ããšã«åŒããšå®çŸ©ããã
宿°åã®å®çŸ©ã¯ãåèŠçŽ ã«å®æ°ãæããããšã«ãã£ãŠå®çŸ©ããã
(-1)A 㯠-A ãšæžãã
äŸé¡
è¡åA,B,Cã
ã§å®çŸ©ãããšãã
ãèšç®ããã
ããããã
ãšãªãã
é¶è¡å
ãã¹ãŠã®æåã0ã§ããè¡åã ãŒãè¡å(ããããããã€ãè±:zero matrix) ãšããã
( 0 0 0 0 0 0 ) {\displaystyle {\begin{pmatrix}0&0&0\\0&0&0\\\end{pmatrix}}} 㯠ãŒãè¡å ã§ããã
Aãè¡åãOãAãšè¡æ°ã»åæ°ãçããé¶è¡åãšãããšã
ãæºããã
äŸé¡
äžã§çšããè¡å A {\displaystyle A} , B {\displaystyle B} , C {\displaystyle C} ã«ã€ããŠã
ãèšç®ããã
ããããã
ã§ããã
ãã®çµæããåããéããäžè¬ã«è¡åã®ç©ã¯
ãšãªãã
ãšãªãå Žåãè¡åAãšè¡åBã¯äº€æå¯èœ(坿)ã§ãããšããã
åäœè¡å
E = ( 1 0 0 1 ) {\displaystyle E={\begin{pmatrix}1&0\\0&1\end{pmatrix}}}
ãã2Ã2ã®åäœè¡å(2次åäœè¡å)ãšåŒã¶ãå¯Ÿè§æåã ãã1ã§ããããã®ä»ã®æåããã¹ãŠ0ã«çããè¡åã§ãããä»»æã®2Ã2è¡åAã«å¯ŸããŠãEã¯
ãæºããã
è¡åAã«å¯ŸããŠãã®è¡åãšã®ç©ãåäœè¡å A A â 1 = A â 1 A = E {\displaystyle AA^{-1}=A^{-1}A=E} ãšãªãè¡å A â 1 {\displaystyle A^{-1}} ãããã®è¡åã®éè¡åãšåŒã¶ããã®ãããªè¡åã¯ããååšããã°åAã«å¯ŸããŠãã ã²ãšã€ã«å®ãŸãããã¡ããäžè¬ã«ã¯Aã«å¯ŸããŠå³åŽããããããå·ŠåŽããããããã«ãã£ãŠç©ã¯ç°ãªãã®ã ãããã®å Žåã¯Aã«å¯ŸããŠå³ãããããŠåäœè¡åã«ãªãã®ãªãã°å·ŠãããããŠãåäœè¡åã«ãªãããéããŸããããã§ããããšã«æ³šæããŠãããéè¡åã®éè¡åã¯ããšã®è¡åã«çããã
2è¡2åã®è¡å A = ( a b c d ) {\displaystyle A={\begin{pmatrix}a&b\\c&d\end{pmatrix}}} ã«ã€ããŠã¯ã a d â b c â 0 {\displaystyle ad-bc\neq 0} ã®ãšã A â 1 = 1 ( a d â b c ) ( d â b â c a ) {\displaystyle A^{-1}={\frac {1}{(ad-bc)}}{\begin{pmatrix}d&-b\\-c&a\end{pmatrix}}} ãšãªãã ad - bc = 0 ã®ãšããéè¡åã¯ååšããªãã
å®éã«è¡åã®ç©ãåãããšã§ããããæ£ããããšã容æã«ãããã
äŸé¡
äžã§å®ããè¡å A {\displaystyle A} , B {\displaystyle B} , C {\displaystyle C} ã®éè¡åãèšç®ããã
è¡åA,B,Cã¯ããããã
ã§ãã£ãã
ããããã
ã§ããã
1次æ¹çšåŒ
ã¯ã
ãšæžããã䞡蟺ã«å·ŠèŸºã®è¡åã®éè¡åãæãããšã
x = 1, y = 0 ãåŸãããå§ãã®é£ç«1次æ¹çšåŒãè§£ããããšã«ãªãã äžè¬ã«ãé£ç«1次æ¹çšåŒããã äžçµã®è§£ããã€ãšããé£ç«1次æ¹çšåŒãè§£ãããšã¯éè¡åãæ±ããããšãšåãã§ããã ç¹ã«ã2Ã2è¡åã®éè¡åã¯æ¢ã«å
¬åŒãåŸãããŠããã®ã§ã2å
1次æ¹çšåŒã¯ç°¡åã«è§£ãããšãã§ããã
A = ( a b c d ) , x = ( x y ) , b = ( p q ) {\displaystyle A={\begin{pmatrix}a&&b\\c&&d\end{pmatrix}},\mathbf {x} ={\begin{pmatrix}x\\y\end{pmatrix}},\mathbf {b} ={\begin{pmatrix}p\\q\end{pmatrix}}} ãšãããš
ãšæžãããããã§Aããã®é£ç«1次æ¹çšåŒã®ä¿æ°è¡åãšããããã®æ¹çšåŒã®è§£ã¯ãAãéè¡åãæã€ãšãäžæã«å®ãŸãã x = A â 1 b {\displaystyle \mathbf {x} =A^{-1}\mathbf {b} } ã§ããã
å¹³é¢äžã®ãã¯ãã« a â {\displaystyle {\vec {a}}} ã«å¯ŸããŠå転è¡å R = ( cos c â sin c sin c cos c ) {\displaystyle R={\begin{pmatrix}\cos c&-\sin c\\\sin c&\cos c\end{pmatrix}}} ããããç© R a â {\displaystyle R{\vec {a}}} ã¯ã a â {\displaystyle {\vec {a}}} ãåç¹ãäžå¿ã«ããŠè§åºŠcã ãå転ããããã¯ãã«ã«ãªã£ãŠããã
座æšå€(x,y)ã®ç¹Pãè¡åããããããšã§ç§»åãããã®ãèããã
ã¯ã
x ( a c ) + y ( b d ) {\displaystyle x{\begin{pmatrix}a\\c\end{pmatrix}}+y{\begin{pmatrix}b\\d\end{pmatrix}}} ãšãæžããã
ããã¯ãæ°ããªçŽç·åº§æšãçšæã(æ°åº§æšã®å座æšè»žã®åäœãã¯ãã«ã¯åã®åº§æšãåºæºã«æž¬ããšãããããæ¹åãã¯ãã« ( a c ) {\displaystyle {\begin{pmatrix}a\\c\end{pmatrix}}} ããã³ æ¹åãã¯ãã« ( b d ) {\displaystyle {\begin{pmatrix}b\\d\end{pmatrix}}} ã§ããã)ããã®åº§æšã«åº§æšå€(x,y)ã代å
¥ããããšã§ç¹Pãç§»åãããã®ããåã®åº§æšç³»ã§æž¬ã£ãå Žåã®åº§æšå€ã«ãªã£ãŠããã
éåžžã®çŽäº€åº§æš(åç¹ã§90°ã§äº€ãã座æš)ã®äžã®ç¹ã®åº§æš(x,y)ã«ã€ããŠãç¹ã®äœçœ®ã¯åããŸãŸãæ°ããªå¥ã®çŽç·åº§æš(çŽäº€ãšã¯éããªã)ã§èŠãå Žåã®åº§æš(z,w)ãèãããæ°ããªå¥åº§æš(çŽç·åº§æš)ã¯ãèšç®ã®éœåäžãåç¹ã ãã¯å
ã®åº§æšãšåããšããããããšã次ã®ããã«ãåã®åº§æšãšæ°ããªåº§æšãšã®é¢ä¿ããè¡åã§è¡šèšã§ããã
ãšãããµããªé¢ä¿åŒã§èšè¿°ã§ããã å®éã«ãããšãã° (x,y)=(0,0) ã®ãšã ( z,w=0,0) ãšãªã£ãŠããã
ããŠã巊蟺㯠z ( a c ) + w ( b d ) {\displaystyle z{\begin{pmatrix}a\\c\end{pmatrix}}+w{\begin{pmatrix}b\\d\end{pmatrix}}} ãšãæžããã
ãã®åŒãã座æšã®å€æã®å¹ŸäœåŠãšããŠèããå Žåãæ¬¡ã®ãããªçè«ã«ãªãã
ãŸããæ°ããªçŽç·åº§æšã®åº§æšè»žã®åäœãã¯ãã«ã®æ¹åã¯ãããšã®åº§æšç³»ãåºæºã«èŠããšãããããæ¹åãã¯ãã« ( a c ) {\displaystyle {\begin{pmatrix}a\\c\end{pmatrix}}} ããã³ æ¹åãã¯ãã« ( b d ) {\displaystyle {\begin{pmatrix}b\\d\end{pmatrix}}} ã§ããã
ããŠããã®åé¡ã§ã¯ç¹Pã®äœçœ®(xãy)ã¯äœã倿ããŠãããããã£ãŠãåã®åº§æšãåºæºã«ããŠç¹Pã®äœçœ®ãèŠãŠããäœãå€åããªãããã®åé¡ã§å€æŽããã®ã¯åº§æšè»žã®ã»ãã§ãããããæ°ããªåº§æšç³»ã§èŠãç¹Pã®å€(z,w)ã«èå³ãããã®ã§ããã
å¹³é¢å³åœ¢äžã®ç·åã¯ã2è¡2åã®è¡åã§å€æã§ããã
A = ( a b c d ) {\displaystyle A={\begin{pmatrix}a&b\\c&d\end{pmatrix}}} ã§å€æããå Žåã«ã€ããŠã¯ã a d â b c â 0 {\displaystyle ad-bc\neq 0} ã®ãšããç·ã¯ç·ã«å€æãããåè§åœ¢ã¯åè§åœ¢ã«å€æãããäžè§åœ¢ã¯äžè§åœ¢ã«å€æãããã
2è¡2åã®è¡å A = ( a b c d ) {\displaystyle A={\begin{pmatrix}a&b\\c&d\end{pmatrix}}} ã«ã€ããŠã¯ãå³åœ¢ã®é¢ç©ã¯ã a d â b c {\displaystyle ad-bc} åãããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "é«çåŠæ ¡æ°åŠC > è¡å",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "æ¬é
ã¯é«çåŠæ ¡æ°åŠCã®è¡åã®è§£èª¬ã§ããã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "1次æ¹çšåŒ",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ããæ¬¡ã®ãããªèšæ³ã§è¡šããŠã¿ãã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ããããå匷ããã®ã¯ãé£ç«æ¹çšåŒãšãã¯ãã«ãšã®é¢ä¿ã§ããããããèå¯ããããããããã«ããããã«è¡å(ããããã€)ãšããéãå°å
¥ããã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãã¯ãã« ( x y ) {\\displaystyle {\\begin{pmatrix}x\\\\y\\end{pmatrix}}} ã«ã æŒç® ( 1 2 2 3 ) {\\displaystyle {\\begin{pmatrix}1&2\\\\2&3\\end{pmatrix}}} ãæœããŠ(ãã®æŒç®ã®å
容ãããããããã説æãããè¡åãã§ãã)ã çãã®ãã¯ãã« ( 1 2 ) {\\displaystyle {\\begin{pmatrix}1\\\\2\\end{pmatrix}}} ãåŸãããšãã衚çŸã«æžãæããã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãŸãããã®ãããªèšæ³ããããããæ¬¡ã«èª¬æããè¡å(ããããã€ãè±:matrix)ãšããéãæ°ãã«å®çŸ©ããã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãŸããè¡åã©ããã®ç©ã®å®çŸ©ãã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ã¯ã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãšçããããšå®ããã äœæ
ãã®ããã«å®ããã®ããèãããã 2ã€ã®é£ç«æ¹çšåŒ",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ã«ãããŠãäžéç倿°p,qãæ¶å»ããŠã倿°x,yã«é¢ããäžã€ã®é£ç«æ¹çšåŒãšæžãçŽããš",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãšãªãã å®éãäž2åŒã®p,qã«ãäž2åŒã代å
¥ããŠæŽé ããã°ããã èªè
ã¯ä»£å
¥ããŠç¢ºèªããã ãããè¡å衚çŸãããš",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "仿¹ã2ã€ã®é£ç«æ¹çšåŒãè¡åãçšããŠæžãçŽããš",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "äžã®åŒãäžã®åŒã«ã圢åŒçã«ä»£å
¥ãããš",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "2ã€ã®è¡å衚çŸåŒãæ¯èŒããã°ã è¡åã®ç©ã®å®ãæ¹ã®åçæ§ãåããã ããã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ç©ã®å®çŸ©åŒã¯ãäžèŠãããšè€éããã«èŠããããããã«è£å©ç·ã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ã®ããã«åŒããŠã¿ãã°åããããã«ãããšãã°åæåŸã®2è¡1åã ( c e + d g ) {\\displaystyle {\\begin{pmatrix}&\\\\ce+dg&\\qquad \\end{pmatrix}}} ã¯ãåæåã®2è¡ãã®ããããã®æå ( c d ) {\\displaystyle {\\begin{pmatrix}&\\\\c&d\\end{pmatrix}}} ãšãåæåã®1åç® ( e g ) {\\displaystyle {\\begin{pmatrix}e&\\\\g&\\end{pmatrix}}} ã®æåãšããæããŠè¶³ãããã®ã«ãªã£ãŠããã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "äžè¬ã«ãç©ã®åæåŸã®xè¡yåãã¯ãåæåã®xè¡ãã®ããããã®æåãšãåæåã®yåç®ã®ããããã®æåãšããæããŠè¶³ããçµæã«ãªã£ãŠããã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "è¡åã©ããã®ç©ã¯ãé åºã«ãã£ãŠçµæãç°ãªãã ããšãã°è¡åA,Bã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ãšãããšãã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ããããã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ãšãªãã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ãã®ããã«ãäžè¬ã®è¡åAãšè¡åBã®ç©ã¯ãäžè¬ã«",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ãšãªãã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "äžè¿°ã®äŸã¯ã2å
é£ç«äžæ¬¡æ¹çšåŒãåŒ2åã®å Žåã«çžåœããè¡åã ã£ãããäžè¬ã«é£ç«æ¹çšåŒã®å
ã®æ°ã¯2åãšã¯éããªãããæ¹çšåŒã®æ°ã2åãšã¯éããªãã®ã§ãä»ã®å Žåã«ãè¡åãå®çŸ©ã§ããããã«ãè¡åã®å®çŸ©ãæ¡åŒµããã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ã€ãã®ããã«ãæ°å€ã瞊暪ã«äžŠã¹ãŠãããããã®æ®µã®æåã®åæ°ãçãããã®ã è¡å(ããããã€ãè±:matrix) ãšåŒã¶ã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "äŸãã°ã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ã¯è¡åã§ããã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ãã£ãœãã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ã¯ãæåã®åæ°ãäžèŽããªãã®ã§ãè¡åã§ã¯ãªãã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "è¡åã®äžéšã®ã暪ã«äžŠãã æ°å€ã®ãããŸãã è¡(ããããè±:row) ãšããã瞊ã«äžŠãã æ°å€ã®ãããŸãã å(ãã€ãè±:column) ãšãããããããã®æ°å€ã æå(ããã¶ããè±:element) ãšåŒã¶ã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "äŸãã°ã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ã¯2è¡ã3åãããªãè¡åã§ããã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "è¡æ°ãmã§ãåæ°ãnã®è¡åã mÃnè¡å ã®ããã«åŒã³ãç¹ã«è¡æ°ãšåæ°ãçããnã§ããè¡åãªãã° næ¬¡æ£æ¹è¡å ãšåŒã¶ã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "äŸãã°ã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "㯠2Ã3è¡å ã§ããã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "第 i è¡ç¬¬ j åã®æåã (i, j) æåãšããã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "äŸãã°ã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "ã® (2, 1) æåã¯4ã§ããã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "ã2ã€ã®è¡åãçããããšã¯ãè¡æ°ãšåæ°ãçããããã€å¯Ÿå¿ãã (i, j) æåããã¹ãŠçããããšãšå®ããã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "ã€ãŸãã ( a b c d ) = ( e f g h ) {\\displaystyle {\\begin{pmatrix}a&&b\\\\c&&d\\\\\\end{pmatrix}}={\\begin{pmatrix}e&&f\\\\g&&h\\\\\\end{pmatrix}}} ãšã¯ã a = e , b = f , c = g , d = h {\\displaystyle a=e,b=f,c=g,d=h} ã§ããã",
"title": "é£ç«äžæ¬¡æ¹çšåŒãšè¡å"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "ãã 1è¡ãããªãè¡åãè¡ãã¯ãã«(ããããã¯ãã«ãè±:row vector)ãšããããã 1åãããªãåãã¯ãã«(ãã€ãã¯ãã«ãè±:column vector )ãšããã",
"title": "ãã¯ãã«å
ç©ãšè¡å"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "ãã®è¡åã®å®çŸ©ã¯ããã¯ãã«ã®å®çŸ©ãæ¡åŒµãããã®ã«ãªã£ãŠããã",
"title": "ãã¯ãã«å
ç©ãšè¡å"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ããšãã°ãã¯ãã«(aãb)ãš(cãd)ã®å
ç© ac+bdã¯ãè¡åã®èšæ³ã䜿ããšã",
"title": "ãã¯ãã«å
ç©ãšè¡å"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "ãšæžããã",
"title": "ãã¯ãã«å
ç©ãšè¡å"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "å³èŸºã® ( a c + b d ) {\\displaystyle {\\begin{pmatrix}ac+bd\\end{pmatrix}}} ã¯ã1è¡1åã®è¡åã§ããããã®ããã«ãè¡åã§ã¯ã1è¡1åã®è¡åãèªããã",
"title": "ãã¯ãã«å
ç©ãšè¡å"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "è¡åã®ç©ã® (i, j) æåã®å€ã¯ãå·ŠåŽã®è¡åã® i è¡ã®ãã¯ãã«ãšãå³åŽã®è¡åã®ç¬¬ j åã®ãã¯ãã«ã®å
ç©ã§ããã",
"title": "ãã¯ãã«å
ç©ãšè¡å"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "ããšãã°ãè¡å A = ( a b c d ) {\\displaystyle A={\\begin{pmatrix}a&b\\\\c&d\\end{pmatrix}}} ãš B = ( e f g h ) {\\displaystyle B={\\begin{pmatrix}e&f\\\\g&h\\end{pmatrix}}} ã®ç© A B = ( a e + b g a f + b h c e + d g c f + d h ) {\\displaystyle AB={\\begin{pmatrix}ae+bg&af+bh\\\\ce+dg&cf+dh\\end{pmatrix}}} ã®(1, 2) æåã§ãã a f + b h {\\displaystyle af+bh} ã¯ã",
"title": "ãã¯ãã«å
ç©ãšè¡å"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "ãã¯ãã« ( a b ) {\\displaystyle {\\begin{pmatrix}a&b\\end{pmatrix}}} ãš ãã¯ãã« ( f h ) {\\displaystyle {\\begin{pmatrix}f\\\\h\\end{pmatrix}}} ãšã® å
ç©ã«ãªã£ãŠããã",
"title": "ãã¯ãã«å
ç©ãšè¡å"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "ãã®ããã«èãããšããè¡åããšã¯ããã¯ãã«ã䞊ã¹ããã®ããšãèšããã(ãã ã䞊ã¹ããã¯ãã«ã®æ¬¡å
ã¯åãæ¬¡å
ã§ãªããã°ãªããªãã)",
"title": "ãã¯ãã«å
ç©ãšè¡å"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "ããããã°ãé£ç«1次æ¹çšåŒã",
"title": "ãã¯ãã«å
ç©ãšè¡å"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "ã¯ãè¡åãçšããŠ",
"title": "ãã¯ãã«å
ç©ãšè¡å"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "ãšè¡šããã",
"title": "ãã¯ãã«å
ç©ãšè¡å"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "äŸé¡",
"title": "ãã¯ãã«å
ç©ãšè¡å"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "次ã®w, x, y, zã®å€ãæ±ããã",
"title": "ãã¯ãã«å
ç©ãšè¡å"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ããããã",
"title": "ãã¯ãã«å
ç©ãšè¡å"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "è¡åã®åã»å·®ã»å®æ°åã®å®çŸ©ã¯ã次ã®ããã«ããã¯ãã«ã®åã»å·®ã»å®æ°åãšäŒŒããããªæ§è³ªãæã€ã",
"title": "è¡åã®åïŒå·®ïŒå®æ°å"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "è¡åã®åã®å®çŸ©ã¯ãåèŠçŽ ããšã«è¶³ãåãããããšå®çŸ©ãããã",
"title": "è¡åã®åïŒå·®ïŒå®æ°å"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "è¡åã®å·®ã®å®çŸ©ã¯ãåèŠçŽ ããšã«åŒããšå®çŸ©ããã",
"title": "è¡åã®åïŒå·®ïŒå®æ°å"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "宿°åã®å®çŸ©ã¯ãåèŠçŽ ã«å®æ°ãæããããšã«ãã£ãŠå®çŸ©ããã",
"title": "è¡åã®åïŒå·®ïŒå®æ°å"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "(-1)A 㯠-A ãšæžãã",
"title": "è¡åã®åïŒå·®ïŒå®æ°å"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "äŸé¡",
"title": "è¡åã®åïŒå·®ïŒå®æ°å"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "è¡åA,B,Cã",
"title": "è¡åã®åïŒå·®ïŒå®æ°å"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "ã§å®çŸ©ãããšãã",
"title": "è¡åã®åïŒå·®ïŒå®æ°å"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "ãèšç®ããã",
"title": "è¡åã®åïŒå·®ïŒå®æ°å"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "ããããã",
"title": "è¡åã®åïŒå·®ïŒå®æ°å"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "ãšãªãã",
"title": "è¡åã®åïŒå·®ïŒå®æ°å"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "é¶è¡å",
"title": "è¡åã®åïŒå·®ïŒå®æ°å"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "ãã¹ãŠã®æåã0ã§ããè¡åã ãŒãè¡å(ããããããã€ãè±:zero matrix) ãšããã",
"title": "è¡åã®åïŒå·®ïŒå®æ°å"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "( 0 0 0 0 0 0 ) {\\displaystyle {\\begin{pmatrix}0&0&0\\\\0&0&0\\\\\\end{pmatrix}}} 㯠ãŒãè¡å ã§ããã",
"title": "è¡åã®åïŒå·®ïŒå®æ°å"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "Aãè¡åãOãAãšè¡æ°ã»åæ°ãçããé¶è¡åãšãããšã",
"title": "è¡åã®åïŒå·®ïŒå®æ°å"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "ãæºããã",
"title": "è¡åã®åïŒå·®ïŒå®æ°å"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "äŸé¡",
"title": "è¡åã®ç©"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "äžã§çšããè¡å A {\\displaystyle A} , B {\\displaystyle B} , C {\\displaystyle C} ã«ã€ããŠã",
"title": "è¡åã®ç©"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "ãèšç®ããã",
"title": "è¡åã®ç©"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "ããããã",
"title": "è¡åã®ç©"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "ã§ããã",
"title": "è¡åã®ç©"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "ãã®çµæããåããéããäžè¬ã«è¡åã®ç©ã¯",
"title": "è¡åã®ç©"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "ãšãªãã",
"title": "è¡åã®ç©"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "ãšãªãå Žåãè¡åAãšè¡åBã¯äº€æå¯èœ(坿)ã§ãããšããã",
"title": "è¡åã®ç©"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "åäœè¡å",
"title": "è¡åã®ç©"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "E = ( 1 0 0 1 ) {\\displaystyle E={\\begin{pmatrix}1&0\\\\0&1\\end{pmatrix}}}",
"title": "è¡åã®ç©"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "ãã2Ã2ã®åäœè¡å(2次åäœè¡å)ãšåŒã¶ãå¯Ÿè§æåã ãã1ã§ããããã®ä»ã®æåããã¹ãŠ0ã«çããè¡åã§ãããä»»æã®2Ã2è¡åAã«å¯ŸããŠãEã¯",
"title": "è¡åã®ç©"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "ãæºããã",
"title": "è¡åã®ç©"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "è¡åAã«å¯ŸããŠãã®è¡åãšã®ç©ãåäœè¡å A A â 1 = A â 1 A = E {\\displaystyle AA^{-1}=A^{-1}A=E} ãšãªãè¡å A â 1 {\\displaystyle A^{-1}} ãããã®è¡åã®éè¡åãšåŒã¶ããã®ãããªè¡åã¯ããååšããã°åAã«å¯ŸããŠãã ã²ãšã€ã«å®ãŸãããã¡ããäžè¬ã«ã¯Aã«å¯ŸããŠå³åŽããããããå·ŠåŽããããããã«ãã£ãŠç©ã¯ç°ãªãã®ã ãããã®å Žåã¯Aã«å¯ŸããŠå³ãããããŠåäœè¡åã«ãªãã®ãªãã°å·ŠãããããŠãåäœè¡åã«ãªãããéããŸããããã§ããããšã«æ³šæããŠãããéè¡åã®éè¡åã¯ããšã®è¡åã«çããã",
"title": "éè¡å"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "2è¡2åã®è¡å A = ( a b c d ) {\\displaystyle A={\\begin{pmatrix}a&b\\\\c&d\\end{pmatrix}}} ã«ã€ããŠã¯ã a d â b c â 0 {\\displaystyle ad-bc\\neq 0} ã®ãšã A â 1 = 1 ( a d â b c ) ( d â b â c a ) {\\displaystyle A^{-1}={\\frac {1}{(ad-bc)}}{\\begin{pmatrix}d&-b\\\\-c&a\\end{pmatrix}}} ãšãªãã ad - bc = 0 ã®ãšããéè¡åã¯ååšããªãã",
"title": "éè¡å"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "å®éã«è¡åã®ç©ãåãããšã§ããããæ£ããããšã容æã«ãããã",
"title": "éè¡å"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "äŸé¡",
"title": "éè¡å"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "äžã§å®ããè¡å A {\\displaystyle A} , B {\\displaystyle B} , C {\\displaystyle C} ã®éè¡åãèšç®ããã",
"title": "éè¡å"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "è¡åA,B,Cã¯ããããã",
"title": "éè¡å"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "ã§ãã£ãã",
"title": "éè¡å"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "",
"title": "éè¡å"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "ããããã",
"title": "éè¡å"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "ã§ããã",
"title": "éè¡å"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "1次æ¹çšåŒ",
"title": "éè¡åãçšããé£ç«äžæ¬¡æ¹çšåŒã®è§£æ³"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "ã¯ã",
"title": "éè¡åãçšããé£ç«äžæ¬¡æ¹çšåŒã®è§£æ³"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "ãšæžããã䞡蟺ã«å·ŠèŸºã®è¡åã®éè¡åãæãããšã",
"title": "éè¡åãçšããé£ç«äžæ¬¡æ¹çšåŒã®è§£æ³"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "x = 1, y = 0 ãåŸãããå§ãã®é£ç«1次æ¹çšåŒãè§£ããããšã«ãªãã äžè¬ã«ãé£ç«1次æ¹çšåŒããã äžçµã®è§£ããã€ãšããé£ç«1次æ¹çšåŒãè§£ãããšã¯éè¡åãæ±ããããšãšåãã§ããã ç¹ã«ã2Ã2è¡åã®éè¡åã¯æ¢ã«å
¬åŒãåŸãããŠããã®ã§ã2å
1次æ¹çšåŒã¯ç°¡åã«è§£ãããšãã§ããã",
"title": "éè¡åãçšããé£ç«äžæ¬¡æ¹çšåŒã®è§£æ³"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "A = ( a b c d ) , x = ( x y ) , b = ( p q ) {\\displaystyle A={\\begin{pmatrix}a&&b\\\\c&&d\\end{pmatrix}},\\mathbf {x} ={\\begin{pmatrix}x\\\\y\\end{pmatrix}},\\mathbf {b} ={\\begin{pmatrix}p\\\\q\\end{pmatrix}}} ãšãããš",
"title": "éè¡åãçšããé£ç«äžæ¬¡æ¹çšåŒã®è§£æ³"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "ãšæžãããããã§Aããã®é£ç«1次æ¹çšåŒã®ä¿æ°è¡åãšããããã®æ¹çšåŒã®è§£ã¯ãAãéè¡åãæã€ãšãäžæã«å®ãŸãã x = A â 1 b {\\displaystyle \\mathbf {x} =A^{-1}\\mathbf {b} } ã§ããã",
"title": "éè¡åãçšããé£ç«äžæ¬¡æ¹çšåŒã®è§£æ³"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "å¹³é¢äžã®ãã¯ãã« a â {\\displaystyle {\\vec {a}}} ã«å¯ŸããŠå転è¡å R = ( cos c â sin c sin c cos c ) {\\displaystyle R={\\begin{pmatrix}\\cos c&-\\sin c\\\\\\sin c&\\cos c\\end{pmatrix}}} ããããç© R a â {\\displaystyle R{\\vec {a}}} ã¯ã a â {\\displaystyle {\\vec {a}}} ãåç¹ãäžå¿ã«ããŠè§åºŠcã ãå転ããããã¯ãã«ã«ãªã£ãŠããã",
"title": "è¡åã®å¿çš"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "座æšå€(x,y)ã®ç¹Pãè¡åããããããšã§ç§»åãããã®ãèããã",
"title": "è¡åã®å¿çš"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "ã¯ã",
"title": "è¡åã®å¿çš"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "x ( a c ) + y ( b d ) {\\displaystyle x{\\begin{pmatrix}a\\\\c\\end{pmatrix}}+y{\\begin{pmatrix}b\\\\d\\end{pmatrix}}} ãšãæžããã",
"title": "è¡åã®å¿çš"
},
{
"paragraph_id": 104,
"tag": "p",
"text": "ããã¯ãæ°ããªçŽç·åº§æšãçšæã(æ°åº§æšã®å座æšè»žã®åäœãã¯ãã«ã¯åã®åº§æšãåºæºã«æž¬ããšãããããæ¹åãã¯ãã« ( a c ) {\\displaystyle {\\begin{pmatrix}a\\\\c\\end{pmatrix}}} ããã³ æ¹åãã¯ãã« ( b d ) {\\displaystyle {\\begin{pmatrix}b\\\\d\\end{pmatrix}}} ã§ããã)ããã®åº§æšã«åº§æšå€(x,y)ã代å
¥ããããšã§ç¹Pãç§»åãããã®ããåã®åº§æšç³»ã§æž¬ã£ãå Žåã®åº§æšå€ã«ãªã£ãŠããã",
"title": "è¡åã®å¿çš"
},
{
"paragraph_id": 105,
"tag": "p",
"text": "éåžžã®çŽäº€åº§æš(åç¹ã§90°ã§äº€ãã座æš)ã®äžã®ç¹ã®åº§æš(x,y)ã«ã€ããŠãç¹ã®äœçœ®ã¯åããŸãŸãæ°ããªå¥ã®çŽç·åº§æš(çŽäº€ãšã¯éããªã)ã§èŠãå Žåã®åº§æš(z,w)ãèãããæ°ããªå¥åº§æš(çŽç·åº§æš)ã¯ãèšç®ã®éœåäžãåç¹ã ãã¯å
ã®åº§æšãšåããšããããããšã次ã®ããã«ãåã®åº§æšãšæ°ããªåº§æšãšã®é¢ä¿ããè¡åã§è¡šèšã§ããã",
"title": "è¡åã®å¿çš"
},
{
"paragraph_id": 106,
"tag": "p",
"text": "ãšãããµããªé¢ä¿åŒã§èšè¿°ã§ããã å®éã«ãããšãã° (x,y)=(0,0) ã®ãšã ( z,w=0,0) ãšãªã£ãŠããã",
"title": "è¡åã®å¿çš"
},
{
"paragraph_id": 107,
"tag": "p",
"text": "ããŠã巊蟺㯠z ( a c ) + w ( b d ) {\\displaystyle z{\\begin{pmatrix}a\\\\c\\end{pmatrix}}+w{\\begin{pmatrix}b\\\\d\\end{pmatrix}}} ãšãæžããã",
"title": "è¡åã®å¿çš"
},
{
"paragraph_id": 108,
"tag": "p",
"text": "ãã®åŒãã座æšã®å€æã®å¹ŸäœåŠãšããŠèããå Žåãæ¬¡ã®ãããªçè«ã«ãªãã",
"title": "è¡åã®å¿çš"
},
{
"paragraph_id": 109,
"tag": "p",
"text": "ãŸããæ°ããªçŽç·åº§æšã®åº§æšè»žã®åäœãã¯ãã«ã®æ¹åã¯ãããšã®åº§æšç³»ãåºæºã«èŠããšãããããæ¹åãã¯ãã« ( a c ) {\\displaystyle {\\begin{pmatrix}a\\\\c\\end{pmatrix}}} ããã³ æ¹åãã¯ãã« ( b d ) {\\displaystyle {\\begin{pmatrix}b\\\\d\\end{pmatrix}}} ã§ããã",
"title": "è¡åã®å¿çš"
},
{
"paragraph_id": 110,
"tag": "p",
"text": "ããŠããã®åé¡ã§ã¯ç¹Pã®äœçœ®(xãy)ã¯äœã倿ããŠãããããã£ãŠãåã®åº§æšãåºæºã«ããŠç¹Pã®äœçœ®ãèŠãŠããäœãå€åããªãããã®åé¡ã§å€æŽããã®ã¯åº§æšè»žã®ã»ãã§ãããããæ°ããªåº§æšç³»ã§èŠãç¹Pã®å€(z,w)ã«èå³ãããã®ã§ããã",
"title": "è¡åã®å¿çš"
},
{
"paragraph_id": 111,
"tag": "p",
"text": "å¹³é¢å³åœ¢äžã®ç·åã¯ã2è¡2åã®è¡åã§å€æã§ããã",
"title": "è¡åã®å¿çš"
},
{
"paragraph_id": 112,
"tag": "p",
"text": "A = ( a b c d ) {\\displaystyle A={\\begin{pmatrix}a&b\\\\c&d\\end{pmatrix}}} ã§å€æããå Žåã«ã€ããŠã¯ã a d â b c â 0 {\\displaystyle ad-bc\\neq 0} ã®ãšããç·ã¯ç·ã«å€æãããåè§åœ¢ã¯åè§åœ¢ã«å€æãããäžè§åœ¢ã¯äžè§åœ¢ã«å€æãããã",
"title": "è¡åã®å¿çš"
},
{
"paragraph_id": 113,
"tag": "p",
"text": "2è¡2åã®è¡å A = ( a b c d ) {\\displaystyle A={\\begin{pmatrix}a&b\\\\c&d\\end{pmatrix}}} ã«ã€ããŠã¯ãå³åœ¢ã®é¢ç©ã¯ã a d â b c {\\displaystyle ad-bc} åãããã",
"title": "è¡åã®å¿çš"
}
] | é«çåŠæ ¡æ°åŠC > è¡å æ¬é
ã¯é«çåŠæ ¡æ°åŠCã®è¡åã®è§£èª¬ã§ããã | <small>[[é«çåŠæ ¡æ°åŠC]] > è¡å</small>
----
æ¬é
ã¯[[é«çåŠæ ¡æ°åŠC]]ã®è¡åã®è§£èª¬ã§ããã
== é£ç«äžæ¬¡æ¹çšåŒãšè¡å==
1次æ¹çšåŒ
:<math>
\begin{cases}
x + 2y = 1\\
2x + 3y = 2
\end{cases}
</math>
ããæ¬¡ã®ãããªèšæ³ã§è¡šããŠã¿ãã
:<math>
\begin{pmatrix}
1 &2\\
2 &3
\end{pmatrix}
\begin{pmatrix}
x\\
y
\end{pmatrix}
=
\begin{pmatrix}
1\\
2
\end{pmatrix}
</math>
ããããå匷ããã®ã¯ãé£ç«æ¹çšåŒãšãã¯ãã«ãšã®é¢ä¿ã§ããããããèå¯ããããããããã«ããããã«'''è¡å'''ïŒããããã€ïŒãšããéãå°å
¥ããã
ãã¯ãã«
<math>
\begin{pmatrix}
x\\
y
\end{pmatrix}
</math> ã«ã
æŒç® <math>
\begin{pmatrix}
1 &2\\
2 &3
\end{pmatrix}
</math> ãæœããŠïŒãã®æŒç®ã®å
容ãããããããã説æãããè¡åãã§ããïŒã
çãã®ãã¯ãã«
<math>
\begin{pmatrix}
1\\
2
\end{pmatrix}
</math> ãåŸãããšãã衚çŸã«æžãæããã
ãŸãããã®ãããªèšæ³ããããããæ¬¡ã«èª¬æãã'''è¡å'''ïŒããããã€ãè±ïŒmatrixïŒãšããéãæ°ãã«å®çŸ©ããã
*è¡åã©ããã®ç©
ãŸããè¡åã©ããã®ç©ã®å®çŸ©ãã
:ç©ã<math>
\begin{pmatrix}
a& b \\
c& d
\end{pmatrix}
\begin{pmatrix}
e& f\\
g& h
\end{pmatrix}
</math>
ã¯ã
:è¡åã<math>
\begin{pmatrix}
ae + bg &af + bh\\
ce + dg &cf + dh
\end{pmatrix}
</math>
ãšçããããšå®ããã<br/>ã
äœæ
ãã®ããã«å®ããã®ããèãããã<br/>
ïŒã€ã®é£ç«æ¹çšåŒ
:<math>
\begin{cases}
ex + fy = p\\
gx + hy = q
\end{cases}
</math>
:<math>
\begin{cases}
ap + bq = u\\
cp + dq = v
\end{cases}
</math>
ã«ãããŠãäžéç倿°p,qãæ¶å»ããŠã倿°x,yã«é¢ããäžã€ã®é£ç«æ¹çšåŒãšæžãçŽããš
:<math>
\begin{cases}
(ae + bg)x +(af + bh)y = u\\
(ce + dg)x + (cf + dh)y = v
\end{cases}
</math>
ãšãªãã<br/>ã
å®éãäž2åŒã®p,qã«ãäž2åŒã代å
¥ããŠæŽé ããã°ããã
èªè
ã¯ä»£å
¥ããŠç¢ºèªããã<br/>
ãããè¡å衚çŸãããš
:<math>
\begin{pmatrix}
ae + bg &af + bh\\
ce + dg &cf + dh
\end{pmatrix}
\begin{pmatrix}
x\\
y
\end{pmatrix}
=
\begin{pmatrix}
u\\
v
\end{pmatrix}
</math>
仿¹ã2ã€ã®é£ç«æ¹çšåŒãè¡åãçšããŠæžãçŽããš
:<math>
\begin{pmatrix}
e &f\\
g &h
\end{pmatrix}
\begin{pmatrix}
x\\
y
\end{pmatrix}
=
\begin{pmatrix}
p\\
q
\end{pmatrix}
</math>
:<math>
\begin{pmatrix}
a &b\\
c &d
\end{pmatrix}
\begin{pmatrix}
p\\
q
\end{pmatrix}
=
\begin{pmatrix}
u\\
v
\end{pmatrix}
</math>
äžã®åŒãäžã®åŒã«ã圢åŒçã«ä»£å
¥ãããš
:<math>
\begin{pmatrix}
a &b\\
c &d
\end{pmatrix}
\begin{pmatrix}
e &f\\
g &h
\end{pmatrix}
\begin{pmatrix}
x\\
y
\end{pmatrix}
=
\begin{pmatrix}
u\\
v
\end{pmatrix}
</math>
ïŒã€ã®è¡å衚çŸåŒãæ¯èŒããã°ã
è¡åã®ç©ã®å®ãæ¹ã®åçæ§ãåããã ããã<br/>ã
[[File:è¡åã®å®çŸ©ã®èª¬æå³.svg|thumb|è¡åã®å®çŸ©ã®èª¬æå³]]
ç©ã®å®çŸ©åŒã¯ãäžèŠãããšè€éããã«èŠããããããã«è£å©ç·ã
:[[File:è¡åã®ç©ã®èšç®æ³.svg|500px|è¡åã®ç©ã®èšç®æ³]]
ã®ããã«åŒããŠã¿ãã°åããããã«ãããšãã°åæåŸã®2è¡1åã <math>
\begin{pmatrix}
& \\
ce + dg & \qquad
\end{pmatrix}
</math> ã¯ãåæåã®2è¡ãã®ããããã®æå
<math>
\begin{pmatrix}
& \\
c& d
\end{pmatrix}
</math>
ãšãåæåã®1åç®
<math>
\begin{pmatrix}
e& \\
g&
\end{pmatrix}
</math>ã®æåãšããæããŠè¶³ãããã®ã«ãªã£ãŠããã
äžè¬ã«ãç©ã®åæåŸã®xè¡yåãã¯ãåæåã®xè¡ãã®ããããã®æåãšãåæåã®yåç®ã®ããããã®æåãšããæããŠè¶³ããçµæã«ãªã£ãŠããã
è¡åã©ããã®ç©ã¯ãé åºã«ãã£ãŠçµæãç°ãªãã
ããšãã°è¡åA,Bã
:<math>
A= \begin{pmatrix}2&4\\ 3&3 \end{pmatrix}
</math>
:<math>
B= \begin{pmatrix}7&9\\ 11&5 \end{pmatrix}
</math>
ãšãããšãã
ããããã
:<math>
AB =\begin{pmatrix}58&38\\ 54&42 \end{pmatrix}
</math>
:<math>
BA= \begin{pmatrix}41&55\\ 37&59 \end{pmatrix}
</math>
ãšãªãã
ãã®ããã«ãäžè¬ã®è¡åAãšè¡åBã®ç©ã¯ãäžè¬ã«
:<math>
AB \ne BA
</math>
ãšãªãã
äžè¿°ã®äŸã¯ã2å
é£ç«äžæ¬¡æ¹çšåŒãåŒ2åã®å Žåã«çžåœããè¡åã ã£ãããäžè¬ã«é£ç«æ¹çšåŒã®å
ã®æ°ã¯2åãšã¯éããªãããæ¹çšåŒã®æ°ã2åãšã¯éããªãã®ã§ãä»ã®å Žåã«ãè¡åãå®çŸ©ã§ããããã«ãè¡åã®å®çŸ©ãæ¡åŒµããã
ã€ãã®ããã«ãæ°å€ã瞊暪ã«äžŠã¹ãŠãããããã®æ®µã®æåã®åæ°ãçãããã®ã '''è¡å'''ïŒããããã€ãè±ïŒmatrixïŒ ãšåŒã¶ã
äŸãã°ã
:<math>
\begin{pmatrix}
1&2&3\\
4&5&6\\
\end{pmatrix}
</math>
ã¯è¡åã§ããã
ãã£ãœãã
:<math>
\begin{pmatrix}
1&2&3\\
&5& \\
\end{pmatrix}
</math>
ã¯ãæåã®åæ°ãäžèŽããªãã®ã§ãè¡åã§ã¯ãªãã
[[File:è¡åã®å®çŸ©ã®èª¬æå³.svg|thumb|è¡åã®å®çŸ©ã®èª¬æå³]]
è¡åã®äžéšã®ã暪ã«äžŠãã æ°å€ã®ãããŸãã '''è¡'''ïŒããããè±ïŒrowïŒ ãšããã瞊ã«äžŠãã æ°å€ã®ãããŸãã '''å'''ïŒãã€ãè±ïŒcolumnïŒ ãšãããããããã®æ°å€ã '''æå'''ïŒããã¶ããè±ïŒelementïŒ ãšåŒã¶ã
äŸãã°ã
:<math>
\begin{pmatrix}
1&2&3\\
4&5&6\\
\end{pmatrix}
</math>
ã¯2è¡ã3åãããªãè¡åã§ããã
è¡æ°ã''m''ã§ãåæ°ã''n''ã®è¡åã ''m''Ã''n''è¡å ã®ããã«åŒã³ãç¹ã«è¡æ°ãšåæ°ãçããnã§ããè¡åãªãã° ''n''æ¬¡æ£æ¹è¡å ãšåŒã¶ã
äŸãã°ã
:<math>
\begin{pmatrix}
1&2&3\\
4&5&6\\
\end{pmatrix}
</math>
㯠2Ã3è¡å ã§ããã
第 ''i'' è¡ç¬¬ ''j'' åã®æåã (''i'', ''j'') æåãšããã
äŸãã°ã
:<math>
\begin{pmatrix}
1&2&3\\
4&5&6\\
\end{pmatrix}
</math>
ã® (2, 1) æåã¯4ã§ããã
*ãè¡åãçããããšã¯
ã2ã€ã®è¡åãçããããšã¯ãè¡æ°ãšåæ°ãçããããã€å¯Ÿå¿ãã (''i'', ''j'') æåããã¹ãŠçããããšãšå®ããã
ã€ãŸãã
<math>
\begin{pmatrix}
a&&b\\
c&&d\\
\end{pmatrix}
=
\begin{pmatrix}
e&&f\\
g&&h\\
\end{pmatrix}
</math>
ããšã¯ãã<math>a = e , b = f , c = g , d = h</math>ãã§ããã
== ãã¯ãã«å
ç©ãšè¡å ==
ãã 1è¡ãããªãè¡åã'''è¡ãã¯ãã«'''ïŒããããã¯ãã«ãè±ïŒrow vectorïŒãšããããã 1åãããªã'''åãã¯ãã«'''ïŒãã€ãã¯ãã«ãè±ïŒcolumn vector ïŒãšããã
ãã®è¡åã®å®çŸ©ã¯ããã¯ãã«ã®å®çŸ©ãæ¡åŒµãããã®ã«ãªã£ãŠããã
ããšãã°ãã¯ãã«ïŒaãbïŒãš(cãd)ã®å
ç© ac+bdã¯ãè¡åã®èšæ³ã䜿ããšã
:<math>
\begin{pmatrix}
a&&b\\
\end{pmatrix}
\begin{pmatrix}
c\\
d
\end{pmatrix}
=
\begin{pmatrix}
ac+bd
\end{pmatrix}
</math>
ãšæžããã
å³èŸºã® <math>
\begin{pmatrix}
ac+bd
\end{pmatrix}
</math>
ã¯ã1è¡1åã®è¡åã§ããããã®ããã«ãè¡åã§ã¯ã1è¡1åã®è¡åãèªããã
è¡åã®ç©ã® (''i'', ''j'') æåã®å€ã¯ãå·ŠåŽã®è¡åã® ''i'' è¡ã®ãã¯ãã«ãšãå³åŽã®è¡åã®ç¬¬ ''j'' åã®ãã¯ãã«ã®å
ç©ã§ããã
ããšãã°ãè¡å<math>A=
\begin{pmatrix}
a& b \\
c& d
\end{pmatrix}
</math>
ãš
<math>B=
\begin{pmatrix}
e& f\\
g& h
\end{pmatrix}
</math>
ã®ç© <math>AB=
\begin{pmatrix}
ae + bg &af + bh\\
ce + dg &cf + dh
\end{pmatrix}
</math> ã®(1, 2) æåã§ãã <math>af+bh</math> ã¯ã
ãã¯ãã« <math>
\begin{pmatrix}
a& b
\end{pmatrix}
</math> ãš ãã¯ãã« <math>
\begin{pmatrix}
f\\
h
\end{pmatrix}
</math> ãšã® å
ç©ã«ãªã£ãŠããã
ãã®ããã«èãããšããè¡åããšã¯ããã¯ãã«ã䞊ã¹ããã®ããšãèšãããïŒãã ã䞊ã¹ããã¯ãã«ã®æ¬¡å
ã¯åãæ¬¡å
ã§ãªããã°ãªããªããïŒ
----
ããããã°ãé£ç«1次æ¹çšåŒã
:<math>
\begin{cases}
ax + by = p\\
cx + dy = q
\end{cases}
</math>
ã¯ãè¡åãçšããŠ
:<math>
\begin{pmatrix}
a&&b\\
c&&d
\end{pmatrix}
\begin{pmatrix}
x\\
y
\end{pmatrix}
=
\begin{pmatrix}
p\\
q
\end{pmatrix}
</math>
ãšè¡šããã
'''äŸé¡'''
*å
次ã®''w'', ''x'', ''y'', ''z''ã®å€ãæ±ããã
:<math>
\begin{pmatrix} 1&2 \\ 3&4 \end{pmatrix} = \begin{pmatrix} 2w&3x \\ 4y&5z \end{pmatrix}
</math>
*è§£ç
ããããã
:<math>
w = {1 \over 2}, x = {2 \over 3}, y = {3 \over 4}, z = {4 \over 5}
</math>
== è¡åã®åïŒå·®ïŒå®æ°å ==
è¡åã®åã»å·®ã»å®æ°åã®å®çŸ©ã¯ã次ã®ããã«ããã¯ãã«ã®åã»å·®ã»å®æ°åãšäŒŒããããªæ§è³ªãæã€ã
è¡åã®'''å'''ã®å®çŸ©ã¯ãåèŠçŽ ããšã«è¶³ãåãããããšå®çŸ©ãããã
:<math>
\begin{pmatrix}
a&&b
\\
c&&d
\end{pmatrix}
+
\begin{pmatrix}
e&&f\\
g&&h
\end{pmatrix}
=
\begin{pmatrix}
a+e&&b+f\\
c+g&&d+h
\end{pmatrix}
</math>
è¡åã®'''å·®'''ã®å®çŸ©ã¯ãåèŠçŽ ããšã«åŒããšå®çŸ©ããã
:<math>
\begin{pmatrix}
a&&b
\\
c&&d
\end{pmatrix}
-
\begin{pmatrix}
e&&f\\
g&&h
\end{pmatrix}
=
\begin{pmatrix}
a-e&&b-f\\
c-g&&d-h
\end{pmatrix}
</math>
宿°åã®å®çŸ©ã¯ãåèŠçŽ ã«å®æ°ãæããããšã«ãã£ãŠå®çŸ©ããã
:<math>
k
\begin{pmatrix}
a&&b
\\
c&&d
\end{pmatrix}
=
\begin{pmatrix}
ka&&kb\\
kc&&kd
\end{pmatrix}
</math>
(-1)A 㯠-A ãšæžãã
'''äŸé¡'''
*å
è¡åA,B,Cã
:<math>
A= \begin{pmatrix}2&4\\ 3&3 \end{pmatrix}
</math>
:<math>
B= \begin{pmatrix}7&9\\ 11&5 \end{pmatrix}
</math>
:<math>
C= \begin{pmatrix}8&2\\ 13&15 \end{pmatrix}
</math>
ã§å®çŸ©ãããšãã
:<math>
A + B
</math>
:<math>
C + B
</math>
:<math>
C + A
</math>
ãèšç®ããã
*è§£ç
ããããã
:<math>
A+B =\begin{pmatrix}9&13\\ 14&8 \end{pmatrix}
</math>
:<math>
C+B= \begin{pmatrix}15&11\\ 24&20 \end{pmatrix}
</math>
:<math>
C+A= \begin{pmatrix}10&6\\ 16&18 \end{pmatrix}
</math>
ãšãªãã
'''é¶è¡å'''
ãã¹ãŠã®æåã0ã§ããè¡åã '''ãŒãè¡å'''ïŒããããããã€ãè±ïŒzero matrixïŒ ãšããã
<math>
\begin{pmatrix}
0&0&0\\
0&0&0\\
\end{pmatrix}
</math>
ã㯠ãŒãè¡å ã§ããã
Aãè¡åãOãAãšè¡æ°ã»åæ°ãçããé¶è¡åãšãããšã
:<math>
A + (-A) = (-A) + A = O
</math>
ãæºããã
== è¡åã®ç©==
'''äŸé¡'''
*å
äžã§çšããè¡å<math>A</math>,<math>B</math>,<math>C</math>ã«ã€ããŠã
:<math>
AB
</math>
:<math>
BA
</math>
:<math>
BC
</math>
:<math>
AC
</math>
:<math>
CA
</math>
ãèšç®ããã
*è§£ç
ããããã
:<math>
AB =\begin{pmatrix}58&38\\ 54&42 \end{pmatrix}
</math>
:<math>
BA= \begin{pmatrix}41&55\\ 37&59 \end{pmatrix}
</math>
:<math>
BC=\begin{pmatrix}173&149\\ 153&97 \end{pmatrix}
</math>
:<math>
AC=\begin{pmatrix}68&64\\ 63&51 \end{pmatrix}
</math>
:<math>
CA=\begin{pmatrix}22&38\\ 71&97 \end{pmatrix}
</math>
ã§ããã
ãã®çµæããåããéããäžè¬ã«è¡åã®ç©ã¯
:<math>
AB \ne BA
</math>
ãšãªãã
:<math>
AB = BA
</math>
ãšãªãå Žåãè¡åAãšè¡åBã¯äº€æå¯èœïŒå¯æïŒã§ãããšããã
'''åäœè¡å'''
<math>
E =
\begin{pmatrix}
1 &0\\
0 &1
\end{pmatrix}
</math>
ãã2Ã2ã®åäœè¡åïŒ2次åäœè¡åïŒãšåŒã¶ãå¯Ÿè§æåã ãã1ã§ããããã®ä»ã®æåããã¹ãŠ0ã«çããè¡åã§ãããä»»æã®2Ã2è¡åAã«å¯ŸããŠãEã¯
:EA = AE = A
ãæºããã
== éè¡å ==
è¡åAã«å¯ŸããŠãã®è¡åãšã®ç©ãåäœè¡å <math>AA^{-1} = A^{-1}A = E</math> ãšãªãè¡å <math>A^{-1}</math> ãããã®è¡åã®'''éè¡å'''ãšåŒã¶ããã®ãããªè¡åã¯ããååšããã°åAã«å¯ŸããŠãã ã²ãšã€ã«å®ãŸãããã¡ããäžè¬ã«ã¯Aã«å¯ŸããŠå³åŽããããããå·ŠåŽããããããã«ãã£ãŠç©ã¯ç°ãªãã®ã ãããã®å Žåã¯Aã«å¯ŸããŠå³ãããããŠåäœè¡åã«ãªãã®ãªãã°å·ŠãããããŠãåäœè¡åã«ãªãããéããŸããããã§ããããšã«æ³šæããŠãããéè¡åã®éè¡åã¯ããšã®è¡åã«çããã
2è¡2åã®è¡å
<math>
A =
\begin{pmatrix}
a &b\\
c &d
\end{pmatrix}
</math>
ã«ã€ããŠã¯ã<math>ad-bc \ne 0</math>ã®ãšã
<math>
A ^{-1} =
\frac 1 {( ad - bc ) }
\begin{pmatrix}
d&-b\\
-c&a
\end{pmatrix}
</math>
ãšãªãã ad - bc = 0 ã®ãšããéè¡åã¯ååšããªãã
å®éã«è¡åã®ç©ãåãããšã§ããããæ£ããããšã容æã«ãããã
'''äŸé¡'''
*åé¡
äžã§å®ããè¡å<math>A</math>,<math>B</math>,<math>C</math>ã®éè¡åãèšç®ããã
è¡åA,B,Cã¯ããããã
:<math>
A= \begin{pmatrix}2&4\\ 3&3 \end{pmatrix}
</math>
:<math>
B= \begin{pmatrix}7&9\\ 11&5 \end{pmatrix}
</math>
:<math>
C= \begin{pmatrix}8&2\\ 13&15 \end{pmatrix}
</math>
ã§ãã£ãã
<br /><br /><br />
*è§£ç
ããããã
:<math>
A^{-1}=\begin{pmatrix}-{{1}\over{2}}&{{2}\over{3}}\\ {{1}\over{2}}&-{{1}\over{3 }} \end{pmatrix}
</math>
:<math>
B^{-1}=\begin{pmatrix}-{{5}\over{64}}&{{9}\over{64}}\\ {{11}\over{64}}&-{{7 }\over{64}} \end{pmatrix}
</math>
:<math>
C^{-1}=\begin{pmatrix}{{15}\over{94}}&-{{1}\over{47}}\\ -{{13}\over{94}}&{{4 }\over{47}} \end{pmatrix}
</math>
ã§ããã
== éè¡åãçšããé£ç«äžæ¬¡æ¹çšåŒã®è§£æ³ ==
1次æ¹çšåŒ
:<math>
\begin{cases}
x + 2y = 1\\
2x + 3y = 2
\end{cases}
</math>
ã¯ã
:<math>
\begin{pmatrix}
1 &2\\
2 &3
\end{pmatrix}
\begin{pmatrix}
x\\
y
\end{pmatrix}
=
\begin{pmatrix}
1\\
2
\end{pmatrix}
</math>
ãšæžããã䞡蟺ã«å·ŠèŸºã®è¡åã®éè¡åãæãããšã
:<math>
\begin{pmatrix}
1& 0\\
0&1
\end{pmatrix}
\begin{pmatrix}
x\\
y
\end{pmatrix}
=
\begin{pmatrix}
3 &-2\\
-2 &1
\end{pmatrix}
\begin{pmatrix}
1\\
2
\end{pmatrix}
\times (-1)
</math>
<!-- %(0 1)(y) = (-2 1)(2)-->
:<math>
\begin{pmatrix}
x\\
y
\end{pmatrix}
=
\begin{pmatrix}
1\\
0
\end{pmatrix}
</math>
x = 1, y = 0
ãåŸãããå§ãã®é£ç«1次æ¹çšåŒãè§£ããããšã«ãªãã
äžè¬ã«ãé£ç«1次æ¹çšåŒããã äžçµã®è§£ããã€ãšããé£ç«1次æ¹çšåŒãè§£ãããšã¯éè¡åãæ±ããããšãšåãã§ããã
ç¹ã«ã2Ã2è¡åã®éè¡åã¯æ¢ã«å
¬åŒãåŸãããŠããã®ã§ã2å
1次æ¹çšåŒã¯ç°¡åã«è§£ãããšãã§ããã
<math>A = \begin{pmatrix}a&&b\\c&&d\end{pmatrix}, \mathbf{x} = \begin{pmatrix}x\\y\end{pmatrix}, \mathbf{b} = \begin{pmatrix}p\\q\end{pmatrix}</math>ãšãããš
:<math>
A\mathbf{x} = \mathbf{b}
</math>
ãšæžãããããã§''A''ããã®é£ç«1次æ¹çšåŒã®ä¿æ°è¡åãšããããã®æ¹çšåŒã®è§£ã¯ã''A''ãéè¡åãæã€ãšãäžæã«å®ãŸãã <math>\mathbf{x} = A^{-1}\mathbf{b}</math> ã§ããã
== è¡åã®å¿çš==
=== å³åœ¢ãžã®å¿çš ===
==== ç¹ã®ç§»å ====
===== å転è¡å =====
å¹³é¢äžã®ãã¯ãã«<math>\vec a</math>ã«å¯ŸããŠå転è¡å
<math>
R =
\begin{pmatrix}
\cos c& -\sin c\\
\sin c & \cos c
\end{pmatrix}
</math>
ããããç©<math>R \vec a </math>ã¯ã<math>\vec a</math>ãåç¹ãäžå¿ã«ããŠè§åºŠcã ãå転ããããã¯ãã«ã«ãªã£ãŠããã
:ïŒèšŒæïŒ
:ãã¯ãã«aãæ¥µåº§æšãçšããŠ<math>a=(r \cos \theta,r \sin \theta)</math>ãšæžãããããšç©<math>R \vec a</math>ã¯
::<math>R \vec a =
\begin{pmatrix}
\cos c& -\sin c\\
\sin c & \cos c
\end{pmatrix}
\begin{pmatrix}
r \cos \theta \\
r \sin \theta
\end{pmatrix}=
\begin{pmatrix}
r (\cos c \cos \theta - \sin c \sin \theta) \\
r (\sin c \cos \theta + \cos c \sin \theta)
\end{pmatrix}=r
\begin{pmatrix}
\cos (c+\theta) \\
\sin (c+\theta)
\end{pmatrix}</math>
:ã§ãããããã¯ç¢ºãã«<math>\vec a</math>ãè§åºŠcã ãå転ããããã¯ãã«ã§ããã
===== äžè¬ã®è¡åã«ããç¹ã®ç§»å =====
座æšå€ïŒx,yïŒã®ç¹Pãè¡åããããããšã§ç§»åãããã®ãèããã
:<math>
\begin{pmatrix}
a&&b\\
c&&d
\end{pmatrix}
\begin{pmatrix}
x\\
y
\end{pmatrix}
=
\begin{pmatrix}
z\\
w
\end{pmatrix}
</math>
ã¯ã
<math>x\begin{pmatrix}a\\c\end{pmatrix} + y\begin{pmatrix}b\\d\end{pmatrix}</math> ãšãæžããã
ããã¯ãæ°ããªçŽç·åº§æšãçšæãïŒæ°åº§æšã®å座æšè»žã®åäœãã¯ãã«ã¯åã®åº§æšãåºæºã«æž¬ããšãããããæ¹åãã¯ãã« <math>\begin{pmatrix}a\\c\end{pmatrix}</math> ããã³ æ¹åãã¯ãã« <math>\begin{pmatrix}b\\d\end{pmatrix}</math> ã§ãããïŒããã®åº§æšã«åº§æšå€ïŒx,yïŒã代å
¥ããããšã§ç¹Pãç§»åãããã®ããåã®åº§æšç³»ã§æž¬ã£ãå Žåã®åº§æšå€ã«ãªã£ãŠããã
==== 座æšã®å€æ ====
éåžžã®çŽäº€åº§æšïŒåç¹ã§90°ã§äº€ãã座æšïŒã®äžã®ç¹ã®åº§æšïŒx,yïŒã«ã€ããŠãç¹ã®äœçœ®ã¯åããŸãŸãæ°ããªå¥ã®çŽç·åº§æšïŒçŽäº€ãšã¯éããªãïŒã§èŠãå Žåã®åº§æšïŒz,wïŒãèãããæ°ããªå¥åº§æšïŒçŽç·åº§æšïŒã¯ãèšç®ã®éœåäžãåç¹ã ãã¯å
ã®åº§æšãšåããšããããããšã次ã®ããã«ãåã®åº§æšãšæ°ããªåº§æšãšã®é¢ä¿ããè¡åã§è¡šèšã§ããã
:<math>
\begin{pmatrix}
a&&b\\
c&&d
\end{pmatrix}
\begin{pmatrix}
z\\
w
\end{pmatrix}
=
\begin{pmatrix}
x\\
y
\end{pmatrix}
</math>
ãšãããµããªé¢ä¿åŒã§èšè¿°ã§ããã
å®éã«ãããšãã° (x,y)=(0,0) ã®ãšã ïŒ z,w=0,0ïŒ ãšãªã£ãŠããã
ããŠã巊蟺㯠<math>z\begin{pmatrix}a\\c\end{pmatrix} + w\begin{pmatrix}b\\d\end{pmatrix}</math> ãšãæžããã
ãã®åŒãã座æšã®å€æã®å¹ŸäœåŠãšããŠèããå Žåãæ¬¡ã®ãããªçè«ã«ãªãã
ãŸããæ°ããªçŽç·åº§æšã®åº§æšè»žã®åäœãã¯ãã«ã®æ¹åã¯ãããšã®åº§æšç³»ãåºæºã«èŠããšãããããæ¹åãã¯ãã« <math>\begin{pmatrix}a\\c\end{pmatrix}</math> ããã³ æ¹åãã¯ãã« <math>\begin{pmatrix}b\\d\end{pmatrix}</math> ã§ããã
:ããã§ãããæ°ããªåº§æšç³»ãåºæºã«ããŠãæ°ããªåº§æšè»žã®åäœãã¯ãã«ã®æ°å€ãèŠãŠããçµæã®åäœãã¯ãã«ã®æ°å€ã¯ ïŒ0,1ïŒ ããã³ (1,0) ã«ãªãã ãã§ãããäœãèšç®ããäºã«ãªããªãããªããªãèªå·±ã®åº§æšç³»ã§èªå·±ã®åäœãã¯ãã«ãèŠãŠããïŒ0,1ïŒ ããã³ (1,0) ã§ãããªããããã§ããã
:èšç®ãã¹ãã¯ãæ°ããªåº§æšè»žãåºæºã«ããŠåã®åº§æšè»žãèŠãå Žåã®æ°å€ããããã¯ãåã®åº§æšè»žãåºæºã«ããŠæ°ããªåº§æšè»žãèŠãå Žåã®æ°å€ã§ããã
ããŠããã®åé¡ã§ã¯ç¹ïŒ°ã®äœçœ®ïŒxãyïŒã¯äœã倿ããŠãããããã£ãŠãåã®åº§æšãåºæºã«ããŠç¹Pã®äœçœ®ãèŠãŠããäœãå€åããªãããã®åé¡ã§å€æŽããã®ã¯åº§æšè»žã®ã»ãã§ãããããæ°ããªåº§æšç³»ã§èŠãç¹ïŒ°ã®å€ïŒz,wïŒã«èå³ãããã®ã§ããã
==== ç·ã®ç§»å ====
å¹³é¢å³åœ¢äžã®ç·åã¯ã2è¡2åã®è¡åã§å€æã§ããã
<math>
A =
\begin{pmatrix}
a &b\\
c &d
\end{pmatrix}
</math>
ã§å€æããå Žåã«ã€ããŠã¯ã<math>ad-bc \ne 0</math>ã®ãšããç·ã¯ç·ã«å€æãããåè§åœ¢ã¯åè§åœ¢ã«å€æãããäžè§åœ¢ã¯äžè§åœ¢ã«å€æãããã
==== é¢ã®ç§»å ====
2è¡2åã®è¡å
<math>
A =
\begin{pmatrix}
a &b\\
c &d
\end{pmatrix}
</math>
ã«ã€ããŠã¯ãå³åœ¢ã®é¢ç©ã¯ã<math>ad-bc </math>åãããã
== ç·åœ¢åå ==
== äžåçŽç· ==
== å€éšãªã³ã¯ ==
[https://www.mext.go.jp/content/20210525-mxt_kyoiku01-000009442_1_1.pdf ãé«çåŠæ ¡æ°åŠç§ææïŒè¡åå
¥éïŒãæéšç§åŠç]
[[category:é«çåŠæ ¡æ°åŠ|ããããã€]]
[[ã«ããŽãª:è¡å]] | 2005-05-03T08:02:28Z | 2024-03-05T12:45:31Z | [] | https://ja.wikibooks.org/wiki/%E6%97%A7%E8%AA%B2%E7%A8%8B(-2012%E5%B9%B4%E5%BA%A6)%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E6%95%B0%E5%AD%A6C/%E8%A1%8C%E5%88%97 |
1,895 | é«çåŠæ ¡æ°åŠC/å¹³é¢äžã®æ²ç· | æŸç©ç·(parabola)ãæ¥å(ellipse)ãåæ²ç·(hyperbola)ããŸãšããŠã2次æ²ç·ãåéæ²ç·ãšãããããããã2次æ²ç·ãšåŒã°ããçç±ã¯ãæŸç©ç·ãæ¥åãåæ²ç·ã¯ x , y {\displaystyle x,y} ã®2æ¬¡åŒ F ( x , y ) {\displaystyle F(x,y)} ã«ãã£ãŠ F ( x , y ) = 0 {\displaystyle F(x,y)=0} ã§è¡šãããšãã§ãããŸã x , y {\displaystyle x,y} ã®2æ¬¡åŒ F ( x , y ) {\displaystyle F(x,y)} ã«ãã£ãŠ F ( x , y ) = 0 {\displaystyle F(x,y)=0} ãšè¡šãããæ²ç·ã¯æŸç©ç·ãæ¥åãåæ²ç·ã2çŽç·ã®ããããã«ãªãããã§ããã
åéæ²ç·ãšåŒã°ããçç±ã¯ãåéé¢ããå
šãŠã®æ¯ç·ãšäº€ãããåºé¢ã«å¹³è¡ãªå¹³é¢ã§åæããããšãã®æé¢ãåããå
šãŠã®æ¯ç·ãšäº€ãããåºé¢ã«å¹³è¡ã§ãªãå¹³é¢ã§åæããããšãã®æé¢ãæ¥åããæ¯ç·ã«å¹³è¡ãªé¢ã§åæããããšãã®æé¢ãæŸç©ç·ããæ¯ç·ã«å¹³è¡ã§ãªãå¹³é¢ã§åæããããšãã®æé¢ãåæ²ç·ãšãªãããã§ããã
2次æ²ç·ã¯çŽç·ãåã«ã€ãã§éèŠãªæ²ç·ã§ããã
å¹³é¢äžã«ç¹ F {\displaystyle \mathrm {F} } ãšãç¹ F {\displaystyle \mathrm {F} } ãéããªãçŽç· l {\displaystyle l} ããšãããã®ãšããçŽç· l {\displaystyle l} ããã®è·é¢ãšç¹ F {\displaystyle \mathrm {F} } ããã®è·é¢ãçããç¹ã®è»è·¡ãæŸç©ç·ãšããããã®ãšããç¹ F {\displaystyle \mathrm {F} } ãæŸç©ç·ã®çŠç¹ãçŽç· l {\displaystyle l} ãæŸç©ç·ã®æºç·ãšããã
çŠç¹ã F ( p , 0 ) {\displaystyle \mathrm {F} (p,0)} æºç·ã l : x = â p {\displaystyle l:x=-p} ãšããæŸç©ç·ã®æ¹çšåŒãæ±ããã P ( x , y ) {\displaystyle \mathrm {P} (x,y)} ããã®æŸç©ç·ã®ç¹ãšãããšãç¹ P {\displaystyle \mathrm {P} } ãšçŽç· l {\displaystyle l} ã®è·é¢ã¯ x + p {\displaystyle x+p} ã§ããã P F = ( x â p ) 2 + y 2 {\displaystyle \mathrm {PF} ={\sqrt {(x-p)^{2}+y^{2}}}} ã§ããããªã®ã§ã ( x + p ) 2 = ( x â p ) 2 + y 2 {\displaystyle (x+p)^{2}=(x-p)^{2}+y^{2}} ã§ããããããæŽçããŠã
y 2 = 4 p x {\displaystyle y^{2}=4px}
ãåŸãã
ããã§ãæŸç©ç· y 2 = 4 p x {\displaystyle y^{2}=4px} ã«ãããŠã x {\displaystyle x} ãš y {\displaystyle y} ãå
¥ãæ¿ããã° y = x 2 4 p {\displaystyle y={\frac {x^{2}}{4p}}} ã§ãããããããäžåŠããåŠãã§ããæŸç©ç·ã®å®çŸ©ãšäžèŽããããšããããã
æŒç¿åé¡
æŸç©ç· y = a x 2 ( a â 0 ) {\displaystyle y=ax^{2}\quad (a\neq 0)} ã®çŠç¹ãšæºç·ãæ±ããã
è§£ç
çŠç¹ ( 0 , 1 4 a ) {\displaystyle \left(0,{\frac {1}{4a}}\right)} æºç· y = â 1 4 a {\displaystyle y=-{\frac {1}{4a}}}
å¹³é¢äžã«ç°ãªã2ç¹ F , F â² {\displaystyle \mathrm {F} ,\mathrm {F'} } ããšãã F {\displaystyle \mathrm {F} } ãšã®è·é¢ãšã F â² {\displaystyle \mathrm {F'} } ãšã®è·é¢ã®åãäžå®ã§ããç¹ã®è»è·¡ãæ¥åãšããããã®ãšããç¹ F , F â² {\displaystyle \mathrm {F} ,\mathrm {F'} } ãæ¥åã®çŠç¹ãšããã
çŠç¹ã F ( c , 0 ) , F â² ( â c , 0 ) {\displaystyle \mathrm {F} (c,0),\mathrm {F'} (-c,0)} ãšãããç¹ P ( x , y ) {\displaystyle \mathrm {P} (x,y)} ãæ¥åäžã®ç¹ã§ãããšãã P F + P F â² = 2 a {\displaystyle \mathrm {PF} +\mathrm {PF'} =2a} ã§ããã P F = 2 a â P F â² {\displaystyle \mathrm {PF} =2a-\mathrm {PF'} } ãã
( x â c ) 2 + y 2 = 2 a â ( x + c ) 2 + y 2 {\displaystyle {\sqrt {(x-c)^{2}+y^{2}}}=2a-{\sqrt {(x+c)^{2}+y^{2}}}}
䞡蟺ã2ä¹ããŠæŽçãããš
a ( x + c ) 2 + y 2 = a 2 + c x {\displaystyle a{\sqrt {(x+c)^{2}+y^{2}}}=a^{2}+cx}
å床ã䞡蟺ã2ä¹ããŠæŽçãããš
( a 2 â c 2 ) x 2 + a 2 y 2 = a 2 ( a 2 â c 2 ) {\displaystyle (a^{2}-c^{2})x^{2}+a^{2}y^{2}=a^{2}(a^{2}-c^{2})}
ããã§ a 2 â c 2 = b 2 ( b > 0 ) {\displaystyle a^{2}-c^{2}=b^{2}\quad (b>0)} ãšçœ®ãæãããš
b 2 x 2 + a 2 y 2 = a 2 b 2 {\displaystyle b^{2}x^{2}+a^{2}y^{2}=a^{2}b^{2}}
䞡蟺ã a 2 b 2 {\displaystyle a^{2}b^{2}} ã§å²ããš
x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) {\displaystyle {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}=1\quad (a>b>0)}
ãå°ãããã
x軞ãšã®äº€ç¹ã¯ ( a , 0 ) {\displaystyle (a,0)} ã ( â a , 0 ) {\displaystyle (-a,0)} ãy軞ãšã®äº€ç¹ã¯ ( 0 , b ) {\displaystyle (0,b)} ã ( 0 , â b ) {\displaystyle (0,-b)} ãšãªãã
a > b > 0 {\displaystyle a>b>0} ã®ãšãã 2 a {\displaystyle 2a} ã¯é·è»žã®é·ã(é·åŸ)ã 2 b {\displaystyle 2b} ã¯ç軞ã®é·ã(çåŸ)ãšãªããxyå¹³é¢äžã«ã°ã©ããæžããšæšªé·ã®æ¥åã«ãªãããŸãçŠç¹ã¯é·åŸã§ããx軞äžã«ãããã®åº§æšã¯ ( â a 2 â b 2 , 0 ) , ( a 2 â b 2 , 0 ) {\displaystyle (-{\sqrt {a^{2}-b^{2}}},0),({\sqrt {a^{2}-b^{2}}},0)} ãšãªãã
éã«ã b > a > 0 {\displaystyle b>a>0} ã®ãšãã 2 b {\displaystyle 2b} ã¯é·è»žã®é·ã(é·åŸ)ã 2 a {\displaystyle 2a} ã¯ç軞ã®é·ã(çåŸ)ãšãªããxyå¹³é¢äžã«ã°ã©ããæžããšçžŠé·ã®æ¥åã«ãªãããŸãçŠç¹ã¯é·åŸã§ããy軞äžã«ãããã®åº§æšã¯ ( 0 , b 2 â a 2 ) , ( 0 , â b 2 â a 2 ) {\displaystyle (0,{\sqrt {b^{2}-a^{2}}}),(0,-{\sqrt {b^{2}-a^{2}}})} ãšãªãã
2ã€ã®çŠç¹ãè¿ãã»ã©æ¥åã¯åã«è¿ã¥ãã2ã€ã®çŠç¹ãéãªã£ããšã a = b {\displaystyle a=b} ãšãªããæ¥åã¯åã«ãªãã
ã¡ãªã¿ã«ãææã®åšããå
¬è»¢ããææã®è»éã¯ãææãçŠç¹ãšããæ¥åã«ãªãã
å¹³é¢äžã«ç°ãªã2ç¹ F , F â² {\displaystyle \mathrm {F} ,\mathrm {F'} } ããšãã F {\displaystyle \mathrm {F} } ãšã®è·é¢ãšã F â² {\displaystyle \mathrm {F'} } ãšã®è·é¢ã®å·®ãäžå®ã§ããç¹ã®è»è·¡ãåæ²ç·ãšããã2ç¹ F , F â² {\displaystyle \mathrm {F} ,\mathrm {F'} } ãåæ²ç·ã®çŠç¹ãšããã
çŠç¹ã F ( c , 0 ) , F â² ( â c , 0 ) {\displaystyle \mathrm {F} (c,0),\mathrm {F'} (-c,0)} ãšãããç¹ P ( x , y ) {\displaystyle \mathrm {P} (x,y)} ãåæ²ç·äžã®ç¹ã§ãããšãã | P F â P F â² | = 2 a {\displaystyle |\mathrm {PF} -\mathrm {PF'} |=2a} ã§ããã P F = ± 2 a + P F â² {\displaystyle \mathrm {PF} =\pm 2a+\mathrm {PF'} } ãã
( x â c ) 2 + y 2 = ± 2 a + ( x + c ) 2 + y 2 {\displaystyle {\sqrt {(x-c)^{2}+y^{2}}}=\pm 2a+{\sqrt {(x+c)^{2}+y^{2}}}}
䞡蟺ã2ä¹ããŠæŽçãããš
± a ( x + c ) 2 + y 2 = â a 2 â c x {\displaystyle \pm a{\sqrt {(x+c)^{2}+y^{2}}}=-a^{2}-cx}
å床䞡蟺ã2ä¹ããŠæŽçãããš
( c 2 â a 2 ) x 2 â a 2 y 2 = a 2 ( c 2 â a 2 ) {\displaystyle (c^{2}-a^{2})x^{2}-a^{2}y^{2}=a^{2}(c^{2}-a^{2})}
ããã§ã b 2 = c 2 â a 2 ( b > 0 ) {\displaystyle b^{2}=c^{2}-a^{2}\quad (b>0)} ãšããã䞡蟺ã a 2 b 2 {\displaystyle a^{2}b^{2}} ã§å²ãã°
x 2 a 2 â y 2 b 2 = 1 {\displaystyle {\frac {x^{2}}{a^{2}}}-{\frac {y^{2}}{b^{2}}}=1}
ã§ããã
åæ²ç·ã x 2 a 2 â y 2 b 2 = 1 {\displaystyle {\frac {x^{2}}{a^{2}}}-{\frac {y^{2}}{b^{2}}}=1} ã§è¡šããããšããçŠç¹ã®åº§æšã¯ ( a 2 + b 2 , 0 ) , ( â a 2 + b 2 , 0 ) {\displaystyle ({\sqrt {a^{2}+b^{2}}},0),(-{\sqrt {a^{2}+b^{2}}},0)} ãšãªãã
éã«ãåæ²ç·ã x 2 a 2 â y 2 b 2 = â 1 {\displaystyle {\frac {x^{2}}{a^{2}}}-{\frac {y^{2}}{b^{2}}}=-1} ã§è¡šããããšããçŠç¹ã®åº§æšã¯ ( 0 , a 2 + b 2 ) , ( 0 , â a 2 + b 2 ) {\displaystyle (0,{\sqrt {a^{2}+b^{2}}}),(0,-{\sqrt {a^{2}+b^{2}}})} ãšãªãã
x = f ( t ) , y = g ( t ) {\displaystyle x=f(t),y=g(t)} ã§è¡šãããç¹ P ( x , y ) {\displaystyle \mathrm {P} (x,y)} ã®éåã¯ããæ²ç·ãæãããã®ãããªæ²ç·ã®è¡šç€ºãåªä»å€æ°è¡šç€ºãšããã
åªä»å€æ°è¡šç€ºã§ã¯ F ( x , y ) = 0 {\displaystyle F(x,y)=0} ã®åœ¢ã§ã¯è¡šãã«ããæ²ç·ãç°¡æœã«è¡šãããšãã§ãããäŸãã°ã x = t - sin t, y = 1 - cos t ã§ãããããã¯ãµã€ã¯ãã€ããšåŒã°ããã
x = f ( t ) , y = g ( t ) {\displaystyle x=f(t),y=g(t)} ãšåªä»å€æ°è¡šç€ºãããŠããæ²ç·ã x {\displaystyle x} æ¹åã« p {\displaystyle p} ã y {\displaystyle y} æ¹åã« q {\displaystyle q} ã ãã ãå¹³è¡ç§»åããæ²ç·ã¯ x = f ( t ) + p , y = g ( t ) + q {\displaystyle x=f(t)+p,y=g(t)+q} ãšè¡šããã
x = p t 2 , y = 2 p t p â 0 {\displaystyle x=pt^{2},y=2pt\quad p\neq 0} ã§è¡šãããæ²ç·ã¯ t {\displaystyle t} ãæ¶å»ãããš y 2 = 4 p x {\displaystyle y^{2}=4px} ãšãªãã®ã§æŸç©ç·ã§ããã
å x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} ãåªä»å€æ°è¡šç€ºãããš x = r cos Ξ , y = r sin Ξ {\displaystyle x=r\cos \theta ,y=r\sin \theta } ãšãªãã
ãããŸã§ã®åŠç¿ã§ã¯ã x {\displaystyle x} 軞㚠y {\displaystyle y} 軞ã䜿ã£ã座æšå¹³é¢(çŽäº€åº§æšãšãã) ( x , y ) {\displaystyle (x,y)} 䜿ãããšã§ã座æšå¹³é¢äžã®1ç¹ãå®ããã ããã§åŠã¶æ¥µåº§æšã§ã¯ã ( r , Ξ ) {\displaystyle (r,\theta )} ã®æåã§äžããããåŒã䜿ã£ãŠæ²ç·ã衚ãããšãèããã
ããäžç¹OãšåçŽç·OXãå®ãããšãå¹³é¢äžã®ç¹Pã¯ãç¹Oããã®è·é¢rãšã â {\displaystyle \angle } XOPã®è§ Ξ ( 0 †Ξ < 2 Ï ) {\displaystyle \theta \,(0\leq \theta <2\pi )} ã®å€§ããã§äžæã«å®ãŸãã
極座æšã®å®çŸ©
åç¹Oãšè»žOXãå®ãããå¹³é¢äžã®ç¹Pã«ã€ããŠãOPéã®è·é¢ãrã â {\displaystyle \angle } XOPã®å€§ãããΞã§è¡šããåº§æš ( r , Ξ ) {\displaystyle (r,\theta )} ãæ¥µåº§æšãšããã ãã®ãšããOãæ¥µãOXãå§ç·ãšããã ãŸãã Ξ {\displaystyle \theta } ãåè§ãšããã
ãŸããçŽäº€åº§æšãšæ¥µåº§æšã®é¢ä¿ã¯æ¬¡ã®ããã«ãªãã
çŽäº€åº§æšãšæ¥µåº§æšã®é¢ä¿
{ r = x 2 + y 2 cos Ξ = x r sin Ξ = y r { x = r cos Ξ y = r sin Ξ {\displaystyle {\begin{cases}r={\sqrt {x^{2}+y^{2}}}\\\cos \theta =\displaystyle {\frac {x}{r}}\\\sin \theta =\displaystyle {\frac {y}{r}}\end{cases}}\,\,{\begin{cases}x=r\cos \theta \\y=r\sin \theta \end{cases}}}
ããã¯çŽæçã«ã¯è€çŽ æ°å¹³é¢äžã®ç¹ã®çµ¶å¯Ÿå€ãšåè§ãå®ãããšãã«äŒŒãŠããã
r = f ( Ξ ) {\displaystyle r=f(\theta )} ã®åœ¢ã§äžããããåŒã極æ¹çšåŒ(ãããã»ããŠããã)ãšãããæ¥µæ¹çšåŒã¯rãšÎžã«ã€ããŠã®é¢æ°ã§ãããããããã¯xãšyãžã®å€æãå¯èœã§ããããã£ãŠxyå¹³é¢äžã«æ²ç·ããããŠãããããšã«ãªãã
ããŸããŸãªæ¥µæ¹çšåŒ
(1)äžå¿O,ååŸaã®å r = a {\displaystyle r=a}
(2)äžå¿ ( r 0 , Ξ 0 ) {\displaystyle (r_{0},{\theta }_{0})} ,ååŸaã®å r 2 â 2 r r 0 cos Ξ 0 + r 0 2 = a 2 {\displaystyle r^{2}-2rr_{0}\cos {\theta }_{0}+{r_{0}}^{2}=a^{2}}
(3)極Oãéããå§ç·ãšÎ±ã®è§ããªãçŽç· Ξ = α {\displaystyle \theta =\alpha }
(4)ç¹ ( a , α ) {\displaystyle (a,\alpha )} ãéããOAã«åçŽãªçŽç· r cos ( Ξ â α ) = a {\displaystyle r\cos(\theta -\alpha )=a}
(äŸ)å ( x â 1 ) 2 + y 2 = 1 {\displaystyle (x-1)^{2}+y^{2}=1} ãæ¥µæ¹çšåŒã§è¡šã. x = r cos Ξ , y = r sin Ξ {\displaystyle x=r\cos \theta ,y=r\sin \theta } ã代å
¥ããŠæŽçãããš r ( r â 2 cos Ξ ) = 0 {\displaystyle r(r-2\cos \theta )=0}
r = 0 {\displaystyle r=0} ã¯æ¥µã衚ããã r = 2 cos Ξ {\displaystyle r=2\cos \theta }
ãããŸã§ã«ã2次æ²ç·ãåªä»å€æ°è¡šç€ºã極æ¹çšåŒãªã©ã®æ²ç·ãšãã®æ§è³ªã«ã€ããŠè¿°ã¹ãŠããã以äžã§ã¯ãããããå©çšããŠããŸããŸãªæ²ç·ã®åŒã瀺ããäžè¬ã«æŠåœ¢ãã€ããã®ã¯å°é£ãªãããã³ã³ãã¥ãŒã¿ã䜿çšããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æŸç©ç·(parabola)ãæ¥å(ellipse)ãåæ²ç·(hyperbola)ããŸãšããŠã2次æ²ç·ãåéæ²ç·ãšãããããããã2次æ²ç·ãšåŒã°ããçç±ã¯ãæŸç©ç·ãæ¥åãåæ²ç·ã¯ x , y {\\displaystyle x,y} ã®2æ¬¡åŒ F ( x , y ) {\\displaystyle F(x,y)} ã«ãã£ãŠ F ( x , y ) = 0 {\\displaystyle F(x,y)=0} ã§è¡šãããšãã§ãããŸã x , y {\\displaystyle x,y} ã®2æ¬¡åŒ F ( x , y ) {\\displaystyle F(x,y)} ã«ãã£ãŠ F ( x , y ) = 0 {\\displaystyle F(x,y)=0} ãšè¡šãããæ²ç·ã¯æŸç©ç·ãæ¥åãåæ²ç·ã2çŽç·ã®ããããã«ãªãããã§ããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "åéæ²ç·ãšåŒã°ããçç±ã¯ãåéé¢ããå
šãŠã®æ¯ç·ãšäº€ãããåºé¢ã«å¹³è¡ãªå¹³é¢ã§åæããããšãã®æé¢ãåããå
šãŠã®æ¯ç·ãšäº€ãããåºé¢ã«å¹³è¡ã§ãªãå¹³é¢ã§åæããããšãã®æé¢ãæ¥åããæ¯ç·ã«å¹³è¡ãªé¢ã§åæããããšãã®æé¢ãæŸç©ç·ããæ¯ç·ã«å¹³è¡ã§ãªãå¹³é¢ã§åæããããšãã®æé¢ãåæ²ç·ãšãªãããã§ããã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "2次æ²ç·ã¯çŽç·ãåã«ã€ãã§éèŠãªæ²ç·ã§ããã",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "å¹³é¢äžã«ç¹ F {\\displaystyle \\mathrm {F} } ãšãç¹ F {\\displaystyle \\mathrm {F} } ãéããªãçŽç· l {\\displaystyle l} ããšãããã®ãšããçŽç· l {\\displaystyle l} ããã®è·é¢ãšç¹ F {\\displaystyle \\mathrm {F} } ããã®è·é¢ãçããç¹ã®è»è·¡ãæŸç©ç·ãšããããã®ãšããç¹ F {\\displaystyle \\mathrm {F} } ãæŸç©ç·ã®çŠç¹ãçŽç· l {\\displaystyle l} ãæŸç©ç·ã®æºç·ãšããã",
"title": "æŸç©ç·"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "çŠç¹ã F ( p , 0 ) {\\displaystyle \\mathrm {F} (p,0)} æºç·ã l : x = â p {\\displaystyle l:x=-p} ãšããæŸç©ç·ã®æ¹çšåŒãæ±ããã P ( x , y ) {\\displaystyle \\mathrm {P} (x,y)} ããã®æŸç©ç·ã®ç¹ãšãããšãç¹ P {\\displaystyle \\mathrm {P} } ãšçŽç· l {\\displaystyle l} ã®è·é¢ã¯ x + p {\\displaystyle x+p} ã§ããã P F = ( x â p ) 2 + y 2 {\\displaystyle \\mathrm {PF} ={\\sqrt {(x-p)^{2}+y^{2}}}} ã§ããããªã®ã§ã ( x + p ) 2 = ( x â p ) 2 + y 2 {\\displaystyle (x+p)^{2}=(x-p)^{2}+y^{2}} ã§ããããããæŽçããŠã",
"title": "æŸç©ç·"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "y 2 = 4 p x {\\displaystyle y^{2}=4px}",
"title": "æŸç©ç·"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãåŸãã",
"title": "æŸç©ç·"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ããã§ãæŸç©ç· y 2 = 4 p x {\\displaystyle y^{2}=4px} ã«ãããŠã x {\\displaystyle x} ãš y {\\displaystyle y} ãå
¥ãæ¿ããã° y = x 2 4 p {\\displaystyle y={\\frac {x^{2}}{4p}}} ã§ãããããããäžåŠããåŠãã§ããæŸç©ç·ã®å®çŸ©ãšäžèŽããããšããããã",
"title": "æŸç©ç·"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "æŒç¿åé¡",
"title": "æŸç©ç·"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "æŸç©ç· y = a x 2 ( a â 0 ) {\\displaystyle y=ax^{2}\\quad (a\\neq 0)} ã®çŠç¹ãšæºç·ãæ±ããã",
"title": "æŸç©ç·"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "è§£ç",
"title": "æŸç©ç·"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "çŠç¹ ( 0 , 1 4 a ) {\\displaystyle \\left(0,{\\frac {1}{4a}}\\right)} æºç· y = â 1 4 a {\\displaystyle y=-{\\frac {1}{4a}}}",
"title": "æŸç©ç·"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "å¹³é¢äžã«ç°ãªã2ç¹ F , F â² {\\displaystyle \\mathrm {F} ,\\mathrm {F'} } ããšãã F {\\displaystyle \\mathrm {F} } ãšã®è·é¢ãšã F â² {\\displaystyle \\mathrm {F'} } ãšã®è·é¢ã®åãäžå®ã§ããç¹ã®è»è·¡ãæ¥åãšããããã®ãšããç¹ F , F â² {\\displaystyle \\mathrm {F} ,\\mathrm {F'} } ãæ¥åã®çŠç¹ãšããã",
"title": "æ¥å"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "",
"title": "æ¥å"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "çŠç¹ã F ( c , 0 ) , F â² ( â c , 0 ) {\\displaystyle \\mathrm {F} (c,0),\\mathrm {F'} (-c,0)} ãšãããç¹ P ( x , y ) {\\displaystyle \\mathrm {P} (x,y)} ãæ¥åäžã®ç¹ã§ãããšãã P F + P F â² = 2 a {\\displaystyle \\mathrm {PF} +\\mathrm {PF'} =2a} ã§ããã P F = 2 a â P F â² {\\displaystyle \\mathrm {PF} =2a-\\mathrm {PF'} } ãã",
"title": "æ¥å"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "( x â c ) 2 + y 2 = 2 a â ( x + c ) 2 + y 2 {\\displaystyle {\\sqrt {(x-c)^{2}+y^{2}}}=2a-{\\sqrt {(x+c)^{2}+y^{2}}}}",
"title": "æ¥å"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "䞡蟺ã2ä¹ããŠæŽçãããš",
"title": "æ¥å"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "a ( x + c ) 2 + y 2 = a 2 + c x {\\displaystyle a{\\sqrt {(x+c)^{2}+y^{2}}}=a^{2}+cx}",
"title": "æ¥å"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "å床ã䞡蟺ã2ä¹ããŠæŽçãããš",
"title": "æ¥å"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "( a 2 â c 2 ) x 2 + a 2 y 2 = a 2 ( a 2 â c 2 ) {\\displaystyle (a^{2}-c^{2})x^{2}+a^{2}y^{2}=a^{2}(a^{2}-c^{2})}",
"title": "æ¥å"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ããã§ a 2 â c 2 = b 2 ( b > 0 ) {\\displaystyle a^{2}-c^{2}=b^{2}\\quad (b>0)} ãšçœ®ãæãããš",
"title": "æ¥å"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "b 2 x 2 + a 2 y 2 = a 2 b 2 {\\displaystyle b^{2}x^{2}+a^{2}y^{2}=a^{2}b^{2}}",
"title": "æ¥å"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "䞡蟺ã a 2 b 2 {\\displaystyle a^{2}b^{2}} ã§å²ããš",
"title": "æ¥å"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) {\\displaystyle {\\frac {x^{2}}{a^{2}}}+{\\frac {y^{2}}{b^{2}}}=1\\quad (a>b>0)}",
"title": "æ¥å"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ãå°ãããã",
"title": "æ¥å"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "x軞ãšã®äº€ç¹ã¯ ( a , 0 ) {\\displaystyle (a,0)} ã ( â a , 0 ) {\\displaystyle (-a,0)} ãy軞ãšã®äº€ç¹ã¯ ( 0 , b ) {\\displaystyle (0,b)} ã ( 0 , â b ) {\\displaystyle (0,-b)} ãšãªãã",
"title": "æ¥å"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "a > b > 0 {\\displaystyle a>b>0} ã®ãšãã 2 a {\\displaystyle 2a} ã¯é·è»žã®é·ã(é·åŸ)ã 2 b {\\displaystyle 2b} ã¯ç軞ã®é·ã(çåŸ)ãšãªããxyå¹³é¢äžã«ã°ã©ããæžããšæšªé·ã®æ¥åã«ãªãããŸãçŠç¹ã¯é·åŸã§ããx軞äžã«ãããã®åº§æšã¯ ( â a 2 â b 2 , 0 ) , ( a 2 â b 2 , 0 ) {\\displaystyle (-{\\sqrt {a^{2}-b^{2}}},0),({\\sqrt {a^{2}-b^{2}}},0)} ãšãªãã",
"title": "æ¥å"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "éã«ã b > a > 0 {\\displaystyle b>a>0} ã®ãšãã 2 b {\\displaystyle 2b} ã¯é·è»žã®é·ã(é·åŸ)ã 2 a {\\displaystyle 2a} ã¯ç軞ã®é·ã(çåŸ)ãšãªããxyå¹³é¢äžã«ã°ã©ããæžããšçžŠé·ã®æ¥åã«ãªãããŸãçŠç¹ã¯é·åŸã§ããy軞äžã«ãããã®åº§æšã¯ ( 0 , b 2 â a 2 ) , ( 0 , â b 2 â a 2 ) {\\displaystyle (0,{\\sqrt {b^{2}-a^{2}}}),(0,-{\\sqrt {b^{2}-a^{2}}})} ãšãªãã",
"title": "æ¥å"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "2ã€ã®çŠç¹ãè¿ãã»ã©æ¥åã¯åã«è¿ã¥ãã2ã€ã®çŠç¹ãéãªã£ããšã a = b {\\displaystyle a=b} ãšãªããæ¥åã¯åã«ãªãã",
"title": "æ¥å"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ã¡ãªã¿ã«ãææã®åšããå
¬è»¢ããææã®è»éã¯ãææãçŠç¹ãšããæ¥åã«ãªãã",
"title": "æ¥å"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "å¹³é¢äžã«ç°ãªã2ç¹ F , F â² {\\displaystyle \\mathrm {F} ,\\mathrm {F'} } ããšãã F {\\displaystyle \\mathrm {F} } ãšã®è·é¢ãšã F â² {\\displaystyle \\mathrm {F'} } ãšã®è·é¢ã®å·®ãäžå®ã§ããç¹ã®è»è·¡ãåæ²ç·ãšããã2ç¹ F , F â² {\\displaystyle \\mathrm {F} ,\\mathrm {F'} } ãåæ²ç·ã®çŠç¹ãšããã",
"title": "åæ²ç·"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "",
"title": "åæ²ç·"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "çŠç¹ã F ( c , 0 ) , F â² ( â c , 0 ) {\\displaystyle \\mathrm {F} (c,0),\\mathrm {F'} (-c,0)} ãšãããç¹ P ( x , y ) {\\displaystyle \\mathrm {P} (x,y)} ãåæ²ç·äžã®ç¹ã§ãããšãã | P F â P F â² | = 2 a {\\displaystyle |\\mathrm {PF} -\\mathrm {PF'} |=2a} ã§ããã P F = ± 2 a + P F â² {\\displaystyle \\mathrm {PF} =\\pm 2a+\\mathrm {PF'} } ãã",
"title": "åæ²ç·"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "( x â c ) 2 + y 2 = ± 2 a + ( x + c ) 2 + y 2 {\\displaystyle {\\sqrt {(x-c)^{2}+y^{2}}}=\\pm 2a+{\\sqrt {(x+c)^{2}+y^{2}}}}",
"title": "åæ²ç·"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "䞡蟺ã2ä¹ããŠæŽçãããš",
"title": "åæ²ç·"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "± a ( x + c ) 2 + y 2 = â a 2 â c x {\\displaystyle \\pm a{\\sqrt {(x+c)^{2}+y^{2}}}=-a^{2}-cx}",
"title": "åæ²ç·"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "å床䞡蟺ã2ä¹ããŠæŽçãããš",
"title": "åæ²ç·"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "( c 2 â a 2 ) x 2 â a 2 y 2 = a 2 ( c 2 â a 2 ) {\\displaystyle (c^{2}-a^{2})x^{2}-a^{2}y^{2}=a^{2}(c^{2}-a^{2})}",
"title": "åæ²ç·"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "ããã§ã b 2 = c 2 â a 2 ( b > 0 ) {\\displaystyle b^{2}=c^{2}-a^{2}\\quad (b>0)} ãšããã䞡蟺ã a 2 b 2 {\\displaystyle a^{2}b^{2}} ã§å²ãã°",
"title": "åæ²ç·"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "x 2 a 2 â y 2 b 2 = 1 {\\displaystyle {\\frac {x^{2}}{a^{2}}}-{\\frac {y^{2}}{b^{2}}}=1}",
"title": "åæ²ç·"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "ã§ããã",
"title": "åæ²ç·"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "åæ²ç·ã x 2 a 2 â y 2 b 2 = 1 {\\displaystyle {\\frac {x^{2}}{a^{2}}}-{\\frac {y^{2}}{b^{2}}}=1} ã§è¡šããããšããçŠç¹ã®åº§æšã¯ ( a 2 + b 2 , 0 ) , ( â a 2 + b 2 , 0 ) {\\displaystyle ({\\sqrt {a^{2}+b^{2}}},0),(-{\\sqrt {a^{2}+b^{2}}},0)} ãšãªãã",
"title": "åæ²ç·"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "éã«ãåæ²ç·ã x 2 a 2 â y 2 b 2 = â 1 {\\displaystyle {\\frac {x^{2}}{a^{2}}}-{\\frac {y^{2}}{b^{2}}}=-1} ã§è¡šããããšããçŠç¹ã®åº§æšã¯ ( 0 , a 2 + b 2 ) , ( 0 , â a 2 + b 2 ) {\\displaystyle (0,{\\sqrt {a^{2}+b^{2}}}),(0,-{\\sqrt {a^{2}+b^{2}}})} ãšãªãã",
"title": "åæ²ç·"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "x = f ( t ) , y = g ( t ) {\\displaystyle x=f(t),y=g(t)} ã§è¡šãããç¹ P ( x , y ) {\\displaystyle \\mathrm {P} (x,y)} ã®éåã¯ããæ²ç·ãæãããã®ãããªæ²ç·ã®è¡šç€ºãåªä»å€æ°è¡šç€ºãšããã",
"title": "åªä»å€æ°è¡šç€º"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "åªä»å€æ°è¡šç€ºã§ã¯ F ( x , y ) = 0 {\\displaystyle F(x,y)=0} ã®åœ¢ã§ã¯è¡šãã«ããæ²ç·ãç°¡æœã«è¡šãããšãã§ãããäŸãã°ã x = t - sin t, y = 1 - cos t ã§ãããããã¯ãµã€ã¯ãã€ããšåŒã°ããã",
"title": "åªä»å€æ°è¡šç€º"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "x = f ( t ) , y = g ( t ) {\\displaystyle x=f(t),y=g(t)} ãšåªä»å€æ°è¡šç€ºãããŠããæ²ç·ã x {\\displaystyle x} æ¹åã« p {\\displaystyle p} ã y {\\displaystyle y} æ¹åã« q {\\displaystyle q} ã ãã ãå¹³è¡ç§»åããæ²ç·ã¯ x = f ( t ) + p , y = g ( t ) + q {\\displaystyle x=f(t)+p,y=g(t)+q} ãšè¡šããã",
"title": "åªä»å€æ°è¡šç€º"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "x = p t 2 , y = 2 p t p â 0 {\\displaystyle x=pt^{2},y=2pt\\quad p\\neq 0} ã§è¡šãããæ²ç·ã¯ t {\\displaystyle t} ãæ¶å»ãããš y 2 = 4 p x {\\displaystyle y^{2}=4px} ãšãªãã®ã§æŸç©ç·ã§ããã",
"title": "åªä»å€æ°è¡šç€º"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "å x 2 + y 2 = r 2 {\\displaystyle x^{2}+y^{2}=r^{2}} ãåªä»å€æ°è¡šç€ºãããš x = r cos Ξ , y = r sin Ξ {\\displaystyle x=r\\cos \\theta ,y=r\\sin \\theta } ãšãªãã",
"title": "åªä»å€æ°è¡šç€º"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "ãããŸã§ã®åŠç¿ã§ã¯ã x {\\displaystyle x} 軞㚠y {\\displaystyle y} 軞ã䜿ã£ã座æšå¹³é¢(çŽäº€åº§æšãšãã) ( x , y ) {\\displaystyle (x,y)} 䜿ãããšã§ã座æšå¹³é¢äžã®1ç¹ãå®ããã ããã§åŠã¶æ¥µåº§æšã§ã¯ã ( r , Ξ ) {\\displaystyle (r,\\theta )} ã®æåã§äžããããåŒã䜿ã£ãŠæ²ç·ã衚ãããšãèããã",
"title": "極座æšã𿥵æ¹çšåŒ"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "ããäžç¹OãšåçŽç·OXãå®ãããšãå¹³é¢äžã®ç¹Pã¯ãç¹Oããã®è·é¢rãšã â {\\displaystyle \\angle } XOPã®è§ Ξ ( 0 †Ξ < 2 Ï ) {\\displaystyle \\theta \\,(0\\leq \\theta <2\\pi )} ã®å€§ããã§äžæã«å®ãŸãã",
"title": "極座æšã𿥵æ¹çšåŒ"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "極座æšã®å®çŸ©",
"title": "極座æšã𿥵æ¹çšåŒ"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "åç¹Oãšè»žOXãå®ãããå¹³é¢äžã®ç¹Pã«ã€ããŠãOPéã®è·é¢ãrã â {\\displaystyle \\angle } XOPã®å€§ãããΞã§è¡šããåº§æš ( r , Ξ ) {\\displaystyle (r,\\theta )} ãæ¥µåº§æšãšããã ãã®ãšããOãæ¥µãOXãå§ç·ãšããã ãŸãã Ξ {\\displaystyle \\theta } ãåè§ãšããã",
"title": "極座æšã𿥵æ¹çšåŒ"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "ãŸããçŽäº€åº§æšãšæ¥µåº§æšã®é¢ä¿ã¯æ¬¡ã®ããã«ãªãã",
"title": "極座æšã𿥵æ¹çšåŒ"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "çŽäº€åº§æšãšæ¥µåº§æšã®é¢ä¿",
"title": "極座æšã𿥵æ¹çšåŒ"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "{ r = x 2 + y 2 cos Ξ = x r sin Ξ = y r { x = r cos Ξ y = r sin Ξ {\\displaystyle {\\begin{cases}r={\\sqrt {x^{2}+y^{2}}}\\\\\\cos \\theta =\\displaystyle {\\frac {x}{r}}\\\\\\sin \\theta =\\displaystyle {\\frac {y}{r}}\\end{cases}}\\,\\,{\\begin{cases}x=r\\cos \\theta \\\\y=r\\sin \\theta \\end{cases}}}",
"title": "極座æšã𿥵æ¹çšåŒ"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ããã¯çŽæçã«ã¯è€çŽ æ°å¹³é¢äžã®ç¹ã®çµ¶å¯Ÿå€ãšåè§ãå®ãããšãã«äŒŒãŠããã",
"title": "極座æšã𿥵æ¹çšåŒ"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "r = f ( Ξ ) {\\displaystyle r=f(\\theta )} ã®åœ¢ã§äžããããåŒã極æ¹çšåŒ(ãããã»ããŠããã)ãšãããæ¥µæ¹çšåŒã¯rãšÎžã«ã€ããŠã®é¢æ°ã§ãããããããã¯xãšyãžã®å€æãå¯èœã§ããããã£ãŠxyå¹³é¢äžã«æ²ç·ããããŠãããããšã«ãªãã",
"title": "極座æšã𿥵æ¹çšåŒ"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "ããŸããŸãªæ¥µæ¹çšåŒ",
"title": "極座æšã𿥵æ¹çšåŒ"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "(1)äžå¿O,ååŸaã®å r = a {\\displaystyle r=a}",
"title": "極座æšã𿥵æ¹çšåŒ"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "(2)äžå¿ ( r 0 , Ξ 0 ) {\\displaystyle (r_{0},{\\theta }_{0})} ,ååŸaã®å r 2 â 2 r r 0 cos Ξ 0 + r 0 2 = a 2 {\\displaystyle r^{2}-2rr_{0}\\cos {\\theta }_{0}+{r_{0}}^{2}=a^{2}}",
"title": "極座æšã𿥵æ¹çšåŒ"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "(3)極Oãéããå§ç·ãšÎ±ã®è§ããªãçŽç· Ξ = α {\\displaystyle \\theta =\\alpha }",
"title": "極座æšã𿥵æ¹çšåŒ"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "(4)ç¹ ( a , α ) {\\displaystyle (a,\\alpha )} ãéããOAã«åçŽãªçŽç· r cos ( Ξ â α ) = a {\\displaystyle r\\cos(\\theta -\\alpha )=a}",
"title": "極座æšã𿥵æ¹çšåŒ"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "(äŸ)å ( x â 1 ) 2 + y 2 = 1 {\\displaystyle (x-1)^{2}+y^{2}=1} ãæ¥µæ¹çšåŒã§è¡šã. x = r cos Ξ , y = r sin Ξ {\\displaystyle x=r\\cos \\theta ,y=r\\sin \\theta } ã代å
¥ããŠæŽçãããš r ( r â 2 cos Ξ ) = 0 {\\displaystyle r(r-2\\cos \\theta )=0}",
"title": "極座æšã𿥵æ¹çšåŒ"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "r = 0 {\\displaystyle r=0} ã¯æ¥µã衚ããã r = 2 cos Ξ {\\displaystyle r=2\\cos \\theta }",
"title": "極座æšã𿥵æ¹çšåŒ"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "ãããŸã§ã«ã2次æ²ç·ãåªä»å€æ°è¡šç€ºã極æ¹çšåŒãªã©ã®æ²ç·ãšãã®æ§è³ªã«ã€ããŠè¿°ã¹ãŠããã以äžã§ã¯ãããããå©çšããŠããŸããŸãªæ²ç·ã®åŒã瀺ããäžè¬ã«æŠåœ¢ãã€ããã®ã¯å°é£ãªãããã³ã³ãã¥ãŒã¿ã䜿çšããã",
"title": "ããŸããŸãªæ²ç·"
}
] | æŸç©ç·(parabola)ãæ¥å(ellipse)ãåæ²ç·(hyperbola)ããŸãšããŠã2次æ²ç·ãåéæ²ç·ãšãããããããã2次æ²ç·ãšåŒã°ããçç±ã¯ãæŸç©ç·ãæ¥åãåæ²ç·ã¯ x , y ã®2æ¬¡åŒ F ã«ãã£ãŠ F = 0 ã§è¡šãããšãã§ãããŸã x , y ã®2æ¬¡åŒ F ã«ãã£ãŠ F = 0 ãšè¡šãããæ²ç·ã¯æŸç©ç·ãæ¥åãåæ²ç·ã2çŽç·ã®ããããã«ãªãããã§ããã åéæ²ç·ãšåŒã°ããçç±ã¯ãåéé¢ããå
šãŠã®æ¯ç·ãšäº€ãããåºé¢ã«å¹³è¡ãªå¹³é¢ã§åæããããšãã®æé¢ãåããå
šãŠã®æ¯ç·ãšäº€ãããåºé¢ã«å¹³è¡ã§ãªãå¹³é¢ã§åæããããšãã®æé¢ãæ¥åããæ¯ç·ã«å¹³è¡ãªé¢ã§åæããããšãã®æé¢ãæŸç©ç·ããæ¯ç·ã«å¹³è¡ã§ãªãå¹³é¢ã§åæããããšãã®æé¢ãåæ²ç·ãšãªãããã§ããã 2次æ²ç·ã¯çŽç·ãåã«ã€ãã§éèŠãªæ²ç·ã§ããã | {{pathnav|é«çåŠæ ¡ã®åŠç¿|é«çåŠæ ¡æ°åŠ|é«çåŠæ ¡æ°åŠC|pagename=å¹³é¢äžã®æ²ç·|frame=1|small=1}}
æŸç©ç·(parabola)ãæ¥å(ellipse)ãåæ²ç·(hyperbola)ããŸãšããŠã2次æ²ç·ãåéæ²ç·ãšãããããããã2次æ²ç·ãšåŒã°ããçç±ã¯ãæŸç©ç·ãæ¥åãåæ²ç·ã¯ <math>x,y</math> ã®2æ¬¡åŒ <math>F(x,y)</math> ã«ãã£ãŠ <math>F(x,y) = 0</math> ã§è¡šãããšãã§ãããŸã <math>x,y</math> ã®2æ¬¡åŒ <math>F(x,y)</math> ã«ãã£ãŠ <math>F(x,y) = 0</math> ãšè¡šãããæ²ç·ã¯æŸç©ç·ãæ¥åãåæ²ç·ã2çŽç·ã®ããããã«ãªãããã§ããã
[[ãã¡ã€ã«:Conic Sections.svg|ãµã ãã€ã«]]
åéæ²ç·ãšåŒã°ããçç±ã¯ãåéé¢ããå
šãŠã®æ¯ç·ãšäº€ãããåºé¢ã«å¹³è¡ãªå¹³é¢ã§åæããããšãã®æé¢ãåããå
šãŠã®æ¯ç·ãšäº€ãããåºé¢ã«å¹³è¡ã§ãªãå¹³é¢ã§åæããããšãã®æé¢ãæ¥åããæ¯ç·ã«å¹³è¡ãªé¢ã§åæããããšãã®æé¢ãæŸç©ç·ããæ¯ç·ã«å¹³è¡ã§ãªãå¹³é¢ã§åæããããšãã®æé¢ãåæ²ç·ãšãªãããã§ããã
2次æ²ç·ã¯çŽç·ãåã«ã€ãã§éèŠãªæ²ç·ã§ããã
==æŸç©ç·==
å¹³é¢äžã«ç¹ <math>\mathrm{F}</math> ãšãç¹ <math>\mathrm{F}</math> ãéããªãçŽç· <math>l</math> ããšãããã®ãšããçŽç· <math>l</math> ããã®è·é¢ãšç¹ <math>\mathrm{F}</math> ããã®è·é¢ãçããç¹ã®è»è·¡ãæŸç©ç·ãšããããã®ãšããç¹ <math>\mathrm{F}</math> ãæŸç©ç·ã®çŠç¹ãçŽç· <math>l</math> ãæŸç©ç·ã®æºç·ãšããã
[[ãã¡ã€ã«:Parabola with focus and directrix.svg|ãµã ãã€ã«]]
çŠç¹ã <math>\mathrm{F}(p,0)</math> æºç·ã <math>l:x=-p</math> ãšããæŸç©ç·ã®æ¹çšåŒãæ±ããã<math>\mathrm{P}(x,y)</math> ããã®æŸç©ç·ã®ç¹ãšãããšãç¹ <math>\mathrm{P}</math> ãšçŽç· <math>l</math> ã®è·é¢ã¯ <math>x+p</math> ã§ããã<math>\mathrm{PF} =\sqrt{ (x-p)^2 + y^2}</math> ã§ããããªã®ã§ã <math>(x+p)^2 = (x-p)^2 + y^2</math> ã§ããããããæŽçããŠã
<math>y^2 = 4px</math>
ãåŸãã
ããã§ãæŸç©ç· <math>y^2 = 4px</math> ã«ãããŠã <math>x</math> ãš <math>y</math> ãå
¥ãæ¿ããã° <math>y = \frac{x^2}{4p}</math> ã§ãããããããäžåŠããåŠãã§ããæŸç©ç·ã®å®çŸ©ãšäžèŽããããšããããã
'''æŒç¿åé¡'''
æŸç©ç· <math>y = ax^2 \quad (a\neq 0)</math> ã®çŠç¹ãšæºç·ãæ±ããã
'''è§£ç'''
çŠç¹ <math>\left(0,\frac{1}{4a}\right)</math> æºç· <math>y = -\frac{1}{4a}</math>
==æ¥å==
å¹³é¢äžã«ç°ãªã2ç¹ <math>\mathrm{F},\mathrm{F'}</math> ããšãã<math>\mathrm{F}</math> ãšã®è·é¢ãšã <math>\mathrm{F'}</math> ãšã®è·é¢ã®åãäžå®ã§ããç¹ã®è»è·¡ãæ¥åãšããããã®ãšããç¹ <math>\mathrm{F},\mathrm{F'}</math> ãæ¥åã®çŠç¹ãšããã
çŠç¹ã <math>\mathrm{F}(c,0),\mathrm{F'}(-c,0)</math> ãšãããç¹ <math>\mathrm{P}(x,y)</math> ãæ¥åäžã®ç¹ã§ãããšãã <math>\mathrm{PF} + \mathrm{PF'} = 2a</math> ã§ããã<math>\mathrm{PF} = 2a-\mathrm{PF'}</math> ãã
<math>\sqrt{(x-c)^2+y^2}=2a-\sqrt{(x+c)^2+y^2}</math>
䞡蟺ã2ä¹ããŠæŽçãããš
<math>a\sqrt{(x+c)^2+y^2}=a^2+cx</math>
å床ã䞡蟺ã2ä¹ããŠæŽçãããš
<math>(a^2-c^2)x^2+a^2y^2=a^2(a^2-c^2)</math>
ããã§ <math>a^2-c^2=b^2 \quad(b >0)</math> ãšçœ®ãæãããš
<math>b^2x^2+a^2y^2=a^2b^2</math>
䞡蟺ã <math>a^2b^2</math> ã§å²ããš
<math>\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad (a>b>0)</math>
ãå°ãããã
''x''軞ãšã®äº€ç¹ã¯<math>(a,0)</math>ã<math>(-a,0)</math>ã''y''軞ãšã®äº€ç¹ã¯<math>(0,b)</math>ã<math>(0,-b)</math>ãšãªãã
<math>a>b>0</math>ã®ãšãã<math>2a</math>ã¯é·è»žã®é·ãïŒé·åŸïŒã<math>2b</math>ã¯ç軞ã®é·ãïŒçåŸïŒãšãªãã''xy''å¹³é¢äžã«ã°ã©ããæžããšæšªé·ã®æ¥åã«ãªãããŸãçŠç¹ã¯é·åŸã§ãã''x''軞äžã«ãããã®åº§æšã¯<math>(-\sqrt{a^2-b^2},0),(\sqrt{a^2-b^2},0)</math>ãšãªãã
éã«ã<math>b>a>0</math>ã®ãšãã<math>2b</math>ã¯é·è»žã®é·ãïŒé·åŸïŒã<math>2a</math>ã¯ç軞ã®é·ãïŒçåŸïŒãšãªãã''xy''å¹³é¢äžã«ã°ã©ããæžããšçžŠé·ã®æ¥åã«ãªãããŸãçŠç¹ã¯é·åŸã§ãã''y''軞äžã«ãããã®åº§æšã¯<math>(0,\sqrt{b^2-a^2}),(0,-\sqrt{b^2-a^2})</math>ãšãªãã
2ã€ã®çŠç¹ãè¿ãã»ã©æ¥åã¯åã«è¿ã¥ãã2ã€ã®çŠç¹ãéãªã£ããšã <math>a=b</math> ãšãªããæ¥åã¯åã«ãªãã
ã¡ãªã¿ã«ãææã®åšããå
¬è»¢ããææã®è»éã¯ãææãçŠç¹ãšããæ¥åã«ãªãã
==åæ²ç·==
å¹³é¢äžã«ç°ãªã2ç¹ <math>\mathrm{F},\mathrm{F'}</math> ããšãã<math>\mathrm{F}</math> ãšã®è·é¢ãšã <math>\mathrm{F'}</math> ãšã®è·é¢ã®å·®ãäžå®ã§ããç¹ã®è»è·¡ãåæ²ç·ãšããã2ç¹ <math>\mathrm{F},\mathrm{F'}</math> ãåæ²ç·ã®çŠç¹ãšããã
çŠç¹ã <math>\mathrm{F}(c,0),\mathrm{F'}(-c,0)</math> ãšãããç¹ <math>\mathrm{P}(x,y)</math> ãåæ²ç·äžã®ç¹ã§ãããšãã <math>|\mathrm{PF}-\mathrm{PF'}|=2a</math> ã§ããã<math>\mathrm{PF} = \pm 2a + \mathrm{PF'}</math> ãã
<math>\sqrt{(x-c)^2+y^2}=\pm 2a+\sqrt{(x+c)^2+y^2}</math>
䞡蟺ã2ä¹ããŠæŽçãããš
<math>\pm a \sqrt{(x+c)^2+y^2} = -a^2 -cx</math>
å床䞡蟺ã2ä¹ããŠæŽçãããš
<math>(c^2-a^2)x^2 - a^2y^2 = a^2(c^2-a^2)</math>
ããã§ã <math>b^2 = c^2 - a^2 \quad (b > 0)</math> ãšããã䞡蟺ã <math>a^2b^2</math> ã§å²ãã°
<math>\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1</math>
ã§ããã
åæ²ç·ã<math>\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1</math>ã§è¡šããããšããçŠç¹ã®åº§æšã¯<math>(\sqrt{a^2+b^2},0),(-\sqrt{a^2+b^2},0)</math>ãšãªãã
éã«ãåæ²ç·ã<math>\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1</math>ã§è¡šããããšããçŠç¹ã®åº§æšã¯<math>(0,\sqrt{a^2+b^2}),(0,-\sqrt{a^2+b^2})</math>ãšãªãã
== åªä»å€æ°è¡šç€º==
<math>x=f(t),y=g(t)</math> ã§è¡šãããç¹ <math>\mathrm{P}(x,y)</math> ã®éåã¯ããæ²ç·ãæãããã®ãããªæ²ç·ã®è¡šç€ºãåªä»å€æ°è¡šç€ºãšããã
åªä»å€æ°è¡šç€ºã§ã¯ <math>F(x,y)=0</math> ã®åœ¢ã§ã¯è¡šãã«ããæ²ç·ãç°¡æœã«è¡šãããšãã§ãããäŸãã°ã
x = t - sin t,
y = 1 - cos t
ã§ãããããã¯ãµã€ã¯ãã€ããšåŒã°ããã
[[ç»å:Cycloid_function.png|thumb|left|500px|ãµã€ã¯ãã€ã]]
<math>x=f(t),y=g(t)</math> ãšåªä»å€æ°è¡šç€ºãããŠããæ²ç·ã <math>x</math> æ¹åã« <math>p</math>ã <math>y</math> æ¹åã« <math>q</math> ã ãã ãå¹³è¡ç§»åããæ²ç·ã¯ <math>x=f(t)+p,y=g(t)+q</math> ãšè¡šããã
=== äºæ¬¡æ²ç·ã®åªä»å€æ°è¡šç€º ===
<math>x=pt^2,y=2pt \quad p \neq 0</math> ã§è¡šãããæ²ç·ã¯ <math>t</math> ãæ¶å»ãããš <math>y^2=4px</math> ãšãªãã®ã§æŸç©ç·ã§ããã
å <math>x^2+y^2=r^2</math> ãåªä»å€æ°è¡šç€ºãããš <math>x=r\cos \theta,y=r\sin \theta</math> ãšãªãããã®ããšãããäžè§é¢æ°ã®ããšã'''å颿°'''ãšåŒã¶å Žåãããã
æ¥å<Math>\frac{x^2}{a^2}+\frac{y^2}{b^2}=1</Math>ãåªä»å€æ°è¡šç€ºãããš<Math>x=b\cos \theta. y=a\sin \theta</Math>ãšãªãã
åæ²ç·<Math>\frac{x^2}{a^2}-\frac{y^2}{b^2}=1</Math>ã®åªä»å€æ°è¡šç€ºã¯<Math>x=\frac{a}{\cos \theta}, y=b\tan \theta</Math>ãšãªãã
'''åæ²ç·é¢æ°ïŒåèïŒ'''
ãã€ãã¢æ°<Math>e</Math>ãçšããŠ<Math>\sinh \theta=\frac{e^\theta - e^{-\theta}}{2}, \cosh \theta=\frac{e^\theta + e^{-\theta}}{2}</Math>ãšå®çŸ©ãããš<Math>\sinh^2 \theta-\cosh^2 \theta=1</Math>ãæãç«ã€ã®ã§ãäžèšã®åæ²ç·ã®åŒã¯<Math>x=a\sinh \theta, y=b\cosh \theta</Math>ãšæžããã
<Math>\tanh \theta=\frac{e^\theta - e^{-\theta}}{e^\theta + e^{-\theta}}</Math>ãšå®ãããšã<Math>\sinh \theta, \cosh \theta, \tanh \theta</Math>ïŒ'''ã·ã£ã€ã³'''ã'''ã³ãã·ã¥'''ã'''ã¿ã³ã'''ãããã¯'''ãã€ãããªãã¯ãµã€ã³'''ã'''ãã€ãããªãã¯ã³ãµã€ã³'''ã'''ãã€ãããªãã¯ã¿ã³ãžã§ã³ã'''ãšèªãïŒã¯äžè§é¢æ°ãšäŒŒãå
¬åŒïŒçžäºé¢ä¿ãå æ³å®çã埮ç©åå
¬åŒãªã©ïŒã幟ã€ãæãç«ã€ãããã§ããã®3ã€ã®é¢æ°ãšãã®éæ°ãçºããŠ'''åæ²ç·é¢æ°'''ãšåŒã¶ããšã«ããã
éäžè§é¢æ°ãšäžŠã³ãåæ²ç·é¢æ°ãšãã®é颿°ã¯å€§åŠå
¥è©Šã«ãããŠããçš®ã®å®ç©åã®åé¡ãè§£ãéã«åœ¹ç«ã€ããšã§æåã§ããããã®åé¡ã¯ãããã®é¢æ°ã®åŸ®ç©åå
¬åŒãèæ¯ãšããŠããããããããã®é¢æ°ã§çœ®æãããšç°¡åã«è§£ããããã«ãªã£ãŠããã
<Math>y=\cosh x</Math>ã®ã°ã©ãã¯'''æžåç·ïŒã«ãããªãŒïŒ'''ãšåŒã°ããæåãªæ²ç·ãæãããšã§ç¥ãããŠããã
äžè§é¢æ°ïŒå颿°ïŒãšåæ²ç·é¢æ°ã¯éåžžã«äŒŒãæ§è³ªãæã€ããããã¯'''åæ²ç·é¢æ°ã®å®çŸ©åŒãäžè§é¢æ°ã®è€çŽ ææ°é¢æ°è¡šç€ºã宿°ç¯å²ã§æžãæãããã®'''ã§ãããæŽã«ã¯'''äž¡è
ãšã第äžçš®äžå®å
šæ¥åç©åã®é颿°ã§å®çŸ©ãããïŒã€ã³ãã®ïŒæ¥å颿°ã®ç¹å¥ãªå Žå'''ãæããŠããããã§ããã
æ²ç·<Math>x=f(t), y=g(t)</Math>ã<Math>x</Math>軞æ¹åã«<Math>p</Math>ã<Math>y</Math>軞æ¹åã«<Math>q</Math>ã ã䞊è¡ç§»åããæ²ç·ã¯<Math>x=f(t) +p, y=g(t) +q</Math>ãšæžã衚ãããã
ãªããïŒè€çŽ æ°<Math>Z</Math>ã®æ¹çšåŒïŒ<Math>=x+yi</Math>ã®åœ¢ã§è¡šãããåŒã<Math>Z</Math>ã®æ¥µåœ¢åŒãçšããŠè§£ããšäºæ¬¡æ²ç·ã®åªä»å€æ°è¡šç€ºãçŸããå Žåãããã
== 極座æšã𿥵æ¹çšåŒ ==
=== æ¥µåº§æš ===
ãããŸã§ã®åŠç¿ã§ã¯ã<math>x</math>軞ãš<math>y</math>軞ã䜿ã£ã座æšå¹³é¢ïŒ'''çŽäº€åº§æš'''ãšããïŒ<math>(x,y)</math>䜿ãããšã§ã座æšå¹³é¢äžã®1ç¹ãå®ããã
ããã§åŠã¶æ¥µåº§æšã§ã¯ã<math>(r, \theta )</math> ã®æåã§äžããããåŒã䜿ã£ãŠæ²ç·ã衚ãããšãèããã
ããäžç¹OãšåçŽç·OXãå®ãããšãå¹³é¢äžã®ç¹Pã¯ãç¹Oããã®è·é¢rãšã<math>\angle </math>XOPã®è§<math>\theta \,(0 \le \theta < 2 \pi)</math>ã®å€§ããã§äžæã«å®ãŸãã
極座æšã®å®çŸ©
åç¹Oãšè»žOXãå®ãããå¹³é¢äžã®ç¹Pã«ã€ããŠãOPéã®è·é¢ãrã<math>\angle </math>XOPã®å€§ãããΞã§è¡šãã座æš<math>(r, \theta)</math>ã'''極座æš'''ãšããã
ãã®ãšããOã'''極'''ãOXã'''å§ç·'''ãšããã
ãŸãã<math>\theta</math>ã'''åè§'''ãšããã
ãŸããçŽäº€åº§æšãšæ¥µåº§æšã®é¢ä¿ã¯æ¬¡ã®ããã«ãªãã
çŽäº€åº§æšãšæ¥µåº§æšã®é¢ä¿
<math>\begin{cases}r = \sqrt{x^2 + y^2} \\ \cos \theta =\displaystyle{\frac{x}{r}} \\ \sin \theta =\displaystyle{ \frac{y}{r}} \end{cases} \,\,
\begin{cases} x = r\cos \theta \\ y = r\sin \theta \end{cases}</math>
ããã¯çŽæçã«ã¯è€çŽ æ°å¹³é¢äžã®ç¹ã®çµ¶å¯Ÿå€ãšåè§ãå®ãããšãã«äŒŒãŠããã
=== 極æ¹çšåŒ ===
<math>r = f( \theta )</math>ã®åœ¢ã§äžããããåŒã'''極æ¹çšåŒ'''ïŒãããã»ããŠãããïŒãšãããæ¥µæ¹çšåŒã¯rãšÎžã«ã€ããŠã®é¢æ°ã§ãããããããã¯xãšyãžã®å€æãå¯èœã§ããããã£ãŠxyå¹³é¢äžã«æ²ç·ããããŠãããããšã«ãªãã
ããŸããŸãªæ¥µæ¹çšåŒ
(1)äžå¿O,ååŸaã®å <math>r=a</math>
(2)äžå¿<math>(r_0,{\theta}_0)</math>,ååŸaã®å <math>r^2-2rr_0\cos {\theta}_0+{r_0}^2=a^2</math>
(3)極Oãéããå§ç·ãšÎ±ã®è§ããªãçŽç·ã<math>\theta=\alpha</math>
(4)ç¹<math>(a,\alpha)</math>ãéããOAã«åçŽãªçŽç·ã<math>r\cos(\theta-\alpha)=a</math>
(äŸïŒå<math>(x-1)^2+y^2=1</math>ãæ¥µæ¹çšåŒã§è¡šã.
<math>x = r\cos \theta, y = r\sin \theta</math>ã代å
¥ããŠæŽçãããš
<math>r(r-2\cos\theta)=0</math>
<math>r=0</math>ã¯æ¥µã衚ãããã<math>r=2\cos\theta</math>
==ããŸããŸãªæ²ç·==
ãããŸã§ã«ã2次æ²ç·ãåªä»å€æ°è¡šç€ºã極æ¹çšåŒãªã©ã®æ²ç·ãšãã®æ§è³ªã«ã€ããŠè¿°ã¹ãŠããã以äžã§ã¯ãããããå©çšããŠããŸããŸãªæ²ç·ã®åŒã瀺ããäžè¬ã«æŠåœ¢ãã€ããã®ã¯å°é£ãªãããã³ã³ãã¥ãŒã¿ã䜿çšããã
*ãµã€ã¯ãã€ã
*ã«ãŒãžãªã€ã
*ã¢ã¹ããã€ã
*ãªããœã³
*ãã©æ²ç·
*ã¬ã ãã¹ã±ãŒã
*ãªãµãŒãžã¥
{{DEFAULTSORT:ãããšããã€ããããããIII ãžããããããã®ããããã}}
[[Category:é«çåŠæ ¡æ°åŠIII|ãžããããããã®ããããã]] | 2005-05-03T08:21:38Z | 2024-02-21T02:30:00Z | [
"ãã³ãã¬ãŒã:Pathnav"
] | https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E6%95%B0%E5%AD%A6C/%E5%B9%B3%E9%9D%A2%E4%B8%8A%E3%81%AE%E6%9B%B2%E7%B7%9A |
1,901 | æ§èª²çš(-2012幎床)é«çåŠæ ¡æ°åŠII | æ°åŠ II ã¯ã
ããæã£ãŠããã
é«çåŠæ ¡æå°èŠç¶±ã®æ°åŠIIã®ç®æšã«ã¯ã
ã åŒãšèšŒæã»é«æ¬¡æ¹çšåŒ,å³åœ¢ãšæ¹çšåŒ,ãããããªé¢æ°åã³åŸ®åã»ç©åã®èãã«ã€ããŠçè§£ãã,åºç€çãªç¥èã®ç¿åŸãšæèœã®ç¿çãå³ã,äºè±¡ãæ°åŠçã«èå¯ãåŠçããèœåã䌞ã°ããšãšãã«,ããããæŽ»çšããæ
床ãè²ãŠããã
ãšãããæ°åŠIã§åŠãã èšç®æè¡ãããšã«ãããé«åºŠãªæ°åŠã身ã«ã€ããããšãç®æšãšããŠããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ°åŠ II ã¯ã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ããæã£ãŠããã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "é«çåŠæ ¡æå°èŠç¶±ã®æ°åŠIIã®ç®æšã«ã¯ã",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ã åŒãšèšŒæã»é«æ¬¡æ¹çšåŒ,å³åœ¢ãšæ¹çšåŒ,ãããããªé¢æ°åã³åŸ®åã»ç©åã®èãã«ã€ããŠçè§£ãã,åºç€çãªç¥èã®ç¿åŸãšæèœã®ç¿çãå³ã,äºè±¡ãæ°åŠçã«èå¯ãåŠçããèœåã䌞ã°ããšãšãã«,ããããæŽ»çšããæ
床ãè²ãŠããã",
"title": ""
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãšãããæ°åŠIã§åŠãã èšç®æè¡ãããšã«ãããé«åºŠãªæ°åŠã身ã«ã€ããããšãç®æšãšããŠããã",
"title": ""
}
] | æ°åŠ II ã¯ã åŒãšèšŒæã»é«æ¬¡æ¹çšåŒ
å³åœ¢ãšæ¹çšåŒ
ææ°é¢æ°ã»å¯Ÿæ°é¢æ°
äžè§é¢æ°
埮åã»ç©åã®èã ããæã£ãŠããã | {{pathnav|é«çåŠæ ¡ã®åŠç¿|é«çåŠæ ¡æ°åŠ|frame=1}}
æ°åŠ II ã¯ã
* [[é«çåŠæ ¡æ°åŠII/åŒãšèšŒæã»é«æ¬¡æ¹çšåŒ|åŒãšèšŒæã»é«æ¬¡æ¹çšåŒ]]
* [[é«çåŠæ ¡æ°åŠII/å³åœ¢ãšæ¹çšåŒ|å³åœ¢ãšæ¹çšåŒ]]
* [[é«çåŠæ ¡æ°åŠII/ææ°é¢æ°ã»å¯Ÿæ°é¢æ°|ææ°é¢æ°ã»å¯Ÿæ°é¢æ°]]
*[[é«çåŠæ ¡æ°åŠII/äžè§é¢æ°|äžè§é¢æ°]]
* [[é«çåŠæ ¡æ°åŠII/埮åã»ç©åã®èã|埮åã»ç©åã®èã]]
ããæã£ãŠããã
=== æ°åŠ II ãåŠã¶æçŸ© ===
é«çåŠæ ¡æå°èŠç¶±ã®æ°åŠIIã®ç®æšã«ã¯ã
<blockquote>ããåŒãšèšŒæã»é«æ¬¡æ¹çšåŒïŒå³åœ¢ãšæ¹çšåŒïŒãããããªé¢æ°åã³åŸ®åã»ç©åã®èãã«ã€ããŠçè§£ããïŒåºç€çãªç¥èã®ç¿åŸãšæèœã®ç¿çãå³ãïŒäºè±¡ãæ°åŠçã«èå¯ãåŠçããèœåã䌞ã°ããšãšãã«ïŒããããæŽ»çšããæ
床ãè²ãŠããã</blockquote>
ãšãããæ°åŠâ
ã§åŠãã èšç®æè¡ãããšã«ãããé«åºŠãªæ°åŠã身ã«ã€ããããšãç®æšãšããŠããã
[[Category:æ°åŠæè²|æ§1 ãããšããã£ãããããã2]] | 2005-05-04T09:04:50Z | 2023-12-09T21:31:17Z | [
"ãã³ãã¬ãŒã:Pathnav"
] | https://ja.wikibooks.org/wiki/%E6%97%A7%E8%AA%B2%E7%A8%8B(-2012%E5%B9%B4%E5%BA%A6)%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E6%95%B0%E5%AD%A6II |
1,902 | é«çåŠæ ¡æ°åŠII/åŒãšèšŒæã»é«æ¬¡æ¹çšåŒ | æ¬é
ã¯é«çåŠæ ¡æ°åŠIIã®åŒãšèšŒæã»é«æ¬¡æ¹çšåŒã®è§£èª¬ã§ããã
( a + b ) 5 = ( a + b ) ( a + b ) ( a + b ) ( a + b ) ( a + b ) {\displaystyle (a+b)^{5}=(a+b)(a+b)(a+b)(a+b)(a+b)} ã«ã€ããŠèãããããã®åŒãå±éãããšãã a 2 b 3 {\displaystyle a^{2}b^{3}} ã®ä¿æ°ã¯ãå³èŸºã®5åã® ( a + b ) {\displaystyle (a+b)} ãã a {\displaystyle a} ã3ååãçµã¿åããã«çãããã 5 C 2 = 10 {\displaystyle _{5}\mathrm {C} _{2}=10} ã§ããã
ãã®èããæ¡åŒµããŠ
ãå±éããã a r b n â r {\displaystyle a^{r}b^{n-r}} ã®é
ã®ä¿æ°ã¯ãå³èŸºã® n {\displaystyle n} åã® ( a + b ) {\displaystyle (a+b)} ãã a {\displaystyle a} ã r {\displaystyle r} ååãçµã¿åããã«çãããã n C r {\displaystyle _{n}\mathrm {C} _{r}} ã§ããã
ãã£ãŠã次ã®åŒãåŸããã:
æåŸã®åŒã¯æ°Bã®æ°åã§åŠã¶ç·åèšå· Σ {\displaystyle \Sigma } ã§ãããç¥ããªãã®ãªãç¡èŠããŠãè¯ãã ãã®åŒã äºé
å®ç(binomial theorem) ãšããããŸããããããã®é
ã«ãããä¿æ°ãäºé
ä¿æ°(binomial coefficient) ãšåŒã¶ããšãããã
(I)
(II)
(II)
ãããããèšç®ããã
äºé
å®çãçšããŠèšç®ããã°ãããå®éã«èšç®ãè¡ãªããšã
(I)
(II)
(III)
ãšãªãã
ãã¹ãŠã®èªç¶æ°nã«å¯ŸããŠ
(I)
(II)
(III)
ãæãç«ã€ããšã瀺ãã
äºé
å®ç
ã«ã€ããŠa,bã«é©åœãªå€ã代å
¥ããã°ããã
(I) a = 1,b=1ã代å
¥ãããšã
ãšãªã確ãã«äžããããé¢ä¿ãæç«ããããšãåããã
(II) a=2,b=1ã代å
¥ãããšã
ãšãªã確ãã«äžããããé¢ä¿ãæç«ããããšãåããã
(III) a=1,b=-1ã代å
¥ãããšã
ãšãªã確ãã«äžããããé¢ä¿ãæç«ããããšãåããã
äºé
å®çãæ¡åŒµã㊠( a + b + c ) n {\displaystyle (a+b+c)^{n}} ãå±éããããšãèãããã a p b q c r {\displaystyle a^{p}b^{q}c^{r}} ( p + q + r = n ) {\displaystyle (p+q+r=n)} ã®é
ã®ä¿æ°ã¯ n {\displaystyle n} åã® ( a + b + c ) {\displaystyle (a+b+c)} ãã p {\displaystyle p} åã® a {\displaystyle a} ã q {\displaystyle q} åã® b {\displaystyle b} ã r {\displaystyle r} åã® c {\displaystyle c} ãéžã¶çµåãã«çãããã n ! p ! q ! r ! {\displaystyle {\frac {n!}{p!q!r!}}} ã§ããã
ããã§ã¯ãæŽåŒã®é€æ³ãšåæ°åŒã«ã€ããŠæ±ããæŽåŒã®é€æ³ã¯ãæŽåŒãæŽæ°ã®ããã«æ±ã逿³ãè¡ãªãèšç®ææ³ã®ããšã§ãããå®éã«æŽæ°ã®é€æ³ãšæŽåŒã®é€æ³ã«ã¯æ·±ãã€ãªããããããæŽåŒã®å æ°åè§£ãèãããšãã以äžå æ°åè§£ã§ããªãæŽåŒãååšããããã®æŽåŒãæŽæ°ã§ããçŽ å æ°ã®ããã«æ±ãããšã§æŽåŒã®çŽ å æ°åè§£ãå¯èœã«ãªãã
äžã§ã¯ãæŽåŒãæŽæ°ã«å¯Ÿå¿ããæ§è³ªãæã€ããšãè¿°ã¹ããæŽæ°ã«ã€ããŠã¯ãããã«çŽ ãª2ã€ã®æŽæ°ãåãããšã§æçæ°ãå®çŸ©ããããšãåºæ¥ããæŽåŒã«å¯ŸããŠãåãäºãæç«ã¡ããã®ãããªåŒãåæ°åŒãšåŒã¶ã
åæ°ãçšããªããšãã«ã¯ãæŽæ°ã®é€æ³ã¯åãšäœããçšããŠå®çŸ©ãããããã®æãå²ãããæ°Bã¯åDãšå²ãæ°AãäœãRãçšããŠ
ã®æ§è³ªãæºããããšãç¥ãããŠãããæŽåŒã«å¯ŸããŠãäŒŒãæ§è³ªãæç«ã¡ãå²ãããåŒB(x)ãåD(x)ãšå²ãåŒA(x)ãäœãR(x)ãçšããŠã
ã®å³èŸºã§xã«ã€ããŠ2次ã®é
ãçŸãã巊蟺ãšäžèŽããªããªãããã£ãŠåã¯å®æ°ã§ãããåãaãäœããrãšãããšäžã®åŒã¯ã
ãšãªãããããã¯a=1,r=1ã§æç«ããããã£ãŠå1,äœã1ã§ããããã髿¬¡ã®åŒã«å¯ŸããŠãåãæ§ã«çããå®ããŠããã°ãããäŸãšããŠã
ã®ãããªåŒãèããããã®å Žåã
ã§ãB(x)ã3次ãA(x)ã2次ã§ããããšãããD(x)ã¯1次ã§ããããŸããR(x)ã¯2次ããå°ããããšãã1次以äžã®åŒã«ãªããããã§ãD(x)=ax+b,R(x)=cx+dãšãããšã
ãåŸããããå³èŸºãå±éãããšã
ãåŸãããããxã«ã©ããªå€ãå
¥ããŠããã®çåŒãæãç«ããªããã°ãªããªãã®ã§ãa = 1, b = 0, -a +c = 0, -b +d = 0ãåŸãããçµå±a=c=1, b=d=0ãåŸãããã
ãã®æ¹æ³ã¯ã©ã®é€æ³ã«å¯ŸããŠãçšããããšãåºæ¥ãããæ¬¡æ°ãé«ããªããšèšç®ãé£ãããªããæŽæ°ã®å Žåãšåæ§ãæŽåŒã®é€æ³ã§ãçç®ãçšããããšãåºæ¥ããäžã®äŸãçšããŠçµæã ããæžããšã
ã®ããã«ãªãã)å³ã«æžãããåŒãå²ãããåŒã§ããã)å·Šã«æžãããåŒãå²ãåŒã§ããã--ã®äžçªäžã«æžãããåŒã¯åã§ãããæŽæ°ã®å²ãç®åæ§å·Šã«æžãããæ°ããé ã«å²ã£ãŠãããããã§ã¯æ¬¡æ°ã倧ããé
ãããå
ã«èšç®ãããé
ã§ãããå²ãããåŒã®äžã«ããåŒã¯åã®ç¬¬1é
ãå²ãåŒã«ãããŠåŸãåŒã§ãããããã§ã¯ã x ( x 2 â 1 ) {\displaystyle x(x^{2}-1)} ã§ã x 3 â x {\displaystyle x^{3}-x} ãšãªãããã ããæŽæ°ã®é€æ³ãšåæ§ãäœãããããªããŠã¯ãªããªãããã®åŸãå²ãããåŒãã x 3 â x {\displaystyle x^{3}-x} ãåŒããæ®ã£ãåŒãæ°ããå²ãããåŒãšããŠæ±ããããã§ã¯ãåŸãåŒãå²ãåŒãããäœæ¬¡ã§ããããšãããããã§èšç®ã¯çµäºã§ããã
x 3 + 2 x 2 + 1 {\displaystyle x^{3}+2x^{2}+1} ã x 4 + 4 x 2 + 3 x + 2 {\displaystyle x^{4}+4x^{2}+3x+2} ãã x 2 + 2 x + 6 {\displaystyle x^{2}+2x+6} ã§å²ã£ãåãšäœããæ±ããã
ãã®èšç®ã¯ã¢ãã¡ãŒã·ã§ã³ã䜿ã£ãŠ è©³ãã衚瀺ãããŠãããèšç®ææ³ã¯ã æŽæ°ã®å Žåã®çç®ãšåããããªææ³ã䜿ããã
ãåŸãããã®ã§ãå x {\displaystyle x} ãäœã â 6 x + 1 {\displaystyle -6x+1} ã§ããã
2ã€ç®ã®åŒã«ã€ããŠã¯ã
ãåŸãããã ãã£ãŠãç㯠å x 2 â 2 x + 2 {\displaystyle x^{2}-2x+2} ãäœã 11 x â 10 {\displaystyle 11x-10} ã§ããã
ãããŸã§ã§æŽåŒãæŽæ°ã®ããã«æ±ããæŽåŒã®é€æ³ãè¡ãªãæ¹æ³ã«ã€ããŠè¿°ã¹ããããã§ã¯ãæŽåŒã«å¯ŸããŠåæ°åŒãå®çŸ©ããæ¹æ³ã«ã€ããŠè¿°ã¹ããåæ°åŒãšã¯ãæŽæ°ã«å¯Ÿããåæ°ã®ããã«ã逿³ã«ãã£ãŠçããåŒã§ãããããã§ã逿³ãè¡ãªãåŒã¯ã©ã®ãããªãã®ã§ãå·®ãæ¯ããªããåæ°åŒã§ã¯ãååã«å²ãããåŒãæžãã忝ã«å²ãåŒãæžããäŸãã°ã
ã¯ãååx+1ã忝 x 2 + 4 {\displaystyle x^{2}+4} ã®åæ°åŒã§ãããåæ°åŒã«å¯ŸããŠãçŽåãéåãååšãããçŽåã¯å
±éå æ°ãæã£ãåå忝ããã€åæ°åŒã§çšããããããã®æã«ã¯åå忝ãå
±éå æ°ã§å²ããåŒãç°¡åã«ããããšãåºæ¥ããéåã¯ãåæ°åŒã®å æ³ã®æã«ããçšããããããåå忝ã«åãæŽåŒããããŠãåæ°åŒãå€åããªãæ§è³ªãçšããã
ãç°¡åã«ããããŸãã
ãèšç®ããã
ã«ã€ããŠååãšåæ¯ãå æ°åè§£ãããšãåæ¹ãšãã«
ãå æ°ãšããŠå«ãã§ããããšãåããããã®ãšããå
±éã®å æ°ã¯çŽåããããšãå¿
èŠã§ãããèšç®ãããå€ã¯ã
ãšãªãã
次ã®åé¡ã§ã¯ã
ãèšç®ããããã®ãšãã䞡蟺ã®åæ¯ãããããå¿
èŠãããããä»åã«ã€ããŠã¯ãåçŽã«ããããã®åæ°åŒã®ååãšåæ¯ã«åã
ã®åæ¯ããããŠåæ¯ãçµ±äžããã°ãããèšç®ãããšã
ãšãªãã åæ°åŒã®ä¹æ³ã¯ãåå忝ãå¥ã
ã«ãããã°ããã
次ã®èšç®ãããã
(I)
(II)
(I)
(II)
忝ãç©ã®åœ¢ã§ããåæ°åŒãäºã€ã®åæ°åŒã®åãå·®ã§è¡šãããåŒã«å€åœ¢ããæäœãéšååæ°åè§£ãšããã
1 x ( x + 1 ) {\displaystyle {\frac {1}{x(x+1)}}} ãš 1 ( x + 1 ) ( x + 3 ) {\displaystyle {\frac {1}{(x+1)(x+3)}}} ãåæ°åŒã®åãŸãã¯å·®ã®åœ¢ã§è¡šãã
ãšå€åœ¢ã§ããã®ã§ã
ãšãªããçŽåãããš
ãšãªãã
次ã®åé¡ã§ã¯ã
ãšå€åœ¢ããããšã«ãã£ãŠã
ãšãªãã
ãšæ±ãŸãã
éšååæ°åè§£ã®æäœãéã«èŸ¿ããšãåæ°åŒã®éåã®æäœãšäžèŽããã ã€ãŸããéšååæ°åè§£ã¯éåã®éã®æäœã§ããã ååã宿°ã®å Žåã«ã¯ãäžãšåæ§ã®æ¹æ³ã§éšååæ°åè§£ããããšãã§ããã
1. 3 ( x â 9 ) ( x â 4 ) {\displaystyle {\frac {3}{(x-9)(x-4)}}}
2. 7 ( 3 x â 1 ) ( 5 â 2 x ) {\displaystyle {\frac {7}{(3x-1)(5-2x)}}}
éšååæ°åè§£ã¯æ°åã®åã®èšç®ãç©åèšç®ã埮åãå©çšããäžçåŒã®èšŒæçã«åœ¹ç«ã€ãéèŠãªå€åœ¢ã§ããã
çåŒ ( a + b ) 2 = a 2 + 2 a b + b 2 {\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}} ã¯ãæå a , b {\displaystyle a,b} ã«ã©ã®ãããªå€ã代å
¥ããŠãæãç«ã€ããã®ãããªçåŒãæçåŒ(ãããšããã)ãšããã çåŒ 1 x â 1 + 1 x + 1 = 2 x x 2 â 1 {\displaystyle {\frac {1}{x-1}}+{\frac {1}{x+1}}={\frac {2x}{x^{2}-1}}} ã¯ã䞡蟺ãšã x = 1 , â 1 {\displaystyle x=1,-1} ã代å
¥ããããšã¯ã§ããªããããã®ä»ã®å€ã§ããã°ä»£å
¥ããããšãã§ãããŸãã©ã®ãããªå€ã代å
¥ããŠãçåŒãæãç«ã£ãŠããããããæçåŒãšåŒã¶ã
ãã£ãœãã x 2 â x â 2 = 0 {\displaystyle x^{2}-x-2=0} ã¯ãx=2 ãŸã㯠x=ãŒ1 ã代å
¥ãããšãã ãæãç«ã€ãããã®ããã«æåã«ç¹å®ã®å€ã代å
¥ãããšãã«ã ãæãç«ã€åŒã®ããšãæ¹çšåŒãšåŒã³ãæçåŒãšã¯åºå¥ããã
çåŒ a x 2 + b x + c = 0 {\displaystyle ax^{2}+bx+c=0} ã x {\displaystyle x} ã«ã€ããŠã®æçåŒã§ããã®ã¯ã©ã®ãããªå ŽåããèããŠã¿ããã ããåŒãã x {\displaystyle x} ã«ã€ããŠã®æçåŒã§ããããšã¯ããã®åŒã® x {\displaystyle x} ã«ã©ã®ãããªå€ã代å
¥ããŠãããã®çåŒã¯æãç«ã€ãšããæå³ã§ããããªã®ã§ãäŸãã° x {\displaystyle x} ã« â 1 , 0 , 1 {\displaystyle -1\ ,\ 0\ ,\ 1} ã代å
¥ããåŒ
ã¯ãã¹ãŠæãç«ã€å¿
èŠãããããããè§£ããš
ãªã®ã§ãçåŒ a x 2 + b x + c = 0 {\displaystyle ax^{2}+bx+c=0} ã x {\displaystyle x} ã«ã€ããŠã®æçåŒã«ãªããªãã°ã a = b = c = 0 {\displaystyle a=b=c=0} ã§ãªããã°ãªããªãããšããããã
äžè¬ã«ãçåŒ a x 2 + b x + c = a â² x 2 + b â² x + c â² {\displaystyle ax^{2}+bx+c=a'x^{2}+b'x+c'} ãæçåŒã§ããããšãšã ( a â a â² ) x 2 + ( b â b â² ) x + ( c â c â² ) = 0 {\displaystyle (a-a')x^{2}+(b-b')x+(c-c')=0} ãæçåŒã§ããããšãšåãã§ããã ãã£ãŠ
ãŸãšãããšæ¬¡ã®ããã«ãªãã
次ã®çåŒã x {\displaystyle x} ã«ã€ããŠã®æçåŒãšãªãããã«ã a , b , c {\displaystyle a\ ,\ b\ ,\ c} ã®å€ãæ±ããã
çåŒã®å³èŸºã x {\displaystyle x} ã«ã€ããŠæŽçãããš
ãã®çåŒã x {\displaystyle x} ã«ã€ããŠã®æçåŒãšãªãã®ã¯ã䞡蟺ã®åãæ¬¡æ°ã®é
ã®ä¿æ°ãçãããšãã§ããããã£ãŠ
ãããè§£ããš
æçåŒãå©çšããããšã§ãè€éãªåæ°åŒã®éšååæ°åè§£ãã§ããã
ãšããã 忝ãæã£ãŠ
ããªãã¡
ããã x {\displaystyle x} ã®æçåŒãªã®ã§ãä¿æ°ãæ¯èŒããŠ
ããªãã¡
æåã®çåŒã«ä»£å
¥ããŠã
次ã®åé¡ã¯ã
ãšããããšã«ãããäžã®åé¡ãšåæ§ã«ããŠ
ãšæ±ãŸãã®ã§ã
a~fã宿°ãšããã
a x 2 + b y 2 + c x y + d x + e y + f = 0 {\displaystyle ax^{2}+by^{2}+cxy+dx+ey+f=0} ãx, yã«ã€ããŠã®æçåŒã ãšããã
巊蟺ãxã«ã€ããŠæŽçãããšã a x 2 + ( c y + d ) x + ( b y 2 + e y + f ) = 0 {\displaystyle ax^{2}+(cy+d)x+(by^{2}+ey+f)=0} ã§ããã
ãããxã«ã€ããŠã®æçåŒãªã®ã§ã a = 0 , c y + d = 0 , b y 2 + e y + f = 0 {\displaystyle a=0,cy+d=0,by^{2}+ey+f=0} ãæãç«ã€ã
ãããã¯æŽã«yã«ã€ããŠã®æçåŒãªã®ã§ã以äžã®çåŒãåŸãããã
éã«ããããæãç«ãŠã°å
ã®åŒã¯æããã«x, yã«ã€ããŠã®æçåŒã§ãã
x 2 + a x y + 6 y 2 â x + 5 y + b = ( x â 2 y + c ) ( x â 3 y + d ) {\displaystyle x^{2}+axy+6y^{2}-x+5y+b=(x-2y+c)(x-3y+d)} ãx,yã«ã€ããŠã®æçåŒãšãªãããã«a,b,c,dãå®ããã
ããã»ã©ç޹ä»ãããæçåŒããšããèšèã䜿ã£ãŠã蚌æãã®æå³ã説æãããªãããçåŒã蚌æããããšã¯ããã®åŒãæçåŒã§ããããšã瀺ãããšã§ããã
äžè¬ã«ãçåŒ A=B ã蚌æããããã«ã¯ã次ã®ãããªæé ã®ãããããå®è¡ããã°ããã
ãã®ãšããå€åœ¢ã¯åå€å€åœ¢ã§ãªããã°ãªããªãããšã«æ³šæã
( a + b ) 2 â ( a â b ) 2 = 4 a b {\displaystyle (a+b)^{2}-(a-b)^{2}=4ab} ãæãç«ã€ããšã蚌æããã
(蚌æ) 巊蟺ãå±éãããšã
ãšãªããããã¯å³èŸºã«çããããã£ãŠãçåŒ ( a + b ) 2 â ( a â b ) 2 = 4 a b {\displaystyle (a+b)^{2}-(a-b)^{2}=4ab} ã¯èšŒæãããã(çµ)
( x + y ) 2 + ( x â y ) 2 = 2 ( x 2 + y 2 ) {\displaystyle (x+y)^{2}+(x-y)^{2}=2(x^{2}+y^{2})} ãæãç«ã€ããšã蚌æããã
巊蟺ãèšç®ãããšã
ããã¯å³èŸºã«çããããã£ãŠçåŒãæãç«ã€ããšã蚌æãããã(çµ)
次ã®çåŒãæãç«ã€ããšã蚌æããã (I)
(I) (巊蟺) = ( 36 a 2 + 84 a b + 49 b 2 ) + ( 49 a 2 â 84 a b + 36 a 2 ) = 85 a 2 + 85 b 2 {\displaystyle =(36a^{2}+84ab+49b^{2})+(49a^{2}-84ab+36a^{2})=85a^{2}+85b^{2}} (å³èŸº) = ( 81 a 2 + 36 a b + 4 b 2 ) + ( 4 a 2 â 36 a b + 81 b 2 ) = 85 a 2 + 85 b 2 {\displaystyle =(81a^{2}+36ab+4b^{2})+(4a^{2}-36ab+81b^{2})=85a^{2}+85b^{2}} 䞡蟺ãšãåãåŒã«ãªããã
æçåŒã§ãªããšãããäžããããæ¡ä»¶ããçåŒã蚌æããããšãã§ããã
ããã
ãã£ãŠã a 3 + b 3 + c 3 = 3 a b c {\displaystyle a^{3}+b^{3}+c^{3}=3abc} ã§ããã
ãŸãã
ãããäžåŒã®å³èŸºãkãšãããšã
ãªã®ã§ã
ãã£ãŠã a + c b + d = a â c b â d {\displaystyle {\frac {a+c}{b+d}}={\frac {a-c}{b-d}}} ã§ããã
ãªããæ¯ a : b {\displaystyle a:b} ã«ã€ã㊠a b {\displaystyle {\frac {a}{b}}} ãæ¯ã®å€ãšããããŸãã a : b = c : d ⺠a b = c d {\displaystyle a:b=c:d\iff {\frac {a}{b}}={\frac {c}{d}}} ãæ¯äŸåŒãšããã
a x = b y = c z {\displaystyle {\frac {a}{x}}={\frac {b}{y}}={\frac {c}{z}}} ãæãç«ã€ãšãã a : b : c = x : y : z {\displaystyle a:b:c=x:y:z} ãšè¡šããããã飿¯ãšããã
äžçåŒã®ããŸããŸãªå
¬åŒã«ã€ããŠã¯ã次ã®4ã€ã®åŒãåºæ¬çãªåŒãšããŠå°åºã§ããå Žåãããããã
髿 ¡æ°åŠã§ã¯ã次ã®4ã€ã®æ§è³ªã äžçåŒã®ãåºæ¬æ§è³ªããªã©ãšããŠç޹ä»ãããŠããã
(3)ãš(4)ã«ã€ããŠã¯ãã²ãšã€ã®æ§è³ªãšã㊠ãŸãšããŠããæ€å®æç§æžããã(â» åæé€šãªã©)ã
æ°åŠIAã§ç¿ã£ãããªãã°ãã®æå³ã®èšå· â¹ {\displaystyle \Longrightarrow } ã䜿ããšã
ãšãæžããã
äžè¿°ã®4ã€ã®åºæ¬æ§è³ªããã
ã蚌æããŠã¿ããã
(蚌æ) ãŸã a>0 ãªã®ã§ãåºæ¬æ§è³ª(2)ãã
ã§ããã
ãã£ãŠã
ãªã®ã§ãåºæ¬æ§è³ª(1)ãã a + b > 0 {\displaystyle a+b>0} ãæãç«ã€ã(çµ)
åæ§ã«ããŠã
ã蚌æã§ããã
ãããŸã§ã«ç€ºããããšãããäžçåŒ A â§ B {\displaystyle A\geqq B} ã蚌æãããå Žåã«ã¯ã
ã蚌æããã°ããããšãããã£ãããã¡ãã®æ¹ã蚌æããããå Žåãããããã
äžçåŒã蚌æããéã«æ ¹æ ãšããåºæ¬çãªäžçåŒãšããŠãæ¬¡ã®æ§è³ªãããã
ãã®å®ç(ã宿°ã2ä¹ãããšãããªãããŒã以äžã§ããã)ããåºæ¬æ§è³ª(3),(4)ã䜿ã£ãŠèšŒæããŠã¿ããã
(蚌æ)
aãæ£ã®å Žåãšè² ã®å Žåãš0ã®å Žåã®3éãã«å Žåããããã
[aãæ£ã®å Žå] ãã®ãšããåºæ¬æ§è³ª(3)ããã
ã§ãããããªãã¡ã
ã§ããã
[aãè² ã®å Žå] ãã®ãšããåºæ¬æ§è³ª(4)ãã 0 a < a a {\displaystyle 0a<aa} ã§ãããããªãã¡ã
ã§ããã
[aããŒãã®å Žå] ãã®ãšãã a 2 = 0 {\displaystyle a^{2}=0} ã§ããã
ãã£ãŠããã¹ãŠã®å Žåã«ã€ã㊠a 2 â§ 0 {\displaystyle a^{2}\geqq 0} (çµ)
ãã®ããšãšåºæ¬æ§è³ª(1)(2)ãããæ¬¡ãæãç«ã€ããšããããã
次ã®äžçåŒãæãç«ã€ããšã蚌æããã
(蚌æ)
ã蚌æããã°ããã
巊蟺ãå±éã㊠ãŸãšãããšã
ãšãªãã
äžåŒã®æåŸã®åŒã®é
ã«ã€ããŠã
ã ããã
ã§ããããã£ãŠ
ã§ããã(çµ)
2ã€ã®æ£ã®æ° a, b ã a>b ãŸã㯠aâ§b ãªãã°ã䞡蟺ã2ä¹ããŠã倧å°é¢ä¿ã¯åããŸãŸã§ããã
ã€ãŸãã
ã§ããã
a>bãšãããä»®å®ãããa,b ã¯æ£ã®æ°ãªã®ã§ã ( a + b ) > 0 {\displaystyle (a+b)>0} ã§ãããå¥ã®ä»®å®ããã a > b ãªã®ã§ã ( a â b ) > 0 {\displaystyle (a-b)>0} ã§ãããããã£ãŠã a 2 â b 2 = ( a + b ) ( a â b ) > 0 {\displaystyle a^{2}-b^{2}=(a+b)(a-b)>0}
éã«ã a 2 â b 2 > 0 {\displaystyle a^{2}-b^{2}>0} ã®ãšãã ( a + b ) ( a â b ) > 0 {\displaystyle (a+b)(a-b)>0} ã§ããã a > 0 , b > 0 {\displaystyle a>0,b>0} ãªã®ã§ a + b > 0 {\displaystyle a+b>0} ã§ããããã£ãŠã a â b > 0 {\displaystyle a-b>0} ãªã®ã§ã a > b {\displaystyle a>b} ã§ããã
ãã£ãŠã a > b ⺠a 2 > b 2 {\displaystyle a>b\quad \Longleftrightarrow \quad a^{2}>b^{2}} ã§ããã
aâ§bã®å Žåãåæ§ã«èšŒæã§ããã
ç·Žç¿ãšããŠã次ã®åé¡ãåããŠã¿ããã
a > 0 {\displaystyle a>0} , b > 0 {\displaystyle b>0} ã®ãšããæ¬¡ã®äžçåŒã蚌æããã
(蚌æ) äžçåŒã®äž¡èŸºã¯æ£ã§ããã®ã§ã䞡蟺ã®å¹³æ¹ã®å·®ãèããã°ããã䞡蟺ã®å¹³æ¹ã®å·®ã¯
ã§ãããããã§ãa,b ã¯ãšãã«æ£ã®å®æ°ãªã®ã§ã
ã§ããããšãçšããã
ã§ããã®ã§ã
ãšãªãããã£ãŠã
ã§ããã(çµ)
宿° a ã®çµ¶å¯Ÿå€ |a| ã«ã€ããŠã
ã§ãããããæ¬¡ã®ããšãæãç«ã€ã
|a|â§a , |a|â§ ãŒa , |a|=a
ãŸãã2ã€ã®å®æ° a, b ã®çµ¶å¯Ÿå€ |ab| ã«ã€ããŠã¯ã
ãæãç«ã€ã®ã§ãããã«ããã« |ab|â§0 , |a||b|â§0 ãçµã¿åãããŠã
|ab| = |a| |b| ãæãç«ã€ã
(äŸé¡)
次ã®äžçåŒã蚌æããããŸããçå·ãæãç«ã€ã®ã¯ ã©ã®ãããªå Žåãã 調ã¹ãã
䞡蟺ã®å¹³æ¹ã®å·®ãèãããšã
ãããããæ£ãªããäžããããäžçåŒ |a|+|b| â§ |a+b| ãæ£ããã
ããã§ã |a| |b| â§ ab ã§ããã®ã§ã
ã§ããã
ãããã£ãŠã |a|+|b| â§ |a+b| ã§ããã
çå·ãæãç«ã€ã®ã¯ |a| |b| = ab ã®å Žåãããªãã¡ ab â§ 0 ã®å Žåã§ããã(蚌æ ããã)
2ã€ã®æ° a {\displaystyle a} , b {\displaystyle b} ã«å¯Ÿãã a + b 2 {\displaystyle {\frac {a+b}{2}}} ãçžå å¹³å(ããããžããã)ãšèšãã a b {\displaystyle {\sqrt {ab}}} ãçžä¹å¹³å(ããããããžããã)ãšããã
æ¬ããŒãžã§ã¯ã2åã®æ°ã®å¹³åã«ã€ããŠèå¯ããã
çžå å¹³åãšçžä¹å¹³åã«ã€ããŠã次ã®é¢ä¿åŒãæãç«ã€ã
(蚌æ)
a â§ 0 , b â§ 0 {\displaystyle a\geqq 0,b\geqq 0} ã®ãšã
( a â b ) 2 â§ 0 {\displaystyle \left({\sqrt {a}}-{\sqrt {b}}\right)^{2}\geqq 0} ã§ããããã ( a â b ) 2 2 â§ 0 {\displaystyle {\frac {\left({\sqrt {a}}-{\sqrt {b}}\right)^{2}}{2}}\geqq 0} ãããã£ãŠ a + b 2 â§ a b {\displaystyle {\frac {a+b}{2}}\geqq {\sqrt {ab}}} çå·ãæãç«ã€ã®ã¯ã ( a â b ) 2 = 0 {\displaystyle \left({\sqrt {a}}-{\sqrt {b}}\right)^{2}=0} ã®ãšããããªãã¡ a = b {\displaystyle a=b} ã®ãšãã§ããã(蚌æ ããã)
å
¬åŒã®å©çšã§ã¯ãäžã®åŒ a + b 2 â§ a b {\displaystyle {\frac {a+b}{2}}\geqq {\sqrt {ab}}} ã®äž¡èŸºã«2ãããã a + b â§ 2 a b {\displaystyle a+b\geqq 2{\sqrt {ab}}} ã®åœ¢ã®åŒã䜿ãå Žåãããã
a > 0 {\displaystyle a>0} , b > 0 {\displaystyle b>0} ã®ãšããæ¬¡ã®äžçåŒãæãç«ã€ããšã蚌æããã (I)
(II)
(I) a > 0 {\displaystyle a>0} ã§ããããã 1 a > 0 {\displaystyle {\frac {1}{a}}>0} ãã£ãŠ a + 1 a â§ 2 a à 1 a = 2 {\displaystyle a+{\frac {1}{a}}\geqq 2{\sqrt {a\times {\frac {1}{a}}}}=2} ãããã£ãŠ
(II)
a > 0 {\displaystyle a>0} , b > 0 {\displaystyle b>0} ã§ããããã b a > 0 {\displaystyle {\frac {b}{a}}>0} , a b > 0 {\displaystyle {\frac {a}{b}}>0} ãã£ãŠ b a + a b + 2 â§ 2 b a à a b + 2 = 2 + 2 = 4 {\displaystyle {\frac {b}{a}}+{\frac {a}{b}}+2\geqq 2{\sqrt {{\frac {b}{a}}\times {\frac {a}{b}}}}+2=2+2=4} ãããã£ãŠ
2ä¹ããŠè² ã«ãªãæ°ããšãããã®ãèããããã®ãããªæ°ã¯ãäžåŠã§ç¿ã£ã宿°ã®äžã«ã¯ãªãããšããããããªããªãã°ãæ£ã®æ°ã§ãè² ã®æ°ã§ã2ä¹ãããšç¬Šå·ãæã¡æ¶ããŠæ£ã®æ°ã«ãªã£ãŠããŸãããã§ãããããã§é«æ ¡ã§ã¯ã2ä¹ããŠè² ã«ãªããšããæ§è³ªãæã€æ°ã®æŠå¿µãæ°ããå°å
¥ããããšã«ããã
ãšããæ¹çšåŒãèããããã®æ¹çšåŒã®è§£ã¯å®æ°ã«ã¯ãªããããã§ããã®æ¹çšåŒã®è§£ãšãªãæ°ãæ°ããäœãããã®åäœãæå i {\displaystyle i} ã§ããããã
ãã® i {\displaystyle i} ã®ããšãèæ°åäœ(ããããããã)ãšåŒã¶ã(èæ°åäœã®èšå· i ãè±èªã®ã¢ã«ãã¡ãããã®ã¢ã€ã®å°æåã§ã imaginary unit ã«ç±æ¥ãããšèããããŠããã)
1 + i {\displaystyle 1+i} ã 2 + 5 i {\displaystyle 2+5i} ã®ããã«ãèæ°åäœ i {\displaystyle i} ãšå®æ° a , b {\displaystyle a,b} ãçšããŠ
ãšè¡šãããšãã§ããæ°ãè€çŽ æ°(ãµãããã)ãšããããã®ãšããaããã®è€çŽ æ°ã®å®éš(ãã€ã¶)ãšãããbãèéš(ããã¶)ãšããã
äŸãã°ã 1 + i , 2 + 5 i , 9 2 + 7 2 i , 4 i , 3 {\displaystyle 1+i,\quad 2+5i,\quad {\frac {9}{2}}+{\frac {7}{2}}i,\quad 4i,\quad 3} ã¯ãããããè€çŽ æ°ã§ããã
è€çŽ æ° a+bi ã¯(ãã ã aãšbã¯å®æ°)ãbã0ã®å Žåã«ãããã宿°ãšèŠãããšãã§ããã
èšãæ¹ãããããšãè€çŽ æ°ãåºæºã«èãããšã宿°ãšã¯ã a+0i ã®ãããªãèéšã®ä¿æ°ããŒãã«ãªãè€çŽ æ°ã®ããšã§ãããšãèšããã
4iã®ãããªãèéšã0以å€ã§å®éšããŒãã®è€çŽ æ°ãçŽèæ°(ãã
ããããã)ãšåŒã¶ãçŽèæ°ã¯ã2ä¹ãããšè² ã«ãªãæ°ã§ããã 宿°ãèéšã0ã®è€çŽ æ°ãšèããããã
宿°ã§ãªãè€çŽ æ°ã®ããšããèæ°ã(ãããã)ãšããã
2ã€ã®è€çŽ æ° a+bi ãš c+di ãšãçãããšã¯ã
ã§ããããšã§ããã
ã€ãŸãã
ãšãã«ãè€çŽ æ°a+bi ã 0ã§ãããšã¯ãa=0 ã〠b=0 ã§ããããšã§ããã
è€çŽ æ° z = a + b i {\displaystyle z=a+bi} ã«å¯ŸããŠãèéšã®ç¬Šå·ãå転ãããè€çŽ æ° a â b i {\displaystyle a-bi} ã®ããšããå
±åœ¹(ããããã)ãªè€çŽ æ°ããŸãã¯ãè€çŽ æ° z {\displaystyle z} ã®å
±åœ¹ãã®ããã«åŒã³ã z Ì {\displaystyle {\bar {z}}} ã§ããããããªãããå
±åœ¹ãã¯ãå
±è»ãã®åžžçšæŒ¢åã«ããæžãæãã§ããã
宿°aãšå
±åœ¹ãªè€çŽ æ°ã¯ããã®å®æ° a èªèº«ã§ããã
è€çŽ æ° z=a+bi ã«ã€ããŠ
è€çŽ æ°ã«ãååæŒç®(å æžä¹é€)ãå®çŸ©ãããã
è€çŽ æ°ã®æŒç®ã§ã¯ãèæ°åäœ i {\displaystyle i} ããéåžžã®æåã®ããã«æ±ã£ãŠèšç®ãããäžè¬ã«è€çŽ æ° z , w {\displaystyle z\ ,\ w} ãã z = a + b i , w = c + d i {\displaystyle z=a+bi\ ,\ w=c+di} ã§äžãããããšã(ãã ã a , b , c , d {\displaystyle a\ ,\ b\ ,\ c\ ,\ d} ã¯å®æ°ãšãã)ã
ãšãããµãã«è€çŽ æ°ã®å æžä¹é€ã®èšç®æ³ãå®ããããŠããã
乿³ã®å®çŸ©ã¯ãäžèŠãããšé£ãããã«ã¿ãããã宿°ã®åé
æ³åãšåæ§ã«å±éããŠããæåŸã« iã«ãã€ãã¹1ã代å
¥ããŠãã£ãã ãã§ããã
逿³ã®å®çŸ©ã¯ãååãšåæ¯ã«ã忝ãšå
±åœ¹ãªåœ¢ã®åŒã æãç® ããã ãã§ããã
乿³ã逿³ã®å®çŸ©åŒãæèšããå¿
èŠã¯ç¡ããèšç®ã®éã«ã¯ãå¿
èŠã«å¿ããŠåé
æ³åãå
±åœ¹ãªã©ã®ãå¿
èŠãªåŒå€åœ¢ãè¡ãã°ããã
äŸé¡
2ã€ã®è€çŽ æ°
ã«ã€ããŠã a + b {\displaystyle a+b} ãš a b {\displaystyle ab} ãš a b {\displaystyle {\frac {a}{b}}} ããããããèšç®ããã
è§£ç
ã§ããã
ããããã«ç°¡åã«ã§ããªãã ããããå®ã¯ãã¡ãã£ãšãããã¯ããã¯ãçšããã°ããèŠããã圢ã«ã§ããã
åæ°ã¯åæ¯ãšååã«åãæ°ããããŠããã£ãã®ã§ã忝ãšååã«åæ¯ã®å
±åœ¹ããããŠã¿ãããããšã
ãåŸãããããã®åœ¢ã®ã»ããå
ã®åŒããããã£ãšèŠããã圢ã§ããã
ãã®ãããªæäœã忝ã®å®æ°åãšããããšããããæ°åŠIã§åŠç¿ããå±éã»å æ°åè§£å
¬åŒ ( a + b ) ( a â b ) = a 2 â b 2 {\displaystyle (a+b)(a-b)=a^{2}-b^{2}} ã®ç°¡åãªå¿çšã§ããã
æ°ã®ç¯å²ãè€çŽ æ°ã«ãŸã§æ¡åŒµãããšãè² ã®æ°ã®å¹³æ¹æ ¹ãèããããšãã§ããã
äŸãšããŠã -5 ã®å¹³æ¹æ ¹ã«ã€ããŠèããŠã¿ããã
ã§ããããã -5 ã®å¹³æ¹æ ¹ã¯ 5 i {\displaystyle {\sqrt {5}}\ i} ãš â 5 i {\displaystyle -{\sqrt {5}}\ i} ã§ããã
â 5 {\displaystyle {\sqrt {-5}}} ãšã¯ã 5 i {\displaystyle {\sqrt {5}}\ i} ã®ããšãšããã â â 5 {\displaystyle -{\sqrt {-5}}} ãšã¯ã â 5 i {\displaystyle -{\sqrt {5}}\ i} ã®ããšã§ããã ãšãã« â 1 = i {\displaystyle {\sqrt {-1}}\ =\ i} ã§ããã
ããŠã-5 ã®å¹³æ¹æ ¹ã¯ãæ¹çšåŒ x 2 = â 5 {\displaystyle x^{2}=-5} ã®è§£ã§ãããã
ãã®æ¹çšåŒãç§»é
ããããšã«ããã-5 ã®å¹³æ¹æ ¹ã¯ã
ã®è§£ã§ãããšããããã
ããã«å æ°åè§£ãããããšã«ããã-5 ã®å¹³æ¹æ ¹ã¯æ¹çšåŒ
ã®è§£ã§ããããšããããã
(I) â 2 â 6 {\displaystyle {\sqrt {-2}}\ {\sqrt {-6}}} ãèšç®ããã
(I)
ãã®ããã«ããŸãããã€ãã¹ã®æ°ã®å¹³æ¹æ ¹ãåºãŠãããããŸãèæ°åäœ i ãçšããåŒã«æžãæããã
ãã®ããšãããç®ãããŠããã
(II) 2 â 3 {\displaystyle {\frac {\sqrt {2}}{\sqrt {-3}}}} ãèšç®ããã
(III) 2次æ¹çšåŒ x 2 = â 7 {\displaystyle x^{2}=-7} ãè§£ãã
(II)
(III)
è€çŽ æ°ã®å¿çšãšããŠãããã§ã¯2次æ¹çšåŒã®æ§è³ªã«ã€ããŠè¿°ã¹ããä»»æã®2次æ¹çšåŒã¯ãè§£ã®å
¬åŒã«ãã£ãŠè§£ãããããšãé«çåŠæ ¡æ°åŠIã§è¿°ã¹ããããããè§£ã®å
¬åŒã«å«ãŸããæ ¹å·ã®äžèº«ãè² ã®æ°ã®å Žåã«ã¯å®æ°è§£ãååšããªãããšã«æ³šæããå¿
èŠãããã2次æ¹çšåŒ
ã®è§£ã®å
¬åŒã¯ã
ã§ããã
å€å¥åŒ D {\displaystyle D} ã¯
ã«ãã£ãŠå®çŸ©ããããå€å¥åŒã¯ãè§£ã®å
¬åŒã®æ ¹å·(ã«ãŒãèšå·ã®ããš)ã®äžèº«ã«çãããå€å¥åŒã®æ£è² ã«ãã£ãŠ2次æ¹çšåŒã宿°è§£ãæã€ãã©ãããæ±ºãŸãã
D {\displaystyle D} ãè² ã®ãšãã«ã¯ãã®2次æ¹çšåŒã¯å®æ°ã®ç¯å²ã«ã¯è§£ãæããªãã
å€å¥åŒ D {\displaystyle D} ãè² ã®æ°ã§ãã£ããšããxã®è§£ã¯ç°ãªã2ã€ã®èæ°ã«ãªãããã®2ã€ã®è§£ã¯ å
±åœ¹ ã®é¢ä¿ã«ãªã£ãŠããã
è€çŽ æ°ãçšããŠã2次æ¹çšåŒ (1)
(2)
(3)
ãè§£ãã
è§£ã®å
¬åŒãçšããŠè§£ãã°ããã(1)ã ããèšç®ãããšã
ãšãªãã ä»ãåãããã«æ±ãããšãåºæ¥ãã
以éã®è§£çã¯ã (2)
(3)
ãšãªãã
æ¹çšåŒã®è§£ã§ã宿°ã§ãããã®ã 宿°è§£ ãšããã
æ¹çšåŒã®è§£ã§ãèæ°ã§ãããã®ã èæ°è§£ ãšããã
2次æ¹çšåŒ a x 2 + b x + c = 0 {\displaystyle ax^{2}+bx+c=0} ã®è§£ã¯ x = â b ± b 2 â 4 a c 2 a {\displaystyle x={\frac {-b\pm {\sqrt {b^{2}-4ac}}}{2a}}} ã§ããã
2次æ¹çšåŒã®è§£ã®çš®é¡ã¯ãè§£ã®å
¬åŒã®äžã®æ ¹å·ã®äžã®åŒ b 2 â 4 a c {\displaystyle b^{2}-4ac} ã®ç¬Šå·ãèŠãã°å€å¥ããããšãã§ããã
ãã®åŒ b 2 â 4 a c {\displaystyle b^{2}-4ac} ãã2次æ¹çšåŒ a x 2 + b x + c = 0 {\displaystyle ax^{2}+bx+c=0} ã®å€å¥åŒ(ã¯ãã¹ã€ãã)ãšãããèšå· D {\displaystyle D} ã§è¡šãã
ãŸããéè§£ã宿°è§£ã§ããã®ã§ã
ãšãããã
次ã®2次æ¹çšåŒã®è§£ãå€å¥ããã
(I)
(II)
(III)
(I)
ã ãããç°ãªã2ã€ã®å®æ°è§£ããã€ã
(II)
ã ãããç°ãªã2ã€ã®èæ°è§£ããã€ã
(III)
ã ãããéè§£ããã€ã
ãŸãã2次æ¹çšåŒ a x 2 + 2 b â² x + c = 0 {\displaystyle ax^{2}+2b'x+c=0} ã®ãšãã D = 4 ( b â² 2 â a c ) {\displaystyle D=4(b'^{2}-ac)} ãšãªãã®ã§ã 2次æ¹çšåŒ a x 2 + 2 b â² x + c = 0 {\displaystyle ax^{2}+2b'x+c=0} ã®å€å¥åŒã«ã¯
ããã¡ããŠãããã
ãããçšããŠãåã®åé¡
ã®è§£ãå€å¥ãããã
a = 4 , b â² = â 10 , c = 25 {\displaystyle a=4\,,\,b'=-10\,,\,c=25} ã§ãããã
ã ãããéè§£ããã€ã
2次æ¹çšåŒ a x 2 + b x + c = 0 {\displaystyle ax^{2}+bx+c=0} ã®2ã€ã®è§£ã α {\displaystyle \alpha } , β {\displaystyle \beta } ãšããã ãã®æ¹çšåŒã¯ã
a ( x â α ) ( x â β ) = 0 {\displaystyle a(x-\alpha )(x-\beta )=0}
ãšå€åœ¢ã§ããã
ãããå±éãããšã
a x 2 â a ( α + β ) x + a α β = 0 {\displaystyle ax^{2}-a(\alpha +\beta )x+a\alpha \beta =0}
ä¿æ°ãæ¯èŒããŠã
c = a α β , b = â a ( α + β ) {\displaystyle c=a\alpha \beta ,b=-a(\alpha +\beta )}
ãåŸãã
ãããå€åœ¢ããã°ã α + β = â b a , α β = c a {\displaystyle \alpha +\beta =-{\frac {b}{a}},\alpha \beta ={\frac {c}{a}}} ãšãªãã
2次æ¹çšåŒ 2 x 2 + 4 x + 3 = 0 {\displaystyle 2x^{2}+4x+3=0} ã®2ã€ã®è§£ã α {\displaystyle \alpha } , β {\displaystyle \beta } ãšãããšãã α 2 + β 2 {\displaystyle \alpha ^{2}+\beta ^{2}} ã®å€ãæ±ããã
è§£ãšä¿æ°ã®é¢ä¿ããã α + β = â 4 2 = â 2 {\displaystyle \alpha +\beta =-{\frac {4}{2}}=-2} , α β = 3 2 {\displaystyle \alpha \beta ={\frac {3}{2}}} α 2 + β 2 = ( α + β ) 2 â 2 α β = ( â 2 ) 2 â 2 à 3 2 = 1 {\displaystyle \alpha ^{2}+\beta ^{2}=(\alpha +\beta )^{2}-2\alpha \beta =(-2)^{2}-2\times {\frac {3}{2}}=1}
2ã€ã®æ° α {\displaystyle \alpha } , β {\displaystyle \beta } ãè§£ãšãã2次æ¹çšåŒã¯
ãšè¡šãããã巊蟺ãå±éããŠæŽçãããšæ¬¡ã®ããã«ãªãã
次ã®2æ°ãè§£ãšãã2次æ¹çšåŒãäœãã
(I)
(II)
(I) å ( 3 + 5 ) + ( 3 â 5 ) = 6 {\displaystyle (3+{\sqrt {5}})+(3-{\sqrt {5}})=6} ç© ( 3 + 5 ) ( 3 â 5 ) = 4 {\displaystyle (3+{\sqrt {5}})(3-{\sqrt {5}})=4} ã§ãããã
(II) å ( 2 + 3 i ) + ( 2 â 3 i ) = 4 {\displaystyle (2+3i)+(2-3i)=4} ç© ( 2 + 3 i ) ( 2 â 3 i ) = 13 {\displaystyle (2+3i)(2-3i)=13} ã§ãããã
2次æ¹çšåŒ a x 2 + b x + c = 0 {\displaystyle ax^{2}+bx+c=0} ã®2ã€ã®è§£ α {\displaystyle \alpha } , β {\displaystyle \beta } ãããããšã2次åŒ
ãå æ°åè§£ããããšãã§ããã è§£ãšä¿æ°ã®é¢ä¿ α + β = â b a {\displaystyle \alpha +\beta =-{\frac {b}{a}}} , α β = c a {\displaystyle \alpha \beta ={\frac {c}{a}}} ããã
2次æ¹çšåŒã¯ãè€çŽ æ°ã®ç¯å²ã§èãããšã€ãã«è§£ããã€ãããè€çŽ æ°ãŸã§äœ¿ã£ãŠãããšãããšã2次åŒã¯å¿
ã1次åŒã®ç©ã«å æ°åè§£ããããšãã§ããã
è€çŽ æ°ã®ç¯å²ã§èããŠã次ã®2次åŒãå æ°åè§£ããã
(I)
(II)
(I) 2次æ¹çšåŒ x 2 + 4 x â 1 = 0 {\displaystyle x^{2}+4x-1=0} ã®è§£ã¯
ãã£ãŠ
(II) 2次æ¹çšåŒ 2 x 2 â 3 x + 2 = 0 {\displaystyle 2x^{2}-3x+2=0} ã®è§£ã¯
ãã£ãŠ
3次以äžã®æŽåŒã«ããæ¹çšåŒãèããã äžè¬ã«æ¹çšåŒã P ( x ) = 0 {\displaystyle P(x)=0} ãšãšãã ãã ãã P ( x ) {\displaystyle P(x)} ã¯ãä»»æã®æ¬¡æ°ã®æŽåŒãšããã
P ( x ) {\displaystyle P(x)} ã1æ¬¡åŒ x â a {\displaystyle x-a} ã§å²ã£ããšãã®åã Q ( x ) {\displaystyle Q(x)} ãäœãã R {\displaystyle R} ãšãããšã
ãã®äž¡èŸºã® x {\displaystyle x} ã« a {\displaystyle a} ã代å
¥ãããšã
ã€ãŸãã P ( x ) {\displaystyle P(x)} ã x â a {\displaystyle x-a} ã§å²ã£ããšãã®äœã㯠P ( a ) {\displaystyle P(a)} ã§ããã
æŽåŒ P ( x ) = x 3 â 2 x + 3 {\displaystyle P(x)=x^{3}-2x+3} ãæ¬¡ã®åŒã§å²ã£ãäœããæ±ããã (I)
(II)
(III)
(I) P ( 2 ) = 2 3 â 2 Ã 2 + 3 = 7 {\displaystyle P(2)=2^{3}-2\times 2+3=7} (II) P ( â 1 ) = ( â 1 ) 3 â 2 Ã ( â 1 ) + 3 = 4 {\displaystyle P(-1)=(-1)^{3}-2\times (-1)+3=4} (III) P ( 1 2 ) = ( 1 2 ) 3 â 2 Ã ( 1 2 ) + 3 = 17 8 {\displaystyle P\left({\frac {1}{2}}\right)=\left({\frac {1}{2}}\right)^{3}-2\times \left({\frac {1}{2}}\right)+3={\frac {17}{8}}}
ãã宿° a {\displaystyle a} ã«å¯ŸããŠã
ãæãç«ã£ããšããã ãã®ãšããæŽåŒ P ( x ) {\displaystyle P(x)} ã¯ã ( x â a ) {\displaystyle (x-a)} ãå æ°ã«æã€ããšãåãã ãã®ããšãå æ°å®ç(ãããããŠãã)ãšåŒã¶ã
æŽåŒ P ( x ) {\displaystyle P(x)} ã«å¯ŸããŠãå Q ( x ) {\displaystyle Q(x)} ãå²ãåŒ ( x â a ) {\displaystyle (x-a)} ãšãã æŽåŒã®é€æ³ãçšããããã®ãšããå Q ( x ) {\displaystyle Q(x)} ã ( Q ( x ) {\displaystyle Q(x)} ã¯ã P ( x ) {\displaystyle P(x)} ããã1ã ãæ¬¡æ°ãäœãæŽåŒã§ããã) äœã c {\displaystyle c} ( c {\displaystyle c} ã¯ã宿°ã)ãšãããšã æŽåŒ P ( x ) {\displaystyle P(x)} ã¯ã
ãšæžããã ããã§ã c = 0 {\displaystyle c=0} ã§ãªããšã P ( a ) = 0 {\displaystyle P(a)=0} ã¯æºããããªããã ãã®ãšãã P ( x ) {\displaystyle P(x)} ã¯ã ( x â a ) {\displaystyle (x-a)} ã«ãã£ãŠå²ãåããã ãã£ãŠãå æ°å®çã¯æç«ããã
å æ°å®çãçšããããšã§ãããæ¬¡æ°ã®é«ãæŽåŒãå æ°åè§£ããããšã åºæ¥ãããã«ãªããäŸãã°ã3æ¬¡ã®æŽåŒ
ã«ã€ããŠã x = 1 {\displaystyle x=1} ã代å
¥ãããšã
ã¯0ãšãªãããã£ãŠãå æ°å®çãããã®åŒã¯
ãå æ°ãšããŠæã€ã
ããã§ãå®éæŽåŒã®é€æ³ã䜿ã£ãŠèšç®ãããšã
ãåŸãããã
å æ°å®çãçšã㊠(I)
(II)
ãå æ°åè§£ããã
(I) å æ°åè§£ã®çµæã(x+æŽæ°)ã®ç©ã®åœ¢ãªããæŽæ°ã¯6ã®å æ°ã§ãªããã°ãªããªãããã®ããã ± 1 , ± 2 , ± 3 , ± 6 {\displaystyle \pm 1,\pm 2,\pm 3,\pm 6} ãåè£ãšãªãããããã«ã€ããŠã¯å®éã«ä»£å
¥ããŠç¢ºããããããªããx=1ã代å
¥ãããšã
ãšãªãã®ã§ã(x-1)ãå æ°ãšãªããå®éã«æŽåŒã®é€æ³ãè¡ãªããšãåãšã㊠x 2 â 5 x + 6 {\displaystyle x^{2}-5x+6} ãåŸããããããã㯠( x â 2 ) ( x â 3 ) {\displaystyle (x-2)(x-3)} ã«å æ°åè§£ã§ããããã£ãŠçãã¯ã
ãšãªãã (II) ããã§ãå°éã«24ã®å æ°ãåœãŠã¯ããŠãããããªãã24ã®å æ°ã¯æ°ãå€ãã®ã§ããªãã®èšç®ãå¿
èŠãšãªããããã§ã¯ã-2ã代å
¥ãããšã
ãšãªãã(x+2)ãå æ°ã ãšãããã逿³ãè¡ãªããšã x 2 â x â 12 {\displaystyle x^{2}-x-12} ãåŸããããã(x-4)(x+3)ã«å æ°åè§£ã§ãããçãã¯ã
ãšãªãã
å æ°åè§£ãå æ°å®çãå©çšããŠé«æ¬¡æ¹çšåŒãè§£ããŠã¿ããã
髿¬¡æ¹çšåŒ (I)
(II)
(III)
ãè§£ãã
(I) 巊蟺ã a 3 â b 3 = ( a â b ) ( a 2 + a b + b 2 ) {\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})} ãçšããŠå æ°åè§£ãããš
ãããã£ãŠ x â 2 = 0 {\displaystyle \ x-2=0} ãŸã㯠x 2 + 2 x + 4 = 0 {\displaystyle \ x^{2}+2x+4=0} ãã£ãŠ
(II) x 2 = X {\displaystyle \ x^{2}=X\ } ãšãããšã
巊蟺ãå æ°åè§£ãããš
ãã£ãŠ X = 4 , X = â 2 {\displaystyle X=4\ ,\ X=-2} ããã« x 2 = 4 , x 2 = â 2 {\displaystyle x^{2}=4\ ,\ x^{2}=-2} ãããã£ãŠ
(III) P ( x ) = x 3 â 5 x 2 + 7 x â 2 {\displaystyle \ P(x)=x^{3}-5x^{2}+7x-2\ } ãšããã
ãããã£ãŠã x â 2 {\displaystyle \ x-2\ } 㯠P ( x ) {\displaystyle \ P(x)\ } ã®å æ°ã§ããã
ãã£ãŠ ( x â 2 ) ( x 2 â 3 x + 1 ) = 0 {\displaystyle (x-2)(x^{2}-3x+1)=0} x â 2 = 0 {\displaystyle \ x-2=0} ãŸã㯠x 2 â 3 x + 1 = 0 {\displaystyle \ x^{2}-3x+1=0} ãããã£ãŠ
3次æ¹çšåŒ a x 3 + b x 2 + c x + d = 0 {\displaystyle ax^{3}+bx^{2}+cx+d=0} ã®3ã€ã®è§£ã ã α , β , γ {\displaystyle \alpha \ ,\ \beta \ ,\ \gamma } ãšãããš
ãæãç«ã€ã å³èŸºãå±éãããš
ãã£ãŠ
ããã«
ãããã£ãŠã次ã®ããšãæãç«ã€ã
ãã°ãã°èæ°ã¯ãçŸå®ã«ã¯ååšããªãæ°ãã§ãããšèšãããããšããããæŽå²çã«ãèæ°ãæ±ã£ãæ°åŠãèããã¹ãã§ã¯ãªããšèããããæä»£ã¯é·ãã£ãããã®æä»£ã®å
é²çãªæ°åŠè
ã®äžã«ã¯ãèæ°ãæå¹ã«æŽ»çšããŠç ç©¶ãé²ããäžæ¹ã§ãææãçºè¡šããéã«ã¯èæ°ã衚ã«åºããã«èšè¿°ããåªåãããããšã§ãç¡çšãªæµæãåããªãããã«å·¥å€«ããè
ããããšèšãããã»ã©ã§ããã
ã ããããèããŠã¿ãã°ãæ°ããçŸå®ã«ååšããããšã¯ã©ãããæå³ãªã®ã ããããçŸå®ã«éçã䜿ã£ãŠçŽã«åãæããªãã°ãååšã®é·ãããæ£ç¢ºã«ååšçãã®ãã®ã«ãããããšã¯äžå¯èœã§ããããã«æããããããã®å²ã«ååšçãšãã宿°ã¯ãååšããããšæããããã®ã¯ãªãã ããããæ°çŽç·ã宿°ã®ãå®åšããä¿¡ãããããªãã°ãè€çŽ æ°ã¯è€çŽ æ°å¹³é¢(æ°åŠCã§ç¿ã)ã®äžã«ååšããã®ã ãããåãã§ã¯ãªãã ãããã
ãã®ããã«èãããšãããããæ°ãšã¯ãã¹ãŠããæå³ã§æ³åäžã®ååšã§ãããããã«å¯ŸããŠãååšããããååšããªãããšããåããç«ãŠãããšããã³ã»ã³ã¹ã§ããããã«æãããããååšããªããããã«æãããã¡ãªèæ°ã§ããããããšãã°ç©çåŠã®äžåéã§ããéåååŠã®ã·ã¥ã¬ãã£ã³ã¬ãŒæ¹çšåŒã«è¡šãããªã©ãå¿çšäžã®ããŸããŸãªå Žé¢ã«ãããŠããèæ°ã䜿ã£ãŠèšè¿°ããããšãèªç¶ãªå¯Ÿè±¡ã¯å€ãã®ã ã
è€çŽ æ°ã©ããã«ã€ããŠããã®å€§å°é¢ä¿ã¯å®çŸ©ããªãããã®çç±ã¯ãã©ã®ããã«å€§å°é¢ä¿ãå®çŸ©ããŠãã䟿å©ãªæ§è³ªãæºããããšãã§ããªãããã§ãããå
·äœçã«èšãã°ãæ¢ã«è¿°ã¹ã宿°ã®å€§å°é¢ä¿ã«ã€ããŠã®ãäžçåŒã®åºæ¬æ§è³ª(1)(2)(3)(4)ãã«ãããåŒãæãç«ãããããšãã§ããªãã®ã ã
ããšãã°ã a + b i < a â² + b â² i {\displaystyle a+bi<a'+b'i} ã§ããããšãã a 2 + b 2 < a â² 2 + b â² 2 {\displaystyle a^{2}+b^{2}<a'^{2}+b'^{2}} ã§ããããšãšããŠå®çŸ©ããŠã¿ããããã®ããã«å®çŸ©ãããšãããšãã°1+2i<2-3iã§ããããŸã2+3i<3+4iã§ããããšãããã(1+2i)+(2+3i)=3+5i,(2-3i)+(3+4i)=5+iã§ããã3+5i>5+iãšãªã£ãŠããŸããããã¯åºæ¬æ§è³ª(2)ãæãç«ããªãããšãæå³ããã
ãã¡ããããã¯é©åœã«èããå®çŸ©ãããŸããŸäžé©åã ã£ããšããã ãã®ããšã ããå®ã¯ãä»ã«ã©ã®ããã«å®çŸ©ããŠããã®ãããªå°é£ããã¯éããããªãããšãç¥ãããŠãããããããã«ãè€çŽ æ°ã«ã¯å€§å°é¢ä¿ãå®çŸ©ããªãã®ã§ããã
ä»åºŠã¯ãè€çŽ æ°ã®å¹³æ¹æ ¹ã«ã€ããŠèããŠã¿ããã æ£ã®æ° a {\displaystyle a} ãèãããšãã
ã§ã¯ã
èæ°åäœ i {\displaystyle i} ã®å¹³æ¹æ ¹ãèãããšãããã¯zã«ã€ããŠã®æ¹çšåŒ z 2 = i {\displaystyle z^{2}=i} ã®è§£ z ã®å€ã§ããããããããè§£ãã°ãããã©ã®ãããªè€çŽ æ°zãªããã®åŒãæºããããšãã§ããã ãããã
zãè€çŽ æ°ãšãããšã z = x + y i {\displaystyle z=x+yi} (x,yã¯å®æ°)ãšè¡šãããã ( x + y i ) 2 = i â x 2 + 2 x y i â y 2 = i â ( x 2 â y 2 ) + ( 2 x y â 1 ) i = 0 {\displaystyle (x+yi)^{2}=i\Leftrightarrow x^{2}+2xyi-y^{2}=i\Leftrightarrow (x^{2}-y^{2})+(2xy-1)i=0}
x 2 â y 2 , 2 x y â 1 {\displaystyle x^{2}-y^{2},2xy-1} ã¯å®æ°ã§ãããããå®éšãšèéšãå
±ã«0ã«ãªããã°ãªããªãããã { x 2 â y 2 = 0 ( â x = ± y ) 2 x y â 1 = 0 {\displaystyle {\begin{cases}x^{2}-y^{2}=0(\Leftrightarrow x=\pm y)\\2xy-1=0\end{cases}}}
x = y {\displaystyle x=y} ã®ãšãã 2 x 2 = 1 â x = ± 1 2 , y = ± 1 2 {\displaystyle 2x^{2}=1\Leftrightarrow x=\pm {\frac {1}{\sqrt {2}}},y=\pm {\frac {1}{\sqrt {2}}}} (è€å·åé ãx,yã¯å
±ã«å®æ°ã§ãããããæ¡ä»¶ãæºããã)
x = â y {\displaystyle x=-y} ã®ãšãã â 2 y 2 = 1 â y 2 = â 1 2 {\displaystyle -2y^{2}=1\Leftrightarrow y^{2}=-{\frac {1}{2}}} ããã§ããããæºãã宿°yã¯ååšããªãããäžé©ã
ãã£ãŠã z = ± ( 1 2 + 1 2 i ) {\displaystyle z=\pm \left({\frac {1}{\sqrt {2}}}+{\frac {1}{\sqrt {2}}}i\right)} â
å®éšããŒããèæ
®ã㊠x = 0 {\displaystyle x=0} ã x = ± 3 y {\displaystyle x=\pm {\sqrt {3}}y} ã ããèéšããŒããªã®ã§ãxã®å€ãåè
ã®ãšã y = â 1 {\displaystyle y=-1} ãåŸè
ã®ãšã y = 1 / 2 {\displaystyle y=1/2} ãšãªãããšãããã«ãããã
2次æ¹çšåŒã«ã¯è§£ã®å
¬åŒããããæ¥æ¬ã®äžåŠã髿 ¡ã§ãç¿ãã2次æ¹çšåŒã®è§£ã®å
¬åŒãçšããã°ãã©ããªä¿æ°ã®2次æ¹çšåŒã§ãã£ãŠãè§£ãæ±ããããã3次æ¹çšåŒãš4次æ¹çšåŒã«ããè§£ã®å
¬åŒã¯ååšããä¿æ°ãã©ããªä¿æ°ã§ãã£ãŠãè§£ãæ±ããããããããã®è§£ã®å
¬åŒã¯ãä»£æ°æ¹çšåŒè«ã§è¿°ã¹ãŠããããã«ãä¿æ°ã«æéåã®ååæŒç®ãšæ ¹å·ããšãæäœã®çµã¿åããã§è¡šãããšãã§ããã
5次æ¹çšåŒã§ã¯ã4次以äžã®æ¹çšåŒãšã¯ç¶æ³ãç°ãªããäžè¬ã®5次æ¹çšåŒã®è§£ã¯ã2次æ¹çšåŒã4次æ¹çšåŒã®ããã«ãä¿æ°ã«æéåã®ååæŒç®ãšæ ¹å·ããšãæäœã®çµã¿åããã§è¡šãããšãã§ããªãã®ã§ããããã ãããã§ããªããããšã®èšŒæã¯å®¹æã§ã¯ãªãããã®ããšã蚌æããã«ã¯ãã¬ãã¢çè«ãçè§£ããå¿
èŠããã(æ¥æ¬ã®å€§åŠã®æšæºçãªã«ãªãã¥ã©ã ã§ã¯ãçåŠéšæ°åŠç§ã®åŠçã®ã¿ã倧åŠ3幎çã§åŠã¶ã®ãäžè¬çãªçšåºŠã®çè«ã§ãã)ã
ãªããããã§èšãã衚ãããšãã§ããªãããšã¯äžè¬ã®æ¹çšåŒã«ã€ããŠã®ããšã§ãããç¹å¥ãª5次æ¹çšåŒã®å Žåã¯ç°¡åã«è§£ãæ±ãããããããšãã°ã x 5 â 32 = 0 {\displaystyle x^{5}-32=0} ã¯è§£ã®ã²ãšã€ãšã㊠x = 2 {\displaystyle x=2} ããã€ããšã¯ãããããããã®æ¹çšåŒã¯ä»ã®è§£ã«ã€ããŠãäžè§é¢æ°ãçšããŠç°¡åã«è¡šããããšãé«çåŠæ ¡æ°åŠC/è€çŽ æ°å¹³é¢ã«ãããŠåŠã¶ã
ãä¿æ°ã«æéåã®ååæŒç®ãšæ ¹å·ããšãæäœã®çµã¿åãããã«æããªããã°ãäžè¬ã®5次æ¹çšåŒã®è§£ãæ±ããæ¹æ³ãååšããããããé«åºŠãªæ°åŠãçšããå¿
èŠããããw:äºæ¬¡æ¹çšåŒã«èšè¿°ãããã®ã§èå³ã®ããèªè
ã¯åç
§ãããšããã
é«çåŠæ ¡ã§è€çŽ æ°ãåºãŠããåéã¯ãã®åéãšæ°åŠCãå¹³é¢äžã®æ²ç·ãšè€çŽ æ°å¹³é¢ãã®ã¿ã§ãããè€çŽ æ°ã®åºæ¬èšç®ãæ¹çšåŒãè€çŽ æ°ç¯å²ã§è§£ãããšãè€çŽ æ°ã®å¹ŸäœåŠçæå³ã«ã€ããŠæ±ã£ãŠãããããããå€§åŠæ°åŠã«ãããŠã¯ã颿°ã®å®çŸ©åã»å€åãè€çŽ æ°ç¯å²ã«åºããŠèãããè€çŽ é¢æ°è«ããšãããã®ãæ±ãã
宿°ç¯å²ã§ã®é¢æ°ã¯x, yãšãã«äžæ¬¡å
ã®å®æ°è»žãæã€ãããå
¥åå€ãšåºåå€ã®æãã°ã©ããèããã«ã¯äºæ¬¡å
ã®åº§æšå¹³é¢ã§ååã§ãã£ããããããè€çŽ æ°ç¯å²ã§ã®é¢æ°ã¯x, yãšãã«äºæ¬¡å
ã®è€çŽ æ°å¹³é¢ãæã€ãããå
¥åå€ãšåºåå€ã®æãã°ã©ããèããã«ã¯å次å
ã®åº§æšç©ºéãå¿
èŠã§ãããäžæ¬¡å
空éã«äœãæã
ã«ã¯æç»ããããšãã§ããªãããã®ãããè€çŽ é¢æ°è«ã§ã¯é¢æ°ã®ã°ã©ããèããããšã¯åºæ¬çã«ãªãã(ãã ããåºåãããè€çŽ æ°ã®çµ¶å¯Ÿå€ãèããããšã«ãã£ãŠäžæ¬¡å
ã°ã©ãã«èœãšã蟌ãããšã¯å¯èœ)
ã§ã¯äœãèããã®ããšãããšãè€çŽ é¢æ°ã®åŸ®åç©åã§ãããè€çŽ é¢æ°ã®åŸ®åã«é¢é£ããŠãæ£å颿°ããšããçšèªãåºãŠããããè€çŽ é¢æ°è«ã¯ãã®æ£å颿°ãšãããã®ã®æ§è³ªã調ã¹ãåŠåã ãšèšã£ãŠè¯ãã
è€çŽ é¢æ°è«ã¯ç©çåŠã®ç¹ã«æ³¢åã«é¢ããåé(é³ã»é»ç£æ°ãªã©)ã«ãããŠæŽ»èºããŠããããæ³¢åæ¹çšåŒãããã€ã³ããŒãã³ã¹ããšããèšèã¯æåã ããã
ã¡ãªã¿ã«ãè€çŽ æ°ãããã«æ¡åŒµããæ°ãšããŠãw:åå
æ°ããšãããã®ãããããã®åå
æ°ã¯ãã¯ãã«ãè¡åãšæ·±ãé¢ãããååšããŠãããæ·±æããšé¢çœãã®ã ããããããåé·ã«ãªããã岿ããããªããåå
æ°ãããã«æ¡åŒµããå
«å
æ°ãåå
å
æ°ãšããæ°ãç ç©¶ãããŠããã
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ¬é
ã¯é«çåŠæ ¡æ°åŠIIã®åŒãšèšŒæã»é«æ¬¡æ¹çšåŒã®è§£èª¬ã§ããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "( a + b ) 5 = ( a + b ) ( a + b ) ( a + b ) ( a + b ) ( a + b ) {\\displaystyle (a+b)^{5}=(a+b)(a+b)(a+b)(a+b)(a+b)} ã«ã€ããŠèãããããã®åŒãå±éãããšãã a 2 b 3 {\\displaystyle a^{2}b^{3}} ã®ä¿æ°ã¯ãå³èŸºã®5åã® ( a + b ) {\\displaystyle (a+b)} ãã a {\\displaystyle a} ã3ååãçµã¿åããã«çãããã 5 C 2 = 10 {\\displaystyle _{5}\\mathrm {C} _{2}=10} ã§ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãã®èããæ¡åŒµããŠ",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãå±éããã a r b n â r {\\displaystyle a^{r}b^{n-r}} ã®é
ã®ä¿æ°ã¯ãå³èŸºã® n {\\displaystyle n} åã® ( a + b ) {\\displaystyle (a+b)} ãã a {\\displaystyle a} ã r {\\displaystyle r} ååãçµã¿åããã«çãããã n C r {\\displaystyle _{n}\\mathrm {C} _{r}} ã§ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãã£ãŠã次ã®åŒãåŸããã:",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "æåŸã®åŒã¯æ°Bã®æ°åã§åŠã¶ç·åèšå· Σ {\\displaystyle \\Sigma } ã§ãããç¥ããªãã®ãªãç¡èŠããŠãè¯ãã ãã®åŒã äºé
å®ç(binomial theorem) ãšããããŸããããããã®é
ã«ãããä¿æ°ãäºé
ä¿æ°(binomial coefficient) ãšåŒã¶ããšãããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "(I)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "(II)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "(II)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãããããèšç®ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "äºé
å®çãçšããŠèšç®ããã°ãããå®éã«èšç®ãè¡ãªããšã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "(I)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "(II)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "(III)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãšãªãã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ãã¹ãŠã®èªç¶æ°nã«å¯ŸããŠ",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "(I)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "(II)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "(III)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ãæãç«ã€ããšã瀺ãã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "äºé
å®ç",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ã«ã€ããŠa,bã«é©åœãªå€ã代å
¥ããã°ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "(I) a = 1,b=1ã代å
¥ãããšã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ãšãªã確ãã«äžããããé¢ä¿ãæç«ããããšãåããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "(II) a=2,b=1ã代å
¥ãããšã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ãšãªã確ãã«äžããããé¢ä¿ãæç«ããããšãåããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "(III) a=1,b=-1ã代å
¥ãããšã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ãšãªã確ãã«äžããããé¢ä¿ãæç«ããããšãåããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "äºé
å®çãæ¡åŒµã㊠( a + b + c ) n {\\displaystyle (a+b+c)^{n}} ãå±éããããšãèãããã a p b q c r {\\displaystyle a^{p}b^{q}c^{r}} ( p + q + r = n ) {\\displaystyle (p+q+r=n)} ã®é
ã®ä¿æ°ã¯ n {\\displaystyle n} åã® ( a + b + c ) {\\displaystyle (a+b+c)} ãã p {\\displaystyle p} åã® a {\\displaystyle a} ã q {\\displaystyle q} åã® b {\\displaystyle b} ã r {\\displaystyle r} åã® c {\\displaystyle c} ãéžã¶çµåãã«çãããã n ! p ! q ! r ! {\\displaystyle {\\frac {n!}{p!q!r!}}} ã§ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ããã§ã¯ãæŽåŒã®é€æ³ãšåæ°åŒã«ã€ããŠæ±ããæŽåŒã®é€æ³ã¯ãæŽåŒãæŽæ°ã®ããã«æ±ã逿³ãè¡ãªãèšç®ææ³ã®ããšã§ãããå®éã«æŽæ°ã®é€æ³ãšæŽåŒã®é€æ³ã«ã¯æ·±ãã€ãªããããããæŽåŒã®å æ°åè§£ãèãããšãã以äžå æ°åè§£ã§ããªãæŽåŒãååšããããã®æŽåŒãæŽæ°ã§ããçŽ å æ°ã®ããã«æ±ãããšã§æŽåŒã®çŽ å æ°åè§£ãå¯èœã«ãªãã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "äžã§ã¯ãæŽåŒãæŽæ°ã«å¯Ÿå¿ããæ§è³ªãæã€ããšãè¿°ã¹ããæŽæ°ã«ã€ããŠã¯ãããã«çŽ ãª2ã€ã®æŽæ°ãåãããšã§æçæ°ãå®çŸ©ããããšãåºæ¥ããæŽåŒã«å¯ŸããŠãåãäºãæç«ã¡ããã®ãããªåŒãåæ°åŒãšåŒã¶ã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "åæ°ãçšããªããšãã«ã¯ãæŽæ°ã®é€æ³ã¯åãšäœããçšããŠå®çŸ©ãããããã®æãå²ãããæ°Bã¯åDãšå²ãæ°AãäœãRãçšããŠ",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ã®æ§è³ªãæºããããšãç¥ãããŠãããæŽåŒã«å¯ŸããŠãäŒŒãæ§è³ªãæç«ã¡ãå²ãããåŒB(x)ãåD(x)ãšå²ãåŒA(x)ãäœãR(x)ãçšããŠã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "ã®å³èŸºã§xã«ã€ããŠ2次ã®é
ãçŸãã巊蟺ãšäžèŽããªããªãããã£ãŠåã¯å®æ°ã§ãããåãaãäœããrãšãããšäžã®åŒã¯ã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "ãšãªãããããã¯a=1,r=1ã§æç«ããããã£ãŠå1,äœã1ã§ããããã髿¬¡ã®åŒã«å¯ŸããŠãåãæ§ã«çããå®ããŠããã°ãããäŸãšããŠã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "ã®ãããªåŒãèããããã®å Žåã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "ã§ãB(x)ã3次ãA(x)ã2次ã§ããããšãããD(x)ã¯1次ã§ããããŸããR(x)ã¯2次ããå°ããããšãã1次以äžã®åŒã«ãªããããã§ãD(x)=ax+b,R(x)=cx+dãšãããšã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "ãåŸããããå³èŸºãå±éãããšã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "ãåŸãããããxã«ã©ããªå€ãå
¥ããŠããã®çåŒãæãç«ããªããã°ãªããªãã®ã§ãa = 1, b = 0, -a +c = 0, -b +d = 0ãåŸãããçµå±a=c=1, b=d=0ãåŸãããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "ãã®æ¹æ³ã¯ã©ã®é€æ³ã«å¯ŸããŠãçšããããšãåºæ¥ãããæ¬¡æ°ãé«ããªããšèšç®ãé£ãããªããæŽæ°ã®å Žåãšåæ§ãæŽåŒã®é€æ³ã§ãçç®ãçšããããšãåºæ¥ããäžã®äŸãçšããŠçµæã ããæžããšã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "ã®ããã«ãªãã)å³ã«æžãããåŒãå²ãããåŒã§ããã)å·Šã«æžãããåŒãå²ãåŒã§ããã--ã®äžçªäžã«æžãããåŒã¯åã§ãããæŽæ°ã®å²ãç®åæ§å·Šã«æžãããæ°ããé ã«å²ã£ãŠãããããã§ã¯æ¬¡æ°ã倧ããé
ãããå
ã«èšç®ãããé
ã§ãããå²ãããåŒã®äžã«ããåŒã¯åã®ç¬¬1é
ãå²ãåŒã«ãããŠåŸãåŒã§ãããããã§ã¯ã x ( x 2 â 1 ) {\\displaystyle x(x^{2}-1)} ã§ã x 3 â x {\\displaystyle x^{3}-x} ãšãªãããã ããæŽæ°ã®é€æ³ãšåæ§ãäœãããããªããŠã¯ãªããªãããã®åŸãå²ãããåŒãã x 3 â x {\\displaystyle x^{3}-x} ãåŒããæ®ã£ãåŒãæ°ããå²ãããåŒãšããŠæ±ããããã§ã¯ãåŸãåŒãå²ãåŒãããäœæ¬¡ã§ããããšãããããã§èšç®ã¯çµäºã§ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "x 3 + 2 x 2 + 1 {\\displaystyle x^{3}+2x^{2}+1} ã x 4 + 4 x 2 + 3 x + 2 {\\displaystyle x^{4}+4x^{2}+3x+2} ãã x 2 + 2 x + 6 {\\displaystyle x^{2}+2x+6} ã§å²ã£ãåãšäœããæ±ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ãã®èšç®ã¯ã¢ãã¡ãŒã·ã§ã³ã䜿ã£ãŠ è©³ãã衚瀺ãããŠãããèšç®ææ³ã¯ã æŽæ°ã®å Žåã®çç®ãšåããããªææ³ã䜿ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "ãåŸãããã®ã§ãå x {\\displaystyle x} ãäœã â 6 x + 1 {\\displaystyle -6x+1} ã§ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "2ã€ç®ã®åŒã«ã€ããŠã¯ã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "ãåŸãããã ãã£ãŠãç㯠å x 2 â 2 x + 2 {\\displaystyle x^{2}-2x+2} ãäœã 11 x â 10 {\\displaystyle 11x-10} ã§ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "ãããŸã§ã§æŽåŒãæŽæ°ã®ããã«æ±ããæŽåŒã®é€æ³ãè¡ãªãæ¹æ³ã«ã€ããŠè¿°ã¹ããããã§ã¯ãæŽåŒã«å¯ŸããŠåæ°åŒãå®çŸ©ããæ¹æ³ã«ã€ããŠè¿°ã¹ããåæ°åŒãšã¯ãæŽæ°ã«å¯Ÿããåæ°ã®ããã«ã逿³ã«ãã£ãŠçããåŒã§ãããããã§ã逿³ãè¡ãªãåŒã¯ã©ã®ãããªãã®ã§ãå·®ãæ¯ããªããåæ°åŒã§ã¯ãååã«å²ãããåŒãæžãã忝ã«å²ãåŒãæžããäŸãã°ã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "ã¯ãååx+1ã忝 x 2 + 4 {\\displaystyle x^{2}+4} ã®åæ°åŒã§ãããåæ°åŒã«å¯ŸããŠãçŽåãéåãååšãããçŽåã¯å
±éå æ°ãæã£ãåå忝ããã€åæ°åŒã§çšããããããã®æã«ã¯åå忝ãå
±éå æ°ã§å²ããåŒãç°¡åã«ããããšãåºæ¥ããéåã¯ãåæ°åŒã®å æ³ã®æã«ããçšããããããåå忝ã«åãæŽåŒããããŠãåæ°åŒãå€åããªãæ§è³ªãçšããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "ãç°¡åã«ããããŸãã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "ãèšç®ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "ã«ã€ããŠååãšåæ¯ãå æ°åè§£ãããšãåæ¹ãšãã«",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "ãå æ°ãšããŠå«ãã§ããããšãåããããã®ãšããå
±éã®å æ°ã¯çŽåããããšãå¿
èŠã§ãããèšç®ãããå€ã¯ã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "ãšãªãã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "次ã®åé¡ã§ã¯ã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ãèšç®ããããã®ãšãã䞡蟺ã®åæ¯ãããããå¿
èŠãããããä»åã«ã€ããŠã¯ãåçŽã«ããããã®åæ°åŒã®ååãšåæ¯ã«åã
ã®åæ¯ããããŠåæ¯ãçµ±äžããã°ãããèšç®ãããšã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ãšãªãã åæ°åŒã®ä¹æ³ã¯ãåå忝ãå¥ã
ã«ãããã°ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "次ã®èšç®ãããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "(I)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "(II)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "(I)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "(II)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "忝ãç©ã®åœ¢ã§ããåæ°åŒãäºã€ã®åæ°åŒã®åãå·®ã§è¡šãããåŒã«å€åœ¢ããæäœãéšååæ°åè§£ãšããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "1 x ( x + 1 ) {\\displaystyle {\\frac {1}{x(x+1)}}} ãš 1 ( x + 1 ) ( x + 3 ) {\\displaystyle {\\frac {1}{(x+1)(x+3)}}} ãåæ°åŒã®åãŸãã¯å·®ã®åœ¢ã§è¡šãã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "ãšå€åœ¢ã§ããã®ã§ã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "ãšãªããçŽåãããš",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "ãšãªãã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "次ã®åé¡ã§ã¯ã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "ãšå€åœ¢ããããšã«ãã£ãŠã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "ãšãªãã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "ãšæ±ãŸãã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "éšååæ°åè§£ã®æäœãéã«èŸ¿ããšãåæ°åŒã®éåã®æäœãšäžèŽããã ã€ãŸããéšååæ°åè§£ã¯éåã®éã®æäœã§ããã ååã宿°ã®å Žåã«ã¯ãäžãšåæ§ã®æ¹æ³ã§éšååæ°åè§£ããããšãã§ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "1. 3 ( x â 9 ) ( x â 4 ) {\\displaystyle {\\frac {3}{(x-9)(x-4)}}}",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "2. 7 ( 3 x â 1 ) ( 5 â 2 x ) {\\displaystyle {\\frac {7}{(3x-1)(5-2x)}}}",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "éšååæ°åè§£ã¯æ°åã®åã®èšç®ãç©åèšç®ã埮åãå©çšããäžçåŒã®èšŒæçã«åœ¹ç«ã€ãéèŠãªå€åœ¢ã§ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "çåŒ ( a + b ) 2 = a 2 + 2 a b + b 2 {\\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}} ã¯ãæå a , b {\\displaystyle a,b} ã«ã©ã®ãããªå€ã代å
¥ããŠãæãç«ã€ããã®ãããªçåŒãæçåŒ(ãããšããã)ãšããã çåŒ 1 x â 1 + 1 x + 1 = 2 x x 2 â 1 {\\displaystyle {\\frac {1}{x-1}}+{\\frac {1}{x+1}}={\\frac {2x}{x^{2}-1}}} ã¯ã䞡蟺ãšã x = 1 , â 1 {\\displaystyle x=1,-1} ã代å
¥ããããšã¯ã§ããªããããã®ä»ã®å€ã§ããã°ä»£å
¥ããããšãã§ãããŸãã©ã®ãããªå€ã代å
¥ããŠãçåŒãæãç«ã£ãŠããããããæçåŒãšåŒã¶ã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "ãã£ãœãã x 2 â x â 2 = 0 {\\displaystyle x^{2}-x-2=0} ã¯ãx=2 ãŸã㯠x=ãŒ1 ã代å
¥ãããšãã ãæãç«ã€ãããã®ããã«æåã«ç¹å®ã®å€ã代å
¥ãããšãã«ã ãæãç«ã€åŒã®ããšãæ¹çšåŒãšåŒã³ãæçåŒãšã¯åºå¥ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "çåŒ a x 2 + b x + c = 0 {\\displaystyle ax^{2}+bx+c=0} ã x {\\displaystyle x} ã«ã€ããŠã®æçåŒã§ããã®ã¯ã©ã®ãããªå ŽåããèããŠã¿ããã ããåŒãã x {\\displaystyle x} ã«ã€ããŠã®æçåŒã§ããããšã¯ããã®åŒã® x {\\displaystyle x} ã«ã©ã®ãããªå€ã代å
¥ããŠãããã®çåŒã¯æãç«ã€ãšããæå³ã§ããããªã®ã§ãäŸãã° x {\\displaystyle x} ã« â 1 , 0 , 1 {\\displaystyle -1\\ ,\\ 0\\ ,\\ 1} ã代å
¥ããåŒ",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "ã¯ãã¹ãŠæãç«ã€å¿
èŠãããããããè§£ããš",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "ãªã®ã§ãçåŒ a x 2 + b x + c = 0 {\\displaystyle ax^{2}+bx+c=0} ã x {\\displaystyle x} ã«ã€ããŠã®æçåŒã«ãªããªãã°ã a = b = c = 0 {\\displaystyle a=b=c=0} ã§ãªããã°ãªããªãããšããããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "äžè¬ã«ãçåŒ a x 2 + b x + c = a â² x 2 + b â² x + c â² {\\displaystyle ax^{2}+bx+c=a'x^{2}+b'x+c'} ãæçåŒã§ããããšãšã ( a â a â² ) x 2 + ( b â b â² ) x + ( c â c â² ) = 0 {\\displaystyle (a-a')x^{2}+(b-b')x+(c-c')=0} ãæçåŒã§ããããšãšåãã§ããã ãã£ãŠ",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "ãŸãšãããšæ¬¡ã®ããã«ãªãã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "次ã®çåŒã x {\\displaystyle x} ã«ã€ããŠã®æçåŒãšãªãããã«ã a , b , c {\\displaystyle a\\ ,\\ b\\ ,\\ c} ã®å€ãæ±ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "çåŒã®å³èŸºã x {\\displaystyle x} ã«ã€ããŠæŽçãããš",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "ãã®çåŒã x {\\displaystyle x} ã«ã€ããŠã®æçåŒãšãªãã®ã¯ã䞡蟺ã®åãæ¬¡æ°ã®é
ã®ä¿æ°ãçãããšãã§ããããã£ãŠ",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "ãããè§£ããš",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "æçåŒãå©çšããããšã§ãè€éãªåæ°åŒã®éšååæ°åè§£ãã§ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "ãšããã 忝ãæã£ãŠ",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "ããªãã¡",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "ããã x {\\displaystyle x} ã®æçåŒãªã®ã§ãä¿æ°ãæ¯èŒããŠ",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "ããªãã¡",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "æåã®çåŒã«ä»£å
¥ããŠã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "次ã®åé¡ã¯ã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "ãšããããšã«ãããäžã®åé¡ãšåæ§ã«ããŠ",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "ãšæ±ãŸãã®ã§ã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "a~fã宿°ãšããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "a x 2 + b y 2 + c x y + d x + e y + f = 0 {\\displaystyle ax^{2}+by^{2}+cxy+dx+ey+f=0} ãx, yã«ã€ããŠã®æçåŒã ãšããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 104,
"tag": "p",
"text": "巊蟺ãxã«ã€ããŠæŽçãããšã a x 2 + ( c y + d ) x + ( b y 2 + e y + f ) = 0 {\\displaystyle ax^{2}+(cy+d)x+(by^{2}+ey+f)=0} ã§ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 105,
"tag": "p",
"text": "ãããxã«ã€ããŠã®æçåŒãªã®ã§ã a = 0 , c y + d = 0 , b y 2 + e y + f = 0 {\\displaystyle a=0,cy+d=0,by^{2}+ey+f=0} ãæãç«ã€ã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 106,
"tag": "p",
"text": "ãããã¯æŽã«yã«ã€ããŠã®æçåŒãªã®ã§ã以äžã®çåŒãåŸãããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 107,
"tag": "p",
"text": "éã«ããããæãç«ãŠã°å
ã®åŒã¯æããã«x, yã«ã€ããŠã®æçåŒã§ãã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 108,
"tag": "p",
"text": "",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 109,
"tag": "p",
"text": "x 2 + a x y + 6 y 2 â x + 5 y + b = ( x â 2 y + c ) ( x â 3 y + d ) {\\displaystyle x^{2}+axy+6y^{2}-x+5y+b=(x-2y+c)(x-3y+d)} ãx,yã«ã€ããŠã®æçåŒãšãªãããã«a,b,c,dãå®ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 110,
"tag": "p",
"text": "",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 111,
"tag": "p",
"text": "ããã»ã©ç޹ä»ãããæçåŒããšããèšèã䜿ã£ãŠã蚌æãã®æå³ã説æãããªãããçåŒã蚌æããããšã¯ããã®åŒãæçåŒã§ããããšã瀺ãããšã§ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 112,
"tag": "p",
"text": "äžè¬ã«ãçåŒ A=B ã蚌æããããã«ã¯ã次ã®ãããªæé ã®ãããããå®è¡ããã°ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 113,
"tag": "p",
"text": "ãã®ãšããå€åœ¢ã¯åå€å€åœ¢ã§ãªããã°ãªããªãããšã«æ³šæã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 114,
"tag": "p",
"text": "",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 115,
"tag": "p",
"text": "( a + b ) 2 â ( a â b ) 2 = 4 a b {\\displaystyle (a+b)^{2}-(a-b)^{2}=4ab} ãæãç«ã€ããšã蚌æããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 116,
"tag": "p",
"text": "(蚌æ) 巊蟺ãå±éãããšã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 117,
"tag": "p",
"text": "ãšãªããããã¯å³èŸºã«çããããã£ãŠãçåŒ ( a + b ) 2 â ( a â b ) 2 = 4 a b {\\displaystyle (a+b)^{2}-(a-b)^{2}=4ab} ã¯èšŒæãããã(çµ)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 118,
"tag": "p",
"text": "( x + y ) 2 + ( x â y ) 2 = 2 ( x 2 + y 2 ) {\\displaystyle (x+y)^{2}+(x-y)^{2}=2(x^{2}+y^{2})} ãæãç«ã€ããšã蚌æããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 119,
"tag": "p",
"text": "巊蟺ãèšç®ãããšã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 120,
"tag": "p",
"text": "ããã¯å³èŸºã«çããããã£ãŠçåŒãæãç«ã€ããšã蚌æãããã(çµ)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 121,
"tag": "p",
"text": "",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 122,
"tag": "p",
"text": "次ã®çåŒãæãç«ã€ããšã蚌æããã (I)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 123,
"tag": "p",
"text": "",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 124,
"tag": "p",
"text": "(I) (巊蟺) = ( 36 a 2 + 84 a b + 49 b 2 ) + ( 49 a 2 â 84 a b + 36 a 2 ) = 85 a 2 + 85 b 2 {\\displaystyle =(36a^{2}+84ab+49b^{2})+(49a^{2}-84ab+36a^{2})=85a^{2}+85b^{2}} (å³èŸº) = ( 81 a 2 + 36 a b + 4 b 2 ) + ( 4 a 2 â 36 a b + 81 b 2 ) = 85 a 2 + 85 b 2 {\\displaystyle =(81a^{2}+36ab+4b^{2})+(4a^{2}-36ab+81b^{2})=85a^{2}+85b^{2}} 䞡蟺ãšãåãåŒã«ãªããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 125,
"tag": "p",
"text": "æçåŒã§ãªããšãããäžããããæ¡ä»¶ããçåŒã蚌æããããšãã§ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 126,
"tag": "p",
"text": "ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 127,
"tag": "p",
"text": "ãã£ãŠã a 3 + b 3 + c 3 = 3 a b c {\\displaystyle a^{3}+b^{3}+c^{3}=3abc} ã§ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 128,
"tag": "p",
"text": "ãŸãã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 129,
"tag": "p",
"text": "ãããäžåŒã®å³èŸºãkãšãããšã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 130,
"tag": "p",
"text": "ãªã®ã§ã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 131,
"tag": "p",
"text": "ãã£ãŠã a + c b + d = a â c b â d {\\displaystyle {\\frac {a+c}{b+d}}={\\frac {a-c}{b-d}}} ã§ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 132,
"tag": "p",
"text": "ãªããæ¯ a : b {\\displaystyle a:b} ã«ã€ã㊠a b {\\displaystyle {\\frac {a}{b}}} ãæ¯ã®å€ãšããããŸãã a : b = c : d ⺠a b = c d {\\displaystyle a:b=c:d\\iff {\\frac {a}{b}}={\\frac {c}{d}}} ãæ¯äŸåŒãšããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 133,
"tag": "p",
"text": "a x = b y = c z {\\displaystyle {\\frac {a}{x}}={\\frac {b}{y}}={\\frac {c}{z}}} ãæãç«ã€ãšãã a : b : c = x : y : z {\\displaystyle a:b:c=x:y:z} ãšè¡šããããã飿¯ãšããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 134,
"tag": "p",
"text": "",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 135,
"tag": "p",
"text": "",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 136,
"tag": "p",
"text": "äžçåŒã®ããŸããŸãªå
¬åŒã«ã€ããŠã¯ã次ã®4ã€ã®åŒãåºæ¬çãªåŒãšããŠå°åºã§ããå Žåãããããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 137,
"tag": "p",
"text": "髿 ¡æ°åŠã§ã¯ã次ã®4ã€ã®æ§è³ªã äžçåŒã®ãåºæ¬æ§è³ªããªã©ãšããŠç޹ä»ãããŠããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 138,
"tag": "p",
"text": "",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 139,
"tag": "p",
"text": "(3)ãš(4)ã«ã€ããŠã¯ãã²ãšã€ã®æ§è³ªãšã㊠ãŸãšããŠããæ€å®æç§æžããã(â» åæé€šãªã©)ã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 140,
"tag": "p",
"text": "æ°åŠIAã§ç¿ã£ãããªãã°ãã®æå³ã®èšå· â¹ {\\displaystyle \\Longrightarrow } ã䜿ããšã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 141,
"tag": "p",
"text": "ãšãæžããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 142,
"tag": "p",
"text": "äžè¿°ã®4ã€ã®åºæ¬æ§è³ªããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 143,
"tag": "p",
"text": "ã蚌æããŠã¿ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 144,
"tag": "p",
"text": "(蚌æ) ãŸã a>0 ãªã®ã§ãåºæ¬æ§è³ª(2)ãã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 145,
"tag": "p",
"text": "ã§ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 146,
"tag": "p",
"text": "ãã£ãŠã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 147,
"tag": "p",
"text": "ãªã®ã§ãåºæ¬æ§è³ª(1)ãã a + b > 0 {\\displaystyle a+b>0} ãæãç«ã€ã(çµ)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 148,
"tag": "p",
"text": "åæ§ã«ããŠã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 149,
"tag": "p",
"text": "ã蚌æã§ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 150,
"tag": "p",
"text": "ãããŸã§ã«ç€ºããããšãããäžçåŒ A â§ B {\\displaystyle A\\geqq B} ã蚌æãããå Žåã«ã¯ã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 151,
"tag": "p",
"text": "ã蚌æããã°ããããšãããã£ãããã¡ãã®æ¹ã蚌æããããå Žåãããããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 152,
"tag": "p",
"text": "äžçåŒã蚌æããéã«æ ¹æ ãšããåºæ¬çãªäžçåŒãšããŠãæ¬¡ã®æ§è³ªãããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 153,
"tag": "p",
"text": "ãã®å®ç(ã宿°ã2ä¹ãããšãããªãããŒã以äžã§ããã)ããåºæ¬æ§è³ª(3),(4)ã䜿ã£ãŠèšŒæããŠã¿ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 154,
"tag": "p",
"text": "(蚌æ)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 155,
"tag": "p",
"text": "aãæ£ã®å Žåãšè² ã®å Žåãš0ã®å Žåã®3éãã«å Žåããããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 156,
"tag": "p",
"text": "[aãæ£ã®å Žå] ãã®ãšããåºæ¬æ§è³ª(3)ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 157,
"tag": "p",
"text": "ã§ãããããªãã¡ã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 158,
"tag": "p",
"text": "ã§ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 159,
"tag": "p",
"text": "[aãè² ã®å Žå] ãã®ãšããåºæ¬æ§è³ª(4)ãã 0 a < a a {\\displaystyle 0a<aa} ã§ãããããªãã¡ã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 160,
"tag": "p",
"text": "ã§ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 161,
"tag": "p",
"text": "[aããŒãã®å Žå] ãã®ãšãã a 2 = 0 {\\displaystyle a^{2}=0} ã§ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 162,
"tag": "p",
"text": "ãã£ãŠããã¹ãŠã®å Žåã«ã€ã㊠a 2 â§ 0 {\\displaystyle a^{2}\\geqq 0} (çµ)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 163,
"tag": "p",
"text": "ãã®ããšãšåºæ¬æ§è³ª(1)(2)ãããæ¬¡ãæãç«ã€ããšããããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 164,
"tag": "p",
"text": "次ã®äžçåŒãæãç«ã€ããšã蚌æããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 165,
"tag": "p",
"text": "(蚌æ)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 166,
"tag": "p",
"text": "ã蚌æããã°ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 167,
"tag": "p",
"text": "巊蟺ãå±éã㊠ãŸãšãããšã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 168,
"tag": "p",
"text": "ãšãªãã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 169,
"tag": "p",
"text": "äžåŒã®æåŸã®åŒã®é
ã«ã€ããŠã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 170,
"tag": "p",
"text": "ã ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 171,
"tag": "p",
"text": "ã§ããããã£ãŠ",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 172,
"tag": "p",
"text": "ã§ããã(çµ)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 173,
"tag": "p",
"text": "2ã€ã®æ£ã®æ° a, b ã a>b ãŸã㯠aâ§b ãªãã°ã䞡蟺ã2ä¹ããŠã倧å°é¢ä¿ã¯åããŸãŸã§ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 174,
"tag": "p",
"text": "ã€ãŸãã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 175,
"tag": "p",
"text": "ã§ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 176,
"tag": "p",
"text": "a>bãšãããä»®å®ãããa,b ã¯æ£ã®æ°ãªã®ã§ã ( a + b ) > 0 {\\displaystyle (a+b)>0} ã§ãããå¥ã®ä»®å®ããã a > b ãªã®ã§ã ( a â b ) > 0 {\\displaystyle (a-b)>0} ã§ãããããã£ãŠã a 2 â b 2 = ( a + b ) ( a â b ) > 0 {\\displaystyle a^{2}-b^{2}=(a+b)(a-b)>0}",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 177,
"tag": "p",
"text": "éã«ã a 2 â b 2 > 0 {\\displaystyle a^{2}-b^{2}>0} ã®ãšãã ( a + b ) ( a â b ) > 0 {\\displaystyle (a+b)(a-b)>0} ã§ããã a > 0 , b > 0 {\\displaystyle a>0,b>0} ãªã®ã§ a + b > 0 {\\displaystyle a+b>0} ã§ããããã£ãŠã a â b > 0 {\\displaystyle a-b>0} ãªã®ã§ã a > b {\\displaystyle a>b} ã§ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 178,
"tag": "p",
"text": "ãã£ãŠã a > b ⺠a 2 > b 2 {\\displaystyle a>b\\quad \\Longleftrightarrow \\quad a^{2}>b^{2}} ã§ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 179,
"tag": "p",
"text": "aâ§bã®å Žåãåæ§ã«èšŒæã§ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 180,
"tag": "p",
"text": "ç·Žç¿ãšããŠã次ã®åé¡ãåããŠã¿ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 181,
"tag": "p",
"text": "",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 182,
"tag": "p",
"text": "a > 0 {\\displaystyle a>0} , b > 0 {\\displaystyle b>0} ã®ãšããæ¬¡ã®äžçåŒã蚌æããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 183,
"tag": "p",
"text": "(蚌æ) äžçåŒã®äž¡èŸºã¯æ£ã§ããã®ã§ã䞡蟺ã®å¹³æ¹ã®å·®ãèããã°ããã䞡蟺ã®å¹³æ¹ã®å·®ã¯",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 184,
"tag": "p",
"text": "ã§ãããããã§ãa,b ã¯ãšãã«æ£ã®å®æ°ãªã®ã§ã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 185,
"tag": "p",
"text": "ã§ããããšãçšããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 186,
"tag": "p",
"text": "ã§ããã®ã§ã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 187,
"tag": "p",
"text": "ãšãªãããã£ãŠã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 188,
"tag": "p",
"text": "ã§ããã(çµ)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 189,
"tag": "p",
"text": "宿° a ã®çµ¶å¯Ÿå€ |a| ã«ã€ããŠã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 190,
"tag": "p",
"text": "ã§ãããããæ¬¡ã®ããšãæãç«ã€ã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 191,
"tag": "p",
"text": "|a|â§a , |a|â§ ãŒa , |a|=a",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 192,
"tag": "p",
"text": "ãŸãã2ã€ã®å®æ° a, b ã®çµ¶å¯Ÿå€ |ab| ã«ã€ããŠã¯ã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 193,
"tag": "p",
"text": "ãæãç«ã€ã®ã§ãããã«ããã« |ab|â§0 , |a||b|â§0 ãçµã¿åãããŠã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 194,
"tag": "p",
"text": "|ab| = |a| |b| ãæãç«ã€ã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 195,
"tag": "p",
"text": "(äŸé¡)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 196,
"tag": "p",
"text": "次ã®äžçåŒã蚌æããããŸããçå·ãæãç«ã€ã®ã¯ ã©ã®ãããªå Žåãã 調ã¹ãã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 197,
"tag": "p",
"text": "",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 198,
"tag": "p",
"text": "䞡蟺ã®å¹³æ¹ã®å·®ãèãããšã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 199,
"tag": "p",
"text": "ãããããæ£ãªããäžããããäžçåŒ |a|+|b| â§ |a+b| ãæ£ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 200,
"tag": "p",
"text": "ããã§ã |a| |b| â§ ab ã§ããã®ã§ã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 201,
"tag": "p",
"text": "ã§ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 202,
"tag": "p",
"text": "ãããã£ãŠã |a|+|b| â§ |a+b| ã§ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 203,
"tag": "p",
"text": "çå·ãæãç«ã€ã®ã¯ |a| |b| = ab ã®å Žåãããªãã¡ ab â§ 0 ã®å Žåã§ããã(蚌æ ããã)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 204,
"tag": "p",
"text": "",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 205,
"tag": "p",
"text": "2ã€ã®æ° a {\\displaystyle a} , b {\\displaystyle b} ã«å¯Ÿãã a + b 2 {\\displaystyle {\\frac {a+b}{2}}} ãçžå å¹³å(ããããžããã)ãšèšãã a b {\\displaystyle {\\sqrt {ab}}} ãçžä¹å¹³å(ããããããžããã)ãšããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 206,
"tag": "p",
"text": "æ¬ããŒãžã§ã¯ã2åã®æ°ã®å¹³åã«ã€ããŠèå¯ããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 207,
"tag": "p",
"text": "çžå å¹³åãšçžä¹å¹³åã«ã€ããŠã次ã®é¢ä¿åŒãæãç«ã€ã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 208,
"tag": "p",
"text": "(蚌æ)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 209,
"tag": "p",
"text": "a â§ 0 , b â§ 0 {\\displaystyle a\\geqq 0,b\\geqq 0} ã®ãšã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 210,
"tag": "p",
"text": "( a â b ) 2 â§ 0 {\\displaystyle \\left({\\sqrt {a}}-{\\sqrt {b}}\\right)^{2}\\geqq 0} ã§ããããã ( a â b ) 2 2 â§ 0 {\\displaystyle {\\frac {\\left({\\sqrt {a}}-{\\sqrt {b}}\\right)^{2}}{2}}\\geqq 0} ãããã£ãŠ a + b 2 â§ a b {\\displaystyle {\\frac {a+b}{2}}\\geqq {\\sqrt {ab}}} çå·ãæãç«ã€ã®ã¯ã ( a â b ) 2 = 0 {\\displaystyle \\left({\\sqrt {a}}-{\\sqrt {b}}\\right)^{2}=0} ã®ãšããããªãã¡ a = b {\\displaystyle a=b} ã®ãšãã§ããã(蚌æ ããã)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 211,
"tag": "p",
"text": "",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 212,
"tag": "p",
"text": "å
¬åŒã®å©çšã§ã¯ãäžã®åŒ a + b 2 â§ a b {\\displaystyle {\\frac {a+b}{2}}\\geqq {\\sqrt {ab}}} ã®äž¡èŸºã«2ãããã a + b â§ 2 a b {\\displaystyle a+b\\geqq 2{\\sqrt {ab}}} ã®åœ¢ã®åŒã䜿ãå Žåãããã",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 213,
"tag": "p",
"text": "",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 214,
"tag": "p",
"text": "a > 0 {\\displaystyle a>0} , b > 0 {\\displaystyle b>0} ã®ãšããæ¬¡ã®äžçåŒãæãç«ã€ããšã蚌æããã (I)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 215,
"tag": "p",
"text": "(II)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 216,
"tag": "p",
"text": "(I) a > 0 {\\displaystyle a>0} ã§ããããã 1 a > 0 {\\displaystyle {\\frac {1}{a}}>0} ãã£ãŠ a + 1 a â§ 2 a à 1 a = 2 {\\displaystyle a+{\\frac {1}{a}}\\geqq 2{\\sqrt {a\\times {\\frac {1}{a}}}}=2} ãããã£ãŠ",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 217,
"tag": "p",
"text": "(II)",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 218,
"tag": "p",
"text": "a > 0 {\\displaystyle a>0} , b > 0 {\\displaystyle b>0} ã§ããããã b a > 0 {\\displaystyle {\\frac {b}{a}}>0} , a b > 0 {\\displaystyle {\\frac {a}{b}}>0} ãã£ãŠ b a + a b + 2 â§ 2 b a à a b + 2 = 2 + 2 = 4 {\\displaystyle {\\frac {b}{a}}+{\\frac {a}{b}}+2\\geqq 2{\\sqrt {{\\frac {b}{a}}\\times {\\frac {a}{b}}}}+2=2+2=4} ãããã£ãŠ",
"title": "åŒãšèšŒæ"
},
{
"paragraph_id": 219,
"tag": "p",
"text": "2ä¹ããŠè² ã«ãªãæ°ããšãããã®ãèããããã®ãããªæ°ã¯ãäžåŠã§ç¿ã£ã宿°ã®äžã«ã¯ãªãããšããããããªããªãã°ãæ£ã®æ°ã§ãè² ã®æ°ã§ã2ä¹ãããšç¬Šå·ãæã¡æ¶ããŠæ£ã®æ°ã«ãªã£ãŠããŸãããã§ãããããã§é«æ ¡ã§ã¯ã2ä¹ããŠè² ã«ãªããšããæ§è³ªãæã€æ°ã®æŠå¿µãæ°ããå°å
¥ããããšã«ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 220,
"tag": "p",
"text": "ãšããæ¹çšåŒãèããããã®æ¹çšåŒã®è§£ã¯å®æ°ã«ã¯ãªããããã§ããã®æ¹çšåŒã®è§£ãšãªãæ°ãæ°ããäœãããã®åäœãæå i {\\displaystyle i} ã§ããããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 221,
"tag": "p",
"text": "ãã® i {\\displaystyle i} ã®ããšãèæ°åäœ(ããããããã)ãšåŒã¶ã(èæ°åäœã®èšå· i ãè±èªã®ã¢ã«ãã¡ãããã®ã¢ã€ã®å°æåã§ã imaginary unit ã«ç±æ¥ãããšèããããŠããã)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 222,
"tag": "p",
"text": "1 + i {\\displaystyle 1+i} ã 2 + 5 i {\\displaystyle 2+5i} ã®ããã«ãèæ°åäœ i {\\displaystyle i} ãšå®æ° a , b {\\displaystyle a,b} ãçšããŠ",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 223,
"tag": "p",
"text": "ãšè¡šãããšãã§ããæ°ãè€çŽ æ°(ãµãããã)ãšããããã®ãšããaããã®è€çŽ æ°ã®å®éš(ãã€ã¶)ãšãããbãèéš(ããã¶)ãšããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 224,
"tag": "p",
"text": "äŸãã°ã 1 + i , 2 + 5 i , 9 2 + 7 2 i , 4 i , 3 {\\displaystyle 1+i,\\quad 2+5i,\\quad {\\frac {9}{2}}+{\\frac {7}{2}}i,\\quad 4i,\\quad 3} ã¯ãããããè€çŽ æ°ã§ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 225,
"tag": "p",
"text": "è€çŽ æ° a+bi ã¯(ãã ã aãšbã¯å®æ°)ãbã0ã®å Žåã«ãããã宿°ãšèŠãããšãã§ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 226,
"tag": "p",
"text": "èšãæ¹ãããããšãè€çŽ æ°ãåºæºã«èãããšã宿°ãšã¯ã a+0i ã®ãããªãèéšã®ä¿æ°ããŒãã«ãªãè€çŽ æ°ã®ããšã§ãããšãèšããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 227,
"tag": "p",
"text": "4iã®ãããªãèéšã0以å€ã§å®éšããŒãã®è€çŽ æ°ãçŽèæ°(ãã
ããããã)ãšåŒã¶ãçŽèæ°ã¯ã2ä¹ãããšè² ã«ãªãæ°ã§ããã 宿°ãèéšã0ã®è€çŽ æ°ãšèããããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 228,
"tag": "p",
"text": "宿°ã§ãªãè€çŽ æ°ã®ããšããèæ°ã(ãããã)ãšããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 229,
"tag": "p",
"text": "2ã€ã®è€çŽ æ° a+bi ãš c+di ãšãçãããšã¯ã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 230,
"tag": "p",
"text": "ã§ããããšã§ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 231,
"tag": "p",
"text": "ã€ãŸãã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 232,
"tag": "p",
"text": "ãšãã«ãè€çŽ æ°a+bi ã 0ã§ãããšã¯ãa=0 ã〠b=0 ã§ããããšã§ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 233,
"tag": "p",
"text": "è€çŽ æ° z = a + b i {\\displaystyle z=a+bi} ã«å¯ŸããŠãèéšã®ç¬Šå·ãå転ãããè€çŽ æ° a â b i {\\displaystyle a-bi} ã®ããšããå
±åœ¹(ããããã)ãªè€çŽ æ°ããŸãã¯ãè€çŽ æ° z {\\displaystyle z} ã®å
±åœ¹ãã®ããã«åŒã³ã z Ì {\\displaystyle {\\bar {z}}} ã§ããããããªãããå
±åœ¹ãã¯ãå
±è»ãã®åžžçšæŒ¢åã«ããæžãæãã§ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 234,
"tag": "p",
"text": "宿°aãšå
±åœ¹ãªè€çŽ æ°ã¯ããã®å®æ° a èªèº«ã§ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 235,
"tag": "p",
"text": "è€çŽ æ° z=a+bi ã«ã€ããŠ",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 236,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 237,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 238,
"tag": "p",
"text": "è€çŽ æ°ã«ãååæŒç®(å æžä¹é€)ãå®çŸ©ãããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 239,
"tag": "p",
"text": "è€çŽ æ°ã®æŒç®ã§ã¯ãèæ°åäœ i {\\displaystyle i} ããéåžžã®æåã®ããã«æ±ã£ãŠèšç®ãããäžè¬ã«è€çŽ æ° z , w {\\displaystyle z\\ ,\\ w} ãã z = a + b i , w = c + d i {\\displaystyle z=a+bi\\ ,\\ w=c+di} ã§äžãããããšã(ãã ã a , b , c , d {\\displaystyle a\\ ,\\ b\\ ,\\ c\\ ,\\ d} ã¯å®æ°ãšãã)ã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 240,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 241,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 242,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 243,
"tag": "p",
"text": "ãšãããµãã«è€çŽ æ°ã®å æžä¹é€ã®èšç®æ³ãå®ããããŠããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 244,
"tag": "p",
"text": "乿³ã®å®çŸ©ã¯ãäžèŠãããšé£ãããã«ã¿ãããã宿°ã®åé
æ³åãšåæ§ã«å±éããŠããæåŸã« iã«ãã€ãã¹1ã代å
¥ããŠãã£ãã ãã§ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 245,
"tag": "p",
"text": "逿³ã®å®çŸ©ã¯ãååãšåæ¯ã«ã忝ãšå
±åœ¹ãªåœ¢ã®åŒã æãç® ããã ãã§ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 246,
"tag": "p",
"text": "乿³ã逿³ã®å®çŸ©åŒãæèšããå¿
èŠã¯ç¡ããèšç®ã®éã«ã¯ãå¿
èŠã«å¿ããŠåé
æ³åãå
±åœ¹ãªã©ã®ãå¿
èŠãªåŒå€åœ¢ãè¡ãã°ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 247,
"tag": "p",
"text": "äŸé¡",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 248,
"tag": "p",
"text": "2ã€ã®è€çŽ æ°",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 249,
"tag": "p",
"text": "ã«ã€ããŠã a + b {\\displaystyle a+b} ãš a b {\\displaystyle ab} ãš a b {\\displaystyle {\\frac {a}{b}}} ããããããèšç®ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 250,
"tag": "p",
"text": "è§£ç",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 251,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 252,
"tag": "p",
"text": "ã§ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 253,
"tag": "p",
"text": "ããããã«ç°¡åã«ã§ããªãã ããããå®ã¯ãã¡ãã£ãšãããã¯ããã¯ãçšããã°ããèŠããã圢ã«ã§ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 254,
"tag": "p",
"text": "åæ°ã¯åæ¯ãšååã«åãæ°ããããŠããã£ãã®ã§ã忝ãšååã«åæ¯ã®å
±åœ¹ããããŠã¿ãããããšã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 255,
"tag": "p",
"text": "ãåŸãããããã®åœ¢ã®ã»ããå
ã®åŒããããã£ãšèŠããã圢ã§ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 256,
"tag": "p",
"text": "ãã®ãããªæäœã忝ã®å®æ°åãšããããšããããæ°åŠIã§åŠç¿ããå±éã»å æ°åè§£å
¬åŒ ( a + b ) ( a â b ) = a 2 â b 2 {\\displaystyle (a+b)(a-b)=a^{2}-b^{2}} ã®ç°¡åãªå¿çšã§ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 257,
"tag": "p",
"text": "æ°ã®ç¯å²ãè€çŽ æ°ã«ãŸã§æ¡åŒµãããšãè² ã®æ°ã®å¹³æ¹æ ¹ãèããããšãã§ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 258,
"tag": "p",
"text": "äŸãšããŠã -5 ã®å¹³æ¹æ ¹ã«ã€ããŠèããŠã¿ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 259,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 260,
"tag": "p",
"text": "ã§ããããã -5 ã®å¹³æ¹æ ¹ã¯ 5 i {\\displaystyle {\\sqrt {5}}\\ i} ãš â 5 i {\\displaystyle -{\\sqrt {5}}\\ i} ã§ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 261,
"tag": "p",
"text": "â 5 {\\displaystyle {\\sqrt {-5}}} ãšã¯ã 5 i {\\displaystyle {\\sqrt {5}}\\ i} ã®ããšãšããã â â 5 {\\displaystyle -{\\sqrt {-5}}} ãšã¯ã â 5 i {\\displaystyle -{\\sqrt {5}}\\ i} ã®ããšã§ããã ãšãã« â 1 = i {\\displaystyle {\\sqrt {-1}}\\ =\\ i} ã§ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 262,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 263,
"tag": "p",
"text": "ããŠã-5 ã®å¹³æ¹æ ¹ã¯ãæ¹çšåŒ x 2 = â 5 {\\displaystyle x^{2}=-5} ã®è§£ã§ãããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 264,
"tag": "p",
"text": "ãã®æ¹çšåŒãç§»é
ããããšã«ããã-5 ã®å¹³æ¹æ ¹ã¯ã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 265,
"tag": "p",
"text": "ã®è§£ã§ãããšããããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 266,
"tag": "p",
"text": "ããã«å æ°åè§£ãããããšã«ããã-5 ã®å¹³æ¹æ ¹ã¯æ¹çšåŒ",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 267,
"tag": "p",
"text": "ã®è§£ã§ããããšããããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 268,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 269,
"tag": "p",
"text": "(I) â 2 â 6 {\\displaystyle {\\sqrt {-2}}\\ {\\sqrt {-6}}} ãèšç®ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 270,
"tag": "p",
"text": "(I)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 271,
"tag": "p",
"text": "ãã®ããã«ããŸãããã€ãã¹ã®æ°ã®å¹³æ¹æ ¹ãåºãŠãããããŸãèæ°åäœ i ãçšããåŒã«æžãæããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 272,
"tag": "p",
"text": "ãã®ããšãããç®ãããŠããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 273,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 274,
"tag": "p",
"text": "(II) 2 â 3 {\\displaystyle {\\frac {\\sqrt {2}}{\\sqrt {-3}}}} ãèšç®ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 275,
"tag": "p",
"text": "(III) 2次æ¹çšåŒ x 2 = â 7 {\\displaystyle x^{2}=-7} ãè§£ãã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 276,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 277,
"tag": "p",
"text": "(II)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 278,
"tag": "p",
"text": "(III)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 279,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 280,
"tag": "p",
"text": "è€çŽ æ°ã®å¿çšãšããŠãããã§ã¯2次æ¹çšåŒã®æ§è³ªã«ã€ããŠè¿°ã¹ããä»»æã®2次æ¹çšåŒã¯ãè§£ã®å
¬åŒã«ãã£ãŠè§£ãããããšãé«çåŠæ ¡æ°åŠIã§è¿°ã¹ããããããè§£ã®å
¬åŒã«å«ãŸããæ ¹å·ã®äžèº«ãè² ã®æ°ã®å Žåã«ã¯å®æ°è§£ãååšããªãããšã«æ³šæããå¿
èŠãããã2次æ¹çšåŒ",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 281,
"tag": "p",
"text": "ã®è§£ã®å
¬åŒã¯ã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 282,
"tag": "p",
"text": "ã§ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 283,
"tag": "p",
"text": "å€å¥åŒ D {\\displaystyle D} ã¯",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 284,
"tag": "p",
"text": "ã«ãã£ãŠå®çŸ©ããããå€å¥åŒã¯ãè§£ã®å
¬åŒã®æ ¹å·(ã«ãŒãèšå·ã®ããš)ã®äžèº«ã«çãããå€å¥åŒã®æ£è² ã«ãã£ãŠ2次æ¹çšåŒã宿°è§£ãæã€ãã©ãããæ±ºãŸãã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 285,
"tag": "p",
"text": "D {\\displaystyle D} ãè² ã®ãšãã«ã¯ãã®2次æ¹çšåŒã¯å®æ°ã®ç¯å²ã«ã¯è§£ãæããªãã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 286,
"tag": "p",
"text": "å€å¥åŒ D {\\displaystyle D} ãè² ã®æ°ã§ãã£ããšããxã®è§£ã¯ç°ãªã2ã€ã®èæ°ã«ãªãããã®2ã€ã®è§£ã¯ å
±åœ¹ ã®é¢ä¿ã«ãªã£ãŠããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 287,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 288,
"tag": "p",
"text": "è€çŽ æ°ãçšããŠã2次æ¹çšåŒ (1)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 289,
"tag": "p",
"text": "(2)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 290,
"tag": "p",
"text": "(3)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 291,
"tag": "p",
"text": "ãè§£ãã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 292,
"tag": "p",
"text": "è§£ã®å
¬åŒãçšããŠè§£ãã°ããã(1)ã ããèšç®ãããšã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 293,
"tag": "p",
"text": "ãšãªãã ä»ãåãããã«æ±ãããšãåºæ¥ãã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 294,
"tag": "p",
"text": "以éã®è§£çã¯ã (2)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 295,
"tag": "p",
"text": "(3)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 296,
"tag": "p",
"text": "ãšãªãã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 297,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 298,
"tag": "p",
"text": "æ¹çšåŒã®è§£ã§ã宿°ã§ãããã®ã 宿°è§£ ãšããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 299,
"tag": "p",
"text": "æ¹çšåŒã®è§£ã§ãèæ°ã§ãããã®ã èæ°è§£ ãšããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 300,
"tag": "p",
"text": "2次æ¹çšåŒ a x 2 + b x + c = 0 {\\displaystyle ax^{2}+bx+c=0} ã®è§£ã¯ x = â b ± b 2 â 4 a c 2 a {\\displaystyle x={\\frac {-b\\pm {\\sqrt {b^{2}-4ac}}}{2a}}} ã§ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 301,
"tag": "p",
"text": "2次æ¹çšåŒã®è§£ã®çš®é¡ã¯ãè§£ã®å
¬åŒã®äžã®æ ¹å·ã®äžã®åŒ b 2 â 4 a c {\\displaystyle b^{2}-4ac} ã®ç¬Šå·ãèŠãã°å€å¥ããããšãã§ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 302,
"tag": "p",
"text": "ãã®åŒ b 2 â 4 a c {\\displaystyle b^{2}-4ac} ãã2次æ¹çšåŒ a x 2 + b x + c = 0 {\\displaystyle ax^{2}+bx+c=0} ã®å€å¥åŒ(ã¯ãã¹ã€ãã)ãšãããèšå· D {\\displaystyle D} ã§è¡šãã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 303,
"tag": "p",
"text": "ãŸããéè§£ã宿°è§£ã§ããã®ã§ã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 304,
"tag": "p",
"text": "ãšãããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 305,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 306,
"tag": "p",
"text": "次ã®2次æ¹çšåŒã®è§£ãå€å¥ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 307,
"tag": "p",
"text": "(I)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 308,
"tag": "p",
"text": "(II)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 309,
"tag": "p",
"text": "(III)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 310,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 311,
"tag": "p",
"text": "(I)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 312,
"tag": "p",
"text": "ã ãããç°ãªã2ã€ã®å®æ°è§£ããã€ã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 313,
"tag": "p",
"text": "(II)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 314,
"tag": "p",
"text": "ã ãããç°ãªã2ã€ã®èæ°è§£ããã€ã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 315,
"tag": "p",
"text": "(III)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 316,
"tag": "p",
"text": "ã ãããéè§£ããã€ã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 317,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 318,
"tag": "p",
"text": "ãŸãã2次æ¹çšåŒ a x 2 + 2 b â² x + c = 0 {\\displaystyle ax^{2}+2b'x+c=0} ã®ãšãã D = 4 ( b â² 2 â a c ) {\\displaystyle D=4(b'^{2}-ac)} ãšãªãã®ã§ã 2次æ¹çšåŒ a x 2 + 2 b â² x + c = 0 {\\displaystyle ax^{2}+2b'x+c=0} ã®å€å¥åŒã«ã¯",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 319,
"tag": "p",
"text": "ããã¡ããŠãããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 320,
"tag": "p",
"text": "ãããçšããŠãåã®åé¡",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 321,
"tag": "p",
"text": "ã®è§£ãå€å¥ãããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 322,
"tag": "p",
"text": "a = 4 , b â² = â 10 , c = 25 {\\displaystyle a=4\\,,\\,b'=-10\\,,\\,c=25} ã§ãããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 323,
"tag": "p",
"text": "ã ãããéè§£ããã€ã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 324,
"tag": "p",
"text": "2次æ¹çšåŒ a x 2 + b x + c = 0 {\\displaystyle ax^{2}+bx+c=0} ã®2ã€ã®è§£ã α {\\displaystyle \\alpha } , β {\\displaystyle \\beta } ãšããã ãã®æ¹çšåŒã¯ã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 325,
"tag": "p",
"text": "a ( x â α ) ( x â β ) = 0 {\\displaystyle a(x-\\alpha )(x-\\beta )=0}",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 326,
"tag": "p",
"text": "ãšå€åœ¢ã§ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 327,
"tag": "p",
"text": "ãããå±éãããšã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 328,
"tag": "p",
"text": "a x 2 â a ( α + β ) x + a α β = 0 {\\displaystyle ax^{2}-a(\\alpha +\\beta )x+a\\alpha \\beta =0}",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 329,
"tag": "p",
"text": "ä¿æ°ãæ¯èŒããŠã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 330,
"tag": "p",
"text": "c = a α β , b = â a ( α + β ) {\\displaystyle c=a\\alpha \\beta ,b=-a(\\alpha +\\beta )}",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 331,
"tag": "p",
"text": "ãåŸãã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 332,
"tag": "p",
"text": "ãããå€åœ¢ããã°ã α + β = â b a , α β = c a {\\displaystyle \\alpha +\\beta =-{\\frac {b}{a}},\\alpha \\beta ={\\frac {c}{a}}} ãšãªãã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 333,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 334,
"tag": "p",
"text": "2次æ¹çšåŒ 2 x 2 + 4 x + 3 = 0 {\\displaystyle 2x^{2}+4x+3=0} ã®2ã€ã®è§£ã α {\\displaystyle \\alpha } , β {\\displaystyle \\beta } ãšãããšãã α 2 + β 2 {\\displaystyle \\alpha ^{2}+\\beta ^{2}} ã®å€ãæ±ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 335,
"tag": "p",
"text": "è§£ãšä¿æ°ã®é¢ä¿ããã α + β = â 4 2 = â 2 {\\displaystyle \\alpha +\\beta =-{\\frac {4}{2}}=-2} , α β = 3 2 {\\displaystyle \\alpha \\beta ={\\frac {3}{2}}} α 2 + β 2 = ( α + β ) 2 â 2 α β = ( â 2 ) 2 â 2 à 3 2 = 1 {\\displaystyle \\alpha ^{2}+\\beta ^{2}=(\\alpha +\\beta )^{2}-2\\alpha \\beta =(-2)^{2}-2\\times {\\frac {3}{2}}=1}",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 336,
"tag": "p",
"text": "2ã€ã®æ° α {\\displaystyle \\alpha } , β {\\displaystyle \\beta } ãè§£ãšãã2次æ¹çšåŒã¯",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 337,
"tag": "p",
"text": "ãšè¡šãããã巊蟺ãå±éããŠæŽçãããšæ¬¡ã®ããã«ãªãã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 338,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 339,
"tag": "p",
"text": "次ã®2æ°ãè§£ãšãã2次æ¹çšåŒãäœãã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 340,
"tag": "p",
"text": "(I)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 341,
"tag": "p",
"text": "(II)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 342,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 343,
"tag": "p",
"text": "(I) å ( 3 + 5 ) + ( 3 â 5 ) = 6 {\\displaystyle (3+{\\sqrt {5}})+(3-{\\sqrt {5}})=6} ç© ( 3 + 5 ) ( 3 â 5 ) = 4 {\\displaystyle (3+{\\sqrt {5}})(3-{\\sqrt {5}})=4} ã§ãããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 344,
"tag": "p",
"text": "(II) å ( 2 + 3 i ) + ( 2 â 3 i ) = 4 {\\displaystyle (2+3i)+(2-3i)=4} ç© ( 2 + 3 i ) ( 2 â 3 i ) = 13 {\\displaystyle (2+3i)(2-3i)=13} ã§ãããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 345,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 346,
"tag": "p",
"text": "2次æ¹çšåŒ a x 2 + b x + c = 0 {\\displaystyle ax^{2}+bx+c=0} ã®2ã€ã®è§£ α {\\displaystyle \\alpha } , β {\\displaystyle \\beta } ãããããšã2次åŒ",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 347,
"tag": "p",
"text": "ãå æ°åè§£ããããšãã§ããã è§£ãšä¿æ°ã®é¢ä¿ α + β = â b a {\\displaystyle \\alpha +\\beta =-{\\frac {b}{a}}} , α β = c a {\\displaystyle \\alpha \\beta ={\\frac {c}{a}}} ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 348,
"tag": "p",
"text": "2次æ¹çšåŒã¯ãè€çŽ æ°ã®ç¯å²ã§èãããšã€ãã«è§£ããã€ãããè€çŽ æ°ãŸã§äœ¿ã£ãŠãããšãããšã2次åŒã¯å¿
ã1次åŒã®ç©ã«å æ°åè§£ããããšãã§ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 349,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 350,
"tag": "p",
"text": "è€çŽ æ°ã®ç¯å²ã§èããŠã次ã®2次åŒãå æ°åè§£ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 351,
"tag": "p",
"text": "(I)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 352,
"tag": "p",
"text": "(II)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 353,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 354,
"tag": "p",
"text": "(I) 2次æ¹çšåŒ x 2 + 4 x â 1 = 0 {\\displaystyle x^{2}+4x-1=0} ã®è§£ã¯",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 355,
"tag": "p",
"text": "ãã£ãŠ",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 356,
"tag": "p",
"text": "(II) 2次æ¹çšåŒ 2 x 2 â 3 x + 2 = 0 {\\displaystyle 2x^{2}-3x+2=0} ã®è§£ã¯",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 357,
"tag": "p",
"text": "ãã£ãŠ",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 358,
"tag": "p",
"text": "3次以äžã®æŽåŒã«ããæ¹çšåŒãèããã äžè¬ã«æ¹çšåŒã P ( x ) = 0 {\\displaystyle P(x)=0} ãšãšãã ãã ãã P ( x ) {\\displaystyle P(x)} ã¯ãä»»æã®æ¬¡æ°ã®æŽåŒãšããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 359,
"tag": "p",
"text": "P ( x ) {\\displaystyle P(x)} ã1æ¬¡åŒ x â a {\\displaystyle x-a} ã§å²ã£ããšãã®åã Q ( x ) {\\displaystyle Q(x)} ãäœãã R {\\displaystyle R} ãšãããšã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 360,
"tag": "p",
"text": "ãã®äž¡èŸºã® x {\\displaystyle x} ã« a {\\displaystyle a} ã代å
¥ãããšã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 361,
"tag": "p",
"text": "ã€ãŸãã P ( x ) {\\displaystyle P(x)} ã x â a {\\displaystyle x-a} ã§å²ã£ããšãã®äœã㯠P ( a ) {\\displaystyle P(a)} ã§ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 362,
"tag": "p",
"text": "æŽåŒ P ( x ) = x 3 â 2 x + 3 {\\displaystyle P(x)=x^{3}-2x+3} ãæ¬¡ã®åŒã§å²ã£ãäœããæ±ããã (I)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 363,
"tag": "p",
"text": "(II)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 364,
"tag": "p",
"text": "(III)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 365,
"tag": "p",
"text": "(I) P ( 2 ) = 2 3 â 2 Ã 2 + 3 = 7 {\\displaystyle P(2)=2^{3}-2\\times 2+3=7} (II) P ( â 1 ) = ( â 1 ) 3 â 2 Ã ( â 1 ) + 3 = 4 {\\displaystyle P(-1)=(-1)^{3}-2\\times (-1)+3=4} (III) P ( 1 2 ) = ( 1 2 ) 3 â 2 Ã ( 1 2 ) + 3 = 17 8 {\\displaystyle P\\left({\\frac {1}{2}}\\right)=\\left({\\frac {1}{2}}\\right)^{3}-2\\times \\left({\\frac {1}{2}}\\right)+3={\\frac {17}{8}}}",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 366,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 367,
"tag": "p",
"text": "ãã宿° a {\\displaystyle a} ã«å¯ŸããŠã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 368,
"tag": "p",
"text": "ãæãç«ã£ããšããã ãã®ãšããæŽåŒ P ( x ) {\\displaystyle P(x)} ã¯ã ( x â a ) {\\displaystyle (x-a)} ãå æ°ã«æã€ããšãåãã ãã®ããšãå æ°å®ç(ãããããŠãã)ãšåŒã¶ã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 369,
"tag": "p",
"text": "æŽåŒ P ( x ) {\\displaystyle P(x)} ã«å¯ŸããŠãå Q ( x ) {\\displaystyle Q(x)} ãå²ãåŒ ( x â a ) {\\displaystyle (x-a)} ãšãã æŽåŒã®é€æ³ãçšããããã®ãšããå Q ( x ) {\\displaystyle Q(x)} ã ( Q ( x ) {\\displaystyle Q(x)} ã¯ã P ( x ) {\\displaystyle P(x)} ããã1ã ãæ¬¡æ°ãäœãæŽåŒã§ããã) äœã c {\\displaystyle c} ( c {\\displaystyle c} ã¯ã宿°ã)ãšãããšã æŽåŒ P ( x ) {\\displaystyle P(x)} ã¯ã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 370,
"tag": "p",
"text": "ãšæžããã ããã§ã c = 0 {\\displaystyle c=0} ã§ãªããšã P ( a ) = 0 {\\displaystyle P(a)=0} ã¯æºããããªããã ãã®ãšãã P ( x ) {\\displaystyle P(x)} ã¯ã ( x â a ) {\\displaystyle (x-a)} ã«ãã£ãŠå²ãåããã ãã£ãŠãå æ°å®çã¯æç«ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 371,
"tag": "p",
"text": "å æ°å®çãçšããããšã§ãããæ¬¡æ°ã®é«ãæŽåŒãå æ°åè§£ããããšã åºæ¥ãããã«ãªããäŸãã°ã3æ¬¡ã®æŽåŒ",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 372,
"tag": "p",
"text": "ã«ã€ããŠã x = 1 {\\displaystyle x=1} ã代å
¥ãããšã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 373,
"tag": "p",
"text": "ã¯0ãšãªãããã£ãŠãå æ°å®çãããã®åŒã¯",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 374,
"tag": "p",
"text": "ãå æ°ãšããŠæã€ã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 375,
"tag": "p",
"text": "ããã§ãå®éæŽåŒã®é€æ³ã䜿ã£ãŠèšç®ãããšã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 376,
"tag": "p",
"text": "ãåŸãããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 377,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 378,
"tag": "p",
"text": "å æ°å®çãçšã㊠(I)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 379,
"tag": "p",
"text": "(II)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 380,
"tag": "p",
"text": "ãå æ°åè§£ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 381,
"tag": "p",
"text": "(I) å æ°åè§£ã®çµæã(x+æŽæ°)ã®ç©ã®åœ¢ãªããæŽæ°ã¯6ã®å æ°ã§ãªããã°ãªããªãããã®ããã ± 1 , ± 2 , ± 3 , ± 6 {\\displaystyle \\pm 1,\\pm 2,\\pm 3,\\pm 6} ãåè£ãšãªãããããã«ã€ããŠã¯å®éã«ä»£å
¥ããŠç¢ºããããããªããx=1ã代å
¥ãããšã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 382,
"tag": "p",
"text": "ãšãªãã®ã§ã(x-1)ãå æ°ãšãªããå®éã«æŽåŒã®é€æ³ãè¡ãªããšãåãšã㊠x 2 â 5 x + 6 {\\displaystyle x^{2}-5x+6} ãåŸããããããã㯠( x â 2 ) ( x â 3 ) {\\displaystyle (x-2)(x-3)} ã«å æ°åè§£ã§ããããã£ãŠçãã¯ã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 383,
"tag": "p",
"text": "ãšãªãã (II) ããã§ãå°éã«24ã®å æ°ãåœãŠã¯ããŠãããããªãã24ã®å æ°ã¯æ°ãå€ãã®ã§ããªãã®èšç®ãå¿
èŠãšãªããããã§ã¯ã-2ã代å
¥ãããšã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 384,
"tag": "p",
"text": "ãšãªãã(x+2)ãå æ°ã ãšãããã逿³ãè¡ãªããšã x 2 â x â 12 {\\displaystyle x^{2}-x-12} ãåŸããããã(x-4)(x+3)ã«å æ°åè§£ã§ãããçãã¯ã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 385,
"tag": "p",
"text": "ãšãªãã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 386,
"tag": "p",
"text": "å æ°åè§£ãå æ°å®çãå©çšããŠé«æ¬¡æ¹çšåŒãè§£ããŠã¿ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 387,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 388,
"tag": "p",
"text": "髿¬¡æ¹çšåŒ (I)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 389,
"tag": "p",
"text": "(II)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 390,
"tag": "p",
"text": "(III)",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 391,
"tag": "p",
"text": "ãè§£ãã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 392,
"tag": "p",
"text": "(I) 巊蟺ã a 3 â b 3 = ( a â b ) ( a 2 + a b + b 2 ) {\\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})} ãçšããŠå æ°åè§£ãããš",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 393,
"tag": "p",
"text": "ãããã£ãŠ x â 2 = 0 {\\displaystyle \\ x-2=0} ãŸã㯠x 2 + 2 x + 4 = 0 {\\displaystyle \\ x^{2}+2x+4=0} ãã£ãŠ",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 394,
"tag": "p",
"text": "(II) x 2 = X {\\displaystyle \\ x^{2}=X\\ } ãšãããšã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 395,
"tag": "p",
"text": "巊蟺ãå æ°åè§£ãããš",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 396,
"tag": "p",
"text": "ãã£ãŠ X = 4 , X = â 2 {\\displaystyle X=4\\ ,\\ X=-2} ããã« x 2 = 4 , x 2 = â 2 {\\displaystyle x^{2}=4\\ ,\\ x^{2}=-2} ãããã£ãŠ",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 397,
"tag": "p",
"text": "(III) P ( x ) = x 3 â 5 x 2 + 7 x â 2 {\\displaystyle \\ P(x)=x^{3}-5x^{2}+7x-2\\ } ãšããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 398,
"tag": "p",
"text": "ãããã£ãŠã x â 2 {\\displaystyle \\ x-2\\ } 㯠P ( x ) {\\displaystyle \\ P(x)\\ } ã®å æ°ã§ããã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 399,
"tag": "p",
"text": "ãã£ãŠ ( x â 2 ) ( x 2 â 3 x + 1 ) = 0 {\\displaystyle (x-2)(x^{2}-3x+1)=0} x â 2 = 0 {\\displaystyle \\ x-2=0} ãŸã㯠x 2 â 3 x + 1 = 0 {\\displaystyle \\ x^{2}-3x+1=0} ãããã£ãŠ",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 400,
"tag": "p",
"text": "",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 401,
"tag": "p",
"text": "3次æ¹çšåŒ a x 3 + b x 2 + c x + d = 0 {\\displaystyle ax^{3}+bx^{2}+cx+d=0} ã®3ã€ã®è§£ã ã α , β , γ {\\displaystyle \\alpha \\ ,\\ \\beta \\ ,\\ \\gamma } ãšãããš",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 402,
"tag": "p",
"text": "ãæãç«ã€ã å³èŸºãå±éãããš",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 403,
"tag": "p",
"text": "ãã£ãŠ",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 404,
"tag": "p",
"text": "ããã«",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 405,
"tag": "p",
"text": "ãããã£ãŠã次ã®ããšãæãç«ã€ã",
"title": "髿¬¡æ¹çšåŒ"
},
{
"paragraph_id": 406,
"tag": "p",
"text": "ãã°ãã°èæ°ã¯ãçŸå®ã«ã¯ååšããªãæ°ãã§ãããšèšãããããšããããæŽå²çã«ãèæ°ãæ±ã£ãæ°åŠãèããã¹ãã§ã¯ãªããšèããããæä»£ã¯é·ãã£ãããã®æä»£ã®å
é²çãªæ°åŠè
ã®äžã«ã¯ãèæ°ãæå¹ã«æŽ»çšããŠç ç©¶ãé²ããäžæ¹ã§ãææãçºè¡šããéã«ã¯èæ°ã衚ã«åºããã«èšè¿°ããåªåãããããšã§ãç¡çšãªæµæãåããªãããã«å·¥å€«ããè
ããããšèšãããã»ã©ã§ããã",
"title": "ã³ã©ã "
},
{
"paragraph_id": 407,
"tag": "p",
"text": "ã ããããèããŠã¿ãã°ãæ°ããçŸå®ã«ååšããããšã¯ã©ãããæå³ãªã®ã ããããçŸå®ã«éçã䜿ã£ãŠçŽã«åãæããªãã°ãååšã®é·ãããæ£ç¢ºã«ååšçãã®ãã®ã«ãããããšã¯äžå¯èœã§ããããã«æããããããã®å²ã«ååšçãšãã宿°ã¯ãååšããããšæããããã®ã¯ãªãã ããããæ°çŽç·ã宿°ã®ãå®åšããä¿¡ãããããªãã°ãè€çŽ æ°ã¯è€çŽ æ°å¹³é¢(æ°åŠCã§ç¿ã)ã®äžã«ååšããã®ã ãããåãã§ã¯ãªãã ãããã",
"title": "ã³ã©ã "
},
{
"paragraph_id": 408,
"tag": "p",
"text": "ãã®ããã«èãããšãããããæ°ãšã¯ãã¹ãŠããæå³ã§æ³åäžã®ååšã§ãããããã«å¯ŸããŠãååšããããååšããªãããšããåããç«ãŠãããšããã³ã»ã³ã¹ã§ããããã«æãããããååšããªããããã«æãããã¡ãªèæ°ã§ããããããšãã°ç©çåŠã®äžåéã§ããéåååŠã®ã·ã¥ã¬ãã£ã³ã¬ãŒæ¹çšåŒã«è¡šãããªã©ãå¿çšäžã®ããŸããŸãªå Žé¢ã«ãããŠããèæ°ã䜿ã£ãŠèšè¿°ããããšãèªç¶ãªå¯Ÿè±¡ã¯å€ãã®ã ã",
"title": "ã³ã©ã "
},
{
"paragraph_id": 409,
"tag": "p",
"text": "è€çŽ æ°ã©ããã«ã€ããŠããã®å€§å°é¢ä¿ã¯å®çŸ©ããªãããã®çç±ã¯ãã©ã®ããã«å€§å°é¢ä¿ãå®çŸ©ããŠãã䟿å©ãªæ§è³ªãæºããããšãã§ããªãããã§ãããå
·äœçã«èšãã°ãæ¢ã«è¿°ã¹ã宿°ã®å€§å°é¢ä¿ã«ã€ããŠã®ãäžçåŒã®åºæ¬æ§è³ª(1)(2)(3)(4)ãã«ãããåŒãæãç«ãããããšãã§ããªãã®ã ã",
"title": "ã³ã©ã "
},
{
"paragraph_id": 410,
"tag": "p",
"text": "ããšãã°ã a + b i < a â² + b â² i {\\displaystyle a+bi<a'+b'i} ã§ããããšãã a 2 + b 2 < a â² 2 + b â² 2 {\\displaystyle a^{2}+b^{2}<a'^{2}+b'^{2}} ã§ããããšãšããŠå®çŸ©ããŠã¿ããããã®ããã«å®çŸ©ãããšãããšãã°1+2i<2-3iã§ããããŸã2+3i<3+4iã§ããããšãããã(1+2i)+(2+3i)=3+5i,(2-3i)+(3+4i)=5+iã§ããã3+5i>5+iãšãªã£ãŠããŸããããã¯åºæ¬æ§è³ª(2)ãæãç«ããªãããšãæå³ããã",
"title": "ã³ã©ã "
},
{
"paragraph_id": 411,
"tag": "p",
"text": "ãã¡ããããã¯é©åœã«èããå®çŸ©ãããŸããŸäžé©åã ã£ããšããã ãã®ããšã ããå®ã¯ãä»ã«ã©ã®ããã«å®çŸ©ããŠããã®ãããªå°é£ããã¯éããããªãããšãç¥ãããŠãããããããã«ãè€çŽ æ°ã«ã¯å€§å°é¢ä¿ãå®çŸ©ããªãã®ã§ããã",
"title": "ã³ã©ã "
},
{
"paragraph_id": 412,
"tag": "p",
"text": "ä»åºŠã¯ãè€çŽ æ°ã®å¹³æ¹æ ¹ã«ã€ããŠèããŠã¿ããã æ£ã®æ° a {\\displaystyle a} ãèãããšãã",
"title": "ã³ã©ã "
},
{
"paragraph_id": 413,
"tag": "p",
"text": "ã§ã¯ã",
"title": "ã³ã©ã "
},
{
"paragraph_id": 414,
"tag": "p",
"text": "èæ°åäœ i {\\displaystyle i} ã®å¹³æ¹æ ¹ãèãããšãããã¯zã«ã€ããŠã®æ¹çšåŒ z 2 = i {\\displaystyle z^{2}=i} ã®è§£ z ã®å€ã§ããããããããè§£ãã°ãããã©ã®ãããªè€çŽ æ°zãªããã®åŒãæºããããšãã§ããã ãããã",
"title": "ã³ã©ã "
},
{
"paragraph_id": 415,
"tag": "p",
"text": "zãè€çŽ æ°ãšãããšã z = x + y i {\\displaystyle z=x+yi} (x,yã¯å®æ°)ãšè¡šãããã ( x + y i ) 2 = i â x 2 + 2 x y i â y 2 = i â ( x 2 â y 2 ) + ( 2 x y â 1 ) i = 0 {\\displaystyle (x+yi)^{2}=i\\Leftrightarrow x^{2}+2xyi-y^{2}=i\\Leftrightarrow (x^{2}-y^{2})+(2xy-1)i=0}",
"title": "ã³ã©ã "
},
{
"paragraph_id": 416,
"tag": "p",
"text": "x 2 â y 2 , 2 x y â 1 {\\displaystyle x^{2}-y^{2},2xy-1} ã¯å®æ°ã§ãããããå®éšãšèéšãå
±ã«0ã«ãªããã°ãªããªãããã { x 2 â y 2 = 0 ( â x = ± y ) 2 x y â 1 = 0 {\\displaystyle {\\begin{cases}x^{2}-y^{2}=0(\\Leftrightarrow x=\\pm y)\\\\2xy-1=0\\end{cases}}}",
"title": "ã³ã©ã "
},
{
"paragraph_id": 417,
"tag": "p",
"text": "x = y {\\displaystyle x=y} ã®ãšãã 2 x 2 = 1 â x = ± 1 2 , y = ± 1 2 {\\displaystyle 2x^{2}=1\\Leftrightarrow x=\\pm {\\frac {1}{\\sqrt {2}}},y=\\pm {\\frac {1}{\\sqrt {2}}}} (è€å·åé ãx,yã¯å
±ã«å®æ°ã§ãããããæ¡ä»¶ãæºããã)",
"title": "ã³ã©ã "
},
{
"paragraph_id": 418,
"tag": "p",
"text": "x = â y {\\displaystyle x=-y} ã®ãšãã â 2 y 2 = 1 â y 2 = â 1 2 {\\displaystyle -2y^{2}=1\\Leftrightarrow y^{2}=-{\\frac {1}{2}}} ããã§ããããæºãã宿°yã¯ååšããªãããäžé©ã",
"title": "ã³ã©ã "
},
{
"paragraph_id": 419,
"tag": "p",
"text": "ãã£ãŠã z = ± ( 1 2 + 1 2 i ) {\\displaystyle z=\\pm \\left({\\frac {1}{\\sqrt {2}}}+{\\frac {1}{\\sqrt {2}}}i\\right)} â ",
"title": "ã³ã©ã "
},
{
"paragraph_id": 420,
"tag": "p",
"text": "",
"title": "ã³ã©ã "
},
{
"paragraph_id": 421,
"tag": "p",
"text": "å®éšããŒããèæ
®ã㊠x = 0 {\\displaystyle x=0} ã x = ± 3 y {\\displaystyle x=\\pm {\\sqrt {3}}y} ã ããèéšããŒããªã®ã§ãxã®å€ãåè
ã®ãšã y = â 1 {\\displaystyle y=-1} ãåŸè
ã®ãšã y = 1 / 2 {\\displaystyle y=1/2} ãšãªãããšãããã«ãããã",
"title": "ã³ã©ã "
},
{
"paragraph_id": 422,
"tag": "p",
"text": "2次æ¹çšåŒã«ã¯è§£ã®å
¬åŒããããæ¥æ¬ã®äžåŠã髿 ¡ã§ãç¿ãã2次æ¹çšåŒã®è§£ã®å
¬åŒãçšããã°ãã©ããªä¿æ°ã®2次æ¹çšåŒã§ãã£ãŠãè§£ãæ±ããããã3次æ¹çšåŒãš4次æ¹çšåŒã«ããè§£ã®å
¬åŒã¯ååšããä¿æ°ãã©ããªä¿æ°ã§ãã£ãŠãè§£ãæ±ããããããããã®è§£ã®å
¬åŒã¯ãä»£æ°æ¹çšåŒè«ã§è¿°ã¹ãŠããããã«ãä¿æ°ã«æéåã®ååæŒç®ãšæ ¹å·ããšãæäœã®çµã¿åããã§è¡šãããšãã§ããã",
"title": "ã³ã©ã "
},
{
"paragraph_id": 423,
"tag": "p",
"text": "5次æ¹çšåŒã§ã¯ã4次以äžã®æ¹çšåŒãšã¯ç¶æ³ãç°ãªããäžè¬ã®5次æ¹çšåŒã®è§£ã¯ã2次æ¹çšåŒã4次æ¹çšåŒã®ããã«ãä¿æ°ã«æéåã®ååæŒç®ãšæ ¹å·ããšãæäœã®çµã¿åããã§è¡šãããšãã§ããªãã®ã§ããããã ãããã§ããªããããšã®èšŒæã¯å®¹æã§ã¯ãªãããã®ããšã蚌æããã«ã¯ãã¬ãã¢çè«ãçè§£ããå¿
èŠããã(æ¥æ¬ã®å€§åŠã®æšæºçãªã«ãªãã¥ã©ã ã§ã¯ãçåŠéšæ°åŠç§ã®åŠçã®ã¿ã倧åŠ3幎çã§åŠã¶ã®ãäžè¬çãªçšåºŠã®çè«ã§ãã)ã",
"title": "ã³ã©ã "
},
{
"paragraph_id": 424,
"tag": "p",
"text": "ãªããããã§èšãã衚ãããšãã§ããªãããšã¯äžè¬ã®æ¹çšåŒã«ã€ããŠã®ããšã§ãããç¹å¥ãª5次æ¹çšåŒã®å Žåã¯ç°¡åã«è§£ãæ±ãããããããšãã°ã x 5 â 32 = 0 {\\displaystyle x^{5}-32=0} ã¯è§£ã®ã²ãšã€ãšã㊠x = 2 {\\displaystyle x=2} ããã€ããšã¯ãããããããã®æ¹çšåŒã¯ä»ã®è§£ã«ã€ããŠãäžè§é¢æ°ãçšããŠç°¡åã«è¡šããããšãé«çåŠæ ¡æ°åŠC/è€çŽ æ°å¹³é¢ã«ãããŠåŠã¶ã",
"title": "ã³ã©ã "
},
{
"paragraph_id": 425,
"tag": "p",
"text": "ãä¿æ°ã«æéåã®ååæŒç®ãšæ ¹å·ããšãæäœã®çµã¿åãããã«æããªããã°ãäžè¬ã®5次æ¹çšåŒã®è§£ãæ±ããæ¹æ³ãååšããããããé«åºŠãªæ°åŠãçšããå¿
èŠããããw:äºæ¬¡æ¹çšåŒã«èšè¿°ãããã®ã§èå³ã®ããèªè
ã¯åç
§ãããšããã",
"title": "ã³ã©ã "
},
{
"paragraph_id": 426,
"tag": "p",
"text": "é«çåŠæ ¡ã§è€çŽ æ°ãåºãŠããåéã¯ãã®åéãšæ°åŠCãå¹³é¢äžã®æ²ç·ãšè€çŽ æ°å¹³é¢ãã®ã¿ã§ãããè€çŽ æ°ã®åºæ¬èšç®ãæ¹çšåŒãè€çŽ æ°ç¯å²ã§è§£ãããšãè€çŽ æ°ã®å¹ŸäœåŠçæå³ã«ã€ããŠæ±ã£ãŠãããããããå€§åŠæ°åŠã«ãããŠã¯ã颿°ã®å®çŸ©åã»å€åãè€çŽ æ°ç¯å²ã«åºããŠèãããè€çŽ é¢æ°è«ããšãããã®ãæ±ãã",
"title": "ã³ã©ã "
},
{
"paragraph_id": 427,
"tag": "p",
"text": "宿°ç¯å²ã§ã®é¢æ°ã¯x, yãšãã«äžæ¬¡å
ã®å®æ°è»žãæã€ãããå
¥åå€ãšåºåå€ã®æãã°ã©ããèããã«ã¯äºæ¬¡å
ã®åº§æšå¹³é¢ã§ååã§ãã£ããããããè€çŽ æ°ç¯å²ã§ã®é¢æ°ã¯x, yãšãã«äºæ¬¡å
ã®è€çŽ æ°å¹³é¢ãæã€ãããå
¥åå€ãšåºåå€ã®æãã°ã©ããèããã«ã¯å次å
ã®åº§æšç©ºéãå¿
èŠã§ãããäžæ¬¡å
空éã«äœãæã
ã«ã¯æç»ããããšãã§ããªãããã®ãããè€çŽ é¢æ°è«ã§ã¯é¢æ°ã®ã°ã©ããèããããšã¯åºæ¬çã«ãªãã(ãã ããåºåãããè€çŽ æ°ã®çµ¶å¯Ÿå€ãèããããšã«ãã£ãŠäžæ¬¡å
ã°ã©ãã«èœãšã蟌ãããšã¯å¯èœ)",
"title": "ã³ã©ã "
},
{
"paragraph_id": 428,
"tag": "p",
"text": "ã§ã¯äœãèããã®ããšãããšãè€çŽ é¢æ°ã®åŸ®åç©åã§ãããè€çŽ é¢æ°ã®åŸ®åã«é¢é£ããŠãæ£å颿°ããšããçšèªãåºãŠããããè€çŽ é¢æ°è«ã¯ãã®æ£å颿°ãšãããã®ã®æ§è³ªã調ã¹ãåŠåã ãšèšã£ãŠè¯ãã",
"title": "ã³ã©ã "
},
{
"paragraph_id": 429,
"tag": "p",
"text": "è€çŽ é¢æ°è«ã¯ç©çåŠã®ç¹ã«æ³¢åã«é¢ããåé(é³ã»é»ç£æ°ãªã©)ã«ãããŠæŽ»èºããŠããããæ³¢åæ¹çšåŒãããã€ã³ããŒãã³ã¹ããšããèšèã¯æåã ããã",
"title": "ã³ã©ã "
},
{
"paragraph_id": 430,
"tag": "p",
"text": "ã¡ãªã¿ã«ãè€çŽ æ°ãããã«æ¡åŒµããæ°ãšããŠãw:åå
æ°ããšãããã®ãããããã®åå
æ°ã¯ãã¯ãã«ãè¡åãšæ·±ãé¢ãããååšããŠãããæ·±æããšé¢çœãã®ã ããããããåé·ã«ãªããã岿ããããªããåå
æ°ãããã«æ¡åŒµããå
«å
æ°ãåå
å
æ°ãšããæ°ãç ç©¶ãããŠããã",
"title": "ã³ã©ã "
},
{
"paragraph_id": 431,
"tag": "p",
"text": "",
"title": "ã³ã©ã "
}
] | æ¬é
ã¯é«çåŠæ ¡æ°åŠIIã®åŒãšèšŒæã»é«æ¬¡æ¹çšåŒã®è§£èª¬ã§ããã | {{pathnav|é«çåŠæ ¡ã®åŠç¿|é«çåŠæ ¡æ°åŠ|é«çåŠæ ¡æ°åŠII|pagename=åŒãšèšŒæã»é«æ¬¡æ¹çšåŒ|frame=1|small=1}}
æ¬é
ã¯[[é«çåŠæ ¡æ°åŠII]]ã®åŒãšèšŒæã»é«æ¬¡æ¹çšåŒã®è§£èª¬ã§ããã
== åŒãšèšŒæ ==
=== äºé
å®ç ===
<math>(a+b)^5 = (a+b)(a+b)(a+b)(a+b)(a+b)</math> ã«ã€ããŠèãããããã®åŒãå±éãããšãã<math>a^2b^3</math> ã®ä¿æ°ã¯ãå³èŸºã®5åã® <math>(a+b)</math> ãã <math>a</math> ã3ååãçµã¿åããã«çãããã <math>_5\mathrm{C}_2 = 10</math> ã§ããã
ãã®èããæ¡åŒµããŠ
:<math>(a+b)^n = \underbrace{(a+b)(a+b)(a+b)\cdots(a+b)}_n</math>
ãå±éããã<math>a^rb^{n-r}</math>ã®é
ã®ä¿æ°ã¯ãå³èŸºã® <math>n</math> åã® <math>(a+b)</math> ãã <math>a</math> ã <math>r</math> ååãçµã¿åããã«çãããã <math>_n\mathrm{C}_r</math> ã§ããã
ãã£ãŠã次ã®åŒãåŸãããïŒ
:<math>\begin{align}(a+b)^n &= {}_n\mathrm{C}_0 a^n + {}_n\mathrm{C}_1 a^{n-1}b + {}_n\mathrm{C}_2 a^{n-2}b^2 + \cdots \\
&+ {}_n\mathrm{C}_r a^{n-r}b^r + \cdots + {}_n\mathrm{C}_n b^n \\
&= \sum _{r = 0}^n {}_n\operatorname{C}_r a^r b^{n-r}. \\ \end{align}</math>
æåŸã®åŒã¯[[é«çåŠæ ¡æ°åŠB/æ°å|æ°Bã®æ°å]]ã§åŠã¶ç·åèšå· <math>\Sigma</math> ã§ãããç¥ããªãã®ãªãç¡èŠããŠãè¯ãã
ãã®åŒã '''äºé
å®ç'''ïŒbinomial theoremïŒ ãšããããŸããããããã®é
ã«ãããä¿æ°ãäºé
ä¿æ°ïŒbinomial coefficientïŒ ãšåŒã¶ããšãããã
* åé¡äŸ
** åé¡
(I)
:<math>(x+1) ^4</math>
(II)
:<math>(a + 3) ^ 5</math>
(II)
:<math>(a + b) ^ 5</math>
ãããããèšç®ããã
**è§£ç
äºé
å®çãçšããŠèšç®ããã°ãããå®éã«èšç®ãè¡ãªããšã
(I)
:<math>x^4+4\,x^3+6\,x^2+4\,x+1</math>
(II)
:<math>a^5+15\,a^4+90\,a^3+270\,a^2+405\,a+243</math>
(III)
:<math>b^5+5\,a\,b^4+10\,a^2\,b^3+10\,a^3\,b^2+5\,a^4\,b+a^5</math>
ãšãªãã
** åé¡
ãã¹ãŠã®èªç¶æ°nã«å¯ŸããŠ
(I)
:<math>2^n = \sum _{k=0} ^n n\operatorname{C} _k </math>
(II)
:<math>3^n = \sum _{k=0} ^n 2^k n\operatorname{C} _k </math>
(III)
:<math>0 = \sum _{k=0} ^n (-1)^k n\operatorname{C} _k </math>
ãæãç«ã€ããšã瀺ãã
** è§£ç
äºé
å®ç
:<math>(a+b)^n = \sum _{k = 0}^n {} _n\operatorname{C} _k a^k b^{n-k}</math>
ã«ã€ããŠa,bã«é©åœãªå€ã代å
¥ããã°ããã
(I)
a = 1,b=1ã代å
¥ãããšã
:<math>(1+1)^n = \sum _{k = 0}^n {} _n\operatorname{C} _k </math>
:<math>2^n = \sum _{k = 0}^n {} _n\operatorname{C} _k </math>
ãšãªã確ãã«äžããããé¢ä¿ãæç«ããããšãåããã
(II)
a=2,b=1ã代å
¥ãããšã
:<math>(1+2)^n = \sum _{k = 0}^n {} _n\operatorname{C} _k 2^k</math>
:<math>3^n = \sum _{k = 0}^n {} _n\operatorname{C} _k 2^k</math>
ãšãªã確ãã«äžããããé¢ä¿ãæç«ããããšãåããã
(III)
a=1,b=-1ã代å
¥ãããšã
:<math>(1-1)^n = \sum _{k = 0}^n {} _n\operatorname{C} _k (-1)^k</math>
:<math>0 = \sum _{k = 0}^n {} _n\operatorname{C} _k (-1)^k</math>
ãšãªã確ãã«äžããããé¢ä¿ãæç«ããããšãåããã
==== å€é
å®ç ====
äºé
å®çãæ¡åŒµã㊠<math>(a+b+c)^n</math> ãå±éããããšãèãããã<math>a^pb^qc^r</math> <math>(p+q+r = n)</math> ã®é
ã®ä¿æ°ã¯ <math>n</math> åã® <math>(a+b+c)</math> ãã <math>p</math> åã® <math>a</math>ã<math>q</math> åã® <math>b</math> ã <math>r</math> åã® <math>c</math> ãéžã¶[[é«çåŠæ ¡æ°åŠA/å Žåã®æ°ãšç¢ºç#çµã¿åãã|çµåã]]ã«çãããã <math>\frac{n!}{p!q!r!}</math> ã§ããã
=== æŽåŒã®é€æ³ãåæ°åŒ ===
ããã§ã¯ãæŽåŒã®é€æ³ãšåæ°åŒã«ã€ããŠæ±ããæŽåŒã®é€æ³ã¯ãæŽåŒãæŽæ°ã®ããã«æ±ã逿³ãè¡ãªãèšç®ææ³ã®ããšã§ãããå®éã«æŽæ°ã®é€æ³ãšæŽåŒã®é€æ³ã«ã¯æ·±ãã€ãªããããããæŽåŒã®å æ°åè§£ãèãããšãã以äžå æ°åè§£ã§ããªãæŽåŒãååšããããã®æŽåŒãæŽæ°ã§ããçŽ å æ°ã®ããã«æ±ãããšã§æŽåŒã®çŽ å æ°åè§£ãå¯èœã«ãªãã
äžã§ã¯ãæŽåŒãæŽæ°ã«å¯Ÿå¿ããæ§è³ªãæã€ããšãè¿°ã¹ããæŽæ°ã«ã€ããŠã¯ãããã«çŽ ãª2ã€ã®æŽæ°ãåãããšã§æçæ°ãå®çŸ©ããããšãåºæ¥ããæŽåŒã«å¯ŸããŠãåãäºãæç«ã¡ããã®ãããªåŒãåæ°åŒãšåŒã¶ã
==== æŽåŒã®é€æ³ ====
åæ°ãçšããªããšãã«ã¯ãæŽæ°ã®é€æ³ã¯åãšäœããçšããŠå®çŸ©ãããããã®æãå²ãããæ°Bã¯åDãšå²ãæ°AãäœãRãçšããŠ
:<math>
B = AD + R
</math>
ã®æ§è³ªãæºããããšãç¥ãããŠãããæŽåŒã«å¯ŸããŠãäŒŒãæ§è³ªãæç«ã¡ãå²ãããåŒB(x)ãåD(x)ãšå²ãåŒA(x)ãäœãR(x)ãçšããŠã
:<math>
B(x) = A(x)D(x) + R(x)
</math>ãšæžããããšããB(x)ããA(x)ã«å²ããããšããããã®æãæŽæ°ã®é€æ³ã®æ§è³ªR<Aã«å¯Ÿå¿ããŠãR(x)ã®æ¬¡æ°<A(x)ã®æ¬¡æ°ãæç«ãããå
·äœäŸãšããŠãx +1ããxã§å²ãããšãèãããå²ãåŒã®æ¬¡æ°ã1ã§ããããšããäœãã®æ¬¡æ°ã¯0ãšãªãäœãã¯å®æ°ã§ããå¿
èŠãããããŸããåãxã®é¢æ°ã§ãããš
:<math>
B(x) = A(x)D(x) + R(x)
</math>
ã®å³èŸºã§xã«ã€ããŠ2次ã®é
ãçŸãã巊蟺ãšäžèŽããªããªãããã£ãŠåã¯å®æ°ã§ãããåãaãäœããrãšãããšäžã®åŒã¯ã
:<math>
x+1 = ax + r
</math>
ãšãªãããããã¯a=1,r=1ã§æç«ããããã£ãŠå1,äœã1ã§ããããã髿¬¡ã®åŒã«å¯ŸããŠãåãæ§ã«çããå®ããŠããã°ãããäŸãšããŠã
:<math>
x^3 \div (x^2 -1)
</math>
ã®ãããªåŒãèããããã®å Žåã
:<math>
B(x) = A(x)D(x) + R(x)
</math>
ã§ãB(x)ã3次ãA(x)ã2次ã§ããããšãããD(x)ã¯1次ã§ããããŸããR(x)ã¯2次ããå°ããããšãã1次以äžã®åŒã«ãªããããã§ãD(x)=ax+b,R(x)=cx+dãšãããšã
:<math>
x^3 = (x^2-1) (ax+b) + (cx +d)
</math>
ãåŸããããå³èŸºãå±éãããšã
:<math>
x^3 = ax^3 + b x^2 + (-a +c )x + (-b +d)
</math>
ãåŸãããããxã«ã©ããªå€ãå
¥ããŠããã®çåŒãæãç«ããªããã°ãªããªãã®ã§ãa = 1, b = 0, -a +c = 0, -b +d = 0ãåŸãããçµå±a=c=1, b=d=0ãåŸãããã
<!--
<math>
x^3 \div (x^2 -1)
</math>
ã®ãããªåŒãèããã
ãã®åŒã«ã€ããŠã
<math>
x^3 = x(x^2 - 1) +x
</math>
ãšæžãããšãåºæ¥ããããã㯠<math>x^3</math> ã <math>x^2-1</math> ã§å²ã£ãçµæã
å<math>x</math> ,äœã <math>x</math> ãã§ããã®ãšè§£éã§ããã
ãã®ããã«ãæŽåŒã©ããã§å²ãç®ãããããšãåºæ¥ãã
ãã®ãšããå²ãåŒã¯å²ãããåŒããäœæ¬¡ãåãæ¬¡æ°ã§ãªããŠã¯ãªããªãã
ãŸããäœãã¯å¿
ãå²ãåŒãããäœæ¬¡ã®åŒã«ãªãã
-->
ãã®æ¹æ³ã¯ã©ã®é€æ³ã«å¯ŸããŠãçšããããšãåºæ¥ãããæ¬¡æ°ãé«ããªããšèšç®ãé£ãããªããæŽæ°ã®å Žåãšåæ§ãæŽåŒã®é€æ³ã§ãçç®ãçšããããšãåºæ¥ããäžã®äŸãçšããŠçµæã ããæžããšã
*å³
ã®ããã«ãªãã)å³ã«æžãããåŒãå²ãããåŒã§ããã)å·Šã«æžãããåŒãå²ãåŒã§ããã--ã®äžçªäžã«æžãããåŒã¯åã§ãããæŽæ°ã®å²ãç®åæ§å·Šã«æžãããæ°ããé ã«å²ã£ãŠãããããã§ã¯æ¬¡æ°ã倧ããé
ãããå
ã«èšç®ãããé
ã§ãããå²ãããåŒã®äžã«ããåŒã¯åã®ç¬¬1é
ãå²ãåŒã«ãããŠåŸãåŒã§ãããããã§ã¯ã<math>x(x^2-1)</math>ã§ã<math>x^3-x</math>ãšãªãããã ããæŽæ°ã®é€æ³ãšåæ§ãäœãããããªããŠã¯ãªããªãããã®åŸãå²ãããåŒãã<math>x^3-x</math>ãåŒããæ®ã£ãåŒãæ°ããå²ãããåŒãšããŠæ±ããããã§ã¯ãåŸãåŒãå²ãåŒãããäœæ¬¡ã§ããããšãããããã§èšç®ã¯çµäºã§ããã
*åé¡äŸ
**åé¡
:
<math>x^3 + 2x ^2 +1</math>ã<math>x ^4 + 4x^2 +3x +2</math>ãã<math>x^2 +2x +6
</math>ã§å²ã£ãåãšäœããæ±ããã
<!--
æŽã«ã
(I)
:<math>
(x ^4 + 2x^3 - 5x^2 +6x -1) \div (x^2 -5x -1 )
</math>
(II)
:<math>
(3 x ^4 - 7x^3 + x^2 +2x -1) \div (x^2 -3x -4 )
</math>
(III)
:<math>
(2x^5 +3 x ^4 - 7x^3 + x^2 +2x -1) \div (x^2 +7x -4 )
</math>
(IV)
:<math>
(2x^5 +3 x ^4 - 7x^3 + x^2 +2x -1) \div (x^3 +4x^2 +7x -4 )
</math>
ãèšç®ããã
åé¡ãå€ãã®ã§ããšããããã³ã¡ã³ãã¢ãŠãã
-->
** è§£ç
ãã®èšç®ã¯ã¢ãã¡ãŒã·ã§ã³ã䜿ã£ãŠ
詳ãã衚瀺ãããŠãããèšç®ææ³ã¯ã
æŽæ°ã®å Žåã®çç®ãšåããããªææ³ã䜿ããã
[[ç»å:Fract.gif|frame|right|èšç®ã®ã¢ãã¡ãŒã·ã§ã³]]
:<math>
x^3 + 2x ^2 +1
=
(x^2 +2x +6) x +(1-6x)
</math>
ãåŸãããã®ã§ãå<math>
x</math>ãäœã<math>-6x +1</math>ã§ããã
2ã€ç®ã®åŒã«ã€ããŠã¯ã
:<math>
x ^4 + 4x^2 +3x +2
=
(x^2 - 2x+2)* (x^2 +2x +6)
+ 11x -10
</math>
ãåŸãããã
ãã£ãŠãçã¯
å<math>x^2 - 2x+2</math>ãäœã<math>11x -10</math>ã§ããã
<!--
æŽã«ãæ®ãã®èšç®çµæã¯ã
(I)
:<math>
\left[ x^2+7\,x+31,168\,x+30 \right]
</math>
(II)
:<math>
\left[ 3\,x^2+2\,x+19,67\,x+75 \right]
</math>
(III)
:<math>
\left[ 2\,x^3-11\,x^2+78\,x-589,4437\,x-2357 \right]
</math>
(IV)
:<math>
\left[ 2\,x^2-5\,x-1,48\,x^2-11\,x-5 \right]
</math>
ãåŸãããã
ãã ããå·Šãåãå³ãäœããšãªã£ãŠããã
-->
==== åæ°åŒ ====
ãããŸã§ã§æŽåŒãæŽæ°ã®ããã«æ±ããæŽåŒã®é€æ³ãè¡ãªãæ¹æ³ã«ã€ããŠè¿°ã¹ããããã§ã¯ãæŽåŒã«å¯ŸããŠåæ°åŒãå®çŸ©ããæ¹æ³ã«ã€ããŠè¿°ã¹ããåæ°åŒãšã¯ãæŽæ°ã«å¯Ÿããåæ°ã®ããã«ã逿³ã«ãã£ãŠçããåŒã§ãããããã§ã逿³ãè¡ãªãåŒã¯ã©ã®ãããªãã®ã§ãå·®ãæ¯ããªããåæ°åŒã§ã¯ãååã«å²ãããåŒãæžãã忝ã«å²ãåŒãæžããäŸãã°ã
:<math>
\frac {x+1}{x^2+4}
</math>
ã¯ãååx+1ã忝<math>x^2+4</math>ã®åæ°åŒã§ãããåæ°åŒã«å¯ŸããŠãçŽåãéåãååšãããçŽåã¯å
±éå æ°ãæã£ãåå忝ããã€åæ°åŒã§çšããããããã®æã«ã¯åå忝ãå
±éå æ°ã§å²ããåŒãç°¡åã«ããããšãåºæ¥ããéåã¯ãåæ°åŒã®å æ³ã®æã«ããçšããããããåå忝ã«åãæŽåŒããããŠãåæ°åŒãå€åããªãæ§è³ªãçšããã
* åé¡äŸ
** åé¡
:<math>
\frac {x^2 -1} {x^3 -1}
</math>
ãç°¡åã«ããããŸãã
:<math>
\frac {x+1}{x^2 +2x + 3}
+ \frac {2x + 5} {x^2 +1}
</math>
ãèšç®ããã
** è§£ç
:<math>
\frac {x^2 -1} {x^3 -1}
</math>
ã«ã€ããŠååãšåæ¯ãå æ°åè§£ãããšãåæ¹ãšãã«
:<math>
x-1
</math>
ãå æ°ãšããŠå«ãã§ããããšãåããããã®ãšããå
±éã®å æ°ã¯çŽåããããšãå¿
èŠã§ãããèšç®ãããå€ã¯ã
:<math>
\frac {x^2 -1} {x^3 -1}
</math>
:<math>
= \frac{(x-1)(x+1)}{(x-1)(x^2+x+1)}
</math>
:<math>
= \frac{x+1} { x^2+x+1}
</math>
ãšãªãã
次ã®åé¡ã§ã¯ã
:<math>
\frac {x+1}{x^2 +2x + 3}
+ \frac {2x + 5} {x^2 +1}
</math>
ãèšç®ããããã®ãšãã䞡蟺ã®åæ¯ãããããå¿
èŠãããããä»åã«ã€ããŠã¯ãåçŽã«ããããã®åæ°åŒã®ååãšåæ¯ã«åã
ã®åæ¯ããããŠåæ¯ãçµ±äžããã°ãããèšç®ãããšã
:<math>
\frac {x+1}{x^2 +2x + 3}
+ \frac {2x + 5} {x^2 +1}
</math>
:<math>
= \frac{(x+1)(x^2+1)}{(x^2 +2x + 3)(x^2+1)}
+\frac{(x^2 +2x + 3)(2x + 5)}{(x^2 +2x + 3)(x^2+1)}
</math>
:<math>
= \frac{(x+1)(x^2+1)+(x^2 +2x + 3)(2x + 5)}
{(x^2 +2x + 3)(x^2+1)}
</math>
:<math>
= \frac {3x^3 +10x^2 + 17 x + 16}
{(x^2 +2x + 3)(x^2+1)}
</math>
ãšãªãã
åæ°åŒã®ä¹æ³ã¯ãåå忝ãå¥ã
ã«ãããã°ããã
* åé¡äŸ
** åé¡
次ã®èšç®ãããã
(I)
:<math>
\frac {x^2 - y^2} {x^2 - 2xy + y^2} \times \frac {x-y} {x^2 + xy}
</math>
(II)
:<math>
\frac {x^2 + 4x + 3}{x^2 - 6x + 9} \div \frac {x^2 - 3x - 4} {x^2 - x - 6}
</math>
** è§£ç
(I)
:<math>
\frac {x^2 - y^2} {x^2 - 2xy + y^2} \times \frac {x-y} {x^2 + xy}
</math>
:<math>
= \frac {(x+y)(x-y)} {(x-y)^2} \times \frac {x-y} {x(x+y)}
</math>
:<math>
= \frac {(x+y)(x-y)(x-y)} {(x-y)^2\ x(x+y)}
</math>
:<math>
= \frac {1} {x}
</math>
(II)
:<math>
\frac {x^2 + 4x + 3}{x^2 - 6x + 9} \div \frac {x^2 - 3x - 4} {x^2 - x - 6}
</math>
:<math>
= \frac {x^2 + 4x + 3}{x^2 - 6x + 9} \times \frac {x^2 - x - 6} {x^2 - 3x - 4}
</math>
:<math>
= \frac {(x+1)(x+3)} {(x-3)^2} \times \frac {(x+2)(x-3)} {(x+1)(x-4)}
</math>
:<math>
= \frac {(x+1)(x+3)(x+2)(x-3)} {(x-3)^2\ (x+1)(x-4)}
</math>
:<math>
= \frac {(x+3)(x+2)} {(x-3)(x-4)}
</math>
===== éšååæ°åè§£ =====
忝ãç©ã®åœ¢ã§ããåæ°åŒãäºã€ã®åæ°åŒã®åãå·®ã§è¡šãããåŒã«å€åœ¢ããæäœã'''éšååæ°åè§£'''ãšããã
*åé¡äŸ
<Math> \frac{1}{x (x+1)} </Math>ãš<Math>\frac{1}{(x+1)(x+3)}</Math>ãåæ°åŒã®åãŸãã¯å·®ã®åœ¢ã§è¡šãã
*è§£ç
:<Math>\frac{1}{x(x+1)} = \frac{(x+1)-x}{x(x+1)}</Math>
ãšå€åœ¢ã§ããã®ã§ã
:<Math>\frac{x+1}{x(x+1)} - \frac{x}{x(x+1)}</Math>
ãšãªããçŽåãããš
:<Math>\frac{1}{x} - \frac{1}{x+1}</Math>
ãšãªãã
次ã®åé¡ã§ã¯ã
:<Math>\frac{1}{(x+1)(x+3)} = \frac{1}{(x+3) - (x+1)} \cdot \frac{(x+3) - (x+1)}{(x+1)(x+3)}</Math>
ãšå€åœ¢ããããšã«ãã£ãŠã
:<Math>\frac{1}{2} \{ \frac{x+3}{(x+1)(x+3)} - \frac{x+1}{(x+1)(x+3)} \}</Math>
ãšãªãã
:<Math>\frac{1}{2} (\frac{1}{x+1} - \frac{1}{x+3}) </Math>
ãšæ±ãŸãã
éšååæ°åè§£ã®æäœãéã«èŸ¿ããšãåæ°åŒã®éåã®æäœãšäžèŽããã
ã€ãŸãã'''éšååæ°åè§£ã¯éåã®éã®æäœ'''ã§ããã
ååã宿°ã®å Žåã«ã¯ãäžãšåæ§ã®æ¹æ³ã§éšååæ°åè§£ããããšãã§ããã
*åé¡
**以äžã®åæ°åŒãéšååæ°åè§£ãã
**#<Math>\frac{3}{(x-9)(x-4)}</Math>
**#<Math>\frac{7}{(3x-1)(5-2x)}</Math>
*è§£ç
1. <Math>\frac{3}{(x-9) (x-4)} </Math>
:<Math>= \frac{3}{(x-4) - (x-9)} \cdot \frac{(x-4) - (x-9)}{(x-9)(x-4)}</Math>
:<Math>= \frac{3}{5}\{ \frac{x-4}{(x-9)(x-4)} - \frac{x-9}{(x-9)(x-4)} \}</Math>
:<Math>= \frac{3}{5} ( \frac{1}{x-9} - \frac{1}{x-4} )</Math>
2. <Math>\frac{7}{(3x-1)(5-2x)}</Math>
:<Math>= \frac{-7}{(3x-1)(2x-5)} </Math>
:<Math>= \frac{-7}{(3x-1) - (2x-5)} \cdot \frac{(3x-1) - (2x-5)}{(3x-1)(2x-5)} </Math>
:<Math>= \frac{-7}{2(3x-1) - 3(2x-5)} \cdot \frac{2(3x-1) - 3(2x-5)}{(3x-1)(2x-5)} </Math>
:<Math>= \frac{-7}{(6x-2) - (6x-15)} \{ \frac{2(3x-1)}{(3x-1)(2x-5)} - \frac{3(2x-5)}{(3x-1)(2x-5)} \}</Math>
:<Math>= - \frac{7}{13} (\frac{2}{2x-5} - \frac{3}{3x-1})</Math>
:<Math>= \frac{7}{13} (\frac{3}{3x-1} - \frac{2}{2x-5})</Math>
éšååæ°åè§£ã¯æ°åã®åã®èšç®ãç©åèšç®ã埮åãå©çšããäžçåŒã®èšŒæçã«åœ¹ç«ã€ãéèŠãªå€åœ¢ã§ããã
=== åŒã®èšŒæ ===
==== æçåŒ ====
çåŒ <math>(a+b)^2=a^2+2ab+b^2</math>ã¯ãæå<math>a,b</math>ã«ã©ã®ãããªå€ã代å
¥ããŠãæãç«ã€ããã®ãããªçåŒã'''æçåŒ'''ïŒãããšãããïŒãšããã
çåŒ<math>\frac {1}{x-1} + \frac {1}{x+1} = \frac {2x}{x^2-1}</math>ã¯ã䞡蟺ãšã<math>x=1,-1</math>ã代å
¥ããããšã¯ã§ããªããããã®ä»ã®å€ã§ããã°ä»£å
¥ããããšãã§ãããŸãã©ã®ãããªå€ã代å
¥ããŠãçåŒãæãç«ã£ãŠããããããæçåŒãšåŒã¶ã
ãã£ãœãã<math>x^2 - x - 2 = 0</math> ã¯ãxïŒ2 ãŸã㯠xïŒãŒ1 ã代å
¥ãããšãã ãæãç«ã€ãããã®ããã«æåã«ç¹å®ã®å€ã代å
¥ãããšãã«ã ãæãç«ã€åŒã®ããšãæ¹çšåŒãšåŒã³ãæçåŒãšã¯åºå¥ããã
çåŒ <math>ax^2+bx+c=0</math> ã <math>x</math> ã«ã€ããŠã®æçåŒã§ããã®ã¯ã©ã®ãããªå ŽåããèããŠã¿ããã
ããåŒãã <math>x</math> ã«ã€ããŠã®æçåŒã§ããããšã¯ããã®åŒã®<math>x</math> ã«ã©ã®ãããªå€ã代å
¥ããŠãããã®çåŒã¯æãç«ã€ãšããæå³ã§ããããªã®ã§ãäŸãã° <math>x</math> ã«<math>-1\ ,\ 0\ ,\ 1</math> ã代å
¥ããåŒ
:<math>a-b+c=0</math>
:<math>c=0</math>
:<math>a+b+c=0</math>
ã¯ãã¹ãŠæãç«ã€å¿
èŠãããããããè§£ããš
:<math>a=b=c=0</math>
ãªã®ã§ãçåŒ <math>ax^2+bx+c=0</math> ã <math>x</math> ã«ã€ããŠã®æçåŒã«ãªããªãã°ã<math>a=b=c=0</math>ã§ãªããã°ãªããªãããšããããã
äžè¬ã«ãçåŒ <math>ax^2+bx+c=a'x^2+b'x+c'</math> ãæçåŒã§ããããšãšã<math>(a-a')x^2+(b-b')x+(c-c')=0</math> ãæçåŒã§ããããšãšåãã§ããã<br>
ãã£ãŠ
:<math>ax^2+bx+c=a'x^2+b'x+c'</math> ã<math>x</math>ã«ã€ããŠã®æçåŒ ã<math>\Leftrightarrow </math>ã <math>a=a'</math> ã〠<math>b=b'</math> ã〠<math>c=c'</math>
ãŸãšãããšæ¬¡ã®ããã«ãªãã
{| style="border:2px solid yellow;width:fit-content" cellspacing=0
|style="background:yellow"|'''æçåŒã®æ§è³ª'''
|-
|style="padding:5px"|
<math>P\ ,\ Q</math> ã <math>x</math> ã«ã€ããŠã®å€é
åŒãŸãã¯åé
åŒãšããã
::<math>P=0</math> ãæçåŒ ã<math>\Leftrightarrow </math> ã <math>P</math>ã®åé
ã®ä¿æ°ã¯ãã¹ãŠ<math>0</math>ã§ããã
::<math>P=Q</math> ãæçåŒ ã<math>\Leftrightarrow </math> ã <math>P</math>ãš <math>Q</math> ã®æ¬¡æ°ã¯çããã䞡蟺ã®åãæ¬¡æ°ã®é
ã®ä¿æ°ã¯ãããããçããã
|}
* åé¡äŸ
** åé¡
次ã®çåŒã <math>x</math> ã«ã€ããŠã®æçåŒãšãªãããã«ã<math>a\ ,\ b\ ,\ c</math> ã®å€ãæ±ããã
:<math>x^2-3=a(x-1)^2+b(x-1)+c</math>
** è§£ç
çåŒã®å³èŸºã <math>x</math> ã«ã€ããŠæŽçãããš
:<math>a(x-1)^2+b(x-1)+c=ax^2-2ax+a+bx-b+c=ax^2+(-2a+b)x+(a-b+c)</math>
:<math>x^2-3=ax^2+(-2a+b)x+(a-b+c)</math>
ãã®çåŒã <math>x</math> ã«ã€ããŠã®æçåŒãšãªãã®ã¯ã䞡蟺ã®åãæ¬¡æ°ã®é
ã®ä¿æ°ãçãããšãã§ããããã£ãŠ
:<math>a=1</math>
:<math>-2a+b=0</math>
:<math>a-b+c=-3</math>
ãããè§£ããš
:<math>a=1\ ,\ b=2\ ,\ c=-2</math>
; '''è€éãªéšååæ°åè§£'''ïŒçºå±ïŒ
æçåŒãå©çšããããšã§ãè€éãªåæ°åŒã®éšååæ°åè§£ãã§ããã
*åé¡äŸ
**以äžã®åæ°åŒãéšååæ°åè§£ãã
**#<Math>\frac{3x-5}{(x+2)(2x-1)}</Math>
**#<Math>\frac{1}{(x-1)^2 (x-2)}</Math>
*è§£ç
:<Math>\frac{3x-5}{(x+3)(2x-1)} = \frac{a}{2x-1} + \frac{b}{x+3}</Math>
ãšããã
忝ãæã£ãŠ
:<Math>3x-5 = a(x+3) + b(2x-1)</Math>
ããªãã¡
:<Math>3x-5 =(a+2b)x + (3a-b) </Math>
ããã<Math>x</Math>ã®æçåŒãªã®ã§ãä¿æ°ãæ¯èŒããŠ
:<Math>a+2b=3</Math>ãã€<Math>3b-a=-5</Math>
ããªãã¡
:<Math>a=-1, b=2</Math>
æåã®çåŒã«ä»£å
¥ããŠã
:<Math>\frac{3x-5}{(x+3)(2x-1)} = \frac{-1}{2x-1} + \frac{2}{x+3}</Math>
:<Math>= \frac{2}{x+3} - \frac{1}{2x-1}</Math>
次ã®åé¡ã¯ã
:<Math>\frac{1}{(x-1)^2 (x-2)} = \frac{a}{x-1} + \frac{b}{(x-1)^2} + \frac{c}{x-2}</Math>
ãšããããšã«ãããäžã®åé¡ãšåæ§ã«ããŠ
:<Math>a=-1, b=-1, c=1</Math>
ãšæ±ãŸãã®ã§ã
:<Math>\frac{1}{(x-1)^2 (x-2)} = - \frac{1}{x-1} - \frac{1}{(x-1)^2} + \frac{1}{x-2}</Math>
:<Math>= \frac{1}{x-2} - \frac{1}{x-1} - \frac{1}{(x-1)^2}</Math>
'''æçåŒãå©çšããéšååæ°åè§£'''
æ±ãããæ°åã<Math>a,b,c</Math>ãšããã
1. <Math>\frac{px+q}{(x+m)(x+n)} = \frac{a}{x+m} + \frac{b}{x+n}</Math>
2. <Math>\frac{px+q}{(x+m)^2} = \frac{a}{x+m} + \frac{b}{(x+m)^2}</Math>
3. <Math>\frac{px^2 + qx + r}{(x+m)^2 (x+n)} = \frac{a}{x+m} + \frac{b}{(x+m)^2 } + \frac{c}{x+n}</Math>
4. <Math>\frac{px^2 + qx + r}{(x+m)(x^2 + nx + l)} = \frac{a}{x+m} + \frac{bx+c}{x^2 + nx + l}</Math>
ãã®ããã«ãããåŒã<Math>x</Math>ã®æçåŒãšèŠãããšã«ãã£ãŠã<Math>a,b,c</Math>ãæ±ããããéšååæ°åè§£ãã§ããã
; '''2ã€ã®æåã«ã€ããŠã®æçåŒ'''ïŒçºå±ïŒ
*äŸ
a~fã宿°ãšããã
<Math>ax^2+by^2+cxy+dx+ey+f=0</Math>ãx, yã«ã€ããŠã®æçåŒã ãšããã
巊蟺ãxã«ã€ããŠæŽçãããšã<Math>ax^2+(cy+d)x+(by^2+ey+f)=0</Math>ã§ããã
ãããxã«ã€ããŠã®æçåŒãªã®ã§ã<Math>a=0, cy+d=0, by^2+ey+f=0</Math>ãæãç«ã€ã
ãããã¯æŽã«yã«ã€ããŠã®æçåŒãªã®ã§ã以äžã®çåŒãåŸãããã
:<Math>a=b=c=d=e=f=0</Math>
éã«ããããæãç«ãŠã°å
ã®åŒã¯æããã«x, yã«ã€ããŠã®æçåŒã§ãã
**åé¡
<Math>x^2+axy+6y^2-x+5y+b = (x-2y+c)(x-3y+d)</Math>ãx,yã«ã€ããŠã®æçåŒãšãªãããã«a,b,c,dãå®ããã
==== çåŒã®èšŒæ ====
ããã»ã©ç޹ä»ãããæçåŒããšããèšèã䜿ã£ãŠã蚌æãã®æå³ã説æãããªãããçåŒã蚌æããããšã¯ããã®åŒãæçåŒã§ããããšã瀺ãããšã§ããã
äžè¬ã«ãçåŒ AïŒB ã蚌æããããã«ã¯ã次ã®ãããªæé ã®ãããããå®è¡ããã°ããã
:(1)ããAãåŒå€åœ¢ããŠBãå°ããããŸã㯠Bãå€åœ¢ããŠAãå°ãã
:(2)ããA,Bãããããå€åœ¢ããŠãåãåŒCãå°ãã
:(3)ããA-BïŒ0 ã瀺ãã
ãã®ãšããå€åœ¢ã¯åå€å€åœ¢ã§ãªããã°ãªããªãããšã«æ³šæã
* äŸé¡ 1
<math>
(a+b)^2-(a-b)^2 = 4ab
</math>
ãæãç«ã€ããšã蚌æããã
ïŒèšŒæïŒ<br>
巊蟺ãå±éãããšã
:(巊蟺)ïŒ<math>
(a^2+2ab+b^2)-(a^2-2ab+b^2) = a^2+2ab+b^2 - a^2+2ab-b^2=4ab
</math>
ãšãªããããã¯å³èŸºã«çããããã£ãŠãçåŒ <math>
(a+b)^2-(a-b)^2 = 4ab
</math> ã¯èšŒæããããïŒçµïŒ
----
* äŸé¡ 2
<math>
(x+y)^2+(x-y)^2 = 2(x^2+y^2)
</math>
ãæãç«ã€ããšã蚌æããã
:ïŒèšŒæïŒ
巊蟺ãèšç®ãããšã
:ïŒå·ŠèŸºïŒ ïŒ <math> (x^2+2xy+y^2)+(x^2-2xy+y^2) = x^2+2xy+y^2 + x^2-2xy+y^2 = 2x^2+2y^2 =2(x^2+y^2) </math>
ããã¯å³èŸºã«çããããã£ãŠçåŒãæãç«ã€ããšã蚌æããããïŒçµïŒ
----
* åé¡äŸ
** åé¡
次ã®çåŒãæãç«ã€ããšã蚌æããã<br>
(I)
:<math>
(6 a + 7 b )^2 + (7 a - 6 b )^2 = (9 a + 2 b )^2 + (2 a - 9 b )^2
</math>
**è§£ç
(I)<br>
(巊蟺)<math>
= (36 a^2 + 84 a b + 49 b^2) + (49 a^2 - 84 a b + 36 a^2) = 85 a^2 + 85 b^2
</math><br>
(å³èŸº)<math>
= (81 a^2 + 36 a b + 4 b^2) + (4 a^2 - 36 a b + 81 b^2) = 85 a^2 + 85 b^2
</math><br>
䞡蟺ãšãåãåŒã«ãªããã
:<math>
(6 a + 7 b )^2 + (7 a - 6 b )^2 = (9 a + 2 b )^2 + (2 a - 9 b )^2
</math>
æçåŒã§ãªããšãããäžããããæ¡ä»¶ããçåŒã蚌æããããšãã§ããã
*åé¡äŸ
**<Math>a+b+c=0</Math>ã®ãšãã<Math>a^3+b^3+c^3=3abc</Math>ã§ããããšã蚌æããããŸãã<Math>a:b=c:d</Math>ã®ãšãã<Math>\frac{a+c}{b+d} = \frac{a-c}{b-d}</Math>ã蚌æããã
**è§£ç
:<Math>a+b+c=0 \iff c=-(a+b)</Math>
ããã
:<Math>a^3+b^3+c^3-3abc = a^3+b^3-(a+b)^3+3ab(a+b)</Math>
:<Math>= a^3+b^3-(a^3+3a^2b+3ab^2+b^3)+3a^2b+3ab^2</Math>
:<Math>=0</Math>
ãã£ãŠã<Math>a^3+b^3+c^3=3abc</Math>ã§ããã
ãŸãã
:<Math>a:b=c:d \iff \frac{a}{b} = \frac{c}{d}</Math>
ãããäžåŒã®å³èŸºãkãšãããšã
:<Math>a=bk, c=dk</Math>
ãªã®ã§ã
:<Math>\frac{a+c}{b+d} = \frac{bk+dk}{b+d} = \frac{k(b+d)}{b+d} = k</Math>
:<Math>\frac{a-c}{b-d} = \frac{bk-dk}{b-d} = \frac{k(b-d)}{b-d} = k</Math>
ãã£ãŠã<Math>\frac{a+c}{b+d} = \frac{a-c}{b-d}</Math>ã§ããã
ãªããæ¯<Math>a:b</Math>ã«ã€ããŠ<Math>\frac{a}{b}</Math>ã'''æ¯ã®å€'''ãšããããŸãã<Math>a:b=c:d \iff \frac{a}{b} = \frac{c}{d}</Math>ã'''æ¯äŸåŒ'''ãšããã
<Math>\frac{a}{x} = \frac{b}{y} = \frac{c}{z}</Math>ãæãç«ã€ãšãã<Math>a:b:c=x:y:z</Math>ãšè¡šããããã'''飿¯'''ãšããã
*åé¡
**<Math>a:b:c=1:2:3</Math>ã®ãšãã<Math>a+b+c=24</Math>ãæºãã<Math>a,b,c</Math>ãæ±ããã
==== äžçåŒã®èšŒæ ====
äžçåŒã®ããŸããŸãªå
¬åŒã«ã€ããŠã¯ã次ã®4ã€ã®åŒãåºæ¬çãªåŒãšããŠå°åºã§ããå Žåãããããã
髿 ¡æ°åŠã§ã¯ã次ã®4ã€ã®æ§è³ªã äžçåŒã®ãåºæ¬æ§è³ªããªã©ãšããŠç޹ä»ãããŠããã
{| style="border:2px solid skyblue; width:fit-content" cellspacing=0
|style="background:skyblue"|'''äžçåŒã®åºæ¬æ§è³ª'''
|-
|style="padding:5px"|
:(1)ãã<math> a>b </math> ã〠<math> b>c </math> ãªãã° <math> a>c </math>
:(2)ãã<math> a>b </math> ãªãã° <math> a+c>b+c </math> ã〠<math> a-c>b-c </math>
:(3)ãã<math> a>b </math> ã〠<math> c>0 </math> ãªãã° <math> ac>bc </math> ã§ããã<math> \frac{a}{c} > \frac{b}{c} </math>ã§ããã
:(4)ãã<math> a>b </math> ã〠<math> c<0 </math> ãªãã° <math> ac<bc </math> ã§ããã<math> \frac{a}{c} < \frac{b}{c} </math>ã§ããã
|}
(3)ãš(4)ã«ã€ããŠã¯ãã²ãšã€ã®æ§è³ªãšã㊠ãŸãšããŠããæ€å®æç§æžãããïŒâ» åæé€šãªã©ïŒã
æ°åŠIAã§ç¿ã£ãããªãã°ãã®æå³ã®èšå· <math>\Longrightarrow </math> ã䜿ããšã
{| style="border:2px solid skyblue; width:fit-content" cellspacing=0
|style="background:skyblue"|'''äžçåŒã®åºæ¬æ§è³ª'''
|-
|style="padding:5px"|
:(1)ãã<math> a>b </math> ã〠<math> b>c </math> ã<math>\Longrightarrow </math>ã <math> a>c </math>
:(2)ãã<math> a>b </math> <math>\Longrightarrow </math> <math> a+c>b+c </math> ããã€ã<math> a-c>b-c </math>
:(3)ãã<math> a>b </math> ã〠<math> c>0 </math> ã<math>\Longrightarrow</math>ã <math> ac>bc </math> ã§ããã<math> \frac{a}{c} > \frac{b}{c} </math>ã§ããã
:(4)ãã<math> a>b </math> ã〠<math> c<0 </math> ã<math>\Longrightarrow</math>ã <math> ac<bc </math> ã§ããã<math> \frac{a}{c} < \frac{b}{c} </math>ã§ããã
|}
ãšãæžããã
äžè¿°ã®4ã€ã®åºæ¬æ§è³ªããã
:a>0, ãb>0 ãªãã° aïŒb ïŒ 0
ã蚌æããŠã¿ããã
ïŒèšŒæïŒ
ãŸã a>0 ãªã®ã§ãåºæ¬æ§è³ª(2)ãã
:aïŒb > b
ã§ããã
ãã£ãŠã
:<math> a+b>b </math> ã〠<math> b>0 </math>
ãªã®ã§ãåºæ¬æ§è³ª(1)ãã<math> a+b>0 </math>
ãæãç«ã€ãïŒçµïŒ
åæ§ã«ããŠã
:aïŒ0, ãbïŒ0 ãªãã° aïŒb ïŒ 0
ã蚌æã§ããã
::ïŒâ» èªè
ã¯èªåã§ ããã蚌æããŠã¿ããæ€å®æç§æžã«ãããã®åŒã®èšŒæã¯çç¥ãããŠãããïŒ
ãããŸã§ã«ç€ºããããšãããäžçåŒ <math> A \geqq B </math> ã蚌æãããå Žåã«ã¯ã
: <math> A-B \geqq 0 </math>
ã蚌æããã°ããããšãããã£ãããã¡ãã®æ¹ã蚌æããããå Žåãããããã
äžçåŒã蚌æããéã«æ ¹æ ãšããåºæ¬çãªäžçåŒãšããŠãæ¬¡ã®æ§è³ªãããã
{| style="border:2px solid skyblue; width:fit-content" cellspacing=0
|style="background:skyblue"|'''宿°ã®2ä¹ã®æ§è³ª'''
|-
|style="padding:5px"|
宿° a ã«ã€ããŠãããªãã
:<math>a^2 \geqq 0</math>
ãæãç«ã€ã
ãã®åŒã§çå·ãæãç«ã€å Žåãšã¯ã <math>a = 0</math> ã®å Žåã ãã§ããã
|}
ãã®å®çïŒã宿°ã2ä¹ãããšãããªãããŒã以äžã§ãããïŒããåºæ¬æ§è³ª(3),(4)ã䜿ã£ãŠèšŒæããŠã¿ããã
'''ïŒèšŒæïŒ'''
aãæ£ã®å Žåãšè² ã®å Žåãš0ã®å Žåã®3éãã«å Žåããããã
'''<nowiki>[aãæ£ã®å Žå]</nowiki>''' <br>
ãã®ãšããåºæ¬æ§è³ª(3)ããã
:<math> aa>0a </math>
ã§ãããããªãã¡ã
:<math> a^2 > 0 </math>
ã§ããã
'''<nowiki>[aãè² ã®å Žå]</nowiki>'''<br>
ãã®ãšããåºæ¬æ§è³ª(4)ãã
<math>0a < aa </math>
ã§ãããããªãã¡ã
: <math> a^2 > 0 </math>
ã§ããã
'''<nowiki>[aããŒãã®å Žå]</nowiki>''' <br>
ãã®ãšãã
<math>a^2=0</math>
ã§ããã
ãã£ãŠããã¹ãŠã®å Žåã«ã€ããŠ<math>a^2 \geqq 0</math>
(çµ)
ãã®ããšãšåºæ¬æ§è³ª(1)(2)ãããæ¬¡ãæãç«ã€ããšããããã
{| style="border:2px solid skyblue; width:fit-content" cellspacing=0
|style="background:skyblue"|'''宿°ã®2ä¹ã©ããã®åã®æ§è³ª'''
|-
|style="padding:5px"|
2ã€ã®å®æ°a,b ã«ã€ã㊠<math>a^2 \geqq 0</math>, ã<math>b^2 \geqq 0</math> ã§ãããããããªãã
:<math>a^2+b^2 \geqq 0</math>
ãæãç«ã€ã
äžåŒã§çå·ãæãç«ã€å Žåãšã¯ã <math>a^2 = 0</math> ã〠<math>b^2 = 0</math> ã®å Žåã ãã§ãããã€ãŸã <math>a = 0</math> ã〠<math>b = 0</math> ã®å Žåã ãã§ããã
|}
** åé¡
次ã®äžçåŒãæãç«ã€ããšã蚌æããã<br>
:<math>
x^2 + 10 y^2 \geqq 6 x y
</math>
(蚌æ)<br>
:<math>
(x^2 + 10 y^2) -(6 x y) \geqq 0
</math>
ã蚌æããã°ããã
巊蟺ãå±éã㊠ãŸãšãããšã
:<math>
(x^2 + 10 y^2) - 6xy = x^2 - 6 x y + 9 y^2 + y^2 = (x - 3 y)^2 + y^2
</math>
ãšãªãã
äžåŒã®æåŸã®åŒã®é
ã«ã€ããŠã
:<math>
(x - 3 y)^2 \geqq 0 , \quad y^2 \geqq 0
</math>
ã ããã
:<math>
(x - 3 y)^2 + y^2 \geqq 0
</math>
ã§ããããã£ãŠ
:<math>
x^2 + 10 y^2 \geqq 6 x y
</math>
ã§ãããïŒçµïŒ
===== æ ¹å·ãå«ãäžçåŒ =====
2ã€ã®æ£ã®æ° a,ãb ã aïŒb ãŸã㯠aâ§b ãªãã°ã䞡蟺ã2ä¹ããŠã倧å°é¢ä¿ã¯åããŸãŸã§ããã
ã€ãŸãã
: <math> a>0 </math>,ã<math> b>0 </math> ã®ãšãã
:
: <math> a > b \quad \Longleftrightarrow \quad a^2 > b^2 </math>
: <math> a > b \quad \Longleftrightarrow \quad a^2 > b^2 </math>
:
: ããã蚌æããã«ã¯ã<math> a^2 - b^2 </math> ã調ã¹ãã°ããã
:<math> a^2 - b^2 = (a+b)(a-b) </math>
ã§ããã
a>bãšãããä»®å®ãããa,b ã¯æ£ã®æ°ãªã®ã§ã<math> (a+b)>0 </math> ã§ãããå¥ã®ä»®å®ããã a > b ãªã®ã§ã<math> (a-b)>0 </math> ã§ãããããã£ãŠã<math> a^2 - b^2 = (a+b)(a-b) >0 </math>
éã«ã<math>a^2-b^2>0</math>ã®ãšãã<math>(a+b)(a-b)>0</math>ã§ããã<math>a>0,b>0</math>ãªã®ã§<math>a+b>0</math>ã§ããããã£ãŠã<math>a-b>0</math>ãªã®ã§ã<math>a>b</math>ã§ããã
ãã£ãŠã<math> a > b \quad \Longleftrightarrow \quad a^2 > b^2 </math> ã§ããã
aâ§bã®å Žåãåæ§ã«èšŒæã§ããã
----
ç·Žç¿ãšããŠã次ã®åé¡ãåããŠã¿ããã
;äŸé¡
<math> a>0 </math>,ã<math> b>0 </math> ã®ãšããæ¬¡ã®äžçåŒã蚌æããã
::<math> \sqrt{a} + \sqrt{b} > \sqrt{a+b} </math>
ïŒèšŒæïŒ
äžçåŒã®äž¡èŸºã¯æ£ã§ããã®ã§ã䞡蟺ã®å¹³æ¹ã®å·®ãèããã°ããã䞡蟺ã®å¹³æ¹ã®å·®ã¯
:<math>( \sqrt{a} + \sqrt{b} )^2 - ( \sqrt{a+b} )^2 = a + 2 \sqrt{a} \sqrt{b} + b - (a+b) 2 \sqrt{ab} </math>
ã§ãããããã§ãa,b ã¯ãšãã«æ£ã®å®æ°ãªã®ã§ã
::<math> \sqrt{a} \sqrt{b} = \sqrt{ab} </math>
ã§ããããšãçšããã
:<math> \sqrt{ab} > 0</math>
ã§ããã®ã§ã
:<math>( \sqrt{a} + \sqrt{b} )^2 - ( \sqrt{a+b} )^2 > 0 </math>
ãšãªãããã£ãŠã
:<math> \sqrt{a} + \sqrt{b} > \sqrt{a+b} </math>
ã§ãããïŒçµïŒ
===== 絶察å€ãå«ãäžçåŒ =====
宿° a ã®çµ¶å¯Ÿå€ |a| ã«ã€ããŠã
: a â§ 0 ã®ãšã |a|ïŒa , ã
: aïŒ0 ã®ãšã |a|ïŒ ãŒa
ã§ãããããæ¬¡ã®ããšãæãç«ã€ã
''' |a|â§a , |a|â§ ãŒa ,ã|a|<sup>2</sup>ïŒa<sup>2</sup> '''
ãŸãã2ã€ã®å®æ° a, b ã®çµ¶å¯Ÿå€ |ab| ã«ã€ããŠã¯ã
: |ab| <sup>2</sup> ïŒ (ab)<sup>2</sup> ïŒ a<sup>2</sup> b<sup>2</sup> ïŒ |a|<sup>2</sup> |b|<sup>2</sup> ïŒ (|a| |b|)<sup>2</sup>
ãæãç«ã€ã®ã§ãããã«ããã« |ab|â§0 ,ã|a||b|â§0 ãçµã¿åãããŠã
''' |ab| ïŒ |a| |b| '''
ãæãç«ã€ã
(äŸé¡)
次ã®äžçåŒã蚌æããããŸããçå·ãæãç«ã€ã®ã¯ ã©ã®ãããªå Žåãã 調ã¹ãã
::|a|ïŒ|b| â§ |aïŒb|
:(蚌æ)
䞡蟺ã®å¹³æ¹ã®å·®ãèãããšã
:: (|a|ïŒ|b|)<sup>2</sup> ㌠|aïŒb|<sup>2</sup> ïŒ |a|<sup>2</sup> ïŒ 2|a| |b| ïŒ |b|<sup>2</sup> ãŒ(a<sup>2</sup> ïŒ 2ab ïŒ b<sup>2</sup> )
:::::::: ïŒ a<sup>2</sup> ïŒ 2|a| |b| ïŒ b<sup>2</sup> ãŒa<sup>2</sup> ㌠2ab ㌠b<sup>2</sup>
:::::::: ïŒ 2|a| |b| ㌠2ab
:::::::: ïŒ 2 ( |a| |b| ㌠ab )
ãããããæ£ãªããäžããããäžçåŒ |a|ïŒ|b| â§ |aïŒb| ãæ£ããã
ããã§ã |a| |b| â§ ab ã§ããã®ã§ã
:: ( |a| |b| ㌠ab ) ⧠0
ã§ããã
ãããã£ãŠã |a|ïŒ|b| â§ |aïŒb| ã§ããã
çå·ãæãç«ã€ã®ã¯ |a| |b| ïŒ ab ã®å Žåãããªãã¡ ab â§ 0 ã®å Žåã§ãããïŒèšŒæ ãããïŒ
{{ã³ã©ã |äžè§äžçåŒ|
ãªã
::<nowiki>|a|ãŒ|b| ⊠|aïŒb| ⊠|a|ïŒ|b| </nowiki>
ã®é¢ä¿åŒã®ããšããäžè§äžçåŒããšããã
}}
==== çžå å¹³åãšçžä¹å¹³å ====
2ã€ã®æ°<math>a</math>,<math>b</math>ã«å¯Ÿãã<math>\frac{a+b}{2}</math>ã'''çžå å¹³å'''ïŒããããžãããïŒãšèšãã<math>\sqrt{ab}</math>ã'''çžä¹å¹³å'''ïŒããããããžãããïŒãšããã
{{ã³ã©ã |çžä¹å¹³åã®äŸãš3ã€ä»¥äžã®ãã®ã®å¹³å|
å¹³åã¯ã3ã€ä»¥äžã®ãã®ã«ãå®çŸ©ãããã3ã€ä»¥äžã®nåã®ãã®ã®çžå å¹³å㯠<math>\frac{a_1 + a_2 + \cdots +a_n }{n}</math> ã§å®çŸ©ãããã
:å¹³åãèããéãã€ãçžå å¹³åã°ãããèããã¡ã ãã以äžã®ãããªç¶æ³ã§ã¯çžä¹å¹³åã®æ¹ãé©åã§ããã
::ãããäŒæ¥ã§ã¯ã2015幎床ã®å£²äžãåºæºã«ãããšã2016幎床ã§ã¯å幎ïŒ2015幎ïŒã®1.5åã®å£²äžã«ãªããŸããã2017幎床ã§ã¯ãå幎ïŒ2016幎ïŒã®2åã®å£²äžã«ãªããŸãããå¹³åãšããŠãäžå¹Žããšã«äœåã®å£²ãäžãã«ãªã£ãŠãã£ãã§ããããïŒ ã
:ïŒçïŒ<math>\sqrt{1.5 \times 2} = \sqrt{3} \fallingdotseq 1.73</math> ãããçŽ 1.73åã
:ãŸãããã®å¿çšäŸã¯ãé
ã3ã€ä»¥äžã®å Žåã®çžä¹å¹³åã®å®çŸ©ã®ä»æ¹ãã瀺åããŠãããããèªè
ã[[é«çåŠæ ¡æ°åŠII/ææ°é¢æ°ã»å¯Ÿæ°é¢æ°|ææ°é¢æ°]]ãç¥ã£ãŠãããªããé
ã3ã€ïŒããã§ã¯ a, b, c ãšããïŒã®å Žåã®çžä¹å¹³åã¯ã
::ïŒ3ã€ã®é
ã®çžä¹å¹³åïŒïŒ<math> (abc)^{ \frac{1}{3} } </math>
:ã«ãªãã
}}
æ¬ããŒãžã§ã¯ã2åã®æ°ã®å¹³åã«ã€ããŠèå¯ããã
çžå å¹³åãšçžä¹å¹³åã«ã€ããŠã次ã®é¢ä¿åŒãæãç«ã€ã
{| style="border:2px solid yellow;width:80%" cellspacing=0
|style="background:yellow"|'''çžå å¹³åãšçžä¹å¹³å'''
|-
|style="padding:5px"|
<math>a \geqq 0</math> ïŒ<math>b \geqq 0</math>ã®ãšãã<br>
<center><math>\frac{a+b}{2} \geqq \sqrt{ab}</math></center><br>
çå·ãæãç«ã€ã®ã¯ã<math>a = b</math>ã®ãšãã§ããã
|}
ïŒèšŒæïŒ
<math>a \geqq 0 , b \geqq 0</math>ã®ãšã
:<math>
\frac{a+b}{2} - \sqrt{ab} = \frac{a+b-2 \sqrt{ab}}{2} = \frac{\left( \sqrt{a} \right) ^2 - 2 \sqrt{a} \sqrt{b} + \left( \sqrt{b} \right) ^2}{2} = \frac{\left( \sqrt{a} - \sqrt{b} \right) ^2 }{2}
</math>
<math> \left( \sqrt{a} - \sqrt{b} \right) ^2 \geqq 0</math>ã§ããããã<math> \frac{\left( \sqrt{a} - \sqrt{b} \right) ^2 }{2} \geqq 0</math><br>
ãããã£ãŠã<math>\frac{a+b}{2} \geqq \sqrt{ab}</math><br>
çå·ãæãç«ã€ã®ã¯ã<math>\left( \sqrt{a} - \sqrt{b} \right) ^2 = 0 </math> ã®ãšããããªãã¡ <math>a = b</math> ã®ãšãã§ããã(蚌æ ããã)
å
¬åŒã®å©çšã§ã¯ãäžã®åŒ <math>\frac{a+b}{2} \geqq \sqrt{ab}</math> ã®äž¡èŸºã«2ãããã <math>a+b \geqq 2 \sqrt{ab}</math> ã®åœ¢ã®åŒã䜿ãå Žåãããã
* åé¡äŸ
** åé¡
<math>a>0</math> ïŒ<math>b>0</math>ã®ãšããæ¬¡ã®äžçåŒãæãç«ã€ããšã蚌æããã<br>
(I)
:<math>
a + \frac{1}{a} \geqq 2
</math>
(II)
:<math>
(a+b)\left( \frac{1}{a} + \frac{1}{b} \right) \geqq 4
</math>
**è§£ç
(I)<math>a>0</math>ã§ããããã<math>\frac{1}{a} >0</math><br>
ãã£ãŠã<math>a + \frac{1}{a} \geqq 2 \sqrt{a \times \frac{1}{a}} = 2</math><br>
ãããã£ãŠ
:<math>
a + \frac{1}{a} \geqq 2
</math>
(II)
:<math>
(a+b)\left( \frac{1}{a} + \frac{1}{b} \right) = 1+ \frac{a}{b} + \frac{b}{a} +1 = \frac{b}{a} + \frac{a}{b} +2
</math>
<math>a>0</math>ïŒ<math>b>0</math>ã§ããããã<math>\frac{b}{a} >0</math>ïŒ<math>\frac{a}{b} >0</math><br>
ãã£ãŠã<math> \frac{b}{a} + \frac{a}{b} +2 \geqq 2 \sqrt{\frac{b}{a} \times \frac{a}{b}} + 2 = 2+2 =4</math><br>
ãããã£ãŠ
:<math>
(a+b)\left( \frac{1}{a} + \frac{1}{b} \right) \geqq 4
</math>
{{ã³ã©ã |3ã€ä»¥äžã®çžä¹å¹³åãšèª¿åå¹³å|
ããèªè
ãææ°é¢æ°ãªã©ãç¥ã£ãŠããã°ã
nåã®ãã®ã®çžä¹å¹³åã¯ã
::<math>\sqrt[n] {a_1 a_2 \cdots a_n }</math>
ãšæžããã
æ°åŠçãªãå¹³åãã«ã¯ãçžå å¹³åãšçžä¹å¹³åã®ã»ãã«ã調åå¹³åãããã
調åå¹³åã¯ã黿°åè·¯ã®äžŠåèšç®ã§äœ¿ãããèãæ¹ã§ããã
nåã®ãã®ã®èª¿åå¹³åã¯ã
::<math>\frac{ n}{ \dfrac{1}{a_1} + \dfrac{1}{a_2} + \cdots + \dfrac{1}{a_n} }</math>
ã§å®çŸ©ãããã
äžè¬ã«æ°åŠçã«ã¯ã調åå¹³åãçžä¹å¹³åãçžå å¹³åã®ããã ã«æ¬¡ã®ãããªå€§å°é¢ä¿
:ïŒèª¿åå¹³åïŒ âŠ ïŒçžä¹å¹³åïŒ âŠ ïŒçžå å¹³åïŒ
ãšããé¢ä¿ãæãç«ã€ããšã蚌æãããŠããã
ããªãã¡ãæ°åŒã§æžãã°
::<math>\frac{ n}{ \dfrac{1}{a_1} + \dfrac{1}{a_2} + \cdots + \dfrac{1}{a_n} } \leqq \sqrt[n] {a_1 a_2 \cdots a_n } \leqq \frac{a_1 + a_2 + \cdots +a_n }{n} </math>
ã®é¢ä¿åŒã§ããã
ç°¡æœã«æžããšã
::<Math>\frac{ n}{ \sum_{k=1}^{n} \dfrac{1}{a_k}} \leqq (\prod_{k=1}^{n}a_k)^{\frac{1}{n}} \leqq \frac{\sum_{k=1}^{n} a_n}{n}</Math>
ãšãªãã
}}
== 髿¬¡æ¹çšåŒ ==
=== è€çŽ æ° ===
2ä¹ããŠè² ã«ãªãæ°ããšãããã®ãèããããã®ãããªæ°ã¯ãäžåŠã§ç¿ã£ã宿°ã®äžã«ã¯ãªãããšããããããªããªãã°ãæ£ã®æ°ã§ãè² ã®æ°ã§ã2ä¹ãããšç¬Šå·ãæã¡æ¶ããŠæ£ã®æ°ã«ãªã£ãŠããŸãããã§ãããããã§é«æ ¡ã§ã¯ã2ä¹ããŠè² ã«ãªããšããæ§è³ªãæã€æ°ã®æŠå¿µãæ°ããå°å
¥ããããšã«ããã
:<math>x^2 = -1</math>
ãšããæ¹çšåŒãèããããã®æ¹çšåŒã®è§£ã¯å®æ°ã«ã¯ãªããããã§ããã®æ¹çšåŒã®è§£ãšãªãæ°ãæ°ããäœãããã®åäœãæå <math>i</math> ã§ããããã
ãã® <math>i</math> ã®ããšã'''èæ°åäœ'''ïŒãããããããïŒãšåŒã¶ãïŒèæ°åäœã®èšå· i ãè±èªã®ã¢ã«ãã¡ãããã®ã¢ã€ã®å°æåã§ã imaginary unit ã«ç±æ¥ãããšèããããŠãããïŒ
<math>1+i</math> ã <math>2+5i</math> ã®ããã«ãèæ°åäœ<math>i</math>ãšå®æ°<math>a,b</math>ãçšããŠ
:<math>a+bi</math>
ãšè¡šãããšãã§ããæ°ã'''è€çŽ æ°'''ïŒãµããããïŒãšããããã®ãšãã''a''ããã®è€çŽ æ°ã®'''å®éš'''ïŒãã€ã¶ïŒãšããã''b''ã'''èéš'''ïŒããã¶ïŒãšããã
äŸãã°ã<math>1+i,\quad 2+5i,\quad \frac{9}{2} + \frac{7}{2} i,\quad 4i,\quad 3</math> ã¯ãããããè€çŽ æ°ã§ããã
è€çŽ æ° aïŒbi ã¯ïŒãã ã aãšbã¯å®æ°ïŒãbã0ã®å Žåã«ãããã宿°ãšèŠãããšãã§ããã
èšãæ¹ãããããšãè€çŽ æ°ãåºæºã«èãããšã宿°ãšã¯ã aïŒ0i ã®ãããªãèéšã®ä¿æ°ããŒãã«ãªãè€çŽ æ°ã®ããšã§ãããšãèšããã
4''i''ã®ãããªãèéšã0以å€ã§å®éšããŒãã®è€çŽ æ°ã'''çŽèæ°'''ïŒãã
ãããããïŒãšåŒã¶ãçŽèæ°ã¯ã2ä¹ãããšè² ã«ãªãæ°ã§ããã
宿°ãèéšã0ã®è€çŽ æ°ãšèããããã
宿°ã§ãªãè€çŽ æ°ã®ããšããèæ°ãïŒããããïŒãšããã
=== è€çŽ æ°ã®æ§è³ª ===
2ã€ã®è€çŽ æ° a+bi ãš c+di ãšãçãããšã¯ã
: aïŒc ã〠bïŒd
ã§ããããšã§ããã
ã€ãŸãã
: a+bi ïŒ c+di ã<math>\Longleftrightarrow</math>ã a=c ã〠bïŒd
ãšãã«ãè€çŽ æ°aïŒbi ã 0ã§ãããšã¯ãaïŒ0 ã〠bïŒ0 ã§ããããšã§ããã
: a+bi ïŒ 0 ã<math>\Longleftrightarrow</math>ã a=0 ã〠bïŒ0
{| style="border:2px solid skyblue;width:80%" cellspacing=0
|style="background:skyblue"|'''è€çŽ æ°ã®çžç'''
|-
|style="padding:5px"|
: a+bi ïŒ c+di ã<math>\Longleftrightarrow</math>ã a=c ã〠bïŒd
: a+bi ïŒ 0 ã<math>\Longleftrightarrow</math>ã a=0 ã〠bïŒ0
|}
;å
±åœ¹
è€çŽ æ°<math>z=a+bi</math>ã«å¯ŸããŠãèéšã®ç¬Šå·ãå転ãããè€çŽ æ°<math>a-bi</math>ã®ããšãã'''å
±åœ¹'''ïŒãããããïŒãªè€çŽ æ°ããŸãã¯ãè€çŽ æ°<math>z</math>ã®å
±åœ¹ãã®ããã«åŒã³ã <math> \bar z </math> ã§ããããããªãããå
±åœ¹ãã¯ãå
±'''è»'''ãã®åžžçšæŒ¢åã«ããæžãæãã§ããã
宿°aãšå
±åœ¹ãªè€çŽ æ°ã¯ããã®å®æ° a èªèº«ã§ããã
è€çŽ æ° zïŒa+bi ã«ã€ããŠ
:<math>z+ \bar z =(a+bi)+(a-bi)=2a</math>
:<math>z \bar z =(a+bi)(a-bi)=a^2-abi+abi-b^2 i^2 = a^2-b^2i^2=a^2+b^2</math>
;ååæŒç®
è€çŽ æ°ã«ãååæŒç®ïŒå æžä¹é€ïŒãå®çŸ©ãããã
è€çŽ æ°ã®æŒç®ã§ã¯ãèæ°åäœ<math>i</math>ããéåžžã®æåã®ããã«æ±ã£ãŠèšç®ãããäžè¬ã«è€çŽ æ°<math>z\ ,\ w</math>ãã<math>z=a+bi\ ,\ w=c+di</math>ã§äžãããããšã(ãã ã <math>a\ ,\ b\ ,\ c\ ,\ d</math>ã¯å®æ°ãšãã)ã
:å æ³ãã<math> (a+bi)+(c+di) = (a+c) + (b+d)i </math>
:æžæ³ãã<math> (a+bi)-(c+di) = (a-c) + (b-d)i </math>
:乿³ãã<math> (a+bi)(c+di) = (ac-bd) + (ad+bc)i </math>
:逿³ãã<math> \frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i </math>ããïŒãã ã <math>c+di \ne 0</math> ãšãããïŒ
ãšãããµãã«è€çŽ æ°ã®å æžä¹é€ã®èšç®æ³ãå®ããããŠããã
乿³ã®å®çŸ©ã¯ãäžèŠãããšé£ãããã«ã¿ãããã宿°ã®åé
æ³åãšåæ§ã«å±éããŠããæåŸã« i<sup>2</sup>ã«ãã€ãã¹1ã代å
¥ããŠãã£ãã ãã§ããã
逿³ã®å®çŸ©ã¯ãååãšåæ¯ã«ã忝ãšå
±åœ¹ãªåœ¢ã®åŒã æãç® ããã ãã§ããã
乿³ã逿³ã®å®çŸ©åŒãæèšããå¿
èŠã¯ç¡ããèšç®ã®éã«ã¯ãå¿
èŠã«å¿ããŠåé
æ³åãå
±åœ¹ãªã©ã®ãå¿
èŠãªåŒå€åœ¢ãè¡ãã°ããã
'''äŸé¡'''
2ã€ã®è€çŽ æ°
:<math>a=3+i</math>
:<math>b=4 +7i</math>
ã«ã€ããŠã<math>a+b</math> ãš <math>ab</math> ãš <math>\frac a b</math> ããããããèšç®ããã
'''è§£ç'''
:<math>\begin{align}
a+b&=(3+i)+(4+7i)\\
&=(3+4)+i(1+7)\\
&=7+8i\\
\end{align}</math>
:<math>\begin{align}
ab&=(3+i)(4+7i) \\
&=12+21i+4i+7i^2 \\
&=12+21i+4i+(-7) \\
&=5+25i \\
\end{align}</math>
ã§ããã
:<math>\frac{a}{b}=\frac{3+i}{4+7i}</math>
ããããã«ç°¡åã«ã§ããªãã ããããå®ã¯ãã¡ãã£ãšãããã¯ããã¯ãçšããã°ããèŠããã圢ã«ã§ããã
åæ°ã¯åæ¯ãšååã«åãæ°ããããŠããã£ãã®ã§ã忝ãšååã«åæ¯ã®å
±åœ¹ããããŠã¿ãããããšã
:<math>\begin{align}
\frac{a}{b}&=\frac{3+i}{4+7i} \\
&=\frac{(3+i)(4-7i)}{(4+7i)(4-7i)} \\
&=\frac{12-21i+4i-(-7)}{16-28i+28i-(-49)} \\
&=\frac{19-17i}{65} \\
&=\frac{19}{65}-\frac{17}{65}i \\
\end{align}</math>
ãåŸãããããã®åœ¢ã®ã»ããå
ã®åŒããããã£ãšèŠããã圢ã§ããã
ãã®ãããªæäœã忝ã®å®æ°åãšããããšããããæ°åŠIã§åŠç¿ããå±éã»å æ°åè§£å
¬åŒ <math>(a+b)(a-b)=a^2-b^2</math>ã®ç°¡åãªå¿çšã§ããã
=== è² ã®æ°ã®å¹³æ¹æ ¹ ===
æ°ã®ç¯å²ãè€çŽ æ°ã«ãŸã§æ¡åŒµãããšãè² ã®æ°ã®å¹³æ¹æ ¹ãèããããšãã§ããã
äŸãšããŠã -5 ã®å¹³æ¹æ ¹ã«ã€ããŠèããŠã¿ããã<br>
:<math>
(\sqrt{5}\ i)^2 = (\sqrt{5})^2\ i^2 = 5 \times (-1) =-5
</math>
:<math>
(- \sqrt{5}\ i)^2 = (-1)^2 \times (\sqrt{5})^2\ i^2 = (+1) \times 5 \times (-1) = -5
</math>
ã§ããããã -5 ã®å¹³æ¹æ ¹ã¯ <math> \sqrt{5}\ i </math> ãš <math> - \sqrt{5}\ i </math> ã§ããã
{| style="border:2px solid skyblue;width:80%" cellspacing=0
|style="background:skyblue"|'''è² ã®æ°ã®å¹³æ¹æ ¹'''
|-
|style="padding:5px"|
<math>a>0</math>ãšãããšããè² ã®æ°<math>-a</math>ã®å¹³æ¹æ ¹ã¯ã<math>\sqrt{a}\ i</math>ãš<math>- \sqrt{a}\ i</math>ã§ããã
|}
<math> \sqrt{-5} </math>ãšã¯ã<math> \sqrt{5}\ i </math> ã®ããšãšããã<math> - \sqrt{-5} </math>ãšã¯ã<math> - \sqrt{5}\ i </math> ã®ããšã§ããã
ãšãã« <math> \sqrt{-1}\ = \ i </math> ã§ããã
ããŠã-5 ã®å¹³æ¹æ ¹ã¯ãæ¹çšåŒ<math>x^2=-5</math> ã®è§£ã§ãããã
ãã®æ¹çšåŒãç§»é
ããããšã«ããã-5 ã®å¹³æ¹æ ¹ã¯ã
:<math>
x^2+5=0
</math>
ã®è§£ã§ãããšããããã
ããã«å æ°åè§£ãããããšã«ããã-5 ã®å¹³æ¹æ ¹ã¯æ¹çšåŒ
:<math>
(x + \sqrt{5}\ i)(x - \sqrt{5}\ i) =0
</math>
ã®è§£ã§ããããšããããã
* äŸé¡
(I) ãã<math>\sqrt{-2}\ \sqrt{-6}</math>ããèšç®ããã
* è§£ç
(I)
:<math>\sqrt{-2}\ \sqrt{-6} = \sqrt{2}\ i \times \sqrt{6} \ i = \sqrt{12}\ i^2 = -2 \sqrt{3}</math>
ãã®ããã«ããŸãããã€ãã¹ã®æ°ã®å¹³æ¹æ ¹ãåºãŠãããããŸãèæ°åäœ i ãçšããåŒã«æžãæããã
ãã®ããšãããç®ãããŠããã
* åé¡
(II) ãã<math>\frac{\sqrt{2}}{\sqrt{-3}}</math>ããèšç®ããã
(III) ãã2次æ¹çšåŒã<math>x^2=-7</math>ããè§£ãã
** è§£ç
(II)
:<math>\frac{\sqrt{2}}{\sqrt{-3}} = \frac{\sqrt{2}}{\sqrt{3}\ i} = \frac{\sqrt{2}\ \sqrt{3}\ i}{\sqrt{3}\ i\ \sqrt{3}\ i} = \frac{\sqrt{6}\ i}{3\ i^2} = - \frac{\sqrt{6}}{3} \ i</math>
(III)
:<math>x^2=-7</math>
:<math>x= \pm \sqrt{-7}</math>
:<math>x= \pm \sqrt{7}\ i</math>
=== 2次æ¹çšåŒã®å€å¥åŒ ===
==== 2次æ¹çšåŒã®è§£ãšè€çŽ æ° ====
è€çŽ æ°ã®å¿çšãšããŠãããã§ã¯2次æ¹çšåŒã®æ§è³ªã«ã€ããŠè¿°ã¹ããä»»æã®2次æ¹çšåŒã¯ãè§£ã®å
¬åŒã«ãã£ãŠè§£ãããããšã[[é«çåŠæ ¡æ°åŠI æ¹çšåŒãšäžçåŒ#äºæ¬¡æ¹çšåŒ|é«çåŠæ ¡æ°åŠI]]ã§è¿°ã¹ããããããè§£ã®å
¬åŒã«å«ãŸããæ ¹å·ã®äžèº«ãè² ã®æ°ã®å Žåã«ã¯å®æ°è§£ãååšããªãããšã«æ³šæããå¿
èŠãããã2次æ¹çšåŒ
:<math>
ax^2+bx+c = 0
</math>
ã®è§£ã®å
¬åŒã¯ã
:<math>
x = \frac{-b \pm \sqrt{b^2 - 4ac} }{a}
</math>
ã§ããã
å€å¥åŒ<math>D</math>ã¯
:<math>
D = b^2-4ac
</math>
ã«ãã£ãŠå®çŸ©ããããå€å¥åŒã¯ãè§£ã®å
¬åŒã®æ ¹å·(ã«ãŒãèšå·ã®ããš)ã®äžèº«ã«çãããå€å¥åŒã®æ£è² ã«ãã£ãŠ2次æ¹çšåŒã宿°è§£ãæã€ãã©ãããæ±ºãŸãã
<math>D</math>ãè² ã®ãšãã«ã¯ãã®2次æ¹çšåŒã¯å®æ°ã®ç¯å²ã«ã¯è§£ãæããªãã
å€å¥åŒ<math>D</math>ãè² ã®æ°ã§ãã£ããšããxã®è§£ã¯ç°ãªã2ã€ã®èæ°ã«ãªãããã®2ã€ã®è§£ã¯ å
±åœ¹ ã®é¢ä¿ã«ãªã£ãŠããã
* åé¡äŸ
** åé¡
è€çŽ æ°ãçšããŠã2次æ¹çšåŒ<br>
(1)
:<math>x ^2 + 5x + 9 =0</math>
(2)
:<math>2x ^2 + 5x + 8 =0</math>
(3)
:<math>2x ^2 - 2x + 8 =0</math>
ãè§£ãã
** è§£ç
è§£ã®å
¬åŒãçšããŠè§£ãã°ããã(1)ã ããèšç®ãããšã
:<math>
x = \frac {- 5 \pm \sqrt{5^2 - 4 \times 1 \times 9}}{2}
</math>
:<math>
= \frac {-5 \pm \sqrt {11} i}{2}
</math>
ãšãªãã
ä»ãåãããã«æ±ãããšãåºæ¥ãã
以éã®è§£çã¯ã<br>
(2)
:<math>
x = \frac {-5 \pm \sqrt {39} i}{4}
</math>
(3)
:<math>
x = \frac {1 \pm \sqrt {15} i}{2}
</math>
ãšãªãã
<!--
(
*å·çè
ã«å¯Ÿããæ³šæ
èšç®ã«ã¯[[w:maxima]]ãçšããã
tex(solve(
x ^2 + 5*x + 9 =0,x
));
tex(solve(
2*x ^2 + 5*x + 8 =0,x
));
tex(
solve(
2*x ^2 - 2*x + 8 =0,x
));
)
-->
==== 2次æ¹çšåŒã®å€å¥åŒ ====
æ¹çšåŒã®è§£ã§ã宿°ã§ãããã®ã '''宿°è§£''' ãšããã
æ¹çšåŒã®è§£ã§ãèæ°ã§ãããã®ã '''èæ°è§£''' ãšããã
2次æ¹çšåŒ <math>ax^2 + bx + c = 0</math> ã®è§£ã¯ <math>x = \frac{-b \pm \sqrt{b^2-4ac}}{2a} </math> ã§ããã
2次æ¹çšåŒã®è§£ã®çš®é¡ã¯ãè§£ã®å
¬åŒã®äžã®æ ¹å·ã®äžã®åŒ <math>b^2-4ac</math> ã®ç¬Šå·ãèŠãã°å€å¥ããããšãã§ããã
ãã®åŒ <math>b^2-4ac</math> ãã2次æ¹çšåŒ <math>ax^2 + bx + c = 0</math> ã®'''å€å¥åŒ'''ïŒã¯ãã¹ã€ããïŒãšãããèšå· '''<math>D</math>''' ã§è¡šãã
{| style="border:2px solid skyblue;width:80%" cellspacing=0
|style="background:skyblue"|'''å€å¥åŒãšè§£ã®å€å¥'''
|-
|style="padding:5px"|
2次æ¹çšåŒ <math>ax^2 + bx + c = 0</math> ã®å€å¥åŒ <math>D=b^2-4ac</math> ã«ã€ããŠ
::<math>D>0 \quad \Leftrightarrow \quad </math> ç°ãªã2ã€ã®å®æ°è§£ããã€
::<math>D=0 \quad \Leftrightarrow \quad </math> éè§£ããã€
::<math>D<0 \quad \Leftrightarrow \quad </math> ç°ãªã2ã€ã®èæ°è§£ããã€
|}
ãŸããéè§£ã宿°è§£ã§ããã®ã§ã
::<math>D \geqq 0 \quad \Leftrightarrow \quad </math> 宿°è§£ããã€
ãšãããã
* åé¡äŸ
** åé¡
次ã®2次æ¹çšåŒã®è§£ãå€å¥ããã
(I)
:<math>
x^2+3\,x-1=0
</math>
(II)
:<math>
2\,x^2-3\,x+2=0
</math>
(III)
:<math>
4\,x^2-20\,x+25=0
</math>
** è§£ç
(I)
:<math>
D=3^2-4 \times 1 \times (-1) =13>0
</math>
ã ãããç°ãªã2ã€ã®å®æ°è§£ããã€ã
(II)
:<math>
D=(-3)^2-4 \times 2 \times 2 =-7<0
</math>
ã ãããç°ãªã2ã€ã®èæ°è§£ããã€ã
(III)
:<math>
D=(-20)^2-4 \times 4 \times 25 =0
</math>
ã ãããéè§£ããã€ã
ãŸãã2次æ¹çšåŒ <math>ax^2 + 2b'x + c = 0</math> ã®ãšãã<math>D=4(b'^2-ac)</math>ãšãªãã®ã§ã
2次æ¹çšåŒ <math>ax^2 + 2b'x + c = 0</math> ã®å€å¥åŒã«ã¯
:<math>
\frac{D}{4} = b'^2-ac
</math>
ããã¡ããŠãããã
ãããçšããŠãåã®åé¡
:(III) ã<math>4\,x^2-20\,x+25=0</math>
ã®è§£ãå€å¥ãããã
<math>a=4 \, , \, b'=-10 \, , \, c=25</math>ãã§ãããã
:<math>
\frac{D}{4} = (-10)^2- 4 \times 25 =0
</math>
ã ãããéè§£ããã€ã
==== 2次æ¹çšåŒã®è§£ãšä¿æ°ã®é¢ä¿ ====
2次æ¹çšåŒ <math>ax^2 + bx + c = 0</math> ã®2ã€ã®è§£ã <math>\alpha</math> ïŒ<math>\beta</math> ãšããã ãã®æ¹çšåŒã¯ã
<math>a(x-\alpha)(x-\beta) = 0</math>
ãšå€åœ¢ã§ããã
ãããå±éãããšã
<math>ax^2 -a(\alpha + \beta )x+a\alpha \beta = 0</math>
ä¿æ°ãæ¯èŒããŠã
<math>c = a \alpha \beta, b = -a(\alpha + \beta)</math>
ãåŸãã
ãããå€åœ¢ããã°ã<math>\alpha + \beta = -\frac{b}{a}, \alpha \beta = \frac{c}{a}</math>ãšãªãã<br>
{| style="border:2px solid skyblue;width:80%" cellspacing="0"
| style="background:skyblue" |'''è§£ãšä¿æ°ã®é¢ä¿'''
|-
| style="padding:5px" |
2次æ¹çšåŒ <math>ax^2 + bx + c = 0</math> ã®2ã€ã®è§£ã <math>\alpha</math> ïŒ<math>\beta</math> ãšããã°<br>
<center><math>\alpha + \beta = - \frac{b}{a}</math> ïŒ<math>\alpha \beta = \frac{c}{a}</math><br></center>
|}
* åé¡äŸ
** åé¡
2次æ¹çšåŒ <math>2x^2 + 4x + 3 = 0</math> ã®2ã€ã®è§£ã <math>\alpha</math> ïŒ<math>\beta</math> ãšãããšãã<math>\alpha ^2 + \beta ^2</math> ã®å€ãæ±ããã
** è§£ç
è§£ãšä¿æ°ã®é¢ä¿ããã
<math>\alpha + \beta = - \frac{4}{2} = - 2 </math>ïŒ<math>\alpha \beta = \frac{3}{2}</math><br>
<math>\alpha ^2 + \beta ^2 = (\alpha + \beta )^2 - 2 \alpha \beta = (-2)^2 - 2 \times \frac{3}{2} = 1</math>
==== 2æ°ãè§£ãšãã2次æ¹çšåŒ ====
2ã€ã®æ° <math>\alpha</math> ïŒ<math>\beta</math> ãè§£ãšãã2次æ¹çšåŒã¯
:<math>
(x - \alpha) (x - \beta) = 0
</math>
ãšè¡šãããã巊蟺ãå±éããŠæŽçãããšæ¬¡ã®ããã«ãªãã
{| style="border:2px solid skyblue;width:80%" cellspacing=0
|style="background:skyblue"|'''äžãããã2ã€ã®æ°ãè§£ãšãã2次æ¹çšåŒ'''
|-
|style="padding:5px"|
2æ° <math>\alpha</math> ïŒ<math>\beta</math> ãè§£ãšãã2次æ¹çšåŒã¯<br>
<center><math>x^2 - (\alpha + \beta ) x + \alpha \beta = 0</math><br></center>
|}
* åé¡äŸ
** åé¡
次ã®2æ°ãè§£ãšãã2次æ¹çšåŒãäœãã
(I)
:<math>
3 + \sqrt{5} \ , 3 - \sqrt{5}
</math>
(II)
:<math>
2 + 3 i \ , 2 - 3 i
</math>
** è§£ç
(I)<br>
åã<math>(3 + \sqrt{5}) + (3 - \sqrt{5}) = 6</math><br>
ç©ã<math>(3 + \sqrt{5}) (3 - \sqrt{5}) = 4</math>ãã§ãããã<br>
:<math>
x^2 - 6 x + 4 =0
</math>
(II)<br>
åã<math>(2 + 3 i) + (2 - 3 i) = 4</math><br>
ç©ã<math>(2 + 3 i) (2 - 3 i) = 13</math>ãã§ãããã<br>
:<math>
x^2 - 4 x + 13 =0
</math>
==== 2次åŒã®å æ°åè§£ ====
2次æ¹çšåŒ <math>ax^2 + bx + c = 0</math> ã®2ã€ã®è§£ <math>\alpha</math> ïŒ<math>\beta</math> ãããããšã2次åŒ
:<math>ax^2 + bx + c
</math>
ãå æ°åè§£ããããšãã§ããã<br>
è§£ãšä¿æ°ã®é¢ä¿ <math>\alpha + \beta = - \frac{b}{a}</math>ïŒ<math>\alpha \beta = \frac{c}{a}</math> ããã
:<math>
ax^2 + bx + c = a \left(x^2 + \frac{b}{a}x + \frac{c}{a} \right) = a \left\{x^2 - (\alpha + \beta )x + \alpha \beta \right\} = a (x - \alpha)(x - \beta)
</math>
{| style="border:2px solid skyblue;width:80%" cellspacing="0"
| style="background:skyblue" |'''è§£ãšå æ°åè§£'''
|-
| style="padding:5px" |
2次æ¹çšåŒ <math>ax^2 + bx + c = 0</math> ã®2ã€ã®è§£ã <math>\alpha</math> ïŒ<math>\beta</math> ãšãããš<br>
<center><math>ax^2 + bx + c = a (x - \alpha)(x - \beta)</math><br></center>
|}
2次æ¹çšåŒã¯ãè€çŽ æ°ã®ç¯å²ã§èãããšã€ãã«è§£ããã€ãããè€çŽ æ°ãŸã§äœ¿ã£ãŠãããšãããšã2次åŒã¯å¿
ã1次åŒã®ç©ã«å æ°åè§£ããããšãã§ããã
* åé¡äŸ
** åé¡
è€çŽ æ°ã®ç¯å²ã§èããŠã次ã®2次åŒãå æ°åè§£ããã
(I)
:<math>
x^2 + 4 x - 1
</math>
(II)
:<math>
2 x^2 - 3 x + 2
</math>
**è§£ç
(I)<br>
2次æ¹çšåŒã<math>x^2 + 4 x - 1 = 0</math>ãã®è§£ã¯<br>
:<math>
x = \frac{-4 \pm \sqrt{4^2-4 \times 1 \times (-1)}}{2 \times 1} = \frac{-4 \pm \sqrt{20}}{2} = \frac{-4 \pm 2 \sqrt{5}}{2} = -2 \pm \sqrt{5}
</math>
ãã£ãŠ
:<math>
x^2 + 4 x - 1 = \left\{ x - (-2 + \sqrt{5}) \right\} \left\{ x - (-2 - \sqrt{5}) \right\} = (x + 2 - \sqrt{5}) (x + 2 + \sqrt{5})
</math>
(II)<br>
2次æ¹çšåŒã<math>2 x^2 - 3 x + 2 = 0</math>ãã®è§£ã¯<br>
:<math>
x = \frac{-(-3) \pm \sqrt{(-3)^2-4 \times 2 \times 2}}{2 \times 2} = \frac{3 \pm \sqrt{-7}}{4} = \frac{3 \pm \sqrt{7} i}{4}
</math>
ãã£ãŠ
:<math>
2 x^2 - 3 x + 2 = 2 \left(x- \frac{3 + \sqrt{7}\; i}{4} \right) \left(x- \frac{3 - \sqrt{7}\; i}{4} \right)
</math>
=== 髿¬¡æ¹çšåŒ ===
3次以äžã®æŽåŒã«ããæ¹çšåŒãèããã
äžè¬ã«æ¹çšåŒã <math>P(x)=0</math>ãšãšãã
ãã ãã<math>P(x)</math>ã¯ãä»»æã®æ¬¡æ°ã®æŽåŒãšããã
==== å°äœã®å®ç ====
<math>P(x)</math>ã1次åŒ<math>x-a</math>ã§å²ã£ããšãã®åã<math>Q(x)</math>ãäœãã<math>R</math>ãšãããšã
:<math>
P(x) = (x-a)Q(x)+R
</math>
ãã®äž¡èŸºã®<math>x</math>ã«<math>a</math>ã代å
¥ãããšã
:<math>
P(a) = (a-a)Q(a)+R = 0 \times Q(a) + R =R
</math>
ã€ãŸãã<math>P(x)</math>ã<math>x-a</math>ã§å²ã£ããšãã®äœãã¯<math>P(a)</math>ã§ããã
{| style="border:2px solid pink;width:80%" cellspacing="0"
| style="background:pink" |'''å°äœã®å®ç'''
|-
| style="padding:5px" |
æŽåŒ<math>P(x)</math>ã<math>x-a</math>ã§å²ã£ããšãã®äœãã¯ã<math>P(a)</math>ã«çããã
|}
* åé¡äŸ
** åé¡
æŽåŒ <math>P(x) = x^3 -2x + 3</math> ãæ¬¡ã®åŒã§å²ã£ãäœããæ±ããã<br>
(I)
:<math>
x-2
</math>
(II)
:<math>
x+1
</math>
(III)
:<math>
2x-1
</math>
** è§£ç
(I)ã<math>P(2) = 2^3 - 2 \times 2 + 3 = 7</math><br>
(II)ã<math>P(-1) = (-1)^3 - 2 \times (-1) + 3 = 4</math><br>
(III)ã<math>P\left( \frac{1}{2} \right) = \left( \frac{1}{2} \right)^3 - 2 \times \left( \frac{1}{2} \right) + 3 = \frac{17}{8}</math>
===== å æ°å®ç =====
ãã宿°<math>a</math>ã«å¯ŸããŠã
:<math>
P(a) = 0
</math>
ãæãç«ã£ããšããã
ãã®ãšããæŽåŒ<math>P(x)</math> ã¯ã <math>(x-a)</math> ãå æ°ã«æã€ããšãåãã
ãã®ããšãå æ°å®çïŒãããããŠããïŒãšåŒã¶ã
* å°åº
æŽåŒ<math>P(x)</math>ã«å¯ŸããŠãå<math>Q(x)</math>ãå²ãåŒ<math>(x-a)</math>ãšãã
æŽåŒã®é€æ³ãçšããããã®ãšããå<math>Q(x)</math>ã
(<math>Q(x)</math>ã¯ã<math>P(x)</math>ããã1ã ãæ¬¡æ°ãäœãæŽåŒã§ããã)
äœã<math>c</math>(<math>c</math>ã¯ã宿°ã)ãšãããšã
æŽåŒ<math>P(x)</math> ã¯ã
:<math>
P(x) = (x-a)Q(x) + c
</math>
ãšæžããã
ããã§ã <math>c=0</math> ã§ãªããšã <math>P(a)=0</math> ã¯æºããããªããã
ãã®ãšãã<math>P(x)</math>ã¯ã<math>(x-a)</math>ã«ãã£ãŠå²ãåããã
ãã£ãŠãå æ°å®çã¯æç«ããã
{| style="border:2px solid pink;width:80%" cellspacing=0
|style="background:pink"|'''å æ°å®ç'''
|-
|style="padding:5px"|
æŽåŒ<math>P(x)</math>ã«ã€ããŠ<br>
<center><math>P(a)=0 \Leftrightarrow </math> <math>P(x)</math>ã¯<math>x-a</math>ã§å²ããããã</center>
|}
å æ°å®çãçšããããšã§ãããæ¬¡æ°ã®é«ãæŽåŒãå æ°åè§£ããããšã
åºæ¥ãããã«ãªããäŸãã°ã3æ¬¡ã®æŽåŒ
:<math>
x^3 - 1
</math>
ã«ã€ããŠã<math>x=1</math>ã代å
¥ãããšã
:<math>
x^3 - 1
</math>
ã¯0ãšãªãããã£ãŠãå æ°å®çãããã®åŒã¯
:<math>
(x-1)
</math>
ãå æ°ãšããŠæã€ã
ããã§ãå®éæŽåŒã®é€æ³ã䜿ã£ãŠèšç®ãããšã
:<math>
x^3 - 1 = (x-1)(x^2+x+1)
</math>
ãåŸãããã
* åé¡äŸ
** åé¡
å æ°å®çãçšããŠ<br>
(I)
:<math>
x^3-6\,x^2+11\,x-6
</math>
(II)
:<math>
x^3+x^2-14\,x-24
</math>
<!--
(III)
:<math>
x^3+5\,x^2-34\,x-80
</math>
-->
ãå æ°åè§£ããã
** è§£ç
(I)
å æ°åè§£ã®çµæã(x+æŽæ°)ã®ç©ã®åœ¢ãªããæŽæ°ã¯6ã®å æ°ã§ãªããã°ãªããªãããã®ããã<math>\pm 1, \pm 2,\pm 3,\pm 6</math>ãåè£ãšãªãããããã«ã€ããŠã¯å®éã«ä»£å
¥ããŠç¢ºããããããªããx=1ã代å
¥ãããšã
:<math>
1-6+11-6=0
</math>
ãšãªãã®ã§ã(x-1)ãå æ°ãšãªããå®éã«æŽåŒã®é€æ³ãè¡ãªããšãåãšããŠ<math>x^2-5x+6</math>ãåŸãããããããã¯<math>(x-2)(x-3)</math>ã«å æ°åè§£ã§ããããã£ãŠçãã¯ã
:<math>
\left(x-3\right)\,\left(x-2\right)\,\left(x-1\right)
</math>
ãšãªãã<br>
(II)
ããã§ãå°éã«24ã®å æ°ãåœãŠã¯ããŠãããããªãã24ã®å æ°ã¯æ°ãå€ãã®ã§ããªãã®èšç®ãå¿
èŠãšãªããããã§ã¯ã-2ã代å
¥ãããšã
:<math>
-8 +4 -14 \cdot (-2) -24 = 0
</math>
ãšãªãã(x+2)ãå æ°ã ãšãããã逿³ãè¡ãªããšã<math>x^2 -x -12</math>ãåŸããããã(x-4)(x+3)ã«å æ°åè§£ã§ãããçãã¯ã
:<math>
\left(x-4\right)\,\left(x+2\right)\,\left(x+3\right)
</math>
ãšãªãã
===== 髿¬¡æ¹çšåŒ =====
å æ°åè§£ãå æ°å®çãå©çšããŠé«æ¬¡æ¹çšåŒãè§£ããŠã¿ããã
* åé¡äŸ
** åé¡
髿¬¡æ¹çšåŒ<br>
(I)
:<math>
x^3-8=0
</math>
(II)
:<math>
x^4-2x^2-8=0
</math>
(III)
:<math>
x^3-5x^2+7x-2=0
</math>
ãè§£ãã
**è§£ç
(I)
巊蟺ã<math>
a^3-b^3=(a-b)(a^2+ab+b^2)
</math>ãçšããŠå æ°åè§£ãããš
:<math>
(x-2)(x^2+2x+4)=0
</math>
ãããã£ãŠ<math>\ x-2=0</math>ããŸãã¯<math>\ x^2+2x+4=0</math><br>
ãã£ãŠ
:<math>
x=2\ , \ -1 \pm \sqrt{3} i
</math>
(II) ã<math>\ x^2=X\ </math>ãšãããšã
:<math>
X^2-2X-8=0
</math>
巊蟺ãå æ°åè§£ãããš
:<math>
(X-4)(X+2)=0
</math>
ãã£ãŠã<math>X=4\ ,\ X=-2</math><br>
ããã«ã<math>x^2=4\ ,\ x^2=-2</math><br>
ãããã£ãŠ
:<math>
x= \pm 2\ ,\ \pm \sqrt{2} i
</math>
(III) ã<math>\ P(x)=x^3-5x^2+7x-2\ </math>ãšããã
:<math>
P(2)=2^3-5 \times 2^2+7 \times 2-2=0
</math>
ãããã£ãŠã<math>\ x-2\ </math>ã¯<math>\ P(x)\ </math>ã®å æ°ã§ããã<br>
:<math>
P(x)=(x-2)(x^2-3x+1)
</math>
ãã£ãŠã<math>(x-2)(x^2-3x+1)=0</math><br>
<math>\ x-2=0</math>ããŸãã¯<math>\ x^2-3x+1=0</math><br>
ãããã£ãŠ
:<math>
x= 2\ ,\ \frac{3 \pm \sqrt{5}}{2}
</math>
=====ïŒçºå±ïŒ3次æ¹çšåŒã®è§£ãšä¿æ°ã®é¢ä¿=====
3次æ¹çšåŒ <math>ax^3+ bx^2+ cx+d=0</math> ã®3ã€ã®è§£ã ã<math>\alpha\ ,\ \beta\ ,\ \gamma</math> ãšãããš
:<math>ax^3+ bx^2+ cx+d=a(x- \alpha)(x- \beta)(x- \gamma)</math>
ãæãç«ã€ã<br>
å³èŸºãå±éãããš
:<math>a(x- \alpha)(x- \beta)(x- \gamma)</math>
:<math>=a(x- \alpha)\left\{x^2-(\beta + \gamma)x+ \beta \gamma \right\}</math>
:<math>=a \left\{x^3-(\alpha + \beta + \gamma)x^2+ (\alpha \beta + \beta \gamma + \gamma \alpha)x - \alpha \beta \gamma \right\}</math>
ãã£ãŠ
:<math>ax^3+ bx^2+ cx+d=a \left\{x^3-(\alpha + \beta + \gamma)x^2+ (\alpha \beta + \beta \gamma + \gamma \alpha)x - \alpha \beta \gamma \right\}</math>
ããã«
:<math>b=-a(\alpha + \beta + \gamma)\ ,\ c= a(\alpha \beta + \beta \gamma + \gamma \alpha)\ ,\ d= -a \alpha \beta \gamma</math>
ãããã£ãŠã次ã®ããšãæãç«ã€ã
{| style="border:2px solid pink;width:80%" cellspacing=0
|style="background:pink"|'''3次æ¹çšåŒã®è§£ãšä¿æ°ã®é¢ä¿'''
|-
|style="padding:5px"|
3次æ¹çšåŒ <math>ax^3+ bx^2+ cx+d=0</math> ã®3ã€ã®è§£ã ã<math>\alpha\ ,\ \beta\ ,\ \gamma</math> ãšãããš
<center><math>\alpha + \beta + \gamma =- \frac{b}{a}\ ,\ \alpha \beta + \beta \gamma + \gamma \alpha= \frac{c}{a}\ ,\ \alpha \beta \gamma =- \frac{d}{a}</math></center>
|}
== ã³ã©ã ==
=== è€çŽ æ°ã¯ãååšããããïŒ ===
ãã°ãã°èæ°ã¯ãçŸå®ã«ã¯ååšããªãæ°ãã§ãããšèšãããããšããããæŽå²çã«ãèæ°ãæ±ã£ãæ°åŠãèããã¹ãã§ã¯ãªããšèããããæä»£ã¯é·ãã£ãããã®æä»£ã®å
é²çãªæ°åŠè
ã®äžã«ã¯ãèæ°ãæå¹ã«æŽ»çšããŠç ç©¶ãé²ããäžæ¹ã§ãææãçºè¡šããéã«ã¯èæ°ã衚ã«åºããã«èšè¿°ããåªåãããããšã§ãç¡çšãªæµæãåããªãããã«å·¥å€«ããè
ããããšèšãããã»ã©ã§ããã
ã ããããèããŠã¿ãã°ãæ°ããçŸå®ã«ååšããããšã¯ã©ãããæå³ãªã®ã ããããçŸå®ã«éçã䜿ã£ãŠçŽã«åãæããªãã°ãååšã®é·ãããæ£ç¢ºã«ååšçãã®ãã®ã«ãããããšã¯äžå¯èœã§ããããã«æããããããã®å²ã«ååšçãšãã宿°ã¯ãååšããããšæããããã®ã¯ãªãã ããããæ°çŽç·ã宿°ã®ãå®åšããä¿¡ãããããªãã°ãè€çŽ æ°ã¯è€çŽ æ°å¹³é¢ïŒæ°åŠCã§ç¿ãïŒã®äžã«ååšããã®ã ãããåãã§ã¯ãªãã ãããã
ãã®ããã«èãããšãããããæ°ãšã¯ãã¹ãŠããæå³ã§æ³åäžã®ååšã§ãããããã«å¯ŸããŠãååšããããååšããªãããšããåããç«ãŠãããšããã³ã»ã³ã¹ã§ããããã«æãããããååšããªããããã«æãããã¡ãªèæ°ã§ããããããšãã°ç©çåŠã®äžåéã§ããéåååŠã®ã·ã¥ã¬ãã£ã³ã¬ãŒæ¹çšåŒã«è¡šãããªã©ãå¿çšäžã®ããŸããŸãªå Žé¢ã«ãããŠããèæ°ã䜿ã£ãŠèšè¿°ããããšãèªç¶ãªå¯Ÿè±¡ã¯å€ãã®ã ã
=== è€çŽ æ°ã«ã¯ã倧å°é¢ä¿ããªãã ===
è€çŽ æ°ã©ããã«ã€ããŠããã®å€§å°é¢ä¿ã¯å®çŸ©ããªãããã®çç±ã¯ãã©ã®ããã«å€§å°é¢ä¿ãå®çŸ©ããŠãã䟿å©ãªæ§è³ªãæºããããšãã§ããªãããã§ãããå
·äœçã«èšãã°ãæ¢ã«è¿°ã¹ã宿°ã®å€§å°é¢ä¿ã«ã€ããŠã®ãäžçåŒã®åºæ¬æ§è³ª(1)(2)(3)(4)ãã«ãããåŒãæãç«ãããããšãã§ããªãã®ã ã
ããšãã°ã<math>a+bi<a'+b'i</math>ã§ããããšãã<math>a^2+b^2<a'^2+b'^2</math>ã§ããããšãšããŠå®çŸ©ããŠã¿ããããã®ããã«å®çŸ©ãããšãããšãã°1+2i<2-3iã§ããããŸã2+3i<3+4iã§ããããšãããã(1+2i)+(2+3i)=3+5i,(2-3i)+(3+4i)=5+iã§ããã3+5i>5+iãšãªã£ãŠããŸããããã¯åºæ¬æ§è³ª(2)ãæãç«ããªãããšãæå³ããã
ãã¡ããããã¯é©åœã«èããå®çŸ©ãããŸããŸäžé©åã ã£ããšããã ãã®ããšã ããå®ã¯ãä»ã«ã©ã®ããã«å®çŸ©ããŠããã®ãããªå°é£ããã¯éããããªãããšãç¥ãããŠãããããããã«ãè€çŽ æ°ã«ã¯å€§å°é¢ä¿ãå®çŸ©ããªãã®ã§ããã
=== è€çŽ æ°ã®å¹³æ¹æ ¹ (â»çºå±) ===
ä»åºŠã¯ãè€çŽ æ°ã®å¹³æ¹æ ¹ã«ã€ããŠèããŠã¿ããã
æ£ã®æ°<math>a</math>ãèãããšãã
:<math>a</math>ã®å¹³æ¹æ ¹ã¯<math>\pm \sqrt{a}</math>
:<math>-a</math>ã®å¹³æ¹æ ¹ã¯<math>\pm \sqrt{a} i</math>
ã§ã¯ã
:<math>\pm a i</math>ã®å¹³æ¹æ ¹ã¯ã©ã®ããã«è¡šããã ãããã
èæ°åäœ<math>i</math>ã®å¹³æ¹æ ¹ãèãããšãããã¯zã«ã€ããŠã®æ¹çšåŒ <math>z^2 = i</math> ã®è§£ z ã®å€ã§ããããããããè§£ãã°ãããã©ã®ãããªè€çŽ æ°zãªããã®åŒãæºããããšãã§ããã ãããã
zãè€çŽ æ°ãšãããšã<math>z = x + yi</math>(x,yã¯å®æ°)ãšè¡šãããã
<math>(x + yi)^2 = i \Leftrightarrow x^2 + 2xyi - y^2 = i \Leftrightarrow (x^2-y^2)+(2xy-1)i = 0</math>
<math>x^2-y^2,2xy-1</math>ã¯å®æ°ã§ãããããå®éšãšèéšãå
±ã«ïŒã«ãªããã°ãªããªãããã
<math>\begin{cases}
x^2-y^2=0 (\Leftrightarrow x= \pm y ) \\
2xy-1=0
\end{cases}</math>
<math>x=y</math>ã®ãšãã<math>2x^2=1 \Leftrightarrow x=\pm\frac{1}{\sqrt{2}},y=\pm\frac{1}{\sqrt{2}}</math> (è€å·åé ãx,yã¯å
±ã«å®æ°ã§ãããããæ¡ä»¶ãæºããã)
<math>x=-y</math>ã®ãšãã<math>-2y^2=1 \Leftrightarrow y^2=-\frac{1}{2}</math> ããã§ããããæºãã宿°yã¯ååšããªãããäžé©ã
ãã£ãŠã<math>z=\pm\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}i\right)</math><sub>â </sub>
*åé¡äŸ
** åé¡
:<math>i \,\!</math>ãèæ°åäœãšãããšããæ¬¡ã®åãã«çããã
:(I) <math>-i,30i \,\!</math>ã®å¹³æ¹æ ¹ãæ±ããã
:(II) 2次æ¹çšåŒ <math>z^2 - 30i - 16 = 0 \,\!</math> ãè§£ãã
:(III) 3次æ¹çšåŒ <math>z^3 = i \,\!</math> ãè§£ãã
** è§£ç
:(I)
::<math>\pm\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}i\right) , \pm\left(\sqrt{15}+\sqrt{15}i\right)</math>
:(II)
::<math>z=5+3i , -5-3i \,\!</math>
:(III)
::<math>z=-i,\frac{i\pm\sqrt{3}}{2}</math>
:ä»åæããåé¡ã¯ãå
šãŠ<math>z=x+yi</math>(x,yã¯å®æ°)ãšçœ®ãããšã§æ±ããããã(III)ã¯ã<math>(x+yi)^3-i=x(x^2-3y^2)+(3x^2y-y^3-1)i=0</math>ããã
å®éšããŒããèæ
®ããŠ<math>x=0</math>ã<math>x=\pm\sqrt{3}y</math>ã ããèéšããŒããªã®ã§ãxã®å€ãåè
ã®ãšã<math>y=-1</math>ãåŸè
ã®ãšã<math>y=1/2</math>ãšãªãããšãããã«ãããã
=== 髿¬¡æ¹çšåŒã®ãè§£ã®å
Œ΋ ===
2次æ¹çšåŒã«ã¯è§£ã®å
¬åŒããããæ¥æ¬ã®äžåŠã髿 ¡ã§ãç¿ãã2次æ¹çšåŒã®è§£ã®å
¬åŒãçšããã°ãã©ããªä¿æ°ã®2次æ¹çšåŒã§ãã£ãŠãè§£ãæ±ããããã3次æ¹çšåŒãš4次æ¹çšåŒã«ããè§£ã®å
¬åŒã¯ååšããä¿æ°ãã©ããªä¿æ°ã§ãã£ãŠãè§£ãæ±ããããããããã®è§£ã®å
¬åŒã¯ã[[ä»£æ°æ¹çšåŒè«]]ã§è¿°ã¹ãŠããããã«ãä¿æ°ã«æéåã®ååæŒç®ãšæ ¹å·ããšãæäœã®çµã¿åããã§è¡šãããšãã§ããã
5次æ¹çšåŒã§ã¯ã4次以äžã®æ¹çšåŒãšã¯ç¶æ³ãç°ãªããäžè¬ã®5次æ¹çšåŒã®è§£ã¯ã2次æ¹çšåŒã4次æ¹çšåŒã®ããã«ãä¿æ°ã«æéåã®ååæŒç®ãšæ ¹å·ããšãæäœã®çµã¿åããã§è¡šãããšãã§ããªãã®ã§ããããã ãããã§ããªããããšã®èšŒæã¯å®¹æã§ã¯ãªãããã®ããšã蚌æããã«ã¯ã[[ã¬ãã¢çè«]]ãçè§£ããå¿
èŠãããïŒæ¥æ¬ã®å€§åŠã®æšæºçãªã«ãªãã¥ã©ã ã§ã¯ãçåŠéšæ°åŠç§ã®åŠçã®ã¿ã倧åŠ3幎çã§åŠã¶ã®ãäžè¬çãªçšåºŠã®çè«ã§ããïŒã
ãªããããã§èšãã衚ãããšãã§ããªãããšã¯äžè¬ã®æ¹çšåŒã«ã€ããŠã®ããšã§ãããç¹å¥ãª5次æ¹çšåŒã®å Žåã¯ç°¡åã«è§£ãæ±ãããããããšãã°ã<math> x^5 -32 = 0 </math> ã¯è§£ã®ã²ãšã€ãšã㊠<math> x=2 </math> ããã€ããšã¯ãããããããã®æ¹çšåŒã¯ä»ã®è§£ã«ã€ããŠãäžè§é¢æ°ãçšããŠç°¡åã«è¡šããããšã[[é«çåŠæ ¡æ°åŠC/è€çŽ æ°å¹³é¢]]ã«ãããŠåŠã¶ã
ãä¿æ°ã«æéåã®ååæŒç®ãšæ ¹å·ããšãæäœã®çµã¿åãããã«æããªããã°ãäžè¬ã®5次æ¹çšåŒã®è§£ãæ±ããæ¹æ³ãååšããããããé«åºŠãªæ°åŠãçšããå¿
èŠãããã[[w:äºæ¬¡æ¹çšåŒ]]ã«èšè¿°ãããã®ã§èå³ã®ããèªè
ã¯åç
§ãããšããã
=== è€çŽ æ°ãšé¢æ° ===
é«çåŠæ ¡ã§è€çŽ æ°ãåºãŠããåéã¯ãã®åéãšæ°åŠCã[[é«çåŠæ ¡æ°åŠC/å¹³é¢äžã®æ²ç·|å¹³é¢äžã®æ²ç·]]ãšè€çŽ æ°å¹³é¢ãã®ã¿ã§ãããè€çŽ æ°ã®åºæ¬èšç®ãæ¹çšåŒãè€çŽ æ°ç¯å²ã§è§£ãããšãè€çŽ æ°ã®å¹ŸäœåŠçæå³ã«ã€ããŠæ±ã£ãŠãããããããå€§åŠæ°åŠã«ãããŠã¯ã颿°ã®å®çŸ©åã»å€åãè€çŽ æ°ç¯å²ã«åºããŠèããã[[è€çŽ è§£æåŠ|è€çŽ é¢æ°è«]]ããšãããã®ãæ±ãã
宿°ç¯å²ã§ã®é¢æ°ã¯x, yãšãã«äžæ¬¡å
ã®å®æ°è»žãæã€ãããå
¥åå€ãšåºåå€ã®æãã°ã©ããèããã«ã¯äºæ¬¡å
ã®åº§æšå¹³é¢ã§ååã§ãã£ããããããè€çŽ æ°ç¯å²ã§ã®é¢æ°ã¯x, yãšãã«äºæ¬¡å
ã®è€çŽ æ°å¹³é¢ãæã€ãããå
¥åå€ãšåºåå€ã®æãã°ã©ããèããã«ã¯å次å
ã®åº§æšç©ºéãå¿
èŠã§ãããäžæ¬¡å
空éã«äœãæã
ã«ã¯æç»ããããšãã§ããªãããã®ãããè€çŽ é¢æ°è«ã§ã¯é¢æ°ã®ã°ã©ããèããããšã¯åºæ¬çã«ãªããïŒãã ããåºåãããè€çŽ æ°ã®çµ¶å¯Ÿå€ãèããããšã«ãã£ãŠäžæ¬¡å
ã°ã©ãã«èœãšã蟌ãããšã¯å¯èœïŒ
ã§ã¯äœãèããã®ããšãããšãè€çŽ é¢æ°ã®åŸ®åç©åã§ãããè€çŽ é¢æ°ã®åŸ®åã«é¢é£ããŠãæ£å颿°ããšããçšèªãåºãŠããããè€çŽ é¢æ°è«ã¯ãã®æ£å颿°ãšãããã®ã®æ§è³ªã調ã¹ãåŠåã ãšèšã£ãŠè¯ãã
è€çŽ é¢æ°è«ã¯ç©çåŠã®ç¹ã«æ³¢åã«é¢ããåéïŒé³ã»é»ç£æ°ãªã©ïŒã«ãããŠæŽ»èºããŠããããæ³¢åæ¹çšåŒãããã€ã³ããŒãã³ã¹ããšããèšèã¯æåã ããã
ã¡ãªã¿ã«ãè€çŽ æ°ãããã«æ¡åŒµããæ°ãšããŠã[[w:åå
æ°]]ããšãããã®ãããããã®åå
æ°ã¯[[é«çåŠæ ¡æ°åŠC/ãã¯ãã«|ãã¯ãã«]]ã[[é«çåŠæ ¡æ°åŠC/æ°åŠçãªè¡šçŸã®å·¥å€«#è¡åãçšãã衚çŸãšãã®æŒç®|è¡å]]ãšæ·±ãé¢ãããååšããŠãããæ·±æããšé¢çœãã®ã ããããããåé·ã«ãªããã岿ããããªããåå
æ°ãããã«æ¡åŒµããå
«å
æ°ãåå
å
æ°ãšããæ°ãç ç©¶ãããŠããã
== æŒç¿åé¡ ==
{{DEFAULTSORT:ãããšããã€ããããããII ãããšããããã}}
[[Category:é«çåŠæ ¡æ°åŠII|ãããšããããã]] | 2005-05-04T09:17:55Z | 2024-03-30T03:12:47Z | [
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:ã³ã©ã "
] | https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E6%95%B0%E5%AD%A6II/%E5%BC%8F%E3%81%A8%E8%A8%BC%E6%98%8E%E3%83%BB%E9%AB%98%E6%AC%A1%E6%96%B9%E7%A8%8B%E5%BC%8F |
1,903 | é«çåŠæ ¡æ°åŠII/å³åœ¢ãšæ¹çšåŒ | ããã§ã¯çŽç·ãšåãªã©ã®æ§è³ªã座æšãçšããŠèå¯ããã
座æšå¹³é¢äžã®2ç¹ A ( x 1 , y 1 ) , B ( x 2 , y 2 ) {\displaystyle \mathrm {A} \left(x_{1}\ ,\ y_{1}\right)\ ,\ \mathrm {B} \left(x_{2}\ ,\ y_{2}\right)} éã®è·é¢ A B {\displaystyle \mathrm {A} \mathrm {B} } ãæ±ããŠã¿ãããçŽç· A B {\displaystyle \mathrm {A} \mathrm {B} } ã座æšè»žã«å¹³è¡ã§ãªããšããç¹ C ( x 2 , y 1 ) {\displaystyle \mathrm {C} \left(x_{2}\ ,\ y_{1}\right)} ããšããš
â³ A B C {\displaystyle \triangle \mathrm {A} \mathrm {B} \mathrm {C} } ã¯çŽè§äžè§åœ¢ã§ãããããäžå¹³æ¹ã®å®çãã
ãã®åŒã¯ãçŽç· A B {\displaystyle \mathrm {A} \mathrm {B} } ãx軞ãy軞ã«å¹³è¡ãªãšãã«ãæãç«ã€ã
ç¹ã«ãåç¹ O {\displaystyle \mathrm {O} } ãšç¹ A ( x 1 , y 1 ) {\displaystyle \mathrm {A} \left(x_{1}\ ,\ y_{1}\right)} éã®è·é¢ã¯
ç¹ A ( x 0 , y 0 ) , B ( x 1 , y 1 ) {\displaystyle \mathrm {A} (x_{0},y_{0}),\mathrm {B} (x_{1},y_{1})} ãšå®æ° m , n > 0 {\displaystyle m,n>0} ã«å¯ŸããŠãç·å A B {\displaystyle \mathrm {AB} } äžã®ç¹ P ( x , y ) {\displaystyle \mathrm {P} (x,y)} ãååšããŠã A P : P B = m : n {\displaystyle \mathrm {AP} :\mathrm {PB} =m:n} ãšãªããšããç¹ P {\displaystyle \mathrm {P} } ã A , B {\displaystyle \mathrm {A} ,\mathrm {B} } ã m : n {\displaystyle m:n} ã«å
åããç¹ãšããã
ãŸããç·å A B {\displaystyle \mathrm {AB} } äžã§ãªãç¹ P ( x , y ) {\displaystyle \mathrm {P} (x,y)} ãååšããŠã A P : P B = m : n {\displaystyle \mathrm {AP} :\mathrm {PB} =m:n} ãšãªããšããç¹ P {\displaystyle \mathrm {P} } ã A , B {\displaystyle \mathrm {A} ,\mathrm {B} } ã m : n {\displaystyle m:n} ã«å€åããç¹ãšããã
æ°çŽç·äžã®ç¹ A ( a ) , B ( b ) {\displaystyle \mathrm {A} (a),\mathrm {B} (b)} ã m : n {\displaystyle m:n} ã«å
åããç¹ãšå€åããç¹ãæ±ããã
å
åç¹ã P ( x ) {\displaystyle \mathrm {P} (x)} ãšããã a < b {\displaystyle a<b} ã®ãšãã A P = x â a , P B = b â x {\displaystyle \mathrm {AP} =x-a,\mathrm {PB} =b-x} ãªã®ã§ã m : n = ( x â a ) : ( b â x ) {\displaystyle m:n=(x-a):(b-x)} ãªã®ã§ã n ( x â a ) = m ( b â x ) ⺠x = n a + m b m + n {\displaystyle n(x-a)=m(b-x)\iff x={\frac {na+mb}{m+n}}} ã§ããã a > b {\displaystyle a>b} ã®ãšããåæ§ã
次ã«å€åç¹ãæ±ãããå€åç¹ã P ( x ) {\displaystyle \mathrm {P} (x)} ãšããã a < b {\displaystyle a<b} ã§ m > n {\displaystyle m>n} ã®ãšãã x > b {\displaystyle x>b} ãšãªãã®ã§ã A P = x â a , B P = x â b {\displaystyle \mathrm {AP} =x-a,\mathrm {BP} =x-b} ãªã®ã§ã m : n = ( x â a ) : ( x â b ) {\displaystyle m:n=(x-a):(x-b)} ãªã®ã§ã x = â n a + m b m â n {\displaystyle x={\frac {-na+mb}{m-n}}}
ããã¯ã a > b {\displaystyle a>b} ãŸã㯠m < n {\displaystyle m<n} ã®ãšããåæ§ã
2次å
ã®å Žåã«ã¯ãäžè¬ã«ç¹ãšç¹ãšã®äœçœ®é¢ä¿ã¯ã座æšè»žã«å¹³è¡ã§ãªãããããã®è·é¢ã®å
åã¯è€éã«ãªãããã«æãããããããå®éã«ã¯ãå
åç¹ãå€åç¹ãèšç®ããã«ã¯ãäžã®å
¬åŒãx,y ã®äž¡æ¹åã«å¯ŸããŠçšããã°ãããããã¯ã2ç¹ãã€ãªãç·ãçŽç·ã§ããã®ã§ããã®çŽç·äžã§ããç¹ããã®è·é¢ãäžå®ã®å²åãšãªãç¹ãããã€ãåã£ããšãããã®ç¹ãšå
ã®ç¹ã®x軞æ¹åã®åº§æšã®å€åã®å²åãšy軞æ¹åã®åº§æšã®å€åã®å²åãšçŽç·èªèº«ã®é·ãã®å€åã®å²åã¯ããããçãããªãããã§ããã
ãã£ãŠãäžè¬ã«ç¹ A ( x 0 , y 0 ) , B ( x 1 , y 1 ) {\displaystyle A(x_{0},y_{0}),B(x_{1},y_{1})} ããa:bã«å
åããç¹ãšå€åããç¹ã¯ã
ã§äžããããã
æŒç¿åé¡
ç¹ A ( 1 , 0 ) , B ( â 4 , 7 ) {\displaystyle \mathrm {A} (1,0),\mathrm {B} (-4,7)} ã3:1ã«ããããå
åãå€åããç¹ãæ±ããã
è§£ç
å
åç¹ã¯ ( â 11 4 , 21 4 ) {\displaystyle \left({\frac {-11}{4}},{\frac {21}{4}}\right)}
å€åç¹ã¯ ( â 13 2 , 21 2 ) {\displaystyle \left({\frac {-13}{2}},{\frac {21}{2}}\right)}
3ç¹ A ( x 1 , y 1 ) , B ( x 2 , y 2 ) , C ( x 3 , y 3 ) {\displaystyle \mathrm {A} \left(x_{1},y_{1}\right),\mathrm {B} \left(x_{2},y_{2}\right),\mathrm {C} \left(x_{3},y_{3}\right)} ãé ç¹ãšããäžè§åœ¢ã®éå¿ G {\displaystyle \mathrm {G} } ã®åº§æšãæ±ããŠã¿ããã ç·å B C {\displaystyle \mathrm {B} \mathrm {C} } ã®äžç¹ M {\displaystyle \mathrm {M} } ã®åº§æšã¯
éå¿ G {\displaystyle \mathrm {G} } ã¯ç·å A M {\displaystyle \mathrm {A} \mathrm {M} } ã2:1ã«å
åããç¹ã§ããããã G {\displaystyle \mathrm {G} } ã®åº§æšã ( x , y ) {\displaystyle (x,y)} ãšãããš
åæ§ã«
ãã£ãŠãéå¿ G {\displaystyle \mathrm {G} } ã®åº§æšã¯
ããç¹ ( x 0 , y 0 ) {\displaystyle (x_{0},y_{0})} ãéã£ãŠåŸãaã®çŽç·ã®åŒã¯ã y â y 0 = a ( x â x 0 ) {\displaystyle y-y_{0}=a(x-x_{0})} ã§äžãããããããã¯ãåŸããyã®å€åå / {\displaystyle /} xã®å€ååã§è¡šãããã y â y 0 {\displaystyle y-y_{0}} , x â x 0 {\displaystyle x-x_{0}} ã¯ãŸãã«ãy,xããããã®å€ååãã®ãã®ã§ããããšã«ããã
2ç¹ ( x 0 , y 0 ) {\displaystyle (x_{0},y_{0})} , ( x 1 , y 1 ) {\displaystyle (x_{1},y_{1})} ãéãçŽç·ã¯åŸãã y 0 â y 1 x 0 â x 1 {\displaystyle {\frac {y_{0}-y_{1}}{x_{0}-x_{1}}}} ã§äžããããããšãçšãããšã y â y 0 = y 0 â y 1 x 0 â x 1 ( x â x 0 ) {\displaystyle y-y_{0}={\frac {y_{0}-y_{1}}{x_{0}-x_{1}}}(x-x_{0})} ã§äžããããã
æŒç¿åé¡
ããããã®çŽç·ã衚ããåŒãèšç®ããã
(i) åŸã-2ã§ãç¹(-3,1)ãéãçŽç·
(ii) 2ç¹(4,3) ,(5,7)ãéãçŽç·
è§£ç
ãçšããã°ããã
(i)
(ii)
ãŸãçŽç·ã®æ¹çšåŒã¯äžè¬ã« a x + b y + c = 0 {\displaystyle ax+by+c=0} ã§è¡šãããã
ç¹ ( 1 , 4 ) {\displaystyle (1,4)} ãéããçŽç· y = â 2 x + 3 {\displaystyle y=-2x+3} ã«å¹³è¡ãªçŽç·ãåçŽãªçŽç·ã®æ¹çšåŒãæ±ããã
çŽç· y = â 2 x + 3 {\displaystyle y=-2x+3} ã®åŸã㯠â 2 {\displaystyle -2} ã§ããã å¹³è¡ãªçŽç·ã®æ¹çšåŒã¯
åçŽãªçŽç·ã®åŸãã m {\displaystyle m} ãšãããš
ãã£ãŠãåçŽãªçŽç·ã®æ¹çšåŒã¯
ç¹ P {\displaystyle \mathrm {P} } ãšçŽç· l {\displaystyle l} ã«å¯ŸããçŽç· l {\displaystyle l} äžã®ç¹ãšç¹ P {\displaystyle \mathrm {P} } ã®è·é¢ã®æå°å€ãç¹ãšçŽç·ã®è·é¢ãšãããããã¯ç¹ P {\displaystyle \mathrm {P} } ããçŽç· l {\displaystyle l} ã«äžãããåç· P H {\displaystyle \mathrm {PH} } ã®é·ãã«çããã
çŽç· a x + b y + c = 0 {\displaystyle ax+by+c=0} ãšç¹ ( x 0 , y 0 ) {\displaystyle (x_{0},y_{0})} ã®è·é¢ã¯
ãšè¡šãããã
蚌æ
ç¹ P ( x 0 , y 0 ) {\displaystyle \mathrm {P} (x_{0},y_{0})} ãšçŽç· l : a x + b y + c = 0 a , b â 0 {\displaystyle l:ax+by+c=0\quad a,b\neq 0} ãšããã
ç¹ P {\displaystyle \mathrm {P} } ããçŽç· l {\displaystyle l} ã«åç·ãäžãããåç·ã®è¶³ãç¹ R {\displaystyle R} ãšããã
ãŸããç¹ P {\displaystyle \mathrm {P} } ãã y {\displaystyle y} 軞ã«å¹³è¡ãªçŽç·ãåŒããçŽç· l {\displaystyle l} ãšã®äº€ç¹ãç¹ S {\displaystyle \mathrm {S} } ãšããã
次ã«ãå³ã®ããã«ãçŽç· l {\displaystyle l} äžã®ç¹ T {\displaystyle \mathrm {T} } ã«å¯ŸããŠãçŽç· T V {\displaystyle \mathrm {TV} } ã x {\displaystyle x} 軞ãšå¹³è¡ãšãªãã T V = | b | {\displaystyle \mathrm {TV} =|b|} ãšãªãããã«ç¹ V {\displaystyle \mathrm {V} } ããšããçŽç· V U {\displaystyle \mathrm {VU} } ã y {\displaystyle y} 軞ã«å¹³è¡ã«ãªãç¹ U {\displaystyle \mathrm {U} } ãçŽç· l {\displaystyle l} äžã«åãã
çŽç· l {\displaystyle l} ã®åŸã㯠â a b {\displaystyle -{\frac {a}{b}}} ãšãªãã®ã§ V U = | a | {\displaystyle \mathrm {VU} =|a|} ã§ããã ããã§ã â³ P R S , â³ T V U {\displaystyle \bigtriangleup \mathrm {PRS} ,\bigtriangleup \mathrm {TVU} } ã¯çŽè§äžè§åœ¢ã§ããã â P S R = â T U V {\displaystyle \angle \mathrm {PSR} =\angle \mathrm {TUV} } ãªã®ã§ã â³ P R S âŒâ³ T V U {\displaystyle \bigtriangleup \mathrm {PRS} \sim \bigtriangleup \mathrm {TVU} } ã§ããããããã£ãŠ
ãŸãç¹ S {\displaystyle \mathrm {S} } ã®åº§æšã ( x 0 , m ) {\displaystyle (x_{0},m)} ãšãããšã P S = | y 0 â m | {\displaystyle \mathrm {PS} =|y_{0}-m|} ã§ãç¹ P {\displaystyle \mathrm {P} } ãšçŽç· l {\displaystyle l} ã®è·é¢ P R {\displaystyle \mathrm {PR} } ã¯ã
P R = P S â
T V T U = | y 0 â m | | b | a 2 + b 2 {\displaystyle \mathrm {PR} ={\mathrm {PS} }\cdot {\frac {\mathrm {TV} }{\mathrm {TU} }}={\frac {|y_{0}-m||b|}{\sqrt {a^{2}+b^{2}}}}}
ãšããã§ãç¹ S {\displaystyle \mathrm {S} } ã¯çŽç· l {\displaystyle l} äžã®ç¹ãªã®ã§ã
ã§ãããããã代å
¥ããã°
ãã¯ãã«ã䜿ã£ã蚌æ
ãã§ã«ãã¯ãã«ãç¥ã£ãŠãããªãã°ãã¡ãã®æ¹ãç°¡æœã§ããã
ç¹ P ( x 0 , y 0 ) {\displaystyle \mathrm {P} (x_{0},y_{0})} ãšçŽç· l : a x + b y + c = 0 {\displaystyle l:ax+by+c=0} ãšããç¹ Q ( x 1 , y 1 ) {\displaystyle \mathrm {Q} (x_{1},y_{1})} ãçŽç· l {\displaystyle l} äžã®ç¹ãšãããçŽç· l {\displaystyle l} ã®æ³ç·ã¯ n â := ( a , b ) {\displaystyle {\vec {n}}:=(a,b)} ã§ã Q P â = ( x 0 â x 1 , y 0 â y 1 ) {\displaystyle {\vec {\mathrm {QP} }}=(x_{0}-x_{1},y_{0}-y_{1})} ã§ããã®ã§ãçŽç· l {\displaystyle l} äžã®ç¹ãšç¹ P {\displaystyle \mathrm {P} } ã®è·é¢ d {\displaystyle d} 㯠d = | Q P â â
n â | | n â | | | = | ( x 0 â x 1 , y 0 â y 1 ) â
( a , b ) a 2 + b 2 | = | a x 0 + b y 0 â ( a x 1 + b y 1 ) | a 2 + b 2 = | a x 0 + b y 0 + c | a 2 + b 2 {\displaystyle d=\left|{\vec {\mathrm {QP} }}\cdot {\frac {\vec {n}}{||{\vec {n}}||}}\right|=\left|(x_{0}-x_{1},y_{0}-y_{1})\cdot {\frac {(a,b)}{\sqrt {a^{2}+b^{2}}}}\right|={\frac {|ax_{0}+by_{0}-(ax_{1}+by_{1})|}{\sqrt {a^{2}+b^{2}}}}={\frac {|ax_{0}+by_{0}+c|}{\sqrt {a^{2}+b^{2}}}}} ã§ããã
æŒç¿åé¡
çŽç· x â 2 y â 3 = 0 {\displaystyle x-2y-3=0} ãšç¹ ( 1 , 2 ) {\displaystyle (1,2)} ã®è·é¢ãæ±ãã
è§£ç
6 5 {\displaystyle {\frac {6}{\sqrt {5}}}}
äžå¿ C ( a , b ) {\displaystyle \mathrm {C} (a,b)} ååŸ r {\displaystyle r} ã®åã¯ã C P = r {\displaystyle \mathrm {CP} =r} ãšãªãç¹ P {\displaystyle \mathrm {P} } ã®éåã§ãããã€ãŸãã r = ( x â a ) 2 + ( y â b ) 2 {\displaystyle r={\sqrt {(x-a)^{2}+(y-b)^{2}}}} ãšãªãç¹ ( x , y ) {\displaystyle (x,y)} ã®éåã§ããããã®æ¹çšåŒã®äž¡èŸºã¯æ£ãªã®ã§2ä¹ããŠ
( x â a ) 2 + ( y â b ) 2 = r 2 {\displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}}
ãåŸãããããåã®æ¹çšåŒã§ããã
ç¹ã«åç¹ãäžå¿ã§ååŸ r {\displaystyle r} ã®åã®æ¹çšåŒã¯ x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} ã§äžããããã
æŒç¿åé¡
è§£ç
æ¹çšåŒ x 2 + y 2 + l x + m y + n = 0 {\displaystyle x^{2}+y^{2}+lx+my+n=0} ã¯ãã€ãåã§ãããšã¯éããªãã
æ¹çšåŒãå€åœ¢ã㊠( x â a ) 2 + ( y â b ) 2 = k {\displaystyle (x-a)^{2}+(y-b)^{2}=k} ãšãªããšã
å x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} äžã®ããç¹ ( x 1 , y 1 ) {\displaystyle (x_{1},y_{1})} ã§æ¥ããæ¥ç·ã®æ¹çšåŒã¯
ã§è¡šãããã
åæ§ã«ãå ( x â a ) 2 + ( y â b ) 2 = r 2 {\displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}} äžã®ããç¹ ( x 2 , y 2 ) {\displaystyle (x_{2},y_{2})} ã§æ¥ããæ¥ç·ã®æ¹çšåŒã¯
ã§è¡šãããã
åãšçŽç·ã®äœçœ®é¢ä¿ã«ã€ããŠå€§ããæ¬¡ã®3ã€ã«åé¡ããããšãã§ããã
äžè¬ã®åãšçŽç·ã«ã€ããŠãããã®äœçœ®é¢ä¿ãåé¡ããŠã¿ããã
å C : ( x â p ) 2 + ( y â q ) 2 = r 2 {\displaystyle C:(x-p)^{2}+(y-q)^{2}=r^{2}} ãšçŽç· l : a x + b y + c = 0 {\displaystyle l:ax+by+c=0} ã«ã€ããŠãå C {\displaystyle C} ã®äžå¿ ( p , q ) {\displaystyle (p,q)} ãšçŽç· l {\displaystyle l} ã®è·é¢ d := | a q + b q + c | a 2 + b 2 {\displaystyle d:={\frac {|aq+bq+c|}{\sqrt {a^{2}+b^{2}}}}} ãšãããšã
ä»ã«ããåã®æ¹çšåŒãšçŽç·ã®æ¹çšåŒãé£ç«ããŠãã®å®æ°è§£ã®åæ°ã§åé¡ããæ¹æ³ãããããäœçœ®é¢ä¿ãæ±ããã ããªãäžã®æ¹æ³ã®ã»ããèšç®éãå°ãªãã
æŒç¿åé¡
çŽç· 3 x + 4 y = 1 {\displaystyle 3x+4y=1} ãšå ( x â 3 ) 2 + ( y + 2 ) 2 = 14 {\displaystyle (x-3)^{2}+(y+2)^{2}=14} ã®äº€ç¹ã®åº§æšãæ±ãã
è§£ç
çŽç·ã®æ¹çšåŒã x {\displaystyle x} ã«ã€ããŠè§£ãããããåã®æ¹çšåŒã«ä»£å
¥ããã°ããã
çã㯠( 2 , â 1 ) , ( â 14 5 , 7 5 ) {\displaystyle (2,-1),\left(-{\frac {14}{5}},{\frac {7}{5}}\right)}
ããæ¡ä»¶ãæºããç¹å
šäœãã€ããå³åœ¢ãããã®æ¡ä»¶ãæºããç¹ã®è»è·¡ãšããã
2ç¹ A ( 1 , 0 ) , B ( 3 , 2 ) {\displaystyle \mathrm {A} (1\ ,\ 0)\ ,\ \mathrm {B} (3\ ,\ 2)} ããçè·é¢ã«ããç¹ P {\displaystyle \mathrm {P} } ã®è»è·¡ãæ±ããã
æ¡ä»¶ A P = B P {\displaystyle \mathrm {A} \mathrm {P} =\mathrm {B} \mathrm {P} } ããã A P 2 = B P 2 {\displaystyle \mathrm {A} \mathrm {P} ^{2}=\mathrm {B} \mathrm {P} ^{2}} P {\displaystyle \mathrm {P} } ã®åº§æšã ( x , y ) {\displaystyle (x\ ,\ y)} ãšãããš
ã ãã
æŽçããŠã
ãããã£ãŠãæ±ããè»è·¡ã¯ãçŽç· y = â x + 3 {\displaystyle y=-x+3} ã§ããã
2ç¹ A ( 0 , 0 ) , B ( 3 , 0 ) {\displaystyle \mathrm {A} (0\ ,\ 0)\ ,\ \mathrm {B} (3\ ,\ 0)} ããã®è·é¢ã®æ¯ã 2 : 1 {\displaystyle 2:1} ã§ããç¹ P {\displaystyle \mathrm {P} } ã®è»è·¡ãæ±ããã
P {\displaystyle \mathrm {P} } ã®åº§æšã ( x , y ) {\displaystyle (x\ ,\ y)} ãšããã P {\displaystyle \mathrm {P} } ãæºããæ¡ä»¶ã¯
ããªãã¡
ããã座æšã§è¡šããš
䞡蟺ã2ä¹ããŠãæŽçãããš
ããªãã¡
ãããã£ãŠãæ±ããè»è·¡ã¯ãäžå¿ã ( 4 , 0 ) {\displaystyle (4\ ,\ 0)} ãååŸã 2 {\displaystyle 2} ã®åã§ããã
m , n {\displaystyle m\ ,\ n} ãç°ãªãæ£ã®æ°ãšãããšãã2ç¹ A , B {\displaystyle \mathrm {A} \ ,\ \mathrm {B} } ããã®è·é¢ã®æ¯ã m : n {\displaystyle m:n} ã§ããç¹ã®è»è·¡ã¯ãç·å A B {\displaystyle \mathrm {A} \mathrm {B} } ã m : n {\displaystyle m:n} ã«å
åããç¹ãšãå€åããç¹ãçŽåŸã®äž¡ç«¯ãšããåã§ããããã®åãã¢ããããŠã¹ã®åãšããã
m = n {\displaystyle m=n} ã®ãšãã¯ãç·å A B {\displaystyle \mathrm {A} \mathrm {B} } ã®åçŽäºçåç·ã§ããã
ãã®ããŒãžã®åéã®ããã«ãæ°åŒãã€ãã£ãŠåº§æšã®äœçœ®ããããããŠã幟äœåŠã®åé¡ãè§£ãææ³ã®ããšãè§£æå¹ŸäœåŠãšããã
ãªãã幟äœåŠãšããèšèèªäœã¯ãå³åœ¢ã®åŠåãšãããããªæå³ã§ãããå°åŠæ ¡ãäžåŠæ ¡ã§ç¿ã£ãå³åœ¢ã®çè«ã幟äœåŠã§ããã
äžäžãšãŒãããã®æ°åŠè
ãã«ã«ãããè§£æå¹ŸäœåŠã®ç ç©¶ãé²ããããªãããã«ã«ãã¯ãå²åŠã®æ Œèšãããæããããã«æãããã§ãæåã§ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ããã§ã¯çŽç·ãšåãªã©ã®æ§è³ªã座æšãçšããŠèå¯ããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "座æšå¹³é¢äžã®2ç¹ A ( x 1 , y 1 ) , B ( x 2 , y 2 ) {\\displaystyle \\mathrm {A} \\left(x_{1}\\ ,\\ y_{1}\\right)\\ ,\\ \\mathrm {B} \\left(x_{2}\\ ,\\ y_{2}\\right)} éã®è·é¢ A B {\\displaystyle \\mathrm {A} \\mathrm {B} } ãæ±ããŠã¿ãããçŽç· A B {\\displaystyle \\mathrm {A} \\mathrm {B} } ã座æšè»žã«å¹³è¡ã§ãªããšããç¹ C ( x 2 , y 1 ) {\\displaystyle \\mathrm {C} \\left(x_{2}\\ ,\\ y_{1}\\right)} ããšããš",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "â³ A B C {\\displaystyle \\triangle \\mathrm {A} \\mathrm {B} \\mathrm {C} } ã¯çŽè§äžè§åœ¢ã§ãããããäžå¹³æ¹ã®å®çãã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãã®åŒã¯ãçŽç· A B {\\displaystyle \\mathrm {A} \\mathrm {B} } ãx軞ãy軞ã«å¹³è¡ãªãšãã«ãæãç«ã€ã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ç¹ã«ãåç¹ O {\\displaystyle \\mathrm {O} } ãšç¹ A ( x 1 , y 1 ) {\\displaystyle \\mathrm {A} \\left(x_{1}\\ ,\\ y_{1}\\right)} éã®è·é¢ã¯",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ç¹ A ( x 0 , y 0 ) , B ( x 1 , y 1 ) {\\displaystyle \\mathrm {A} (x_{0},y_{0}),\\mathrm {B} (x_{1},y_{1})} ãšå®æ° m , n > 0 {\\displaystyle m,n>0} ã«å¯ŸããŠãç·å A B {\\displaystyle \\mathrm {AB} } äžã®ç¹ P ( x , y ) {\\displaystyle \\mathrm {P} (x,y)} ãååšããŠã A P : P B = m : n {\\displaystyle \\mathrm {AP} :\\mathrm {PB} =m:n} ãšãªããšããç¹ P {\\displaystyle \\mathrm {P} } ã A , B {\\displaystyle \\mathrm {A} ,\\mathrm {B} } ã m : n {\\displaystyle m:n} ã«å
åããç¹ãšããã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãŸããç·å A B {\\displaystyle \\mathrm {AB} } äžã§ãªãç¹ P ( x , y ) {\\displaystyle \\mathrm {P} (x,y)} ãååšããŠã A P : P B = m : n {\\displaystyle \\mathrm {AP} :\\mathrm {PB} =m:n} ãšãªããšããç¹ P {\\displaystyle \\mathrm {P} } ã A , B {\\displaystyle \\mathrm {A} ,\\mathrm {B} } ã m : n {\\displaystyle m:n} ã«å€åããç¹ãšããã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "æ°çŽç·äžã®ç¹ A ( a ) , B ( b ) {\\displaystyle \\mathrm {A} (a),\\mathrm {B} (b)} ã m : n {\\displaystyle m:n} ã«å
åããç¹ãšå€åããç¹ãæ±ããã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "å
åç¹ã P ( x ) {\\displaystyle \\mathrm {P} (x)} ãšããã a < b {\\displaystyle a<b} ã®ãšãã A P = x â a , P B = b â x {\\displaystyle \\mathrm {AP} =x-a,\\mathrm {PB} =b-x} ãªã®ã§ã m : n = ( x â a ) : ( b â x ) {\\displaystyle m:n=(x-a):(b-x)} ãªã®ã§ã n ( x â a ) = m ( b â x ) ⺠x = n a + m b m + n {\\displaystyle n(x-a)=m(b-x)\\iff x={\\frac {na+mb}{m+n}}} ã§ããã a > b {\\displaystyle a>b} ã®ãšããåæ§ã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "次ã«å€åç¹ãæ±ãããå€åç¹ã P ( x ) {\\displaystyle \\mathrm {P} (x)} ãšããã a < b {\\displaystyle a<b} ã§ m > n {\\displaystyle m>n} ã®ãšãã x > b {\\displaystyle x>b} ãšãªãã®ã§ã A P = x â a , B P = x â b {\\displaystyle \\mathrm {AP} =x-a,\\mathrm {BP} =x-b} ãªã®ã§ã m : n = ( x â a ) : ( x â b ) {\\displaystyle m:n=(x-a):(x-b)} ãªã®ã§ã x = â n a + m b m â n {\\displaystyle x={\\frac {-na+mb}{m-n}}}",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ããã¯ã a > b {\\displaystyle a>b} ãŸã㯠m < n {\\displaystyle m<n} ã®ãšããåæ§ã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "2次å
ã®å Žåã«ã¯ãäžè¬ã«ç¹ãšç¹ãšã®äœçœ®é¢ä¿ã¯ã座æšè»žã«å¹³è¡ã§ãªãããããã®è·é¢ã®å
åã¯è€éã«ãªãããã«æãããããããå®éã«ã¯ãå
åç¹ãå€åç¹ãèšç®ããã«ã¯ãäžã®å
¬åŒãx,y ã®äž¡æ¹åã«å¯ŸããŠçšããã°ãããããã¯ã2ç¹ãã€ãªãç·ãçŽç·ã§ããã®ã§ããã®çŽç·äžã§ããç¹ããã®è·é¢ãäžå®ã®å²åãšãªãç¹ãããã€ãåã£ããšãããã®ç¹ãšå
ã®ç¹ã®x軞æ¹åã®åº§æšã®å€åã®å²åãšy軞æ¹åã®åº§æšã®å€åã®å²åãšçŽç·èªèº«ã®é·ãã®å€åã®å²åã¯ããããçãããªãããã§ããã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãã£ãŠãäžè¬ã«ç¹ A ( x 0 , y 0 ) , B ( x 1 , y 1 ) {\\displaystyle A(x_{0},y_{0}),B(x_{1},y_{1})} ããa:bã«å
åããç¹ãšå€åããç¹ã¯ã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ã§äžããããã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "æŒç¿åé¡",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ç¹ A ( 1 , 0 ) , B ( â 4 , 7 ) {\\displaystyle \\mathrm {A} (1,0),\\mathrm {B} (-4,7)} ã3:1ã«ããããå
åãå€åããç¹ãæ±ããã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "è§£ç",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "å
åç¹ã¯ ( â 11 4 , 21 4 ) {\\displaystyle \\left({\\frac {-11}{4}},{\\frac {21}{4}}\\right)}",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "å€åç¹ã¯ ( â 13 2 , 21 2 ) {\\displaystyle \\left({\\frac {-13}{2}},{\\frac {21}{2}}\\right)}",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "3ç¹ A ( x 1 , y 1 ) , B ( x 2 , y 2 ) , C ( x 3 , y 3 ) {\\displaystyle \\mathrm {A} \\left(x_{1},y_{1}\\right),\\mathrm {B} \\left(x_{2},y_{2}\\right),\\mathrm {C} \\left(x_{3},y_{3}\\right)} ãé ç¹ãšããäžè§åœ¢ã®éå¿ G {\\displaystyle \\mathrm {G} } ã®åº§æšãæ±ããŠã¿ããã ç·å B C {\\displaystyle \\mathrm {B} \\mathrm {C} } ã®äžç¹ M {\\displaystyle \\mathrm {M} } ã®åº§æšã¯",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "éå¿ G {\\displaystyle \\mathrm {G} } ã¯ç·å A M {\\displaystyle \\mathrm {A} \\mathrm {M} } ã2:1ã«å
åããç¹ã§ããããã G {\\displaystyle \\mathrm {G} } ã®åº§æšã ( x , y ) {\\displaystyle (x,y)} ãšãããš",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "åæ§ã«",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ãã£ãŠãéå¿ G {\\displaystyle \\mathrm {G} } ã®åº§æšã¯",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ããç¹ ( x 0 , y 0 ) {\\displaystyle (x_{0},y_{0})} ãéã£ãŠåŸãaã®çŽç·ã®åŒã¯ã y â y 0 = a ( x â x 0 ) {\\displaystyle y-y_{0}=a(x-x_{0})} ã§äžãããããããã¯ãåŸããyã®å€åå / {\\displaystyle /} xã®å€ååã§è¡šãããã y â y 0 {\\displaystyle y-y_{0}} , x â x 0 {\\displaystyle x-x_{0}} ã¯ãŸãã«ãy,xããããã®å€ååãã®ãã®ã§ããããšã«ããã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "2ç¹ ( x 0 , y 0 ) {\\displaystyle (x_{0},y_{0})} , ( x 1 , y 1 ) {\\displaystyle (x_{1},y_{1})} ãéãçŽç·ã¯åŸãã y 0 â y 1 x 0 â x 1 {\\displaystyle {\\frac {y_{0}-y_{1}}{x_{0}-x_{1}}}} ã§äžããããããšãçšãããšã y â y 0 = y 0 â y 1 x 0 â x 1 ( x â x 0 ) {\\displaystyle y-y_{0}={\\frac {y_{0}-y_{1}}{x_{0}-x_{1}}}(x-x_{0})} ã§äžããããã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "æŒç¿åé¡",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ããããã®çŽç·ã衚ããåŒãèšç®ããã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "(i) åŸã-2ã§ãç¹(-3,1)ãéãçŽç·",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "(ii) 2ç¹(4,3) ,(5,7)ãéãçŽç·",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "è§£ç",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ãçšããã°ããã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "(i)",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "(ii)",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "ãŸãçŽç·ã®æ¹çšåŒã¯äžè¬ã« a x + b y + c = 0 {\\displaystyle ax+by+c=0} ã§è¡šãããã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "ç¹ ( 1 , 4 ) {\\displaystyle (1,4)} ãéããçŽç· y = â 2 x + 3 {\\displaystyle y=-2x+3} ã«å¹³è¡ãªçŽç·ãåçŽãªçŽç·ã®æ¹çšåŒãæ±ããã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "çŽç· y = â 2 x + 3 {\\displaystyle y=-2x+3} ã®åŸã㯠â 2 {\\displaystyle -2} ã§ããã å¹³è¡ãªçŽç·ã®æ¹çšåŒã¯",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "åçŽãªçŽç·ã®åŸãã m {\\displaystyle m} ãšãããš",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "ãã£ãŠãåçŽãªçŽç·ã®æ¹çšåŒã¯",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "ç¹ P {\\displaystyle \\mathrm {P} } ãšçŽç· l {\\displaystyle l} ã«å¯ŸããçŽç· l {\\displaystyle l} äžã®ç¹ãšç¹ P {\\displaystyle \\mathrm {P} } ã®è·é¢ã®æå°å€ãç¹ãšçŽç·ã®è·é¢ãšãããããã¯ç¹ P {\\displaystyle \\mathrm {P} } ããçŽç· l {\\displaystyle l} ã«äžãããåç· P H {\\displaystyle \\mathrm {PH} } ã®é·ãã«çããã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "çŽç· a x + b y + c = 0 {\\displaystyle ax+by+c=0} ãšç¹ ( x 0 , y 0 ) {\\displaystyle (x_{0},y_{0})} ã®è·é¢ã¯",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ãšè¡šãããã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "蚌æ",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "ç¹ P ( x 0 , y 0 ) {\\displaystyle \\mathrm {P} (x_{0},y_{0})} ãšçŽç· l : a x + b y + c = 0 a , b â 0 {\\displaystyle l:ax+by+c=0\\quad a,b\\neq 0} ãšããã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "ç¹ P {\\displaystyle \\mathrm {P} } ããçŽç· l {\\displaystyle l} ã«åç·ãäžãããåç·ã®è¶³ãç¹ R {\\displaystyle R} ãšããã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "ãŸããç¹ P {\\displaystyle \\mathrm {P} } ãã y {\\displaystyle y} 軞ã«å¹³è¡ãªçŽç·ãåŒããçŽç· l {\\displaystyle l} ãšã®äº€ç¹ãç¹ S {\\displaystyle \\mathrm {S} } ãšããã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "次ã«ãå³ã®ããã«ãçŽç· l {\\displaystyle l} äžã®ç¹ T {\\displaystyle \\mathrm {T} } ã«å¯ŸããŠãçŽç· T V {\\displaystyle \\mathrm {TV} } ã x {\\displaystyle x} 軞ãšå¹³è¡ãšãªãã T V = | b | {\\displaystyle \\mathrm {TV} =|b|} ãšãªãããã«ç¹ V {\\displaystyle \\mathrm {V} } ããšããçŽç· V U {\\displaystyle \\mathrm {VU} } ã y {\\displaystyle y} 軞ã«å¹³è¡ã«ãªãç¹ U {\\displaystyle \\mathrm {U} } ãçŽç· l {\\displaystyle l} äžã«åãã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "çŽç· l {\\displaystyle l} ã®åŸã㯠â a b {\\displaystyle -{\\frac {a}{b}}} ãšãªãã®ã§ V U = | a | {\\displaystyle \\mathrm {VU} =|a|} ã§ããã ããã§ã â³ P R S , â³ T V U {\\displaystyle \\bigtriangleup \\mathrm {PRS} ,\\bigtriangleup \\mathrm {TVU} } ã¯çŽè§äžè§åœ¢ã§ããã â P S R = â T U V {\\displaystyle \\angle \\mathrm {PSR} =\\angle \\mathrm {TUV} } ãªã®ã§ã â³ P R S âŒâ³ T V U {\\displaystyle \\bigtriangleup \\mathrm {PRS} \\sim \\bigtriangleup \\mathrm {TVU} } ã§ããããããã£ãŠ",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "ãŸãç¹ S {\\displaystyle \\mathrm {S} } ã®åº§æšã ( x 0 , m ) {\\displaystyle (x_{0},m)} ãšãããšã P S = | y 0 â m | {\\displaystyle \\mathrm {PS} =|y_{0}-m|} ã§ãç¹ P {\\displaystyle \\mathrm {P} } ãšçŽç· l {\\displaystyle l} ã®è·é¢ P R {\\displaystyle \\mathrm {PR} } ã¯ã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "P R = P S â
T V T U = | y 0 â m | | b | a 2 + b 2 {\\displaystyle \\mathrm {PR} ={\\mathrm {PS} }\\cdot {\\frac {\\mathrm {TV} }{\\mathrm {TU} }}={\\frac {|y_{0}-m||b|}{\\sqrt {a^{2}+b^{2}}}}}",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "ãšããã§ãç¹ S {\\displaystyle \\mathrm {S} } ã¯çŽç· l {\\displaystyle l} äžã®ç¹ãªã®ã§ã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "ã§ãããããã代å
¥ããã°",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "ãã¯ãã«ã䜿ã£ã蚌æ",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ãã§ã«ãã¯ãã«ãç¥ã£ãŠãããªãã°ãã¡ãã®æ¹ãç°¡æœã§ããã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ç¹ P ( x 0 , y 0 ) {\\displaystyle \\mathrm {P} (x_{0},y_{0})} ãšçŽç· l : a x + b y + c = 0 {\\displaystyle l:ax+by+c=0} ãšããç¹ Q ( x 1 , y 1 ) {\\displaystyle \\mathrm {Q} (x_{1},y_{1})} ãçŽç· l {\\displaystyle l} äžã®ç¹ãšãããçŽç· l {\\displaystyle l} ã®æ³ç·ã¯ n â := ( a , b ) {\\displaystyle {\\vec {n}}:=(a,b)} ã§ã Q P â = ( x 0 â x 1 , y 0 â y 1 ) {\\displaystyle {\\vec {\\mathrm {QP} }}=(x_{0}-x_{1},y_{0}-y_{1})} ã§ããã®ã§ãçŽç· l {\\displaystyle l} äžã®ç¹ãšç¹ P {\\displaystyle \\mathrm {P} } ã®è·é¢ d {\\displaystyle d} 㯠d = | Q P â â
n â | | n â | | | = | ( x 0 â x 1 , y 0 â y 1 ) â
( a , b ) a 2 + b 2 | = | a x 0 + b y 0 â ( a x 1 + b y 1 ) | a 2 + b 2 = | a x 0 + b y 0 + c | a 2 + b 2 {\\displaystyle d=\\left|{\\vec {\\mathrm {QP} }}\\cdot {\\frac {\\vec {n}}{||{\\vec {n}}||}}\\right|=\\left|(x_{0}-x_{1},y_{0}-y_{1})\\cdot {\\frac {(a,b)}{\\sqrt {a^{2}+b^{2}}}}\\right|={\\frac {|ax_{0}+by_{0}-(ax_{1}+by_{1})|}{\\sqrt {a^{2}+b^{2}}}}={\\frac {|ax_{0}+by_{0}+c|}{\\sqrt {a^{2}+b^{2}}}}} ã§ããã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "æŒç¿åé¡",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "çŽç· x â 2 y â 3 = 0 {\\displaystyle x-2y-3=0} ãšç¹ ( 1 , 2 ) {\\displaystyle (1,2)} ã®è·é¢ãæ±ãã",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "è§£ç",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "6 5 {\\displaystyle {\\frac {6}{\\sqrt {5}}}}",
"title": "ç¹ãšçŽç·"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "äžå¿ C ( a , b ) {\\displaystyle \\mathrm {C} (a,b)} ååŸ r {\\displaystyle r} ã®åã¯ã C P = r {\\displaystyle \\mathrm {CP} =r} ãšãªãç¹ P {\\displaystyle \\mathrm {P} } ã®éåã§ãããã€ãŸãã r = ( x â a ) 2 + ( y â b ) 2 {\\displaystyle r={\\sqrt {(x-a)^{2}+(y-b)^{2}}}} ãšãªãç¹ ( x , y ) {\\displaystyle (x,y)} ã®éåã§ããããã®æ¹çšåŒã®äž¡èŸºã¯æ£ãªã®ã§2ä¹ããŠ",
"title": "å"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "( x â a ) 2 + ( y â b ) 2 = r 2 {\\displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}}",
"title": "å"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "ãåŸãããããåã®æ¹çšåŒã§ããã",
"title": "å"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "ç¹ã«åç¹ãäžå¿ã§ååŸ r {\\displaystyle r} ã®åã®æ¹çšåŒã¯ x 2 + y 2 = r 2 {\\displaystyle x^{2}+y^{2}=r^{2}} ã§äžããããã",
"title": "å"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "æŒç¿åé¡",
"title": "å"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "è§£ç",
"title": "å"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "",
"title": "å"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "æ¹çšåŒ x 2 + y 2 + l x + m y + n = 0 {\\displaystyle x^{2}+y^{2}+lx+my+n=0} ã¯ãã€ãåã§ãããšã¯éããªãã",
"title": "å"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "æ¹çšåŒãå€åœ¢ã㊠( x â a ) 2 + ( y â b ) 2 = k {\\displaystyle (x-a)^{2}+(y-b)^{2}=k} ãšãªããšã",
"title": "å"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "å x 2 + y 2 = r 2 {\\displaystyle x^{2}+y^{2}=r^{2}} äžã®ããç¹ ( x 1 , y 1 ) {\\displaystyle (x_{1},y_{1})} ã§æ¥ããæ¥ç·ã®æ¹çšåŒã¯",
"title": "å"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "ã§è¡šãããã",
"title": "å"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "åæ§ã«ãå ( x â a ) 2 + ( y â b ) 2 = r 2 {\\displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}} äžã®ããç¹ ( x 2 , y 2 ) {\\displaystyle (x_{2},y_{2})} ã§æ¥ããæ¥ç·ã®æ¹çšåŒã¯",
"title": "å"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "ã§è¡šãããã",
"title": "å"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "åãšçŽç·ã®äœçœ®é¢ä¿ã«ã€ããŠå€§ããæ¬¡ã®3ã€ã«åé¡ããããšãã§ããã",
"title": "å"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "äžè¬ã®åãšçŽç·ã«ã€ããŠãããã®äœçœ®é¢ä¿ãåé¡ããŠã¿ããã",
"title": "å"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "å C : ( x â p ) 2 + ( y â q ) 2 = r 2 {\\displaystyle C:(x-p)^{2}+(y-q)^{2}=r^{2}} ãšçŽç· l : a x + b y + c = 0 {\\displaystyle l:ax+by+c=0} ã«ã€ããŠãå C {\\displaystyle C} ã®äžå¿ ( p , q ) {\\displaystyle (p,q)} ãšçŽç· l {\\displaystyle l} ã®è·é¢ d := | a q + b q + c | a 2 + b 2 {\\displaystyle d:={\\frac {|aq+bq+c|}{\\sqrt {a^{2}+b^{2}}}}} ãšãããšã",
"title": "å"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "ä»ã«ããåã®æ¹çšåŒãšçŽç·ã®æ¹çšåŒãé£ç«ããŠãã®å®æ°è§£ã®åæ°ã§åé¡ããæ¹æ³ãããããäœçœ®é¢ä¿ãæ±ããã ããªãäžã®æ¹æ³ã®ã»ããèšç®éãå°ãªãã",
"title": "å"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "æŒç¿åé¡",
"title": "å"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "çŽç· 3 x + 4 y = 1 {\\displaystyle 3x+4y=1} ãšå ( x â 3 ) 2 + ( y + 2 ) 2 = 14 {\\displaystyle (x-3)^{2}+(y+2)^{2}=14} ã®äº€ç¹ã®åº§æšãæ±ãã",
"title": "å"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "è§£ç",
"title": "å"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "çŽç·ã®æ¹çšåŒã x {\\displaystyle x} ã«ã€ããŠè§£ãããããåã®æ¹çšåŒã«ä»£å
¥ããã°ããã",
"title": "å"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "çã㯠( 2 , â 1 ) , ( â 14 5 , 7 5 ) {\\displaystyle (2,-1),\\left(-{\\frac {14}{5}},{\\frac {7}{5}}\\right)}",
"title": "å"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "ããæ¡ä»¶ãæºããç¹å
šäœãã€ããå³åœ¢ãããã®æ¡ä»¶ãæºããç¹ã®è»è·¡ãšããã",
"title": "è»è·¡ãšé å"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "",
"title": "è»è·¡ãšé å"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "2ç¹ A ( 1 , 0 ) , B ( 3 , 2 ) {\\displaystyle \\mathrm {A} (1\\ ,\\ 0)\\ ,\\ \\mathrm {B} (3\\ ,\\ 2)} ããçè·é¢ã«ããç¹ P {\\displaystyle \\mathrm {P} } ã®è»è·¡ãæ±ããã",
"title": "è»è·¡ãšé å"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "æ¡ä»¶ A P = B P {\\displaystyle \\mathrm {A} \\mathrm {P} =\\mathrm {B} \\mathrm {P} } ããã A P 2 = B P 2 {\\displaystyle \\mathrm {A} \\mathrm {P} ^{2}=\\mathrm {B} \\mathrm {P} ^{2}} P {\\displaystyle \\mathrm {P} } ã®åº§æšã ( x , y ) {\\displaystyle (x\\ ,\\ y)} ãšãããš",
"title": "è»è·¡ãšé å"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "ã ãã",
"title": "è»è·¡ãšé å"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "æŽçããŠã",
"title": "è»è·¡ãšé å"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "ãããã£ãŠãæ±ããè»è·¡ã¯ãçŽç· y = â x + 3 {\\displaystyle y=-x+3} ã§ããã",
"title": "è»è·¡ãšé å"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "",
"title": "è»è·¡ãšé å"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "",
"title": "è»è·¡ãšé å"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "2ç¹ A ( 0 , 0 ) , B ( 3 , 0 ) {\\displaystyle \\mathrm {A} (0\\ ,\\ 0)\\ ,\\ \\mathrm {B} (3\\ ,\\ 0)} ããã®è·é¢ã®æ¯ã 2 : 1 {\\displaystyle 2:1} ã§ããç¹ P {\\displaystyle \\mathrm {P} } ã®è»è·¡ãæ±ããã",
"title": "è»è·¡ãšé å"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "P {\\displaystyle \\mathrm {P} } ã®åº§æšã ( x , y ) {\\displaystyle (x\\ ,\\ y)} ãšããã P {\\displaystyle \\mathrm {P} } ãæºããæ¡ä»¶ã¯",
"title": "è»è·¡ãšé å"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "ããªãã¡",
"title": "è»è·¡ãšé å"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "ããã座æšã§è¡šããš",
"title": "è»è·¡ãšé å"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "䞡蟺ã2ä¹ããŠãæŽçãããš",
"title": "è»è·¡ãšé å"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "ããªãã¡",
"title": "è»è·¡ãšé å"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "ãããã£ãŠãæ±ããè»è·¡ã¯ãäžå¿ã ( 4 , 0 ) {\\displaystyle (4\\ ,\\ 0)} ãååŸã 2 {\\displaystyle 2} ã®åã§ããã",
"title": "è»è·¡ãšé å"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "m , n {\\displaystyle m\\ ,\\ n} ãç°ãªãæ£ã®æ°ãšãããšãã2ç¹ A , B {\\displaystyle \\mathrm {A} \\ ,\\ \\mathrm {B} } ããã®è·é¢ã®æ¯ã m : n {\\displaystyle m:n} ã§ããç¹ã®è»è·¡ã¯ãç·å A B {\\displaystyle \\mathrm {A} \\mathrm {B} } ã m : n {\\displaystyle m:n} ã«å
åããç¹ãšãå€åããç¹ãçŽåŸã®äž¡ç«¯ãšããåã§ããããã®åãã¢ããããŠã¹ã®åãšããã",
"title": "è»è·¡ãšé å"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "m = n {\\displaystyle m=n} ã®ãšãã¯ãç·å A B {\\displaystyle \\mathrm {A} \\mathrm {B} } ã®åçŽäºçåç·ã§ããã",
"title": "è»è·¡ãšé å"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "",
"title": "è»è·¡ãšé å"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "ãã®ããŒãžã®åéã®ããã«ãæ°åŒãã€ãã£ãŠåº§æšã®äœçœ®ããããããŠã幟äœåŠã®åé¡ãè§£ãææ³ã®ããšãè§£æå¹ŸäœåŠãšããã",
"title": "ã³ã©ã "
},
{
"paragraph_id": 103,
"tag": "p",
"text": "ãªãã幟äœåŠãšããèšèèªäœã¯ãå³åœ¢ã®åŠåãšãããããªæå³ã§ãããå°åŠæ ¡ãäžåŠæ ¡ã§ç¿ã£ãå³åœ¢ã®çè«ã幟äœåŠã§ããã",
"title": "ã³ã©ã "
},
{
"paragraph_id": 104,
"tag": "p",
"text": "äžäžãšãŒãããã®æ°åŠè
ãã«ã«ãããè§£æå¹ŸäœåŠã®ç ç©¶ãé²ããããªãããã«ã«ãã¯ãå²åŠã®æ Œèšãããæããããã«æãããã§ãæåã§ããã",
"title": "ã³ã©ã "
}
] | ããã§ã¯çŽç·ãšåãªã©ã®æ§è³ªã座æšãçšããŠèå¯ããã | {{pathnav|é«çåŠæ ¡ã®åŠç¿|é«çåŠæ ¡æ°åŠ|é«çåŠæ ¡æ°åŠII|pagename=å³åœ¢ãšæ¹çšåŒ|frame=1|small=1}}
ããã§ã¯çŽç·ãšåãªã©ã®æ§è³ªã座æšãçšããŠèå¯ããã
==ç¹ãšçŽç·==
===2ç¹éã®è·é¢===
[[ãã¡ã€ã«:Distance_Formula.svg|å³|200x200ãã¯ã»ã«]]
座æšå¹³é¢äžã®2ç¹ <math>\mathrm{A} \left(x _1\ ,\ y _1 \right)\ ,\ \mathrm{B} \left(x _2\ ,\ y _2 \right)</math> éã®è·é¢ <math>\mathrm{A} \mathrm{B}</math> ãæ±ããŠã¿ããã<br>çŽç· <math>\mathrm{A} \mathrm{B}</math> ã座æšè»žã«å¹³è¡ã§ãªããšã<ref>ã€ãŸããçŽç· <math>\mathrm{A} \mathrm{B}</math> ã <math>x</math> 軞ã <math>y</math> 軞 ã®ã©ã¡ããšãå¹³è¡ã§ãªããšã</ref>ãç¹ <math>\mathrm{C} \left(x _2\ ,\ y _1 \right)</math> ããšããš
:<math>
\mathrm{A} \mathrm{C} = |x _2 - x _1|\ ,\ \mathrm{B} \mathrm{C} = |y _2 - y _1|
</math>
<math>\triangle \mathrm{A} \mathrm{B} \mathrm{C}</math> ã¯çŽè§äžè§åœ¢ã§ãããããäžå¹³æ¹ã®å®çãã
:<math>
\mathrm{A} \mathrm{B} = \sqrt{\mathrm{A} \mathrm{C} ^2+ \mathrm{B} \mathrm{C} ^2} = \sqrt{|x _2 - x _1|^2+|y _2 - y _1|^2} = \sqrt{(x _2 - x _1)^2+(y _2 - y _1)^2}
</math>
ãã®åŒã¯ãçŽç· <math>\mathrm{A} \mathrm{B}</math> ãx軞ãy軞ã«å¹³è¡ãªãšãã«ãæãç«ã€<ref>çŽç· <math>\mathrm{A} \mathrm{B}</math> ã <math>x</math> 軞ã«å¹³è¡ãªãšã㯠<math>\mathrm{BC} = 0</math> ã§ããã <math>\mathrm{AC} = \mathrm{AB}</math> ãšãªãããã£ãŠ <math>\mathrm{AB} = \sqrt{\mathrm{AC}^2+\mathrm{BC}^2} </math> ã¯æãç«ã€ãçŽç· <math>\mathrm{A} \mathrm{B}</math> ã <math>y</math> 軞ã«å¹³è¡ãªãšããåæ§</ref>ã
ç¹ã«ãåç¹ <math>\mathrm{O}</math> ãšç¹ <math>\mathrm{A} \left(x _1\ ,\ y _1 \right)</math> éã®è·é¢ã¯
:<math>
\mathrm{O} \mathrm{A} = \sqrt{x _1^2 + y _1^2}
</math>
=== å
åç¹ãšå€åç¹===
ç¹ <math>
\mathrm{A}(x _0,y _0),\mathrm{B}(x _1,y _1)
</math> ãšå®æ° <math>m,n>0</math> ã«å¯ŸããŠãç·å <math>\mathrm{AB}</math> äžã®ç¹ <math>\mathrm{P}(x,y)</math> ãååšããŠã<math>\mathrm{AP}:\mathrm{PB} = m:n</math> ãšãªããšããç¹ <math>\mathrm{P}</math> ã <math>\mathrm{A},\mathrm{B}</math> ã <math>m:n</math> ã«å
åããç¹ãšããã
ãŸããç·å <math>\mathrm{AB}</math> äžã§ãªãç¹ <math>\mathrm{P}(x,y)</math> ãååšããŠã<math>\mathrm{AP}:\mathrm{PB} = m:n</math> ãšãªããšããç¹ <math>\mathrm{P}</math> ã <math>\mathrm{A},\mathrm{B}</math> ã <math>m:n</math> ã«å€åããç¹ãšããã
æ°çŽç·äžã®ç¹ <math>\mathrm{A}(a),\mathrm{B}(b)</math> ã <math>m:n</math> ã«å
åããç¹ãšå€åããç¹ãæ±ããã
å
åç¹ã <math>\mathrm{P}(x)</math> ãšããã<math>a<b</math> ã®ãšãã <math>\mathrm{AP} = x-a,\mathrm{PB}=b-x</math> ãªã®ã§ã <math>m:n=(x-a):(b-x)</math> ãªã®ã§ã <math>n(x-a)=m(b-x) \iff x = \frac{na+mb}{m+n}</math> ã§ããã <math>a>b</math> ã®ãšããåæ§ã
次ã«å€åç¹ãæ±ãããå€åç¹ã <math>\mathrm{P}(x)</math> ãšããã<math>a<b</math> ã§ <math>m>n</math> ã®ãšãã<math>x>b</math> ãšãªãã®ã§ã <math>\mathrm{AP}=x-a,\mathrm{BP}=x-b</math> ãªã®ã§ã<math>m:n=(x-a):(x-b)</math> ãªã®ã§ã<math>x=\frac{-na+mb}{m-n}</math>
ããã¯ã<math>a>b</math> ãŸã㯠<math>m<n</math> ã®ãšããåæ§ã<ref>å€åç¹ã®åº§æšã¯å
åç¹ã®åº§æšã® <math>n</math> ã <math>-n</math> ã«ãããã®ã«çãã</ref>
2次å
ã®å Žåã«ã¯ãäžè¬ã«ç¹ãšç¹ãšã®äœçœ®é¢ä¿ã¯ã座æšè»žã«å¹³è¡ã§ãªãããããã®è·é¢ã®å
åã¯è€éã«ãªãããã«æãããããããå®éã«ã¯ãå
åç¹ãå€åç¹ãèšç®ããã«ã¯ãäžã®å
Œ΋x,y
ã®äž¡æ¹åã«å¯ŸããŠçšããã°ãããããã¯ã2ç¹ãã€ãªãç·ãçŽç·ã§ããã®ã§ããã®çŽç·äžã§ããç¹ããã®è·é¢ãäžå®ã®å²åãšãªãç¹ãããã€ãåã£ããšãããã®ç¹ãšå
ã®ç¹ã®x軞æ¹åã®åº§æšã®å€åã®å²åãšy軞æ¹åã®åº§æšã®å€åã®å²åãšçŽç·èªèº«ã®é·ãã®å€åã®å²åã¯ããããçãããªãããã§ããã
ãã£ãŠãäžè¬ã«ç¹<math>A(x _0,y _0),B(x _1,y _1)</math>ããa:bã«å
åããç¹ãšå€åããç¹ã¯ã
:å
åç¹
:<math>
(\frac {b x _0 + a x _1} {a +b},
\frac {b y _0 + a y _1} {a +b})
</math>
:å€åç¹
:<math>
(\frac {-b x _0 + a x _1} {a -b},
\frac {-b y _0 + a y _1} {a -b})
</math>
:<math>
=
(
\frac {b x _0 - a x _1} {-a +b},
\frac {b y _0 - a y _1} {-a +b}
)
</math>
ã§äžããããã
'''æŒç¿åé¡'''
ç¹ <math>
\mathrm{A}(1,0),\mathrm{B}(-4,7)
</math> ã3:1ã«ããããå
åãå€åããç¹ãæ±ããã
'''è§£ç'''
å
åç¹ã¯ <math>
\left(\frac {-11}4,\frac{21}4\right)
</math>
å€åç¹ã¯ <math>
\left(\frac {-13}2,\frac{21}2\right)
</math>
===äžè§åœ¢ã®éå¿===
3ç¹<math>\mathrm{A} \left(x _1 , y _1 \right) , \mathrm{B} \left(x _2 , y _2 \right) , \mathrm{C} \left(x _3 , y _3 \right) </math>ãé ç¹ãšããäžè§åœ¢ã®éå¿ <math>\mathrm{G}</math> ã®åº§æšãæ±ããŠã¿ããã<br>
ç·å<math>\mathrm{B} \mathrm{C}</math>ã®äžç¹<math>\mathrm{M}</math>ã®åº§æšã¯
:<math>
\left(\frac {x _2 + x _3}{2} , \frac {y _2 + y _3}{2} \right)
</math>
éå¿<math>\mathrm{G}</math>ã¯ç·å<math>\mathrm{A} \mathrm{M}</math>ã2:1ã«å
åããç¹ã§ããããã<math>\mathrm{G}</math>ã®åº§æšã<math>(x , y)</math>ãšãããš
:<math>
x= \cfrac { 1 \times x _1 + 2 \times \cfrac { x _2 + x _3 } { 2 } } { 2+1 } = \frac { x _1 + x _2 + x _3 } { 3 }</math>
åæ§ã«
:<math>
y = \frac { y _1 + y _2 + y _3 } { 3 }
</math>
ãã£ãŠãéå¿<math>\mathrm{G}</math>ã®åº§æšã¯
:<math>
\left(\frac { x _1 + x _2 + x _3 } { 3 } , \frac { y _1 + y _2 + y _3 } { 3 } \right)
</math>
===çŽç·ã®æ¹çšåŒ===
ããç¹ <math>(x_0,y_0)</math> ãéã£ãŠåŸãaã®çŽç·ã®åŒã¯ã
<math>
y- y_0 = a(x- x_0)
</math>
ã§äžãããããããã¯ãåŸããyã®å€åå<math>/</math>xã®å€ååã§è¡šãããã<math> y-y_0 </math>,<math> x-x_0 </math>ã¯ãŸãã«ãy,xããããã®å€ååãã®ãã®ã§ããããšã«ããã
2ç¹ <math>(x_0,y_0)</math> , <math>(x_1,y_1)</math> ãéãçŽç·ã¯åŸãã <math>\frac{y_0-y_1}{x_0-x_1}</math> ã§äžããããããšãçšãããšã
<math>
y-y_0 = \frac{y_0-y_1}{x_0-x_1}(x-x_0)
</math>
ã§äžããããã
'''æŒç¿åé¡'''
ããããã®çŽç·ã衚ããåŒãèšç®ããã
(i)
åŸã-2ã§ãç¹(-3,1)ãéãçŽç·
(ii)
2ç¹(4,3) ,(5,7)ãéãçŽç·
'''è§£ç'''
:<math>
y-y _0 = a(x-x _0)
</math>
:<math>
y-y _0 = \frac{y _0-y _1}{x _0-x _1}(x-x _0)
</math>
ãçšããã°ããã
(i)
:<math>
\left[ y=-2\,x-5 \right]
</math>
(ii)
:<math>
\left[ y=4\,x-13 \right]
</math>
ãŸãçŽç·ã®æ¹çšåŒã¯äžè¬ã« <math>ax+by+c=0</math> ã§è¡šãããã
====2çŽç·ã®å¹³è¡ãšåçŽ====
{| style="border:2px solid orange;width:80%" cellspacing=0
|style="background:orange"|'''2çŽç·ã®å¹³è¡ãåçŽ'''
|-
|style="padding:5px"|
2çŽç·<math>y=m_1 x+n_1\ ,\ y=m_2 x+n_2</math>ã«ã€ããŠ
<center>2çŽç·ãå¹³è¡<math>\Leftrightarrow m_1=m_2</math></center>
<center>2çŽç·ãåçŽ<math>\Leftrightarrow m_1 m_2=-1</math></center>
|}
*åé¡äŸ
**åé¡
ç¹<math>(1,4)</math>ãéããçŽç·<math>y=-2x+3</math>ã«å¹³è¡ãªçŽç·ãåçŽãªçŽç·ã®æ¹çšåŒãæ±ããã
**è§£ç
çŽç·<math>y=-2x+3</math>ã®åŸãã¯<math>-2</math>ã§ããã<br>
å¹³è¡ãªçŽç·ã®æ¹çšåŒã¯
:<math>y-4=-2(x-1)</math>
:<math>y=-2x+6</math>
åçŽãªçŽç·ã®åŸãã<math>m</math>ãšãããš
:<math>-2m=-1</math>
:<math>m= \frac{1}{2}</math>
ãã£ãŠãåçŽãªçŽç·ã®æ¹çšåŒã¯
:<math>y-4= \frac{1}{2} (x-1)</math>
:<math>y= \frac{1}{2} x+ \frac{7}{2}</math>
===ç¹ãšçŽç·ã®è·é¢===
ç¹ <math>\mathrm{P}</math> ãšçŽç· <math>l</math> ã«å¯ŸããçŽç· <math>l</math> äžã®ç¹ãšç¹ <math>\mathrm{P}</math> ã®è·é¢ã®æå°å€ã'''ç¹ãšçŽç·ã®è·é¢'''ãšãããããã¯ç¹ <math>\mathrm{P}</math> ããçŽç· <math>l</math> ã«äžãããåç· <math>\mathrm{PH}</math> ã®é·ãã«çããã
çŽç· <math>ax+by+c=0</math> ãšç¹ <math>(x_0,y_0)</math> ã®è·é¢ã¯
:<math>\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}</math>
ãšè¡šãããã
'''蚌æ'''
[[ãã¡ã€ã«:Point-to-line2.svg|ãµã ãã€ã«]]ç¹ <math>\mathrm{P}(x_0,y_0)</math> ãšçŽç· <math>l:ax+by+c=0 \quad a,b\neq 0</math> ãšããã
ç¹ <math>\mathrm{P}</math> ããçŽç· <math>l</math> ã«åç·ãäžãããåç·ã®è¶³ãç¹ <math>R</math> ãšããã
ãŸããç¹ <math>\mathrm{P}</math> ãã <math>y</math> 軞ã«å¹³è¡ãªçŽç·ãåŒããçŽç· <math>l</math> ãšã®äº€ç¹ãç¹ <math>\mathrm S</math> ãšããã
次ã«ãå³ã®ããã«ãçŽç· <math>l</math> äžã®ç¹ <math>\mathrm T</math> ã«å¯ŸããŠãçŽç· <math>\mathrm{TV}</math> ã <math>x</math> 軞ãšå¹³è¡ãšãªãã<math>\mathrm{TV} = |b|</math> ãšãªãããã«ç¹ <math>\mathrm V</math> ããšããçŽç· <math>\mathrm{VU}</math> ã <math>y</math> 軞ã«å¹³è¡ã«ãªãç¹ <math>\mathrm U</math> ãçŽç· <math>l</math> äžã«åãã
çŽç· <math>l</math> ã®åŸã㯠<math>-\frac{a}{b}</math> ãšãªãã®ã§ <math>\mathrm{VU} = |a|</math> ã§ããã
ããã§ã<math>\bigtriangleup \mathrm{PRS},\bigtriangleup \mathrm{TVU}</math> ã¯çŽè§äžè§åœ¢ã§ããã<math>\angle \mathrm{PSR} = \angle \mathrm{TUV}</math><ref>çŽç· <math>\mathrm{PS}</math> ãšçŽç· <math>\mathrm{VU}</math> ã¯å¹³è¡ãªã®ã§</ref> ãªã®ã§ã<math>\bigtriangleup \mathrm{PRS} \sim \bigtriangleup \mathrm{TVU}</math><ref><math>\sim</math> ã¯çžäŒŒãæå³ãã</ref> ã§ããããããã£ãŠ
:<math>\frac{\mathrm{PR}}{\mathrm{PS}} = \frac{\mathrm{TV}}{\mathrm{TU}}</math>
ãŸãç¹ <math>\mathrm S</math> ã®åº§æšã<math>(x_0,m)</math> ãšãããšã<math>\mathrm{PS} = |y_0-m| </math> ã§ãç¹ <math>\mathrm{P}</math> ãšçŽç· <math>l</math> ã®è·é¢ <math> \mathrm{PR}</math> ã¯ã
<math> \mathrm{PR} ={\mathrm{PS}}\cdot \frac{\mathrm{TV}}{\mathrm{TU}} = \frac{|y_0 - m||b|}{\sqrt{a^2 + b^2}} </math>
ãšããã§ãç¹ <math>\mathrm S</math> ã¯çŽç· <math>l</math> äžã®ç¹ãªã®ã§ã
:<math>m = \frac{-ax_0 - c}{b}</math>
ã§ãããããã代å
¥ããã°
:<math> \mathrm{PR} = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}</math>
:ãåŸãã
:
'''ãã¯ãã«ã䜿ã£ã蚌æ'''
ãã§ã«ãã¯ãã«ãç¥ã£ãŠãããªãã°ãã¡ãã®æ¹ãç°¡æœã§ããã
ç¹ <math>\mathrm{P}(x_0,y_0)</math> ãšçŽç· <math>l:ax+by+c=0</math> ãšããç¹ <math>\mathrm{Q}(x_1,y_1)</math> ãçŽç· <math>l</math> äžã®ç¹ãšãããçŽç· <math>l</math> ã®æ³ç·ã¯ <math>\vec n := (a,b)</math> ã§ã<math>\vec{\mathrm{QP}} = (x_0-x_1,y_0-y_1) </math> ã§ããã®ã§ãçŽç· <math>l</math> äžã®ç¹ãšç¹ <math>\mathrm{P}</math> ã®è·é¢ <math>d</math> 㯠<math>d = \left| \vec{ \mathrm{QP} } \cdot \frac{\vec n}{||\vec n||}\right| = \left|(x_0-x_1,y_0-y_1)\cdot \frac{(a,b)}{\sqrt{a^2+b^2}}\right| = \frac{|ax_0 + by_0 - (ax_1 + by_1)|}{\sqrt{a^2+b^2}} = \frac{|ax_0 + by_0 +c|}{\sqrt{a^2+b^2}}</math><ref>ç¹ <math>\mathrm{Q}(x_1,y_1)</math> ã¯çŽç· <math>l</math> äžã®ç¹ãªã®ã§ <math>ax_1+by_1=-c</math> ã§ããã</ref> ã§ããã
'''æŒç¿åé¡'''
çŽç· <math>x-2y-3=0</math> ãšç¹ <math>(1,2)</math> ã®è·é¢ãæ±ãã
'''è§£ç'''
<math>\frac{6}{\sqrt 5}</math>
==å==
====åã®æ¹çšåŒ====
äžå¿ <math>\mathrm{C}(a,b)</math> ååŸ <math>r</math> ã®åã¯ã<math>\mathrm{CP} =r</math> ãšãªãç¹ <math>\mathrm{P}</math> ã®éåã§ãããã€ãŸãã <math>r = \sqrt{(x-a)^2+(y-b)^2}</math> ãšãªãç¹ <math>(x,y)</math> ã®éåã§ããããã®æ¹çšåŒã®äž¡èŸºã¯æ£ãªã®ã§2ä¹ããŠ
<math>
(x-a)^2+(y-b)^2 = r^2
</math>
ãåŸãããããåã®æ¹çšåŒã§ããã
ç¹ã«åç¹ãäžå¿ã§ååŸ <math>r</math> ã®åã®æ¹çšåŒã¯ <math>
x^2+y^2 = r^2
</math> ã§äžããããã
'''æŒç¿åé¡'''
# äžå¿ <math>(2,4)</math> ååŸ <math>3</math> ã®åã®æ¹çšåŒãæ±ãã
# å <math>
y^2+2\,y+x^2-6\,x+5=0
</math> ã®äžå¿ãšååŸãæ±ãã
'''è§£ç'''
# <math>
(x-2)^2+(y-4)^2 = 9
</math>
# <math>
y^2+2\,y+x^2-6\,x+5=0 \iff (x-3)^2 + (y +1)^2 = 5
</math> ãªã®ã§äžå¿ <math>
(3,-1)
</math> ååŸ <math>
\sqrt 5
</math>
æ¹çšåŒ <math>x^2+y^2+lx+my+n = 0</math> ã¯ãã€ãåã§ãããšã¯éããªãã
æ¹çšåŒãå€åœ¢ã㊠<math>(x-a)^2+(y-b)^2 = k</math> ãšãªããšã
# <math>k>0</math> ã®ãšãæ¹çšåŒã¯åã衚ã
# <math>k=0</math> ã®ãšãæ¹çšåŒã¯1ç¹ <math>(a,b)</math> ã衚ã
# <math>k<0</math> ã®ãšãæ¹çšåŒã®å·ŠèŸºã¯åžžã«æ£ãªã®ã§ãæ¹çšåŒã®è¡šãå³åœ¢ã¯ãªã
==== åã®æ¥ç· ====
å<math>x^2+y^2=r^2</math>äžã®ããç¹<math>(x_1,y_1)</math>ã§æ¥ããæ¥ç·ã®æ¹çšåŒã¯
:<math>x_1x+y_1y=r^2</math>
ã§è¡šãããã
åæ§ã«ãå<math>(x-a)^2+(y-b)^2=r^2</math>äžã®ããç¹<math>(x_2,y_2)</math>ã§æ¥ããæ¥ç·ã®æ¹çšåŒã¯
:<math>(x_2-a)(x-a)+(y_2-b)(y-b)=r^2</math>
ã§è¡šãããã
====åãšçŽç·====
åãšçŽç·ã®äœçœ®é¢ä¿ã«ã€ããŠå€§ããæ¬¡ã®3ã€ã«åé¡ããããšãã§ããã
# åãšçŽç·ã2ç¹ã§äº€ãã(çŽç·ãåã®å
éšãéã)
# åãšçŽç·ã1ç¹ã§äº€ãã(çŽç·ãåã®æ¥ç·ãšãªã)
# åãšçŽç·ã¯äº€ãããªã
<!-- ããããã®äœçœ®é¢ä¿ã®å³ -->
äžè¬ã®åãšçŽç·ã«ã€ããŠãããã®äœçœ®é¢ä¿ãåé¡ããŠã¿ããã
å <math>C:(x-p)^2+(y-q)^2 = r^2</math> ãšçŽç· <math>l:ax+by+c=0</math> ã«ã€ããŠãå <math>C</math> ã®äžå¿ <math>(p,q)</math> ãšçŽç· <math>l</math> ã®è·é¢ <math>d := \frac{|aq+bq+c|}{\sqrt{a^2+b^2}}</math> ãšãããšã
# <math>r>d</math> ã®ãšããå <math>C</math> ãšçŽç· <math>l</math> ã¯2ç¹ã§äº€ãã
# <math>r=d</math> ã®ãšããå <math>C</math> ãšçŽç· <math>l</math> ã¯1ç¹ã§äº€ãã
# <math>r<d</math> ã®ãšããå <math>C</math> ãšçŽç· <math>l</math> ã¯äº€ãããªã
ä»ã«ããåã®æ¹çšåŒãšçŽç·ã®æ¹çšåŒãé£ç«ããŠãã®å®æ°è§£ã®åæ°ã§åé¡ããæ¹æ³ãããããäœçœ®é¢ä¿ãæ±ããã ããªãäžã®æ¹æ³ã®ã»ããèšç®éãå°ãªãã
'''æŒç¿åé¡'''
çŽç· <math>
3x + 4y =1
</math> ãšå <math>
(x-3)^2 + (y+2)^2 = 14
</math> ã®äº€ç¹ã®åº§æšãæ±ãã
'''è§£ç'''
çŽç·ã®æ¹çšåŒã <math>x</math> ã«ã€ããŠè§£ãããããåã®æ¹çšåŒã«ä»£å
¥ããã°ããã
çã㯠<math>(2,-1),\left(-\frac{14}{5},\frac{7}{5}\right)</math>
==è»è·¡ãšé å==
===è»è·¡ãšæ¹çšåŒ===
ããæ¡ä»¶ãæºããç¹å
šäœãã€ããå³åœ¢ãããã®æ¡ä»¶ãæºããç¹ã®'''è»è·¡'''ãšããã
*åé¡äŸ
**åé¡
2ç¹<math>\mathrm{A}(1\ ,\ 0)\ ,\ \mathrm{B}(3\ ,\ 2)</math>ããçè·é¢ã«ããç¹<math>\mathrm{P}</math>ã®è»è·¡ãæ±ããã
**è§£ç
æ¡ä»¶<math>\mathrm{A} \mathrm{P} = \mathrm{B} \mathrm{P}</math>ããã<math>\mathrm{A} \mathrm{P} ^2 = \mathrm{B} \mathrm{P} ^2</math><br>
<math>\mathrm{P}</math>ã®åº§æšã<math>(x\ ,\ y)</math>ãšãããš
:<math>
\mathrm{A} \mathrm{P} ^2 =(x-1)^2+y^2
</math>
:<math>
\mathrm{B} \mathrm{P} ^2 =(x-3)^2+(y-2)^2
</math>
ã ãã
:<math>
(x-1)^2+y^2=(x-3)^2+(y-2)^2
</math>
æŽçããŠã
:<math>
y=-x+3
</math>
ãããã£ãŠãæ±ããè»è·¡ã¯ãçŽç·<math>y=-x+3</math>ã§ããã
{| style="border:2px solid orange;width:80%" cellspacing=0
|style="background:orange"|'''è»è·¡ãæ±ããæé '''
|-
|style="padding:5px"|
1.æ±ããè»è·¡äžã®ä»»æã®ç¹ã®åº§æšã<math>(x\ ,\ y)</math>ãªã©ã§è¡šããäžããããæ¡ä»¶ã座æšã®éã®é¢ä¿åŒã§è¡šãã
2.è»è·¡ã®æ¹çšåŒãå°ãããã®æ¹çšåŒã®è¡šãå³åœ¢ãæ±ããã
3.ãã®å³åœ¢äžã®ç¹ãæ¡ä»¶ãæºãããŠããããšã確ãããã
|}
*åé¡äŸ
**åé¡
2ç¹<math>\mathrm{A}(0\ ,\ 0)\ ,\ \mathrm{B}(3\ ,\ 0)</math>ããã®è·é¢ã®æ¯ã<math>2:1</math>ã§ããç¹<math>\mathrm{P}</math>ã®è»è·¡ãæ±ããã
**è§£ç
<math>\mathrm{P}</math>ã®åº§æšã<math>(x\ ,\ y)</math>ãšããã<br>
<math>\mathrm{P}</math>ãæºããæ¡ä»¶ã¯
:<math>
\mathrm{A} \mathrm{P} : \mathrm{B} \mathrm{P} =2:1
</math>
ããªãã¡
:<math>
\mathrm{A} \mathrm{P} =2 \mathrm{B} \mathrm{P}
</math>
ããã座æšã§è¡šããš
:<math>
\sqrt{x^2+y^2} =2 \sqrt{(x-3)^2+y^2}
</math>
䞡蟺ã2ä¹ããŠãæŽçãããš
:<math>
x^2+y^2-8x+12=0
</math>
ããªãã¡
:<math>
(x-4)^2+y^2=2^2
</math>
ãããã£ãŠãæ±ããè»è·¡ã¯ãäžå¿ã<math>(4\ ,\ 0)</math>ãååŸã<math>2</math>ã®åã§ããã
<math>m\ ,\ n</math>ãç°ãªãæ£ã®æ°ãšãããšãã2ç¹<math>\mathrm{A}\ ,\ \mathrm{B}</math>ããã®è·é¢ã®æ¯ã<math>m:n</math>ã§ããç¹ã®è»è·¡ã¯ãç·å<math>\mathrm{A} \mathrm{B}</math>ã<math>m:n</math>ã«å
åããç¹ãšãå€åããç¹ãçŽåŸã®äž¡ç«¯ãšããåã§ããããã®åã'''ã¢ããããŠã¹ã®å'''ãšããã
<math>m=n</math>ã®ãšãã¯ãç·å<math>\mathrm{A} \mathrm{B}</math>ã®åçŽäºçåç·ã§ããã
=== äžçåŒã®è¡šãé å ===
== ã³ã©ã ==
[[File:Frans Hals - Portret van René Descartes.jpg|thumb|ãã«ã«ã]]
ãã®ããŒãžã®åéã®ããã«ãæ°åŒãã€ãã£ãŠåº§æšã®äœçœ®ããããããŠã幟äœåŠã®åé¡ãè§£ãææ³ã®ããšãè§£æå¹ŸäœåŠãšããã
ãªãã幟äœåŠãšããèšèèªäœã¯ãå³åœ¢ã®åŠåãšãããããªæå³ã§ãããå°åŠæ ¡ãäžåŠæ ¡ã§ç¿ã£ãå³åœ¢ã®çè«ã幟äœåŠã§ããã
äžäžãšãŒãããã®æ°åŠè
ãã«ã«ãããè§£æå¹ŸäœåŠã®ç ç©¶ãé²ããããªãããã«ã«ãã¯ãå²åŠã®æ Œèšãããæããããã«æãããã§ãæåã§ããã
== æŒç¿åé¡ ==
== èæ³š ==
<references/>
{{DEFAULTSORT:ãããšããã€ããããããII ããããšã»ããŠããã}}
[[Category:é«çåŠæ ¡æ°åŠII|ããããšã»ããŠããã]]
[[ã«ããŽãª:å³åœ¢]] | 2005-05-04T09:25:38Z | 2024-03-29T02:06:20Z | [
"ãã³ãã¬ãŒã:Pathnav"
] | https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E6%95%B0%E5%AD%A6II/%E5%9B%B3%E5%BD%A2%E3%81%A8%E6%96%B9%E7%A8%8B%E5%BC%8F |
1,904 | æçæ¬/æ¥æ¬æç | W:æ¥æ¬æç | [
{
"paragraph_id": 0,
"tag": "p",
"text": "W:æ¥æ¬æç",
"title": ""
}
] | W:æ¥æ¬æç | {{é²æç¶æ³}}
[[W:æ¥æ¬æç]]
==åé¡==
*[[æçæ¬/ç²Ÿé²æç]]
*[[æçæ¬/æç³æç]]
*[[æçæ¬/äŒåžæç]]
==ãžã£ã³ã«å¥==
===[[æçæ¬/ç±³æç|ç±³æç]]===
*[[æçæ¬/米飯|ã飯]]{{鲿|50%|2019-08-26}}
*[[æçæ¬/赀飯|赀飯]]
*[[æçæ¬/ç²¥|ç²¥]]
*[[æçæ¬/åµããã飯|åµããã飯]]{{鲿|75%|2016-01-06}}
*[[æçæ¬/ãã«ãã|ãã«ãã]]{{鲿|75%|2019-08-26}}
===[[æçæ¬/ãã|ãã]]===
*[[æçæ¬/æ¡ã寿åž|æ¡ã寿åž]]
*[[æçæ¬/倪巻ã寿åž|倪巻ã寿åž]]
*[[æçæ¬/现巻ã寿åž|现巻ã寿åž]]
*[[æçæ¬/æå·»ã寿åž|æå·»ã寿åž]]
*[[æçæ¬/æŒã寿åž|æŒã寿åž]]
*[[æçæ¬/æ±æžåæ£ãã寿åž|æ±æžåæ£ãã寿åž]]
*[[æçæ¬/äºç®ã°ã寿åž|äºç®ã°ã寿åž]]
*[[æçæ¬/çš²è·å¯¿åž|çš²è·å¯¿åž]]
*[[æçæ¬/æãŸã寿åž|æãŸã寿åž]]
*[[æçæ¬/ãªã寿åž|ãªã寿åž]]
===[[æçæ¬/åºèº«|åºèº«]]===
===[[æçæ¬/éæç|éæç]]===
*[[æçæ¬/ãã§ã|ãã§ã]]{{鲿|50%|2007-10-18}}
*[[æçæ¬/å¯ãé|å¯ãé]]
*[[æçæ¬/ã¡ãããé|ã¡ãããé]]
*[[æçæ¬/ããçŒã|ããçŒã]]
*[[æçæ¬/ããã¶é|ããã¶é]]
*[[æçæ¬/ã¡ãé|ã¡ãé]]
===[[æçæ¬/麺æç|麺æç]]===
*[[æçæ¬/ãã°|ãã°]]
*[[æçæ¬/ãã©ã|ãã©ã]]
*[[æçæ¬/ã©ãŒã¡ã³|ã©ãŒã¡ã³]]
*[[æçæ¬/ãããã|ãããã]]
*[[æçæ¬/å·ã麊|å·ã麊]]
===æ±ç©===
*[[æçæ¬/å³åæ±|å³åæ±]]{{鲿|75%|2019-08-28}}
*[[æçæ¬/åžãç©|åžãç©]]{{鲿|75%|2019-08-28}}
===[[æçæ¬/æãç©|æãç©]]===
*[[æçæ¬/倩麩çŸ
|倩麩çŸ
]]{{鲿|75%|2019-08-29}}
===[[æçæ¬/çŒãç©|çŒãç©]]===
*[[æçæ¬/ç
§ãçŒã|ç
§ãçŒã]]
===[[æçæ¬/ç
®ç©|ç
®ç©]]===
===[[æçæ¬/åãç©ã»ãã²ãã|åãç©ã»ãã²ãã]]===
===ãã®ä»===
*[[æçæ¬/挬ãç©|挬ãç©]]{{鲿|00%|2019-08-28}}
**[[æ¢
å¹²ã]]{{鲿|75%|2019-08-28}}
*[[æçæ¬/è±è
|è±è
]]{{鲿|00%|2019-08-28}}
*[[æçæ¬/é€å|é€å]]
==å°åå¥==
=== åæµ·éã»æ±åå°æ¹ ===
*[[æçæ¬/åæµ·éã®é·åæç|åæµ·éã®é·åæç]]
*[[æçæ¬/鿣®çã®é·åæç|鿣®çã®é·åæç]]
*[[æçæ¬/岩æçã®é·åæç|岩æçã®é·åæç]]
*[[æçæ¬/å®®åçã®é·åæç|å®®åçã®é·åæç]]
*[[æçæ¬/ç§ç°çã®é·åæç|ç§ç°çã®é·åæç]]
*[[æçæ¬/山圢çã®é·åæç|山圢çã®é·åæç]]
*[[æçæ¬/çŠå³¶çã®é·åæç|çŠå³¶çã®é·åæç]]
=== 颿±å°æ¹===
*[[æçæ¬/èšåçã®é·åæç|èšåçã®é·åæç]]
*[[æçæ¬/æ æšçã®é·åæç|æ æšçã®é·åæç]]
*[[æçæ¬/矀銬çã®é·åæç|矀銬çã®é·åæç]]
*[[æçæ¬/åŒççã®é·åæç|åŒççã®é·åæç]]
*[[æçæ¬/åèçã®é·åæç|åèçã®é·åæç]]
*[[æçæ¬/æ±äº¬éœã®é·åæç|æ±äº¬éœã®é·åæç]]
*[[æçæ¬/ç¥å¥å·çã®é·åæç|ç¥å¥å·çã®é·åæç]]
===äžéšå°æ¹===
*[[æçæ¬/æ°æœçã®é·åæç|æ°æœçã®é·åæç]]
*[[æçæ¬/é·éçã®é·åæç|é·éçã®é·åæç]]
*[[æçæ¬/山梚çã®é·åæç|山梚çã®é·åæç]]
*[[æçæ¬/å¯å±±çã®é·åæç|å¯å±±çã®é·åæç]]
*[[æçæ¬/ç³å·çã®é·åæç|ç³å·çã®é·åæç]]
*[[æçæ¬/çŠäºçã®é·åæç|çŠäºçã®é·åæç]]
*[[æçæ¬/é岡çã®é·åæç|é岡çã®é·åæç]]
*[[æçæ¬/æç¥çã®é·åæç|æç¥çã®é·åæç]]
*[[æçæ¬/å²éçã®é·åæç|å²éçã®é·åæç]]
===è¿ç¿å°æ¹===
*[[æçæ¬/äžéçã®é·åæç|äžéçã®é·åæç]]
*[[æçæ¬/æ»è³çã®é·åæç|æ»è³çã®é·åæç]]
*[[æçæ¬/京éœåºã®é·åæç|京éœåºã®é·åæç]]
*[[æçæ¬/倧éªåºã®é·åæç|倧éªåºã®é·åæç]]
*[[æçæ¬/å
µåº«çã®é·åæç|å
µåº«çã®é·åæç]]
*[[æçæ¬/å¥è¯çã®é·åæç|å¥è¯çã®é·åæç]]
*[[æçæ¬/åæå±±çã®é·åæç|åæå±±çã®é·åæç]]
===äžåœå°æ¹===
*[[æçæ¬/é³¥åçã®é·åæç|é³¥åçã®é·åæç]]
*[[æçæ¬/å³¶æ ¹çã®é·åæç|å³¶æ ¹çã®é·åæç]]
*[[æçæ¬/岡山çã®é·åæç|岡山çã®é·åæç]]
*[[æçæ¬/åºå³¶çã®é·åæç|åºå³¶çã®é·åæç]]
*[[æçæ¬/å±±å£çã®é·åæç|å±±å£çã®é·åæç]]
===ååœå°æ¹===
*[[æçæ¬/埳島çã®é·åæç|埳島çã®é·åæç]]
*[[æçæ¬/éŠå·çã®é·åæç|éŠå·çã®é·åæç]]
*[[æçæ¬/æåªçã®é·åæç|æåªçã®é·åæç]]
*[[æçæ¬/é«ç¥çã®é·åæç|é«ç¥çã®é·åæç]]
===ä¹å·ã»æ²çžå°æ¹===
*[[æçæ¬/çŠå²¡çã®é·åæç|çŠå²¡çã®é·åæç]]
*[[æçæ¬/äœè³çã®é·åæç|äœè³çã®é·åæç]]
*[[æçæ¬/é·åŽçã®é·åæç|é·åŽçã®é·åæç]]
*[[æçæ¬/倧åçã®é·åæç|倧åçã®é·åæç]]
*[[æçæ¬/çæ¬çã®é·åæç|çæ¬çã®é·åæç]]
*[[æçæ¬/å®®åŽçã®é·åæç|å®®åŽçã®é·åæç]]
*[[æçæ¬/鹿å
å³¶çã®é·åæç|鹿å
å³¶çã®é·åæç]]
*[[æçæ¬/æ²çžçã®é·åæç|æ²çžçã®é·åæç]]
[[Category:æ¥æ¬æç|*]]
[[Category:æ¥æ¬|ãããã]]
[[en:Cookbook:Cuisine of Japan]] | 2005-05-05T00:31:48Z | 2023-09-26T12:37:11Z | [
"ãã³ãã¬ãŒã:é²æç¶æ³",
"ãã³ãã¬ãŒã:鲿"
] | https://ja.wikibooks.org/wiki/%E6%96%99%E7%90%86%E6%9C%AC/%E6%97%A5%E6%9C%AC%E6%96%99%E7%90%86 |
1,913 | é«çåŠæ ¡æ°åŠII/äžè§é¢æ° | ããã§ã¯äžè§é¢æ°ã®å®çŸ©ãããããšãäžè§é¢æ°ã®åºæ¬çãªæ§è³ªãå æ³å®çãäžè§é¢æ°ã®å¿çšã«ã€ããŠåŠã¶ãäžè§é¢æ°ã¯æ³¢ããã¯ãã«ã®å
ç©ãããŒãªãšå€æãªã©ããŸããŸãªåéã§å¿çšãããŠããã
å³å³ã®ããã«ãå®ç¹Oãäžå¿ãšããŠå転ããåçŽç· OP ãèããããã®ãšãã®å転ããåçŽç· OP ã®ããšãååŸãšããã
åçŽç· OX ãè§åºŠã®åºæºãšããããã®åºæºãšãªãåçŽç· OX ã®ããšãå§ç·ãšããã
ååŸãæèšåãã«å転ããå Žåãå転ããè§åºŠã¯è² ã§ãããšããååŸãåæèšåããããå Žåãå転ããè§åºŠã¯æ£ã§ãããšããã
è² ã®è§åºŠã360°以äžå転ããè§åºŠãèãã«å
¥ããè§ã®ããšãäžè¬è§ãšããã
ããŸãŸã§ã¯è§åºŠã®åäœãšããŠäžåšã 360° ãšããåºŠæ°æ³ã䜿ã£ãŠããããšã ãããããã§ã匧床æ³ã«ããè§åºŠã®è¡šãæ¹ãåŠã¶ã
ååŸ1 ã®æåœ¢ã«ãããŠåŒ§ã®é·ãã 1 ã®ãšãã®äžå¿è§ã 1 radãåæ§ã«åŒ§ã®é·ããΞã®ãšãã®äžå¿è§ãΞ radãšå®çŸ©ããããã®å®çŸ©ãã 180° =Ï radã360° = 2Ï rad ãããã«
ãšãªãããŸã匧床æ³ã®åäœ(rad)ã¯ãã°ãã°çç¥ãããã
匧床æ³ãçšãããšãäžè§é¢æ°ã®åŸ®ç©åãèããéã«äŸ¿å©ã§ããã(ãã®ããšã¯æ°åŠIIIã§åŠã¶)
æåœ¢ã®ååŸãr ã匧床æ³ã§å®çŸ©ãããè§åºŠãΞãšãããšãã匧ã®é·ãl ãšé¢ç©S ã¯
ãšè¡šããã
äžè¬è§ã Ξ {\displaystyle \theta } ã®åçŽç·ãšåäœåã亀ããåã P {\displaystyle \mathrm {P} } ãšããããã®ãšãã® P {\displaystyle \mathrm {P} } ã®åº§æšã ( cos Ξ , sin Ξ ) {\displaystyle (\cos \theta ,\sin \theta )} ãšããããšã§ã颿° sin , cos {\displaystyle \sin ,\cos } ãå®ããããŸãã tan Ξ = sin Ξ cos Ξ {\displaystyle \tan \theta ={\frac {\sin \theta }{\cos \theta }}} ãšããããšã§é¢æ° tan Ξ {\displaystyle \tan \theta } ãå®ããã tan Ξ {\displaystyle \tan \theta } ã¯äžè¬è§ã Ξ {\displaystyle \theta } ã®ååŸã®åŸãã«çããã
ãŸããäžè§é¢æ°ã®çޝä¹ã¯ ( sin Ξ ) n = sin n Ξ {\displaystyle (\sin \theta )^{n}=\sin ^{n}\theta } ãšè¡šèšãããã
cos Ξ ã®ã°ã©ã㯠sin Ξ ã®ã°ã©ãã Ξ軞æ¹åã« â Ï 2 {\displaystyle -{\frac {\pi }{2}}} ã ãå¹³è¡ç§»åãããã®ã§ããã
y = sin Ξ {\displaystyle y=\sin \theta } ã y = cos Ξ {\displaystyle y=\cos \theta } ã®åœ¢ãããæ²ç·ã®ããšã æ£åŒŠæ²ç· (ããããããããã)ãšããã
颿° sin , cos {\displaystyle \sin ,\cos } ã®å€åã¯ã©ã¡ããã [ â 1 , 1 ] {\displaystyle [-1,1]} ã§ããã
å³å³ã®ããã« ãè§ Îž ã®ååŸãšåäœåãšã®äº€ç¹ãPãšããŠã çŽç·OPãš çŽç·x=1 ãšã®äº€ç¹ã T ãšãããšã Tã®åº§æšã¯
ã«ãªãã
ãã®ããšãå©çšããŠã y=tan Ξ ã®ã°ã©ããããããšãã§ããã
y=tan Ξ ã®ã°ã©ãã¯ãäžå³ã®ããã«ãªãã
y=tan Ξ ã®ã°ã©ãã§ã¯ãΞã®å€ã Ï 2 {\displaystyle {\frac {\pi }{2}}} ã«è¿ã¥ããŠãããšã çŽç· Ξ = Ï 2 {\displaystyle \theta ={\frac {\pi }{2}}} ã«éããªãè¿ã¥ããŠããã
ãã®ããã«ãæ²ç·ãããçŽç·ã«éãç¡ãè¿ã¥ããŠãããšããè¿ã¥ãããçŽç·ã®ã»ãã æŒžè¿ç· (ãããããã)ãšããã
åæ§ã«èããæ¬¡ã®çŽç·ã y=tanΞ ã®æŒžè¿ç·ã§ããã
㯠y=tanΞ ã®æŒžè¿ç·ã§ããã
äžè¬ã«ã
ã¯y=tanΞã®ã°ã©ãã®æŒžè¿ç·ã§ããã
äžè¬è§ã Ξ {\displaystyle \theta } ã®ååŸã¯äžå転ããŠãçããã®ã§ãäžè¬è§ã Ξ + 2 Ï {\displaystyle \theta +2\pi } ã®ååŸãšçãããããããäžè§é¢æ°ã®åšææ§
sin ( Ξ + 2 Ï n ) = sin Ξ cos ( Ξ + 2 Ï n ) = cos Ξ tan ( Ξ + 2 Ï n ) = tan Ξ {\displaystyle {\begin{aligned}\sin(\theta +2\pi n)&=\sin \theta \\\cos(\theta +2\pi n)&=\cos \theta \\\tan(\theta +2\pi n)&=\tan \theta \end{aligned}}}
ãåŸãã
ç¹ ( cos Ξ , sin Ξ ) {\displaystyle (\cos \theta ,\sin \theta )} ã Ï {\displaystyle \pi } å転ããç¹ ( cos ( Ξ + Ï ) , sin ( Ξ + Ï ) ) {\displaystyle (\cos(\theta +\pi ),\sin(\theta +\pi ))} ã¯åç¹ãäžå¿ã«ç¹å¯Ÿç§°ç§»åããç¹ ( â cos Ξ , â sin Ξ ) {\displaystyle (-\cos \theta ,-\sin \theta )} ã§ããããšãã
sin ( Ξ + Ï ) = â sin Ξ cos ( Ξ + Ï ) = â cos Ξ tan ( Ξ + Ï ) = tan Ξ {\displaystyle {\begin{aligned}\sin(\theta +\pi )&=-\sin \theta \\\cos(\theta +\pi )&=-\cos \theta \\\tan(\theta +\pi )&=\tan \theta \end{aligned}}}
ãåŸãã
ç¹ ( cos Ξ , sin Ξ ) {\displaystyle (\cos \theta ,\sin \theta )} ã x {\displaystyle x} 軞ã§ç·å¯Ÿç§°ç§»åç§»åããç¹ã ( cos ( â Ξ ) , sin ( â Ξ ) ) = ( cos Ξ , â sin Ξ ) {\displaystyle (\cos(-\theta ),\sin(-\theta ))=(\cos \theta ,-\sin \theta )} ã§ããããšãã
sin ( â Ξ ) = â sin Ξ cos ( â Ξ ) = cos Ξ tan ( â Ξ ) = â tan Ξ {\displaystyle {\begin{aligned}\sin(-\theta )&=-\sin \theta \\\cos(-\theta )&=\cos \theta \\\tan(-\theta )&=-\tan \theta \end{aligned}}}
ãåŸãã
åäœååšäžã®ç¹ ( cos Ξ , sin Ξ ) {\displaystyle (\cos \theta ,\sin \theta )} ããåç¹ãŸã§ã®è·é¢ã¯ 1 ãªã®ã§ã sin 2 Ξ + cos 2 Ξ = 1 {\displaystyle \sin ^{2}\theta +\cos ^{2}\theta =1} ãæãç«ã€ã
ãŸãããã®åŒã«ã tan Ξ = sin Ξ cos Ξ {\displaystyle \tan \theta ={\frac {\sin \theta }{\cos \theta }}} ã€ãŸãã sin Ξ = tan Ξ cos Ξ {\displaystyle \sin \theta =\tan \theta \cos \theta } ã代å
¥ããã°ã 1 + tan 2 Ξ = 1 cos 2 Ξ {\displaystyle 1+\tan ^{2}\theta ={\frac {1}{\cos ^{2}\theta }}} ãæãç«ã€ããšããããã
颿° f ( x ) {\displaystyle f(x)} ã«å¯ŸããŠã0 ã§ãªã宿° p {\displaystyle p} ãååšããŠã f ( x + p ) = f ( x ) {\displaystyle f(x+p)=f(x)} ãšãªããšã颿° f ( x ) {\displaystyle f(x)} ã¯åšæé¢æ°ãšããã宿° p {\displaystyle p} ãäžã®æ§è³ªãæºãããšãã â p , 2 p {\displaystyle -p,2p} ãªã©ã宿° p {\displaystyle p} ã0ãé€ãæŽæ°åããæ°ãäžã®æ§è³ªãæºãããããã§ãåšæé¢æ°ãç¹åŸŽã¥ããéãšããŠãäžã®æ§è³ªãæºãã宿° p {\displaystyle p} ã®å
ãæ£ã§ãã€æå°ã®ãã®ãéžã³ããããåšæãšåŒã¶ã
sin x , cos x {\displaystyle \sin x,\cos x} ã¯åšæã 2 Ï {\displaystyle 2\pi } ãšããåšæé¢æ°ã§ããã tan x {\displaystyle \tan x} ã¯åšæã Ï {\displaystyle \pi } ãšããåšæé¢æ°ã§ããã
æŒç¿åé¡
k {\displaystyle k} ã0ã§ãªã宿°ãšããã颿° sin k x {\displaystyle \sin kx} ã®åšæãèšã
è§£ç
sin k ( x + 2 Ï k ) = sin k x {\displaystyle \sin k\left(x+{\frac {2\pi }{k}}\right)=\sin kx} ãªã®ã§çã㯠2 Ï k {\displaystyle {\frac {2\pi }{k}}} ãããã¯æ£ã§ãããåšæã®æå°æ§ã®æ¡ä»¶ãæºãããŠããã
颿° f ( x ) {\displaystyle f(x)} ã f ( â x ) = f ( x ) {\displaystyle f(-x)=f(x)} ãæºãããšãã颿° f ( x ) {\displaystyle f(x)} ã¯å¶é¢æ°ãšãããå¶é¢æ°ã¯ y {\displaystyle y} 軞ã«é¢ããŠå¯Ÿç§°ãªã°ã©ãã«ãªãã
ãŸãã颿° f ( x ) {\displaystyle f(x)} ã f ( â x ) = â f ( x ) {\displaystyle f(-x)=-f(x)} ãæºãããšãã颿° f ( x ) {\displaystyle f(x)} ã¯å¥é¢æ°ãšãããå¶é¢æ°ã¯åç¹ã«é¢ããŠå¯Ÿè±¡ãªã°ã©ãã«ãªãã
颿° cos Ξ , x 2 n {\displaystyle \cos \theta ,x^{2n}} ( n {\displaystyle n} ã¯æŽæ°)ã¯å¶é¢æ°ãšãªãã
颿° sin x , x 2 n + 1 {\displaystyle \sin x,x^{2n+1}} ( n {\displaystyle n} ã¯æŽæ°)ã¯å¥é¢æ°ãšãªãã
tan Ξ {\displaystyle \tan \theta } ã¯å¶é¢æ°ããããšãå¥é¢æ°ã調ã¹ãã
è§£ç
ãªã®ã§ã tan Ξ {\displaystyle \tan \theta } ã¯å¥é¢æ°ã§ããã
颿° y = sin ( Ξ â Ï 3 ) {\displaystyle y=\sin \left(\theta -{\frac {\pi }{3}}\right)} ã®ã°ã©ãã¯ã y = sin Ξ {\displaystyle y=\sin \theta } ã®ã°ã©ãã Ξ軞æ¹åã« Ï 3 {\displaystyle {\frac {\pi }{3}}} ã ãå¹³è¡ç§»åããããã®ã«ãªããåšæã¯ 2 Ï {\displaystyle 2\pi } ã§ããã(å¹³è¡ç§»åããŠããåšæã¯å€ããããsinΞãšåããåšæã¯ 2 Ï {\displaystyle 2\pi } ã®ãŸãŸã§ããã)
颿° y=2sin Ξ ã®ã°ã©ãã®åœ¢ã¯ y=sin Ξ ãy軞æ¹åã«2åã«æ¡å€§ãããã®ã§ãåšæã¯ y=sin Ξ ãšåãã 2Ï ã§ããã
ãŒ1 ⊠sin Ξ ⊠1 ãªã®ã§ã
å€å㯠ãŒ2 ⊠2sin Ξ ⊠2 ã§ããã
颿° y=sin2Ξ ã®ã°ã©ãã¯y軞ãåºæºã«Îžè»žæ¹åã« 1 2 {\displaystyle {\frac {1}{2}}} åã«çž®å°ãããã®ã«ãªã£ãŠããã
ãããã£ãŠãåšæã 1 2 {\displaystyle {\frac {1}{2}}} åã«ãªã£ãŠãããy=sinΞ ã®åšæã¯ 2 Ï {\displaystyle 2\pi } ã ãããy=sin2Ξ ã®åšæã¯ Ï {\displaystyle \pi } ã§ããã
äžè§é¢æ°ã®å æ³å®ç
ãæãç«ã€ã
蚌æ
ä»»æã®å®æ° α , β {\displaystyle \alpha ,\beta } ã«å¯Ÿããåäœååšäžã®ç¹ A ( cos α , sin α ) , B ( cos β , sin β ) {\displaystyle \mathrm {A} (\cos \alpha ,\sin \alpha ),\mathrm {B} (\cos \beta ,\sin \beta )} ããšãããã®ãšãã ç·å A B {\displaystyle \mathrm {AB} } ã®é·ãã®2ä¹ A B 2 {\displaystyle \mathrm {AB} ^{2}} ã¯äœåŒŠå®çã䜿ãããšã«ãã
A B 2 = 2 â 2 cos ( α â β ) {\displaystyle \mathrm {AB} ^{2}=2-2\cos(\alpha -\beta )}
ã§ãããæ¬¡ã«äžå¹³æ¹ã®å®çã䜿ã£ãŠ
A B 2 = ( cos α â cos α ) 2 + ( sin α â sin β ) 2 = 2 â 2 ( cos α cos β + sin α sin β ) {\displaystyle \mathrm {AB} ^{2}=(\cos \alpha -\cos \alpha )^{2}+(\sin \alpha -\sin \beta )^{2}=2-2(\cos \alpha \cos \beta +\sin \alpha \sin \beta )}
ãããæŽçããŠ
cos ( α â β ) = cos α cos β + sin α sin β {\displaystyle \cos(\alpha -\beta )=\cos \alpha \cos \beta +\sin \alpha \sin \beta }
ãåŸãã
cos ( α + β ) = cos ( α â ( â β ) ) = cos α cos ( â β ) + sin α sin ( â β ) = cos α cos β â sin α sin β {\displaystyle \cos(\alpha +\beta )=\cos(\alpha -(-\beta ))=\cos \alpha \cos(-\beta )+\sin \alpha \sin(-\beta )=\cos \alpha \cos \beta -\sin \alpha \sin \beta }
ã§ããã
以äžããŸãšããŠ
cos ( α ± β ) = cos α cos β â sin α sin β {\displaystyle \cos(\alpha \pm \beta )=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta }
ãåŸãã
ããã§ã
sin ( α ± β ) = â cos ( α + Ï 2 ± β ) = â { cos ( α + Ï 2 ) cos ( β ) â sin ( α + Ï 2 ) sin β } = sin α cos β ± cos α sin β {\displaystyle \sin(\alpha \pm \beta )=-\cos(\alpha +{\frac {\pi }{2}}\pm \beta )=-\{\cos(\alpha +{\frac {\pi }{2}})\cos(\beta )\mp \sin(\alpha +{\frac {\pi }{2}})\sin \beta \}=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta }
ããã«ã tan x {\displaystyle \tan x} ã«ã€ããŠã
tan ( α ± β ) = sin ( α ± β ) cos ( α ± β ) = sin α cos β ± cos α sin β cos α cos β â sin α sin β = sin α cos β cos α cos β ± cos α sin β cos α cos β cos α cos β cos α cos β â sin α sin β cos α cos β = tan α ± tan β 1 â tan α tan β {\textstyle {\begin{aligned}\tan(\alpha \pm \beta )&={\frac {\sin(\alpha \pm \beta )}{\cos(\alpha \pm \beta )}}\\&={\frac {\sin \alpha \cos \beta \pm \cos \alpha \sin \beta }{\cos \alpha \cos \beta \mp \sin \alpha \sin \beta }}\\&={\cfrac {{\cfrac {\sin \alpha \cos \beta }{\cos \alpha \cos \beta }}\pm {\cfrac {\cos \alpha \sin \beta }{\cos \alpha \cos \beta }}}{{\cfrac {\cos \alpha \cos \beta }{\cos \alpha \cos \beta }}\mp {\cfrac {\sin \alpha \sin \beta }{\cos \alpha \cos \beta }}}}\\&={\frac {\tan \alpha \pm \tan \beta }{1\mp \tan \alpha \tan \beta }}\end{aligned}}}
ãæãç«ã€ã
å æ³å®çãçšããŠä»¥äžã蚌æã§ããã
sin 2 α = sin ( α + α ) = 2 sin α cos α {\displaystyle \sin 2\alpha =\sin(\alpha +\alpha )=2\sin \alpha \cos \alpha }
cos 2 α = cos ( α + α ) = cos 2 α â sin 2 α = 2 cos 2 α â 1 = 1 â 2 sin 2 α {\displaystyle \cos 2\alpha =\cos(\alpha +\alpha )=\cos ^{2}\alpha -\sin ^{2}\alpha =2\cos ^{2}\alpha -1=1-2\sin ^{2}\alpha }
tan 2 α = 2 tan α 1 â tan 2 α {\displaystyle \tan 2\alpha ={\frac {2\tan \alpha }{1-\tan ^{2}\alpha }}}
次ã«ã cos {\displaystyle \cos } ã®åè§ã®å
¬åŒãå€åœ¢ãããš
sin 2 α = 1 â cos 2 α 2 {\displaystyle \sin ^{2}\alpha ={\frac {1-\cos 2\alpha }{2}}}
cos 2 α = 1 + cos 2 α 2 {\displaystyle \cos ^{2}\alpha ={\frac {1+\cos 2\alpha }{2}}}
ã§ããã
æŒç¿åé¡
è§£ç
sin 15 â = sin ( 45 â â 30 â ) = 6 â 2 4 {\displaystyle \sin 15^{\circ }=\sin(45^{\circ }-30^{\circ })={\frac {{\sqrt {6}}-{\sqrt {2}}}{4}}}
cos 15 â = cos ( 45 â â 30 â ) = 6 + 2 4 {\displaystyle \cos 15^{\circ }=\cos(45^{\circ }-30^{\circ })={\frac {{\sqrt {6}}+{\sqrt {2}}}{4}}}
tan 2 α = sin 2 α cos 2 α = 1 â cos 2 α 1 + cos 2 α {\displaystyle \tan ^{2}\alpha ={\frac {\sin ^{2}\alpha }{\cos ^{2}\alpha }}={\frac {1-\cos 2\alpha }{1+\cos 2\alpha }}}
ä»ãŸã§ã®å®çããŸãšãããšã次ã®ããã«ãªãã
èŠãæ¹
å æ³å®çã¯ãå²ããã³ã¹ã¢ã¹ã³ã¹ã¢ã¹å²ãããããã³ã¹ã¢ã¹ã³ã¹ã¢ã¹å²ããå²ããããšããèªååãããããŸãã
cos {\displaystyle \cos } ã®åè§ã®å
¬åŒ cos 2 Ξ = 2 cos 2 Ξ â 1 = 1 â 2 sin 2 Ξ {\displaystyle \cos 2\theta =2\cos ^{2}\theta -1=1-2\sin ^{2}\theta } 㯠± 1 â 2 a a a 2 Ξ {\displaystyle \pm 1\mp 2\mathrm {aaa} ^{2}\theta } ãšãã圢ãèŠã㊠sin {\displaystyle \sin } ã¯ç¬Šå·ã â {\displaystyle -} ã1 ã®ç¬Šå·ã¯ãã®éãšèŠããŸãã
2ä¹ã®äžè§é¢æ° sin 2 Ξ = 1 â cos 2 Ξ 2 , cos 2 Ξ = 1 + cos 2 Ξ 2 {\displaystyle \sin ^{2}\theta ={\frac {1-\cos 2\theta }{2}},\cos ^{2}\theta ={\frac {1+\cos 2\theta }{2}}} ã¯ã 1 ± cos 2 Ξ 2 {\displaystyle {\frac {1\pm \cos 2\theta }{2}}} ãšãã圢ãèŠããŠã sin {\displaystyle \sin } ã¯ç¬Šå·ã â {\displaystyle -} ãšèããŸãã
äžè§é¢æ°ã®å
ã«ãããŠã a , b â 0 {\displaystyle a,b\neq 0} ã®ãšã
{ a a 2 + b 2 } 2 + { b a 2 + b 2 } 2 = 1 {\displaystyle \left\{{\dfrac {a}{\sqrt {a^{2}+b^{2}}}}\right\}^{2}+\left\{{\dfrac {b}{\sqrt {a^{2}+b^{2}}}}\right\}^{2}=1} ã§ããã®ã§ãç¹ ( a a 2 + b 2 , b a 2 + b 2 ) {\displaystyle \left({\dfrac {a}{\sqrt {a^{2}+b^{2}}}},{\dfrac {b}{\sqrt {a^{2}+b^{2}}}}\right)} ã¯åäœååšäžã®ç¹ãªã®ã§ã
ãšãªããããªÎ±ããšãããšãã§ãããã®Î±ãçšããŠæ¬¡ã®ãããªå€åœ¢ãã§ããã
æŒç¿åé¡
r , α {\displaystyle r,\alpha } 㯠r > 0 , â Ï â€ Î± < Ï {\displaystyle r>0,-\pi \leq \alpha <\pi } ãæºãããšããã
è§£ç
sin Ξ â 3 cos Ξ = 2 ( 1 2 sin Ξ â 3 2 cos Ξ ) = 2 ( sin Ξ cos Ï 3 â cos Ξ sin Ï 3 ) = 2 sin ( Ξ â Ï 3 ) {\displaystyle {\begin{aligned}\sin \theta -{\sqrt {3}}\cos \theta &=2\left({\frac {1}{2}}\sin \theta -{\frac {\sqrt {3}}{2}}\cos \theta \right)\\&=2\left(\sin \theta \cos {\frac {\pi }{3}}-\cos \theta \sin {\frac {\pi }{3}}\right)\\&=2\sin \left(\theta -{\frac {\pi }{3}}\right)\\\end{aligned}}}
äžè§é¢æ°ã®å æ³å®çãçšãããšãäžè§é¢æ°ã®åâç©ã®å
¬åŒãããã³ç©âåã®å
¬åŒãåŸãããããããã
ãšãªãã
å æ³å®ç
ããã (1) + (2) ãã
(1) - (2) ãã
(3) + (4) ãã
(3) - (4) ãã
ãåŸãããã
A = α + β , B = α â β {\displaystyle A=\alpha +\beta ,\,B=\alpha -\beta } ãšãããšã α = A + B 2 , β = A â B 2 {\displaystyle \alpha ={\frac {A+B}{2}},\,\beta ={\frac {A-B}{2}}} ã§ããããããç©âåã®å
¬åŒã«ä»£å
¥ããã°ããããã
ãåŸãããã
èŠãæ¹
ç©âåã®å
¬åŒã¯ãäž2ã€ã¯ α {\displaystyle \alpha } 㚠β {\displaystyle \beta } ãå
¥ãæ¿ããã°åãåŒãªã®ã§ãèŠããã®ã¯3åŒã§ããã sin sin {\displaystyle \sin \sin } ã®å
¬åŒã¯ cos cos {\displaystyle \cos \cos } ã®å
¬åŒã®ç¬Šå·ã2〠â {\displaystyle -} ã«ãããã®ã«ãªã£ãŠããã
åâç©ã®å
¬åŒã¯ã a a a â a a a {\displaystyle {\rm {{aaa}-{\rm {aaa}}}}} ã®åŒã¯ a a a + a a a {\displaystyle {\rm {{aaa}+{\rm {aaa}}}}} ã®å
¬åŒã® cos {\displaystyle \cos } ãš sin {\displaystyle \sin } ãéã«ãã圢ã«ãªã£ãŠããã
(1)äžã®åºŠæ°æ³ã§è¡šãããå€ã匧床æ³ãŠè¡šã
1) 150 {\displaystyle 150} 2) 720 {\displaystyle 720}
(2) sin Ï / 2 {\displaystyle \sin \pi /2} ã®å€ãæ±ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ããã§ã¯äžè§é¢æ°ã®å®çŸ©ãããããšãäžè§é¢æ°ã®åºæ¬çãªæ§è³ªãå æ³å®çãäžè§é¢æ°ã®å¿çšã«ã€ããŠåŠã¶ãäžè§é¢æ°ã¯æ³¢ããã¯ãã«ã®å
ç©ãããŒãªãšå€æãªã©ããŸããŸãªåéã§å¿çšãããŠããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "å³å³ã®ããã«ãå®ç¹Oãäžå¿ãšããŠå転ããåçŽç· OP ãèããããã®ãšãã®å転ããåçŽç· OP ã®ããšãååŸãšããã",
"title": "äžè¬è§"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "åçŽç· OX ãè§åºŠã®åºæºãšããããã®åºæºãšãªãåçŽç· OX ã®ããšãå§ç·ãšããã",
"title": "äžè¬è§"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ååŸãæèšåãã«å転ããå Žåãå転ããè§åºŠã¯è² ã§ãããšããååŸãåæèšåããããå Žåãå転ããè§åºŠã¯æ£ã§ãããšããã",
"title": "äžè¬è§"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "è² ã®è§åºŠã360°以äžå転ããè§åºŠãèãã«å
¥ããè§ã®ããšãäžè¬è§ãšããã",
"title": "äžè¬è§"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "",
"title": "äžè¬è§"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ããŸãŸã§ã¯è§åºŠã®åäœãšããŠäžåšã 360° ãšããåºŠæ°æ³ã䜿ã£ãŠããããšã ãããããã§ã匧床æ³ã«ããè§åºŠã®è¡šãæ¹ãåŠã¶ã",
"title": "匧床æ³"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ååŸ1 ã®æåœ¢ã«ãããŠåŒ§ã®é·ãã 1 ã®ãšãã®äžå¿è§ã 1 radãåæ§ã«åŒ§ã®é·ããΞã®ãšãã®äžå¿è§ãΞ radãšå®çŸ©ããããã®å®çŸ©ãã 180° =Ï radã360° = 2Ï rad ãããã«",
"title": "匧床æ³"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãšãªãããŸã匧床æ³ã®åäœ(rad)ã¯ãã°ãã°çç¥ãããã",
"title": "匧床æ³"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "匧床æ³ãçšãããšãäžè§é¢æ°ã®åŸ®ç©åãèããéã«äŸ¿å©ã§ããã(ãã®ããšã¯æ°åŠIIIã§åŠã¶)",
"title": "匧床æ³"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "æåœ¢ã®ååŸãr ã匧床æ³ã§å®çŸ©ãããè§åºŠãΞãšãããšãã匧ã®é·ãl ãšé¢ç©S ã¯",
"title": "匧床æ³"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãšè¡šããã",
"title": "匧床æ³"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "äžè¬è§ã Ξ {\\displaystyle \\theta } ã®åçŽç·ãšåäœåã亀ããåã P {\\displaystyle \\mathrm {P} } ãšããããã®ãšãã® P {\\displaystyle \\mathrm {P} } ã®åº§æšã ( cos Ξ , sin Ξ ) {\\displaystyle (\\cos \\theta ,\\sin \\theta )} ãšããããšã§ã颿° sin , cos {\\displaystyle \\sin ,\\cos } ãå®ããããŸãã tan Ξ = sin Ξ cos Ξ {\\displaystyle \\tan \\theta ={\\frac {\\sin \\theta }{\\cos \\theta }}} ãšããããšã§é¢æ° tan Ξ {\\displaystyle \\tan \\theta } ãå®ããã tan Ξ {\\displaystyle \\tan \\theta } ã¯äžè¬è§ã Ξ {\\displaystyle \\theta } ã®ååŸã®åŸãã«çããã",
"title": "äžè§é¢æ°"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãŸããäžè§é¢æ°ã®çޝä¹ã¯ ( sin Ξ ) n = sin n Ξ {\\displaystyle (\\sin \\theta )^{n}=\\sin ^{n}\\theta } ãšè¡šèšãããã",
"title": "äžè§é¢æ°"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "cos Ξ ã®ã°ã©ã㯠sin Ξ ã®ã°ã©ãã Ξ軞æ¹åã« â Ï 2 {\\displaystyle -{\\frac {\\pi }{2}}} ã ãå¹³è¡ç§»åãããã®ã§ããã",
"title": "äžè§é¢æ°"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "y = sin Ξ {\\displaystyle y=\\sin \\theta } ã y = cos Ξ {\\displaystyle y=\\cos \\theta } ã®åœ¢ãããæ²ç·ã®ããšã æ£åŒŠæ²ç· (ããããããããã)ãšããã",
"title": "äžè§é¢æ°"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "颿° sin , cos {\\displaystyle \\sin ,\\cos } ã®å€åã¯ã©ã¡ããã [ â 1 , 1 ] {\\displaystyle [-1,1]} ã§ããã",
"title": "äžè§é¢æ°"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "å³å³ã®ããã« ãè§ Îž ã®ååŸãšåäœåãšã®äº€ç¹ãPãšããŠã çŽç·OPãš çŽç·x=1 ãšã®äº€ç¹ã T ãšãããšã Tã®åº§æšã¯",
"title": "äžè§é¢æ°"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ã«ãªãã",
"title": "äžè§é¢æ°"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ãã®ããšãå©çšããŠã y=tan Ξ ã®ã°ã©ããããããšãã§ããã",
"title": "äžè§é¢æ°"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "y=tan Ξ ã®ã°ã©ãã¯ãäžå³ã®ããã«ãªãã",
"title": "äžè§é¢æ°"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "y=tan Ξ ã®ã°ã©ãã§ã¯ãΞã®å€ã Ï 2 {\\displaystyle {\\frac {\\pi }{2}}} ã«è¿ã¥ããŠãããšã çŽç· Ξ = Ï 2 {\\displaystyle \\theta ={\\frac {\\pi }{2}}} ã«éããªãè¿ã¥ããŠããã",
"title": "äžè§é¢æ°"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ãã®ããã«ãæ²ç·ãããçŽç·ã«éãç¡ãè¿ã¥ããŠãããšããè¿ã¥ãããçŽç·ã®ã»ãã æŒžè¿ç· (ãããããã)ãšããã",
"title": "äžè§é¢æ°"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "åæ§ã«èããæ¬¡ã®çŽç·ã y=tanΞ ã®æŒžè¿ç·ã§ããã",
"title": "äžè§é¢æ°"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "㯠y=tanΞ ã®æŒžè¿ç·ã§ããã",
"title": "äžè§é¢æ°"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "äžè¬ã«ã",
"title": "äžè§é¢æ°"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ã¯y=tanΞã®ã°ã©ãã®æŒžè¿ç·ã§ããã",
"title": "äžè§é¢æ°"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "äžè¬è§ã Ξ {\\displaystyle \\theta } ã®ååŸã¯äžå転ããŠãçããã®ã§ãäžè¬è§ã Ξ + 2 Ï {\\displaystyle \\theta +2\\pi } ã®ååŸãšçãããããããäžè§é¢æ°ã®åšææ§",
"title": "äžè§é¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "sin ( Ξ + 2 Ï n ) = sin Ξ cos ( Ξ + 2 Ï n ) = cos Ξ tan ( Ξ + 2 Ï n ) = tan Ξ {\\displaystyle {\\begin{aligned}\\sin(\\theta +2\\pi n)&=\\sin \\theta \\\\\\cos(\\theta +2\\pi n)&=\\cos \\theta \\\\\\tan(\\theta +2\\pi n)&=\\tan \\theta \\end{aligned}}}",
"title": "äžè§é¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ãåŸãã",
"title": "äžè§é¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ç¹ ( cos Ξ , sin Ξ ) {\\displaystyle (\\cos \\theta ,\\sin \\theta )} ã Ï {\\displaystyle \\pi } å転ããç¹ ( cos ( Ξ + Ï ) , sin ( Ξ + Ï ) ) {\\displaystyle (\\cos(\\theta +\\pi ),\\sin(\\theta +\\pi ))} ã¯åç¹ãäžå¿ã«ç¹å¯Ÿç§°ç§»åããç¹ ( â cos Ξ , â sin Ξ ) {\\displaystyle (-\\cos \\theta ,-\\sin \\theta )} ã§ããããšãã",
"title": "äžè§é¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "sin ( Ξ + Ï ) = â sin Ξ cos ( Ξ + Ï ) = â cos Ξ tan ( Ξ + Ï ) = tan Ξ {\\displaystyle {\\begin{aligned}\\sin(\\theta +\\pi )&=-\\sin \\theta \\\\\\cos(\\theta +\\pi )&=-\\cos \\theta \\\\\\tan(\\theta +\\pi )&=\\tan \\theta \\end{aligned}}}",
"title": "äžè§é¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ãåŸãã",
"title": "äžè§é¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "ç¹ ( cos Ξ , sin Ξ ) {\\displaystyle (\\cos \\theta ,\\sin \\theta )} ã x {\\displaystyle x} 軞ã§ç·å¯Ÿç§°ç§»åç§»åããç¹ã ( cos ( â Ξ ) , sin ( â Ξ ) ) = ( cos Ξ , â sin Ξ ) {\\displaystyle (\\cos(-\\theta ),\\sin(-\\theta ))=(\\cos \\theta ,-\\sin \\theta )} ã§ããããšãã",
"title": "äžè§é¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "sin ( â Ξ ) = â sin Ξ cos ( â Ξ ) = cos Ξ tan ( â Ξ ) = â tan Ξ {\\displaystyle {\\begin{aligned}\\sin(-\\theta )&=-\\sin \\theta \\\\\\cos(-\\theta )&=\\cos \\theta \\\\\\tan(-\\theta )&=-\\tan \\theta \\end{aligned}}}",
"title": "äžè§é¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "ãåŸãã",
"title": "äžè§é¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "åäœååšäžã®ç¹ ( cos Ξ , sin Ξ ) {\\displaystyle (\\cos \\theta ,\\sin \\theta )} ããåç¹ãŸã§ã®è·é¢ã¯ 1 ãªã®ã§ã sin 2 Ξ + cos 2 Ξ = 1 {\\displaystyle \\sin ^{2}\\theta +\\cos ^{2}\\theta =1} ãæãç«ã€ã",
"title": "äžè§é¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "ãŸãããã®åŒã«ã tan Ξ = sin Ξ cos Ξ {\\displaystyle \\tan \\theta ={\\frac {\\sin \\theta }{\\cos \\theta }}} ã€ãŸãã sin Ξ = tan Ξ cos Ξ {\\displaystyle \\sin \\theta =\\tan \\theta \\cos \\theta } ã代å
¥ããã°ã 1 + tan 2 Ξ = 1 cos 2 Ξ {\\displaystyle 1+\\tan ^{2}\\theta ={\\frac {1}{\\cos ^{2}\\theta }}} ãæãç«ã€ããšããããã",
"title": "äžè§é¢æ°ã®æ§è³ª"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "颿° f ( x ) {\\displaystyle f(x)} ã«å¯ŸããŠã0 ã§ãªã宿° p {\\displaystyle p} ãååšããŠã f ( x + p ) = f ( x ) {\\displaystyle f(x+p)=f(x)} ãšãªããšã颿° f ( x ) {\\displaystyle f(x)} ã¯åšæé¢æ°ãšããã宿° p {\\displaystyle p} ãäžã®æ§è³ªãæºãããšãã â p , 2 p {\\displaystyle -p,2p} ãªã©ã宿° p {\\displaystyle p} ã0ãé€ãæŽæ°åããæ°ãäžã®æ§è³ªãæºãããããã§ãåšæé¢æ°ãç¹åŸŽã¥ããéãšããŠãäžã®æ§è³ªãæºãã宿° p {\\displaystyle p} ã®å
ãæ£ã§ãã€æå°ã®ãã®ãéžã³ããããåšæãšåŒã¶ã",
"title": "åšæé¢æ°"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "sin x , cos x {\\displaystyle \\sin x,\\cos x} ã¯åšæã 2 Ï {\\displaystyle 2\\pi } ãšããåšæé¢æ°ã§ããã tan x {\\displaystyle \\tan x} ã¯åšæã Ï {\\displaystyle \\pi } ãšããåšæé¢æ°ã§ããã",
"title": "åšæé¢æ°"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "æŒç¿åé¡",
"title": "åšæé¢æ°"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "k {\\displaystyle k} ã0ã§ãªã宿°ãšããã颿° sin k x {\\displaystyle \\sin kx} ã®åšæãèšã",
"title": "åšæé¢æ°"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "è§£ç",
"title": "åšæé¢æ°"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "sin k ( x + 2 Ï k ) = sin k x {\\displaystyle \\sin k\\left(x+{\\frac {2\\pi }{k}}\\right)=\\sin kx} ãªã®ã§çã㯠2 Ï k {\\displaystyle {\\frac {2\\pi }{k}}} ãããã¯æ£ã§ãããåšæã®æå°æ§ã®æ¡ä»¶ãæºãããŠããã",
"title": "åšæé¢æ°"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "颿° f ( x ) {\\displaystyle f(x)} ã f ( â x ) = f ( x ) {\\displaystyle f(-x)=f(x)} ãæºãããšãã颿° f ( x ) {\\displaystyle f(x)} ã¯å¶é¢æ°ãšãããå¶é¢æ°ã¯ y {\\displaystyle y} 軞ã«é¢ããŠå¯Ÿç§°ãªã°ã©ãã«ãªãã",
"title": "å¶é¢æ°ãšå¥é¢æ°"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "ãŸãã颿° f ( x ) {\\displaystyle f(x)} ã f ( â x ) = â f ( x ) {\\displaystyle f(-x)=-f(x)} ãæºãããšãã颿° f ( x ) {\\displaystyle f(x)} ã¯å¥é¢æ°ãšãããå¶é¢æ°ã¯åç¹ã«é¢ããŠå¯Ÿè±¡ãªã°ã©ãã«ãªãã",
"title": "å¶é¢æ°ãšå¥é¢æ°"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "颿° cos Ξ , x 2 n {\\displaystyle \\cos \\theta ,x^{2n}} ( n {\\displaystyle n} ã¯æŽæ°)ã¯å¶é¢æ°ãšãªãã",
"title": "å¶é¢æ°ãšå¥é¢æ°"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "颿° sin x , x 2 n + 1 {\\displaystyle \\sin x,x^{2n+1}} ( n {\\displaystyle n} ã¯æŽæ°)ã¯å¥é¢æ°ãšãªãã",
"title": "å¶é¢æ°ãšå¥é¢æ°"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "tan Ξ {\\displaystyle \\tan \\theta } ã¯å¶é¢æ°ããããšãå¥é¢æ°ã調ã¹ãã",
"title": "å¶é¢æ°ãšå¥é¢æ°"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "è§£ç",
"title": "å¶é¢æ°ãšå¥é¢æ°"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "ãªã®ã§ã tan Ξ {\\displaystyle \\tan \\theta } ã¯å¥é¢æ°ã§ããã",
"title": "å¶é¢æ°ãšå¥é¢æ°"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "颿° y = sin ( Ξ â Ï 3 ) {\\displaystyle y=\\sin \\left(\\theta -{\\frac {\\pi }{3}}\\right)} ã®ã°ã©ãã¯ã y = sin Ξ {\\displaystyle y=\\sin \\theta } ã®ã°ã©ãã Ξ軞æ¹åã« Ï 3 {\\displaystyle {\\frac {\\pi }{3}}} ã ãå¹³è¡ç§»åããããã®ã«ãªããåšæã¯ 2 Ï {\\displaystyle 2\\pi } ã§ããã(å¹³è¡ç§»åããŠããåšæã¯å€ããããsinΞãšåããåšæã¯ 2 Ï {\\displaystyle 2\\pi } ã®ãŸãŸã§ããã)",
"title": "ãããããªäžè§é¢æ°"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "",
"title": "ãããããªäžè§é¢æ°"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "颿° y=2sin Ξ ã®ã°ã©ãã®åœ¢ã¯ y=sin Ξ ãy軞æ¹åã«2åã«æ¡å€§ãããã®ã§ãåšæã¯ y=sin Ξ ãšåãã 2Ï ã§ããã",
"title": "ãããããªäžè§é¢æ°"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "ãŒ1 ⊠sin Ξ ⊠1 ãªã®ã§ã",
"title": "ãããããªäžè§é¢æ°"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "å€å㯠ãŒ2 ⊠2sin Ξ ⊠2 ã§ããã",
"title": "ãããããªäžè§é¢æ°"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "颿° y=sin2Ξ ã®ã°ã©ãã¯y軞ãåºæºã«Îžè»žæ¹åã« 1 2 {\\displaystyle {\\frac {1}{2}}} åã«çž®å°ãããã®ã«ãªã£ãŠããã",
"title": "ãããããªäžè§é¢æ°"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "ãããã£ãŠãåšæã 1 2 {\\displaystyle {\\frac {1}{2}}} åã«ãªã£ãŠãããy=sinΞ ã®åšæã¯ 2 Ï {\\displaystyle 2\\pi } ã ãããy=sin2Ξ ã®åšæã¯ Ï {\\displaystyle \\pi } ã§ããã",
"title": "ãããããªäžè§é¢æ°"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "äžè§é¢æ°ã®å æ³å®ç",
"title": "å æ³å®ç"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "ãæãç«ã€ã",
"title": "å æ³å®ç"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "蚌æ",
"title": "å æ³å®ç"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "ä»»æã®å®æ° α , β {\\displaystyle \\alpha ,\\beta } ã«å¯Ÿããåäœååšäžã®ç¹ A ( cos α , sin α ) , B ( cos β , sin β ) {\\displaystyle \\mathrm {A} (\\cos \\alpha ,\\sin \\alpha ),\\mathrm {B} (\\cos \\beta ,\\sin \\beta )} ããšãããã®ãšãã ç·å A B {\\displaystyle \\mathrm {AB} } ã®é·ãã®2ä¹ A B 2 {\\displaystyle \\mathrm {AB} ^{2}} ã¯äœåŒŠå®çã䜿ãããšã«ãã",
"title": "å æ³å®ç"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "A B 2 = 2 â 2 cos ( α â β ) {\\displaystyle \\mathrm {AB} ^{2}=2-2\\cos(\\alpha -\\beta )}",
"title": "å æ³å®ç"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "ã§ãããæ¬¡ã«äžå¹³æ¹ã®å®çã䜿ã£ãŠ",
"title": "å æ³å®ç"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "A B 2 = ( cos α â cos α ) 2 + ( sin α â sin β ) 2 = 2 â 2 ( cos α cos β + sin α sin β ) {\\displaystyle \\mathrm {AB} ^{2}=(\\cos \\alpha -\\cos \\alpha )^{2}+(\\sin \\alpha -\\sin \\beta )^{2}=2-2(\\cos \\alpha \\cos \\beta +\\sin \\alpha \\sin \\beta )}",
"title": "å æ³å®ç"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "ãããæŽçããŠ",
"title": "å æ³å®ç"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "cos ( α â β ) = cos α cos β + sin α sin β {\\displaystyle \\cos(\\alpha -\\beta )=\\cos \\alpha \\cos \\beta +\\sin \\alpha \\sin \\beta }",
"title": "å æ³å®ç"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "ãåŸãã",
"title": "å æ³å®ç"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "cos ( α + β ) = cos ( α â ( â β ) ) = cos α cos ( â β ) + sin α sin ( â β ) = cos α cos β â sin α sin β {\\displaystyle \\cos(\\alpha +\\beta )=\\cos(\\alpha -(-\\beta ))=\\cos \\alpha \\cos(-\\beta )+\\sin \\alpha \\sin(-\\beta )=\\cos \\alpha \\cos \\beta -\\sin \\alpha \\sin \\beta }",
"title": "å æ³å®ç"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "ã§ããã",
"title": "å æ³å®ç"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "以äžããŸãšããŠ",
"title": "å æ³å®ç"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "cos ( α ± β ) = cos α cos β â sin α sin β {\\displaystyle \\cos(\\alpha \\pm \\beta )=\\cos \\alpha \\cos \\beta \\mp \\sin \\alpha \\sin \\beta }",
"title": "å æ³å®ç"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "ãåŸãã",
"title": "å æ³å®ç"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "ããã§ã",
"title": "å æ³å®ç"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "sin ( α ± β ) = â cos ( α + Ï 2 ± β ) = â { cos ( α + Ï 2 ) cos ( β ) â sin ( α + Ï 2 ) sin β } = sin α cos β ± cos α sin β {\\displaystyle \\sin(\\alpha \\pm \\beta )=-\\cos(\\alpha +{\\frac {\\pi }{2}}\\pm \\beta )=-\\{\\cos(\\alpha +{\\frac {\\pi }{2}})\\cos(\\beta )\\mp \\sin(\\alpha +{\\frac {\\pi }{2}})\\sin \\beta \\}=\\sin \\alpha \\cos \\beta \\pm \\cos \\alpha \\sin \\beta }",
"title": "å æ³å®ç"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "ããã«ã tan x {\\displaystyle \\tan x} ã«ã€ããŠã",
"title": "å æ³å®ç"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "tan ( α ± β ) = sin ( α ± β ) cos ( α ± β ) = sin α cos β ± cos α sin β cos α cos β â sin α sin β = sin α cos β cos α cos β ± cos α sin β cos α cos β cos α cos β cos α cos β â sin α sin β cos α cos β = tan α ± tan β 1 â tan α tan β {\\textstyle {\\begin{aligned}\\tan(\\alpha \\pm \\beta )&={\\frac {\\sin(\\alpha \\pm \\beta )}{\\cos(\\alpha \\pm \\beta )}}\\\\&={\\frac {\\sin \\alpha \\cos \\beta \\pm \\cos \\alpha \\sin \\beta }{\\cos \\alpha \\cos \\beta \\mp \\sin \\alpha \\sin \\beta }}\\\\&={\\cfrac {{\\cfrac {\\sin \\alpha \\cos \\beta }{\\cos \\alpha \\cos \\beta }}\\pm {\\cfrac {\\cos \\alpha \\sin \\beta }{\\cos \\alpha \\cos \\beta }}}{{\\cfrac {\\cos \\alpha \\cos \\beta }{\\cos \\alpha \\cos \\beta }}\\mp {\\cfrac {\\sin \\alpha \\sin \\beta }{\\cos \\alpha \\cos \\beta }}}}\\\\&={\\frac {\\tan \\alpha \\pm \\tan \\beta }{1\\mp \\tan \\alpha \\tan \\beta }}\\end{aligned}}}",
"title": "å æ³å®ç"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "ãæãç«ã€ã",
"title": "å æ³å®ç"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "å æ³å®çãçšããŠä»¥äžã蚌æã§ããã",
"title": "åè§ã®å
¬åŒ"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "sin 2 α = sin ( α + α ) = 2 sin α cos α {\\displaystyle \\sin 2\\alpha =\\sin(\\alpha +\\alpha )=2\\sin \\alpha \\cos \\alpha }",
"title": "åè§ã®å
¬åŒ"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "cos 2 α = cos ( α + α ) = cos 2 α â sin 2 α = 2 cos 2 α â 1 = 1 â 2 sin 2 α {\\displaystyle \\cos 2\\alpha =\\cos(\\alpha +\\alpha )=\\cos ^{2}\\alpha -\\sin ^{2}\\alpha =2\\cos ^{2}\\alpha -1=1-2\\sin ^{2}\\alpha }",
"title": "åè§ã®å
¬åŒ"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "tan 2 α = 2 tan α 1 â tan 2 α {\\displaystyle \\tan 2\\alpha ={\\frac {2\\tan \\alpha }{1-\\tan ^{2}\\alpha }}}",
"title": "åè§ã®å
¬åŒ"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "次ã«ã cos {\\displaystyle \\cos } ã®åè§ã®å
¬åŒãå€åœ¢ãããš",
"title": "åè§ã®å
¬åŒ"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "sin 2 α = 1 â cos 2 α 2 {\\displaystyle \\sin ^{2}\\alpha ={\\frac {1-\\cos 2\\alpha }{2}}}",
"title": "åè§ã®å
¬åŒ"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "cos 2 α = 1 + cos 2 α 2 {\\displaystyle \\cos ^{2}\\alpha ={\\frac {1+\\cos 2\\alpha }{2}}}",
"title": "åè§ã®å
¬åŒ"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "ã§ããã",
"title": "åè§ã®å
¬åŒ"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "æŒç¿åé¡",
"title": "åè§ã®å
¬åŒ"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "è§£ç",
"title": "åè§ã®å
¬åŒ"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "sin 15 â = sin ( 45 â â 30 â ) = 6 â 2 4 {\\displaystyle \\sin 15^{\\circ }=\\sin(45^{\\circ }-30^{\\circ })={\\frac {{\\sqrt {6}}-{\\sqrt {2}}}{4}}}",
"title": "åè§ã®å
¬åŒ"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "cos 15 â = cos ( 45 â â 30 â ) = 6 + 2 4 {\\displaystyle \\cos 15^{\\circ }=\\cos(45^{\\circ }-30^{\\circ })={\\frac {{\\sqrt {6}}+{\\sqrt {2}}}{4}}}",
"title": "åè§ã®å
¬åŒ"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "tan 2 α = sin 2 α cos 2 α = 1 â cos 2 α 1 + cos 2 α {\\displaystyle \\tan ^{2}\\alpha ={\\frac {\\sin ^{2}\\alpha }{\\cos ^{2}\\alpha }}={\\frac {1-\\cos 2\\alpha }{1+\\cos 2\\alpha }}}",
"title": "åè§ã®å
¬åŒ"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "ä»ãŸã§ã®å®çããŸãšãããšã次ã®ããã«ãªãã",
"title": "åè§ã®å
¬åŒ"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "èŠãæ¹",
"title": "åè§ã®å
¬åŒ"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "å æ³å®çã¯ãå²ããã³ã¹ã¢ã¹ã³ã¹ã¢ã¹å²ãããããã³ã¹ã¢ã¹ã³ã¹ã¢ã¹å²ããå²ããããšããèªååãããããŸãã",
"title": "åè§ã®å
¬åŒ"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "cos {\\displaystyle \\cos } ã®åè§ã®å
¬åŒ cos 2 Ξ = 2 cos 2 Ξ â 1 = 1 â 2 sin 2 Ξ {\\displaystyle \\cos 2\\theta =2\\cos ^{2}\\theta -1=1-2\\sin ^{2}\\theta } 㯠± 1 â 2 a a a 2 Ξ {\\displaystyle \\pm 1\\mp 2\\mathrm {aaa} ^{2}\\theta } ãšãã圢ãèŠã㊠sin {\\displaystyle \\sin } ã¯ç¬Šå·ã â {\\displaystyle -} ã1 ã®ç¬Šå·ã¯ãã®éãšèŠããŸãã",
"title": "åè§ã®å
¬åŒ"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "2ä¹ã®äžè§é¢æ° sin 2 Ξ = 1 â cos 2 Ξ 2 , cos 2 Ξ = 1 + cos 2 Ξ 2 {\\displaystyle \\sin ^{2}\\theta ={\\frac {1-\\cos 2\\theta }{2}},\\cos ^{2}\\theta ={\\frac {1+\\cos 2\\theta }{2}}} ã¯ã 1 ± cos 2 Ξ 2 {\\displaystyle {\\frac {1\\pm \\cos 2\\theta }{2}}} ãšãã圢ãèŠããŠã sin {\\displaystyle \\sin } ã¯ç¬Šå·ã â {\\displaystyle -} ãšèããŸãã",
"title": "åè§ã®å
¬åŒ"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "äžè§é¢æ°ã®å",
"title": "äžè§é¢æ°ã®åæ"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "ã«ãããŠã a , b â 0 {\\displaystyle a,b\\neq 0} ã®ãšã",
"title": "äžè§é¢æ°ã®åæ"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "{ a a 2 + b 2 } 2 + { b a 2 + b 2 } 2 = 1 {\\displaystyle \\left\\{{\\dfrac {a}{\\sqrt {a^{2}+b^{2}}}}\\right\\}^{2}+\\left\\{{\\dfrac {b}{\\sqrt {a^{2}+b^{2}}}}\\right\\}^{2}=1} ã§ããã®ã§ãç¹ ( a a 2 + b 2 , b a 2 + b 2 ) {\\displaystyle \\left({\\dfrac {a}{\\sqrt {a^{2}+b^{2}}}},{\\dfrac {b}{\\sqrt {a^{2}+b^{2}}}}\\right)} ã¯åäœååšäžã®ç¹ãªã®ã§ã",
"title": "äžè§é¢æ°ã®åæ"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "ãšãªããããªÎ±ããšãããšãã§ãããã®Î±ãçšããŠæ¬¡ã®ãããªå€åœ¢ãã§ããã",
"title": "äžè§é¢æ°ã®åæ"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "æŒç¿åé¡",
"title": "äžè§é¢æ°ã®åæ"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "r , α {\\displaystyle r,\\alpha } 㯠r > 0 , â Ï â€ Î± < Ï {\\displaystyle r>0,-\\pi \\leq \\alpha <\\pi } ãæºãããšããã",
"title": "äžè§é¢æ°ã®åæ"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "è§£ç",
"title": "äžè§é¢æ°ã®åæ"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "sin Ξ â 3 cos Ξ = 2 ( 1 2 sin Ξ â 3 2 cos Ξ ) = 2 ( sin Ξ cos Ï 3 â cos Ξ sin Ï 3 ) = 2 sin ( Ξ â Ï 3 ) {\\displaystyle {\\begin{aligned}\\sin \\theta -{\\sqrt {3}}\\cos \\theta &=2\\left({\\frac {1}{2}}\\sin \\theta -{\\frac {\\sqrt {3}}{2}}\\cos \\theta \\right)\\\\&=2\\left(\\sin \\theta \\cos {\\frac {\\pi }{3}}-\\cos \\theta \\sin {\\frac {\\pi }{3}}\\right)\\\\&=2\\sin \\left(\\theta -{\\frac {\\pi }{3}}\\right)\\\\\\end{aligned}}}",
"title": "äžè§é¢æ°ã®åæ"
},
{
"paragraph_id": 104,
"tag": "p",
"text": "äžè§é¢æ°ã®å æ³å®çãçšãããšãäžè§é¢æ°ã®åâç©ã®å
¬åŒãããã³ç©âåã®å
¬åŒãåŸãããããããã",
"title": "åããç©ãžã®å
¬åŒãšç©ããåãžã®å
¬åŒ"
},
{
"paragraph_id": 105,
"tag": "p",
"text": "ãšãªãã",
"title": "åããç©ãžã®å
¬åŒãšç©ããåãžã®å
¬åŒ"
},
{
"paragraph_id": 106,
"tag": "p",
"text": "å æ³å®ç",
"title": "åããç©ãžã®å
¬åŒãšç©ããåãžã®å
¬åŒ"
},
{
"paragraph_id": 107,
"tag": "p",
"text": "ããã (1) + (2) ãã",
"title": "åããç©ãžã®å
¬åŒãšç©ããåãžã®å
¬åŒ"
},
{
"paragraph_id": 108,
"tag": "p",
"text": "(1) - (2) ãã",
"title": "åããç©ãžã®å
¬åŒãšç©ããåãžã®å
¬åŒ"
},
{
"paragraph_id": 109,
"tag": "p",
"text": "(3) + (4) ãã",
"title": "åããç©ãžã®å
¬åŒãšç©ããåãžã®å
¬åŒ"
},
{
"paragraph_id": 110,
"tag": "p",
"text": "(3) - (4) ãã",
"title": "åããç©ãžã®å
¬åŒãšç©ããåãžã®å
¬åŒ"
},
{
"paragraph_id": 111,
"tag": "p",
"text": "ãåŸãããã",
"title": "åããç©ãžã®å
¬åŒãšç©ããåãžã®å
¬åŒ"
},
{
"paragraph_id": 112,
"tag": "p",
"text": "A = α + β , B = α â β {\\displaystyle A=\\alpha +\\beta ,\\,B=\\alpha -\\beta } ãšãããšã α = A + B 2 , β = A â B 2 {\\displaystyle \\alpha ={\\frac {A+B}{2}},\\,\\beta ={\\frac {A-B}{2}}} ã§ããããããç©âåã®å
¬åŒã«ä»£å
¥ããã°ããããã",
"title": "åããç©ãžã®å
¬åŒãšç©ããåãžã®å
¬åŒ"
},
{
"paragraph_id": 113,
"tag": "p",
"text": "ãåŸãããã",
"title": "åããç©ãžã®å
¬åŒãšç©ããåãžã®å
¬åŒ"
},
{
"paragraph_id": 114,
"tag": "p",
"text": "èŠãæ¹",
"title": "åããç©ãžã®å
¬åŒãšç©ããåãžã®å
¬åŒ"
},
{
"paragraph_id": 115,
"tag": "p",
"text": "ç©âåã®å
¬åŒã¯ãäž2ã€ã¯ α {\\displaystyle \\alpha } 㚠β {\\displaystyle \\beta } ãå
¥ãæ¿ããã°åãåŒãªã®ã§ãèŠããã®ã¯3åŒã§ããã sin sin {\\displaystyle \\sin \\sin } ã®å
¬åŒã¯ cos cos {\\displaystyle \\cos \\cos } ã®å
¬åŒã®ç¬Šå·ã2〠â {\\displaystyle -} ã«ãããã®ã«ãªã£ãŠããã",
"title": "åããç©ãžã®å
¬åŒãšç©ããåãžã®å
¬åŒ"
},
{
"paragraph_id": 116,
"tag": "p",
"text": "åâç©ã®å
¬åŒã¯ã a a a â a a a {\\displaystyle {\\rm {{aaa}-{\\rm {aaa}}}}} ã®åŒã¯ a a a + a a a {\\displaystyle {\\rm {{aaa}+{\\rm {aaa}}}}} ã®å
¬åŒã® cos {\\displaystyle \\cos } ãš sin {\\displaystyle \\sin } ãéã«ãã圢ã«ãªã£ãŠããã",
"title": "åããç©ãžã®å
¬åŒãšç©ããåãžã®å
¬åŒ"
},
{
"paragraph_id": 117,
"tag": "p",
"text": "",
"title": "äžè§é¢æ°ã®åºæ¬å
¬åŒ"
},
{
"paragraph_id": 118,
"tag": "p",
"text": "",
"title": "äžè§é¢æ°ã®åºæ¬å
¬åŒ"
},
{
"paragraph_id": 119,
"tag": "p",
"text": "(1)äžã®åºŠæ°æ³ã§è¡šãããå€ã匧床æ³ãŠè¡šã",
"title": "æŒç¿åé¡"
},
{
"paragraph_id": 120,
"tag": "p",
"text": "1) 150 {\\displaystyle 150} 2) 720 {\\displaystyle 720}",
"title": "æŒç¿åé¡"
},
{
"paragraph_id": 121,
"tag": "p",
"text": "(2) sin Ï / 2 {\\displaystyle \\sin \\pi /2} ã®å€ãæ±ãã",
"title": "æŒç¿åé¡"
}
] | ããã§ã¯äžè§é¢æ°ã®å®çŸ©ãããããšãäžè§é¢æ°ã®åºæ¬çãªæ§è³ªãå æ³å®çãäžè§é¢æ°ã®å¿çšã«ã€ããŠåŠã¶ãäžè§é¢æ°ã¯æ³¢ããã¯ãã«ã®å
ç©ãããŒãªãšå€æãªã©ããŸããŸãªåéã§å¿çšãããŠããã | {{Pathnav|é«çåŠæ ¡ã®åŠç¿|é«çåŠæ ¡æ°åŠ|é«çåŠæ ¡æ°åŠII|frame=1}}
ããã§ã¯äžè§é¢æ°ã®å®çŸ©ãããããšãäžè§é¢æ°ã®åºæ¬çãªæ§è³ªãå æ³å®çãäžè§é¢æ°ã®å¿çšã«ã€ããŠåŠã¶ãäžè§é¢æ°ã¯æ³¢ããã¯ãã«ã®å
ç©ãããŒãªãšå€æãªã©ããŸããŸãªåéã§å¿çšãããŠããã
== äžè¬è§ ==
[[File:General angle of trigonometric functions japanese.svg|thumb|300px|]]
[[File:Negative general angle.svg|thumb|300px]]
å³å³ã®ããã«ãå®ç¹Oãäžå¿ãšããŠå転ããåçŽç· OP ãèããããã®ãšãã®å転ããåçŽç· OP ã®ããšã'''ååŸ'''ãšããã
åçŽç· OX ãè§åºŠã®åºæºãšããããã®åºæºãšãªãåçŽç· OX ã®ããšã'''å§ç·'''ãšããã
ååŸãæèšåãã«å転ããå Žåãå転ããè§åºŠã¯è² ã§ãããšããååŸãåæèšåããããå Žåãå転ããè§åºŠã¯æ£ã§ãããšããã
è² ã®è§åºŠã360°以äžå転ããè§åºŠãèãã«å
¥ããè§ã®ããšã'''äžè¬è§'''ãšããã
{{-}}
== åŒ§åºŠæ³ ==
==== ã©ãžã¢ã³ ====
ããŸãŸã§ã¯è§åºŠã®åäœãšããŠäžåšã 360° ãšããåºŠæ°æ³ã䜿ã£ãŠããããšã ãããããã§ã匧床æ³ã«ããè§åºŠã®è¡šãæ¹ãåŠã¶ã
[[File:1radian japanese.svg|thumb|300px]]
ååŸ1 ã®æåœ¢ã«ãããŠåŒ§ã®é·ãã 1 ã®ãšãã®äžå¿è§ã 1 radãåæ§ã«åŒ§ã®é·ããθã®ãšãã®äžå¿è§ãθ radãšå®çŸ©ããããã®å®çŸ©ãã 180° =π radã360° = 2π rad ãããã«
:<math>\begin{align}1 ^{\circ} &=\frac{\pi}{180}\, \mathrm{rad} \\
\\
1\, \mathrm{rad} &= \frac {180}{\pi} ^{\circ} \approx 57.3^{\circ}\end{align}</math>
ãšãªãããŸã匧床æ³ã®åäœïŒradïŒã¯ãã°ãã°çç¥ãããã
匧床æ³ãçšãããšãäžè§é¢æ°ã®åŸ®ç©åãèããéã«äŸ¿å©ã§ãããïŒãã®ããšã¯æ°åŠIIIã§åŠã¶ïŒ
==== æåœ¢ã®åŒ§ã®é·ããšé¢ç© ====
æåœ¢ã®ååŸã''r'' ã匧床æ³ã§å®çŸ©ãããè§åºŠãθãšãããšãã匧ã®é·ã''l'' ãšé¢ç©''S'' ã¯
:<math>\begin{align}l&=r\theta, \\
\\
S&=\frac{1}{2}r^{2}\theta=\frac{1}{2}rl\end{align}</math>
ãšè¡šããã
== äžè§é¢æ° ==
==== sin ãš cos ã®ã°ã©ã ====
[[File:Sin and cos general angle introduction.svg|thumb|300px|]]
äžè¬è§ã <math>\theta</math> ã®åçŽç·ãšåäœåã亀ããåã <math>\mathrm P</math> ãšããããã®ãšãã® <math>\mathrm P</math> ã®åº§æšã<math>(\cos\theta,\sin\theta)</math> ãšããããšã§ã颿° <math>\sin,\cos</math> ãå®ããããŸãã<math>\tan\theta = \frac{\sin\theta}{\cos\theta}</math> ãšããããšã§é¢æ° <math>\tan\theta</math> ãå®ããã<math>\tan\theta</math> ã¯äžè¬è§ã <math>\theta</math> ã®ååŸã®åŸãã«çããã
* <math>\sin</math> ã¯ãµã€ã³(sine) ãšçºé³ãããæ£åŒŠãšãåŒã°ããã
* <math>\cos</math> ã³ãµã€ã³(cosine) ãšçºé³ãããäœåŒŠãšãåŒã°ããã
* <math>\tan</math> ã¯ã¿ã³ãžã§ã³ã(tangent) ãšçºé³ãããæ£æ¥ãšãåŒã°ããã
ãŸããäžè§é¢æ°ã®çޝä¹ã¯ <math>(\sin\theta)^n = \sin^n\theta</math> ãšè¡šèšãããã[[ãã¡ã€ã«:Circle cos sin.gif|ãµã ãã€ã«|äžå€®|300x300ãã¯ã»ã«]]
[[File:Y=sin(theta).svg|thumb|500px|left]]
[[File:Y=cos(theta).svg|thumb|500px|left]]
{{-}}
cos Ξ ã®ã°ã©ã㯠sin Ξ ã®ã°ã©ãã Ξ軞æ¹åã« <math> - \frac{ \pi }{2} </math>ã ãå¹³è¡ç§»åãããã®ã§ããã
<math>y = \sin\theta</math> ã <math>y = \cos\theta</math> ã®åœ¢ãããæ²ç·ã®ããšã '''æ£åŒŠæ²ç·''' ïŒãããããããããïŒãšããã
颿° <math>\sin,\cos</math> ã®å€åã¯ã©ã¡ããã<math>[-1,1]</math> ã§ããã
{{-}}
==== tan ã®ã°ã©ã ====
[[File:Tangent function introduction.svg|thumb|300px|]]
å³å³ã®ããã« ãè§ Îž ã®ååŸãšåäœåãšã®äº€ç¹ãPãšããŠã
çŽç·OPãš çŽç·xïŒ1 ãšã®äº€ç¹ã T ãšãããšã
Tã®åº§æšã¯
: T (1, tan Ξ)
ã«ãªãã
ãã®ããšãå©çšããŠã yïŒtan Ξ ã®ã°ã©ããããããšãã§ããã
{{-}}
y=tan Ξ ã®ã°ã©ãã¯ãäžå³ã®ããã«ãªãã<br>
[[File:Y=tan(x).svg|500px|]]
y=tan Ξ ã®ã°ã©ãã§ã¯ãΞã®å€ã <math> \frac{ \pi }{2} </math> ã«è¿ã¥ããŠãããšã
çŽç· <math> \theta = \frac{ \pi }{2} </math> ã«éããªãè¿ã¥ããŠããã
ãã®ããã«ãæ²ç·ãããçŽç·ã«éãç¡ãè¿ã¥ããŠãããšããè¿ã¥ãããçŽç·ã®ã»ãã '''挞è¿ç·''' ïŒããããããïŒãšããã
åæ§ã«èããæ¬¡ã®çŽç·ã yïŒtanΞ ã®æŒžè¿ç·ã§ããã
:<math> \cdots , \quad \theta = - \frac{ 3}{2} \pi , \quad \theta = - \frac{ 1}{2} \pi , \quad \theta = \frac{ 1}{2} \pi , \quad \frac{ 3}{2} \pi , \cdots </math>
㯠yïŒtanΞ ã®æŒžè¿ç·ã§ããã
äžè¬ã«ã
:çŽç· <math> \quad \theta = \frac{ \pi }{2} + n \pi </math> ããïŒnã¯æŽæ°ïŒ
ã¯y=tanΞã®ã°ã©ãã®æŒžè¿ç·ã§ããã<ref>髿 ¡ã»å€§åŠå
¥è©Šã§ã¯äœ¿ãããªããã<math>\sec\theta=\frac{1}{\cos\theta},\csc\theta=\frac{1}{\sin\theta},\cot\theta=\frac{1}{\tan\theta}(=\frac{\cos\theta}{\sin\theta})</math> ãšããŠå®çŸ©ãããäžè§é¢æ°ã䜿ããšãããããããããã®é¢æ°ã¯ãããããã»ã«ã³ããã³ã»ã«ã³ããã³ã¿ã³ãžã§ã³ããšåŒã°ããã</ref>
== äžè§é¢æ°ã®æ§è³ª ==
äžè¬è§ã <math>\theta</math> ã®ååŸã¯äžå転ããŠãçããã®ã§ãäžè¬è§ã <math>\theta+2\pi</math> ã®ååŸãšçãããããããäžè§é¢æ°ã®åšææ§
<math>\begin{align}
\sin(\theta+2\pi n)&=\sin \theta \\
\cos(\theta+2\pi n)&=\cos \theta \\
\tan(\theta+2\pi n)&=\tan \theta
\end{align}</math>
ãåŸãã
ç¹ <math>(\cos\theta,\sin\theta)</math> ã <math>\pi</math> å転ããç¹ <math>(\cos(\theta+\pi),\sin(\theta+\pi))</math> ã¯åç¹ãäžå¿ã«ç¹å¯Ÿç§°ç§»åããç¹ã<math>(-\cos\theta,-\sin\theta)</math> ã§ããããšãã
<math>\begin{align}
\sin(\theta + \pi) &= - \sin \theta \\
\cos(\theta + \pi) &= - \cos \theta \\
\tan(\theta + \pi) &= \tan \theta
\end{align}</math>
ãåŸãã
ç¹ <math>(\cos\theta,\sin\theta)</math> ã <math>x</math> 軞ã§ç·å¯Ÿç§°ç§»åç§»åããç¹ã <math>(\cos (-\theta),\sin(-\theta)) = (\cos\theta,-\sin\theta)</math> ã§ããããšãã
<math>\begin{align}\sin(-\theta) &= -\sin\theta \\
\cos(-\theta) &= \cos\theta \\
\tan(- \theta) &= -\tan\theta\end{align}</math>
ãåŸãã
* åé¡äŸ
** åé¡
* ::<math>\begin{align}
& \sin(\theta + \frac{\pi}{2}) \\
& \cos(\theta + \frac{\pi}{2}) \\
& \sin(\frac{\pi}{2} -\theta) \\
& \cos(\frac{\pi}{2}- \theta )
\end{align}</math>
*: ãèšç®ããã
** è§£ç
*: è§θã«å¯Ÿå¿ããç¹ã P(x, y) ãšããããã®ãšããè§ θ + 90°ã«å¯Ÿå¿ããç¹ã P'(x', y') ãšãããšããã®ç¹ã®åº§æšã¯ãP'(-y, x) ã«å¯Ÿå¿ããããã®ããšãããP'ã«ã€ã㊠sin, cos ãèšç®ãããšã
*:: <math>\begin{align}
x' &= -y \\
&= \cos (\theta + \frac{\pi}{2} )\\
&= -\sin\theta \\
y' &= x \\
&= \sin (\theta + \frac{\pi}{2} ) \\
&= \cos\theta
\end{align}</math>
*: ãåŸãããã
*: åæ§ã«ããŠã90°- θ ã«å¯Ÿå¿ããç¹ã P' '(x' ', y' ') ãšãããšã
*:: <math>\begin{align}
x'' &= y \\
y'' &= x
\end{align}</math>
*: ãšãªãããã£ãŠã
*:: <math>\begin{align}
\sin (\frac{\pi}{2} - \theta) &= \cos\theta \\
\cos (\frac{\pi}{2} - \theta) &= \sin\theta
\end{align}</math>
*: ãåŸãããã
åäœååšäžã®ç¹ <math>(\cos\theta,\sin\theta)</math> ããåç¹ãŸã§ã®è·é¢ã¯ 1 ãªã®ã§ã <math>\sin^2\theta+\cos^2\theta = 1</math> ãæãç«ã€ã
ãŸãããã®åŒã«ã <math>\tan\theta = \frac{\sin\theta}{\cos\theta}</math> ã€ãŸãã <math>\sin\theta = \tan\theta \cos\theta</math> ã代å
¥ããã°ã<math>1+\tan^2\theta = \frac{1}{\cos^2\theta}</math> ãæãç«ã€ããšããããã
== åšæé¢æ° ==
颿° <math>f(x)</math> ã«å¯ŸããŠã0 ã§ãªã宿° <math>p</math> ãååšããŠã<math>f(x+p) =f(x)</math> ãšãªããšã颿° <math>f(x)</math> ã¯åšæé¢æ°ãšããã宿° <math>p</math> ãäžã®æ§è³ªãæºãããšãã<math>-p,2p</math> ãªã©ã宿° <math>p</math> ã0ãé€ãæŽæ°åããæ°ãäžã®æ§è³ªãæºãããããã§ãåšæé¢æ°ãç¹åŸŽã¥ããéãšããŠãäžã®æ§è³ªãæºãã宿° <math>p</math> ã®å
ãæ£ã§ãã€æå°ã®ãã®ãéžã³ãããã'''åšæ'''ãšåŒã¶ã
<math>\sin x, \cos x</math> ã¯åšæã <math>2\pi</math> ãšããåšæé¢æ°ã§ããã<math>\tan x</math> ã¯åšæã <math>\pi</math> ãšããåšæé¢æ°ã§ããã
'''æŒç¿åé¡'''
<math>k</math> ã0ã§ãªã宿°ãšããã颿° <math>\sin kx</math> ã®åšæãèšã
'''è§£ç'''
<math>\sin k\left(x+\frac{2\pi}{k}\right) = \sin kx</math> ãªã®ã§çã㯠<math>\frac{2\pi}{k}</math> ãããã¯æ£ã§ãããåšæã®æå°æ§ã®æ¡ä»¶ãæºãããŠããã
== å¶é¢æ°ãšå¥é¢æ° ==
颿° <math>f(x)</math> ã <math>f(-x)=f(x)</math> ãæºãããšãã颿° <math>f(x)</math> ã¯å¶é¢æ°ãšãããå¶é¢æ°ã¯ <math>y</math> 軞ã«é¢ããŠå¯Ÿç§°ãªã°ã©ãã«ãªãã
ãŸãã颿° <math>f(x)</math> ã <math>f(-x)=-f(x)</math> ãæºãããšãã颿° <math>f(x)</math> ã¯å¥é¢æ°ãšãããå¶é¢æ°ã¯åç¹ã«é¢ããŠå¯Ÿè±¡ãªã°ã©ãã«ãªãã
颿° <math>\cos\theta,x^{2n}</math> (<math>n</math> ã¯æŽæ°)ã¯å¶é¢æ°ãšãªãã
颿° <math>\sin x , x^{2n+1}</math> (<math>n</math> ã¯æŽæ°)ã¯å¥é¢æ°ãšãªãã
;æŒç¿åé¡
<math>\tan\theta</math> ã¯å¶é¢æ°ããããšãå¥é¢æ°ã調ã¹ãã
'''è§£ç'''
:<math> \tan( - \theta ) = \frac{\sin(- \theta)} {\cos(-\theta)} = \frac{- \sin(\theta)} {\cos(\theta)} = - \frac{\sin(\theta)} {\cos(\theta)} = - \tan \theta</math>
ãªã®ã§ã <math>\tan\theta</math> ã¯å¥é¢æ°ã§ããã<ref>äžè¬ã«ã颿° <math>f(x) </math> ã«å¯Ÿãã<math>f(x) </math> ãå¶é¢æ°ãå¥é¢æ°ã調ã¹ãã«ã¯ <math>f(-x)</math> ã <math>f(x)</math> ãŸã㯠<math>-f(x)</math> ã®ã©ã¡ãã«çããã調ã¹ãã°ããããŸããã©ã¡ããšãçãããªãå Žåã颿° <math>f(x) </math> ã¯å¶é¢æ°ã§ãå¥é¢æ°ã§ããªãã</ref>
== ãããããªäžè§é¢æ° ==
[[File:Y=sin(theta-pi div 3).svg|thumb|550px|]]
颿° <math> y=\sin \left( \theta - \frac{\pi}{3} \right)</math> ã®ã°ã©ãã¯ã<math> y=\sin \theta </math>ã®ã°ã©ãã Ξ軞æ¹åã« <math> \frac{\pi}{3} </math> ã ãå¹³è¡ç§»åããããã®ã«ãªããåšæã¯ <math> 2 \pi </math> ã§ãããïŒå¹³è¡ç§»åããŠããåšæã¯å€ããããsinΞãšåããåšæã¯ <math> 2 \pi </math> ã®ãŸãŸã§ãããïŒ
{{-}}
[[File:Y=2sin(theta).svg|thumb|550px]]
颿° yïŒ2sin Ξ ã®ã°ã©ãã®åœ¢ã¯ yïŒsin Ξ ãy軞æ¹åã«2åã«æ¡å€§ãããã®ã§ãåšæã¯ yïŒsin Ξ ãšåãã 2Ï ã§ããã
ãŒ1 ⊠sin Ξ ⊠1ãããªã®ã§ã
å€åã¯ãããŒ2 ⊠2sin Ξ ⊠2ããã§ããã
{{-}}
{{-}}
[[File:Y=sin(2 theta) and y=sin(theta).svg|thumb|750px]]
{{-}}
颿° yïŒsin2Ξ ã®ã°ã©ãã¯y軞ãåºæºã«Îžè»žæ¹åã« <math> \frac{1}{2}</math> åã«çž®å°ãããã®ã«ãªã£ãŠããã
ãããã£ãŠãåšæã <math> \frac{1}{2}</math> åã«ãªã£ãŠãããy=sinΞ ã®åšæã¯ <math> 2 \pi </math> ã ãããy=sin2Ξ ã®åšæã¯ <math> \pi </math> ã§ããã
== å æ³å®ç ==
äžè§é¢æ°ã®å æ³å®ç
:<math>\begin{align}
\sin (\alpha \pm \beta) &= \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\
\cos (\alpha \pm \beta) &= \cos \alpha \cos \beta \mp \sin \alpha \sin \beta
\end{align}</math>
ãæãç«ã€ã
'''蚌æ'''
ä»»æã®å®æ° <math>\alpha,\beta</math> ã«å¯Ÿããåäœååšäžã®ç¹ <math>\mathrm{A}(\cos\alpha,\sin\alpha),\mathrm{B}(\cos\beta,\sin\beta)</math> ããšãããã®ãšãã ç·å <math>\mathrm{AB}</math> ã®é·ãã®2ä¹ <math>\mathrm{AB}^2</math> ã¯äœåŒŠå®çã䜿ãããšã«ãã
<math>\mathrm{AB}^2 = 2-2\cos(\alpha-\beta)</math>
ã§ãããæ¬¡ã«äžå¹³æ¹ã®å®çã䜿ã£ãŠ
<math>\mathrm{AB}^2 = (\cos\alpha -\cos\alpha)^2 + (\sin\alpha-\sin\beta)^2 = 2 - 2(\cos\alpha\cos\beta + \sin\alpha\sin\beta)</math>
ãããæŽçããŠ
<math>\cos(\alpha - \beta)= \cos\alpha\cos\beta + \sin\alpha\sin\beta</math>
ãåŸãã
<math>\cos(\alpha+\beta) = \cos(\alpha-(-\beta)) = \cos\alpha\cos(-\beta) + \sin\alpha\sin(-\beta) =
\cos\alpha\cos\beta - \sin\alpha\sin\beta</math>
ã§ããã
以äžããŸãšããŠ
<math>\cos (\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta</math>
ãåŸãã
ããã§ã
<math>\sin(\alpha \pm \beta) = -\cos(\alpha +\frac{\pi}{2} \pm \beta) =
-\{\cos(\alpha + \frac{\pi}{2})\cos(\beta) \mp \sin(\alpha+\frac{\pi}{2})\sin\beta \} =
\sin\alpha\cos\beta \pm \cos\alpha\sin\beta</math><ref>ãå²ãã(sin)ã³ã¹ã¢ã¹(cos)ã³ã¹ã¢ã¹(cos)å²ãã(sin)ããã³ã¹ã¢ã¹(cos)ã³ã¹ã¢ã¹(cos)å²ãã(sin)å²ãã(sin)ããšããèŠãããããã</ref>
ããã«ã<math>\tan x</math> ã«ã€ããŠã
<math display="inline">\begin{align}
\tan (\alpha\pm\beta) &= \frac {\sin (\alpha\pm\beta) } {\cos (\alpha\pm\beta) } \\
&= \frac { \sin \alpha \cos \beta \pm \cos \alpha \sin \beta } { \cos \alpha \cos \beta \mp \sin \alpha \sin \beta } \\
&= \cfrac { \cfrac { \sin \alpha \cos \beta } { \cos \alpha \cos \beta } \pm \cfrac { \cos \alpha \sin \beta } { \cos \alpha \cos \beta } } { \cfrac { \cos \alpha \cos \beta } { \cos \alpha \cos \beta } \mp \cfrac { \sin \alpha \sin \beta } { \cos \alpha \cos \beta } } \\
&= \frac { \tan \alpha \pm \tan \beta } { 1 \mp \tan \alpha \tan \beta }
\end{align}</math>
ãæãç«ã€ã
== åè§ã®å
¬åŒ ==
å æ³å®çãçšããŠä»¥äžã蚌æã§ããã
<math>\sin 2\alpha = \sin(\alpha + \alpha) = 2\sin\alpha\cos\alpha</math>
<math>\cos 2\alpha = \cos(\alpha+\alpha)=\cos^2\alpha-\sin^2\alpha = 2\cos^2\alpha-1=1-2\sin^2\alpha</math>
<math>\tan 2\alpha = \frac{2\tan \alpha}{1-\tan^2\alpha}</math>
次ã«ã <math>\cos</math> ã®åè§ã®å
¬åŒãå€åœ¢ãããš
<math>\sin^2\alpha = \frac{1-\cos 2\alpha}{2}</math>
<math>\cos^2\alpha = \frac{1+\cos 2\alpha}{2}</math>
ã§ããã
'''æŒç¿åé¡'''
# <math>\sin 15^\circ,\cos 15^\circ</math> ãæ±ãã
# <math>\tan^2 \alpha = \frac{1-\cos 2\alpha}{1+\cos 2\alpha}</math> ã瀺ã
'''è§£ç'''
<math>\sin 15^\circ = \sin(45^\circ-30^\circ)=\frac{\sqrt 6 - \sqrt 2}{4}</math>
<math>\cos 15^\circ = \cos(45^\circ-30^\circ)=\frac{\sqrt 6 + \sqrt 2}{4}</math>
<math>\tan ^2\alpha = \frac{\sin^2\alpha}{\cos^2\alpha} = \frac{1-\cos 2\alpha}{1+\cos 2\alpha}</math>
ä»ãŸã§ã®å®çããŸãšãããšã次ã®ããã«ãªãã
{| style="border:2px solid yellow;width:80%" cellspacing=0
|style="background:yellow"|'''äžè§é¢æ°ã®å æ³å®ç'''
|-
|style="padding:5px"|
:<math>\begin{align}
\sin (\alpha \pm \beta) &= \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\
\cos (\alpha \pm \beta) &= \cos \alpha \cos \beta \mp \sin \alpha \sin \beta\\
\tan (\alpha \pm \beta) &= \frac { \tan \alpha \pm \tan \beta } { 1 \mp \tan \alpha \tan \beta } \\
\end{align}</math>
|}
{| style="border:2px solidãgreenyellow;width:80%" cellspacing=0
|style="background:greenyellow"|'''2åè§ã®å
¬åŒ'''
|-
|style="padding:5px"|
:<math>\begin{align}
\sin 2 \alpha &= 2 \sin \alpha \cos \alpha \\
\cos 2 \alpha &= \cos ^2 \alpha - \sin ^2 \alpha = 1 - 2 \sin ^2 \alpha = 2 \cos ^2 \alpha - 1 \\
\tan 2 \alpha &= \frac { 2 \tan \alpha } { 1 - \tan ^2 \alpha }
\end{align}</math>
|}
{| style="border:2px solidãskyblue;width:80%" cellspacing=0
|style="background:skyblue"|äžè§é¢æ°ã®2ä¹
|-
|style="padding:5px"|
:<math>\begin{align}
\sin ^2 \alpha &= \frac {1 - \cos 2\alpha }2 \\
\cos ^2 \alpha &= \frac {1 + \cos 2\alpha }2 \\
\tan ^2 \alpha &= \frac {1 - \cos 2\alpha } {1 + \cos 2\alpha }
\end{align}</math>
|}
'''èŠãæ¹'''
å æ³å®çã¯ãå²ããã³ã¹ã¢ã¹ã³ã¹ã¢ã¹å²ãããããã³ã¹ã¢ã¹ã³ã¹ã¢ã¹å²ããå²ããããšããèªååãããããŸãã
<math>\cos</math> ã®åè§ã®å
¬åŒ <math>\cos 2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta</math> 㯠<math>\pm 1 \mp 2\mathrm{aaa}^2\theta</math> ãšãã圢ãèŠã㊠<math>\sin</math> ã¯ç¬Šå·ã <math>-</math>ã1 ã®ç¬Šå·ã¯ãã®éãšèŠããŸãã
2ä¹ã®äžè§é¢æ° <math>\sin^2\theta = \frac{1-\cos 2\theta}{2},\cos^2\theta = \frac{1+\cos 2\theta}{2}</math> ã¯ã<math>\frac{1\pm \cos 2\theta}{2}</math> ãšãã圢ãèŠããŠã <math>\sin</math> ã¯ç¬Šå·ã<math>-</math> ãšèããŸãã
==äžè§é¢æ°ã®åæ==
äžè§é¢æ°ã®å
:<math>
a \sin \theta + b \cos \theta
</math>
ã«ãããŠã<math>a,b\neq 0</math> ã®ãšã
<math>\left\{\dfrac{a}{\sqrt{a^2+b^2}}\right\}^2 + \left\{\dfrac{b}{\sqrt{a^2+b^2}}\right\}^2 = 1</math> ã§ããã®ã§ãç¹ <math>\left(\dfrac{a}{\sqrt{a^2+b^2}},\dfrac{b}{\sqrt{a^2+b^2}}\right)</math> ã¯åäœååšäžã®ç¹ãªã®ã§ã
:<math>
\begin{cases}
\cos \alpha = \dfrac{a}{\sqrt{a^2+b^2}}\\
\sin \alpha = \dfrac{b}{\sqrt{a^2+b^2}}
\end{cases}
</math>
ãšãªããããªαããšãããšãã§ãããã®αãçšããŠæ¬¡ã®ãããªå€åœ¢ãã§ããã
:<math>\begin{align}
a \sin \theta + b \cos \theta & = \sqrt{a^2+b^2}\left( \frac{a}{\sqrt{a^2+b^2}} \sin \theta + \frac{b}{\sqrt{a^2+b^2}} \cos \theta \right) \\
& = \sqrt{a^2+b^2} \left( \sin \theta \cos \alpha + \cos \theta \sin \alpha \right)\\
& = \sqrt{a^2+b^2} \sin \left( \theta + \alpha \right)\\
\end{align}
</math>
'''æŒç¿åé¡'''
<math>r,\alpha</math> 㯠<math>r>0,-\pi\le \alpha< \pi</math> ãæºãããšããã
# <math>\sin \theta - \sqrt{3} \cos \theta</math> ã <math>r \sin \left( \theta + \alpha \right)</math> ã®åœ¢ã«å€åœ¢ããã
# <math>2\cos\theta-2\sin\theta</math> ã <math>r\cos(\theta+\alpha)</math> ã®åœ¢ã«å€åœ¢ããã
'''è§£ç'''
# <math>r = \sqrt{1^2 + \left( - \sqrt{3} \right)^2} = 2</math> ãã
<math>\begin{align}
\sin \theta - \sqrt{3} \cos \theta & = 2 \left( \frac{1}{2} \sin \theta - \frac{\sqrt{3}}{2} \cos \theta \right) \\
& = 2 \left( \sin \theta \cos \frac{\pi}{3} - \cos \theta \sin \frac{\pi}{3} \right)\\
& = 2 \sin \left( \theta - \frac{\pi}{3} \right)\\
\end{align}
</math>
# <math>2\cos\theta-2\sin\theta=2\sqrt 2\left(\frac{1}{\sqrt 2}\cos\theta-\frac{1}{\sqrt 2}\sin\theta\right)</math> <ref>ããå€åœ¢ããããšã§ãç¹ <math>\left(\frac{1}{\sqrt2},\frac{1}{\sqrt2}\right)</math> ãåäœååšäžã®ç¹ã«ãªã</ref>ããã§ã<math>r\cos(\theta+\alpha) = r(\cos\theta\cos\alpha-\sin\theta\sin\alpha)</math> ã§ããã <math>\cos\alpha=\frac{1}{\sqrt 2},\sin\alpha = \frac{1}{\sqrt 2}</math> ãšãªã <math>\alpha</math> ãšã㊠<math>\alpha = \frac{\pi}{4}</math> ãããã<ref>ããã§ã <math>\alpha</math> ã¯å顿ã®å¶çŽãæºããããã«éžã¶ã <math>\alpha</math> ã« <math>2\pi</math> ã®æŽæ°åãè¶³ãã <math>\alpha + 2\pi n</math> ãéžãã§ãäžè§é¢æ°ã®åæã¯ã§ããããå®çšçã«ã <math>\alpha</math> ã¯ç°¡åãªãã®ãéžãã æ¹ãããã ããã</ref>ãããã£ãŠã<math>2\cos\theta-2\sin\theta=2\sqrt 2\cos\left(\theta + \frac{\pi}{4}\right)</math>
== åããç©ãžã®å
¬åŒãšç©ããåãžã®å
¬åŒ ==
äžè§é¢æ°ã®å æ³å®çãçšãããšãäžè§é¢æ°ã®åâç©ã®å
¬åŒãããã³ç©âåã®å
¬åŒãåŸãããããããã
;ç©âåã®å
¬åŒ
:<math>\begin{align}
\sin \alpha \cos \beta &= \frac 1 2 \{\sin (\alpha+\beta) + \sin (\alpha-\beta)\}\\
\cos \alpha \sin \beta &= \frac 1 2 \{\sin (\alpha+\beta) - \sin (\alpha-\beta) \}\\
\cos \alpha \cos \beta &= \frac 1 2 \{\cos (\alpha+\beta) + \cos (\alpha-\beta) \}\\
\sin \alpha \sin \beta &= -\frac 1 2 \{\cos (\alpha+\beta) - \cos (\alpha-\beta) \}
\end{align}</math>
;åâç©ã®å
¬åŒ
:<math>\begin{align}
\sin A + \sin B &= 2 \sin \left(\frac {A+B}2 \right) \cos \left(\frac {A-B}2 \right)\\
\sin A - \sin B &= 2 \cos \left(\frac {A+B}2 \right) \sin \left(\frac {A-B}2 \right)\\
\cos A + \cos B &= 2 \cos \left(\frac {A+B}2 \right) \cos \left(\frac {A-B}2 \right)\\
\cos A - \cos B &= -2 \sin \left(\frac {A+B}2 \right) \sin \left(\frac {A-B}2 \right)
\end{align}</math>
ãšãªãã
;å°åº
å æ³å®ç
:{{åŒçªå·|<math>\sin(\alpha +\beta )=\sin \alpha \cos \beta +\cos \alpha \sin \beta</math>|1}}
:{{åŒçªå·|<math>\sin(\alpha -\beta )=\sin \alpha \cos \beta -\cos \alpha \sin \beta</math>|2}}
:{{åŒçªå·|<math>\cos(\alpha +\beta )=\cos \alpha \cos \beta -\sin \alpha \sin \beta </math>|3}}
:{{åŒçªå·|<math>\cos(\alpha -\beta )=\cos \alpha \cos \beta +\sin \alpha \sin \beta </math>|4}}
ããã [[é«çåŠæ ¡æ°åŠII/äžè§é¢æ°#expr1|(1)]] + [[é«çåŠæ ¡æ°åŠII/äžè§é¢æ°#expr2|(2)]] ãã
:<math>\sin \alpha \cos \beta = \frac 1 2 (\sin (\alpha+\beta) + \sin (\alpha-\beta))</math>
[[é«çåŠæ ¡æ°åŠII/äžè§é¢æ°#expr1|(1)]] - [[é«çåŠæ ¡æ°åŠII/äžè§é¢æ°#expr2|(2)]] ãã
:<math>\cos \alpha \sin \beta = \frac 1 2 (\sin (\alpha+\beta) - \sin (\alpha-\beta) </math>
[[é«çåŠæ ¡æ°åŠII/äžè§é¢æ°#expr3|(3)]] + [[é«çåŠæ ¡æ°åŠII/äžè§é¢æ°#expr4|(4)]] ãã
:<math>\cos \alpha \cos \beta = \frac 1 2 (\cos (\alpha+\beta) + \cos (\alpha-\beta) )</math>
[[é«çåŠæ ¡æ°åŠII/äžè§é¢æ°#expr3|(3)]] - [[é«çåŠæ ¡æ°åŠII/äžè§é¢æ°#expr4|(4)]] ãã
:<math>\sin \alpha \sin \beta = -\frac 1 2 (\cos (\alpha+\beta) - \cos (\alpha-\beta) )</math>
ãåŸãããã
<math>A = \alpha + \beta,\, B = \alpha-\beta</math> ãšãããšã <math>\alpha = \frac{A+B}{2},\, \beta = \frac{A-B}{2}</math> ã§ããããããç©âåã®å
¬åŒã«ä»£å
¥ããã°ããããã
:<math>\begin{align}
\sin A + \sin B &= 2 \sin \left(\frac {A+B}2 \right) \cos \left(\frac {A-B}2 \right)\\
\sin A - \sin B &= 2 \cos \left(\frac {A+B}2 \right) \sin \left(\frac {A-B}2 \right)\\
\cos A + \cos B &= 2 \cos \left(\frac {A+B}2 \right) \cos \left(\frac {A-B}2 \right)\\
\cos A - \cos B &= -2 \sin \left(\frac {A+B}2 \right) \sin \left(\frac {A-B}2 \right)
\end{align}</math>
ãåŸãããã
'''èŠãæ¹'''
ç©âåã®å
¬åŒã¯ãäž2ã€ã¯ <math>\alpha</math> ãš <math>\beta</math> ãå
¥ãæ¿ããã°åãåŒãªã®ã§ãèŠããã®ã¯3åŒã§ããã<math>\sin\sin</math> ã®å
¬åŒã¯ <math>\cos\cos</math> ã®å
¬åŒã®ç¬Šå·ã2〠<math>-</math> ã«ãããã®ã«ãªã£ãŠããã
åâç©ã®å
¬åŒã¯ã<math>\rm{aaa}-\rm{aaa}</math> ã®åŒã¯ <math>\rm{aaa}+\rm{aaa}</math> ã®å
¬åŒã® <math>\cos</math> ãš <math>\sin</math> ãéã«ãã圢ã«ãªã£ãŠããã
== äžè§é¢æ°ã®åºæ¬å
¬åŒ ==
* åšææ§ïŒ''n''ãã¯æŽæ°ïŒ
:<math>\begin{align}
\sin(\theta+2\pi n)&=\sin \theta \\
\cos(\theta+2\pi n)&=\cos \theta \\
\tan(\theta+2\pi n)&=\tan \theta
\end{align}</math>
* å¶é¢æ°ãå¥é¢æ°
:<math>\begin{align}
\sin(-\theta)&=-\sin \theta \\
\cos(-\theta)&=\cos \theta \\
\tan(-\theta)&=-\tan \theta
\end{align}</math>
* <math>\theta+\pi</math>
:<math>\begin{align}
\sin(\theta+\pi)&=-\sin \theta \\
\cos(\theta+\pi)&=-\cos \theta \\
\tan(\theta+\pi)&=\tan \theta
\end{align}</math>
* <math>\pi-\theta</math>
:<math>\begin{align}
\sin(\pi-\theta)&=\sin \theta \\
\cos(\pi-\theta)&=-\cos \theta \\
\tan(\pi-\theta)&=-\tan \theta
\end{align}</math>
* <math>\theta+\frac{1}{2}\pi</math>
:<math>\begin{align}
\sin \left(\theta+\frac{1}{2}\pi \right)&=\cos \theta \\
\cos \left(\theta+\frac{1}{2}\pi \right)&=-\sin \theta \\
\tan \left(\theta+\frac{1}{2}\pi \right)&=-\frac{1}{\tan \theta}
\end{align}</math>
* <math>\frac{\pi}{2}-\theta</math>
:<math>\begin{align}
\sin \left(\frac{\pi}{2}-\theta \right)&=\cos \theta \\
\cos \left(\frac{\pi}{2}-\theta \right)&=\sin \theta \\
\tan \left(\frac{\pi}{2}-\theta \right)&=\frac{1}{\tan \theta}
\end{align}</math>
* åé¡äŸ
** åé¡
*:(i) <math>\sin \frac{10}{3} \pi</math>
*:(ii) <math>\cos \left(- \frac{11}{4} \pi \right)</math>
*:(iii) <math>\tan \frac{31}{6} \pi</math>
*:ã®å€ãæ±ããã
** è§£ç
*:(i)
*::<math>
\begin{align}
\sin \frac{10}{3} \pi & = \sin \left(\frac{4}{3}\pi + 2 \pi \right) = \sin \frac{4}{3} \pi \\
& = \sin \left(\frac{\pi}{3} + \pi \right) = - \sin \frac{\pi}{3} \\
& = - \frac{\sqrt{3}}{2}
\end{align}
</math>
*:(ii)
*::<math>
\begin{align}
\cos \left(- \frac{11}{4} \pi \right) & = \cos \frac{11}{4} \pi = \cos \left(\frac{3}{4}\pi + 2 \pi \right)\\
& = \cos \frac{3}{4} \pi = \cos \left(\pi - \frac{\pi}{4}\right)\\
& = - \cos \frac{\pi}{4} = - \frac{1}{\sqrt{2}}
\end{align}
</math>
*:(iii)
*::<math>
\begin{align}
\tan \frac{31}{6} \pi & = \tan \left(\frac{7}{6}\pi + 2 \pi \times 2 \right) = \tan \frac{7}{6} \pi \\
& = \tan \left(\frac{\pi}{6} + \pi \right) = \tan \frac{\pi}{6} \\
& = \frac{1}{\sqrt{3}}
\end{align}
</math>
{{ã³ã©ã |楜åšã®é³ãšäžè§é¢æ°|é³ãæ³¢ã®äžçš®ãªã®ã§ãäžè§é¢æ°ã§è¡šçŸã§ããã
ãªã·ãã¹ã³ãŒãã§ é³å ã®é³ã枬å®ãããšãæ£åŒŠæ³¢ã«è¿ã波圢ã芳枬ãããã
ããããå®éã®æ¥œåšã®é³ã¯ãæ£åŒŠæ³¢ãšã¯éãããªã·ãã¹ã³ãŒãã§ã®ã¿ãŒããã€ãªãªã³ãªã©ã®æ¥œåšã®é³ã枬å®ãããšãæ£åŒŠæ³¢ã§ãªã波圢ãç¹°ãè¿ãããŠããã
ãããå®éã®æ¥œåšã®é³ã®æ³¢åœ¢ã¯ãåšæã®ç°ãªãè€æ°åã®æ£åŒŠæ³¢ãéãåãããæ³¢åœ¢ã«ãªã£ãŠããã
:倧åŠãªã©ã§ç¿ãããŒãªãšè§£æã§ããã®ãããªæ£åŒŠæ³¢ã§ãªã波圢ã®è§£æã«ã€ããŠè©³ããç¿ããäžè§é¢æ°ä»¥å€ã®åšæçãªé¢æ°ããäžè§é¢æ°ãä»ããŠè¡šçŸããææ³ãç¥ãããŠããã
}}
{{ã³ã©ã |æ°åŠè
ã¬ãªã³ãã«ãã»ãªã€ã©ãŒ|
[[File:Leonhard_Euler_2.jpg|thumb| ã¬ãªã³ãã«ãã»ãªã€ã©ãŒ(Leonhard Euler 1707幎4æ15æ¥ - 1783幎9æ18æ¥)]]
ããã§ã¯ãææ°é¢æ°ãäžè§é¢æ°ã®å®çŸ©åã宿°ãšããŠãããããããã®é¢æ°ã®å®çŸ©åãè€çŽ æ°ãŸã§æ¡åŒµããããšãã§ããã(èå³ã®ããææ¬²çãªèªè
ã¯è€çŽ é¢æ°è«ã®æžç±ãèªãã§ã¿ããšãã)
è€çŽ æ°ã«æ¡åŒµããææ°é¢æ°ãäžè§é¢æ°ã§ã¯ <math>e^{i\theta} =\cos\theta+i\sin\theta</math>
ãšããé¢ä¿åŒãæãç«ã€ããã ãã<math>e</math> ã¯ãã€ãã¢æ°ã§ <math>e \approx 2.7</math> ã§ãããããã§ã <math>\theta</math> ã« <math>\pi</math> ã代å
¥ãããš
<math>e^{i\pi}+1=0</math>ãšãªãããã®çåŒã¯ãäžçäžçŸããçåŒããšãåŒã°ããå°èª¬ã«ããªã£ãŠããã®ã§ç¥ã£ãŠãã人ãããã ããã
}}
{{ã³ã©ã |ååšçã®å€|
ååšçã¯<Math>\pi \fallingdotseq 3.14</Math>ãåºãçšããããŠããããå®ã¯<Math>\tau \fallingdotseq 6.28</Math>ãçšããæ¹ãè¯ãããšããæèŠãããã
åã®å®çŸ©ããä»»æã®ç¹ããã®è·é¢ïŒååŸïŒãçããç¹ã®éåãã§ããããšãããæ°åŠã§åãè°è«ããéã¯ååŸãåºæ¬ã«ããããšãå€ããçŽåŸã¯ïŒå·¥åŠãªã©ãé€ãã°ïŒååšçãæ±ºãããšããããããåºãŠããªãããã®ãããåãçµ¡ãæ°åŠå
¬åŒã«ã¯å€ãã®å Žåä¿æ°2ãã€ããŠããŸããããã§ã<Math>\tau = 2 \pi</Math>ãçšããã°ãå€ãã®å
¬åŒãç°¡åã«(ãããŠäž»åŒµè
ã«ããã°ãæ¬è³ªçã«ã)æžããã以äžã«äŸãæããã
匧床æ³ã§ã¯ãäžåšã<Math>\tau</Math>ã©ãžã¢ã³ãšãªããåãšæåœ¢ã®æ¯ã<Math>\tau</Math>ã®ä¿æ°ã«äžèŽããããã®ãããäžåšä»¥äžã®ç¯å²ã«ãããŠ<Math>\tau</Math>ã®ä¿æ°ã仮忰ã«ãªãäºããªãã
æåœ¢ã«ã€ããŠã匧é·ã®å
¬åŒã¯<Math>\theta r</Math>ãé¢ç©ã®å
¬åŒã¯<Math>\frac{1}{2} \theta r^2</Math>ãåã«ã€ããŠãååšã®å
¬åŒã¯<Math>\tau r</Math>ãé¢ç©ã®å
¬åŒã¯<Math>\frac{1}{2} \tau r^2</Math>ããã®ããšãããããããã«ãååšã»åã®é¢ç©ãæ±ãããæãæåœ¢ã®å
¬åŒã«<Math>\theta = \tau</Math>ã代å
¥ããã ãã§ãããå
¬åŒã®çµ±äžåãå³ããããªããé¢ç©å
¬åŒã«ä¿æ°<Math>\frac{1}{2}</Math>ãã€ããŠããŸã£ãŠããããããã¯ãä¿æ°ã1ã®äžæ¬¡åŒïŒåŒ§é·ã»ååšã®å
¬åŒïŒã[[é«çåŠæ ¡æ°åŠII/埮åã»ç©åã®èã#äžå®ç©å|ç©å]]ããŠããããšè§£éããã°èªç¶ãªããšã§ããã
äžè§é¢æ°ã«ã€ããŠãsinãšcosã®åšæã¯<Math>\tau</Math>ãtanã®åšæã¯<Math>\frac{\tau}{2}</Math>ãšãªããsinãšcosã¯åã1åšãtanã¯åãååšãããšå
ã«æ»ãããšã端çã«ç€ºãããã
ãªã€ã©ãŒã®å
¬åŒ<math>e^{i\theta} =\cos\theta+i\sin\theta</math>
ã«ã€ããŠã<Math>\theta = \tau</Math>ãšãããš<Math>e^{i\tau} = 1</Math>ã§ããããã®åŒã¯åº§æšå¹³é¢äžã§ç¹ïŒ1, 0ïŒããåäœåãäžåšãããšå
ã®ç¹ã«æ»ãããšã瀺ãããŸãã<Math>\theta</Math>ã«äžåšïŒ<Math>\tau</Math>ã©ãžã¢ã³ïŒã代å
¥ããŠããã®ã§sinã0ãcosã1ã§ããããšãçŽæçã«çè§£ã§ããã
ä»ã«ãã[[é«çåŠæ ¡æ°åŠB/確çååžãšçµ±èšçãªæšæž¬#æ£èŠååž|æ£èŠååž]]ã®ç¢ºçå¯åºŠé¢æ°ããã£ã©ãã¯å®æ°ãªã©ã<Math>2 \pi</Math>ãç»å ŽããåŒã¯éåžžã«å€ãããããã<Math>\tau</Math>ã«çœ®ãæããããšã«ãã£ãŠãåŒãç°¡æœã«æžãããšãã§ããããã ãã<Math>2 \pi</Math>ã«ããã«ä¿æ°ãããã£ãŠãããã®ã«ã€ããŠã¯ããŸãå€ãããªãã
ãããŸã§ååšç<Math>\tau</Math>ã«ã€ããŠç޹ä»ããŠããããçŸåšã®æ°åŠçã§<Math>\tau</Math>ã䜿ãããããšã¯ããŸãå€ããªããããã¯ãå·¥åŠã«å¿çšããéã«ã¯<Math>\pi</Math>ã®æ¹ãéœåãè¯ãããšãéå»ã«<Math>\pi</Math>ãåºã䜿ãããŠãããã仿Žå€ããã®ã¯å°é£ã§ããããšãçç±ã§ããã䜿ããããšãã¯æåã«ã<Math>2 \pi = \tau</Math>ãšããããšæã£ãŠãã䜿ãã°è¯ãã ããã
}}
== æŒç¿åé¡ ==
(1)äžã®åºŠæ°æ³ã§è¡šãããå€ã匧床æ³ãŠè¡šã
1)<math>150</math>
2)<math>720</math>
(2)<math>\sin \pi/2</math>ã®å€ãæ±ãã
== èæ³š ==
<references />
{{Wikiversity|Topic:äžè§é¢æ°|äžè§é¢æ°}}
{{DEFAULTSORT:ãããšããã€ããããããII ãããããããã}}
[[Category:é«çåŠæ ¡æ°åŠII|ãããããããã]]
[[ã«ããŽãª:äžè§é¢æ°]] | 2005-05-06T11:30:25Z | 2024-03-29T02:57:06Z | [
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:-",
"ãã³ãã¬ãŒã:åŒçªå·",
"ãã³ãã¬ãŒã:ã³ã©ã ",
"ãã³ãã¬ãŒã:Wikiversity"
] | https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E6%95%B0%E5%AD%A6II/%E4%B8%89%E8%A7%92%E9%96%A2%E6%95%B0 |
1,914 | é«çåŠæ ¡æ°åŠII/埮åã»ç©åã®èã | ããã§ã¯åŸ®åç©åã®æŠå¿µã«ã€ããŠçè§£ããå€é
åŒé¢æ°ã®åŸ®åç©åãåŠã¶ããŸãã埮åã®å¿çšãå¿çšããŠæ¥ç·ã®æ¹çšåŒãã°ã©ãã®æŠåœ¢ãªã©ãæ±ããããç©åãå¿çšããŠã°ã©ãã®é¢ç©ãæ±ããã埮åç©åã¯ç©çåŠãå·¥åŠãªã©ããŸããŸãªåéã§å¿çšãããŠããã
äžåŠæ ¡ã§ã¯ãäžæ¬¡é¢æ°ãš y = a x 2 {\displaystyle y=ax^{2}} ã®å€åã®å²åãæ±ããã ãããããã§ã¯ãåããã®ãå¹³åå€åçãšåŒã¶ããšã«ãããäžè¬ã®é¢æ° y = f ( x ) {\displaystyle y=f(x)} ã®å¹³åå€åçãèããŠã¿ãããäžåŠæ ¡ã§åŠç¿ããããšãšåæ§ã«èãããšã y = f ( x ) {\displaystyle y=f(x)} ã«ãããŠã x {\displaystyle x} ã a {\displaystyle a} ãã b {\displaystyle b} ãŸã§å€åãããšãã®å¹³åå€åçã¯ãã y {\displaystyle y} ã®å€åé/ x {\displaystyle x} ã®å€åéãã§æ±ãããããã€ãŸãã æ§æè§£æå€±æ (SVG(ãã©ãŠã¶ã®ãã©ã°ã€ã³ã§ MathML ãæå¹ã«ããããšãã§ããŸã): ãµãŒããŒãhttp://localhost:6011/ja.wikibooks.org/v1/ãããç¡å¹ãªå¿ç ("Math extension cannot connect to Restbase."):): {\displaystyle \frac{f(b)-f(a)}{b-a}} ã§ããã
äŸ
y = x 2 + 2 x + 1 {\displaystyle y=x^{2}+2x+1} ã«ãããŠã x {\displaystyle x} ã-1ãã3ãŸã§å€åãããšãã®å¹³åå€åçãæ±ããã
( 3 2 + 2 â
3 + 1 ) â ( ( â 1 ) 2 + 2 â
( â 1 ) + 1 ) 3 â ( â 1 ) {\displaystyle {\frac {(3^{2}+2\cdot 3+1)-((-1)^{2}+2\cdot (-1)+1)}{3-(-1)}}} = 4 {\displaystyle =4}
颿° f ( x ) {\displaystyle f(x)} ã«ãããŠã x {\displaystyle x} ã a {\displaystyle a} ãšã¯ç°ãªãå€ããšããªããéããªã a {\displaystyle a} ã«è¿ã¥ããšãã f ( x ) {\displaystyle f(x)} ãéããªã A {\displaystyle A} ã«è¿ã¥ãããšãã lim x â a f ( x ) = A {\displaystyle \lim _{x\rightarrow a}f(x)=A} ãšããã
lim x â 0 3 x {\displaystyle \lim _{x\rightarrow 0}3x} ãæ±ããã
x {\displaystyle x} ãã 1 , 0.1 , 0.01 , 0.001 , ⯠{\displaystyle 1,0.1,0.01,0.001,\cdots } ãšéããªã0ã«è¿ã¥ããŠã¿ãããããšã 3 x {\displaystyle 3x} ã¯ã 3 , 0.3 , 0.03 , 0.003 , ⯠{\displaystyle 3,0.3,0.03,0.003,\cdots } ãšãéããªã0ã«è¿ã¥ãããšããããã
ãã£ãŠã x {\displaystyle x} ãéããªã0ã«è¿ã¥ãããšã 3 x {\displaystyle 3x} ã¯éããªã0ã«è¿ã¥ãã®ã§ã lim x â 0 3 x = 0 {\displaystyle \lim _{x\rightarrow 0}3x=0} ã§ããã
次ã«ã lim x â 1 x 2 â 1 x â 1 {\displaystyle \lim _{x\rightarrow 1}{\frac {x^{2}-1}{x-1}}} ãæ±ããã
x {\displaystyle x} ãã 1.1 , 1.01 , 1.001 , 0.0001 , 1.00001 , ⯠{\displaystyle 1.1,1.01,1.001,0.0001,1.00001,\cdots } ãšãéããªã1ã«è¿ã¥ããŠã¿ããšã x 2 â 1 x â 1 {\displaystyle {\frac {x^{2}-1}{x-1}}} ã¯ã 2.1 , 2.01 , 2.001 , 2.0001 , 2.00001 , ⯠{\displaystyle 2.1,2.01,2.001,2.0001,2.00001,\cdots } ãšãéããªã2ã«è¿ã¥ãã
ãªã®ã§ã lim x â 1 x 2 â 1 x â 1 = 2 {\displaystyle \lim _{x\rightarrow 1}{\frac {x^{2}-1}{x-1}}=2} ã§ããã
ããã¯ãåŒã«å€ã代å
¥ããåã«ãåŒèªäœãçŽåããŠããŸã£ãæ¹ãç°¡åã«èšç®ã§ãããããªãã¡ã x 2 â 1 x â 1 = ( x + 1 ) ( x â 1 ) x â 1 {\displaystyle {\frac {x^{2}-1}{x-1}}={\frac {(x+1)(x-1)}{x-1}}} ã§ããã x {\displaystyle x} ã1ãšã¯ç°ãªãå€ãåããªããéããªã1ã«è¿ã¥ãããšã x â 1 {\displaystyle x\neq 1} ãªã®ã§ãããã¯çŽåã§ãã x 2 â 1 x â 1 = ( x + 1 ) ( x â 1 ) x â 1 = x + 1 {\displaystyle {\frac {x^{2}-1}{x-1}}={\frac {(x+1)(x-1)}{x-1}}=x+1} ã§ããã
ãªã®ã§ã lim x â 1 x 2 â 1 x â 1 {\displaystyle \lim _{x\rightarrow 1}{\frac {x^{2}-1}{x-1}}} ãæ±ããã«ã¯ã lim x â 1 ( x + 1 ) {\displaystyle \lim _{x\rightarrow 1}(x+1)} ãæ±ããã°è¯ãã
lim x â 1 ( x + 1 ) = 2 {\displaystyle \lim _{x\rightarrow 1}(x+1)=2} ã§ããã®ã§ã lim x â 1 x 2 â 1 x â 1 = 2 {\displaystyle \lim _{x\rightarrow 1}{\frac {x^{2}-1}{x-1}}=2} ãšæ±ããããšãã§ããã
â»çºå± æåã®äŸã§ã¯ã x {\displaystyle x} ãã 1 , 0.1 , 0.01 , 0.001 , ⯠{\displaystyle 1,0.1,0.01,0.001,\cdots } ãšãéããªã0ã«è¿ã¥ãããã 2 , 0.2 , 0.02 , 0.002 , ⯠{\displaystyle 2,0.2,0.02,0.002,\cdots } ãã â 1 , â 0.1 , â 0.01 , â 0.001 , ⯠{\displaystyle -1,-0.1,-0.01,-0.001,\cdots } ã®ããã«è¿ã¥ããŠã¿ãŠã x {\displaystyle x} ã¯éããªã0ã«è¿ã¥ããä»ã«ãã 1 , â 0.1 , 0.01 , â 0.001 , ⯠{\displaystyle 1,-0.1,0.01,-0.001,\cdots } ã 0.1 , 0.5 , 0.01 , 0.05 , ⯠{\displaystyle 0.1,0.5,0.01,0.05,\cdots } ãªã© x {\displaystyle x} ã0ã«è¿ã¥ãããæ¹æ³ã¯ãããã§ãèããããã
ãã¡ããããã®äŸã§ã¯ã x {\displaystyle x} ãã©ã®ããã«è¿ã¥ãããšããŠã極éã®å€ã¯å€ãããªãã
ãããã x {\displaystyle x} ãã 1 , 0.1 , 0.01 , 0.001 , ⯠{\displaystyle 1,0.1,0.01,0.001,\cdots } ãšè¿ã¥ãããšãã f ( x ) {\displaystyle f(x)} 㯠α {\displaystyle \alpha } ã«è¿ã¥ããã x {\displaystyle x} ãã 2 , 0.2 , 0.02 , 0.002 , ⯠{\displaystyle 2,0.2,0.02,0.002,\cdots } ãšè¿ã¥ãããã f ( x ) {\displaystyle f(x)} 㯠α {\displaystyle \alpha } ã«è¿ã¥ããªãããããªé¢æ° f ( x ) {\displaystyle f(x)} ã ã£ãŠããã ããã
ãªã x {\displaystyle x} ã 1 , 0.1 , 0.01 , 0.001 , ⯠{\displaystyle 1,0.1,0.01,0.001,\cdots } ãšãè¿ã¥ããã ãã§ã極éã®å€ãæ±ããããšãåºæ¥ãã®ã?ãšçåã«æã人ãããããç¥ããªãã
極éãå³å¯ã«å®çŸ©ããã«ã¯ãã€ãã·ãã³ãã«ã¿è«æ³ã䜿ãå¿
èŠãããããããã髿 ¡çã«ã¯å°ãé£ãããšèãã人ãå€ãã®ã§é«æ ¡ã§ã¯ããŸãæããããŠããªãã
ãªã®ã§ããã®æ¬ã§ã¯ãã€ãã·ãã³ãã«ã¿è«æ³ã䜿ãããææ§ãªæ¹æ³ã§æ¥µéãå®çŸ©ããããªã®ã§ãäžã®ãããªçåãæã£ã人ã¯ããã®çåã«ã€ããŠæ·±ãèããã«å
ã«é²ãããã€ãã·ãã³ãã«ã¿è«æ³ãåŠã¶ãããŠã»ããã
颿° y = f ( x ) {\displaystyle y=f(x)} ã®åŸãã«ã€ããŠèããŠã¿ããã
x {\displaystyle x} ã a {\displaystyle a} ãã a + h {\displaystyle a+h} ãŸã§å€åãããšãã®å¹³åå€åçã¯
f ( a + h ) â f ( a ) h {\displaystyle {\frac {f(a+h)-f(a)}{h}}}
ã§ããããã®ãšãã h {\displaystyle h} ãéããªã0ã«è¿ã¥ããã° a {\displaystyle a} ã§ã®åŸããæ±ããããšãã§ãããã€ãŸãã颿° y = f ( x ) {\displaystyle y=f(x)} ã® a {\displaystyle a} ã§ã®åŸãã¯
lim h â 0 f ( a + h ) â f ( a ) h {\displaystyle \lim _{h\to 0}{\frac {f(a+h)-f(a)}{h}}}
ã§äžãããããããã x = a {\displaystyle x=a} ã«ããã埮åä¿æ°ãšããã
ãŸã
f â² ( x ) = lim h â 0 f ( x + h ) â f ( x ) h {\displaystyle f'(x)=\lim _{h\to 0}{\frac {f(x+h)-f(x)}{h}}}
ã§äžãããã颿° f â² ( x ) {\displaystyle f'(x)} ã颿° f ( x ) {\displaystyle f(x)} ã®å°é¢æ°ãšããã
颿° f ( x ) {\displaystyle f(x)} ã®å°é¢æ°ã¯ d f d x {\displaystyle {\frac {df}{dx}}} ãšè¡šãããããšãããã
ããã§ãããã€ãã®é¢æ°ã®å°é¢æ°ãæ±ããŠã¿ããã
ã§ããã
n {\displaystyle n} ãèªç¶æ°ãšããã颿° f ( x ) = x n {\displaystyle f(x)=x^{n}} ã®å°é¢æ°ã¯äºé
å®çãå¿çšã
ãšæ±ãããã
颿° f ( x ) , g ( x ) {\displaystyle f(x),g(x)} ã«å¯Ÿã次ãæãç«ã€ã
蚌æ
æŒç¿åé¡
次ã®é¢æ°ã埮åãã
1. f ( x ) = 2 x 3 + 4 x 2 â 5 x â 1 {\displaystyle f(x)=2x^{3}+4x^{2}-5x-1} 2. f ( x ) = ( 2 x + 3 ) ( 3 x â 5 ) {\displaystyle f(x)=(2x+3)(3x-5)}
è§£ç
1.
2. f ( x ) = 6 x 2 â x â 15 {\displaystyle f(x)=6x^{2}-x-15} ã§ãããã
æ²ç· y = f ( x ) {\displaystyle y=f(x)} äžã®ç¹ ( t , f ( t ) ) {\displaystyle (t,f(t))} ã«ãããæ¥ç·ã®æ¹çšåŒãæ±ããããã®æ¥ç·ã®åŸã㯠f â² ( t ) {\displaystyle f'(t)} ã§ãããç¹ ( t , f ( t ) ) {\displaystyle (t,f(t))} ãéãã®ã§ãæ¹çšåŒã¯ y = f â² ( t ) ( x â t ) + f ( t ) {\displaystyle y=f'(t)(x-t)+f(t)} ã§äžãããããå®éã x = t {\displaystyle x=t} ãšãããš y = f ( t ) {\displaystyle y=f(t)} ãšãªãã®ã§ãã®æ¹çšåŒã¯ç¹ ( t , f ( t ) ) {\displaystyle (t,f(t))} ãéãããšããããã x {\displaystyle x} ã®ä¿æ°ã¯ f â² ( t ) {\displaystyle f'(t)} ãªã®ã§åŸã㯠f â² ( t ) {\displaystyle f'(t)} ã§ããã
æ²ç· y = f ( x ) {\displaystyle y=f(x)} äžã®ç¹ ( t , f ( t ) ) {\displaystyle (t,f(t))} ã«ãããæ³ç·ã®æ¹çšåŒã¯ã y = â 1 f â² ( t ) ( x â t ) + f ( t ) {\displaystyle y=-{\frac {1}{f'(t)}}(x-t)+f(t)} ã§äžããããã
f'(x)ã¯ãfã®åŸãã衚ããã®ã§ã f â² ( x ) > 0 {\displaystyle f'(x)>0} ã®ç¹ã§ã¯ãfã¯å¢å€§ãã f â² ( x ) < 0 {\displaystyle f'(x)<0} ã®ç¹ã§ã¯ãfã¯æžå°ããããšããããã
ãããããšã«é¢æ°ã®æŠåœ¢ãæãããšãã§ããã
äŸ
y = x 3 {\displaystyle y=x^{3}} ã®å¢æžã調ã¹ã
䞡蟺ãxã§åŸ®åãããš
f ( x ) = x 3 â 3 x {\displaystyle f(x)=x^{3}-3x} ã埮åãããš
墿žè¡šã¯æ¬¡ã®ããã«ãªãã
ãã®é¢æ°ã®ã°ã©ãã¯ã x = â 1 {\displaystyle x=-1} ãå¢ã«ããŠå¢å ããæžå°ã®ç¶æ
ã«å€ããã x = 1 {\displaystyle x=1} ãå¢ã«ããŠæžå°ããå¢å ã®ç¶æ
ã«å€ããã ãã®ãšãã f ( x ) {\displaystyle f(x)} 㯠x = â 1 {\displaystyle x=-1} ã«ãããŠæ¥µå€§(ãããã ã)ã«ãªããšããããã®ãšãã® f ( x ) {\displaystyle f(x)} ã®å€ f ( â 1 ) = 2 {\displaystyle f(-1)=2} ãæ¥µå€§å€(ãããã ãã¡)ãšããããŸãã x = 1 {\displaystyle x=1} ã«ãããŠæ¥µå°(ãããããã)ã«ãªããšããããã®ãšãã® f ( x ) {\displaystyle f(x)} ã®å€ f ( 1 ) = â 2 {\displaystyle f(1)=-2} ãæ¥µå°å€(ããããããã¡)ãšãããæ¥µå€§å€ã𿥵å°å€ãåãããŠæ¥µå€(ãããã¡)ãšããã
äžå®ç©å(indefinite integral)ãšã¯ã埮åããããã®é¢æ°ã«ãªã颿°ãæ±ããæäœã§ããã
ã€ãŸãã颿° f ( x ) {\displaystyle f(x)} ã«å¯ŸããŠã F â² ( x ) = f ( x ) {\displaystyle F'(x)=f(x)} ãšãªãã颿° F ( x ) {\displaystyle F(x)} ãæ±ããæäœã§ããã
ãã®ãšã F ( x ) {\displaystyle F(x)} ãã f ( x ) {\displaystyle f(x)} ã®åå§é¢æ°(primitive function)ãšåŒã¶ã
äŸãã°ã 1 2 x 2 {\displaystyle {\frac {1}{2}}x^{2}} ã¯åŸ®åãããšã x {\displaystyle x} ã«ãªãã®ã§ã 1 2 x 2 {\displaystyle {\frac {1}{2}}x^{2}} 㯠x {\displaystyle x} ã®åå§é¢æ°ã§ããã
ãããã 1 2 x 2 + 1 {\displaystyle {\frac {1}{2}}x^{2}+1} ãã 1 2 x 2 + 3 {\displaystyle {\frac {1}{2}}x^{2}+3} ãªã©ã埮åãããš x {\displaystyle x} ã«ãªãã®ã§ã 1 2 x 2 + 1 {\displaystyle {\frac {1}{2}}x^{2}+1} ãã 1 2 x 2 + 3 {\displaystyle {\frac {1}{2}}x^{2}+3} ã x {\displaystyle x} ã®åå§é¢æ°ã§ããã
äžè¬ã«ã 1 2 x 2 + C {\displaystyle {\frac {1}{2}}x^{2}+C} (Cã¯ä»»æã®å®æ°)ã§è¡šããã颿°ã¯ã x {\displaystyle x} ã®åå§é¢æ°ã§ããã
x {\displaystyle x} ã®åå§é¢æ°ã¯äžã€ã ãã§ã¯ãªããç¡æ°ã«ããã®ã ã
äžè¬ã«ã颿° f ( x ) {\displaystyle f(x)} ã®åå§é¢æ°ã®äžã€ã F ( x ) {\displaystyle F(x)} ãšãããšããåå§é¢æ°ã«ä»»æã®å®æ°ãè¶³ãã颿° F ( x ) + C {\displaystyle F(x)+C} ã f ( x ) {\displaystyle f(x)} ã®åå§é¢æ°ã«ãªãã
ãªããªãã F ( x ) {\displaystyle F(x)} ã f ( x ) {\displaystyle f(x)} ã®åå§é¢æ°ã§ãããã€ãŸãã F â² ( x ) = f ( x ) {\displaystyle F'(x)=f(x)} ã®ãšãã ( F ( x ) + C ) â² = F â² ( x ) + ( C ) â² = F â² ( x ) = f ( x ) {\displaystyle {(F(x)+C)}'=F'(x)+{(C)}'=F'(x)=f(x)} ãšãªãããã ã
ãŸãã颿° f ( x ) {\displaystyle f(x)} ã®åå§é¢æ°ã®äžã€ã F ( x ) {\displaystyle F(x)} ã§ãããšãããã¹ãŠã®é¢æ° f ( x ) {\displaystyle f(x)} ã®åå§é¢æ°ã¯ F ( x ) + C {\displaystyle F(x)+C} ã®åœ¢ã«æžããã
F ( x ) + C {\displaystyle F(x)+C} ã®åœ¢ã«æžããªã颿° G ( x ) {\displaystyle G(x)} ã颿° f ( x ) {\displaystyle f(x)} ã®åå§é¢æ°ã§ãããšä»®å®ããããã®ãšãã h ( x ) = F ( x ) â G ( x ) {\displaystyle h(x)=F(x)-G(x)} ãšãããšã颿° h ( x ) {\displaystyle h(x)} ã¯å®æ°ã§ã¯ãªãã
ãã®ãšãã h â² ( x ) = { F ( x ) â G ( x ) } â² = F â² ( x ) â G â² ( x ) = f ( x ) â f ( x ) = 0 {\displaystyle h'(x)=\{F(x)-G(x)\}'=F'(x)-G'(x)=f(x)-f(x)=0} ã§ããã¯ãã ãã颿° h ( x ) {\displaystyle h(x)} ã¯å®æ°ã§ã¯ãªãã®ã§ h â² ( x ) = 0 {\displaystyle h'(x)=0} ãšãªããªããããã¯ççŸãªã®ã§ããã¹ãŠã®é¢æ° f ( x ) {\displaystyle f(x)} ã®åå§é¢æ°ã¯ F ( x ) + C {\displaystyle F(x)+C} ã®åœ¢ã«æžããããšã蚌æã§ããã
颿° f ( x ) {\displaystyle f(x)} ã®åå§é¢æ°ã®å
šäœãã â« f ( x ) d x {\displaystyle \int f(x)dx} ãšè¡šãããã®è¡šèšæ³ã¯æåã¯å¥åŠã«æãã ãããããã®ããã«è¡šèšããçç±ã¯åŸã«èª¬æããã®ã§ãä»ã¯ããã®ãŸãŸèŠããŠæ¬²ããã
ãŸãšãããšã颿° f ( x ) {\displaystyle f(x)} ã®åå§é¢æ°ã®å
šäœ â« f ( x ) d x {\displaystyle \int f(x)dx} ã¯ã f ( x ) {\displaystyle f(x)} ã®åå§é¢æ°ã®äžã€ã F ( x ) {\displaystyle F(x)} ãšããŠããã®é¢æ°ã«ä»»æã®å®æ°ãè¶³ãã颿° F ( x ) + C {\displaystyle F(x)+C} ã§è¡šããããã€ãŸãã
C {\displaystyle C} ã¯ä»»æã®å®æ°ãšãããããã®ä»»æã®å®æ° C {\displaystyle C} ãç©å宿°(constant of integration)ãšåŒã¶ã
â»æ³šæ â« f ( x ) d x {\displaystyle \int f(x)dx} ã¯å®çŸ©ã«ãããããã«ã f ( x ) {\displaystyle f(x)} ã®åå§é¢æ°ã®å
šäœã衚ããŠãããã€ãŸãã f ( x ) {\displaystyle f(x)} ã®åå§é¢æ°ã®äžã€ã F ( x ) {\displaystyle F(x)} ãšãããšãã â« f ( x ) d x = F ( x ) + C {\displaystyle \int f(x)dx=F(x)+C} ã®å³èŸº F ( x ) + C {\displaystyle F(x)+C} ã¯ã F ( x ) {\displaystyle F(x)} ã«å®æ°ãè¶³ãã颿°ã®å
šäœã衚ããŠãããã€ãŸãã F ( x ) + C {\displaystyle F(x)+C} ã¯ã F ( x ) + 1 {\displaystyle F(x)+1} ãã F ( x ) â 23 {\displaystyle F(x)-23} ãã F ( x ) â 5 Ï {\displaystyle F(x)-5\pi } ãªã©ã®ã F ( x ) {\displaystyle F(x)} ã«å®æ°ãè¶³ãã颿°ãã¹ãŠããŸãšã㊠F ( x ) + C {\displaystyle F(x)+C} ãšè¡šããŠããããã®ããšããããµãã«ãªã£ãŠãããšãé倧ãªééããèµ·ããå¯èœæ§ãããã®ã§ã泚æãå¿
èŠã§ããã
颿° f ( x ) = x n {\displaystyle f(x)=x^{n}} (ãã ã n {\displaystyle n} ã¯èªç¶æ°)ã®äžå®ç©åãæ±ããŠã¿ãããã倩äžãçã ãã F ( x ) = 1 n + 1 x n + 1 + C {\displaystyle F(x)={\frac {1}{n+1}}x^{n+1}+C} ( C {\displaystyle C} ã¯ä»»æã®å®æ°)ãšãããšã F â² ( x ) = x n {\displaystyle F'(x)=x^{n}} ãšãªãã®ã§ã 1 n + 1 x n + 1 + C {\displaystyle {\frac {1}{n+1}}x^{n+1}+C} ã¯åå§é¢æ°ã§ããããšããããã
ãããã£ãŠ â« x n d x = 1 n + 1 x n + 1 + C {\displaystyle \int x^{n}dx={\frac {1}{n+1}}x^{n+1}+C}
颿° f ( x ) , g ( x ) {\displaystyle f(x),g(x)} ã®åå§é¢æ°ãããããã F ( x ) , G ( x ) {\displaystyle F(x),G(x)} ãšããã a {\displaystyle a} ãä»»æã®å®æ°å®æ°ãšãããš
{ F ( x ) + G ( x ) } â² = F â² ( x ) + G â² ( x ) = f ( x ) + g ( x ) {\displaystyle \{F(x)+G(x)\}'=F'(x)+G'(x)=f(x)+g(x)}
{ a F ( x ) } â² = a F â² ( x ) = a f ( x ) {\displaystyle \{aF(x)\}'=aF'(x)=af(x)}
ãšãªãã®ã§ã
â« { f ( x ) + g ( x ) } d x = â« f ( x ) d x + â« g ( x ) d x {\displaystyle \int \{f(x)+g(x)\}dx=\int f(x)dx+\int g(x)dx}
â« a f ( x ) d x = a â« f ( x ) d x {\displaystyle \int af(x)dx=a\int f(x)dx}
ãæãç«ã€ããšãåããã
æŒç¿åé¡
äžå®ç©å â« ( x 8 + 2 x 2 â 6 x + 9 ) d x {\displaystyle \int (x^{8}+2x^{2}-6x+9)dx} ãæ±ãã
è§£ç
â« ( x 8 + 2 x 2 â 6 x + 9 ) d x = â« x 8 d x + 2 â« x 2 d x â 6 â« x d x + 9 â« d x = x 9 9 + 2 x 3 3 â 3 x 2 + 9 x + C {\displaystyle \int (x^{8}+2x^{2}-6x+9)dx=\int x^{8}\,dx+2\int x^{2}\,dx-6\int x\,dx+9\int dx={\frac {x^{9}}{9}}+{\frac {2x^{3}}{3}}-3x^{2}+9x+C} ( C {\displaystyle C} ã¯ç©å宿°)
颿° f ( x ) {\displaystyle f(x)} ã®åå§é¢æ°ã®äžã€ã F ( x ) {\displaystyle F(x)} ãšããããã®åå§é¢æ°ã«å€ã代å
¥ããŠããã®å€ã®å·®ãæ±ããæäœããå®ç©åãšåŒã³ã â« a b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)dx} ãšæžããã€ãŸãã
ã§ããã
[ f ( x ) ] a b = f ( b ) â f ( a ) {\displaystyle [f(x)]_{a}^{b}=f(b)-f(a)} ãšããã
ãã®ããã«ãããšã â« a b f ( x ) d x = [ F ( x ) ] a b = F ( b ) â F ( a ) {\displaystyle \int _{a}^{b}f(x)dx=[F(x)]_{a}^{b}=F(b)-F(a)} ãšèšç®ã§ããã
å®ç©åã®å€ã¯åå§é¢æ°ã®éžæã«ãããªããå®éãåå§é¢æ°ãšããŠã F ( x ) + C {\displaystyle F(x)+C} ãéžã³ãå®ç©åãèšç®ãããšã â« a b f ( x ) d x = ( F ( b ) + C ) â ( F ( a ) + C ) = F ( b ) â F ( a ) {\displaystyle \int _{a}^{b}f(x)dx=(F(b)+C)-(F(a)+C)=F(b)-F(a)}
ãšãªããåå§é¢æ°ãšããŠã©ããéžãã§ãå®ç©åã®å€ã¯äžå®ã§ããããšããããã
颿° f ( x ) , g ( x ) {\displaystyle f(x),g(x)} ã«å¯ŸããŠãåå§é¢æ°ããããã F ( x ) , G ( x ) {\displaystyle F(x),G(x)} ãšããã k {\displaystyle k} ã宿°ãšããŠã
â« a b k f ( x ) d x = k F ( b ) â k F ( a ) = k ( F ( b ) â F ( a ) ) = k â« a b f ( x ) d x {\displaystyle \int _{a}^{b}kf(x)\,dx=kF(b)-kF(a)=k(F(b)-F(a))=k\int _{a}^{b}f(x)\,dx}
â« a b { f ( x ) + g ( x ) } d x = [ F ( x ) + G ( x ) ] a b = F ( b ) + G ( b ) â ( F ( a ) + G ( a ) ) = F ( b ) â F ( a ) + G ( b ) â G ( a ) = â« a b f ( x ) d x + â« a b g ( x ) d x {\displaystyle \int _{a}^{b}\{f(x)+g(x)\}dx=[F(x)+G(x)]_{a}^{b}=F(b)+G(b)-(F(a)+G(a))=F(b)-F(a)+G(b)-G(a)=\int _{a}^{b}f(x)\,dx+\int _{a}^{b}g(x)\,dx}
â« a a f ( x ) d x = F ( a ) â F ( a ) = 0 {\displaystyle \int _{a}^{a}f(x)\,dx=F(a)-F(a)=0}
â« b a f ( x ) d x = F ( a ) â F ( b ) = â ( F ( b ) â F ( a ) ) = â â« a b f ( x ) d x {\displaystyle \int _{b}^{a}f(x)\,dx=F(a)-F(b)=-(F(b)-F(a))=-\int _{a}^{b}f(x)\,dx}
â« a b f ( x ) d x = F ( b ) â F ( a ) = ( F ( b ) â F ( c ) ) + ( F ( c ) â F ( a ) ) = â« a c f ( x ) d x + â« c b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)\,dx=F(b)-F(a)=(F(b)-F(c))+(F(c)-F(a))=\int _{a}^{c}f(x)\,dx+\int _{c}^{b}f(x)\,dx}
ãæãç«ã€ã
â« 2 5 x 3 d x {\displaystyle \int _{2}^{5}x^{3}dx} ãæ±ããã
1 4 x 4 {\displaystyle {\frac {1}{4}}x^{4}} ã¯ã埮åãããšã x 3 {\displaystyle x^{3}} ãªã®ã§ã 1 4 x 4 {\displaystyle {\frac {1}{4}}x^{4}} 㯠x 3 {\displaystyle x^{3}} ã®åå§é¢æ°ã®äžã€ã§ããããã£ãŠ â« 2 5 x 3 d x = [ 1 4 x 4 ] 2 5 = 1 4 5 4 â 1 4 2 4 = 609 4 {\displaystyle \int _{2}^{5}x^{3}dx=\left[{\frac {1}{4}}x^{4}\right]_{2}^{5}={\frac {1}{4}}5^{4}-{\frac {1}{4}}2^{4}={\frac {609}{4}}} ã§ããã
1 4 x 4 + 1 {\displaystyle {\frac {1}{4}}x^{4}+1} ãã埮åãããšã x 3 {\displaystyle x^{3}} ãªã®ã§ã 1 4 x 4 + 1 {\displaystyle {\frac {1}{4}}x^{4}+1} 㯠x 3 {\displaystyle x^{3}} ã®åå§é¢æ°ã®äžã€ã§ããããã£ãŠã â« 2 5 x 3 d x = [ 1 4 x 4 + 1 ] 2 5 = ( 1 4 5 4 + 1 ) â ( 1 4 2 4 + 1 ) = 609 4 {\displaystyle \int _{2}^{5}x^{3}dx=\left[{\frac {1}{4}}x^{4}+1\right]_{2}^{5}=\left({\frac {1}{4}}5^{4}+1\right)-\left({\frac {1}{4}}2^{4}+1\right)={\frac {609}{4}}} ãšæ±ããããšãã§ããã
aã宿°ãšãããšããå®ç©å â« a x f ( t ) d t {\displaystyle \int _{a}^{x}f(t)\,dt} ã¯xã®é¢æ°ã«ãªãã 颿° f ( t ) {\displaystyle f(t)} ã®åå§é¢æ°ã®äžã€ã F ( t ) {\displaystyle F(t)} ãšãããš
ãã®äž¡èŸºãxã§åŸ®åãããšã F ( a ) {\displaystyle F(a)} ã¯å®æ°ã§ãããã
颿° f ( x ) {\displaystyle f(x)} ã a ⊠x ⊠b {\displaystyle a\leqq x\leqq b} ã®ç¯å²ã§åžžã«æ£ã§ãããšããããã®ãšããå®ç©å â« a b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)dx} ã«ãã£ãŠã颿° f ( x ) {\displaystyle f(x)} ã®ã°ã©ããšãçŽç· x = a {\displaystyle x=a} ãçŽç· x = b {\displaystyle x=b} ã x {\displaystyle x} 軞ã§å²ãŸããéšåã®é¢ç©ãæ±ããããšãã§ããã
颿° f ( x ) {\displaystyle f(x)} ã®ã°ã©ããšãçŽç· x = a {\displaystyle x=a} ãçŽç· x = c {\displaystyle x=c} ãšã x {\displaystyle x} 軞ã§å²ãŸããéšåã®é¢ç©ã S ( c ) {\displaystyle S(c)} ãšããããšã«ãã£ãŠã颿° S ( x ) {\displaystyle S(x)} ãå®ããã( a ⊠x ⊠b {\displaystyle a\leqq x\leqq b} ãšãã)
颿° f ( x ) {\displaystyle f(x)} ã®ã°ã©ããšãçŽç· x = c {\displaystyle x=c} ãçŽç· x = c + h {\displaystyle x=c+h} ãšã x {\displaystyle x} 軞ã§å²ãŸããéšåã®é¢ç©ãèãã( a ⊠c + h ⊠b {\displaystyle a\leqq c+h\leqq b} ãšãã)ãããã¯ã S ( c + h ) â S ( c ) {\displaystyle S(c+h)-S(c)} ã§ãããããã§ã c < t < c + h {\displaystyle c<t<c+h} ãªã t {\displaystyle t} ããšã£ãŠããŠããã®ç¹ã«ããã f ( x ) {\displaystyle f(x)} ã®å€ f ( t ) {\displaystyle f(t)} ãé«ããšããé·æ¹åœ¢ã®é¢ç©ãèããããšã§ã t {\displaystyle t} ãäžæã«ãšãã°ã S ( c + h ) â S ( c ) = h â
f ( t ) {\displaystyle S(c+h)-S(c)=h\cdot f(t)} ãšã§ããã䞡蟺ã h {\displaystyle h} ã§å²ãã h â 0 {\displaystyle h\to 0} ã®æ¥µéãèãããšã
ã§ãããã巊蟺ã¯åŸ®åã®å®çŸ©ãã S â² ( c ) {\displaystyle S'(c)} ã§ããã lim h â 0 t = c {\displaystyle \lim _{h\to 0}t=c} ã§ããããšã«æ³šæãããšå³èŸºã¯ f ( c ) {\displaystyle f(c)} ã§ãããæåã c {\displaystyle c} ãã x {\displaystyle x} ã«åãæãããšãçµå±
ãåŸããããã€ãŸãã S ( x ) {\displaystyle S(x)} 㯠f ( x ) {\displaystyle f(x)} ã®åå§é¢æ°ã®äžã€ã§ããããšãåããã
ãã£ãŠã â« a b f ( x ) d x = S ( b ) â S ( a ) {\displaystyle \int _{a}^{b}f(x)dx=S(b)-S(a)} ã§ãããããã®åŒã®å³èŸºã¯ã颿° f ( x ) {\displaystyle f(x)} ã®ã°ã©ããšãçŽç· x = a {\displaystyle x=a} ãçŽç· x = b {\displaystyle x=b} ãšã x {\displaystyle x} 軞ã§å²ãŸããé¢ç©ã§ããããã£ãŠã巊蟺 â« a b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)dx} ã¯ã颿° f ( x ) {\displaystyle f(x)} ã®ã°ã©ããšãçŽç· x = a {\displaystyle x=a} ãçŽç· x = b {\displaystyle x=b} ãšã x {\displaystyle x} 軞ã§å²ãŸããé¢ç©ã衚ããŠããã
æŽå²çã«ã¯ãç©åã¯ã颿°ã®ã°ã©ãã§å²ãŸããéšåã®é¢ç©ãæ±ããããã«èãåºãããããã®ç¯ã§è¿°ã¹ããããªåŸ®åãšã®é¢é£ã¯ç©åèªäœã®çºæãããã£ãšåŸã«ãªã£ãŠçºèŠãããããšã§ããã
äŸãšããŠã 0 ⊠x ⊠1 {\displaystyle 0\leqq x\leqq 1} ã®ç¯å²ã§ãy = xã®ã°ã©ããšx軞ã§ã¯ããŸããéšåã®é¢ç©ããç©åãçšããŠèšç®ããã ( å®éã«ã¯ããã¯äžè§åœ¢ãªã®ã§ãç©åãçšããªããŠãé¢ç©ãèšç®ããããšãåºæ¥ãã ç㯠1 2 {\displaystyle {\frac {1}{2}}} ãšãªãã ) å®ç©åãè¡ãªããšã â« 0 1 x d x {\displaystyle \int _{0}^{1}xdx} = 1 2 [ x 2 ] 0 1 {\displaystyle ={\frac {1}{2}}[x^{2}]_{0}^{1}} = 1 2 [ 1 2 â 0 2 ] {\displaystyle ={\frac {1}{2}}[1^{2}-0^{2}]} = 1 2 [ 1 â 0 ] {\displaystyle ={\frac {1}{2}}[1-0]}
= 1 2 {\displaystyle ={\frac {1}{2}}} ãšãªã確ãã«äžèŽããã
æŒç¿åé¡
æŸç©ç· y = 5 â x 2 {\displaystyle y=5-x^{2}} ãšx軞ããã³2çŽç· x = â 1 , x = 2 {\displaystyle x=-1\ ,\ x=2} ã§å²ãŸããéšåã®é¢ç©Sãæ±ããã
è§£ç
ãã®æŸç©ç·ã¯ â 1 †x †2 {\displaystyle -1\leq x\leq 2} ã§x軞ã®äžåŽã«ããããã
a †x †b {\displaystyle a\leq x\leq b} ã«ãããŠãåžžã« f ( x ) ⥠g ( x ) {\displaystyle f(x)\geq g(x)} ã§ãããšãã2ã€ã®æ²ç· y = f ( x ) , y = g ( x ) {\displaystyle y=f(x)\ ,\ y=g(x)} ã«æãŸããéšåã®é¢ç©Sã¯ã次ã®åŒã§è¡šãããã
æŸç©ç· y = x 2 â 1 {\displaystyle y=x^{2}-1} ãšçŽç· y = x + 1 {\displaystyle y=x+1} ã«ãã£ãŠå²ãŸããéšåã®é¢ç©Sãæ±ããã
æŸç©ç·ãšçŽç·ã®äº€ç¹ã®x座æšã¯
â 1 †x †2 {\displaystyle -1\leq x\leq 2} ã®ç¯å²ã§ x 2 â 1 †x + 1 {\displaystyle x^{2}-1\leq x+1} ãã
a †x †b {\displaystyle a\leq x\leq b} ã§ã f ( x ) †0 {\displaystyle f(x)\leq 0} ã®ãšããx軞 y = 0 {\displaystyle y=0} ãšæ²ç· y = f ( x ) {\displaystyle y=f(x)} ã«ãã£ãŠæãŸããŠãããšèããããã®ã§ã
ãšãªãã
æŸç©ç· y = x 2 â 2 x {\displaystyle y=x^{2}-2x} ãšx軞ã§å²ãŸããéšåã®é¢ç©Sãæ±ããã
æŸç©ç·ãšx軞ã®äº€ç¹ã®x座æšã¯
ãã®æŸç©ç·ã¯ 0 †x †2 {\displaystyle 0\leq x\leq 2} ã§x軞ã®äžåŽã«ããããã
髿 ¡æ°åŠãããŠãããšãå°æ¥åŸ®åãšãç©åãšãäœã«äœ¿ã?ããšæãäººã®æ¹ãå€ããšæãã確ãã«æ¥åžžç掻ã§ã¯ãç©åãªã©ã®é«åºŠãª æ°åŠã¯äœ¿ããªããã ããã®äžæ¹è£ã§ã¯ç©åã 埮åã髿 ¡æ°åŠã§ã¯åãŸããªããããªæ°åŠã䜿ãããŠãããäŸãã°å°é¢šã®é²è·¯äºæ³ã ããã¯ç©åã䜿ãå°é¢šã®é²è·¯ãäºæž¬ããŠãã ä»ã«ãã»ãã¥ãªãã£ã®åŒ·åãªã©ã«ãæ°åŠã¯äœ¿ãããŠãããæ¥åžžçæŽ»ã§ã¯æ°åŠã¯äœ¿ããªãã æ°åŠã«èŠªãã¿ãæã£ãŠã¿ãŠã¯ã©ãã ãããã
(1) F ( x ) = 2 x 2 {\displaystyle F(x)=2x^{2}} ã®ãšã f ( x ) {\displaystyle f(x)} ãæ±ããããã ã F â² ( x ) {\displaystyle F'(x)}
(3)åå§é¢æ°ãå®ç©åãæ±ãã
3) lim x â 0 â« x 5 2 x d x {\displaystyle \lim _{x\rightarrow 0}\int _{x}^{5}2xdx}
4) â« â 60 60 sin x + cos 2 x d x {\displaystyle \int _{-60}^{60}\sin x+\cos ^{2}xdx}
(1) f ( x ) = x 3 {\displaystyle f(x)=x^{3}} åªä¹ã®åŸ®å㯠y â² = n x n â 1 {\displaystyle y'=nx^{n}-1} ã§ããããäžå®ç©åã®å®çŸ©ãã f ( x ) = x 3 {\displaystyle f(x)=x^{3}} ã§ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ããã§ã¯åŸ®åç©åã®æŠå¿µã«ã€ããŠçè§£ããå€é
åŒé¢æ°ã®åŸ®åç©åãåŠã¶ããŸãã埮åã®å¿çšãå¿çšããŠæ¥ç·ã®æ¹çšåŒãã°ã©ãã®æŠåœ¢ãªã©ãæ±ããããç©åãå¿çšããŠã°ã©ãã®é¢ç©ãæ±ããã埮åç©åã¯ç©çåŠãå·¥åŠãªã©ããŸããŸãªåéã§å¿çšãããŠããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "äžåŠæ ¡ã§ã¯ãäžæ¬¡é¢æ°ãš y = a x 2 {\\displaystyle y=ax^{2}} ã®å€åã®å²åãæ±ããã ãããããã§ã¯ãåããã®ãå¹³åå€åçãšåŒã¶ããšã«ãããäžè¬ã®é¢æ° y = f ( x ) {\\displaystyle y=f(x)} ã®å¹³åå€åçãèããŠã¿ãããäžåŠæ ¡ã§åŠç¿ããããšãšåæ§ã«èãããšã y = f ( x ) {\\displaystyle y=f(x)} ã«ãããŠã x {\\displaystyle x} ã a {\\displaystyle a} ãã b {\\displaystyle b} ãŸã§å€åãããšãã®å¹³åå€åçã¯ãã y {\\displaystyle y} ã®å€åé/ x {\\displaystyle x} ã®å€åéãã§æ±ãããããã€ãŸãã æ§æè§£æå€±æ (SVG(ãã©ãŠã¶ã®ãã©ã°ã€ã³ã§ MathML ãæå¹ã«ããããšãã§ããŸã): ãµãŒããŒãhttp://localhost:6011/ja.wikibooks.org/v1/ãããç¡å¹ãªå¿ç (\"Math extension cannot connect to Restbase.\"):): {\\displaystyle \\frac{f(b)-f(a)}{b-a}} ã§ããã",
"title": "å¹³åå€åç"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "äŸ",
"title": "å¹³åå€åç"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "y = x 2 + 2 x + 1 {\\displaystyle y=x^{2}+2x+1} ã«ãããŠã x {\\displaystyle x} ã-1ãã3ãŸã§å€åãããšãã®å¹³åå€åçãæ±ããã",
"title": "å¹³åå€åç"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "( 3 2 + 2 â
3 + 1 ) â ( ( â 1 ) 2 + 2 â
( â 1 ) + 1 ) 3 â ( â 1 ) {\\displaystyle {\\frac {(3^{2}+2\\cdot 3+1)-((-1)^{2}+2\\cdot (-1)+1)}{3-(-1)}}} = 4 {\\displaystyle =4}",
"title": "å¹³åå€åç"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "颿° f ( x ) {\\displaystyle f(x)} ã«ãããŠã x {\\displaystyle x} ã a {\\displaystyle a} ãšã¯ç°ãªãå€ããšããªããéããªã a {\\displaystyle a} ã«è¿ã¥ããšãã f ( x ) {\\displaystyle f(x)} ãéããªã A {\\displaystyle A} ã«è¿ã¥ãããšãã lim x â a f ( x ) = A {\\displaystyle \\lim _{x\\rightarrow a}f(x)=A} ãšããã",
"title": "極é"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "lim x â 0 3 x {\\displaystyle \\lim _{x\\rightarrow 0}3x} ãæ±ããã",
"title": "極é"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "x {\\displaystyle x} ãã 1 , 0.1 , 0.01 , 0.001 , ⯠{\\displaystyle 1,0.1,0.01,0.001,\\cdots } ãšéããªã0ã«è¿ã¥ããŠã¿ãããããšã 3 x {\\displaystyle 3x} ã¯ã 3 , 0.3 , 0.03 , 0.003 , ⯠{\\displaystyle 3,0.3,0.03,0.003,\\cdots } ãšãéããªã0ã«è¿ã¥ãããšããããã",
"title": "極é"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãã£ãŠã x {\\displaystyle x} ãéããªã0ã«è¿ã¥ãããšã 3 x {\\displaystyle 3x} ã¯éããªã0ã«è¿ã¥ãã®ã§ã lim x â 0 3 x = 0 {\\displaystyle \\lim _{x\\rightarrow 0}3x=0} ã§ããã",
"title": "極é"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "次ã«ã lim x â 1 x 2 â 1 x â 1 {\\displaystyle \\lim _{x\\rightarrow 1}{\\frac {x^{2}-1}{x-1}}} ãæ±ããã",
"title": "極é"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "x {\\displaystyle x} ãã 1.1 , 1.01 , 1.001 , 0.0001 , 1.00001 , ⯠{\\displaystyle 1.1,1.01,1.001,0.0001,1.00001,\\cdots } ãšãéããªã1ã«è¿ã¥ããŠã¿ããšã x 2 â 1 x â 1 {\\displaystyle {\\frac {x^{2}-1}{x-1}}} ã¯ã 2.1 , 2.01 , 2.001 , 2.0001 , 2.00001 , ⯠{\\displaystyle 2.1,2.01,2.001,2.0001,2.00001,\\cdots } ãšãéããªã2ã«è¿ã¥ãã",
"title": "極é"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãªã®ã§ã lim x â 1 x 2 â 1 x â 1 = 2 {\\displaystyle \\lim _{x\\rightarrow 1}{\\frac {x^{2}-1}{x-1}}=2} ã§ããã",
"title": "極é"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ããã¯ãåŒã«å€ã代å
¥ããåã«ãåŒèªäœãçŽåããŠããŸã£ãæ¹ãç°¡åã«èšç®ã§ãããããªãã¡ã x 2 â 1 x â 1 = ( x + 1 ) ( x â 1 ) x â 1 {\\displaystyle {\\frac {x^{2}-1}{x-1}}={\\frac {(x+1)(x-1)}{x-1}}} ã§ããã x {\\displaystyle x} ã1ãšã¯ç°ãªãå€ãåããªããéããªã1ã«è¿ã¥ãããšã x â 1 {\\displaystyle x\\neq 1} ãªã®ã§ãããã¯çŽåã§ãã x 2 â 1 x â 1 = ( x + 1 ) ( x â 1 ) x â 1 = x + 1 {\\displaystyle {\\frac {x^{2}-1}{x-1}}={\\frac {(x+1)(x-1)}{x-1}}=x+1} ã§ããã",
"title": "極é"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãªã®ã§ã lim x â 1 x 2 â 1 x â 1 {\\displaystyle \\lim _{x\\rightarrow 1}{\\frac {x^{2}-1}{x-1}}} ãæ±ããã«ã¯ã lim x â 1 ( x + 1 ) {\\displaystyle \\lim _{x\\rightarrow 1}(x+1)} ãæ±ããã°è¯ãã",
"title": "極é"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "lim x â 1 ( x + 1 ) = 2 {\\displaystyle \\lim _{x\\rightarrow 1}(x+1)=2} ã§ããã®ã§ã lim x â 1 x 2 â 1 x â 1 = 2 {\\displaystyle \\lim _{x\\rightarrow 1}{\\frac {x^{2}-1}{x-1}}=2} ãšæ±ããããšãã§ããã",
"title": "極é"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "â»çºå± æåã®äŸã§ã¯ã x {\\displaystyle x} ãã 1 , 0.1 , 0.01 , 0.001 , ⯠{\\displaystyle 1,0.1,0.01,0.001,\\cdots } ãšãéããªã0ã«è¿ã¥ãããã 2 , 0.2 , 0.02 , 0.002 , ⯠{\\displaystyle 2,0.2,0.02,0.002,\\cdots } ãã â 1 , â 0.1 , â 0.01 , â 0.001 , ⯠{\\displaystyle -1,-0.1,-0.01,-0.001,\\cdots } ã®ããã«è¿ã¥ããŠã¿ãŠã x {\\displaystyle x} ã¯éããªã0ã«è¿ã¥ããä»ã«ãã 1 , â 0.1 , 0.01 , â 0.001 , ⯠{\\displaystyle 1,-0.1,0.01,-0.001,\\cdots } ã 0.1 , 0.5 , 0.01 , 0.05 , ⯠{\\displaystyle 0.1,0.5,0.01,0.05,\\cdots } ãªã© x {\\displaystyle x} ã0ã«è¿ã¥ãããæ¹æ³ã¯ãããã§ãèããããã",
"title": "極é"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ãã¡ããããã®äŸã§ã¯ã x {\\displaystyle x} ãã©ã®ããã«è¿ã¥ãããšããŠã極éã®å€ã¯å€ãããªãã",
"title": "極é"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ãããã x {\\displaystyle x} ãã 1 , 0.1 , 0.01 , 0.001 , ⯠{\\displaystyle 1,0.1,0.01,0.001,\\cdots } ãšè¿ã¥ãããšãã f ( x ) {\\displaystyle f(x)} 㯠α {\\displaystyle \\alpha } ã«è¿ã¥ããã x {\\displaystyle x} ãã 2 , 0.2 , 0.02 , 0.002 , ⯠{\\displaystyle 2,0.2,0.02,0.002,\\cdots } ãšè¿ã¥ãããã f ( x ) {\\displaystyle f(x)} 㯠α {\\displaystyle \\alpha } ã«è¿ã¥ããªãããããªé¢æ° f ( x ) {\\displaystyle f(x)} ã ã£ãŠããã ããã",
"title": "極é"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ãªã x {\\displaystyle x} ã 1 , 0.1 , 0.01 , 0.001 , ⯠{\\displaystyle 1,0.1,0.01,0.001,\\cdots } ãšãè¿ã¥ããã ãã§ã極éã®å€ãæ±ããããšãåºæ¥ãã®ã?ãšçåã«æã人ãããããç¥ããªãã",
"title": "極é"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "極éãå³å¯ã«å®çŸ©ããã«ã¯ãã€ãã·ãã³ãã«ã¿è«æ³ã䜿ãå¿
èŠãããããããã髿 ¡çã«ã¯å°ãé£ãããšèãã人ãå€ãã®ã§é«æ ¡ã§ã¯ããŸãæããããŠããªãã",
"title": "極é"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ãªã®ã§ããã®æ¬ã§ã¯ãã€ãã·ãã³ãã«ã¿è«æ³ã䜿ãããææ§ãªæ¹æ³ã§æ¥µéãå®çŸ©ããããªã®ã§ãäžã®ãããªçåãæã£ã人ã¯ããã®çåã«ã€ããŠæ·±ãèããã«å
ã«é²ãããã€ãã·ãã³ãã«ã¿è«æ³ãåŠã¶ãããŠã»ããã",
"title": "極é"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "颿° y = f ( x ) {\\displaystyle y=f(x)} ã®åŸãã«ã€ããŠèããŠã¿ããã",
"title": "埮åä¿æ°ãšå°é¢æ°"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "x {\\displaystyle x} ã a {\\displaystyle a} ãã a + h {\\displaystyle a+h} ãŸã§å€åãããšãã®å¹³åå€åçã¯",
"title": "埮åä¿æ°ãšå°é¢æ°"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "f ( a + h ) â f ( a ) h {\\displaystyle {\\frac {f(a+h)-f(a)}{h}}}",
"title": "埮åä¿æ°ãšå°é¢æ°"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ã§ããããã®ãšãã h {\\displaystyle h} ãéããªã0ã«è¿ã¥ããã° a {\\displaystyle a} ã§ã®åŸããæ±ããããšãã§ãããã€ãŸãã颿° y = f ( x ) {\\displaystyle y=f(x)} ã® a {\\displaystyle a} ã§ã®åŸãã¯",
"title": "埮åä¿æ°ãšå°é¢æ°"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "lim h â 0 f ( a + h ) â f ( a ) h {\\displaystyle \\lim _{h\\to 0}{\\frac {f(a+h)-f(a)}{h}}}",
"title": "埮åä¿æ°ãšå°é¢æ°"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ã§äžãããããããã x = a {\\displaystyle x=a} ã«ããã埮åä¿æ°ãšããã",
"title": "埮åä¿æ°ãšå°é¢æ°"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ãŸã",
"title": "埮åä¿æ°ãšå°é¢æ°"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "f â² ( x ) = lim h â 0 f ( x + h ) â f ( x ) h {\\displaystyle f'(x)=\\lim _{h\\to 0}{\\frac {f(x+h)-f(x)}{h}}}",
"title": "埮åä¿æ°ãšå°é¢æ°"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ã§äžãããã颿° f â² ( x ) {\\displaystyle f'(x)} ã颿° f ( x ) {\\displaystyle f(x)} ã®å°é¢æ°ãšããã",
"title": "埮åä¿æ°ãšå°é¢æ°"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "颿° f ( x ) {\\displaystyle f(x)} ã®å°é¢æ°ã¯ d f d x {\\displaystyle {\\frac {df}{dx}}} ãšè¡šãããããšãããã",
"title": "埮åä¿æ°ãšå°é¢æ°"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ããã§ãããã€ãã®é¢æ°ã®å°é¢æ°ãæ±ããŠã¿ããã",
"title": "埮åä¿æ°ãšå°é¢æ°"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ã§ããã",
"title": "埮åä¿æ°ãšå°é¢æ°"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "n {\\displaystyle n} ãèªç¶æ°ãšããã颿° f ( x ) = x n {\\displaystyle f(x)=x^{n}} ã®å°é¢æ°ã¯äºé
å®çãå¿çšã",
"title": "埮åä¿æ°ãšå°é¢æ°"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "ãšæ±ãããã",
"title": "埮åä¿æ°ãšå°é¢æ°"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "颿° f ( x ) , g ( x ) {\\displaystyle f(x),g(x)} ã«å¯Ÿã次ãæãç«ã€ã",
"title": "åã»å·®åã³å®æ°åã®å°é¢æ°"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "蚌æ",
"title": "åã»å·®åã³å®æ°åã®å°é¢æ°"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "æŒç¿åé¡",
"title": "åã»å·®åã³å®æ°åã®å°é¢æ°"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "次ã®é¢æ°ã埮åãã",
"title": "åã»å·®åã³å®æ°åã®å°é¢æ°"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "1. f ( x ) = 2 x 3 + 4 x 2 â 5 x â 1 {\\displaystyle f(x)=2x^{3}+4x^{2}-5x-1} 2. f ( x ) = ( 2 x + 3 ) ( 3 x â 5 ) {\\displaystyle f(x)=(2x+3)(3x-5)}",
"title": "åã»å·®åã³å®æ°åã®å°é¢æ°"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "è§£ç",
"title": "åã»å·®åã³å®æ°åã®å°é¢æ°"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "1.",
"title": "åã»å·®åã³å®æ°åã®å°é¢æ°"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "2. f ( x ) = 6 x 2 â x â 15 {\\displaystyle f(x)=6x^{2}-x-15} ã§ãããã",
"title": "åã»å·®åã³å®æ°åã®å°é¢æ°"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "æ²ç· y = f ( x ) {\\displaystyle y=f(x)} äžã®ç¹ ( t , f ( t ) ) {\\displaystyle (t,f(t))} ã«ãããæ¥ç·ã®æ¹çšåŒãæ±ããããã®æ¥ç·ã®åŸã㯠f â² ( t ) {\\displaystyle f'(t)} ã§ãããç¹ ( t , f ( t ) ) {\\displaystyle (t,f(t))} ãéãã®ã§ãæ¹çšåŒã¯ y = f â² ( t ) ( x â t ) + f ( t ) {\\displaystyle y=f'(t)(x-t)+f(t)} ã§äžãããããå®éã x = t {\\displaystyle x=t} ãšãããš y = f ( t ) {\\displaystyle y=f(t)} ãšãªãã®ã§ãã®æ¹çšåŒã¯ç¹ ( t , f ( t ) ) {\\displaystyle (t,f(t))} ãéãããšããããã x {\\displaystyle x} ã®ä¿æ°ã¯ f â² ( t ) {\\displaystyle f'(t)} ãªã®ã§åŸã㯠f â² ( t ) {\\displaystyle f'(t)} ã§ããã",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "æ²ç· y = f ( x ) {\\displaystyle y=f(x)} äžã®ç¹ ( t , f ( t ) ) {\\displaystyle (t,f(t))} ã«ãããæ³ç·ã®æ¹çšåŒã¯ã y = â 1 f â² ( t ) ( x â t ) + f ( t ) {\\displaystyle y=-{\\frac {1}{f'(t)}}(x-t)+f(t)} ã§äžããããã",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "f'(x)ã¯ãfã®åŸãã衚ããã®ã§ã f â² ( x ) > 0 {\\displaystyle f'(x)>0} ã®ç¹ã§ã¯ãfã¯å¢å€§ãã f â² ( x ) < 0 {\\displaystyle f'(x)<0} ã®ç¹ã§ã¯ãfã¯æžå°ããããšããããã",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "ãããããšã«é¢æ°ã®æŠåœ¢ãæãããšãã§ããã",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "äŸ",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "y = x 3 {\\displaystyle y=x^{3}} ã®å¢æžã調ã¹ã",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "䞡蟺ãxã§åŸ®åãããš",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "f ( x ) = x 3 â 3 x {\\displaystyle f(x)=x^{3}-3x} ã埮åãããš",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "墿žè¡šã¯æ¬¡ã®ããã«ãªãã",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "ãã®é¢æ°ã®ã°ã©ãã¯ã x = â 1 {\\displaystyle x=-1} ãå¢ã«ããŠå¢å ããæžå°ã®ç¶æ
ã«å€ããã x = 1 {\\displaystyle x=1} ãå¢ã«ããŠæžå°ããå¢å ã®ç¶æ
ã«å€ããã ãã®ãšãã f ( x ) {\\displaystyle f(x)} 㯠x = â 1 {\\displaystyle x=-1} ã«ãããŠæ¥µå€§(ãããã ã)ã«ãªããšããããã®ãšãã® f ( x ) {\\displaystyle f(x)} ã®å€ f ( â 1 ) = 2 {\\displaystyle f(-1)=2} ãæ¥µå€§å€(ãããã ãã¡)ãšããããŸãã x = 1 {\\displaystyle x=1} ã«ãããŠæ¥µå°(ãããããã)ã«ãªããšããããã®ãšãã® f ( x ) {\\displaystyle f(x)} ã®å€ f ( 1 ) = â 2 {\\displaystyle f(1)=-2} ãæ¥µå°å€(ããããããã¡)ãšãããæ¥µå€§å€ã𿥵å°å€ãåãããŠæ¥µå€(ãããã¡)ãšããã",
"title": "å°é¢æ°ã®å¿çš"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "äžå®ç©å(indefinite integral)ãšã¯ã埮åããããã®é¢æ°ã«ãªã颿°ãæ±ããæäœã§ããã",
"title": "äžå®ç©å"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ã€ãŸãã颿° f ( x ) {\\displaystyle f(x)} ã«å¯ŸããŠã F â² ( x ) = f ( x ) {\\displaystyle F'(x)=f(x)} ãšãªãã颿° F ( x ) {\\displaystyle F(x)} ãæ±ããæäœã§ããã",
"title": "äžå®ç©å"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ãã®ãšã F ( x ) {\\displaystyle F(x)} ãã f ( x ) {\\displaystyle f(x)} ã®åå§é¢æ°(primitive function)ãšåŒã¶ã",
"title": "äžå®ç©å"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "äŸãã°ã 1 2 x 2 {\\displaystyle {\\frac {1}{2}}x^{2}} ã¯åŸ®åãããšã x {\\displaystyle x} ã«ãªãã®ã§ã 1 2 x 2 {\\displaystyle {\\frac {1}{2}}x^{2}} 㯠x {\\displaystyle x} ã®åå§é¢æ°ã§ããã",
"title": "äžå®ç©å"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "ãããã 1 2 x 2 + 1 {\\displaystyle {\\frac {1}{2}}x^{2}+1} ãã 1 2 x 2 + 3 {\\displaystyle {\\frac {1}{2}}x^{2}+3} ãªã©ã埮åãããš x {\\displaystyle x} ã«ãªãã®ã§ã 1 2 x 2 + 1 {\\displaystyle {\\frac {1}{2}}x^{2}+1} ãã 1 2 x 2 + 3 {\\displaystyle {\\frac {1}{2}}x^{2}+3} ã x {\\displaystyle x} ã®åå§é¢æ°ã§ããã",
"title": "äžå®ç©å"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "äžè¬ã«ã 1 2 x 2 + C {\\displaystyle {\\frac {1}{2}}x^{2}+C} (Cã¯ä»»æã®å®æ°)ã§è¡šããã颿°ã¯ã x {\\displaystyle x} ã®åå§é¢æ°ã§ããã",
"title": "äžå®ç©å"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "x {\\displaystyle x} ã®åå§é¢æ°ã¯äžã€ã ãã§ã¯ãªããç¡æ°ã«ããã®ã ã",
"title": "äžå®ç©å"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "",
"title": "äžå®ç©å"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "äžè¬ã«ã颿° f ( x ) {\\displaystyle f(x)} ã®åå§é¢æ°ã®äžã€ã F ( x ) {\\displaystyle F(x)} ãšãããšããåå§é¢æ°ã«ä»»æã®å®æ°ãè¶³ãã颿° F ( x ) + C {\\displaystyle F(x)+C} ã f ( x ) {\\displaystyle f(x)} ã®åå§é¢æ°ã«ãªãã",
"title": "äžå®ç©å"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "ãªããªãã F ( x ) {\\displaystyle F(x)} ã f ( x ) {\\displaystyle f(x)} ã®åå§é¢æ°ã§ãããã€ãŸãã F â² ( x ) = f ( x ) {\\displaystyle F'(x)=f(x)} ã®ãšãã ( F ( x ) + C ) â² = F â² ( x ) + ( C ) â² = F â² ( x ) = f ( x ) {\\displaystyle {(F(x)+C)}'=F'(x)+{(C)}'=F'(x)=f(x)} ãšãªãããã ã",
"title": "äžå®ç©å"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "ãŸãã颿° f ( x ) {\\displaystyle f(x)} ã®åå§é¢æ°ã®äžã€ã F ( x ) {\\displaystyle F(x)} ã§ãããšãããã¹ãŠã®é¢æ° f ( x ) {\\displaystyle f(x)} ã®åå§é¢æ°ã¯ F ( x ) + C {\\displaystyle F(x)+C} ã®åœ¢ã«æžããã",
"title": "äžå®ç©å"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "F ( x ) + C {\\displaystyle F(x)+C} ã®åœ¢ã«æžããªã颿° G ( x ) {\\displaystyle G(x)} ã颿° f ( x ) {\\displaystyle f(x)} ã®åå§é¢æ°ã§ãããšä»®å®ããããã®ãšãã h ( x ) = F ( x ) â G ( x ) {\\displaystyle h(x)=F(x)-G(x)} ãšãããšã颿° h ( x ) {\\displaystyle h(x)} ã¯å®æ°ã§ã¯ãªãã",
"title": "äžå®ç©å"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "ãã®ãšãã h â² ( x ) = { F ( x ) â G ( x ) } â² = F â² ( x ) â G â² ( x ) = f ( x ) â f ( x ) = 0 {\\displaystyle h'(x)=\\{F(x)-G(x)\\}'=F'(x)-G'(x)=f(x)-f(x)=0} ã§ããã¯ãã ãã颿° h ( x ) {\\displaystyle h(x)} ã¯å®æ°ã§ã¯ãªãã®ã§ h â² ( x ) = 0 {\\displaystyle h'(x)=0} ãšãªããªããããã¯ççŸãªã®ã§ããã¹ãŠã®é¢æ° f ( x ) {\\displaystyle f(x)} ã®åå§é¢æ°ã¯ F ( x ) + C {\\displaystyle F(x)+C} ã®åœ¢ã«æžããããšã蚌æã§ããã",
"title": "äžå®ç©å"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "颿° f ( x ) {\\displaystyle f(x)} ã®åå§é¢æ°ã®å
šäœãã â« f ( x ) d x {\\displaystyle \\int f(x)dx} ãšè¡šãããã®è¡šèšæ³ã¯æåã¯å¥åŠã«æãã ãããããã®ããã«è¡šèšããçç±ã¯åŸã«èª¬æããã®ã§ãä»ã¯ããã®ãŸãŸèŠããŠæ¬²ããã",
"title": "äžå®ç©å"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "ãŸãšãããšã颿° f ( x ) {\\displaystyle f(x)} ã®åå§é¢æ°ã®å
šäœ â« f ( x ) d x {\\displaystyle \\int f(x)dx} ã¯ã f ( x ) {\\displaystyle f(x)} ã®åå§é¢æ°ã®äžã€ã F ( x ) {\\displaystyle F(x)} ãšããŠããã®é¢æ°ã«ä»»æã®å®æ°ãè¶³ãã颿° F ( x ) + C {\\displaystyle F(x)+C} ã§è¡šããããã€ãŸãã",
"title": "äžå®ç©å"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "C {\\displaystyle C} ã¯ä»»æã®å®æ°ãšãããããã®ä»»æã®å®æ° C {\\displaystyle C} ãç©å宿°(constant of integration)ãšåŒã¶ã",
"title": "äžå®ç©å"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "â»æ³šæ â« f ( x ) d x {\\displaystyle \\int f(x)dx} ã¯å®çŸ©ã«ãããããã«ã f ( x ) {\\displaystyle f(x)} ã®åå§é¢æ°ã®å
šäœã衚ããŠãããã€ãŸãã f ( x ) {\\displaystyle f(x)} ã®åå§é¢æ°ã®äžã€ã F ( x ) {\\displaystyle F(x)} ãšãããšãã â« f ( x ) d x = F ( x ) + C {\\displaystyle \\int f(x)dx=F(x)+C} ã®å³èŸº F ( x ) + C {\\displaystyle F(x)+C} ã¯ã F ( x ) {\\displaystyle F(x)} ã«å®æ°ãè¶³ãã颿°ã®å
šäœã衚ããŠãããã€ãŸãã F ( x ) + C {\\displaystyle F(x)+C} ã¯ã F ( x ) + 1 {\\displaystyle F(x)+1} ãã F ( x ) â 23 {\\displaystyle F(x)-23} ãã F ( x ) â 5 Ï {\\displaystyle F(x)-5\\pi } ãªã©ã®ã F ( x ) {\\displaystyle F(x)} ã«å®æ°ãè¶³ãã颿°ãã¹ãŠããŸãšã㊠F ( x ) + C {\\displaystyle F(x)+C} ãšè¡šããŠããããã®ããšããããµãã«ãªã£ãŠãããšãé倧ãªééããèµ·ããå¯èœæ§ãããã®ã§ã泚æãå¿
èŠã§ããã",
"title": "äžå®ç©å"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "颿° f ( x ) = x n {\\displaystyle f(x)=x^{n}} (ãã ã n {\\displaystyle n} ã¯èªç¶æ°)ã®äžå®ç©åãæ±ããŠã¿ãããã倩äžãçã ãã F ( x ) = 1 n + 1 x n + 1 + C {\\displaystyle F(x)={\\frac {1}{n+1}}x^{n+1}+C} ( C {\\displaystyle C} ã¯ä»»æã®å®æ°)ãšãããšã F â² ( x ) = x n {\\displaystyle F'(x)=x^{n}} ãšãªãã®ã§ã 1 n + 1 x n + 1 + C {\\displaystyle {\\frac {1}{n+1}}x^{n+1}+C} ã¯åå§é¢æ°ã§ããããšããããã",
"title": "äžå®ç©å"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "ãããã£ãŠ â« x n d x = 1 n + 1 x n + 1 + C {\\displaystyle \\int x^{n}dx={\\frac {1}{n+1}}x^{n+1}+C}",
"title": "äžå®ç©å"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "颿° f ( x ) , g ( x ) {\\displaystyle f(x),g(x)} ã®åå§é¢æ°ãããããã F ( x ) , G ( x ) {\\displaystyle F(x),G(x)} ãšããã a {\\displaystyle a} ãä»»æã®å®æ°å®æ°ãšãããš",
"title": "äžå®ç©å"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "{ F ( x ) + G ( x ) } â² = F â² ( x ) + G â² ( x ) = f ( x ) + g ( x ) {\\displaystyle \\{F(x)+G(x)\\}'=F'(x)+G'(x)=f(x)+g(x)}",
"title": "äžå®ç©å"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "{ a F ( x ) } â² = a F â² ( x ) = a f ( x ) {\\displaystyle \\{aF(x)\\}'=aF'(x)=af(x)}",
"title": "äžå®ç©å"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "ãšãªãã®ã§ã",
"title": "äžå®ç©å"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "â« { f ( x ) + g ( x ) } d x = â« f ( x ) d x + â« g ( x ) d x {\\displaystyle \\int \\{f(x)+g(x)\\}dx=\\int f(x)dx+\\int g(x)dx}",
"title": "äžå®ç©å"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "â« a f ( x ) d x = a â« f ( x ) d x {\\displaystyle \\int af(x)dx=a\\int f(x)dx}",
"title": "äžå®ç©å"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "ãæãç«ã€ããšãåããã",
"title": "äžå®ç©å"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "",
"title": "äžå®ç©å"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "æŒç¿åé¡",
"title": "äžå®ç©å"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "äžå®ç©å â« ( x 8 + 2 x 2 â 6 x + 9 ) d x {\\displaystyle \\int (x^{8}+2x^{2}-6x+9)dx} ãæ±ãã",
"title": "äžå®ç©å"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "è§£ç",
"title": "äžå®ç©å"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "â« ( x 8 + 2 x 2 â 6 x + 9 ) d x = â« x 8 d x + 2 â« x 2 d x â 6 â« x d x + 9 â« d x = x 9 9 + 2 x 3 3 â 3 x 2 + 9 x + C {\\displaystyle \\int (x^{8}+2x^{2}-6x+9)dx=\\int x^{8}\\,dx+2\\int x^{2}\\,dx-6\\int x\\,dx+9\\int dx={\\frac {x^{9}}{9}}+{\\frac {2x^{3}}{3}}-3x^{2}+9x+C} ( C {\\displaystyle C} ã¯ç©å宿°)",
"title": "äžå®ç©å"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "颿° f ( x ) {\\displaystyle f(x)} ã®åå§é¢æ°ã®äžã€ã F ( x ) {\\displaystyle F(x)} ãšããããã®åå§é¢æ°ã«å€ã代å
¥ããŠããã®å€ã®å·®ãæ±ããæäœããå®ç©åãšåŒã³ã â« a b f ( x ) d x {\\displaystyle \\int _{a}^{b}f(x)dx} ãšæžããã€ãŸãã",
"title": "å®ç©å"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "ã§ããã",
"title": "å®ç©å"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "[ f ( x ) ] a b = f ( b ) â f ( a ) {\\displaystyle [f(x)]_{a}^{b}=f(b)-f(a)} ãšããã",
"title": "å®ç©å"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "ãã®ããã«ãããšã â« a b f ( x ) d x = [ F ( x ) ] a b = F ( b ) â F ( a ) {\\displaystyle \\int _{a}^{b}f(x)dx=[F(x)]_{a}^{b}=F(b)-F(a)} ãšèšç®ã§ããã",
"title": "å®ç©å"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "å®ç©åã®å€ã¯åå§é¢æ°ã®éžæã«ãããªããå®éãåå§é¢æ°ãšããŠã F ( x ) + C {\\displaystyle F(x)+C} ãéžã³ãå®ç©åãèšç®ãããšã â« a b f ( x ) d x = ( F ( b ) + C ) â ( F ( a ) + C ) = F ( b ) â F ( a ) {\\displaystyle \\int _{a}^{b}f(x)dx=(F(b)+C)-(F(a)+C)=F(b)-F(a)}",
"title": "å®ç©å"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "ãšãªããåå§é¢æ°ãšããŠã©ããéžãã§ãå®ç©åã®å€ã¯äžå®ã§ããããšããããã",
"title": "å®ç©å"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "颿° f ( x ) , g ( x ) {\\displaystyle f(x),g(x)} ã«å¯ŸããŠãåå§é¢æ°ããããã F ( x ) , G ( x ) {\\displaystyle F(x),G(x)} ãšããã k {\\displaystyle k} ã宿°ãšããŠã",
"title": "å®ç©å"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "â« a b k f ( x ) d x = k F ( b ) â k F ( a ) = k ( F ( b ) â F ( a ) ) = k â« a b f ( x ) d x {\\displaystyle \\int _{a}^{b}kf(x)\\,dx=kF(b)-kF(a)=k(F(b)-F(a))=k\\int _{a}^{b}f(x)\\,dx}",
"title": "å®ç©å"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "â« a b { f ( x ) + g ( x ) } d x = [ F ( x ) + G ( x ) ] a b = F ( b ) + G ( b ) â ( F ( a ) + G ( a ) ) = F ( b ) â F ( a ) + G ( b ) â G ( a ) = â« a b f ( x ) d x + â« a b g ( x ) d x {\\displaystyle \\int _{a}^{b}\\{f(x)+g(x)\\}dx=[F(x)+G(x)]_{a}^{b}=F(b)+G(b)-(F(a)+G(a))=F(b)-F(a)+G(b)-G(a)=\\int _{a}^{b}f(x)\\,dx+\\int _{a}^{b}g(x)\\,dx}",
"title": "å®ç©å"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "â« a a f ( x ) d x = F ( a ) â F ( a ) = 0 {\\displaystyle \\int _{a}^{a}f(x)\\,dx=F(a)-F(a)=0}",
"title": "å®ç©å"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "â« b a f ( x ) d x = F ( a ) â F ( b ) = â ( F ( b ) â F ( a ) ) = â â« a b f ( x ) d x {\\displaystyle \\int _{b}^{a}f(x)\\,dx=F(a)-F(b)=-(F(b)-F(a))=-\\int _{a}^{b}f(x)\\,dx}",
"title": "å®ç©å"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "â« a b f ( x ) d x = F ( b ) â F ( a ) = ( F ( b ) â F ( c ) ) + ( F ( c ) â F ( a ) ) = â« a c f ( x ) d x + â« c b f ( x ) d x {\\displaystyle \\int _{a}^{b}f(x)\\,dx=F(b)-F(a)=(F(b)-F(c))+(F(c)-F(a))=\\int _{a}^{c}f(x)\\,dx+\\int _{c}^{b}f(x)\\,dx}",
"title": "å®ç©å"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "ãæãç«ã€ã",
"title": "å®ç©å"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "â« 2 5 x 3 d x {\\displaystyle \\int _{2}^{5}x^{3}dx} ãæ±ããã",
"title": "å®ç©å"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "1 4 x 4 {\\displaystyle {\\frac {1}{4}}x^{4}} ã¯ã埮åãããšã x 3 {\\displaystyle x^{3}} ãªã®ã§ã 1 4 x 4 {\\displaystyle {\\frac {1}{4}}x^{4}} 㯠x 3 {\\displaystyle x^{3}} ã®åå§é¢æ°ã®äžã€ã§ããããã£ãŠ â« 2 5 x 3 d x = [ 1 4 x 4 ] 2 5 = 1 4 5 4 â 1 4 2 4 = 609 4 {\\displaystyle \\int _{2}^{5}x^{3}dx=\\left[{\\frac {1}{4}}x^{4}\\right]_{2}^{5}={\\frac {1}{4}}5^{4}-{\\frac {1}{4}}2^{4}={\\frac {609}{4}}} ã§ããã",
"title": "å®ç©å"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "1 4 x 4 + 1 {\\displaystyle {\\frac {1}{4}}x^{4}+1} ãã埮åãããšã x 3 {\\displaystyle x^{3}} ãªã®ã§ã 1 4 x 4 + 1 {\\displaystyle {\\frac {1}{4}}x^{4}+1} 㯠x 3 {\\displaystyle x^{3}} ã®åå§é¢æ°ã®äžã€ã§ããããã£ãŠã â« 2 5 x 3 d x = [ 1 4 x 4 + 1 ] 2 5 = ( 1 4 5 4 + 1 ) â ( 1 4 2 4 + 1 ) = 609 4 {\\displaystyle \\int _{2}^{5}x^{3}dx=\\left[{\\frac {1}{4}}x^{4}+1\\right]_{2}^{5}=\\left({\\frac {1}{4}}5^{4}+1\\right)-\\left({\\frac {1}{4}}2^{4}+1\\right)={\\frac {609}{4}}} ãšæ±ããããšãã§ããã",
"title": "å®ç©å"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "aã宿°ãšãããšããå®ç©å â« a x f ( t ) d t {\\displaystyle \\int _{a}^{x}f(t)\\,dt} ã¯xã®é¢æ°ã«ãªãã 颿° f ( t ) {\\displaystyle f(t)} ã®åå§é¢æ°ã®äžã€ã F ( t ) {\\displaystyle F(t)} ãšãããš",
"title": "埮åç©ååŠã®åºæ¬å®ç"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "ãã®äž¡èŸºãxã§åŸ®åãããšã F ( a ) {\\displaystyle F(a)} ã¯å®æ°ã§ãããã",
"title": "埮åç©ååŠã®åºæ¬å®ç"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "颿° f ( x ) {\\displaystyle f(x)} ã a ⊠x ⊠b {\\displaystyle a\\leqq x\\leqq b} ã®ç¯å²ã§åžžã«æ£ã§ãããšããããã®ãšããå®ç©å â« a b f ( x ) d x {\\displaystyle \\int _{a}^{b}f(x)dx} ã«ãã£ãŠã颿° f ( x ) {\\displaystyle f(x)} ã®ã°ã©ããšãçŽç· x = a {\\displaystyle x=a} ãçŽç· x = b {\\displaystyle x=b} ã x {\\displaystyle x} 軞ã§å²ãŸããéšåã®é¢ç©ãæ±ããããšãã§ããã",
"title": "å®ç©åãšé¢ç©"
},
{
"paragraph_id": 104,
"tag": "p",
"text": "颿° f ( x ) {\\displaystyle f(x)} ã®ã°ã©ããšãçŽç· x = a {\\displaystyle x=a} ãçŽç· x = c {\\displaystyle x=c} ãšã x {\\displaystyle x} 軞ã§å²ãŸããéšåã®é¢ç©ã S ( c ) {\\displaystyle S(c)} ãšããããšã«ãã£ãŠã颿° S ( x ) {\\displaystyle S(x)} ãå®ããã( a ⊠x ⊠b {\\displaystyle a\\leqq x\\leqq b} ãšãã)",
"title": "å®ç©åãšé¢ç©"
},
{
"paragraph_id": 105,
"tag": "p",
"text": "颿° f ( x ) {\\displaystyle f(x)} ã®ã°ã©ããšãçŽç· x = c {\\displaystyle x=c} ãçŽç· x = c + h {\\displaystyle x=c+h} ãšã x {\\displaystyle x} 軞ã§å²ãŸããéšåã®é¢ç©ãèãã( a ⊠c + h ⊠b {\\displaystyle a\\leqq c+h\\leqq b} ãšãã)ãããã¯ã S ( c + h ) â S ( c ) {\\displaystyle S(c+h)-S(c)} ã§ãããããã§ã c < t < c + h {\\displaystyle c<t<c+h} ãªã t {\\displaystyle t} ããšã£ãŠããŠããã®ç¹ã«ããã f ( x ) {\\displaystyle f(x)} ã®å€ f ( t ) {\\displaystyle f(t)} ãé«ããšããé·æ¹åœ¢ã®é¢ç©ãèããããšã§ã t {\\displaystyle t} ãäžæã«ãšãã°ã S ( c + h ) â S ( c ) = h â
f ( t ) {\\displaystyle S(c+h)-S(c)=h\\cdot f(t)} ãšã§ããã䞡蟺ã h {\\displaystyle h} ã§å²ãã h â 0 {\\displaystyle h\\to 0} ã®æ¥µéãèãããšã",
"title": "å®ç©åãšé¢ç©"
},
{
"paragraph_id": 106,
"tag": "p",
"text": "ã§ãããã巊蟺ã¯åŸ®åã®å®çŸ©ãã S â² ( c ) {\\displaystyle S'(c)} ã§ããã lim h â 0 t = c {\\displaystyle \\lim _{h\\to 0}t=c} ã§ããããšã«æ³šæãããšå³èŸºã¯ f ( c ) {\\displaystyle f(c)} ã§ãããæåã c {\\displaystyle c} ãã x {\\displaystyle x} ã«åãæãããšãçµå±",
"title": "å®ç©åãšé¢ç©"
},
{
"paragraph_id": 107,
"tag": "p",
"text": "ãåŸããããã€ãŸãã S ( x ) {\\displaystyle S(x)} 㯠f ( x ) {\\displaystyle f(x)} ã®åå§é¢æ°ã®äžã€ã§ããããšãåããã",
"title": "å®ç©åãšé¢ç©"
},
{
"paragraph_id": 108,
"tag": "p",
"text": "ãã£ãŠã â« a b f ( x ) d x = S ( b ) â S ( a ) {\\displaystyle \\int _{a}^{b}f(x)dx=S(b)-S(a)} ã§ãããããã®åŒã®å³èŸºã¯ã颿° f ( x ) {\\displaystyle f(x)} ã®ã°ã©ããšãçŽç· x = a {\\displaystyle x=a} ãçŽç· x = b {\\displaystyle x=b} ãšã x {\\displaystyle x} 軞ã§å²ãŸããé¢ç©ã§ããããã£ãŠã巊蟺 â« a b f ( x ) d x {\\displaystyle \\int _{a}^{b}f(x)dx} ã¯ã颿° f ( x ) {\\displaystyle f(x)} ã®ã°ã©ããšãçŽç· x = a {\\displaystyle x=a} ãçŽç· x = b {\\displaystyle x=b} ãšã x {\\displaystyle x} 軞ã§å²ãŸããé¢ç©ã衚ããŠããã",
"title": "å®ç©åãšé¢ç©"
},
{
"paragraph_id": 109,
"tag": "p",
"text": "æŽå²çã«ã¯ãç©åã¯ã颿°ã®ã°ã©ãã§å²ãŸããéšåã®é¢ç©ãæ±ããããã«èãåºãããããã®ç¯ã§è¿°ã¹ããããªåŸ®åãšã®é¢é£ã¯ç©åèªäœã®çºæãããã£ãšåŸã«ãªã£ãŠçºèŠãããããšã§ããã",
"title": "å®ç©åãšé¢ç©"
},
{
"paragraph_id": 110,
"tag": "p",
"text": "äŸãšããŠã 0 ⊠x ⊠1 {\\displaystyle 0\\leqq x\\leqq 1} ã®ç¯å²ã§ãy = xã®ã°ã©ããšx軞ã§ã¯ããŸããéšåã®é¢ç©ããç©åãçšããŠèšç®ããã ( å®éã«ã¯ããã¯äžè§åœ¢ãªã®ã§ãç©åãçšããªããŠãé¢ç©ãèšç®ããããšãåºæ¥ãã ç㯠1 2 {\\displaystyle {\\frac {1}{2}}} ãšãªãã ) å®ç©åãè¡ãªããšã â« 0 1 x d x {\\displaystyle \\int _{0}^{1}xdx} = 1 2 [ x 2 ] 0 1 {\\displaystyle ={\\frac {1}{2}}[x^{2}]_{0}^{1}} = 1 2 [ 1 2 â 0 2 ] {\\displaystyle ={\\frac {1}{2}}[1^{2}-0^{2}]} = 1 2 [ 1 â 0 ] {\\displaystyle ={\\frac {1}{2}}[1-0]}",
"title": "å®ç©åãšé¢ç©"
},
{
"paragraph_id": 111,
"tag": "p",
"text": "= 1 2 {\\displaystyle ={\\frac {1}{2}}} ãšãªã確ãã«äžèŽããã",
"title": "å®ç©åãšé¢ç©"
},
{
"paragraph_id": 112,
"tag": "p",
"text": "æŒç¿åé¡",
"title": "å®ç©åãšé¢ç©"
},
{
"paragraph_id": 113,
"tag": "p",
"text": "æŸç©ç· y = 5 â x 2 {\\displaystyle y=5-x^{2}} ãšx軞ããã³2çŽç· x = â 1 , x = 2 {\\displaystyle x=-1\\ ,\\ x=2} ã§å²ãŸããéšåã®é¢ç©Sãæ±ããã",
"title": "å®ç©åãšé¢ç©"
},
{
"paragraph_id": 114,
"tag": "p",
"text": "è§£ç",
"title": "å®ç©åãšé¢ç©"
},
{
"paragraph_id": 115,
"tag": "p",
"text": "ãã®æŸç©ç·ã¯ â 1 †x †2 {\\displaystyle -1\\leq x\\leq 2} ã§x軞ã®äžåŽã«ããããã",
"title": "å®ç©åãšé¢ç©"
},
{
"paragraph_id": 116,
"tag": "p",
"text": "a †x †b {\\displaystyle a\\leq x\\leq b} ã«ãããŠãåžžã« f ( x ) ⥠g ( x ) {\\displaystyle f(x)\\geq g(x)} ã§ãããšãã2ã€ã®æ²ç· y = f ( x ) , y = g ( x ) {\\displaystyle y=f(x)\\ ,\\ y=g(x)} ã«æãŸããéšåã®é¢ç©Sã¯ã次ã®åŒã§è¡šãããã",
"title": "å®ç©åãšé¢ç©"
},
{
"paragraph_id": 117,
"tag": "p",
"text": "æŸç©ç· y = x 2 â 1 {\\displaystyle y=x^{2}-1} ãšçŽç· y = x + 1 {\\displaystyle y=x+1} ã«ãã£ãŠå²ãŸããéšåã®é¢ç©Sãæ±ããã",
"title": "å®ç©åãšé¢ç©"
},
{
"paragraph_id": 118,
"tag": "p",
"text": "æŸç©ç·ãšçŽç·ã®äº€ç¹ã®x座æšã¯",
"title": "å®ç©åãšé¢ç©"
},
{
"paragraph_id": 119,
"tag": "p",
"text": "â 1 †x †2 {\\displaystyle -1\\leq x\\leq 2} ã®ç¯å²ã§ x 2 â 1 †x + 1 {\\displaystyle x^{2}-1\\leq x+1} ãã",
"title": "å®ç©åãšé¢ç©"
},
{
"paragraph_id": 120,
"tag": "p",
"text": "a †x †b {\\displaystyle a\\leq x\\leq b} ã§ã f ( x ) †0 {\\displaystyle f(x)\\leq 0} ã®ãšããx軞 y = 0 {\\displaystyle y=0} ãšæ²ç· y = f ( x ) {\\displaystyle y=f(x)} ã«ãã£ãŠæãŸããŠãããšèããããã®ã§ã",
"title": "å®ç©åãšé¢ç©"
},
{
"paragraph_id": 121,
"tag": "p",
"text": "ãšãªãã",
"title": "å®ç©åãšé¢ç©"
},
{
"paragraph_id": 122,
"tag": "p",
"text": "æŸç©ç· y = x 2 â 2 x {\\displaystyle y=x^{2}-2x} ãšx軞ã§å²ãŸããéšåã®é¢ç©Sãæ±ããã",
"title": "å®ç©åãšé¢ç©"
},
{
"paragraph_id": 123,
"tag": "p",
"text": "æŸç©ç·ãšx軞ã®äº€ç¹ã®x座æšã¯",
"title": "å®ç©åãšé¢ç©"
},
{
"paragraph_id": 124,
"tag": "p",
"text": "ãã®æŸç©ç·ã¯ 0 †x †2 {\\displaystyle 0\\leq x\\leq 2} ã§x軞ã®äžåŽã«ããããã",
"title": "å®ç©åãšé¢ç©"
},
{
"paragraph_id": 125,
"tag": "p",
"text": "髿 ¡æ°åŠãããŠãããšãå°æ¥åŸ®åãšãç©åãšãäœã«äœ¿ã?ããšæãäººã®æ¹ãå€ããšæãã確ãã«æ¥åžžç掻ã§ã¯ãç©åãªã©ã®é«åºŠãª æ°åŠã¯äœ¿ããªããã ããã®äžæ¹è£ã§ã¯ç©åã 埮åã髿 ¡æ°åŠã§ã¯åãŸããªããããªæ°åŠã䜿ãããŠãããäŸãã°å°é¢šã®é²è·¯äºæ³ã ããã¯ç©åã䜿ãå°é¢šã®é²è·¯ãäºæž¬ããŠãã ä»ã«ãã»ãã¥ãªãã£ã®åŒ·åãªã©ã«ãæ°åŠã¯äœ¿ãããŠãããæ¥åžžçæŽ»ã§ã¯æ°åŠã¯äœ¿ããªãã æ°åŠã«èŠªãã¿ãæã£ãŠã¿ãŠã¯ã©ãã ãããã",
"title": "æ¬åœã«ã¡ãã£ãšããäœè«"
},
{
"paragraph_id": 126,
"tag": "p",
"text": "(1) F ( x ) = 2 x 2 {\\displaystyle F(x)=2x^{2}} ã®ãšã f ( x ) {\\displaystyle f(x)} ãæ±ããããã ã F â² ( x ) {\\displaystyle F'(x)}",
"title": "æŒç¿åé¡"
},
{
"paragraph_id": 127,
"tag": "p",
"text": "(3)åå§é¢æ°ãå®ç©åãæ±ãã",
"title": "æŒç¿åé¡"
},
{
"paragraph_id": 128,
"tag": "p",
"text": "3) lim x â 0 â« x 5 2 x d x {\\displaystyle \\lim _{x\\rightarrow 0}\\int _{x}^{5}2xdx}",
"title": "æŒç¿åé¡"
},
{
"paragraph_id": 129,
"tag": "p",
"text": "4) â« â 60 60 sin x + cos 2 x d x {\\displaystyle \\int _{-60}^{60}\\sin x+\\cos ^{2}xdx}",
"title": "æŒç¿åé¡"
},
{
"paragraph_id": 130,
"tag": "p",
"text": "(1) f ( x ) = x 3 {\\displaystyle f(x)=x^{3}} åªä¹ã®åŸ®å㯠y â² = n x n â 1 {\\displaystyle y'=nx^{n}-1} ã§ããããäžå®ç©åã®å®çŸ©ãã f ( x ) = x 3 {\\displaystyle f(x)=x^{3}} ã§ããã",
"title": "æŒç¿åé¡ã®è§£çãšãã®æåŒã"
}
] | ããã§ã¯åŸ®åç©åã®æŠå¿µã«ã€ããŠçè§£ããå€é
åŒé¢æ°ã®åŸ®åç©åãåŠã¶ããŸãã埮åã®å¿çšãå¿çšããŠæ¥ç·ã®æ¹çšåŒãã°ã©ãã®æŠåœ¢ãªã©ãæ±ããããç©åãå¿çšããŠã°ã©ãã®é¢ç©ãæ±ããã埮åç©åã¯ç©çåŠãå·¥åŠãªã©ããŸããŸãªåéã§å¿çšãããŠããã | {{Pathnav|é«çåŠæ ¡ã®åŠç¿|é«çåŠæ ¡æ°åŠ|é«çåŠæ ¡æ°åŠII|pagename=埮åã»ç©åã®èã|frame=1|small=1}}
ããã§ã¯åŸ®åç©åã®æŠå¿µã«ã€ããŠçè§£ããå€é
åŒé¢æ°ã®åŸ®åç©åãåŠã¶ããŸãã埮åã®å¿çšãå¿çšããŠæ¥ç·ã®æ¹çšåŒãã°ã©ãã®æŠåœ¢ãªã©ãæ±ããããç©åãå¿çšããŠã°ã©ãã®é¢ç©ãæ±ããã埮åç©åã¯ç©çåŠãå·¥åŠãªã©ããŸããŸãªåéã§å¿çšãããŠããã
== å¹³åå€åç ==
[[ãã¡ã€ã«:埮å.svg|ãµã ãã€ã«|å¹³åå€åçã®å³]]
äžåŠæ ¡ã§ã¯ãäžæ¬¡é¢æ°ãš<math>y=ax^2</math>ã®'''å€åã®å²å'''ãæ±ããã ãããããã§ã¯ãåããã®ã'''å¹³åå€åç'''ãšåŒã¶ããšã«ãããäžè¬ã®é¢æ° <math>y=f(x)</math> ã®å¹³åå€åçãèããŠã¿ãããäžåŠæ ¡ã§åŠç¿ããããšãšåæ§ã«èãããšã <math>y=f(x)</math> ã«ãããŠã <math>x</math> ã <math>a</math> ãã <math>b</math> ãŸã§å€åãããšãã®å¹³åå€åçã¯ãã <math>y</math> ã®å€åé/ <math>x</math> ã®å€åéãã§æ±ãããããã€ãŸãã <math>\frac{f(b)-f(a)}{b-a}</math> ã§ããã
'''äŸ'''
<math>y=x^2 + 2x + 1</math> ã«ãããŠã <math>x</math> ã-1ãã3ãŸã§å€åãããšãã®å¹³åå€åçãæ±ããã
<math>\frac{(3^2 + 2\cdot 3+1)-((-1)^2 + 2 \cdot (-1) + 1)}{3-(-1)} </math><math>=4</math>
== 極é ==
颿° <math>f(x)</math> ã«ãããŠã <math>x</math> ã <math>a</math> ãšã¯ç°ãªãå€ããšããªããéããªã <math>a</math> ã«è¿ã¥ããšãã <math>f(x)</math> ãéããªã <math>A</math> ã«è¿ã¥ãããšãã <math>
\lim_{x\rightarrow a} f(x) = A
</math> ãšããã
==== äŸ ====
<math>
\lim_{x\rightarrow 0} 3x
</math>ãæ±ããã
<math>x</math>ãã<math>1,0.1,0.01,0.001,\cdots</math>ãšéããªã0ã«è¿ã¥ããŠã¿ãããããšã<math>3x</math>ã¯ã<math>3,0.3,0.03,0.003,\cdots</math>ãšãéããªã0ã«è¿ã¥ãããšããããã
ãã£ãŠã<math>x</math>ãéããªã0ã«è¿ã¥ãããšã<math>3x</math>ã¯éããªã0ã«è¿ã¥ãã®ã§ã<math>
\lim_{x\rightarrow 0} 3x = 0
</math>ã§ããã
次ã«ã
<math>
\lim_{x\rightarrow 1} \frac{x^2 -1 }{x-1}
</math>ãæ±ããã
<math>x</math>ãã<math>1.1,1.01,1.001,0.0001,1.00001,\cdots</math>ãšãéããªã1ã«è¿ã¥ããŠã¿ããšã<math>\frac{x^2 -1 }{x-1} </math>ã¯ã<math>2.1,2.01,2.001,2.0001,2.00001,\cdots</math>ãšãéããªã2ã«è¿ã¥ãã
ãªã®ã§ã<math>
\lim_{x\rightarrow 1} \frac{x^2 -1 }{x-1} = 2
</math>ã§ããã
ããã¯ãåŒã«å€ã代å
¥ããåã«ãåŒèªäœãçŽåããŠããŸã£ãæ¹ãç°¡åã«èšç®ã§ãããããªãã¡ã
<math>\frac{x^2 -1 }{x-1} = \frac{(x+1)(x-1)}{x-1}</math>ã§ããã<math>x</math>ã1ãšã¯ç°ãªãå€ãåããªããéããªã1ã«è¿ã¥ãããšã<math>x \neq 1</math>ãªã®ã§ãããã¯çŽåã§ãã<math>\frac{x^2 -1 }{x-1} = \frac{(x+1)(x-1)}{x-1} = x+1</math>ã§ããã
ãªã®ã§ã<math>
\lim_{x\rightarrow 1} \frac{x^2 -1 }{x-1}
</math>ãæ±ããã«ã¯ã<math>
\lim_{x\rightarrow 1} (x+1)
</math>ãæ±ããã°è¯ãã
<math>
\lim_{x\rightarrow 1} (x+1) = 2
</math>ã§ããã®ã§ã<math>
\lim_{x\rightarrow 1} \frac{x^2 -1 }{x-1} = 2
</math>ãšæ±ããããšãã§ããã
â»çºå±ãæåã®äŸã§ã¯ã<math>x</math>ãã<math>1,0.1,0.01,0.001,\cdots</math>ãšãéããªã0ã«è¿ã¥ãããã<math>2,0.2,0.02,0.002,\cdots</math>ãã<math>-1,-0.1,-0.01,-0.001,\cdots</math>ã®ããã«è¿ã¥ããŠã¿ãŠã<math>x</math>ã¯éããªã0ã«è¿ã¥ããä»ã«ãã<math>1,-0.1,0.01,-0.001,\cdots</math>ã<math>0.1,0.5,0.01,0.05,\cdots</math>ãªã©<math>x</math>ã0ã«è¿ã¥ãããæ¹æ³ã¯ãããã§ãèããããã
ãã¡ããããã®äŸã§ã¯ã<math>x</math>ãã©ã®ããã«è¿ã¥ãããšããŠã極éã®å€ã¯å€ãããªãã
ãããã<math>x</math>ãã<math>1,0.1,0.01,0.001,\cdots</math>ãšè¿ã¥ãããšãã<math>f(x)</math>ã¯<math>\alpha</math>ã«è¿ã¥ããã<math>x</math>ãã<math>2,0.2,0.02,0.002,\cdots</math>ãšè¿ã¥ãããã<math>f(x)</math>ã¯<math>\alpha</math>ã«è¿ã¥ããªãããããªé¢æ°<math>f(x)</math>ã ã£ãŠããã ããã
ãªã<math>x</math>ã<math>1,0.1,0.01,0.001,\cdots</math>ãšãè¿ã¥ããã ãã§ã極éã®å€ãæ±ããããšãåºæ¥ãã®ã?ãšçåã«æã人ãããããç¥ããªãã
極éãå³å¯ã«å®çŸ©ããã«ã¯ã[[è§£æåŠåºç€/極é#極éã®åœ¢åŒçãªå®çŸ©|ã€ãã·ãã³ãã«ã¿è«æ³]]ã䜿ãå¿
èŠãããããããã髿 ¡çã«ã¯å°ãé£ãããšèãã人ãå€ãã®ã§é«æ ¡ã§ã¯ããŸãæããããŠããªãã
ãªã®ã§ããã®æ¬ã§ã¯ãã€ãã·ãã³ãã«ã¿è«æ³ã䜿ãããææ§ãªæ¹æ³ã§æ¥µéãå®çŸ©ããããªã®ã§ãäžã®ãããªçåãæã£ã人ã¯ããã®çåã«ã€ããŠæ·±ãèããã«å
ã«é²ããã[[è§£æåŠåºç€/極é#極éã®åœ¢åŒçãªå®çŸ©|ã€ãã·ãã³ãã«ã¿è«æ³]]ãåŠã¶ãããŠã»ããã
[[ãã¡ã€ã«:å¹³åå€åç.svg|ãµã ãã€ã«|å¹³åå€åç]]
== 埮åä¿æ°ãšå°é¢æ° ==
[[ãã¡ã€ã«:Derivative GIF.gif|220x220px|hã0ã«è¿ã¥ãããšãã®ã¢ãã¡ãŒã·ã§ã³|ãµã ãã€ã«]]
颿° <math>y = f(x)</math> ã®åŸãã«ã€ããŠèããŠã¿ããã
<math>x</math> ã <math>a</math> ãã <math>a + h</math> ãŸã§å€åãããšãã®å¹³åå€åçã¯
<math>\frac{f(a+h)-f(a)}{h}</math>
ã§ããããã®ãšãã <math>h</math> ãéããªã0ã«è¿ã¥ããã° <math>a</math> ã§ã®åŸããæ±ããããšãã§ãããã€ãŸãã颿° <math>y = f(x)</math> ã® <math>a</math> ã§ã®åŸãã¯
<math>\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}</math>
ã§äžãããããããã <math>x = a</math> ã«ããã'''埮åä¿æ°'''ãšããã
ãŸã
<math>f'(x) = \lim_{h\to 0}\frac{f(x+h)-f(x)}{h}</math>
ã§äžãããã颿° <math>f'(x)</math> ã颿° <math>f(x)</math> ã®'''å°é¢æ°'''ãšããã
颿° <math>f(x)</math> ã®å°é¢æ°ã¯<math>\frac{df}{dx}</math>ãšè¡šãããããšãããã
ããã§ãããã€ãã®é¢æ°ã®å°é¢æ°ãæ±ããŠã¿ããã
*<math>f(x) = 1</math>
{|
|-
|<math>f'(x)</math>
|<math>= \lim _{h\rightarrow 0} \frac {f(x+h) - f(x)} h</math>
|-
|
|<math>= \lim _{h\rightarrow 0} \frac {1 - 1} h</math>
|-
|
|<math>= \lim _{h\rightarrow 0} 0</math>
|-
|
|<math>= 0</math>
|}
*<math>f(x) = x</math>
{|
|-
|<math>f'(x)</math>
|<math>= \lim _{h\rightarrow 0} \frac {f(x+h) - f(x)} h</math>
|-
|
|<math>= \lim _{h\rightarrow 0} \frac {x+h - x} h</math>
|-
|
|<math>= \lim _{h\rightarrow 0} 1</math>
|-
|
|<math>= 1</math>
|}
*<math>f(x) = x^2</math>
{|
|-
|<math>f'(x)</math>
|<math>= \lim _{h\rightarrow 0} \frac {f(x+h) - f(x)} h</math>
|-
|
|<math>= \lim _{h\rightarrow 0} \frac {(x+h)^2 - x^2} h</math>
|-
|
|<math>= \lim _{h\rightarrow 0} \frac{2hx + h^2} h</math>
|-
|
|<math>= \lim _{h\rightarrow 0} (2x + h)</math>
|-
|
|<math>= 2x </math>
|}
ã§ããã
<math>n</math> ãèªç¶æ°ãšããã颿° <math>f(x) = x^n</math> ã®å°é¢æ°ã¯äºé
å®çãå¿çšã
{|
|-
|<math>f'(x)</math>
|<math>= \lim _{h\rightarrow 0} \frac {f(x+h) - f(x)} h</math>
|-
|
|<math>= \lim _{h\rightarrow 0} \frac {(x+h)^n - x^n} h</math>
|-
|
|<math>= \lim _{h\rightarrow 0} \frac{(x^n + _nC_1x^{n-1}h + _nC_2x^{n-2}h^2\cdots + h^n) - x^n} h</math>
|-
|
|<math>= \lim _{h\rightarrow 0} (_nC_1x^{n-1} + _nC_2x^{n-2}h + \cdots + h^{n-1})</math>
|-
|
|<math>= nx^{n-1} </math>
|}
ãšæ±ãããã
== åã»å·®åã³å®æ°åã®å°é¢æ° ==
颿° <math>f(x), g(x)</math> ã«å¯Ÿã次ãæãç«ã€ã
# <math>\{f(x) \pm g(x)\}' = f'(x) \pm g'(x)</math> (è€å·åé )
# <math>\{ kf(x) \}' = kf'(x)</math>
'''蚌æ'''
# <math>\{f(x) \pm g(x)\}' = \lim_{h\to 0}\frac{f(x+h) \pm g(x+h)-\{f(x) \pm g(x)\}}{h} = \lim_{h\to 0}\{\frac{f(x+h) - f(x)}{h} \pm \frac{g(x+h) - g(x)}{h}\} = f'(x) \pm g'(x)</math>
# <math>\{ kf(x) \}' = \lim_{h\to 0}\frac{kf(x+h) - kf(x)}{h} = \lim_{h\to 0}k\frac{f(x+h) - f(x)}{h} = kf'(x)</math>
'''æŒç¿åé¡'''
次ã®é¢æ°ã埮åãã
1. <math>f(x)=2x^3+4x^2-5x-1</math><br>2. <math>f(x)=(2x+3)(3x-5)</math>
'''è§£ç'''
1.
:<math>\begin{align}
f'(x) & = (2x^3+4x^2-5x-1)' \\
& = 2(x^3)'+4(x^2)'-5(x)'-(1)' \\
& = 2 \times 3x^2 + 4 \times 2x -5 \times 1 - 0 \\
& = 6x^2+8x-5
\end{align}
</math>
2. <math>f(x)=6x^2-x-15</math> ã§ãããã
:<math>\begin{align}
f'(x) & = (6x^2-x-15)' \\
& = 6(x^2)'-(x)'-(15)' \\
& = 6 \times 2x - 1 - 0 \\
& = 12x-1
\end{align}
</math>
== å°é¢æ°ã®å¿çš ==
=== æ¥ç·ã®æ¹çšåŒ ===
æ²ç· <math>y = f(x)</math> äžã®ç¹ <math>(t, f(t))</math> ã«ãããæ¥ç·ã®æ¹çšåŒãæ±ããããã®æ¥ç·ã®åŸã㯠<math>f'(t)</math>ã§ãããç¹ <math>(t, f(t))</math> ãéãã®ã§ãæ¹çšåŒã¯ <math>y = f'(t)(x-t) + f(t)</math> ã§äžãããããå®éã<math>x = t </math> ãšãããš <math>y = f(t)</math> ãšãªãã®ã§ãã®æ¹çšåŒã¯ç¹ <math>(t, f(t))</math> ãéãããšããããã <math>x</math> ã®ä¿æ°ã¯ <math>f'(t)</math> ãªã®ã§åŸã㯠<math>f'(t)</math> ã§ããã
=== æ³ç·ã®æ¹çšåŒ ===
æ²ç· <math>y = f(x)</math> äžã®ç¹ <math>(t, f(t))</math> ã«ãããæ³ç·ã®æ¹çšåŒã¯ã<math> y = -\frac{1}{f'(t)}(x-t)+f(t) </math> ã§äžããããã
=== 颿°å€ã®å¢æž ===
f'(x)ã¯ãfã®åŸãã衚ããã®ã§ã <math>f'(x)>0</math> ã®ç¹ã§ã¯ãfã¯å¢å€§ãã <math>f'(x)<0</math> ã®ç¹ã§ã¯ãfã¯æžå°ããããšããããã
ãããããšã«é¢æ°ã®æŠåœ¢ãæãããšãã§ããã
'''äŸ'''
<math>y=x^3</math> ã®å¢æžã調ã¹ã
䞡蟺ã''x''ã§åŸ®åãããš
:<math>y'=3x^2</math>
:ãšãªããããã¯0ãé€ãåžžã«æ£ãªã®ã§ã <math>y=x^3</math> ã¯åžžã«å¢å ããããšããããã
=== 颿°ã®æ¥µå€§ã»æ¥µå° ===
<math>f(x)=x^3 - 3x</math>ã埮åãããš
:<math>f'(x)=3x^2 -3 =3(x+1)(x-1)</math>
墿žè¡šã¯æ¬¡ã®ããã«ãªãã
<table border="1" cellpadding="2">
<tr><th><center><math>x</math></center></th><th><center><math>\cdots</math></center> </th><th><center> <math>-1</math></center> </th><th><center><math>\cdots</math></center></th><th><center><math>1</math></center> </th><th><center><math>\cdots</math></center></th></tr>
<tr><th><center><math>f'(x)</math></center></th><td><center><math>+</math></center></td><td><center> <math>0</math> </center></td><th><center><math>-</math></center></th><td><center><math>0</math></center> </td><td><center>+</center></td></tr>
<tr><th><center><math>f(x)</math></center></th><td><center><math>\nearrow</math></center></td><td><center> <math>2</math> </center></td><th><center><math>\searrow </math></center></th><td><center><math>-2</math></center> </td><td><center><math>\nearrow</math></center></td></tr>
</table>
ãã®é¢æ°ã®ã°ã©ãã¯ã<math>x=-1</math>ãå¢ã«ããŠå¢å ããæžå°ã®ç¶æ
ã«å€ããã<math>x=1</math>ãå¢ã«ããŠæžå°ããå¢å ã®ç¶æ
ã«å€ããã<br>
ãã®ãšãã<math>f(x)</math>ã¯<math>x=-1</math>ã«ãããŠ'''極倧'''ïŒãããã ãïŒã«ãªããšããããã®ãšãã®<math>f(x)</math>ã®å€<math>f(-1)=2</math>ã'''極倧å€'''ïŒãããã ãã¡ïŒãšããããŸãã<math>x=1</math>ã«ãããŠ'''極å°'''ïŒããããããïŒã«ãªããšããããã®ãšãã®<math>f(x)</math>ã®å€<math>f(1)=-2</math>ã'''極å°å€'''ïŒããããããã¡ïŒãšãããæ¥µå€§å€ã𿥵å°å€ãåãããŠ'''極å€'''ïŒãããã¡ïŒãšããã
== äžå®ç©å ==
'''äžå®ç©å'''(indefinite integral)ãšã¯ã埮åããããã®é¢æ°ã«ãªã颿°ãæ±ããæäœã§ããã
ã€ãŸãã颿°<math>f(x)</math>ã«å¯ŸããŠã<math>F'(x)=f(x)</math>ãšãªãã颿°<math>F(x)</math>ãæ±ããæäœã§ããã
ãã®ãšã<math>F(x)</math>ãã<math>f(x)</math>ã®'''åå§é¢æ°'''(primitive function)ãšåŒã¶ã
äŸãã°ã<math>\frac{1}{2}x^2</math>ã¯åŸ®åãããšã<math>x</math>ã«ãªãã®ã§ã<math>\frac{1}{2}x^2</math>ã¯<math>x</math>ã®åå§é¢æ°ã§ããã
ãããã<math>\frac{1}{2}x^2+1</math>ãã<math>\frac{1}{2}x^2+3</math>ãªã©ã埮åãããš<math>x</math>ã«ãªãã®ã§ã<math>\frac{1}{2}x^2+1</math>ãã<math>\frac{1}{2}x^2+3</math>ã<math>x</math>ã®åå§é¢æ°ã§ããã
äžè¬ã«ã<math>\frac{1}{2}x^2 + C</math>(Cã¯ä»»æã®å®æ°)ã§è¡šããã颿°ã¯ã<math>x</math>ã®åå§é¢æ°ã§ããã
<math>x</math>ã®åå§é¢æ°ã¯äžã€ã ãã§ã¯ãªããç¡æ°ã«ããã®ã ã
äžè¬ã«ã颿° <math>f(x)</math> ã®åå§é¢æ°ã®'''äžã€'''ã <math>F(x)</math> ãšãããšããåå§é¢æ°ã«ä»»æã®å®æ°ãè¶³ãã颿° <math>F(x) + C</math> ã <math>f(x)</math> ã®åå§é¢æ°ã«ãªãã
ãªããªãã<math>F(x)</math>ã<math>f(x)</math>ã®åå§é¢æ°ã§ãããã€ãŸãã<math>F'(x)=f(x)</math>ã®ãšãã<math>{(F(x) + C)}' = F'(x) + {(C)}' = F'(x) = f(x)</math>ãšãªãããã ã
ãŸãã颿° <math>f(x)</math> ã®åå§é¢æ°ã®äžã€ã <math>F(x)</math> ã§ãããšãããã¹ãŠã®é¢æ° <math>f(x)</math> ã®åå§é¢æ°ã¯ <math>F(x) + C</math> ã®åœ¢ã«æžããã
<math>F(x) + C</math> ã®åœ¢ã«æžããªã颿° <math>G(x)</math>ã颿° <math>f(x)</math> ã®åå§é¢æ°ã§ãããšä»®å®ããããã®ãšãã<math>h(x)=F(x)-G(x)</math>ãšãããšã颿° <math>h(x)</math> ã¯å®æ°ã§ã¯ãªãã
ãã®ãšãã <math>h'(x)=\{F(x)-G(x)\}'=F'(x)-G'(x)=f(x)-f(x)=0</math> ã§ããã¯ãã ãã颿° <math>h(x)</math> ã¯å®æ°ã§ã¯ãªãã®ã§ <math>h'(x) = 0</math> ãšãªããªããããã¯ççŸãªã®ã§ããã¹ãŠã®é¢æ° <math>f(x)</math> ã®åå§é¢æ°ã¯ <math>F(x) + C</math>ã®åœ¢ã«æžããããšã蚌æã§ããã
颿°<math>f(x)</math>ã®åå§é¢æ°ã®'''å
šäœ'''ãã<math>\int f(x)dx </math> ãšè¡šãããã®è¡šèšæ³ã¯æåã¯å¥åŠã«æãã ãããããã®ããã«è¡šèšããçç±ã¯åŸã«èª¬æããã®ã§ãä»ã¯ããã®ãŸãŸèŠããŠæ¬²ããã
ãŸãšãããšã颿° <math>f(x)</math> ã®åå§é¢æ°ã®å
šäœ<math>\int f(x)dx </math>ã¯ã<math>f(x)</math>ã®åå§é¢æ°ã®äžã€ã <math>F(x)</math> ãšããŠããã®é¢æ°ã«ä»»æã®å®æ°ãè¶³ãã颿°<math>F(x) + C</math>ã§è¡šããããã€ãŸãã
:<math>
\int f(x)dx = F(x)+ C
</math>
<math>C</math>ã¯ä»»æã®å®æ°ãšãããããã®ä»»æã®å®æ° <math>C</math> ã'''ç©å宿°'''(constant of integration)ãšåŒã¶ã
â»æ³šæã<math>\int f(x)dx </math>ã¯å®çŸ©ã«ãããããã«ã<math>f(x)</math>ã®åå§é¢æ°ã®'''å
šäœ'''ã衚ããŠãããã€ãŸãã<math>f(x)</math>ã®åå§é¢æ°ã®äžã€ã<math>F(x)</math>ãšãããšãã<math>
\int f(x)dx = F(x)+ C
</math>ã®å³èŸº<math>F(x) + C</math>ã¯ã<math>F(x)</math>ã«å®æ°ãè¶³ãã颿°ã®å
šäœã衚ããŠãããã€ãŸãã<math>F(x) + C</math>ã¯ã<math>F(x)+1</math>ãã<math>F(x)-23</math>ãã<math>F(x)-5\pi</math>ãªã©ã®ã<math>F(x)</math>ã«å®æ°ãè¶³ãã颿°ãã¹ãŠããŸãšããŠ<math>F(x)+C</math>ãšè¡šããŠããããã®ããšããããµãã«ãªã£ãŠãããšã'''é倧ãªééã'''ãèµ·ããå¯èœæ§ãããã®ã§ã泚æãå¿
èŠã§ããã
颿° <math>f(x)=x^n</math> (ãã ã <math>n</math> ã¯èªç¶æ°)ã®äžå®ç©åãæ±ããŠã¿ãããã倩äžãçã ãã<math>F(x) = \frac{1}{n+1}x^{n+1}+C</math> (<math>C</math> ã¯ä»»æã®å®æ°)ãšãããšã <math>F'(x) = x^n</math> ãšãªãã®ã§ã <math>\frac{1}{n+1}x^{n+1}+C</math> ã¯åå§é¢æ°ã§ããããšããããã
ãããã£ãŠ <math>\int x^n dx =\frac{1}{n+1}x^{n+1}+C </math>
颿° <math>f(x),g(x)</math> ã®åå§é¢æ°ãããããã <math>F(x),G(x)</math> ãšããã<math>a</math> ãä»»æã®å®æ°å®æ°ãšãããš
<math>\{F(x)+G(x)\}'=F'(x)+G'(x)=f(x)+g(x)</math>
<math>\{aF(x)\}' = aF'(x)=af(x)</math>
ãšãªãã®ã§ã
<math>\int \{ f(x) + g(x) \} dx = \int f(x) dx + \int g(x) dx</math>
<math>\int af(x) dx = a \int f(x) dx</math>
ãæãç«ã€ããšãåããã
'''æŒç¿åé¡'''
äžå®ç©å <math>\int (x^8+2x^2-6x+9)dx</math> ãæ±ãã
'''è§£ç'''
<math>\int (x^8+2x^2-6x+9)dx = \int x^8 \,dx + 2\int x^2\,dx -6\int x \,dx +9\int dx = \frac{x^9}{9}+\frac{2x^3}{3}-3x^2 + 9x + C</math> (<math>C</math> ã¯ç©å宿°)
== å®ç©å ==
颿°<math>f(x)</math>ã®åå§é¢æ°ã®äžã€ã<math>F(x)</math>ãšããããã®åå§é¢æ°ã«å€ã代å
¥ããŠããã®å€ã®å·®ãæ±ããæäœãã'''å®ç©å'''ãšåŒã³ã<math>\int ^b_a f(x) dx</math>ãšæžããã€ãŸãã
:<math>
\int ^b_a f(x) dx = F(b) - F(a)
</math>
ã§ããã
<math>[f(x)]_a^b = f(b)-f(a)</math><ref><math>f(x)|_a^b</math> ã§è¡šãããæããã</ref>ãšããã
ãã®ããã«ãããšã<math>\int ^b_a f(x) dx =[F(x)]_a^b = F(b) - F(a)</math>ãšèšç®ã§ããã
å®ç©åã®å€ã¯åå§é¢æ°ã®éžæã«ãããªããå®éãåå§é¢æ°ãšããŠã <math>F(x)+C</math> ãéžã³ãå®ç©åãèšç®ãããšã<math>
\int ^b_a f(x) dx = (F(b)+C) - (F(a)+C) = F(b)-F(a)
</math>
ãšãªããåå§é¢æ°ãšããŠã©ããéžãã§ãå®ç©åã®å€ã¯äžå®ã§ããããšããããã<ref>ãªã®ã§ãå®éã«å®ç©åã®èšç®ãããå Žåãåå§é¢æ°ãšããŠå®æ°é
ã0ãšãªã颿°ãéžãã æ¹ãèšç®ããããããªãã</ref>
颿° <math>f(x),g(x)</math> ã«å¯ŸããŠãåå§é¢æ°ããããã <math>F(x),G(x)</math> ãšããã <math>k</math> ã宿°ãšããŠã
<math>\int_a^b kf(x)\,dx = kF(b)-kF(a)=k(F(b)-F(a)) = k\int_a^b f(x)\,dx </math>
<math>\int_a^b \{f(x)+g(x)\}dx=[F(x)+G(x)]_a^b = F(b)+G(b)-(F(a)+G(a))=F(b)-F(a)+G(b)-G(a) = \int_a^bf(x)\,dx+\int_a^bg(x)\,dx</math>
<math>\int_a^af(x)\,dx = F(a)-F(a)=0 </math>
<math>\int_b^a f(x)\,dx=F(a)-F(b)=-(F(b)-F(a))=-\int_a^bf(x)\,dx</math>
<math>\int_a^b f(x)\,dx =F(b)-F(a)=(F(b)-F(c))+(F(c)-F(a)) = \int_a^c f(x)\,dx + \int_c^b f(x) \, dx </math>
ãæãç«ã€ã
===== äŸ =====
<math>\int_2^5x^3dx</math>ãæ±ããã
<math>\frac{1}{4}x^4</math>ã¯ã埮åãããšã<math>x^3</math>ãªã®ã§ã<math>\frac{1}{4}x^4</math>ã¯<math>x^3</math>ã®åå§é¢æ°ã®äžã€ã§ããããã£ãŠ<math>\int_2^5x^3dx = \left[\frac{1}{4}x^4\right]_2^5 = \frac{1}{4}5^4 - \frac{1}{4}2^4 = \frac{609}{4}</math>ã§ããã
<math>\frac{1}{4}x^4+1</math>ãã埮åãããšã<math>x^3</math>ãªã®ã§ã<math>\frac{1}{4}x^4+1
</math>ã¯<math>x^3</math>ã®åå§é¢æ°ã®äžã€ã§ããããã£ãŠã<math>\int_2^5x^3dx = \left[\frac{1}{4}x^4+1\right]_2^5 = \left(\frac{1}{4}5^4 + 1\right) - \left(\frac{1}{4}2^4 + 1\right) = \frac{609}{4}</math>ãšæ±ããããšãã§ããã
== 埮åç©ååŠã®åºæ¬å®ç ==
aã宿°ãšãããšããå®ç©å<math> \int_a^x f(t)\,dt</math>ã¯xã®é¢æ°ã«ãªãã<br>
颿°<math>f(t)</math>ã®åå§é¢æ°ã®äžã€ã<math>F(t)</math>ãšãããš
:<math>\int_a^x f(t)\,dt=F(x)-F(a)</math>
ãã®äž¡èŸºãxã§åŸ®åãããšã<math>F(a)</math>ã¯å®æ°ã§ãããã
:<math>\frac{d}{dx} \int_a^x f(t)\,dt=\frac{d}{dx} F(x) = f(x)</math><!-- ãã®åŸ®åç©ååŠã®åºæ¬å®çã¯ãç©åãã颿°ã埮åãããšå
ã®é¢æ°ã«æ»ãããšããããšã䞻匵ããŠãããã€ãŸãã埮åãšç©åã¯éã®æŒç®ã§ãããšããããšã§ãããããããæã
ã¯äžå®ç©åãã埮åãããå
ã®é¢æ°ã«ãªã颿°ããšå®çŸ©ããŠããã®ã§ãã£ããå®çŸ©ãããã®å®çãæãç«ã€ã®ã¯åœç¶ã®ããã«æããåºæ¬å®çãªããŠä»°ã
ãããååã€ããããããšã«çåãæãã人ãããããç¥ããªããåŸè¿°ããããç©åã¯é¢ç©ãæ±ããããšãšå¯æ¥ãª -->
{| style="border:2px solid pink;width:80%" cellspacing="0"
| style="background:pink" |'''<math>\int_a^x f(t)\,dt</math>ã®å°é¢æ°'''
|-
| style="padding:5px" |
<center><math>\frac{d}{dx} \int_a^x f(t)\,dt= f(x)</math></center>
|}
== å®ç©åãšé¢ç© ==
颿°<math>f(x)</math>ã<math>a \leqq x \leqq b</math>ã®ç¯å²ã§åžžã«æ£ã§ãããšããããã®ãšããå®ç©å<math>\int _a^b f(x) dx</math>ã«ãã£ãŠã颿°<math>f(x)</math>ã®ã°ã©ããšãçŽç·<math>x=a</math>ãçŽç·<math>x=b</math>ã<math>x</math>軞ã§å²ãŸããéšåã®é¢ç©ãæ±ããããšãã§ããã<!-- å³ -->
颿°<math>f(x)</math>ã®ã°ã©ããšãçŽç·<math>x=a</math>ãçŽç·<math>x=c</math>ãšã<math>x</math>軞ã§å²ãŸããéšåã®é¢ç©ã<math>S(c)</math>ãšããããšã«ãã£ãŠã颿°<math>S(x)</math>ãå®ããã(<math>a \leqq x \leqq b</math>ãšãã)
颿°<math>f(x)</math>ã®ã°ã©ããšãçŽç·<math>x=c</math>ãçŽç·<math>x=c+h</math>ãšã<math>x</math>軞ã§å²ãŸããéšåã®é¢ç©ãèãã(<math>a \leqq c+h \leqq b</math>ãšãã)ãããã¯ã<math>S(c+h)-S(c)</math>ã§ãããããã§ã<math>c<t<c+h</math>ãªã<math>t</math>ããšã£ãŠããŠããã®ç¹ã«ããã<math>f(x)</math>ã®å€<math>f(t)</math>ãé«ããšããé·æ¹åœ¢ã®é¢ç©ãèããããšã§ã<math>t</math>ãäžæã«ãšãã°ã<math> S(c+h) - S(c)=h \cdot f(t) </math>ãšã§ããã䞡蟺ã<math>h</math>ã§å²ãã<math>h \to 0</math>ã®æ¥µéãèãããšã
:<math>\lim_{h \to 0} \frac{S(c+h) - S(c)}{h} =\lim_{h \to 0} f(t)</math>
ã§ãããã巊蟺ã¯åŸ®åã®å®çŸ©ãã<math>S'(c)</math>ã§ããã<math>\lim_{h \to 0} t=c</math>ã§ããããšã«æ³šæãããšå³èŸºã¯<math>f(c)</math>ã§ãããæåã<math>c</math>ãã<math>x</math>ã«åãæãããšãçµå±
:<math>S'(x)=f(x)</math>
ãåŸããããã€ãŸãã<math>S(x)</math>ã¯<math>f(x)</math>ã®åå§é¢æ°ã®äžã€ã§ããããšãåããã
ãã£ãŠã<math>\int _a^b f(x) dx = S(b) - S(a)</math>ã§ãããããã®åŒã®å³èŸºã¯ã颿°<math>f(x)</math>ã®ã°ã©ããšãçŽç·<math>x=a</math>ãçŽç·<math>x=b</math>ãšã<math>x</math>軞ã§å²ãŸããé¢ç©ã§ããããã£ãŠã巊蟺<math>\int _a^b f(x) dx</math>ã¯ã颿°<math>f(x)</math>ã®ã°ã©ããšãçŽç·<math>x=a</math>ãçŽç·<math>x=b</math>ãšã<math>x</math>軞ã§å²ãŸããé¢ç©ã衚ããŠããã
{| style="border:2px solid pink;width:80%" cellspacing="0"
| style="background:pink" |'''å®ç©åãšé¢ç©ã®é¢ä¿'''
|-
| style="padding:5px" |
<math>a \le x \le b</math>ãã§ãã<math>f(x) \ge 0</math>ãã®ãšããçŽç· <math>x=a,x=b</math> ãš <math>x</math> 軞ã <math>f(x)</math> ã§å²ãŸããé¢ç© <math>S</math> ã¯
<center><math>S= \int_a^b f(x)\,dx</math></center>
|}
æŽå²çã«ã¯ãç©åã¯ã颿°ã®ã°ã©ãã§å²ãŸããéšåã®é¢ç©ãæ±ããããã«èãåºãããããã®ç¯ã§è¿°ã¹ããããªåŸ®åãšã®é¢é£ã¯ç©åèªäœã®çºæãããã£ãšåŸã«ãªã£ãŠçºèŠãããããšã§ããã
äŸãšããŠã
<math>0 \leqq x \leqq 1</math>ã®ç¯å²ã§ãy = xã®ã°ã©ããšx軞ã§ã¯ããŸããéšåã®é¢ç©ããç©åãçšããŠèšç®ããã
(
å®éã«ã¯ããã¯äžè§åœ¢ãªã®ã§ãç©åãçšããªããŠãé¢ç©ãèšç®ããããšãåºæ¥ãã
çã¯<math> \frac 1 2</math> ãšãªãã
)
å®ç©åãè¡ãªããšã
<math>
\int_0^1 x dx
</math>
<math>
= \frac 1 2 [x^2]^1_0
</math>
<math>
= \frac 1 2 [1^2 - 0^2]
</math>
<math>
= \frac 1 2 [1 - 0]
</math>
<math>
= \frac 1 2
</math>
ãšãªã確ãã«äžèŽããã
'''æŒç¿åé¡'''
æŸç©ç·<math>y=5-x^2</math>ãšx軞ããã³2çŽç·<math>x=-1\ ,\ x=2</math>ã§å²ãŸããéšåã®é¢ç©Sãæ±ããã
'''è§£ç'''
ãã®æŸç©ç·ã¯<math>-1 \le x \le 2</math>ã§x軞ã®äžåŽã«ããããã
:<math>S= \int_{-1}^{2} (5-x^2)\,dx=\left[5x - \frac{x^3}{3} \right]^{2}_{-1} =12</math><br>
<br>
<math>a \le x \le b</math>ãã«ãããŠãåžžã«ã<math>f(x) \ge g(x)</math>ãã§ãããšãã2ã€ã®æ²ç·ã<math>y=f(x)\ ,\ y=g(x)</math>ãã«æãŸããéšåã®é¢ç©Sã¯ã次ã®åŒã§è¡šãããã
{| style="border:2px solid pink;width:80%" cellspacing="0"
| style="background:pink" |æ²ç· <math>y=f(x),y=g(x)</math> ã®éã®é¢ç©
|-
| style="padding:5px" |
<math>a \le x \le b</math>ãã§ãã<math>f(x) \ge g(x)</math>ãã®ãšãã
<center><math>S= \int_a^b \left\{ f(x)-g(x) \right\}\,dx</math></center>
|}
* åé¡äŸ
** åé¡
æŸç©ç·<math>y=x^2 -1</math>ãšçŽç·<math>y=x+1</math>ã«ãã£ãŠå²ãŸããéšåã®é¢ç©Sãæ±ããã
** è§£ç
æŸç©ç·ãšçŽç·ã®äº€ç¹ã®x座æšã¯
:<math>x^2 -1=x+1</math>
:<math>x^2 -x-2=0</math>
:<math>x=-1\ ,\ x=2</math>
<math>-1 \le x \le 2</math>ã®ç¯å²ã§<math>x^2 -1 \le x+1</math>ãã
:<math>S= \int_{-1}^{2} \left\{ (x+1)-(x^2 -1) \right\}\,dx= \int_{-1}^{2} (-x^2+x+2)\,dx=\left[- \frac{x^3}{3} + \frac{x^2}{2} +2x \right]^{2}_{-1} = \frac{9}{2}</math><br>
<br>
<br>
<math>a \le x \le b</math>ãã§ãã<math>f(x) \le 0</math>ãã®ãšããx軞<math>y=0</math>ãšæ²ç·<math>y=f(x)</math>ã«ãã£ãŠæãŸããŠãããšèããããã®ã§ã
:<math>S= \int_a^b \left\{ 0-f(x) \right\}\,dx = - \int_a^b f(x)\,dx</math>
ãšãªãã
{| style="border:2px solid pink;width:80%" cellspacing=0
|style="background:pink"|'''é¢ç©(3)'''
|-
|style="padding:5px"|
<math>a \le x \le b</math>ãã§ãã<math>f(x) \le 0</math>ãã®ãšãã
<center><math>S=- \int_a^b f(x)\,dx</math></center>
|}
* åé¡äŸ
** åé¡
æŸç©ç·<math>y=x^2 -2x</math>ãšx軞ã§å²ãŸããéšåã®é¢ç©Sãæ±ããã
** è§£ç
æŸç©ç·ãšx軞ã®äº€ç¹ã®x座æšã¯
:<math>x^2 -2x=0</math>
:<math>x=0\ ,\ x=2</math>
ãã®æŸç©ç·ã¯<math>0 \le x \le 2</math>ã§x軞ã®äžåŽã«ããããã
:<math>S=- \int_0^2 (x^2 -2x)\,dx=- \left[\frac{x^3}{3} -x^2 \right]^{2}_{0} = \frac{4}{3}</math>
{{ã³ã©ã |ç©çåŠãšåŸ®åç©å|
[[File:GodfreyKneller-IsaacNewton-1689.jpg|thumb|ãã¥ãŒãã³]]
埮åç©åã¯ãç©çåŠã§ãéåæ¹çšåŒã®èšç®ãªã©ã«å¿çšãããŠããã
1600幎代ããã¥ãŒãã³ãªã©ã®ç ç©¶ã«ãããéåã®æ³åã埮åç©åã䜿ã£ãåŒã§è¡šçŸã§ããããšãè§£æãããã
ãªãããã¥ãŒãã³ã¯èæžãšããŠãããªã³ããã¢ããããããããã®èæžã§ãã¥ãŒãã³ã¯éåã®æ³åã埮åç©åã§è¡šãããããšãè¿°ã¹ãååŠïŒããããïŒã®çè«ã鲿©ãããã
ãªãã埮åç©åãç ç©¶ããåæä»£ã®æ°åŠè
ã«ã¯ããã¥ãŒãã³ã®ä»ã«ãã©ã€ãããããããã
}}
==æ¬åœã«ã¡ãã£ãšããäœè«==
髿 ¡æ°åŠãããŠãããšãå°æ¥åŸ®åãšãç©åãšãäœã«äœ¿ãïŒããšæãäººã®æ¹ãå€ããšæãã確ãã«æ¥åžžç掻ã§ã¯ãç©åãªã©ã®é«åºŠãª
æ°åŠã¯äœ¿ããªããã ããã®äžæ¹è£ã§ã¯ç©åã
埮åã髿 ¡æ°åŠã§ã¯åãŸããªããããªæ°åŠã䜿ãããŠãããäŸãã°å°é¢šã®é²è·¯äºæ³ã
ããã¯ç©åã䜿ãå°é¢šã®é²è·¯ãäºæž¬ããŠãããä»ã«ãã»ãã¥ãªãã£ã®åŒ·åãªã©ã«ãæ°åŠã¯äœ¿ãããŠãããæ¥åžžçæŽ»ã§ã¯æ°åŠã¯äœ¿ããªãããæ°åŠã«èŠªãã¿ãæã£ãŠã¿ãŠã¯ã©ãã ãããã
== æŒç¿åé¡ ==
(1)<math>F(x)=2x^2</math>ã®ãšã
<math>f(x)</math>ãæ±ããããã ã<math>F'(x)</math>
(2)<math>\lim_{x\rightarrow c}x^2+x=11</math>ãšãªã<math>c</math>ãæ±ãã
(3)åå§é¢æ°ãå®ç©åãæ±ãã
1)<math>\int ^5_3 2x^9+(6x-2x^3)dx</math>
2)<math>\int \sin x+\tan xdx</math>
3)<math>\lim_{x\rightarrow0}\int ^5_x 2xdx</math>
4)<math>\int ^{60}_{-60} \sin x+\cos^2xdx</math>
==æŒç¿åé¡ã®è§£çãšãã®æåŒã==
(1)<math>f(x)=x^3</math>
åªä¹ã®åŸ®åã¯<math>y'=nx^n-1</math>
ã§ããããäžå®ç©åã®å®çŸ©ãã<math>f(x)=x^3</math>ã§ããã
== èæ³š ==
<references/>
{{DEFAULTSORT:ãããšããã€ããããããII ã²ãµããããµã}}
[[Category:é«çåŠæ ¡æ°åŠII|ã²ãµããããµã]]
[[ã«ããŽãª:埮åç©ååŠ]] | 2005-05-06T11:56:28Z | 2023-11-09T05:59:48Z | [
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:ã³ã©ã "
] | https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E6%95%B0%E5%AD%A6II/%E5%BE%AE%E5%88%86%E3%83%BB%E7%A9%8D%E5%88%86%E3%81%AE%E8%80%83%E3%81%88 |
1,925 | èçœè³ª | èçœè³ª
çç©ã¯çްèå
ã现èéã®æ§ã
ãªæ©èœã«æ¯ããããŠãã,ãã®æ©èœã¯èçœè³ªãªãããŠã¯ãªãããªã. ããã§ã¯,èçœè³ªã®æ§é ãšãã®æ©èœã«ã€ããŠåºæ¬çãªäºé
ã解説ãã.
èçœè³ªãšã¯,ã¢ããé
žãã¢ãããŒãšããããªããŒ(ããªãããã)ã®ãã¡,æ©èœãæã€ãã®ã®ããšã§ãã. | [
{
"paragraph_id": 0,
"tag": "p",
"text": "èçœè³ª",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "çç©ã¯çްèå
ã现èéã®æ§ã
ãªæ©èœã«æ¯ããããŠãã,ãã®æ©èœã¯èçœè³ªãªãããŠã¯ãªãããªã. ããã§ã¯,èçœè³ªã®æ§é ãšãã®æ©èœã«ã€ããŠåºæ¬çãªäºé
ã解説ãã.",
"title": "åºè«"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "èçœè³ªãšã¯,ã¢ããé
žãã¢ãããŒãšããããªããŒ(ããªãããã)ã®ãã¡,æ©èœãæã€ãã®ã®ããšã§ãã.",
"title": "èçœè³ªãšã¯"
}
] | èçœè³ª | '''èçœè³ª'''
==åºè«==
çç©ã¯çްèå
ã现èéã®æ§ã
ãªæ©èœã«æ¯ããããŠããïŒãã®æ©èœã¯èçœè³ªãªãããŠã¯ãªãããªãïŒ
ããã§ã¯ïŒèçœè³ªã®æ§é ãšãã®æ©èœã«ã€ããŠåºæ¬çãªäºé
ã解説ããïŒ
==èçœè³ªãšã¯==
èçœè³ªãšã¯ïŒã¢ããé
žãã¢ãããŒãšããããªããŒïŒããªããããïŒã®ãã¡ïŒæ©èœãæã€ãã®ã®ããšã§ããïŒ
[[Category:é«çåŠæ ¡æè²|çããã¯ããã€]]
[[Category:çç©åŠ|é«ããã¯ããã€]] | null | 2007-01-20T16:23:15Z | [] | https://ja.wikibooks.org/wiki/%E8%9B%8B%E7%99%BD%E8%B3%AA |
1,927 | HTML/ãªã¹ã | ç®æ¡æžããæžãããå Žåãªã©ãäžèšã®ç¯ã®ããã«ãªã¹ã(List)ãå®çŸ©ããŸãã
ãªã¹ãã«ã¯ãé äžåãªã¹ãããåºåãªã¹ãããšãå®çŸ©ãªã¹ããããããŸãã ãã®ãã¡ãé äžåãªã¹ãããšãåºåãªã¹ããã®ããŒã¯ã¢ããã¯å
±éããŠããŸãããå®çŸ©ãªã¹ããã®ããŒã¯ã¢ããã¯2ã€ãšã¯ç°ãªããŸãã
ãé äžåãªã¹ãããšãåºåãªã¹ããã§ã¯
ã®ããã«ãå
éšãLIèŠçŽ ãçšããŠåèŠçŽ ãæå®ãå€åŽã®ãªã¹ãèŠçŽ (ULèŠçŽ ãªã©)ã§è¡šç€ºæ¹æ³ãæå®ããŸãã ãªããå
éšã®LIèŠçŽ ã®åé ã®ãlãã¯ãå°æåã®Lã§ãã®ã§æ³šæããŠãã ããã å
éšã®LIèŠçŽ ã«ãã£ãŠèšè¿°ãããéšåã¯ããŠã§ããã©ãŠã¶ã®ãŠãŒã¶ãŒãšãŒãžã§ã³ãã»ã¹ã¿ã€ã«ã·ãŒãã§ã¯è¡é ã«ã€ã³ãã³ãããšããåé
ç®ã¯åŒ·å¶çã«æ¹è¡ãããŸãã ãŸããè¡é ã«ã¯é»äžžãæ°åã衚瀺ããããã®ããããŸãããŠã§ããã©ãŠã¶ã®çš®é¡ããŠã§ãããŒãžåŽã®èšå®ã«ãã£ãŠé»äžžãæ°å以å€ã®ãã®ã衚瀺ãããå ŽåããããŸãã
ULèŠçŽ ã¯ã¢ã€ãã ã®ãªã¹ãã衚ããŸãããã¢ã€ãã ã®é åºã¯éèŠã§ã¯ãããŸããã ULèŠçŽ ã®å
容ã«ã¯LIèŠçŽ ããèš±ãããŸããã
ãªã¹ãã®äžã«ãªã¹ããå
¥ããããšãã§ããŸãã
ãã®éãå
åŽã®ãªã¹ãã¯ã€ã³ãã³ããããäºã«æ³šæããŠãã ããã
è¡šç€ºçµæã®äŸ
æ®éã®å®å¹ç°å¢ã§ã¯ãã€ã³ãã³ããé©çšãããã®ã¯ãªã¹ãé
ç®ã ãã§ãªããå
åŽã®ulã¿ã°ã§å²ãŸããéšåå
šäœã«ãªããŸãã ããšãã°ã
ãœãŒã¹äŸ
ãšãããšã
ãªã¹ãäžã§ãªã¹ãé
ç®å€ã«ããã¹ããæžããŠããç¹ã«è¿œå ã®ã€ã³ãã³ããªã©ã¯ç¡ãã®ã§ãé
ç®ã®åèãªã©ãæžãããå Žåã«ã¯ããã®ãŸãŸã§ã¯äžäŸ¿ã§ãã
ããã§ãäžèšã®ããã« div ã¿ã°ã«ããã¹ã¿ã€ã«æå®ãªã©ãçšããŠãã€ã³ãã³ããåºæ¥ãŸãã(ãªã¹ãã«éãããäžè¬çã«HTMLã§ã€ã³ãã³ããããå Žåã®ææ³ã§ãã)
ãœãŒã¹äŸ
CSSã®list-style-typeããããã£ãULèŠçŽ ã«é©çšãããšããªã¹ãå
šäœã®ãªã¹ãããŒã¯ã®çš®é¡ã倿Žããããšãåºæ¥ãŸãã CSSã®list-style-typeããããã£ãULèŠçŽ ã®åèŠçŽ ã®LIèŠçŽ ã«é©çšãããšãåã
ã®ãªã¹ãèŠçŽ ã®ãªã¹ãããŒã¯ã®çš®é¡ã倿Žããããšãåºæ¥ãŸãã ãªã¹ãããŒã¯ã®ãã¶ã€ã³ã䜿ãããªã¹ãããŒã¯ã®çš®é¡ã¯ãŠã§ããã©ãŠã¶ã«ãã£ãŠç°ãªãå ŽåããããŸãã
OLèŠçŽ ã¯ãã¢ã€ãã ã®ãªã¹ãã衚ããã¢ã€ãã ãæå³çã«é åºä»ããããŠããé åºã倿Žãããšããã¥ã¡ã³ãã®æå³ãå€ãããããªã±ãŒã¹ã«çšããããŸãã äžè¬çãªãŠã§ããã©ãŠã¶ã§ã¯1, 2, 3, ... ã A, B, C, ... ãšã¬ã³ããªã³ã°ãããäºãå€ããåã
ã®é
ç®ã¯ULèŠçŽ ã®æãšåæ§LIèŠçŽ ãçšããŸãã
CSSã®list-style-typeããããã£ãOLèŠçŽ ã«é©çšãããšãªã¹ãå
šäœã®åæè¡šçŸã倿Žããããšãåºæ¥ãŸãã CSSã®list-style-typeããããã£ãOLèŠçŽ ã®åèŠçŽ ã®LIèŠçŽ ã«é©çšãããšãåã
ã®ãªã¹ãèŠçŽ ã®åæè¡šçŸã倿Žããããšãåºæ¥ãŸãã åæè¡šçŸã®ãã¶ã€ã³ã䜿ããåæè¡šçŸã¯ãŠã§ããã©ãŠã¶ã«ãã£ãŠç°ãªãå ŽåããããŸãã
OLèŠçŽ ã«value屿§ãæå®ãããšéå§çªå·ã倿Žå¯èœã§ãããäŸãã°value屿§ã«5ãæå®ãããšLIèŠçŽ ã«ã¯äžããé çªã«5, 6, 7, ...ãšããçªå·ãæ¯ãããããŸããåå¥ã®li屿§ã«start屿§ã倿Žããããšã§ãªã¹ãã®éäžããéå§çªå·ã倿Žããããšãåºæ¥ããäŸãã°ãªã¹ãäžã®3çªç®ã«ãããªã¹ãã«9ãšããvalue屿§å€ãä»äžããå Žåããã®ãªã¹ãã¯äžçªç®ã®é
ç®ãã9, 10, 11, ...ãšããçªå·ãæ¯ãããããã«ãªãã
çšèªã®å®çŸ©ã®ãããªååãšèª¬æã察ã«ãªã£ããªã¹ãã«ã¯DLèŠçŽ ãçšããŸãã DTèŠçŽ ã¯ãULèŠçŽ ãOLèŠçŽ ãšéããLIèŠçŽ ã§ã¯ãªãDTèŠçŽ ãšDDèŠçŽ ãšDIVèŠçŽ ããæ§æãããŸãã DTèŠçŽ ã¯å®çŸ©ãããçšèª(åå)ã瀺ããDDèŠçŽ ã¯çšèªã®èª¬æã瀺ããŸãã DTèŠçŽ ã«ã¯DTèŠçŽ ãšDDèŠçŽ ãšDIVèŠçŽ ã®ã¿ãå«ãããšãåºæ¥ãŸãã DTèŠçŽ ã¯ã€ã³ã©ã€ã³èŠçŽ ãå«ãããšãã§ããŸãã DDèŠçŽ ã¯ãããã¯ã¬ãã«èŠçŽ ãå«ãããšãåºæ¥ãŸãã
次ã®äŸã¯ããŠã£ãããã¯ã¹ã®å§åйãããžã§ã¯ãã説æããŠããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç®æ¡æžããæžãããå Žåãªã©ãäžèšã®ç¯ã®ããã«ãªã¹ã(List)ãå®çŸ©ããŸãã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãªã¹ãã«ã¯ãé äžåãªã¹ãããåºåãªã¹ãããšãå®çŸ©ãªã¹ããããããŸãã ãã®ãã¡ãé äžåãªã¹ãããšãåºåãªã¹ããã®ããŒã¯ã¢ããã¯å
±éããŠããŸãããå®çŸ©ãªã¹ããã®ããŒã¯ã¢ããã¯2ã€ãšã¯ç°ãªããŸãã",
"title": "æŠèŠ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãé äžåãªã¹ãããšãåºåãªã¹ããã§ã¯",
"title": "æŠèŠ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ã®ããã«ãå
éšãLIèŠçŽ ãçšããŠåèŠçŽ ãæå®ãå€åŽã®ãªã¹ãèŠçŽ (ULèŠçŽ ãªã©)ã§è¡šç€ºæ¹æ³ãæå®ããŸãã ãªããå
éšã®LIèŠçŽ ã®åé ã®ãlãã¯ãå°æåã®Lã§ãã®ã§æ³šæããŠãã ããã å
éšã®LIèŠçŽ ã«ãã£ãŠèšè¿°ãããéšåã¯ããŠã§ããã©ãŠã¶ã®ãŠãŒã¶ãŒãšãŒãžã§ã³ãã»ã¹ã¿ã€ã«ã·ãŒãã§ã¯è¡é ã«ã€ã³ãã³ãããšããåé
ç®ã¯åŒ·å¶çã«æ¹è¡ãããŸãã ãŸããè¡é ã«ã¯é»äžžãæ°åã衚瀺ããããã®ããããŸãããŠã§ããã©ãŠã¶ã®çš®é¡ããŠã§ãããŒãžåŽã®èšå®ã«ãã£ãŠé»äžžãæ°å以å€ã®ãã®ã衚瀺ãããå ŽåããããŸãã",
"title": "æŠèŠ"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ULèŠçŽ ã¯ã¢ã€ãã ã®ãªã¹ãã衚ããŸãããã¢ã€ãã ã®é åºã¯éèŠã§ã¯ãããŸããã ULèŠçŽ ã®å
容ã«ã¯LIèŠçŽ ããèš±ãããŸããã",
"title": "é äžåãªã¹ã"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãªã¹ãã®äžã«ãªã¹ããå
¥ããããšãã§ããŸãã",
"title": "é äžåãªã¹ã"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãã®éãå
åŽã®ãªã¹ãã¯ã€ã³ãã³ããããäºã«æ³šæããŠãã ããã",
"title": "é äžåãªã¹ã"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "è¡šç€ºçµæã®äŸ",
"title": "é äžåãªã¹ã"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "æ®éã®å®å¹ç°å¢ã§ã¯ãã€ã³ãã³ããé©çšãããã®ã¯ãªã¹ãé
ç®ã ãã§ãªããå
åŽã®ulã¿ã°ã§å²ãŸããéšåå
šäœã«ãªããŸãã ããšãã°ã",
"title": "é äžåãªã¹ã"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãœãŒã¹äŸ",
"title": "é äžåãªã¹ã"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãšãããšã",
"title": "é äžåãªã¹ã"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãªã¹ãäžã§ãªã¹ãé
ç®å€ã«ããã¹ããæžããŠããç¹ã«è¿œå ã®ã€ã³ãã³ããªã©ã¯ç¡ãã®ã§ãé
ç®ã®åèãªã©ãæžãããå Žåã«ã¯ããã®ãŸãŸã§ã¯äžäŸ¿ã§ãã",
"title": "é äžåãªã¹ã"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ããã§ãäžèšã®ããã« div ã¿ã°ã«ããã¹ã¿ã€ã«æå®ãªã©ãçšããŠãã€ã³ãã³ããåºæ¥ãŸãã(ãªã¹ãã«éãããäžè¬çã«HTMLã§ã€ã³ãã³ããããå Žåã®ææ³ã§ãã)",
"title": "é äžåãªã¹ã"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãœãŒã¹äŸ",
"title": "é äžåãªã¹ã"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "",
"title": "é äžåãªã¹ã"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "CSSã®list-style-typeããããã£ãULèŠçŽ ã«é©çšãããšããªã¹ãå
šäœã®ãªã¹ãããŒã¯ã®çš®é¡ã倿Žããããšãåºæ¥ãŸãã CSSã®list-style-typeããããã£ãULèŠçŽ ã®åèŠçŽ ã®LIèŠçŽ ã«é©çšãããšãåã
ã®ãªã¹ãèŠçŽ ã®ãªã¹ãããŒã¯ã®çš®é¡ã倿Žããããšãåºæ¥ãŸãã ãªã¹ãããŒã¯ã®ãã¶ã€ã³ã䜿ãããªã¹ãããŒã¯ã®çš®é¡ã¯ãŠã§ããã©ãŠã¶ã«ãã£ãŠç°ãªãå ŽåããããŸãã",
"title": "é äžåãªã¹ã"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "OLèŠçŽ ã¯ãã¢ã€ãã ã®ãªã¹ãã衚ããã¢ã€ãã ãæå³çã«é åºä»ããããŠããé åºã倿Žãããšããã¥ã¡ã³ãã®æå³ãå€ãããããªã±ãŒã¹ã«çšããããŸãã äžè¬çãªãŠã§ããã©ãŠã¶ã§ã¯1, 2, 3, ... ã A, B, C, ... ãšã¬ã³ããªã³ã°ãããäºãå€ããåã
ã®é
ç®ã¯ULèŠçŽ ã®æãšåæ§LIèŠçŽ ãçšããŸãã",
"title": "åºåãªã¹ã"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "CSSã®list-style-typeããããã£ãOLèŠçŽ ã«é©çšãããšãªã¹ãå
šäœã®åæè¡šçŸã倿Žããããšãåºæ¥ãŸãã CSSã®list-style-typeããããã£ãOLèŠçŽ ã®åèŠçŽ ã®LIèŠçŽ ã«é©çšãããšãåã
ã®ãªã¹ãèŠçŽ ã®åæè¡šçŸã倿Žããããšãåºæ¥ãŸãã åæè¡šçŸã®ãã¶ã€ã³ã䜿ããåæè¡šçŸã¯ãŠã§ããã©ãŠã¶ã«ãã£ãŠç°ãªãå ŽåããããŸãã",
"title": "åºåãªã¹ã"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "OLèŠçŽ ã«value屿§ãæå®ãããšéå§çªå·ã倿Žå¯èœã§ãããäŸãã°value屿§ã«5ãæå®ãããšLIèŠçŽ ã«ã¯äžããé çªã«5, 6, 7, ...ãšããçªå·ãæ¯ãããããŸããåå¥ã®li屿§ã«start屿§ã倿Žããããšã§ãªã¹ãã®éäžããéå§çªå·ã倿Žããããšãåºæ¥ããäŸãã°ãªã¹ãäžã®3çªç®ã«ãããªã¹ãã«9ãšããvalue屿§å€ãä»äžããå Žåããã®ãªã¹ãã¯äžçªç®ã®é
ç®ãã9, 10, 11, ...ãšããçªå·ãæ¯ãããããã«ãªãã",
"title": "åºåãªã¹ã"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "çšèªã®å®çŸ©ã®ãããªååãšèª¬æã察ã«ãªã£ããªã¹ãã«ã¯DLèŠçŽ ãçšããŸãã DTèŠçŽ ã¯ãULèŠçŽ ãOLèŠçŽ ãšéããLIèŠçŽ ã§ã¯ãªãDTèŠçŽ ãšDDèŠçŽ ãšDIVèŠçŽ ããæ§æãããŸãã DTèŠçŽ ã¯å®çŸ©ãããçšèª(åå)ã瀺ããDDèŠçŽ ã¯çšèªã®èª¬æã瀺ããŸãã DTèŠçŽ ã«ã¯DTèŠçŽ ãšDDèŠçŽ ãšDIVèŠçŽ ã®ã¿ãå«ãããšãåºæ¥ãŸãã DTèŠçŽ ã¯ã€ã³ã©ã€ã³èŠçŽ ãå«ãããšãã§ããŸãã DDèŠçŽ ã¯ãããã¯ã¬ãã«èŠçŽ ãå«ãããšãåºæ¥ãŸãã",
"title": "å®çŸ©ãªã¹ã"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "次ã®äŸã¯ããŠã£ãããã¯ã¹ã®å§åйãããžã§ã¯ãã説æããŠããŸãã",
"title": "å®çŸ©ãªã¹ã"
}
] | ç®æ¡æžããæžãããå Žåãªã©ãäžèšã®ç¯ã®ããã«ãªã¹ã(List)ãå®çŸ©ããŸãã | {{Pathnav|HTML|frame=1|small=1}}
ç®æ¡æžããæžãããå Žåãªã©ãäžèšã®ç¯ã®ããã«ãªã¹ã(List)ãå®çŸ©ããŸã<ref>HTML5ã«ã¯ List ãšããåé¡ã¯ãªãHTML4ãŸã§ List ãšãããèŠçŽ ã¯ãPèŠçŽ ãMAINèŠçŽ ãªã©ãšãšãã« [https://html.spec.whatwg.org/multipage/grouping-content.html#grouping-content §4.4 Grouping content]ã«åé¡ãããŸããã</ref>ã
== æŠèŠ ==
ãªã¹ãã«ã¯ãé äžåãªã¹ãããåºåãªã¹ãããšãå®çŸ©ãªã¹ããããããŸãã
ãã®ãã¡ãé äžåãªã¹ãããšãåºåãªã¹ããã®ããŒã¯ã¢ããã¯å
±éããŠããŸãããå®çŸ©ãªã¹ããã®ããŒã¯ã¢ããã¯2ã€ãšã¯ç°ãªããŸãã
ãé äžåãªã¹ãããšãåºåãªã¹ããã§ã¯
<pre>
<ãªã¹ãèŠçŽ >
<li>ãã¯ã</li>
<li>å³åæ±</li>
<li>çŒãé</li>
</ãªã¹ãèŠçŽ >
</pre>
ã®ããã«ãå
éšãLIèŠçŽ ãçšããŠåèŠçŽ ãæå®ãå€åŽã®ãªã¹ãèŠçŽ (ULèŠçŽ ãªã©)ã§è¡šç€ºæ¹æ³ãæå®ããŸãã
ãªããå
éšã®LIèŠçŽ ã®åé ã®ãlãã¯ãå°æåã®Lã§ãã®ã§æ³šæããŠãã ãã<ref>å
é ãæ°åã§å§ãŸãèŠçŽ ã¯ãããŸããã</ref>ã
å
éšã®LIèŠçŽ ã«ãã£ãŠèšè¿°ãããéšåã¯ããŠã§ããã©ãŠã¶ã®ãŠãŒã¶ãŒãšãŒãžã§ã³ãã»ã¹ã¿ã€ã«ã·ãŒãã§ã¯è¡é ã«ã€ã³ãã³ãããšããåé
ç®ã¯åŒ·å¶çã«æ¹è¡ãããŸãã
ãŸããè¡é ã«ã¯é»äžžãæ°åã衚瀺ããããã®ããããŸãããŠã§ããã©ãŠã¶ã®çš®é¡ããŠã§ãããŒãžåŽã®èšå®ã«ãã£ãŠé»äžžãæ°å以å€ã®ãã®ã衚瀺ãããå ŽåããããŸãã
== é äžåãªã¹ã ==
ULèŠçŽ ã¯ã¢ã€ãã ã®ãªã¹ãã衚ããŸãããã¢ã€ãã ã®é åºã¯éèŠã§ã¯ãããŸããã
ULèŠçŽ ã®å
容ã«ã¯LIèŠçŽ ããèš±ãããŸããã
=== å
¥åäŸ ===
<syntaxhighlight lang="html5">
<ul>
<li>ãã¯ã</li>
<li>å³åæ±</li>
<li>çŒãé</li>
</ul>
</syntaxhighlight>
=== è¡šç€ºäŸ ===
<ul>
<li>ãã¯ã</li>
<li>å³åæ±</li>
<li>çŒãé</li>
</ul>
=== ãªã¹ãã®å
¥ãå ===
ãªã¹ãã®äžã«ãªã¹ããå
¥ããããšãã§ããŸãã
ãã®éãå
åŽã®ãªã¹ãã¯ã€ã³ãã³ããããäºã«æ³šæããŠãã ããã
<syntaxhighlight lang="html5">
<ul>
<li>ãã¯ã</li>
<li>å³åæ±</li>
<ul>
<li>èµ€å³å</li>
<li>çœå³å</li>
</ul>
<li>çŒãé</li>
</ul>
</syntaxhighlight>
è¡šç€ºçµæã®äŸ
<ul>
<li>ãã¯ã</li>
<li>å³åæ±</li>
<ul>
<li>èµ€å³å</li>
<li>çœå³å</li>
</ul>
<li>çŒãé</li>
</ul>
æ®éã®å®å¹ç°å¢ã§ã¯ãã€ã³ãã³ããé©çšãããã®ã¯ãªã¹ãé
ç®ã ãã§ãªããå
åŽã®ulã¿ã°ã§å²ãŸããéšåå
šäœã«ãªããŸãã
ããšãã°ã
ãœãŒã¹äŸ
<syntaxhighlight lang="html5">
<ul>
<li>ãã¯ã</li>
<li>å³åæ±</li>
<ul>
<li>èµ€å³å</li>ããã<br>ããããã<br>ãã<br>ãããã
<li>çœå³å</li>
</ul>
<li>çŒãé</li>
</ul>
</syntaxhighlight>
ãšãããšã
;å®è¡çµæ
<ul>
<li>ãã¯ã</li>
<li>å³åæ±</li>
<ul>
<li>èµ€å³å</li>ããã<br>ããããã<br>ãã<br>ãããã
<li>çœå³å</li>
</ul>
<li>çŒãé</li>
</ul>
=== ãªã¹ãäžã§ã®è¿œèšãªã©ã®ã€ã³ãã³ã ===
ãªã¹ãäžã§ãªã¹ãé
ç®å€ã«ããã¹ããæžããŠããç¹ã«è¿œå ã®ã€ã³ãã³ããªã©ã¯ç¡ãã®ã§ãé
ç®ã®åèãªã©ãæžãããå Žåã«ã¯ããã®ãŸãŸã§ã¯äžäŸ¿ã§ãã
ããã§ãäžèšã®ããã« div ã¿ã°ã«ããã¹ã¿ã€ã«æå®ãªã©ãçšããŠãã€ã³ãã³ããåºæ¥ãŸããïŒãªã¹ãã«éãããäžè¬çã«HTMLã§ã€ã³ãã³ããããå Žåã®ææ³ã§ããïŒ
ãœãŒã¹äŸ
<syntaxhighlight lang="html5">
<ul>
<li>ãã¯ã</li>
<li>å³åæ±</li>
<ul>
<li>èµ€å³å</li><div style="margin-left: 1em;">倧è±ãå€ã</div>
<li>çœå³å</li><div style="margin-left: 1em;">ç±³ãå€ã</div>
</ul>
<li>çŒãé</li>
</ul>
</syntaxhighlight>
;å®è¡çµæ
<ul>
<li>ãã¯ã</li>
<li>å³åæ±</li>
<ul>
<li>èµ€å³å</li><div style="margin-left: 1em;">倧è±ãå€ã</div>
<li>çœå³å</li><div style="margin-left: 1em;">ç±³ãå€ã</div>
</ul>
<li>çŒãé</li>
</ul>
=== 詳现èšå® ===
==== ãªã¹ãããŒã¯ã®çš®é¡ãå€ãã ====
[[CSS]]ã®list-style-typeããããã£ãULèŠçŽ ã«é©çšãããšããªã¹ãå
šäœã®ãªã¹ãããŒã¯ã®çš®é¡ã倿Žããããšãåºæ¥ãŸãã
CSSã®list-style-typeããããã£ãULèŠçŽ ã®åèŠçŽ ã®LIèŠçŽ ã«é©çšãããšãåã
ã®ãªã¹ãèŠçŽ ã®ãªã¹ãããŒã¯ã®çš®é¡ã倿Žããããšãåºæ¥ãŸãã
ãªã¹ãããŒã¯ã®ãã¶ã€ã³ã䜿ãããªã¹ãããŒã¯ã®çš®é¡ã¯ãŠã§ããã©ãŠã¶ã«ãã£ãŠç°ãªãå ŽåããããŸãã
; list-style-type: disc
: é»äžž
; list-style-type: circle
: çœäžž
; list-style-type: square
: åè§å
== åºåãªã¹ã ==
OLèŠçŽ ã¯ãã¢ã€ãã ã®ãªã¹ãã衚ããã¢ã€ãã ãæå³çã«é åºä»ããããŠããé åºã倿Žãããšããã¥ã¡ã³ãã®æå³ãå€ãããããªã±ãŒã¹ã«çšããããŸãã
äžè¬çãªãŠã§ããã©ãŠã¶ã§ã¯1, 2, 3, ... ã A, B, C, ... ãšã¬ã³ããªã³ã°ãããäºãå€ããåã
ã®é
ç®ã¯ULèŠçŽ ã®æãšåæ§LIèŠçŽ ãçšããŸãã
=== å
¥åäŸ ===
<syntaxhighlight lang="html5">
<ol>
<li>ââé§
ã§é»è»ã«ä¹ã</li>
<li>ÃÃé§
ã§ä¹ãæãã</li>
<li>â³â³é§
ã§éãã</li>
</ol>
</syntaxhighlight>
=== è¡šç€ºäŸ ===
<ol>
<li>ââé§
ã§é»è»ã«ä¹ã</li>
<li>ÃÃé§
ã§ä¹ãæãã</li>
<li>â³â³é§
ã§éãã</li>
</ol>
=== 詳现èšå® ===
==== çªå·ã®çš®é¡ãå€ãã ====
[[CSS]]ã®list-style-typeããããã£ãOLèŠçŽ ã«é©çšãããšãªã¹ãå
šäœã®åæè¡šçŸã倿Žããããšãåºæ¥ãŸãã
CSSã®list-style-typeããããã£ãOLèŠçŽ ã®åèŠçŽ ã®LIèŠçŽ ã«é©çšãããšãåã
ã®ãªã¹ãèŠçŽ ã®åæè¡šçŸã倿Žããããšãåºæ¥ãŸãã
åæè¡šçŸã®ãã¶ã€ã³ã䜿ããåæè¡šçŸã¯ãŠã§ããã©ãŠã¶ã«ãã£ãŠç°ãªãå ŽåããããŸãã
; list-style-type<nowiki>:</nowiki> decimal
: <ol style="list-style-type:decimal"><li>ç®çšæ°å<li>ç®çšæ°å<li>ç®çšæ°å</ol>
; list-style-type<nowiki>:</nowiki> lower-latin
: <ol style="list-style-type:lower-latin"><li>ã¢ã«ãã¡ãããå°æå<li>ã¢ã«ãã¡ãããå°æå<li>ã¢ã«ãã¡ãããå°æå</ol>
; list-style-type<nowiki>:</nowiki> upper-latin
: <ol style="list-style-type:upper-latin"><li>ã¢ã«ãã¡ããã倧æå<li>ã¢ã«ãã¡ããã倧æå<li>ã¢ã«ãã¡ããã倧æå</ol>
; list-style-type<nowiki>:</nowiki> lower-roman
: <ol style="list-style-type:lower-roman"><li>ããŒãæ°åå°æå<li>ããŒãæ°åå°æå<li>ããŒãæ°åå°æå</ol>
; list-style-type<nowiki>:</nowiki> upper-roman
: <ol style="list-style-type:upper-roman"><li>ããŒãæ°å倧æå<li>ããŒãæ°å倧æå<li>ããŒãæ°å倧æå</ol>
; list-style-type<nowiki>:</nowiki> lower-greek
: <ol style="list-style-type:lower-greek"><li>ã®ãªã·ã£æåå°æå<li>ã®ãªã·ã£æåå°æå<li>ã®ãªã·ã£æåå°æå</ol>
; list-style-type<nowiki>:</nowiki> upper-greek
: <ol style="list-style-type:upper-greek"><li>ã®ãªã·ã£æå倧æå<li>ã®ãªã·ã£æå倧æå<li>ã®ãªã·ã£æå倧æå</ol>
; list-style-type<nowiki>:</nowiki> cjk-decimal
: <ol style="list-style-type:cjk-decimal"><li>挢æ°å<li>挢æ°å<li>挢æ°å</ol>
; list-style-type<nowiki>:</nowiki> katakana-iroha
: <ol style="list-style-type:katakana-iroha"><li>çä»®åã€ãã<li>çä»®åã€ãã<li>çä»®åã€ãã</ol>
; list-style-type<nowiki>:</nowiki> cjk-earthly-branch
: <ol style="list-style-type:cjk-earthly-branch"><li>åäºæ¯<li>åäºæ¯<li>åäºæ¯</ol>
; list-style-type<nowiki>:</nowiki> cjk-heavenly-stem
: <ol style="list-style-type:cjk-heavenly-stem"><li>åå¹²<li>åå¹²<li>åå¹²</ol>
; list-style-type<nowiki>:</nowiki> thai
: <ol style="list-style-type:thai"><li>ã¿ã€æå<li>ã¿ã€æå<li>ã¿ã€æå</ol>
==== æ°åã®é çªãå€ãã ====
OLèŠçŽ ã«value屿§ãæå®ãããšéå§çªå·ã倿Žå¯èœã§ãããäŸãã°value屿§ã«5ãæå®ãããšLIèŠçŽ ã«ã¯äžããé çªã«5, 6, 7, ...ãšããçªå·ãæ¯ãããããŸããåå¥ã®li屿§ã«start屿§ã倿Žããããšã§ãªã¹ãã®éäžããéå§çªå·ã倿Žããããšãåºæ¥ããäŸãã°ãªã¹ãäžã®3çªç®ã«ãããªã¹ãã«9ãšããvalue屿§å€ãä»äžããå Žåããã®ãªã¹ãã¯äžçªç®ã®é
ç®ãã9, 10, 11, ...ãšããçªå·ãæ¯ãããããã«ãªãã
=== å
¥åäŸ ===
<syntaxhighlight lang="html5">
<ol>
<li>ââé§
ã§é»è»ã«ä¹ã</li>
<li value="5">ÃÃé§
ã§ä¹ãæãã</li>
<li>â³â³é§
ã§éãã</li>
</ol>
</syntaxhighlight>
=== è¡šç€ºäŸ ===
<ol>
<li>ââé§
ã§é»è»ã«ä¹ã</li>
<li value="5">ÃÃé§
ã§ä¹ãæãã</li>
<li>â³â³é§
ã§éãã</li>
</ol>
== å®çŸ©ãªã¹ã ==
çšèªã®å®çŸ©ã®ãããªååãšèª¬æã察ã«ãªã£ããªã¹ãã«ã¯DLèŠçŽ ãçšããŸãã
DTèŠçŽ ã¯ãULèŠçŽ ãOLèŠçŽ ãšéããLIèŠçŽ ã§ã¯ãªãDTèŠçŽ ãšDDèŠçŽ ãš<ins>DIVèŠçŽ </ins><ref name="dl_w_div" />ããæ§æãããŸãã
DTèŠçŽ ã¯å®çŸ©ãããçšèªïŒååïŒã瀺ããDDèŠçŽ ã¯çšèªã®èª¬æã瀺ããŸãã
DTèŠçŽ ã«ã¯DTèŠçŽ ãšDDèŠçŽ <ins>ãšDIVèŠçŽ </ins><ref name="dl_w_div">HTML5ã§ã¯DLèŠçŽ ã®çŽäžã®åèŠçŽ ã«DIVèŠçŽ ãèš±ãããããã«ãªããŸããã</ref>ã®ã¿ãå«ãããšãåºæ¥ãŸãã
DTèŠçŽ ã¯ã€ã³ã©ã€ã³èŠçŽ ãå«ãããšãã§ããŸãã
DDèŠçŽ ã¯ãããã¯ã¬ãã«èŠçŽ ãå«ãããšãåºæ¥ãŸãã
次ã®äŸã¯ããŠã£ãããã¯ã¹ã®å§åйãããžã§ã¯ãã説æããŠããŸãã
=== èšè¿°äŸ ===
<syntaxhighlight lang="html5">
<dl>
<dt>ã¡ã¿ãŠã£ã</dt>
<dd>å
šãããžã§ã¯ãã®è£å©çãããžã§ã¯ãã§ãã</dd>
<dt>ãŠã£ãããã£ã¢</dt>
<dd>çŸç§äºå
žãäœæãããããžã§ã¯ãã§ãã</dd>
<dt>ãŠã£ã¯ã·ã§ããªãŒ</dt>
<dd>èŸæžã»ã·ãœãŒã©ã¹äœæãããžã§ã¯ãã§ãã</dd>
</dl>
</syntaxhighlight>
=== è¡šç€ºäŸ ===
<dl>
<dt>ã¡ã¿ãŠã£ã</dt>
<dd>å
šãããžã§ã¯ãã®è£å©çãããžã§ã¯ãã§ãã</dd>
<dt>ãŠã£ãããã£ã¢</dt>
<dd>çŸç§äºå
žãäœæãããããžã§ã¯ãã§ãã</dd>
<dt>ãŠã£ã¯ã·ã§ããªãŒ</dt>
<dd>èŸæžã»ã·ãœãŒã©ã¹äœæãããžã§ã¯ãã§ãã</dd>
</dl>
== èæ³š ==
<references />
== å€éšãªã³ã¯ ==
* [https://html.spec.whatwg.org/multipage/grouping-content.html#the-ol-element HTML Living Standard::§4.4.5 The ol element]
* [https://html.spec.whatwg.org/multipage/grouping-content.html#the-ul-element HTML Living Standard::§4.4.6 The ul element]
* [https://html.spec.whatwg.org/multipage/grouping-content.html#the-li-element HTML Living Standard::§4.4.8 The ul element]
* [https://html.spec.whatwg.org/multipage/grouping-content.html#the-dl-element HTML Living Standard::§4.4.9 The dl element]
* [https://html.spec.whatwg.org/multipage/grouping-content.html#the-dt-element HTML Living Standard::§4.4.10 The dt element]
* [https://html.spec.whatwg.org/multipage/grouping-content.html#the-dd-element HTML Living Standard::§4.4.11 The dd element]
* [https://drafts.csswg.org/css-lists-3/#text-markers CSS Lists and Counters Module Level 3::§3.4. Text-based Markers: the list-style-type property]
[[Category:HTML|HTML ãããš]] | 2005-05-07T10:39:22Z | 2023-07-25T11:40:40Z | [
"ãã³ãã¬ãŒã:Pathnav"
] | https://ja.wikibooks.org/wiki/HTML/%E3%83%AA%E3%82%B9%E3%83%88 |
1,928 | æ§èª²çš(-2012幎床)é«çåŠæ ¡æ°åŠA | å¹³æ15幎(2003幎)ããå¹³æ23幎(2011幎)ãŸã§ã®éã«é«çåŠæ ¡ã«å
¥åŠãã人ã®å±¥ä¿®ããç§ç®ãæ°åŠAãã¯ä»¥äžã®åå
ãããªã£ãŠããŸãã
å¹³æ24幎(2012幎)ãã什å3幎(2021幎)ãŸã§ã®éã«é«çåŠæ ¡ã«å
¥åŠãã人ã®å±¥ä¿®ããç§ç®ãæ°åŠAãã¯ã以äžã®åå
ãããªã£ãŠããŸãã
什å4幎(2022幎)以éã«é«çåŠæ ¡ã«å
¥åŠãã人ã¯ã以äžã®åå
ãããªããæ°åŠAãã履修ããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "å¹³æ15幎(2003幎)ããå¹³æ23幎(2011幎)ãŸã§ã®éã«é«çåŠæ ¡ã«å
¥åŠãã人ã®å±¥ä¿®ããç§ç®ãæ°åŠAãã¯ä»¥äžã®åå
ãããªã£ãŠããŸãã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "å¹³æ24幎(2012幎)ãã什å3幎(2021幎)ãŸã§ã®éã«é«çåŠæ ¡ã«å
¥åŠãã人ã®å±¥ä¿®ããç§ç®ãæ°åŠAãã¯ã以äžã®åå
ãããªã£ãŠããŸãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "什å4幎(2022幎)以éã«é«çåŠæ ¡ã«å
¥åŠãã人ã¯ã以äžã®åå
ãããªããæ°åŠAãã履修ããŸãã",
"title": ""
}
] | å¹³æ15幎(2003幎)ããå¹³æ23幎(2011幎)ãŸã§ã®éã«é«çåŠæ ¡ã«å
¥åŠãã人ã®å±¥ä¿®ããç§ç®ãæ°åŠAãã¯ä»¥äžã®åå
ãããªã£ãŠããŸãã åæ°ã®åŠç
確ç
åœé¡ãšèšŒæ
å¹³é¢å³åœ¢ å¹³æ24幎(2012幎)ãã什å3幎(2021幎ïŒãŸã§ã®éã«é«çåŠæ ¡ã«å
¥åŠãã人ã®å±¥ä¿®ããç§ç®ãæ°åŠAãã¯ã以äžã®åå
ãããªã£ãŠããŸãã å Žåã®æ°ãšç¢ºç
æŽæ°ã®æ§è³ª
å³åœ¢ã®æ§è³ª 什å4幎(2022幎)以éã«é«çåŠæ ¡ã«å
¥åŠãã人ã¯ã以äžã®åå
ãããªããæ°åŠAãã履修ããŸãã å³åœ¢ã®æ§è³ª
å Žåã®æ°ãšç¢ºç
æ°åŠãšäººéã®æŽ»å | {{pathnav|é«çåŠæ ¡ã®åŠç¿|é«çåŠæ ¡æ°åŠ|frame=1}}
å¹³æ15幎(2003幎)ããå¹³æ23幎(2011幎)ãŸã§ã®éã«é«çåŠæ ¡ã«å
¥åŠãã人ã®å±¥ä¿®ããç§ç®ãæ°åŠAãã¯ä»¥äžã®åå
ãããªã£ãŠããŸãã
*åæ°ã®åŠç
*確ç
*[[é«çåŠæ ¡æ°åŠA/éåãšè«ç|åœé¡ãšèšŒæ]]
*å¹³é¢å³åœ¢
å¹³æ24幎(2012幎)ãã什å3幎(2021幎ïŒãŸã§ã®éã«é«çåŠæ ¡ã«å
¥åŠãã人ã®å±¥ä¿®ããç§ç®ãæ°åŠAãã¯ã以äžã®åå
ãããªã£ãŠããŸãã
* [[é«çåŠæ ¡æ°åŠA/å Žåã®æ°ãšç¢ºç|å Žåã®æ°ãšç¢ºç]]
* [[é«çåŠæ ¡æ°åŠA/æŽæ°ã®æ§è³ª|æŽæ°ã®æ§è³ª]]
* [[é«çåŠæ ¡æ°åŠA/å³åœ¢ã®æ§è³ª|å³åœ¢ã®æ§è³ª]]
什å4幎(2022幎)以éã«é«çåŠæ ¡ã«å
¥åŠãã人ã¯ã以äžã®åå
ãããªããæ°åŠAãã履修ããŸãã
* [[é«çåŠæ ¡æ°åŠA/å³åœ¢ã®æ§è³ª|å³åœ¢ã®æ§è³ª]]
* [[é«çåŠæ ¡æ°åŠA/å Žåã®æ°ãšç¢ºç|å Žåã®æ°ãšç¢ºç]]
* [[é«çåŠæ ¡æ°åŠA/æ°åŠãšäººéã®æŽ»å|æ°åŠãšäººéã®æŽ»å]]
{{DEFAULTSORT:æ§1 ãããšããã€ããããããA}}
[[Category:æ°åŠ]]
[[Category:æ°åŠæè²]]
[[Category:åŠæ ¡æè²]]
[[Category:æ®éæè²]]
[[Category:åŸæäžçæè²]]
[[Category:é«çåŠæ ¡æè²]]
[[Category:é«çåŠæ ¡æ°åŠA|*]] | 2005-05-08T02:33:21Z | 2024-03-19T14:00:46Z | [
"ãã³ãã¬ãŒã:Pathnav"
] | https://ja.wikibooks.org/wiki/%E6%97%A7%E8%AA%B2%E7%A8%8B(-2012%E5%B9%B4%E5%BA%A6)%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E6%95%B0%E5%AD%A6A |
1,929 | æ§èª²çš(-2012幎床)é«çåŠæ ¡æ°åŠA/éåãšè«ç | äžåŠã§ã¯ãããšãã°ãèªç¶æ°ã®ãã€ãŸãããšãã9以äžã®èªç¶æ°ã®ãã€ãŸãããšããè² ã®æŽæ°ã®ãã€ãŸããã®ãããªãã®ããéå(ãã
ããã)ãšèªãã§ããã
ã§ã¯ãæ°åŠã§ãããéåããšã¯äœããããããèããŠãããã
æ°åŠã§ã¯ãããéãŸãã®ãã¡ãããã«ãããã«å±ããŠãããå±ããŠãªãããæç¢ºã«åºå¥ã§ããæ¡ä»¶ã®ããç©ã®ãã€ãŸããéå(ãã
ããããè±:set)ãšãããäŸãã°ããèªç¶æ°ãã¯ãn > 0ãšãªãæŽæ°n ã®å
šäœããšããåºå¥å¯èœãªæ¡ä»¶ãããã®ã§éåãšãããã
ãããã倧ããªæ°ããšãããã€ãŸãã¯ãã©ããããã倧ããªãæ°ãšãããã®ããã¯ã£ããããªããããæ°åŠã®ãéåãã§ã¯ãªãã
ãã ããã倧ããªæ°ããäŸãã°ã1å以äžã®æŽæ°ããšåºå¥ã§ããããã«å®çŸ©ããã°éåã«ãªãããã
ããŠãæ°åŠçãªãéåããæ§æãããã®äžã€äžã€ã®ããšãããã®éåã® èŠçŽ ( ããããè±:element)ãšããã
ããšãã°ããèªç¶æ°ã®éåãã®èŠçŽ ãªããèªç¶æ°1ãèªç¶æ°2ãèªç¶æ°3ãã»ã»ã»ãªã©ã®ã²ãšã€ã²ãšã€ã®èªç¶æ°ãããããèŠçŽ ã§ããã
ã 1 ã¯èªç¶æ°ã®éåã®èŠçŽ ã§ããããšãããã
ã 27 ã¯èªç¶æ°ã®éåã®èŠçŽ ã§ããããšãããã
(â» ç¯å²å€? )ãªããæ°åŠçã«ã¯ãåºå¥ãã¯ã£ãããããããã°ãäŸãã°ãâ³â³é«æ ¡ã®ä»ã®3幎Bçµã®çåŸå
šå¡ãçãéåãšããŠèããããšãã§ãããããªãããããéåããšã¯ãèªç¶æ°ãããæŽæ°ããªã©ã®æ°ã§ãªããŠãããã
(ç¯å²å€)æ°ãšæ°ãšã®å¯Ÿå¿é¢ä¿ã§ããã颿°ãããéåã®åèŠçŽ ãšéåã®åèŠçŽ ãšã®å¯Ÿå¿é¢ä¿ãžãšæ¡åŒµããããšãã§ããã(ãã®éåã¯æ°ã®éåã§ãªããŠãè¯ãã)ãã®ãããªå¯Ÿå¿é¢ä¿ãååãšåŒã¶ã詳ããã¯å€§åŠã®ãéåè«ãã§æ±ããããå
šå°ãããåå°ããªã©ãç¥ã£ãŠãããšèšŒæã«äŸ¿å©ãªç¥èãããã (ç¯å²å€ãããŸã§)
aãéåAã®èŠçŽ ã§ãããšããããã®ãšããaã¯éåAã«å±ãã(ãããã)ãšãããèšå·ã§ã
ãšè¡šãã
bãAã®èŠçŽ ã§ãªããšãã¯ã
ãšè¡šãã
éåããããããšããäž»ã«2çš®é¡ã®æ¹æ³ãããã(äŸã¯ã10以äžã®èªç¶æ°ã®ãã¡å¶æ°ã§ãããã®ãã®éåã衚ãã)
ã§ãã
ããšãã°ãã10以äžã®èªç¶æ°ã®ãã¡å¶æ°ã§ãããã®ãã®éåã衚ãå Žåã(1) ã®æ¹æ³(èŠçŽ ãæžã䞊ã¹ãæ¹æ³)ã§ã¯ã
ãšãªãã
äžæ¹ã(2)ã®æ¹æ³(èŠçŽ ã®æºããæ¡ä»¶ãè¿°ã¹ãæ¹æ³)ã§ã¯ã
ãªã©ã®ããã«ãªã(äœéãããã)ã
100以äžã®èªç¶æ°ã®éå A ããããã»ã©ã®(1)ãèŠçŽ ãæžã䞊ã¹ãæ¹æ³ãã®æ¹æ³ã§æžãå Žåã
ãšãªãããŸãããã®èšæ³ã®ãã»ã»ã»ãã®ããã«ãèŠçŽ ã®åæ°ããšãŠãå€ãå Žåãç¡æ°ã«ããå Žåã«ã¯ã{ }èšå·å
ã®èŠçŽ ã®éäžããã»ã»ã»ããŸãã¯ã......ããã...ããªã©ã®ç¹ã
ã§çç¥ããŠããã
100以äžã®å¶æ°ã®éå B ã¯ããã®èšæ³(èŠçŽ ãæžã䞊ã¹ãæ¹æ³)ã§ã¯ã
ã®ããã«ãªãã
æ£ã®å¶æ°å
šäœã®éåã®èŠçŽ ã¯(1)ãèŠçŽ ãæžã䞊ã¹ãæ¹æ³ãã®æ¹æ³ã§æžãå Žåã
ã®ããã«ãæžããã
2ã€ã®éåA,BããããxâA ãªãã° xâBãæãç«ã€ãšããAã¯Bã® éšåéå (ã¶ã¶ããã
ããããè±:subset)ã§ãããšããããBã¯Aãå«ããããAã¯Bã«å«ãŸããããšããããã®ç¶æ
ãèšå·ã§
ãŸãã¯
ã§è¡šãã
è£è¶³
Aã®éšåéåã«ã¯Aèªèº«ãããã(ã€ãŸã A â A ã§ãã)ã
ãŸããA,B ã®éåã®èŠçŽ ãåããšãã
ã§è¡šãã
éå A = {1, 2, 3} ãš éå B = {1, 2 , 3 , 4, 5} ããããšããA 㯠Bã®éšåéåã§ããã
2ã€ã®éåA,Bããããšã ãããã®äž¡æ¹ã®èŠçŽ ã§ãããã®ã®éåã AãšBã® å
±ééšå(ãããã€ãã¶ã¶ã)ãšåŒã³ã
ãšæžãã
ãŸããéåA,Bã®å°ãªããšãã©ã¡ããäžæ¹ã«ã¯å±ããŠããèŠçŽ ãããªãéåã®ããšããAãšBã®åéå(ããã
ããããè±:union)ãšåŒã³ã
ãšæžãã
3ã€ã®éå A, B, C ã«ã€ããŠã¯ã3ã€ã®ã©ãã«ãå±ããèŠçŽ å
šäœã®éåã A,B,C ã®å
±ééšåãšåŒã³ã A â© B â© C ã§è¡šãã
ãŸããéå A, B, C ã®å°ãªããšã1ã€ã«å±ããèŠçŽ ã®éåã A,B,C ã®åéåãšåŒã³ã A ⪠B ⪠C ã§è¡šãã
ããšãã°ãã10以äžã®èªç¶æ°ã®ãã¡ã®å¶æ°ãã®éåAãšãã10以äžã®èªç¶æ°ã®ãã¡ã®å¥æ°ãã®éåBã«ã€ããŠãéåAãšéåBã®å
±ééšåã«ã¯ãäœãèŠçŽ ãç¡ãã
ãã®äŸã®ããã«ããèŠçŽ ããªã«ããªãããšããå Žåãããã®ã§ãæ°åŠã§ã¯ãèŠçŽ ããªã«ããªããå Žåãã²ãšã€ã®éåãšããŠèããã
èŠçŽ ããããªãéåã®ããšã 空éå(ãããã
ããããè±:empty set ããã㯠null set)ãšãããèšå·ã¯
ã§ããããã
ã®ãªã·ã£æåã®ãã¡ã€(Ï, Ï {\displaystyle \phi \ } )ã§è¡šãããããšãå€ãããããå³å¯ã«ã¯ããã¯èª€ãã§ãããäžã®èšå·ã®ä»ã« â
{\displaystyle \emptyset } çãçšãããããããã®æç§æžã§ã¯ã â
{\displaystyle \varnothing } ãçšããã
ã©ã®ãããªéåAã«ãã空éåã¯éšåéåãšããŠå«ãŸããã
ã€ãŸãã空éåã§ãªãããéåãAãšãããšã
ã§ããã
éå { 1, 2 } ã®éšåéåããã¹ãŠåæãããšã次ã®4ã€ã®éåã«ãªãã
éå U ã1ã€èšå®ãããã®éåã®èŠçŽ ãéšåéåã®ã¿ãèããå Žåãèããããã®ãããªãšããéåUã å
šäœéå(ãããããã
ããããè±:universal set) ãšããã
å
šäœéåUã®èŠçŽ ã®ãã¡ãéåAã«å±ããªããã®å
šäœãããªãéåã®ããšãAã® è£éå (ã»ãã
ããããè±:complement)ãšãããèšå·ã§è£éå㯠A Ì {\displaystyle {\overline {A}}} ãšè¡šãã
ããªãã¡
ã§ããã
è£éåã«ã€ããŠã次ã®ããšãæãç«ã€ã
äžã®å³ãçšããŠäžã®æ³åãæ£ããäºã確ããããã
A={x|xã¯1以äž20以äžã®2ã®åæ°}ã»B={y|yã¯1以äž20以äžã®3ã®åæ°}ãšããæã以äžã«é©ããéåã®èŠçŽ ãåæããããã ããå
šäœéåU={z|zã¯1以äž20以äžã®æŽæ°}ãšããã
éåã®èŠçŽ ã®ããšãããµããåŒã³æ¹ã§ãããå
ã(ãã)ãšãèšããŸãã
念ã®ããäŸã瀺ããšãããšãã°ã1以äžãã€12以äžã®å¶æ°ã®éåããšèšãã°
ããšãã°ãã10以äžã®èªç¶æ°ã®ãã¡å¶æ°ã§ãããã®ãã®éå
ãéåAãšããå Žåã
ãã4ãã¯éåAã®èŠçŽ ã§ããããšèšããŸãããåæ§ã«ã4ãã¯éåAãŒå
ã§ãããšãèšããŸãã
äŸãšããŠã4ãããããŸããããå¥ã«ã6ãã§ãã10ãã§ãæ§ããŸãããã2ããã6ããã8ããã10ãããããããäžè¿°ããéåAã®èŠçŽ (å
)ã§ãã
(æ°åŠçã«)æ£ãããã©ãããæç¢ºã«å€æã§ãã䞻匵ãåœé¡(ããã ããè±: proposition)ãšåŒã¶ã äŸãã°ãã7ã¯çŽ æ°ã§ãããã¯åœé¡ã®äŸã§ããã (äžæ¹ãã5000ã¯å€§ããæ°ã§ããããªã©ã¯åœé¡ãšã¯ãªããªãããªããªãã倧ããããšããèšèã®å€æã䞻芳çãªãã®ã§ãããå€æã«æç¢ºãªåºæºãèšå®ã§ããªãããã§ããã)
ããåœé¡ãæç¢ºã«æ£ãã(ãšèšŒæããã)ãšãããã®åœé¡ã¯ç(ãããè±:truth)ã§ãããšåŒã¶ã(ããšãã°ãåœé¡ã7ã¯çŽ æ°ã§ãããã¯çã§ããã) åœé¡ãçã§ãªããšããåœé¡ã¯åœ(ããè±:false)ã§ãããšèšããããšãã°ãåœé¡ ã ãã x 2 = 4 {\displaystyle x^{2}=4} ã§ããã° x = 2 {\displaystyle x=2} ã§ããã ã ã¯ãåœã®åœé¡ã§ããã ãã®æ¹çšåŒã¯ x = â 2 {\displaystyle x=-2} ãè§£ã«æã€ã
äžã®åœé¡ã" x 2 = 4 {\displaystyle x^{2}=4} ãªãã° x = 2 {\displaystyle x=2} ã§ãã"ã㯠x = â 2 {\displaystyle x=-2} ãããŠã¯ãŸãã®ã§åœã«ãªã£ãã åœé¡ p â q {\displaystyle {\rm {p\Rightarrow q}}} ãåœã§ãããšãã¯ã p {\displaystyle p} ã¯æºããã q {\displaystyle q} ãæºãããªãäŸãååšããããã®ãããªäŸãåäŸ(ã¯ããã)ãšãããåœé¡ãåœã§ããããšã瀺ãã«ã¯ãåäŸã1ã€ãããã°ããã
åœé¡ã¯ããpãªãã°qã§ãããã®åœ¢åŒã§æžãããå Žåãå€ãã
ã pãªãã°qã§ããããšããåœé¡ããèšå·ã â {\displaystyle \Rightarrow } ããçšããŠ
ãšæžãã
ãŸãããã®æ¡ä»¶pããã®åœé¡ã®ä»®å®(ããŠããè±:assumption)ãšãããæ¡ä»¶qããã®åœé¡ã®çµè«(ãã€ãã)ãšåŒã¶ã
次ã®åœé¡ã®çåœãå€å®ããåœã®å Žåã¯åäŸãæããã
æ¡ä»¶ãæ¡ä»¶ãå«ãåœé¡ãèããããšã¯ãéåãèããããšãšåãã§ããã
ããšãã°ã宿° x ã«ã€ããŠãx>3 ãªãã° x>1 ã§ããããšããåœé¡ã¯çã§ããã
ããã§ãx>3 ã§ããããšããæ¡ä»¶ã p ãšãããŸããx>3 ã§ããæ°ã®éåã P ãšããããã€ãŸã P={x| x>3 }ã§ããã
åæ§ã«ããx>1ã§ããããšããæ¡ä»¶ã q ãšããx>1ã§ããæ°ã®éåã Q ãšããããã€ãŸã Q={x| x>1 }ã§ããã
ãã®ãšããåœé¡ p â¹ q {\displaystyle {\rm {p\Longrightarrow q}}} ã¯çã§ããããããã¯éåã®å
å«é¢ä¿ PâQ ãæãç«ã€ããšã«å¯Ÿå¿ããŠããã
2ã€ã®æ¡ä»¶ p,q ã«ã€ããŠãåœé¡ãpâqããçã§ãããšãã
ãšããã
2ã€ã®æ¡ä»¶ p.q ã«ã€ããŠã
åœé¡ãpâqããšåœé¡ãqâpãã®äž¡æ¹ãšãçã§ãããšããããã
ãšæžãã
ãšããã
ãã®ãšããpãšqãå
¥ãæ¿ããããšã§ã
ãšããããããšããããã
p ⺠q {\displaystyle {\rm {p\Longleftrightarrow q}}} ã§ãããšããpãšqã¯ãåå€(ã©ãã¡)ã§ããããšããã
æ¡ä»¶ p,q ãæºãããã®ã®éåããããã P,Q ãšããã
ãã®ãšããæ¡ä»¶ãpãã€qãããã³ãpãŸãã¯qããããããå³ã¯ãããããå³å³ã®ããã«ãªãã
æ¡ä»¶pã«å¯Ÿããpã§ãªããã®åœ¢ã®æ¡ä»¶ã pã® åŠå® (ã²ãŠããè±:negation)ãšãããèšå·ã¯ p Ì {\displaystyle {\overline {p}}} ã§è¡šãã
(â» é«æ ¡ã§ã¯ç¿ããªãããåŠå®ã®æå³ãšããŠã ¬ p {\displaystyle \lnot {p}} ãšããèšå·ã¬ããããã)
æ¡ä»¶ãèããããšã¯éåãèããããšãšåããªã®ã§ãéåã«ããããã»ã¢ã«ã¬ã³ã®æ³åãšåæ§ã«ãæ¡ä»¶ã«ãããŠãããã»ã¢ã«ã¬ã³ã®æ³åããªãç«ã€ã
åœé¡ã p â¹ q {\displaystyle {\rm {p\Longrightarrow q}}} ãã«å¯ŸããŠ
ãšåŒã¶ã
ãããã¯ããããã«å³å³ã®ãããªé¢ä¿ã«ããã
ããšãã°ã ããšã®åœé¡ã
ã ãšãããšã
ãã®åœé¡ã®å Žåãããšã®åœé¡ãšå¯Ÿå¶ã¯ããšãã«çã§ããã
ãã£ãœãéã«ã€ããŠã¯ x = -3 ãšããåäŸãããã®ã§ããã®åœé¡ã®å Žåãéã¯æ£ãããªãããŸããè£ãåæ§ã«ãæ£ãããªãã
ãã®ãããªäŸãããæ¬¡ã®ããšãåããã
ã§ã¯ãããšã®åœé¡ãšå¯Ÿå¶ãšã®é¢ä¿ã¯ãã©ããªãã ãããã
ãã®èå¯ããããããæ¡ä»¶pãæºãããã®ãéåPã«å¯Ÿå¿ãããåæ§ã«æ¡ä»¶qãæºãããã®ãéåQã«å¯Ÿå¿ãããŠã¿ããã
å³ã®éåã®å³ã¯ãpâqãçã§ããããšã衚ãå³ã§ããããã®å³ã§ã¯ãPã«å±ããŠããèŠçŽ ã¯ãQã«ãå±ããŠããã(ã€ãŸã P â Q {\displaystyle {\rm {P\subset Q}}} ã§ããã)äžæ¹ãQã«å±ããŠãããªãèŠçŽ ã¯ãPã«ãå±ããŠããªãã(ã€ãŸã Q Ì â P Ì {\displaystyle {\rm {{\overline {Q}}\subset {\overline {P}}}}} ã§ããã) ãã®ããšããããåããããã«ã
ã€ãŸããäžè¬ã®åœé¡ã«ãããŠãããšã®åœé¡ãšå¯Ÿå¶ãšã®çåœã¯äžèŽããã
ããåœé¡ã®çµè«ãåŠå®ããŠããã®åŠå®ã®ããšã§ççŸãèµ·ããããšãè¿°ã¹ãããšã§ã ãã®åœé¡ãçã§ããããšãå°åºãã仿¹ãèçæ³(ã¯ããã»ããè±: proof by contradiction ãªã©)ãšåŒã¶ã
ããšãã°ããAã§ã¯ãªãããšã蚌æããããšããåé¡ãè§£ãæã¯ãAã§ãããšä»®å®ããããšæžãåºããŠãä»®å®ããããšãšççŸããéšåãäœã£ãŠãççŸããã®ã§Aã§ã¯ãªããããšèšŒæãçµããã
çŽ æ°ã¯ç¡éã«ååšããã
çŽ æ°ãæéåã§ãã£ããšä»®å®ããããã¹ãŠã®çŽ æ°ã®ç©ã a {\displaystyle a} ãšãããšã a + 1 {\displaystyle a+1} ã¯ã©ã®çŽ æ°ã§å²ã£ãŠã1äœãããšã«ãªãã1以å€ã®èªç¶æ°ã§ãã£ãŠãçŽ æ°ã®ç©ã«åè§£ã§ããªããã®ãååšããããšã«ãªãã a + 1 {\displaystyle a+1} ã®çŽæ°ã®ãã¡1以å€ã§æãå°ãããã®ã b {\displaystyle b} ãšãããšã b {\displaystyle b} ã¯1ãš b {\displaystyle b} 以å€ã®çŽæ°ãæããªãããããã£ãŠ b {\displaystyle b} ãçŽ æ°ã§ããããšã«ãªããã a + 1 {\displaystyle a+1} ãã©ã®çŽ æ°ã§ãå²ãåããªãããšãšççŸããããããã£ãŠãçŽ æ°ã¯æéåã§ã¯ãªããâ | [
{
"paragraph_id": 0,
"tag": "p",
"text": "äžåŠã§ã¯ãããšãã°ãèªç¶æ°ã®ãã€ãŸãããšãã9以äžã®èªç¶æ°ã®ãã€ãŸãããšããè² ã®æŽæ°ã®ãã€ãŸããã®ãããªãã®ããéå(ãã
ããã)ãšèªãã§ããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ã§ã¯ãæ°åŠã§ãããéåããšã¯äœããããããèããŠãããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "æ°åŠã§ã¯ãããéãŸãã®ãã¡ãããã«ãããã«å±ããŠãããå±ããŠãªãããæç¢ºã«åºå¥ã§ããæ¡ä»¶ã®ããç©ã®ãã€ãŸããéå(ãã
ããããè±:set)ãšãããäŸãã°ããèªç¶æ°ãã¯ãn > 0ãšãªãæŽæ°n ã®å
šäœããšããåºå¥å¯èœãªæ¡ä»¶ãããã®ã§éåãšãããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãããã倧ããªæ°ããšãããã€ãŸãã¯ãã©ããããã倧ããªãæ°ãšãããã®ããã¯ã£ããããªããããæ°åŠã®ãéåãã§ã¯ãªãã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãã ããã倧ããªæ°ããäŸãã°ã1å以äžã®æŽæ°ããšåºå¥ã§ããããã«å®çŸ©ããã°éåã«ãªãããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ããŠãæ°åŠçãªãéåããæ§æãããã®äžã€äžã€ã®ããšãããã®éåã® èŠçŽ ( ããããè±:element)ãšããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ããšãã°ããèªç¶æ°ã®éåãã®èŠçŽ ãªããèªç¶æ°1ãèªç¶æ°2ãèªç¶æ°3ãã»ã»ã»ãªã©ã®ã²ãšã€ã²ãšã€ã®èªç¶æ°ãããããèŠçŽ ã§ããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ã 1 ã¯èªç¶æ°ã®éåã®èŠçŽ ã§ããããšãããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ã 27 ã¯èªç¶æ°ã®éåã®èŠçŽ ã§ããããšãããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "",
"title": "éåãšè«ç"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "(â» ç¯å²å€? )ãªããæ°åŠçã«ã¯ãåºå¥ãã¯ã£ãããããããã°ãäŸãã°ãâ³â³é«æ ¡ã®ä»ã®3幎Bçµã®çåŸå
šå¡ãçãéåãšããŠèããããšãã§ãããããªãããããéåããšã¯ãèªç¶æ°ãããæŽæ°ããªã©ã®æ°ã§ãªããŠãããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "(ç¯å²å€)æ°ãšæ°ãšã®å¯Ÿå¿é¢ä¿ã§ããã颿°ãããéåã®åèŠçŽ ãšéåã®åèŠçŽ ãšã®å¯Ÿå¿é¢ä¿ãžãšæ¡åŒµããããšãã§ããã(ãã®éåã¯æ°ã®éåã§ãªããŠãè¯ãã)ãã®ãããªå¯Ÿå¿é¢ä¿ãååãšåŒã¶ã詳ããã¯å€§åŠã®ãéåè«ãã§æ±ããããå
šå°ãããåå°ããªã©ãç¥ã£ãŠãããšèšŒæã«äŸ¿å©ãªç¥èãããã (ç¯å²å€ãããŸã§)",
"title": "éåãšè«ç"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "aãéåAã®èŠçŽ ã§ãããšããããã®ãšããaã¯éåAã«å±ãã(ãããã)ãšãããèšå·ã§ã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãšè¡šãã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "bãAã®èŠçŽ ã§ãªããšãã¯ã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ãšè¡šãã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "éåããããããšããäž»ã«2çš®é¡ã®æ¹æ³ãããã(äŸã¯ã10以äžã®èªç¶æ°ã®ãã¡å¶æ°ã§ãããã®ãã®éåã衚ãã)",
"title": "éåãšè«ç"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ã§ãã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ããšãã°ãã10以äžã®èªç¶æ°ã®ãã¡å¶æ°ã§ãããã®ãã®éåã衚ãå Žåã(1) ã®æ¹æ³(èŠçŽ ãæžã䞊ã¹ãæ¹æ³)ã§ã¯ã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ãšãªãã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "äžæ¹ã(2)ã®æ¹æ³(èŠçŽ ã®æºããæ¡ä»¶ãè¿°ã¹ãæ¹æ³)ã§ã¯ã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ãªã©ã®ããã«ãªã(äœéãããã)ã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "",
"title": "éåãšè«ç"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "100以äžã®èªç¶æ°ã®éå A ããããã»ã©ã®(1)ãèŠçŽ ãæžã䞊ã¹ãæ¹æ³ãã®æ¹æ³ã§æžãå Žåã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ãšãªãããŸãããã®èšæ³ã®ãã»ã»ã»ãã®ããã«ãèŠçŽ ã®åæ°ããšãŠãå€ãå Žåãç¡æ°ã«ããå Žåã«ã¯ã{ }èšå·å
ã®èŠçŽ ã®éäžããã»ã»ã»ããŸãã¯ã......ããã...ããªã©ã®ç¹ã
ã§çç¥ããŠããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "100以äžã®å¶æ°ã®éå B ã¯ããã®èšæ³(èŠçŽ ãæžã䞊ã¹ãæ¹æ³)ã§ã¯ã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ã®ããã«ãªãã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "æ£ã®å¶æ°å
šäœã®éåã®èŠçŽ ã¯(1)ãèŠçŽ ãæžã䞊ã¹ãæ¹æ³ãã®æ¹æ³ã§æžãå Žåã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ã®ããã«ãæžããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "2ã€ã®éåA,BããããxâA ãªãã° xâBãæãç«ã€ãšããAã¯Bã® éšåéå (ã¶ã¶ããã
ããããè±:subset)ã§ãããšããããBã¯Aãå«ããããAã¯Bã«å«ãŸããããšããããã®ç¶æ
ãèšå·ã§",
"title": "éåãšè«ç"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ãŸãã¯",
"title": "éåãšè«ç"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ã§è¡šãã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "è£è¶³",
"title": "éåãšè«ç"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "Aã®éšåéåã«ã¯Aèªèº«ãããã(ã€ãŸã A â A ã§ãã)ã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "ãŸããA,B ã®éåã®èŠçŽ ãåããšãã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "ã§è¡šãã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "",
"title": "éåãšè«ç"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "éå A = {1, 2, 3} ãš éå B = {1, 2 , 3 , 4, 5} ããããšããA 㯠Bã®éšåéåã§ããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "",
"title": "éåãšè«ç"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "2ã€ã®éåA,Bããããšã ãããã®äž¡æ¹ã®èŠçŽ ã§ãããã®ã®éåã AãšBã® å
±ééšå(ãããã€ãã¶ã¶ã)ãšåŒã³ã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "ãšæžãã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "",
"title": "éåãšè«ç"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "ãŸããéåA,Bã®å°ãªããšãã©ã¡ããäžæ¹ã«ã¯å±ããŠããèŠçŽ ãããªãéåã®ããšããAãšBã®åéå(ããã
ããããè±:union)ãšåŒã³ã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ãšæžãã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "",
"title": "éåãšè«ç"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "3ã€ã®éå A, B, C ã«ã€ããŠã¯ã3ã€ã®ã©ãã«ãå±ããèŠçŽ å
šäœã®éåã A,B,C ã®å
±ééšåãšåŒã³ã A â© B â© C ã§è¡šãã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "",
"title": "éåãšè«ç"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "ãŸããéå A, B, C ã®å°ãªããšã1ã€ã«å±ããèŠçŽ ã®éåã A,B,C ã®åéåãšåŒã³ã A ⪠B ⪠C ã§è¡šãã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "ããšãã°ãã10以äžã®èªç¶æ°ã®ãã¡ã®å¶æ°ãã®éåAãšãã10以äžã®èªç¶æ°ã®ãã¡ã®å¥æ°ãã®éåBã«ã€ããŠãéåAãšéåBã®å
±ééšåã«ã¯ãäœãèŠçŽ ãç¡ãã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "ãã®äŸã®ããã«ããèŠçŽ ããªã«ããªãããšããå Žåãããã®ã§ãæ°åŠã§ã¯ãèŠçŽ ããªã«ããªããå Žåãã²ãšã€ã®éåãšããŠèããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "èŠçŽ ããããªãéåã®ããšã 空éå(ãããã
ããããè±:empty set ããã㯠null set)ãšãããèšå·ã¯",
"title": "éåãšè«ç"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "ã§ããããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "ã®ãªã·ã£æåã®ãã¡ã€(Ï, Ï {\\displaystyle \\phi \\ } )ã§è¡šãããããšãå€ãããããå³å¯ã«ã¯ããã¯èª€ãã§ãããäžã®èšå·ã®ä»ã« â
{\\displaystyle \\emptyset } çãçšãããããããã®æç§æžã§ã¯ã â
{\\displaystyle \\varnothing } ãçšããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "",
"title": "éåãšè«ç"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "ã©ã®ãããªéåAã«ãã空éåã¯éšåéåãšããŠå«ãŸããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ã€ãŸãã空éåã§ãªãããéåãAãšãããšã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ã§ããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "",
"title": "éåãšè«ç"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "éå { 1, 2 } ã®éšåéåããã¹ãŠåæãããšã次ã®4ã€ã®éåã«ãªãã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "",
"title": "éåãšè«ç"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "",
"title": "éåãšè«ç"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "éå U ã1ã€èšå®ãããã®éåã®èŠçŽ ãéšåéåã®ã¿ãèããå Žåãèããããã®ãããªãšããéåUã å
šäœéå(ãããããã
ããããè±:universal set) ãšããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "å
šäœéåUã®èŠçŽ ã®ãã¡ãéåAã«å±ããªããã®å
šäœãããªãéåã®ããšãAã® è£éå (ã»ãã
ããããè±:complement)ãšãããèšå·ã§è£éå㯠A Ì {\\displaystyle {\\overline {A}}} ãšè¡šãã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "ããªãã¡",
"title": "éåãšè«ç"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "ã§ããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "è£éåã«ã€ããŠã次ã®ããšãæãç«ã€ã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "",
"title": "éåãšè«ç"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "äžã®å³ãçšããŠäžã®æ³åãæ£ããäºã確ããããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "A={x|xã¯1以äž20以äžã®2ã®åæ°}ã»B={y|yã¯1以äž20以äžã®3ã®åæ°}ãšããæã以äžã«é©ããéåã®èŠçŽ ãåæããããã ããå
šäœéåU={z|zã¯1以äž20以äžã®æŽæ°}ãšããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "",
"title": "éåãšè«ç"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "",
"title": "éåãšè«ç"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "éåã®èŠçŽ ã®ããšãããµããåŒã³æ¹ã§ãããå
ã(ãã)ãšãèšããŸãã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "念ã®ããäŸã瀺ããšãããšãã°ã1以äžãã€12以äžã®å¶æ°ã®éåããšèšãã°",
"title": "éåãšè«ç"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "ããšãã°ãã10以äžã®èªç¶æ°ã®ãã¡å¶æ°ã§ãããã®ãã®éå",
"title": "éåãšè«ç"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "ãéåAãšããå Žåã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "ãã4ãã¯éåAã®èŠçŽ ã§ããããšèšããŸãããåæ§ã«ã4ãã¯éåAãŒå
ã§ãããšãèšããŸãã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "äŸãšããŠã4ãããããŸããããå¥ã«ã6ãã§ãã10ãã§ãæ§ããŸãããã2ããã6ããã8ããã10ãããããããäžè¿°ããéåAã®èŠçŽ (å
)ã§ãã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "(æ°åŠçã«)æ£ãããã©ãããæç¢ºã«å€æã§ãã䞻匵ãåœé¡(ããã ããè±: proposition)ãšåŒã¶ã äŸãã°ãã7ã¯çŽ æ°ã§ãããã¯åœé¡ã®äŸã§ããã (äžæ¹ãã5000ã¯å€§ããæ°ã§ããããªã©ã¯åœé¡ãšã¯ãªããªãããªããªãã倧ããããšããèšèã®å€æã䞻芳çãªãã®ã§ãããå€æã«æç¢ºãªåºæºãèšå®ã§ããªãããã§ããã)",
"title": "éåãšè«ç"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "ããåœé¡ãæç¢ºã«æ£ãã(ãšèšŒæããã)ãšãããã®åœé¡ã¯ç(ãããè±:truth)ã§ãããšåŒã¶ã(ããšãã°ãåœé¡ã7ã¯çŽ æ°ã§ãããã¯çã§ããã) åœé¡ãçã§ãªããšããåœé¡ã¯åœ(ããè±:false)ã§ãããšèšããããšãã°ãåœé¡ ã ãã x 2 = 4 {\\displaystyle x^{2}=4} ã§ããã° x = 2 {\\displaystyle x=2} ã§ããã ã ã¯ãåœã®åœé¡ã§ããã ãã®æ¹çšåŒã¯ x = â 2 {\\displaystyle x=-2} ãè§£ã«æã€ã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "äžã®åœé¡ã\" x 2 = 4 {\\displaystyle x^{2}=4} ãªãã° x = 2 {\\displaystyle x=2} ã§ãã\"ã㯠x = â 2 {\\displaystyle x=-2} ãããŠã¯ãŸãã®ã§åœã«ãªã£ãã åœé¡ p â q {\\displaystyle {\\rm {p\\Rightarrow q}}} ãåœã§ãããšãã¯ã p {\\displaystyle p} ã¯æºããã q {\\displaystyle q} ãæºãããªãäŸãååšããããã®ãããªäŸãåäŸ(ã¯ããã)ãšãããåœé¡ãåœã§ããããšã瀺ãã«ã¯ãåäŸã1ã€ãããã°ããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "åœé¡ã¯ããpãªãã°qã§ãããã®åœ¢åŒã§æžãããå Žåãå€ãã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "ã pãªãã°qã§ããããšããåœé¡ããèšå·ã â {\\displaystyle \\Rightarrow } ããçšããŠ",
"title": "éåãšè«ç"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "ãšæžãã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "ãŸãããã®æ¡ä»¶pããã®åœé¡ã®ä»®å®(ããŠããè±:assumption)ãšãããæ¡ä»¶qããã®åœé¡ã®çµè«(ãã€ãã)ãšåŒã¶ã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "",
"title": "éåãšè«ç"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "次ã®åœé¡ã®çåœãå€å®ããåœã®å Žåã¯åäŸãæããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "",
"title": "éåãšè«ç"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "æ¡ä»¶ãæ¡ä»¶ãå«ãåœé¡ãèããããšã¯ãéåãèããããšãšåãã§ããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "ããšãã°ã宿° x ã«ã€ããŠãx>3 ãªãã° x>1 ã§ããããšããåœé¡ã¯çã§ããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "ããã§ãx>3 ã§ããããšããæ¡ä»¶ã p ãšãããŸããx>3 ã§ããæ°ã®éåã P ãšããããã€ãŸã P={x| x>3 }ã§ããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "åæ§ã«ããx>1ã§ããããšããæ¡ä»¶ã q ãšããx>1ã§ããæ°ã®éåã Q ãšããããã€ãŸã Q={x| x>1 }ã§ããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "ãã®ãšããåœé¡ p â¹ q {\\displaystyle {\\rm {p\\Longrightarrow q}}} ã¯çã§ããããããã¯éåã®å
å«é¢ä¿ PâQ ãæãç«ã€ããšã«å¯Ÿå¿ããŠããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "2ã€ã®æ¡ä»¶ p,q ã«ã€ããŠãåœé¡ãpâqããçã§ãããšãã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "ãšããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "2ã€ã®æ¡ä»¶ p.q ã«ã€ããŠã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "åœé¡ãpâqããšåœé¡ãqâpãã®äž¡æ¹ãšãçã§ãããšããããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "ãšæžãã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "ãšããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "ãã®ãšããpãšqãå
¥ãæ¿ããããšã§ã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "ãšããããããšããããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "p ⺠q {\\displaystyle {\\rm {p\\Longleftrightarrow q}}} ã§ãããšããpãšqã¯ãåå€(ã©ãã¡)ã§ããããšããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "æ¡ä»¶ p,q ãæºãããã®ã®éåããããã P,Q ãšããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "ãã®ãšããæ¡ä»¶ãpãã€qãããã³ãpãŸãã¯qããããããå³ã¯ãããããå³å³ã®ããã«ãªãã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "æ¡ä»¶pã«å¯Ÿããpã§ãªããã®åœ¢ã®æ¡ä»¶ã pã® åŠå® (ã²ãŠããè±:negation)ãšãããèšå·ã¯ p Ì {\\displaystyle {\\overline {p}}} ã§è¡šãã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 104,
"tag": "p",
"text": "(â» é«æ ¡ã§ã¯ç¿ããªãããåŠå®ã®æå³ãšããŠã ¬ p {\\displaystyle \\lnot {p}} ãšããèšå·ã¬ããããã)",
"title": "éåãšè«ç"
},
{
"paragraph_id": 105,
"tag": "p",
"text": "æ¡ä»¶ãèããããšã¯éåãèããããšãšåããªã®ã§ãéåã«ããããã»ã¢ã«ã¬ã³ã®æ³åãšåæ§ã«ãæ¡ä»¶ã«ãããŠãããã»ã¢ã«ã¬ã³ã®æ³åããªãç«ã€ã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 106,
"tag": "p",
"text": "",
"title": "éåãšè«ç"
},
{
"paragraph_id": 107,
"tag": "p",
"text": "åœé¡ã p â¹ q {\\displaystyle {\\rm {p\\Longrightarrow q}}} ãã«å¯ŸããŠ",
"title": "éåãšè«ç"
},
{
"paragraph_id": 108,
"tag": "p",
"text": "ãšåŒã¶ã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 109,
"tag": "p",
"text": "ãããã¯ããããã«å³å³ã®ãããªé¢ä¿ã«ããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 110,
"tag": "p",
"text": "ããšãã°ã ããšã®åœé¡ã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 111,
"tag": "p",
"text": "ã ãšãããšã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 112,
"tag": "p",
"text": "ãã®åœé¡ã®å Žåãããšã®åœé¡ãšå¯Ÿå¶ã¯ããšãã«çã§ããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 113,
"tag": "p",
"text": "ãã£ãœãéã«ã€ããŠã¯ x = -3 ãšããåäŸãããã®ã§ããã®åœé¡ã®å Žåãéã¯æ£ãããªãããŸããè£ãåæ§ã«ãæ£ãããªãã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 114,
"tag": "p",
"text": "ãã®ãããªäŸãããæ¬¡ã®ããšãåããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 115,
"tag": "p",
"text": "ã§ã¯ãããšã®åœé¡ãšå¯Ÿå¶ãšã®é¢ä¿ã¯ãã©ããªãã ãããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 116,
"tag": "p",
"text": "ãã®èå¯ããããããæ¡ä»¶pãæºãããã®ãéåPã«å¯Ÿå¿ãããåæ§ã«æ¡ä»¶qãæºãããã®ãéåQã«å¯Ÿå¿ãããŠã¿ããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 117,
"tag": "p",
"text": "å³ã®éåã®å³ã¯ãpâqãçã§ããããšã衚ãå³ã§ããããã®å³ã§ã¯ãPã«å±ããŠããèŠçŽ ã¯ãQã«ãå±ããŠããã(ã€ãŸã P â Q {\\displaystyle {\\rm {P\\subset Q}}} ã§ããã)äžæ¹ãQã«å±ããŠãããªãèŠçŽ ã¯ãPã«ãå±ããŠããªãã(ã€ãŸã Q Ì â P Ì {\\displaystyle {\\rm {{\\overline {Q}}\\subset {\\overline {P}}}}} ã§ããã) ãã®ããšããããåããããã«ã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 118,
"tag": "p",
"text": "ã€ãŸããäžè¬ã®åœé¡ã«ãããŠãããšã®åœé¡ãšå¯Ÿå¶ãšã®çåœã¯äžèŽããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 119,
"tag": "p",
"text": "ããåœé¡ã®çµè«ãåŠå®ããŠããã®åŠå®ã®ããšã§ççŸãèµ·ããããšãè¿°ã¹ãããšã§ã ãã®åœé¡ãçã§ããããšãå°åºãã仿¹ãèçæ³(ã¯ããã»ããè±: proof by contradiction ãªã©)ãšåŒã¶ã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 120,
"tag": "p",
"text": "ããšãã°ããAã§ã¯ãªãããšã蚌æããããšããåé¡ãè§£ãæã¯ãAã§ãããšä»®å®ããããšæžãåºããŠãä»®å®ããããšãšççŸããéšåãäœã£ãŠãççŸããã®ã§Aã§ã¯ãªããããšèšŒæãçµããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 121,
"tag": "p",
"text": "çŽ æ°ã¯ç¡éã«ååšããã",
"title": "éåãšè«ç"
},
{
"paragraph_id": 122,
"tag": "p",
"text": "çŽ æ°ãæéåã§ãã£ããšä»®å®ããããã¹ãŠã®çŽ æ°ã®ç©ã a {\\displaystyle a} ãšãããšã a + 1 {\\displaystyle a+1} ã¯ã©ã®çŽ æ°ã§å²ã£ãŠã1äœãããšã«ãªãã1以å€ã®èªç¶æ°ã§ãã£ãŠãçŽ æ°ã®ç©ã«åè§£ã§ããªããã®ãååšããããšã«ãªãã a + 1 {\\displaystyle a+1} ã®çŽæ°ã®ãã¡1以å€ã§æãå°ãããã®ã b {\\displaystyle b} ãšãããšã b {\\displaystyle b} ã¯1ãš b {\\displaystyle b} 以å€ã®çŽæ°ãæããªãããããã£ãŠ b {\\displaystyle b} ãçŽ æ°ã§ããããšã«ãªããã a + 1 {\\displaystyle a+1} ãã©ã®çŽ æ°ã§ãå²ãåããªãããšãšççŸããããããã£ãŠãçŽ æ°ã¯æéåã§ã¯ãªããâ ",
"title": "éåãšè«ç"
}
] | null | == éåãšè«ç ==
=== éåãšã¯ ===
äžåŠã§ã¯ãããšãã°ãèªç¶æ°ã®ãã€ãŸãããšãã9以äžã®èªç¶æ°ã®ãã€ãŸãããšããè² ã®æŽæ°ã®ãã€ãŸããã®ãããªãã®ããéåïŒãã
ãããïŒãšèªãã§ããã
ã§ã¯ãæ°åŠã§ãããéåããšã¯äœããããããèããŠãããã
æ°åŠã§ã¯ãããéãŸãã®ãã¡ãããã«ãããã«å±ããŠãããå±ããŠãªãããæç¢ºã«åºå¥ã§ããæ¡ä»¶ã®ããç©ã®ãã€ãŸãã'''éå'''ïŒãã
ããããè±ïŒsetïŒãšãããäŸãã°ããèªç¶æ°ãã¯ã''n'' > 0ãšãªãæŽæ°''n'' ã®å
šäœããšããåºå¥å¯èœãªæ¡ä»¶ãããã®ã§éåãšãããã
ãããã倧ããªæ°ããšãããã€ãŸãã¯ãã©ããããã倧ããªãæ°ãšãããã®ããã¯ã£ããããªããããæ°åŠã®ãéåãã§ã¯ãªãã
ãã ããã倧ããªæ°ããäŸãã°ã1å以äžã®æŽæ°ããšåºå¥ã§ããããã«å®çŸ©ããã°éåã«ãªãããã
ããŠãæ°åŠçãªãéåããæ§æãããã®äžã€äžã€ã®ããšãããã®éåã® '''èŠçŽ '''ïŒ ããããè±ïŒelementïŒãšããã
äŸ
7以äžã®èªç¶æ°ã®éåã®èŠçŽ ã¯ã1ãš2ãš3ãš4ãš5ãš6ãš7 ã§ããã
ãªãããèŠçŽ ããšããèšèã䜿ãå Žåãã¹ã€ã«éåã®ãªãã¿ãå
šéšã䞊ã¹ãå¿
èŠã¯ç¡ãã
ããšãã°ãã2ã¯ã7以äžã®èªç¶æ°ã®éåã®ãã¡ã®èŠçŽ ã§ããããšèšã£ãŠã倧äžå€«ã§ããåã®æã®ã2ãã1以äžãã7以äžã®å¥ã®æŽæ°ã«çœ®ãæããŠã倧äžå€«ã§ãã
äžè¿°ããããã«ãèŠçŽ ãšã¯éåãæ§æãããã®ã®äžã€äžã€ã®ããšã§ãã
äŸ
ãèªç¶æ°ã®éåãã®èŠçŽ ãªããèªç¶æ°1ãèªç¶æ°2ãèªç¶æ°3ãã»ã»ã»ãªã©ã®ã²ãšã€ã²ãšã€ã®èªç¶æ°ãããããèŠçŽ ã§ããã
ã 1 ã¯èªç¶æ°ã®éåã®èŠçŽ ã§ããããšãããã
ã 27 ã¯èªç¶æ°ã®éåã®èŠçŽ ã§ããããšãããã
èªç¶æ°ã®éåã®ããã«ãéåã¯å¿
ãããèŠçŽ ãæéã§ãªããŠãæ§ããŸããïŒéåã®èŠçŽ ã¯ç¡éã§ãè¯ãïŒã
ïŒâ» ç¯å²å€ïŒ ïŒãªããæ°åŠçã«ã¯ãåºå¥ãã¯ã£ãããããããã°ãäŸãã°ãâ³â³é«æ ¡ã®ä»ã®3幎Bçµã®çåŸå
šå¡ãçãéåãšããŠèããããšãã§ãããããªãããããéåããšã¯ãèªç¶æ°ãããæŽæ°ããªã©ã®æ°ã§ãªããŠãããã
ïŒç¯å²å€ïŒæ°ãšæ°ãšã®å¯Ÿå¿é¢ä¿ã§ããã颿°ãããéåã®åèŠçŽ ãšéåã®åèŠçŽ ãšã®å¯Ÿå¿é¢ä¿ãžãšæ¡åŒµããããšãã§ãããïŒãã®éåã¯æ°ã®éåã§ãªããŠãè¯ããïŒãã®ãããªå¯Ÿå¿é¢ä¿ã'''åå'''ãšåŒã¶ã詳ããã¯å€§åŠã®ãéåè«ãã§æ±ããããå
šå°ãããåå°ããªã©ãç¥ã£ãŠãããšèšŒæã«äŸ¿å©ãªç¥èãããã
ïŒç¯å²å€ãããŸã§ïŒ
=== éåãèŠçŽ ã®é¢ä¿ã®è¡šãæ¹ ===
==== éåãšèŠçŽ ====
[[File:Mathematical set A with element a with no element b.svg|thumb|]]
aãéåAã®èŠçŽ ã§ãããšããããã®ãšããaã¯éåAã«'''å±ãã'''(ãããã)ãšãããèšå·ã§ã
:a ∈ A
::ãŸã㯠éåãã«
:A <math> \ni </math> a
ãšè¡šãã
bãAã®èŠçŽ ã§ãªããšãã¯ã
:b <math>\notin</math> A
::ãŸã㯠éåãã«
:A [[File:Set symbol of not-element.svg|20px]] b
ãšè¡šãã
éåããããããšããäž»ã«2çš®é¡ã®æ¹æ³ããããïŒäŸã¯ã10以äžã®èªç¶æ°ã®ãã¡å¶æ°ã§ãããã®ãã®éåã衚ããïŒ
:ïŒ1ïŒãèŠçŽ ãæžã䞊ã¹ãæ¹æ³
:ïŒ2ïŒãèŠçŽ ã®æºããæ¡ä»¶ãè¿°ã¹ãæ¹æ³
ã§ãã
[[File:Set of natural numbers less than 10.svg|thumb|]]
ããšãã°ãã10以äžã®èªç¶æ°ã®ãã¡å¶æ°ã§ãããã®ãã®éåã衚ãå ŽåãïŒ1ïŒãã®æ¹æ³ïŒèŠçŽ ãæžã䞊ã¹ãæ¹æ³ïŒã§ã¯ã
: {2, ã4, ã6, ã8, ã10}
ãšãªãã
äžæ¹ãïŒ2ïŒã®æ¹æ³ïŒèŠçŽ ã®æºããæ¡ä»¶ãè¿°ã¹ãæ¹æ³ïŒã§ã¯ã
:{ x | x=2n (nã¯èªç¶æ°), 2 ≤ x≤ 10 }
:{ x | xã¯2以äž10以äžã®å¶æ° }
:{ 2n | 1 ≤ n≤ 5 (nã¯èªç¶æ°) }
:{ 2n | nã¯1以äž5以äžã®èªç¶æ° }
ãªã©ã®ããã«ãªãïŒäœéããããïŒã
;åè
100以äžã®èªç¶æ°ã®éå A ããããã»ã©ã®ïŒ1ïŒãèŠçŽ ãæžã䞊ã¹ãæ¹æ³ãã®æ¹æ³ã§æžãå Žåã
:A ïŒ {1, ã2, ã3, ã4, ã»ã»ã» , 99, ã100}
ãšãªãããŸãããã®èšæ³ã®ãã»ã»ã»ãã®ããã«ãèŠçŽ ã®åæ°ããšãŠãå€ãå Žåãç¡æ°ã«ããå Žåã«ã¯ãïœ ïœèšå·å
ã®èŠçŽ ã®éäžããã»ã»ã»ããŸãã¯ãâŠâŠãããâŠããªã©ã®ç¹ã
ã§çç¥ããŠããã
:ïŒâ» ãªããã¯ãŒããã§ãâŠâŠããªã©ã®çãç¹ã
ãåºãããå Žåããäžç¹ãªãŒããŒãã§å€æãããšåºããç¹ã6ã€ãã£ãŠããäžç¹ãªãŒããŒãã§åºãã
:æ±äº¬æžç±ã®æ€å®æç§æžã§ãçãã»ãã®äžç¹ãªãŒããŒã䜿ã£ãŠãããåæé€šãªã©ã¯ã6ã€ã®ç¹ã®é·ãäžç¹ãªãŒããŒã䜿ã£ãŠãããïŒ
100以äžã®å¶æ°ã®éå B ã¯ããã®èšæ³ïŒèŠçŽ ãæžã䞊ã¹ãæ¹æ³ïŒã§ã¯ã
:B ïŒ {2,ã 4, ã6, ã»ã»ã» , 98, ã100}
ã®ããã«ãªãã
æ£ã®å¶æ°å
šäœã®éåã®èŠçŽ ã¯ïŒ1ïŒãèŠçŽ ãæžã䞊ã¹ãæ¹æ³ãã®æ¹æ³ã§æžãå Žåã
:{2, ã4, ã6, ãã»ã»ã»}
ã®ããã«ãæžããã
==== éåã©ãã ====
===== éšåéå =====
[[File:Venn A subset B 2.svg|thumb|éåAãéåBã®éšåéåã§ããå Žå]]
2ã€ã®éåA,Bããããx∈A ãªãã° x∈Bãæãç«ã€ãšããAã¯Bã® '''éšåéå''' (ã¶ã¶ããã
ããããè±ïŒsubset)ã§ãããšããããBã¯Aãå«ããããAã¯Bã«å«ãŸããããšããããã®ç¶æ
ãèšå·ã§
:A ⊂ B
ãŸãã¯
:B ⊃ A
ã§è¡šãã
'''è£è¶³'''ãã
Aã®éšåéåã«ã¯Aèªèº«ããããïŒã€ãŸããA ⊂ Aãã§ããïŒã
ãŸããA,B ã®éåã®èŠçŽ ãåããšãã
:A ïŒ B
ã§è¡šãã
{{-}}
;äŸ
éå A ïŒ {1, 2, 3} ãš éå B ïŒ {1, 2 , 3 , 4, 5} ããããšããA 㯠Bã®éšåéåã§ããã
----
===== å
±ééšåãšåéå =====
[[File:Subset intersection A and B.svg|thumb|è²ã®éšåã¯<br>å
±ééšå A ∩ B ]]
2ã€ã®éåA,Bããããšã
ãããã®äž¡æ¹ã®èŠçŽ ã§ãããã®ã®éåã
AãšBã® '''å
±ééšå'''ïŒãããã€ãã¶ã¶ãïŒãšåŒã³ã
:A ∩ B
ãšæžãã
{{-}}
[[File:Subset union A or B.svg|thumb|è²ã®éšåã¯<br>åéå A ∪ B]]
ãŸããéåA,Bã®å°ãªããšãã©ã¡ããäžæ¹ã«ã¯å±ããŠããèŠçŽ ãããªãéåã®ããšããAãšBã®'''åéå'''ïŒããã
ããããè±ïŒunionïŒãšåŒã³ã
:A ∪ B
ãšæžãã
{{-}}
===== 3ã€ã®éåã®å
±ééšåãšåéå =====
[[File:Intersection A and B and C.svg|thumb|A ∩ B ∩ C ]]
3ã€ã®éå A, B, C ã«ã€ããŠã¯ã3ã€ã®ã©ãã«ãå±ããèŠçŽ å
šäœã®éåã A,B,C ã®å
±ééšåãšåŒã³ã<br>
'''A ∩ B ∩ C''' ã§è¡šãã
{{-}}
[[File:Venn union A or B or C.svg|thumb|A ∪ B ∪ C]]
ãŸããéå A, B, C ã®å°ãªããšã1ã€ã«å±ããèŠçŽ ã®éåã A,B,C ã®åéåãšåŒã³ã<br>
'''A ∪ B ∪ C''' ã§è¡šãã
{{-}}
----
===== 空éå =====
ããšãã°ãã10以äžã®èªç¶æ°ã®ãã¡ã®å¶æ°ãã®éåAãšãã10以äžã®èªç¶æ°ã®ãã¡ã®å¥æ°ãã®éåBã«ã€ããŠãéåAãšéåBã®å
±ééšåã«ã¯ãäœãèŠçŽ ãç¡ãã
ãã®äŸã®ããã«ããèŠçŽ ããªã«ããªãããšããå Žåãããã®ã§ãæ°åŠã§ã¯ãèŠçŽ ããªã«ããªããå Žåãã²ãšã€ã®éåãšããŠèããã
èŠçŽ ããããªãéåã®ããšã '''空éå'''(ãããã
ããããè±ïŒempty set ããã㯠null set)ãšãããèšå·ã¯
:<math>\varnothing</math>
ã§ããããã
ã®ãªã·ã£æåã®ãã¡ã€ïŒφ,<math>\phi\ </math>ïŒã§è¡šãããããšãå€ãããããå³å¯ã«ã¯ããã¯èª€ãã§ãããäžã®èšå·ã®ä»ã«<math>\empty</math>çãçšãããããããã®æç§æžã§ã¯ã<math>\varnothing</math>ãçšããã
;è£è¶³
ã©ã®ãããªéåAã«ãã空éåã¯éšåéåãšããŠå«ãŸããã
ã€ãŸãã空éåã§ãªãããéåãAãšãããšã
:<math>\varnothing</math> ⊂ A
ã§ããã
;äŸ
éå { 1, 2 } ã®éšåéåããã¹ãŠåæãããšã次ã®4ã€ã®éåã«ãªãã
:â
,ã{1} ,ã{2} ,ã{1,2}
----
{{-}}
===== å
šäœéåã»è£éå =====
[[File:Universal set and complement.svg|thumb|è²ã€ãã®éšåãè£éå <math>\overline{A}</math> ]]
éå U ã1ã€èšå®ãããã®éåã®èŠçŽ ãéšåéåã®ã¿ãèããå Žåãèããããã®ãããªãšããéåUã '''å
šäœéå'''ïŒãããããã
ããããè±ïŒuniversal setïŒ ãšããã
å
šäœéåUã®èŠçŽ ã®ãã¡ãéåAã«å±ããªããã®å
šäœãããªãéåã®ããšãAã® '''è£éå''' ïŒã»ãã
ããããè±ïŒcomplementïŒãšãããèšå·ã§è£éå㯠<math>\overline{A}</math>ãšè¡šãã
ããªãã¡
:<math>\overline{A}</math> ïŒ {x | xâU ã〠x <math>\notin</math> A}
ã§ããã
::<math>\overline{ (\overline{ A }) }</math> 㯠<math>\overline{A}</math> ã®è£éåã衚ãããã<math>\overline{ (\overline{ A }) }</math> </span> 㯠<math>\overline{ \overline{ A } }</math> ãšæžãå Žåãããã
è£éåã«ã€ããŠã次ã®ããšãæãç«ã€ã
Aâ©<span style="text-decoration: overline">A</span>ïŒâ
, ããAâª<span style="text-decoration: overline">A</span>ïŒU , ãã<math>\overline{ (\overline{ A }) }</math> ïŒAã
;ãã»ã¢ã«ã¬ã³ã®æ³å<ref>
[[File:AugustusDeMorgan.png|thumb|ãã»ã¢ã«ã¬ã³]]
[[w:ãªãŒã¬ã¹ã¿ã¹ã»ãã»ã¢ã«ã¬ã³]]ã¯19äžçŽã€ã®ãªã¹ã®æ°åŠè
ã</ref>
:<math>\overline{A \cap B}=\overline{A} \cup \overline{B}</math>
: ã
:<math>\overline{A \cup B}=\overline{A} \cap \overline{B}</math>
äžã®å³ãçšããŠäžã®æ³åãæ£ããäºã確ããããã
<gallery>
Image:Venn-diagram-AB.png|2ã€ã®éåã®äžéšã«éãªã£ãŠããéšåãããå Žå
Image:Venn-diagram-ABC.png|çæ¹ãããçæ¹ã®éšåéåã§ããå ŽåïŒAãšBïŒãšãéåå士ãç¬ç«ããŠããå ŽåïŒAãšCïŒ
</gallery>
<gallery widths=300px heights=300px>
Image:Venn_diagram_ABC_RGB.png|3ã€ããå ŽåïŒAãšBãBãšCãCãšAïŒ
Image:Venn diagram ABCD RGB.png|4ã€ããå ŽåïŒAãšBãAãšCãAãšDãBãšCãBãšDãCãšDïŒ
</gallery>
* åé¡
A={x|xã¯1以äž20以äžã®2ã®åæ°}ã»B={y|yã¯1以äž20以äžã®3ã®åæ°}ãšããæã以äžã«é©ããéåã®èŠçŽ ãåæããããã ããå
šäœéåU={z|zã¯1以äž20以äžã®æŽæ°}ãšããã
# <math>\overline{A}</math>
# <math>\overline{B}</math>
# <math>A \cap B</math>
# <math>A \cup B</math>
# <math>A \cup \overline{B}</math>
# <math>\overline{A \cap B}</math>
# <math>\overline{A} \cup \overline{B}</math>
# <math>A \cap \overline{A}</math>
# <math>B \cup \overline{B}</math>
# <math>A \cap \varnothing</math>
# <math>B \cup \varnothing</math>
# <math>A \setminus B</math>
# <math>B \setminus A</math>
# <math>(A \setminus B) \cap (B \setminus A)</math>
* è§£ç
# <math>\overline{A}</math>={1,3,5,7,9,11,13,15,17,19}
# <math>\overline{B}</math>={1,2,4,5,7,8,10,11,13,14,16,17,19,20}
# <math>A \cap B</math>={6,12,18}
# <math>A \cup B</math>={2,3,4,6,8,9,10,12,14,15,16,18,20}
# <math>A \cup \overline{B}</math>={1,2,4,5,6,7,8,10,11,12,13,14,16,17,18,19,20}
# <math>\overline{A \cap B}</math>={1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,19,20}
# <math>\overline{A} \cup \overline{B}</math>={1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,19,20}
# <math>A \cap \overline{A} = \varnothing</math>
# <math>B \cup \overline{B} = U</math>={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}
# <math>A \cap \varnothing = \varnothing</math>
# <math>B \cup \varnothing</math>= {3,6,9,12,15,18}
# <math>A \setminus B</math>={2,4,8,10,14,16,20}
# <math>B \setminus A</math>={3,9,15}
# <math>(A \setminus B) \cap (B \setminus A) = \varnothing</math>
{{-}}
===== ïŒâ» ç¯å²å€ïŒéåã®ãèŠçŽ ãã¯ãå
ããšããã =====
:ïŒâ» ç·šéè
ãžïŒã³ã©ã åããããšæããŸããããèšå·ãå¹²æžããŠè¡šç€ºãäžæãåºæ¥ãªãã®ã§ãç¬ç«ããç¯ãšããŸãã
:â» å³æžé€šãªã©ã§æ°åŠæžã調ã¹ãããã«ãå
ããšãã衚èšãåºãŠãããšæããŸãã®ã§ã玹ä»ããŠãããŸãã
<!-- çŸåœ¹é«æ ¡çã«ã¯åœé¢ã¯äžèŠãªæ
å ±ãªã®ã§ãç« æ«ã«çœ®ãããšæããŸãã -->
éåã®èŠçŽ ã®ããšãããµããåŒã³æ¹ã§ããã'''å
'''ãïŒããïŒãšãèšããŸãã
念ã®ããäŸã瀺ããšãããšãã°ã1以äžãã€12以äžã®å¶æ°ã®éåããšèšãã°
ããšãã°ãã10以äžã®èªç¶æ°ã®ãã¡å¶æ°ã§ãããã®ãã®éå
: {2, ã4, ã6, ã8, ã10}
ãéåAãšããå Žåã
ãã4ãã¯éåAã®èŠçŽ ã§ããããšèšããŸãããåæ§ã«ãã4ãã¯éåAã®å
ã§ããããšãèšããŸãã
äŸãšããŠã4ãããããŸããããå¥ã«ã6ãã§ãã10ãã§ãæ§ããŸãããã2ããã6ããã8ããã10ãããããããäžè¿°ããéåAã®èŠçŽ ïŒå
ïŒã§ãã
=== åœé¡ãšèšŒæ ===
==== åœé¡ãšæ¡ä»¶ ====
ïŒæ°åŠçã«ïŒæ£ãããã©ãããæç¢ºã«å€æã§ãã䞻匵ã'''åœé¡'''ïŒããã ããè±: propositionïŒãšåŒã¶ã
äŸãã°ãã7ã¯çŽ æ°ã§ãããã¯åœé¡ã®äŸã§ããã
ïŒäžæ¹ãã5000ã¯å€§ããæ°ã§ããããªã©ã¯åœé¡ãšã¯ãªããªãããªããªãã倧ããããšããèšèã®å€æã䞻芳çãªãã®ã§ãããå€æã«æç¢ºãªåºæºãèšå®ã§ããªãããã§ãããïŒ
ããåœé¡ãæç¢ºã«æ£ããïŒãšèšŒæãããïŒãšãããã®åœé¡ã¯'''ç'''ïŒãããè±ïŒtruthïŒã§ãããšåŒã¶ã(ããšãã°ãåœé¡ã7ã¯çŽ æ°ã§ãããã¯çã§ããã)
åœé¡ãçã§ãªããšããåœé¡ã¯'''åœ'''ïŒããè±ïŒfalseïŒã§ãããšèšããããšãã°ãåœé¡ ã ãã <math>x^2 = 4</math> ã§ããã° <math>x = 2</math> ã§ããã ã ã¯ãåœã®åœé¡ã§ããã
ãã®æ¹çšåŒã¯<math>x = -2</math>ãè§£ã«æã€ã
äžã®åœé¡ã"<math>x^2 = 4</math>ãªãã°<math>x = 2</math>ã§ãã"ãã¯<math>x = -2</math>ãããŠã¯ãŸãã®ã§åœã«ãªã£ãã
åœé¡<math>\rm p \Rightarrow q</math>ãåœã§ãããšãã¯ã<math>p</math>ã¯æºããã<math>q</math>ãæºãããªãäŸãååšããããã®ãããªäŸã'''åäŸ'''ïŒã¯ãããïŒãšããã'''åœé¡ãåœã§ããããšã瀺ãã«ã¯ãåäŸã1ã€ãããã°ããã'''
åœé¡ã¯ããpãªãã°qã§ãããã®åœ¢åŒã§æžãããå Žåãå€ãã
ã pãªãã°qã§ããããšããåœé¡ããèšå·ã<math>\Rightarrow</math>ããçšããŠ
:<math> \rm p \Rightarrow q </math>
ãšæžãã
ãŸãããã®æ¡ä»¶pããã®åœé¡ã®'''ä»®å®'''ïŒããŠããè±ïŒassumptionïŒãšãããæ¡ä»¶qããã®åœé¡ã®'''çµè«'''ïŒãã€ããïŒãšåŒã¶ã
* åé¡
次ã®åœé¡ã®çåœãå€å®ããåœã®å Žåã¯åäŸãæããã
# ã<math>ab>0</math>ãªãã°<math>a>0</math>ãã€<math>b>0</math>ã§ããã
# ã<math>a \ge b</math>ãã€<math>b \ge a</math>ãªãã°<math>a=b</math>ã§ããã
# ãæ£äžè§åœ¢ã2ã€çšæããã°ãããã¯çžäŒŒã§ããã
# ãçŽ æ°ãªãã°å¥æ°ã§ããã
* è§£ç
# ãåœ(åäŸïŒ<math>a=-1 , b=-2</math>ãªã©)
# ãç
# ãç
# ãåœ(åäŸïŒ2)
==== åœé¡ãšéå ====
[[File:Sets contraposition diagram.svg|thumb|]]
æ¡ä»¶ãæ¡ä»¶ãå«ãåœé¡ãèããããšã¯ãéåãèããããšãšåãã§ããã
ããšãã°ã宿° x ã«ã€ããŠãxïŒ3 ãªãã° xïŒ1 ã§ããããšããåœé¡ã¯çã§ããã
ããã§ãxïŒ3 ã§ããããšããæ¡ä»¶ã p ãšãããŸããxïŒ3 ã§ããæ°ã®éåã P ãšããããã€ãŸã PïŒïœx| x>3 ïœã§ããã
åæ§ã«ããxïŒ1ã§ããããšããæ¡ä»¶ã q ãšããxïŒ1ã§ããæ°ã®éåã Q ãšããããã€ãŸã QïŒïœx| x>1 ïœã§ããã
ãã®ãšããåœé¡ <math>\rm p \Longrightarrow q</math> ã¯çã§ããããããã¯éåã®å
å«é¢ä¿ PâQ ãæãç«ã€ããšã«å¯Ÿå¿ããŠããã
==== å¿
èŠæ¡ä»¶ãšå忡件 ====
[[File:å¿
èŠæ¡ä»¶ãšå忡件.svg|thumb|]]
2ã€ã®æ¡ä»¶ p,q ã«ã€ããŠãåœé¡ãpâqããçã§ãããšãã
:pã¯qã§ããããã® '''å忡件''' ïŒãã
ãã¶ã ãããããïŒã§ãã
:qã¯pã§ããããã® '''å¿
èŠæ¡ä»¶''' ïŒã²ã€ãã ãããããïŒã§ãã
ãšããã
2ã€ã®æ¡ä»¶ p.q ã«ã€ããŠã
åœé¡ãpâqããšåœé¡ãqâpãã®äž¡æ¹ãšãçã§ãããšããããã
:<math>\rm p \Longleftrightarrow q</math>
ãšæžãã
:pã¯qã§ããããã®'''å¿
èŠå忡件'''ã§ãã
ãšããã
ãã®ãšããpãšqãå
¥ãæ¿ããããšã§ã
:qã¯pã§ããããã®å¿
èŠå忡件ã§ãã
ãšããããããšããããã
<math>\rm p \Longleftrightarrow q</math> ã§ãããšããpãšqã¯ã'''åå€'''ïŒã©ãã¡ïŒã§ããããšããã
==== ããã€ãããŸãã¯ããšåŠå® ====
[[File:Logic intersection P and Q.svg|thumb|ãpãã€qãã«å¯Ÿå¿ãã<br> Pâ©Q]]
[[File:Logic union P or Q.svg|thumb|ãpãŸãã¯qãã«å¯Ÿå¿ãã<br> PâªQ]]
æ¡ä»¶ p,q ãæºãããã®ã®éåããããã P,Q ãšããã
ãã®ãšããæ¡ä»¶ãpãã€qãããã³ãpãŸãã¯qããããããå³ã¯ãããããå³å³ã®ããã«ãªãã
:â» æ°åŠã«ãããããŸãã¯ãã®äœ¿ãæ¹ã§ã¯ããpãŸãã¯qãã¯ãæ¡ä»¶pãšæ¡ä»¶qã®å°ãªããšãã©ã¡ããäžæ¹ã§ãæãç«ã£ãŠããã°ããã
æ¡ä»¶pã«å¯Ÿããpã§ãªããã®åœ¢ã®æ¡ä»¶ã pã® '''åŠå®''' ïŒã²ãŠããè±ïŒnegationïŒãšãããèšå·ã¯ <math>\overline{p}</math>ã§è¡šãã
ïŒâ» 髿 ¡ã§ã¯ç¿ããªãããåŠå®ã®æå³ãšããŠã <math>\lnot{p}</math>ãšããèšå·ã¬ãããããïŒ
æ¡ä»¶ãèããããšã¯éåãèããããšãšåããªã®ã§ãéåã«ããããã»ã¢ã«ã¬ã³ã®æ³åãšåæ§ã«ãæ¡ä»¶ã«ãããŠãããã»ã¢ã«ã¬ã³ã®æ³åããªãç«ã€ã
'''ãã»ã¢ã«ã¬ã³ã®æ³å'''
<span style="text-decoration: overline">p ã〠q</span> <math> \Longleftrightarrow </math> <span style="text-decoration: overline"> p </span> ãŸã㯠<span style="text-decoration: overline"> q </span>
<span style="text-decoration: overline">p ãŸã㯠q</span> <math> \Longleftrightarrow </math> <span style="text-decoration: overline"> p </span> ã〠<span style="text-decoration: overline"> q </span>
==== éã»è£ã»å¯Ÿå¶ ====
[[File:Contraposition etc japanese.svg|thumb|400px]]
åœé¡ã <math>\rm p \Longrightarrow q</math> ãã«å¯ŸããŠ
:åœé¡ã<math>\rm q \Longrightarrow p</math>ãã åœé¡ã <math>\rm p \Longrightarrow q</math> ãã® '''é''' ïŒããããè±ïŒconverseïŒ
:åœé¡ã<math>\rm \overline{p} \Longrightarrow \overline{q}</math>ãã åœé¡ã <math>\rm p \Longrightarrow q</math> ãã® '''è£''' ïŒãããè±ïŒinverseïŒ
:åœé¡ã<math>\rm \overline{q} \Longrightarrow \overline{p}</math>ãã åœé¡ã <math>\rm p \Longrightarrow q</math> ãã® '''察å¶''' ïŒãããããè±ïŒcontrapositionïŒ
ãšåŒã¶ã
ãããã¯ããããã«å³å³ã®ãããªé¢ä¿ã«ããã
{{-}}
----
ããšãã°ã
ããšã®åœé¡ã
:ã<math>x=3 \Longrightarrow x^2=9 </math>ã
ã ãšãããšã
:è£ã¯ã<math>x\ne 3 \Longrightarrow x^2 \ne 9 </math>ã ã§ãã
:éã¯ã<math>x^2=9 \Longrightarrow x=3 </math>ã ã§ãã
:察å¶ã¯ã<math>x^2 \ne 9 \Longrightarrow x\ne 3 </math>ãã§ããã
ãã®åœé¡ã®å Žåãããšã®åœé¡ãšå¯Ÿå¶ã¯ããšãã«çã§ããã
ãã£ãœãéã«ã€ããŠã¯ x ïŒ -3 ãšããåäŸãããã®ã§ããã®åœé¡ã®å Žåãéã¯æ£ãããªãããŸããè£ãåæ§ã«ãæ£ãããªãã
ãã®ãããªäŸãããæ¬¡ã®ããšãåããã
ããåœé¡ãçã§ãã£ãŠãããã®åœé¡ã®éã¯ãããªããããçãšã¯éããªãã
ãŸããããåœé¡ãçã§ãã£ãŠãããã®åœé¡ã®è£ã¯ãããªããããçãšã¯éããªãã
ã§ã¯ãããšã®åœé¡ãšå¯Ÿå¶ãšã®é¢ä¿ã¯ãã©ããªãã ãããã
[[File:Sets contraposition diagram.svg|thumb|]]
ãã®èå¯ããããããæ¡ä»¶pãæºãããã®ãéåPã«å¯Ÿå¿ãããåæ§ã«æ¡ä»¶qãæºãããã®ãéåQã«å¯Ÿå¿ãããŠã¿ããã
å³ã®éåã®å³ã¯ãpâqãçã§ããããšã衚ãå³ã§ããããã®å³ã§ã¯ãPã«å±ããŠããèŠçŽ ã¯ãQã«ãå±ããŠãããïŒã€ãŸã <math>\rm P \subset Q</math>ã§ãããïŒäžæ¹ãQã«å±ããŠãããªãèŠçŽ ã¯ãPã«ãå±ããŠããªããïŒã€ãŸã <math>\rm \overline{Q} \subset \overline{P}</math> ã§ãããïŒ
ãã®ããšããããåããããã«ã
ããåœé¡ãçã§ãããšãããã®åœé¡ã®å¯Ÿå¶ãçãšãªãã
ããåœé¡ãåœã§ãããšãããã®å¯Ÿå¶ãåœã§ããã
ã€ãŸããäžè¬ã®åœé¡ã«ãããŠãããšã®åœé¡ãšå¯Ÿå¶ãšã®çåœã¯äžèŽããã
==== èçæ³ ====
ããåœé¡ã®çµè«ãåŠå®ããŠããã®åŠå®ã®ããšã§ççŸãèµ·ããããšãè¿°ã¹ãããšã§ã
ãã®åœé¡ãçã§ããããšãå°åºãã仿¹ã'''èçæ³'''ïŒã¯ããã»ããè±: proof by contradiction ãªã©ïŒãšåŒã¶ã
ããšãã°ããAã§ã¯ãªãããšã蚌æããããšããåé¡ãè§£ãæã¯ãAã§ãããšä»®å®ããããšæžãåºããŠãä»®å®ããããšãšççŸããéšåãäœã£ãŠãççŸããã®ã§Aã§ã¯ãªããããšèšŒæãçµããã
* äŸé¡
çŽ æ°ã¯ç¡éã«ååšããã
* 蚌æ
çŽ æ°ãæéåã§ãã£ããšä»®å®ããããã¹ãŠã®çŽ æ°ã®ç©ã<math>a</math>ãšãããšã<math>a+1</math>ã¯ã©ã®çŽ æ°ã§å²ã£ãŠã1äœãããšã«ãªãã1以å€ã®èªç¶æ°ã§ãã£ãŠãçŽ æ°ã®ç©ã«åè§£ã§ããªããã®ãååšããããšã«ãªãã<math>a+1</math>ã®çŽæ°ã®ãã¡1以å€ã§æãå°ãããã®ã<math>b</math>ãšãããšã<math>b</math>ã¯1ãš<math>b</math>以å€ã®çŽæ°ãæããªãããããã£ãŠ<math>b</math>ãçŽ æ°ã§ããããšã«ãªããã<math>a+1</math>ãã©ã®çŽ æ°ã§ãå²ãåããªãããšãšççŸããããããã£ãŠãçŽ æ°ã¯æéåã§ã¯ãªããâ
{{ã³ã©ã |èçæ³ãšæ¥åžžçãªæè|
èçæ³ã¯å€ãã®é«æ ¡çãèŠæãšããŠããŸãããAã§ãããããšã蚌æããããã«ããããããAã§ãªãããšä»®å®ããŠççŸãå°ããšããè«çã®å±éãäžèªç¶ã«æãããããããèŠææèã«ã€ãªãã£ãŠããããã§ããããããèçæ³ã®çºæ³ã¯ç§ãã¡ã®æ¥åžžçãªæèã§ããã䜿ãããŠããŸããããã§ã¯ããã®äŸãããã€ã玹ä»ããŸãããã
äžã€ç®ã¯ã¢ãªãã€èšŒæã§ããããããªããäºä»¶ã®ç¯äººã§ãããšçããããšããŸãããã®ãšãããèªåãç¯äººã§ã¯ãªãããšããããšãã©ã®ããã«èšŒæããŸããããã ãèªåã¯ç¯äººã§ã¯ãªãããšèšãã ãã§ã¯èª¬åŸåããããŸããããã®å Žåãç¯è¡çŸå ŽãAé§
ã§ãã£ããããèªåã¯äºä»¶ãèµ·ãããšãã«ã¯Bé§
ã«ãããããšã蚌æã§ãããã€ãŸãã¢ãªãã€ãæãç«ã€ãªãã°èªåãç¯äººã§ã¯ãªããšããæåãªèšŒæ ãšãªããŸãããã®ä»çµã¿ãç°¡åãªæã«ãããšä»¥äžã®ããã«ãªããŸãã
:ç§ãç¯äººã ãšä»®å®ãããšãAé§
ã«ããããšã«ãªãã
:ãããç§ã¯Bé§
ã«ããïŒïŒAé§
ã«ããªãã£ãïŒã
:ç§ãåãæéã«Aé§
ãšBé§
ã®äž¡æ¹ã«ããããšã¯ã§ããªãã®ã§ãåœåã®ä»®å®ãšççŸããã
:ããã«ç§ãç¯äººã ãšããä»®å®ããŸã¡ãã£ãŠããã®ã§ãç§ã¯ç¯äººã§ã¯ãªãã
ã¢ãªãã€ã瀺ãããšã§èªåã®ç¡å®ã蚌æãããšããã®ã¯ãå®ã¯ããããä»çµã¿ã«ãªã£ãŠããã®ã§ãããªããã¢ãªãã€ã瀺ããŠç¡å®ã蚌æããæ¹æ³ã«ã¯ããã¯ã髿 ¡çã®å€ããèŠæãšãã察å¶èšŒææ³ãäœ¿ãæ¹æ³ããããŸãããã¡ãã¯ã¿ãªããã§èããŠã¿ãŠãã ããã
äºã€ç®ã¯æ¶å»æ³ã§ã®éžæè¢ã®éžã³æ¹ã§ããããšãã°ãå¹³æ30幎床ãå«çãã®ã»ã³ã¿ãŒè©Šéšã®å€§å1å7ïŒããŒã¯ã·ãŒãçªå·7ïŒã®åé¡ãèŠãŠã¿ãŸããããïŒãã°ãšæãããçŸè±¡ãèµ·ãããããªã³ã¯ã¯è²ŒããŸããããææ°ã§ãããåèªç¢ºèªããŠäžãããïŒããã®æ£è§£ãå°ãåºãã®ã«èçæ³ã®æç« ãå©çšããŠã¿ãŸãããã
:1ãæ£è§£ã ãšä»®å®ãããšã1ã®éžæè¢ã¯ã°ã©ããæ£ãã説æããŠããã
:ãããã2015幎ã®ããã3ïŒæ¥äŒç¬ïŒãš2050幎ã®ããã3ïŒæ¥äŒéïŒã¯ç°ãªãã®ã§ãæ£ãã説æã«ãªã£ãŠããããä»®å®ãšççŸããã
:ããã«1ãæ£è§£ãšããä»®å®ã¯èª€ã£ãŠããã
:ã ããã1ã®éžæè¢ã¯æ£ãããªãã®ã§æ¶ãã
ãããç¹°ãè¿ããšã誀ã£ãéžæè¢ãæ¶å»ããŠæ£è§£ãå°ãããšãã§ããŸããïŒãå«çãã®ç¥èã¯å
šããããªãã®ã§ãçãããææŠããŠã¿ãŠãã ããïŒã
ãã¡ãããã¢ãªãã€èšŒæã«ããŠãæ¶å»æ³ã«ããŠãããã€ãããããæäœã§è§£ããŠããããã§ã¯ãããŸãããããããèçæ³ã®ããšã¯æèããªãã§è§£ãã®ãåœããåã§ããããå®ã¯èçæ³ã®èãæ¹ã¯æ¬æ¥ãäœæ°ãªãå®è¡ã§ãããããèªç¶ãªçºæ³ãªã®ã§ããã»ãã«ããçããã®æ¥åžžçãªèãæ¹ã®äžã«èçæ³ã®åœ¢ã«ãããã®ãããã¯ãã§ããéã«äžèŠæ£ããèçæ³ã«èŠããŠããå®ã¯ã€ã³ãããªè«çå±éã®ãã®ãããã§ããããããããããšãæ¢ããŠããã®ãè«ççã«èããããã®ãã¬ãŒãã³ã°ã«ãªããŸãããã²ãææŠããŠã¿ãŠãã ããã
ãåèæç®ã
*ãè«ççã«èããããšãïŒå±±äžæ£ç·è, 岩波æžåºïŒå²©æ³¢ãžã¥ãã¢æ°æžïŒïŒ
*ãè«ççã«èããæžãåãïŒåæ²¢å
éè, å
æç€ŸïŒå
æç€Ÿæ°æžïŒïŒ
}}
== èæ³š ==
<references/>
[[category:é«çåŠæ ¡æ°åŠA|ããããããšããã]] | 2005-05-08T02:54:42Z | 2024-03-04T17:41:53Z | [
"ãã³ãã¬ãŒã:-",
"ãã³ãã¬ãŒã:ã³ã©ã "
] | https://ja.wikibooks.org/wiki/%E6%97%A7%E8%AA%B2%E7%A8%8B(-2012%E5%B9%B4%E5%BA%A6)%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E6%95%B0%E5%AD%A6A/%E9%9B%86%E5%90%88%E3%81%A8%E8%AB%96%E7%90%86 |
1,931 | é«çåŠæ ¡æ°åŠA/å Žåã®æ°ãšç¢ºç | ããšãã°ããã¯ãããäžåã«äžŠã¹ãå ŽåãäžŠã¹æ¹ã®æ°ã«ã¯ãããã€ãã®æ¹æ³ãããããã£ããã«å
šãŠã®äžŠã³æ¹ã詊ãããšããæéããããã°å®éšå¯èœã§ããã
ãã®ããã«ããå
šéšã§äœéãããããããšããããã®ãäœéããã®ãäœãã«ãããæ°åããå Žåã®æ°(ã°ããã®ãã) ãšåŒã¶ã
ãã®ããã«äºæã«ã¯ããããã®ããæ¹ãå
šéšã§äœéãããããæ°ããããšãåºæ¥ãäºæãããã
ããäºæã«ã€ããŠ(ãã®ããšãèµ·ãããã)å Žåã®æ°ãæ£ç¢ºã«æ°ããããšãçè§£ã®åºç€ã§ããããã®äºæã«ã€ããŠãã©ã®ããšãèµ·ãããããã©ã®ããšãèµ·ããã¥ããããèŠåããããã®åºç€ãšãªãã ã€ãŸããå Žåã®æ°ã¯äºæãèµ·ãããã確çãšå¯æ¥ãªé¢ä¿ã«ããã
äŸãã°ãããŒã«ãŒãªã©ã®ã«ãŒãã²ãŒã ã§ã¯éããããšãé£ãã圹ã¯é«ãã©ã³ã¯ãäžããããŠãããã ããã¯èµ·ããã«ãã圹ãåºæ¥ããã©ã³ãã®çµã¿åããã®çŸããã確çãå°ããããšã«ããã ãã®ããšã¯ã52æã®ã«ãŒããã5æãåŒããŠæ¥ããšãã«å
šãŠã®ã«ãŒããåŒã確çãåãã§ãããšãããšãããã圹ã«å¯Ÿå¿ããã«ãŒãã®çµã¿åãããåŒãå Žåã®æ°ãããå°ãªãããšã«å¯Ÿå¿ããã
ãã®ããã«ãå Žåã®æ°ã¯äºæãèµ·ãããã確çãšå¯æ¥ãªé¢ä¿ã«ããã
ã«ãŒãã²ãŒã ã®ããã«ç¢ºçãå
·äœçã«èšç®ã§ããå Žåã®ä»ã«ãã確çã®èãæ¹ãçšããŠèšç®ãããäºæã¯å€ãããã
ããšãã°ãä¿éº(ã»ãã)ãšåŒã°ãããã®ã¯ããäºæã«å€æ®µãã€ãããã®ã§ãããã ä¿éºãäžãããªããŠã¯ãªããªãäºæãèµ·ããã«ãããšå®¢èгçã«æããããã®ã»ã©ããã®ãã®ã®å€æ®µãäžãããšããç¹åŸŽãããã äŸãã°ãèªåè»ä¿éºã«å å
¥ããã®ã«å¿
èŠãªä»£éã¯è¥è
ã§ã¯é«ãã幎什ãéããããšã«äœããªã£ãŠããã ããã¯ãè¥è
ã¯èªåè»ã®å
èš±ãååŸããŠæéãçãå Žåãå€ããä¿éºéã®æ¯æãå¿
èŠãšããèªåè»äºæ
ããããå¯èœæ§ãé«ãããšã«ããã ãã£ãœãã幎什ãéãããã®ã«ã€ããŠã¯éè»¢ã®æéãæãšãšãã«äžéãããšäžè¬ã«èããããã®ã§ä¿éºããããããã®ä»£éã¯å°ãªããªãã®ã§ããã ãŸããåãè¥è
ã§ãæ¢ã«äœåºŠãäºæ
ãéãããã®ã¯åã幎代ã®ä»ã®è¥è
ãããä¿éºæãé«ããªãåŸåãããã ããã¯ãäœåºŠãäºæ
ãéãããã®ã¯é転ã®ä»æ¹ã«äœããã®åé¡ãããåŸåããããããã«ãã£ãŠãµããã³äºæ
ããããå¯èœæ§ãéåžžã®ãã®ãšæ¯ã¹ãŠããé«ããšèããããããšã«ããã
éè¡ã®èè³(ããã)ã§ããã¯ã確çã®èããçšããŠé«ãå©çãåºãããšãå®è·µãããŠããã èè³ã§ããã¯ãä¿éºæ¥ãšããªããããã貞åãã«ãªãå¯èœæ§ãé«ãçžæã«å¯ŸããŠã¯é«ãéå©ã§è³éã貞ãä»ãã ããå®å®ããè³éãæã£ãŠããçžæã«å¯ŸããŠã¯ããäœãéå©ã§è³éã貞ãä»ããããšãå®è¡ããŠæ¥ãã
å©çãå®å®çã«çšŒãæ¹æ³ãšããŠãããã€ãã®äŒç€Ÿãçºè¡ããäºãã«æ§è³ªã®ç°ãªã£ãæ ªãªã©ãåãããŠè³Œå
¥å
ã忣ããããšã§æ ªã®å€æ®µãäžãã£ããšãã§ã倿®µãããŸãæžãããšãç¡ãããã«ããæ¹æ³ãèæ¡ãããŠããã (ãã ãã倿®µãæžãã¥ããã®ãšåæ§ã«ã倿®µã¯äžããã¥ããã) ããã¯ãæ§è³ªã®ç°ãªã£ãååãåãããŠæ±ãããšã§ã倿®µãæ¥å€ãã確çãäžããããšãåºæ¥ãããšã衚ãããŠããã
ãããã確çã§ã¯ãå¿
ãããäºæž¬ããéãã«äºãé²ãããã§ã¯ç¡ãããšã«æ³šæããå¿
èŠãããã
ãã®ç« ã§ã¯å Žåã®æ°ãšç¢ºçã®èšç®æ³ã玹ä»ããããŸãå
ã«æ§ã
ãªäºæã®å Žåã®æ°ã®èšç®æ³ãæ±ãããã®çµæãçšããŠããäºæãèµ·ãã確çãèšç®ããæ¹æ³ã玹ä»ããã
ããã§ã¯ãæééå A ã®èŠçŽ ã®åæ°ã n(A) ã§è¡šãã
ããšãã°ã10以äžã®èªç¶æ°ã®éåã U ãšããŠããã®ãã¡ å¶æ°ã®éåã A ãšããå Žåã
ãªã®ã§ãAã®èŠçŽ ã®åæ°ã¯5åãªã®ã§
ã§ããã
ãªãã U={1, 2, 3, 4, 5, 6 , 7, 8, 9, 10} ã§èŠçŽ ã®åæ°ã¯10åãªã®ã§
ã§ããã
次ã®ãããªåé¡ãèããŠã¿ããã 100ãŸã§ã®èªç¶æ°ã®ãã¡ã2ãŸãã¯3ã®åæ°ã¯äœåããã?
ãã®ãããªåé¡ã®è§£æ³ãèãããããæºåã®åé¡ãšããŠããŸã10ãŸã§ã®èªç¶æ°ã§èããŠã¿ããã
å
çšã®äŸé¡ã§2ã®åæ°ã«ã€ããŠã¯èããã®ã§ã次ã®åé¡ãšããŠ10ãŸã§ã®3ã®åæ°ã®åæ°ã«ã€ããŠèãããã
10以äžã®èªç¶æ°ã®éåã U ãšããŠããã®ãã¡ 3ã®åæ°ã®éåã B ãšããå Žåã
B={3, 6 , 9} ãªã®ã§ãBã®èŠçŽ ã®åæ°ã¯3åãªã®ã§
ã§ããã
ããŠã
ã«ã¯å
±éã㊠6 ãšããèŠçŽ ãå«ãŸããŠããã
èªç¶æ°10ãŸã§ã«ãã2ãŸãã¯3ã®åæ°ã«ãããèŠçŽ ã¯ã
ã§ãããèŠçŽ ã®åæ°ããããããš 7åã§ããã
äžæ¹ã
ã§ããã1åå€ãã
ãã®ããã«1åå€ããªã£ãŠããŸã£ãåå ã¯ã éåAãšéåBã«å
±éããŠå«ãŸããŠããèŠçŽ 6 ãäºéã«æ°ããŠããŸã£ãŠããããã§ããã
äžè¬ã«ã2ã€ã®éåA,Bã®èŠçŽ ã®åæ° n(A) ãš n(B) ãçšããŠãAãŸãã¯Bã®æ¡ä»¶ãæºããèŠçŽ ã®åæ°ããããããå Žåã«ã¯ãAãšBã«å
±éããŠå«ãŸããŠããèŠçŽ ã®åæ°ãå·®ãåŒããªããã°ãªããªãã
ãã®ããšãåŒã§è¡šããš
ã«ãªãã
ãã ãããâªããšã¯åéåã®èšå·ã§ã AâªB ãšã¯ éåAãšéåBã®åéåã®ããšã§ããã
ãâ©ããšã¯å
±ééšåã®èšå·ã§ã ãAâ©Bããšã¯ éåAãšéåBã®å
±ééšåã®ããšã§ããã
ã§ã¯ããã®å
¬åŒãåèã«ã㊠100ãŸã§ã®èªç¶æ°ã®ãã¡ã2ãŸãã¯3ã®åæ°ã¯äœåããã? ã®çããæ±ãããã
100ãŸã§ã®èªç¶æ°ã®ãã¡ã®ã2ã®åæ°ã®éåãAãšããŠã3ã®åæ°ã®éåãBãšãããš
ããã«ã2ã®åæ°ã§ããã3ã®åæ°ã§ãããæ°ã®éå Aâ©B ãšã¯ãã€ãŸã6ã®åæ°ã®éåã®ããšã§ãã(ãªããªã 2 ãš 3 ã®æå°å
¬åæ°ã 6 ãªã®ã§)ã 96÷6=16 ãªã®ã§ãAâ©B ã®èŠçŽ ã®åæ°ã¯ 16 åãã€ãŸã n(Aâ©B)= 16 ã§ããã
ãããŠãå
¬åŒ
ãé©çšãããšã
ã§ããã
ãã£ãŠã100ãŸã§ã®èªç¶æ°ã®ãã¡ã®2ãŸãã¯3ã®åæ°ã®åæ°ã¯ 67å ã§ããã
3ã€ã®æééåã®åéåã®èŠçŽ ã®åæ°ã«ã€ããŠã¯ã次ã®å
¬åŒãæãç«ã€
n(AâªBâªC) = n(A) + n(B) + n(C) ân(Aâ©B) ân(Bâ©C) ân(Câ©A) + n(Aâ©Bâ©C)
å³ã®å³ãåèã«ãäžã®å
¬åŒã蚌æããã
100以äžã®èªç¶æ°ã®ãã¡ã2ã®åæ°ãŸãã¯3ã®åæ°ãŸãã¯5ã®åæ°ã§ãããã®ã®åæ°ãæ±ããã
(è§£æ³)
ãŸãã100以äžã®èªç¶æ°ã®ãã¡ã
ãšããã
100÷2=50ãªã®ã§ã100ã¯50çªç®ã®2ã®åæ°ã§ããããã£ãŠ100以äžã®2ã®åæ°ã¯50åã§ãããåæ§ã«èããŠèŠçŽ ã®åæ°ãæ±ãããšã
ã§ããã
äžæ¹ã100以äžã®èªç¶æ°ã®ãã¡
ãšãªãã
ãã£ãŠãå
ã»ã©ãšåæ§ã«èãããš
ãŸãã100以äžã®èªç¶æ°ã®ãã¡ã
Aâ©Bâ©C ã®èŠçŽ ã®åæ°ã¯
ã§ããã
ãã£ãŠã
ãªã®ã§ã100以äžã®èªç¶æ°ã®ãã¡ã®2ã®åæ°ãŸãã¯3ã®åæ°ãŸãã¯5ã®åæ°ã§ãããã®ã®åæ°ã¯ 74åã§ããã
ããšãã°å€§äžå°3åã®ãµã€ã³ãããµã£ãŠãç®ã®åã5ã«ãªãç®ã®çµã¯ãäœéãããã ãããã
ãã®ãããªåé¡ãè§£ãæ¹æ³ã®ã²ãšã€ãšããŠãå³ã®ããã«ãçµã¿åãããç·åœããã§æžãæ¹æ³ãããã
倧äžå°ã®åèš3åã®ãµã€ã³ãããããã A,B,C ãšããŠè¡šãããããã®æåã«ãã©ã®ç®ãåºãã°åèš5ã«ãªãããèãããšãçµæã¯å³ã®ããã«ãªãã
ãã®ãããªå³ã 暹圢å³(ãã
ããã) ãšããã
3åã®ãµã€ã³ãããµããšããç®ã®åã6ã«ãªãå Žåã¯äœéããããã
æåã«ãnåã®ç°ãªã£ããã®ãäžŠã¹æããå Žåã®æ°ãæ°ããã ãŸãæåã«äžŠã¹ããã®ã¯nåãæ¬¡ã«äžŠã¹ããã®ã¯(n-1)åããã®æ¬¡ã«äžŠã¹ããã®ã¯(n-2)å ... ãšã ãã ããšéžã¹ããã®ã®æ°ãæžã£ãŠè¡ããæåŸã«ã¯1åããæ®ããªããªãããšã«æ³šç®ãããšããã®äºæã«é¢ããå Žåã®æ°ã¯
ãšãªãã1ããnãŸã§ã®èªç¶æ°ã®ç©ã«ãªãã ãã®æ°ã éä¹ (ããããããfactorial)ãšåŒã³ãéä¹nã®èšå·ã¯ n ! {\displaystyle n!} ã§è¡šãã
ããªãã¡ãéä¹ã¯
n ! = n ( n â 1 ) ( n â 2 ) ⯠3 â
2 â
1 {\displaystyle n!=n(n-1)(n-2)\cdots 3\cdot 2\cdot 1}
ãšå®çŸ©ãããããã®éä¹ã®èšå·ã䜿ãã°ããã®åé¡ã®ãšãã®å Žåã®æ°ã¯ n!ã§ãããšèšãããšãåºæ¥ãã
ãããããèšç®ããã
ãçšããŠèšç®ããã°ããã çãã¯ã
ãšãªãã
ããããã«1ãã5ãŸã§ã®æ°åãæžããã5æã®ã«ãŒãã眮ããŠããã ãã®ã«ãŒããäžŠã¹æãããšãã (I)ã«ãŒãã®äžŠã¹æ¹ã®æ°ã (II)å¶æ°ãåŸãããã«ãŒãã®äžŠã¹æ¹ã®æ°ã (III)奿°ãåºãã«ãŒãã®äžŠã¹æ¹ã®æ°ããããããèšç®ããã
(I) ã«ãŒãã®æ°ã5æã§ãããããåºå¥ã§ããããšãããã«ãŒãã®äžŠã¹æ¹ã®æ°ã¯
ãšãªãã120ãšãªãã
(II) å¶æ°ãåŸãããã«ã¯äžã®äœã§ããæãå³ã«åºãã«ãŒãããå¶æ°ãšãªãã°ããã ãã®ãããªã«ãŒãã¯2ãš4ã§ãããããããã«å¯ŸããŠåŸã®4æã¯èªç±ã«éžãã§ããã ãã®ããããã®ãããªã«ãŒãã®äžŠã¹æ¹ã¯ã
ãšãªãã
(III) 奿°ãåŸãããã«ã¯äžã®äœã§ããæãå³ã«åºãã«ãŒããã奿°ãšãªãã°ããã ãã®ãããªã«ãŒãã¯1,3,5ã§ãããããããã«å¯ŸããŠåŸã®4æã¯èªç±ã«éžãã§ããã ãã®ããããã®ãããªã«ãŒãã®äžŠã¹æ¹ã¯ã
ãšãªããäžæ¹ã5æã®ã«ãŒããäžŠã¹æããŠåŸãããæ°ã¯å¿
ãå¶æ°ã奿°ã® ã©ã¡ããã§ããã®ã§ã(I)ã®çµæãã(II)ã®çµæãåŒãããšã«ãã£ãŠã (III)ã®çµæã¯åŸãããã¯ãã ããå®éã«ãããèšç®ãããš
ãšãªãã確ãã«ãã®ããã«ãªã£ãŠããã
0,1,2,3,5ãæžããã5æã®ã«ãŒããããããããäžŠã³æãããšãã
ãããããæ±ããã
(I) å
é ã0ã«ãªã£ããšãã«ã¯5æ¡ã®æ°ã«ãªããªãããšã«æ³šæããã°ãããæ±ããå Žåã®æ°ã¯
ãšãªãã
(II) æåã0ã§ãªãæåŸã0ã2ã§ããæ°ãæ°ããã°ããããŸããæåŸã0ã§ãããšãã«ã¯ãæ®ãã®4æã¯ä»»æã§ããã®ã§
éãã®çµã¿åãããããã
次ã«ãæåŸã2ã§ãããšãã«ã¯æåã¯0ã§ãã£ãŠã¯ãããªãã®ã§ã
éãããã 2ã€ãåãããæ°ã5æ¡ã®å¶æ°ãåŸãããå Žåã®æ°ã§ãããçãã¯ã
ãšãªãã
(III) (I)ã®çµæãã(II)ã®çµæãåŒãã°ããããããã§ã¯ãã®çµæãæ£ãããã©ãã 確ãããããã«ã5æ¡ã®å¥æ°ãåŸãããçµã¿åãããæ°ãäžããŠã¿ãã 5æ¡ã®å¥æ°ãåŸãããã«ã¯æåŸã®æ°ã¯1,3,5ã®ããããã§ãªããŠã¯ãªããªãã ãã®ãã¡ã®ã©ã®å Žåã«ã€ããŠã5æ¡ã®æ°ãåŸãããã«ã¯æåã®æ°ã0ã§ åã£ãŠã¯ãªããªãã®ã§ããããã®å Žåã®æ°ã¯ã
ãšãªãããã5æ¡ã®å¥æ°ãåŸãå Žåã®æ°ã§ããã (II)ã®çµæãšè¶³ãåããããšç¢ºãã«(I)ã®çµæãšçãã96ãåŸãã
(IV) 5ã®åæ°ãåŸãããã«ã¯æåŸã®æ°ã0ã5ã§ããã°ããã ãã®ãšãæåŸã0ã«ãªãå Žåã®æ°ã¯ä»ã®4ã€ãä»»æã§ãããã
ååšãããæ¬¡ã«ãæåŸã5ã«ãªãå Žåã®æ°ã¯æåã®æ°ã0ã§ãã£ãŠã¯ãªããªããã
ã ãååšããã ãã£ãŠçãã¯
ãšãªãã
nåã®ç°ãªã£ããã®ããråãéžãã§ãé çªãã€ããŠäžŠã¹ã仿¹ã®æ°ãã n P r {\displaystyle {}_{n}\mathrm {P} _{r}} ãšæžãã ãŸãããã®ãããªèšç®ã®ä»æ¹ã é å (ãã
ããã€ãè±:permutation) ãšããã
nåã®ç°ãªã£ããã®ããråãéžãã§é çªãã€ããŠäžŠã¹ã仿¹ã®æ°ã®ããš ãã
ã®ããã«èšãã
æåã«äžŠã¹ããã®ã¯néããæ¬¡ã«äžŠã¹ããã®ã¯ (nâ1)éã ããã®æ¬¡ã«äžŠã¹ããã®ã¯ (nâ2)éã ,... æåŸã«ã¯ (nâ(râ1))éã ãšããããã«ãã ãã ãéžã¹ããã®ã®æ°ãæžã£ãŠè¡ãããšã«æ³šç®ãããšãé åã®ç·æ°ãšããŠ
ãåŸãããã
äžè¬ã« n P r {\displaystyle {}_{n}\mathrm {P} _{r}} ã§ã¯ n â§ r ã§ããã
(I)
(II)
(III)
(IV)
(V)
(VI)
ãããããèšç®ããã
ãããã
ãçšããŠèšç®ããã°ããã
çµæã¯ã (I)
(II)
(III)
(IV)
(V)
(VI)
ãšãªãã
(V)ãš(VI)ã«ã€ããŠã¯äžè¬çã«æŽæ°nã«å¯ŸããŠ
ãåŸãããããã®ãšã
ã¯å
ã
ã®é åã®å®çŸ©ãããããš"nåã®ãã®ã®äžãã1ã€ãéžã°ãªãå Žåã®æ°"ã«å¯Ÿå¿ããŠãããå°ã
äžèªç¶ãªããã«æãããããã®ããã«å€ã眮ããŠãããšäŸ¿å©ã§ããããéåžžãã®ããã«çœ®ãã®ã§ãããããŸããå®éã®å Žåã®æ°ã®èšç®ã§ãã®ãããªå€ãæ±ãããšã¯å€ãã¯ãªããšãããã
A, B, C, D, E ã®5人ãååœ¢ã«æãã€ãªãã§èŒªãã€ãããšãããã®äžŠã³æ¹ã¯äœéããããã
ãã®ãããªåé¡ã®å Žåãå³ã®ããã«ãå転ãããšéãªã䞊ã³ã¯åã䞊ã³ã§ãããšèããã
è§£ãæ¹ã®èãæ¹ã¯æ°çš®é¡ããã
ã©ã¡ãã«ãããçµæã¯
ã§ããã
äžè¬ã« ç°ãªã nå ã®ãã®ãå圢ã«äžŠã¹ããã®ãåé åãšããã
åé åã®ç·æ°ãšããŠã次ã®ããšãæãç«ã€ã
ç°ãªã nå ã®åé åã®ç·æ°ã¯ ( n â 1 ) ! {\displaystyle (n-1)!} ã§ããã
nåã®ç°ãªã£ããã®ããråãéžãã§ãé çªãã€ããã«äžŠã¹ã仿¹ã®æ°ãã n C r {\displaystyle {}_{n}\mathrm {C} _{r}} ãšæžãããã®ãããªèšç®ã çµã¿åãã(combination) ãšããã äŸãã°ãããã€ãããããŒã«ã«çªå·ããµã£ãŠãããªã©ã®æ¹æ³ã§ãããããã®ããŒã«ãåºå¥ã§ããnåã®ããŒã«ãå
¥ã£ãç®±ã®äžããråã®ããŒã«ãåãã ãæãåãã ããããŒã«ãåãã ããé ã«äžŠã¹ããšãããšããã®å Žåã®æ°ã¯é å n P r {\displaystyle {}_{n}\mathrm {P} _{r}} ã«å¯Ÿå¿ããã
äžæ¹ãåãã ããããŒã«ã®çš®é¡ãéèŠã§ããåãã ããé çªãç¹ã«å¿
èŠã§ãªããšãã«ã¯ããã®å Žåã®æ°ã¯çµã¿åãã n C r {\displaystyle {}_{n}\mathrm {C} _{r}} ã«å¯Ÿå¿ããããããã®æ°ã¯ãäºãã«ç°ãªã£ãå Žåã®æ°ã§ãããäºãã«ç°ãªã£ãèšç®æ³ãå¿
èŠãšãªãã
n C r {\displaystyle {}_{n}\mathrm {C} _{r}} ã¯ã n P r {\displaystyle {}_{n}\mathrm {P} _{r}} éãã®äžŠã¹æ¹ãäœã£ãåŸã«ãããã®äžŠã³ãç¡èŠãããã®ã«çãããããã§ãråãåãã ããŠäœã£ã䞊ã³ã«ã€ããŠãäžŠã¹æ¹ãç¡èŠãããšr!åã®äžŠã³ãåäžèŠãããããšããããã
ãªããªããråã®ãäºãã«åºå¥ã§ããæ°ãèªç±ã«äžŠã³æããå Žåã®æ°ã¯r!ã§ãããããããå
šãŠåäžèŠããããšããã°å
šäœã®å Žåã®æ°ã¯ r!ã®åã ãæžãããšã«ãªãããã§ããããã£ãŠã
ãåŸãããã
æŒç¿åé¡
次ã®å€ãèšç®ãã
(I)
(II)
(III)
(VI)
ããããã«ã€ããŠ
ãçšããŠèšç®ããã°ããã
(I)
(II)
(III)
(VI)
ãšãªãã(IV)ã«ã€ããŠã¯äžè¬ã«æŽæ°nã«å¯ŸããŠ
ãå®çŸ©ããã
ããã¯ããšããšã®çµã¿åããã®èšç®ãšããŠã¯nåã®ç©äœã®ãªããã0åã®ç©äœãéžã¶å Žåã®æ°ã«å¯Ÿå¿ããŠããã å®éã«ã¯ãã®ãããªå Žåã®æ°ãèšç®ããããšèããããšã¯ããŸãç¡ããšæãããããèšç®ã®äŸ¿å®äžã®ããå®çŸ©ãäžã®ããã«ããã ãŸããäžã®èšç®ã§ã¯
ã®åŒããã®ãŸãŸçšãããšã
ã€ãŸãã
ãšãªã£ãŠããã
å®éã«ã¯éä¹ã®èšç®ã¯æŽæ°nã«ã€ããŠã¯nãã1ãŸã§ãäžãããªããããç®ããŠãããšãã仿¹ã§èšç®ãããŠããã®ã§ãäžã®çµæã¯åŠã«æããã ãããå®éã«ã¯ãããé²ãã çè«ã«ãã£ãŠãã®çµæã¯æ£åœåãããã®ã§ããã ãã®å Žåã䟿å®äž
ã0ã®éä¹ã®å®çŸ©ãšããŠåããããã®ã§ããã
æŒç¿åé¡
5åã®ããŒã«ãå
¥ã£ãããŒã«å
¥ããã2ã€ã®ããŒã«ãåãã ããšã(ããŒã«ã¯ãããã åºå¥ã§ãããã®ãšããã)2ã€ã®ããŒã«ã®éžã³æ¹ã¯ã äœéããããèšç®ããã
ããŒã«ã®åãã ãæ¹ã¯çµã¿åããã®æ°ãçšããŠèšç®ã§ããã 5ã€ã®ããŒã«ã®äžãã2ã€ãåãã ãã®ã§ãããããã®å Žåã®æ°ã¯ã
ãšãªãããã£ãŠãããŒã«ã®åãã ãæ¹ã¯10éãã§ããããšããããã
æŒç¿åé¡
6åã®äºãã«åºå¥ã§ããããŒã«ãå
¥ã£ãç®±ãããã ãã®äžãã (I)3ã€ã®ããŒã«ãš2ã€ã®ããŒã«ãåãã ãæ¹æ³ã®å Žåã®æ°ã(II)2ã€ã®ããŒã«ãåãåºãããšã2åããè¿ãããããããå¥ã®äºãã«åºå¥ã§ããè¢ã«ãããå Žåã®æ°ã(III)2ã€ã®ããŒã«ãåãåºãããšã2åããè¿ãããããããå¥ã®äºãã«åºå¥ã§ããªãè¢ã«ãããå Žåã®æ°ããããããèšç®ããã
(I) æåã«ããŒã«ãåãã ããšãã«ã¯ã6ã€ã®ããŒã«ã®äžãã3ã€ã®ããŒã«ãåãã ãããšãããã®å Žåã®æ°ã¯
ã ãããããŸããæ¬¡ã«ãããåãé€ããäžãã2ã€ã®ããŒã«ãåãé€ããšãã«ã¯ ãã®åãã ãæ¹ã¯ã
ã ãããã ãã£ãŠããã®ãšãã®å Žåã®æ°ã¯
ã ãã«ãªããå®éãã®å€ãèšç®ãããšã
ãšãªãã60éãã§ããããšãåããã
(II)
(I)ã®å Žåãšåæ§ã«6ã€ã®ããŒã«ã®äžãã2ã€ã®ããŒã«ã åãã ãããšãããã®å Žåã®æ°ã¯
ã ãããããŸããæ¬¡ã«ãããåãé€ããäžãã2ã€ã®ããŒã«ãåãé€ããšãã«ã¯ ãã®åãã ãæ¹ã¯ã
ã ãããã ãã£ãŠããã®ãšãã®å Žåã®æ°ã¯
ã ãã«ãªããå®éãã®å€ãèšç®ãããšã
ãšãªãã90éãã§ããããšãåããã
(III) (II)ãšåãèšç®ã§å€ãæ±ããããšãåºæ¥ãããä»åã¯ããŒã«ããããè¢ã äºãã«åºå¥ã§ããªãããšã«æ³šæããªããŠã¯ãªããªãã ãã®ããšã«ãã£ãŠãèµ·ããããå Žåã®æ°ã¯(II)ã®å Žåã®ååã«ãªãã®ã§ æ±ããå Žåã®æ°ã¯45éããšãªãã
n C r {\displaystyle {}_{n}\mathrm {C} _{r}} ã«ã€ããŠä»¥äžã®åŒãæãç«ã€ã
å°åº
ãçšãããšã
ãåŸããã瀺ãããã
åæ§ã«
ãçšãããšã
ãšãªã瀺ãããã
æåã®åŒã¯ãç°ãªãnåã®ãã®ã®ãã¡råã«Xãšããã©ãã«ãã€ããæ®ãã®n-råã«Yãšããã©ãã«ãã€ããå Žåã®æ°ããæ±ããããšãã§ãããç°ãªãnåã®ãã®ã®ãã¡ããråãéžã³ã©ãã«Xãã€ããæ®ãã«ã©ãã«Yãã€ããå Žåã®æ°ã¯ n C r {\displaystyle _{n}\mathrm {C} _{r}} ã§ãããç°ãªãnåã®ãã®ã®ãã¡ããn-råãéžã³ãã©ãã«Yãã€ããæ®ãã«ã©ãã«Xãã€ããå Žåã®æ°ã¯ n C n â r {\displaystyle _{n}\mathrm {C} _{n-r}} ã§ãããåœç¶ãåè
ãšåŸè
ã®å Žåã®æ°ã¯çããã®ã§ãããããã n C r = n C n â r {\displaystyle _{n}\mathrm {C} _{r}=_{n}\mathrm {C} _{n-r}} ãæ±ããããã
2ã€ç®ã®åŒã¯ã "nåã®ãã®ããråãéžã¶ä»æ¹ã®æ°ã¯ãæ¬¡ã®æ°ã®åã§ããã æåã®1ã€ãéžã°ãã«ä»ã®n-1åããråãéžã¶ä»æ¹ã®æ°ãšãæåã®1ã€ãéžãã§ä»ã®n-1åããr-1åãéžã¶ä»æ¹ã®æ°ãšã® åã§ããã" ãšããããšã衚ãããŠããã
ãçšã㊠(I)
(II)
(III)
(VI)
ãããããèšç®ããã
äžã®åŒãçšããŠèšç®ããããšãåºæ¥ãããã¡ããçŽæ¥ã«èšç®ããŠã çããåŸãããšãåºæ¥ãããéåžžã¯ç°¡ååããŠããèšç®ããæ¹ãæ¥œã§ããã (I)
(II)
(III)
(VI)
ãšãªãã
å³ã®ãããªã«ãŒããå·Šäžã®ç¹ããå³äžã®ç¹ãŸã§æ©ããŠè¡ã人ãããã ãã ãããã®äººã¯å³ãäžã«ããé²ããªããšããããã®ãšãã
ãèšç®ããããã ãaç¹ã¯*ãšæžãããŠããç¹ã®ããäžã®éè·¯ã®ããšããããŠããã ããããã®ã«ãŒãã¯éåããŠããªã瞊4ã€ã暪5ã€ã®ç¢ç€ç®äžã®ã«ãŒãã« ãªã£ãŠããããšã«æ³šæããã
___________
|_|_|_|_|_|
|_|_|*|_|_|
|_|_|_|_|_|
|_|_|_|_|_|
(I) å·Šäžã«ãã人ã¯9åé²ãããšã§å³äžã®ç¹ã«èŸ¿ãçããããã®ãããå·Šäžã«ãã人ãéžã³ããã«ãŒãã®æ°ã¯9åã®ãã¡ã®ã©ã®åã§å³ã§ã¯ãªãäžã éžã¶ãã®å Žåã®æ°ã«çããããã®ãããªå Žåã®æ°ã¯ã9åã®ãã¡ããèªç±ã«4ã€ã®å Žæãéžã¶æ¹æ³ã«çãããçµã¿åãããçšããŠæžãããšãåºæ¥ããå®éã«9åã®ãã¡ããèªç±ã«4ã€ã®å Žæãéžã¶æ¹æ³ã¯ã
ã§æžãããããã®éãèšç®ãããšã
ãåŸãããã
(II) aç¹ãééããŠé²ãã«ãŒãã®æ°ã¯aç¹ã®å·Šã®ç¹ãŸã§ãã£ãŠããaç¹ãééããaç¹ã®å³ã®ç¹ãéã£ãŠå³äžã®ç¹ãŸã§ãã仿¹ã®æ°ã«çããã ããããã®ã«ãŒãã®æ°ã¯(I)ã®æ¹æ³ãçšããŠèšç®ããããšãã§ããããã®æ°ãå®éã«èšç®ãããšã
ãšãªãã36éãã§ããããšãåããã
æŒç¿åé¡ r n C r = n n â 1 C r â 1 {\displaystyle r_{n}\mathrm {C} _{r}=n_{n-1}\mathrm {C} _{r-1}} ã瀺ã
r n C r = r n ! r ! ( n â r ) ! = n ( n â 1 ) ! ( r â 1 ) ( ( n â 1 ) â ( r â 1 ) ) ! = n n â 1 C r â 1 {\displaystyle r_{n}\mathrm {C} _{r}=r{\frac {n!}{r!(n-r)!}}=n{\frac {(n-1)!}{(r-1)((n-1)-(r-1))!}}=n_{n-1}\mathrm {C} _{r-1}}
ç°ãªãnåã®ç©ºç®±ã«råã®ãã®ãå
¥ããå Žåã®æ°ãéè€çµã¿åãããšããã n H r {\displaystyle _{n}\mathrm {H} _{r}} ã§è¡šãã
éè€çµåãã«ã€ããŠæ¬¡ã®ããã«èå¯ããã
x 1 , x 2 , ⯠, x n , r {\displaystyle x_{1},x_{2},\cdots ,x_{n},r} ãéè² æŽæ°ãšããæ¹çšåŒ x 1 + x 2 + ⯠+ x n = r {\displaystyle x_{1}+x_{2}+\cdots +x_{n}=r} ã®è§£ã®åæ°ã«ã€ããŠèããããã®è§£ã®åæ°ã¯ x 1 , x 2 , ⯠, x n {\displaystyle x_{1},x_{2},\cdots ,x_{n}} ã« r {\displaystyle r} åã®1ãåé
ããå Žåã®æ°ãšèããããšãã§ããã®ã§ãéè€çµã¿åããã®å®çŸ©ããã n H r {\displaystyle _{n}\mathrm {H} _{r}} ã§ããã
ãŸãããã®æ¹çšåŒã®éè² æŽæ°è§£ã®åæ°ã¯ãråã®âã«n-1åã®åºåãã眮ãå Žåã®æ°ãšãèãããããã€ãŸããâââ...ââ(rå)ã«n-1åã®åºåã|ã䞊ã¹ããšâ|ââ|...â|âã®ããã«ãªããããã§ãå·Šããé ã«åºåãã§åºåãããâã®åæ°ãããããã x 1 , x 2 , ⯠, x n {\displaystyle x_{1},x_{2},\cdots ,x_{n}} ãšãããšãããã¯æ¹çšåŒã®è§£ãšãªãã
ãã®å Žåã®æ°ã¯ãråã®âãšn-1åã®åºåã|ã䞊ã¹ããå Žåã®æ°ãªã®ã§ã n + r â 1 C r {\displaystyle _{n+r-1}\mathrm {C} _{r}} ã§ãããæ¹çšåŒã®éè² æŽæ°è§£ã®åæ°ã«ã€ããŠ2éãã®æ¹æ³ã§æ±ãŸã£ãã®ã§ãããã¯çããã n H r = n + r â 1 C r {\displaystyle _{n}\mathrm {H} _{r}=_{n+r-1}\mathrm {C} _{r}} ãæãç«ã€ã
ããå Žåã®æ°ããå®éã«çŸãããå²åã®ããšã確ç(ãããã€ãè±:probability)ãšåŒã¶ã
ããå Žåã®æ°ãå®éã«çŸãããå²åã¯ããã®å Žåã®æ°ãå²ãç®ã§ããã®äºæã«ãããŠèµ·ããåŸãå
šãŠã®äºæã®å Žåã®æ°ã§å²ã£ããã®ã«çããã
ããšãã°ãå
šãçããå²åã§å
šãŠã®é¢ãåºãããããããµã£ããšãã«1ãåºã確ç㯠1 6 {\displaystyle {\frac {1}{6}}} ã§ããã ããã¯1ãåºãå Žåã®æ°1ãã1,2,3,4,5,6ã®ãããããåºãå Žåã®æ°6ã§å²ã£ããã®ã«çããã
èµ€ç2åãšçœç3åãå
¥ã£ãè¢ãããçã2ååæã«åãåºãããã®ãšãã2åãšãçœçãåºã確çãæ±ããã
èµ€çœããããŠ5åã®çãã2åãåãåºãæ¹æ³ã¯
ãã®ãã¡ã2åãšãçœçã«ãªãå Žåã¯
ãã£ãŠæ±ãã確ç㯠3 10 {\displaystyle {\frac {3}{10}}}
確çã®å®çŸ©ãããæ¬¡ã®æ§è³ªãåŸãããã
2ã€ã®äºè±¡A,Bãåæã«èµ·ãããªããšããäºè±¡AãšBã¯äºãã«æå(ã¯ãã¯ããè±:exclusive)ã§ããããŸãã¯AãšBã¯æåäºè±¡ã§ãããšããã
ç·å7人ã女å5人ã®äžãããããåŒãã§3人ã®å§å¡ãéžã¶ãšãã3人ãšãåæ§ã§ãã確çãæ±ããã
12人ã®äžãã3人ã®å§å¡ãéžã¶å Žåã®æ°ã¯
ããã§ãã3人ãšãç·åã§ãããäºè±¡ãAãã3人ãšã女åã§ãããäºè±¡ãBãšãããšãã3人ãšãåæ§ã§ãããäºè±¡ã¯ãåäºè±¡A ⪠Bã§ãããããããAãšBã¯æåäºè±¡ã§ããã
ãã£ãŠæ±ãã確ç㯠P ( A ⪠B ) = P ( A ) + P ( B ) = 35 220 + 10 220 = 45 220 = 9 44 {\displaystyle P(A\cup B)=P(A)+P(B)={\frac {35}{220}}+{\frac {10}{220}}={\frac {45}{220}}={\frac {9}{44}}}
äºè±¡Aã«å¯ŸããŠããAã§ãªããäºè±¡ã A Ì {\displaystyle {\overline {A}}} ã§è¡šããAã®äœäºè±¡(ããããã)ãšããã
èµ€ç5åãçœç3åã®èš8åå
¥ã£ãŠããè¢ãã3åã®çãåãåºããšããå°ãªããšã1åã¯çœçã§ãã確çãæ±ããã
8åã®çãã3åã®çãåãåºãå Žåã®æ°ã¯
ããŸããå°ãªããšã1åã¯çœçã§ãããäºè±¡ãAãšãããšã A Ì {\displaystyle {\overline {A}}} ã¯ã3åãšãèµ€çã§ããããšããäºè±¡ã ãã
ãã£ãŠæ±ãã確çã¯
ãããã«ä»ã®çµæã«å¯ŸããŠåœ±é¿ããããŒããªãæäœãç¹°ãããããšããããããã®è©Šè¡ã¯ç¬ç«(ã©ããã€ãè±:independent)ã§ãããšèšããç¬ç«ãªè©Šè¡ã«ã€ããŠã¯ããã詊è¡ã®èµ·ãã確çãå®ããããŠããŠããããnåç¹°ããããããšããããããèµ·ãã確çã¯ãããããã®è©Šè¡ãèµ·ãã確çã®ç©ãšãªãã
èµ€ç3åãçœç2åã®èš5åå
¥ã£ãŠããè¢ãããããã®äžãã1åã®çãåãåºããŠè²ã確ãããŠããè¢ã«æ»ããåã³1åãåãåºããšãã1åç®ã¯èµ€çã2åç®ã¯çœçãåãåºã確çãæ±ããã
1åç®ã«åãåºããçãè¢ã«æ»ãã®ã§ãã1åç®ã«åãåºãã詊è¡ãšã2åç®ã«åãåºãã詊è¡ãšã¯äºãã«ç¬ç«ã§ããã 1åç®ã«åãåºãã1åãèµ€çã§ãã確ç㯠3 5 {\displaystyle {\frac {3}{5}}}
2åç®ã«åãåºãã1åãçœçã§ãã確ç㯠2 5 {\displaystyle {\frac {2}{5}}} ãããã£ãŠæ±ãã確çã¯
åã詊è¡ãäœåãç¹°ãè¿ããŠè¡ããšããååã®è©Šè¡ã¯ç¬ç«ã§ããããã®äžé£ã®ç¬ç«ãªè©Šè¡ããŸãšããŠèãããšãããããå埩詊è¡(ã¯ãã·ã ããã)ãšããã
1åã®ããããã5åæãããšãã3ã®åæ°ã®ç®ã4ååºã確çãæ±ããã
1åã®ããããã1åæãããšãã3ã®åæ°ã®ç®ãåºã確çã¯
ãã£ãŠã1åã®ããããã5åæãããšãã3ã®åæ°ã®ç®ã4ååºã確çã¯
èšå·ãΣãã«ã€ããŠã¯ãã¡ããåç
§ã
ãã詊è¡ããã£ããšãã ãã®è©Šè¡ã§åŸããããšæåŸ
ãããå€ã®ããšãæåŸ
å€(ãããã¡ãè±:expected value)ãšãããæåŸ
å€ã¯ãnåã®äºè±¡ r k ( k = 1 , 2 , ⯠, n ) {\displaystyle r_{k}\ (k=1,2,\cdots ,n)} ã«å¯ŸããŠãåã
v k {\displaystyle v_{k}} ãšããå€ãåŸãããäºè±¡ r k {\displaystyle r_{k}} ãèµ·ãã確çã p k {\displaystyle p_{k}} ã§äžããããŠãããšãã
ã«ãã£ãŠäžãããããäŸãã°ãããããããµã£ããšãåºãç®ã®æåŸ
å€ã¯ã
ãšãªãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ããšãã°ããã¯ãããäžåã«äžŠã¹ãå ŽåãäžŠã¹æ¹ã®æ°ã«ã¯ãããã€ãã®æ¹æ³ãããããã£ããã«å
šãŠã®äžŠã³æ¹ã詊ãããšããæéããããã°å®éšå¯èœã§ããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãã®ããã«ããå
šéšã§äœéãããããããšããããã®ãäœéããã®ãäœãã«ãããæ°åããå Žåã®æ°(ã°ããã®ãã) ãšåŒã¶ã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãã®ããã«äºæã«ã¯ããããã®ããæ¹ãå
šéšã§äœéãããããæ°ããããšãåºæ¥ãäºæãããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ããäºæã«ã€ããŠ(ãã®ããšãèµ·ãããã)å Žåã®æ°ãæ£ç¢ºã«æ°ããããšãçè§£ã®åºç€ã§ããããã®äºæã«ã€ããŠãã©ã®ããšãèµ·ãããããã©ã®ããšãèµ·ããã¥ããããèŠåããããã®åºç€ãšãªãã ã€ãŸããå Žåã®æ°ã¯äºæãèµ·ãããã確çãšå¯æ¥ãªé¢ä¿ã«ããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "äŸãã°ãããŒã«ãŒãªã©ã®ã«ãŒãã²ãŒã ã§ã¯éããããšãé£ãã圹ã¯é«ãã©ã³ã¯ãäžããããŠãããã ããã¯èµ·ããã«ãã圹ãåºæ¥ããã©ã³ãã®çµã¿åããã®çŸããã確çãå°ããããšã«ããã ãã®ããšã¯ã52æã®ã«ãŒããã5æãåŒããŠæ¥ããšãã«å
šãŠã®ã«ãŒããåŒã確çãåãã§ãããšãããšãããã圹ã«å¯Ÿå¿ããã«ãŒãã®çµã¿åãããåŒãå Žåã®æ°ãããå°ãªãããšã«å¯Ÿå¿ããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãã®ããã«ãå Žåã®æ°ã¯äºæãèµ·ãããã確çãšå¯æ¥ãªé¢ä¿ã«ããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ã«ãŒãã²ãŒã ã®ããã«ç¢ºçãå
·äœçã«èšç®ã§ããå Žåã®ä»ã«ãã確çã®èãæ¹ãçšããŠèšç®ãããäºæã¯å€ãããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ããšãã°ãä¿éº(ã»ãã)ãšåŒã°ãããã®ã¯ããäºæã«å€æ®µãã€ãããã®ã§ãããã ä¿éºãäžãããªããŠã¯ãªããªãäºæãèµ·ããã«ãããšå®¢èгçã«æããããã®ã»ã©ããã®ãã®ã®å€æ®µãäžãããšããç¹åŸŽãããã äŸãã°ãèªåè»ä¿éºã«å å
¥ããã®ã«å¿
èŠãªä»£éã¯è¥è
ã§ã¯é«ãã幎什ãéããããšã«äœããªã£ãŠããã ããã¯ãè¥è
ã¯èªåè»ã®å
èš±ãååŸããŠæéãçãå Žåãå€ããä¿éºéã®æ¯æãå¿
èŠãšããèªåè»äºæ
ããããå¯èœæ§ãé«ãããšã«ããã ãã£ãœãã幎什ãéãããã®ã«ã€ããŠã¯éè»¢ã®æéãæãšãšãã«äžéãããšäžè¬ã«èããããã®ã§ä¿éºããããããã®ä»£éã¯å°ãªããªãã®ã§ããã ãŸããåãè¥è
ã§ãæ¢ã«äœåºŠãäºæ
ãéãããã®ã¯åã幎代ã®ä»ã®è¥è
ãããä¿éºæãé«ããªãåŸåãããã ããã¯ãäœåºŠãäºæ
ãéãããã®ã¯é転ã®ä»æ¹ã«äœããã®åé¡ãããåŸåããããããã«ãã£ãŠãµããã³äºæ
ããããå¯èœæ§ãéåžžã®ãã®ãšæ¯ã¹ãŠããé«ããšèããããããšã«ããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "éè¡ã®èè³(ããã)ã§ããã¯ã確çã®èããçšããŠé«ãå©çãåºãããšãå®è·µãããŠããã èè³ã§ããã¯ãä¿éºæ¥ãšããªããããã貞åãã«ãªãå¯èœæ§ãé«ãçžæã«å¯ŸããŠã¯é«ãéå©ã§è³éã貞ãä»ãã ããå®å®ããè³éãæã£ãŠããçžæã«å¯ŸããŠã¯ããäœãéå©ã§è³éã貞ãä»ããããšãå®è¡ããŠæ¥ãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "å©çãå®å®çã«çšŒãæ¹æ³ãšããŠãããã€ãã®äŒç€Ÿãçºè¡ããäºãã«æ§è³ªã®ç°ãªã£ãæ ªãªã©ãåãããŠè³Œå
¥å
ã忣ããããšã§æ ªã®å€æ®µãäžãã£ããšãã§ã倿®µãããŸãæžãããšãç¡ãããã«ããæ¹æ³ãèæ¡ãããŠããã (ãã ãã倿®µãæžãã¥ããã®ãšåæ§ã«ã倿®µã¯äžããã¥ããã) ããã¯ãæ§è³ªã®ç°ãªã£ãååãåãããŠæ±ãããšã§ã倿®µãæ¥å€ãã確çãäžããããšãåºæ¥ãããšã衚ãããŠããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãããã確çã§ã¯ãå¿
ãããäºæž¬ããéãã«äºãé²ãããã§ã¯ç¡ãããšã«æ³šæããå¿
èŠãããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãã®ç« ã§ã¯å Žåã®æ°ãšç¢ºçã®èšç®æ³ã玹ä»ããããŸãå
ã«æ§ã
ãªäºæã®å Žåã®æ°ã®èšç®æ³ãæ±ãããã®çµæãçšããŠããäºæãèµ·ãã確çãèšç®ããæ¹æ³ã玹ä»ããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ããã§ã¯ãæééå A ã®èŠçŽ ã®åæ°ã n(A) ã§è¡šãã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ããšãã°ã10以äžã®èªç¶æ°ã®éåã U ãšããŠããã®ãã¡ å¶æ°ã®éåã A ãšããå Žåã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãªã®ã§ãAã®èŠçŽ ã®åæ°ã¯5åãªã®ã§",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ã§ããã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ãªãã U={1, 2, 3, 4, 5, 6 , 7, 8, 9, 10} ã§èŠçŽ ã®åæ°ã¯10åãªã®ã§",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ã§ããã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "次ã®ãããªåé¡ãèããŠã¿ããã 100ãŸã§ã®èªç¶æ°ã®ãã¡ã2ãŸãã¯3ã®åæ°ã¯äœåããã?",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ãã®ãããªåé¡ã®è§£æ³ãèãããããæºåã®åé¡ãšããŠããŸã10ãŸã§ã®èªç¶æ°ã§èããŠã¿ããã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "å
çšã®äŸé¡ã§2ã®åæ°ã«ã€ããŠã¯èããã®ã§ã次ã®åé¡ãšããŠ10ãŸã§ã®3ã®åæ°ã®åæ°ã«ã€ããŠèãããã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "10以äžã®èªç¶æ°ã®éåã U ãšããŠããã®ãã¡ 3ã®åæ°ã®éåã B ãšããå Žåã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "B={3, 6 , 9} ãªã®ã§ãBã®èŠçŽ ã®åæ°ã¯3åãªã®ã§",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ã§ããã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ããŠã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ã«ã¯å
±éã㊠6 ãšããèŠçŽ ãå«ãŸããŠããã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "èªç¶æ°10ãŸã§ã«ãã2ãŸãã¯3ã®åæ°ã«ãããèŠçŽ ã¯ã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ã§ãããèŠçŽ ã®åæ°ããããããš 7åã§ããã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "äžæ¹ã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ã§ããã1åå€ãã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ãã®ããã«1åå€ããªã£ãŠããŸã£ãåå ã¯ã éåAãšéåBã«å
±éããŠå«ãŸããŠããèŠçŽ 6 ãäºéã«æ°ããŠããŸã£ãŠããããã§ããã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "äžè¬ã«ã2ã€ã®éåA,Bã®èŠçŽ ã®åæ° n(A) ãš n(B) ãçšããŠãAãŸãã¯Bã®æ¡ä»¶ãæºããèŠçŽ ã®åæ°ããããããå Žåã«ã¯ãAãšBã«å
±éããŠå«ãŸããŠããèŠçŽ ã®åæ°ãå·®ãåŒããªããã°ãªããªãã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ãã®ããšãåŒã§è¡šããš",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "ã«ãªãã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "ãã ãããâªããšã¯åéåã®èšå·ã§ã AâªB ãšã¯ éåAãšéåBã®åéåã®ããšã§ããã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "ãâ©ããšã¯å
±ééšåã®èšå·ã§ã ãAâ©Bããšã¯ éåAãšéåBã®å
±ééšåã®ããšã§ããã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "ã§ã¯ããã®å
¬åŒãåèã«ã㊠100ãŸã§ã®èªç¶æ°ã®ãã¡ã2ãŸãã¯3ã®åæ°ã¯äœåããã? ã®çããæ±ãããã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "100ãŸã§ã®èªç¶æ°ã®ãã¡ã®ã2ã®åæ°ã®éåãAãšããŠã3ã®åæ°ã®éåãBãšãããš",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "ããã«ã2ã®åæ°ã§ããã3ã®åæ°ã§ãããæ°ã®éå Aâ©B ãšã¯ãã€ãŸã6ã®åæ°ã®éåã®ããšã§ãã(ãªããªã 2 ãš 3 ã®æå°å
¬åæ°ã 6 ãªã®ã§)ã 96÷6=16 ãªã®ã§ãAâ©B ã®èŠçŽ ã®åæ°ã¯ 16 åãã€ãŸã n(Aâ©B)= 16 ã§ããã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "ãããŠãå
¬åŒ",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "ãé©çšãããšã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "ã§ããã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ãã£ãŠã100ãŸã§ã®èªç¶æ°ã®ãã¡ã®2ãŸãã¯3ã®åæ°ã®åæ°ã¯ 67å ã§ããã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "3ã€ã®æééåã®åéåã®èŠçŽ ã®åæ°ã«ã€ããŠã¯ã次ã®å
¬åŒãæãç«ã€",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "n(AâªBâªC) = n(A) + n(B) + n(C) ân(Aâ©B) ân(Bâ©C) ân(Câ©A) + n(Aâ©Bâ©C)",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "å³ã®å³ãåèã«ãäžã®å
¬åŒã蚌æããã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "100以äžã®èªç¶æ°ã®ãã¡ã2ã®åæ°ãŸãã¯3ã®åæ°ãŸãã¯5ã®åæ°ã§ãããã®ã®åæ°ãæ±ããã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "(è§£æ³)",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "ãŸãã100以äžã®èªç¶æ°ã®ãã¡ã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "ãšããã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "100÷2=50ãªã®ã§ã100ã¯50çªç®ã®2ã®åæ°ã§ããããã£ãŠ100以äžã®2ã®åæ°ã¯50åã§ãããåæ§ã«èããŠèŠçŽ ã®åæ°ãæ±ãããšã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "ã§ããã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "äžæ¹ã100以äžã®èªç¶æ°ã®ãã¡",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ãšãªãã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ãã£ãŠãå
ã»ã©ãšåæ§ã«èãããš",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "ãŸãã100以äžã®èªç¶æ°ã®ãã¡ã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "Aâ©Bâ©C ã®èŠçŽ ã®åæ°ã¯",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "ã§ããã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "ãã£ãŠã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "ãªã®ã§ã100以äžã®èªç¶æ°ã®ãã¡ã®2ã®åæ°ãŸãã¯3ã®åæ°ãŸãã¯5ã®åæ°ã§ãããã®ã®åæ°ã¯ 74åã§ããã",
"title": "éåã®èŠçŽ ã®åæ°"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "ããšãã°å€§äžå°3åã®ãµã€ã³ãããµã£ãŠãç®ã®åã5ã«ãªãç®ã®çµã¯ãäœéãããã ãããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "ãã®ãããªåé¡ãè§£ãæ¹æ³ã®ã²ãšã€ãšããŠãå³ã®ããã«ãçµã¿åãããç·åœããã§æžãæ¹æ³ãããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "倧äžå°ã®åèš3åã®ãµã€ã³ãããããã A,B,C ãšããŠè¡šãããããã®æåã«ãã©ã®ç®ãåºãã°åèš5ã«ãªãããèãããšãçµæã¯å³ã®ããã«ãªãã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "ãã®ãããªå³ã 暹圢å³(ãã
ããã) ãšããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "3åã®ãµã€ã³ãããµããšããç®ã®åã6ã«ãªãå Žåã¯äœéããããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "æåã«ãnåã®ç°ãªã£ããã®ãäžŠã¹æããå Žåã®æ°ãæ°ããã ãŸãæåã«äžŠã¹ããã®ã¯nåãæ¬¡ã«äžŠã¹ããã®ã¯(n-1)åããã®æ¬¡ã«äžŠã¹ããã®ã¯(n-2)å ... ãšã ãã ããšéžã¹ããã®ã®æ°ãæžã£ãŠè¡ããæåŸã«ã¯1åããæ®ããªããªãããšã«æ³šç®ãããšããã®äºæã«é¢ããå Žåã®æ°ã¯",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "ãšãªãã1ããnãŸã§ã®èªç¶æ°ã®ç©ã«ãªãã ãã®æ°ã éä¹ (ããããããfactorial)ãšåŒã³ãéä¹nã®èšå·ã¯ n ! {\\displaystyle n!} ã§è¡šãã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "ããªãã¡ãéä¹ã¯",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "n ! = n ( n â 1 ) ( n â 2 ) ⯠3 â
2 â
1 {\\displaystyle n!=n(n-1)(n-2)\\cdots 3\\cdot 2\\cdot 1}",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "ãšå®çŸ©ãããããã®éä¹ã®èšå·ã䜿ãã°ããã®åé¡ã®ãšãã®å Žåã®æ°ã¯ n!ã§ãããšèšãããšãåºæ¥ãã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "ãããããèšç®ããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "ãçšããŠèšç®ããã°ããã çãã¯ã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "ãšãªãã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "ããããã«1ãã5ãŸã§ã®æ°åãæžããã5æã®ã«ãŒãã眮ããŠããã ãã®ã«ãŒããäžŠã¹æãããšãã (I)ã«ãŒãã®äžŠã¹æ¹ã®æ°ã (II)å¶æ°ãåŸãããã«ãŒãã®äžŠã¹æ¹ã®æ°ã (III)奿°ãåºãã«ãŒãã®äžŠã¹æ¹ã®æ°ããããããèšç®ããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "(I) ã«ãŒãã®æ°ã5æã§ãããããåºå¥ã§ããããšãããã«ãŒãã®äžŠã¹æ¹ã®æ°ã¯",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "ãšãªãã120ãšãªãã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "(II) å¶æ°ãåŸãããã«ã¯äžã®äœã§ããæãå³ã«åºãã«ãŒãããå¶æ°ãšãªãã°ããã ãã®ãããªã«ãŒãã¯2ãš4ã§ãããããããã«å¯ŸããŠåŸã®4æã¯èªç±ã«éžãã§ããã ãã®ããããã®ãããªã«ãŒãã®äžŠã¹æ¹ã¯ã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "ãšãªãã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "(III) 奿°ãåŸãããã«ã¯äžã®äœã§ããæãå³ã«åºãã«ãŒããã奿°ãšãªãã°ããã ãã®ãããªã«ãŒãã¯1,3,5ã§ãããããããã«å¯ŸããŠåŸã®4æã¯èªç±ã«éžãã§ããã ãã®ããããã®ãããªã«ãŒãã®äžŠã¹æ¹ã¯ã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "ãšãªããäžæ¹ã5æã®ã«ãŒããäžŠã¹æããŠåŸãããæ°ã¯å¿
ãå¶æ°ã奿°ã® ã©ã¡ããã§ããã®ã§ã(I)ã®çµæãã(II)ã®çµæãåŒãããšã«ãã£ãŠã (III)ã®çµæã¯åŸãããã¯ãã ããå®éã«ãããèšç®ãããš",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "ãšãªãã確ãã«ãã®ããã«ãªã£ãŠããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "0,1,2,3,5ãæžããã5æã®ã«ãŒããããããããäžŠã³æãããšãã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "ãããããæ±ããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "(I) å
é ã0ã«ãªã£ããšãã«ã¯5æ¡ã®æ°ã«ãªããªãããšã«æ³šæããã°ãããæ±ããå Žåã®æ°ã¯",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "ãšãªãã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "(II) æåã0ã§ãªãæåŸã0ã2ã§ããæ°ãæ°ããã°ããããŸããæåŸã0ã§ãããšãã«ã¯ãæ®ãã®4æã¯ä»»æã§ããã®ã§",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "éãã®çµã¿åãããããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "次ã«ãæåŸã2ã§ãããšãã«ã¯æåã¯0ã§ãã£ãŠã¯ãããªãã®ã§ã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "éãããã 2ã€ãåãããæ°ã5æ¡ã®å¶æ°ãåŸãããå Žåã®æ°ã§ãããçãã¯ã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "ãšãªãã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "(III) (I)ã®çµæãã(II)ã®çµæãåŒãã°ããããããã§ã¯ãã®çµæãæ£ãããã©ãã 確ãããããã«ã5æ¡ã®å¥æ°ãåŸãããçµã¿åãããæ°ãäžããŠã¿ãã 5æ¡ã®å¥æ°ãåŸãããã«ã¯æåŸã®æ°ã¯1,3,5ã®ããããã§ãªããŠã¯ãªããªãã ãã®ãã¡ã®ã©ã®å Žåã«ã€ããŠã5æ¡ã®æ°ãåŸãããã«ã¯æåã®æ°ã0ã§ åã£ãŠã¯ãªããªãã®ã§ããããã®å Žåã®æ°ã¯ã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "ãšãªãããã5æ¡ã®å¥æ°ãåŸãå Žåã®æ°ã§ããã (II)ã®çµæãšè¶³ãåããããšç¢ºãã«(I)ã®çµæãšçãã96ãåŸãã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "(IV) 5ã®åæ°ãåŸãããã«ã¯æåŸã®æ°ã0ã5ã§ããã°ããã ãã®ãšãæåŸã0ã«ãªãå Žåã®æ°ã¯ä»ã®4ã€ãä»»æã§ãããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "ååšãããæ¬¡ã«ãæåŸã5ã«ãªãå Žåã®æ°ã¯æåã®æ°ã0ã§ãã£ãŠã¯ãªããªããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "ã ãååšããã ãã£ãŠçãã¯",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "ãšãªãã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 104,
"tag": "p",
"text": "nåã®ç°ãªã£ããã®ããråãéžãã§ãé çªãã€ããŠäžŠã¹ã仿¹ã®æ°ãã n P r {\\displaystyle {}_{n}\\mathrm {P} _{r}} ãšæžãã ãŸãããã®ãããªèšç®ã®ä»æ¹ã é å (ãã
ããã€ãè±:permutation) ãšããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 105,
"tag": "p",
"text": "nåã®ç°ãªã£ããã®ããråãéžãã§é çªãã€ããŠäžŠã¹ã仿¹ã®æ°ã®ããš ãã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 106,
"tag": "p",
"text": "ã®ããã«èšãã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 107,
"tag": "p",
"text": "æåã«äžŠã¹ããã®ã¯néããæ¬¡ã«äžŠã¹ããã®ã¯ (nâ1)éã ããã®æ¬¡ã«äžŠã¹ããã®ã¯ (nâ2)éã ,... æåŸã«ã¯ (nâ(râ1))éã ãšããããã«ãã ãã ãéžã¹ããã®ã®æ°ãæžã£ãŠè¡ãããšã«æ³šç®ãããšãé åã®ç·æ°ãšããŠ",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 108,
"tag": "p",
"text": "ãåŸãããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 109,
"tag": "p",
"text": "äžè¬ã« n P r {\\displaystyle {}_{n}\\mathrm {P} _{r}} ã§ã¯ n â§ r ã§ããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 110,
"tag": "p",
"text": "",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 111,
"tag": "p",
"text": "(I)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 112,
"tag": "p",
"text": "(II)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 113,
"tag": "p",
"text": "(III)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 114,
"tag": "p",
"text": "(IV)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 115,
"tag": "p",
"text": "(V)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 116,
"tag": "p",
"text": "(VI)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 117,
"tag": "p",
"text": "ãããããèšç®ããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 118,
"tag": "p",
"text": "ãããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 119,
"tag": "p",
"text": "ãçšããŠèšç®ããã°ããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 120,
"tag": "p",
"text": "çµæã¯ã (I)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 121,
"tag": "p",
"text": "(II)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 122,
"tag": "p",
"text": "(III)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 123,
"tag": "p",
"text": "(IV)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 124,
"tag": "p",
"text": "(V)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 125,
"tag": "p",
"text": "(VI)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 126,
"tag": "p",
"text": "ãšãªãã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 127,
"tag": "p",
"text": "(V)ãš(VI)ã«ã€ããŠã¯äžè¬çã«æŽæ°nã«å¯ŸããŠ",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 128,
"tag": "p",
"text": "ãåŸãããããã®ãšã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 129,
"tag": "p",
"text": "ã¯å
ã
ã®é åã®å®çŸ©ãããããš\"nåã®ãã®ã®äžãã1ã€ãéžã°ãªãå Žåã®æ°\"ã«å¯Ÿå¿ããŠãããå°ã
äžèªç¶ãªããã«æãããããã®ããã«å€ã眮ããŠãããšäŸ¿å©ã§ããããéåžžãã®ããã«çœ®ãã®ã§ãããããŸããå®éã®å Žåã®æ°ã®èšç®ã§ãã®ãããªå€ãæ±ãããšã¯å€ãã¯ãªããšãããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 130,
"tag": "p",
"text": "",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 131,
"tag": "p",
"text": "",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 132,
"tag": "p",
"text": "A, B, C, D, E ã®5人ãååœ¢ã«æãã€ãªãã§èŒªãã€ãããšãããã®äžŠã³æ¹ã¯äœéããããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 133,
"tag": "p",
"text": "ãã®ãããªåé¡ã®å Žåãå³ã®ããã«ãå転ãããšéãªã䞊ã³ã¯åã䞊ã³ã§ãããšèããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 134,
"tag": "p",
"text": "è§£ãæ¹ã®èãæ¹ã¯æ°çš®é¡ããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 135,
"tag": "p",
"text": "",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 136,
"tag": "p",
"text": "ã©ã¡ãã«ãããçµæã¯",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 137,
"tag": "p",
"text": "ã§ããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 138,
"tag": "p",
"text": "äžè¬ã« ç°ãªã nå ã®ãã®ãå圢ã«äžŠã¹ããã®ãåé åãšããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 139,
"tag": "p",
"text": "åé åã®ç·æ°ãšããŠã次ã®ããšãæãç«ã€ã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 140,
"tag": "p",
"text": "ç°ãªã nå ã®åé åã®ç·æ°ã¯ ( n â 1 ) ! {\\displaystyle (n-1)!} ã§ããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 141,
"tag": "p",
"text": "nåã®ç°ãªã£ããã®ããråãéžãã§ãé çªãã€ããã«äžŠã¹ã仿¹ã®æ°ãã n C r {\\displaystyle {}_{n}\\mathrm {C} _{r}} ãšæžãããã®ãããªèšç®ã çµã¿åãã(combination) ãšããã äŸãã°ãããã€ãããããŒã«ã«çªå·ããµã£ãŠãããªã©ã®æ¹æ³ã§ãããããã®ããŒã«ãåºå¥ã§ããnåã®ããŒã«ãå
¥ã£ãç®±ã®äžããråã®ããŒã«ãåãã ãæãåãã ããããŒã«ãåãã ããé ã«äžŠã¹ããšãããšããã®å Žåã®æ°ã¯é å n P r {\\displaystyle {}_{n}\\mathrm {P} _{r}} ã«å¯Ÿå¿ããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 142,
"tag": "p",
"text": "äžæ¹ãåãã ããããŒã«ã®çš®é¡ãéèŠã§ããåãã ããé çªãç¹ã«å¿
èŠã§ãªããšãã«ã¯ããã®å Žåã®æ°ã¯çµã¿åãã n C r {\\displaystyle {}_{n}\\mathrm {C} _{r}} ã«å¯Ÿå¿ããããããã®æ°ã¯ãäºãã«ç°ãªã£ãå Žåã®æ°ã§ãããäºãã«ç°ãªã£ãèšç®æ³ãå¿
èŠãšãªãã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 143,
"tag": "p",
"text": "n C r {\\displaystyle {}_{n}\\mathrm {C} _{r}} ã¯ã n P r {\\displaystyle {}_{n}\\mathrm {P} _{r}} éãã®äžŠã¹æ¹ãäœã£ãåŸã«ãããã®äžŠã³ãç¡èŠãããã®ã«çãããããã§ãråãåãã ããŠäœã£ã䞊ã³ã«ã€ããŠãäžŠã¹æ¹ãç¡èŠãããšr!åã®äžŠã³ãåäžèŠãããããšããããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 144,
"tag": "p",
"text": "ãªããªããråã®ãäºãã«åºå¥ã§ããæ°ãèªç±ã«äžŠã³æããå Žåã®æ°ã¯r!ã§ãããããããå
šãŠåäžèŠããããšããã°å
šäœã®å Žåã®æ°ã¯ r!ã®åã ãæžãããšã«ãªãããã§ããããã£ãŠã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 145,
"tag": "p",
"text": "ãåŸãããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 146,
"tag": "p",
"text": "",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 147,
"tag": "p",
"text": "æŒç¿åé¡",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 148,
"tag": "p",
"text": "次ã®å€ãèšç®ãã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 149,
"tag": "p",
"text": "(I)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 150,
"tag": "p",
"text": "(II)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 151,
"tag": "p",
"text": "(III)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 152,
"tag": "p",
"text": "(VI)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 153,
"tag": "p",
"text": "",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 154,
"tag": "p",
"text": "ããããã«ã€ããŠ",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 155,
"tag": "p",
"text": "ãçšããŠèšç®ããã°ããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 156,
"tag": "p",
"text": "(I)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 157,
"tag": "p",
"text": "(II)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 158,
"tag": "p",
"text": "(III)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 159,
"tag": "p",
"text": "(VI)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 160,
"tag": "p",
"text": "ãšãªãã(IV)ã«ã€ããŠã¯äžè¬ã«æŽæ°nã«å¯ŸããŠ",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 161,
"tag": "p",
"text": "ãå®çŸ©ããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 162,
"tag": "p",
"text": "ããã¯ããšããšã®çµã¿åããã®èšç®ãšããŠã¯nåã®ç©äœã®ãªããã0åã®ç©äœãéžã¶å Žåã®æ°ã«å¯Ÿå¿ããŠããã å®éã«ã¯ãã®ãããªå Žåã®æ°ãèšç®ããããšèããããšã¯ããŸãç¡ããšæãããããèšç®ã®äŸ¿å®äžã®ããå®çŸ©ãäžã®ããã«ããã ãŸããäžã®èšç®ã§ã¯",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 163,
"tag": "p",
"text": "ã®åŒããã®ãŸãŸçšãããšã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 164,
"tag": "p",
"text": "ã€ãŸãã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 165,
"tag": "p",
"text": "ãšãªã£ãŠããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 166,
"tag": "p",
"text": "å®éã«ã¯éä¹ã®èšç®ã¯æŽæ°nã«ã€ããŠã¯nãã1ãŸã§ãäžãããªããããç®ããŠãããšãã仿¹ã§èšç®ãããŠããã®ã§ãäžã®çµæã¯åŠã«æããã ãããå®éã«ã¯ãããé²ãã çè«ã«ãã£ãŠãã®çµæã¯æ£åœåãããã®ã§ããã ãã®å Žåã䟿å®äž",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 167,
"tag": "p",
"text": "ã0ã®éä¹ã®å®çŸ©ãšããŠåããããã®ã§ããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 168,
"tag": "p",
"text": "æŒç¿åé¡",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 169,
"tag": "p",
"text": "5åã®ããŒã«ãå
¥ã£ãããŒã«å
¥ããã2ã€ã®ããŒã«ãåãã ããšã(ããŒã«ã¯ãããã åºå¥ã§ãããã®ãšããã)2ã€ã®ããŒã«ã®éžã³æ¹ã¯ã äœéããããèšç®ããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 170,
"tag": "p",
"text": "ããŒã«ã®åãã ãæ¹ã¯çµã¿åããã®æ°ãçšããŠèšç®ã§ããã 5ã€ã®ããŒã«ã®äžãã2ã€ãåãã ãã®ã§ãããããã®å Žåã®æ°ã¯ã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 171,
"tag": "p",
"text": "ãšãªãããã£ãŠãããŒã«ã®åãã ãæ¹ã¯10éãã§ããããšããããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 172,
"tag": "p",
"text": "",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 173,
"tag": "p",
"text": "æŒç¿åé¡",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 174,
"tag": "p",
"text": "6åã®äºãã«åºå¥ã§ããããŒã«ãå
¥ã£ãç®±ãããã ãã®äžãã (I)3ã€ã®ããŒã«ãš2ã€ã®ããŒã«ãåãã ãæ¹æ³ã®å Žåã®æ°ã(II)2ã€ã®ããŒã«ãåãåºãããšã2åããè¿ãããããããå¥ã®äºãã«åºå¥ã§ããè¢ã«ãããå Žåã®æ°ã(III)2ã€ã®ããŒã«ãåãåºãããšã2åããè¿ãããããããå¥ã®äºãã«åºå¥ã§ããªãè¢ã«ãããå Žåã®æ°ããããããèšç®ããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 175,
"tag": "p",
"text": "(I) æåã«ããŒã«ãåãã ããšãã«ã¯ã6ã€ã®ããŒã«ã®äžãã3ã€ã®ããŒã«ãåãã ãããšãããã®å Žåã®æ°ã¯",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 176,
"tag": "p",
"text": "ã ãããããŸããæ¬¡ã«ãããåãé€ããäžãã2ã€ã®ããŒã«ãåãé€ããšãã«ã¯ ãã®åãã ãæ¹ã¯ã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 177,
"tag": "p",
"text": "ã ãããã ãã£ãŠããã®ãšãã®å Žåã®æ°ã¯",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 178,
"tag": "p",
"text": "ã ãã«ãªããå®éãã®å€ãèšç®ãããšã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 179,
"tag": "p",
"text": "ãšãªãã60éãã§ããããšãåããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 180,
"tag": "p",
"text": "(II)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 181,
"tag": "p",
"text": "(I)ã®å Žåãšåæ§ã«6ã€ã®ããŒã«ã®äžãã2ã€ã®ããŒã«ã åãã ãããšãããã®å Žåã®æ°ã¯",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 182,
"tag": "p",
"text": "ã ãããããŸããæ¬¡ã«ãããåãé€ããäžãã2ã€ã®ããŒã«ãåãé€ããšãã«ã¯ ãã®åãã ãæ¹ã¯ã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 183,
"tag": "p",
"text": "ã ãããã ãã£ãŠããã®ãšãã®å Žåã®æ°ã¯",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 184,
"tag": "p",
"text": "ã ãã«ãªããå®éãã®å€ãèšç®ãããšã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 185,
"tag": "p",
"text": "ãšãªãã90éãã§ããããšãåããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 186,
"tag": "p",
"text": "(III) (II)ãšåãèšç®ã§å€ãæ±ããããšãåºæ¥ãããä»åã¯ããŒã«ããããè¢ã äºãã«åºå¥ã§ããªãããšã«æ³šæããªããŠã¯ãªããªãã ãã®ããšã«ãã£ãŠãèµ·ããããå Žåã®æ°ã¯(II)ã®å Žåã®ååã«ãªãã®ã§ æ±ããå Žåã®æ°ã¯45éããšãªãã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 187,
"tag": "p",
"text": "n C r {\\displaystyle {}_{n}\\mathrm {C} _{r}} ã«ã€ããŠä»¥äžã®åŒãæãç«ã€ã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 188,
"tag": "p",
"text": "å°åº",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 189,
"tag": "p",
"text": "ãçšãããšã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 190,
"tag": "p",
"text": "ãåŸããã瀺ãããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 191,
"tag": "p",
"text": "åæ§ã«",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 192,
"tag": "p",
"text": "ãçšãããšã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 193,
"tag": "p",
"text": "ãšãªã瀺ãããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 194,
"tag": "p",
"text": "æåã®åŒã¯ãç°ãªãnåã®ãã®ã®ãã¡råã«Xãšããã©ãã«ãã€ããæ®ãã®n-råã«Yãšããã©ãã«ãã€ããå Žåã®æ°ããæ±ããããšãã§ãããç°ãªãnåã®ãã®ã®ãã¡ããråãéžã³ã©ãã«Xãã€ããæ®ãã«ã©ãã«Yãã€ããå Žåã®æ°ã¯ n C r {\\displaystyle _{n}\\mathrm {C} _{r}} ã§ãããç°ãªãnåã®ãã®ã®ãã¡ããn-råãéžã³ãã©ãã«Yãã€ããæ®ãã«ã©ãã«Xãã€ããå Žåã®æ°ã¯ n C n â r {\\displaystyle _{n}\\mathrm {C} _{n-r}} ã§ãããåœç¶ãåè
ãšåŸè
ã®å Žåã®æ°ã¯çããã®ã§ãããããã n C r = n C n â r {\\displaystyle _{n}\\mathrm {C} _{r}=_{n}\\mathrm {C} _{n-r}} ãæ±ããããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 195,
"tag": "p",
"text": "2ã€ç®ã®åŒã¯ã \"nåã®ãã®ããråãéžã¶ä»æ¹ã®æ°ã¯ãæ¬¡ã®æ°ã®åã§ããã æåã®1ã€ãéžã°ãã«ä»ã®n-1åããråãéžã¶ä»æ¹ã®æ°ãšãæåã®1ã€ãéžãã§ä»ã®n-1åããr-1åãéžã¶ä»æ¹ã®æ°ãšã® åã§ããã\" ãšããããšã衚ãããŠããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 196,
"tag": "p",
"text": "",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 197,
"tag": "p",
"text": "ãçšã㊠(I)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 198,
"tag": "p",
"text": "(II)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 199,
"tag": "p",
"text": "(III)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 200,
"tag": "p",
"text": "(VI)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 201,
"tag": "p",
"text": "ãããããèšç®ããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 202,
"tag": "p",
"text": "äžã®åŒãçšããŠèšç®ããããšãåºæ¥ãããã¡ããçŽæ¥ã«èšç®ããŠã çããåŸãããšãåºæ¥ãããéåžžã¯ç°¡ååããŠããèšç®ããæ¹ãæ¥œã§ããã (I)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 203,
"tag": "p",
"text": "(II)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 204,
"tag": "p",
"text": "(III)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 205,
"tag": "p",
"text": "(VI)",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 206,
"tag": "p",
"text": "ãšãªãã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 207,
"tag": "p",
"text": "",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 208,
"tag": "p",
"text": "å³ã®ãããªã«ãŒããå·Šäžã®ç¹ããå³äžã®ç¹ãŸã§æ©ããŠè¡ã人ãããã ãã ãããã®äººã¯å³ãäžã«ããé²ããªããšããããã®ãšãã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 209,
"tag": "p",
"text": "ãèšç®ããããã ãaç¹ã¯*ãšæžãããŠããç¹ã®ããäžã®éè·¯ã®ããšããããŠããã ããããã®ã«ãŒãã¯éåããŠããªã瞊4ã€ã暪5ã€ã®ç¢ç€ç®äžã®ã«ãŒãã« ãªã£ãŠããããšã«æ³šæããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 210,
"tag": "p",
"text": "___________",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 211,
"tag": "p",
"text": "|_|_|_|_|_|",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 212,
"tag": "p",
"text": "|_|_|*|_|_|",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 213,
"tag": "p",
"text": "|_|_|_|_|_|",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 214,
"tag": "p",
"text": "|_|_|_|_|_|",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 215,
"tag": "p",
"text": "",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 216,
"tag": "p",
"text": "(I) å·Šäžã«ãã人ã¯9åé²ãããšã§å³äžã®ç¹ã«èŸ¿ãçããããã®ãããå·Šäžã«ãã人ãéžã³ããã«ãŒãã®æ°ã¯9åã®ãã¡ã®ã©ã®åã§å³ã§ã¯ãªãäžã éžã¶ãã®å Žåã®æ°ã«çããããã®ãããªå Žåã®æ°ã¯ã9åã®ãã¡ããèªç±ã«4ã€ã®å Žæãéžã¶æ¹æ³ã«çãããçµã¿åãããçšããŠæžãããšãåºæ¥ããå®éã«9åã®ãã¡ããèªç±ã«4ã€ã®å Žæãéžã¶æ¹æ³ã¯ã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 217,
"tag": "p",
"text": "ã§æžãããããã®éãèšç®ãããšã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 218,
"tag": "p",
"text": "ãåŸãããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 219,
"tag": "p",
"text": "(II) aç¹ãééããŠé²ãã«ãŒãã®æ°ã¯aç¹ã®å·Šã®ç¹ãŸã§ãã£ãŠããaç¹ãééããaç¹ã®å³ã®ç¹ãéã£ãŠå³äžã®ç¹ãŸã§ãã仿¹ã®æ°ã«çããã ããããã®ã«ãŒãã®æ°ã¯(I)ã®æ¹æ³ãçšããŠèšç®ããããšãã§ããããã®æ°ãå®éã«èšç®ãããšã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 220,
"tag": "p",
"text": "ãšãªãã36éãã§ããããšãåããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 221,
"tag": "p",
"text": "æŒç¿åé¡ r n C r = n n â 1 C r â 1 {\\displaystyle r_{n}\\mathrm {C} _{r}=n_{n-1}\\mathrm {C} _{r-1}} ã瀺ã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 222,
"tag": "p",
"text": "r n C r = r n ! r ! ( n â r ) ! = n ( n â 1 ) ! ( r â 1 ) ( ( n â 1 ) â ( r â 1 ) ) ! = n n â 1 C r â 1 {\\displaystyle r_{n}\\mathrm {C} _{r}=r{\\frac {n!}{r!(n-r)!}}=n{\\frac {(n-1)!}{(r-1)((n-1)-(r-1))!}}=n_{n-1}\\mathrm {C} _{r-1}}",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 223,
"tag": "p",
"text": "ç°ãªãnåã®ç©ºç®±ã«råã®ãã®ãå
¥ããå Žåã®æ°ãéè€çµã¿åãããšããã n H r {\\displaystyle _{n}\\mathrm {H} _{r}} ã§è¡šãã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 224,
"tag": "p",
"text": "éè€çµåãã«ã€ããŠæ¬¡ã®ããã«èå¯ããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 225,
"tag": "p",
"text": "x 1 , x 2 , ⯠, x n , r {\\displaystyle x_{1},x_{2},\\cdots ,x_{n},r} ãéè² æŽæ°ãšããæ¹çšåŒ x 1 + x 2 + ⯠+ x n = r {\\displaystyle x_{1}+x_{2}+\\cdots +x_{n}=r} ã®è§£ã®åæ°ã«ã€ããŠèããããã®è§£ã®åæ°ã¯ x 1 , x 2 , ⯠, x n {\\displaystyle x_{1},x_{2},\\cdots ,x_{n}} ã« r {\\displaystyle r} åã®1ãåé
ããå Žåã®æ°ãšèããããšãã§ããã®ã§ãéè€çµã¿åããã®å®çŸ©ããã n H r {\\displaystyle _{n}\\mathrm {H} _{r}} ã§ããã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 226,
"tag": "p",
"text": "ãŸãããã®æ¹çšåŒã®éè² æŽæ°è§£ã®åæ°ã¯ãråã®âã«n-1åã®åºåãã眮ãå Žåã®æ°ãšãèãããããã€ãŸããâââ...ââ(rå)ã«n-1åã®åºåã|ã䞊ã¹ããšâ|ââ|...â|âã®ããã«ãªããããã§ãå·Šããé ã«åºåãã§åºåãããâã®åæ°ãããããã x 1 , x 2 , ⯠, x n {\\displaystyle x_{1},x_{2},\\cdots ,x_{n}} ãšãããšãããã¯æ¹çšåŒã®è§£ãšãªãã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 227,
"tag": "p",
"text": "ãã®å Žåã®æ°ã¯ãråã®âãšn-1åã®åºåã|ã䞊ã¹ããå Žåã®æ°ãªã®ã§ã n + r â 1 C r {\\displaystyle _{n+r-1}\\mathrm {C} _{r}} ã§ãããæ¹çšåŒã®éè² æŽæ°è§£ã®åæ°ã«ã€ããŠ2éãã®æ¹æ³ã§æ±ãŸã£ãã®ã§ãããã¯çããã n H r = n + r â 1 C r {\\displaystyle _{n}\\mathrm {H} _{r}=_{n+r-1}\\mathrm {C} _{r}} ãæãç«ã€ã",
"title": "å Žåã®æ°"
},
{
"paragraph_id": 228,
"tag": "p",
"text": "ããå Žåã®æ°ããå®éã«çŸãããå²åã®ããšã確ç(ãããã€ãè±:probability)ãšåŒã¶ã",
"title": "確ç"
},
{
"paragraph_id": 229,
"tag": "p",
"text": "ããå Žåã®æ°ãå®éã«çŸãããå²åã¯ããã®å Žåã®æ°ãå²ãç®ã§ããã®äºæã«ãããŠèµ·ããåŸãå
šãŠã®äºæã®å Žåã®æ°ã§å²ã£ããã®ã«çããã",
"title": "確ç"
},
{
"paragraph_id": 230,
"tag": "p",
"text": "ããšãã°ãå
šãçããå²åã§å
šãŠã®é¢ãåºãããããããµã£ããšãã«1ãåºã確ç㯠1 6 {\\displaystyle {\\frac {1}{6}}} ã§ããã ããã¯1ãåºãå Žåã®æ°1ãã1,2,3,4,5,6ã®ãããããåºãå Žåã®æ°6ã§å²ã£ããã®ã«çããã",
"title": "確ç"
},
{
"paragraph_id": 231,
"tag": "p",
"text": "èµ€ç2åãšçœç3åãå
¥ã£ãè¢ãããçã2ååæã«åãåºãããã®ãšãã2åãšãçœçãåºã確çãæ±ããã",
"title": "確ç"
},
{
"paragraph_id": 232,
"tag": "p",
"text": "èµ€çœããããŠ5åã®çãã2åãåãåºãæ¹æ³ã¯",
"title": "確ç"
},
{
"paragraph_id": 233,
"tag": "p",
"text": "ãã®ãã¡ã2åãšãçœçã«ãªãå Žåã¯",
"title": "確ç"
},
{
"paragraph_id": 234,
"tag": "p",
"text": "ãã£ãŠæ±ãã確ç㯠3 10 {\\displaystyle {\\frac {3}{10}}}",
"title": "確ç"
},
{
"paragraph_id": 235,
"tag": "p",
"text": "確çã®å®çŸ©ãããæ¬¡ã®æ§è³ªãåŸãããã",
"title": "確ç"
},
{
"paragraph_id": 236,
"tag": "p",
"text": "2ã€ã®äºè±¡A,Bãåæã«èµ·ãããªããšããäºè±¡AãšBã¯äºãã«æå(ã¯ãã¯ããè±:exclusive)ã§ããããŸãã¯AãšBã¯æåäºè±¡ã§ãããšããã",
"title": "確ç"
},
{
"paragraph_id": 237,
"tag": "p",
"text": "",
"title": "確ç"
},
{
"paragraph_id": 238,
"tag": "p",
"text": "ç·å7人ã女å5人ã®äžãããããåŒãã§3人ã®å§å¡ãéžã¶ãšãã3人ãšãåæ§ã§ãã確çãæ±ããã",
"title": "確ç"
},
{
"paragraph_id": 239,
"tag": "p",
"text": "12人ã®äžãã3人ã®å§å¡ãéžã¶å Žåã®æ°ã¯",
"title": "確ç"
},
{
"paragraph_id": 240,
"tag": "p",
"text": "ããã§ãã3人ãšãç·åã§ãããäºè±¡ãAãã3人ãšã女åã§ãããäºè±¡ãBãšãããšãã3人ãšãåæ§ã§ãããäºè±¡ã¯ãåäºè±¡A ⪠Bã§ãããããããAãšBã¯æåäºè±¡ã§ããã",
"title": "確ç"
},
{
"paragraph_id": 241,
"tag": "p",
"text": "ãã£ãŠæ±ãã確ç㯠P ( A ⪠B ) = P ( A ) + P ( B ) = 35 220 + 10 220 = 45 220 = 9 44 {\\displaystyle P(A\\cup B)=P(A)+P(B)={\\frac {35}{220}}+{\\frac {10}{220}}={\\frac {45}{220}}={\\frac {9}{44}}}",
"title": "確ç"
},
{
"paragraph_id": 242,
"tag": "p",
"text": "äºè±¡Aã«å¯ŸããŠããAã§ãªããäºè±¡ã A Ì {\\displaystyle {\\overline {A}}} ã§è¡šããAã®äœäºè±¡(ããããã)ãšããã",
"title": "確ç"
},
{
"paragraph_id": 243,
"tag": "p",
"text": "èµ€ç5åãçœç3åã®èš8åå
¥ã£ãŠããè¢ãã3åã®çãåãåºããšããå°ãªããšã1åã¯çœçã§ãã確çãæ±ããã",
"title": "確ç"
},
{
"paragraph_id": 244,
"tag": "p",
"text": "8åã®çãã3åã®çãåãåºãå Žåã®æ°ã¯",
"title": "確ç"
},
{
"paragraph_id": 245,
"tag": "p",
"text": "ããŸããå°ãªããšã1åã¯çœçã§ãããäºè±¡ãAãšãããšã A Ì {\\displaystyle {\\overline {A}}} ã¯ã3åãšãèµ€çã§ããããšããäºè±¡ã ãã",
"title": "確ç"
},
{
"paragraph_id": 246,
"tag": "p",
"text": "ãã£ãŠæ±ãã確çã¯",
"title": "確ç"
},
{
"paragraph_id": 247,
"tag": "p",
"text": "ãããã«ä»ã®çµæã«å¯ŸããŠåœ±é¿ããããŒããªãæäœãç¹°ãããããšããããããã®è©Šè¡ã¯ç¬ç«(ã©ããã€ãè±:independent)ã§ãããšèšããç¬ç«ãªè©Šè¡ã«ã€ããŠã¯ããã詊è¡ã®èµ·ãã確çãå®ããããŠããŠããããnåç¹°ããããããšããããããèµ·ãã確çã¯ãããããã®è©Šè¡ãèµ·ãã確çã®ç©ãšãªãã",
"title": "確ç"
},
{
"paragraph_id": 248,
"tag": "p",
"text": "",
"title": "確ç"
},
{
"paragraph_id": 249,
"tag": "p",
"text": "èµ€ç3åãçœç2åã®èš5åå
¥ã£ãŠããè¢ãããããã®äžãã1åã®çãåãåºããŠè²ã確ãããŠããè¢ã«æ»ããåã³1åãåãåºããšãã1åç®ã¯èµ€çã2åç®ã¯çœçãåãåºã確çãæ±ããã",
"title": "確ç"
},
{
"paragraph_id": 250,
"tag": "p",
"text": "1åç®ã«åãåºããçãè¢ã«æ»ãã®ã§ãã1åç®ã«åãåºãã詊è¡ãšã2åç®ã«åãåºãã詊è¡ãšã¯äºãã«ç¬ç«ã§ããã 1åç®ã«åãåºãã1åãèµ€çã§ãã確ç㯠3 5 {\\displaystyle {\\frac {3}{5}}}",
"title": "確ç"
},
{
"paragraph_id": 251,
"tag": "p",
"text": "2åç®ã«åãåºãã1åãçœçã§ãã確ç㯠2 5 {\\displaystyle {\\frac {2}{5}}} ãããã£ãŠæ±ãã確çã¯",
"title": "確ç"
},
{
"paragraph_id": 252,
"tag": "p",
"text": "åã詊è¡ãäœåãç¹°ãè¿ããŠè¡ããšããååã®è©Šè¡ã¯ç¬ç«ã§ããããã®äžé£ã®ç¬ç«ãªè©Šè¡ããŸãšããŠèãããšãããããå埩詊è¡(ã¯ãã·ã ããã)ãšããã",
"title": "確ç"
},
{
"paragraph_id": 253,
"tag": "p",
"text": "1åã®ããããã5åæãããšãã3ã®åæ°ã®ç®ã4ååºã確çãæ±ããã",
"title": "確ç"
},
{
"paragraph_id": 254,
"tag": "p",
"text": "1åã®ããããã1åæãããšãã3ã®åæ°ã®ç®ãåºã確çã¯",
"title": "確ç"
},
{
"paragraph_id": 255,
"tag": "p",
"text": "ãã£ãŠã1åã®ããããã5åæãããšãã3ã®åæ°ã®ç®ã4ååºã確çã¯",
"title": "確ç"
},
{
"paragraph_id": 256,
"tag": "p",
"text": "èšå·ãΣãã«ã€ããŠã¯ãã¡ããåç
§ã",
"title": "確ç"
},
{
"paragraph_id": 257,
"tag": "p",
"text": "ãã詊è¡ããã£ããšãã ãã®è©Šè¡ã§åŸããããšæåŸ
ãããå€ã®ããšãæåŸ
å€(ãããã¡ãè±:expected value)ãšãããæåŸ
å€ã¯ãnåã®äºè±¡ r k ( k = 1 , 2 , ⯠, n ) {\\displaystyle r_{k}\\ (k=1,2,\\cdots ,n)} ã«å¯ŸããŠãåã
v k {\\displaystyle v_{k}} ãšããå€ãåŸãããäºè±¡ r k {\\displaystyle r_{k}} ãèµ·ãã確çã p k {\\displaystyle p_{k}} ã§äžããããŠãããšãã",
"title": "確ç"
},
{
"paragraph_id": 258,
"tag": "p",
"text": "ã«ãã£ãŠäžãããããäŸãã°ãããããããµã£ããšãåºãç®ã®æåŸ
å€ã¯ã",
"title": "確ç"
},
{
"paragraph_id": 259,
"tag": "p",
"text": "ãšãªãã",
"title": "確ç"
}
] | null | {{pathnav|é«çåŠæ ¡ã®åŠç¿|é«çåŠæ ¡æ°åŠ|é«çåŠæ ¡æ°åŠA|pagename=å Žåã®æ°ãšç¢ºç|frame=1|small=1}}
== ã¯ããã« ==
ããšãã°ããã¯ãããäžåã«äžŠã¹ãå ŽåãäžŠã¹æ¹ã®æ°ã«ã¯ãããã€ãã®æ¹æ³ãããããã£ããã«å
šãŠã®äžŠã³æ¹ã詊ãããšããæéããããã°å®éšå¯èœã§ããã
ãã®ããã«ããå
šéšã§äœéãããããããšããããã®ãäœéããã®ãäœãã«ãããæ°åããå Žåã®æ°ïŒã°ããã®ããïŒ ãšåŒã¶ã
ãã®ããã«äºæã«ã¯ããããã®ããæ¹ãå
šéšã§äœéãããããæ°ããããšãåºæ¥ãäºæãããã
ããäºæã«ã€ããŠïŒãã®ããšãèµ·ããããïŒå Žåã®æ°ãæ£ç¢ºã«æ°ããããšãçè§£ã®åºç€ã§ããããã®äºæã«ã€ããŠãã©ã®ããšãèµ·ãããããã©ã®ããšãèµ·ããã¥ããããèŠåããããã®åºç€ãšãªãã
ã€ãŸããå Žåã®æ°ã¯äºæãèµ·ãããã確çãšå¯æ¥ãªé¢ä¿ã«ããã
äŸãã°ãããŒã«ãŒãªã©ã®ã«ãŒãã²ãŒã ã§ã¯éããããšãé£ãã圹ã¯é«ãã©ã³ã¯ãäžããããŠãããã
ããã¯èµ·ããã«ãã圹ãåºæ¥ããã©ã³ãã®çµã¿åããã®çŸããã確çãå°ããããšã«ããã
ãã®ããšã¯ã52æã®ã«ãŒããã5æãåŒããŠæ¥ããšãã«å
šãŠã®ã«ãŒããåŒã確çãåãã§ãããšãããšãããã圹ã«å¯Ÿå¿ããã«ãŒãã®çµã¿åãããåŒãå Žåã®æ°ãããå°ãªãããšã«å¯Ÿå¿ããã
ãã®ããã«ãå Žåã®æ°ã¯äºæãèµ·ãããã確çãšå¯æ¥ãªé¢ä¿ã«ããã
ã«ãŒãã²ãŒã ã®ããã«ç¢ºçãå
·äœçã«èšç®ã§ããå Žåã®ä»ã«ãã確çã®èãæ¹ãçšããŠèšç®ãããäºæã¯å€ãããã
* äŸïŒä¿éº
ããšãã°ãä¿éºïŒã»ããïŒãšåŒã°ãããã®ã¯ããäºæã«å€æ®µãã€ãããã®ã§ãããã
ä¿éºãäžãããªããŠã¯ãªããªãäºæãèµ·ããã«ãããšå®¢èгçã«æããããã®ã»ã©ããã®ãã®ã®å€æ®µãäžãããšããç¹åŸŽãããã
äŸãã°ãèªåè»ä¿éºã«å å
¥ããã®ã«å¿
èŠãªä»£éã¯è¥è
ã§ã¯é«ãã幎什ãéããããšã«äœããªã£ãŠããã
ããã¯ãè¥è
ã¯èªåè»ã®å
èš±ãååŸããŠæéãçãå Žåãå€ããä¿éºéã®æ¯æãå¿
èŠãšããèªåè»äºæ
ããããå¯èœæ§ãé«ãããšã«ããã
ãã£ãœãã幎什ãéãããã®ã«ã€ããŠã¯éè»¢ã®æéãæãšãšãã«äžéãããšäžè¬ã«èããããã®ã§ä¿éºããããããã®ä»£éã¯å°ãªããªãã®ã§ããã
ãŸããåãè¥è
ã§ãæ¢ã«äœåºŠãäºæ
ãéãããã®ã¯åã幎代ã®ä»ã®è¥è
ãããä¿éºæãé«ããªãåŸåãããã
ããã¯ãäœåºŠãäºæ
ãéãããã®ã¯é転ã®ä»æ¹ã«äœããã®åé¡ãããåŸåããããããã«ãã£ãŠãµããã³äºæ
ããããå¯èœæ§ãéåžžã®ãã®ãšæ¯ã¹ãŠããé«ããšèããããããšã«ããã
* äŸïŒéè¡ã®èè³ïŒãããïŒ
éè¡ã®èè³ïŒãããïŒã§ããã¯ã確çã®èããçšããŠé«ãå©çãåºãããšãå®è·µãããŠããã
èè³ã§ããã¯ãä¿éºæ¥ãšããªããããã貞åãã«ãªãå¯èœæ§ãé«ãçžæã«å¯ŸããŠã¯é«ãéå©ã§è³éã貞ãä»ãã
ããå®å®ããè³éãæã£ãŠããçžæã«å¯ŸããŠã¯ããäœãéå©ã§è³éã貞ãä»ããããšãå®è¡ããŠæ¥ãã
* äŸïŒæ ªåŒåžå Žã®åæ£æè³
å©çãå®å®çã«çšŒãæ¹æ³ãšããŠãããã€ãã®äŒç€Ÿãçºè¡ããäºãã«æ§è³ªã®ç°ãªã£ãæ ªãªã©ãåãããŠè³Œå
¥å
ã忣ããããšã§æ ªã®å€æ®µãäžãã£ããšãã§ã倿®µãããŸãæžãããšãç¡ãããã«ããæ¹æ³ãèæ¡ãããŠããã
ïŒãã ãã倿®µãæžãã¥ããã®ãšåæ§ã«ã倿®µã¯äžããã¥ãããïŒ
ããã¯ãæ§è³ªã®ç°ãªã£ãååãåãããŠæ±ãããšã§ã倿®µãæ¥å€ãã確çãäžããããšãåºæ¥ãããšã衚ãããŠããã
ãããã確çã§ã¯ãå¿
ãããäºæž¬ããéãã«äºãé²ãããã§ã¯ç¡ãããšã«æ³šæããå¿
èŠãããã
ãã®ç« ã§ã¯å Žåã®æ°ãšç¢ºçã®èšç®æ³ã玹ä»ããããŸãå
ã«æ§ã
ãªäºæã®å Žåã®æ°ã®èšç®æ³ãæ±ãããã®çµæãçšããŠããäºæãèµ·ãã確çãèšç®ããæ¹æ³ã玹ä»ããã
== éåã®èŠçŽ ã®åæ° ==
==== 2ã€ã®éåã®åéåã®èŠçŽ ã®åæ° ====
:â» ãã®åå
ã§ã¯ãåå
ã[[é«çåŠæ ¡æ°åŠA/éåãšè«ç]]ãã§ç¿ãéåã®èšå·ã䜿ããåãããªããã°ããã¡ãã®ããŒãžãåç
§ããã
ããã§ã¯ãæééå A ã®èŠçŽ ã®åæ°ã n(A) ã§è¡šãã
ããšãã°ã10以äžã®èªç¶æ°ã®éåã U ãšããŠããã®ãã¡ å¶æ°ã®éåã A ãšããå Žåã
:A=ïœ2, 4, 6 , 8, 10ïœ
ãªã®ã§ãAã®èŠçŽ ã®åæ°ã¯5åãªã®ã§
:n(A)ïŒ5
ã§ããã
ãªãã
U=ïœ1, 2, 3, 4, 5, 6 , 7, 8, 9, 10ïœ
ã§èŠçŽ ã®åæ°ã¯10åãªã®ã§
:n(U)ïŒ10
ã§ããã
次ã®ãããªåé¡ãèããŠã¿ããã
100ãŸã§ã®èªç¶æ°ã®ãã¡ã2ãŸãã¯3ã®åæ°ã¯äœåãããïŒ
ãã®ãããªåé¡ã®è§£æ³ãèãããããæºåã®åé¡ãšããŠããŸã10ãŸã§ã®èªç¶æ°ã§èããŠã¿ããã
å
çšã®äŸé¡ã§2ã®åæ°ã«ã€ããŠã¯èããã®ã§ã次ã®åé¡ãšããŠ10ãŸã§ã®3ã®åæ°ã®åæ°ã«ã€ããŠèãããã
10以äžã®èªç¶æ°ã®éåã U ãšããŠããã®ãã¡ 3ã®åæ°ã®éåã B ãšããå Žåã
B=ïœ3, 6 , 9ïœ
ãªã®ã§ãBã®èŠçŽ ã®åæ°ã¯3åãªã®ã§
:n(B)ïŒ3
ã§ããã
ããŠã
:A=ïœ2, 4, 6 , 8, 10ïœ
:B=ïœ3, 6 , 9ïœ
ã«ã¯å
±éã㊠6 ãšããèŠçŽ ãå«ãŸããŠããã
èªç¶æ°10ãŸã§ã«ãã2ãŸãã¯3ã®åæ°ã«ãããèŠçŽ ã¯ã
:{2, 3, 4, 6, 8, 9, 10}
ã§ãããèŠçŽ ã®åæ°ããããããš 7åã§ããã
äžæ¹ã
:n(A)ïŒn(B)ïŒ 5ïŒ3 ïŒ8
ã§ããã1åå€ãã
ãã®ããã«1åå€ããªã£ãŠããŸã£ãåå ã¯ã éåAãšéåBã«å
±éããŠå«ãŸããŠããèŠçŽ 6 ãäºéã«æ°ããŠããŸã£ãŠããããã§ããã
äžè¬ã«ã2ã€ã®éåA,Bã®èŠçŽ ã®åæ° n(A) ãš n(B) ãçšããŠãAãŸãã¯Bã®æ¡ä»¶ãæºããèŠçŽ ã®åæ°ããããããå Žåã«ã¯ãAãšBã«å
±éããŠå«ãŸããŠããèŠçŽ ã®åæ°ãå·®ãåŒããªããã°ãªããªãã
ãã®ããšãåŒã§è¡šããš
:nïŒAâªBïŒ ïŒ n(A)ïŒn(B)ân(Aâ©B)
ã«ãªãã
ãã ãããâªããšã¯åéåã®èšå·ã§ã AâªB ãšã¯ éåAãšéåBã®åéåã®ããšã§ããã
ãâ©ããšã¯å
±ééšåã®èšå·ã§ã ãAâ©Bããšã¯ éåAãšéåBã®å
±ééšåã®ããšã§ããã
ã§ã¯ããã®å
¬åŒãåèã«ããŠ
100ãŸã§ã®èªç¶æ°ã®ãã¡ã2ãŸãã¯3ã®åæ°ã¯äœåãããïŒ
ã®çããæ±ãããã
100ãŸã§ã®èªç¶æ°ã®ãã¡ã®ã2ã®åæ°ã®éåãAãšããŠã3ã®åæ°ã®éåãBãšãããš
:n(A)ïŒ 100/2 ïŒ50 ãªã®ã§ãéåAã®èŠçŽ ã®åæ°ïŒ2ã®åæ°ã®åæ°ïŒã¯ 50åãã€ãŸã n(A)ïŒ 50 ã§ããã
:n(B)ã«ã€ããŠã¯ïŒ»99÷3ïŒ33 ãªã®ã§ éåBã®èŠçŽ ã®åæ°ïŒ3ã®åæ°ã®åæ°ïŒã¯33åãã€ãŸã n(B)ïŒ 33 ã§ããã
ããã«ã2ã®åæ°ã§ããã3ã®åæ°ã§ãããæ°ã®éå Aâ©B ãšã¯ãã€ãŸã6ã®åæ°ã®éåã®ããšã§ããïŒãªããªã 2 ãš 3 ã®æå°å
¬åæ°ã 6 ãªã®ã§ïŒã
96÷6ïŒ16 ãªã®ã§ãAâ©B ã®èŠçŽ ã®åæ°ã¯ 16 åãã€ãŸã n(Aâ©B)ïŒ 16 ã§ããã
ãããŠãå
¬åŒ
:nïŒAâªBïŒ ïŒ n(A)ïŒn(B)ân(Aâ©B)
ãé©çšãããšã
:nïŒAâªBïŒ ïŒ 50 ïŒ 33 â 16 ïŒ 67
ã§ããã
ãã£ãŠã100ãŸã§ã®èªç¶æ°ã®ãã¡ã®2ãŸãã¯3ã®åæ°ã®åæ°ã¯ 67å ã§ããã
==== çºå±: 3ã€ã®éåã®åéåã®èŠçŽ ã®åæ° ====
[[File:Venn diagram of 3 sets.svg|thumb|]]
3ã€ã®æééåã®åéåã®èŠçŽ ã®åæ°ã«ã€ããŠã¯ã次ã®å
¬åŒãæãç«ã€
n(AâªBâªC) ïŒ n(A) ïŒ n(B) ïŒ n(C) ân(Aâ©B) ân(Bâ©C) ân(Câ©A) ïŒ n(Aâ©Bâ©C)
;åé¡
å³ã®å³ãåèã«ãäžã®å
¬åŒã蚌æããã
;äŸé¡
100以äžã®èªç¶æ°ã®ãã¡ã2ã®åæ°ãŸãã¯3ã®åæ°ãŸãã¯5ã®åæ°ã§ãããã®ã®åæ°ãæ±ããã
(è§£æ³)
ãŸãã100以äžã®èªç¶æ°ã®ãã¡ã
:2ã®åæ°ã®éåãAã
:3ã®åæ°ã®éåãBã
:5ã®åæ°ã®éåãCã
ãšããã
100÷2=50ãªã®ã§ã100ã¯50çªç®ã®2ã®åæ°ã§ããããã£ãŠ100以äžã®2ã®åæ°ã¯50åã§ãããåæ§ã«èããŠèŠçŽ ã®åæ°ãæ±ãããšã
:n(A) ïŒ 50
:n(B) ïŒ 33
:n(C) ïŒ 20
ã§ããã
äžæ¹ã100以äžã®èªç¶æ°ã®ãã¡
:Aâ©B 㯠6ã®åæ°ã®éåã
:Bâ©C 㯠15ã®åæ°ã®éåã
:Câ©A 㯠10ã®åæ°ã®éåã
ãšãªãã
ãã£ãŠãå
ã»ã©ãšåæ§ã«èãããš
:n(Aâ©B) ïŒ 16
:n(Bâ©C) ïŒ 6
:n(Câ©A) ïŒ 10
ãŸãã100以äžã®èªç¶æ°ã®ãã¡ã
:Aâ©Bâ©C 㯠30ã®åæ°ã®éå ãšãªãã
Aâ©Bâ©C ã®èŠçŽ ã®åæ°ã¯
:n(Aâ©Bâ©C) ïŒ 3
ã§ããã
ãã£ãŠã
:n(AâªBâªC) ïŒ n(A) ïŒ n(B) ïŒ n(C) ân(Aâ©B) ân(Bâ©C) ân(Câ©A) ïŒ n(Aâ©Bâ©C) ïŒ 50 ïŒ 33 ïŒ 20 â 16 â 6 â 10 ïŒ 3 ïŒ 74
ãªã®ã§ã100以äžã®èªç¶æ°ã®ãã¡ã®2ã®åæ°ãŸãã¯3ã®åæ°ãŸãã¯5ã®åæ°ã§ãããã®ã®åæ°ã¯ 74åã§ããã
== å Žåã®æ° ==
==== æš¹åœ¢å³ ====
[[File:Tree diagram sum 5 by three numbers.svg|thumb|]]
ããšãã°å€§äžå°3åã®ãµã€ã³ãããµã£ãŠãç®ã®åã5ã«ãªãç®ã®çµã¯ãäœéãããã ãããã
ãã®ãããªåé¡ãè§£ãæ¹æ³ã®ã²ãšã€ãšããŠãå³ã®ããã«ãçµã¿åãããç·åœããã§æžãæ¹æ³ãããã
倧äžå°ã®åèš3åã®ãµã€ã³ãããããã A,B,C ãšããŠè¡šãããããã®æåã«ãã©ã®ç®ãåºãã°åèš5ã«ãªãããèãããšãçµæã¯å³ã®ããã«ãªãã
ãã®ãããªå³ã '''暹圢å³'''ïŒãã
ãããïŒ ãšããã
;åé¡
3åã®ãµã€ã³ãããµããšããç®ã®åã6ã«ãªãå Žåã¯äœéããããã
==== éä¹ ====
æåã«ãnåã®ç°ãªã£ããã®ãäžŠã¹æããå Žåã®æ°ãæ°ããã
ãŸãæåã«äžŠã¹ããã®ã¯nåãæ¬¡ã«äžŠã¹ããã®ã¯(n-1)åããã®æ¬¡ã«äžŠã¹ããã®ã¯(n-2)å ... ãšã ãã ããšéžã¹ããã®ã®æ°ãæžã£ãŠè¡ããæåŸã«ã¯1åããæ®ããªããªãããšã«æ³šç®ãããšããã®äºæã«é¢ããå Žåã®æ°ã¯
:<math>
n (n-1) (n-2) \cdots 3 \cdot 2 \cdot 1
</math>
ãšãªãã1ããnãŸã§ã®èªç¶æ°ã®ç©ã«ãªãã
ãã®æ°ã '''éä¹''' ïŒããããããfactorialïŒãšåŒã³ãéä¹nã®èšå·ã¯ <math> n! </math> ã§è¡šãã
ããªãã¡ãéä¹ã¯
{{ããã¹ãããã¯ã¹|<math>n! = n (n-1) (n-2) \cdots 3 \cdot 2 \cdot 1</math>}}
ãšå®çŸ©ãããããã®éä¹ã®èšå·ã䜿ãã°ããã®åé¡ã®ãšãã®å Žåã®æ°ã¯ n!ã§ãããšèšãããšãåºæ¥ãã
* åé¡äŸ
** åé¡
:<math>
3! , \quad 4! , \quad 5! , \quad 6!
</math>
ãããããèšç®ããã
** è§£ç
:<math>
n! = 1 \cdot 2 \cdot \cdots n
</math>
ãçšããŠèšç®ããã°ããã
çãã¯ã
:<math>3! = 6</math>
:<math>4! = 24</math>
:<math>5! = 120</math>
:<math>6! = 720</math>
ãšãªãã
** åé¡
ããããã«1ãã5ãŸã§ã®æ°åãæžããã5æã®ã«ãŒãã眮ããŠããã
ãã®ã«ãŒããäžŠã¹æãããšãã
(I)ã«ãŒãã®äžŠã¹æ¹ã®æ°ã (II)å¶æ°ãåŸãããã«ãŒãã®äžŠã¹æ¹ã®æ°ã (III)奿°ãåºãã«ãŒãã®äžŠã¹æ¹ã®æ°ããããããèšç®ããã
** è§£ç
(I)
ã«ãŒãã®æ°ã5æã§ãããããåºå¥ã§ããããšãããã«ãŒãã®äžŠã¹æ¹ã®æ°ã¯
:<math>5!</math>
ãšãªãã120ãšãªãã
(II)
å¶æ°ãåŸãããã«ã¯äžã®äœã§ããæãå³ã«åºãã«ãŒãããå¶æ°ãšãªãã°ããã
ãã®ãããªã«ãŒãã¯2ãš4ã§ãããããããã«å¯ŸããŠåŸã®4æã¯èªç±ã«éžãã§ããã
ãã®ããããã®ãããªã«ãŒãã®äžŠã¹æ¹ã¯ã
:<math>2 \times 4! = 48</math>
ãšãªãã
(III)
奿°ãåŸãããã«ã¯äžã®äœã§ããæãå³ã«åºãã«ãŒããã奿°ãšãªãã°ããã
ãã®ãããªã«ãŒãã¯1,3,5ã§ãããããããã«å¯ŸããŠåŸã®4æã¯èªç±ã«éžãã§ããã
ãã®ããããã®ãããªã«ãŒãã®äžŠã¹æ¹ã¯ã
:<math>3 \times 4! = 72</math>
ãšãªããäžæ¹ã5æã®ã«ãŒããäžŠã¹æããŠåŸãããæ°ã¯å¿
ãå¶æ°ã奿°ã®
ã©ã¡ããã§ããã®ã§ã(I)ã®çµæãã(II)ã®çµæãåŒãããšã«ãã£ãŠã
(III)ã®çµæã¯åŸãããã¯ãã ããå®éã«ãããèšç®ãããš
:<math>120 - 48 = 72</math>
ãšãªãã確ãã«ãã®ããã«ãªã£ãŠããã
** åé¡
0,1,2,3,5ãæžããã5æã®ã«ãŒããããããããäžŠã³æãããšãã
:(I)5æ¡ã®æ°ãåŸãããæ°ã (II) 5æ¡ã®å¶æ°ãåŸãããæ°ã(III) 5æ¡ã®å¥æ°ãåŸãããæ°ã(IV) 5æ¡ã®5ã®åæ°ãåŸãããæ°
ãããããæ±ããã
** è§£ç
(I)
å
é ã0ã«ãªã£ããšãã«ã¯5æ¡ã®æ°ã«ãªããªãããšã«æ³šæããã°ãããæ±ããå Žåã®æ°ã¯
:<math>4 \times 4! = 96</math>
ãšãªãã
(II)
æåã0ã§ãªãæåŸã0ã2ã§ããæ°ãæ°ããã°ããããŸããæåŸã0ã§ãããšãã«ã¯ãæ®ãã®4æã¯ä»»æã§ããã®ã§
:<math>4! = 24</math>
éãã®çµã¿åãããããã
次ã«ãæåŸã2ã§ãããšãã«ã¯æåã¯0ã§ãã£ãŠã¯ãããªãã®ã§ã
:<math>3 \times 3! = 18</math>
éãããã
2ã€ãåãããæ°ã5æ¡ã®å¶æ°ãåŸãããå Žåã®æ°ã§ãããçãã¯ã
:<math>24 + 18 = 42</math>
ãšãªãã
(III)
(I)ã®çµæãã(II)ã®çµæãåŒãã°ããããããã§ã¯ãã®çµæãæ£ãããã©ãã
確ãããããã«ã5æ¡ã®å¥æ°ãåŸãããçµã¿åãããæ°ãäžããŠã¿ãã
5æ¡ã®å¥æ°ãåŸãããã«ã¯æåŸã®æ°ã¯1,3,5ã®ããããã§ãªããŠã¯ãªããªãã
ãã®ãã¡ã®ã©ã®å Žåã«ã€ããŠã5æ¡ã®æ°ãåŸãããã«ã¯æåã®æ°ã0ã§
åã£ãŠã¯ãªããªãã®ã§ããããã®å Žåã®æ°ã¯ã
:<math>3 \times 3 \times 3! = 54</math>
ãšãªãããã5æ¡ã®å¥æ°ãåŸãå Žåã®æ°ã§ããã
(II)ã®çµæãšè¶³ãåããããšç¢ºãã«(I)ã®çµæãšçãã96ãåŸãã
(IV)
5ã®åæ°ãåŸãããã«ã¯æåŸã®æ°ã0ã5ã§ããã°ããã
ãã®ãšãæåŸã0ã«ãªãå Žåã®æ°ã¯ä»ã®4ã€ãä»»æã§ãããã
:<math>4! = 24</math>
ååšãããæ¬¡ã«ãæåŸã5ã«ãªãå Žåã®æ°ã¯æåã®æ°ã0ã§ãã£ãŠã¯ãªããªããã
:<math>3 \times 3! = 18</math>
ã ãååšããã
ãã£ãŠçãã¯
:<math>24 + 18=42</math>
ãšãªãã
===== é å =====
nåã®ç°ãªã£ããã®ããråãéžãã§ãé çªãã€ããŠäžŠã¹ã仿¹ã®æ°ãã<math> {}_n \mathrm{P}_r </math>ãšæžãã
ãŸãããã®ãããªèšç®ã®ä»æ¹ã '''é å''' ïŒãã
ããã€ãè±ïŒpermutationïŒ ãšããã
nåã®ç°ãªã£ããã®ããråãéžãã§é çªãã€ããŠäžŠã¹ã仿¹ã®æ°ã®ããš ãã
:'''nåããråãšãé å'''
ã®ããã«èšãã
æåã«äžŠã¹ããã®ã¯néããæ¬¡ã«äžŠã¹ããã®ã¯ (nâ1)éã ããã®æ¬¡ã«äžŠã¹ããã®ã¯ (nâ2)éã ,... æåŸã«ã¯ (nâ(râ1))éã ãšããããã«ãã ãã ãéžã¹ããã®ã®æ°ãæžã£ãŠè¡ãããšã«æ³šç®ãããšãé åã®ç·æ°ãšããŠ
:<math> {}_n \mathrm{P}_r = n (n-1) (n-2) \cdots (n-r+1) = \frac{n!}{(n-r)!}</math>
ãåŸãããã
:â» ãªã <math> {}_n \mathrm{P}_r </math> ã®P ãšã¯ãé åãæå³ããè±èª permutation ã®é æåã§ããã
äžè¬ã« <math> {}_n \mathrm{P}_r </math> ã§ã¯ n â§ r ã§ããã
* åé¡äŸ
** åé¡
(I)
:<math>{} _5 \mathrm{P} _3</math>
(II)
:<math>{} _4 \mathrm{P} _2</math>
(III)
:<math>{} _7 \mathrm{P} _3</math>
(IV)
:<math>{} _{10} \mathrm{P} _5</math>
(V)
:<math>{} _{10} \mathrm{P} _1</math>
(VI)
:<math>{} _7 \mathrm{P} _0</math>
ãããããèšç®ããã
** è§£ç
ãããã
:<math>{} _n \mathrm{P} _r = n (n-1) (n-2) \cdots (n-r+1) = \frac{n!}{(n-r)!}</math>
ãçšããŠèšç®ããã°ããã
çµæã¯ã
(I)
:<math>{} _5 \mathrm{P} _3 = 5 \times 4 \times 3 = 60</math>
(II)
:<math>{} _4 \mathrm{P} _2 = 4 \times 3 = 12</math>
(III)
:<math>{} _7 \mathrm{P} _3 = 7\times 6\times 5 = 210</math>
(IV)
:<math>{} _{10} \mathrm{P} _5 = 10\times 9\times 8\times 7\times 6 = 30240</math>
(V)
:<math>{} _{10} \mathrm{P} _1 = 10 </math>
(VI)
:<math>{} _7 \mathrm{P} _0 = \frac {7!}{7!} = 1</math>
ãšãªãã
(V)ãš(VI)ã«ã€ããŠã¯äžè¬çã«æŽæ°nã«å¯ŸããŠ
:<math>{} _n \mathrm{P} _1 = n</math>
:<math>{} _n \mathrm{P} _0 = 1</math>
ãåŸãããããã®ãšã
:<math>{} _n \mathrm{P} _0 = 1</math>
ã¯å
ã
ã®é åã®å®çŸ©ãããããš"nåã®ãã®ã®äžãã1ã€ãéžã°ãªãå Žåã®æ°"ã«å¯Ÿå¿ããŠãããå°ã
äžèªç¶ãªããã«æãããããã®ããã«å€ã眮ããŠãããšäŸ¿å©ã§ããããéåžžãã®ããã«çœ®ãã®ã§ãããããŸããå®éã®å Žåã®æ°ã®èšç®ã§ãã®ãããªå€ãæ±ãããšã¯å€ãã¯ãªããšãããã
===== åé å =====
[[File:Circular Permutation 5 elements.svg|thumb|800px]]
{{-}}
A, B, C, D, E ã®5人ãååœ¢ã«æãã€ãªãã§èŒªãã€ãããšãããã®äžŠã³æ¹ã¯äœéããããã
ãã®ãããªåé¡ã®å Žåãå³ã®ããã«ãå転ãããšéãªã䞊ã³ã¯åã䞊ã³ã§ãããšèããã
è§£ãæ¹ã®èãæ¹ã¯æ°çš®é¡ããã
:1ã€ã®èãæ¹ãšããŠã5人ãå圢ã«äžŠã¶ãšããå³ã®ããã«å転ãããšåãã«ãªã䞊ã³ã¯ã5éããã€ãããšããèãæ¹ã«ããã <math> \frac{ 5! }{ 5 } </math> ãšããèãæ¹ã§ããã
:ããäžã€ã®èãæ¹ãšããŠãAãåºå®ããŠãæ®ãã®4人ã®äžŠã³ãèããã°ãå¥ã
ã®äžŠã³ãäœãããšããèãæ¹ã§ã <math> (5-1)! </math> ãšããèãæ¹ã§ããã
ã©ã¡ãã«ãããçµæã¯
:<math> 4! = 4 \cdot 3 \cdot 2 \cdot = 24 </math> ïŒéãïŒ
ã§ããã
äžè¬ã« ç°ãªã nå ã®ãã®ãå圢ã«äžŠã¹ããã®ãåé åãšããã
åé åã®ç·æ°ãšããŠã次ã®ããšãæãç«ã€ã
ç°ãªã nå ã®åé åã®ç·æ°ã¯ <math> (n-1)! </math> ã§ããã
==== çµã¿åãã ====
nåã®ç°ãªã£ããã®ããråãéžãã§ãé çªãã€ããã«äžŠã¹ã仿¹ã®æ°ãã<math> {}_n \mathrm{C}_r </math>ãšæžãããã®ãããªèšç®ã çµã¿åããïŒcombinationïŒ ãšããã
äŸãã°ãããã€ãããããŒã«ã«çªå·ããµã£ãŠãããªã©ã®æ¹æ³ã§ãããããã®ããŒã«ãåºå¥ã§ããnåã®ããŒã«ãå
¥ã£ãç®±ã®äžããråã®ããŒã«ãåãã ãæãåãã ããããŒã«ãåãã ããé ã«äžŠã¹ããšãããšããã®å Žåã®æ°ã¯é å<math>{} _n \mathrm{P} _r</math>ã«å¯Ÿå¿ããã
äžæ¹ãåãã ããããŒã«ã®çš®é¡ãéèŠã§ããåãã ããé çªãç¹ã«å¿
èŠã§ãªããšãã«ã¯ããã®å Žåã®æ°ã¯çµã¿åãã<math>{} _n \mathrm{C} _r</math>ã«å¯Ÿå¿ããããããã®æ°ã¯ãäºãã«ç°ãªã£ãå Žåã®æ°ã§ãããäºãã«ç°ãªã£ãèšç®æ³ãå¿
èŠãšãªãã
<math>{} _n \mathrm{C} _r</math>ã¯ã<math>{} _n \mathrm{P} _r</math>éãã®äžŠã¹æ¹ãäœã£ãåŸã«ãããã®äžŠã³ãç¡èŠãããã®ã«çãããããã§ãråãåãã ããŠäœã£ã䞊ã³ã«ã€ããŠãäžŠã¹æ¹ãç¡èŠãããšr!åã®äžŠã³ãåäžèŠãããããšããããã
ãªããªããråã®ãäºãã«åºå¥ã§ããæ°ãèªç±ã«äžŠã³æããå Žåã®æ°ã¯r!ã§ãããããããå
šãŠåäžèŠããããšããã°å
šäœã®å Žåã®æ°ã¯
r!ã®åã ãæžãããšã«ãªãããã§ããããã£ãŠã
:<math> {}_n \mathrm{C}_r =\frac { {}_n \mathrm{P}_r }{r!} = \frac{n!}{(n-r)!r!}</math>
ãåŸãããã
{{æŒç¿åé¡|
次ã®å€ãèšç®ãã
(I)
:<math>{} _5 \mathrm{C} _2</math>
(II)
:<math>{} _7 \mathrm{C} _3</math>
(III)
:<math>{} _{10} \mathrm{C} _1</math>
(VI)
:<math>{} _8 \mathrm{C} _0</math>
|
ããããã«ã€ããŠ
:<math>{}_n \mathrm{C} _r =\frac { {}_n \mathrm{P} _r }{r!} = \frac{n!}{(n-r)!r!}</math>
ãçšããŠèšç®ããã°ããã
(I)
:<math>{} _5 \mathrm{C} _2 = \frac {5\times 4}{2\times 1} = 10</math>
(II)
:<math>{} _7 \mathrm{C} _3 = \frac { 7\times 6\times 5} { 3\times 2\times 1} = 35</math>
(III)
:<math>{} _{10} \mathrm{C} _1 = \frac {10} {1} = 10</math>
(VI)
:<math>{} _8 \mathrm{C} _0 = 1 </math>
ãšãªãã(IV)ã«ã€ããŠã¯äžè¬ã«æŽæ°nã«å¯ŸããŠ
:<math>{} _n \mathrm{C} _0 = 1</math>
ãå®çŸ©ããã
ããã¯ããšããšã®çµã¿åããã®èšç®ãšããŠã¯nåã®ç©äœã®ãªããã0åã®ç©äœãéžã¶å Žåã®æ°ã«å¯Ÿå¿ããŠããã
å®éã«ã¯ãã®ãããªå Žåã®æ°ãèšç®ããããšèããããšã¯ããŸãç¡ããšæãããããèšç®ã®äŸ¿å®äžã®ããå®çŸ©ãäžã®ããã«ããã
ãŸããäžã®èšç®ã§ã¯
:<math>{} _n \mathrm{C} _r =\frac { {}_n \mathrm{P} _r }{r!}</math>
ã®åŒããã®ãŸãŸçšãããšã
:<math>{} _n \mathrm{C} _0 = \frac {{} _n \mathrm{P} _0} {0!} = \frac 1 {0!} = 1</math>
ã€ãŸãã
:<math>0! = 1</math>
ãšãªã£ãŠããã
å®éã«ã¯éä¹ã®èšç®ã¯æŽæ°nã«ã€ããŠã¯nãã1ãŸã§ãäžãããªããããç®ããŠãããšãã仿¹ã§èšç®ãããŠããã®ã§ãäžã®çµæã¯åŠã«æããã
ãããå®éã«ã¯ãããé²ãã çè«ã«ãã£ãŠãã®çµæã¯æ£åœåãããã®ã§ããã
ãã®å Žåã䟿å®äž
:<math>0! = 1</math>
ã0ã®éä¹ã®å®çŸ©ãšããŠåããããã®ã§ããã
}}
{{æŒç¿åé¡|
5åã®ããŒã«ãå
¥ã£ãããŒã«å
¥ããã2ã€ã®ããŒã«ãåãã ããšã(ããŒã«ã¯ãããã
åºå¥ã§ãããã®ãšããã)2ã€ã®ããŒã«ã®éžã³æ¹ã¯ã
äœéããããèšç®ããã|ããŒã«ã®åãã ãæ¹ã¯çµã¿åããã®æ°ãçšããŠèšç®ã§ããã
5ã€ã®ããŒã«ã®äžãã2ã€ãåãã ãã®ã§ãããããã®å Žåã®æ°ã¯ã
:<math>{} _5 \mathrm{C} _2 = \frac {5!}{2!3!} = \frac { 5 \cdot 4 \cdot 3 \cdot 2\cdot 1}{(3 \cdot 2 \cdot 1)( \cdot 2 \cdot 1)}</math>
:<math>= 10</math>
ãšãªãããã£ãŠãããŒã«ã®åãã ãæ¹ã¯10éãã§ããããšããããã}}
{{æŒç¿åé¡|
6åã®äºãã«åºå¥ã§ããããŒã«ãå
¥ã£ãç®±ãããã
ãã®äžãã (I)3ã€ã®ããŒã«ãš2ã€ã®ããŒã«ãåãã ãæ¹æ³ã®å Žåã®æ°ã(II)2ã€ã®ããŒã«ãåãåºãããšã2åããè¿ãããããããå¥ã®äºãã«åºå¥ã§ããè¢ã«ãããå Žåã®æ°ã(III)2ã€ã®ããŒã«ãåãåºãããšã2åããè¿ãããããããå¥ã®äºãã«åºå¥ã§ããªãè¢ã«ãããå Žåã®æ°ããããããèšç®ããã|
(I)
æåã«ããŒã«ãåãã ããšãã«ã¯ã6ã€ã®ããŒã«ã®äžãã3ã€ã®ããŒã«ãåãã ãããšãããã®å Žåã®æ°ã¯
:<math>{} _6 \mathrm{C} _3</math>
ã ãããããŸããæ¬¡ã«ãããåãé€ããäžãã2ã€ã®ããŒã«ãåãé€ããšãã«ã¯
ãã®åãã ãæ¹ã¯ã
:<math>{} _3 \mathrm{C} _2</math>
ã ãããã
ãã£ãŠããã®ãšãã®å Žåã®æ°ã¯
:<math>{} _6 \mathrm C _3 \times {} _3 \mathrm{C} _2 </math>
ã ãã«ãªããå®éãã®å€ãèšç®ãããšã
:<math>{} _6 \mathrm C _3 \times {} _3 \mathrm{C} _2 = 20 \times 3 = 60</math>
ãšãªãã60éãã§ããããšãåããã
(II)
(I)ã®å Žåãšåæ§ã«6ã€ã®ããŒã«ã®äžãã2ã€ã®ããŒã«ã
åãã ãããšãããã®å Žåã®æ°ã¯
:<math>{} _6 \mathrm{C} _2</math>
ã ãããããŸããæ¬¡ã«ãããåãé€ããäžãã2ã€ã®ããŒã«ãåãé€ããšãã«ã¯
ãã®åãã ãæ¹ã¯ã
:<math>{} _4 \mathrm{C} _2</math>
ã ãããã
ãã£ãŠããã®ãšãã®å Žåã®æ°ã¯
:<math>{} _6 \mathrm C _2 \times {} _4 \mathrm{C} _2 </math>
ã ãã«ãªããå®éãã®å€ãèšç®ãããšã
:<math>{} _6 \mathrm C _2 \times {} _4 \mathrm{C} _2 = 15 \times 6 = 90</math>
ãšãªãã90éãã§ããããšãåããã
(III)
(II)ãšåãèšç®ã§å€ãæ±ããããšãåºæ¥ãããä»åã¯ããŒã«ããããè¢ã
äºãã«åºå¥ã§ããªãããšã«æ³šæããªããŠã¯ãªããªãã
ãã®ããšã«ãã£ãŠãèµ·ããããå Žåã®æ°ã¯(II)ã®å Žåã®ååã«ãªãã®ã§
æ±ããå Žåã®æ°ã¯45éããšãªãã}}
<math> {}_n \mathrm{C}_r </math>ã«ã€ããŠä»¥äžã®åŒãæãç«ã€ã
:<math> {}_n \mathrm C_r = _n \mathrm{C} _{n-r}</math>
:<math> {}_n \mathrm C _r = _{n-1} \mathrm C_r + _{n-1} \mathrm{C} _{r-1}</math>
å°åº
:<math> {}_n \mathrm{C}_r = \frac{n!}{(n-r)!r!}</math>
ãçšãããšã
:<math> {}_n \mathrm{C}_{n-r} = \frac{n!}{(n-(n-r))!(n-r)!}</math>
:<math> = \frac{n!}{r!(n-r)!}</math>
:<math> = {}_n \mathrm{C}_r </math>
ãåŸããã瀺ãããã
åæ§ã«
:<math> {}_n \mathrm{C}_r = \frac{n!}{(n-r)!r!}</math>
ãçšãããšã
:<math> {}_{n-1} \mathrm C_r + _{n-1} \mathrm{C} _{r-1}</math>
:<math>= \frac {(n-1)!}{(n-1-r)!r!} +\frac {(n-1)!}{(n-r)!(r-1)!} </math>
:<math>= \frac {(n-r)}n {}_n \mathrm{C}_r +\frac r n {}_n \mathrm{C}_r</math>
:<math>= {}_n \mathrm{C}_r</math>
ãšãªã瀺ãããã
æåã®åŒã¯ãç°ãªãnåã®ãã®ã®ãã¡råã«Xãšããã©ãã«ãã€ããæ®ãã®n-råã«Yãšããã©ãã«ãã€ããå Žåã®æ°ããæ±ããããšãã§ãããç°ãªãnåã®ãã®ã®ãã¡ããråãéžã³ã©ãã«Xãã€ããæ®ãã«ã©ãã«Yãã€ããå Žåã®æ°ã¯<math>_n \mathrm C _r</math> ã§ãããç°ãªãnåã®ãã®ã®ãã¡ããn-råãéžã³ãã©ãã«Yãã€ããæ®ãã«ã©ãã«Xãã€ããå Žåã®æ°ã¯<math>_n \mathrm C _{n-r}</math> ã§ãããåœç¶ãåè
ãšåŸè
ã®å Žåã®æ°ã¯çããã®ã§ãããããã<math>_n \mathrm C _r = _n \mathrm C_{n-r}</math> ãæ±ããããã
2ã€ç®ã®åŒã¯ã
"nåã®ãã®ããråãéžã¶ä»æ¹ã®æ°ã¯ãæ¬¡ã®æ°ã®åã§ããã
æåã®1ã€ãéžã°ãã«ä»ã®n-1åããråãéžã¶ä»æ¹ã®æ°ãšãæåã®1ã€ãéžãã§ä»ã®n-1åããr-1åãéžã¶ä»æ¹ã®æ°ãšã®
åã§ããã"
ãšããããšã衚ãããŠããã
* åé¡äŸ
:<math>{} _n \mathrm{C} _r = _n \mathrm{ \mathrm{C}} _{n-r}</math>
ãçšããŠ
(I)
:<math>{} _5 \mathrm{C} _3</math>
(II)
:<math>{} _7 \mathrm{C} _4</math>
(III)
:<math>{} _{10} \mathrm{C} _9</math>
(VI)
:<math>{} _8 \mathrm{C} _5</math>
ãããããèšç®ããã
** è§£ç
äžã®åŒãçšããŠèšç®ããããšãåºæ¥ãããã¡ããçŽæ¥ã«èšç®ããŠã
çããåŸãããšãåºæ¥ãããéåžžã¯ç°¡ååããŠããèšç®ããæ¹ãæ¥œã§ããã
(I)
:<math>{} _5 \mathrm{C} _3 = {} _5 \mathrm{C} _{5-3} = {} _5 \mathrm{C} _2 = 10</math>
(II)
:<math>{} _7 \mathrm{C} _4= {} _7 \mathrm{C} _{7-4}={} _7 \mathrm{C} _3 = 35</math>
(III)
:<math>{} _{10} \mathrm{C} _9= {} _{10} \mathrm{C} _{10-9}= {} _{10} \mathrm{C} _1 = 10</math>
(VI)
:<math>{} _8 \mathrm{C} _5= {} _8 \mathrm{C} _{8-5}= {} _8 \mathrm{C} _3= 56</math>
ãšãªãã
** åé¡
å³ã®ãããªã«ãŒããå·Šäžã®ç¹ããå³äžã®ç¹ãŸã§æ©ããŠè¡ã人ãããã
ãã ãããã®äººã¯å³ãäžã«ããé²ããªããšããããã®ãšãã
:(I) å·Šäžããå³äžãŸã§é²ã仿¹ã®æ°
:(II) aç¹ãééããŠå³äžãŸã§é²ã仿¹ã®æ°
ãèšç®ããããã ãaç¹ã¯*ãšæžãããŠããç¹ã®ããäžã®éè·¯ã®ããšããããŠããã
ããããã®ã«ãŒãã¯éåããŠããªã瞊4ã€ã暪5ã€ã®ç¢ç€ç®äžã®ã«ãŒãã«
ãªã£ãŠããããšã«æ³šæããã
___________
|_|_|_|_|_|
|_|_|*|_|_|
|_|_|_|_|_|
|_|_|_|_|_|
** è§£ç
(I)
å·Šäžã«ãã人ã¯9åé²ãããšã§å³äžã®ç¹ã«èŸ¿ãçããããã®ãããå·Šäžã«ãã人ãéžã³ããã«ãŒãã®æ°ã¯9åã®ãã¡ã®ã©ã®åã§å³ã§ã¯ãªãäžã
éžã¶ãã®å Žåã®æ°ã«çããããã®ãããªå Žåã®æ°ã¯ã9åã®ãã¡ããèªç±ã«4ã€ã®å Žæãéžã¶æ¹æ³ã«çãããçµã¿åãããçšããŠæžãããšãåºæ¥ããå®éã«9åã®ãã¡ããèªç±ã«4ã€ã®å Žæãéžã¶æ¹æ³ã¯ã
:<math>{} _9 \mathrm{C} _4</math>
ã§æžãããããã®éãèšç®ãããšã
:<math>{} _9 \mathrm{C} _4 = 126</math>
ãåŸãããã
(II)
aç¹ãééããŠé²ãã«ãŒãã®æ°ã¯aç¹ã®å·Šã®ç¹ãŸã§ãã£ãŠããaç¹ãééããaç¹ã®å³ã®ç¹ãéã£ãŠå³äžã®ç¹ãŸã§ãã仿¹ã®æ°ã«çããã
ããããã®ã«ãŒãã®æ°ã¯(I)ã®æ¹æ³ãçšããŠèšç®ããããšãã§ããããã®æ°ãå®éã«èšç®ãããšã
:<math>{} _4 \mathrm{C} _2 \times {} _4 \mathrm{C} _2 = 6 \times 6 = 36 </math>
ãšãªãã36éãã§ããããšãåããã
{{æŒç¿åé¡|<math>r_n \mathrm C _r = n_{n-1} \mathrm C_{r-1}</math>ã瀺ã|<math>r_n \mathrm C _r = r\frac{n!}{r!(n-r)!} = n\frac{(n-1)!}{(r-1)((n-1)-(r-1))!} = n_{n-1} \mathrm C_{r-1}</math>}}
==== éè€çµã¿åãã ====
ç°ãªãnåã®ç©ºç®±ã«råã®ãã®ãå
¥ããå Žåã®æ°ãéè€çµã¿åãããšããã <math>_n \mathrm H_r</math> ã§è¡šãã
éè€çµåãã«ã€ããŠæ¬¡ã®ããã«èå¯ããã
<math>x_1,x_2,\cdots,x_n,r</math> ãéè² æŽæ°ãšããæ¹çšåŒ <math>x_1+x_2 + \cdots +x_n = r</math> ã®è§£ã®åæ°ã«ã€ããŠèããããã®è§£ã®åæ°ã¯ <math>x_1,x_2,\cdots,x_n</math> ã« <math>r</math> åã®1ãåé
ããå Žåã®æ°ãšèããããšãã§ããã®ã§ãéè€çµã¿åããã®å®çŸ©ããã<math>_n \mathrm H_r</math> ã§ããã
ãŸãããã®æ¹çšåŒã®éè² æŽæ°è§£ã®åæ°ã¯ãråã®âã«n-1åã®åºåãã眮ãå Žåã®æ°ãšãèãããããã€ãŸããâââ...ââ(rå)ã«n-1åã®åºåãïœã䞊ã¹ããšâïœââïœ...âïœâã®ããã«ãªããããã§ãå·Šããé ã«åºåãã§åºåãããâã®åæ°ãããããã<math>x_1,x_2,\cdots,x_n</math> ãšãããšãããã¯æ¹çšåŒã®è§£ãšãªãã
ãã®å Žåã®æ°ã¯ãråã®âãšn-1åã®åºåãïœã䞊ã¹ããå Žåã®æ°ãªã®ã§ã<math>_{n+r-1} \mathrm C _r</math> ã§ãããæ¹çšåŒã®éè² æŽæ°è§£ã®åæ°ã«ã€ããŠ2éãã®æ¹æ³ã§æ±ãŸã£ãã®ã§ãããã¯çããã <math>_n \mathrm H_r = _{n+r-1} \mathrm C_r</math> ãæãç«ã€ã
== 確ç ==
==== 確çã®èšç® ====
ããå Žåã®æ°ããå®éã«çŸãããå²åã®ããšã確çïŒãããã€ãè±ïŒprobabilityïŒãšåŒã¶ã
ããå Žåã®æ°ãå®éã«çŸãããå²åã¯ããã®å Žåã®æ°ãå²ãç®ã§ããã®äºæã«ãããŠèµ·ããåŸãå
šãŠã®äºæã®å Žåã®æ°ã§å²ã£ããã®ã«çããã
ããšãã°ãå
šãçããå²åã§å
šãŠã®é¢ãåºãããããããµã£ããšãã«1ãåºã確çã¯<math>\frac 1 6</math>ã§ããã
ããã¯1ãåºãå Žåã®æ°1ãã1,2,3,4,5,6ã®ãããããåºãå Žåã®æ°6ã§å²ã£ããã®ã«çããã
{| style="border:2px solid skyblue;width:80%" cellspacing=0
|style="background:skyblue"|'''äºè±¡Aã®ç¢ºç'''
|-
|style="padding:5px"|
èµ·ãããããã¹ãŠã®å Žåã®æ°ãNãäºè±¡Aã®èµ·ããå Žåã®æ°ãaãšãããšããäºè±¡Aã®èµ·ãã確çP(A)ã¯ä»¥äžã®åŒã§æ±ããããã
:<math>
P(A) = \frac{a}{N}
</math>
|}
* åé¡äŸ
** åé¡
èµ€ç2åãšçœç3åãå
¥ã£ãè¢ãããçã2ååæã«åãåºãããã®ãšãã2åãšãçœçãåºã確çãæ±ããã
** è§£ç
èµ€çœããããŠ5åã®çãã2åãåãåºãæ¹æ³ã¯
:<math>{} _5 \mathrm{C} _2 = \frac {5\times 4}{2\times 1} = 10</math>ïŒéãïŒ
ãã®ãã¡ã2åãšãçœçã«ãªãå Žåã¯
:<math>{} _3 \mathrm{C} _2 = \frac {3\times 2}{2\times 1} = 3</math>ïŒéãïŒ
ãã£ãŠæ±ãã確ç㯠<math> \frac {3}{10} </math>
==== 確çã®æ§è³ª ====
確çã®å®çŸ©ãããæ¬¡ã®æ§è³ªãåŸãããã
{| style="border:2px solid skyblue;width:80%" cellspacing=0
|style="background:skyblue"|'''確çã®æ§è³ª'''
|-
|style="padding:5px"|
ïŒ1ïŒã©ããªäºè±¡Aã«ã€ããŠãã <math>0 \leqq P(A) \leqq 1</math><br>
ïŒ2ïŒæ±ºããŠèµ·ãããªãäºè±¡ã®ç¢ºç㯠0<br>
ïŒ3ïŒå¿
ãèµ·ããäºè±¡ã®ç¢ºç㯠1
|}
==== æåäºè±¡ã®ç¢ºç ====
2ã€ã®äºè±¡A,Bãåæã«èµ·ãããªããšããäºè±¡AãšBã¯äºãã«'''æå'''ïŒã¯ãã¯ããè±ïŒexclusiveïŒã§ããããŸãã¯AãšBã¯'''æåäºè±¡'''ã§ãããšããã
{| style="border:2px solid skyblue;width:80%" cellspacing=0
|style="background:skyblue"|'''æåäºè±¡ã®ç¢ºç'''
|-
|style="padding:5px"|
AãšBãæåäºè±¡ã®ãšããAãŸãã¯Bãèµ·ãã確çã¯
:'''<math>P(A \cup B) = P(A)+P(B)</math>'''
|}
* åé¡äŸ
** åé¡
ç·å7人ã女å5人ã®äžãããããåŒãã§3人ã®å§å¡ãéžã¶ãšãã3人ãšãåæ§ã§ãã確çãæ±ããã
** è§£ç
12人ã®äžãã3人ã®å§å¡ãéžã¶å Žåã®æ°ã¯
:<math>{} _{12} \mathrm{C} _3 = \frac {12\times 11\times 10}{3\times 2\times 1} = 220</math>ïŒéãïŒ
ããã§ãã3人ãšãç·åã§ãããäºè±¡ãAãã3人ãšã女åã§ãããäºè±¡ãBãšãããšãã3人ãšãåæ§ã§ãããäºè±¡ã¯ãåäºè±¡A ∪ Bã§ãããããããAãšBã¯æåäºè±¡ã§ããã
:<math>P(A) = \frac {{} _7 \mathrm{C} _3 }{220}= \frac {35}{220}</math>
:<math>P(B) = \frac {{} _5 \mathrm{C} _3 }{220}= \frac {10}{220}</math>
ãã£ãŠæ±ãã確ç㯠<math>P(A \cup B) = P(A)+P(B) = \frac {35}{220} + \frac {10}{220} = \frac {45}{220} = \frac {9}{44}</math>
==== äœäºè±¡ã®ç¢ºç ====
äºè±¡Aã«å¯ŸããŠããAã§ãªããäºè±¡ã<math>\overline{A}</math>ã§è¡šããAã®'''äœäºè±¡'''ïŒãããããïŒãšããã
{| style="border:2px solid skyblue;width:80%" cellspacing=0
|style="background:skyblue"|'''äœäºè±¡ã®ç¢ºç'''
|-
|style="padding:5px"|
Aã®äœäºè±¡ã<math>\overline{A}</math>ãšãããš<br>
:'''<math>P(A) = 1 - P(\overline{A})</math>'''
|}
* åé¡äŸ
** åé¡
èµ€ç5åãçœç3åã®èš8åå
¥ã£ãŠããè¢ãã3åã®çãåãåºããšããå°ãªããšã1åã¯çœçã§ãã確çãæ±ããã
** è§£ç
8åã®çãã3åã®çãåãåºãå Žåã®æ°ã¯
:<math>{} _8 \mathrm{C} _3 = \frac {8\times 7\times 6}{3\times 2\times 1} = 56</math>ïŒéãïŒ
ããŸããå°ãªããšã1åã¯çœçã§ãããäºè±¡ãAãšãããšã<math>\overline{A}</math>ã¯ã3åãšãèµ€çã§ããããšããäºè±¡ã ãã
:<math>P(\overline{A}) = \frac {{} _5 \mathrm{C} _3 }{56} = \frac {10}{56} = \frac {5}{28}</math>
ãã£ãŠæ±ãã確çã¯
:<math>P(A) = 1 - P(\overline{A}) = 1 - \frac {5}{28} = \frac {23}{28}</math>
=== ç¬ç«ãªè©Šè¡ãšç¢ºç ===
==== ç¬ç«ãªè©Šè¡ãšç¢ºç ====
ãããã«ä»ã®çµæã«å¯ŸããŠåœ±é¿ããããŒããªãæäœãç¹°ãããããšããããããã®è©Šè¡ã¯'''ç¬ç«'''ïŒã©ããã€ãè±ïŒindependentïŒã§ãããšèšããç¬ç«ãªè©Šè¡ã«ã€ããŠã¯ããã詊è¡ã®èµ·ãã確çãå®ããããŠããŠããããnåç¹°ããããããšããããããèµ·ãã確çã¯ãããããã®è©Šè¡ãèµ·ãã確çã®ç©ãšãªãã
{| style="border:2px solid skyblue;width:80%" cellspacing=0
|style="background:skyblue"|'''ç¬ç«ãªè©Šè¡ãšç¢ºç'''
|-
|style="padding:5px"|
2ã€ã®ç¬ç«ãªè©Šè¡S,Tã«ã€ããŠãSã§ã¯äºè±¡AããTã§ã¯äºè±¡Bãèµ·ãã確çã¯<br>
:'''<math>P(A) \times P(B)</math>'''
|}
<br>
* åé¡äŸ
** åé¡
èµ€ç3åãçœç2åã®èš5åå
¥ã£ãŠããè¢ãããããã®äžãã1åã®çãåãåºããŠè²ã確ãããŠããè¢ã«æ»ããåã³1åãåãåºããšãã1åç®ã¯èµ€çã2åç®ã¯çœçãåãåºã確çãæ±ããã
** è§£ç
1åç®ã«åãåºããçãè¢ã«æ»ãã®ã§ãã1åç®ã«åãåºãã詊è¡ãšã2åç®ã«åãåºãã詊è¡ãšã¯äºãã«ç¬ç«ã§ããã<br>
1åç®ã«åãåºãã1åãèµ€çã§ãã確ç㯠<math>\frac {3}{5}</math><br>
2åç®ã«åãåºãã1åãçœçã§ãã確ç㯠<math>\frac {2}{5}</math><br>
ãããã£ãŠæ±ãã確çã¯
:<math>\frac {3}{5} \times \frac {2}{5} = \frac {6}{25}</math>
==== å埩詊è¡ã®ç¢ºç ====
åã詊è¡ãäœåãç¹°ãè¿ããŠè¡ããšããååã®è©Šè¡ã¯ç¬ç«ã§ããããã®äžé£ã®ç¬ç«ãªè©Šè¡ããŸãšããŠèãããšããããã'''å埩詊è¡'''ïŒã¯ãã·ã ãããïŒãšããã
{| style="border:2px solid skyblue;width:80%" cellspacing=0
|style="background:skyblue"|'''å埩詊è¡ã®ç¢ºç'''
|-
|style="padding:5px"|
ãã詊è¡ã§ãäºè±¡Eã®èµ·ãã確çãpã§ãããšããããã®è©Šè¡ãnåç¹°ãè¿ããšããäºè±¡Eããã®ãã¡råã ãèµ·ãã確çã¯<br>
:'''<math>{} _n \mathrm{C} _r \; p^r \; (1-p)^{n-r}</math>'''
|}
* åé¡äŸ
** åé¡
1åã®ããããã5åæãããšãã3ã®åæ°ã®ç®ã4ååºã確çãæ±ããã
** è§£ç
1åã®ããããã1åæãããšãã3ã®åæ°ã®ç®ãåºã確çã¯
:<math>\frac {2}{6} = \frac {1}{3}</math>ã§ããã
ãã£ãŠã1åã®ããããã5åæãããšãã3ã®åæ°ã®ç®ã4ååºã確çã¯
:<math>{} _5 \mathrm{C} _4 \; \left( \frac{1}{3} \right)^4 \; \left(1 - \frac{1}{3} \right)^{5-4} = \frac {10}{243}</math>
==== æåŸ
å€ ====
èšå·ãΣãã«ã€ããŠã¯[[é«çåŠæ ¡æ°åŠB/æ°å#ç·åèšå·Î£|ãã¡ã]]ãåç
§ã
ãã詊è¡ããã£ããšãã
ãã®è©Šè¡ã§åŸããããšæåŸ
ãããå€ã®ããšãæåŸ
å€ïŒãããã¡ãè±ïŒexpected valueïŒãšãããæåŸ
å€ã¯ã''n''åã®äºè±¡<math>r_k \ (k=1,2,\cdots,n)</math>ã«å¯ŸããŠãåã
<math>v_k</math>ãšããå€ãåŸãããäºè±¡<math>r_k</math>ãèµ·ãã確çã<math>p_k</math>ã§äžããããŠãããšãã
:<math>E = \sum_{k=1}^n v_k p_k</math>
ã«ãã£ãŠäžãããããäŸãã°ãããããããµã£ããšãåºãç®ã®æåŸ
å€ã¯ã
:<math>\frac 1 6 \times 1 +\frac 1 6 \times 2+\frac 1 6 \times 3+\frac 1 6 \times 4+\frac 1 6 \times 5+\frac 1 6 \times 6</math>
:<math>=\frac 1 6 (1 + 2+3+4+5+6)</math>
:<math>= \frac 7 2</math>
ãšãªãã
{{DEFAULTSORT:ãããšããã€ããããããA ã¯ããã®ãããšãããã€}}
[[Category:é«çåŠæ ¡æ°åŠA|ã¯ããã®ãããšãããã€]]
[[ã«ããŽãª:確ç]] | 2005-05-08T03:13:16Z | 2024-02-23T05:38:59Z | [
"ãã³ãã¬ãŒã:-",
"ãã³ãã¬ãŒã:æŒç¿åé¡",
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:ããã¹ãããã¯ã¹"
] | https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E6%95%B0%E5%AD%A6A/%E5%A0%B4%E5%90%88%E3%81%AE%E6%95%B0%E3%81%A8%E7%A2%BA%E7%8E%87 |
1,933 | é«çåŠæ ¡æ°åŠIII/ç©åæ³ | ããã§ã¯ãæ°åŠIIã®åŸ®åã»ç©åã®èãã§åŠãã ç©åã®æ§è³ªã«ã€ããŠãã詳ããæ±ãããŸããäžè§é¢æ°ãææ°ã»å¯Ÿæ°é¢æ°ãªã©ã®é¢æ°ã®ç©åã«ã€ããŠãåŠç¿ããã
ç©åæ³ã«ã€ããŠ
â« { f ( x ) + g ( x ) } d x = â« f ( x ) d x + â« g ( x ) d x , {\displaystyle \int \{f(x)+g(x)\}dx=\int f(x)dx+\int g(x)dx,} â« a f ( x ) d x = a â« f ( x ) d x {\displaystyle \int af(x)dx=a\int f(x)dx} (aã¯å®æ°)
ãæãç«ã€ã
å°åº
â« { f ( x ) + g ( x ) } d x = â« f ( x ) d x + â« g ( x ) d x {\displaystyle \int \{f(x)+g(x)\}dx=\int f(x)dx+\int g(x)dx}
ã®äž¡èŸºã埮åãããšã
巊蟺 =å³èŸº = f + g {\displaystyle f+g}
ãåŸãã
ãã£ãŠã
â« { f ( x ) + g ( x ) } d x = â« f ( x ) d x + â« g ( x ) d x {\displaystyle \int \{f(x)+g(x)\}dx=\int f(x)dx+\int g(x)dx}
ã®äž¡èŸºã¯äžèŽããã
(å®éã«ã¯2ã€ã®é¢æ°ã®å°é¢æ°ãäžèŽãããšãã ãããã®é¢æ°ã«ã¯å®æ°ã ãã®ã¡ãããããã
ä»®ã«ãF(x)ãšG(x)ãå
±éã®å°é¢æ°h(x)ãæã£ããšããã
ãã®ãšãã
( F ( x ) â G ( x ) ) â² = h ( x ) â h ( x ) = 0 {\displaystyle (F(x)-G(x))'=h(x)-h(x)=0}
ãšãªããã0ã®åå§é¢æ°ã¯å®æ°Cã§ããããšãåããã
ãã£ãŠã䞡蟺ãç©åãããšã
F ( x ) â G ( x ) = C {\displaystyle F(x)-G(x)=C}
ãšãªããF(x)ãšG(x)ã«ã¯å®æ°ã ãã®å·®ãããªãããšã確ãããããã
ãã£ãŠã
â« { f ( x ) + g ( x ) } d x = â« f ( x ) d x + â« g ( x ) d x {\displaystyle \int \{f(x)+g(x)\}dx=\int f(x)dx+\int g(x)dx}
ã¯å®æ°ã ãã®ã¡ãããå«ãã§æãç«ã€åŒã§ããã ããäžè¬ã«ãäžå®ç©åã絡ãçåŒã¯å®æ°åã®å·®ãå«ããŠæãç«ã€ãšããã®ãéäŸã§ããã)
â« a f ( x ) d x = a â« f ( x ) d x {\displaystyle \int af(x)dx=a\int f(x)dx}
ã«ã€ããŠã䞡蟺ã埮åãããšã
巊蟺=å³èŸº= a f(x)
ãåŸãã
ãã£ãŠã
â« a f d x = a â« f d x {\displaystyle \int afdx=a\int fdx}
ãæãç«ã€ããšãåãã
颿° f ( x ) {\displaystyle f(x)} ã®åå§é¢æ°ã F ( x ) {\displaystyle F(x)} ãšãããš
â« a b f ( x ) = F ( b ) â F ( a ) = â ( F ( a ) â F ( b ) ) = â â« b a f ( x ) d x {\displaystyle \int _{a}^{b}f(x)\,=F(b)-F(a)=-(F(a)-F(b))=-\int _{b}^{a}f(x)\,dx} ã§ããã
â« a c f ( x ) d x + â« c b f ( x ) d x = ( F ( c ) â F ( a ) ) + ( F ( b ) â F ( c ) ) = F ( b ) â F ( a ) = â« a b f ( x ) d x {\displaystyle \int _{a}^{c}f(x)\,dx+\int _{c}^{b}f(x)\,dx=(F(c)-F(a))+(F(b)-F(c))=F(b)-F(a)=\int _{a}^{b}f(x)\,dx}
颿°ã®åå§é¢æ°ãæ±ããææ®µãšããŠã ç©å倿°ãå¥ã®å€æ°ã§çœ®ãæããŠç©åãè¡ãªãææ®µãç¥ãããŠããã ããã眮æç©åãšåŒã¶ã
â« f ( g ( x ) ) d g ( x ) = â« f ( g ( x ) ) g â² ( x ) d x {\displaystyle \int f(g(x))dg(x)=\int f(g(x))g'(x)dx}
å°åº
â« f ( g ( x ) ) d g ( x ) = F ( g ( x ) ) {\displaystyle \int f(g(x))dg(x)=F(g(x))} ã x {\displaystyle x} ã«ã€ããŠåŸ®åãããšã
F â² ( g ( x ) ) = f ( g ( x ) ) g â² ( x ) {\displaystyle F'(g(x))=f(g(x))g'(x)}
åã³ x {\displaystyle x} ã«ã€ããŠç©åãããšã
â« f ( g ( x ) ) d g ( x ) = â« f ( g ( x ) ) g â² ( x ) d x {\displaystyle \int f(g(x))dg(x)=\int f(g(x))g'(x)dx}
ãŸããç¹ã«
äŸãã°ã â« ( a x + b ) 2 d x {\displaystyle \int (ax+b)^{2}dx} ãèããã
t = a x + b {\displaystyle t=ax+b} ãšçœ®ãã
ãã®äž¡èŸºã埮åãããš d t = a d x {\displaystyle dt=adx} ãæãç«ã€ããšãèæ
®ãããšã
ãšãªãããšããããã
å®éãã®åŒãxã§åŸ®åãããš ( a x + b ) 2 {\displaystyle (ax+b)^{2}} ãšäžèŽããããšãåãã
眮æç©åã䜿ããã«èšç®ããããšãåºæ¥ãã
( C â² = b 3 3 a + C {\displaystyle C'={\frac {b^{3}}{3a}}+C} ãšçœ®ãæããã)
= ( a x + b ) 3 3 a + C {\displaystyle ={\frac {(ax+b)^{3}}{3a}}+C} ãšãªã確ãã«äžèŽããã
颿°ã®ç©ã®ç©åãè¡ãªããšããã颿°ã®åŸ®åã ããåãã ããŠç©åãããšãããŸãç©åã§ããå Žåãããã颿° g ( x ) {\displaystyle g(x)} ã®åå§é¢æ°ã G ( x ) {\displaystyle G(x)} ãšãããš
â« f ( x ) g ( x ) d x = f ( x ) G ( x ) â â« f â² ( x ) G ( x ) d x {\displaystyle \int f(x)g(x)\,dx=f(x)G(x)-\int f'(x)G(x)\,dx}
å°åº
ç©ã®åŸ®åæ³ãã { f ( x ) G ( x ) } â² = f â² ( x ) G ( x ) + f ( x ) g ( x ) {\displaystyle \{f(x)G(x)\}'=f'(x)G(x)+f(x)g(x)} ã§ããããããç§»é
ããŠ
f ( x ) g ( x ) = { f ( x ) G ( x ) } â² â f â² ( x ) G ( x ) {\displaystyle f(x)g(x)=\{f(x)G(x)\}'-f'(x)G(x)}
ã§ããã䞡蟺ãxã§ç©åããŠ
â« f ( x ) g ( x ) d x = f ( x ) G ( x ) â â« f â² ( x ) G ( x ) d x {\displaystyle \int f(x)g(x)\,dx=f(x)G(x)-\int f'(x)G(x)\,dx}
ãåŸãããã
äŸãã°ã
n â â 1 {\displaystyle n\neq -1} ã®ãšãã ( 1 n + 1 x n + 1 ) â² = x n {\displaystyle \left({\frac {1}{n+1}}x^{n+1}\right)'=x^{n}} ãªã®ã§ã
â« x n d x = 1 n + 1 x n + 1 + C {\displaystyle \int x^{n}dx={\frac {1}{n+1}}x^{n+1}+C}
n = â 1 {\displaystyle n=-1} ã®ãšãã ( log | x | ) â² = 1 x = x â 1 {\displaystyle (\log |x|)'={\frac {1}{x}}=x^{-1}} ãªã®ã§ã
â« x â 1 d x = â« 1 x d x = log | x | + C {\displaystyle \int x^{-1}dx=\int {\frac {1}{x}}dx=\log |x|+C}
ãæãç«ã€ã
ãæãç«ã€ããšãèæ
®ãããšã
ãšãªãããšãåãã
â« tan x d x {\displaystyle \int \tan xdx} ã¯ã眮æç©åæ³ã䜿ã£ãŠ
ããäžè¬ã«æç颿° R ( x , y ) {\displaystyle R(x,y)} ã«å¯ŸããŠã â« R ( sin Ξ , cos Ξ ) d Ξ {\displaystyle \int R(\sin \theta ,\cos \theta )\,d\theta } ã«ã€ããŠèããã t = tan Ξ 2 {\displaystyle t=\tan {\frac {\theta }{2}}} ãšããã tan 2 Ξ 2 + 1 = 1 cos 2 Ξ 2 {\displaystyle \tan ^{2}{\frac {\theta }{2}}+1={\frac {1}{\cos ^{2}{\frac {\theta }{2}}}}} ãã£ãŠ cos 2 Ξ 2 = 1 1 + t 2 {\displaystyle \cos ^{2}{\frac {\theta }{2}}={\frac {1}{1+t^{2}}}} ã§ããã d t d Ξ = d d Ξ tan Ξ 2 = 1 2 cos 2 Ξ 2 = 1 2 ( t 2 + 1 ) {\displaystyle {\frac {dt}{d\theta }}={\frac {d}{d\theta }}\tan {\frac {\theta }{2}}={\frac {1}{2\cos ^{2}{\frac {\theta }{2}}}}={\frac {1}{2}}(t^{2}+1)} ã§ããã cos Ξ = 2 cos 2 Ξ 2 â 1 = 1 â t 2 1 + t 2 {\displaystyle \cos \theta =2\cos ^{2}{\frac {\theta }{2}}-1={\frac {1-t^{2}}{1+t^{2}}}} ã〠sin Ξ = tan Ξ cos Ξ = 2 tan Ξ 2 1 â tan 2 Ξ 2 cos Ξ = 2 t 1 + t 2 {\displaystyle \sin \theta =\tan \theta \cos \theta ={\frac {2\tan {\frac {\theta }{2}}}{1-\tan ^{2}{\frac {\theta }{2}}}}\cos \theta ={\frac {2t}{1+t^{2}}}}
ã§ããããã£ãŠ
â« R ( sin Ξ , cos Ξ ) d Ξ = â« R ( 2 t 1 + t 2 , 1 â t 2 1 + t 2 ) 2 d t 1 + t 2 {\displaystyle \int R(\sin \theta ,\cos \theta )\,d\theta =\int R\left({\frac {2t}{1+t^{2}}},{\frac {1-t^{2}}{1+t^{2}}}\right)\,{\frac {2dt}{1+t^{2}}}}
ãšæç颿°ã®ç©åã«ãã¡èŸŒããã
幟äœåŠçã¯ããã®å€æã¯åäœåäžã®ç¹ P ( cos Ξ , sin Ξ ) {\displaystyle P(\cos \theta ,\sin \theta )} ãšç¹ A ( â 1 , 0 ) {\displaystyle A(-1,0)} ãçµã¶çŽç·ã®åŸé
t {\displaystyle t} ã§å€æãããã®ã§ãããå®éååšè§ã®å®çãã â x A P = 1 2 â x O P = Ξ 2 {\displaystyle \angle xAP={\frac {1}{2}}\angle xOP={\frac {\theta }{2}}} ãã t = tan Ξ 2 . {\displaystyle t=\tan {\frac {\theta }{2}}.}
被ç©å颿°ã®åšæã Ï {\displaystyle \pi } ã®å Žåã¯ã被ç©å颿°ã¯ sin 2 Ξ , cos 2 Ξ {\displaystyle \sin 2\theta ,\cos 2\theta } ã®æç颿°ãªã®ã§ã t = tan Ξ {\displaystyle t=\tan \theta } ãšçœ®æãããšèšç®ã楜ã ã被ç©å颿°ã sin 2 Ξ , cos 2 Ξ , sin Ξ cos Ξ {\displaystyle \sin ^{2}\theta ,\cos ^{2}\theta ,\sin \theta \cos \theta } ã®æç颿°ãšãªããšãããã®ç¯çã«å±ããã t = tan Ξ {\displaystyle t=\tan \theta } ãšçœ®æãããšãã cos 2 Ξ = 1 1 + tan 2 Ξ = 1 1 + t 2 {\displaystyle \cos ^{2}\theta ={\frac {1}{1+\tan ^{2}\theta }}={\frac {1}{1+t^{2}}}} , sin 2 Ξ = tan 2 Ξ cos 2 Ξ = t 2 1 + t 2 {\displaystyle \sin ^{2}\theta =\tan ^{2}\theta \cos ^{2}\theta ={\frac {t^{2}}{1+t^{2}}}} , sin Ξ cos Ξ = ± sin 2 Ξ cos 2 Ξ = t 1 + t 2 {\displaystyle \sin \theta \cos \theta =\pm {\sqrt {\sin ^{2}\theta \cos ^{2}\theta }}={\frac {t}{1+t^{2}}}} ( sin Ξ cos Ξ {\displaystyle \sin \theta \cos \theta } ãš tan Ξ = sin Ξ cos Ξ {\displaystyle \tan \theta ={\frac {\sin \theta }{\cos \theta }}} ã®æ£è² ã¯äžèŽãããã), d Ξ = d t 1 + t 2 {\displaystyle d\theta ={\frac {dt}{1+t^{2}}}} ãšãªãã
äŸ â« 1 sin x cos x d x {\displaystyle \int {\frac {1}{\sin x\cos x}}dx} 㯠t = tan x {\displaystyle t=\tan x} ãšçœ®æãããšã â« 1 sin x cos x d x = â« 1 + t 2 t d t 1 + t 2 = ln | tan x | + C . {\displaystyle \int {\frac {1}{\sin x\cos x}}dx=\int {\frac {1+t^{2}}{t}}{\frac {dt}{1+t^{2}}}=\ln |\tan x|+C.} t = tan Ξ 2 {\displaystyle t=\tan {\frac {\theta }{2}}} ãšçœ®æããŠããŸããšã â« 1 sin x cos x d x = â« 1 + t 2 t ( 1 â t 2 ) d t = ln | t 1 â t 2 | + C â² = ln | tan x | + C {\displaystyle \int {\frac {1}{\sin x\cos x}}\,dx=\int {\frac {1+t^{2}}{t(1-t^{2})}}\,dt=\ln \left|{\frac {t}{1-t^{2}}}\right|+C'=\ln |\tan x|+C} ãšèšç®éãå°ãå¢ããã
ææ°é¢æ°ã«ã€ã㊠( e x ) â² = e x {\displaystyle (e^{x})'=e^{x}} ãæãç«ã€ããšãçšãããšã â« e x d x = e x + C {\displaystyle \int e^{x}dx=e^{x}+C} ãåŸãããã
ãŸãã ( a x ln a ) â² = a x {\displaystyle \left({\frac {a^{x}}{\ln a}}\right)'=a^{x}} ãªã®ã§ã â« a x d x = a x ln a {\displaystyle \int a^{x}\,dx={\frac {a^{x}}{\ln a}}} ã§ããã
ãŸãã log | x | {\displaystyle \log |x|} ã® åå§é¢æ°ãæ±ããããšãåºæ¥ãã
ãšãªãã
æç颿° R ( x ) {\displaystyle R(x)} ã«å¯ŸããŠãç©å â« R ( e x ) d x {\displaystyle \int R(e^{x})\,dx} 㯠t = e x {\displaystyle t=e^{x}} ãããš d t d x = e x = t {\displaystyle {\frac {dt}{dx}}=e^{x}=t} ãã
â« R ( e x ) d x = â« R ( t ) d t t . {\displaystyle \int R(e^{x})\,dx=\int R(t){\frac {dt}{t}}.}
æç颿° R ( x , y ) {\displaystyle R(x,y)} ã«å¯ŸããŠãç©å â« R ( x , a x 2 + b x + c ) d x {\displaystyle \int R(x,{\sqrt {ax^{2}+bx+c}})\,dx} ã«ã€ããŠèããããå¹³æ¹æ ¹ã®äžèº«ã¯å¹³æ¹å®æããããšã«ãã£ãŠã p 2 â x 2 , x 2 + p 2 , x 2 â p 2 {\displaystyle {\sqrt {p^{2}-x^{2}}},{\sqrt {x^{2}+p^{2}}},{\sqrt {x^{2}-p^{2}}}} ã®ããããã®åœ¢ã«ãªããããããã®å Žåã«ã€ããŠã x = p sin Ξ , x = p tan Ξ , x = p cos Ξ {\displaystyle x=p\sin \theta ,x=p\tan \theta ,x={\frac {p}{\cos \theta }}} ãšå€æ°å€æãããšäžè§é¢æ°ã®ç©åã«åž°çããã
ãŸãã y 2 = a x 2 + b x + c {\displaystyle y^{2}=ax^{2}+bx+c} ã¯äºæ¬¡æ²ç·ã§ãç¹ã« a > 0 {\displaystyle a>0} ã®ãšãã¯åæ²ç·ãšãªã( y 2 â a ( x + b 2 a ) 2 = â b 2 + 4 a c 4 a {\displaystyle y^{2}-a\left(x+{\frac {b}{2a}}\right)^{2}={\frac {-b^{2}+4ac}{4a}}} ãã)ããã®ãšãã y = ± a x + t {\displaystyle y=\pm {\sqrt {a}}x+t} ããªãã¡ t = â a x + a x 2 + b x + c {\displaystyle t=\mp {\sqrt {a}}x+{\sqrt {ax^{2}+bx+c}}} ãšå€æãããšããŸãèšç®ã§ãã(笊å·ã¯ã©ã¡ããéžæããŠãè¯ã)ã幟äœåŠçã«ã¯ãåæ²ç·ã®æŒžè¿ç·ã«å¹³è¡ã§åçã t {\displaystyle t} ã®çŽç· y = ± a x + t {\displaystyle y=\pm {\sqrt {a}}x+t} ãšåæ²ç·ã®ãã äžã€ã®äº€ç¹ ( x , y ) {\displaystyle (x,y)} ã倿° t {\displaystyle t} ã§è¡šãããã®ã§ããã
äŸ â« d x x 2 â 1 {\displaystyle \int {\frac {dx}{\sqrt {x^{2}-1}}}} 㯠t = x + x 2 â 1 {\displaystyle t=x+{\sqrt {x^{2}-1}}} ãšçœ®æãããšã 1 t = x â x 2 â 1 {\displaystyle {\frac {1}{t}}=x-{\sqrt {x^{2}-1}}} ãªã®ã§ã t + 1 t = 2 x {\displaystyle t+{\frac {1}{t}}=2x} ããªãã¡ 2 d x = ( 1 â 1 t 2 ) d t {\displaystyle 2dx=\left(1-{\frac {1}{t^{2}}}\right)dt} ãŸãã t â 1 t = 2 x 2 â 1 {\displaystyle t-{\frac {1}{t}}=2{\sqrt {x^{2}-1}}} .ãªã®ã§ã â« d x x 2 â 1 = â« 1 â 1 t 2 t â 1 t d t = â« d t t = ln | x + x 2 â 1 | + C {\displaystyle \int {\frac {dx}{\sqrt {x^{2}-1}}}=\int {\frac {1-{\frac {1}{t^{2}}}}{t-{\frac {1}{t}}}}dt=\int {\frac {dt}{t}}=\ln |x+{\sqrt {x^{2}-1}}|+C} ã§ããã
ãšããã§ããã®å€æã¯åæ²ç· y 2 = x 2 â 1 {\displaystyle y^{2}=x^{2}-1} ãšçŽç· y = â x + t {\displaystyle y=-x+t} ã®ãã äžã€ã®äº€ç¹ã«ãã倿ã§ãã£ãããã®äº€ç¹ãæ¹çšåŒãè§£ã㊠t {\displaystyle t} ã§è¡šããšã x = 1 2 ( t + 1 t ) , y = 1 2 ( t â 1 t ) {\displaystyle x={\frac {1}{2}}\left(t+{\frac {1}{t}}\right),\,y={\frac {1}{2}}\left(t-{\frac {1}{t}}\right)} ãåŸããããã¯åæ²ç·ã®åªä»å€æ°è¡šç€ºã®äžã€ã§ããããŸãã t â e t {\displaystyle t\rightarrow e^{t}} ãšãããšã x = e t + e â t 2 = cosh t , y = e t â e â t 2 = sinh t . {\displaystyle x={\frac {e^{t}+e^{-t}}{2}}=\cosh t,\,y={\frac {e^{t}-e^{-t}}{2}}=\sinh t.} ãã㯠x > 0 {\displaystyle x>0} ã®éšåã®åæ²ç·ã®åªä»å€æ°è¡šç€ºã§ãããæå³èŸºã¯åæ²ç·é¢æ°ãšåŒã°ããäžè§é¢æ°ãšäŒŒãæ§è³ªãæã€ã颿°åã® h {\displaystyle \mathrm {h} } ã¯hyperbolaã«ç±æ¥ãããäŸãã°ãåæ²ç·ã®æ¹çšåŒããåŸããã cosh 2 t â sinh 2 t = 1 {\displaystyle \cosh ^{2}t-\sinh ^{2}t=1} 㯠sin 2 Ξ + cos 2 Ξ = 1 {\displaystyle \sin ^{2}\theta +\cos ^{2}\theta =1} ãšãã䌌ãŠãããäŸç€ºã®äžå®ç©å㯠x = cosh t {\displaystyle x=\cosh t} ãšçœ®æããŠãè§£ãããšãåºæ¥ãããã»ãšãã©åãããšãªã®ã§çç¥ããã
a < b {\displaystyle a<b} ãšãããç©å â« a b ( x â a ) ( b â x ) d x {\displaystyle \int _{a}^{b}{\sqrt {(x-a)(b-x)}}\,dx} 㯠y = ( x â a ) ( b â x ) {\displaystyle y={\sqrt {(x-a)(b-x)}}} ãšãããšã ( x â a + b 2 ) + y 2 = ( a â b 2 ) 2 {\displaystyle \left(x-{\frac {a+b}{2}}\right)+y^{2}=\left({\frac {a-b}{2}}\right)^{2}} ããã被ç©å颿° y {\displaystyle y} ã¯äžå¿ a + b 2 {\displaystyle {\frac {a+b}{2}}} ã§ååŸ b â a 2 {\displaystyle {\frac {b-a}{2}}} ã®ååšã®äžååã§ãããç©ååºéããã®äž¡ç«¯ãªã®ã§ãç©åã®å€ã¯ååã®é¢ç©ã«çããã â« a b ( x â a ) ( b â x ) d x = Ï 2 ( b â a 2 ) 2 {\displaystyle \int _{a}^{b}{\sqrt {(x-a)(b-x)}}\,dx={\frac {\pi }{2}}\left({\frac {b-a}{2}}\right)^{2}} ã§ããã
äžè¬ã«ã颿° f ( a â x ) {\displaystyle f(a-x)} ã®ã°ã©ãã¯é¢æ° f ( x ) {\displaystyle f(x)} ã®ã°ã©ããçŽç· x = a 2 {\displaystyle x={\frac {a}{2}}} ã§å¯Ÿç§°ç§»åãããã®ã§ããã
åŸã£ãŠãé£ç¶é¢æ° f ( x ) {\displaystyle f(x)} ãåºé [ a + b 2 , b ] {\displaystyle \left[{\frac {a+b}{2}},b\right]} ã§ç©åããå€ â« a + b 2 b f ( x ) d x {\displaystyle \int _{\frac {a+b}{2}}^{b}f(x)\,dx} ãšãé£ç¶é¢æ° f ( a + b â x ) {\displaystyle f(a+b-x)} ãåºé [ a , a + b 2 ] {\displaystyle \left[a,{\frac {a+b}{2}}\right]} ã§ç©åããå€ â« a a + b 2 f ( a + b â x ) d x {\displaystyle \int _{a}^{\frac {a+b}{2}}f(a+b-x)\,dx} ã¯çãã:
ãã®çåŒã¯åã«ã x â a + b â x {\displaystyle x\to a+b-x} ã®å€æ°å€æã«ãã£ãŠãå°åºã§ããã
ãã®çåŒããã â« a b f ( x ) d x = â« a a + b 2 f ( x ) d x + â« a + b 2 b f ( x ) d x = â« a a + b 2 [ f ( x ) + f ( a + b â x ) ] d x {\displaystyle \int _{a}^{b}f(x)\,dx=\int _{a}^{\frac {a+b}{2}}f(x)\,dx+\int _{\frac {a+b}{2}}^{b}f(x)\,dx=\int _{a}^{\frac {a+b}{2}}[f(x)+f(a+b-x)]\,dx} ãå°ãããã
ãã®å
¬åŒã¯ã f ( x ) + f ( a + b â x ) {\displaystyle f(x)+f(a+b-x)} ãç°¡åãªåœ¢ã«ãªãå®ç©åã§åœ¹ã«ç«ã€ã
äŸãã°ã â« 0 Ï 2 sin x sin x + cos x d x = â« 0 Ï 4 [ sin x sin x + cos x + sin ( Ï 2 â x ) sin ( Ï 2 â x ) + cos ( Ï 2 â x ) ] d x = â« 0 Ï 4 [ sin x sin x + cos x + cos x cos x + sin x ] d x = â« 0 Ï 4 d x = Ï 4 . {\displaystyle {\begin{aligned}\int _{0}^{\frac {\pi }{2}}{\frac {\sin x}{\sin x+\cos x}}\,dx&=\int _{0}^{\frac {\pi }{4}}\left[{\frac {\sin x}{\sin x+\cos x}}+{\frac {\sin({\frac {\pi }{2}}-x)}{\sin({\frac {\pi }{2}}-x)+\cos({\frac {\pi }{2}}-x)}}\right]\,dx\\&=\int _{0}^{\frac {\pi }{4}}\left[{\frac {\sin x}{\sin x+\cos x}}+{\frac {\cos x}{\cos x+\sin x}}\right]\,dx\\&=\int _{0}^{\frac {\pi }{4}}dx={\frac {\pi }{4}}.\end{aligned}}}
King Property ã®å¿çšäŸã¯ â« â 1 1 x 2 1 + e x d x = 1 3 {\displaystyle \int _{-1}^{1}{\frac {x^{2}}{1+e^{x}}}\,dx={\frac {1}{3}}} , â« 0 Ï 4 ln ( 1 + tan x ) d x = Ï 8 ln 2 {\displaystyle \int _{0}^{\frac {\pi }{4}}\ln(1+\tan x)\,dx={\frac {\pi }{8}}\ln 2} , â« 0 Ï 2 ln sin x d x = â Ï 2 ln 2 {\displaystyle \int _{0}^{\frac {\pi }{2}}\ln \sin x\,dx=-{\frac {\pi }{2}}\ln 2} ãªã©ããããèšç®ããŠã¿ãã
æŒç¿åé¡1
次ã®äžå®ç©åãæ±ããã
æŒç¿åé¡2
第äžå
第äºå
ãã颿°f(x)ã®åå§é¢æ°ãæ±ããæŒç®ã¯ f(x)ãšx軞ã«ã¯ããŸããé åã®é¢ç©ãæ±ããæŒç®ã«çããã ãã®ããšãçšã㊠ãã颿°ã«ãã£ãŠäœãããé åã®é¢ç©ãæ±ããããšãåºæ¥ãã
äŸãã°ã â« 0 1 x 2 d x = 1 3 {\displaystyle \int _{0}^{1}x^{2}dx={\frac {1}{3}}} ã¯ãæŸç©ç· y = x 2 {\displaystyle y=x^{2}} ã«ã€ã㊠0 < x < 1 {\displaystyle 0<x<1} ã®ç¯å²ã§ãããŸããé¢ç©ã«çããã
æ¥å x 2 a 2 + y 2 b 2 = 1 {\displaystyle {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}=1} ã®é¢ç© S = Ï a b {\displaystyle S=\pi ab} ã®å°åº
æ¥å x 2 a 2 + y 2 b 2 = 1 {\displaystyle {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}=1} ã y {\displaystyle y} ã«ã€ããŠè§£ããš
ãšãªãããã®ãã¡ y = b a a 2 â x 2 {\displaystyle y={\frac {b}{a}}{\sqrt {a^{2}-x^{2}}}} ã¯åæ¥å(æ¥åã®äžåå)ã瀺ããŠããããã®åæ¥åã®é¢ç©ã2åãããã®ãæ¥åã®é¢ç©Sãšãªãã®ã§
ãšãªãã
ããç«äœ V 0 {\displaystyle V_{0}} ã® x = t {\displaystyle x=t} ã«ãããæé¢ç©ãæéãªå€ã§ããã®å€ã t {\displaystyle t} ã®é¢æ° S ( t ) {\displaystyle S(t)} ãšãªããšãããã®ç«äœãå¹³é¢ x = a {\displaystyle x=a} , x = b {\displaystyle x=b} (ãã ãã a < b {\displaystyle a<b} )ã§åãåã£ãé åã®äœç©ã¯ãåºé¢ç© S ( t ) {\displaystyle S(t)} ã«æ¥µããŠå°ããé«ã d t {\displaystyle dt} ã®ç© S ( t ) d t {\displaystyle S(t)\,dt} ã®åºé [ a , b ] {\displaystyle [a,b]} ã«ããã环ç©ã§ããã®ã§ã以äžã®åŒã§è¡šãããšãã§ããã
(äŸ1)
(äŸ2)
y = f ( x ) ( a †x †b ) {\displaystyle y=f(x)(a\leq x\leq b)} ã§äžããããæ²ç·ãx軞ã®åãã«å転ãããŠäœããã ç«äœã®äœç©Vã¯ã V = â« a b Ï ( f ( x ) ) 2 d x {\displaystyle V=\int _{a}^{b}\pi (f(x))^{2}dx} ã§äžããããã
å°åº
ç«äœãx軞ã«åçŽã§ãããx=cãæºããé¢ãšx=c+hãæºããé¢ã§åããš(hã¯å°ããª å®æ°)ããã®åæé¢ã§æãŸããç«äœã¯ååŸ f(c)ã®åãšååŸ f(c+h)ã®å ã§ã¯ããŸããç«äœãšãªãã ããããhãæ¥µããŠå°ãããšãããã®å³åœ¢ã¯ååŸf(c),é«ãhã®åæ±ã§ è¿äŒŒã§ããã ãã£ãŠãã®2ã€ã®é¢ã«é¢ããŠãåŸãããå³åœ¢ã®äœç©ã¯ h Ã Ï ( f ( c ) ) 2 {\displaystyle h\times \pi (f(c))^{2}} ãšãªãã ããã a < c < b {\displaystyle a<c<b} æºããå
šãŠã®cã«ã€ããŠè¶³ãåããããšã S = â« a b Ï ( f ( x ) ) 2 d x {\displaystyle S=\int _{a}^{b}\pi (f(x))^{2}dx} ãåŸãããã
äŸãã°ã y = x 2 ( 0 < x < 1 ) {\displaystyle y=x^{2}~(0<x<1)} ãx軞ã®åãã«å転ãããŠåŸãããå³åœ¢ã®äœç©ã¯ã
S = â« 0 1 Ï ( x 2 ) 2 d x {\displaystyle S=\int _{0}^{1}\pi (x^{2})^{2}dx} = Ï â« 0 1 x 4 d x {\displaystyle =\pi \int _{0}^{1}x^{4}dx} = Ï 5 {\displaystyle ={\frac {\pi }{5}}} ãšãªãã
çã®äœç© V = 4 3 Ï r 3 {\displaystyle V={\frac {4}{3}}\pi r^{3}} ã®å°åº
ååŸrã®çã¯åå y = r 2 â x 2 {\displaystyle y={\sqrt {r^{2}-x^{2}}}} ãx軞ã®åšãã«å転ãããŠã€ããããšãã§ããã
ãŸãäœç©ãrã§åŸ®åãããšçã®è¡šé¢ç© S = 4 Ï r 2 {\displaystyle S=4\pi r^{2}} ãåŸãããã
ãããŸã§ã«åŠãã ããã«ãç©åã¯åŸ®åã®éæŒç®ã§ãããšåæã«ã座æšå¹³é¢äžã§ã®é¢ç©èšç®ã§ãããããã®é
ã§ã¯ã座æšå¹³é¢äžã®é¢ç©èšç®ã®æ¹æ³ã®äžã€ã§ããåºåæ±ç©æ³ãããã³ç©åæ³ãšã®é¢é£ã«ã€ããŠåŠã¶ã
å³å³ã®ãããªããæ²ç· y = f ( x ) {\displaystyle y=f(x)} ããããåçŽã®ãããããã§ã¯ã€ãã« f ( x ) > 0 {\displaystyle f(x)>0} ã§ãããã®ãšããŠèããããã®æ²ç·ãšãx軞ãããã³çŽç· x = a , x = b ( a < b ) {\displaystyle x=a,x=b(a<b)} ã«ãã£ãŠå²ãŸããé åã®é¢ç©Sãæ±ããããã®é¢ç©ã¯#é¢ç©ã®é
ã§åŠãã ããã«ã
ãšç©åæ³ãçšããŠèšç®ããããšãã§ãããã§ã¯ããããããå°ãåå§çãªæ¹æ³ã§è¿äŒŒçã«æ±ããããšãèããŠã¿ããã
æ²ç·ãå«ãå³åœ¢ã®é¢ç©ãæ±ããããšã¯ç°¡åã§ã¯ãªãããäŸãã°äžè§åœ¢ãé·æ¹åœ¢ãå°åœ¢ãªã©ã®çŽç·ã§å²ãŸããå³åœ¢ã®é¢ç©ãæ±ããããšã¯é£ãããªããããã§ãäžå³ã®ããã«y=f(x)ãæ£ã°ã©ãã§è¿äŒŒããé·æ¹åœ¢ã®é¢ç©ã®åãèšç®ããããšã§ãæ±ãããé¢ç©Sã«è¿ãå€ãæ±ããããšãã§ãããå·Šäžã®ããã«æ£ã°ã©ãã®å¹
ã倧ãããšèª€å·®ã倧ããããæ£ã°ã©ãã®å¹
ãçãããã°ããã»ã©ãããªãã¡å岿°ãå€ãããã»ã©ãåŸã
ã«æ±ãããé¢ç©ã®å€ã«è¿ã¥ããããšãã§ãããããã§ããã®åºé[a,b]ãnçåãããã®æã®é·æ¹åœ¢ã®é¢ç©ã®ç·åãæ±ãããã®åŸã§ n â â {\displaystyle n\to \infty } ã®æ¥µéãèããããšã«ããããã®ããã«ããŠãåºéã现ããçåå²ããé·æ¹åœ¢ã®é¢ç©ã®ç·åãæ±ããããšã«ããå³åœ¢ã®é¢ç©ãæ±ããæ¹æ³ããåºåæ±ç©æ³ãšåŒã¶ã
y = f ( x ) {\displaystyle y=f(x)} ãæ£ã°ã©ãã§è¿äŒŒãããšããå³å³ã®ããã«ãé·æ¹åœ¢ã®å·Šäžã®é ç¹ãæ²ç·äžã«åãæ¹æ³ãšãå³äžã®é ç¹ãæ²ç·äžã«åãæ¹æ³ããããã©ã¡ãã®æ¹æ³ã§ããå岿°ã倧ããããã°ãããæ±ãããé¢ç©ã«è¿ã¥ããããŸãã¯å·Šäžã®é ç¹ãæ²ç·äžã«åãæ¹æ³ã§èããããšã«ããã
ããã§ã¯é¢ç©ãæ±ãããåºéããåçŽã®ãã[0, 1]ãšãããåºé[0, 1]ãnçåãããšããããããã®é·æ¹åœ¢ã®å·Šç«¯ã®x座æšã¯ã
ãšãªããããã§ãäžè¬ã«ç¬¬kçªç®ã®é·æ¹åœ¢ã«ã€ããŠèããããšã«ããããã ãããã¡ã°ãå·ŠåŽã®é·æ¹åœ¢ã第0çªç®ãšãããã¡ã°ãå³åŽã®é·æ¹åœ¢ã第n-1çªç®ãšããã第kçªç®ã®é·æ¹åœ¢ã®å·Šç«¯ã®x座æšã¯ k n {\displaystyle {\frac {k}{n}}} ã§ããããããã®é·æ¹åœ¢ã®é«ã㯠f ( k n ) {\displaystyle f\left({\frac {k}{n}}\right)} ãšãªãããŸãé·æ¹åœ¢ã®å¹
㯠1 n {\displaystyle {\frac {1}{n}}} ã§ããããã®ããããã®é·æ¹åœ¢ã®é¢ç© s k {\displaystyle s_{k}} ã¯ã
ãšãªãããããã£ãŠããããã®é·æ¹åœ¢ã®é¢ç©ã®ç·å S n {\displaystyle S_{n}} ã¯ã
ãã® S n {\displaystyle S_{n}} ã¯ãåºé[0, 1]ãnçåããæã®é·æ¹åœ¢ã®é¢ç©ã®ç·åã§ããããnã倧ããããã°ããã»ã©ã次第ã«ããšã®é¢ç©ã«è¿ã¥ããŠããããããã£ãŠã n â â {\displaystyle n\to \infty } ã®æ¥µéãèãã
ãšãªãããã®ããã«ããŠãæ±ãããé¢ç©ãèšç®ããããšãã§ãããããã«ãããã§ãã®åºéã®é¢ç©ãç©åæ³ã«ããèšç®ã§ããããšããã
ãæãç«ã€ããŸããé·æ¹åœ¢ã®å³äžã®é ç¹ãæ²ç·äžã«åãå Žåã¯ãåæ§ã«ããŠ
ãšãªãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ããã§ã¯ãæ°åŠIIã®åŸ®åã»ç©åã®èãã§åŠãã ç©åã®æ§è³ªã«ã€ããŠãã詳ããæ±ãããŸããäžè§é¢æ°ãææ°ã»å¯Ÿæ°é¢æ°ãªã©ã®é¢æ°ã®ç©åã«ã€ããŠãåŠç¿ããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ç©åæ³ã«ã€ããŠ",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "â« { f ( x ) + g ( x ) } d x = â« f ( x ) d x + â« g ( x ) d x , {\\displaystyle \\int \\{f(x)+g(x)\\}dx=\\int f(x)dx+\\int g(x)dx,} â« a f ( x ) d x = a â« f ( x ) d x {\\displaystyle \\int af(x)dx=a\\int f(x)dx} (aã¯å®æ°)",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãæãç«ã€ã",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "å°åº",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "â« { f ( x ) + g ( x ) } d x = â« f ( x ) d x + â« g ( x ) d x {\\displaystyle \\int \\{f(x)+g(x)\\}dx=\\int f(x)dx+\\int g(x)dx}",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ã®äž¡èŸºã埮åãããšã",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "巊蟺 =å³èŸº = f + g {\\displaystyle f+g}",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãåŸãã",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãã£ãŠã",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "â« { f ( x ) + g ( x ) } d x = â« f ( x ) d x + â« g ( x ) d x {\\displaystyle \\int \\{f(x)+g(x)\\}dx=\\int f(x)dx+\\int g(x)dx}",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ã®äž¡èŸºã¯äžèŽããã",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "(å®éã«ã¯2ã€ã®é¢æ°ã®å°é¢æ°ãäžèŽãããšãã ãããã®é¢æ°ã«ã¯å®æ°ã ãã®ã¡ãããããã",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ä»®ã«ãF(x)ãšG(x)ãå
±éã®å°é¢æ°h(x)ãæã£ããšããã",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãã®ãšãã",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "( F ( x ) â G ( x ) ) â² = h ( x ) â h ( x ) = 0 {\\displaystyle (F(x)-G(x))'=h(x)-h(x)=0}",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ãšãªããã0ã®åå§é¢æ°ã¯å®æ°Cã§ããããšãåããã",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ãã£ãŠã䞡蟺ãç©åãããšã",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "F ( x ) â G ( x ) = C {\\displaystyle F(x)-G(x)=C}",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ãšãªããF(x)ãšG(x)ã«ã¯å®æ°ã ãã®å·®ãããªãããšã確ãããããã",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ãã£ãŠã",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "â« { f ( x ) + g ( x ) } d x = â« f ( x ) d x + â« g ( x ) d x {\\displaystyle \\int \\{f(x)+g(x)\\}dx=\\int f(x)dx+\\int g(x)dx}",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ã¯å®æ°ã ãã®ã¡ãããå«ãã§æãç«ã€åŒã§ããã ããäžè¬ã«ãäžå®ç©åã絡ãçåŒã¯å®æ°åã®å·®ãå«ããŠæãç«ã€ãšããã®ãéäŸã§ããã)",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "â« a f ( x ) d x = a â« f ( x ) d x {\\displaystyle \\int af(x)dx=a\\int f(x)dx}",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ã«ã€ããŠã䞡蟺ã埮åãããšã",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "巊蟺=å³èŸº= a f(x)",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ãåŸãã",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ãã£ãŠã",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "â« a f d x = a â« f d x {\\displaystyle \\int afdx=a\\int fdx}",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ãæãç«ã€ããšãåãã",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "颿° f ( x ) {\\displaystyle f(x)} ã®åå§é¢æ°ã F ( x ) {\\displaystyle F(x)} ãšãããš",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "â« a b f ( x ) = F ( b ) â F ( a ) = â ( F ( a ) â F ( b ) ) = â â« b a f ( x ) d x {\\displaystyle \\int _{a}^{b}f(x)\\,=F(b)-F(a)=-(F(a)-F(b))=-\\int _{b}^{a}f(x)\\,dx} ã§ããã",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "â« a c f ( x ) d x + â« c b f ( x ) d x = ( F ( c ) â F ( a ) ) + ( F ( b ) â F ( c ) ) = F ( b ) â F ( a ) = â« a b f ( x ) d x {\\displaystyle \\int _{a}^{c}f(x)\\,dx+\\int _{c}^{b}f(x)\\,dx=(F(c)-F(a))+(F(b)-F(c))=F(b)-F(a)=\\int _{a}^{b}f(x)\\,dx}",
"title": "ç©åã®åºæ¬çãªæ§è³ª"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "颿°ã®åå§é¢æ°ãæ±ããææ®µãšããŠã ç©å倿°ãå¥ã®å€æ°ã§çœ®ãæããŠç©åãè¡ãªãææ®µãç¥ãããŠããã ããã眮æç©åãšåŒã¶ã",
"title": "眮æç©åæ³"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "â« f ( g ( x ) ) d g ( x ) = â« f ( g ( x ) ) g â² ( x ) d x {\\displaystyle \\int f(g(x))dg(x)=\\int f(g(x))g'(x)dx}",
"title": "眮æç©åæ³"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "å°åº",
"title": "眮æç©åæ³"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "â« f ( g ( x ) ) d g ( x ) = F ( g ( x ) ) {\\displaystyle \\int f(g(x))dg(x)=F(g(x))} ã x {\\displaystyle x} ã«ã€ããŠåŸ®åãããšã",
"title": "眮æç©åæ³"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "F â² ( g ( x ) ) = f ( g ( x ) ) g â² ( x ) {\\displaystyle F'(g(x))=f(g(x))g'(x)}",
"title": "眮æç©åæ³"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "åã³ x {\\displaystyle x} ã«ã€ããŠç©åãããšã",
"title": "眮æç©åæ³"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "â« f ( g ( x ) ) d g ( x ) = â« f ( g ( x ) ) g â² ( x ) d x {\\displaystyle \\int f(g(x))dg(x)=\\int f(g(x))g'(x)dx}",
"title": "眮æç©åæ³"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "ãŸããç¹ã«",
"title": "眮æç©åæ³"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "äŸãã°ã â« ( a x + b ) 2 d x {\\displaystyle \\int (ax+b)^{2}dx} ãèããã",
"title": "眮æç©åæ³"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "t = a x + b {\\displaystyle t=ax+b} ãšçœ®ãã",
"title": "眮æç©åæ³"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ãã®äž¡èŸºã埮åãããš d t = a d x {\\displaystyle dt=adx} ãæãç«ã€ããšãèæ
®ãããšã",
"title": "眮æç©åæ³"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "ãšãªãããšããããã",
"title": "眮æç©åæ³"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "å®éãã®åŒãxã§åŸ®åãããš ( a x + b ) 2 {\\displaystyle (ax+b)^{2}} ãšäžèŽããããšãåãã",
"title": "眮æç©åæ³"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "眮æç©åã䜿ããã«èšç®ããããšãåºæ¥ãã",
"title": "眮æç©åæ³"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "( C â² = b 3 3 a + C {\\displaystyle C'={\\frac {b^{3}}{3a}}+C} ãšçœ®ãæããã)",
"title": "眮æç©åæ³"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "= ( a x + b ) 3 3 a + C {\\displaystyle ={\\frac {(ax+b)^{3}}{3a}}+C} ãšãªã確ãã«äžèŽããã",
"title": "眮æç©åæ³"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "",
"title": "眮æç©åæ³"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "颿°ã®ç©ã®ç©åãè¡ãªããšããã颿°ã®åŸ®åã ããåãã ããŠç©åãããšãããŸãç©åã§ããå Žåãããã颿° g ( x ) {\\displaystyle g(x)} ã®åå§é¢æ°ã G ( x ) {\\displaystyle G(x)} ãšãããš",
"title": "éšåç©åæ³"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "â« f ( x ) g ( x ) d x = f ( x ) G ( x ) â â« f â² ( x ) G ( x ) d x {\\displaystyle \\int f(x)g(x)\\,dx=f(x)G(x)-\\int f'(x)G(x)\\,dx}",
"title": "éšåç©åæ³"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "",
"title": "éšåç©åæ³"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "å°åº",
"title": "éšåç©åæ³"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "ç©ã®åŸ®åæ³ãã { f ( x ) G ( x ) } â² = f â² ( x ) G ( x ) + f ( x ) g ( x ) {\\displaystyle \\{f(x)G(x)\\}'=f'(x)G(x)+f(x)g(x)} ã§ããããããç§»é
ããŠ",
"title": "éšåç©åæ³"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "f ( x ) g ( x ) = { f ( x ) G ( x ) } â² â f â² ( x ) G ( x ) {\\displaystyle f(x)g(x)=\\{f(x)G(x)\\}'-f'(x)G(x)}",
"title": "éšåç©åæ³"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ã§ããã䞡蟺ãxã§ç©åããŠ",
"title": "éšåç©åæ³"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "â« f ( x ) g ( x ) d x = f ( x ) G ( x ) â â« f â² ( x ) G ( x ) d x {\\displaystyle \\int f(x)g(x)\\,dx=f(x)G(x)-\\int f'(x)G(x)\\,dx}",
"title": "éšåç©åæ³"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "ãåŸãããã",
"title": "éšåç©åæ³"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "",
"title": "éšåç©åæ³"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "äŸãã°ã",
"title": "éšåç©åæ³"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "",
"title": "éšåç©åæ³"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "n â â 1 {\\displaystyle n\\neq -1} ã®ãšãã ( 1 n + 1 x n + 1 ) â² = x n {\\displaystyle \\left({\\frac {1}{n+1}}x^{n+1}\\right)'=x^{n}} ãªã®ã§ã",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "â« x n d x = 1 n + 1 x n + 1 + C {\\displaystyle \\int x^{n}dx={\\frac {1}{n+1}}x^{n+1}+C}",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "n = â 1 {\\displaystyle n=-1} ã®ãšãã ( log | x | ) â² = 1 x = x â 1 {\\displaystyle (\\log |x|)'={\\frac {1}{x}}=x^{-1}} ãªã®ã§ã",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "â« x â 1 d x = â« 1 x d x = log | x | + C {\\displaystyle \\int x^{-1}dx=\\int {\\frac {1}{x}}dx=\\log |x|+C}",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "ãæãç«ã€ã",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "ãæãç«ã€ããšãèæ
®ãããšã",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "ãšãªãããšãåãã",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "â« tan x d x {\\displaystyle \\int \\tan xdx} ã¯ã眮æç©åæ³ã䜿ã£ãŠ",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "ããäžè¬ã«æç颿° R ( x , y ) {\\displaystyle R(x,y)} ã«å¯ŸããŠã â« R ( sin Ξ , cos Ξ ) d Ξ {\\displaystyle \\int R(\\sin \\theta ,\\cos \\theta )\\,d\\theta } ã«ã€ããŠèããã t = tan Ξ 2 {\\displaystyle t=\\tan {\\frac {\\theta }{2}}} ãšããã tan 2 Ξ 2 + 1 = 1 cos 2 Ξ 2 {\\displaystyle \\tan ^{2}{\\frac {\\theta }{2}}+1={\\frac {1}{\\cos ^{2}{\\frac {\\theta }{2}}}}} ãã£ãŠ cos 2 Ξ 2 = 1 1 + t 2 {\\displaystyle \\cos ^{2}{\\frac {\\theta }{2}}={\\frac {1}{1+t^{2}}}} ã§ããã d t d Ξ = d d Ξ tan Ξ 2 = 1 2 cos 2 Ξ 2 = 1 2 ( t 2 + 1 ) {\\displaystyle {\\frac {dt}{d\\theta }}={\\frac {d}{d\\theta }}\\tan {\\frac {\\theta }{2}}={\\frac {1}{2\\cos ^{2}{\\frac {\\theta }{2}}}}={\\frac {1}{2}}(t^{2}+1)} ã§ããã cos Ξ = 2 cos 2 Ξ 2 â 1 = 1 â t 2 1 + t 2 {\\displaystyle \\cos \\theta =2\\cos ^{2}{\\frac {\\theta }{2}}-1={\\frac {1-t^{2}}{1+t^{2}}}} ã〠sin Ξ = tan Ξ cos Ξ = 2 tan Ξ 2 1 â tan 2 Ξ 2 cos Ξ = 2 t 1 + t 2 {\\displaystyle \\sin \\theta =\\tan \\theta \\cos \\theta ={\\frac {2\\tan {\\frac {\\theta }{2}}}{1-\\tan ^{2}{\\frac {\\theta }{2}}}}\\cos \\theta ={\\frac {2t}{1+t^{2}}}}",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "ã§ããããã£ãŠ",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "â« R ( sin Ξ , cos Ξ ) d Ξ = â« R ( 2 t 1 + t 2 , 1 â t 2 1 + t 2 ) 2 d t 1 + t 2 {\\displaystyle \\int R(\\sin \\theta ,\\cos \\theta )\\,d\\theta =\\int R\\left({\\frac {2t}{1+t^{2}}},{\\frac {1-t^{2}}{1+t^{2}}}\\right)\\,{\\frac {2dt}{1+t^{2}}}}",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "ãšæç颿°ã®ç©åã«ãã¡èŸŒããã",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "幟äœåŠçã¯ããã®å€æã¯åäœåäžã®ç¹ P ( cos Ξ , sin Ξ ) {\\displaystyle P(\\cos \\theta ,\\sin \\theta )} ãšç¹ A ( â 1 , 0 ) {\\displaystyle A(-1,0)} ãçµã¶çŽç·ã®åŸé
t {\\displaystyle t} ã§å€æãããã®ã§ãããå®éååšè§ã®å®çãã â x A P = 1 2 â x O P = Ξ 2 {\\displaystyle \\angle xAP={\\frac {1}{2}}\\angle xOP={\\frac {\\theta }{2}}} ãã t = tan Ξ 2 . {\\displaystyle t=\\tan {\\frac {\\theta }{2}}.}",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "被ç©å颿°ã®åšæã Ï {\\displaystyle \\pi } ã®å Žåã¯ã被ç©å颿°ã¯ sin 2 Ξ , cos 2 Ξ {\\displaystyle \\sin 2\\theta ,\\cos 2\\theta } ã®æç颿°ãªã®ã§ã t = tan Ξ {\\displaystyle t=\\tan \\theta } ãšçœ®æãããšèšç®ã楜ã ã被ç©å颿°ã sin 2 Ξ , cos 2 Ξ , sin Ξ cos Ξ {\\displaystyle \\sin ^{2}\\theta ,\\cos ^{2}\\theta ,\\sin \\theta \\cos \\theta } ã®æç颿°ãšãªããšãããã®ç¯çã«å±ããã t = tan Ξ {\\displaystyle t=\\tan \\theta } ãšçœ®æãããšãã cos 2 Ξ = 1 1 + tan 2 Ξ = 1 1 + t 2 {\\displaystyle \\cos ^{2}\\theta ={\\frac {1}{1+\\tan ^{2}\\theta }}={\\frac {1}{1+t^{2}}}} , sin 2 Ξ = tan 2 Ξ cos 2 Ξ = t 2 1 + t 2 {\\displaystyle \\sin ^{2}\\theta =\\tan ^{2}\\theta \\cos ^{2}\\theta ={\\frac {t^{2}}{1+t^{2}}}} , sin Ξ cos Ξ = ± sin 2 Ξ cos 2 Ξ = t 1 + t 2 {\\displaystyle \\sin \\theta \\cos \\theta =\\pm {\\sqrt {\\sin ^{2}\\theta \\cos ^{2}\\theta }}={\\frac {t}{1+t^{2}}}} ( sin Ξ cos Ξ {\\displaystyle \\sin \\theta \\cos \\theta } ãš tan Ξ = sin Ξ cos Ξ {\\displaystyle \\tan \\theta ={\\frac {\\sin \\theta }{\\cos \\theta }}} ã®æ£è² ã¯äžèŽãããã), d Ξ = d t 1 + t 2 {\\displaystyle d\\theta ={\\frac {dt}{1+t^{2}}}} ãšãªãã",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "äŸ â« 1 sin x cos x d x {\\displaystyle \\int {\\frac {1}{\\sin x\\cos x}}dx} 㯠t = tan x {\\displaystyle t=\\tan x} ãšçœ®æãããšã â« 1 sin x cos x d x = â« 1 + t 2 t d t 1 + t 2 = ln | tan x | + C . {\\displaystyle \\int {\\frac {1}{\\sin x\\cos x}}dx=\\int {\\frac {1+t^{2}}{t}}{\\frac {dt}{1+t^{2}}}=\\ln |\\tan x|+C.} t = tan Ξ 2 {\\displaystyle t=\\tan {\\frac {\\theta }{2}}} ãšçœ®æããŠããŸããšã â« 1 sin x cos x d x = â« 1 + t 2 t ( 1 â t 2 ) d t = ln | t 1 â t 2 | + C â² = ln | tan x | + C {\\displaystyle \\int {\\frac {1}{\\sin x\\cos x}}\\,dx=\\int {\\frac {1+t^{2}}{t(1-t^{2})}}\\,dt=\\ln \\left|{\\frac {t}{1-t^{2}}}\\right|+C'=\\ln |\\tan x|+C} ãšèšç®éãå°ãå¢ããã",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "ææ°é¢æ°ã«ã€ã㊠( e x ) â² = e x {\\displaystyle (e^{x})'=e^{x}} ãæãç«ã€ããšãçšãããšã â« e x d x = e x + C {\\displaystyle \\int e^{x}dx=e^{x}+C} ãåŸãããã",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "ãŸãã ( a x ln a ) â² = a x {\\displaystyle \\left({\\frac {a^{x}}{\\ln a}}\\right)'=a^{x}} ãªã®ã§ã â« a x d x = a x ln a {\\displaystyle \\int a^{x}\\,dx={\\frac {a^{x}}{\\ln a}}} ã§ããã",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "ãŸãã log | x | {\\displaystyle \\log |x|} ã® åå§é¢æ°ãæ±ããããšãåºæ¥ãã",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "ãšãªãã",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "æç颿° R ( x ) {\\displaystyle R(x)} ã«å¯ŸããŠãç©å â« R ( e x ) d x {\\displaystyle \\int R(e^{x})\\,dx} 㯠t = e x {\\displaystyle t=e^{x}} ãããš d t d x = e x = t {\\displaystyle {\\frac {dt}{dx}}=e^{x}=t} ãã",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "â« R ( e x ) d x = â« R ( t ) d t t . {\\displaystyle \\int R(e^{x})\\,dx=\\int R(t){\\frac {dt}{t}}.}",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "æç颿° R ( x , y ) {\\displaystyle R(x,y)} ã«å¯ŸããŠãç©å â« R ( x , a x 2 + b x + c ) d x {\\displaystyle \\int R(x,{\\sqrt {ax^{2}+bx+c}})\\,dx} ã«ã€ããŠèããããå¹³æ¹æ ¹ã®äžèº«ã¯å¹³æ¹å®æããããšã«ãã£ãŠã p 2 â x 2 , x 2 + p 2 , x 2 â p 2 {\\displaystyle {\\sqrt {p^{2}-x^{2}}},{\\sqrt {x^{2}+p^{2}}},{\\sqrt {x^{2}-p^{2}}}} ã®ããããã®åœ¢ã«ãªããããããã®å Žåã«ã€ããŠã x = p sin Ξ , x = p tan Ξ , x = p cos Ξ {\\displaystyle x=p\\sin \\theta ,x=p\\tan \\theta ,x={\\frac {p}{\\cos \\theta }}} ãšå€æ°å€æãããšäžè§é¢æ°ã®ç©åã«åž°çããã",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "ãŸãã y 2 = a x 2 + b x + c {\\displaystyle y^{2}=ax^{2}+bx+c} ã¯äºæ¬¡æ²ç·ã§ãç¹ã« a > 0 {\\displaystyle a>0} ã®ãšãã¯åæ²ç·ãšãªã( y 2 â a ( x + b 2 a ) 2 = â b 2 + 4 a c 4 a {\\displaystyle y^{2}-a\\left(x+{\\frac {b}{2a}}\\right)^{2}={\\frac {-b^{2}+4ac}{4a}}} ãã)ããã®ãšãã y = ± a x + t {\\displaystyle y=\\pm {\\sqrt {a}}x+t} ããªãã¡ t = â a x + a x 2 + b x + c {\\displaystyle t=\\mp {\\sqrt {a}}x+{\\sqrt {ax^{2}+bx+c}}} ãšå€æãããšããŸãèšç®ã§ãã(笊å·ã¯ã©ã¡ããéžæããŠãè¯ã)ã幟äœåŠçã«ã¯ãåæ²ç·ã®æŒžè¿ç·ã«å¹³è¡ã§åçã t {\\displaystyle t} ã®çŽç· y = ± a x + t {\\displaystyle y=\\pm {\\sqrt {a}}x+t} ãšåæ²ç·ã®ãã äžã€ã®äº€ç¹ ( x , y ) {\\displaystyle (x,y)} ã倿° t {\\displaystyle t} ã§è¡šãããã®ã§ããã",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "äŸ â« d x x 2 â 1 {\\displaystyle \\int {\\frac {dx}{\\sqrt {x^{2}-1}}}} 㯠t = x + x 2 â 1 {\\displaystyle t=x+{\\sqrt {x^{2}-1}}} ãšçœ®æãããšã 1 t = x â x 2 â 1 {\\displaystyle {\\frac {1}{t}}=x-{\\sqrt {x^{2}-1}}} ãªã®ã§ã t + 1 t = 2 x {\\displaystyle t+{\\frac {1}{t}}=2x} ããªãã¡ 2 d x = ( 1 â 1 t 2 ) d t {\\displaystyle 2dx=\\left(1-{\\frac {1}{t^{2}}}\\right)dt} ãŸãã t â 1 t = 2 x 2 â 1 {\\displaystyle t-{\\frac {1}{t}}=2{\\sqrt {x^{2}-1}}} .ãªã®ã§ã â« d x x 2 â 1 = â« 1 â 1 t 2 t â 1 t d t = â« d t t = ln | x + x 2 â 1 | + C {\\displaystyle \\int {\\frac {dx}{\\sqrt {x^{2}-1}}}=\\int {\\frac {1-{\\frac {1}{t^{2}}}}{t-{\\frac {1}{t}}}}dt=\\int {\\frac {dt}{t}}=\\ln |x+{\\sqrt {x^{2}-1}}|+C} ã§ããã",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "ãšããã§ããã®å€æã¯åæ²ç· y 2 = x 2 â 1 {\\displaystyle y^{2}=x^{2}-1} ãšçŽç· y = â x + t {\\displaystyle y=-x+t} ã®ãã äžã€ã®äº€ç¹ã«ãã倿ã§ãã£ãããã®äº€ç¹ãæ¹çšåŒãè§£ã㊠t {\\displaystyle t} ã§è¡šããšã x = 1 2 ( t + 1 t ) , y = 1 2 ( t â 1 t ) {\\displaystyle x={\\frac {1}{2}}\\left(t+{\\frac {1}{t}}\\right),\\,y={\\frac {1}{2}}\\left(t-{\\frac {1}{t}}\\right)} ãåŸããããã¯åæ²ç·ã®åªä»å€æ°è¡šç€ºã®äžã€ã§ããããŸãã t â e t {\\displaystyle t\\rightarrow e^{t}} ãšãããšã x = e t + e â t 2 = cosh t , y = e t â e â t 2 = sinh t . {\\displaystyle x={\\frac {e^{t}+e^{-t}}{2}}=\\cosh t,\\,y={\\frac {e^{t}-e^{-t}}{2}}=\\sinh t.} ãã㯠x > 0 {\\displaystyle x>0} ã®éšåã®åæ²ç·ã®åªä»å€æ°è¡šç€ºã§ãããæå³èŸºã¯åæ²ç·é¢æ°ãšåŒã°ããäžè§é¢æ°ãšäŒŒãæ§è³ªãæã€ã颿°åã® h {\\displaystyle \\mathrm {h} } ã¯hyperbolaã«ç±æ¥ãããäŸãã°ãåæ²ç·ã®æ¹çšåŒããåŸããã cosh 2 t â sinh 2 t = 1 {\\displaystyle \\cosh ^{2}t-\\sinh ^{2}t=1} 㯠sin 2 Ξ + cos 2 Ξ = 1 {\\displaystyle \\sin ^{2}\\theta +\\cos ^{2}\\theta =1} ãšãã䌌ãŠãããäŸç€ºã®äžå®ç©å㯠x = cosh t {\\displaystyle x=\\cosh t} ãšçœ®æããŠãè§£ãããšãåºæ¥ãããã»ãšãã©åãããšãªã®ã§çç¥ããã",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "a < b {\\displaystyle a<b} ãšãããç©å â« a b ( x â a ) ( b â x ) d x {\\displaystyle \\int _{a}^{b}{\\sqrt {(x-a)(b-x)}}\\,dx} 㯠y = ( x â a ) ( b â x ) {\\displaystyle y={\\sqrt {(x-a)(b-x)}}} ãšãããšã ( x â a + b 2 ) + y 2 = ( a â b 2 ) 2 {\\displaystyle \\left(x-{\\frac {a+b}{2}}\\right)+y^{2}=\\left({\\frac {a-b}{2}}\\right)^{2}} ããã被ç©å颿° y {\\displaystyle y} ã¯äžå¿ a + b 2 {\\displaystyle {\\frac {a+b}{2}}} ã§ååŸ b â a 2 {\\displaystyle {\\frac {b-a}{2}}} ã®ååšã®äžååã§ãããç©ååºéããã®äž¡ç«¯ãªã®ã§ãç©åã®å€ã¯ååã®é¢ç©ã«çããã â« a b ( x â a ) ( b â x ) d x = Ï 2 ( b â a 2 ) 2 {\\displaystyle \\int _{a}^{b}{\\sqrt {(x-a)(b-x)}}\\,dx={\\frac {\\pi }{2}}\\left({\\frac {b-a}{2}}\\right)^{2}} ã§ããã",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "äžè¬ã«ã颿° f ( a â x ) {\\displaystyle f(a-x)} ã®ã°ã©ãã¯é¢æ° f ( x ) {\\displaystyle f(x)} ã®ã°ã©ããçŽç· x = a 2 {\\displaystyle x={\\frac {a}{2}}} ã§å¯Ÿç§°ç§»åãããã®ã§ããã",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "åŸã£ãŠãé£ç¶é¢æ° f ( x ) {\\displaystyle f(x)} ãåºé [ a + b 2 , b ] {\\displaystyle \\left[{\\frac {a+b}{2}},b\\right]} ã§ç©åããå€ â« a + b 2 b f ( x ) d x {\\displaystyle \\int _{\\frac {a+b}{2}}^{b}f(x)\\,dx} ãšãé£ç¶é¢æ° f ( a + b â x ) {\\displaystyle f(a+b-x)} ãåºé [ a , a + b 2 ] {\\displaystyle \\left[a,{\\frac {a+b}{2}}\\right]} ã§ç©åããå€ â« a a + b 2 f ( a + b â x ) d x {\\displaystyle \\int _{a}^{\\frac {a+b}{2}}f(a+b-x)\\,dx} ã¯çãã:",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "ãã®çåŒã¯åã«ã x â a + b â x {\\displaystyle x\\to a+b-x} ã®å€æ°å€æã«ãã£ãŠãå°åºã§ããã",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "ãã®çåŒããã â« a b f ( x ) d x = â« a a + b 2 f ( x ) d x + â« a + b 2 b f ( x ) d x = â« a a + b 2 [ f ( x ) + f ( a + b â x ) ] d x {\\displaystyle \\int _{a}^{b}f(x)\\,dx=\\int _{a}^{\\frac {a+b}{2}}f(x)\\,dx+\\int _{\\frac {a+b}{2}}^{b}f(x)\\,dx=\\int _{a}^{\\frac {a+b}{2}}[f(x)+f(a+b-x)]\\,dx} ãå°ãããã",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "ãã®å
¬åŒã¯ã f ( x ) + f ( a + b â x ) {\\displaystyle f(x)+f(a+b-x)} ãç°¡åãªåœ¢ã«ãªãå®ç©åã§åœ¹ã«ç«ã€ã",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "äŸãã°ã â« 0 Ï 2 sin x sin x + cos x d x = â« 0 Ï 4 [ sin x sin x + cos x + sin ( Ï 2 â x ) sin ( Ï 2 â x ) + cos ( Ï 2 â x ) ] d x = â« 0 Ï 4 [ sin x sin x + cos x + cos x cos x + sin x ] d x = â« 0 Ï 4 d x = Ï 4 . {\\displaystyle {\\begin{aligned}\\int _{0}^{\\frac {\\pi }{2}}{\\frac {\\sin x}{\\sin x+\\cos x}}\\,dx&=\\int _{0}^{\\frac {\\pi }{4}}\\left[{\\frac {\\sin x}{\\sin x+\\cos x}}+{\\frac {\\sin({\\frac {\\pi }{2}}-x)}{\\sin({\\frac {\\pi }{2}}-x)+\\cos({\\frac {\\pi }{2}}-x)}}\\right]\\,dx\\\\&=\\int _{0}^{\\frac {\\pi }{4}}\\left[{\\frac {\\sin x}{\\sin x+\\cos x}}+{\\frac {\\cos x}{\\cos x+\\sin x}}\\right]\\,dx\\\\&=\\int _{0}^{\\frac {\\pi }{4}}dx={\\frac {\\pi }{4}}.\\end{aligned}}}",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "King Property ã®å¿çšäŸã¯ â« â 1 1 x 2 1 + e x d x = 1 3 {\\displaystyle \\int _{-1}^{1}{\\frac {x^{2}}{1+e^{x}}}\\,dx={\\frac {1}{3}}} , â« 0 Ï 4 ln ( 1 + tan x ) d x = Ï 8 ln 2 {\\displaystyle \\int _{0}^{\\frac {\\pi }{4}}\\ln(1+\\tan x)\\,dx={\\frac {\\pi }{8}}\\ln 2} , â« 0 Ï 2 ln sin x d x = â Ï 2 ln 2 {\\displaystyle \\int _{0}^{\\frac {\\pi }{2}}\\ln \\sin x\\,dx=-{\\frac {\\pi }{2}}\\ln 2} ãªã©ããããèšç®ããŠã¿ãã",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "æŒç¿åé¡1",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "次ã®äžå®ç©åãæ±ããã",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "æŒç¿åé¡2",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "第äžå",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "第äºå",
"title": "ãããããªé¢æ°ã®ç©å"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "",
"title": "ç©åã®å¿çš"
},
{
"paragraph_id": 104,
"tag": "p",
"text": "ãã颿°f(x)ã®åå§é¢æ°ãæ±ããæŒç®ã¯ f(x)ãšx軞ã«ã¯ããŸããé åã®é¢ç©ãæ±ããæŒç®ã«çããã ãã®ããšãçšã㊠ãã颿°ã«ãã£ãŠäœãããé åã®é¢ç©ãæ±ããããšãåºæ¥ãã",
"title": "ç©åã®å¿çš"
},
{
"paragraph_id": 105,
"tag": "p",
"text": "äŸãã°ã â« 0 1 x 2 d x = 1 3 {\\displaystyle \\int _{0}^{1}x^{2}dx={\\frac {1}{3}}} ã¯ãæŸç©ç· y = x 2 {\\displaystyle y=x^{2}} ã«ã€ã㊠0 < x < 1 {\\displaystyle 0<x<1} ã®ç¯å²ã§ãããŸããé¢ç©ã«çããã",
"title": "ç©åã®å¿çš"
},
{
"paragraph_id": 106,
"tag": "p",
"text": "æ¥å x 2 a 2 + y 2 b 2 = 1 {\\displaystyle {\\frac {x^{2}}{a^{2}}}+{\\frac {y^{2}}{b^{2}}}=1} ã®é¢ç© S = Ï a b {\\displaystyle S=\\pi ab} ã®å°åº",
"title": "ç©åã®å¿çš"
},
{
"paragraph_id": 107,
"tag": "p",
"text": "æ¥å x 2 a 2 + y 2 b 2 = 1 {\\displaystyle {\\frac {x^{2}}{a^{2}}}+{\\frac {y^{2}}{b^{2}}}=1} ã y {\\displaystyle y} ã«ã€ããŠè§£ããš",
"title": "ç©åã®å¿çš"
},
{
"paragraph_id": 108,
"tag": "p",
"text": "ãšãªãããã®ãã¡ y = b a a 2 â x 2 {\\displaystyle y={\\frac {b}{a}}{\\sqrt {a^{2}-x^{2}}}} ã¯åæ¥å(æ¥åã®äžåå)ã瀺ããŠããããã®åæ¥åã®é¢ç©ã2åãããã®ãæ¥åã®é¢ç©Sãšãªãã®ã§",
"title": "ç©åã®å¿çš"
},
{
"paragraph_id": 109,
"tag": "p",
"text": "ãšãªãã",
"title": "ç©åã®å¿çš"
},
{
"paragraph_id": 110,
"tag": "p",
"text": "ããç«äœ V 0 {\\displaystyle V_{0}} ã® x = t {\\displaystyle x=t} ã«ãããæé¢ç©ãæéãªå€ã§ããã®å€ã t {\\displaystyle t} ã®é¢æ° S ( t ) {\\displaystyle S(t)} ãšãªããšãããã®ç«äœãå¹³é¢ x = a {\\displaystyle x=a} , x = b {\\displaystyle x=b} (ãã ãã a < b {\\displaystyle a<b} )ã§åãåã£ãé åã®äœç©ã¯ãåºé¢ç© S ( t ) {\\displaystyle S(t)} ã«æ¥µããŠå°ããé«ã d t {\\displaystyle dt} ã®ç© S ( t ) d t {\\displaystyle S(t)\\,dt} ã®åºé [ a , b ] {\\displaystyle [a,b]} ã«ããã环ç©ã§ããã®ã§ã以äžã®åŒã§è¡šãããšãã§ããã",
"title": "ç©åã®å¿çš"
},
{
"paragraph_id": 111,
"tag": "p",
"text": "(äŸ1)",
"title": "ç©åã®å¿çš"
},
{
"paragraph_id": 112,
"tag": "p",
"text": "(äŸ2)",
"title": "ç©åã®å¿çš"
},
{
"paragraph_id": 113,
"tag": "p",
"text": "y = f ( x ) ( a †x †b ) {\\displaystyle y=f(x)(a\\leq x\\leq b)} ã§äžããããæ²ç·ãx軞ã®åãã«å転ãããŠäœããã ç«äœã®äœç©Vã¯ã V = â« a b Ï ( f ( x ) ) 2 d x {\\displaystyle V=\\int _{a}^{b}\\pi (f(x))^{2}dx} ã§äžããããã",
"title": "ç©åã®å¿çš"
},
{
"paragraph_id": 114,
"tag": "p",
"text": "å°åº",
"title": "ç©åã®å¿çš"
},
{
"paragraph_id": 115,
"tag": "p",
"text": "ç«äœãx軞ã«åçŽã§ãããx=cãæºããé¢ãšx=c+hãæºããé¢ã§åããš(hã¯å°ããª å®æ°)ããã®åæé¢ã§æãŸããç«äœã¯ååŸ f(c)ã®åãšååŸ f(c+h)ã®å ã§ã¯ããŸããç«äœãšãªãã ããããhãæ¥µããŠå°ãããšãããã®å³åœ¢ã¯ååŸf(c),é«ãhã®åæ±ã§ è¿äŒŒã§ããã ãã£ãŠãã®2ã€ã®é¢ã«é¢ããŠãåŸãããå³åœ¢ã®äœç©ã¯ h Ã Ï ( f ( c ) ) 2 {\\displaystyle h\\times \\pi (f(c))^{2}} ãšãªãã ããã a < c < b {\\displaystyle a<c<b} æºããå
šãŠã®cã«ã€ããŠè¶³ãåããããšã S = â« a b Ï ( f ( x ) ) 2 d x {\\displaystyle S=\\int _{a}^{b}\\pi (f(x))^{2}dx} ãåŸãããã",
"title": "ç©åã®å¿çš"
},
{
"paragraph_id": 116,
"tag": "p",
"text": "äŸãã°ã y = x 2 ( 0 < x < 1 ) {\\displaystyle y=x^{2}~(0<x<1)} ãx軞ã®åãã«å転ãããŠåŸãããå³åœ¢ã®äœç©ã¯ã",
"title": "ç©åã®å¿çš"
},
{
"paragraph_id": 117,
"tag": "p",
"text": "S = â« 0 1 Ï ( x 2 ) 2 d x {\\displaystyle S=\\int _{0}^{1}\\pi (x^{2})^{2}dx} = Ï â« 0 1 x 4 d x {\\displaystyle =\\pi \\int _{0}^{1}x^{4}dx} = Ï 5 {\\displaystyle ={\\frac {\\pi }{5}}} ãšãªãã",
"title": "ç©åã®å¿çš"
},
{
"paragraph_id": 118,
"tag": "p",
"text": "çã®äœç© V = 4 3 Ï r 3 {\\displaystyle V={\\frac {4}{3}}\\pi r^{3}} ã®å°åº",
"title": "ç©åã®å¿çš"
},
{
"paragraph_id": 119,
"tag": "p",
"text": "ååŸrã®çã¯åå y = r 2 â x 2 {\\displaystyle y={\\sqrt {r^{2}-x^{2}}}} ãx軞ã®åšãã«å転ãããŠã€ããããšãã§ããã",
"title": "ç©åã®å¿çš"
},
{
"paragraph_id": 120,
"tag": "p",
"text": "ãŸãäœç©ãrã§åŸ®åãããšçã®è¡šé¢ç© S = 4 Ï r 2 {\\displaystyle S=4\\pi r^{2}} ãåŸãããã",
"title": "ç©åã®å¿çš"
},
{
"paragraph_id": 121,
"tag": "p",
"text": "ãããŸã§ã«åŠãã ããã«ãç©åã¯åŸ®åã®éæŒç®ã§ãããšåæã«ã座æšå¹³é¢äžã§ã®é¢ç©èšç®ã§ãããããã®é
ã§ã¯ã座æšå¹³é¢äžã®é¢ç©èšç®ã®æ¹æ³ã®äžã€ã§ããåºåæ±ç©æ³ãããã³ç©åæ³ãšã®é¢é£ã«ã€ããŠåŠã¶ã",
"title": "åºåæ±ç©æ³"
},
{
"paragraph_id": 122,
"tag": "p",
"text": "å³å³ã®ãããªããæ²ç· y = f ( x ) {\\displaystyle y=f(x)} ããããåçŽã®ãããããã§ã¯ã€ãã« f ( x ) > 0 {\\displaystyle f(x)>0} ã§ãããã®ãšããŠèããããã®æ²ç·ãšãx軞ãããã³çŽç· x = a , x = b ( a < b ) {\\displaystyle x=a,x=b(a<b)} ã«ãã£ãŠå²ãŸããé åã®é¢ç©Sãæ±ããããã®é¢ç©ã¯#é¢ç©ã®é
ã§åŠãã ããã«ã",
"title": "åºåæ±ç©æ³"
},
{
"paragraph_id": 123,
"tag": "p",
"text": "ãšç©åæ³ãçšããŠèšç®ããããšãã§ãããã§ã¯ããããããå°ãåå§çãªæ¹æ³ã§è¿äŒŒçã«æ±ããããšãèããŠã¿ããã",
"title": "åºåæ±ç©æ³"
},
{
"paragraph_id": 124,
"tag": "p",
"text": "æ²ç·ãå«ãå³åœ¢ã®é¢ç©ãæ±ããããšã¯ç°¡åã§ã¯ãªãããäŸãã°äžè§åœ¢ãé·æ¹åœ¢ãå°åœ¢ãªã©ã®çŽç·ã§å²ãŸããå³åœ¢ã®é¢ç©ãæ±ããããšã¯é£ãããªããããã§ãäžå³ã®ããã«y=f(x)ãæ£ã°ã©ãã§è¿äŒŒããé·æ¹åœ¢ã®é¢ç©ã®åãèšç®ããããšã§ãæ±ãããé¢ç©Sã«è¿ãå€ãæ±ããããšãã§ãããå·Šäžã®ããã«æ£ã°ã©ãã®å¹
ã倧ãããšèª€å·®ã倧ããããæ£ã°ã©ãã®å¹
ãçãããã°ããã»ã©ãããªãã¡å岿°ãå€ãããã»ã©ãåŸã
ã«æ±ãããé¢ç©ã®å€ã«è¿ã¥ããããšãã§ãããããã§ããã®åºé[a,b]ãnçåãããã®æã®é·æ¹åœ¢ã®é¢ç©ã®ç·åãæ±ãããã®åŸã§ n â â {\\displaystyle n\\to \\infty } ã®æ¥µéãèããããšã«ããããã®ããã«ããŠãåºéã现ããçåå²ããé·æ¹åœ¢ã®é¢ç©ã®ç·åãæ±ããããšã«ããå³åœ¢ã®é¢ç©ãæ±ããæ¹æ³ããåºåæ±ç©æ³ãšåŒã¶ã",
"title": "åºåæ±ç©æ³"
},
{
"paragraph_id": 125,
"tag": "p",
"text": "y = f ( x ) {\\displaystyle y=f(x)} ãæ£ã°ã©ãã§è¿äŒŒãããšããå³å³ã®ããã«ãé·æ¹åœ¢ã®å·Šäžã®é ç¹ãæ²ç·äžã«åãæ¹æ³ãšãå³äžã®é ç¹ãæ²ç·äžã«åãæ¹æ³ããããã©ã¡ãã®æ¹æ³ã§ããå岿°ã倧ããããã°ãããæ±ãããé¢ç©ã«è¿ã¥ããããŸãã¯å·Šäžã®é ç¹ãæ²ç·äžã«åãæ¹æ³ã§èããããšã«ããã",
"title": "åºåæ±ç©æ³"
},
{
"paragraph_id": 126,
"tag": "p",
"text": "ããã§ã¯é¢ç©ãæ±ãããåºéããåçŽã®ãã[0, 1]ãšãããåºé[0, 1]ãnçåãããšããããããã®é·æ¹åœ¢ã®å·Šç«¯ã®x座æšã¯ã",
"title": "åºåæ±ç©æ³"
},
{
"paragraph_id": 127,
"tag": "p",
"text": "ãšãªããããã§ãäžè¬ã«ç¬¬kçªç®ã®é·æ¹åœ¢ã«ã€ããŠèããããšã«ããããã ãããã¡ã°ãå·ŠåŽã®é·æ¹åœ¢ã第0çªç®ãšãããã¡ã°ãå³åŽã®é·æ¹åœ¢ã第n-1çªç®ãšããã第kçªç®ã®é·æ¹åœ¢ã®å·Šç«¯ã®x座æšã¯ k n {\\displaystyle {\\frac {k}{n}}} ã§ããããããã®é·æ¹åœ¢ã®é«ã㯠f ( k n ) {\\displaystyle f\\left({\\frac {k}{n}}\\right)} ãšãªãããŸãé·æ¹åœ¢ã®å¹
㯠1 n {\\displaystyle {\\frac {1}{n}}} ã§ããããã®ããããã®é·æ¹åœ¢ã®é¢ç© s k {\\displaystyle s_{k}} ã¯ã",
"title": "åºåæ±ç©æ³"
},
{
"paragraph_id": 128,
"tag": "p",
"text": "ãšãªãããããã£ãŠããããã®é·æ¹åœ¢ã®é¢ç©ã®ç·å S n {\\displaystyle S_{n}} ã¯ã",
"title": "åºåæ±ç©æ³"
},
{
"paragraph_id": 129,
"tag": "p",
"text": "ãã® S n {\\displaystyle S_{n}} ã¯ãåºé[0, 1]ãnçåããæã®é·æ¹åœ¢ã®é¢ç©ã®ç·åã§ããããnã倧ããããã°ããã»ã©ã次第ã«ããšã®é¢ç©ã«è¿ã¥ããŠããããããã£ãŠã n â â {\\displaystyle n\\to \\infty } ã®æ¥µéãèãã",
"title": "åºåæ±ç©æ³"
},
{
"paragraph_id": 130,
"tag": "p",
"text": "ãšãªãããã®ããã«ããŠãæ±ãããé¢ç©ãèšç®ããããšãã§ãããããã«ãããã§ãã®åºéã®é¢ç©ãç©åæ³ã«ããèšç®ã§ããããšããã",
"title": "åºåæ±ç©æ³"
},
{
"paragraph_id": 131,
"tag": "p",
"text": "ãæãç«ã€ããŸããé·æ¹åœ¢ã®å³äžã®é ç¹ãæ²ç·äžã«åãå Žåã¯ãåæ§ã«ããŠ",
"title": "åºåæ±ç©æ³"
},
{
"paragraph_id": 132,
"tag": "p",
"text": "ãšãªãã",
"title": "åºåæ±ç©æ³"
}
] | ããã§ã¯ãæ°åŠIIã®åŸ®åã»ç©åã®èãã§åŠãã ç©åã®æ§è³ªã«ã€ããŠãã詳ããæ±ãããŸããäžè§é¢æ°ãææ°ã»å¯Ÿæ°é¢æ°ãªã©ã®é¢æ°ã®ç©åã«ã€ããŠãåŠç¿ããã | {{pathnav|é«çåŠæ ¡ã®åŠç¿|é«çåŠæ ¡æ°åŠ|é«çåŠæ ¡æ°åŠIII|pagename=ç©åæ³|frame=1|small=1}}
ããã§ã¯ãæ°åŠIIã®[[é«çåŠæ ¡æ°åŠII/埮åã»ç©åã®èã|埮åã»ç©åã®èã]]ã§åŠãã ç©åã®æ§è³ªã«ã€ããŠãã詳ããæ±ãããŸããäžè§é¢æ°ãææ°ã»å¯Ÿæ°é¢æ°ãªã©ã®é¢æ°ã®ç©åã«ã€ããŠãåŠç¿ããã
== ç©åã®åºæ¬çãªæ§è³ª ==
ç©åæ³ã«ã€ããŠ
<math>\int \{ f(x) + g(x) \} dx = \int f(x) dx + \int g(x) dx ,</math>
<math>\int af(x) dx = a \int f(x) dx</math>(aã¯å®æ°)
ãæãç«ã€ã
å°åº
<math>\int \{ f(x) + g(x) \} dx = \int f(x) dx + \int g(x) dx</math>
ã®äž¡èŸºã埮åãããšã
巊蟺 =å³èŸº = <math> f + g</math>
ãåŸãã
ãã£ãŠã
<math>\int \{ f(x) + g(x) \} dx = \int f(x) dx + \int g(x) dx</math>
ã®äž¡èŸºã¯äžèŽããã
(å®éã«ã¯2ã€ã®é¢æ°ã®å°é¢æ°ãäžèŽãããšãã
ãããã®é¢æ°ã«ã¯å®æ°ã ãã®ã¡ãããããã
ä»®ã«ãF(x)ãšG(x)ãå
±éã®å°é¢æ°h(x)ãæã£ããšããã
ãã®ãšãã
<math>(F(x)-G(x) )' = h(x)- h(x) = 0</math>
ãšãªããã0ã®åå§é¢æ°ã¯å®æ°Cã§ããããšãåããã
ãã£ãŠã䞡蟺ãç©åãããšã
<math>F(x)-G(x) = C</math>
ãšãªããF(x)ãšG(x)ã«ã¯å®æ°ã ãã®å·®ãããªãããšã確ãããããã
ãã£ãŠã
<math>\int \{ f(x) + g(x) \} dx = \int f(x) dx + \int g(x) dx</math>
ã¯å®æ°ã ãã®ã¡ãããå«ãã§æãç«ã€åŒã§ããã
ããäžè¬ã«ãäžå®ç©åã絡ãçåŒã¯å®æ°åã®å·®ãå«ããŠæãç«ã€ãšããã®ãéäŸã§ããã)
<math>\int af(x) dx = a \int f(x) dx</math>
ã«ã€ããŠã䞡蟺ã埮åãããšã
巊蟺=å³èŸº= a f(x)
ãåŸãã
ãã£ãŠã
<math>\int af dx = a\int f dx</math>
ãæãç«ã€ããšãåãã
颿° <math>f(x)</math> ã®åå§é¢æ°ã <math>F(x)</math> ãšãããš
<math>\int_a^b f(x) \, = F(b)-F(a) = -(F(a)-F(b)) = -\int_b^af(x)\, dx</math> ã§ããã
<math>\int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx = (F(c) - F(a)) + (F(b) - F(c)) = F(b) - F(a) = \int_{a}^{b} f(x) \, dx</math>
==眮æç©åæ³==
颿°ã®åå§é¢æ°ãæ±ããææ®µãšããŠã
ç©å倿°ãå¥ã®å€æ°ã§çœ®ãæããŠç©åãè¡ãªãææ®µãç¥ãããŠããã
ããã眮æç©åãšåŒã¶ã
<math>\int f(g(x)) dg(x) = \int f(g(x)) g'(x) dx</math>
å°åº
<math>\int f(g(x)) dg(x) =F(g(x))</math>ã<math>x</math>ã«ã€ããŠåŸ®åãããšã
<math>F'(g(x)) = f(g(x))g'(x)</math>
åã³<math>x</math>ã«ã€ããŠç©åãããšã
<math>\int f(g(x)) dg(x) = \int f(g(x)) g'(x) dx</math>
ãŸããç¹ã«
*<math>\int f(ax+b) dx = \frac{1}{a} \int f(ax+b) d(ax+b)</math>
*<math>\int \{f(x)\}^n f'(x) dx = \frac{1}{n+1} \{f(x)\}^{n+1} + C (n \ne -1)</math>
*<math>\int \frac{f'(x)}{f(x)} dx = \log | f(x) | + C</math>
äŸãã°ã<math>\int (ax+b)^2 dx</math>ãèããã
<math>t = ax+b</math>ãšçœ®ãã
ãã®äž¡èŸºã埮åãããš
<math>dt = adx</math>
ãæãç«ã€ããšãèæ
®ãããšã
{|
|-
|<math>\int t^2 \frac {dt} a</math>
|<math>=\frac{ t^3} {3a} + C</math>
|-
|
|<math>=\frac{ (ax+b)^3} {3a} + C</math>
|}
ãšãªãããšããããã
å®éãã®åŒãxã§åŸ®åãããš
<math>
(ax+b)^2
</math>
ãšäžèŽããããšãåãã
眮æç©åã䜿ããã«èšç®ããããšãåºæ¥ãã
{|
|-
|<math>\int (ax+b)^2 dx</math>
|<math>=\int (a^2x^2+2abx +b^2) dx</math>
|-
|
|<math>= \frac {a^2} 3 x^3 +abx^2 +b^2x + C'</math>
|-
|
|<math>= \frac {a^2} 3 x^3 +abx^2 +b^2x + \frac {b^3} {3a} +C</math>
|}
(<math>C'=\frac {b^3} {3a} +C</math>ãšçœ®ãæããã)
<math>=\frac{ (ax+b)^3} {3a} + C</math>
ãšãªã確ãã«äžèŽããã
==éšåç©åæ³==
颿°ã®ç©ã®ç©åãè¡ãªããšããã颿°ã®åŸ®åã ããåãã ããŠç©åãããšãããŸãç©åã§ããå Žåãããã颿° <math>g(x)</math> ã®åå§é¢æ°ã <math>G(x)</math> ãšãããš
<math>\int f(x) g(x) \, dx = f(x) G(x) - \int f'(x) G(x) \, dx</math>
å°åº
ç©ã®åŸ®åæ³ãã <math>\{f(x)G(x)\}' = f'(x)G(x) + f(x)g(x)</math> ã§ããããããç§»é
ããŠ
<math>f(x)g(x) = \{f(x)G(x)\}' - f'(x)G(x)</math>
ã§ããã䞡蟺ãxã§ç©åããŠ
<math>\int f(x) g(x) \, dx = f(x) G(x) - \int f'(x) G(x) \, dx</math>
ãåŸãããã
äŸãã°ã
{|
|-
|<math>\int x (ax+b)^3 dx</math>
|<math>=\int x \left(\frac {(ax+b)^4} {4a} \right)' dx</math>
|-
|
|<math>=x \left(\frac {(ax+b)^4} {4a} \right)- \int (x)' \frac {(ax+b)^4} {4a} dx</math>
|-
|
|<math>=x \left(\frac {(ax+b)^4} {4a} \right)- \int (x)' \frac {(ax+b)^4} {4a} dx</math>
|-
|
|<math>=x \left(\frac {(ax+b)^4} {4a} \right)- \int \frac {(ax+b)^4} {4a} dx</math>
|-
|
|<math>=x \left(\frac {(ax+b)^4} {4a} \right)- \frac {(ax+b)^5} {20a^2} </math>
|}
== ãããããªé¢æ°ã®ç©å==
=== å€é
åŒé¢æ°ã®ç©å ===
<math>n \ne -1</math>ã®ãšãã<math>\left(\frac{1}{n+1} x^{n+1}\right)'=x^n</math>ãªã®ã§ã
<math>\int x^n dx = \frac{1}{n+1} x^{n+1} + C</math>
<math>n = -1</math>ã®ãšãã<math>(\log |x| )' = \frac{1}{x} = x^{-1}</math>ãªã®ã§ã
<math>\int x^{-1} dx = \int \frac {1}{x} dx = \log |x| + C</math>
ãæãç«ã€ã
=== äžè§é¢æ°ã®ç©å ===
*<math>(\sin x )' = \cos x</math>
*<math>(\cos x )' = -\sin x</math>
*<math>(\tan x )' = \frac{1}{\cos^2 x}</math>
ãæãç«ã€ããšãèæ
®ãããšã
*<math>\int \cos x dx= \sin x + C</math>
*<math>\int \sin x dx = - \cos x + C</math>
*<math>\int \frac{1}{\cos^2 x } dx = \tan x + C</math>
ãšãªãããšãåãã
<math>\int \tan x dx</math>ã¯ã眮æç©åæ³ã䜿ã£ãŠ
{|
|-
|<math>\int \tan x dx</math>
|<math>=\int \frac{\sin x}{\cos x} dx</math>
|-
|
|<math>=\int \frac{-(\cos x)'}{\cos x} dx</math>
|-
|
|<math>= - \int \frac{(\cos x)'}{\cos x} dx</math>
|-
|
|<math>= - \log | \cos x | + C</math>
|}
:ã
:ãªãåæ§ã«ã<math>\frac{1}{\tan x} = \frac{\cos x}{\sin x}</math>ãã§ããã®ã§ã<math>\int \frac{1}{\tan x} dx = \int \frac{\cos x}{\sin x} dx =\int \frac{(\sin x)'}{\sin x} dx = \log \left|\sin x\right| + C</math>
:ã
ããäžè¬ã«æç颿° <math>R(x,y)</math> ã«å¯ŸããŠã<math>\int R(\sin\theta,\cos\theta) \,d\theta</math> ã«ã€ããŠèããã <math>t = \tan \frac{\theta}{2}</math> ãšããã <math>\tan^2\frac{\theta}{2} + 1 = \frac{1}{\cos^2\frac{\theta}{2}}</math> ãã£ãŠ <math>\cos^2\frac{\theta}{2} = \frac{1}{1+t^2}</math>ã§ããã<math>\frac{dt}{d\theta} = \frac{d}{d\theta}\tan\frac{\theta}{2} = \frac{1}{2\cos^2\frac{\theta}{2}} = \frac{1}{2}(t^2+1)</math> ã§ããã<math>\cos\theta = 2\cos^2\frac{\theta}{2} - 1 = \frac{1-t^2}{1+t^2}</math> ã〠<math>\sin\theta = \tan\theta\cos\theta = \frac{2\tan\frac{\theta}{2}}{1-\tan^2\frac{\theta}{2}}\cos\theta =
\frac{2t}{1+t^2}</math>
ã§ããããã£ãŠ
<math>\int R(\sin\theta,\cos\theta) \,d\theta
= \int R\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \, \frac{2dt}{1+t^2}</math>
ãšæç颿°ã®ç©åã«ãã¡èŸŒããã
幟äœåŠçã¯ããã®å€æã¯åäœåäžã®ç¹ <math>P(\cos \theta, \sin \theta)</math>ãšç¹ <math>A(-1,0)</math> ãçµã¶çŽç·ã®åŸé
<math>t</math> ã§å€æãããã®ã§ãããå®éååšè§ã®å®çãã <math>\angle xAP = \frac 1 2 \angle xOP = \frac \theta 2</math>ãã <math>t = \tan \frac{\theta} 2.</math>
被ç©å颿°ã®åšæã <math>\pi</math> ã®å Žåã¯ã被ç©å颿°ã¯ <math>\sin 2\theta,\cos 2 \theta</math> ã®æç颿°ãªã®ã§ã <math>t = \tan\theta</math> ãšçœ®æãããšèšç®ã楜ã ã被ç©å颿°ã <math>\sin^2\theta,\cos^2\theta,\sin\theta\cos\theta</math> ã®æç颿°ãšãªããšãããã®ç¯çã«å±ããã<math>t = \tan\theta</math> ãšçœ®æãããšãã<math>\cos^2\theta = \frac{1}{1+\tan^2\theta}=\frac{1}{1+t^2}</math>, <math>\sin^2\theta = \tan^2 \theta \cos^2 \theta = \frac{t^2}{1+t^2}</math> , <math>\sin\theta \cos\theta = \pm\sqrt{\sin^2\theta \cos^2\theta} = \frac{t}{1+t^2}</math> (<math>\sin\theta \cos\theta</math> ãš <math>\tan\theta = \frac{\sin\theta}{\cos\theta}</math> ã®æ£è² ã¯äžèŽãããã), <math>d \theta = \frac {dt}{1 + t^2}</math> ãšãªãã
äŸã<math>\int\frac{1}{\sin x \cos x}dx</math> 㯠<math>t = \tan x</math> ãšçœ®æãããšã<math>\int \frac {1}{\sin x \cos x}dx = \int \frac {1+t^2}{t} \frac { dt}{1+t^2} = \ln|\tan x| + C. </math> <math>t = \tan \frac{\theta}{2}</math> ãšçœ®æããŠããŸããšã<math>\int \frac{1}{\sin x \cos x}\,dx = \int \frac {1+t^2}{t(1-t^2)}\,dt = \ln \left|\frac{t}{1-t^2}\right| + C' = \ln|\tan x| + C </math> ãšèšç®éãå°ãå¢ããã
=== ææ°ã»å¯Ÿæ°é¢æ°ã®ç©å ===
ææ°é¢æ°ã«ã€ããŠ
<math>(e^x )' = e^x</math>
ãæãç«ã€ããšãçšãããšã
<math>\int e^x dx = e^x + C</math>
ãåŸãããã
ãŸãã <math>\left(\frac{a^x}{\ln a}\right)' = a^x</math> ãªã®ã§ã <math>\int a^x \, dx=\frac{a^x}{\ln a}</math> ã§ããã
ãŸãã<math>\log |x|</math>ã®
åå§é¢æ°ãæ±ããããšãåºæ¥ãã
{|
|<math>\int \log |x| dx </math>
|<math>=\int (x)' \log |x| dx </math>
|-
|
|<math>=x \log |x| -\int x (\log |x|)' dx </math>
|-
|
|<math>=x \log |x| -\int x \frac 1 x dx </math>
|-
|
|<math>=x \log |x| -\int dx </math>
|-
|
|<math>=x \log |x| -x + C</math>
|}
ãšãªãã
æç颿° <math>R(x)</math> ã«å¯ŸããŠãç©å <math>\int R(e^x) \, dx</math> 㯠<math>t = e^x</math> ãããš <math>\frac{dt}{dx} = e^x = t</math> ãã
<math>\int R(e^x) \, dx = \int R(t) \frac{dt}{t}.</math>
=== äºæ¬¡ç¡ç颿°ã®ç©åïŒçºå±ïŒ ===
æç颿° <math>R(x,y)</math> ã«å¯ŸããŠãç©å <math>\int R(x,\sqrt{ax^2 + bx + c}) \, dx</math> ã«ã€ããŠèããããå¹³æ¹æ ¹ã®äžèº«ã¯å¹³æ¹å®æããããšã«ãã£ãŠã<math>\sqrt{p^2-x^2},\sqrt{x^2+p^2},\sqrt{x^2-p^2}</math>ã®ããããã®åœ¢ã«ãªããããããã®å Žåã«ã€ããŠã<math>x = p\sin \theta,x = p\tan\theta,x = \frac{p}{\cos \theta}</math> ãšå€æ°å€æãããšäžè§é¢æ°ã®ç©åã«åž°çããã
ãŸãã<math>y^2 = ax^2 +bx + c</math> ã¯äºæ¬¡æ²ç·ã§ãç¹ã« <math>a>0</math> ã®ãšãã¯åæ²ç·ãšãªãïŒ<math>y^2 -a\left(x+\frac{b}{2a}\right)^2 = \frac{-b^2 + 4ac}{4a}</math>ãã<ref>å³èŸºã0ã®ãšãåæ²ç·ãšã¯ãªããªããããã®ãšãã¯ç°¡åã«å¹³æ¹æ ¹ãå€ãããšãåºæ¥ãã®ã§èããå¿
èŠã¯ãªãã</ref>ïŒããã®ãšãã<math>y=\pm \sqrt a x + t</math> ããªãã¡ <math>t = \mp \sqrt a x + \sqrt{ax^2 + bx + c}</math> ãšå€æãããšããŸãèšç®ã§ããïŒç¬Šå·ã¯ã©ã¡ããéžæããŠãè¯ãïŒã幟äœåŠçã«ã¯ãåæ²ç·ã®æŒžè¿ç·ã«å¹³è¡ã§åçã <math>t</math> ã®çŽç· <math>y=\pm \sqrt a x + t</math> ãšåæ²ç·ã®ãã äžã€ã®äº€ç¹ <math>(x,y)</math> ã倿° <math>t</math> ã§è¡šãããã®ã§ããã
äŸ <math>\int \frac{dx}{\sqrt{x^2-1}} </math> 㯠<math>t = x + \sqrt{ x^2-1}</math> ãšçœ®æãããšã<math>\frac 1 t = x - \sqrt{x^2-1}</math> ãªã®ã§ã<math>t + \frac 1 t = 2x</math> ããªãã¡ <math>2dx = \left(1 - \frac 1 {t^2}\right)dt</math> ãŸãã <math>t - \frac 1 t = 2\sqrt{x^2-1}</math>.ãªã®ã§ã<math>\int \frac{dx}{\sqrt{x^2-1}} = \int \frac{1-\frac{1}{t^2}}{t-\frac 1 t}dt = \int \frac{dt}{t} = \ln |x + \sqrt{x^2-1}| + C </math> ã§ããã
ãšããã§ããã®å€æã¯åæ²ç· <math>y^2 = x^2 - 1</math> ãšçŽç· <math>y = -x + t</math> ã®ãã äžã€ã®äº€ç¹ã«ãã倿ã§ãã£ãããã®äº€ç¹ãæ¹çšåŒãè§£ã㊠<math>t</math> ã§è¡šããšã<math>x = \frac 1 2 \left(t + \frac 1 t\right), \, y =\frac 1 2 \left(t - \frac 1 t\right)</math> ãåŸããããã¯åæ²ç·ã®åªä»å€æ°è¡šç€ºã®äžã€ã§ããããŸãã <math>t \rightarrow e^t</math> ãšãããšã<math>x = \frac{e^t + e^{ -t} }{2} = \cosh t, \, y = \frac{e^t - e^{-t}}{2} = \sinh t.</math> ãã㯠<math>x > 0</math> ã®éšåã®åæ²ç·ã®åªä»å€æ°è¡šç€ºã§ãããæå³èŸºã¯åæ²ç·é¢æ°ãšåŒã°ããäžè§é¢æ°ãšäŒŒãæ§è³ªãæã€ã颿°åã® <math>\mathrm{h}</math> ã¯hyperbolaã«ç±æ¥ãããäŸãã°ãåæ²ç·ã®æ¹çšåŒããåŸããã <math>\cosh^2 t - \sinh^2 t = 1</math> 㯠<math>\sin^2\theta + \cos^2\theta = 1</math> ãšãã䌌ãŠãããäŸç€ºã®äžå®ç©å㯠<math>x = \cosh t</math> ãšçœ®æããŠãè§£ãããšãåºæ¥ãããã»ãšãã©åãããšãªã®ã§çç¥ããã
=== ç¹æ®ãªå®ç©å ===
==== å ====
<math>a < b</math> ãšãããç©å <math>\int_a ^b \sqrt{(x-a)(b-x)}\, dx</math> 㯠<math>y = \sqrt{(x-a)(b-x)}</math> ãšãããšã<math>\left(x-\frac{a+b}{2} \right) + y^2 = \left(\frac{a-b}{2} \right)^2</math> ããã被ç©å颿° <math>y</math> ã¯äžå¿ <math>\frac{a+b}{2}</math> ã§ååŸ <math>\frac{b-a}{2}</math>ã®ååšã®äžååã§ãããç©ååºéããã®äž¡ç«¯ãªã®ã§ãç©åã®å€ã¯ååã®é¢ç©ã«çããã<math>\int_a ^b \sqrt{(x-a)(b-x)} \, dx = \frac{\pi}{2}\left(\frac{b-a}{2}\right)^2</math> ã§ããã
==== King Property ====
äžè¬ã«ã颿° <math>f(a-x)</math> ã®ã°ã©ãã¯é¢æ° <math>f(x)</math> ã®ã°ã©ããçŽç· <math>x = \frac a 2</math> ã§å¯Ÿç§°ç§»åãããã®ã§ããã
åŸã£ãŠãé£ç¶é¢æ° <math>f(x)</math> ãåºé <math>\left[\frac{a+b}{2},b\right]</math> ã§ç©åããå€ <math>\int_{\frac{a+b}{2}}^{b} f(x) \, dx</math> ãšãé£ç¶é¢æ° <math>f(a+b-x)</math> ãåºé <math>\left[a,\frac{a+b}{2}\right]</math> ã§ç©åããå€ <math>\int_{a}^{\frac{a+b}{2}} f(a+b-x)\, dx</math> ã¯çããïŒ
:<math>\int_{\frac{a+b}{2}}^{b} f(x) \, dx = \int_{a}^{\frac{a+b}{2}} f(a+b-x) \, dx.</math>
ãã®çåŒã¯åã«ã <math>x \to a+b-x</math> ã®å€æ°å€æã«ãã£ãŠãå°åºã§ããã
ãã®çåŒããã <math>\int_a^b f(x) \, dx = \int_{a}^{\frac{a+b}{2}} f(x)\, dx +\int_{\frac{a+b}{2}}^{b} f(x) \, dx = \int_{a}^{\frac{a+b}{2}} [f(x) + f(a+b-x)] \, dx </math> ãå°ãããã
ãã®å
¬åŒã¯ã<math>f(x) + f(a+b-x)</math> ãç°¡åãªåœ¢ã«ãªãå®ç©åã§åœ¹ã«ç«ã€ã
äŸãã°ã<math>\begin{align}\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} \, dx &= \int_{0}^{\frac{\pi}{4}} \left[\frac{\sin x}{\sin x + \cos x} +\frac{\sin (\frac{\pi}{2}-x)}{\sin (\frac{\pi}{2}-x) + \cos (\frac{\pi}{2}-x)}\right]\, dx \\
&= \int_{0}^{\frac{\pi}{4}} \left[\frac{\sin x}{\sin x + \cos x} +\frac{\cos x}{\cos x + \sin x}\right]\, dx \\ &= \int_{0}^{\frac{\pi}{4}}dx = \frac{\pi}{4}.\end{align} </math>
King Property ã®å¿çšäŸã¯ <math>\int_{-1}^{1} \frac{x^2}{1+e^x} \, dx = \frac 1 3</math> , <math>\int_0^{\frac \pi 4} \ln(1+\tan x)\, dx = \frac \pi 8 \ln 2</math> , <math>\int_0^{\frac \pi 2} \ln \sin x \, dx = -\frac{\pi}{2}\ln 2</math> ãªã©ããããèšç®ããŠã¿ãã
'''æŒç¿åé¡1'''
次ã®äžå®ç©åãæ±ããã
:(1)<math>\int \tan xdx</math>
:(2)<math>\int \frac{1}{\cos ^2x}dx</math>
:(3)<math>\int \log xdx</math>
:(4)<math>\int x\log xdx</math>
:(5)<math>\int x^2\log xdx</math>
:(6)<math>\int x^3\log xdx</math>
:(7)<math>\int x\sin xdx</math>
:(8)<math>\int x^2\sin xdx</math>
:(9)<math>\int x^2e^xdx</math>
*è§£ç
:(1)<math>-\log (\cos x)+C</math>
:(2)<math>\tan x+C</math>
:(3)<math>x\log x-x+C</math>
:(4)<math>\frac{x^2\log x}{2}-\frac{x^2}{4}+C</math>
:(5)<math>\frac{x^3\log x}{3}-\frac{x^3}{9}+C</math>
:(6)<math>\frac{x^4\log x}{4}-\frac{x^4}{16}+C</math>
:(7)<math>\sin x-x\cos x+C</math>
:(8)<math>2x\sin x+(2-x^2)\cos x+C</math>
:(9)<math>(x^2-2x+2)e^x+C</math>
:
'''æŒç¿åé¡2'''
'''第äžå'''
:<math>n</math> ã¯éè² æŽæ°ãšãã<math>I_n = \int_{0}^{\frac \pi 2}\sin^n x \, dx</math> ãšããã
:(1) <math>\int_{0}^{\frac{\pi}{2}}\sin^n x \, dx = \int_{0}^{\frac{\pi}{2}}\cos^n x \, dx</math> ã瀺ãã
:(2) <math>I_n = \frac{n-1}{n}I_{n-2}\quad (n \ge 2)</math> ã瀺ãã
:(3) <math>I_n</math> ãæ±ããã
'''第äºå'''
:<math>m,n</math> ã¯éè² æŽæ°ã<math>\alpha,\beta</math> 㯠<math>\beta > \alpha</math> ãªã宿°ãšãã<math>I_{m,n} = \int_\alpha^\beta (x-\alpha)^m(\beta - x)^n \, dx</math> ãšããã
:(1) <math>I_{m,n} = \frac{n}{m+1} I_{m+1,n-1} \quad (n\ge 1) </math> ã瀺ãã
:(2) <math>I_{m,n}</math> ãæ±ããã
==ç©åã®å¿çš==
==== é¢ç©ïŒäœç©====
=====é¢ç©=====
ãã颿°f(x)ã®åå§é¢æ°ãæ±ããæŒç®ã¯
f(x)ãšx軞ã«ã¯ããŸããé åã®é¢ç©ãæ±ããæŒç®ã«çããã
ãã®ããšãçšããŠ
ãã颿°ã«ãã£ãŠäœãããé åã®é¢ç©ãæ±ããããšãåºæ¥ãã
[[ç»å:Integral_x%5E2_0-1.png|right|x^2ã®0ãã1ãŸã§ã®ç©å]]
äŸãã°ã
<math>
\int _0 ^1 x^2 dx = \frac 1 3
</math>
ã¯ãæŸç©ç·<math> y = x^2</math>ã«ã€ããŠ
<math>0 < x < 1</math>ã®ç¯å²ã§ãããŸããé¢ç©ã«çããã
;æ¥åã®é¢ç©
æ¥å<math>\frac{x^2}{a^2}+\frac{y^2}{b^2}=1</math>ã®é¢ç©<math>S=\pi ab</math>ã®å°åº
æ¥å<math>\frac{x^2}{a^2}+\frac{y^2}{b^2}=1</math>ã<math>y</math>ã«ã€ããŠè§£ããš
:<math>y=\pm\frac{b}{a}\sqrt{a^2-x^2}</math>
ãšãªãããã®ãã¡<math>y=\frac{b}{a}\sqrt{a^2-x^2}</math>ã¯åæ¥åïŒæ¥åã®äžååïŒã瀺ããŠããããã®åæ¥åã®é¢ç©ã2åãããã®ãæ¥åã®é¢ç©''S''ãšãªãã®ã§
:<math>S=2\int _{-a} ^a \frac{b}{a}\sqrt{a^2-x^2} = \frac{2b}{a}\int _{-a} ^a \sqrt{a^2-x^2} = \frac{2b}{a} \times \frac{\pi a^2}{2} = \pi ab</math>
ãšãªãã
=====äœç©=====
ããç«äœ<math>V_0</math>ã®<math>x = t</math>ã«ãããæé¢ç©ãæéãªå€ã§ããã®å€ã <math>t</math>ã®é¢æ°<math>S(t)</math>ãšãªããšãããã®ç«äœãå¹³é¢<math>x = a</math>ïŒ<math>x = b</math>ïŒãã ãã<math>a < b</math>ïŒã§åãåã£ãé åã®äœç©ã¯ãåºé¢ç©<math>S(t)</math>ã«æ¥µããŠå°ããé«ã<math>dt</math><ref>ãªãããã®æã<math>dt</math>ã<math>S(t)</math>ã«å¯ŸããŠç©ååºéã§åžžã«éçŽæ¹åã®é¢ä¿ã«ããããšãä¿èšŒãããŠããªããã°ãªããªãã</ref>ã®ç©<math>S(t) \, dt</math>ã®åºé<math>[a,b]</math>ã«ããã环ç©ã§ããã®ã§ã以äžã®åŒã§è¡šãããšãã§ããã
:<math> V = \int_a^{b} S(t) \, dt</math>
ïŒäŸ1ïŒ
:<math>O(0,0,0), A(1,0,0), B(1,1,0), C(1,0,2)</math>ã§ããäžè§éãèããã
:ãã®äžè§éãå¹³é¢<math>x=t (0\leqq t \leqq 1)</math>ã§åæãããšãæé¢ã®äžè§åœ¢ã®å座æšã¯<math>A_t(t,0,0), B_t(t,t,0), C_t(t,0,2t)</math>ãšãªãããã®æã<math>\triangle{A_t B_t C_t}</math>ã®é¢ç©<math>S(t)=t^2</math>ãšãªãã
:ããããåºé<math>[0,1]</math>ã§ç©åãããšã
:<math> V = \int_0^{1} S(t) \, dt = \int_0^{1} t^2 \, dt = \left[ \frac{t^3}{3}\right]_{0}^{1} = \frac{1}{3}</math>ãšãªã<ref>äžè§é<math>O-ABC</math>ã¯ã<math>\triangle{ABC}</math>ãåºé¢ïŒ<math>S=1</math>ïŒãšãã<math>OA</math>ãé«ãïŒ<math>1</math>ïŒãšããäžè§éãªã®ã§ãäœç©ã¯ã<math>\frac{1}{3}</math>ãšãªããæ£ããã</ref>ã
ïŒäŸ2ïŒ
:èšå
:#<math>O(0,0,0), A(1,0,0), B(0,1,0), C(1,1,0), D(0,0,1), E(1,0,1), F(0,1,1), G(1,1,1)</math>ã§ããç«æ¹äœãæ³å®ã
:#å¹³é¢<math>x=t (0\leqq t \leqq 1)</math>ã§åæãã<math>\square{O_t A_t B_t C_t}</math>ãåŸãã
:#ç·å<math>O_t A_t , A_t B_t , B_t C_t , C_t O_t </math>ã«ãåã
ç¹<math>O_t, A_t, B_t, C_t</math>ãããé·ã<math>t</math>ã§ããç¹<math>H_t, I_t, J_t, K_t</math>ããšãã<math>\square{H_t I_t J_t K_t}</math>ã<math>S_t</math>ãšããã
:#<math>t</math>ãåºé<math>[0,1]</math>ã§å€åãããæã<math>S_t</math>ãééããéšåã®äœç©<math>V</math>ãæ±ããããªãã<math>S_t</math>ãæ£æ¹åœ¢ã§ãã蚌æã¯çç¥ããŠããã
:è§£ç
:#<math>S_t</math>ã®1蟺ã®é·ãã<math>l</math>ãšãããšã<math>l^2 = t^2 + (1-t)^2 = 2t^2 - 2t + 1</math>
:#<math>S_t</math>ã®é¢ç©<math>S(t)</math>ã¯<math>l^2</math>ã§ããããã<math>S(t) = 2t^2 - 2t + 1</math>
:#ããããåºé<math>[0,1]</math>ã§ç©åãããšã
:#<math> V = \int_0^{1} S(t) \, dt = \int_0^{1} (2t^2 - 2t + 1) \, dt = \left[ \frac{2t^3}{3} - t^2 +t \right]_{0}^{1} = \frac{2}{3}</math>ãšãªãã
====== å転äœã®äœç© ======
<math>y= f(x) (a \le x \le b )</math>
ã§äžããããæ²ç·ãx軞ã®åãã«å転ãããŠäœããã
ç«äœã®äœç©Vã¯ã
<math>
V = \int _a ^b \pi ( f(x))^2 dx
</math>
ã§äžããããã
å°åº
ç«äœãx軞ã«åçŽã§ãããx=cãæºããé¢ãšx=c+hãæºããé¢ã§åããšïŒhã¯å°ããª
宿°ïŒããã®åæé¢ã§æãŸããç«äœã¯ååŸ f(c)ã®åãšååŸ f(c+h)ã®å
ã§ã¯ããŸããç«äœãšãªãã
ããããhãæ¥µããŠå°ãããšãããã®å³åœ¢ã¯ååŸf(c),é«ãhã®åæ±ã§
è¿äŒŒã§ããã
ãã£ãŠãã®2ã€ã®é¢ã«é¢ããŠãåŸãããå³åœ¢ã®äœç©ã¯
<math>
h \times \pi (f(c) )^2
</math>
ãšãªãã
ããã<math>a<c<b</math>æºããå
šãŠã®cã«ã€ããŠè¶³ãåããããšã
<math>
S = \int _a ^b \pi ( f(x))^2 dx
</math>
ãåŸãããã
äŸãã°ã
<math>
y= x^2 ~(0<x<1)
</math>
ãx軞ã®åãã«å転ãããŠåŸãããå³åœ¢ã®äœç©ã¯ã
:å³åœ¢ã®çµµ?
<math>
S = \int_0^1 \pi (x^2)^2 dx
</math>
<math>
=\pi \int_0^1 x^4 dx
</math>
<math>
=\frac {\pi} 5
</math>
ãšãªãã
;çã®äœç©
çã®äœç©<math>V=\frac{4}{3}\pi r^3</math>ã®å°åº
ååŸ''r''ã®çã¯åå<math>y=\sqrt{r^2-x^2}</math>ã''x''軞ã®åšãã«å転ãããŠã€ããããšãã§ããã
:<math>V=\pi \int_{-r}^r \sqrt{r^2-x^2}^2 dx=\pi \int_{-r}^r (r^2-x^2) dx= \frac{4}{3}\pi r^3</math>
ãŸãäœç©ã''r''ã§åŸ®åãããšçã®è¡šé¢ç©<math>S=4\pi r^2</math>ãåŸãããã
== åºåæ±ç©æ³ ==
ãããŸã§ã«åŠãã ããã«ãç©åã¯åŸ®åã®éæŒç®ã§ãããšåæã«ã座æšå¹³é¢äžã§ã®é¢ç©èšç®ã§ãããããã®é
ã§ã¯ã座æšå¹³é¢äžã®é¢ç©èšç®ã®æ¹æ³ã®äžã€ã§ããåºåæ±ç©æ³ãããã³ç©åæ³ãšã®é¢é£ã«ã€ããŠåŠã¶ã
[[File:Riemann Integration 1.png|thumb|300px|é¢ç©èšç®]]
å³å³ã®ãããªããæ²ç·<math>y=f(x)</math>ããããåçŽã®ãããããã§ã¯ã€ãã«<math>f(x)>0</math>ã§ãããã®ãšããŠèããããã®æ²ç·ãšã''x''軞ãããã³çŽç·<math>x = a, x = b (a < b)</math>ã«ãã£ãŠå²ãŸããé åã®é¢ç©''S''ãæ±ããããã®é¢ç©ã¯[[#é¢ç©]]ã®é
ã§åŠãã ããã«ã
: <math>S = \int_a^b f(x)dx</math>
ãšç©åæ³ãçšããŠèšç®ããããšãã§ãããã§ã¯ããããããå°ãåå§çãªæ¹æ³ã§è¿äŒŒçã«æ±ããããšãèããŠã¿ããã
æ²ç·ãå«ãå³åœ¢ã®é¢ç©ãæ±ããããšã¯ç°¡åã§ã¯ãªãããäŸãã°äžè§åœ¢ãé·æ¹åœ¢ãå°åœ¢ãªã©ã®çŽç·ã§å²ãŸããå³åœ¢ã®é¢ç©ãæ±ããããšã¯é£ãããªããããã§ãäžå³ã®ããã«y=f(x)ãæ£ã°ã©ãã§è¿äŒŒããé·æ¹åœ¢ã®é¢ç©ã®åãèšç®ããããšã§ãæ±ãããé¢ç©''S''ã«è¿ãå€ãæ±ããããšãã§ãããå·Šäžã®ããã«æ£ã°ã©ãã®å¹
ã倧ãããšèª€å·®ã倧ããããæ£ã°ã©ãã®å¹
ãçãããã°ããã»ã©ãããªãã¡å岿°ãå€ãããã»ã©ãåŸã
ã«æ±ãããé¢ç©ã®å€ã«è¿ã¥ããããšãã§ãããããã§ããã®åºé[''a'',''b'']ã''n''çåãããã®æã®é·æ¹åœ¢ã®é¢ç©ã®ç·åãæ±ãããã®åŸã§<math>n \to \infty</math>ã®æ¥µéãèããããšã«ããããã®ããã«ããŠãåºéã现ããçåå²ããé·æ¹åœ¢ã®é¢ç©ã®ç·åãæ±ããããšã«ããå³åœ¢ã®é¢ç©ãæ±ããæ¹æ³ããåºåæ±ç©æ³ãšåŒã¶ã
:[[File:Riemann Integration 4.png|350px|æ£ã°ã©ãã«ããè¿äŒŒ]][[File:Riemann Integration 5.png|350px|ããã«çްããªæ£ã°ã©ãã«ããè¿äŒŒ]]
[[File:Integral numericky obd.svg|thumb|å·ŠåŽã§è¿äŒŒ]][[File:Somme-superiori.png|thumb|å³åŽã§è¿äŒŒ]]
<math>y=f(x)</math>ãæ£ã°ã©ãã§è¿äŒŒãããšããå³å³ã®ããã«ãé·æ¹åœ¢ã®å·Šäžã®é ç¹ãæ²ç·äžã«åãæ¹æ³ãšãå³äžã®é ç¹ãæ²ç·äžã«åãæ¹æ³ããããã©ã¡ãã®æ¹æ³ã§ããå岿°ã倧ããããã°ãããæ±ãããé¢ç©ã«è¿ã¥ããããŸãã¯å·Šäžã®é ç¹ãæ²ç·äžã«åãæ¹æ³ã§èããããšã«ããã
ããã§ã¯é¢ç©ãæ±ãããåºéããåçŽã®ãã[0, 1]ãšãããåºé[0, 1]ã''n''çåãããšããããããã®é·æ¹åœ¢ã®å·Šç«¯ã®x座æšã¯ã
:<math>0, \frac{1}{n}, \frac{2}{n}, \cdots, \frac{n-1}{n}</math>
ãšãªããããã§ãäžè¬ã«ç¬¬''k''çªç®ã®é·æ¹åœ¢ã«ã€ããŠèããããšã«ããããã ãããã¡ã°ãå·ŠåŽã®é·æ¹åœ¢ã第0çªç®ãšãããã¡ã°ãå³åŽã®é·æ¹åœ¢ã第''n''-1çªç®ãšããã第''k''çªç®ã®é·æ¹åœ¢ã®å·Šç«¯ã®x座æšã¯<math>\frac{k}{n}</math>ã§ããããããã®é·æ¹åœ¢ã®é«ãã¯<math>f\left(\frac{k}{n}\right)</math>ãšãªãããŸãé·æ¹åœ¢ã®å¹
ã¯<math>\frac{1}{n}</math>ã§ããããã®ããããã®é·æ¹åœ¢ã®é¢ç©<math>s_k</math>ã¯ã
:<math>s_k = \frac{1}{n}f\left(\frac{k}{n}\right)</math>
ãšãªãããããã£ãŠããããã®é·æ¹åœ¢ã®é¢ç©ã®ç·å<math>S_n</math>ã¯ã
:<math>S_n = \sum_{k = 0}^{n-1} s_k = \frac{1}{n}\sum_{k = 0}^{n-1} f\left(\frac{k}{n}\right)</math>
ãã®<math>S_n</math>ã¯ãåºé[0, 1]ã''n''çåããæã®é·æ¹åœ¢ã®é¢ç©ã®ç·åã§ãããã''n''ã倧ããããã°ããã»ã©ã次第ã«ããšã®é¢ç©ã«è¿ã¥ããŠããããããã£ãŠã<math>n\to\infty</math>ã®æ¥µéãèãã
:<math>S = \lim_{n\to\infty} S_n = \lim_{n\to\infty} \frac{1}{n}\sum_{k=0}^{n-1} f\left(\frac{k}{n}\right)</math>
ãšãªãããã®ããã«ããŠãæ±ãããé¢ç©ãèšç®ããããšãã§ãããããã«ãããã§ãã®åºéã®é¢ç©ãç©åæ³ã«ããèšç®ã§ããããšããã
:<math>\lim_{n\to\infty} \frac{1}{n}\sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) = \int_0^1f(x)dx</math>
ãæãç«ã€ããŸããé·æ¹åœ¢ã®å³äžã®é ç¹ãæ²ç·äžã«åãå Žåã¯ãåæ§ã«ããŠ
:<math>S = \lim_{n\to\infty} \frac{1}{n}\sum_{k=1}^{n} f\left(\frac{k}{n}\right) = \int_0^1f(x)dx</math>
ãšãªãã
== æŒç¿åé¡ ==
* [[é«çåŠæ ¡æ°åŠIII ç©åæ³/æŒç¿åé¡|äžå®ç©å44é¡]]
* [[/æŒç¿åé¡]]
== èæ³š ==
<references/>
{{DEFAULTSORT:ãããšããã€ããããããIII ãããµãã»ã}}
[[Category:é«çåŠæ ¡æ°åŠIII|ãããµãã»ã]]
[[ã«ããŽãª:ç©åæ³]] | 2005-05-08T05:07:14Z | 2024-03-20T20:55:26Z | [
"ãã³ãã¬ãŒã:Pathnav"
] | https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E6%95%B0%E5%AD%A6III/%E7%A9%8D%E5%88%86%E6%B3%95 |
1,936 | ç©çåŠ | ç©çåŠã«é¢ããææžã»è³æã»æç§æžãåããããæžåº«ã§ããåé²å
容ã¯ä»¥äžãã芧ãã ããã
(note:1åäœã¯35æéã®åŠç¿ã«ãã£ãŠä¿®äºã§ããé
ç®ã衚ãããŠããŸããäŸãã°ãå€å
žååŠãä¿®åŸããã«ã¯70æéã®åŠç¿ãè¡ãªãããšãæ±ããããŠããŸãã) | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç©çåŠã«é¢ããææžã»è³æã»æç§æžãåããããæžåº«ã§ããåé²å
容ã¯ä»¥äžãã芧ãã ããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "(note:1åäœã¯35æéã®åŠç¿ã«ãã£ãŠä¿®äºã§ããé
ç®ã衚ãããŠããŸããäŸãã°ãå€å
žååŠãä¿®åŸããã«ã¯70æéã®åŠç¿ãè¡ãªãããšãæ±ããããŠããŸãã)",
"title": "åçæè²çšæç§æž"
}
] | ç©çåŠã«é¢ããææžã»è³æã»æç§æžãåããããæžåº«ã§ããåé²å
容ã¯ä»¥äžãã芧ãã ããã | {{Pathnav|ã¡ã€ã³ããŒãž|èªç¶ç§åŠ|frame=1|small=1}}
{| style="float:right"
|-
|{{Wikipedia|ç©çåŠ|ç©çåŠ}}
|-
|{{Wikiversity|School:ç©çåŠ|ç©çåŠ}}
|-
|{{Wikiquote|Category:ç©çåŠè
|ç©çåŠè
}}
|-
|{{Wiktionary|Category:ç©çåŠ|ç©çåŠ}}
|-
|{{Commons|Category:Physics}}
|-
|{{èµæžäžèЧ}}
|-
|{{é²æç¶æ³}}
|}
[[w:ç©çåŠ|ç©çåŠ]]ã«é¢ããææžã»è³æã»æç§æžãåããããæžåº«ã§ããåé²å
容ã¯ä»¥äžãã芧ãã ããã
== åçæè²çšæç§æž ==
ïŒnote:1åäœã¯35æéã®åŠç¿ã«ãã£ãŠä¿®äºã§ããé
ç®ã衚ãããŠããŸããäŸãã°ã[[å€å
žååŠ]]ãä¿®åŸããã«ã¯70æéã®åŠç¿ãè¡ãªãããšãæ±ããããŠããŸããïŒ
* [[å°åŠæ ¡çç§]] ?åäœïŒç¹ã«ç©çãååŠçã®åºåããç¡ããããïŒ{{鲿|25%|2015-03-13}}
* [[äžåŠæ ¡çç§]] ?åäœïŒç¹ã«ç©çãååŠçã®åºåããç¡ããããïŒ{{鲿|25%|2015-03-13}}
* [[é«çåŠæ ¡ç©ç]] 6åäœ {{鲿|25%|2015-03-13}}
* [[倧åŠåéšç©ç]] ?åäœ {{鲿|00%|2015-03-13}}
=== ä»é² ===
* [[åçç©çåŠå
¬åŒé]] {{鲿|25%|2015-03-13}}
== äžè¬æç§æž ==
*[[ç©çåŠå
¥é]]
*[[ç©çåŠæŠèª¬]]
=== äžè¬æé€èª²ç® ===
* [[ç©çæ°åŠI]] 5åäœ{{鲿|100%|2023-11-05}}
: ç·åœ¢ä»£æ°ãšè§£æãæ¢ã«åŠãã 人ã«ãšã£ãŠã¯2åäœã§ãã
* [[å€å
žååŠ]] 2åäœ{{鲿|50%|2023-11-05}}
* [[é»ç£æ°åŠ]] 2åäœ{{鲿|50%|2023-11-05}}
* [[ç±ååŠ]] 2åäœ{{鲿|25%|2023-11-05}}
* [[æ¯åãšæ³¢å]] 2åäœ{{鲿|50%|2023-11-05}}
* [[ç¹æ®çžå¯Ÿè«]] 2åäœ{{鲿|75%|2023-11-05}}
* [[éåååŠ]] 2åäœ{{鲿|50%|2023-11-05}}
**[[çžå¯Ÿè«çéåååŠ]]
**[[å Žã®éåè«]]{{鲿|75%|2023-11-05}}
=== å°éç§ç® ===
* [[è§£æååŠ]] 2åäœ {{鲿|25%|2015-03-13}}
* [[é»ç£æ°åŠII]] 2åäœ {{鲿|25%|2015-03-13}}
* [[éåååŠII]] 2åäœ
* [[ç©çæ°åŠII]] 2åäœ
* [[çµ±èšååŠI]] 2åäœ
* [[çµ±èšååŠII]] 2åäœ
**[[éåçµ±èšååŠ]]
**[[é平衡統èšååŠ]]
* [[é³é¿åŠ]]{{鲿|25%|2023-11-05}}
* [[äžè¬ååŠ]]
* [[/æµäœååŠ/]]{{鲿|00%|2023-11-05}}
* [[/é£ç¶äœã®ååŠ/]]{{鲿|00%|2023-11-05}}
* [[/äžè¬çžå¯Ÿæ§çè« å
¥é/]]
<!--
*[[ååç©çåŠ]]
**[[ååç©çåŠ]]
**[[é«ååç©çåŠ]]
* [[ç©æ§ç©çåŠ]]
**[[åºäœç©çåŠ]]
**[[ç£æ§ç©çåŠ]]
**[[éå±ç©çåŠ]]
**[[åå°äœç©çåŠ]]
**[[äœæž©ç©çåŠ]]
**[[衚é¢ç©çåŠ]]
**[[éç·åœ¢ç©çåŠ]]
* [[ãã©ãºãç©çåŠ]]
**[[é»ç£æµäœååŠ]]
-->
=== 倧åŠé¢ç§ç®===
* [[å Žã®éåè«]] 2åäœ
* [[äžè¬çžå¯Ÿæ§çè«]] 2åäœ
* [[è¶
察称æ§]] ?åäœ
<!--:[http://arxiv.org/abs/hep-ph/9709356 ã¬ãã¥ãŒè«æ:Supersymmetry Primerãžã®ãªã³ã¯]-->
* [[匊çè«]] ?åäœ
<!--:[http://arxiv.org/abs/hep-th/9709062 ã¬ãã¥ãŒè«æ:Introduction to Superstring Theoryãžã®ãªã³ã¯]-->
* [[ç©çåŠã®ããã®èšç®æ©ãšãªãŒãã³ãœãŒã¹]] 1åäœ
=== æªåé¡ ===
* [[å
åŠ]]
** [[å
ã®å極]]
* [[ãã³ããŒã¬ã³ã¹ã®æ¬]]
=== é¢é£åé ===
*[[æ°åŠ]]
**[[æ°å€è§£æ]]
*[[倩æåŠ]]
*[[ååŠ]]
*[[çç©åŠ]]
*[[å·¥åŠ]]
*[[å°çç§åŠ]]
*[[å»åŠ]]
*[[å²åŠ]]
*[[å¿çåŠ]]
*[[çµæžåŠ]]
{{NDC|420|*}}
[[Category:èªç¶ç§åŠ|ãµã€ããã]]
[[Category:ç©çåŠ|! ãµã€ããã]]
[[Category:ç©çåŠæè²|! ãµã€ããã]]
[[Category:æžåº«|ãµã€ããã]] | 2005-05-08T05:54:33Z | 2024-03-17T09:11:12Z | [
"ãã³ãã¬ãŒã:NDC",
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:Wikiversity",
"ãã³ãã¬ãŒã:Wikiquote",
"ãã³ãã¬ãŒã:é²æç¶æ³",
"ãã³ãã¬ãŒã:鲿",
"ãã³ãã¬ãŒã:Wikipedia",
"ãã³ãã¬ãŒã:Wiktionary",
"ãã³ãã¬ãŒã:Commons",
"ãã³ãã¬ãŒã:èµæžäžèЧ"
] | https://ja.wikibooks.org/wiki/%E7%89%A9%E7%90%86%E5%AD%A6 |
1,937 | é«çåŠæ ¡ç©ç | äžè¬ã®æç§æžãšã¯å
容ãè¥å¹²éãéšåããããŸãããå匷ã®åèã«ãªãã°å¹žãã§ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "äžè¬ã®æç§æžãšã¯å
容ãè¥å¹²éãéšåããããŸãããå匷ã®åèã«ãªãã°å¹žãã§ãã",
"title": ""
}
] | äžè¬ã®æç§æžãšã¯å
容ãè¥å¹²éãéšåããããŸãããå匷ã®åèã«ãªãã°å¹žãã§ãã | [[å°åŠæ ¡ã»äžåŠæ ¡ã»é«çåŠæ ¡ã®åŠç¿]]>[[é«çåŠæ ¡ã®åŠç¿]]>[[é«çåŠæ ¡çç§]]>é«çåŠæ ¡ç©ç
{{é²æç¶æ³}}
äžè¬ã®æç§æžãšã¯å
容ãè¥å¹²éãéšåããããŸãããå匷ã®åèã«ãªãã°å¹žãã§ãã
== çŸèª²çšïŒ2012幎床以éå
¥åŠè
çšïŒ ==
*[[é«çåŠæ ¡çç§ ç©çåºç€|ç©çåºç€]]
*[[é«çåŠæ ¡ ç©ç|ç©ç]]
== åè ==
=== ååŒ·æ³ ===
* [[åŠç¿æ¹æ³/髿 ¡ç©ç]] {{鲿|50%|2015-12-06}}
=== é¢é£ããã¹ã ===
* [[åçç©çåŠå
¬åŒé]] {{鲿|50%|2015-12-06}}
* [[倧åŠåéšç©ç]] {{鲿|00%|2015-12-06}}
== æ§èª²çšïŒ2003幎床ïœ2011幎床å
¥åŠè
çšïŒ ==
* [[é«çåŠæ ¡ç©ç/ç©çI|ç©çI]] {{鲿|50%|2015-07-24}} 3åäœ
* [[é«çåŠæ ¡ç©ç/ç©çII|ç©çII]] {{鲿|50%|2017-08-09}} 3åäœ
* [[é«çåŠæ ¡çç§åºç€|çç§åºç€]]{{鲿|25%|2013-09-16}}
* [[é«çåŠæ ¡çç§ç·åA|çç§ç·åA]]{{鲿|25%|2013-09-16}}
[[Category:é«çåŠæ ¡æè²|ãµã€ã]]
[[Category:çç§æè²|é«ãµã€ã]]
[[Category:ç©çåŠæè²|é«ãµã€ã]]
[[category:髿 ¡çç§|ãµã€ã]] | null | 2022-09-17T16:59:31Z | [
"ãã³ãã¬ãŒã:é²æç¶æ³",
"ãã³ãã¬ãŒã:鲿"
] | https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E7%89%A9%E7%90%86 |
1,938 | é«çåŠæ ¡ç©ç/ç©çI | æ¬é
ã¯é«çåŠæ ¡çç§ã®ç§ç®ã§ãããç©ç Iãã®è§£èª¬ã§ããã
ç©ç I | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ¬é
ã¯é«çåŠæ ¡çç§ã®ç§ç®ã§ãããç©ç Iãã®è§£èª¬ã§ããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ç©ç I",
"title": "ç®æ¬¡"
}
] | æ¬é
ã¯é«çåŠæ ¡çç§ã®ç§ç®ã§ãããç©ç Iãã®è§£èª¬ã§ããã | :* [[é«çåŠæ ¡ç©ç]] > ç©çI<br>
:* ç©çIIã®æç§æžãžã®ãªã³ã¯ â [[é«çåŠæ ¡ç©ç/ç©çII|é«çåŠæ ¡çç§ ç©çII]]<br />
----
æ¬é
ã¯é«çåŠæ ¡çç§ã®ç§ç®ã§ãããç©ç Iãã®è§£èª¬ã§ããã
== ç®æ¬¡ ==
{{é²æç¶æ³}}
ç©ç I
* [[é«çåŠæ ¡ç©ç/ç©çI/éåãšãšãã«ã®ãŒ|éåãšãšãã«ã®ãŒ]] {{鲿|50%|2015-06-27}}
:: [[é«çåŠæ ¡ç©ç/ç©çI/éåãšãšãã«ã®ãŒ/ç©äœã®éå|éåãšãšãã«ã®ãŒ/ç©äœã®éå]] {{鲿|75%|2015-07-10}}
:: [[é«çåŠæ ¡ç©ç/ç©çI/éåãšãšãã«ã®ãŒ/éåã®æ³å|éåãšãšãã«ã®ãŒ/éåã®æ³å]] {{鲿|50%|2015-07-10}}
:: [[é«çåŠæ ¡ç©ç/ç©çI/éåãšãšãã«ã®ãŒ/ä»äºãšãšãã«ã®ãŒ|éåãšãšãã«ã®ãŒ/ä»äºãšãšãã«ã®ãŒ]] {{鲿|50%|2015-07-18}}
* [[é«çåŠæ ¡ç©ç/ç©çI/æ³¢|æ³¢]] {{鲿|25%|2015-07-24}}
:: [[é«çåŠæ ¡ç©ç/ç©çI/æ³¢/æ³¢ã®æ§è³ª|æ³¢/æ³¢ã®æ§è³ª]] {{鲿|50%|2015-07-24}}
:: [[é«çåŠæ ¡ç©ç/ç©çI/æ³¢/鳿³¢ãšæ¯å|æ³¢/鳿³¢ãšæ¯å]] {{鲿|50%|2016-01-23}}
:: [[é«çåŠæ ¡ç©ç/ç©çI/æ³¢/å
æ³¢|æ³¢/å
æ³¢]] {{鲿|00%|2015-07-24}}
* [[é«çåŠæ ¡ç©ç/ç©çI/ç±|ç±]] {{鲿|25%|2015-07-10}}
::
::
* [[é«çåŠæ ¡ç©ç/ç©çI/黿°|黿°]] {{鲿|50%|2016-01-23}}
:ïŒé¢é£ç§ç®ïŒ [[é«çåŠæ ¡ååŠI/黿± ãšé»æ°åè§£]] {{鲿|75%|2015-12-25}}
== é¢é£ç§ç® ==
* [[é«çåŠæ ¡æ°åŠII/ãããããªé¢æ°]] ïŒäžè§é¢æ°ãææ°é¢æ°ãªã©ïŒ
* [[é«çåŠæ ¡æ°åŠII/埮åã»ç©åã®èã]]
* [[é«çåŠæ ¡æ°åŠII/埮åã»ç©åã®èã]]
[[Category:é«çåŠæ ¡æè²|ç©ãµã€ã1]]
[[Category:ç©çåŠ|é«ãµã€ã1]]
[[Category:ç©çåŠæè²|é«ãµã€ã1]] | null | 2017-06-24T20:07:04Z | [
"ãã³ãã¬ãŒã:é²æç¶æ³",
"ãã³ãã¬ãŒã:鲿"
] | https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E7%89%A9%E7%90%86/%E7%89%A9%E7%90%86I |
1,939 | é«çåŠæ ¡ç©çåºç€/黿°ãšç£æ° | é«çåŠæ ¡ ç©çåºç€ > 黿°
æ¬é
ã¯é«çåŠæ ¡ ç©çåºç€ã®é»æ°ãšç£æ°ã®è§£èª¬ã§ããã
çŸåšç§ãã¡ã䜿ã£ãŠããå€ãã®è£œåã黿°ãçšããŠåããŠããã ããã«ã¯æ§ã
ãªçç±ãèãããããããŸã第äžã«é»æ°ã¯æ§ã
ãªå¥ã®ãšãã«ã®ãŒã«å€æã§ããããšãäŸãã°é»ç±ç·ã䜿ã£ãŠç±ã«ãé»çãçºå
ãã€ãªãŒãã䜿ã£ãŠå
ã«ãé»åæ©ã䜿ã£ãŠéåã«å€æããããšãåºæ¥ããæ¬¡ã«ã黿± ãã³ã³ãã³ãµã䜿ã£ãŠãšãã«ã®ãŒãç¶æãããŸãŸæã¡éã¶ããšãåºæ¥ãããšããé»ç·ã䜿ã£ãŠé·è·é¢ãéé»ã§ããããšããŸããé»å補åã®èšç®èœåãä¿¡å·ã®äŒéèœåãåªããŠããããšããŸãæ¯èŒçã«å®å
šã«å°éã®ãšãã«ã®ãŒãåãåºããããšãçãèããããã
黿°ãéåã«å€ãããã®ãšããŠé»åæ©(è±: electric motor)ããããããã®éã®ãã®ãšããŠéåã黿°ã«å€ããããšãåºæ¥ãããããè¡ãªãã®ã¯çºé»æ©è±: generatorãšåŒã°ãããçºé»æã¯äœããã®éåã®ãšãã«ã®ãŒãå©çšããŠé»æ°ãããããŠãããäŸãã°ãæ°Žåçºé»æã§ã¯ãæ°Žã®èœäžããåãå©çšããŠããã倧éã®æ°Žãèœäžãããšãã«ã¯äººéãäœå人ãããã£ãŠããããåºæ¥ãããšããªãããããšããããäŸãã°ãåãç«ã£ã海岞ç·ãªã©ã¯äž»ã«æ°Žã®æµãã«ãã£ãŠäœãããŠããããã®ããã«ãæ°Žã®åã¯åŒ·å€§ã§ããã®ã§ããããäžæãå©çšããæ¹æ³ããããšéœåããããå®éçŸä»£ã§ã¯é»æ°ãåªä»ãšããŠããã®åãåãã ãããšã«æåããŠããã
黿± ã®ããã«é»æ¥µã®+ãš-ãå®ãŸã£ã黿µãçŽæµé»æµæãã¯çŽæµ(è±: direct current)ãšåŒã¶ãäžæ¹ãçºé»æããåŸããã黿µã®ããã«+ãš-ãéãé床ã§å
¥æãã黿µã亀æµé»æµæãã¯äº€æµ(è±: alternating current)ãšåŒã¶ã
å®éã«ã¯ãã€ãªãŒããçšã㊠亀æµãçŽæµã«å€ã㊠䜿ãããšãããè¡ãªãããã
äœããªã空éãå
ãçŽé²ããŠããããã« èŠããããšããããå®éã«ã¯ããã¯ é»æ³¢ãšåããã®ã§ããã 黿³¢ãšã¯äŸãã°ãæºåž¯é»è©±ã®éä¿¡ã«äœ¿ããããã®ã§ããã é»è·ãæã£ãç©äœãåãããšãå¿
ç¶çã« çãããã®ã§ããã
ãã©ã¹ããã¯ã®äžæ·ããªã©ã§é«ªãããããšåž¯é»ããçŸè±¡ãªã©ã®ããã«ãç©è³ªã黿°ã垯ã³ãããšã垯é»(ããã§ã)ãšãããç©äœãããã£ãŠçºçãããé黿°ãæ©æŠé»æ°ãšããã ã¬ã©ã¹æ£ãçµ¹ã®åžã§ããããšãã¬ã©ã¹æ£ã¯æ£ã®é»æ°ã«åž¯é»ããçµ¹ã¯è² ã®é»æ°ã«åž¯é»ããã 黿°ã®éãé»è·(ã§ãããcharge)ãšããããããã¯é»æ°éãšããã
é»è·ã®åäœã¯ã¯ãŒãã³ã§ãããã¯ãŒãã³ã®èšå·ã¯Cã§ããã
é黿°ã«ããé»è·ã©ããã«åãåãé黿°åãšããã
ãªãã垯é»ããŠããªãç¶æ
ã黿°çã«äžæ§ã§ããããšããã
éå±ã®ããã«ã黿°ãéããç©äœãå°äœ(ã©ããããconductor)ãšããããã©ã¹ããã¯ãã¬ã©ã¹ããŽã ã®ããã«é»æ°ãéããªãç©è³ªãçµ¶çžäœ(ãã€ãããããinsulator)ãããã¯äžå°äœ(ãµã©ããã)ãšããã
éå±ã¯å°äœã§ããã
黿°ã®æ£äœã¯é»å(electron)ãšããç²åã§ããããã®é»åã¯è² é»è·ã垯ã³ãŠããã(é»åã®é»è·ãè² ã«å®çŸ©ãããŠããã®ã¯ã人é¡ãé»åãçºèŠããåã«é»è·ã®æ£è² ã®å®çŸ©ãè¡ãããããšããé»åãèŠã€ãã£ãéã«é»åã®é»è·ã調ã¹ããè² é»è·ã ã£ãããã§ããã)
éå±ãå°äœãªã®ã¯ãéå±äžã®é»åã¯ãããšã®ååãé¢ããŠããã®éå±å
šäœã®äžãèªç±ã«åããããã§ãããéå±äžã®é»åã®ããã«ãç©è³ªäžãèªç±ã«åããç¶æ
ã®é»åããèªç±é»å(ãããã§ãã)ãšããã
黿µãšã¯ãèªç±é»åãç§»åããããšã§ããã
ãã£ãœããçµ¶çžäœã¯ãèªç±é»åããããªããçµ¶çžäœã®é»åã¯ããã¹ãŠãããšã®ååã«æçž(ããã°ã)ãããŠéã蟌ããããŠããŠãèªç±ã«ã¯åããªãã
æ£é»è·ãšã¯ãç©è³ªã«é»åãæ¬ ä¹ããŠããç¶æ
ã§ããã è² é»è·ãšã¯ãç©è³ªãé»åãå€ãæã£ãŠããç¶æ
ã§ããã
垯é»ããŠããªãçµ¶çžäœã®ç©è³ªããããããããŠãäž¡æ¹ãæ©æŠé»æ°ã«åž¯é»ãããå Žåãçæ¹ã¯æ£é»è·ãçããããçæ¹ã®ç©è³ªã¯è² é»è·ãçããããã®ãšããçºçããæ£é»è·ã®å€§ãããšè² é»è·ã®å€§ããã¯åãã§ããã ããã¯ãé»åãç§»åããŠãçæ¹ã®ç©è³ªã¯é»åãäžè¶³ããããçæ¹ã¯çéã®é»åãéå°ã«ãªã£ãŠããããã§ããã
ãã®ããã«ãé»åã¯çæãæ¶æ»
ãããªãããããé»è·ä¿ååãããã¯é»æ°éä¿ååãšèšãã
黿°çã«äžæ§ã§ãã£ãå°äœã®ç©è³ª(ä»®ã«ç©è³ªAãšãã)ã«åž¯é»ããå¥ã®ç©è³ª(ä»®ã«ç©è³ªBãšãã)ãæ¥è§Šãããã«è¿ã¥ãããšãç©è³ªAã«ã¯ã垯é»ç©è³ªBã®é»è·ã«åŒãå¯ããããŠãç©äœAã®å
éšã§å察笊å·ã®é»è·ã垯é»ç©äœBã«è¿ãåŽã®è¡šé¢ã«çããããŸãã垯é»ç©äœBãšåãé»è·ã¯åçºããã®ã§ãç©äœAå
éšã®åž¯é»ç©äœBãšã¯é ãåŽã®è¡šé¢ã«çããã
ãã®ãããªçŸè±¡ãéé»èªå°(ããã§ãããã©ã;Electrostatic induction)ãšãããéé»èªå°ã§çããé»è·ã®æ£é»è·ã®éãšè² é»è·ã®éã¯çéã§ããã(黿°éä¿åã®æ³å)
å°äœã®å
éšã«é黿°åã¯ç¡ãããããã£ããšãããšãèªç±é»åãªã©ã®é»è·ãåãã黿µãæµãç¶ããããšã«ãªããããã®ãããªçŸè±¡ã¯å®åšããªãã®ã§äžåçã«ãªãããããã£ãŠãå°äœã®å
éšã«é黿°åã¯ç¡ãã
衚é¢ã«é»è·ãéãŸãã®ã¯ãå°äœã®å
éšã«é黿°åãäœãããªãããã§ããããããã£ãŠéé»èªå°ã§åŒãå¯ããããé»è·ã®å€§ããã¯ãå€éšããå°äœå
éšãžã®é黿°åãæã¡æ¶ãã ãã®å€§ããã§ããã
ãã®å°äœå
éšã®é»è·ããŒãã«ãªãæ§è³ªãå¿çšãããšãäžç©ºã®å°äœã§åºæ¥ãç©äœãçšããŠãé黿°åãé®èœããããšãã§ããããããéé»é®èœ(ããã§ããããžããelectric shilding)ãšããã
çµ¶çžäœ(ä»®ã«Aãšãã)ã«é»è·ãè¿ã¥ããå Žåã¯ãå°äœãšã¯éããç©äœAã®å
éšã®é»åã¯èªç±ã«è¡šé¢ã«ã¯éãŸããªãããç©äœå
éšã®ååã®æ£è² ã®é»è·ã®æ¥µæ§ãæã£ãéšåããå€éšã®é黿°åã«åŒãå¯ããããããã«ãè¿ã¥ããé»è·ã«è¿ãåŽã«ã¯ç°çš®ã®é»è·ãçããé ãåŽã«ã¯ãåçš®ã®é»è·ãçããã ååãååãå€éšã®é黿°åã«ãã£ãŠãæ£è² ã®é»è·ã®éšåãçããããšã忥µ(ã¶ãããã)ãšããããå€éšã®é»åã«ãã£ãŠèµ·ããããã®ãããªå極ã®ããããèªé»å極(ããã§ãã¶ãããããdielectric polarization)ãšããã
çµ¶çžäœã¯ãé黿°åã«ããããããšèªé»å極ãè¡ãã®ã§ãçµ¶çžäœã®ããšãèªé»äœ(ããã§ããããdielectric)ãšãããã
å°äœã«éé»èªå°ãããæ£è² ã®é»è·ã¯ãå°äœãåæãªã©ãããã°æ£é»è·ãšè² é»è·ãå¥åã«åãåºãããšãã§ããããããèªé»äœã®æ£è² ã®é»è·ã¯ãååãååãšå¯æ¥ã«çµã³ã€ããŠãããããæ£è² ã®é»è·ãåãããŠåãåºãããšã¯åºæ¥ãªãã
ããç©è³ªã黿°ã垯ã³ãŠãã(垯é»ããŠãã)ãšãããã®åž¯é»ã®å€§å°ã®çšåºŠãé»è·(ã§ãããelectric charge)ãšãããããŸããŸãªç©è³ªããããããªæ¹æ³ã§åž¯é»ãããçµæãé»è·ã«ã¯ã垯é»ãã2åã®ãã®ã©ãããè¿ã¥ããæã«åŒã£åŒµãåããã®(åŒåãåã)ãšåçºããããã®(æ¥åãã¯ããã)ã®2çš®é¡ãããããšãåãã£ãã ãã®ãããªã垯é»ããŠããç©äœã«åãåãé黿°åãšããã
ã¹ã€ã®åž¯é»ãããã®ããä»ã«ãããã€ãçšæããŠãè¿ã¥ããŠå®éšãã2åã®ç©äœã®çµã¿åãããå€ãããšãçµã¿åããã«ãã£ãŠã2åã®ç©äœã©ããã«åŒåãåãå Žåãããã°ãæ¥åãåãå Žåãããããšãåãã£ãããã®åŒåãšæ¥åã®é¢ä¿ã¯ã垯é»ããé»è·ã®çš®é¡ã«å¿ããããšãããã£ãã
çµè«ãèšããšãé»è·ã«ã¯æ£è² ã®2çš®é¡ããããæ£ã®é»è·ã©ããã®ç©äœãè¿ã¥ãããšãã¯åçºããããè² ã®é»è·ã©ãããè¿ã¥ãããšããåçºããããæ£ãšè² ã®é»è·ãè¿ã¥ããæã«ã¯åŒåãåãã
ã€ãŸããå笊å·ã®é»è·ãè¿ã¥ããå Žåã¯ãåçºåãçãããç°ç¬Šå·ã®é»è·ãè¿ã¥ããå Žåã¯ãåŒåãçããã
é黿°ã©ããã®åã®åŒ·ãã¯ãå®éšçã«ã¯ãé»è·ã®éã«åãåã¯ãéåã®å Žåãšåæ§ã«åãåãŒãåã2ç©äœã®éã®è·é¢ã®2ä¹ã«åæ¯äŸããããšãç¥ãããŠãããæŽã«ãé»è·ã®å€§ããã倧ããã»ã©é»è·éã«åãåã倧ããããšãèæ
®ãããšãè·é¢rã ãé¢ããŠãããããé»è· q 1 {\displaystyle q_{1}} ã q 2 {\displaystyle q_{2}} ãæã£ãŠãã2ç©äœã®éã«åãåFã¯ã
ã§äžããããããããã¯ãŒãã³ã®æ³å( Coulomb's law)ãšãããããã§ã k {\displaystyle k} ã¯æ¯äŸå®æ°ã§ãããäž¡é»è·ã®åšå²ã«ããç©äœã®çš®é¡ã«ããå€åãã宿°ã§ãããç空äžã§ã®é»å Žãèããå Žåã®kã®å€ã¯ã
ã§ããããŸãã ε {\displaystyle \epsilon } ã¯åŸã»ã©ç»å Žããèªé»ç(ããã§ããã€)ãšåŒã°ããç©ç宿°ã§ãããèªé»çã¯ãäž¡é»è·ã®åšå²ã«ããç©äœã®çš®é¡ã«ããå€åãã宿°ã§ãããèªé»çã«ã€ããŠã¯ããã®æãåããŠèªãã æ®µéã§ã¯ããŸã ç¥ããªããŠãè¯ããã®ã¡ã«ç©çIIã§èªé»çã詳ãã解説ããã
èªé»ç ε {\displaystyle \epsilon } ãšã¯ãŒãã³ã®æ¯äŸå®æ°kã«ã¯äžåŒã®é¢ä¿
ãããã
ç©äœã®ãŸããã«èç©ããããã®ãé»è·ãšåŒã¶ã黿°åã«ãã£ãŠåçºããã£ãããåŒãã€ããã£ããããç©äœãé»è·ãæã€ç©äœãšåŒã¶ããŸããããã§èгå¯ãããé黿°åããã¯ãŒãã³åãšåŒã¶ããšãããã 2åã®é»è·ã©ããããããŒãåã¯åãã§ããããããã£ãŠäœçšã»åäœçšã®æ³åã«åŸã£ãŠããã
ããã§ãé»è·ã®åäœã¯[C]ã§äžãããããèšå·ã®Cã¯ãã¯ãŒãã³ããšèªãã
å³ã®ããã«ã2æ¬ã®ç³žã«ãããããåã質ém[kg]ã§ãåã笊å·ãšå€§ããã®é»è·q[C]ã®çããã¶ãããã£ãŠããããã¯ãã¯ãŒãã³åã§åçºããã®ã§ãå³ã®ããã«ã糞ãè§åºŠÎžããªãã
ãã®ãšãã質émã«ããéåãšãé»è·qã«ããã¯ãŒãã³åãšã®é¢ä¿ã«ã€ããŠãåŒãç«ãŠãããªããå¿
èŠãªãã°ã糞ã®åŒµåã¯T[N]ãšããããšã
è§£æ³
å³ã®ãããªäœçœ®é¢ä¿ã«ãªãã®ã§ãå³ã®ããã«åŒãç«ãŠãã°ããã
â» äžèšã®2æ¬ã®ç³žã«ã¶ãããã£ãçã®ã¯ãŒãã³åã®äŸé¡ã¯ã黿°ç£æ°åŠã®ã©ã®å
¥éæžã«ããããããªå
žåçãªåé¡ã§ããã®ã§ãèªè
ã¯ãã¡ããšçè§£ããããšã
é»è· q 1 {\displaystyle q_{1}} , q 2 {\displaystyle q_{2}} ã®éã®è·é¢ãrã®å Žåãš2rã®å Žåã§ã¯ãéã«åãåã®å€§ããã¯ã©ã¡ããã©ãã ã倧ãããçããã ãŸããè·é¢ã2rã®æã®2ç¹éã®åã®å€§ãããçããã
ã¯ãŒãã³åã¯ãç©äœéã®è·é¢ã®é2ä¹ã«æ¯äŸããã®ã§ãè·é¢ã2rã®æã¯ãrã®æã®å€§ããã® 1 4 {\displaystyle {\frac {1}{4}}} ãšãªãããŸããåãåã®å€§ããã¯ãã¯ãŒãã³åã®åŒãçšããŠã
ãšãªãã
æ¢ã«ãããé»è·Aã®ãŸããã®å¥ã®é»è·Bã«ã¯ããã®é»è·ããã®è·é¢ã®é2ä¹ã«æ¯äŸããåããããããšãè¿°ã¹ãã
ããã§ãé»è·Bãåããåã¯ããã®é»è·Bã®å€§ããã«æ¯äŸããããšãåãããŠèãããšããã®é»è·Bã®å€§ããã«ããããããé»è·Aã®å€§ããã ãã§æ±ºãŸãéãå°å
¥ããŠãããšéœåããããããã§ããã®ãããªéãšããŠé»å Ž(ã§ãã°)ãå°å
¥ããããã®ãšããé»å Ž E â {\displaystyle {\vec {E}}} ã®äžã«ããé»è· q {\displaystyle q} ã«åãå F â {\displaystyle {\vec {F}}} ã¯ã
ã§äžãããããé»å Žã¯åäœé»è·ã«åãåãšèããããšãã§ããé»å Žã®åäœã¯[N/C]ã§ããããé»å Žãã¯ããé»çã(ã§ããã)ãšãåŒã°ããã
(æ¥æ¬ã®ç©çåŠã§ã¯ãé»å ŽããšåŒã¶ããšãå€ãããŸããæ¥æ¬ã®é»æ°å·¥åŠã§ã¯ãé»çããšåŒã°ããããšãå€ããææ²»æã®ç¿»èš³ã®éã®ãæ¥æ¬åœå
ã®æ¥çããšã®éãã«éããããããªãæ¥æ¬ããŒã«ã«ãªéœåã§ãããåŒã³æ¹ã¯ç©çã®æ¬è³ªãšã¯é¢ä¿ãªãã®ã§ãããã§ã¯ãã©ã¡ãã®è¡šçŸãçšãããã¯ãæ¬æžã§ã¯ç¹ã«ãã ãããªããè±èªã§ã¯ç©çåŠã»é»æ°å·¥åŠãšãâelectric fieldâã§å
±éããŠããã)
äžã®ã¯ãŒãã³åã®çµæãšåããããšãé»è·Aã®ãŸããã«å¥ã®é»è·ãååšããªããšããé»è· q {\displaystyle q} [C]ã®é»è·ããŸãšãé»å Ž E â {\displaystyle {\vec {E}}} ã¯ã
ã§äžããããããã ããrã¯é»è·ããã®è·é¢ã§ããã e â r {\displaystyle {\vec {e}}_{r}} ã¯ãé»è·ãšããç¹ãçµãã çŽç·äžã§ãé»è·ãšå察æ¹åãåããåäœãã¯ãã«ã§ããã
é»è·ã®åãã®é»å Žã¯ãå¹³é¢äžã§æŸå°ç¶ã®ãã¯ãã«ãšãªãããšã«æ³šæã
é»å Žã¯ãã¯ãã«ã§ãããé»è·ã2åãããšãã¯ãããããã®é»è·ãã€ããé»å Žããéãåãããã°ããã
ã§ããã
é»è·ã3å以äžã®ãšãããåæ§ã«éãåãããã°è¯ãã
å³ã®ããã«ãé»è·ããåºãé»å Žã®æ¹åãå³ç€ºãããã®ã黿°åç·(ã§ãããããããelectric line of force)ãšããã é»è·ãè€æ°ããå Žåã«ã¯ãå®éã«æ°ãã«çœ®ãããé»è·ãåããåã¯ãããããè¶³ãåããããã®ãšãªãããããã£ãŠãè€æ°ã®é»è·ãããå Žåã®åšå²ã®é»çã¯ãããããã®é»è·ãäœãé»çãã¯ãã«ã®åãšãªã(éãåããã®åç)ã
黿°åç·ãå³ç€ºããå Žåã¯ãæ£é»è·ããåç·ãåºãŠãè² é»è·ã§åç·ãåžåãããããã«æžããåç·ã¯ãé»å Žãå³ç€ºãããã®ãªã®ã§ãé»è·ä»¥å€ã®å Žæã§ã¯ãåç·ãåå²ããããšã¯ãªãã åç·ãçæããã®ã¯æ£é»è·ã®å Žæã®ã¿ã§ãããåç·ãæ¶æ»
ããã®ã¯ãè² é»è·ã®å Žæã®ã¿ã§ããã èšãæããã°ãåç·ãé»è·ä»¥å€ã®å Žæã§æ¶æ»
ããããšã¯ãªãããé»è·ä»¥å€ã®å Žæã§åç·ãçæããããšã¯ãªãã
å°äœã®å
éšã®é»å Žã¯ãŒãã§ãã£ããèšãæããã°ã黿°åç·ã¯ãå°äœã®å
éšã«ã¯é²å
¥ã§ããªãã
ç¹é»è·ããã¯ãå³ã®ããã«ãæŸå°ç¶ã«é»æ°åç·ãåºããã¯ãŒãã³ã®æ³åã®ä¿æ°ã«ãã
ã®ãã¡ã®ãåæ¯ã® 4 Ï r 2 {\displaystyle 4\pi r^{2}} ã¯ãçã®è¡šé¢ç©ã®å
¬åŒã«çããã®ã§ã黿°åç·ã®å¯åºŠã«æ¯äŸããŠãé»å Žã®åŒ·ããããã¯é黿°åã®åŒ·ããæ±ºãŸããšèããããã
éé»èªå°ã§ã¯ãå°äœå
éšã«ã¯é黿°åãåããŠããªãã®ã§ãã£ããããã¯ãé»å ŽãšããæŠå¿µãçšããŠèšãæããã°ãå°äœå
éšã®é»å Žã¯ãŒãã§ããããšèšããã
ã¯ãŒãã³åã¯å(ã¡ãã)ã§ãããããããã«éãã£ãŠå¥ã®é»è·ãè¿ã¥ããå Žåã¯ãè¿ã¥ããå¥ã®é»è·ã¯ä»äºãããããšã«ãªãããŸããè¿ã¥ããé»è·ãææŸãã°ãã¯ãŒãã³åã«ãã£ãŠåãåããä»äºãããããšã«ãªããããè¿ã¥ããç¶æ
ã«ããå¥é»è·ã¯äœçœ®ãšãã«ã®ãŒãèããŠããããšã«ãªãã ãããã£ãŠãã¯ãŒãã³åã«å¯ŸããŠãäœçœ®ãšãã«ã®ãŒãå®çŸ©ããããšãã§ããã(ãªããè¡æè»éäžã®ç©äœã®ãããªãå°è¡šãã倧ããé¢ããå Žæã®éåããã¯ãŒãã³åãšåæ§ã«é2ä¹åãªã®ã§ãããã§èããèšç®ææ³ã¯éåã«ããäœçœ®ãšãã«ã®ãŒã«ãå¿çšã§ãããéåå é床gãçšããåmgãšããã®ã¯å°è¡šè¿ãã§ã®è¿äŒŒã«ãããªãã)
ã¯ãŒãã³åã«ããé»å Žã®å®çŸ©ã§ã¯ãåäœé»è·ã«å¯ŸããŠé»å Žãå®çŸ©ããã®ãšåæ§ãäœçœ®ãšãã«ã®ãŒã«å¯ŸããŠããåäœé»è·ã«å¿ããŠå®çŸ©ã§ããéãå°å
¥ãããšéœåãããããã®ãããªéãé»äœ(ã§ãããelectric potential)ãšåŒã¶ãé»äœã®åäœã¯ãã«ããšãããé»äœãäŸãããšãå°è¡šè¿ãã§ã®éåã®äœçœ®ãšãã«ã®ãŒãèããéã®ãghããªã©ã«çžåœããéã§ããã
ã¯ãŒãã³åã®çµæãšã q {\displaystyle q} [C]ã®é»è·ããè·é¢rã ãé¢ããç¹ã®é»äœVã¯ãé»å Žã®ç©åèšç®ã§åŸãããã(ç©åããŸã ç¿ã£ãŠãªãåŠå¹Žã®èªè
ã¯ãåãããªããŠãæ°ã«ãããæ¬¡ã®çµæãžãšé²ãã§ãã ããã)çµæã®ã¿ãèšããšã
ãšãªãã
é»äœVã®ç¹ã«q[C]ã®é»è·ã眮ãããšãããã®é»è·ã®ã¯ãŒãã³åã«ããäœçœ®ãšãã«ã®ãŒU[J]ã¯ãé»äœVãçšããã°ã
ãšãªãããããã£ãŠãé»äœ V 1 {\displaystyle V_{1}} ãã«ãã®ç¹ããé»äœ V 2 {\displaystyle V_{2}} ãã«ãã®äœçœ®ãžãšé»è·q[C]ãé黿°åãåããŠç§»åãããšããé黿°åã®ããä»äºW[J]ã¯
ãšãªãã
ãã£ãœããäžæ§ãªé»å Žã«ãããŠã¯ãé»äœã®åŒããé»å ŽãçšããŠç°¡åã«è¡šãããšãã§ãããè·é¢dã ãé¢ããå¹³è¡å¹³æ¿é»æ¥µã®éã«äžæ§ãªé»å Ž E â {\displaystyle {\vec {E}}} ãçããŠãããšãããã®é»çã®äžã«çœ®ããé»è·qã¯é黿°å q E â {\displaystyle q{\vec {E}}} ãåããããã®é»è·ãé»çã®åãã«æ²¿ã£ãŠäžæ¹ã®é»æ¥µãã仿¹ã®é»æ¥µãŸã§ç§»åãããšããé»çã®ããä»äºW㯠W = q E d {\displaystyle W=qEd} ãšãªããããããã2極æ¿ã®é»äœå·®Vã¯ã
ã§è¡šãããšãã§ããããšãããããåŒãå€åœ¢ããŠ
ãšããããšãã§ãããããã§ãåäœãèãããšãå³èŸºã¯é»å§ãè·é¢ã§å²ã£ããã®ã§ãããããé»çã®åäœãšããŠ[N/C]ã®ã»ã[V/m]ãçšããããšãã§ããããšããããã
é»äœã®åäœã¯ãã«ãã§ããããã®éã¯æ¢ã«äžåŠæ ¡çç§ãªã©ã§æ±ã£ãé»å§(ã§ããã€ãvoltage)ã®åäœãšåãåäœã§ãããå®éã«é»æ°åè·¯ã«é»å§ããããããšã¯ãåè·¯äžã®é»åã«é»å ŽããããŠåããããšãšçããã
éé»èªå°ã«ãã£ãŠãå°äœå
éšã®é»å Žã¯ãŒãã§ãã£ãããã®ããšãããå°äœã®è¡šé¢ã¯ãé»äœãçãããå°äœè¡šé¢ã¯äºãã«çé»äœã§ããã
é»äœã®åºæºã¯ãå®çšäžã¯ãå°é¢ã®é»äœããŒãã«çœ®ãããšãå€ãã黿°åè·¯ã®äžéšã倧å°ã«ã€ãªãããšãæ¥å°(ãã£ã¡)ãŸãã¯ã¢ãŒã¹(earth)ãšãããåè·¯ãã¢ãŒã¹ããŠããã®ã€ãªãã éšåã®é»äœããŒããšèŠãªãããšãå€ãã
çŽç·äžã§è·é¢0, b[m]ã®ç¹ã«ãé»è·q, q'ãæã€ç©äœã眮ããŠããããã®æãäœçœ®a[m](a<b)ã®ç¹ã®é»äœãæ±ããã
é»äœã®åŒãçšããã°ãããé»è·ãè€æ°ãããšãã«ã¯ãé»äœã¯ããããã®é»è·ãã€ããåºãé»è·ã®åã«ãªãããšã«æ³šæãçãã¯ã
ãšãªãã
å°äœè¡šé¢ã¯çé»äœãªã®ã§ããã£ãŠã黿°åç·ã¯å°äœè¡šé¢ã«åçŽã§ããã
ãã®ããšããã黿°åç·ãšé»å Žã¯åçŽã§ããã
é»å Žãéãåãããããããã«ãé»äœãéãåãããããããªããªãé»äœãšã¯ãé»å ŽãèããŠãçµè·¯ã«ãŠç©åãããã®ã§ããããã
åŠæ ¡ã®ãã¹ããªã©ã§ã¯ãé»äœã®èšç®ã®ãããã¯ãŒãã³åã®æ¹åã®åéããªã©ã«ããèšç®ãã¹ãªã©ããµãããããé»å Žãæ±ããŠããããããç©åããŠãé»äœãæ±ããã®ããèšç®äžã¯å®å
šã§ããã
ã³ã³ãã³ãµãŒ(è±:capacitor ,ããã£ãã·ã¿ããšèªã)ã¯ãå³ã®ããã«ã2æã®é»æ¥µãåãããããåè·¯äžã«é»è·ãèç©ã§ããéšåãäžããçŽ åã§ããã
ã³ã³ãã³ãµãŒã«é»è·ãèããããšãå
é»(ãã
ãã§ã)ãšãããã³ã³ãã³ãµãŒããé»è·ãæŸåºãããããšãæŸé»ãšããã
ã³ã³ãã³ãµã®äž¡ç«¯ã«ããé»äœVãäžãããããšããã³ã³ãã³ãµã«ã¯ãé»äœã«æ¯äŸããé»è·Qãèç©ãããããã®ãšããã³ã³ãã³ãµã®èç©èœåãèšå·ã§ C ãšãããŠã
ãšããŠCãåããCã¯éé»å®¹é(ããã§ãããããããelectric capacitance)ãšåŒã°ããåäœã¯F(ãã¡ã©ããfarad)ã§äžããããã
1ãã¡ã©ãã¯å®çšäžã¯å€§ããããã®ã§ã10ãã¡ã©ããåäœã«ãã1pF(ãã³ãã¡ã©ã)ãã10ãã¡ã©ããåäœã«ãã1ÎŒF(ãã€ã¯ããã¡ã©ã)ã䜿ãããããšãå€ãã
極æ¿ãå¹³è¡ãªã³ã³ãã³ãµãŒãå¹³è¡æ¿ã³ã³ãã³ãµãŒãšããã å¹³è¡æ¿ã³ã³ãã³ãµãŒã®ã極æ¿ã©ããã®é»å Žã¯ãäžæ§ãªé»å Žã§ããã
ãã®å¹³è¡æ¿ã³ã³ãã³ãµãŒã®éé»å®¹éCã®åŒã¯ãåŸè¿°ããçç±ã«ããã
ã§äžãããããããã§ãSã¯å°äœå¹³é¢ã®é¢ç©ã§ãããdã¯å°äœéã®è·é¢ã§ããã
å®éšçã«ãããã®éé»å®¹éã®å
¬åŒã¯ãæ£ããããšã確ãããããŠããã
ããã§äžããéé»å®¹éã¯ãå¹³é¢äžã«é»è·ãäžæ§ã«ååžãããšã®ä»®å®ã§å°ãããããã®ãšããå°äœéã«çããé»çEã¯ãå°äœãæã€é»è·ãQ, -Qãšããæã
ãŸããæ¥µæ¿ã®é»è·å¯åºŠããæ¥µæ¿ã®ã©ãã§ãäžå®ã ãšä»®å®ããŠ(ãã®ããã«ã¯ãã³ã³ãã³ãµãŒã®åºã(ã€ãŸãé¢ç©)ãããã
ãã¶ãã«åºããšä»®å®ããå¿
èŠãããããšãããããã®ãããªä»®å®ã«ãããé»è·å¯åºŠã¯)ã
ã§ããã
黿°åç·ã®æ§è³ªãšããŠããã©ã¹ã®é»è·ããçããŠãã€ãã¹ã®é»è·ã§åžåãããã®ã§ããã£ãŠå¹³è¡æ¿ã³ã³ãã³ãµãŒéã®é»æ°åç·ã®ååžã¯ãå³ã®ããã«ã黿°åç·ãããã©ã¹æ¥µæ¿ããåçŽã«ããã€ãã¹æ¥µæ¿ãžåãã£ãŠé»æ°åç·ãåºãŠããããŠãã€ãã¹æ¥µæ¿ã«é»æ°åç·ãåžåãããã
é»å Žã¯ãå°äœéã®åç¹ã§ã
ã§äžãããããé»å Žãæ±ããããã®ã§ãããããé»äœãèšç®ã§ãããå°äœéã®åç¹ã§é»å Žã®å€§ãããåäžãªã®ã§ãé»äœã®å€§ããã¯é»å Žã®å€§ããã«2ç¹éã®è·é¢ãããããã®ã«ãªããããã§ãé»äœVã¯ã
ãšãªããããã®åŒãšéé»å®¹éCã®å®çŸ©ãèŠæ¯ã¹ããšã
ãåŸãããã
黿± ã®ååŠåå¿ã«ã€ããŠã¯ãå¥ç§ç®ã®ååŠIãªã©ã§è©³ããæ±ãããããã®ç« ã§ã¯ãé»å§ã黿µã®çè§£ã«é¢ããç¹ãéç¹çã«èª¬æãããã
éå±å
çŽ ã®åäœãæ°ŽãŸãã¯æ°Žæº¶æ¶²ã«å
¥ãããšãã®ãéœã€ãªã³ã®ãªãããããã€ãªã³ååŸå(ionization tendency)ãšããã äŸãšããŠãäºéZnãåžå¡©é
žHClã®æ°Žæº¶æ¶²ã«å
¥ãããšãäºéZnã¯æº¶ãããŸãäºéã¯é»åã倱ã£ãŠZnã«ãªãã
äžæ¹ãéAgãåžå¡©é
žã«å
¥ããŠãåå¿ã¯èµ·ãããªãã
ãã®ããã«éå±ã®ã€ãªã³ååŸåã®å€§ããã¯ãç©è³ªããšã«å€§ãããç°ãªãã
äºçš®é¡ã®éå±åäœãé»è§£è³ªæ°Žæº¶æ¶²ã«å
¥ãããšé»æ± ãã§ãããããã¯ã€ãªã³ååŸå(åäœã®éå±ã®ååãæ°ŽãŸãã¯æ°Žæº¶æ¶²äžã§é»åãæŸåºããŠéœã€ãªã³ã«ãªãæ§è³ª)ã倧ããéå±ãé»åãæŸåºããŠéœã€ãªã³ãšãªã£ãŠæº¶ããã€ãªã³ååŸåã®å°ããéå±ãæåºããããã§ããã
ã€ãªã³ååŸåã®å€§ããæ¹ã®éå±ãè² æ¥µ(ãµããã)ãšãããã€ãªã³ååŸåã®å°ããæ¹ã®éå±ãæ£æ¥µ(ããããã)ãšããã ã€ãªã³ååŸåã®å€§ããéå±ã®ã»ãããéœã€ãªã³ã«ãªã£ãŠæº¶ãåºãçµæãé屿¿ã«ã¯é»åãå€ãèç©ããã®ã§ãäž¡æ¹ã®é屿¿ãé
ç·ã§ã€ãªãã°ãã€ãªã³ååŸåã®å€§ããæ¹ããå°ããæ¹ã«é»åã¯æµãããã黿µãã§ã¯ç¡ãããé»åããšãã£ãŠãããšã«æ³šæãé»åã¯è² é»è·ã§ããã®ã§ã黿µã®æµããšé»åã®æµãã¯ãéåãã«ãªãã
ããŸããŸãªæº¶æ¶²ãéå±ã®çµã¿åããã§ãã€ãªã³ååŸåã®æ¯èŒã®å®éšãè¡ã£ãçµæãã€ãªã³ååŸåã®å€§ãããæ±ºå®ãããã å·Šããé ã«ãã€ãªã³ååŸåã®å€§ããéå±ã䞊ã¹ããšã以äžã®ããã«ãªãã
éå±ããã€ãªã³ååŸåã®å€§ããã®é ã«äžŠã¹ããã®ãéå±ã®ã€ãªã³ååãšããã æ°ŽçŽ ã¯éå±ã§ã¯ç¡ããæ¯èŒã®ãããã€ãªã³ååŸåã«å ããããã éå±ååã¯ãäžèšã®ä»ã«ããããã髿 ¡ååŠã§ã¯äžèšã®éå±ã®ã¿ã®ã€ãªã³ååãçšããããšãå€ãã ã€ãªã³ååã®èšæ¶ã®ããã®èªååãããšããŠã
ã貞ããããªããŸããããŠã«ããªãã²ã©ãããåéãã
ãªã©ã®ãããªèªååããããããã¡ãªã¿ã«ãã®èªååããã®å Žåã
ãKã ãã ãCa ãªNaããŸMg ãAlããZn ãŠFe ã«Ni ã ãªPbãã²H2 ã©Cu ãHg ãAg ã åéPt,Auãã
ãšå¯Ÿå¿ããŠããã
è² æ¥µ(äºéæ¿)ã§ã®åå¿
æ£æ¥µ(é
æ¿)ã§ã®åå¿
ãã«ã¿ã®é»æ± ã§ã¯ãåŸããã䞡極éã®é»äœå·®(ãé»å§ããšãããã)ã¯ã1.1ãã«ãã§ããã(ãã«ãã®åäœã¯Vãªã®ã§ã1.1Vãšãæžãã)ãã®äž¡æ¥µæ¿ã®é»äœå·®ãèµ·é»åãšãããèµ·é»åã¯ãäž¡é»æ¥µã®éå±ã®çµã¿åããã«ãã£ãŠæ±ºãŸãç©è³ªåºæã§ããã
èµ·é»åã®åäœã®ãã«ãã¯ãé黿°åã®é»äœã®åäœã®ãã«ããšåãåäœã§ããã黿°åè·¯ã®é»å§ã®ãã«ããšããèµ·é»åã®åäœã®ãã«ãã¯åãåäœã§ããã
ãã«ã¿é»æ± ã®æ§é ã以äžã®ãããªæååã«è¡šããå Žåããã®ãããªè¡šç€ºã黿± å³ãããã¯é»æ± åŒãšããã
aqã¯æ°Žã®ããšã§ãããH2SO4aqãšæžããŠãç¡«é
žæ°Žæº¶æ¶²ã衚ããŠããã
ç©çåŠã®é»æ°åè·¯ã®ç ç©¶ã§ã¯ããã®ãããªé»æ± ãªã©ã®çŸè±¡ã®çºèŠãšçºæã«ãã£ãŠãå®å®ãªçŽæµé»æºãå®éšçã«åŸãããããã«ãªããçŽæµé»æ°åè·¯ã®æ£ç¢ºãªå®éšãå¯èœã«ãªã£ãã黿± ã®çºæä»¥åã«ãããã©ã³ã¹äººã®ç©çåŠè
ã¯ãŒãã³ãªã©ã«ããé黿°ã«ãã黿°ååŠã®ç ç©¶ãªã©ã«ãã£ãŠãé»äœå·®ã®æŠå¿µãé»è·ã®æŠå¿µã¯ãã£ããã ãããã®æä»£ã®é»æºã¯ãäž»ã«é黿°ã«ãããã®ã ã£ãã®ã§ãå®å®é»æºã§ã¯ç¡ãã£ãã
ãããŠã黿± ã«ããå®å®ãªé»æºã®çºæã¯ãåæã«å®å®ãªé»æµã®çºæã§ããã£ãããã®ãããªé»æ± ã®çºæãªã©ã«ãããçŽæµé»æ°åè·¯ã®ç ç©¶ãªã©ããããã€ã人ã®ç©çåŠè
ãªãŒã ããããŸããŸãªå°äœã«é»æµãæµãå®éšãšçè«ç ç©¶ãè¡ãããšã«ããã黿°åè·¯ã®çè«ã®ãªãŒã ã®æ³å(ãªãŒã ã®ã»ããããOhm's law)ãçºèŠãããã
ãã€ã¯ãªãŒã ã¯é»æ± ã§ã¯ãªãç±é»å¯Ÿ(ãã€ã§ãã€ã)ãšãããã®ã䜿ã£ãŠã黿°åè·¯ã«å®å®ãã黿µããªããç ç©¶ããããåœæã®é»æ± ã§ã¯ãèµ·é»åããã ãã«æžã£ãŠããŸãããªãŒã ã¯åœåã¯é»æ± ã§å®éšããããããŸãå®å®é»æµãåŸãããªãã£ãã
ç±é»å¯Ÿãšã¯ããŸãç°ãªãé屿æã®2æ¬ã®éå±ç·ãæ¥ç¶ããŠ1ã€ã®åè·¯ãã€ããã2ã€ã®æ¥ç¹ã«æž©åºŠå·®ãäžãããšãåè·¯ã«é»å§ãçºçãããã黿µãæµãã(ãã®çŸè±¡ãããŒãŒããã¯å¹æãšãã)ããã®çŸè±¡ãããã¯ã1821幎ã«ãŒãŒããã¯ãçºèŠããããã®ãããªåè·¯ããç±é»å¯Ÿã§ããããªããåã2æ¬ã®éå±ç·ã§ã¯ã枩床差ãäžããŠãé»å§ã¯çºçããã黿µã¯æµããªãã
ãªãŒã ã¯ããã«ãªã³å€§åŠææããã±ã³ãã«ãã®å©èšã«ãã£ãŠããã®ç±é»å¯Ÿãå®éšã«å©çšãããæž©åºŠãå®å®ãããã®ã¯ãåœæã®æè¡ã§ãæ¯èŒçç°¡åã§ãã£ãã®ã§ãããããŠãªãŒã ã¯å®å®é»æµããã¡ããå®éšãã§ããã®ã§ããã
ãªãŒã ã®æ³å(Ohm's law)ãšã¯ã
ãã»ãšãã©ã®å°äœã§ã¯ã黿µ I ãæµããŠããå°äœäžã®2ç¹ã®ç¹ P 1 {\displaystyle P_{1}} ãšç¹ P 2 {\displaystyle P_{2}} éã®é»äœå·® E = E 1 â E 2 {\displaystyle E=E_{1}-E_{2}} ã¯ã黿µ I ã«æ¯äŸãããã
ãšããå®éšæ³åã§ããã 誀解ããããããããªãŒã ã®æ³åã¯ããã®ãããªå®éšæ³åã§ãã£ãŠãã¹ã€ã«æµæã®å®çŸ©åŒã§ã¯ç¡ããåæ§ã«ããªãŒã ã®æ³åã¯ãã¹ã€ã«é»å§ã®å®çŸ©åŒã§ã¯ç¡ããã黿µã®å®çŸ©åŒã§ãç¡ããäžåŠæ ¡ã®çç§ã§ã®é»æ°åè·¯ã®æè²ã§ã¯ãéå±ã®é»æ°åè§£ã®èµ·é»åã®æè²ãŸã§ã¯ããªãã®ã§ããšãããã°ãé»å§ã誀解ããŠããé»å§ã¯ãåãªã黿µã®æ¯äŸéã§ãæµæã¯ãã®æ¯äŸä¿æ°ãã®ãããªèª€è§£ããå Žåãæããããããã®è§£éã¯æããã«èª€è§£ã§ããã ãŸããåå°äœãªã©ã®äžéšã®ææã§ã¯ã黿µãå¢ãææã®æž©åºŠãäžæãããšæµæãäžããçŸè±¡ãç¥ãããŠããã®ã§ãåå°äœã§ã¯ãªãŒã ã®æ³åãæãç«ããªãå Žåãããããªã®ã§ããªãŒã ã®æ³åãå®çŸ©åŒãšèããã®ã¯äžåçã§ããã
å°ç·ãªã©ã®å°äœå
ã®é»æ°ã®æµãã黿µ(ã§ããã
ããelectric current)ãšããã黿µã®åŒ·ãã¯ã¢ã³ãã¢ãšããåäœã§è¡šãã1ã¢ã³ãã¢ã®å®çŸ©ã¯æ¬¡ã®éãã§ããã
1ç§éã«1ã¯ãŒãã³(èšå·C)ã®é»æµãééããããšã1ã¢ã³ãã¢ãšããã
ã¢ã³ãã¢ã®èšå·ã¯Aã§ããããŸãã黿µã¯ãåäœæéãããã®é»è·ã®éééã§ãããã®ã§ã黿µã®åäœã[C/s]ãšæžãå Žåãããã äžè¬çã«ã¯ã黿µã®åäœã¯ããªãã¹ã[A]ã§è¡šèšããããšãå€ãã
黿µI[A]ãšæét[S]ã§å°ç·æé¢ãééããé»è·Q[C]ã®é¢ä¿ãåŒã§è¡šããšã
ã§ããã
黿µã®åãã®åãæ¹ã«ã€ããŠã¯ãèªç±é»åã¯è² é»è·ãæã£ãŠãããããèªç±é»åã®åããšã¯å察åãã«é»æµã®åãããšãããšã«æ³šæããã
次ã«é»æµãšèªç±é»åã®é床ãšã®é¢ä¿ãèããã èªç±é»åã®é»è·ã®çµ¶å¯Ÿå€ãeãšãããšãèªç±é»åã¯è² é»è·ã§ãããããèªç±é»åã®é»è·ã¯ãã€ãã¹ç¬Šå·ãã€ã-eã§ããã
ãã€ã人ã®ç©çåŠè
ãªãŒã ã¯æ¬¡ã®ãããªæ³åãçºèŠããã
ãã»ãšãã©ã®å°äœã§ã¯ã黿µ I ãæµããŠããå°äœäžã®2ç¹ã®ç¹ P 1 {\displaystyle P_{1}} ãšç¹ P 2 {\displaystyle P_{2}} éã®é»äœå·® E = E 1 â E 2 {\displaystyle E=E_{1}-E_{2}} ã¯ã黿µ I ã«æ¯äŸãããã
ãã®å®éšæ³åããªãŒã ã®æ³å(Ohm's law)ãšããã åŒã§è¡šããšãé»äœå·®ãVãšããŠã黿µãIãšããå Žåã«ãæ¯äŸä¿æ°ãRãšããŠã
ã§ããã ããã§ãé»äœãšé»æµã®æ¯äŸä¿æ°Rã黿°æµæãããã¯åã«æµæ(resistanceãã¬ãžã¹ã¿ã³ã¹)ãšããã 黿°æµæã®åäœã¯ãªãŒã ãšèšããèšå·ã¯Î©ã§è¡šãã
æ
£ç¿çã«ãæµæã®èšå·ã¯Rã§ããããå Žåãå€ãã
黿°åè·¯ãžãšãã«ã®ãŒãäŸçµŠãã黿ºãšããŠå®é»å§ã®çŽæµé»æºãèãããåè·¯ã®2å°ç¹éã«ããäžå®ã®é»å§ãäŸçµŠãç¶ãããã®ã§ãããé»å§æºã®åè·¯å³èšå·ãšããŠã¯ãçšãããããèšå·ã®é·ãåŽãæ£æ¥µã§ããããã©ã¹ã®é»äœã§ãããèšå·ã®çãåŽã¯è² 極ã§ããã
ä¹Ÿé»æ± ã¯ãçŽæµé»æºãšããŠåãæ±ã£ãŠè¯ãã
ãªãããããã¯çŽæµé»æºã§ããã亀æµã®å Žåã¯äžè¬åããé»å§æºãšããŠã®èšå·ãçšããããŸãç¹ã«æ£åŒŠæ³¢äº€æµé»å§æºã§ããã°ã®èšå·ãçšããã
æµæåš(resistor)ã¯ãéåžžã¯åã«æµæãšåŒã°ããåè·¯çŽ åã§ãããäžãããã黿°ãšãã«ã®ãŒãåçŽã«æ¶è²»ããçŽ åã§ãããåè·¯å³èšå·ã¯ãããã¯ã§ããããæ¬æžã§ã¯ãäž¡è
ãšãæµæã®åè·¯å³èšå·ãšããŠçšããããšã«ããã(ç»åçŽ æã®ç¢ºä¿ã®éœåã®ãããäž¡æ¹ã®èšå·ãæ¬æžã§ã¯æ··åšããŸããã容赊ãã ããã)
æ¥æ¬ã§ã¯ãæµæåšã®å³èšå·ã¯ãåŸæ¥ã¯JIS C 0301(1952幎4æå¶å®)ã«åºã¥ããã®ã¶ã®ã¶ã®ç·ç¶ã®å³èšå·ã§å³ç€ºãããŠããããçŸåšã®ãåœéèŠæ Œã®IEC 60617ãå
ã«äœæãããJIS C 0617(1997-1999幎å¶å®)ã§ã¯ã®ã¶ã®ã¶åã®å³èšå·ã¯ç€ºãããªããªããé·æ¹åœ¢ã®ç®±ç¶ã®å³èšå·ã§å³ç€ºããããšã«ãªã£ãŠãããæ§èŠæ Œã§ããJIS C 0301ã¯ãæ°èŠæ ŒJIS C 0617ã®å¶å®ã«äŒŽã£ãŠå»æ¢ããããããæ§èšå·ã§æµæåšãå³ç€ºããå³é¢ã¯ãçŸåšã§ã¯JISéæºæ ãªå³é¢ã«ãªã£ãŠããŸããããããææåã¯ç¡ããããçŸåšãåŸæ¥ã®å³èšå·ãå€çšãããŠããã
è€æ°ã®åè·¯çŽ åã1ã€ã®ç·äžã«é
眮ãããŠãããããªæ¥ç¶ãçŽåæ¥ç¶ãšãããè€æ°ã®åè·¯çŽ åãäºè¡ã«åãããããã«é
眮ãããŠããæ¥ç¶ãäžŠåæ¥ç¶ãšããã
çŽåæ¥ç¶ã«ãããŠã¯ãããããã®åè·¯çŽ åã«æµãã黿µã¯å
šãŠçãããäžæ¹ãäžŠåæ¥ç¶ã«ãããŠã¯ããããã®åè·¯çŽ åã®äž¡ç«¯ã«ãããé»å§ãå
šãŠçããã
ãŸããçŽåæ¥ç¶ã«ãããŠã¯ããããã®åè·¯çŽ åã«ãããé»å§ã®åãå
šé»å§ãšãªããäžŠåæ¥ç¶ã«ãããŠã¯ããããã®åè·¯çŽ åãæµãã黿µã®åãå
šé»æµãšãªãã
æµæãè€æ°æ¥ç¶ãããŠããå Žåããã®è€æ°ã®æµæããŸãšããŠãããã1ã€ã®æµæãæ¥ç¶ãããŠãããã®ãããªç䟡çãªåè·¯ãèããããšãã§ãããè€æ°ã®æµæãšç䟡ãª1ã€ã®æµæãåææµæãšããã
æµæãnåçŽåã«æ¥ç¶ãããŠããå Žåãèãããæµæ R 1 , R 2 , ⯠, R n {\displaystyle R_{1},R_{2},\cdots ,R_{n}} ãçŽåã«æ¥ç¶ãããŠããå Žåãåæµæãæµãã黿µã¯çããããããiãšãããåæµæ R k ( k = 1 , 2 , ⯠, n ) {\displaystyle R_{k}(k=1,2,\cdots ,n)} ã«ãããé»å§ã v k {\displaystyle v_{k}} ãšãããšããªãŒã ã®æ³åãã
ãæãç«ã€ããã®ãšãçŽåæµæã®äž¡ç«¯ã®é»å§vã¯ã
ã§ããããããšçäŸ¡ãªæµæRã1ã€ã ãæ¥ç¶ãããŠãããããªç䟡åè·¯ãèãããšãã
ãæãç«ã€ããããããã£ãŠãããã®nåã®çŽåæµæã®åææµæRãšããŠ
ãåŸããããªãã¡ãçŽååææµæã¯åæµæã®ç·åãšãªãã
åæ§ã«ãæµæãnå䞊åã«æ¥ç¶ãããŠããå Žåãèãããæµæ R 1 , R 2 , ⯠, R n {\displaystyle R_{1},R_{2},\cdots ,R_{n}} ã䞊åã«æ¥ç¶ãããŠããå Žåãåæµæã®äž¡ç«¯ã®é»å§ã¯çããããããvãšãããåæµæ R k ( k = 1 , 2 , ⯠, n ) {\displaystyle R_{k}(k=1,2,\cdots ,n)} ãæµãã黿µã i k {\displaystyle i_{k}} ãšãããšããªãŒã ã®æ³åãã
ãæãç«ã€ããã®ãšãäžŠåæµæãžæµã蟌ã黿µiã¯ã
ã§ããããããšçäŸ¡ãªæµæRã1ã€ã ãæ¥ç¶ãããŠãããããªç䟡åè·¯ãèãããšãã
ãæãç«ã€ããããããã£ãŠãããã®nåã®äžŠåæµæã®åææµæRãšããŠ
ãåŸããããªãã¡ã䞊ååææµæã®éæ°ã¯åæµæã®éæ°ã®ç·åãšãªãã
æµæRã黿µIãæµãããšãããã®éšåã®çºç±ã®ãšãã«ã®ãŒã¯ã1ç§ãããã«RI[J/s]ã§ãããããããžã¥ãŒã«ç±ãšãããååã®ç±æ¥ã¯ç©çåŠè
ã®ãžã¥ãŒã«ã調ã¹ãããã§ããããªãŒã ã®æ³åãããV=RIã§ãããã®ã§ããžã¥ãŒã«ç±ã¯VIãšãæžããã
ããã§ãã²ãšãŸããç±ã®èå¯ã«ã¯é¢ããŠã次ã®éãå®çŸ©ããã黿°åè·¯ã®ãã2ç¹éãæµãã黿µIãšããã®2ç¹éã®é»å§Vãšã®ç©VIãé»å(power)ãšå®çŸ©ãããé»åã®èšå·ã¯Pã§è¡šããããããšãå€ãã é»åã®åäœã®ãžã¥ãŒã«æ¯ç§[J/s]ã[W]ãšããåäœã§è¡šãããã®åäœWã¯ã¯ãã(Watt)ãšèªãã ã€ãŸãé»åã¯èšå·ã§
ã§ããã
å°ç·ã®å€ªããé·ãã«ãã£ãŠæµæã®å€§ããã¯å€ãããçŽæçã«å€ªãã»ããæµããããã®ã¯åããã ãããããã«äžŠåæ¥ç¶ãšå¯Ÿå¿ãããŠããå°ç·ã倪ãã»ããæµããããã®ã¯åããã ããã å®éã«é»æ°æµæã¯ãå°ç·ã倪ãã«åæ¯äŸããŠå°ãããªãããšãå®éšçã«ç¢ºèªãããŠãããããã§ãã€ãã®ãããªåŒã«ãããŠã¿ããã æµæãR[Ω]ãšããå Žåãå°ç·ã®å€ªããé¢ç©ã§è¡šãA[m]ãšããã°ãæ¯äŸå®æ°ã«kãçšããã°ã
ã§ããã( âã¯ãæ¯äŸé¢ä¿ãè¡šãæ°åŠèšå·ã)
ããã«ãå°ç·ã¯æè³ªã倪ããåããªãã°ãå°ç·ãé·ãã»ã©æµæããé·ãã«æ¯äŸããŠæµæã倧ãããªãããšãã確èªãããŠãããããã§ãããã«ãæµæäœã®é·ããèæ
®ããåŒã«è¡šããŠã¿ãã°ã次ã®ããã«ãªããæµæåž¯ã®é·ããl[m]ãšããã°
ã§ããã
ããã«ãå°ç·ã®æè³ªã«ãã£ãŠãæµæã®å€§ããã¯å€ãããåãé·ãã§åã倪ãã®æµæã§ããæè³ªã«ãã£ãŠæµæã®å€§ããã¯ç°ãªããããã§ãæè³ªããšã®æ¯äŸå®æ°ãÏãšããã°ãæµæã®åŒã¯ä»¥äžã®åŒã§èšè¿°ãããã
Ïã¯æµæç(ãŠããããã€ãresistivity)ãšåŒã°ãããæµæçã®åäœã¯[Ωm]ã§ããã
ç£ç³ã®ãŸããã«ã¯å¥ã®ç£ç³ãåããåã®ããšãšãªããã®ãçããŠããã ãããç£å Ž(ãã°ãmagnetic field)ãããã¯ç£ç(ããã)ãšåŒã¶ã(æ¥æ¬ã®ç©çåŠã§ã¯ç£å ŽãšåŒã¶ããšãå€ãããŸããæ¥æ¬ã®é»æ°å·¥åŠã§ã¯ç£çãšåŒã°ããããšãå€ããææ²»æã®èš³èªã®éã®ãæ¥æ¬åœå
ã®æ¥çããšã®éãã«éãããå°å瀟äŒçãªäºè±¡ã§ãããåŒã³æ¹ã¯ç©çã®æ¬è³ªãšã¯é¢ä¿ãªãã®ã§ãããã§ã¯ãã©ã¡ãã®è¡šçŸãçšãããã¯ãæ¬æžã§ã¯ç¹ã«ãã ãããªããè±èªã§ã¯ç©çåŠã»é»æ°å·¥åŠãšãâmagnetic fieldâã§å
±éããŠããã)
éãã³ãã«ããããã±ã«ã«ç£ç³ãè¿ã¥ãããšãç£ç³ã«åžãä»ããããã ãŸããéãã³ãã«ããããã±ã«ã«åŒ·ãç£åãäžãããšãéãã³ãã«ããããã±ã«ãã®ãã®ãç£å Žãåšå²ã«åãŒãããã«ãªãã ãã®ãããªãããšããšã¯ç£å Žãæããªãã£ãç©äœãã匷ãç£å Žãåããããšã«ãã£ãŠç£å ŽãåãŒãããã«ãªãçŸè±¡ãç£å(ãããmagnetization)ãšããã ãããã¯é»è·ã®éé»èªå°ãšå¯Ÿå¿ãããŠãç£åã®ããšãç£æ°èªå°(ããããã©ããmagnetic induction)ãšãããã ãããŠãéãã³ãã«ããããã±ã«ã®ããã«ãç£ç³ã«åŒãä»ããããããã«ç£åãããèœåãããç©äœãåŒ·ç£æ§äœ(ãããããããããferromagnet)ãšããã éãšã³ãã«ããšããã±ã«ã¯åŒ·ç£æ§äœã§ããã
é
ã¯ç£åããªãããé
ã¯ç£ç³ã«åŒãã€ããããªãã®ã§ãé
ã¯åŒ·ç£æ§äœã§ã¯ãªãã
éé»èªå°ãå©çšãããéé»é®èœ(ããã§ããããžã)ãšèšããããäžç©ºã®å°äœãã€ãã£ãŠç©è³ªãå²ãããšã§å€éšé»å Žãé®èœããæ¹æ³ããã£ãã®ãšåæ§ã®ãç£æ°ã®é®èœããåŒ·ç£æ§äœã§ãåºæ¥ããäžç©ºã®åŒ·ç£æ§äœãçšããŠãåŒ·ç£æ§äœã®å
éšã¯ç£å Žãé®èœã§ããããããç£æ°é®èœ(ãããããžããmagnetic shielding)ãšãããç£æ°ã·ãŒã«ããšãããã
ç£å Žã®åããåããããã«å³ç€ºããããç£ç³ã®äœãç£å Žã®æ¹åã¯ãç ã«å«ãŸããç éã®ç²æ«ãç£ç³ã«ãã¡ãã°ããŠããµããããããšã§èгå¯ã§ããã
ãããå³ç€ºãããšãäžå³ã®ããã«ãªãã(ç»åçŽ æã®ç¢ºä¿ã®éœåäžãåçãšå³ç€ºãšã§ã¯ãN極ãšS極ãéã«ãªã£ãŠããŸããã容赊ãã ããã)
ãã®ãããªç£å Žã®å³ãç£åç·(ãããããããmagnetic line of force)ãšãããç£åç·ã®åãã¯ãç£ç³ã®N極ããç£åç·ãåºãŠãS極ã«ç£åç·ãåžåããããšå®çŸ©ããããæ£ç£ç³ã§ã¯ãç£åã®çºçæºãšãªãå Žæããæ£ç£ç³ã®äž¡ç«¯ã®å
端ä»è¿ã«éäžãããããã§ãæ£ç£ç³ã®äž¡ç«¯ã®å
端ä»è¿ãç£æ¥µ(ãããããmagnetic pole)ãšããã
ãã®ãããªç£ç³ã®ã€ããç£åç·ã®åœ¢ã¯ã黿°åç·ã§ã®ãç°ç¬Šå·ã®é»è·ã©ãããã€ãã黿°åç·ã«äŒŒãŠããã
1ã€ã®æ£ç£ç³ã§ã¯N極(north pole)ã®ç£æ°ã®åŒ·ããšãS極(south pole)ã®ç£æ°ã®åŒ·ãã¯çããããŸããç£ç³ã«ã¯ãå¿
ãN極ãšS極ãšãååšãããN極ãšS極ã®ãã©ã¡ããçæ¹ã ããåãåºãããšã¯åºæ¥ãªããããšãæ£ç£ç³ãåæããŠããåæé¢ã«ç£æ¥µãåºçŸããããã®ãããªçŸè±¡ã®ãããçç±ã¯ãããããæ£ç£ç³ãæ§æããåŒ·ç£æ§äœã®ååã®1åãã€ãå°ããªç£ç³ã§ããããããå°ããªååã®ç£ç³ããããã€ãæŽåããŠã倧ããªæ£ç£ç³ã«ãªã£ãŠããããã§ããã
ä»®æ³çã«ãç£æ¥µãS極ãŸãã¯N極ã®çæ¹ã ãçŸããçŸè±¡ãçè«èšç®ã®ããã«èããããšããããããã®ãããªçåŽã ãã®ç£æ¥µãåç£æ¥µ(ã¢ãããŒã«ãšããã)ãšããããåç£æ¥µã¯å®åšããªãã
æ£ç£ç³ãªã©ããã®ãçåŽã®ç£æ¥µãããã®ãç£æ¥µããã®ç£å Žã®åŒ·ãã®ããšãããã®ãŸãŸãç£æ¥µã®åŒ·ãã(Magnetic charge)ãšåŒã¶ããããã¯ç£è·(ãããmagnetization)ãç£æ°éãšããã
ããããããã®ç£åãšç£å Žã®é¢ä¿ãåŒã§è¡šãããšãèããã ãŸããæ£ç£ç³ã«ã¯ç£æ¥µãäž¡åŽã«2åããã®ã§ãèšç®ãç°¡åã«ããããã«ãæ£ç£ç³ã®äž¡ç«¯ã®è·é¢ã倧ãããå察åŽã®ç£æ¥µã®å€§ãããç¡èŠã§ããç£ç³ãèãããã
ãã®ãããªç£ç³ãçšããŠãå®éšãããšãããæ¬¡ã®æ³åãåãã£ããç£åã®åŒ·ãã¯2åã®ç©äœã®ç£æ°ém1ããã³m2ã«æ¯äŸãã2åã®ç©äœéã®è·é¢rã®2ä¹ã«åæ¯äŸããã åŒã§è¡šããšã
ã§è¡šãããã(kmã¯æ¯äŸå®æ°) ãããçºèŠè
ã®ã¯ãŒãã³ã®åã«ã¡ãªãã§ãç£æ°ã«é¢ããã¯ãŒãã³ã®æ³åãšãããç£æ°émã®åäœã¯ãŠã§ãŒããšãããèšå·ã¯[Wb]ã§è¡šãã
æ¯äŸå®æ°kmãš1ãŠã§ãŒãã®å€§ãããšã®é¢ä¿ã¯ã1ã¡ãŒãã«é¢ãã1wbã©ããã®ç£æ¥µã«ã¯ãããåãçŽ6.33Ã10ãšããŠã æ¯äŸä¿æ°kmã¯ã
ã§ããã
ã€ãŸãã
ã§ããã
é黿°åã«å¯ŸããŠãé»å Žãå®çŸ©ãããããã«ãç£æ°åã«å¯ŸããŠããå Žãå®çŸ©ããããšéœåãè¯ããç£æ°ém1[Wb]ãäœããæ¬¡ã®éãç£å Žã®åŒ·ããããã¯ç£å Žã®å€§ãããšèšããèšå·ã¯Hã§è¡šãã
ç£å Žã®åŒ·ãHã®åäœã¯[N/Wb]ã§ãããHãçšãããšãç£æ°ém2[Wb]ã«ã¯ãããç£æ°åf[N]ã¯ã
ãšè¡šããã
ç©çåŠè
ã®ãšã«ã¹ãããã¯ã黿µã®å®éšãããŠããéã«ãããŸããŸè¿ãã«ãããŠãã£ãæ¹äœç£ç³ãåãã®ã確èªããã圌ã詳ãã調ã¹ãçµæã以äžã®ããšãåãã£ãã
黿µãæµããŠãããšãã«ã¯ããã®ãŸããã«ã¯ãç£å Žãçãããåãã¯ã黿µã®æ¹åã«å³ãããé²ãããã«ãå³ãããåãåããšåããªã®ã§ããããå³ããã®æ³åãšããã
ã¢ã³ããŒã«ããç£å Žã®å€§ããã調ã¹ãçµæãç£å Žã®å€§ããHã¯ã黿µI[A]ãçŽç·çã«æµããŠãããšããçŽç·é»æµã®åšãã®ç£å Žã®å€§ããã¯ãå°ç·ããã®è·é¢ãa[m]ãšãããšãç£å Žã®å€§ããH[N/Wb]ã¯ã
ã§ããããšãç¥ãããŠããã
ãããã¢ã³ããŒã«ã®æ³å(Ampere's law) ãšããã ç£å Žã®å€§ããHã®åäœã¯ã[N/Wb]ã§ãããããã£ãœãã¢ã³ããŒã«ã®æ³åã®åŒãã¿ãã°ã¢ã³ãã¢æ¯ã¡ãŒãã«[A/m]ã§ãããã
å°ç·ãã³ã€ã«ç¶ã«å·»ãã°ãã¢ã³ããŒã«ã®æ³åã§å°ç·ã®åšå²ã«çºçããç£å Žãéãªãããããã®ããã«ããç£å Žã匷ããã³ã€ã«ãé»ç£ç³(ã§ããããããelectromagnet)ãšãããå°ç·ã«é»æµãæµããŠãããšãã«ã®ã¿ãé»ç£ç³ã¯ç£å Žãçºçãããå°ç·ã«é»æµãæµãã®ãæ¢ãããšãé»ç£ç³ã®ç£å Žã¯æ¶ããã
ç£å Žã®å€§ããHã«ã次ã®ç¯ã§æ±ãããŒã¬ã³ãåã®çŸè±¡ã®ãããæ¯äŸä¿æ°ÎŒ(åäœã¯ãã¥ãŒãã³æ¯ã¢ã³ãã¢ã§[N/A])ãæããŠãèšå·Bã§è¡šãã
ãšããããšãããããã®éBãç£æå¯åºŠ(magnetic flux density)ãšãããç£å Žã®å€§ããHã®åããšç£æå¯åºŠBã®åãã¯åãåãã§ããã ãŸããç£å Žã®å€§ããHãšç£æå¯åºŠBã®æ¯äŸä¿æ°ãéç£ç(ãšãããã€ãmagnetic permeability)ãšããã (ããŒã¬ã³ãåã«é¢ããŠã¯ã詳ããã¯ç©çIIã§æ±ããèªè
ãç©çIãåŠã¶åŠå¹Žãªãã°ãèªè
ã¯ãããŒã¬ã³ãåãšããåãããã®ã ãªã»ã»ã»ããšã§ãæã£ãŠããã°ããã)
ãŸããå°ç·ãçšæãããšãããããã®å°ç·ã¯ã鿢ããŠãããšããŠã鿢ããŠããããåºå®ã¯ããã«ãããå°ç·ã«åãå ããã°ãå°ç·ãåããããã«ããŠããšãããã
ãã®å°ç·ã«é»æµãæµããã ãã§ã¯ãã¹ã€ã«å°ç·ã¯åããªãããããããã®å°ç·ã«ãå€éšã®ç£ç³ã«ããç£å Žãå ãããšãå°ç·ãåãããã®ãããªãç£å Žãšé»æµã®çžäºäœçšã«ãã£ãŠãå°ç·ã«çããåãããŒã¬ã³ãå(ããŒã¬ã³ãããããè±: Lorentz force)ãšããã
ããŒã¬ã³ãåã®åãã¯ãå°ç·ã®é»æµã®åããšç£å Žã®åãã«åçŽã§ããã黿µIã®åãããç£æå¯åºŠBã®åãã«å³ãããåãåããšåãã§ããã
ãŸããããŒã¬ã³ãåã®å€§ããã¯ãå°ç·ã®é·ãlãšãç£å Žã®å°ç·ãšã®åçŽæ¹åæåã«æ¯äŸããã
ããŒã¬ã³ãåã®å€§ããF[N]ãåŒã§è¡šãã°ã黿µãšç£å ŽãšãåçŽã ãšããŠãç£å ŽãåããŠããå°ç·ã®åœ¢ç¶ãçŽç·åœ¢ã ãšããŠã黿µãI[A]ãšããŠãå°ç·ã®é·ããl[m]ãšããŠãå°ç·ã«ããã£ãŠããå€éšç£å Žã®ç£æå¯åºŠãB[N/(Aã»m)]ãšããã°ã
ã§è¡šããã
ããŒã¬ã³ãåã®å
¬åŒã«ãã¯ãŒãã³ã®æ³åãªã©ã§ã¯èŠããããããªæ¯äŸä¿æ°(ä¿æ°Kãªã©ã)ãå«ãŸããªãã®ã¯ãããããããã®ããŒã¬ã³ãåã®çŸè±¡ãå
ã«ãç£æ°éãŠã§ãŒãWbã®åäœããã³ç£æå¯åºŠBã®åäœããæ±ºå®ãããŠããããã§ããã
ãŸãããç£æå¯åºŠãã®åç§°ãããç£æãã»ãå¯åºŠããšããã®ã¯ãå®ã¯ç£æå¯åºŠã®åäœã®[N/(Aã»m)]ã¯ãåäœãåŒå€åœ¢ãããš[Wb/m]ã§ãããããšãç±æ¥ã§ããããã®åäœ[Wb/m]ãã黿°å·¥åŠè
ã®ãã¹ã©ã®åã«ã¡ãªã¿ãåäœ[Wb/m] ããã¹ã©ãšèšããèšå·Tã§è¡šãã
ãã®ããŒã¬ã³ãåã®çŸè±¡ãã黿°æ©åšã®ã¢ãŒã¿(é»åæ©)ã®åçã§ããã
ãªããããã¬ãã³ã°ã®æ³åããšããããŒã¬ã³ãåã«é¢ããæ³åãããããããŒã¬ã³ãåã®èšç®ã«ã¯å®çšçã§ã¯ç¡ããããã¬ãã³ã°ã®åãé¢ããç°ãªãæ³åã幟ã€ããã£ãŠçŽããããééãã®åå ã«ãªããããã®ã§ãæ¬æžã§ã¯æããªãã å®éã«ãå°éçãªç©çèšç®ã§ã¯ããã¬ãã³ã°ã®æ³åã¯ãèšç®ã«ã¯çšããªãã
ãããããã¬ãã³ã°ã®æ³åã«ã¯ããã¬ãã³ã°ã®å³æã®æ³åããšããããšã¯ç°ãªãããã¬ãã³ã°ã®å·Šæã®æ³åãããããã©ã¡ãããã©ã®ç£æ°ã®çŸè±¡ã«çšããæ³åã ã£ãã®ããééãããããã ãããæ¬æžã§ã¯æããªãã
(é»ç£èªå°ã«é¢ããŠã¯ã詳ããã¯ç©çIIã§æ±ãã)
ã¢ã³ããŒã«ã®æ³åã§ã¯ã黿µã®åšãã«ç£å Žãã§ããã®ã§ãã£ãã
å®ã¯ãç£ç³ãåãããªã©ããŠãç£å Žã䌎ãç©äœãéåãããšããã®ãŸããã«ã¯é»å Žãçããã ä»®ã«ãã³ã€ã«ã®è¿ãã§ãããè¡ãªã£ããšãããšãçããé»å Žã«ãã£ãŠã³ã€ã«ã®äžã«ã¯é»æµãæµããã çããé»å Žã®å€§ããã¯ã
ãšãªãã(ååŸaã®å圢ã®ã³ã€ã«ã®å Žåã) Eã®åäœã¯[V/m]ã§ãããBã®åäœã¯[T]ã§ããã
ãã®çŸè±¡ãé»ç£èªå°(ã§ããããã©ããelectromagnetic induction)ãšãããé»ç£èªå°ã«ãã£ãŠçºçãã黿µãèªå°é»æµãšããã
ãŸããèªå°é»æµã®åãã¯ãç£ç³ã®åãã«ãããã³ã€ã«ã®äžãéãç£æã®å€åã劚ããåãã«ã黿µãæµããã(èªå°é»æµãã¢ã³ããŒã«ã®æ³åã«åŸããåšå²ã«ç£å Žãäœãã) ãã®èªå°é»æµããã³ã€ã«ã®äžãéãç£æã®å€åã劚ããåãã«èªå°é»æµãæµããçŸè±¡ãã¬ã³ãã®æ³å(Lenz's law)ãšããã
åãé åã«Nåå·»ãããã³ã€ã«ã眮ãããå Žåããã¡ã©ããŒã®é»ç£èªå°ã®æ³åã¯ã次ã®ããã«ãªãã
ããã§ã E {\displaystyle {\mathcal {E}}} ã¯èµ·é»å(ãã«ã ãèšå·ã¯V)ãΊB ã¯ç£æ(ãŠã§ãŒããèšå·ã¯Wb)ãšãããNã¯é»ç·ã®å·»æ°ãšããã
ãã®é»ç£èªå°ã®çŸè±¡ããç«åçºé»ãæ°Žåçºé»ãªã©ã®çºé»æ©ã®åçã§ãããããçã®çºé»ã§ã¯ãæ°žä¹
ç£ç³ãå転ãããããšã§ãçºé»ãããŠãããç«åãæ°Žåãšããã®ã¯ãæ©åšã®å転ãåŸãææ®µã«ãããªãããŸããçºé»æã®çºé»ã«ã¯ãæ°žä¹
ç£ç³ã®å転ãå©çšããŠãããããçºçããé»å§ã黿µã¯åšæçãªæ³¢åœ¢ã«ãªããæ¬¡ã«èª¬æããäº€æµæ³¢åœ¢ã«ãªãã
åè·¯ãžã®å
¥åé»å§ãåšæçã«æéå€åããåè·¯ã®é»å§ããã³é»æµã亀æµ(alternating current)ãšãããããã«å¯Ÿããä¹Ÿé»æ± ãªã©ã«ãã£ãŠçºçããé»å§ã黿µã®ããã«ãæéã«ãããäžå®ãªé»å§ã黿µã¯çŽæµ(direct Current)ãšããã
äº€æµæ³¢åœ¢ãäœç§ã§1åšããããšããæéãåšæ(wave period)ãšãããåšæã®èšå·ã¯ T {\displaystyle T} ã§è¡šãåäœã¯ç§[s]ã§ããã
1ç§éã«æ³¢åœ¢ãäœåšããããšããåæ°ãåšæ³¢æ°ãããã¯æ¯åæ°(è±èªã¯ããšãã«frequency)ãšããã 黿°ã®æ¥çã§ã¯åšæ³¢æ°ãšããçšèªãçšããããšãå€ããç©çã®æ³¢ã®çè«ã§ã¯æ¯åæ°ãšãã衚çŸãçšããããšãå€ãã
åšæ³¢æ°ã®åäœã¯[1/s]ã§ããããããããã«ã(hertz)ãšããåäœã§è¡šããåäœèšå·HzãçšããŠåšæ³¢æ°fããf[Hz]ãšãããµãã«è¡šãã
亀æµé»æµã亀æµé»å§ãæ£åŒŠæ³¢ã®å Žåã¯ããããã®ãã©ã¡ãŒã¿ãçšããŠ
ãšæžãããšãã§ããã sinãšã¯äžè§é¢æ°ã§ãããç¥ããªããã°æ°åŠIIãªã©ãåèã«ããã ãã®ãšãã®sinã®ä¿æ° I 0 {\displaystyle I_{0}} ã V 0 {\displaystyle V_{0}} ãæ¯å¹
(ããã·ããamplitude)ãšããããŸãæå»t=0ã«ããã黿µãé»å§ã®å€ã瀺ããæéæ³¢åœ¢ãæ±ºå®ãã Ξ i {\displaystyle \theta _{i}} ã Ξ v {\displaystyle \theta _{v}} ãåæäœçžãšããã
æ®éç§é«æ ¡ã®é«æ ¡ç©çã§ã¯ãäº€æµæ³¢åœ¢ã®èšç®ã«ã¯ãæ£åŒŠæ³¢ã®å Žåãäž»ã«æ±ããæ¹åœ¢æ³¢ãäžè§æ³¢ã®èšç®ã¯ãæ®éã¯æ±ãããªãã ãã ããå·¥æ¥é«æ ¡ã®ææ¥ããå·¥å Žã®å®åã§ã¯æ±ãããšãããã®ã§ãèªè
ã¯æ³¢åœ¢ãåŠãã§ããããšã
çºé»æããäžè¬å®¶åºã«éãããŠããé»å§ã¯äº€æµé»å§ã§ãããæ±æ¥æ¬ã§ã¯50Hzã§ãããè¥¿æ¥æ¬ã§ã¯60Hzã§ãããããã¯ææ²»æä»£ã®çºé»æ©ã®èŒžå
¥æã«ãæ±æ¥æ¬ã®äºæ¥è
ã¯ãšãŒããããã50Hzçšã®çºé»æ©ã茞å
¥ããè¥¿æ¥æ¬ã®äºæ¥è
ã¯ã¢ã¡ãªã«ãã60Hzã®çºé»æ©ã茞å
¥ããããšã«ããã
çºé»æããäžè¬ã®å®¶åºãªã©ã«éããã黿µã®åšæ³¢æ°ãåçšåšæ³¢æ°ãšããã
åçšé»æºã®é»å§æ¯å¹
ã¯çŽ140Vã§ããããã㯠100 à 2 {\displaystyle 100\times {\sqrt {2}}} [V]ã§ããã
ãããã«ããšã¯1000Hzã®ããšã§ããããããã«ãã¯kHzãšæžãã
亀æµé»æµã«å¯ŸããŠã¯ã黿µãšåãæ¯åæ°ã§ãã¢ã³ããŒã«ã®æ³åã§çºçããç£å Žãæ¯åããã
å°ç·ã§ã€ããããã³ã€ã«ã¯ãçŽæµé»æµã§ã¯ããã ã®å°ç·ãšããŠã¯ãããããããã亀æµé»æµã«å¯ŸããŠã¯ãé»ç£èªå°ã«ããèªå·±ã®çºçãããç£å Žã劚ãããããªé»æµããã³èµ·é»åãçºçããããããèªå·±èªå°(self induction)ãšããã
èªå·±èªå°ã«ããèµ·é»åã®å€§ããã¯ã黿µã®æéå€åçã«æ¯äŸãããèªå·±èªå°ã®èµ·é»åãåŒã§æžãã°ãæ¯äŸä¿æ°ãLãšããŠã
ã§ããã ãã®æ¯äŸä¿æ° L {\displaystyle L} ãèªå·±ã€ã³ãã¯ã¿ã³ã¹(self inductance)ãšãããèªå·±ã€ã³ãã¯ã¿ã³ã¹ã®æ¬¡å
ã¯[Vã»S/m]ã ããããããã³ãªãŒãšããåäœã§è¡šããåäœã«Hãšããèšå·ãçšããã
éå¿ã«äºã€ã®ã³ã€ã«ãå·»ããã³ã€ã«ã®çæ¹ã®é»æµãå€åããããšãã¢ã³ããŒã«ã®æ³åã«ãã£ãŠçããŠããç£æãå€åãããããå察åŽã®ã³ã€ã«ã«ã¯ããã®ç£æå¯åºŠã®å€åãæã¡æ¶ããããªåãã«èµ·é»åãçºçããããã®çŸè±¡ãçžäºèªå°(mutual induction)ãšèšãã
é»å§ãå
¥åãããåŽã®ã³ã€ã«ã1次ã³ã€ã«(primaly coil)ãšèšããèªå°èµ·é»åãçºçãããåŽã®ã³ã€ã«ã2次ã³ã€ã«(secondary coil)ãšããã
çžäºèªå°ã«ããèµ·é»åã®å€§ããã¯ã黿µã®æéå€åçã«æ¯äŸãããçžäºèªå°ã®èµ·é»åãåŒã§æžãã°ãæ¯äŸä¿æ°ãMãšããŠã(çžäºèªå°ã®æ¯äŸä¿æ°ã¯Lã§ã¯ç¡ãã)åŒã¯ã
ã§ããã ãã®æ¯äŸä¿æ° M {\displaystyle M} ãçžäºã€ã³ãã¯ã¿ã³ã¹(self inductance)ãšãããçžäºã€ã³ãã¯ã¿ã³ã¹ã®æ¬¡å
ã¯ãèªå·±ã€ã³ãã¯ã¿ã³ã¹ã®åäœãšåãã§ãã³ãªãŒ(H)ã§ããã
ãã®çžäºã€ã³ãã¯ã¿ã³ã¹ã®å€§ããã¯ãäž¡æ¹ã®ã³ã€ã«ã®å·»ãæ°ã©ããã®ç©ã«æ¯äŸããã
ç£å Žã®åãã«ãã£ãŠé»å ŽãåŒãèµ·ããããããšãé»ç£èªå°ã®ã»ã¯ã·ã§ã³ã§èŠãã å®éã«ã¯é»å Žã®å€åã«ãã£ãŠç£å ŽãåŒãèµ·ããããããšãç¥ãããŠããã ããã«ãã£ãŠäœããªã空éäžãé»å Žãšç£å ŽãäŒæããŠããããšãäºæ³ãããã
é»ç£æ³¢ã®é床ãç©çåŠè
ã®ãã¯ã¹ãŠã§ã«ãèšç®ã§æ±ãããšãããé»ç£æ³¢ã®é床ã¯ãç空äžã§ã¯åžžã«äžå®ã§ããã€æ³¢ã®é床cãèšç®ã§æ±ãããšããã
ãšãªããæ¢ã«ç¥ãããŠããå
éã«äžèŽããã ãã®ããšãããå
ã¯é»ç£æ³¢ã®äžçš®ã§ããããšãåãã£ããç©çIIã§ãé»ç£æ³¢ã®éåºŠãæ±ããèšç®ã¯ã詳ããã¯æ±ãã èªè
ãå
éã®æž¬å®å®éšã«ã€ããŠèª¿ã¹ããªããç©çIã®æ³¢åã«é¢ããããŒãžãªã©ã§ãã£ãŸãŒã®å®éšã«ã€ããŠãåç
§ã®ããšã
æ³¢ã¯æ³¢é·Î»ãé·ãã»ã©ãæ¯åæ°fãå°ãããªããæ³¢ã®æ³¢é·Î»ãšæ¯åæ°fã®ç©fλã¯äžå®ã§ãããã¯æ³¢ã®é床vã«çãããã€ãŸã
ã§ããã é»ç£æ³¢ã®å Žåã¯ãé床ãå
éã®cãªã®ã§
ã§ããã
æŸéçšã®ãã¬ããã©ãžãªã®é»æ³¢(ã§ãã±ãradio wave)ã¯ãé»ç£æ³¢(electromagnetic wave)ã®äžçš®ã§ãããæ³¢é·ã0.1mm以äžã®é»ç£æ³¢ã黿³¢ã«åé¡ãããããªãã黿³¢ã®ãã¡ãæ³¢é·ã1mm~1cmã®ããªã¡ãŒãã«ã®é»æ³¢ãããªæ³¢ãšãããåæ§ã«ãæ³¢é·ã1cm~10cmã®é»æ³¢ãã»ã³ãæ³¢ãšãããæ³¢é·10cm~100cm(=1m)ã®é»æ³¢ã¯UHFãšèšããããã¬ãæŸéãªã©ã«äœ¿ãããUHFæŸéã¯ããã®é»æ³¢ã§ãããæ³¢é·1m~10mã®é»æ³¢ã¯VHFãšèšãããããã¬ãæŸéã®VHFæŸéã¯ããã®é»æ³¢ã§ããã
æ³¢é·ã0.1mm以äžã§ãå¯èŠå
ç·(å¯èŠå
ã®æå€§æ³¢é·ã¯780ããã¡ãŒãã«çšåºŠ)ãããã¯æ³¢é·ãé·ãé»ç£æ³¢ã¯èµ€å€ç·(ãããããããinfrared raysãã€ã³ãã©ã¬ãŒã ã¬ã€ãº)ãšããããèµ€ãã®ãå€ããšããçç±ã¯ãå¯èŠå
ã®æå€§æ³¢é·ã®è²ãèµ€è²ã ããã§ãããèµ€å€ç·ãã®ãã®ã«ã¯è²ã¯ã€ããŠããªããåžè²©ã®èµ€å€ç·ããŒã¿ãŒãªã©ãèµ€è²ã«çºå
ãã補åãããã®ã¯ã䜿çšè
ãåäœç¢ºèªãã§ããããã«ããããã«ã補åã«èµ€è²ã®ã©ã³ãã䜵眮ããŠããããã§ãããèµ€å€ç·ã¯ãç©äœã«åžåããããããåžåã®éãç±ãçºçããã®ã§ãããŒã¿ãŒãªã©ã«å¿çšãããããªãã倪éœå
ã«ãèµ€å€ç·ã¯å«ãŸããã
ããããèµ€å€ç·ãçºèŠãããçµç·¯ã¯ãã€ã®ãªã¹ã®å€©æåŠè
ã®ããŒã·ã§ã«ã倪éœå
ãããªãºã ã§åå
ããéã«ãèµ€è²ã®å
ç·ã®ãšãªãã®ãç®ã«ã¯è²ãèŠããªãéšåãæž©åºŠäžæããŠããããšãçºèŠããããšããçµç·¯ãããã
æã
ã人éã®ç®ã«èŠããå¯èŠå
ç·(ãããããããvisible light)ã®æ³¢é·ã¯ãçŽ780ããã¡ãŒãã«ããçŽ380ããã¡ãŒãã«ã®çšåºŠã§ãããå¯èŠå
ã®äžã§æ³¢é·ãæãé·ãé åã®è²ã¯èµ€è²ã§ãããå¯èŠå
ã®äžã§æ³¢é·ãæãçãé åã®è²ã¯çŽ«è²ã§ããã
å
ãã®ãã®ã«ã¯ãè²ã¯ã€ããŠããªããæã
ã人éã®è³ããç®ã«å
¥ã£ãå¯èŠå
ããè²ãšããŠæããã®ã§ããã 倪éœå
ãããªãºã ãªã©ã§åå
(ã¶ããã)ãããšãæ³¢é·ããšã«è»è·¡(ããã)ãããããããã®åå
ããå
ç·ã¯ãä»ã®æ³¢é·ãå«ãŸãããã äžçš®ã®æ³¢é·ãªã®ã§ããã®ãããªå
ç·ããã³å
ãåè²å
(monochromatic light)ãšããã ãŸããçœè²ã¯åè²å
ã§ã¯ãªããçœè²å
(white light)ãšã¯ãå
šãŠã®è²ã®å
ãæ··ãã£ãç¶æ
ã§ããã åæ§ã«ãé»è²ãšããåè²å
ããªããé»è²ãšã¯ãå¯èŠå
ãç¡ãç¶æ
ã§ããã
玫å€ç·(ããããããultraviolet rays)ã¯ååŠåå¿ã«åœ±é¿ãäžããäœçšã匷ããæ®ºèæ¶æ¯ãªã©ã«å¿çšãããã倪éœå
ã«ã玫å€ç·ã¯å«ãŸããã人éã®èã®æ¥çŒãã®åå ã¯ã玫å€ç·ãã¡ã©ãã³è²çŽ ãé
žåãããããã§ããã
èµ€å€ç·ã¯å€ªéœå
ã®ããªãºã ã«ããåå
ã§çºèŠãããã ãã§ã¯ãåå
ããã玫è²ã®å
ç·ã®ãšãªãã«ãããªã«ãç®ã«ã¯èŠããªãç·ãããã®ã§ã¯?ããšãããµããªããšãåŠè
ãã¡ã«ãã£ãŠèãããã ãã€ãã®ç©çåŠè
ãªãã¿ãŒã«ããååŠçãªå®é𿹿³ãçšããŠã玫å€ç·ã®ååšãå®èšŒãããã
å»ççšã®ã¬ã³ãã²ã³ãªã©ã®ééåçã§çšããããXç·(X-ray)ãé»ç£æ³¢ã®äžçš®ã§ãããçç©ã®çްèãååã¬ãã«ã§å·ã€ããçºããæ§ãæãã ã¬ã³ãç·(gammaârayãγ ray)ãåæ§ã«ãééåçã«ãå¿çšãããããçç©ã®çްèãååã¬ãã«ã§å·ã€ããçºããæ§ãæãã
?? | [
{
"paragraph_id": 0,
"tag": "p",
"text": "é«çåŠæ ¡ ç©çåºç€ > 黿°",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "æ¬é
ã¯é«çåŠæ ¡ ç©çåºç€ã®é»æ°ãšç£æ°ã®è§£èª¬ã§ããã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "çŸåšç§ãã¡ã䜿ã£ãŠããå€ãã®è£œåã黿°ãçšããŠåããŠããã ããã«ã¯æ§ã
ãªçç±ãèãããããããŸã第äžã«é»æ°ã¯æ§ã
ãªå¥ã®ãšãã«ã®ãŒã«å€æã§ããããšãäŸãã°é»ç±ç·ã䜿ã£ãŠç±ã«ãé»çãçºå
ãã€ãªãŒãã䜿ã£ãŠå
ã«ãé»åæ©ã䜿ã£ãŠéåã«å€æããããšãåºæ¥ããæ¬¡ã«ã黿± ãã³ã³ãã³ãµã䜿ã£ãŠãšãã«ã®ãŒãç¶æãããŸãŸæã¡éã¶ããšãåºæ¥ãããšããé»ç·ã䜿ã£ãŠé·è·é¢ãéé»ã§ããããšããŸããé»å補åã®èšç®èœåãä¿¡å·ã®äŒéèœåãåªããŠããããšããŸãæ¯èŒçã«å®å
šã«å°éã®ãšãã«ã®ãŒãåãåºããããšãçãèããããã",
"title": "黿°"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "",
"title": "黿°"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "黿°ãéåã«å€ãããã®ãšããŠé»åæ©(è±: electric motor)ããããããã®éã®ãã®ãšããŠéåã黿°ã«å€ããããšãåºæ¥ãããããè¡ãªãã®ã¯çºé»æ©è±: generatorãšåŒã°ãããçºé»æã¯äœããã®éåã®ãšãã«ã®ãŒãå©çšããŠé»æ°ãããããŠãããäŸãã°ãæ°Žåçºé»æã§ã¯ãæ°Žã®èœäžããåãå©çšããŠããã倧éã®æ°Žãèœäžãããšãã«ã¯äººéãäœå人ãããã£ãŠããããåºæ¥ãããšããªãããããšããããäŸãã°ãåãç«ã£ã海岞ç·ãªã©ã¯äž»ã«æ°Žã®æµãã«ãã£ãŠäœãããŠããããã®ããã«ãæ°Žã®åã¯åŒ·å€§ã§ããã®ã§ããããäžæãå©çšããæ¹æ³ããããšéœåããããå®éçŸä»£ã§ã¯é»æ°ãåªä»ãšããŠããã®åãåãã ãããšã«æåããŠããã",
"title": "黿°"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "黿± ã®ããã«é»æ¥µã®+ãš-ãå®ãŸã£ã黿µãçŽæµé»æµæãã¯çŽæµ(è±: direct current)ãšåŒã¶ãäžæ¹ãçºé»æããåŸããã黿µã®ããã«+ãš-ãéãé床ã§å
¥æãã黿µã亀æµé»æµæãã¯äº€æµ(è±: alternating current)ãšåŒã¶ã",
"title": "黿°"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "å®éã«ã¯ãã€ãªãŒããçšã㊠亀æµãçŽæµã«å€ã㊠䜿ãããšãããè¡ãªãããã",
"title": "黿°"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "äœããªã空éãå
ãçŽé²ããŠããããã« èŠããããšããããå®éã«ã¯ããã¯ é»æ³¢ãšåããã®ã§ããã 黿³¢ãšã¯äŸãã°ãæºåž¯é»è©±ã®éä¿¡ã«äœ¿ããããã®ã§ããã é»è·ãæã£ãç©äœãåãããšãå¿
ç¶çã« çãããã®ã§ããã",
"title": "黿°"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãã©ã¹ããã¯ã®äžæ·ããªã©ã§é«ªãããããšåž¯é»ããçŸè±¡ãªã©ã®ããã«ãç©è³ªã黿°ã垯ã³ãããšã垯é»(ããã§ã)ãšãããç©äœãããã£ãŠçºçãããé黿°ãæ©æŠé»æ°ãšããã ã¬ã©ã¹æ£ãçµ¹ã®åžã§ããããšãã¬ã©ã¹æ£ã¯æ£ã®é»æ°ã«åž¯é»ããçµ¹ã¯è² ã®é»æ°ã«åž¯é»ããã 黿°ã®éãé»è·(ã§ãããcharge)ãšããããããã¯é»æ°éãšããã",
"title": "é黿°"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "é»è·ã®åäœã¯ã¯ãŒãã³ã§ãããã¯ãŒãã³ã®èšå·ã¯Cã§ããã",
"title": "é黿°"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "é黿°ã«ããé»è·ã©ããã«åãåãé黿°åãšããã",
"title": "é黿°"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãªãã垯é»ããŠããªãç¶æ
ã黿°çã«äžæ§ã§ããããšããã",
"title": "é黿°"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "éå±ã®ããã«ã黿°ãéããç©äœãå°äœ(ã©ããããconductor)ãšããããã©ã¹ããã¯ãã¬ã©ã¹ããŽã ã®ããã«é»æ°ãéããªãç©è³ªãçµ¶çžäœ(ãã€ãããããinsulator)ãããã¯äžå°äœ(ãµã©ããã)ãšããã",
"title": "é黿°"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "éå±ã¯å°äœã§ããã",
"title": "é黿°"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "黿°ã®æ£äœã¯é»å(electron)ãšããç²åã§ããããã®é»åã¯è² é»è·ã垯ã³ãŠããã(é»åã®é»è·ãè² ã«å®çŸ©ãããŠããã®ã¯ã人é¡ãé»åãçºèŠããåã«é»è·ã®æ£è² ã®å®çŸ©ãè¡ãããããšããé»åãèŠã€ãã£ãéã«é»åã®é»è·ã調ã¹ããè² é»è·ã ã£ãããã§ããã)",
"title": "é黿°"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "éå±ãå°äœãªã®ã¯ãéå±äžã®é»åã¯ãããšã®ååãé¢ããŠããã®éå±å
šäœã®äžãèªç±ã«åããããã§ãããéå±äžã®é»åã®ããã«ãç©è³ªäžãèªç±ã«åããç¶æ
ã®é»åããèªç±é»å(ãããã§ãã)ãšããã",
"title": "é黿°"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "黿µãšã¯ãèªç±é»åãç§»åããããšã§ããã",
"title": "é黿°"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ãã£ãœããçµ¶çžäœã¯ãèªç±é»åããããªããçµ¶çžäœã®é»åã¯ããã¹ãŠãããšã®ååã«æçž(ããã°ã)ãããŠéã蟌ããããŠããŠãèªç±ã«ã¯åããªãã",
"title": "é黿°"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "æ£é»è·ãšã¯ãç©è³ªã«é»åãæ¬ ä¹ããŠããç¶æ
ã§ããã è² é»è·ãšã¯ãç©è³ªãé»åãå€ãæã£ãŠããç¶æ
ã§ããã",
"title": "é黿°"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "垯é»ããŠããªãçµ¶çžäœã®ç©è³ªããããããããŠãäž¡æ¹ãæ©æŠé»æ°ã«åž¯é»ãããå Žåãçæ¹ã¯æ£é»è·ãçããããçæ¹ã®ç©è³ªã¯è² é»è·ãçããããã®ãšããçºçããæ£é»è·ã®å€§ãããšè² é»è·ã®å€§ããã¯åãã§ããã ããã¯ãé»åãç§»åããŠãçæ¹ã®ç©è³ªã¯é»åãäžè¶³ããããçæ¹ã¯çéã®é»åãéå°ã«ãªã£ãŠããããã§ããã",
"title": "é黿°"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ãã®ããã«ãé»åã¯çæãæ¶æ»
ãããªãããããé»è·ä¿ååãããã¯é»æ°éä¿ååãšèšãã",
"title": "é黿°"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "黿°çã«äžæ§ã§ãã£ãå°äœã®ç©è³ª(ä»®ã«ç©è³ªAãšãã)ã«åž¯é»ããå¥ã®ç©è³ª(ä»®ã«ç©è³ªBãšãã)ãæ¥è§Šãããã«è¿ã¥ãããšãç©è³ªAã«ã¯ã垯é»ç©è³ªBã®é»è·ã«åŒãå¯ããããŠãç©äœAã®å
éšã§å察笊å·ã®é»è·ã垯é»ç©äœBã«è¿ãåŽã®è¡šé¢ã«çããããŸãã垯é»ç©äœBãšåãé»è·ã¯åçºããã®ã§ãç©äœAå
éšã®åž¯é»ç©äœBãšã¯é ãåŽã®è¡šé¢ã«çããã",
"title": "é黿°"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ãã®ãããªçŸè±¡ãéé»èªå°(ããã§ãããã©ã;Electrostatic induction)ãšãããéé»èªå°ã§çããé»è·ã®æ£é»è·ã®éãšè² é»è·ã®éã¯çéã§ããã(黿°éä¿åã®æ³å)",
"title": "é黿°"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "å°äœã®å
éšã«é黿°åã¯ç¡ãããããã£ããšãããšãèªç±é»åãªã©ã®é»è·ãåãã黿µãæµãç¶ããããšã«ãªããããã®ãããªçŸè±¡ã¯å®åšããªãã®ã§äžåçã«ãªãããããã£ãŠãå°äœã®å
éšã«é黿°åã¯ç¡ãã",
"title": "é黿°"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "衚é¢ã«é»è·ãéãŸãã®ã¯ãå°äœã®å
éšã«é黿°åãäœãããªãããã§ããããããã£ãŠéé»èªå°ã§åŒãå¯ããããé»è·ã®å€§ããã¯ãå€éšããå°äœå
éšãžã®é黿°åãæã¡æ¶ãã ãã®å€§ããã§ããã",
"title": "é黿°"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ãã®å°äœå
éšã®é»è·ããŒãã«ãªãæ§è³ªãå¿çšãããšãäžç©ºã®å°äœã§åºæ¥ãç©äœãçšããŠãé黿°åãé®èœããããšãã§ããããããéé»é®èœ(ããã§ããããžããelectric shilding)ãšããã",
"title": "é黿°"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "çµ¶çžäœ(ä»®ã«Aãšãã)ã«é»è·ãè¿ã¥ããå Žåã¯ãå°äœãšã¯éããç©äœAã®å
éšã®é»åã¯èªç±ã«è¡šé¢ã«ã¯éãŸããªãããç©äœå
éšã®ååã®æ£è² ã®é»è·ã®æ¥µæ§ãæã£ãéšåããå€éšã®é黿°åã«åŒãå¯ããããããã«ãè¿ã¥ããé»è·ã«è¿ãåŽã«ã¯ç°çš®ã®é»è·ãçããé ãåŽã«ã¯ãåçš®ã®é»è·ãçããã ååãååãå€éšã®é黿°åã«ãã£ãŠãæ£è² ã®é»è·ã®éšåãçããããšã忥µ(ã¶ãããã)ãšããããå€éšã®é»åã«ãã£ãŠèµ·ããããã®ãããªå極ã®ããããèªé»å極(ããã§ãã¶ãããããdielectric polarization)ãšããã",
"title": "é黿°"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "çµ¶çžäœã¯ãé黿°åã«ããããããšèªé»å極ãè¡ãã®ã§ãçµ¶çžäœã®ããšãèªé»äœ(ããã§ããããdielectric)ãšãããã",
"title": "é黿°"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "å°äœã«éé»èªå°ãããæ£è² ã®é»è·ã¯ãå°äœãåæãªã©ãããã°æ£é»è·ãšè² é»è·ãå¥åã«åãåºãããšãã§ããããããèªé»äœã®æ£è² ã®é»è·ã¯ãååãååãšå¯æ¥ã«çµã³ã€ããŠãããããæ£è² ã®é»è·ãåãããŠåãåºãããšã¯åºæ¥ãªãã",
"title": "é黿°"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "",
"title": "é黿°"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ããç©è³ªã黿°ã垯ã³ãŠãã(垯é»ããŠãã)ãšãããã®åž¯é»ã®å€§å°ã®çšåºŠãé»è·(ã§ãããelectric charge)ãšãããããŸããŸãªç©è³ªããããããªæ¹æ³ã§åž¯é»ãããçµæãé»è·ã«ã¯ã垯é»ãã2åã®ãã®ã©ãããè¿ã¥ããæã«åŒã£åŒµãåããã®(åŒåãåã)ãšåçºããããã®(æ¥åãã¯ããã)ã®2çš®é¡ãããããšãåãã£ãã ãã®ãããªã垯é»ããŠããç©äœã«åãåãé黿°åãšããã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ã¹ã€ã®åž¯é»ãããã®ããä»ã«ãããã€ãçšæããŠãè¿ã¥ããŠå®éšãã2åã®ç©äœã®çµã¿åãããå€ãããšãçµã¿åããã«ãã£ãŠã2åã®ç©äœã©ããã«åŒåãåãå Žåãããã°ãæ¥åãåãå Žåãããããšãåãã£ãããã®åŒåãšæ¥åã®é¢ä¿ã¯ã垯é»ããé»è·ã®çš®é¡ã«å¿ããããšãããã£ãã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "çµè«ãèšããšãé»è·ã«ã¯æ£è² ã®2çš®é¡ããããæ£ã®é»è·ã©ããã®ç©äœãè¿ã¥ãããšãã¯åçºããããè² ã®é»è·ã©ãããè¿ã¥ãããšããåçºããããæ£ãšè² ã®é»è·ãè¿ã¥ããæã«ã¯åŒåãåãã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "ã€ãŸããå笊å·ã®é»è·ãè¿ã¥ããå Žåã¯ãåçºåãçãããç°ç¬Šå·ã®é»è·ãè¿ã¥ããå Žåã¯ãåŒåãçããã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "é黿°ã©ããã®åã®åŒ·ãã¯ãå®éšçã«ã¯ãé»è·ã®éã«åãåã¯ãéåã®å Žåãšåæ§ã«åãåãŒãåã2ç©äœã®éã®è·é¢ã®2ä¹ã«åæ¯äŸããããšãç¥ãããŠãããæŽã«ãé»è·ã®å€§ããã倧ããã»ã©é»è·éã«åãåã倧ããããšãèæ
®ãããšãè·é¢rã ãé¢ããŠãããããé»è· q 1 {\\displaystyle q_{1}} ã q 2 {\\displaystyle q_{2}} ãæã£ãŠãã2ç©äœã®éã«åãåFã¯ã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "ã§äžããããããããã¯ãŒãã³ã®æ³å( Coulomb's law)ãšãããããã§ã k {\\displaystyle k} ã¯æ¯äŸå®æ°ã§ãããäž¡é»è·ã®åšå²ã«ããç©äœã®çš®é¡ã«ããå€åãã宿°ã§ãããç空äžã§ã®é»å Žãèããå Žåã®kã®å€ã¯ã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "ã§ããããŸãã ε {\\displaystyle \\epsilon } ã¯åŸã»ã©ç»å Žããèªé»ç(ããã§ããã€)ãšåŒã°ããç©ç宿°ã§ãããèªé»çã¯ãäž¡é»è·ã®åšå²ã«ããç©äœã®çš®é¡ã«ããå€åãã宿°ã§ãããèªé»çã«ã€ããŠã¯ããã®æãåããŠèªãã æ®µéã§ã¯ããŸã ç¥ããªããŠãè¯ããã®ã¡ã«ç©çIIã§èªé»çã詳ãã解説ããã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "èªé»ç ε {\\displaystyle \\epsilon } ãšã¯ãŒãã³ã®æ¯äŸå®æ°kã«ã¯äžåŒã®é¢ä¿",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "ãããã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "ç©äœã®ãŸããã«èç©ããããã®ãé»è·ãšåŒã¶ã黿°åã«ãã£ãŠåçºããã£ãããåŒãã€ããã£ããããç©äœãé»è·ãæã€ç©äœãšåŒã¶ããŸããããã§èгå¯ãããé黿°åããã¯ãŒãã³åãšåŒã¶ããšãããã 2åã®é»è·ã©ããããããŒãåã¯åãã§ããããããã£ãŠäœçšã»åäœçšã®æ³åã«åŸã£ãŠããã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "ããã§ãé»è·ã®åäœã¯[C]ã§äžãããããèšå·ã®Cã¯ãã¯ãŒãã³ããšèªãã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "å³ã®ããã«ã2æ¬ã®ç³žã«ãããããåã質ém[kg]ã§ãåã笊å·ãšå€§ããã®é»è·q[C]ã®çããã¶ãããã£ãŠããããã¯ãã¯ãŒãã³åã§åçºããã®ã§ãå³ã®ããã«ã糞ãè§åºŠÎžããªãã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "ãã®ãšãã質émã«ããéåãšãé»è·qã«ããã¯ãŒãã³åãšã®é¢ä¿ã«ã€ããŠãåŒãç«ãŠãããªããå¿
èŠãªãã°ã糞ã®åŒµåã¯T[N]ãšããããšã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "è§£æ³",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "å³ã®ãããªäœçœ®é¢ä¿ã«ãªãã®ã§ãå³ã®ããã«åŒãç«ãŠãã°ããã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "â» äžèšã®2æ¬ã®ç³žã«ã¶ãããã£ãçã®ã¯ãŒãã³åã®äŸé¡ã¯ã黿°ç£æ°åŠã®ã©ã®å
¥éæžã«ããããããªå
žåçãªåé¡ã§ããã®ã§ãèªè
ã¯ãã¡ããšçè§£ããããšã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "é»è· q 1 {\\displaystyle q_{1}} , q 2 {\\displaystyle q_{2}} ã®éã®è·é¢ãrã®å Žåãš2rã®å Žåã§ã¯ãéã«åãåã®å€§ããã¯ã©ã¡ããã©ãã ã倧ãããçããã ãŸããè·é¢ã2rã®æã®2ç¹éã®åã®å€§ãããçããã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "ã¯ãŒãã³åã¯ãç©äœéã®è·é¢ã®é2ä¹ã«æ¯äŸããã®ã§ãè·é¢ã2rã®æã¯ãrã®æã®å€§ããã® 1 4 {\\displaystyle {\\frac {1}{4}}} ãšãªãããŸããåãåã®å€§ããã¯ãã¯ãŒãã³åã®åŒãçšããŠã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "ãšãªãã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "æ¢ã«ãããé»è·Aã®ãŸããã®å¥ã®é»è·Bã«ã¯ããã®é»è·ããã®è·é¢ã®é2ä¹ã«æ¯äŸããåããããããšãè¿°ã¹ãã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ããã§ãé»è·Bãåããåã¯ããã®é»è·Bã®å€§ããã«æ¯äŸããããšãåãããŠèãããšããã®é»è·Bã®å€§ããã«ããããããé»è·Aã®å€§ããã ãã§æ±ºãŸãéãå°å
¥ããŠãããšéœåããããããã§ããã®ãããªéãšããŠé»å Ž(ã§ãã°)ãå°å
¥ããããã®ãšããé»å Ž E â {\\displaystyle {\\vec {E}}} ã®äžã«ããé»è· q {\\displaystyle q} ã«åãå F â {\\displaystyle {\\vec {F}}} ã¯ã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ã§äžãããããé»å Žã¯åäœé»è·ã«åãåãšèããããšãã§ããé»å Žã®åäœã¯[N/C]ã§ããããé»å Žãã¯ããé»çã(ã§ããã)ãšãåŒã°ããã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "(æ¥æ¬ã®ç©çåŠã§ã¯ãé»å ŽããšåŒã¶ããšãå€ãããŸããæ¥æ¬ã®é»æ°å·¥åŠã§ã¯ãé»çããšåŒã°ããããšãå€ããææ²»æã®ç¿»èš³ã®éã®ãæ¥æ¬åœå
ã®æ¥çããšã®éãã«éããããããªãæ¥æ¬ããŒã«ã«ãªéœåã§ãããåŒã³æ¹ã¯ç©çã®æ¬è³ªãšã¯é¢ä¿ãªãã®ã§ãããã§ã¯ãã©ã¡ãã®è¡šçŸãçšãããã¯ãæ¬æžã§ã¯ç¹ã«ãã ãããªããè±èªã§ã¯ç©çåŠã»é»æ°å·¥åŠãšãâelectric fieldâã§å
±éããŠããã)",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "äžã®ã¯ãŒãã³åã®çµæãšåããããšãé»è·Aã®ãŸããã«å¥ã®é»è·ãååšããªããšããé»è· q {\\displaystyle q} [C]ã®é»è·ããŸãšãé»å Ž E â {\\displaystyle {\\vec {E}}} ã¯ã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "ã§äžããããããã ããrã¯é»è·ããã®è·é¢ã§ããã e â r {\\displaystyle {\\vec {e}}_{r}} ã¯ãé»è·ãšããç¹ãçµãã çŽç·äžã§ãé»è·ãšå察æ¹åãåããåäœãã¯ãã«ã§ããã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "é»è·ã®åãã®é»å Žã¯ãå¹³é¢äžã§æŸå°ç¶ã®ãã¯ãã«ãšãªãããšã«æ³šæã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "é»å Žã¯ãã¯ãã«ã§ãããé»è·ã2åãããšãã¯ãããããã®é»è·ãã€ããé»å Žããéãåãããã°ããã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "ã§ããã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "é»è·ã3å以äžã®ãšãããåæ§ã«éãåãããã°è¯ãã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "å³ã®ããã«ãé»è·ããåºãé»å Žã®æ¹åãå³ç€ºãããã®ã黿°åç·(ã§ãããããããelectric line of force)ãšããã é»è·ãè€æ°ããå Žåã«ã¯ãå®éã«æ°ãã«çœ®ãããé»è·ãåããåã¯ãããããè¶³ãåããããã®ãšãªãããããã£ãŠãè€æ°ã®é»è·ãããå Žåã®åšå²ã®é»çã¯ãããããã®é»è·ãäœãé»çãã¯ãã«ã®åãšãªã(éãåããã®åç)ã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "黿°åç·ãå³ç€ºããå Žåã¯ãæ£é»è·ããåç·ãåºãŠãè² é»è·ã§åç·ãåžåãããããã«æžããåç·ã¯ãé»å Žãå³ç€ºãããã®ãªã®ã§ãé»è·ä»¥å€ã®å Žæã§ã¯ãåç·ãåå²ããããšã¯ãªãã åç·ãçæããã®ã¯æ£é»è·ã®å Žæã®ã¿ã§ãããåç·ãæ¶æ»
ããã®ã¯ãè² é»è·ã®å Žæã®ã¿ã§ããã èšãæããã°ãåç·ãé»è·ä»¥å€ã®å Žæã§æ¶æ»
ããããšã¯ãªãããé»è·ä»¥å€ã®å Žæã§åç·ãçæããããšã¯ãªãã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "å°äœã®å
éšã®é»å Žã¯ãŒãã§ãã£ããèšãæããã°ã黿°åç·ã¯ãå°äœã®å
éšã«ã¯é²å
¥ã§ããªãã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "ç¹é»è·ããã¯ãå³ã®ããã«ãæŸå°ç¶ã«é»æ°åç·ãåºããã¯ãŒãã³ã®æ³åã®ä¿æ°ã«ãã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "ã®ãã¡ã®ãåæ¯ã® 4 Ï r 2 {\\displaystyle 4\\pi r^{2}} ã¯ãçã®è¡šé¢ç©ã®å
¬åŒã«çããã®ã§ã黿°åç·ã®å¯åºŠã«æ¯äŸããŠãé»å Žã®åŒ·ããããã¯é黿°åã®åŒ·ããæ±ºãŸããšèããããã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "éé»èªå°ã§ã¯ãå°äœå
éšã«ã¯é黿°åãåããŠããªãã®ã§ãã£ããããã¯ãé»å ŽãšããæŠå¿µãçšããŠèšãæããã°ãå°äœå
éšã®é»å Žã¯ãŒãã§ããããšèšããã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "ã¯ãŒãã³åã¯å(ã¡ãã)ã§ãããããããã«éãã£ãŠå¥ã®é»è·ãè¿ã¥ããå Žåã¯ãè¿ã¥ããå¥ã®é»è·ã¯ä»äºãããããšã«ãªãããŸããè¿ã¥ããé»è·ãææŸãã°ãã¯ãŒãã³åã«ãã£ãŠåãåããä»äºãããããšã«ãªããããè¿ã¥ããç¶æ
ã«ããå¥é»è·ã¯äœçœ®ãšãã«ã®ãŒãèããŠããããšã«ãªãã ãããã£ãŠãã¯ãŒãã³åã«å¯ŸããŠãäœçœ®ãšãã«ã®ãŒãå®çŸ©ããããšãã§ããã(ãªããè¡æè»éäžã®ç©äœã®ãããªãå°è¡šãã倧ããé¢ããå Žæã®éåããã¯ãŒãã³åãšåæ§ã«é2ä¹åãªã®ã§ãããã§èããèšç®ææ³ã¯éåã«ããäœçœ®ãšãã«ã®ãŒã«ãå¿çšã§ãããéåå é床gãçšããåmgãšããã®ã¯å°è¡šè¿ãã§ã®è¿äŒŒã«ãããªãã)",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "ã¯ãŒãã³åã«ããé»å Žã®å®çŸ©ã§ã¯ãåäœé»è·ã«å¯ŸããŠé»å Žãå®çŸ©ããã®ãšåæ§ãäœçœ®ãšãã«ã®ãŒã«å¯ŸããŠããåäœé»è·ã«å¿ããŠå®çŸ©ã§ããéãå°å
¥ãããšéœåãããããã®ãããªéãé»äœ(ã§ãããelectric potential)ãšåŒã¶ãé»äœã®åäœã¯ãã«ããšãããé»äœãäŸãããšãå°è¡šè¿ãã§ã®éåã®äœçœ®ãšãã«ã®ãŒãèããéã®ãghããªã©ã«çžåœããéã§ããã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "ã¯ãŒãã³åã®çµæãšã q {\\displaystyle q} [C]ã®é»è·ããè·é¢rã ãé¢ããç¹ã®é»äœVã¯ãé»å Žã®ç©åèšç®ã§åŸãããã(ç©åããŸã ç¿ã£ãŠãªãåŠå¹Žã®èªè
ã¯ãåãããªããŠãæ°ã«ãããæ¬¡ã®çµæãžãšé²ãã§ãã ããã)çµæã®ã¿ãèšããšã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "ãšãªãã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "é»äœVã®ç¹ã«q[C]ã®é»è·ã眮ãããšãããã®é»è·ã®ã¯ãŒãã³åã«ããäœçœ®ãšãã«ã®ãŒU[J]ã¯ãé»äœVãçšããã°ã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "ãšãªãããããã£ãŠãé»äœ V 1 {\\displaystyle V_{1}} ãã«ãã®ç¹ããé»äœ V 2 {\\displaystyle V_{2}} ãã«ãã®äœçœ®ãžãšé»è·q[C]ãé黿°åãåããŠç§»åãããšããé黿°åã®ããä»äºW[J]ã¯",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "ãšãªãã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "ãã£ãœããäžæ§ãªé»å Žã«ãããŠã¯ãé»äœã®åŒããé»å ŽãçšããŠç°¡åã«è¡šãããšãã§ãããè·é¢dã ãé¢ããå¹³è¡å¹³æ¿é»æ¥µã®éã«äžæ§ãªé»å Ž E â {\\displaystyle {\\vec {E}}} ãçããŠãããšãããã®é»çã®äžã«çœ®ããé»è·qã¯é黿°å q E â {\\displaystyle q{\\vec {E}}} ãåããããã®é»è·ãé»çã®åãã«æ²¿ã£ãŠäžæ¹ã®é»æ¥µãã仿¹ã®é»æ¥µãŸã§ç§»åãããšããé»çã®ããä»äºW㯠W = q E d {\\displaystyle W=qEd} ãšãªããããããã2極æ¿ã®é»äœå·®Vã¯ã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "ã§è¡šãããšãã§ããããšãããããåŒãå€åœ¢ããŠ",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "ãšããããšãã§ãããããã§ãåäœãèãããšãå³èŸºã¯é»å§ãè·é¢ã§å²ã£ããã®ã§ãããããé»çã®åäœãšããŠ[N/C]ã®ã»ã[V/m]ãçšããããšãã§ããããšããããã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "é»äœã®åäœã¯ãã«ãã§ããããã®éã¯æ¢ã«äžåŠæ ¡çç§ãªã©ã§æ±ã£ãé»å§(ã§ããã€ãvoltage)ã®åäœãšåãåäœã§ãããå®éã«é»æ°åè·¯ã«é»å§ããããããšã¯ãåè·¯äžã®é»åã«é»å ŽããããŠåããããšãšçããã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "éé»èªå°ã«ãã£ãŠãå°äœå
éšã®é»å Žã¯ãŒãã§ãã£ãããã®ããšãããå°äœã®è¡šé¢ã¯ãé»äœãçãããå°äœè¡šé¢ã¯äºãã«çé»äœã§ããã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "é»äœã®åºæºã¯ãå®çšäžã¯ãå°é¢ã®é»äœããŒãã«çœ®ãããšãå€ãã黿°åè·¯ã®äžéšã倧å°ã«ã€ãªãããšãæ¥å°(ãã£ã¡)ãŸãã¯ã¢ãŒã¹(earth)ãšãããåè·¯ãã¢ãŒã¹ããŠããã®ã€ãªãã éšåã®é»äœããŒããšèŠãªãããšãå€ãã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "çŽç·äžã§è·é¢0, b[m]ã®ç¹ã«ãé»è·q, q'ãæã€ç©äœã眮ããŠããããã®æãäœçœ®a[m](a<b)ã®ç¹ã®é»äœãæ±ããã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "é»äœã®åŒãçšããã°ãããé»è·ãè€æ°ãããšãã«ã¯ãé»äœã¯ããããã®é»è·ãã€ããåºãé»è·ã®åã«ãªãããšã«æ³šæãçãã¯ã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "ãšãªãã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "å°äœè¡šé¢ã¯çé»äœãªã®ã§ããã£ãŠã黿°åç·ã¯å°äœè¡šé¢ã«åçŽã§ããã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "ãã®ããšããã黿°åç·ãšé»å Žã¯åçŽã§ããã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "é»å Žãéãåãããããããã«ãé»äœãéãåãããããããªããªãé»äœãšã¯ãé»å ŽãèããŠãçµè·¯ã«ãŠç©åãããã®ã§ããããã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "åŠæ ¡ã®ãã¹ããªã©ã§ã¯ãé»äœã®èšç®ã®ãããã¯ãŒãã³åã®æ¹åã®åéããªã©ã«ããèšç®ãã¹ãªã©ããµãããããé»å Žãæ±ããŠããããããç©åããŠãé»äœãæ±ããã®ããèšç®äžã¯å®å
šã§ããã",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "",
"title": "é»å Žãšç£å Ž"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "ã³ã³ãã³ãµãŒ(è±:capacitor ,ããã£ãã·ã¿ããšèªã)ã¯ãå³ã®ããã«ã2æã®é»æ¥µãåãããããåè·¯äžã«é»è·ãèç©ã§ããéšåãäžããçŽ åã§ããã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "ã³ã³ãã³ãµãŒã«é»è·ãèããããšãå
é»(ãã
ãã§ã)ãšãããã³ã³ãã³ãµãŒããé»è·ãæŸåºãããããšãæŸé»ãšããã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "ã³ã³ãã³ãµã®äž¡ç«¯ã«ããé»äœVãäžãããããšããã³ã³ãã³ãµã«ã¯ãé»äœã«æ¯äŸããé»è·Qãèç©ãããããã®ãšããã³ã³ãã³ãµã®èç©èœåãèšå·ã§ C ãšãããŠã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "ãšããŠCãåããCã¯éé»å®¹é(ããã§ãããããããelectric capacitance)ãšåŒã°ããåäœã¯F(ãã¡ã©ããfarad)ã§äžããããã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "1ãã¡ã©ãã¯å®çšäžã¯å€§ããããã®ã§ã10ãã¡ã©ããåäœã«ãã1pF(ãã³ãã¡ã©ã)ãã10ãã¡ã©ããåäœã«ãã1ÎŒF(ãã€ã¯ããã¡ã©ã)ã䜿ãããããšãå€ãã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "極æ¿ãå¹³è¡ãªã³ã³ãã³ãµãŒãå¹³è¡æ¿ã³ã³ãã³ãµãŒãšããã å¹³è¡æ¿ã³ã³ãã³ãµãŒã®ã極æ¿ã©ããã®é»å Žã¯ãäžæ§ãªé»å Žã§ããã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "ãã®å¹³è¡æ¿ã³ã³ãã³ãµãŒã®éé»å®¹éCã®åŒã¯ãåŸè¿°ããçç±ã«ããã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "ã§äžãããããããã§ãSã¯å°äœå¹³é¢ã®é¢ç©ã§ãããdã¯å°äœéã®è·é¢ã§ããã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "å®éšçã«ãããã®éé»å®¹éã®å
¬åŒã¯ãæ£ããããšã確ãããããŠããã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "ããã§äžããéé»å®¹éã¯ãå¹³é¢äžã«é»è·ãäžæ§ã«ååžãããšã®ä»®å®ã§å°ãããããã®ãšããå°äœéã«çããé»çEã¯ãå°äœãæã€é»è·ãQ, -Qãšããæã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 104,
"tag": "p",
"text": "ãŸããæ¥µæ¿ã®é»è·å¯åºŠããæ¥µæ¿ã®ã©ãã§ãäžå®ã ãšä»®å®ããŠ(ãã®ããã«ã¯ãã³ã³ãã³ãµãŒã®åºã(ã€ãŸãé¢ç©)ãããã
ãã¶ãã«åºããšä»®å®ããå¿
èŠãããããšãããããã®ãããªä»®å®ã«ãããé»è·å¯åºŠã¯)ã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 105,
"tag": "p",
"text": "ã§ããã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 106,
"tag": "p",
"text": "黿°åç·ã®æ§è³ªãšããŠããã©ã¹ã®é»è·ããçããŠãã€ãã¹ã®é»è·ã§åžåãããã®ã§ããã£ãŠå¹³è¡æ¿ã³ã³ãã³ãµãŒéã®é»æ°åç·ã®ååžã¯ãå³ã®ããã«ã黿°åç·ãããã©ã¹æ¥µæ¿ããåçŽã«ããã€ãã¹æ¥µæ¿ãžåãã£ãŠé»æ°åç·ãåºãŠããããŠãã€ãã¹æ¥µæ¿ã«é»æ°åç·ãåžåãããã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 107,
"tag": "p",
"text": "é»å Žã¯ãå°äœéã®åç¹ã§ã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 108,
"tag": "p",
"text": "ã§äžãããããé»å Žãæ±ããããã®ã§ãããããé»äœãèšç®ã§ãããå°äœéã®åç¹ã§é»å Žã®å€§ãããåäžãªã®ã§ãé»äœã®å€§ããã¯é»å Žã®å€§ããã«2ç¹éã®è·é¢ãããããã®ã«ãªããããã§ãé»äœVã¯ã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 109,
"tag": "p",
"text": "ãšãªããããã®åŒãšéé»å®¹éCã®å®çŸ©ãèŠæ¯ã¹ããšã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 110,
"tag": "p",
"text": "ãåŸãããã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 111,
"tag": "p",
"text": "",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 112,
"tag": "p",
"text": "黿± ã®ååŠåå¿ã«ã€ããŠã¯ãå¥ç§ç®ã®ååŠIãªã©ã§è©³ããæ±ãããããã®ç« ã§ã¯ãé»å§ã黿µã®çè§£ã«é¢ããç¹ãéç¹çã«èª¬æãããã",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 113,
"tag": "p",
"text": "éå±å
çŽ ã®åäœãæ°ŽãŸãã¯æ°Žæº¶æ¶²ã«å
¥ãããšãã®ãéœã€ãªã³ã®ãªãããããã€ãªã³ååŸå(ionization tendency)ãšããã äŸãšããŠãäºéZnãåžå¡©é
žHClã®æ°Žæº¶æ¶²ã«å
¥ãããšãäºéZnã¯æº¶ãããŸãäºéã¯é»åã倱ã£ãŠZnã«ãªãã",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 114,
"tag": "p",
"text": "äžæ¹ãéAgãåžå¡©é
žã«å
¥ããŠãåå¿ã¯èµ·ãããªãã",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 115,
"tag": "p",
"text": "ãã®ããã«éå±ã®ã€ãªã³ååŸåã®å€§ããã¯ãç©è³ªããšã«å€§ãããç°ãªãã",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 116,
"tag": "p",
"text": "äºçš®é¡ã®éå±åäœãé»è§£è³ªæ°Žæº¶æ¶²ã«å
¥ãããšé»æ± ãã§ãããããã¯ã€ãªã³ååŸå(åäœã®éå±ã®ååãæ°ŽãŸãã¯æ°Žæº¶æ¶²äžã§é»åãæŸåºããŠéœã€ãªã³ã«ãªãæ§è³ª)ã倧ããéå±ãé»åãæŸåºããŠéœã€ãªã³ãšãªã£ãŠæº¶ããã€ãªã³ååŸåã®å°ããéå±ãæåºããããã§ããã",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 117,
"tag": "p",
"text": "ã€ãªã³ååŸåã®å€§ããæ¹ã®éå±ãè² æ¥µ(ãµããã)ãšãããã€ãªã³ååŸåã®å°ããæ¹ã®éå±ãæ£æ¥µ(ããããã)ãšããã ã€ãªã³ååŸåã®å€§ããéå±ã®ã»ãããéœã€ãªã³ã«ãªã£ãŠæº¶ãåºãçµæãé屿¿ã«ã¯é»åãå€ãèç©ããã®ã§ãäž¡æ¹ã®é屿¿ãé
ç·ã§ã€ãªãã°ãã€ãªã³ååŸåã®å€§ããæ¹ããå°ããæ¹ã«é»åã¯æµãããã黿µãã§ã¯ç¡ãããé»åããšãã£ãŠãããšã«æ³šæãé»åã¯è² é»è·ã§ããã®ã§ã黿µã®æµããšé»åã®æµãã¯ãéåãã«ãªãã",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 118,
"tag": "p",
"text": "ããŸããŸãªæº¶æ¶²ãéå±ã®çµã¿åããã§ãã€ãªã³ååŸåã®æ¯èŒã®å®éšãè¡ã£ãçµæãã€ãªã³ååŸåã®å€§ãããæ±ºå®ãããã å·Šããé ã«ãã€ãªã³ååŸåã®å€§ããéå±ã䞊ã¹ããšã以äžã®ããã«ãªãã",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 119,
"tag": "p",
"text": "éå±ããã€ãªã³ååŸåã®å€§ããã®é ã«äžŠã¹ããã®ãéå±ã®ã€ãªã³ååãšããã æ°ŽçŽ ã¯éå±ã§ã¯ç¡ããæ¯èŒã®ãããã€ãªã³ååŸåã«å ããããã éå±ååã¯ãäžèšã®ä»ã«ããããã髿 ¡ååŠã§ã¯äžèšã®éå±ã®ã¿ã®ã€ãªã³ååãçšããããšãå€ãã ã€ãªã³ååã®èšæ¶ã®ããã®èªååãããšããŠã",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 120,
"tag": "p",
"text": "ã貞ããããªããŸããããŠã«ããªãã²ã©ãããåéãã",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 121,
"tag": "p",
"text": "ãªã©ã®ãããªèªååããããããã¡ãªã¿ã«ãã®èªååããã®å Žåã",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 122,
"tag": "p",
"text": "ãKã ãã ãCa ãªNaããŸMg ãAlããZn ãŠFe ã«Ni ã ãªPbãã²H2 ã©Cu ãHg ãAg ã åéPt,Auãã",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 123,
"tag": "p",
"text": "ãšå¯Ÿå¿ããŠããã",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 124,
"tag": "p",
"text": "è² æ¥µ(äºéæ¿)ã§ã®åå¿",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 125,
"tag": "p",
"text": "æ£æ¥µ(é
æ¿)ã§ã®åå¿",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 126,
"tag": "p",
"text": "ãã«ã¿ã®é»æ± ã§ã¯ãåŸããã䞡極éã®é»äœå·®(ãé»å§ããšãããã)ã¯ã1.1ãã«ãã§ããã(ãã«ãã®åäœã¯Vãªã®ã§ã1.1Vãšãæžãã)ãã®äž¡æ¥µæ¿ã®é»äœå·®ãèµ·é»åãšãããèµ·é»åã¯ãäž¡é»æ¥µã®éå±ã®çµã¿åããã«ãã£ãŠæ±ºãŸãç©è³ªåºæã§ããã",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 127,
"tag": "p",
"text": "èµ·é»åã®åäœã®ãã«ãã¯ãé黿°åã®é»äœã®åäœã®ãã«ããšåãåäœã§ããã黿°åè·¯ã®é»å§ã®ãã«ããšããèµ·é»åã®åäœã®ãã«ãã¯åãåäœã§ããã",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 128,
"tag": "p",
"text": "ãã«ã¿é»æ± ã®æ§é ã以äžã®ãããªæååã«è¡šããå Žåããã®ãããªè¡šç€ºã黿± å³ãããã¯é»æ± åŒãšããã",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 129,
"tag": "p",
"text": "aqã¯æ°Žã®ããšã§ãããH2SO4aqãšæžããŠãç¡«é
žæ°Žæº¶æ¶²ã衚ããŠããã",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 130,
"tag": "p",
"text": "ç©çåŠã®é»æ°åè·¯ã®ç ç©¶ã§ã¯ããã®ãããªé»æ± ãªã©ã®çŸè±¡ã®çºèŠãšçºæã«ãã£ãŠãå®å®ãªçŽæµé»æºãå®éšçã«åŸãããããã«ãªããçŽæµé»æ°åè·¯ã®æ£ç¢ºãªå®éšãå¯èœã«ãªã£ãã黿± ã®çºæä»¥åã«ãããã©ã³ã¹äººã®ç©çåŠè
ã¯ãŒãã³ãªã©ã«ããé黿°ã«ãã黿°ååŠã®ç ç©¶ãªã©ã«ãã£ãŠãé»äœå·®ã®æŠå¿µãé»è·ã®æŠå¿µã¯ãã£ããã ãããã®æä»£ã®é»æºã¯ãäž»ã«é黿°ã«ãããã®ã ã£ãã®ã§ãå®å®é»æºã§ã¯ç¡ãã£ãã",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 131,
"tag": "p",
"text": "ãããŠã黿± ã«ããå®å®ãªé»æºã®çºæã¯ãåæã«å®å®ãªé»æµã®çºæã§ããã£ãããã®ãããªé»æ± ã®çºæãªã©ã«ãããçŽæµé»æ°åè·¯ã®ç ç©¶ãªã©ããããã€ã人ã®ç©çåŠè
ãªãŒã ããããŸããŸãªå°äœã«é»æµãæµãå®éšãšçè«ç ç©¶ãè¡ãããšã«ããã黿°åè·¯ã®çè«ã®ãªãŒã ã®æ³å(ãªãŒã ã®ã»ããããOhm's law)ãçºèŠãããã",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 132,
"tag": "p",
"text": "ãã€ã¯ãªãŒã ã¯é»æ± ã§ã¯ãªãç±é»å¯Ÿ(ãã€ã§ãã€ã)ãšãããã®ã䜿ã£ãŠã黿°åè·¯ã«å®å®ãã黿µããªããç ç©¶ããããåœæã®é»æ± ã§ã¯ãèµ·é»åããã ãã«æžã£ãŠããŸãããªãŒã ã¯åœåã¯é»æ± ã§å®éšããããããŸãå®å®é»æµãåŸãããªãã£ãã",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 133,
"tag": "p",
"text": "ç±é»å¯Ÿãšã¯ããŸãç°ãªãé屿æã®2æ¬ã®éå±ç·ãæ¥ç¶ããŠ1ã€ã®åè·¯ãã€ããã2ã€ã®æ¥ç¹ã«æž©åºŠå·®ãäžãããšãåè·¯ã«é»å§ãçºçãããã黿µãæµãã(ãã®çŸè±¡ãããŒãŒããã¯å¹æãšãã)ããã®çŸè±¡ãããã¯ã1821幎ã«ãŒãŒããã¯ãçºèŠããããã®ãããªåè·¯ããç±é»å¯Ÿã§ããããªããåã2æ¬ã®éå±ç·ã§ã¯ã枩床差ãäžããŠãé»å§ã¯çºçããã黿µã¯æµããªãã",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 134,
"tag": "p",
"text": "ãªãŒã ã¯ããã«ãªã³å€§åŠææããã±ã³ãã«ãã®å©èšã«ãã£ãŠããã®ç±é»å¯Ÿãå®éšã«å©çšãããæž©åºŠãå®å®ãããã®ã¯ãåœæã®æè¡ã§ãæ¯èŒçç°¡åã§ãã£ãã®ã§ãããããŠãªãŒã ã¯å®å®é»æµããã¡ããå®éšãã§ããã®ã§ããã",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 135,
"tag": "p",
"text": "",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 136,
"tag": "p",
"text": "ãªãŒã ã®æ³å(Ohm's law)ãšã¯ã",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 137,
"tag": "p",
"text": "ãã»ãšãã©ã®å°äœã§ã¯ã黿µ I ãæµããŠããå°äœäžã®2ç¹ã®ç¹ P 1 {\\displaystyle P_{1}} ãšç¹ P 2 {\\displaystyle P_{2}} éã®é»äœå·® E = E 1 â E 2 {\\displaystyle E=E_{1}-E_{2}} ã¯ã黿µ I ã«æ¯äŸãããã",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 138,
"tag": "p",
"text": "ãšããå®éšæ³åã§ããã 誀解ããããããããªãŒã ã®æ³åã¯ããã®ãããªå®éšæ³åã§ãã£ãŠãã¹ã€ã«æµæã®å®çŸ©åŒã§ã¯ç¡ããåæ§ã«ããªãŒã ã®æ³åã¯ãã¹ã€ã«é»å§ã®å®çŸ©åŒã§ã¯ç¡ããã黿µã®å®çŸ©åŒã§ãç¡ããäžåŠæ ¡ã®çç§ã§ã®é»æ°åè·¯ã®æè²ã§ã¯ãéå±ã®é»æ°åè§£ã®èµ·é»åã®æè²ãŸã§ã¯ããªãã®ã§ããšãããã°ãé»å§ã誀解ããŠããé»å§ã¯ãåãªã黿µã®æ¯äŸéã§ãæµæã¯ãã®æ¯äŸä¿æ°ãã®ãããªèª€è§£ããå Žåãæããããããã®è§£éã¯æããã«èª€è§£ã§ããã ãŸããåå°äœãªã©ã®äžéšã®ææã§ã¯ã黿µãå¢ãææã®æž©åºŠãäžæãããšæµæãäžããçŸè±¡ãç¥ãããŠããã®ã§ãåå°äœã§ã¯ãªãŒã ã®æ³åãæãç«ããªãå Žåãããããªã®ã§ããªãŒã ã®æ³åãå®çŸ©åŒãšèããã®ã¯äžåçã§ããã",
"title": "黿± ã®ä»çµã¿"
},
{
"paragraph_id": 139,
"tag": "p",
"text": "å°ç·ãªã©ã®å°äœå
ã®é»æ°ã®æµãã黿µ(ã§ããã
ããelectric current)ãšããã黿µã®åŒ·ãã¯ã¢ã³ãã¢ãšããåäœã§è¡šãã1ã¢ã³ãã¢ã®å®çŸ©ã¯æ¬¡ã®éãã§ããã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 140,
"tag": "p",
"text": "1ç§éã«1ã¯ãŒãã³(èšå·C)ã®é»æµãééããããšã1ã¢ã³ãã¢ãšããã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 141,
"tag": "p",
"text": "ã¢ã³ãã¢ã®èšå·ã¯Aã§ããããŸãã黿µã¯ãåäœæéãããã®é»è·ã®éééã§ãããã®ã§ã黿µã®åäœã[C/s]ãšæžãå Žåãããã äžè¬çã«ã¯ã黿µã®åäœã¯ããªãã¹ã[A]ã§è¡šèšããããšãå€ãã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 142,
"tag": "p",
"text": "黿µI[A]ãšæét[S]ã§å°ç·æé¢ãééããé»è·Q[C]ã®é¢ä¿ãåŒã§è¡šããšã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 143,
"tag": "p",
"text": "ã§ããã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 144,
"tag": "p",
"text": "黿µã®åãã®åãæ¹ã«ã€ããŠã¯ãèªç±é»åã¯è² é»è·ãæã£ãŠãããããèªç±é»åã®åããšã¯å察åãã«é»æµã®åãããšãããšã«æ³šæããã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 145,
"tag": "p",
"text": "次ã«é»æµãšèªç±é»åã®é床ãšã®é¢ä¿ãèããã èªç±é»åã®é»è·ã®çµ¶å¯Ÿå€ãeãšãããšãèªç±é»åã¯è² é»è·ã§ãããããèªç±é»åã®é»è·ã¯ãã€ãã¹ç¬Šå·ãã€ã-eã§ããã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 146,
"tag": "p",
"text": "ãã€ã人ã®ç©çåŠè
ãªãŒã ã¯æ¬¡ã®ãããªæ³åãçºèŠããã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 147,
"tag": "p",
"text": "ãã»ãšãã©ã®å°äœã§ã¯ã黿µ I ãæµããŠããå°äœäžã®2ç¹ã®ç¹ P 1 {\\displaystyle P_{1}} ãšç¹ P 2 {\\displaystyle P_{2}} éã®é»äœå·® E = E 1 â E 2 {\\displaystyle E=E_{1}-E_{2}} ã¯ã黿µ I ã«æ¯äŸãããã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 148,
"tag": "p",
"text": "ãã®å®éšæ³åããªãŒã ã®æ³å(Ohm's law)ãšããã åŒã§è¡šããšãé»äœå·®ãVãšããŠã黿µãIãšããå Žåã«ãæ¯äŸä¿æ°ãRãšããŠã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 149,
"tag": "p",
"text": "ã§ããã ããã§ãé»äœãšé»æµã®æ¯äŸä¿æ°Rã黿°æµæãããã¯åã«æµæ(resistanceãã¬ãžã¹ã¿ã³ã¹)ãšããã 黿°æµæã®åäœã¯ãªãŒã ãšèšããèšå·ã¯Î©ã§è¡šãã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 150,
"tag": "p",
"text": "æ
£ç¿çã«ãæµæã®èšå·ã¯Rã§ããããå Žåãå€ãã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 151,
"tag": "p",
"text": "黿°åè·¯ãžãšãã«ã®ãŒãäŸçµŠãã黿ºãšããŠå®é»å§ã®çŽæµé»æºãèãããåè·¯ã®2å°ç¹éã«ããäžå®ã®é»å§ãäŸçµŠãç¶ãããã®ã§ãããé»å§æºã®åè·¯å³èšå·ãšããŠã¯ãçšãããããèšå·ã®é·ãåŽãæ£æ¥µã§ããããã©ã¹ã®é»äœã§ãããèšå·ã®çãåŽã¯è² 極ã§ããã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 152,
"tag": "p",
"text": "ä¹Ÿé»æ± ã¯ãçŽæµé»æºãšããŠåãæ±ã£ãŠè¯ãã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 153,
"tag": "p",
"text": "ãªãããããã¯çŽæµé»æºã§ããã亀æµã®å Žåã¯äžè¬åããé»å§æºãšããŠã®èšå·ãçšããããŸãç¹ã«æ£åŒŠæ³¢äº€æµé»å§æºã§ããã°ã®èšå·ãçšããã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 154,
"tag": "p",
"text": "æµæåš(resistor)ã¯ãéåžžã¯åã«æµæãšåŒã°ããåè·¯çŽ åã§ãããäžãããã黿°ãšãã«ã®ãŒãåçŽã«æ¶è²»ããçŽ åã§ãããåè·¯å³èšå·ã¯ãããã¯ã§ããããæ¬æžã§ã¯ãäž¡è
ãšãæµæã®åè·¯å³èšå·ãšããŠçšããããšã«ããã(ç»åçŽ æã®ç¢ºä¿ã®éœåã®ãããäž¡æ¹ã®èšå·ãæ¬æžã§ã¯æ··åšããŸããã容赊ãã ããã)",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 155,
"tag": "p",
"text": "æ¥æ¬ã§ã¯ãæµæåšã®å³èšå·ã¯ãåŸæ¥ã¯JIS C 0301(1952幎4æå¶å®)ã«åºã¥ããã®ã¶ã®ã¶ã®ç·ç¶ã®å³èšå·ã§å³ç€ºãããŠããããçŸåšã®ãåœéèŠæ Œã®IEC 60617ãå
ã«äœæãããJIS C 0617(1997-1999幎å¶å®)ã§ã¯ã®ã¶ã®ã¶åã®å³èšå·ã¯ç€ºãããªããªããé·æ¹åœ¢ã®ç®±ç¶ã®å³èšå·ã§å³ç€ºããããšã«ãªã£ãŠãããæ§èŠæ Œã§ããJIS C 0301ã¯ãæ°èŠæ ŒJIS C 0617ã®å¶å®ã«äŒŽã£ãŠå»æ¢ããããããæ§èšå·ã§æµæåšãå³ç€ºããå³é¢ã¯ãçŸåšã§ã¯JISéæºæ ãªå³é¢ã«ãªã£ãŠããŸããããããææåã¯ç¡ããããçŸåšãåŸæ¥ã®å³èšå·ãå€çšãããŠããã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 156,
"tag": "p",
"text": "",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 157,
"tag": "p",
"text": "è€æ°ã®åè·¯çŽ åã1ã€ã®ç·äžã«é
眮ãããŠãããããªæ¥ç¶ãçŽåæ¥ç¶ãšãããè€æ°ã®åè·¯çŽ åãäºè¡ã«åãããããã«é
眮ãããŠããæ¥ç¶ãäžŠåæ¥ç¶ãšããã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 158,
"tag": "p",
"text": "çŽåæ¥ç¶ã«ãããŠã¯ãããããã®åè·¯çŽ åã«æµãã黿µã¯å
šãŠçãããäžæ¹ãäžŠåæ¥ç¶ã«ãããŠã¯ããããã®åè·¯çŽ åã®äž¡ç«¯ã«ãããé»å§ãå
šãŠçããã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 159,
"tag": "p",
"text": "ãŸããçŽåæ¥ç¶ã«ãããŠã¯ããããã®åè·¯çŽ åã«ãããé»å§ã®åãå
šé»å§ãšãªããäžŠåæ¥ç¶ã«ãããŠã¯ããããã®åè·¯çŽ åãæµãã黿µã®åãå
šé»æµãšãªãã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 160,
"tag": "p",
"text": "æµæãè€æ°æ¥ç¶ãããŠããå Žåããã®è€æ°ã®æµæããŸãšããŠãããã1ã€ã®æµæãæ¥ç¶ãããŠãããã®ãããªç䟡çãªåè·¯ãèããããšãã§ãããè€æ°ã®æµæãšç䟡ãª1ã€ã®æµæãåææµæãšããã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 161,
"tag": "p",
"text": "æµæãnåçŽåã«æ¥ç¶ãããŠããå Žåãèãããæµæ R 1 , R 2 , ⯠, R n {\\displaystyle R_{1},R_{2},\\cdots ,R_{n}} ãçŽåã«æ¥ç¶ãããŠããå Žåãåæµæãæµãã黿µã¯çããããããiãšãããåæµæ R k ( k = 1 , 2 , ⯠, n ) {\\displaystyle R_{k}(k=1,2,\\cdots ,n)} ã«ãããé»å§ã v k {\\displaystyle v_{k}} ãšãããšããªãŒã ã®æ³åãã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 162,
"tag": "p",
"text": "ãæãç«ã€ããã®ãšãçŽåæµæã®äž¡ç«¯ã®é»å§vã¯ã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 163,
"tag": "p",
"text": "ã§ããããããšçäŸ¡ãªæµæRã1ã€ã ãæ¥ç¶ãããŠãããããªç䟡åè·¯ãèãããšãã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 164,
"tag": "p",
"text": "ãæãç«ã€ããããããã£ãŠãããã®nåã®çŽåæµæã®åææµæRãšããŠ",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 165,
"tag": "p",
"text": "ãåŸããããªãã¡ãçŽååææµæã¯åæµæã®ç·åãšãªãã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 166,
"tag": "p",
"text": "åæ§ã«ãæµæãnå䞊åã«æ¥ç¶ãããŠããå Žåãèãããæµæ R 1 , R 2 , ⯠, R n {\\displaystyle R_{1},R_{2},\\cdots ,R_{n}} ã䞊åã«æ¥ç¶ãããŠããå Žåãåæµæã®äž¡ç«¯ã®é»å§ã¯çããããããvãšãããåæµæ R k ( k = 1 , 2 , ⯠, n ) {\\displaystyle R_{k}(k=1,2,\\cdots ,n)} ãæµãã黿µã i k {\\displaystyle i_{k}} ãšãããšããªãŒã ã®æ³åãã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 167,
"tag": "p",
"text": "ãæãç«ã€ããã®ãšãäžŠåæµæãžæµã蟌ã黿µiã¯ã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 168,
"tag": "p",
"text": "ã§ããããããšçäŸ¡ãªæµæRã1ã€ã ãæ¥ç¶ãããŠãããããªç䟡åè·¯ãèãããšãã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 169,
"tag": "p",
"text": "ãæãç«ã€ããããããã£ãŠãããã®nåã®äžŠåæµæã®åææµæRãšããŠ",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 170,
"tag": "p",
"text": "ãåŸããããªãã¡ã䞊ååææµæã®éæ°ã¯åæµæã®éæ°ã®ç·åãšãªãã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 171,
"tag": "p",
"text": "æµæRã黿µIãæµãããšãããã®éšåã®çºç±ã®ãšãã«ã®ãŒã¯ã1ç§ãããã«RI[J/s]ã§ãããããããžã¥ãŒã«ç±ãšãããååã®ç±æ¥ã¯ç©çåŠè
ã®ãžã¥ãŒã«ã調ã¹ãããã§ããããªãŒã ã®æ³åãããV=RIã§ãããã®ã§ããžã¥ãŒã«ç±ã¯VIãšãæžããã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 172,
"tag": "p",
"text": "ããã§ãã²ãšãŸããç±ã®èå¯ã«ã¯é¢ããŠã次ã®éãå®çŸ©ããã黿°åè·¯ã®ãã2ç¹éãæµãã黿µIãšããã®2ç¹éã®é»å§Vãšã®ç©VIãé»å(power)ãšå®çŸ©ãããé»åã®èšå·ã¯Pã§è¡šããããããšãå€ãã é»åã®åäœã®ãžã¥ãŒã«æ¯ç§[J/s]ã[W]ãšããåäœã§è¡šãããã®åäœWã¯ã¯ãã(Watt)ãšèªãã ã€ãŸãé»åã¯èšå·ã§",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 173,
"tag": "p",
"text": "ã§ããã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 174,
"tag": "p",
"text": "å°ç·ã®å€ªããé·ãã«ãã£ãŠæµæã®å€§ããã¯å€ãããçŽæçã«å€ªãã»ããæµããããã®ã¯åããã ãããããã«äžŠåæ¥ç¶ãšå¯Ÿå¿ãããŠããå°ç·ã倪ãã»ããæµããããã®ã¯åããã ããã å®éã«é»æ°æµæã¯ãå°ç·ã倪ãã«åæ¯äŸããŠå°ãããªãããšãå®éšçã«ç¢ºèªãããŠãããããã§ãã€ãã®ãããªåŒã«ãããŠã¿ããã æµæãR[Ω]ãšããå Žåãå°ç·ã®å€ªããé¢ç©ã§è¡šãA[m]ãšããã°ãæ¯äŸå®æ°ã«kãçšããã°ã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 175,
"tag": "p",
"text": "ã§ããã( âã¯ãæ¯äŸé¢ä¿ãè¡šãæ°åŠèšå·ã)",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 176,
"tag": "p",
"text": "ããã«ãå°ç·ã¯æè³ªã倪ããåããªãã°ãå°ç·ãé·ãã»ã©æµæããé·ãã«æ¯äŸããŠæµæã倧ãããªãããšãã確èªãããŠãããããã§ãããã«ãæµæäœã®é·ããèæ
®ããåŒã«è¡šããŠã¿ãã°ã次ã®ããã«ãªããæµæåž¯ã®é·ããl[m]ãšããã°",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 177,
"tag": "p",
"text": "ã§ããã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 178,
"tag": "p",
"text": "ããã«ãå°ç·ã®æè³ªã«ãã£ãŠãæµæã®å€§ããã¯å€ãããåãé·ãã§åã倪ãã®æµæã§ããæè³ªã«ãã£ãŠæµæã®å€§ããã¯ç°ãªããããã§ãæè³ªããšã®æ¯äŸå®æ°ãÏãšããã°ãæµæã®åŒã¯ä»¥äžã®åŒã§èšè¿°ãããã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 179,
"tag": "p",
"text": "Ïã¯æµæç(ãŠããããã€ãresistivity)ãšåŒã°ãããæµæçã®åäœã¯[Ωm]ã§ããã",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 180,
"tag": "p",
"text": "",
"title": "黿µãšé»æ°åè·¯"
},
{
"paragraph_id": 181,
"tag": "p",
"text": "ç£ç³ã®ãŸããã«ã¯å¥ã®ç£ç³ãåããåã®ããšãšãªããã®ãçããŠããã ãããç£å Ž(ãã°ãmagnetic field)ãããã¯ç£ç(ããã)ãšåŒã¶ã(æ¥æ¬ã®ç©çåŠã§ã¯ç£å ŽãšåŒã¶ããšãå€ãããŸããæ¥æ¬ã®é»æ°å·¥åŠã§ã¯ç£çãšåŒã°ããããšãå€ããææ²»æã®èš³èªã®éã®ãæ¥æ¬åœå
ã®æ¥çããšã®éãã«éãããå°å瀟äŒçãªäºè±¡ã§ãããåŒã³æ¹ã¯ç©çã®æ¬è³ªãšã¯é¢ä¿ãªãã®ã§ãããã§ã¯ãã©ã¡ãã®è¡šçŸãçšãããã¯ãæ¬æžã§ã¯ç¹ã«ãã ãããªããè±èªã§ã¯ç©çåŠã»é»æ°å·¥åŠãšãâmagnetic fieldâã§å
±éããŠããã)",
"title": "ç£å"
},
{
"paragraph_id": 182,
"tag": "p",
"text": "éãã³ãã«ããããã±ã«ã«ç£ç³ãè¿ã¥ãããšãç£ç³ã«åžãä»ããããã ãŸããéãã³ãã«ããããã±ã«ã«åŒ·ãç£åãäžãããšãéãã³ãã«ããããã±ã«ãã®ãã®ãç£å Žãåšå²ã«åãŒãããã«ãªãã ãã®ãããªãããšããšã¯ç£å Žãæããªãã£ãç©äœãã匷ãç£å Žãåããããšã«ãã£ãŠç£å ŽãåãŒãããã«ãªãçŸè±¡ãç£å(ãããmagnetization)ãšããã ãããã¯é»è·ã®éé»èªå°ãšå¯Ÿå¿ãããŠãç£åã®ããšãç£æ°èªå°(ããããã©ããmagnetic induction)ãšãããã ãããŠãéãã³ãã«ããããã±ã«ã®ããã«ãç£ç³ã«åŒãä»ããããããã«ç£åãããèœåãããç©äœãåŒ·ç£æ§äœ(ãããããããããferromagnet)ãšããã éãšã³ãã«ããšããã±ã«ã¯åŒ·ç£æ§äœã§ããã",
"title": "ç£å"
},
{
"paragraph_id": 183,
"tag": "p",
"text": "é
ã¯ç£åããªãããé
ã¯ç£ç³ã«åŒãã€ããããªãã®ã§ãé
ã¯åŒ·ç£æ§äœã§ã¯ãªãã",
"title": "ç£å"
},
{
"paragraph_id": 184,
"tag": "p",
"text": "éé»èªå°ãå©çšãããéé»é®èœ(ããã§ããããžã)ãšèšããããäžç©ºã®å°äœãã€ãã£ãŠç©è³ªãå²ãããšã§å€éšé»å Žãé®èœããæ¹æ³ããã£ãã®ãšåæ§ã®ãç£æ°ã®é®èœããåŒ·ç£æ§äœã§ãåºæ¥ããäžç©ºã®åŒ·ç£æ§äœãçšããŠãåŒ·ç£æ§äœã®å
éšã¯ç£å Žãé®èœã§ããããããç£æ°é®èœ(ãããããžããmagnetic shielding)ãšãããç£æ°ã·ãŒã«ããšãããã",
"title": "ç£å"
},
{
"paragraph_id": 185,
"tag": "p",
"text": "ç£å Žã®åããåããããã«å³ç€ºããããç£ç³ã®äœãç£å Žã®æ¹åã¯ãç ã«å«ãŸããç éã®ç²æ«ãç£ç³ã«ãã¡ãã°ããŠããµããããããšã§èгå¯ã§ããã",
"title": "ç£å"
},
{
"paragraph_id": 186,
"tag": "p",
"text": "ãããå³ç€ºãããšãäžå³ã®ããã«ãªãã(ç»åçŽ æã®ç¢ºä¿ã®éœåäžãåçãšå³ç€ºãšã§ã¯ãN極ãšS極ãéã«ãªã£ãŠããŸããã容赊ãã ããã)",
"title": "ç£å"
},
{
"paragraph_id": 187,
"tag": "p",
"text": "ãã®ãããªç£å Žã®å³ãç£åç·(ãããããããmagnetic line of force)ãšãããç£åç·ã®åãã¯ãç£ç³ã®N極ããç£åç·ãåºãŠãS極ã«ç£åç·ãåžåããããšå®çŸ©ããããæ£ç£ç³ã§ã¯ãç£åã®çºçæºãšãªãå Žæããæ£ç£ç³ã®äž¡ç«¯ã®å
端ä»è¿ã«éäžãããããã§ãæ£ç£ç³ã®äž¡ç«¯ã®å
端ä»è¿ãç£æ¥µ(ãããããmagnetic pole)ãšããã",
"title": "ç£å"
},
{
"paragraph_id": 188,
"tag": "p",
"text": "ãã®ãããªç£ç³ã®ã€ããç£åç·ã®åœ¢ã¯ã黿°åç·ã§ã®ãç°ç¬Šå·ã®é»è·ã©ãããã€ãã黿°åç·ã«äŒŒãŠããã",
"title": "ç£å"
},
{
"paragraph_id": 189,
"tag": "p",
"text": "1ã€ã®æ£ç£ç³ã§ã¯N極(north pole)ã®ç£æ°ã®åŒ·ããšãS極(south pole)ã®ç£æ°ã®åŒ·ãã¯çããããŸããç£ç³ã«ã¯ãå¿
ãN極ãšS極ãšãååšãããN極ãšS極ã®ãã©ã¡ããçæ¹ã ããåãåºãããšã¯åºæ¥ãªããããšãæ£ç£ç³ãåæããŠããåæé¢ã«ç£æ¥µãåºçŸããããã®ãããªçŸè±¡ã®ãããçç±ã¯ãããããæ£ç£ç³ãæ§æããåŒ·ç£æ§äœã®ååã®1åãã€ãå°ããªç£ç³ã§ããããããå°ããªååã®ç£ç³ããããã€ãæŽåããŠã倧ããªæ£ç£ç³ã«ãªã£ãŠããããã§ããã",
"title": "ç£å"
},
{
"paragraph_id": 190,
"tag": "p",
"text": "ä»®æ³çã«ãç£æ¥µãS極ãŸãã¯N極ã®çæ¹ã ãçŸããçŸè±¡ãçè«èšç®ã®ããã«èããããšããããããã®ãããªçåŽã ãã®ç£æ¥µãåç£æ¥µ(ã¢ãããŒã«ãšããã)ãšããããåç£æ¥µã¯å®åšããªãã",
"title": "ç£å"
},
{
"paragraph_id": 191,
"tag": "p",
"text": "æ£ç£ç³ãªã©ããã®ãçåŽã®ç£æ¥µãããã®ãç£æ¥µããã®ç£å Žã®åŒ·ãã®ããšãããã®ãŸãŸãç£æ¥µã®åŒ·ãã(Magnetic charge)ãšåŒã¶ããããã¯ç£è·(ãããmagnetization)ãç£æ°éãšããã",
"title": "ç£å"
},
{
"paragraph_id": 192,
"tag": "p",
"text": "ããããããã®ç£åãšç£å Žã®é¢ä¿ãåŒã§è¡šãããšãèããã ãŸããæ£ç£ç³ã«ã¯ç£æ¥µãäž¡åŽã«2åããã®ã§ãèšç®ãç°¡åã«ããããã«ãæ£ç£ç³ã®äž¡ç«¯ã®è·é¢ã倧ãããå察åŽã®ç£æ¥µã®å€§ãããç¡èŠã§ããç£ç³ãèãããã",
"title": "ç£å"
},
{
"paragraph_id": 193,
"tag": "p",
"text": "ãã®ãããªç£ç³ãçšããŠãå®éšãããšãããæ¬¡ã®æ³åãåãã£ããç£åã®åŒ·ãã¯2åã®ç©äœã®ç£æ°ém1ããã³m2ã«æ¯äŸãã2åã®ç©äœéã®è·é¢rã®2ä¹ã«åæ¯äŸããã åŒã§è¡šããšã",
"title": "ç£å"
},
{
"paragraph_id": 194,
"tag": "p",
"text": "ã§è¡šãããã(kmã¯æ¯äŸå®æ°) ãããçºèŠè
ã®ã¯ãŒãã³ã®åã«ã¡ãªãã§ãç£æ°ã«é¢ããã¯ãŒãã³ã®æ³åãšãããç£æ°émã®åäœã¯ãŠã§ãŒããšãããèšå·ã¯[Wb]ã§è¡šãã",
"title": "ç£å"
},
{
"paragraph_id": 195,
"tag": "p",
"text": "æ¯äŸå®æ°kmãš1ãŠã§ãŒãã®å€§ãããšã®é¢ä¿ã¯ã1ã¡ãŒãã«é¢ãã1wbã©ããã®ç£æ¥µã«ã¯ãããåãçŽ6.33Ã10ãšããŠã æ¯äŸä¿æ°kmã¯ã",
"title": "ç£å"
},
{
"paragraph_id": 196,
"tag": "p",
"text": "ã§ããã",
"title": "ç£å"
},
{
"paragraph_id": 197,
"tag": "p",
"text": "ã€ãŸãã",
"title": "ç£å"
},
{
"paragraph_id": 198,
"tag": "p",
"text": "ã§ããã",
"title": "ç£å"
},
{
"paragraph_id": 199,
"tag": "p",
"text": "é黿°åã«å¯ŸããŠãé»å Žãå®çŸ©ãããããã«ãç£æ°åã«å¯ŸããŠããå Žãå®çŸ©ããããšéœåãè¯ããç£æ°ém1[Wb]ãäœããæ¬¡ã®éãç£å Žã®åŒ·ããããã¯ç£å Žã®å€§ãããšèšããèšå·ã¯Hã§è¡šãã",
"title": "ç£å"
},
{
"paragraph_id": 200,
"tag": "p",
"text": "ç£å Žã®åŒ·ãHã®åäœã¯[N/Wb]ã§ãããHãçšãããšãç£æ°ém2[Wb]ã«ã¯ãããç£æ°åf[N]ã¯ã",
"title": "ç£å"
},
{
"paragraph_id": 201,
"tag": "p",
"text": "ãšè¡šããã",
"title": "ç£å"
},
{
"paragraph_id": 202,
"tag": "p",
"text": "ç©çåŠè
ã®ãšã«ã¹ãããã¯ã黿µã®å®éšãããŠããéã«ãããŸããŸè¿ãã«ãããŠãã£ãæ¹äœç£ç³ãåãã®ã確èªããã圌ã詳ãã調ã¹ãçµæã以äžã®ããšãåãã£ãã",
"title": "黿µãã€ããç£å Ž"
},
{
"paragraph_id": 203,
"tag": "p",
"text": "黿µãæµããŠãããšãã«ã¯ããã®ãŸããã«ã¯ãç£å Žãçãããåãã¯ã黿µã®æ¹åã«å³ãããé²ãããã«ãå³ãããåãåããšåããªã®ã§ããããå³ããã®æ³åãšããã",
"title": "黿µãã€ããç£å Ž"
},
{
"paragraph_id": 204,
"tag": "p",
"text": "ã¢ã³ããŒã«ããç£å Žã®å€§ããã調ã¹ãçµæãç£å Žã®å€§ããHã¯ã黿µI[A]ãçŽç·çã«æµããŠãããšããçŽç·é»æµã®åšãã®ç£å Žã®å€§ããã¯ãå°ç·ããã®è·é¢ãa[m]ãšãããšãç£å Žã®å€§ããH[N/Wb]ã¯ã",
"title": "黿µãã€ããç£å Ž"
},
{
"paragraph_id": 205,
"tag": "p",
"text": "ã§ããããšãç¥ãããŠããã",
"title": "黿µãã€ããç£å Ž"
},
{
"paragraph_id": 206,
"tag": "p",
"text": "ãããã¢ã³ããŒã«ã®æ³å(Ampere's law) ãšããã ç£å Žã®å€§ããHã®åäœã¯ã[N/Wb]ã§ãããããã£ãœãã¢ã³ããŒã«ã®æ³åã®åŒãã¿ãã°ã¢ã³ãã¢æ¯ã¡ãŒãã«[A/m]ã§ãããã",
"title": "黿µãã€ããç£å Ž"
},
{
"paragraph_id": 207,
"tag": "p",
"text": "å°ç·ãã³ã€ã«ç¶ã«å·»ãã°ãã¢ã³ããŒã«ã®æ³åã§å°ç·ã®åšå²ã«çºçããç£å Žãéãªãããããã®ããã«ããç£å Žã匷ããã³ã€ã«ãé»ç£ç³(ã§ããããããelectromagnet)ãšãããå°ç·ã«é»æµãæµããŠãããšãã«ã®ã¿ãé»ç£ç³ã¯ç£å Žãçºçãããå°ç·ã«é»æµãæµãã®ãæ¢ãããšãé»ç£ç³ã®ç£å Žã¯æ¶ããã",
"title": "黿µãã€ããç£å Ž"
},
{
"paragraph_id": 208,
"tag": "p",
"text": "ç£å Žã®å€§ããHã«ã次ã®ç¯ã§æ±ãããŒã¬ã³ãåã®çŸè±¡ã®ãããæ¯äŸä¿æ°ÎŒ(åäœã¯ãã¥ãŒãã³æ¯ã¢ã³ãã¢ã§[N/A])ãæããŠãèšå·Bã§è¡šãã",
"title": "黿µãã€ããç£å Ž"
},
{
"paragraph_id": 209,
"tag": "p",
"text": "ãšããããšãããããã®éBãç£æå¯åºŠ(magnetic flux density)ãšãããç£å Žã®å€§ããHã®åããšç£æå¯åºŠBã®åãã¯åãåãã§ããã ãŸããç£å Žã®å€§ããHãšç£æå¯åºŠBã®æ¯äŸä¿æ°ãéç£ç(ãšãããã€ãmagnetic permeability)ãšããã (ããŒã¬ã³ãåã«é¢ããŠã¯ã詳ããã¯ç©çIIã§æ±ããèªè
ãç©çIãåŠã¶åŠå¹Žãªãã°ãèªè
ã¯ãããŒã¬ã³ãåãšããåãããã®ã ãªã»ã»ã»ããšã§ãæã£ãŠããã°ããã)",
"title": "黿µãã€ããç£å Ž"
},
{
"paragraph_id": 210,
"tag": "p",
"text": "ãŸããå°ç·ãçšæãããšãããããã®å°ç·ã¯ã鿢ããŠãããšããŠã鿢ããŠããããåºå®ã¯ããã«ãããå°ç·ã«åãå ããã°ãå°ç·ãåããããã«ããŠããšãããã",
"title": "ããŒã¬ã³ãå"
},
{
"paragraph_id": 211,
"tag": "p",
"text": "ãã®å°ç·ã«é»æµãæµããã ãã§ã¯ãã¹ã€ã«å°ç·ã¯åããªãããããããã®å°ç·ã«ãå€éšã®ç£ç³ã«ããç£å Žãå ãããšãå°ç·ãåãããã®ãããªãç£å Žãšé»æµã®çžäºäœçšã«ãã£ãŠãå°ç·ã«çããåãããŒã¬ã³ãå(ããŒã¬ã³ãããããè±: Lorentz force)ãšããã",
"title": "ããŒã¬ã³ãå"
},
{
"paragraph_id": 212,
"tag": "p",
"text": "ããŒã¬ã³ãåã®åãã¯ãå°ç·ã®é»æµã®åããšç£å Žã®åãã«åçŽã§ããã黿µIã®åãããç£æå¯åºŠBã®åãã«å³ãããåãåããšåãã§ããã",
"title": "ããŒã¬ã³ãå"
},
{
"paragraph_id": 213,
"tag": "p",
"text": "ãŸããããŒã¬ã³ãåã®å€§ããã¯ãå°ç·ã®é·ãlãšãç£å Žã®å°ç·ãšã®åçŽæ¹åæåã«æ¯äŸããã",
"title": "ããŒã¬ã³ãå"
},
{
"paragraph_id": 214,
"tag": "p",
"text": "ããŒã¬ã³ãåã®å€§ããF[N]ãåŒã§è¡šãã°ã黿µãšç£å ŽãšãåçŽã ãšããŠãç£å ŽãåããŠããå°ç·ã®åœ¢ç¶ãçŽç·åœ¢ã ãšããŠã黿µãI[A]ãšããŠãå°ç·ã®é·ããl[m]ãšããŠãå°ç·ã«ããã£ãŠããå€éšç£å Žã®ç£æå¯åºŠãB[N/(Aã»m)]ãšããã°ã",
"title": "ããŒã¬ã³ãå"
},
{
"paragraph_id": 215,
"tag": "p",
"text": "ã§è¡šããã",
"title": "ããŒã¬ã³ãå"
},
{
"paragraph_id": 216,
"tag": "p",
"text": "ããŒã¬ã³ãåã®å
¬åŒã«ãã¯ãŒãã³ã®æ³åãªã©ã§ã¯èŠããããããªæ¯äŸä¿æ°(ä¿æ°Kãªã©ã)ãå«ãŸããªãã®ã¯ãããããããã®ããŒã¬ã³ãåã®çŸè±¡ãå
ã«ãç£æ°éãŠã§ãŒãWbã®åäœããã³ç£æå¯åºŠBã®åäœããæ±ºå®ãããŠããããã§ããã",
"title": "ããŒã¬ã³ãå"
},
{
"paragraph_id": 217,
"tag": "p",
"text": "ãŸãããç£æå¯åºŠãã®åç§°ãããç£æãã»ãå¯åºŠããšããã®ã¯ãå®ã¯ç£æå¯åºŠã®åäœã®[N/(Aã»m)]ã¯ãåäœãåŒå€åœ¢ãããš[Wb/m]ã§ãããããšãç±æ¥ã§ããããã®åäœ[Wb/m]ãã黿°å·¥åŠè
ã®ãã¹ã©ã®åã«ã¡ãªã¿ãåäœ[Wb/m] ããã¹ã©ãšèšããèšå·Tã§è¡šãã",
"title": "ããŒã¬ã³ãå"
},
{
"paragraph_id": 218,
"tag": "p",
"text": "ãã®ããŒã¬ã³ãåã®çŸè±¡ãã黿°æ©åšã®ã¢ãŒã¿(é»åæ©)ã®åçã§ããã",
"title": "ããŒã¬ã³ãå"
},
{
"paragraph_id": 219,
"tag": "p",
"text": "",
"title": "ããŒã¬ã³ãå"
},
{
"paragraph_id": 220,
"tag": "p",
"text": "ãªããããã¬ãã³ã°ã®æ³åããšããããŒã¬ã³ãåã«é¢ããæ³åãããããããŒã¬ã³ãåã®èšç®ã«ã¯å®çšçã§ã¯ç¡ããããã¬ãã³ã°ã®åãé¢ããç°ãªãæ³åã幟ã€ããã£ãŠçŽããããééãã®åå ã«ãªããããã®ã§ãæ¬æžã§ã¯æããªãã å®éã«ãå°éçãªç©çèšç®ã§ã¯ããã¬ãã³ã°ã®æ³åã¯ãèšç®ã«ã¯çšããªãã",
"title": "ããŒã¬ã³ãå"
},
{
"paragraph_id": 221,
"tag": "p",
"text": "ãããããã¬ãã³ã°ã®æ³åã«ã¯ããã¬ãã³ã°ã®å³æã®æ³åããšããããšã¯ç°ãªãããã¬ãã³ã°ã®å·Šæã®æ³åãããããã©ã¡ãããã©ã®ç£æ°ã®çŸè±¡ã«çšããæ³åã ã£ãã®ããééãããããã ãããæ¬æžã§ã¯æããªãã",
"title": "ããŒã¬ã³ãå"
},
{
"paragraph_id": 222,
"tag": "p",
"text": "(é»ç£èªå°ã«é¢ããŠã¯ã詳ããã¯ç©çIIã§æ±ãã)",
"title": "é»ç£èªå°"
},
{
"paragraph_id": 223,
"tag": "p",
"text": "ã¢ã³ããŒã«ã®æ³åã§ã¯ã黿µã®åšãã«ç£å Žãã§ããã®ã§ãã£ãã",
"title": "é»ç£èªå°"
},
{
"paragraph_id": 224,
"tag": "p",
"text": "å®ã¯ãç£ç³ãåãããªã©ããŠãç£å Žã䌎ãç©äœãéåãããšããã®ãŸããã«ã¯é»å Žãçããã ä»®ã«ãã³ã€ã«ã®è¿ãã§ãããè¡ãªã£ããšãããšãçããé»å Žã«ãã£ãŠã³ã€ã«ã®äžã«ã¯é»æµãæµããã çããé»å Žã®å€§ããã¯ã",
"title": "é»ç£èªå°"
},
{
"paragraph_id": 225,
"tag": "p",
"text": "ãšãªãã(ååŸaã®å圢ã®ã³ã€ã«ã®å Žåã) Eã®åäœã¯[V/m]ã§ãããBã®åäœã¯[T]ã§ããã",
"title": "é»ç£èªå°"
},
{
"paragraph_id": 226,
"tag": "p",
"text": "ãã®çŸè±¡ãé»ç£èªå°(ã§ããããã©ããelectromagnetic induction)ãšãããé»ç£èªå°ã«ãã£ãŠçºçãã黿µãèªå°é»æµãšããã",
"title": "é»ç£èªå°"
},
{
"paragraph_id": 227,
"tag": "p",
"text": "ãŸããèªå°é»æµã®åãã¯ãç£ç³ã®åãã«ãããã³ã€ã«ã®äžãéãç£æã®å€åã劚ããåãã«ã黿µãæµããã(èªå°é»æµãã¢ã³ããŒã«ã®æ³åã«åŸããåšå²ã«ç£å Žãäœãã) ãã®èªå°é»æµããã³ã€ã«ã®äžãéãç£æã®å€åã劚ããåãã«èªå°é»æµãæµããçŸè±¡ãã¬ã³ãã®æ³å(Lenz's law)ãšããã",
"title": "é»ç£èªå°"
},
{
"paragraph_id": 228,
"tag": "p",
"text": "",
"title": "é»ç£èªå°"
},
{
"paragraph_id": 229,
"tag": "p",
"text": "åãé åã«Nåå·»ãããã³ã€ã«ã眮ãããå Žåããã¡ã©ããŒã®é»ç£èªå°ã®æ³åã¯ã次ã®ããã«ãªãã",
"title": "é»ç£èªå°"
},
{
"paragraph_id": 230,
"tag": "p",
"text": "ããã§ã E {\\displaystyle {\\mathcal {E}}} ã¯èµ·é»å(ãã«ã ãèšå·ã¯V)ãΊB ã¯ç£æ(ãŠã§ãŒããèšå·ã¯Wb)ãšãããNã¯é»ç·ã®å·»æ°ãšããã",
"title": "é»ç£èªå°"
},
{
"paragraph_id": 231,
"tag": "p",
"text": "ãã®é»ç£èªå°ã®çŸè±¡ããç«åçºé»ãæ°Žåçºé»ãªã©ã®çºé»æ©ã®åçã§ãããããçã®çºé»ã§ã¯ãæ°žä¹
ç£ç³ãå転ãããããšã§ãçºé»ãããŠãããç«åãæ°Žåãšããã®ã¯ãæ©åšã®å転ãåŸãææ®µã«ãããªãããŸããçºé»æã®çºé»ã«ã¯ãæ°žä¹
ç£ç³ã®å転ãå©çšããŠãããããçºçããé»å§ã黿µã¯åšæçãªæ³¢åœ¢ã«ãªããæ¬¡ã«èª¬æããäº€æµæ³¢åœ¢ã«ãªãã",
"title": "é»ç£èªå°"
},
{
"paragraph_id": 232,
"tag": "p",
"text": "åè·¯ãžã®å
¥åé»å§ãåšæçã«æéå€åããåè·¯ã®é»å§ããã³é»æµã亀æµ(alternating current)ãšãããããã«å¯Ÿããä¹Ÿé»æ± ãªã©ã«ãã£ãŠçºçããé»å§ã黿µã®ããã«ãæéã«ãããäžå®ãªé»å§ã黿µã¯çŽæµ(direct Current)ãšããã",
"title": "亀æµåè·¯"
},
{
"paragraph_id": 233,
"tag": "p",
"text": "äº€æµæ³¢åœ¢ãäœç§ã§1åšããããšããæéãåšæ(wave period)ãšãããåšæã®èšå·ã¯ T {\\displaystyle T} ã§è¡šãåäœã¯ç§[s]ã§ããã",
"title": "亀æµåè·¯"
},
{
"paragraph_id": 234,
"tag": "p",
"text": "1ç§éã«æ³¢åœ¢ãäœåšããããšããåæ°ãåšæ³¢æ°ãããã¯æ¯åæ°(è±èªã¯ããšãã«frequency)ãšããã 黿°ã®æ¥çã§ã¯åšæ³¢æ°ãšããçšèªãçšããããšãå€ããç©çã®æ³¢ã®çè«ã§ã¯æ¯åæ°ãšãã衚çŸãçšããããšãå€ãã",
"title": "亀æµåè·¯"
},
{
"paragraph_id": 235,
"tag": "p",
"text": "åšæ³¢æ°ã®åäœã¯[1/s]ã§ããããããããã«ã(hertz)ãšããåäœã§è¡šããåäœèšå·HzãçšããŠåšæ³¢æ°fããf[Hz]ãšãããµãã«è¡šãã",
"title": "亀æµåè·¯"
},
{
"paragraph_id": 236,
"tag": "p",
"text": "亀æµé»æµã亀æµé»å§ãæ£åŒŠæ³¢ã®å Žåã¯ããããã®ãã©ã¡ãŒã¿ãçšããŠ",
"title": "亀æµåè·¯"
},
{
"paragraph_id": 237,
"tag": "p",
"text": "ãšæžãããšãã§ããã sinãšã¯äžè§é¢æ°ã§ãããç¥ããªããã°æ°åŠIIãªã©ãåèã«ããã ãã®ãšãã®sinã®ä¿æ° I 0 {\\displaystyle I_{0}} ã V 0 {\\displaystyle V_{0}} ãæ¯å¹
(ããã·ããamplitude)ãšããããŸãæå»t=0ã«ããã黿µãé»å§ã®å€ã瀺ããæéæ³¢åœ¢ãæ±ºå®ãã Ξ i {\\displaystyle \\theta _{i}} ã Ξ v {\\displaystyle \\theta _{v}} ãåæäœçžãšããã",
"title": "亀æµåè·¯"
},
{
"paragraph_id": 238,
"tag": "p",
"text": "æ®éç§é«æ ¡ã®é«æ ¡ç©çã§ã¯ãäº€æµæ³¢åœ¢ã®èšç®ã«ã¯ãæ£åŒŠæ³¢ã®å Žåãäž»ã«æ±ããæ¹åœ¢æ³¢ãäžè§æ³¢ã®èšç®ã¯ãæ®éã¯æ±ãããªãã ãã ããå·¥æ¥é«æ ¡ã®ææ¥ããå·¥å Žã®å®åã§ã¯æ±ãããšãããã®ã§ãèªè
ã¯æ³¢åœ¢ãåŠãã§ããããšã",
"title": "亀æµåè·¯"
},
{
"paragraph_id": 239,
"tag": "p",
"text": "çºé»æããäžè¬å®¶åºã«éãããŠããé»å§ã¯äº€æµé»å§ã§ãããæ±æ¥æ¬ã§ã¯50Hzã§ãããè¥¿æ¥æ¬ã§ã¯60Hzã§ãããããã¯ææ²»æä»£ã®çºé»æ©ã®èŒžå
¥æã«ãæ±æ¥æ¬ã®äºæ¥è
ã¯ãšãŒããããã50Hzçšã®çºé»æ©ã茞å
¥ããè¥¿æ¥æ¬ã®äºæ¥è
ã¯ã¢ã¡ãªã«ãã60Hzã®çºé»æ©ã茞å
¥ããããšã«ããã",
"title": "亀æµåè·¯"
},
{
"paragraph_id": 240,
"tag": "p",
"text": "çºé»æããäžè¬ã®å®¶åºãªã©ã«éããã黿µã®åšæ³¢æ°ãåçšåšæ³¢æ°ãšããã",
"title": "亀æµåè·¯"
},
{
"paragraph_id": 241,
"tag": "p",
"text": "åçšé»æºã®é»å§æ¯å¹
ã¯çŽ140Vã§ããããã㯠100 à 2 {\\displaystyle 100\\times {\\sqrt {2}}} [V]ã§ããã",
"title": "亀æµåè·¯"
},
{
"paragraph_id": 242,
"tag": "p",
"text": "ãããã«ããšã¯1000Hzã®ããšã§ããããããã«ãã¯kHzãšæžãã",
"title": "亀æµåè·¯"
},
{
"paragraph_id": 243,
"tag": "p",
"text": "亀æµé»æµã«å¯ŸããŠã¯ã黿µãšåãæ¯åæ°ã§ãã¢ã³ããŒã«ã®æ³åã§çºçããç£å Žãæ¯åããã",
"title": "亀æµåè·¯"
},
{
"paragraph_id": 244,
"tag": "p",
"text": "å°ç·ã§ã€ããããã³ã€ã«ã¯ãçŽæµé»æµã§ã¯ããã ã®å°ç·ãšããŠã¯ãããããããã亀æµé»æµã«å¯ŸããŠã¯ãé»ç£èªå°ã«ããèªå·±ã®çºçãããç£å Žã劚ãããããªé»æµããã³èµ·é»åãçºçããããããèªå·±èªå°(self induction)ãšããã",
"title": "亀æµåè·¯"
},
{
"paragraph_id": 245,
"tag": "p",
"text": "èªå·±èªå°ã«ããèµ·é»åã®å€§ããã¯ã黿µã®æéå€åçã«æ¯äŸãããèªå·±èªå°ã®èµ·é»åãåŒã§æžãã°ãæ¯äŸä¿æ°ãLãšããŠã",
"title": "亀æµåè·¯"
},
{
"paragraph_id": 246,
"tag": "p",
"text": "ã§ããã ãã®æ¯äŸä¿æ° L {\\displaystyle L} ãèªå·±ã€ã³ãã¯ã¿ã³ã¹(self inductance)ãšãããèªå·±ã€ã³ãã¯ã¿ã³ã¹ã®æ¬¡å
ã¯[Vã»S/m]ã ããããããã³ãªãŒãšããåäœã§è¡šããåäœã«Hãšããèšå·ãçšããã",
"title": "亀æµåè·¯"
},
{
"paragraph_id": 247,
"tag": "p",
"text": "éå¿ã«äºã€ã®ã³ã€ã«ãå·»ããã³ã€ã«ã®çæ¹ã®é»æµãå€åããããšãã¢ã³ããŒã«ã®æ³åã«ãã£ãŠçããŠããç£æãå€åãããããå察åŽã®ã³ã€ã«ã«ã¯ããã®ç£æå¯åºŠã®å€åãæã¡æ¶ããããªåãã«èµ·é»åãçºçããããã®çŸè±¡ãçžäºèªå°(mutual induction)ãšèšãã",
"title": "亀æµåè·¯"
},
{
"paragraph_id": 248,
"tag": "p",
"text": "é»å§ãå
¥åãããåŽã®ã³ã€ã«ã1次ã³ã€ã«(primaly coil)ãšèšããèªå°èµ·é»åãçºçãããåŽã®ã³ã€ã«ã2次ã³ã€ã«(secondary coil)ãšããã",
"title": "亀æµåè·¯"
},
{
"paragraph_id": 249,
"tag": "p",
"text": "çžäºèªå°ã«ããèµ·é»åã®å€§ããã¯ã黿µã®æéå€åçã«æ¯äŸãããçžäºèªå°ã®èµ·é»åãåŒã§æžãã°ãæ¯äŸä¿æ°ãMãšããŠã(çžäºèªå°ã®æ¯äŸä¿æ°ã¯Lã§ã¯ç¡ãã)åŒã¯ã",
"title": "亀æµåè·¯"
},
{
"paragraph_id": 250,
"tag": "p",
"text": "ã§ããã ãã®æ¯äŸä¿æ° M {\\displaystyle M} ãçžäºã€ã³ãã¯ã¿ã³ã¹(self inductance)ãšãããçžäºã€ã³ãã¯ã¿ã³ã¹ã®æ¬¡å
ã¯ãèªå·±ã€ã³ãã¯ã¿ã³ã¹ã®åäœãšåãã§ãã³ãªãŒ(H)ã§ããã",
"title": "亀æµåè·¯"
},
{
"paragraph_id": 251,
"tag": "p",
"text": "ãã®çžäºã€ã³ãã¯ã¿ã³ã¹ã®å€§ããã¯ãäž¡æ¹ã®ã³ã€ã«ã®å·»ãæ°ã©ããã®ç©ã«æ¯äŸããã",
"title": "亀æµåè·¯"
},
{
"paragraph_id": 252,
"tag": "p",
"text": "",
"title": "亀æµåè·¯"
},
{
"paragraph_id": 253,
"tag": "p",
"text": "ç£å Žã®åãã«ãã£ãŠé»å ŽãåŒãèµ·ããããããšãé»ç£èªå°ã®ã»ã¯ã·ã§ã³ã§èŠãã å®éã«ã¯é»å Žã®å€åã«ãã£ãŠç£å ŽãåŒãèµ·ããããããšãç¥ãããŠããã ããã«ãã£ãŠäœããªã空éäžãé»å Žãšç£å ŽãäŒæããŠããããšãäºæ³ãããã",
"title": "é»ç£æ³¢"
},
{
"paragraph_id": 254,
"tag": "p",
"text": "é»ç£æ³¢ã®é床ãç©çåŠè
ã®ãã¯ã¹ãŠã§ã«ãèšç®ã§æ±ãããšãããé»ç£æ³¢ã®é床ã¯ãç空äžã§ã¯åžžã«äžå®ã§ããã€æ³¢ã®é床cãèšç®ã§æ±ãããšããã",
"title": "é»ç£æ³¢"
},
{
"paragraph_id": 255,
"tag": "p",
"text": "ãšãªããæ¢ã«ç¥ãããŠããå
éã«äžèŽããã ãã®ããšãããå
ã¯é»ç£æ³¢ã®äžçš®ã§ããããšãåãã£ããç©çIIã§ãé»ç£æ³¢ã®éåºŠãæ±ããèšç®ã¯ã詳ããã¯æ±ãã èªè
ãå
éã®æž¬å®å®éšã«ã€ããŠèª¿ã¹ããªããç©çIã®æ³¢åã«é¢ããããŒãžãªã©ã§ãã£ãŸãŒã®å®éšã«ã€ããŠãåç
§ã®ããšã",
"title": "é»ç£æ³¢"
},
{
"paragraph_id": 256,
"tag": "p",
"text": "æ³¢ã¯æ³¢é·Î»ãé·ãã»ã©ãæ¯åæ°fãå°ãããªããæ³¢ã®æ³¢é·Î»ãšæ¯åæ°fã®ç©fλã¯äžå®ã§ãããã¯æ³¢ã®é床vã«çãããã€ãŸã",
"title": "é»ç£æ³¢"
},
{
"paragraph_id": 257,
"tag": "p",
"text": "ã§ããã é»ç£æ³¢ã®å Žåã¯ãé床ãå
éã®cãªã®ã§",
"title": "é»ç£æ³¢"
},
{
"paragraph_id": 258,
"tag": "p",
"text": "ã§ããã",
"title": "é»ç£æ³¢"
},
{
"paragraph_id": 259,
"tag": "p",
"text": "æŸéçšã®ãã¬ããã©ãžãªã®é»æ³¢(ã§ãã±ãradio wave)ã¯ãé»ç£æ³¢(electromagnetic wave)ã®äžçš®ã§ãããæ³¢é·ã0.1mm以äžã®é»ç£æ³¢ã黿³¢ã«åé¡ãããããªãã黿³¢ã®ãã¡ãæ³¢é·ã1mm~1cmã®ããªã¡ãŒãã«ã®é»æ³¢ãããªæ³¢ãšãããåæ§ã«ãæ³¢é·ã1cm~10cmã®é»æ³¢ãã»ã³ãæ³¢ãšãããæ³¢é·10cm~100cm(=1m)ã®é»æ³¢ã¯UHFãšèšããããã¬ãæŸéãªã©ã«äœ¿ãããUHFæŸéã¯ããã®é»æ³¢ã§ãããæ³¢é·1m~10mã®é»æ³¢ã¯VHFãšèšãããããã¬ãæŸéã®VHFæŸéã¯ããã®é»æ³¢ã§ããã",
"title": "é»ç£æ³¢"
},
{
"paragraph_id": 260,
"tag": "p",
"text": "æ³¢é·ã0.1mm以äžã§ãå¯èŠå
ç·(å¯èŠå
ã®æå€§æ³¢é·ã¯780ããã¡ãŒãã«çšåºŠ)ãããã¯æ³¢é·ãé·ãé»ç£æ³¢ã¯èµ€å€ç·(ãããããããinfrared raysãã€ã³ãã©ã¬ãŒã ã¬ã€ãº)ãšããããèµ€ãã®ãå€ããšããçç±ã¯ãå¯èŠå
ã®æå€§æ³¢é·ã®è²ãèµ€è²ã ããã§ãããèµ€å€ç·ãã®ãã®ã«ã¯è²ã¯ã€ããŠããªããåžè²©ã®èµ€å€ç·ããŒã¿ãŒãªã©ãèµ€è²ã«çºå
ãã補åãããã®ã¯ã䜿çšè
ãåäœç¢ºèªãã§ããããã«ããããã«ã補åã«èµ€è²ã®ã©ã³ãã䜵眮ããŠããããã§ãããèµ€å€ç·ã¯ãç©äœã«åžåããããããåžåã®éãç±ãçºçããã®ã§ãããŒã¿ãŒãªã©ã«å¿çšãããããªãã倪éœå
ã«ãèµ€å€ç·ã¯å«ãŸããã",
"title": "é»ç£æ³¢"
},
{
"paragraph_id": 261,
"tag": "p",
"text": "ããããèµ€å€ç·ãçºèŠãããçµç·¯ã¯ãã€ã®ãªã¹ã®å€©æåŠè
ã®ããŒã·ã§ã«ã倪éœå
ãããªãºã ã§åå
ããéã«ãèµ€è²ã®å
ç·ã®ãšãªãã®ãç®ã«ã¯è²ãèŠããªãéšåãæž©åºŠäžæããŠããããšãçºèŠããããšããçµç·¯ãããã",
"title": "é»ç£æ³¢"
},
{
"paragraph_id": 262,
"tag": "p",
"text": "",
"title": "é»ç£æ³¢"
},
{
"paragraph_id": 263,
"tag": "p",
"text": "æã
ã人éã®ç®ã«èŠããå¯èŠå
ç·(ãããããããvisible light)ã®æ³¢é·ã¯ãçŽ780ããã¡ãŒãã«ããçŽ380ããã¡ãŒãã«ã®çšåºŠã§ãããå¯èŠå
ã®äžã§æ³¢é·ãæãé·ãé åã®è²ã¯èµ€è²ã§ãããå¯èŠå
ã®äžã§æ³¢é·ãæãçãé åã®è²ã¯çŽ«è²ã§ããã",
"title": "é»ç£æ³¢"
},
{
"paragraph_id": 264,
"tag": "p",
"text": "å
ãã®ãã®ã«ã¯ãè²ã¯ã€ããŠããªããæã
ã人éã®è³ããç®ã«å
¥ã£ãå¯èŠå
ããè²ãšããŠæããã®ã§ããã 倪éœå
ãããªãºã ãªã©ã§åå
(ã¶ããã)ãããšãæ³¢é·ããšã«è»è·¡(ããã)ãããããããã®åå
ããå
ç·ã¯ãä»ã®æ³¢é·ãå«ãŸãããã äžçš®ã®æ³¢é·ãªã®ã§ããã®ãããªå
ç·ããã³å
ãåè²å
(monochromatic light)ãšããã ãŸããçœè²ã¯åè²å
ã§ã¯ãªããçœè²å
(white light)ãšã¯ãå
šãŠã®è²ã®å
ãæ··ãã£ãç¶æ
ã§ããã åæ§ã«ãé»è²ãšããåè²å
ããªããé»è²ãšã¯ãå¯èŠå
ãç¡ãç¶æ
ã§ããã",
"title": "é»ç£æ³¢"
},
{
"paragraph_id": 265,
"tag": "p",
"text": "玫å€ç·(ããããããultraviolet rays)ã¯ååŠåå¿ã«åœ±é¿ãäžããäœçšã匷ããæ®ºèæ¶æ¯ãªã©ã«å¿çšãããã倪éœå
ã«ã玫å€ç·ã¯å«ãŸããã人éã®èã®æ¥çŒãã®åå ã¯ã玫å€ç·ãã¡ã©ãã³è²çŽ ãé
žåãããããã§ããã",
"title": "é»ç£æ³¢"
},
{
"paragraph_id": 266,
"tag": "p",
"text": "èµ€å€ç·ã¯å€ªéœå
ã®ããªãºã ã«ããåå
ã§çºèŠãããã ãã§ã¯ãåå
ããã玫è²ã®å
ç·ã®ãšãªãã«ãããªã«ãç®ã«ã¯èŠããªãç·ãããã®ã§ã¯?ããšãããµããªããšãåŠè
ãã¡ã«ãã£ãŠèãããã ãã€ãã®ç©çåŠè
ãªãã¿ãŒã«ããååŠçãªå®é𿹿³ãçšããŠã玫å€ç·ã®ååšãå®èšŒãããã",
"title": "é»ç£æ³¢"
},
{
"paragraph_id": 267,
"tag": "p",
"text": "å»ççšã®ã¬ã³ãã²ã³ãªã©ã®ééåçã§çšããããXç·(X-ray)ãé»ç£æ³¢ã®äžçš®ã§ãããçç©ã®çްèãååã¬ãã«ã§å·ã€ããçºããæ§ãæãã ã¬ã³ãç·(gammaârayãγ ray)ãåæ§ã«ãééåçã«ãå¿çšãããããçç©ã®çްèãååã¬ãã«ã§å·ã€ããçºããæ§ãæãã",
"title": "é»ç£æ³¢"
},
{
"paragraph_id": 268,
"tag": "p",
"text": "??",
"title": "é»ç£æ³¢"
}
] | é«çåŠæ ¡ ç©çåºç€ > 黿° æ¬é
ã¯é«çåŠæ ¡ ç©çåºç€ã®é»æ°ãšç£æ°ã®è§£èª¬ã§ããã | <small>[[é«çåŠæ ¡ ç©çåºç€]] > 黿°</small>
----
æ¬é
ã¯[[é«çåŠæ ¡ ç©çåºç€]]ã®é»æ°ãšç£æ°ã®è§£èª¬ã§ããã
==黿°==
===çæŽ»ã®äžã®é»æ°===
====黿°ãšç掻====
çŸä»£ç€ŸäŒã«ãããŠãç§ãã¡ã®æ¥åžžç掻ã«ã¯é»æ°ãæ¬ ãããªããå€ãã®è£œåã黿°ãçšããŠåäœããŠããããã®çç±ã¯ããŸããŸã ããäž»ãªèŠå ã¯ä»¥äžã®éãã ã
ãŸã第äžã«ã黿°ã¯æ§ã
ãªå¥ã®ãšãã«ã®ãŒåœ¢æ
ã«å€æã§ããããšãæãããããäŸãã°ãé»ç±ç·ã䜿çšããã°é»æ°ãšãã«ã®ãŒãç±ãšãã«ã®ãŒã«å€æããææ¿ã調çãªã©ã«å©çšããããšãã§ããããŸããé»çãçºå
ãã€ãªãŒãïŒLEDïŒã䜿çšããã°ã黿°ãšãã«ã®ãŒãå
ãšãã«ã®ãŒã«å€æããŠç
§æãè¡ãããšãã§ãããããã«ãé»åæ©ã䜿çšããã°ã黿°ãšãã«ã®ãŒãæ©æ¢°çãªéåãšãã«ã®ãŒã«å€æããŠæ§ã
ãªæ©åšãèŒžéææ®µãåããããšãã§ããã
次ã«ã黿± ãã³ã³ãã³ãµã䜿çšããŠãšãã«ã®ãŒã貯èµããæã¡éã¶ããšãã§ããç¹ãéèŠã ãããã«ãããã¢ãã€ã«ããã€ã¹ãæºåž¯é»è©±ãªã©ã黿ºã«æ¥ç¶ãããŠããªãå Žæã§ã黿°ãå©çšããããšãå¯èœãšãªãããŸããé»ç·ã䜿çšããŠé·è·é¢ãéé»ããããšãã§ãããããçºé»æããå®¶åºãå·¥å ŽãŸã§é»æ°ãäŸçµŠããããšãå¯èœã ã
ããã«ãé»å補åã¯èšç®èœåãä¿¡å·ã®äŒéèœåãåªããŠãããæ
å ±æè¡ãéä¿¡åéã§åºãå©çšãããŠããããŸãã黿°ã¯æ¯èŒçã«å®å
šã«åãæ±ãããšãã§ããå°éã®ãšãã«ã®ãŒã§ãå¹ççã«å©çšããããšãã§ããç¹ã倧ããªå©ç¹ã ã
ãã®ããã«ã黿°ã¯ç§ãã¡ã®ç掻ã«ãããŠæ¬ ãããªããšãã«ã®ãŒæºãšãªã£ãŠãããæ§ã
ãªé¢ã§äŸ¿å©ããå¹çæ§ãæäŸããŠããã
====é»åæ©ãšçºé»æ©====
é»åæ©ãšçºé»æ©ã¯ãçŸä»£ã®é»æ°å·¥åŠã«ãããŠéèŠãªåœ¹å²ãæãããŠããããããã®è£
眮ã¯ã黿°ãšãã«ã®ãŒã𿩿¢°çãªéåãšãã«ã®ãŒã®çžäºå€æãå¯èœã«ããããŸããŸãªç£æ¥ãæ¥åžžç掻ã«ãããŠäœ¿çšãããŠããã
;é»åæ©:
:é»åæ©({{Lang-en-short|electric motor}})ã¯é»æ°ãšãã«ã®ãŒãæ©æ¢°çãªéåã«å€æããè£
眮ã ãäžè¬çãªé»åæ©ã¯ãå°ç·ãç£å Žå
ã§åãããšã«ãã£ãŠçºçããåïŒ[[#ããŒã¬ã³ãå|ããŒã¬ã³ãå]]ïŒãå©çšããŠåäœããããã®åçã«åºã¥ããé»åæ©ã¯çŽæµé»åæ©ãšäº€æµé»åæ©ã®äºçš®é¡ã«åãããããçŽæµé»åæ©ã¯çŽæµé»æºããã®é»åã䜿çšãã亀æµé»åæ©ã¯äº€æµé»æºããã®é»åã䜿çšãããé»åæ©ã¯ãå·¥å Žã®æ©æ¢°ãç£æ¥çšæ©åšãå®¶åºçšå®¶é»è£œåãªã©ãããŸããŸãªçšéã«åºã䜿çšãããŠããã
;çºé»æ©:
:çºé»æ©({{Lang-en-short|generator}})ã¯ãéåãšãã«ã®ãŒã黿°ãšãã«ã®ãŒã«å€æããè£
眮ã ãäžè¬çãªçºé»æ©ã¯ãå°ç·ãç£å Žå
ã§åãããšã«ãã£ãŠé»æ°ãçºçããããäž»ã«å転éåãå©çšããŠé»æ°ãçæãããããçºé»æ©ã¯æ©æ¢°çãªãšãã«ã®ãŒã黿°ãšãã«ã®ãŒã«å€æããçºé»æã§åºã䜿çšãããŠãããçºé»æã§ã¯ãããŸããŸãªãšãã«ã®ãŒæºïŒæ°Žåã颚åãç«åãåååãªã©ïŒãå©çšããããããã®éåãšãã«ã®ãŒãçºé»æ©ã«ãã£ãŠé»æ°ãšãã«ã®ãŒã«å€æãããã
äž¡è
ã¯çžäºã«é¢é£ããŠãããé»åæ©ã¯çºé»æ©ãšåæ§ã®åçã§åäœããŸãããéã®ããã»ã¹ãè¡ãããã€ãŸããé»åæ©ã¯é»æ°ãšãã«ã®ãŒãæ©æ¢°çãªéåã«å€æããçºé»æ©ã¯æ©æ¢°çãªéåã黿°ãšãã«ã®ãŒã«å€æããããã®ããã«ãé»åæ©ãšçºé»æ©ã¯çŸä»£ã®ç£æ¥ãçæŽ»ã«ãããŠæ¬ ãããªãè£
眮ã§ããããšãã«ã®ãŒã®å¹ççãªå©çšã«è²¢ç®ããŠããã
====çŽæµã»äº€æµãšé»æ³¢====
çŽæµãšäº€æµã¯é»æ°ã®æµãæ¹ã衚ãçšèªã§ããããŸã黿³¢ã¯é»ç£æ³¢ã®äžçš®ã§ããã以äžã«ããããã®æŠèŠã瀺ãã
; çŽæµ (Direct Current, DC): 黿± ãªã©ã®é»æºããäŸçµŠããã黿µã®ãã¡ã黿¥µã®æ£æ¥µããè² æ¥µãžäžæ¹åã«æµãã黿µãæããçŽæµã¯äžå®ã®é»å§ã𿥵æ§ãæã¡ãäžå®ã®æ¹åã«æµããç¹æ§ãæã€ãçŽæµã®å©ç¹ã¯å®å®æ§ãšå¶åŸ¡ã®å®¹æãã§ããã黿± åŒæ©åšãäžéšã®é»åæ©åšã§äœ¿çšãããã
; äº€æµ (Alternating Current, AC): çºé»æãªã©ã®é»æºããäŸçµŠããã黿µã®ãã¡ã宿çã«æ£è² ãé転ãã黿µãæãã亀æµã¯å®æçã«æ³¢åœ¢ãå€åããããããé»åã®éé»ãå€å§ã倿ã容æã§ãããé·è·é¢éé»ã«é©ããŠããããŸããå®¶åºãå·¥æ¥çšé»æ°åè·¯ã§åºã䜿çšãããŠããã
å®éã«ã¯ãçŽæµãšäº€æµã¯æ©åšãåè·¯ã«ãã£ãŠçžäºå€æãããããšãããã
äŸãã°ããã€ãªãŒãã䜿çšããŠäº€æµãçŽæµã«å€æããæŽæµãè¡ãããã
; 黿³¢ (Electromagnetic Waves)
: 黿³¢ã¯ãé»ç£æ³¢ã®äžçš®ã§ãããé»å Žãšç£å Žãåšæçã«æ¯åããæ³¢åã ã黿³¢ã¯æ§ã
ãªåšæ³¢æ°ãæã¡ãããã«ãã£ãŠç°ãªãç¹æ§ãçšéãããã黿³¢ã¯äž»ã«æŸéãéä¿¡ãç¡ç·éä¿¡ãã¬ãŒããŒãªã©ã®åéã§åºãå©çšãããŠããã
: 黿³¢ã®æ¯åã¯ç©ºéãäŒæããé»ç£æ³¢ãšããŠé²è¡ããã黿³¢ã¯ç空äžã空æ°äžãäŒæãããããå°äœãå¿
èŠãšããªããããã¯ã黿³¢ãé»åã®ç§»åã«äŸåãããé»å Žãšç£å Žã®æ¯åã«ãã£ãŠçããããã ã
: 黿³¢ã¯åšæ³¢æ°ã«ãã£ãŠåé¡ããããäœåšæ³¢æ°ã®é»æ³¢ã¯ãäž»ã«AMã©ãžãªãå°äžæ³¢ãã¬ããªã©ã®æŸéã«äœ¿çšããããäžæ¹ãé«åšæ³¢æ°ã®é»æ³¢ã¯ãFMã©ãžãªãæºåž¯é»è©±ãWi-Fiãè¡æéä¿¡ãªã©ã®éä¿¡ã«äœ¿çšãããããŸããæ¥µè¶
çæ³¢ã®é»æ³¢ã¯ãã¬ãŒããŒããã¯ãæ³¢ãªãŒãã³ãªã©ã«å©çšãããã
: 黿³¢ã¯ãã®ç¹æ§ãããæ
å ±ã®éåä¿¡ãç©äœã®æ¢ç¥ã枬å®ãªã©ã«å¹
åºãå¿çšãããŠããããããŠãçŸä»£ã®éä¿¡æè¡ãç¡ç·æè¡ã®çºå±ã«ãããŠéèŠãªåœ¹å²ãæãããŠããã
== é黿° ==
ãã©ã¹ããã¯ã®äžæ·ããªã©ã§é«ªãããããšåž¯é»ããçŸè±¡ãªã©ã®ããã«ãç©è³ªã黿°ã垯ã³ãããšã'''垯é»'''ïŒããã§ãïŒãšãããç©äœãããã£ãŠçºçãããé黿°ã'''æ©æŠé»æ°'''ãšããã
ã¬ã©ã¹æ£ãçµ¹ã®åžã§ããããšãã¬ã©ã¹æ£ã¯æ£ã®é»æ°ã«åž¯é»ããçµ¹ã¯è² ã®é»æ°ã«åž¯é»ããã
黿°ã®éã'''é»è·'''ïŒã§ãããchargeïŒãšããããããã¯'''黿°é'''ãšããã
é»è·ã®åäœã¯'''ã¯ãŒãã³'''ã§ãããã¯ãŒãã³ã®èšå·ã¯Cã§ããã
é黿°ã«ããé»è·ã©ããã«åãåã'''é黿°å'''ãšããã
ãªãã垯é»ããŠããªãç¶æ
ã黿°çã«äžæ§ã§ããããšããã
éå±ã®ããã«ã黿°ãéããç©äœã'''å°äœ'''ïŒã©ããããconductorïŒãšããããã©ã¹ããã¯ãã¬ã©ã¹ããŽã ã®ããã«é»æ°ãéããªãç©è³ªã'''çµ¶çžäœ'''ïŒãã€ãããããinsulatorïŒãããã¯'''äžå°äœ'''ïŒãµã©ãããïŒãšããã
éå±ã¯å°äœã§ããã
黿°ã®æ£äœã¯'''é»å'''ïŒelectronïŒãšããç²åã§ããããã®é»åã¯è² é»è·ã垯ã³ãŠãããïŒé»åã®é»è·ãè² ã«å®çŸ©ãããŠããã®ã¯ã人é¡ãé»åãçºèŠããåã«é»è·ã®æ£è² ã®å®çŸ©ãè¡ãããããšããé»åãèŠã€ãã£ãéã«é»åã®é»è·ã調ã¹ããè² é»è·ã ã£ãããã§ãããïŒ
[[File:Metalic bond model.svg|thumb|400px|éå±äžã§ã®èªç±é»åã®æš¡åŒå³]]
éå±ãå°äœãªã®ã¯ãéå±äžã®é»åã¯ãããšã®ååãé¢ããŠããã®éå±å
šäœã®äžãèªç±ã«åããããã§ãããéå±äžã®é»åã®ããã«ãç©è³ªäžãèªç±ã«åããç¶æ
ã®é»åãã'''èªç±é»å'''ïŒãããã§ããïŒãšããã
黿µãšã¯ãèªç±é»åãç§»åããããšã§ããã
ãã£ãœããçµ¶çžäœã¯ãèªç±é»åããããªããçµ¶çžäœã®é»åã¯ããã¹ãŠãããšã®ååã«æçžïŒããã°ãïŒãããŠéã蟌ããããŠããŠãèªç±ã«ã¯åããªãã
æ£é»è·ãšã¯ãç©è³ªã«é»åãæ¬ ä¹ããŠããç¶æ
ã§ããã
è² é»è·ãšã¯ãç©è³ªãé»åãå€ãæã£ãŠããç¶æ
ã§ããã
垯é»ããŠããªãçµ¶çžäœã®ç©è³ªããããããããŠãäž¡æ¹ãæ©æŠé»æ°ã«åž¯é»ãããå Žåãçæ¹ã¯æ£é»è·ãçããããçæ¹ã®ç©è³ªã¯è² é»è·ãçããããã®ãšããçºçããæ£é»è·ã®å€§ãããšè² é»è·ã®å€§ããã¯åãã§ããã
ããã¯ãé»åãç§»åããŠãçæ¹ã®ç©è³ªã¯é»åãäžè¶³ããããçæ¹ã¯çéã®é»åãéå°ã«ãªã£ãŠããããã§ããã
ãã®ããã«ãé»åã¯çæãæ¶æ»
ãããªããããã'''é»è·ä¿åå'''ãããã¯'''黿°éä¿åå'''ãšèšãã
=== éé»èªå° ===
[[Image:Electrostatic induction.svg|thumb|upright=1.5|å°äœã¯ãè¿ãã®é»è·ã«ãã£ãŠè¡šé¢ã«é»è·ãèªå°ããããç©äœå
éšã®é黿°åã®å€§ããã¯ãŒãã§ããã]]
黿°çã«äžæ§ã§ãã£ãå°äœã®ç©è³ªïŒä»®ã«ç©è³ªAãšããïŒã«åž¯é»ããå¥ã®ç©è³ªïŒä»®ã«ç©è³ªBãšããïŒãæ¥è§Šãããã«è¿ã¥ãããšãç©è³ªAã«ã¯ã垯é»ç©è³ªBã®é»è·ã«åŒãå¯ããããŠãç©äœAã®å
éšã§å察笊å·ã®é»è·ã垯é»ç©äœBã«è¿ãåŽã®è¡šé¢ã«çããããŸãã垯é»ç©äœBãšåãé»è·ã¯åçºããã®ã§ãç©äœAå
éšã®åž¯é»ç©äœBãšã¯é ãåŽã®è¡šé¢ã«çããã
ãã®ãããªçŸè±¡ã'''éé»èªå°'''ïŒããã§ãããã©ã;Electrostatic inductionïŒãšãããéé»èªå°ã§çããé»è·ã®æ£é»è·ã®éãšè² é»è·ã®éã¯çéã§ãããïŒé»æ°éä¿åã®æ³åïŒ
å°äœã®å
éšã«é黿°åã¯ç¡ãããããã£ããšãããšãèªç±é»åãªã©ã®é»è·ãåãã黿µãæµãç¶ããããšã«ãªããããã®ãããªçŸè±¡ã¯å®åšããªãã®ã§äžåçã«ãªãããããã£ãŠãå°äœã®å
éšã«é黿°åã¯ç¡ãã
衚é¢ã«é»è·ãéãŸãã®ã¯ãå°äœã®å
éšã«é黿°åãäœãããªãããã§ããããããã£ãŠéé»èªå°ã§åŒãå¯ããããé»è·ã®å€§ããã¯ãå€éšããå°äœå
éšãžã®é黿°åãæã¡æ¶ãã ãã®å€§ããã§ããã
ãã®å°äœå
éšã®é»è·ããŒãã«ãªãæ§è³ªãå¿çšãããšãäžç©ºã®å°äœã§åºæ¥ãç©äœãçšããŠãé黿°åãé®èœããããšãã§ããããããéé»é®èœïŒããã§ããããžããelectric shildingïŒãšããã
=== èªé»å極 ===
[[File:Pith ball electroscope operating principle.svg|thumb|300px|èªé»åæ¥µã®æŠå¿µå³]]
çµ¶çžäœïŒä»®ã«AãšããïŒã«é»è·ãè¿ã¥ããå Žåã¯ãå°äœãšã¯éããç©äœAã®å
éšã®é»åã¯èªç±ã«è¡šé¢ã«ã¯éãŸããªãããç©äœå
éšã®ååã®æ£è² ã®é»è·ã®æ¥µæ§ãæã£ãéšåããå€éšã®é黿°åã«åŒãå¯ããããããã«ãè¿ã¥ããé»è·ã«è¿ãåŽã«ã¯ç°çš®ã®é»è·ãçããé ãåŽã«ã¯ãåçš®ã®é»è·ãçããã
ååãååãå€éšã®é黿°åã«ãã£ãŠãæ£è² ã®é»è·ã®éšåãçããããšã'''忥µ'''ïŒã¶ããããïŒãšããããå€éšã®é»åã«ãã£ãŠèµ·ããããã®ãããªå極ã®ãããã'''èªé»å極'''ïŒããã§ãã¶ãããããdielectric polarizationïŒãšããã
çµ¶çžäœã¯ãé黿°åã«ããããããšèªé»å極ãè¡ãã®ã§ãçµ¶çžäœã®ããšã'''èªé»äœ'''ïŒããã§ããããdielectricïŒãšãããã
å°äœã«éé»èªå°ãããæ£è² ã®é»è·ã¯ãå°äœãåæãªã©ãããã°æ£é»è·ãšè² é»è·ãå¥åã«åãåºãããšãã§ããããããèªé»äœã®æ£è² ã®é»è·ã¯ãååãååãšå¯æ¥ã«çµã³ã€ããŠãããããæ£è² ã®é»è·ãåãããŠåãåºãããšã¯åºæ¥ãªãã
{{clear}}
==é»å Žãšç£å Ž==
===é»è·ãšé»å Ž===
====é»è·====
[[Image:Static repulsion.jpg|thumb|ã»ãããŒãã®åãé»è·ã«ããåçº]]
[[Image:Static attraction.jpg|thumb|ã»ãããŒãã®ç°é»è·ããåŒãå¯ã]]
ããç©è³ªã黿°ã垯ã³ãŠããïŒåž¯é»ããŠããïŒãšãããã®åž¯é»ã®å€§å°ã®çšåºŠã'''é»è·'''ïŒã§ãããelectric chargeïŒãšãããããŸããŸãªç©è³ªããããããªæ¹æ³ã§åž¯é»ãããçµæãé»è·ã«ã¯ã垯é»ãã2åã®ãã®ã©ãããè¿ã¥ããæã«åŒã£åŒµãåããã®ïŒåŒåãåãïŒãšåçºããããã®ïŒæ¥åãã¯ãããïŒã®2çš®é¡ãããããšãåãã£ãã
ãã®ãããªã垯é»ããŠããç©äœã«åãåã'''é黿°å'''ãšããã
ã¹ã€ã®åž¯é»ãããã®ããä»ã«ãããã€ãçšæããŠãè¿ã¥ããŠå®éšãã2åã®ç©äœã®çµã¿åãããå€ãããšãçµã¿åããã«ãã£ãŠã2åã®ç©äœã©ããã«åŒåãåãå Žåãããã°ãæ¥åãåãå Žåãããããšãåãã£ãããã®åŒåãšæ¥åã®é¢ä¿ã¯ã垯é»ããé»è·ã®çš®é¡ã«å¿ããããšãããã£ãã
==== æ£é»è·ãšè² é»è· ====
çµè«ãèšããšãé»è·ã«ã¯æ£è² ã®2çš®é¡ããããæ£ã®é»è·ã©ããã®ç©äœãè¿ã¥ãããšãã¯åçºããããè² ã®é»è·ã©ãããè¿ã¥ãããšããåçºããããæ£ãšè² ã®é»è·ãè¿ã¥ããæã«ã¯åŒåãåãã
ã€ãŸããå笊å·ã®é»è·ãè¿ã¥ããå Žåã¯ãåçºåãçãããç°ç¬Šå·ã®é»è·ãè¿ã¥ããå Žåã¯ãåŒåãçããã
{{clear}}
==== é黿°å ====
[[File:Coulomb.jpg|thumb|150px|ã¯ãŒãã³ã®èåãCharles Augustin de Coulomb]]
[[Image:Bcoulomb.png|thumb|left|300px|ã¯ãŒãã³ãé黿°åã®æž¬å®ã«çšããããããèšã]]
[[File:Coulomb torsion.svg|thumb|300px|]]
é黿°ã©ããã®åã®åŒ·ãã¯ãå®éšçã«ã¯ãé»è·ã®éã«åãåã¯ãéåã®å Žåãšåæ§ã«åãåãŒãåã2ç©äœã®éã®è·é¢ã®2ä¹ã«åæ¯äŸããããšãç¥ãããŠãããæŽã«ãé»è·ã®å€§ããã倧ããã»ã©é»è·éã«åãåã倧ããããšãèæ
®ãããšãè·é¢''r''ã ãé¢ããŠãããããé»è·<math>q _1</math>ã<math>q _2</math>ãæã£ãŠãã2ç©äœã®éã«åãå''F''ã¯ã
:<math>
F = k\frac{q_1 q_2}{r^2} = \frac 1 {4\pi\epsilon} \frac {q _1 q _2}{r^2}
</math>
ã§äžãããããããã'''ã¯ãŒãã³ã®æ³å'''ïŒ Coulomb's lawïŒãšãããããã§ã<math>k</math>ã¯æ¯äŸå®æ°ã§ãããäž¡é»è·ã®åšå²ã«ããç©äœã®çš®é¡ã«ããå€åãã宿°ã§ãããç空äžã§ã®é»å Žãèããå Žåã®kã®å€ã¯ã
:<math>k_0 = 9.0 \times 10^9 </math>[Nã»m<sup>2</sup>/C<sup>2</sup>]ïŒã¯ãŒãã³ã®æ¯äŸå®æ°ïŒ
ã§ããããŸãã<math>\epsilon</math>ã¯åŸã»ã©ç»å Žããèªé»çïŒããã§ããã€ïŒãšåŒã°ããç©ç宿°ã§ãããèªé»çã¯ãäž¡é»è·ã®åšå²ã«ããç©äœã®çš®é¡ã«ããå€åãã宿°ã§ãããèªé»çã«ã€ããŠã¯ããã®æãåããŠèªãã æ®µéã§ã¯ããŸã ç¥ããªããŠãè¯ããã®ã¡ã«ç©çIIã§èªé»çã詳ãã解説ããã
èªé»ç<math>\epsilon</math>ãšã¯ãŒãã³ã®æ¯äŸå®æ°kã«ã¯äžåŒã®é¢ä¿
:<math>k= \frac 1 {4\pi\epsilon}</math>
ãããã
ç©äœã®ãŸããã«èç©ããããã®ã'''é»è·'''ãšåŒã¶ã黿°åã«ãã£ãŠåçºããã£ãããåŒãã€ããã£ããããç©äœã'''é»è·ãæã€'''ç©äœãšåŒã¶ããŸããããã§èгå¯ãããé黿°åãã'''ã¯ãŒãã³å'''ãšåŒã¶ããšãããã
2åã®é»è·ã©ããããããŒãåã¯åãã§ããããããã£ãŠ'''äœçšã»åäœçšã®æ³å'''ã«åŸã£ãŠããã
[[Image:Coulombslawgraph.svg|thumb|center|300px|2åã®ç¹é»è·ã®éã«åãåã®é¢ä¿ã<br>ã¯ãŒãã³ã®æ³åã«ãããšF1=F2ãšãªãã]]
ããã§ãé»è·ã®åäœã¯<nowiki>[C]</nowiki>ã§äžãããããèšå·ã®Cã¯ãã¯ãŒãã³ããšèªãã
{{-}}
----
*äŸé¡
[[File:ã¯ãŒãã³ã®æ³å äŸé¡1.svg|thumb|ã¯ãŒãã³ã®æ³å äŸé¡1]]
å³ã®ããã«ã2æ¬ã®ç³žã«ãããããåã質émkgã§ãåã笊å·ãšå€§ããã®é»è·qCã®çããã¶ãããã£ãŠããããã¯ãã¯ãŒãã³åã§åçºããã®ã§ãå³ã®ããã«ã糞ãè§åºŠÎžããªãã
ãã®ãšãã質émã«ããéåãšãé»è·qã«ããã¯ãŒãã³åãšã®é¢ä¿ã«ã€ããŠãåŒãç«ãŠãããªããå¿
èŠãªãã°ã糞ã®åŒµåã¯TNãšããããšã
{{-}}
è§£æ³
:[[File:ã¯ãŒãã³ã®æ³å äŸé¡1 è§£æ³.svg|thumb|left|400px|ã¯ãŒãã³ã®æ³å äŸé¡1 è§£æ³]]
å³ã®ãããªäœçœ®é¢ä¿ã«ãªãã®ã§ãå³ã®ããã«åŒãç«ãŠãã°ããã
:â» ãã®ããã«ã黿°ç£æ°åŠã®åé¡ã§ã¯ãå³ããã¡ããšæžããŠãè§£æ³ãèããå¿
èŠããããæ°åŒã ãã§èšç®ãããšãç«åŒãã¹ãªã©ã®åå ã«ãªãã
{{-}}
----
â» äžèšã®2æ¬ã®ç³žã«ã¶ãããã£ãçã®ã¯ãŒãã³åã®äŸé¡ã¯ã黿°ç£æ°åŠã®ã©ã®å
¥éæžã«ããããããªå
žåçãªåé¡ã§ããã®ã§ãèªè
ã¯ãã¡ããšçè§£ããããšã
{{-}}
----
*åé¡äŸ
**åé¡
é»è·<math>q _1</math>, <math>q _2</math>ã®éã®è·é¢ãrã®å Žåãš2rã®å Žåã§ã¯ãéã«åãåã®å€§ããã¯ã©ã¡ããã©ãã ã倧ãããçããã
ãŸããè·é¢ã2rã®æã®2ç¹éã®åã®å€§ãããçããã
**è§£ç
ã¯ãŒãã³åã¯ãç©äœéã®è·é¢ã®é2ä¹ã«æ¯äŸããã®ã§ãè·é¢ã2rã®æã¯ãrã®æã®å€§ããã®<math>\frac 1 4</math>ãšãªãããŸããåãåã®å€§ããã¯ãã¯ãŒãã³åã®åŒãçšããŠã
:<math>
f = \frac 1 {4\pi\epsilon _0} \frac {q _1 q _2}{4r^2}
</math>
ãšãªãã
----
====é»å Ž ====
æ¢ã«ãããé»è·Aã®ãŸããã®å¥ã®é»è·Bã«ã¯ããã®é»è·ããã®è·é¢ã®é2ä¹ã«æ¯äŸããåããããããšãè¿°ã¹ãã
[[File:é»å Žã®éãåãã.svg|thumb|400px|é»å Žã®éãåãã]]
ããã§ãé»è·Bãåããåã¯ããã®é»è·Bã®å€§ããã«æ¯äŸããããšãåãããŠèãããšããã®é»è·Bã®å€§ããã«ããããããé»è·Aã®å€§ããã ãã§æ±ºãŸãéãå°å
¥ããŠãããšéœåããããããã§ããã®ãããªéãšããŠ'''é»å Ž'''ïŒã§ãã°ïŒãå°å
¥ããããã®ãšããé»å Ž<math>\vec E</math>ã®äžã«ããé»è·<math>q</math>ã«åãå<math>\vec F</math>ã¯ã
:<math>\vec F = q \vec E</math>
ã§äžãããããé»å Žã¯åäœé»è·ã«åãåãšèããããšãã§ããé»å Žã®åäœã¯[N/C]ã§ããããé»å Žãã¯ããé»çãïŒã§ãããïŒãšãåŒã°ããã
ïŒæ¥æ¬ã®ç©çåŠã§ã¯ãé»å ŽããšåŒã¶ããšãå€ãããŸããæ¥æ¬ã®é»æ°å·¥åŠã§ã¯ãé»çããšåŒã°ããããšãå€ããææ²»æã®ç¿»èš³ã®éã®ãæ¥æ¬åœå
ã®æ¥çããšã®éãã«éããããããªãæ¥æ¬ããŒã«ã«ãªéœåã§ãããåŒã³æ¹ã¯ç©çã®æ¬è³ªãšã¯é¢ä¿ãªãã®ã§ãããã§ã¯ãã©ã¡ãã®è¡šçŸãçšãããã¯ãæ¬æžã§ã¯ç¹ã«ãã ãããªããè±èªã§ã¯ç©çåŠã»é»æ°å·¥åŠãšãâelectric fieldâã§å
±éããŠãããïŒ
äžã®ã¯ãŒãã³åã®çµæãšåããããšãé»è·Aã®ãŸããã«å¥ã®é»è·ãååšããªããšããé»è·<math>q</math>[C]ã®é»è·ããŸãšãé»å Ž<math>\vec E</math>ã¯ã
:<math>\vec E = \frac 1 {4\pi\epsilon _0} \frac {q}{r^2} \vec e _r</math>
ã§äžããããããã ããrã¯é»è·ããã®è·é¢ã§ããã<math>\vec e _r</math>ã¯ãé»è·ãšããç¹ãçµãã çŽç·äžã§ãé»è·ãšå察æ¹åãåããåäœãã¯ãã«ã§ããã
é»è·ã®åãã®é»å Žã¯ãå¹³é¢äžã§æŸå°ç¶ã®ãã¯ãã«ãšãªãããšã«æ³šæã
{|
| [[File:VFPt minus thumb.svg|150px|thumb|è² é»è·ã®åšãã®é»å Žã®åã]]
| [[File:VFPt plus thumb.svg|150px|thumb|æ£é»è·ã®åšãã®é»è·ã®åã]]
|}
é»å Žã¯ãã¯ãã«ã§ãããé»è·ã2åãããšãã¯ãããããã®é»è·ãã€ããé»å Žããéãåãããã°ããã
:<math> \vec E = \vec {E_1} + \vec {E_2} </math>
ã§ããã
é»è·ã3å以äžã®ãšãããåæ§ã«éãåãããã°è¯ãã
å³ã®ããã«ãé»è·ããåºãé»å Žã®æ¹åãå³ç€ºãããã®ã'''黿°åç·'''ïŒã§ãããããããelectric line of forceïŒãšããã
é»è·ãè€æ°ããå Žåã«ã¯ãå®éã«æ°ãã«çœ®ãããé»è·ãåããåã¯ãããããè¶³ãåããããã®ãšãªãããããã£ãŠãè€æ°ã®é»è·ãããå Žåã®åšå²ã®é»çã¯ãããããã®é»è·ãäœãé»çãã¯ãã«ã®åãšãªãïŒéãåããã®åçïŒã
<!-- 黿°åç· -->
[[File:Camposcargas.PNG|thumb|left|300px|å笊å·ã®é»è·ã©ããïŒå·ŠïŒãè¿ã¥ããå Žåã¯åçºããããç°ãªã笊å·ã®é»è·ã©ããïŒå³ïŒãè¿ã¥ããå Žåã¯åŒãä»ãåãã]]
[[File:VFPt dipole electric manylines.svg|thumb|center|200px|ç°ç¬Šå·ã®é»è·ã©ããã®å Žåã®é»æ°åç·]]
{{clear}}
黿°åç·ãå³ç€ºããå Žåã¯ãæ£é»è·ããåç·ãåºãŠãè² é»è·ã§åç·ãåžåãããããã«æžããåç·ã¯ãé»å Žãå³ç€ºãããã®ãªã®ã§ãé»è·ä»¥å€ã®å Žæã§ã¯ãåç·ãåå²ããããšã¯ãªãã
åç·ãçæããã®ã¯æ£é»è·ã®å Žæã®ã¿ã§ãããåç·ãæ¶æ»
ããã®ã¯ãè² é»è·ã®å Žæã®ã¿ã§ããã
èšãæããã°ãåç·ãé»è·ä»¥å€ã®å Žæã§æ¶æ»
ããããšã¯ãªãããé»è·ä»¥å€ã®å Žæã§åç·ãçæããããšã¯ãªãã
å°äœã®å
éšã®é»å Žã¯ãŒãã§ãã£ããèšãæããã°ã黿°åç·ã¯ãå°äœã®å
éšã«ã¯é²å
¥ã§ããªãã
[[File:VFPt image charge plane horizontal.svg|200px|thumb|黿°åç·ã¯ãå°äœã®å
éšã«ã¯é²å
¥ã§ããªãã]]
<!-- ã¬ãŠã¹ã®æ³å -->
[[File:E FieldOnePointCharge.svg|黿°åç·ã®ååž]]
ç¹é»è·ããã¯ãå³ã®ããã«ãæŸå°ç¶ã«é»æ°åç·ãåºããã¯ãŒãã³ã®æ³åã®ä¿æ°ã«ãã
:<math>\frac{1}{4 \pi \epsilon _0} \frac{q_1 q_2}{r^2}</math>
ã®ãã¡ã®ã忝ã®
<math>4 \pi r^2</math>
ã¯ãçã®è¡šé¢ç©ã®å
¬åŒã«çããã®ã§ã黿°åç·ã®å¯åºŠã«æ¯äŸããŠãé»å Žã®åŒ·ããããã¯é黿°åã®åŒ·ããæ±ºãŸããšèããããã
éé»èªå°ã§ã¯ãå°äœå
éšã«ã¯é黿°åãåããŠããªãã®ã§ãã£ããããã¯ãé»å ŽãšããæŠå¿µãçšããŠèšãæããã°ãå°äœå
éšã®é»å Žã¯ãŒãã§ããããšèšããã
====é»äœ====
ã¯ãŒãã³åã¯åïŒã¡ããïŒã§ãããããããã«éãã£ãŠå¥ã®é»è·ãè¿ã¥ããå Žåã¯ãè¿ã¥ããå¥ã®é»è·ã¯ä»äºãããããšã«ãªãããŸããè¿ã¥ããé»è·ãææŸãã°ãã¯ãŒãã³åã«ãã£ãŠåãåããä»äºãããããšã«ãªããããè¿ã¥ããç¶æ
ã«ããå¥é»è·ã¯äœçœ®ãšãã«ã®ãŒãèããŠããããšã«ãªãã
ãããã£ãŠãã¯ãŒãã³åã«å¯ŸããŠãäœçœ®ãšãã«ã®ãŒãå®çŸ©ããããšãã§ãããïŒãªããè¡æè»éäžã®ç©äœã®ãããªãå°è¡šãã倧ããé¢ããå Žæã®éåããã¯ãŒãã³åãšåæ§ã«é2ä¹åãªã®ã§ãããã§èããèšç®ææ³ã¯éåã«ããäœçœ®ãšãã«ã®ãŒã«ãå¿çšã§ãããéåå é床gãçšããåmgãšããã®ã¯å°è¡šè¿ãã§ã®è¿äŒŒã«ãããªããïŒ
ã¯ãŒãã³åã«ããé»å Žã®å®çŸ©ã§ã¯ãåäœé»è·ã«å¯ŸããŠé»å Žãå®çŸ©ããã®ãšåæ§ãäœçœ®ãšãã«ã®ãŒã«å¯ŸããŠããåäœé»è·ã«å¿ããŠå®çŸ©ã§ããéãå°å
¥ãããšéœåãããããã®ãããªéã'''é»äœ'''ïŒã§ãããelectric potentialïŒãšåŒã¶ãé»äœã®åäœã¯'''ãã«ã'''ãšãããé»äœãäŸãããšãå°è¡šè¿ãã§ã®éåã®äœçœ®ãšãã«ã®ãŒãèããéã®ãghããªã©ã«çžåœããéã§ããã
ã¯ãŒãã³åã®çµæãšã<math>q</math>[C]ã®é»è·ããè·é¢''r''ã ãé¢ããç¹ã®é»äœVã¯ãé»å Žã®ç©åèšç®ã§åŸããããïŒç©åããŸã ç¿ã£ãŠãªãåŠå¹Žã®èªè
ã¯ãåãããªããŠãæ°ã«ãããæ¬¡ã®çµæãžãšé²ãã§ãã ãããïŒçµæã®ã¿ãèšããšã
:<math>V=\frac{1}{4\pi\epsilon _0} \frac{q}{r}</math>
ãšãªãã
é»äœVã®ç¹ã«''q''[C]ã®é»è·ã眮ãããšãããã®é»è·ã®ã¯ãŒãã³åã«ããäœçœ®ãšãã«ã®ãŒ''U''[J]ã¯ãé»äœVãçšããã°ã
:<math>U = qV</math>
ãšãªãããããã£ãŠãé»äœ<math>V_1</math>ãã«ãã®ç¹ããé»äœ<math>V_2</math>ãã«ãã®äœçœ®ãžãšé»è·''q''[C]ãé黿°åãåããŠç§»åãããšããé黿°åã®ããä»äº''W''[J]ã¯
:<math>W = q(V_2 - V_1)</math>
ãšãªãã
{{-}}
[[File:äžæ§ãªé»å Ž.svg|thumb|500px|äžæ§ãªé»å Ž]]
ãã£ãœããäžæ§ãªé»å Žã«ãããŠã¯ãé»äœã®åŒããé»å ŽãçšããŠç°¡åã«è¡šãããšãã§ãããè·é¢''d''ã ãé¢ããå¹³è¡å¹³æ¿é»æ¥µã®éã«äžæ§ãªé»å Ž<math>\vec E</math>ãçããŠãããšãããã®é»çã®äžã«çœ®ããé»è·''q''ã¯é黿°å<math>q\vec E</math>ãåããããã®é»è·ãé»çã®åãã«æ²¿ã£ãŠäžæ¹ã®é»æ¥µãã仿¹ã®é»æ¥µãŸã§ç§»åãããšããé»çã®ããä»äº''W''㯠<math>W = qEd</math> ãšãªããããããã2極æ¿ã®é»äœå·®''V''ã¯ã
:<math>V=Ed</math>
ã§è¡šãããšãã§ããããšãããããåŒãå€åœ¢ããŠ
:<math>E= \frac{V}{d}</math>
ãšããããšãã§ãããããã§ãåäœãèãããšãå³èŸºã¯é»å§ãè·é¢ã§å²ã£ããã®ã§ãããããé»çã®åäœãšããŠ[N/C]ã®ã»ã[V/m]ãçšããããšãã§ããããšããããã
é»äœã®åäœã¯'''ãã«ã'''ã§ããããã®éã¯æ¢ã«[[äžåŠæ ¡çç§]]ãªã©ã§æ±ã£ã[[w:é»å§|é»å§]]ïŒã§ããã€ãvoltageïŒã®åäœãš'''åã'''åäœã§ãããå®éã«é»æ°åè·¯ã«é»å§ããããããšã¯ãåè·¯äžã®é»åã«é»å ŽããããŠåããããšãš'''çãã'''ã
éé»èªå°ã«ãã£ãŠãå°äœå
éšã®é»å Žã¯ãŒãã§ãã£ãããã®ããšãããå°äœã®è¡šé¢ã¯ãé»äœãçãããå°äœè¡šé¢ã¯äºãã«çé»äœã§ããã
é»äœã®åºæºã¯ãå®çšäžã¯ãå°é¢ã®é»äœããŒãã«çœ®ãããšãå€ãã黿°åè·¯ã®äžéšã倧å°ã«ã€ãªãããšãæ¥å°ïŒãã£ã¡ïŒãŸãã¯'''ã¢ãŒã¹'''ïŒearthïŒãšãããåè·¯ãã¢ãŒã¹ããŠããã®ã€ãªãã éšåã®é»äœããŒããšèŠãªãããšãå€ãã
*åé¡äŸ
**åé¡
çŽç·äžã§è·é¢0, b[m]ã®ç¹ã«ãé»è·q, q'ãæã€ç©äœã眮ããŠããããã®æãäœçœ®a[m](a<b)ã®ç¹ã®é»äœãæ±ããã
**è§£ç
é»äœã®åŒãçšããã°ãããé»è·ãè€æ°ãããšãã«ã¯ãé»äœã¯ããããã®é»è·ãã€ããåºãé»è·ã®åã«ãªãããšã«æ³šæãçãã¯ã
:<math>V = \frac{1}{4\pi\epsilon _0} (\frac{q}{a} + \frac{q'}{b-a})</math>
ãšãªãã
----
å°äœè¡šé¢ã¯çé»äœãªã®ã§ããã£ãŠã黿°åç·ã¯å°äœè¡šé¢ã«åçŽã§ããã
ãã®ããšããã黿°åç·ãšé»å Žã¯åçŽã§ããã
é»å Žãéãåãããããããã«ãé»äœãéãåãããããããªããªãé»äœãšã¯ãé»å ŽãèããŠãçµè·¯ã«ãŠç©åãããã®ã§ããããã
åŠæ ¡ã®ãã¹ããªã©ã§ã¯ãé»äœã®èšç®ã®ãããã¯ãŒãã³åã®æ¹åã®åéããªã©ã«ããèšç®ãã¹ãªã©ããµãããããé»å Žãæ±ããŠããããããç©åããŠãé»äœãæ±ããã®ããèšç®äžã¯å®å
šã§ããã
== éé»èªå°ãšèªé»å極 ==
=== ã³ã³ãã³ãµãŒ ===
[[File:ã³ã³ãã³ãµãŒ æ§é ãšåç.svg|thumb|400px|ã³ã³ãã³ãµãŒ]]
'''ã³ã³ãã³ãµãŒ'''ïŒè±:capacitor ,ããã£ãã·ã¿ããšèªãïŒã¯ãå³ã®ããã«ã2æã®é»æ¥µãåãããããåè·¯äžã«é»è·ãèç©ã§ããéšåãäžããçŽ åã§ããã
[[File:ã³ã³ãã³ãµãŒ å
é»ã®ä»çµã¿.svg|thumb|500px|ã³ã³ãã³ãµãŒã®å
é»ã®ä»çµã¿]]
ã³ã³ãã³ãµãŒã«é»è·ãèããããšã'''å
é»'''ïŒãã
ãã§ãïŒãšãããã³ã³ãã³ãµãŒããé»è·ãæŸåºãããããšã'''æŸé»'''ãšããã
ã³ã³ãã³ãµã®äž¡ç«¯ã«ããé»äœVãäžãããããšããã³ã³ãã³ãµã«ã¯ãé»äœã«æ¯äŸããé»è·Qãèç©ãããããã®ãšããã³ã³ãã³ãµã®èç©èœåãèšå·ã§ C ãšãããŠã
:<math>Q=CV</math>
ãšããŠCãåããCã¯'''éé»å®¹é'''ïŒããã§ãããããããelectric capacitanceïŒãšåŒã°ããåäœã¯F('''ãã¡ã©ã'''ãfarad)ã§äžããããã
1ãã¡ã©ãã¯å®çšäžã¯å€§ããããã®ã§ã10<sup>-12</sup>ãã¡ã©ããåäœã«ãã1pF(ãã³ãã¡ã©ã)ãã10<sup>-6</sup>ãã¡ã©ããåäœã«ãã1ÎŒF(ãã€ã¯ããã¡ã©ã)ã䜿ãããããšãå€ãã
{{-}}
=== å¹³è¡æ¿ã³ã³ãã³ãµãŒ ===
[[File:å¹³è¡æ¿ã³ã³ãã³ãµãŒ é»å Ž.svg|thumb|400px|å¹³è¡æ¿ã³ã³ãã³ãµãŒã®é»å Ž]]
極æ¿ãå¹³è¡ãªã³ã³ãã³ãµãŒãå¹³è¡æ¿ã³ã³ãã³ãµãŒãšããã
å¹³è¡æ¿ã³ã³ãã³ãµãŒã®ã極æ¿ã©ããã®é»å Žã¯ãäžæ§ãªé»å Žã§ããã
ãã®å¹³è¡æ¿ã³ã³ãã³ãµãŒã®éé»å®¹éCã®åŒã¯ãåŸè¿°ããçç±ã«ããã
:<math>C=\epsilon_0 \frac{S}{d}</math>
ã§äžãããããããã§ãSã¯å°äœå¹³é¢ã®é¢ç©ã§ãããdã¯å°äœéã®è·é¢ã§ããã
å®éšçã«ãããã®éé»å®¹éã®å
¬åŒã¯ãæ£ããããšã確ãããããŠããã
* å¹³è¡æ¿ã³ã³ãã³ãµãŒã®éé»å®¹éã®å
¬åŒã®å°åº
ããã§äžããéé»å®¹éã¯ã'''å¹³é¢äžã«é»è·ãäžæ§ã«ååžãã'''ãšã®ä»®å®ã§å°ãããããã®ãšããå°äœéã«çããé»çEã¯ãå°äœãæã€é»è·ãQ, -Qãšããæã
ãŸããæ¥µæ¿ã®é»è·å¯åºŠããæ¥µæ¿ã®ã©ãã§ãäžå®ã ãšä»®å®ããŠïŒãã®ããã«ã¯ãã³ã³ãã³ãµãŒã®åºãïŒã€ãŸãé¢ç©ïŒãããã
ãã¶ãã«åºããšä»®å®ããå¿
èŠãããããšãããããã®ãããªä»®å®ã«ãããé»è·å¯åºŠã¯ïŒã
:é»è·å¯åºŠïŒ<math>Q/S</math>C/m<sup>2</sup>
ã§ããã
黿°åç·ã®æ§è³ªãšããŠããã©ã¹ã®é»è·ããçããŠãã€ãã¹ã®é»è·ã§åžåãããã®ã§ããã£ãŠå¹³è¡æ¿ã³ã³ãã³ãµãŒéã®é»æ°åç·ã®ååžã¯ãå³ã®ããã«ã黿°åç·ãããã©ã¹æ¥µæ¿ããåçŽã«ããã€ãã¹æ¥µæ¿ãžåãã£ãŠé»æ°åç·ãåºãŠããããŠãã€ãã¹æ¥µæ¿ã«é»æ°åç·ãåžåãããã
é»å Žã¯ãå°äœéã®åç¹ã§ã
:<math>E = \frac{Q/S}{\epsilon _0} =\frac{Q}{\epsilon _0 S}</math>
ã§äžãããããé»å Žãæ±ããããã®ã§ãããããé»äœãèšç®ã§ãããå°äœéã®åç¹ã§é»å Žã®å€§ãããåäžãªã®ã§ãé»äœã®å€§ããã¯é»å Žã®å€§ããã«2ç¹éã®è·é¢ãããããã®ã«ãªããããã§ãé»äœVã¯ã
:<math>V=Ed=\frac{d}{\epsilon_0S}Q</math>
ãšãªããããã®åŒãšéé»å®¹éCã®å®çŸ©ãèŠæ¯ã¹ããšã
:<math>C=\epsilon_0\frac{S}{d}</math>
ãåŸãããã
== 黿± ã®ä»çµã¿ ==
黿± ã®ååŠåå¿ã«ã€ããŠã¯ãå¥ç§ç®ã®ååŠIãªã©ã§è©³ããæ±ãããããã®ç« ã§ã¯ãé»å§ã黿µã®çè§£ã«é¢ããç¹ãéç¹çã«èª¬æãããã
=== ã€ãªã³ååŸå ===
éå±å
çŽ ã®åäœãæ°ŽãŸãã¯æ°Žæº¶æ¶²ã«å
¥ãããšãã®ãéœã€ãªã³ã®ãªããããã'''ã€ãªã³ååŸå'''ïŒionization tendencyïŒãšããã
äŸãšããŠãäºéZnãåžå¡©é
žHClã®æ°Žæº¶æ¶²ã«å
¥ãããšãäºéZnã¯æº¶ãããŸãäºéã¯é»åã倱ã£ãŠZn<sup>2+</sup>ã«ãªãã
:Zn + 2H<sup>+</sup> â Zn<sup>2+</sup> + H<sub>2</sub>
äžæ¹ãéAgãåžå¡©é
žã«å
¥ããŠãåå¿ã¯èµ·ãããªãã
ãã®ããã«éå±ã®ã€ãªã³ååŸåã®å€§ããã¯ãç©è³ªããšã«å€§ãããç°ãªãã
=== 黿± ===
äºçš®é¡ã®éå±åäœãé»è§£è³ªæ°Žæº¶æ¶²ã«å
¥ãããšé»æ± ãã§ãããããã¯[[ã€ãªã³ååŸå]]ïŒåäœã®éå±ã®ååãæ°ŽãŸãã¯æ°Žæº¶æ¶²äžã§é»åãæŸåºããŠéœã€ãªã³ã«ãªãæ§è³ªïŒã倧ããéå±ãé»åãæŸåºããŠéœã€ãªã³ãšãªã£ãŠæº¶ããã€ãªã³ååŸåã®å°ããéå±ãæåºããããã§ããã
ã€ãªã³ååŸåã®å€§ããæ¹ã®éå±ã'''è² æ¥µ'''ïŒãµãããïŒãšãããã€ãªã³ååŸåã®å°ããæ¹ã®éå±ã'''æ£æ¥µ'''ïŒãããããïŒãšããã
ã€ãªã³ååŸåã®å€§ããéå±ã®ã»ãããéœã€ãªã³ã«ãªã£ãŠæº¶ãåºãçµæãé屿¿ã«ã¯é»åãå€ãèç©ããã®ã§ãäž¡æ¹ã®é屿¿ãé
ç·ã§ã€ãªãã°ãã€ãªã³ååŸåã®å€§ããæ¹ããå°ããæ¹ã«é»åã¯æµãããã黿µãã§ã¯ç¡ãããé»åããšãã£ãŠãããšã«æ³šæãé»åã¯è² é»è·ã§ããã®ã§ã黿µã®æµããšé»åã®æµãã¯ãéåãã«ãªãã
=== ã€ãªã³åå ===
ããŸããŸãªæº¶æ¶²ãéå±ã®çµã¿åããã§ãã€ãªã³ååŸåã®æ¯èŒã®å®éšãè¡ã£ãçµæãã€ãªã³ååŸåã®å€§ãããæ±ºå®ãããã
å·Šããé ã«ãã€ãªã³ååŸåã®å€§ããéå±ã䞊ã¹ããšã以äžã®ããã«ãªãã
: K > Ca > Na > Mg > Al > Zn > Fe > Ni > Sn > Pb > (H<sub>2</sub>) > Cu > Hg > Ag > Pt > Au
éå±ããã€ãªã³ååŸåã®å€§ããã®é ã«äžŠã¹ããã®ãéå±ã®'''ã€ãªã³åå'''ãšããã
æ°ŽçŽ ã¯éå±ã§ã¯ç¡ããæ¯èŒã®ãããã€ãªã³ååŸåã«å ããããã
éå±ååã¯ãäžèšã®ä»ã«ããããã髿 ¡ååŠã§ã¯äžèšã®éå±ã®ã¿ã®ã€ãªã³ååãçšããããšãå€ãã
ã€ãªã³ååã®èšæ¶ã®ããã®èªååãããšããŠã
ã貞ããããªããŸããããŠã«ããªãã²ã©ãããåéãã
ãªã©ã®ãããªèªååããããããã¡ãªã¿ã«ãã®èªååããã®å Žåã
ãKã ãã ãCa ãªNaããŸMg ãAlããZn ãŠFe ã«Ni ã ãªPbãã²H2 ã©Cu ãHg ãAg ã åéPt,Auãã
ãšå¯Ÿå¿ããŠããã
=== ãã«ã¿é»æ± ===
:åžç¡«é
žH<sub>2</sub>SO<sub>4</sub>ã®äžã«äºéæ¿Znãšé
æ¿Cuãå
¥ãããã®ã
è² æ¥µïŒäºéæ¿ïŒã§ã®åå¿
:Zn â Zn<sup>2+</sup> + 2e<sup>-</sup>
æ£æ¥µïŒé
æ¿ïŒã§ã®åå¿
:2H<sup> + </sup> + 2e<sup>-</sup> â H<sub>2</sub>â
==== èµ·é»å ====
ãã«ã¿ã®é»æ± ã§ã¯ãåŸããã䞡極éã®é»äœå·®ïŒãé»å§ããšããããïŒã¯ã1.1ãã«ãã§ããã(ãã«ãã®åäœã¯Vãªã®ã§ã1.1Vãšãæžãã)ãã®äž¡æ¥µæ¿ã®é»äœå·®ã'''èµ·é»å'''ãšãããèµ·é»åã¯ãäž¡é»æ¥µã®éå±ã®çµã¿åããã«ãã£ãŠæ±ºãŸãç©è³ªåºæã§ããã
èµ·é»åã®åäœã®ãã«ãã¯ãé黿°åã®é»äœã®åäœã®ãã«ããš'''åã'''åäœã§ããã黿°åè·¯ã®é»å§ã®ãã«ããšããèµ·é»åã®åäœã®ãã«ãã¯åãåäœã§ããã
=== 黿± å³ ===
ãã«ã¿é»æ± ã®æ§é ã以äžã®ãããªæååã«è¡šããå Žåããã®ãããªè¡šç€ºã'''黿± å³'''ãããã¯'''黿± åŒ'''ãšããã
:(-) Zn | H<sub>2</sub>SO<sub>4</sub>aq |Cu (+)
aqã¯æ°Žã®ããšã§ãããH<sub>2</sub>SO<sub>4</sub>aqãšæžããŠãç¡«é
žæ°Žæº¶æ¶²ã衚ããŠããã
;黿°åè·¯ãšã®é¢é£äºé
ç©çåŠã®é»æ°åè·¯ã®ç ç©¶ã§ã¯ããã®ãããªé»æ± ãªã©ã®çŸè±¡ã®çºèŠãšçºæã«ãã£ãŠãå®å®ãªçŽæµé»æºãå®éšçã«åŸãããããã«ãªããçŽæµé»æ°åè·¯ã®æ£ç¢ºãªå®éšãå¯èœã«ãªã£ãã黿± ã®çºæä»¥åã«ãããã©ã³ã¹äººã®ç©çåŠè
ã¯ãŒãã³ãªã©ã«ããé黿°ã«ãã黿°ååŠã®ç ç©¶ãªã©ã«ãã£ãŠãé»äœå·®ã®æŠå¿µãé»è·ã®æŠå¿µã¯ãã£ããã ãããã®æä»£ã®é»æºã¯ãäž»ã«é黿°ã«ãããã®ã ã£ãã®ã§ãå®å®é»æºã§ã¯ç¡ãã£ãã
ãããŠã黿± ã«ããå®å®ãªé»æºã®çºæã¯ãåæã«å®å®ãªé»æµã®çºæã§ããã£ãããã®ãããªé»æ± ã®çºæãªã©ã«ãããçŽæµé»æ°åè·¯ã®ç ç©¶ãªã©ããããã€ã人ã®ç©çåŠè
ãªãŒã ããããŸããŸãªå°äœã«é»æµãæµãå®éšãšçè«ç ç©¶ãè¡ãããšã«ããã黿°åè·¯ã®çè«ã®'''ãªãŒã ã®æ³å'''ïŒãªãŒã ã®ã»ããããOhm's lawïŒãçºèŠãããã
[[File:Thermocouples diagram.svg|thumb|ç±é»å¯Ÿã®åçãããçµã¿åããã®éå±AãšBã§ãå³ã®ããã«2ã€ã®æ¥ç¹ã«ç°ãªã枩床ãäžãããšã黿µãæµããã]]
ãã€ã¯ãªãŒã ã¯é»æ± ã§ã¯ãªãç±é»å¯ŸïŒãã€ã§ãã€ãïŒãšãããã®ã䜿ã£ãŠã黿°åè·¯ã«å®å®ãã黿µããªããç ç©¶ããããåœæã®é»æ± ã§ã¯ãèµ·é»åããã ãã«æžã£ãŠããŸãããªãŒã ã¯åœåã¯é»æ± ã§å®éšããããããŸãå®å®é»æµãåŸãããªãã£ãã
ç±é»å¯Ÿãšã¯ããŸãç°ãªãé屿æã®2æ¬ã®éå±ç·ãæ¥ç¶ããŠïŒã€ã®åè·¯ãã€ããã2ã€ã®æ¥ç¹ã«æž©åºŠå·®ãäžãããšãåè·¯ã«é»å§ãçºçãããã黿µãæµããïŒãã®çŸè±¡ãããŒãŒããã¯å¹æãšããïŒããã®çŸè±¡ãããã¯ã1821幎ã«ãŒãŒããã¯ãçºèŠããããã®ãããªåè·¯ããç±é»å¯Ÿã§ããããªããåã2æ¬ã®éå±ç·ã§ã¯ã枩床差ãäžããŠãé»å§ã¯çºçããã黿µã¯æµããªãã
ãªãŒã ã¯ããã«ãªã³å€§åŠææããã±ã³ãã«ãã®å©èšã«ãã£ãŠããã®ç±é»å¯Ÿãå®éšã«å©çšãããæž©åºŠãå®å®ãããã®ã¯ãåœæã®æè¡ã§ãæ¯èŒçç°¡åã§ãã£ãã®ã§ãããããŠãªãŒã ã¯å®å®é»æµããã¡ããå®éšãã§ããã®ã§ããã
:â» ç±é»å¯Ÿã«ã€ããŠã¯ã髿 ¡ã®ç¯å²ãè¶
ãããã倧åŠå
¥è©Šã«ãåºé¡ãããªãã ãããã倧åŠã®ææ¥ã§ãããŸãæ·±å
¥ãããªãã®ã§ãåãããªããã°ãæ°ã«ããªããŠããã
:â» å®ã¯åæé€šã®ãç§åŠãšäººéçæŽ»ãã§ç±é»å¯ŸïŒåæé€šã®æç§æžã§ã¯ãç±é»çŽ åããšèšè¿°ïŒã«ã€ããŠãç±ã®ç©çã®åå
ã§èª¬æããŠããããã ãããããã«ãªãŒã ã®æ³åã®å®éšãšã®é¢é£ãŸã§ã¯èª¬æããŠãªããã»ã»ã»ã
;ãªãŒã ã®æ³åãšã®é¢ä¿
ãªãŒã ã®æ³åïŒOhm's lawïŒãšã¯ã
ãã»ãšãã©ã®å°äœã§ã¯ã黿µ I ãæµããŠããå°äœäžã®2ç¹ã®ç¹ <math>P_1</math>ãšç¹ <math>P_2</math> éã®é»äœå·® <math>E = E_1 - E_2</math> ã¯ã黿µ I ã«æ¯äŸãããã
ãšããå®éšæ³åã§ããã
誀解ããããããããªãŒã ã®æ³åã¯ããã®ãããªå®éšæ³åã§ãã£ãŠãã¹ã€ã«æµæã®å®çŸ©åŒã§ã¯ç¡ããåæ§ã«ããªãŒã ã®æ³åã¯ãã¹ã€ã«é»å§ã®å®çŸ©åŒã§ã¯ç¡ããã黿µã®å®çŸ©åŒã§ãç¡ããäžåŠæ ¡ã®çç§ã§ã®é»æ°åè·¯ã®æè²ã§ã¯ãéå±ã®é»æ°åè§£ã®èµ·é»åã®æè²ãŸã§ã¯ããªãã®ã§ããšãããã°ãé»å§ã誀解ããŠããé»å§ã¯ãåãªã黿µã®æ¯äŸéã§ãæµæã¯ãã®æ¯äŸä¿æ°ãã®ãããªèª€è§£ããå Žåãæããããããã®è§£éã¯æããã«èª€è§£ã§ããã
ãŸããåå°äœãªã©ã®äžéšã®ææã§ã¯ã黿µãå¢ãææã®æž©åºŠãäžæãããšæµæãäžããçŸè±¡ãç¥ãããŠããã®ã§ãåå°äœã§ã¯ãªãŒã ã®æ³åãæãç«ããªãå Žåãããããªã®ã§ããªãŒã ã®æ³åãå®çŸ©åŒãšèããã®ã¯äžåçã§ããã
== 黿µãšé»æ°åè·¯ ==
[[Image:Wheatstonebridge.svg|right|thumb|300px|alt=A Wheatstone bridge has four resistors forming the sides of a diamond shape. A battery is connected across one pair of opposite corners, and a galvanometer across the other pair. |黿°åè·¯ã®äŸãèªè
ãããã®å³ã®æå³ãåããããã«ãªãã®ããæ¬ç¯ã®ç®æšã®äžã€ã§ãããã¡ãªã¿ã«ããã€ããã¹ãã³ã»ããªããžãïŒWheatstone bridgeïŒãšããåè·¯ã§ããã<br>R1ãR2ãR3ãRxã¯æµæãV<sub>G</sub>ãäžžã§å²ã£ãŠããèšå·ã¯é»å§èšã<br>AãBãCãDã¯åãªãåè·¯ã®åæµããŠããæ¥ç¹ã]]
å°ç·ãªã©ã®å°äœå
ã®é»æ°ã®æµãã'''黿µ'''ïŒã§ããã
ããelectric currentïŒãšããã黿µã®åŒ·ãã¯'''ã¢ã³ãã¢'''ãšããåäœã§è¡šãã1ã¢ã³ãã¢ã®å®çŸ©ã¯æ¬¡ã®éãã§ããã
1ç§éã«1ã¯ãŒãã³ïŒèšå·CïŒã®é»æµãééããããšã1'''ã¢ã³ãã¢'''ãšããã
ã¢ã³ãã¢ã®èšå·ã¯Aã§ããããŸãã黿µã¯ãåäœæéãããã®é»è·ã®éééã§ãããã®ã§ã黿µã®åäœã[C/s]ãšæžãå Žåãããã
äžè¬çã«ã¯ã黿µã®åäœã¯ããªãã¹ã[A]ã§è¡šèšããããšãå€ãã
黿µI[A]ãšæét[S]ã§å°ç·æé¢ãééããé»è·Q[C]ã®é¢ä¿ãåŒã§è¡šããšã
:<math>I=\frac{Q}{t}</math>
ã§ããã
黿µã®åãã®åãæ¹ã«ã€ããŠã¯ãèªç±é»åã¯è² é»è·ãæã£ãŠãããããèªç±é»åã®åããšã¯å察åãã«é»æµã®åãããšãããšã«æ³šæããã
次ã«é»æµãšèªç±é»åã®é床ãšã®é¢ä¿ãèããã
èªç±é»åã®é»è·ã®çµ¶å¯Ÿå€ãeãšãããšãèªç±é»åã¯è² é»è·ã§ãããããèªç±é»åã®é»è·ã¯ãã€ãã¹ç¬Šå·ãã€ã-eã§ããã
=== ãªãŒã ã®æ³å ===
ãã€ã人ã®ç©çåŠè
ãªãŒã ã¯æ¬¡ã®ãããªæ³åãçºèŠããã
ãã»ãšãã©ã®å°äœã§ã¯ã黿µ I ãæµããŠããå°äœäžã®2ç¹ã®ç¹ <math>P_1</math>ãšç¹ <math>P_2</math> éã®é»äœå·® <math>E = E_1 - E_2</math> ã¯ã黿µ I ã«æ¯äŸãããã
ãã®å®éšæ³åã'''ãªãŒã ã®æ³å'''ïŒOhm's lawïŒãšããã
åŒã§è¡šããšãé»äœå·®ãVãšããŠã黿µãIãšããå Žåã«ãæ¯äŸä¿æ°ãRãšããŠã
:V=RI
ã§ããã
ããã§ãé»äœãšé»æµã®æ¯äŸä¿æ°Rã'''黿°æµæ'''ãããã¯åã«'''æµæ'''ïŒresistanceã'''ã¬ãžã¹ã¿ã³ã¹'''ïŒãšããã
黿°æµæã®åäœã¯ãªãŒã ãšèšããèšå·ã¯Ωã§è¡šãã
æ
£ç¿çã«ãæµæã®èšå·ã¯Rã§ããããå Žåãå€ãã
=== 黿°åè·¯ ===
[[File:Ohm's Law with Voltage source TeX.svg|right|thumb|黿°åè·¯å³ã®äŸã黿ºã¯äº€æµé»æºãvãé»å§ãRãæµæãiã¯é»æµã]]
黿°åè·¯ãžãšãã«ã®ãŒãäŸçµŠãã黿ºãšããŠå®é»å§ã®çŽæµé»æºãèãããåè·¯ã®2å°ç¹éã«ããäžå®ã®é»å§ãäŸçµŠãç¶ãããã®ã§ãããé»å§æºã®åè·¯å³èšå·ãšããŠã¯[[File:Cell.svg|30px|é»å§æº]]ãçšãããããèšå·ã®é·ãåŽãæ£æ¥µã§ããããã©ã¹ã®é»äœã§ãããèšå·ã®çãåŽã¯è² 極ã§ããã
ä¹Ÿé»æ± ã¯ãçŽæµé»æºãšããŠåãæ±ã£ãŠè¯ãã
ãªãããããã¯çŽæµé»æºã§ããã亀æµã®å Žåã¯äžè¬åããé»å§æºãšããŠ[[File:Voltage Source.svg|30px|亀æµé»å§æº]]ã®èšå·ãçšããããŸãç¹ã«æ£åŒŠæ³¢äº€æµé»å§æºã§ããã°[[File:Voltage Source (AC).svg|30px|æ£åŒŠæ³¢äº€æµé»å§æº]]ã®èšå·ãçšããã
==== æµæåš ====
[[File:3 Resistors.jpg|thumb|æµæ]]
'''æµæåš'''(resistor)ã¯ãéåžžã¯åã«'''æµæ'''ãšåŒã°ããåè·¯çŽ åã§ãããäžãããã黿°ãšãã«ã®ãŒãåçŽã«æ¶è²»ããçŽ åã§ãããåè·¯å³èšå·ã¯[[File:Resistor symbol America.svg|60px|æµæ]]ãããã¯[[File:Resistor symbol IEC.svg|60px|è² è·]]ã§ããããæ¬æžã§ã¯ãäž¡è
ãšãæµæã®åè·¯å³èšå·ãšããŠçšããããšã«ãããïŒç»åçŽ æã®ç¢ºä¿ã®éœåã®ãããäž¡æ¹ã®èšå·ãæ¬æžã§ã¯æ··åšããŸããã容赊ãã ãããïŒ
{{clear}}
===== æµæåšã®å³èšå· =====
æ¥æ¬ã§ã¯ãæµæåšã®å³èšå·ã¯ãåŸæ¥ã¯JIS C 0301ïŒ1952幎4æå¶å®ïŒã«åºã¥ããã®ã¶ã®ã¶ã®ç·ç¶ã®å³èšå·ã§å³ç€ºãããŠããããçŸåšã®ãåœéèŠæ Œã®IEC 60617ãå
ã«äœæãããJIS C 0617ïŒ1997-1999幎å¶å®ïŒã§ã¯ã®ã¶ã®ã¶åã®å³èšå·ã¯ç€ºãããªããªããé·æ¹åœ¢ã®ç®±ç¶ã®å³èšå·ã§å³ç€ºããããšã«ãªã£ãŠãããæ§èŠæ Œã§ããJIS C 0301ã¯ãæ°èŠæ ŒJIS C 0617ã®å¶å®ã«äŒŽã£ãŠå»æ¢ããããããæ§èšå·ã§æµæåšãå³ç€ºããå³é¢ã¯ãçŸåšã§ã¯JISéæºæ ãªå³é¢ã«ãªã£ãŠããŸããããããææåã¯ç¡ããããçŸåšãåŸæ¥ã®å³èšå·ãå€çšãããŠããã
<gallery>
ãã¡ã€ã«:Resistor_symbol_America.svg|åŸæ¥èŠæ Œã®å³èšå·
ãã¡ã€ã«:Resistor_symbol_IEC.svg|æ°èŠæ Œã®å³èšå·
</gallery>
==== 黿°åè·¯å³èšå·ã®äŸ ====
<gallery>
ãã¡ã€ã«:åºå®æµæåš.svg|åºå®æµæåš
File:Variable resistor as rheostat symbol GOST.svg|å¯å€æµæåš
ãã¡ã€ã«:黿± .svg|黿± ãçŽæµé»æºïŒé·ãæ¹ãæ£æ¥µïŒ
File:Voltage Source (AC).svg|亀æµé»æº
ãã¡ã€ã«:SPST-Switch.svg|ã¹ã€ãã
ãã¡ã€ã«:ã³ã³ãã³ãµ.svg|ã³ã³ãã³ãµ
File:Inductor h wikisch.svg|ã³ã€ã«
File:Symbole amperemetre.png|黿µèš
File:Symbole voltmetre.png|é»å§èš
File:Earth Ground.svg|æ¥å°
ãã¡ã€ã«:Fuse.svg|ãã¥ãŒãº
</gallery>
==== çŽåãšäžŠå ====
è€æ°ã®åè·¯çŽ åã1ã€ã®ç·äžã«é
眮ãããŠãããããªæ¥ç¶ã'''çŽåæ¥ç¶'''ãšãããè€æ°ã®åè·¯çŽ åãäºè¡ã«åãããããã«é
眮ãããŠããæ¥ç¶ã'''äžŠåæ¥ç¶'''ãšããã
çŽåæ¥ç¶ã«ãããŠã¯ãããããã®åè·¯çŽ åã«æµãã黿µã¯å
šãŠçãããäžæ¹ãäžŠåæ¥ç¶ã«ãããŠã¯ããããã®åè·¯çŽ åã®äž¡ç«¯ã«ãããé»å§ãå
šãŠçããã
ãŸããçŽåæ¥ç¶ã«ãããŠã¯ããããã®åè·¯çŽ åã«ãããé»å§ã®åãå
šé»å§ãšãªããäžŠåæ¥ç¶ã«ãããŠã¯ããããã®åè·¯çŽ åãæµãã黿µã®åãå
šé»æµãšãªãã
==== çŽåã§ã®åææµæ ====
æµæãè€æ°æ¥ç¶ãããŠããå Žåããã®è€æ°ã®æµæããŸãšããŠãããã1ã€ã®æµæãæ¥ç¶ãããŠãããã®ãããªç䟡çãªåè·¯ãèããããšãã§ãããè€æ°ã®æµæãšç䟡ãª1ã€ã®æµæã'''åææµæ'''ãšããã
[[ãã¡ã€ã«:Resistors in series.svg|thumb|çŽåæµæ]]
æµæã''n''åçŽåã«æ¥ç¶ãããŠããå Žåãèãããæµæ<math>R_1, R_2, \cdots, R_n</math>ãçŽåã«æ¥ç¶ãããŠããå Žåãåæµæãæµãã黿µã¯çãããããã''i''ãšãããåæµæ<math>R_k (k = 1, 2, \cdots, n)</math>ã«ãããé»å§ã<math>v_k</math>ãšãããšããªãŒã ã®æ³åãã
:<math>v_k = R_ki (k = 1, 2, \cdots, n)</math>
ãæãç«ã€ããã®ãšãçŽåæµæã®äž¡ç«¯ã®é»å§''v''ã¯ã
:<math>v = \sum_{k=1}^n v_k = \sum_{k=1}^n R_k i = i\sum_{k=1}^n R_k</math>
ã§ããããããšçäŸ¡ãªæµæ''R''ã1ã€ã ãæ¥ç¶ãããŠãããããªç䟡åè·¯ãèãããšãã
:<math>v = Ri</math>
ãæãç«ã€ããããããã£ãŠãããã®''n''åã®çŽåæµæã®åææµæ''R''ãšããŠ
:<math>R = \sum_{k=1}^n R_k</math>
ãåŸããããªãã¡ãçŽååææµæã¯åæµæã®ç·åãšãªãã
==== 䞊åã§ã®åææµæ ====
[[ãã¡ã€ã«:Resistors in parallel.svg|thumb|äžŠåæµæ]]
åæ§ã«ãæµæã''n''å䞊åã«æ¥ç¶ãããŠããå Žåãèãããæµæ<math>R_1, R_2, \cdots, R_n</math>ã䞊åã«æ¥ç¶ãããŠããå Žåãåæµæã®äž¡ç«¯ã®é»å§ã¯çãããããã''v''ãšãããåæµæ<math>R_k (k = 1, 2, \cdots, n)</math>ãæµãã黿µã<math>i_k</math>ãšãããšããªãŒã ã®æ³åãã
:<math>v = R_ki_k (k = 1, 2, \cdots, n)</math>
ãæãç«ã€ããã®ãšãäžŠåæµæãžæµã蟌ã黿µ''i''ã¯ã
:<math>i = \sum_{k=1}^n i_k = \sum_{k=1}^n \frac{v}{R_k} = v\sum_{k=1}^n \frac{1}{R_k}</math>
ã§ããããããšçäŸ¡ãªæµæ''R''ã1ã€ã ãæ¥ç¶ãããŠãããããªç䟡åè·¯ãèãããšãã
:<math>v = Ri</math>
ãæãç«ã€ããããããã£ãŠãããã®''n''åã®äžŠåæµæã®åææµæ''R''ãšããŠ
:<math>\frac{1}{R} = \sum_{k=1}^n \frac{1}{R_k}</math>
ãåŸããããªãã¡ã䞊ååææµæã®éæ°ã¯åæµæã®éæ°ã®ç·åãšãªãã
==== é»å ====
æµæRã黿µIãæµãããšãããã®éšåã®çºç±ã®ãšãã«ã®ãŒã¯ã1ç§ãããã«RI<sup>2</sup>[J/s]ã§ãããããã'''ãžã¥ãŒã«ç±'''ãšãããååã®ç±æ¥ã¯ç©çåŠè
ã®ãžã¥ãŒã«ã調ã¹ãããã§ããããªãŒã ã®æ³åãããV=RIã§ãããã®ã§ããžã¥ãŒã«ç±ã¯VIãšãæžããã
ããã§ãã²ãšãŸããç±ã®èå¯ã«ã¯é¢ããŠã次ã®éãå®çŸ©ããã黿°åè·¯ã®ãã2ç¹éãæµãã黿µIãšããã®ïŒç¹éã®é»å§Vãšã®ç©VIã'''é»å'''ïŒpowerïŒãšå®çŸ©ãããé»åã®èšå·ã¯Pã§è¡šããããããšãå€ãã
é»åã®åäœã®ãžã¥ãŒã«æ¯ç§[J/s]ã[W]ãšããåäœã§è¡šãããã®åäœWã¯ã¯ããïŒWattïŒãšèªãã
ã€ãŸãé»åã¯èšå·ã§
:P[W]=VI
ã§ããã
==== æµæç ====
å°ç·ã®å€ªããé·ãã«ãã£ãŠæµæã®å€§ããã¯å€ãããçŽæçã«å€ªãã»ããæµããããã®ã¯åããã ããããŸããäžŠåæ¥ç¶ãšå¯Ÿå¿ãããããšã§ãå°ç·ã倪ãã»ããæµããããããšã¯èšããã
å®éã«é»æ°æµæã¯ãå°ç·ã®å€ªãã«åæ¯äŸããŠå°ãããªãããšãå®éšçã«ç¢ºèªãããŠãããããã§ãã€ãã®ãããªåŒã«ãããŠã¿ããã
æµæãR[Ω]ãšããå Žåãå°ç·ã®å€ªããé¢ç©ã§è¡šãA[m<sup>2</sup>]ãšããã°ãæ¯äŸå®æ°ã«kãçšããã°ã
:R â 1/A
ã§ãããïŒ âã¯ãæ¯äŸé¢ä¿ãè¡šãæ°åŠèšå·ãïŒ
ããã«ãå°ç·ã¯æè³ªã倪ããåããªãã°ãå°ç·ãé·ãã»ã©æµæããé·ãã«æ¯äŸããŠæµæã倧ãããªãããšãã確èªãããŠãããããã§ãããã«ãæµæäœã®é·ããèæ
®ããåŒã«è¡šããŠã¿ãã°ã次ã®ããã«ãªããæµæåž¯ã®é·ãã''l''[m]ãšããã°
:R â L/A
ã§ããã
ããã«ãå°ç·ã®æè³ªã«ãã£ãŠãæµæã®å€§ããã¯å€ãããåãé·ãã§åã倪ãã®æµæã§ããæè³ªã«ãã£ãŠæµæã®å€§ããã¯ç°ãªããããã§ãæè³ªããšã®æ¯äŸå®æ°ãρãšããã°ãæµæã®åŒã¯ä»¥äžã®åŒã§èšè¿°ãããã
:<math>R=\rho \frac{l}{A}</math>
ρã¯'''æµæç'''ïŒãŠããããã€ãresistivityïŒãšåŒã°ãããæµæçã®åäœã¯[Ωm]ã§ããã
== ç£å ==
=== ç£å Ž ===
[[File:Magnetic field near pole.svg|thumb|right|200px|æ£ç£ç³ã®åšãã«æ¹äœç£éã眮ããŠç£å Žã®åãã調ã¹ãã]]
ç£ç³ã®ãŸããã«ã¯å¥ã®ç£ç³ãåããåã®ããšãšãªããã®ãçããŠããã
ããã'''ç£å Ž'''ïŒãã°ãmagnetic fieldïŒãããã¯'''ç£ç'''ïŒãããïŒãšåŒã¶ãïŒæ¥æ¬ã®ç©çåŠã§ã¯ç£å ŽãšåŒã¶ããšãå€ãããŸããæ¥æ¬ã®é»æ°å·¥åŠã§ã¯ç£çãšåŒã°ããããšãå€ããææ²»æã®èš³èªã®éã®ãæ¥æ¬åœå
ã®æ¥çããšã®éãã«éãããå°å瀟äŒçãªäºè±¡ã§ãããåŒã³æ¹ã¯ç©çã®æ¬è³ªãšã¯é¢ä¿ãªãã®ã§ãããã§ã¯ãã©ã¡ãã®è¡šçŸãçšãããã¯ãæ¬æžã§ã¯ç¹ã«ãã ãããªããè±èªã§ã¯ç©çåŠã»é»æ°å·¥åŠãšãâmagnetic fieldâã§å
±éããŠãããïŒ
éãã³ãã«ããããã±ã«ã«ç£ç³ãè¿ã¥ãããšãç£ç³ã«åžãä»ããããã
ãŸããéãã³ãã«ããããã±ã«ã«åŒ·ãç£åãäžãããšãéãã³ãã«ããããã±ã«ãã®ãã®ãç£å Žãåšå²ã«åãŒãããã«ãªãã
ãã®ãããªãããšããšã¯ç£å Žãæããªãã£ãç©äœãã匷ãç£å Žãåããããšã«ãã£ãŠç£å ŽãåãŒãããã«ãªãçŸè±¡ã'''ç£å'''ïŒãããmagnetizationïŒãšããã
ãããã¯é»è·ã®éé»èªå°ãšå¯Ÿå¿ãããŠãç£åã®ããšã'''ç£æ°èªå°'''ïŒããããã©ããmagnetic inductionïŒãšãããã
ãããŠãéãã³ãã«ããããã±ã«ã®ããã«ãç£ç³ã«åŒãä»ããããããã«ç£åãããèœåãããç©äœã'''åŒ·ç£æ§äœ'''ïŒãããããããããferromagnetïŒãšããã
éãšã³ãã«ããšããã±ã«ã¯åŒ·ç£æ§äœã§ããã
é
ã¯ç£åããªãããé
ã¯ç£ç³ã«åŒãã€ããããªãã®ã§ãé
ã¯åŒ·ç£æ§äœã§ã¯ãªãã
;ç£æ°é®èœ
éé»èªå°ãå©çšãããéé»é®èœïŒããã§ããããžãïŒãšèšããããäžç©ºã®å°äœãã€ãã£ãŠç©è³ªãå²ãããšã§å€éšé»å Žãé®èœããæ¹æ³ããã£ãã®ãšåæ§ã®ãç£æ°ã®é®èœããåŒ·ç£æ§äœã§ãåºæ¥ããäžç©ºã®åŒ·ç£æ§äœãçšããŠãåŒ·ç£æ§äœã®å
éšã¯ç£å Žãé®èœã§ãããããã'''ç£æ°é®èœ'''ïŒãããããžããmagnetic shieldingïŒãšãããç£æ°ã·ãŒã«ããšãããã
==== ç£åç· ====
ç£å Žã®åããåããããã«å³ç€ºããããç£ç³ã®äœãç£å Žã®æ¹åã¯ãç ã«å«ãŸããç éã®ç²æ«ãç£ç³ã«ãã¡ãã°ããŠããµããããããšã§èгå¯ã§ããã
[[File:Magnet0873.png|left|300px|ç éã«ããç£åç·ã®èгå¯]]
{{clear}}
ãããå³ç€ºãããšãäžå³ã®ããã«ãªããïŒç»åçŽ æã®ç¢ºä¿ã®éœåäžãåçãšå³ç€ºãšã§ã¯ãN極ãšS極ãéã«ãªã£ãŠããŸããã容赊ãã ãããïŒ
[[File:VFPt cylindrical magnet.svg|thumb|left|300px|ç£åç·ã®å³ç€º]]
ãã®ãããªç£å Žã®å³ã'''ç£åç·'''ïŒãããããããmagnetic line of forceïŒãšãããç£åç·ã®åãã¯ãç£ç³ã®N極ããç£åç·ãåºãŠãS極ã«ç£åç·ãåžåããããšå®çŸ©ããããæ£ç£ç³ã§ã¯ãç£åã®çºçæºãšãªãå Žæããæ£ç£ç³ã®äž¡ç«¯ã®å
端ä»è¿ã«éäžãããããã§ãæ£ç£ç³ã®äž¡ç«¯ã®å
端ä»è¿ã'''ç£æ¥µ'''ïŒãããããmagnetic poleïŒãšããã
ãã®ãããªç£ç³ã®ã€ããç£åç·ã®åœ¢ã¯ã黿°åç·ã§ã®ãç°ç¬Šå·ã®é»è·ã©ãããã€ãã黿°åç·ã«äŒŒãŠããã
[[File:VFPt dipole electric manylines.svg|thumb|center|200px|ç°ç¬Šå·ã®é»è·ã©ããã®å Žåã®é»æ°åç·]]
1ã€ã®æ£ç£ç³ã§ã¯N極ïŒnorth poleïŒã®ç£æ°ã®åŒ·ããšãS極ïŒsouth poleïŒã®ç£æ°ã®åŒ·ãã¯çããããŸããç£ç³ã«ã¯ãå¿
ãN極ãšS極ãšãååšãããN極ãšS極ã®ãã©ã¡ããçæ¹ã ããåãåºãããšã¯åºæ¥ãªããããšãæ£ç£ç³ãåæããŠããåæé¢ã«ç£æ¥µãåºçŸããããã®ãããªçŸè±¡ã®ãããçç±ã¯ãããããæ£ç£ç³ãæ§æããåŒ·ç£æ§äœã®ååã®1åãã€ãå°ããªç£ç³ã§ããããããå°ããªååã®ç£ç³ããããã€ãæŽåããŠã倧ããªæ£ç£ç³ã«ãªã£ãŠããããã§ããã
ä»®æ³çã«ãç£æ¥µãS極ãŸãã¯N極ã®çæ¹ã ãçŸããçŸè±¡ãçè«èšç®ã®ããã«èããããšããããããã®ãããªçåŽã ãã®ç£æ¥µã'''åç£æ¥µ'''ïŒ'''ã¢ãããŒã«'''ãšãããïŒãšãããã'''åç£æ¥µã¯å®åšããªã'''ã
{{clear}}
æ£ç£ç³ãªã©ããã®ãçåŽã®ç£æ¥µãããã®ãç£æ¥µããã®ç£å Žã®åŒ·ãã®ããšãããã®ãŸãŸãç£æ¥µã®åŒ·ããïŒMagnetic chargeïŒãšåŒã¶ããããã¯'''ç£è·'''ïŒãããmagnetizationïŒã'''ç£æ°é'''ãšããã
ããããããã®ç£åãšç£å Žã®é¢ä¿ãåŒã§è¡šãããšãèããã
ãŸããæ£ç£ç³ã«ã¯ç£æ¥µãäž¡åŽã«2åããã®ã§ãèšç®ãç°¡åã«ããããã«ãæ£ç£ç³ã®äž¡ç«¯ã®è·é¢ã倧ãããå察åŽã®ç£æ¥µã®å€§ãããç¡èŠã§ããç£ç³ãèãããã
ãã®ãããªç£ç³ãçšããŠãå®éšãããšãããæ¬¡ã®æ³åãåãã£ããç£åã®åŒ·ãã¯2åã®ç©äœã®ç£æ°ém<sub>1</sub>ããã³m<sub>2</sub>ã«æ¯äŸãã2åã®ç©äœéã®è·é¢rã®2ä¹ã«åæ¯äŸããã
åŒã§è¡šããšã
:<math>f = k_m \frac{q_1 q_2}{r^2}</math>
ã§è¡šããããïŒk<sub>m</sub>ã¯æ¯äŸå®æ°ïŒ
ãããçºèŠè
ã®ã¯ãŒãã³ã®åã«ã¡ãªãã§ã'''ç£æ°ã«é¢ããã¯ãŒãã³ã®æ³å'''ãšãããç£æ°émã®åäœã¯'''ãŠã§ãŒã'''ãšãããèšå·ã¯[Wb]ã§è¡šãã
æ¯äŸå®æ°k<sub>m</sub>ãš1ãŠã§ãŒãã®å€§ãããšã®é¢ä¿ã¯ã1ã¡ãŒãã«é¢ãã1wbã©ããã®ç£æ¥µã«ã¯ãããåãçŽ6.33Ã10<sup>4</sup>ãšããŠã
æ¯äŸä¿æ°k<sub>m</sub>ã¯ã
:k<sub>m</sub>â6.33Ã10<sup>4</sup>ã[Nã»m<sup>2</sup>/Wb<sup>2</sup>]
ã§ããã
ã€ãŸãã
:<math>f = k_m \frac{m_1 m_2}{r^2} = 6.33\times10^4 \frac {m_1 m_2}{r^2}</math>
ã§ããã
==== ç£å Žã®åŒ ====
é黿°åã«å¯ŸããŠãé»å Žãå®çŸ©ãããããã«ãç£æ°åã«å¯ŸããŠããå Žãå®çŸ©ããããšéœåãè¯ããç£æ°ém<sub>1</sub>[Wb]ãäœããæ¬¡ã®éã'''ç£å Žã®åŒ·ã'''ãããã¯'''ç£å Žã®å€§ãã'''ãšèšããèšå·ã¯Hã§è¡šãã
:<math>H = k_m \frac{m_1}{r^2} = 6.33\times10^4 \frac {m_1}{r^2}</math>
ç£å Žã®åŒ·ãHã®åäœã¯[N/Wb]ã§ãããHãçšãããšãç£æ°ém<sub>2</sub>[Wb]ã«ã¯ãããç£æ°åf[N]ã¯ã
:<math>f = m_2H</math>
ãšè¡šããã
== 黿µãã€ããç£å Ž ==
===ã¢ã³ããŒã«ã®æ³å===
[[Image:Electromagnetism.svg|thumb|right|黿µã®æ¹åãšç£æå¯åºŠã®æ¹åã®é¢ä¿.<br>ç£æã®åãã¯ãå³ããã®æ³åã®åãã§ããã.]]
ç©çåŠè
ã®ãšã«ã¹ãããã¯ã黿µã®å®éšãããŠããéã«ãããŸããŸè¿ãã«ãããŠãã£ãæ¹äœç£ç³ãåãã®ã確èªããã圌ã詳ãã調ã¹ãçµæã以äžã®ããšãåãã£ãã
黿µãæµããŠãããšãã«ã¯ããã®ãŸããã«ã¯ãç£å Žãçãããåãã¯ã黿µã®æ¹åã«å³ãããé²ãããã«ãå³ãããåãåããšåããªã®ã§ãããã'''å³ããã®æ³å'''ãšããã
ã¢ã³ããŒã«ããç£å Žã®å€§ããã調ã¹ãçµæãç£å Žã®å€§ããHã¯ã黿µI[A]ãçŽç·çã«æµããŠãããšããçŽç·é»æµã®åšãã®ç£å Žã®å€§ããã¯ãå°ç·ããã®è·é¢ãa[m]ãšãããšãç£å Žã®å€§ããH[N/Wb]ã¯ã
:<math>H=\frac{1}{2\pi a}I</math>
ã§ããããšãç¥ãããŠããã
ããã'''ã¢ã³ããŒã«ã®æ³å'''(Ampere's law) ãšããã
ç£å Žã®å€§ããHã®åäœã¯ã[N/Wb]ã§ãããããã£ãœãã¢ã³ããŒã«ã®æ³åã®åŒãã¿ãã°ã¢ã³ãã¢æ¯ã¡ãŒãã«[A/m]ã§ãããã
;é»ç£ç³
[[File:Simple electromagnet2.gif|thumb|é»ç£ç³ã®äŸ.]]
[[ç»å:VFPt Solenoid correct.svg|thumb|right|é»ç£ç³ã³ã€ã«ã«ããçºçããç£çïŒæé¢å³ïŒ]]
å°ç·ãã³ã€ã«ç¶ã«å·»ãã°ãã¢ã³ããŒã«ã®æ³åã§å°ç·ã®åšå²ã«çºçããç£å Žãéãªãããããã®ããã«ããç£å Žã匷ããã³ã€ã«ã'''é»ç£ç³'''ïŒã§ããããããelectromagnetïŒãšãããå°ç·ã«é»æµãæµããŠãããšãã«ã®ã¿ãé»ç£ç³ã¯ç£å Žãçºçãããå°ç·ã«é»æµãæµãã®ãæ¢ãããšãé»ç£ç³ã®ç£å Žã¯æ¶ããã
=== ç£æå¯åºŠ ===
ç£å Žã®å€§ããHã«ã次ã®ç¯ã§æ±ãããŒã¬ã³ãåã®çŸè±¡ã®ãããæ¯äŸä¿æ°μïŒåäœã¯ãã¥ãŒãã³æ¯ã¢ã³ãã¢ã§[N/A<sup>2</sup>]ïŒãæããŠãèšå·Bã§è¡šãã
:B=μH
ãšããããšãããããã®éBã'''ç£æå¯åºŠ'''ïŒmagnetic flux densityïŒãšãããç£å Žã®å€§ããHã®åããšç£æå¯åºŠBã®åãã¯'''åãåã'''ã§ããã
ãŸããç£å Žã®å€§ããHãšç£æå¯åºŠBã®æ¯äŸä¿æ°ã'''éç£ç'''ïŒãšãããã€ãmagnetic permeabilityïŒãšããã
ïŒããŒã¬ã³ãåã«é¢ããŠã¯ã詳ããã¯ç©çIIã§æ±ããèªè
ãç©çIãåŠã¶åŠå¹Žãªãã°ãèªè
ã¯ãããŒã¬ã³ãåãšããåãããã®ã ãªã»ã»ã»ããšã§ãæã£ãŠããã°ãããïŒ
== ããŒã¬ã³ãå ==
[[File:Lorentzkraft-graphic-part1.PNG|thumb|ããŒã¬ã³ãåã®åããé»è·ã§èããå Žåã<br>é床vããç£æå¯åºŠBã«å³ãããåããåããããŒã¬ã³ãåFã®åãã]]
[[File:Lorentzkraft-graphic-part2.PNG|thumb|ããŒã¬ã³ãåã®åãã<br>黿µIããç£æå¯åºŠBã«å³ãããåããåããããŒã¬ã³ãåFã®åãã]]
ãŸããå°ç·ãçšæãããšãããããã®å°ç·ã¯åºå®ãããã«éæ¢ããŠãããšããŠãããå°ç·ã«åãå ããã°ãå°ç·ãåããããã«ããŠããšãããã
ãã®å°ç·ã«é»æµãæµããã ãã§ã¯ãã¹ã€ã«å°ç·ã¯åããªãããããããã®å°ç·ã«ãå€éšã®ç£ç³ã«ããç£å Žãå ãããšãå°ç·ãåãããã®ãããªãç£å Žãšé»æµã®çžäºäœçšã«ãã£ãŠãå°ç·ã«çããåã'''ããŒã¬ã³ãå'''ïŒããŒã¬ã³ãããããè±: Lorentz forceïŒãšããã
ããŒã¬ã³ãåã®åãã¯ãå°ç·ã®é»æµã®åããšç£å Žã®åãã«åçŽã§ããã黿µIã®åãããç£æå¯åºŠBã®åãã«å³ãããåãåããšåãã§ããã
ãŸããããŒã¬ã³ãåã®å€§ããã¯ãå°ç·ã®é·ã''l''ãšãç£å Žã®å°ç·ãšã®åçŽæ¹åæåã«æ¯äŸããã
ããŒã¬ã³ãåã®å€§ããF[N]ãåŒã§è¡šãã°ã黿µãšç£å ŽãšãåçŽã ãšããŠãç£å ŽãåããŠããå°ç·ã®åœ¢ç¶ãçŽç·åœ¢ã ãšããŠã黿µãI[A]ãšããŠãå°ç·ã®é·ãã''l''[m]ãšããŠãå°ç·ã«ããã£ãŠããå€éšç£å Žã®ç£æå¯åºŠãB[N/(Aã»m)]ãšããã°ã
:<math>F=IBl</math>
ã§è¡šããã
ããŒã¬ã³ãåã®å
¬åŒã«ãã¯ãŒãã³ã®æ³åãªã©ã§ã¯èŠããããããªæ¯äŸä¿æ°ïŒä¿æ°Kãªã©ãïŒãå«ãŸããªãã®ã¯ãããããããã®ããŒã¬ã³ãåã®çŸè±¡ãå
ã«ãç£æ°éãŠã§ãŒãWbã®åäœããã³ç£æå¯åºŠBã®åäœããæ±ºå®ãããŠããããã§ããã
ãŸãããç£æå¯åºŠãã®åç§°ãããç£æãã»ãå¯åºŠããšããã®ã¯ãå®ã¯ç£æå¯åºŠã®åäœã®[N/(Aã»m)]ã¯ãåäœãåŒå€åœ¢ãããš[Wb/m<sup>2</sup>]ã§ãããããšãç±æ¥ã§ããããã®åäœ[Wb/m<sup>2</sup>]ãã黿°å·¥åŠè
ã®ãã¹ã©ã®åã«ã¡ãªã¿ãåäœ[Wb/m<sup>2</sup>]
ã'''ãã¹ã©'''ãšèšããèšå·Tã§è¡šãã
:[T]=[Wb/m<sup>2</sup>]
ãã®ããŒã¬ã³ãåã®çŸè±¡ãã黿°æ©åšã®ã¢ãŒã¿ïŒé»åæ©ïŒã®åçã§ããã
;ãã¬ãã³ã°ã®æ³åã¯é»ç£æ°èšç®ã§ã¯çšããªã
ãªããããã¬ãã³ã°ã®æ³åããšããããŒã¬ã³ãåã«é¢ããæ³åãããããããŒã¬ã³ãåã®èšç®ã«ã¯å®çšçã§ã¯ç¡ããããã¬ãã³ã°ã®åãé¢ããç°ãªãæ³åã幟ã€ããã£ãŠçŽããããééãã®åå ã«ãªããããã®ã§ãæ¬æžã§ã¯æããªãã
å®éã«ãå°éçãªç©çèšç®ã§ã¯ããã¬ãã³ã°ã®æ³åã¯ãèšç®ã«ã¯çšããªãã
ãããããã¬ãã³ã°ã®æ³åã«ã¯ããã¬ãã³ã°ã®å³æã®æ³åããšããããšã¯ç°ãªãããã¬ãã³ã°ã®å·Šæã®æ³åãããããã©ã¡ãããã©ã®ç£æ°ã®çŸè±¡ã«çšããæ³åã ã£ãã®ããééãããããã ãããæ¬æžã§ã¯æããªãã
{{clear}}
==é»ç£èªå°==
ïŒé»ç£èªå°ã«é¢ããŠã¯ã詳ããã¯ç©çIIã§æ±ããïŒ
ã¢ã³ããŒã«ã®æ³åã§ã¯ã黿µã®åšãã«ç£å Žãã§ããã®ã§ãã£ãã
:ã§ã¯éã«ãç£å ŽãçšããŠé»æµãèµ·ãããããªçŸè±¡ã¯ããã ãããïŒ
å®ã¯ãç£ç³ãåãããªã©ããŠãç£å Žã䌎ãç©äœãéåãããšããã®ãŸããã«ã¯é»å Žãçããã
ä»®ã«ãã³ã€ã«ã®è¿ãã§ãããè¡ãªã£ããšãããšãçããé»å Žã«ãã£ãŠã³ã€ã«ã®äžã«ã¯é»æµãæµããã
çããé»å Žã®å€§ããã¯ã
:<math>\vec E = \frac 1 {2\pi a} \frac {\Delta \vec B}{\Delta t}</math>
ãšãªãã(ååŸaã®å圢ã®ã³ã€ã«ã®å Žåã)
Eã®åäœã¯[V/m]ã§ãããBã®åäœã¯[T]ã§ããã
ãã®çŸè±¡ã'''é»ç£èªå°'''ïŒã§ããããã©ããelectromagnetic inductionïŒãšãããé»ç£èªå°ã«ãã£ãŠçºçãã黿µã'''èªå°é»æµ'''ãšããã
ãŸããèªå°é»æµã®åãã¯ãç£ç³ã®åãã«ãããã³ã€ã«ã®äžãéãç£æã®å€åã劚ããåãã«ã黿µãæµãããïŒèªå°é»æµãã¢ã³ããŒã«ã®æ³åã«åŸããåšå²ã«ç£å ŽãäœããïŒ
ãã®èªå°é»æµããã³ã€ã«ã®äžãéãç£æã®å€åã劚ããåãã«èªå°é»æµãæµããçŸè±¡ã'''ã¬ã³ãã®æ³å'''ïŒLenz's lawïŒãšããã
åãé åã«''N''åå·»ãããã³ã€ã«ã眮ãããå Žåããã¡ã©ããŒã®é»ç£èªå°ã®æ³åã¯ã次ã®ããã«ãªãã
: <math>\mathcal{E} = - N{{d\Phi_B} \over dt}</math>
ããã§ã<math>\mathcal{E}</math>ã¯èµ·é»åïŒãã«ã ãèšå·ã¯VïŒãΦ<sub>B</sub> ã¯ç£æïŒãŠã§ãŒããèšå·ã¯WbïŒãšããã''N''ã¯é»ç·ã®å·»æ°ãšããã
ãã®é»ç£èªå°ã®çŸè±¡ããç«åçºé»ãæ°Žåçºé»ãªã©ã®çºé»æ©ã®åçã§ãããããçã®çºé»ã§ã¯ãæ°žä¹
ç£ç³ãå転ãããããšã§ãçºé»ãããŠãããç«åãæ°Žåãšããã®ã¯ãæ©åšã®å転ãåŸãææ®µã«ãããªãããŸããçºé»æã®çºé»ã«ã¯ãæ°žä¹
ç£ç³ã®å転ãå©çšããŠãããããçºçããé»å§ã黿µã¯åšæçãªæ³¢åœ¢ã«ãªããæ¬¡ã«èª¬æããäº€æµæ³¢åœ¢ã«ãªãã
== 亀æµåè·¯ ==
[[File:Waveforms.svg|thumb|400px|äº€æµæ³¢åœ¢ã®äŸã<br>äžããé ã«ã<br>æ£åŒŠæ³¢ã<br>æ¹åœ¢æ³¢ã<br>äžè§æ³¢ã<br>ã®ãããæ³¢ã]]
åè·¯ãžã®å
¥åé»å§ãåšæçã«æéå€åããåè·¯ã®é»å§ããã³é»æµã'''亀æµ'''ïŒalternating currentïŒãšãããããã«å¯Ÿããä¹Ÿé»æ± ãªã©ã«ãã£ãŠçºçããé»å§ã黿µã®ããã«ãæéã«ãããäžå®ãªé»å§ã黿µã¯'''çŽæµ'''ïŒdirect CurrentïŒãšããã
äº€æµæ³¢åœ¢ãäœç§ã§1åšããããšããæéã'''åšæ'''(wave period)ãšãããåšæã®èšå·ã¯<math>T</math>ã§è¡šãåäœã¯ç§[s]ã§ããã
:<math>f = \frac{1}{T}</math>
1ç§éã«æ³¢åœ¢ãäœåšããããšããåæ°ã'''åšæ³¢æ°'''ãããã¯'''æ¯åæ°'''(è±èªã¯ããšãã«frequency)ãšããã
黿°ã®æ¥çã§ã¯åšæ³¢æ°ãšããçšèªãçšããããšãå€ããç©çã®æ³¢ã®çè«ã§ã¯æ¯åæ°ãšãã衚çŸãçšããããšãå€ãã
åšæ³¢æ°ã®åäœã¯[1/s]ã§ããããããã'''ãã«ã'''ïŒhertzïŒãšããåäœã§è¡šããåäœèšå·'''Hz'''ãçšããŠåšæ³¢æ°fããf[Hz]ãšãããµãã«è¡šãã
亀æµé»æµã亀æµé»å§ãæ£åŒŠæ³¢ã®å Žåã¯ããããã®ãã©ã¡ãŒã¿ãçšããŠ
:<math>i(t) = I_0\sin(2\pi ft + \theta_i) = I_0\sin\left(\frac{2\pi}{T}t + \theta_i\right)</math>
:<math>v(t) = V_0\sin(2\pi ft + \theta_v) = V_0\sin\left(\frac{2\pi}{T}t + \theta_v\right)</math>
ãšæžãããšãã§ããã
sinãšã¯äžè§é¢æ°ã§ãããç¥ããªããã°æ°åŠIIãªã©ãåèã«ããã
ãã®ãšãã®sinã®ä¿æ°<math>I_0</math>ã<math>V_0</math>ã'''æ¯å¹
'''(ããã·ããamplitude)ãšããããŸãæå»''t''=0ã«ããã黿µãé»å§ã®å€ã瀺ããæéæ³¢åœ¢ãæ±ºå®ãã<math>\theta_i</math>ã<math>\theta_v</math>ã'''åæäœçž'''ãšããã
æ®éç§é«æ ¡ã®é«æ ¡ç©çã§ã¯ãäº€æµæ³¢åœ¢ã®èšç®ã«ã¯ãæ£åŒŠæ³¢ã®å Žåãäž»ã«æ±ããæ¹åœ¢æ³¢ãäžè§æ³¢ã®èšç®ã¯ãæ®éã¯æ±ãããªãã
ãã ããå·¥æ¥é«æ ¡ã®ææ¥ããå·¥å Žã®å®åã§ã¯æ±ãããšãããã®ã§ãèªè
ã¯æ³¢åœ¢ãåŠãã§ããããšã
çºé»æããäžè¬å®¶åºã«éãããŠããé»å§ã¯äº€æµé»å§ã§ãããæ±æ¥æ¬ã§ã¯50Hzã§ãããè¥¿æ¥æ¬ã§ã¯60Hzã§ãããããã¯ææ²»æä»£ã®çºé»æ©ã®èŒžå
¥æã«ãæ±æ¥æ¬ã®äºæ¥è
ã¯ãšãŒããããã50Hzçšã®çºé»æ©ã茞å
¥ããè¥¿æ¥æ¬ã®äºæ¥è
ã¯ã¢ã¡ãªã«ãã60Hzã®çºé»æ©ã茞å
¥ããããšã«ããã
çºé»æããäžè¬ã®å®¶åºãªã©ã«éããã黿µã®åšæ³¢æ°ã'''åçšåšæ³¢æ°'''ãšããã
åçšé»æºã®é»å§æ¯å¹
ã¯çŽ140Vã§ãããããã¯<math>100\times\sqrt{2}</math>[V]ã§ããã
ãããã«ããšã¯1000Hzã®ããšã§ããããããã«ãã¯kHzãšæžãã
;ã³ã€ã«ã®èªå·±èªå°
亀æµé»æµã«å¯ŸããŠã¯ã黿µãšåãæ¯åæ°ã§ãã¢ã³ããŒã«ã®æ³åã§çºçããç£å Žãæ¯åããã
å°ç·ã§ã€ããããã³ã€ã«ã¯ãçŽæµé»æµã§ã¯ããã ã®å°ç·ãšããŠã¯ãããããããã亀æµé»æµã«å¯ŸããŠã¯ãé»ç£èªå°ã«ããèªå·±ã®çºçãããç£å Žã劚ãããããªé»æµããã³èµ·é»åãçºçãããããã'''èªå·±èªå°'''ïŒself inductionïŒãšããã
èªå·±èªå°ã«ããèµ·é»åã®å€§ããã¯ã黿µã®æéå€åçã«æ¯äŸãããèªå·±èªå°ã®èµ·é»åãåŒã§æžãã°ãæ¯äŸä¿æ°ãLãšããŠã
:<math>e=-L\frac{\Delta I}{\Delta t}</math>
ã§ããã
ãã®æ¯äŸä¿æ°<math>L</math>ã'''èªå·±ã€ã³ãã¯ã¿ã³ã¹'''ïŒself inductanceïŒãšãããèªå·±ã€ã³ãã¯ã¿ã³ã¹ã®æ¬¡å
ã¯[Vã»S/m]ã ããããã'''ãã³ãªãŒ'''ãšããåäœã§è¡šããåäœã«Hãšããèšå·ãçšããã
;çžäºèªå°
[[ãã¡ã€ã«:Transformer Flux.svg|thumb|çžäºèªå°ãå©çšããå€å§åšïŒtransformerïŒ]]
éå¿ã«äºã€ã®ã³ã€ã«ãå·»ããã³ã€ã«ã®çæ¹ã®é»æµãå€åããããšãã¢ã³ããŒã«ã®æ³åã«ãã£ãŠçããŠããç£æãå€åãããããå察åŽã®ã³ã€ã«ã«ã¯ããã®ç£æå¯åºŠã®å€åãæã¡æ¶ããããªåãã«èµ·é»åãçºçããããã®çŸè±¡ã'''çžäºèªå°'''ïŒmutual inductionïŒãšèšãã
é»å§ãå
¥åãããåŽã®ã³ã€ã«ã'''1次ã³ã€ã«'''ïŒprimaly coilïŒãšèšããèªå°èµ·é»åãçºçãããåŽã®ã³ã€ã«ã'''2次ã³ã€ã«'''ïŒsecondary coilïŒãšããã
çžäºèªå°ã«ããèµ·é»åã®å€§ããã¯ã黿µã®æéå€åçã«æ¯äŸãããçžäºèªå°ã®èµ·é»åãåŒã§æžãã°ãæ¯äŸä¿æ°ãMãšããŠãïŒçžäºèªå°ã®æ¯äŸä¿æ°ã¯Lã§ã¯ç¡ããïŒåŒã¯ã
:<math>e=-M\frac{\Delta I}{\Delta t}</math>
ã§ããã
ãã®æ¯äŸä¿æ°<math>M</math>ã'''çžäºã€ã³ãã¯ã¿ã³ã¹'''ïŒself inductanceïŒãšãããçžäºã€ã³ãã¯ã¿ã³ã¹ã®æ¬¡å
ã¯ãèªå·±ã€ã³ãã¯ã¿ã³ã¹ã®åäœãšåãã§'''ãã³ãªãŒ'''ïŒHïŒã§ããã
ãã®çžäºã€ã³ãã¯ã¿ã³ã¹ã®å€§ããã¯ãäž¡æ¹ã®ã³ã€ã«ã®å·»ãæ°ã©ããã®ç©ã«æ¯äŸããã
{{ã³ã©ã |埮åç©åãè€çŽ æ°ã®åè·¯èšç®ã®è©±é¡|
亀æµåè·¯ã®èšç®ãã髿 ¡ã®æ°åŠã«ãã埮åç©åïŒã³ã¶ãããã¶ãïŒãè€çŽ æ°ïŒãµããããïŒã®çè«ãã€ãã£ãŠèšç®ããããšãã§ãããïŒâ» æ°åŠæç§ã§ããæ°åŠ3ã§ç« æ«ã³ã©ã ãªã©ã§èª¬æãããããå ŽåãããïŒåæé€šã®æ°åŠ3æç§æžãªã©ïŒãïŒ
ã ã髿 ¡çã¯ãç©çã®åŠç¿ã§ã¯ããŸãã¯é»æ°åç·ãç£æç·ãªã©ã®ç¹æ§ãšãã£ãåç·ã®ç¹æ§ã®ã€ã¡ãŒãžãç¿åŸããããèšç®åŒã®ç·Žç¿ã§ã髿 ¡ç©çã®æç§æžã«ããå·®åïŒãã¶ãïŒèšå·Îãšããã€ãã£ãåççãªèª¬æãçè§£ããããã«ããã»ããããã
ãã€ã¯å€§äººã®äºæ
ã ãã亀æµåè·¯ã®èšç®æ³ã¯ãåéã«ãã£ãŠç°ãªã£ãŠãããããŸãçµ±äžãããŠãªããïŒâ» 髿 ¡ç©çã®èšæ³ã®ã»ãã«ããããšãã°ããã§ãŒã¶ãŒè¡šç€ºããšããè€çŽ è¡šç€ºããšãç°ãªãèšç®æ³ã»èšæ³ããããããã«ãã©ãã©ã¹å€æããšããèšç®æ³ããããïŒ
ãããè€çŽ æ°ã®èšå·ã i ïŒã¢ã€ïŒãšã¯ãããã j ïŒãžã§ã€ïŒã ã£ãããšããåéã«ãã£ãŠéã£ãŠããã
ãªã®ã§ããšãããã髿 ¡çã¯ã髿 ¡ç©çã®æç§æžã«ãããããªã宿°ãå·®åèšæ³Îãªã©ã®èšæ³ã§èšç®ããŠããã°ã倧åŠåéšãªã©ã§ã¯å®å
šã§ããã
ãããèšæ³ã»èšç®æ³ã®éãã¯ãããŸãç©çæ³åçã«ã¯æ¬è³ªçã§ãªãã®ã§ãããŸã埮åç©åã«ããåè·¯ã®èšç®æ³ã«ã¯æ·±å
¥ãããªãã»ããããã
ãŸãã¯åç·ã€ã¡ãŒãžãšããã«ã¿èšå·ãÎãæ¹åŒã®åçç©çã®èšç®ãç¿åŸãããã
:⻠倧åŠãå°éåŠæ ¡ã®é»æ°ç³»ã®åŠæ ¡ã«é²åŠãããšãäžè¿°ã®ããããªåè·¯èšç®æ³ïŒäž»ã«è€çŽ æ°è¡šç€ºãšã©ãã©ã¹å€æïŒãç¿ãã®ã§ãããããã®èšç®æ³ãéèŠããå°éåéã®äººããããããèªåã®å°éåéã®èšç®æ³ã®æçŸ©ã䞻匵ããããããã髿 ¡çã«ã¯å€§åŠæå¡ãã¡ã®ã¿ã³ããçãªäºæ
ã¯ã©ãã§ãããã®ã§ãç¡èŠãããã
:ç±³åœã®20äžçŽã®ããŒãã«ç©çåŠè
ãã¡ã€ã³ãã³ããã ãã¶é»æ°å·¥åŠè
ãå«ã£ãŠãïŒåèæç®: ãã¡ã€ã³ãã³ç©çåŠã«ãã黿°å·¥åŠãžã®ç®èã£ãœãæå¥ãïŒ
}}
== é»ç£æ³¢ ==
[[File:Onde electromagnetique.svg|thumb|400px|é»ç£æ³¢ã®æŠç¥å³ãé»å Žãšç£å Žãšã¯çŽäº€ããŠããã]]
ç£å Žã®åãã«ãã£ãŠé»å ŽãåŒãèµ·ããããããšãé»ç£èªå°ã®ã»ã¯ã·ã§ã³ã§èŠãã
å®éã«ã¯é»å Žã®å€åã«ãã£ãŠç£å ŽãåŒãèµ·ããããããšãç¥ãããŠããã
ããã«ãã£ãŠäœããªã空éäžãé»å Žãšç£å ŽãäŒæããŠããããšãäºæ³ãããã
é»ç£æ³¢ã®é床ãç©çåŠè
ã®ãã¯ã¹ãŠã§ã«ãèšç®ã§æ±ãããšãããé»ç£æ³¢ã®é床ã¯ãç空äžã§ã¯åžžã«äžå®ã§ããã€æ³¢ã®é床cãèšç®ã§æ±ãããšããã
:c=3.0Ã10<sup>8</sup>
ãšãªããæ¢ã«ç¥ãããŠããå
éã«äžèŽããã
ãã®ããšãããå
ã¯é»ç£æ³¢ã®äžçš®ã§ããããšãåãã£ããç©çIIã§ãé»ç£æ³¢ã®éåºŠãæ±ããèšç®ã¯ã詳ããã¯æ±ãã
èªè
ãå
éã®æž¬å®å®éšã«ã€ããŠèª¿ã¹ããªããç©çIã®æ³¢åã«é¢ããããŒãžãªã©ã§ãã£ãŸãŒã®å®éšã«ã€ããŠãåç
§ã®ããšã
æ³¢ã¯æ³¢é·Î»ãé·ãã»ã©ãæ¯åæ°fãå°ãããªããæ³¢ã®æ³¢é·Î»ãšæ¯åæ°fã®ç©fλã¯äžå®ã§ãããã¯æ³¢ã®é床vã«çãããã€ãŸã
:v=fλ
ã§ããã
é»ç£æ³¢ã®å Žåã¯ãé床ãå
éã®cãªã®ã§
:c=fλ
ã§ããã
=== é»ç£æ³¢ã®åé¡ ===
* 黿³¢
æŸéçšã®ãã¬ããã©ãžãªã®é»æ³¢ïŒã§ãã±ãradio waveïŒã¯ãé»ç£æ³¢ïŒelectromagnetic waveïŒã®äžçš®ã§ãããæ³¢é·ã0.1mm以äžã®é»ç£æ³¢ã黿³¢ã«åé¡ãããããªãã黿³¢ã®ãã¡ãæ³¢é·ã1mmïœ1cmã®ããªã¡ãŒãã«ã®é»æ³¢ãããªæ³¢ãšãããåæ§ã«ãæ³¢é·ã1cmïœ10cmã®é»æ³¢ãã»ã³ãæ³¢ãšãããæ³¢é·10cmïœ100cm(=1m)ã®é»æ³¢ã¯UHFãšèšããããã¬ãæŸéãªã©ã«äœ¿ãããUHFæŸéã¯ããã®é»æ³¢ã§ãããæ³¢é·1mïœ10mã®é»æ³¢ã¯VHFãšèšãããããã¬ãæŸéã®VHFæŸéã¯ããã®é»æ³¢ã§ããã
* èµ€å€ç·
æ³¢é·ã0.1mm以äžã§ãå¯èŠå
ç·ïŒå¯èŠå
ã®æå€§æ³¢é·ã¯780ããã¡ãŒãã«çšåºŠïŒãããã¯æ³¢é·ãé·ãé»ç£æ³¢ã¯èµ€å€ç·ïŒãããããããinfrared raysãã€ã³ãã©ã¬ãŒã ã¬ã€ãºïŒãšããããèµ€ãã®ãå€ããšããçç±ã¯ãå¯èŠå
ã®æå€§æ³¢é·ã®è²ãèµ€è²ã ããã§ãããèµ€å€ç·ãã®ãã®ã«ã¯è²ã¯ã€ããŠããªããåžè²©ã®èµ€å€ç·ããŒã¿ãŒãªã©ãèµ€è²ã«çºå
ãã補åãããã®ã¯ã䜿çšè
ãåäœç¢ºèªãã§ããããã«ããããã«ã補åã«èµ€è²ã®ã©ã³ãã䜵眮ããŠããããã§ãããèµ€å€ç·ã¯ãç©äœã«åžåããããããåžåã®éãç±ãçºçããã®ã§ãããŒã¿ãŒãªã©ã«å¿çšãããããªãã倪éœå
ã«ãèµ€å€ç·ã¯å«ãŸããã
:çºèŠã®çµç·¯
ããããèµ€å€ç·ãçºèŠãããçµç·¯ã¯ãã€ã®ãªã¹ã®å€©æåŠè
ã®ããŒã·ã§ã«ã倪éœå
ãããªãºã ã§åå
ããéã«ãèµ€è²ã®å
ç·ã®ãšãªãã®ãç®ã«ã¯è²ãèŠããªãéšåãæž©åºŠäžæããŠããããšãçºèŠããããšããçµç·¯ãããã
* å¯èŠå
ç·
[[Image:Linear visible spectrum.svg]]
{| class="wikitable" style="float:right; text-align:right; margin:0px 0px 7px 7px;"
|-
!è²
!æ³¢é·
!ãšãã«ã®ãŒ
|-
| style="background-color:#CEB0F4; text-align:center;" |玫
|380-450 nm
|2.755-3.26 eV
|-
| style="background-color:#B0CCF4; text-align:center;" |é
|450-495 nm
|2.50-2.755 eV
|-
| style="background-color:#B4F4B0; text-align:center;" |ç·
|495-570 nm
|2.175-2.50 eV
|-
| style="background-color:#F4F4B0; text-align:center;" |é»è²
|570-590 nm
|2.10-2.175 eV
|-
| style="background-color:#F4DDB0; text-align:center;" |æ©è²
|590-620 nm
|1.99-2.10 eV
|-
| style="background-color:#F4B0B0; text-align:center;" |èµ€
|620-750 nm
|1.65-1.99 eV
|}
æã
ã人éã®ç®ã«èŠããå¯èŠå
ç·ïŒãããããããvisible lightïŒã®æ³¢é·ã¯ãçŽ780ããã¡ãŒãã«ããçŽ380ããã¡ãŒãã«ã®çšåºŠã§ãããå¯èŠå
ã®äžã§æ³¢é·ãæãé·ãé åã®è²ã¯èµ€è²ã§ãããå¯èŠå
ã®äžã§æ³¢é·ãæãçãé åã®è²ã¯çŽ«è²ã§ããã
å
ãã®ãã®ã«ã¯ãè²ã¯ã€ããŠããªããæã
ã人éã®è³ããç®ã«å
¥ã£ãå¯èŠå
ããè²ãšããŠæããã®ã§ããã
倪éœå
ãããªãºã ãªã©ã§åå
ïŒã¶ãããïŒãããšãæ³¢é·ããšã«è»è·¡ïŒãããïŒãããããããã®åå
ããå
ç·ã¯ãä»ã®æ³¢é·ãå«ãŸãããã äžçš®ã®æ³¢é·ãªã®ã§ããã®ãããªå
ç·ããã³å
ã'''åè²å
'''ïŒmonochromatic lightïŒãšããã
ãŸããçœè²ã¯åè²å
ã§ã¯ãªãã'''çœè²å
'''(white light)ãšã¯ãå
šãŠã®è²ã®å
ãæ··ãã£ãç¶æ
ã§ããã
åæ§ã«ãé»è²ãšããåè²å
ããªããé»è²ãšã¯ãå¯èŠå
ãç¡ãç¶æ
ã§ããã
{{clear}}
* 玫å€ç·
玫å€ç·ïŒããããããultraviolet raysïŒã¯ååŠåå¿ã«åœ±é¿ãäžããäœçšã匷ããæ®ºèæ¶æ¯ãªã©ã«å¿çšãããã倪éœå
ã«ã玫å€ç·ã¯å«ãŸããã人éã®èã®æ¥çŒãã®åå ã¯ã玫å€ç·ãã¡ã©ãã³è²çŽ ãé
žåãããããã§ããã
:çºèŠã®çµç·¯
èµ€å€ç·ã¯å€ªéœå
ã®ããªãºã ã«ããåå
ã§çºèŠãããã
ãã§ã¯ãåå
ããã玫è²ã®å
ç·ã®ãšãªãã«ãããªã«ãç®ã«ã¯èŠããªãç·ãããã®ã§ã¯ïŒããšãããµããªããšãåŠè
ãã¡ã«ãã£ãŠèãããã
ãã€ãã®ç©çåŠè
ãªãã¿ãŒã«ããååŠçãªå®é𿹿³ãçšããŠã玫å€ç·ã®ååšãå®èšŒãããã
* Xç·ããã³ã¬ã³ãç·
å»ççšã®ã¬ã³ãã²ã³ãªã©ã®ééåçã§çšããããXç·ïŒX-rayïŒãé»ç£æ³¢ã®äžçš®ã§ãããçç©ã®çްèãååã¬ãã«ã§å·ã€ããçºããæ§ãæãã
ã¬ã³ãç·ïŒgammaârayãγ rayïŒãåæ§ã«ãééåçã«ãå¿çšãããããçç©ã®çްèãååã¬ãã«ã§å·ã€ããçºããæ§ãæãã
{{clear}}
----
===黿°ã«é¢ããæ¢æ±æŽ»å===
??
[[Category:é«çåŠæ ¡æè²|ç©ãµã€ã1ãŠãã]]
[[ã«ããŽãª:黿°|é«ãµã€ã1ãŠãã]]
[[Category:ç©çåŠæè²|é«ãµã€ã1ãŠãã]] | 2005-05-08T07:17:05Z | 2024-02-05T02:40:56Z | [
"ãã³ãã¬ãŒã:Clear",
"ãã³ãã¬ãŒã:-",
"ãã³ãã¬ãŒã:ã³ã©ã ",
"ãã³ãã¬ãŒã:Lang-en-short"
] | https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E7%89%A9%E7%90%86%E5%9F%BA%E7%A4%8E/%E9%9B%BB%E6%B0%97%E3%81%A8%E7%A3%81%E6%B0%97 |
1,940 | é«çåŠæ ¡ç©ç/ç©çI/æ³¢ | é«çåŠæ ¡çç§ ç©çI > æ³¢ | [
{
"paragraph_id": 0,
"tag": "p",
"text": "é«çåŠæ ¡çç§ ç©çI > æ³¢",
"title": ""
}
] | é«çåŠæ ¡çç§ ç©çI > æ³¢ | <small>[[é«çåŠæ ¡çç§ ç©çI]] > æ³¢</small>
----
== æ³¢ã®æ§è³ª ==
:[[é«çåŠæ ¡çç§ ç©çI æ³¢/æ³¢ã®æ§è³ª]] {{鲿|50%|2015-07-24}}
== é³ ==
:[[é«çåŠæ ¡çç§ ç©çI æ³¢/鳿³¢ãšæ¯å|æ³¢/鳿³¢ãšæ¯å]] {{鲿|50%|2016-01-23}}
== å
==
:[[é«çåŠæ ¡çç§ ç©çI æ³¢/å
æ³¢|æ³¢/å
æ³¢]] {{鲿|00%|2015-07-24}}
[[Category:é«çåŠæ ¡æè²|ç©ãµã€ã1ãªã¿]]
[[ã«ããŽãª:æ¯åãšæ³¢å|é«ãµã€ã1ãªã¿]]
[[Category:ç©çåŠæè²|é«ãµã€ã1ãªã¿]] | null | 2023-02-01T08:42:34Z | [
"ãã³ãã¬ãŒã:鲿"
] | https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E7%89%A9%E7%90%86/%E7%89%A9%E7%90%86I/%E6%B3%A2 |
1,941 | é«çåŠæ ¡ç©ç/ç©çI/éåãšãšãã«ã®ãŒ | é«çåŠæ ¡çç§ ç©çI > éåãšãšãã«ã®ãŒ
æ¬é
ã¯é«çåŠæ ¡çç§ ç©çIã®éåãšãšãã«ã®ãŒã®è§£èª¬ã§ããã
(2015-07-10)
åãå ããŠã䌞ã³çž®ã¿ãããã倧ãããç©äœãåäœ(ãããããrigid body)ãšãããããã«å¯ŸããŠããããªã©ã®äŒžã³çž®ã¿ãããç©äœã¯åŒŸæ§äœ(elastic body)ãšããã 以äžã®èšè¿°ã§ã¯ãããã«ãåäœã«ã€ããŠèããã
åäœã«åãæãã£ãŠããç®æããäœçšç¹(ããããŠããpoint of action)ãšèšããäœçšç·ããåã®æ¹åãžå»¶é·ããçŽç·ãäœçšç·(line of action)ãšããã åäœã¯åãå ããäœçœ®ã«ãã£ãŠãåãæ¹ãç°ãªããåã®å ãæ¹ã«ãã£ãŠã䞊é²éåã®ä»ã«å転éåãããå Žåãããã ãŸãããŠãã®åçãèããã°ãåã倧ããã®åãå ããŠããäœçšç¹ã®äœçœ®ã«ãã£ãŠãåäœã«äžãã圱é¿ã¯ç°ãªãããã®ããšãããŠãã®æ¯ç¹ãšäœçšç¹ãšã®è·é¢LãšãåFã®åçŽæ¹åæåF sinΞãšã®ç©ãèãããšå¥œéœåã§ããããã®ç©FL sinΞããåã®ã¢ãŒã¡ã³ã(moment of force)ãšèšãããããã¯åã«ã¢ãŒã¡ã³ã(moment)ãšããã
ãŠã以å€ã®åäœã«å¯ŸããŠããä»»æã®ç¹Oããã®è·é¢ãèãããããæ¯ç¹ãšããŠããã®ç¹Oããã®è·é¢Lãšåã®åçŽæ¹åæåF sinΞéœã®ç©ã§ã¢ãŒã¡ã³ããå®çŸ©ãããã¢ãŒã¡ã³ãã®åäœã¯[Nã»m]ã§ããã ã¢ãŒã¡ã³ããMãšè¡šããå Žåã
ã§ããã åäœã«æããåãè€æ°åãæãå Žåã«ã€ããŠã¯ããã®åã«ããå転æ¹åãåºæºã«ããå転æ¹åãšéã®å Žåã¯ããã€ãã¹ç¬Šå·ã«åãã åã®ã¢ãŒã¡ã³ããé£ãåã£ãŠããå Žåã¯ãã¢ãŒã¡ã³ãã®åèšããŒãã«ãªãããã®å Žåã¯ãåäœã¯å転ããªãã
åäœã«åã倧ããã®åãå察æ¹åã«æãã£ãŠããå Žåããã®åã®å¯Ÿããå¶å(ããããããcouple of force)ãšããã
åäœã«ã¯å€§ããããã£ããããã®å€§ãããç¡èŠããŠãç©äœã質éãæã£ãç¹ãšããŠæ±ãå Žåã¯ãããã質ç¹ãšããã 質ç¹ã¯ãåã®ã¢ãŒã¡ã³ããæããªãã
(Center of Gravity)
(2015-07-10)
éåããŠããç©äœAã鿢ããŠããç©äœBã«è¡çªããŠããã®éæ¢ç©äœBãåããããšãããã ãã®ãšãã鿢ããŠããç©äœãåãåºãé床ã®å€§ããã¯ãç©äœAã®è³ªémAã倧ããã»ã©ãè¡çªãããç©äœBã®é床ã倧ããªé床ã§åãåºãã ããããŸããç©äœAã®é床vAã倧ããã»ã©ãè¡çªãããç©äœBã®é床ã倧ãããªãã ããã
ãã®ããšãããé床vã§éåããŠãã質émã®ç©äœã«é¢ããŠãç©äœã®é床vãšè³ªémã®ç©ã§å®ããããémvãå®çŸ©ãããšéœåãããããã§ããã
ç©äœãåããŠãããšããç©äœã®é床ãšè³ªéã®ç©mvãç©äœã®éåé(ããã©ãããããmomentum)ãšåŒã³ãèšå·ã¯äžè¬ã«pã§è¡šã
ãšå®çŸ©ããã
ç©äœã«å¯ŸããŠåfã Î t {\displaystyle \Delta t} ã®éã ã åããããšãã
ãšããŠãPãåç©(ãããããimpulse)ãšåŒã¶ã ããã§ãåç©ãéåéã®å€åçã§ããããšã瀺ãã å®éããç©äœã«çãæé Î t {\displaystyle \Delta t} ã®éå
ãããã£ããšãããšã
ãšãªãããããã¯éåéã®æéå€åç
ã«æé Î t {\displaystyle \Delta t} ãããããã®ã§ãéåéã®æéå€åã«çããããšãåããã ãã£ãŠãç©äœã«ãããåç©ã¯ãç©äœã®éåéã®å€åéã«çããããšãåãã£ãã
ããã§ã¯ãçæéã®éåéã®å€åçãšããŠã Î p Î t {\displaystyle {\frac {\Delta p}{\Delta t}}} ãšããèšè¿°ãçšããŠããããæ¬æ¥ãã®éã¯w:埮åãçšããŠå®çŸ©ãããããã ããæå°èŠé ã®éœåã®ãããããã§ã¯ãã®ãããªèšè¿°ã¯ããŠããªãã埮åãçšããå°åºã«ã€ããŠã¯ãå€å
žååŠãåç
§ã
鿢ããŠããç©äœã«æé Î t {\displaystyle \Delta t} ã®éããæ¹åã«äžæ§ãªåfãããããç©äœãåŸã éåéã¯ã©ãã ãããæŽã«ãç©äœã®è³ªéãmãšãããšãç©äœããã®æ¹åã« åŸãé床ã¯ã©ãã ããã
éåéã®å€ååã¯ç©äœãåããåç©ã«çããã®ã§ãç©äœãåããåç©ãèšç®ããã° ãããç©äœãåããåç©ã¯
ã«çããã®ã§ãç©äœãåŸãéåéã
ã«çãããæŽã«ãéåéã
ãæºããããšãèãããšãç©äœã®é床ã¯
ãšãªãã
éåéã¯ãç©äœãå
šãåãåããªããšãä¿åããã ããã¯ç©äœã«åãåããªããšãã«ã¯ãç©äœã®åããåç©ã¯0ã§ããç©äœã®éåé å€åã0ã§ããããšããåœç¶ã§ããã
ããã«ãè€æ°ã®ç©äœã®éåéã«ã€ããŠã¯ãå¥ã®éèŠãªæ§è³ªãèŠããããããã¯ã è€æ°ã®ç©äœã®ãã€éåéã®ç·åã¯ãããã®ç©äœã®éã®è¡çªã«éã㊠ä¿åãããšããããšã§ããã ããã¯ã€ãŸããäŸãã°ãã2ã€ã®ç©äœãè¡çªãããšããå§ãã«2ç©äœãããããæã£ãŠãã éåéã®åã¯è¡çªãçµãã£ãåŸã«2ç©äœãæã£ãŠããéåéã®åã«çãããšããããšã§ ããã ããã§ãããã€ãã®ç©äœããããšããããã®æã€éåéã®ç·åãã察å¿ããç©äœç³»ã® å
šéåéãšããã
ç©äœã®è¡çªã«ã€ããŠãéåéã¯åžžã«ä¿åãããããããç©äœç³»ã®å
šãšãã«ã®ãŒã¯ åžžã«ä¿åãããšã¯éããªããäžè¬ã«ç©äœã®è¡çªã«ã€ããŠãšãã«ã®ãŒã¯åžžã«å€±ãããŠããã ãã£ãšãç©äœç³»ã«éããªãå
šãšãã«ã®ãŒã¯åžžã«äžå®ã§ããã®ã§ãç©äœãæã£ãŠãã ãšãã«ã®ãŒã¯é³ãç±ã®åœ¢ã§ç©äœç³»ã®å€ã«éããŠè¡ãã®ã§ãããç©äœãè¡çªã«ã€ã㊠倱ããšãã«ã®ãŒã¯è¡çªã«é¢ããç©äœãæã£ãŠããç©æ§å®æ°ã«ãã£ãŠæ±ºãŸãã ãã®ä¿æ°ãw:åçºä¿æ°eãšåŒã¶ãåçºä¿æ°ã¯ãç©äœãè¡çªããããååŸã® ç©äœéã®çžå¯ŸéåºŠã®æ¯ã«ãã£ãŠå®ããããã ç¹ã«ç©äœ1ãšç©äœ2ãè¡çªåã«é床 v 1 {\displaystyle v_{1}} , v 2 {\displaystyle v_{2}} ãæã£ãŠãããè¡çªåŸã« é床 v 1 â² {\displaystyle v_{1}'} , v 2 â² {\displaystyle v_{2}'} ãæã£ããšãããšãåçºä¿æ°eã¯ã
ã§å®ãããããããã§ãå³èŸºã®å§ãã® â {\displaystyle -} 笊åã¯ãè¡çªã®ååŸã§ç©äœã®é床ã ãã倧ããç©äœã¯ãè¡çªåã«ããå°ããé床ãæã£ãŠããç©äœããã è¡çªåŸã«ã¯ããå°ããé床ãæã€ããšã«ãªãããã§ããã ãã®ãããåçºä¿æ°ã¯äžè¬ã«æ£ã®æ°ã§ããã ãŸãåçºä¿æ°ã¯1ããå°ããæ°ã§ãããç©äœéã®çžå¯Ÿé床ã¯è¡çªåãã è¡çªåŸã®æ¹ãå°ãããªããç¹ã«e=1ã®ãšããå®å
šåŒŸæ§è¡çªãšåŒã³ 0 < e < 1 {\displaystyle 0<e<1} ã®ãšããé匟æ§è¡çªãšåŒã¶ãå®å
šåŒŸæ§è¡çªã®ãšãã¯ã ãšãã«ã®ãŒã¯å€±ãããªãããšãç¥ãããŠãããäžæ¹ãé匟æ§è¡çªã® ãšãã¯ç©äœç³»ã®å
šãšãã«ã®ãŒã¯å€±ãããã
ãã鿢ããŠããç©äœ2ã«éåépã§éåããŠããç©äœãè¡çªããããã®ãšãã è¡çªããåŸã®ç©äœ2ãéåé p 2 {\displaystyle p_{2}} ãåŸããšãããšãè¡çªåŸã®ç©äœ1ã®éåé㯠ã©ãã ããšãªã£ããã
éåéã®ä¿ååãèãããšãè¡çªã®ååŸã§ç©äœ1ãšç©äœ2ã§æ§æãããç©äœç³»ã® å
šéåéã¯ä¿åãããããã§ãè¡çªåã®ç©äœç³»ã®å
šéåéã¯pã§ããã®ã§ã è¡çªåŸã®ç©äœç³»ã®å
šéåéãpãšãªããæŽã«ãç©äœ2ã®è¡çªåŸã®éåéã p 2 {\displaystyle p_{2}} ãªã®ã§ãç©äœ1ã®éåéã¯
ãšãªãã
ããã§ãç©äœç³»ã®å
šéåéãä¿åãããããšã¯ãéåã«é¢ããw:äœçšåäœçšã®æ³åããåŸãã äœçšåäœçšã®æ³åãçšãããšãç©äœç³»ã®éã®è¡çªã«éããŠãè¡çªã«é¢ãã ããããã®ç©äœãåããåã¯ã倧ãããçããåãã¯å察ãšãªãã ãã®ãšããããããã®åã«å¯ŸããŠãè¡çªã®æé Î t {\displaystyle \Delta t} ãããããã®ã¯ è¡çªã«éããŠããããã®ç©äœãåãåãåç©ã«çãããããã§ã è¡çªã«é¢ããŠåãåã®åç©ãå
šãŠã®ç©äœã«ã€ããŠè¶³ãåããããšããããã® åã¯äžã®ããšãã0ãšãªããããããå
šéåéã®èšç®ã§ã¯ãŸãã«ãã®ãã㪠å
šç©äœã«ã€ããŠã®éåéã®ç·åãèšç®ããŠããã®ã§ãè¡çªã«ãã£ãŠåŸããããã㪠åç©ã®ç·åã¯0ã«çããããã£ãŠãè¡çªã«éããŠç©äœç³»ã®æã€å
šéåéã¯ä¿åãããã
質émã®2ã€ã®ç©äœãé床 v 1 {\displaystyle v_{1}} , v 2 {\displaystyle v_{2}} ã§ç§»åããŠããããããã®ç©äœãè¡çªãããšãã è¡çªåŸã®ããããã®ç©äœã®é床ãããšãã«ã®ãŒä¿ååãšéåéä¿ååãçšã㊠èšç®ããããã ããç©äœã®è¡çªã«é¢ããŠãšãã«ã®ãŒã¯ä¿åãããšããã
ãã®åé¡ã¯2ã€ã®åã倧ããã®ç©äœãç°ãªã£ãé床ã§ã¶ã€ãããšã ãã®çµæãã©ããªãããèšç®ããåé¡ã§ããã å®éšã®çµæã«ãããšãäžæ¹ã鿢ããŠããäžæ¹ãåããŠãããšãã åããŠããç©äœã¯éæ¢ãã鿢ããŠããç©äœã¯åããŠããç©äœãæã£ãŠãã é床ãšåãé床ã§åãã ãããšãç¥ãããŠãããããã§ã¯ããããã® çµæãèšç®ã«ãã£ãŠç¢ºãããããããšãèŠãããšãåºæ¥ãã è¡çªåŸã®ç©äœã®é床ãããããç©äœ1ã«ã€ããŠã¯ v 1 â² {\displaystyle v_{1}'} ,ç©äœ2ã«ã€ããŠã¯ v 2 â² {\displaystyle v_{2}'} ãšããããã®ãšããç©äœã®è¡çªã«ã€ããŠå
šãšãã«ã®ãŒãä¿åãããããšã çšãããšã
ãåŸããããæŽã«ãç©äœã®è¡çªã«ã€ããŠç©äœç³»ã®å
šéåéãä¿åãããããšãçšãããšã
ãããã¯ã v 1 â² {\displaystyle v'_{1}} , v 2 â² {\displaystyle v'_{2}} ã«ã€ããŠã®2次æ¹çšåŒã§ãããè§£ãããšãåºæ¥ãã å®éèšç®ãããšãè§£ãšããŠ
ãåŸããããåè
ã®è§£ã¯è¡çªã«éããŠç©äœã®é床ãå€åããªãããšã 瀺ããŠããããããã¯å®éã®æ
åµãšããŠèãé£ãã®ã§ãåŸè
ã®è§£ãçŸå®ã®è§£ãšãªãã ãã®çµæãèŠããšãç©äœãæã€é床ãå
¥ãæ¿ããããšãåããã
ãã®ããšã¯å®éã«åã倧ããã®çãçšããŠå®éšãè¡ããšã確ãããããšãã§ããã
çŸå®ã®ç©äœã®éåã«ãããŠã¯ããã 1ã€ã®åã ãã§è¡šãããããããªéåã¯æ°å°ãªããããã€ãã®ç©äœããåããåãããã¿åã£ãŠç©äœã®éåã®ããããæ±ºãŸã£ãŠããããšãå€ãã
äŸãã°ã空æ°äžã«ååšããç©äœã«åããããŠéåãããããšãèããŠã¿ããããã§ã¯ãç©äœã¯ããã«åããããŠãã人éãéå
·ããåãåãããããããäžæ¹ã§ç©äœã¯ç©ºæ°ãšè¡çªããããšã§ç©ºæ°ã®ååããåãåããããšã«ãªãããã®ãããäžè¬ã«ç©ºæ°äžã§ç©äœãè¡ãªãéåã¯ãåããããŠãã人éãæå³ãããã®ãšãããåŸåããããå®éã«ãã®ãããªå¯Ÿå¿ããåã«ãã£ãŠç©äœã®éåã®æ§åã倧ãã圱é¿ãåãããã©ããã¯ãæ±ãçŸè±¡ã®æ§åã«ãã£ãŠå€§ããå€ãã£ãŠãããåé
çšåºŠã®å€§ããã®ç©äœãçšããçæéã®æž¬å®ãªããç©ºæ°æµæã®åœ±é¿ã¯ç¡èŠããŠãå·®ãæ¯ããªããšæããããããããäŸãã°ãã±ããã倧æ°åã«çªå
¥ãããšãã®ãã±ããã®éåã¯ãç©ºæ°æµæã«ãã£ãŠå€§ãã圱é¿ããç©ºæ°æµæã®åœ±é¿ãç¡èŠããŠéåã®æ§åãè§£æããããšã¯é©åã§ã¯ãªãã
ãã®ããã«ã察象ãšããç©äœã®éåã®æ§åã«äŒŽã£ãŠãã©ã®åãéèŠã«ãªãããæ£ããèŠæãããšãå¿
èŠãšãªãã
?? | [
{
"paragraph_id": 0,
"tag": "p",
"text": "é«çåŠæ ¡çç§ ç©çI > éåãšãšãã«ã®ãŒ",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "æ¬é
ã¯é«çåŠæ ¡çç§ ç©çIã®éåãšãšãã«ã®ãŒã®è§£èª¬ã§ããã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "(2015-07-10)",
"title": "åäœã«åãåã®é£ãåã"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "åãå ããŠã䌞ã³çž®ã¿ãããã倧ãããç©äœãåäœ(ãããããrigid body)ãšãããããã«å¯ŸããŠããããªã©ã®äŒžã³çž®ã¿ãããç©äœã¯åŒŸæ§äœ(elastic body)ãšããã 以äžã®èšè¿°ã§ã¯ãããã«ãåäœã«ã€ããŠèããã",
"title": "åäœã«åãåã®é£ãåã"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "åäœã«åãæãã£ãŠããç®æããäœçšç¹(ããããŠããpoint of action)ãšèšããäœçšç·ããåã®æ¹åãžå»¶é·ããçŽç·ãäœçšç·(line of action)ãšããã åäœã¯åãå ããäœçœ®ã«ãã£ãŠãåãæ¹ãç°ãªããåã®å ãæ¹ã«ãã£ãŠã䞊é²éåã®ä»ã«å転éåãããå Žåãããã ãŸãããŠãã®åçãèããã°ãåã倧ããã®åãå ããŠããäœçšç¹ã®äœçœ®ã«ãã£ãŠãåäœã«äžãã圱é¿ã¯ç°ãªãããã®ããšãããŠãã®æ¯ç¹ãšäœçšç¹ãšã®è·é¢LãšãåFã®åçŽæ¹åæåF sinΞãšã®ç©ãèãããšå¥œéœåã§ããããã®ç©FL sinΞããåã®ã¢ãŒã¡ã³ã(moment of force)ãšèšãããããã¯åã«ã¢ãŒã¡ã³ã(moment)ãšããã",
"title": "åäœã«åãåã®é£ãåã"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãŠã以å€ã®åäœã«å¯ŸããŠããä»»æã®ç¹Oããã®è·é¢ãèãããããæ¯ç¹ãšããŠããã®ç¹Oããã®è·é¢Lãšåã®åçŽæ¹åæåF sinΞéœã®ç©ã§ã¢ãŒã¡ã³ããå®çŸ©ãããã¢ãŒã¡ã³ãã®åäœã¯[Nã»m]ã§ããã ã¢ãŒã¡ã³ããMãšè¡šããå Žåã",
"title": "åäœã«åãåã®é£ãåã"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ã§ããã åäœã«æããåãè€æ°åãæãå Žåã«ã€ããŠã¯ããã®åã«ããå転æ¹åãåºæºã«ããå転æ¹åãšéã®å Žåã¯ããã€ãã¹ç¬Šå·ã«åãã åã®ã¢ãŒã¡ã³ããé£ãåã£ãŠããå Žåã¯ãã¢ãŒã¡ã³ãã®åèšããŒãã«ãªãããã®å Žåã¯ãåäœã¯å転ããªãã",
"title": "åäœã«åãåã®é£ãåã"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "",
"title": "åäœã«åãåã®é£ãåã"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "åäœã«åã倧ããã®åãå察æ¹åã«æãã£ãŠããå Žåããã®åã®å¯Ÿããå¶å(ããããããcouple of force)ãšããã",
"title": "åäœã«åãåã®é£ãåã"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "",
"title": "åäœã«åãåã®é£ãåã"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "åäœã«ã¯å€§ããããã£ããããã®å€§ãããç¡èŠããŠãç©äœã質éãæã£ãç¹ãšããŠæ±ãå Žåã¯ãããã質ç¹ãšããã 質ç¹ã¯ãåã®ã¢ãŒã¡ã³ããæããªãã",
"title": "åäœã«åãåã®é£ãåã"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "(Center of Gravity)",
"title": "åäœã«åãåã®é£ãåã"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "(2015-07-10)",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "éåããŠããç©äœAã鿢ããŠããç©äœBã«è¡çªããŠããã®éæ¢ç©äœBãåããããšãããã ãã®ãšãã鿢ããŠããç©äœãåãåºãé床ã®å€§ããã¯ãç©äœAã®è³ªémAã倧ããã»ã©ãè¡çªãããç©äœBã®é床ã倧ããªé床ã§åãåºãã ããããŸããç©äœAã®é床vAã倧ããã»ã©ãè¡çªãããç©äœBã®é床ã倧ãããªãã ããã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãã®ããšãããé床vã§éåããŠãã質émã®ç©äœã«é¢ããŠãç©äœã®é床vãšè³ªémã®ç©ã§å®ããããémvãå®çŸ©ãããšéœåãããããã§ããã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ç©äœãåããŠãããšããç©äœã®é床ãšè³ªéã®ç©mvãç©äœã®éåé(ããã©ãããããmomentum)ãšåŒã³ãèšå·ã¯äžè¬ã«pã§è¡šã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ãšå®çŸ©ããã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ç©äœã«å¯ŸããŠåfã Î t {\\displaystyle \\Delta t} ã®éã ã åããããšãã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ãšããŠãPãåç©(ãããããimpulse)ãšåŒã¶ã ããã§ãåç©ãéåéã®å€åçã§ããããšã瀺ãã å®éããç©äœã«çãæé Î t {\\displaystyle \\Delta t} ã®éå",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ãããã£ããšãããšã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ãšãªãããããã¯éåéã®æéå€åç",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ã«æé Î t {\\displaystyle \\Delta t} ãããããã®ã§ãéåéã®æéå€åã«çããããšãåããã ãã£ãŠãç©äœã«ãããåç©ã¯ãç©äœã®éåéã®å€åéã«çããããšãåãã£ãã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ããã§ã¯ãçæéã®éåéã®å€åçãšããŠã Î p Î t {\\displaystyle {\\frac {\\Delta p}{\\Delta t}}} ãšããèšè¿°ãçšããŠããããæ¬æ¥ãã®éã¯w:埮åãçšããŠå®çŸ©ãããããã ããæå°èŠé ã®éœåã®ãããããã§ã¯ãã®ãããªèšè¿°ã¯ããŠããªãã埮åãçšããå°åºã«ã€ããŠã¯ãå€å
žååŠãåç
§ã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "鿢ããŠããç©äœã«æé Î t {\\displaystyle \\Delta t} ã®éããæ¹åã«äžæ§ãªåfãããããç©äœãåŸã éåéã¯ã©ãã ãããæŽã«ãç©äœã®è³ªéãmãšãããšãç©äœããã®æ¹åã« åŸãé床ã¯ã©ãã ããã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "éåéã®å€ååã¯ç©äœãåããåç©ã«çããã®ã§ãç©äœãåããåç©ãèšç®ããã° ãããç©äœãåããåç©ã¯",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ã«çããã®ã§ãç©äœãåŸãéåéã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ã«çãããæŽã«ãéåéã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ãæºããããšãèãããšãç©äœã®é床ã¯",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ãšãªãã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "éåéã¯ãç©äœãå
šãåãåããªããšãä¿åããã ããã¯ç©äœã«åãåããªããšãã«ã¯ãç©äœã®åããåç©ã¯0ã§ããç©äœã®éåé å€åã0ã§ããããšããåœç¶ã§ããã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ããã«ãè€æ°ã®ç©äœã®éåéã«ã€ããŠã¯ãå¥ã®éèŠãªæ§è³ªãèŠããããããã¯ã è€æ°ã®ç©äœã®ãã€éåéã®ç·åã¯ãããã®ç©äœã®éã®è¡çªã«éã㊠ä¿åãããšããããšã§ããã ããã¯ã€ãŸããäŸãã°ãã2ã€ã®ç©äœãè¡çªãããšããå§ãã«2ç©äœãããããæã£ãŠãã éåéã®åã¯è¡çªãçµãã£ãåŸã«2ç©äœãæã£ãŠããéåéã®åã«çãããšããããšã§ ããã ããã§ãããã€ãã®ç©äœããããšããããã®æã€éåéã®ç·åãã察å¿ããç©äœç³»ã® å
šéåéãšããã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ç©äœã®è¡çªã«ã€ããŠãéåéã¯åžžã«ä¿åãããããããç©äœç³»ã®å
šãšãã«ã®ãŒã¯ åžžã«ä¿åãããšã¯éããªããäžè¬ã«ç©äœã®è¡çªã«ã€ããŠãšãã«ã®ãŒã¯åžžã«å€±ãããŠããã ãã£ãšãç©äœç³»ã«éããªãå
šãšãã«ã®ãŒã¯åžžã«äžå®ã§ããã®ã§ãç©äœãæã£ãŠãã ãšãã«ã®ãŒã¯é³ãç±ã®åœ¢ã§ç©äœç³»ã®å€ã«éããŠè¡ãã®ã§ãããç©äœãè¡çªã«ã€ã㊠倱ããšãã«ã®ãŒã¯è¡çªã«é¢ããç©äœãæã£ãŠããç©æ§å®æ°ã«ãã£ãŠæ±ºãŸãã ãã®ä¿æ°ãw:åçºä¿æ°eãšåŒã¶ãåçºä¿æ°ã¯ãç©äœãè¡çªããããååŸã® ç©äœéã®çžå¯ŸéåºŠã®æ¯ã«ãã£ãŠå®ããããã ç¹ã«ç©äœ1ãšç©äœ2ãè¡çªåã«é床 v 1 {\\displaystyle v_{1}} , v 2 {\\displaystyle v_{2}} ãæã£ãŠãããè¡çªåŸã« é床 v 1 â² {\\displaystyle v_{1}'} , v 2 â² {\\displaystyle v_{2}'} ãæã£ããšãããšãåçºä¿æ°eã¯ã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "ã§å®ãããããããã§ãå³èŸºã®å§ãã® â {\\displaystyle -} 笊åã¯ãè¡çªã®ååŸã§ç©äœã®é床ã ãã倧ããç©äœã¯ãè¡çªåã«ããå°ããé床ãæã£ãŠããç©äœããã è¡çªåŸã«ã¯ããå°ããé床ãæã€ããšã«ãªãããã§ããã ãã®ãããåçºä¿æ°ã¯äžè¬ã«æ£ã®æ°ã§ããã ãŸãåçºä¿æ°ã¯1ããå°ããæ°ã§ãããç©äœéã®çžå¯Ÿé床ã¯è¡çªåãã è¡çªåŸã®æ¹ãå°ãããªããç¹ã«e=1ã®ãšããå®å
šåŒŸæ§è¡çªãšåŒã³ 0 < e < 1 {\\displaystyle 0<e<1} ã®ãšããé匟æ§è¡çªãšåŒã¶ãå®å
šåŒŸæ§è¡çªã®ãšãã¯ã ãšãã«ã®ãŒã¯å€±ãããªãããšãç¥ãããŠãããäžæ¹ãé匟æ§è¡çªã® ãšãã¯ç©äœç³»ã®å
šãšãã«ã®ãŒã¯å€±ãããã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "ãã鿢ããŠããç©äœ2ã«éåépã§éåããŠããç©äœãè¡çªããããã®ãšãã è¡çªããåŸã®ç©äœ2ãéåé p 2 {\\displaystyle p_{2}} ãåŸããšãããšãè¡çªåŸã®ç©äœ1ã®éåé㯠ã©ãã ããšãªã£ããã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "éåéã®ä¿ååãèãããšãè¡çªã®ååŸã§ç©äœ1ãšç©äœ2ã§æ§æãããç©äœç³»ã® å
šéåéã¯ä¿åãããããã§ãè¡çªåã®ç©äœç³»ã®å
šéåéã¯pã§ããã®ã§ã è¡çªåŸã®ç©äœç³»ã®å
šéåéãpãšãªããæŽã«ãç©äœ2ã®è¡çªåŸã®éåéã p 2 {\\displaystyle p_{2}} ãªã®ã§ãç©äœ1ã®éåéã¯",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "ãšãªãã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "ããã§ãç©äœç³»ã®å
šéåéãä¿åãããããšã¯ãéåã«é¢ããw:äœçšåäœçšã®æ³åããåŸãã äœçšåäœçšã®æ³åãçšãããšãç©äœç³»ã®éã®è¡çªã«éããŠãè¡çªã«é¢ãã ããããã®ç©äœãåããåã¯ã倧ãããçããåãã¯å察ãšãªãã ãã®ãšããããããã®åã«å¯ŸããŠãè¡çªã®æé Î t {\\displaystyle \\Delta t} ãããããã®ã¯ è¡çªã«éããŠããããã®ç©äœãåãåãåç©ã«çãããããã§ã è¡çªã«é¢ããŠåãåã®åç©ãå
šãŠã®ç©äœã«ã€ããŠè¶³ãåããããšããããã® åã¯äžã®ããšãã0ãšãªããããããå
šéåéã®èšç®ã§ã¯ãŸãã«ãã®ãã㪠å
šç©äœã«ã€ããŠã®éåéã®ç·åãèšç®ããŠããã®ã§ãè¡çªã«ãã£ãŠåŸããããã㪠åç©ã®ç·åã¯0ã«çããããã£ãŠãè¡çªã«éããŠç©äœç³»ã®æã€å
šéåéã¯ä¿åãããã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "質émã®2ã€ã®ç©äœãé床 v 1 {\\displaystyle v_{1}} , v 2 {\\displaystyle v_{2}} ã§ç§»åããŠããããããã®ç©äœãè¡çªãããšãã è¡çªåŸã®ããããã®ç©äœã®é床ãããšãã«ã®ãŒä¿ååãšéåéä¿ååãçšã㊠èšç®ããããã ããç©äœã®è¡çªã«é¢ããŠãšãã«ã®ãŒã¯ä¿åãããšããã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "ãã®åé¡ã¯2ã€ã®åã倧ããã®ç©äœãç°ãªã£ãé床ã§ã¶ã€ãããšã ãã®çµæãã©ããªãããèšç®ããåé¡ã§ããã å®éšã®çµæã«ãããšãäžæ¹ã鿢ããŠããäžæ¹ãåããŠãããšãã åããŠããç©äœã¯éæ¢ãã鿢ããŠããç©äœã¯åããŠããç©äœãæã£ãŠãã é床ãšåãé床ã§åãã ãããšãç¥ãããŠãããããã§ã¯ããããã® çµæãèšç®ã«ãã£ãŠç¢ºãããããããšãèŠãããšãåºæ¥ãã è¡çªåŸã®ç©äœã®é床ãããããç©äœ1ã«ã€ããŠã¯ v 1 â² {\\displaystyle v_{1}'} ,ç©äœ2ã«ã€ããŠã¯ v 2 â² {\\displaystyle v_{2}'} ãšããããã®ãšããç©äœã®è¡çªã«ã€ããŠå
šãšãã«ã®ãŒãä¿åãããããšã çšãããšã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "ãåŸããããæŽã«ãç©äœã®è¡çªã«ã€ããŠç©äœç³»ã®å
šéåéãä¿åãããããšãçšãããšã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "ãããã¯ã v 1 â² {\\displaystyle v'_{1}} , v 2 â² {\\displaystyle v'_{2}} ã«ã€ããŠã®2次æ¹çšåŒã§ãããè§£ãããšãåºæ¥ãã å®éèšç®ãããšãè§£ãšããŠ",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ãåŸããããåè
ã®è§£ã¯è¡çªã«éããŠç©äœã®é床ãå€åããªãããšã 瀺ããŠããããããã¯å®éã®æ
åµãšããŠèãé£ãã®ã§ãåŸè
ã®è§£ãçŸå®ã®è§£ãšãªãã ãã®çµæãèŠããšãç©äœãæã€é床ãå
¥ãæ¿ããããšãåããã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "ãã®ããšã¯å®éã«åã倧ããã®çãçšããŠå®éšãè¡ããšã確ãããããšãã§ããã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "çŸå®ã®ç©äœã®éåã«ãããŠã¯ããã 1ã€ã®åã ãã§è¡šãããããããªéåã¯æ°å°ãªããããã€ãã®ç©äœããåããåãããã¿åã£ãŠç©äœã®éåã®ããããæ±ºãŸã£ãŠããããšãå€ãã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "äŸãã°ã空æ°äžã«ååšããç©äœã«åããããŠéåãããããšãèããŠã¿ããããã§ã¯ãç©äœã¯ããã«åããããŠãã人éãéå
·ããåãåãããããããäžæ¹ã§ç©äœã¯ç©ºæ°ãšè¡çªããããšã§ç©ºæ°ã®ååããåãåããããšã«ãªãããã®ãããäžè¬ã«ç©ºæ°äžã§ç©äœãè¡ãªãéåã¯ãåããããŠãã人éãæå³ãããã®ãšãããåŸåããããå®éã«ãã®ãããªå¯Ÿå¿ããåã«ãã£ãŠç©äœã®éåã®æ§åã倧ãã圱é¿ãåãããã©ããã¯ãæ±ãçŸè±¡ã®æ§åã«ãã£ãŠå€§ããå€ãã£ãŠãããåé
çšåºŠã®å€§ããã®ç©äœãçšããçæéã®æž¬å®ãªããç©ºæ°æµæã®åœ±é¿ã¯ç¡èŠããŠãå·®ãæ¯ããªããšæããããããããäŸãã°ãã±ããã倧æ°åã«çªå
¥ãããšãã®ãã±ããã®éåã¯ãç©ºæ°æµæã«ãã£ãŠå€§ãã圱é¿ããç©ºæ°æµæã®åœ±é¿ãç¡èŠããŠéåã®æ§åãè§£æããããšã¯é©åã§ã¯ãªãã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "ãã®ããã«ã察象ãšããç©äœã®éåã®æ§åã«äŒŽã£ãŠãã©ã®åãéèŠã«ãªãããæ£ããèŠæãããšãå¿
èŠãšãªãã",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "",
"title": "çºå±: éåéãšåç©"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "??",
"title": "éåãšãšãã«ã®ãŒã«é¢ããæ¢æ±æŽ»å"
}
] | é«çåŠæ ¡çç§ ç©çI > éåãšãšãã«ã®ãŒ æ¬é
ã¯é«çåŠæ ¡çç§ ç©çIã®éåãšãšãã«ã®ãŒã®è§£èª¬ã§ããã | <small>[[é«çåŠæ ¡çç§ ç©çI]] > éåãšãšãã«ã®ãŒ</small>
----
æ¬é
ã¯[[é«çåŠæ ¡çç§ ç©çI]]ã®éåãšãšãã«ã®ãŒã®è§£èª¬ã§ããã
== ç©äœã®éå ==
:[[é«çåŠæ ¡çç§ ç©çI éåãšãšãã«ã®ãŒ/ç©äœã®éå|éåãšãšãã«ã®ãŒ/ç©äœã®éå]] ã§èšèŒã {{鲿|75%|2015-07-10}}
== éåã®æ³å ==
:[[é«çåŠæ ¡çç§ ç©çI éåãšãšãã«ã®ãŒ/éåã®æ³å|éåãšãšãã«ã®ãŒ/éåã®æ³å]] ã§èšèŒã {{鲿|50%|2015-07-10}}
== ä»äºãšãšãã«ã®ãŒ ==
:[[é«çåŠæ ¡çç§ ç©çI éåãšãšãã«ã®ãŒ/ä»äºãšãšãã«ã®ãŒ|éåãšãšãã«ã®ãŒ/ä»äºãšãšãã«ã®ãŒ]] ã§èšèŒã {{鲿|50%|2015-07-18}}
== åäœã«åãåã®é£ãåã ==
{{鲿|25%|2015-07-10}}
[[File:basculer.jpg|thumb|left|åäœã«ãåã¯ãã©ãåã ?]]
[[File:Palanca-ejemplo.jpg|thumb|300px|'''ãŠã''' ã䜿ãã°ã100 kg ã®ç©äœã 5kg ã®ç©äœã§æã¡äžããããšãã§ããã]]
[[File:Torque, position, and force.svg|thumb|right|]]
åãå ããŠã䌞ã³çž®ã¿ãããã倧ãããç©äœã'''åäœ'''(ãããããrigid body)ãšãããããã«å¯ŸããŠããããªã©ã®äŒžã³çž®ã¿ãããç©äœã¯åŒŸæ§äœ(elastic body)ãšããã
以äžã®èšè¿°ã§ã¯ãããã«ãåäœã«ã€ããŠèããã
åäœã«åãæãã£ãŠããç®æãã'''äœçšç¹'''(ããããŠããpoint of action)ãšèšããäœçšç·ããåã®æ¹åãžå»¶é·ããçŽç·ã'''äœçšç·'''(line of action)ãšããã
åäœã¯åãå ããäœçœ®ã«ãã£ãŠãåãæ¹ãç°ãªããåã®å ãæ¹ã«ãã£ãŠã䞊é²éåã®ä»ã«å転éåãããå Žåãããã
ãŸãããŠãã®åçãèããã°ãåã倧ããã®åãå ããŠããäœçšç¹ã®äœçœ®ã«ãã£ãŠãåäœã«äžãã圱é¿ã¯ç°ãªãããã®ããšãããŠãã®æ¯ç¹ãšäœçšç¹ãšã®è·é¢LãšãåFã®åçŽæ¹åæåF sinθãšã®ç©ãèãããšå¥œéœåã§ããããã®ç©FL sinθãã'''åã®ã¢ãŒã¡ã³ã'''(moment of force)ãšèšãããããã¯åã«ã¢ãŒã¡ã³ã(moment)ãšããã
ãŠã以å€ã®åäœã«å¯ŸããŠããä»»æã®ç¹Oããã®è·é¢ãèãããããæ¯ç¹ãšããŠããã®ç¹Oããã®è·é¢Lãšåã®åçŽæ¹åæåF sinθéœã®ç©ã§ã¢ãŒã¡ã³ããå®çŸ©ãããã¢ãŒã¡ã³ãã®åäœã¯[Nã»m]ã§ããã
ã¢ãŒã¡ã³ããMãšè¡šããå Žåã
:M=FL sinθ
ã§ããã
åäœã«æããåãè€æ°åãæãå Žåã«ã€ããŠã¯ããã®åã«ããå転æ¹åãåºæºã«ããå転æ¹åãšéã®å Žåã¯ããã€ãã¹ç¬Šå·ã«åãã
åã®ã¢ãŒã¡ã³ããé£ãåã£ãŠããå Žåã¯ãã¢ãŒã¡ã³ãã®åèšããŒãã«ãªãããã®å Žåã¯ãåäœã¯å転ããªãã
{{clear}}
;å¶å
[[File:Koppel van krachten.png|thumb|left|å¶åã®ã€ã¡ãŒãžå³]]
[[Image:couple_phys.jpg|thumb|right|300px|å¶å]]
åäœã«åã倧ããã®åãå察æ¹åã«æãã£ãŠããå Žåããã®åã®å¯Ÿãã'''å¶å'''ïŒããããããcouple of forceïŒãšããã
;質ç¹
åäœã«ã¯å€§ããããã£ããããã®å€§ãããç¡èŠããŠãç©äœã質éãæã£ãç¹ãšããŠæ±ãå Žåã¯ãããã'''質ç¹'''ãšããã
質ç¹ã¯ãåã®ã¢ãŒã¡ã³ããæããªãã
{{clear}}
=== éå¿ ===
[[File:Caisse plan incline basculement.svg|thumb|200px|éå¿ã«ã€ããŠ]]
(Center of Gravity)
{{clear}}
==çºå±: éåéãšåç©==
{{鲿|25%|2015-07-10}}
[[File:Billard.JPG|300px|right|]]
=== éåé ===
éåããŠããç©äœAã鿢ããŠããç©äœBã«è¡çªããŠããã®éæ¢ç©äœBãåããããšãããã
ãã®ãšãã鿢ããŠããç©äœãåãåºãé床ã®å€§ããã¯ãç©äœAã®è³ªém<sub>A</sub>ã倧ããã»ã©ãè¡çªãããç©äœBã®é床ã倧ããªé床ã§åãåºãã ããããŸããç©äœAã®é床vAã倧ããã»ã©ãè¡çªãããç©äœBã®é床ã倧ãããªãã ããã
ãã®ããšãããé床vã§éåããŠãã質émã®ç©äœã«é¢ããŠãç©äœã®é床vãšè³ªémã®ç©ã§å®ããããémvãå®çŸ©ãããšéœåãããããã§ããã
ç©äœãåããŠãããšããç©äœã®é床ãšè³ªéã®ç©mvãç©äœã®'''éåé'''(ããã©ãããããmomentum)ãšåŒã³ãèšå·ã¯äžè¬ã«pã§è¡šã
:<math>
\vec p = m \vec v
</math>
ãšå®çŸ©ããã
=== éåéä¿åã®æ³å ===
ç©äœã«å¯ŸããŠåfã<math>\Delta t</math>ã®éã ã
åããããšãã
:<math>
P = f \Delta t
</math>
ãšããŠãPã'''åç©'''(ãããããimpulse)ãšåŒã¶ã
ããã§ãåç©ãéåéã®å€åçã§ããããšã瀺ãã
å®éããç©äœã«çãæé<math>\Delta t</math>ã®éå
:<math>
\vec f
</math>
ãããã£ããšãããšã
:<math>
\vec P = \vec f \Delta t
</math>
:<math>
= m\vec a \Delta t
</math>
:<math>
= m \frac {\Delta } {\Delta t}\vec v \Delta t
</math>
:<math>
= \frac {\Delta } {\Delta t} \vec p\Delta t
</math>
ãšãªãããããã¯éåéã®æéå€åç
:<math>
\frac {\Delta } {\Delta t} \vec p
</math>
ã«æé<math>\Delta t</math>ãããããã®ã§ãéåéã®æéå€åã«çããããšãåããã
ãã£ãŠãç©äœã«ãããåç©ã¯ãç©äœã®éåéã®å€åéã«çããããšãåãã£ãã
*çºå± 埮åãšå€åé
ããã§ã¯ãçæéã®éåéã®å€åçãšããŠã<math>\frac {\Delta p}{\Delta t}</math>ãšããèšè¿°ãçšããŠããããæ¬æ¥ãã®éã¯[[w:埮å]]ãçšããŠå®çŸ©ãããããã ããæå°èŠé ã®éœåã®ãããããã§ã¯ãã®ãããªèšè¿°ã¯ããŠããªãã埮åãçšããå°åºã«ã€ããŠã¯ã[[å€å
žååŠ]]ãåç
§ã
*åé¡äŸ
**åé¡
鿢ããŠããç©äœã«æé<math>\Delta t</math>ã®éããæ¹åã«äžæ§ãªåfãããããç©äœãåŸã
éåéã¯ã©ãã ãããæŽã«ãç©äœã®è³ªéãmãšãããšãç©äœããã®æ¹åã«
åŸãé床ã¯ã©ãã ããã
**è§£ç
éåéã®å€ååã¯ç©äœãåããåç©ã«çããã®ã§ãç©äœãåããåç©ãèšç®ããã°
ãããç©äœãåããåç©ã¯
:<math>
f \Delta t
</math>
ã«çããã®ã§ãç©äœãåŸãéåéã
:<math>
f \Delta t
</math>
ã«çãããæŽã«ãéåéã
:<math>
p = m v
</math>
ãæºããããšãèãããšãç©äœã®é床ã¯
:<math>
\frac 1 m f \Delta t
</math>
ãšãªãã
éåéã¯ãç©äœãå
šãåãåããªããšãä¿åããã
ããã¯ç©äœã«åãåããªããšãã«ã¯ãç©äœã®åããåç©ã¯0ã§ããç©äœã®éåé
å€åã0ã§ããããšããåœç¶ã§ããã
ããã«ãè€æ°ã®ç©äœã®éåéã«ã€ããŠã¯ãå¥ã®éèŠãªæ§è³ªãèŠããããããã¯ã
è€æ°ã®ç©äœã®ãã€éåéã®ç·åã¯ãããã®ç©äœã®éã®è¡çªã«éããŠ
ä¿åãããšããããšã§ããã
ããã¯ã€ãŸããäŸãã°ãã2ã€ã®ç©äœãè¡çªãããšããå§ãã«2ç©äœãããããæã£ãŠãã
éåéã®åã¯è¡çªãçµãã£ãåŸã«2ç©äœãæã£ãŠããéåéã®åã«çãããšããããšã§
ããã
ããã§ãããã€ãã®ç©äœããããšããããã®æã€éåéã®ç·åãã察å¿ããç©äœç³»ã®
å
šéåéãšããã
ç©äœã®è¡çªã«ã€ããŠãéåéã¯åžžã«ä¿åãããããããç©äœç³»ã®å
šãšãã«ã®ãŒã¯
åžžã«ä¿åãããšã¯éããªããäžè¬ã«ç©äœã®è¡çªã«ã€ããŠãšãã«ã®ãŒã¯åžžã«å€±ãããŠããã
ãã£ãšãç©äœç³»ã«éããªãå
šãšãã«ã®ãŒã¯åžžã«äžå®ã§ããã®ã§ãç©äœãæã£ãŠãã
ãšãã«ã®ãŒã¯é³ãç±ã®åœ¢ã§ç©äœç³»ã®å€ã«éããŠè¡ãã®ã§ãããç©äœãè¡çªã«ã€ããŠ
倱ããšãã«ã®ãŒã¯è¡çªã«é¢ããç©äœãæã£ãŠããç©æ§å®æ°ã«ãã£ãŠæ±ºãŸãã
ãã®ä¿æ°ã[[w:åçºä¿æ°]]eãšåŒã¶ãåçºä¿æ°ã¯ãç©äœãè¡çªããããååŸã®
ç©äœéã®çžå¯ŸéåºŠã®æ¯ã«ãã£ãŠå®ããããã
ç¹ã«ç©äœ1ãšç©äœ2ãè¡çªåã«é床 <math>v _1</math>,<math>v _2</math>ãæã£ãŠãããè¡çªåŸã«
é床<math>v _1'</math>,<math>v _2'</math>ãæã£ããšãããšãåçºä¿æ°eã¯ã
:<math>
e = - \frac {v _1 - v _2} {v _1' - v _2'}
</math>
ã§å®ãããããããã§ãå³èŸºã®å§ãã®<math>-</math>笊åã¯ãè¡çªã®ååŸã§ç©äœã®é床ã
ãã倧ããç©äœã¯ãè¡çªåã«ããå°ããé床ãæã£ãŠããç©äœããã
è¡çªåŸã«ã¯ããå°ããé床ãæã€ããšã«ãªãããã§ããã
ãã®ãããåçºä¿æ°ã¯äžè¬ã«æ£ã®æ°ã§ããã
ãŸãåçºä¿æ°ã¯1ããå°ããæ°ã§ãããç©äœéã®çžå¯Ÿé床ã¯è¡çªåãã
è¡çªåŸã®æ¹ãå°ãããªããç¹ã«e=1ã®ãšããå®å
šåŒŸæ§è¡çªãšåŒã³
<math>0<e<1</math>ã®ãšããé匟æ§è¡çªãšåŒã¶ãå®å
šåŒŸæ§è¡çªã®ãšãã¯ã
ãšãã«ã®ãŒã¯å€±ãããªãããšãç¥ãããŠãããäžæ¹ãé匟æ§è¡çªã®
ãšãã¯ç©äœç³»ã®å
šãšãã«ã®ãŒã¯å€±ãããã
*åé¡äŸ
**åé¡
ãã鿢ããŠããç©äœ2ã«éåépã§éåããŠããç©äœãè¡çªããããã®ãšãã
è¡çªããåŸã®ç©äœ2ãéåé<math>p _2</math>ãåŸããšãããšãè¡çªåŸã®ç©äœ1ã®éåéã¯
ã©ãã ããšãªã£ããã
**è§£ç
éåéã®ä¿ååãèãããšãè¡çªã®ååŸã§ç©äœ1ãšç©äœ2ã§æ§æãããç©äœç³»ã®
å
šéåéã¯ä¿åãããããã§ãè¡çªåã®ç©äœç³»ã®å
šéåéã¯pã§ããã®ã§ã
è¡çªåŸã®ç©äœç³»ã®å
šéåéãpãšãªããæŽã«ãç©äœ2ã®è¡çªåŸã®éåéã
<math>p _2</math>ãªã®ã§ãç©äœ1ã®éåéã¯
:<math>
p - p _2
</math>
ãšãªãã
ããã§ãç©äœç³»ã®å
šéåéãä¿åãããããšã¯ãéåã«é¢ãã[[w:äœçšåäœçšã®æ³å]]ããåŸãã
äœçšåäœçšã®æ³åãçšãããšãç©äœç³»ã®éã®è¡çªã«éããŠãè¡çªã«é¢ãã
ããããã®ç©äœãåããåã¯ã倧ãããçããåãã¯å察ãšãªãã
ãã®ãšããããããã®åã«å¯ŸããŠãè¡çªã®æé<math>\Delta t</math>ãããããã®ã¯
è¡çªã«éããŠããããã®ç©äœãåãåãåç©ã«çãããããã§ã
è¡çªã«é¢ããŠåãåã®åç©ãå
šãŠã®ç©äœã«ã€ããŠè¶³ãåããããšããããã®
åã¯äžã®ããšãã0ãšãªããããããå
šéåéã®èšç®ã§ã¯ãŸãã«ãã®ãããª
å
šç©äœã«ã€ããŠã®éåéã®ç·åãèšç®ããŠããã®ã§ãè¡çªã«ãã£ãŠåŸããããããª
åç©ã®ç·åã¯0ã«çããããã£ãŠãè¡çªã«éããŠç©äœç³»ã®æã€å
šéåéã¯ä¿åãããã
*åé¡äŸ
**åé¡
質émã®2ã€ã®ç©äœãé床<math>v _1</math>,<math>v _2</math>
ã§ç§»åããŠããããããã®ç©äœãè¡çªãããšãã
è¡çªåŸã®ããããã®ç©äœã®é床ãããšãã«ã®ãŒä¿ååãšéåéä¿ååãçšããŠ
èšç®ããããã ããç©äœã®è¡çªã«é¢ããŠãšãã«ã®ãŒã¯ä¿åãããšããã
**è§£ç
ãã®åé¡ã¯2ã€ã®åã倧ããã®ç©äœãç°ãªã£ãé床ã§ã¶ã€ãããšã
ãã®çµæãã©ããªãããèšç®ããåé¡ã§ããã
å®éšã®çµæã«ãããšãäžæ¹ã鿢ããŠããäžæ¹ãåããŠãããšãã
åããŠããç©äœã¯éæ¢ãã鿢ããŠããç©äœã¯åããŠããç©äœãæã£ãŠãã
é床ãšåãé床ã§åãã ãããšãç¥ãããŠãããããã§ã¯ããããã®
çµæãèšç®ã«ãã£ãŠç¢ºãããããããšãèŠãããšãåºæ¥ãã
è¡çªåŸã®ç©äœã®é床ãããããç©äœ1ã«ã€ããŠã¯<math>v _1'</math>,ç©äœ2ã«ã€ããŠã¯
<math>v _2'</math>ãšããããã®ãšããç©äœã®è¡çªã«ã€ããŠå
šãšãã«ã®ãŒãä¿åãããããšã
çšãããšã
:<math>
1/2 m v _1^2 + 1/2 m v _2^2
=
1/2 m v _1'{}^2 + 1/2 m v'{} _2^2
</math>
ãåŸããããæŽã«ãç©äœã®è¡çªã«ã€ããŠç©äœç³»ã®å
šéåéãä¿åãããããšãçšãããšã
:<math>
m v _1
+ m v _2 =
m v _1'
+ m v _2'
</math>
ãããã¯ã<math>v' _1</math>,<math>v '_2</math>ã«ã€ããŠã®2次æ¹çšåŒã§ãããè§£ãããšãåºæ¥ãã
å®éèšç®ãããšãè§£ãšããŠ
:<math>
(v '_1 ,v' _2 )=(v _1,v _2),(v _2,v _1)
</math>
ãåŸããããåè
ã®è§£ã¯è¡çªã«éããŠç©äœã®é床ãå€åããªãããšã
瀺ããŠããããããã¯å®éã®æ
åµãšããŠèãé£ãã®ã§ãåŸè
ã®è§£ãçŸå®ã®è§£ãšãªãã
ãã®çµæãèŠããšãç©äœãæã€é床ãå
¥ãæ¿ããããšãåããã
ãã®ããšã¯å®éã«åã倧ããã®çãçšããŠå®éšãè¡ããšã確ãããããšãã§ããã
===æ¥åžžã«èµ·ããç©äœã®éå===
çŸå®ã®ç©äœã®éåã«ãããŠã¯ããã 1ã€ã®åã ãã§è¡šãããããããªéåã¯æ°å°ãªããããã€ãã®ç©äœããåããåãããã¿åã£ãŠç©äœã®éåã®ããããæ±ºãŸã£ãŠããããšãå€ãã
äŸãã°ã空æ°äžã«ååšããç©äœã«åããããŠéåãããããšãèããŠã¿ããããã§ã¯ãç©äœã¯ããã«åããããŠãã人éãéå
·ããåãåãããããããäžæ¹ã§ç©äœã¯ç©ºæ°ãšè¡çªããããšã§ç©ºæ°ã®ååããåãåããããšã«ãªãããã®ãããäžè¬ã«ç©ºæ°äžã§ç©äœãè¡ãªãéåã¯ãåããããŠãã人éãæå³ãããã®ãšãããåŸåããããå®éã«ãã®ãããªå¯Ÿå¿ããåã«ãã£ãŠç©äœã®éåã®æ§åã倧ãã圱é¿ãåãããã©ããã¯ãæ±ãçŸè±¡ã®æ§åã«ãã£ãŠå€§ããå€ãã£ãŠãããåé
çšåºŠã®å€§ããã®ç©äœãçšããçæéã®æž¬å®ãªããç©ºæ°æµæã®åœ±é¿ã¯ç¡èŠããŠãå·®ãæ¯ããªããšæããããããããäŸãã°ãã±ããã倧æ°åã«çªå
¥ãããšãã®ãã±ããã®éåã¯ãç©ºæ°æµæã«ãã£ãŠå€§ãã圱é¿ããç©ºæ°æµæã®åœ±é¿ãç¡èŠããŠéåã®æ§åãè§£æããããšã¯é©åã§ã¯ãªãã
ãã®ããã«ã察象ãšããç©äœã®éåã®æ§åã«äŒŽã£ãŠãã©ã®åãéèŠã«ãªãããæ£ããèŠæãããšãå¿
èŠãšãªãã
==éåãšãšãã«ã®ãŒã«é¢ããæ¢æ±æŽ»å==
??
[[ã«ããŽãª:ååŠ]]
[[ã«ããŽãª:ãšãã«ã®ãŒ]] | 2005-05-08T07:20:33Z | 2024-02-06T05:19:41Z | [
"ãã³ãã¬ãŒã:鲿",
"ãã³ãã¬ãŒã:Clear"
] | https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E7%89%A9%E7%90%86/%E7%89%A9%E7%90%86I/%E9%81%8B%E5%8B%95%E3%81%A8%E3%82%A8%E3%83%8D%E3%83%AB%E3%82%AE%E3%83%BC |
1,942 | é«çåŠæ ¡ç©ç/ç©çII | æ¬é
ã¯é«çåŠæ ¡çç§ã®ç§ç®ã§ãããç©ç IIãã®è§£èª¬ã§ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ¬é
ã¯é«çåŠæ ¡çç§ã®ç§ç®ã§ãããç©ç IIãã®è§£èª¬ã§ããã",
"title": ""
}
] | æ¬é
ã¯é«çåŠæ ¡çç§ã®ç§ç®ã§ãããç©ç IIãã®è§£èª¬ã§ããã | :* [[é«çåŠæ ¡ç©ç]] > ç©çII<br />
----
æ¬é
ã¯é«çåŠæ ¡çç§ã®ç§ç®ã§ãããç©ç IIãã®è§£èª¬ã§ããã
{{é²æç¶æ³}}
== æç§æž ==
* [[é«çåŠæ ¡ç©ç/ç©çII/åãšéå|åãšéå]] {{鲿|100%|2013-09-16}}
* [[é«çåŠæ ¡ç©ç/ç©çII/ç±ååŠ|ç±ååŠ]] {{鲿|75%|2017-08-09}}
* [[é«çåŠæ ¡ç©ç/ç©çII/黿°ãšç£æ°|黿°ãšç£æ°]] {{鲿|50%|2013-09-16}}
:* [[é«çåŠæ ¡ç©ç/ç©çII/ç©è³ªãšåå|ç©è³ªãšåå]] {{鲿|25%|2013-09-16}}(ã黿°ãšç£æ°ãã«å
容ãçµ±åäž)
* [[é«çåŠæ ¡ç©ç/ç©çII/ååãšååæ ž|ååãšååæ ž]] {{鲿|50%|2017-08-09}}
:* åè [[é«çåŠæ ¡ç©ç/ç©çII/ãã³ãã®ã£ãã|ãã³ãã®ã£ãã]] {{鲿|25%|2017-08-02}}ïŒ2015幎ã§ã¯ç¯å²å€ïŒïŒ
* [[é«çåŠæ ¡ç©ç/ç©çII/çŽ ç²å|çŽ ç²å]] {{鲿|75%|2017-08-08}}ïŒå
¥è©Šã«ã¯åºãªãã®ãæ®éïŒ
* [[é«çåŠæ ¡ç©ç/ç©çII/課é¡ç ç©¶|課é¡ç ç©¶]]
== é¢é£ãªã³ã¯ ==
* [[é«çåŠæ ¡æ°åŠII/埮åã»ç©åã®èã]]
* [[é«çåŠæ ¡æ°åŠIII/極é]]
* [[é«çåŠæ ¡æ°åŠIII/åŸ®åæ³]]
* [[é«çåŠæ ¡æ°åŠIII/ç©åæ³]]
* ç©çIã®æç§æžãžã®ãªã³ã¯ â [[é«çåŠæ ¡ç©ç/ç©çI|é«çåŠæ ¡çç§ ç©çI]]<br />
[[Category:é«çåŠæ ¡æè²|ç©ãµã€ã2]]
[[Category:ç©çåŠ|é«ãµã€ã2]]
[[Category:ç©çåŠæè²|é«ãµã€ã2]]
[[Category:é«çåŠæ ¡çç§ ç©çII|*]] | null | 2017-08-09T01:40:12Z | [
"ãã³ãã¬ãŒã:é²æç¶æ³",
"ãã³ãã¬ãŒã:鲿"
] | https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E7%89%A9%E7%90%86/%E7%89%A9%E7%90%86II |
1,943 | é«çåŠæ ¡ç©ç/ååŠ | é«çåŠæ ¡çç§ ç©çåºç€ã§ã¯ãç©äœã®éåãçŽç·äžã®éåãäžå¿ã«æ±ã£ããç©çã§ã¯ãããè€éãªå¹³é¢äžã®éåãæ±ããå¹³é¢äžã®éåã§ã¯ãçŽç·äžã®éåãšã¯éã£ãŠãç©äœã®äœçœ®ã衚ããã®ã«å¿
èŠãªéã2ã€ã«ãªãããããã¯éåžž x , y {\displaystyle x,\ y} ãšãããã©ã¡ããæå» t {\displaystyle t} ã®äžæã®é¢æ°ãšãªãã
ãããã®é¢æ°ã¯ã©ããªãã®ã§ãããããããã§ã¯äž»ã«ãå®éã®ç©äœã®éåãšããŠããããããããã®ãæ±ãã
å¹³é¢äž,ããªãã¡2次å
ã«ãããŠ,æå» t {\displaystyle t} ã«ãããäœçœ®ã¯ r â ( t ) = ( x ( t ) , y ( t ) ) {\displaystyle {\overrightarrow {r}}(t)=(x(t),\ y(t))} ,åŸ®å°æé Î t {\displaystyle {\mathit {\Delta }}t} éã®å€äœã¯ Î r â = r â ( t + Î t ) â r â ( t ) = ( Î x , Î y ) {\displaystyle {\mathit {\Delta }}{\overrightarrow {r}}={\overrightarrow {r}}(t+{\mathit {\Delta }}t)-{\overrightarrow {r}}(t)=({\mathit {\Delta }}x,\ {\mathit {\Delta }}y)} ãšå®çŸ©ãããããã®ãšã
ã Î t {\displaystyle {\mathit {\Delta }}t} éã®å¹³åé床, Î t â 0 {\displaystyle {\mathit {\Delta }}t\to 0} ã®æ¥µé
ãæå» t {\displaystyle t} ã§ã®(ç¬é)é床ãšããããªã,æå» t {\displaystyle t} ã§ã®éã(é床ã®å€§ãã)ã¯
ãã®å Žåã,é床ããäœçœ®ãæ±ãŸã,åæåæ¯ã«
ãæãç«ã¡,ãããããã¯ãã«ãçšããŠã²ãšãŸãšãã«ããŠä»»æã®æå» t {\displaystyle t} ã«ãããäœçœ®
ãæ±ããããã
ãŸã,
ã Î t {\displaystyle {\mathit {\Delta }}t} éã®å¹³åå é床, Î t â 0 {\displaystyle {\mathit {\Delta }}t\to 0} ã®æ¥µé
ãæå» t {\displaystyle t} ã§ã®(ç¬é)å é床ãšããã ãã®å Žåã,å é床ããéåºŠãæ±ãŸã,åæåæ¯ã«
ãæãç«ã¡,ãããããã¯ãã«ãçšããŠã²ãšãŸãšãã«ããŠä»»æã®æå» t {\displaystyle t} ã«ãããé床
ãæ±ããããããªã,ããã r â ( 0 ) , v â ( 0 ) {\displaystyle {\overrightarrow {r}}(0),{\overrightarrow {v}}(0)} ã®å€ãåæå€ãšããã ç¹ã«,å é床äžå®ã®ãšãã®éåã¯çå é床éåãšããã,äžèšã®å
¬åŒ(1.2, 1)ã¯ãããã
ãšãªãã
éåæ¹çšåŒã¯ãåãç©äœãåããå éåºŠã«æ¯äŸãããšããç¹ã¯ããããªãã ããããä»åã¯åãšå é床ã¯ã©ã¡ãããã¯ãã«éã§ããããã£ãŠãå€å f â = ( f x , f y ) {\displaystyle {\overrightarrow {f}}=(f_{x},\ f_{y})} ãåã,å é床 a â = ( a x , a y ) {\displaystyle {\overrightarrow {a}}=(a_{x},\ a_{y})} ã§éåããç©äœã®éåæ¹çšåŒã¯
ãšããããã éåžžã¯ããã®æ¹çšåŒãè§£ãå Žåã¯èŠçŽ ããšã«ããã
ãšããããã
æå»t = 0ã«ã
ã
ã§ééããç©äœã®æå»tã§ã®äœçœ®ãæ±ããã
ç©äœã®xæ¹åãšyæ¹åã¯äºãã«ç¬ç«ã«çéçŽç·éåãããã ããã§ã¯xæ¹åãyæ¹åãé床
ãªã®ã§ãçéçŽç·éåã®åŒã®ãã¯ãã«éãšããé
ã«ä»£å
¥ãããšã
ãšãªãã èŠçŽ ããšã«ãããšã
ãšãªãã
æå»t=0ã«åç¹(0,\ 0)ãyæ¹åã«é床 v 0 {\displaystyle v_{0}} ã§çéçŽç·éåããŠãã質émã®ç©äœã«ã xæ¹åã®äžæ§ãªåfããããå§ããããã®å Žåãæå»tã«ãããç©äœã®äœçœ®ãš éåºŠãæ±ããã
x軞æ¹åã«ã¯çå é床éåãšãªãã ç©äœãåããå é床ã¯ãéåæ¹çšåŒã«ãã
ãšãªãã ããã«xæ¹åã®åé床0,åæäœçœ®0ã§ããããšãçå é床çŽç·éåã®åŒã« 代å
¥ãããšã
ãšãªãã
ããã«ãy軞æ¹åã®éåã¯çééåã§ããããã®åé床ã¯ã v 0 {\displaystyle v_{0}} ,åæäœçœ®ã¯0ã§ããã®ã§ã ãã®å€ãçééåã®åŒã«ä»£å
¥ãããšã
ãåŸãããã
ãã®ç« ã§ã¯éåé(ããã©ãããããmomentum)ãæ±ããéåéã¯ãç©äœã®è¡çªã«çœ®ããŠãšãã«ã®ãŒãšäžŠã³ãä¿åéãšãªãéèŠãªéã§ããããŸãããã®ç« ã§ã¯åç©(ãããããimpulse)ãšããéãå°å
¥ãããåç©ã¯éåéã®æéå€åã衚ããéã§ããããã®å°åºã¯éåæ¹çšåŒãçšããŠæãããã
ç©äœãåããŠããå Žåãç©äœã®é床ãšè³ªéã®ç©ãç©äœã®éåé
ãšå®çŸ©ãããéåæ¹çšåŒ
ã®äž¡èŸºãæå» t = t 1 {\displaystyle t=t_{1}} ãã t = t 2 {\displaystyle t=t_{2}} ãŸã§ç©åãããš
ãšãªãã v â ( t 1 ) = v 1 â , v â ( t 2 ) = v 2 â {\displaystyle {\overrightarrow {v}}(t_{1})={\vec {v_{1}}},{\overrightarrow {v}}(t_{2})={\vec {v_{2}}}} ãšãããš
ãã®åŒã®å·ŠèŸºã¯éåéå€å,å³èŸºã¯åç©(ãããããimpulse)ã§ããããã£ãŠ,éåéå€åã¯åç©ã«çããããšãåãããéåéå€åã Î p â {\displaystyle {\mathit {\Delta }}{\overrightarrow {p}}} ,åç©ã I â {\displaystyle {\overrightarrow {I}}} ãšãããš
ç¹ã«, f â = {\displaystyle {\overrightarrow {f}}=} äžå®ã®ãšã, t 2 â t 1 = Î t {\displaystyle t_{2}-t_{1}={\mathit {\Delta }}t} ãšãããš
埮åãçšããå°åºã«ã€ããŠã¯ãå€å
žååŠãåç
§ã
鿢ããŠããç©äœã«æé Î t {\displaystyle {\mathit {\Delta }}t} ã®éããæ¹åã«äžæ§ãªåfãããããç©äœãåŸã éåéã¯ã©ãã ãããããã«ãç©äœã®è³ªéãmãšãããšãç©äœããã®æ¹åã« åŸãé床ã¯ã©ãã ããã
éåéã®å€ååã¯ç©äœãåããåç©ã«çããã®ã§ãç©äœãåããåç©ãèšç®ããã° ãããç©äœãåããåç©ã¯
ã«çããã®ã§ãç©äœãåŸãéåéã
ã«çãããããã«ãéåéã
ãæºããããšãèãããšãç©äœã®é床ã¯
ãšãªãã
éåéã¯ãç©äœãå
šãåãåããªãå Žåã«ã¯ä¿åããããããã¯ç©äœã«åãåããªãå Žåã«ã¯ãç©äœã®åããåç©ã¯0ã§ããç©äœã®éåéå€åã0ã§ããããšããåœç¶ã§ããã
ããã«ãè€æ°ã®ç©äœã®éåéã«ã€ããŠã¯ãå¥ã®éèŠãªæ§è³ªãèŠããããããã¯ãè€æ°ã®ç©äœã®ãã€éåéã®ç·åã¯ãããã®ç©äœã®éã®è¡çªã«éããŠä¿åãããšããããšã§ãããããã¯ã€ãŸããäŸãã°ãã2ã€ã®ç©äœãè¡çªããå Žåãå§ãã«2ç©äœãããããæã£ãŠããéåéã®åã¯è¡çªãçµãã£ãåŸã«2ç©äœãæã£ãŠããéåéã®åã«çãããšããããšã§ãããããã§ãããã€ãã®ç©äœãããå Žåãããã®æã€éåéã®ç·åãã察å¿ããç©äœç³»ã®å
šéåéãšããã
ç©äœã®è¡çªã«ã€ããŠãéåéã¯åžžã«ä¿åãããããããç©äœç³»ã®å
šãšãã«ã®ãŒã¯åžžã«ä¿åãããšã¯éããªããäžè¬ã«ç©äœã®è¡çªã«ã€ããŠãšãã«ã®ãŒã¯åžžã«å€±ãããŠããããã£ãšãç©äœç³»ã«éããªãå
šãšãã«ã®ãŒã¯åžžã«äžå®ã§ããã®ã§ãç©äœãæã£ãŠãããšãã«ã®ãŒã¯é³ãç±ã®åœ¢ã§ç©äœç³»ã®å€ã«éããŠè¡ãã®ã§ãããç©äœãè¡çªã«ã€ããŠå€±ããšãã«ã®ãŒã¯è¡çªã«é¢ããç©äœãæã£ãŠããç©æ§å®æ°ã«ãã£ãŠæ±ºãŸãããã®ä¿æ°ãåçºä¿æ°(ã¯ãã±ã€ãããããcoefficient of restitution)ãšåŒã³ãeãªã©ã®èšå·ã§æžããåçºä¿æ°ã¯ãç©äœãè¡çªããããååŸã§ã®ç©äœéã®çžå¯ŸéåºŠã®æ¯ã«ãã£ãŠå®ããããã ç¹ã«ç©äœ1ãšç©äœ2ãè¡çªåã«é床 v 1 , v 2 {\displaystyle v_{1},\ v_{2}} ãæã£ãŠãããè¡çªåŸã«é床 v 1 â² , v 2 â² {\displaystyle v_{1}',\ v_{2}'} ãæã£ããšãããšãåçºä¿æ°eã¯
ã§å®ãããããããã§ãå³èŸºã®å§ãã® â {\displaystyle -} 笊åã¯ãè¡çªã®ååŸã§ç©äœã®é床ããã倧ããç©äœã¯ãè¡çªåã«ããå°ããé床ãæã£ãŠããç©äœãããè¡çªåŸã«ã¯ããå°ããé床ãæã€ããšã«ãªãããã§ããã ãã®ãããåçºä¿æ°ã¯äžè¬ã«æ£ã®æ°ã§ããã ãŸãåçºä¿æ°ã¯1ããå°ããæ°ã§ãããç©äœéã®çžå¯Ÿé床ã¯è¡çªåããè¡çªåŸã®æ¹ãå°ãããªãã ç¹ã« e = 1 {\displaystyle e=1} ã®å Žåã(å®å
š)匟æ§è¡çª(elastic collision)ãšåŒã³ããã£ãœã 0 < e < 1 {\displaystyle 0<e<1} ã®å Žåãé匟æ§è¡çª(inelastic collision)ãšåŒã¶ã匟æ§è¡çªã®å Žåã¯ãååŠçãšãã«ã®ãŒã¯ä¿åããããšãç¥ãããŠãããäžæ¹ãé匟æ§è¡çªã® å Žåã¯ç©äœç³»ã®å
šãšãã«ã®ãŒã¯å€±ãããã
ãã鿢ããŠããç©äœ2ã«éåépã§éåããŠããç©äœãè¡çªããããã®å Žåã è¡çªããåŸã®ç©äœ2ãéåé p 2 {\displaystyle p_{2}} ãåŸããšãããšãè¡çªåŸã®ç©äœ1ã®éåé㯠ã©ãã ããšãªã£ããã
éåéä¿ååãèãããšãè¡çªã®ååŸã§ç©äœ1ãšç©äœ2ã§æ§æãããç©äœç³»ã®å
šéåéã¯ä¿åããã ããã§ãè¡çªåã®ç©äœç³»ã®å
šéåéã¯pã§ããã®ã§ãè¡çªåŸã®ç©äœç³»ã®å
šéåéãpãšãªãã ããã«ãç©äœ2ã®è¡çªåŸã®éåéã p 2 {\displaystyle p_{2}} ãªã®ã§ãç©äœ1ã®éåéã¯
ãšãªãã
ããã§ãç©äœç³»ã®å
šéåéãä¿åãããããšã¯ãéåã«é¢ãã äœçšã»åäœçšã®æ³å ããåŸãã äœçšåäœçšã®æ³åãçšãããšãç©äœç³»ã®éã®è¡çªã«éããŠãè¡çªã«é¢ããããããã®ç©äœãåããåã¯ã倧ãããçããåãã¯å察ãšãªãã ãã®å Žåãããããã®åã«å¯ŸããŠãè¡çªã®æé Î t {\displaystyle \Delta t} ãããããã®ã¯ è¡çªã«éããŠããããã®ç©äœãåãåãåç©ã«çããã ããã§ãè¡çªã«é¢ããŠåãåã®åç©ãå
šãŠã®ç©äœã«ã€ããŠè¶³ãåããããšããããã®åã¯ãäžã®ããšãã0ãšãªãã ããããå
šéåéã®èšç®ã§ã¯ãŸãã«ãã®ãããªå
šç©äœã«ã€ããŠã®éåéã®ç·åãèšç®ããŠããã®ã§ã è¡çªã«ãã£ãŠåŸããããããªåç©ã®ç·åã¯ã0ã«çããã ãã£ãŠãè¡çªã«éããŠç©äœç³»ã®æã€å
šéåéã¯ä¿åãããã ãããéåéä¿åå(ããã©ãããã ã»ãããããmomentum conservation law)ãšããã
質émã®2ã€ã®ç©äœãé床 v 1 {\displaystyle v_{1}} , v 2 {\displaystyle v_{2}} ã§ç§»åããŠããããããã®ç©äœãè¡çªããå Žåã è¡çªåŸã®ããããã®ç©äœã®é床ãããšãã«ã®ãŒä¿ååãšéåéä¿ååãçšã㊠èšç®ããããã ããç©äœã®è¡çªã«é¢ããŠãšãã«ã®ãŒã¯ä¿åãããšããã
ãã®åé¡ã¯2ã€ã®åã倧ããã®ç©äœãç°ãªã£ãé床ã§ã¶ã€ããå Žå ãã®çµæãã©ããªãããèšç®ããåé¡ã§ããã å®éšã®çµæã«ãããšãäžæ¹ã鿢ããŠããäžæ¹ãåããŠããå Žåã åããŠããç©äœã¯éæ¢ãã鿢ããŠããç©äœã¯åããŠããç©äœãæã£ãŠãã é床ãšåãé床ã§åãã ãããšãç¥ãããŠãããããã§ã¯ããããã® çµæãèšç®ã«ãã£ãŠç¢ºãããããããšãèŠãããšãåºæ¥ãã è¡çªåŸã®ç©äœã®é床ãããããç©äœ1ã«ã€ããŠã¯ v 1 â² {\displaystyle v_{1}'} ,ç©äœ2ã«ã€ããŠã¯ v 2 â² {\displaystyle v_{2}'} ãšããããã®å Žåãç©äœã®è¡çªã«ã€ããŠå
šãšãã«ã®ãŒãä¿åãããããšã çšãããšã
ãåŸããããããã«ãç©äœã®è¡çªã«ã€ããŠç©äœç³»ã®å
šéåéãä¿åãããããšãçšãããšã
ãããã¯ã v 1 â² {\displaystyle v'_{1}} , v 2 â² {\displaystyle v'_{2}} ã«ã€ããŠã®2次æ¹çšåŒã§ãããè§£ãããšãåºæ¥ããå®éèšç®ãããšãè§£ãšããŠ
ãåŸããããåè
ã®è§£ã¯è¡çªã«éããŠç©äœã®é床ãå€åãã¬ããšã瀺ããŠããããããã¯å®éã®æ
åµãšããŠèãé£ãã®ã§ãåŸè
ã®è§£ãçŸå®ã®è§£ãšãªãããã®çµæãèŠããšãç©äœãæã€é床ãå
¥ãæ¿ããããšãåããã
ãã®ããšã¯å®éã«åã倧ããã®çãçšããŠå®éšãè¡ããšã確ãããããšãã§ããã
äœçœ®ã®ã¿ããã¡,倧ããããªãã®ã質ç¹ã§ãããåäœãšã¯,倧ãããããã圢ã倧ãããå€ããã¬ç©äœã®ããšã§ããã
åäœã®éåãèããåã«äžå®å¹³é¢äžã®éåã«ã€ããŠæ¬¡ã®ãããªäžè¬çèå¯ãè¡ãã
æå» t {\displaystyle t} ã«ãã㊠x y {\displaystyle xy} å¹³é¢å
ã®äœçœ® r â = ( x , y ) {\displaystyle {\overrightarrow {r}}=(x,\ y)} ãé床 v â = ( v x , v y ) {\displaystyle {\overrightarrow {v}}=(v_{x},\ v_{y})} ã§éåã,å F â = ( F x , F y ) {\displaystyle {\overrightarrow {F}}=(F_{x},\ F_{y})} ãåããŠãã質é m {\displaystyle m} ã®ç©äœã®éåæ¹çšåŒãæåã«åããŠè¡šãã°
2 Ã x â {\displaystyle \times x-} 1 Ã y {\displaystyle \times y} ãã
ãã®å·ŠèŸºã®
ãåç¹OãŸããã®è§éåéãšããã ããã§ v â {\displaystyle {\overrightarrow {v}}} ãš r â {\displaystyle {\overrightarrow {r}}} ã®ãªãè§ã Ξ , x {\displaystyle \theta ,\ x} 軞㚠r â {\displaystyle {\overrightarrow {r}}} ã®ãªãè§ã Ï {\displaystyle \phi } ãšãããš
ãããã(3.1)ã«ä»£å
¥ãããš
ãåŸãããã
ç©äœãå転ãããåã®å¹æã®å€§ããã衚ãéãåã®ã¢ãŒã¡ã³ããšãããæŽã« F â {\displaystyle {\overrightarrow {F}}} ãš r â {\displaystyle {\overrightarrow {r}}} ã®ãªãè§ã Î {\displaystyle {\mathit {\Theta }}} ãšãããš
ãã£ãŠåç¹OãŸããã®åã®ã¢ãŒã¡ã³ãã N {\displaystyle N} ã§è¡šããš
ããã« r sin Î {\displaystyle r\sin {\mathit {\Theta }}} ã¯åç¹ããå F â {\displaystyle {\overrightarrow {F}}} ã®äœçšç·ã«äžããåç·ã®é·ãã§ãã,ãããå F â {\displaystyle {\overrightarrow {F}}} ã®åç¹ã«å¯Ÿããè
ã®é·ããšããããã ãåã®ã¢ãŒã¡ã³ãã¯å F â {\displaystyle {\overrightarrow {F}}} ãäœçœ®ãã¯ãã« r â {\displaystyle {\overrightarrow {r}}} ãåæèšåãã«åãåããæ£ãšããŠãã(æèšåãã®é㯠Π< 0 {\displaystyle {\mathit {\Theta }}<0} ã§ r sin Î < 0 {\displaystyle r\sin {\mathit {\Theta }}<0} ãšèãã)ã 以äžãã,3(è§éåéã®æ¹çšåŒ)ã¯
ããã¯åã®ã¢ãŒã¡ã³ããå ããããçµæãšããŠè§éåéãå€åãããšããå æé¢ä¿ã衚ããç¹ã« N = 0 {\displaystyle N=0} ãªãã°
ãšãªã,è§éåéãä¿åããã
ç©äœã®åéšåã«åãéåã®äœçšç¹ãéå¿(è±: centre of gravity)æãã¯è³ªéäžå¿(è±: centre of mass)ãšããã n {\displaystyle n} ç©äœ(質é: m 1 , m 2 , ⯠⯠, m n {\displaystyle m_{1},\ m_{2},\ \cdots \cdots ,\ m_{n}} ,äœçœ® r 1 â , r 2 â , ⯠⯠, r n â {\displaystyle {\vec {r_{1}}},\ {\vec {r_{2}}},\ \cdots \cdots ,\ {\vec {r_{n}}}} ( n {\displaystyle n} ã¯èªç¶æ°)ã®éå¿ã®äœçœ® r G â {\displaystyle {\vec {r_{\mathrm {G} }}}} ã¯ä»¥äžã®ããã«å®çŸ©ãããã
ãŸãéå¿é床 v G â {\displaystyle {\vec {v_{\mathrm {G} }}}} 㯠d r k â d t = v k â ( k = 1 , 2 , ⯠⯠, n ) {\displaystyle {\frac {d{\vec {r_{k}}}}{dt}}={\vec {v_{k}}}\ (k=1,\ 2,\ \cdots \cdots ,\ n)} ãšãããš
ããã§ã¯ãåççãªå¹³é¢äžã®éåã®1ã€ãšããŠãåéå(è±: circular motion)ãšåæ¯å(è±: simple harmonic motion)ããã€ãããåéåã¯ã忝ãå(ãããµãããsimple pendlum)ã®éåã®é¡äŒŒç©ãšããŠãéèŠã§ããããããšãšãã«ããã®ããŒãžã§ã¯äžæåŒåã«ããéåãæ±ãã äžæåŒåã¯ããããéåãšåãåã§ããã ç©äœãšç©äœã®éã«å¿
ãçããåã§ãããäžæ¹ãããã®åã¯éåžžã«åŒ±ãããã ææã®ããã«å€§ããªè³ªéãæã£ãç©äœã®éåã«ããé¢ãããªãã ããã§ã¯ã倪éœã®ãŸãããå転ããææã®ãããªå€§ããªã¹ã±ãŒã«ã®éåããã€ããããã®ãããªéåã¯åã«è¿ãè»éãšãªãããšãããããã®ãããææã®éåãçè§£ããäžã§ãåéåãçè§£ããããšãéèŠã§ããã
ç©äœãåãæãããã«éåããããšãåéåãšåŒã¶ãåãæããããªéåã¯ãäŸãã°ãå圢ã®ã°ã©ãŠã³ãã®ãŸãããèµ°ã人éã®ããã«äººéãææãæã£ãŠè¡ãªãå Žåãæãããèªç¶çŸè±¡ãšããŠèµ·ããå Žåãå€ããäŸãã°ã倪éœã®ãŸãããåãå°çã®éåããå°çã®åããåãæã®éåã¯ãããããåéåã§èšè¿°ãããããŸããäžå®ã®é·ãããã£ãã²ããšäžå®ã®è³ªéãæã£ãç©äœã§äœãããæ¯ãåã®éåã¯ãã²ããåºå®ããç¹ããäžå®ã®è·é¢ããããŠéåããŠãããããç©äœã¯åè»éäžãéåããŠãããåºãæå³ã§ã®åè»éãšãšãããããšãåºæ¥ããããã§ã¯ããã®ãããªå Žåã®ãã¡ã§ä»£è¡šçãªãã®ãšããŠãå®å
šãªåè»éäžãéåããç©äœã®éåããã€ããã
åè»éäžãéåããç©äœã®åº§æšãäžè¬ã®å Žåãšåæ§
ã§è¡šãããããç¹ã«åè»éã衚ãã颿°ã¯é«çåŠæ ¡æ°åŠII ãããããªé¢æ°ã§æ±ã£ãäžè§é¢æ°ã«å¯Ÿå¿ããŠããã
ããã§ãåéåãäžè§é¢æ°ãçšããŠè¡šãããããšãè¿°ã¹ããããã®ããšã¯é«çåŠæ ¡æ°åŠCã®åªä»å€æ°è¡šç€ºãçšããŠãããåªä»å€æ°è¡šç€ºã«ã€ããŠè©³ããã¯ã察å¿ããé
ãåç
§ããŠã»ããã
ååŸr[m]ã®åäžãçããé床ã§ãåéåããç©äœã®éåãèšè¿°ããããšãèããã ããã«ã座æšãåãå Žååç¹ã®äœçœ®ã¯åéåã®äžå¿ã®äœçœ®ãšããã ãã®å Žåã®ç©äœã®éåã¯ãx, y座æšãçšããŠã
ã«ãã£ãŠæžãããããã ãããã®å Žå Ï {\displaystyle \omega } ã¯è§é床ãšåŒã°ãåäœã¯[rad/s]ã§äžããããããã ããããã§[rad]ã¯w:ã©ãžã¢ã³ã§ãããw:匧床æ³ã«ãã£ãŠè§åºŠã衚ãããå Žåã®åäœã§ããã匧床æ³ã«ã€ããŠã¯é«çåŠæ ¡æ°åŠII ãããããªé¢æ°ãåç
§ãè§é床ã¯åéåãããŠããç©äœãã©ã®çšåºŠã®æéã§åãäžåšãããã«å¯Ÿå¿ããŠããããªã,é«çåŠæ ¡ã®ç©çã«ãããŠè§é床ã¯ã¹ã«ã©ãŒãšããŠæ±ãããŸãããã®éã¯äžã§åããã®ã ããåéåããŠããç©äœã®éåºŠã«æ¯äŸããã
ãŸããè§é床ã«å¯Ÿå¿ããŠã
ã§äžããããéãw:åšæãšãããåšæã®åäœã¯[s]ã§ãããåšæã¯ç©äœãäœç§éããšã« åç¶ã1åšãããã衚ããéã§ããããã®å Žåã«ã¯ç©äœã¯T[s]ããšã«åç¶ã1åšãããããã«ã
ãw:æ¯åæ°ãšåŒã¶ãæ¯åæ°ã¯åšæãšã¯éã«ãåäœæéåœããã«ç©äœãåç¶ãäœåšãããã æ°ããéã§ãããæ¯åæ°ã®åäœã«ã¯éåžž[Hz]ãçšãããããã¯ã[1/s]ã«çããåäœã§ããã ãŸããåšæTãšãæ¯åæ°fã¯ãé¢ä¿åŒ
ãæºããããã®åŒã¯ããåéåãããŠããç©äœã«ã€ããŠããã®ç©äœã®åéåã® åšæã«å¯Ÿå¿ããæéã®éã«ã¯ãç©äœã¯åç¶ã1åšã ããããšããããšã«å¯Ÿå¿ããã
ãŸãã
ã®åŒã§ ÎŽ {\displaystyle \delta } ã¯ç©äœã®äœçœ®ã®w:äœçžãšåŒã°ããç©äœãåç¶ã®ã©ã®ç¹ã«ãããã瀺ã å€ã§ããã
ãŸãããã®å Žåã®ç©äœã®é床ã®x, yèŠçŽ ã¯
ã§äžããããããã®åŒãšãåŸã®åéåã®å é床ã®å°åºã«ã€ããŠã¯ãåŸã®çºå±ãåç
§ãããã§ãç©äœã®éããvãšãããšã
ãšãªããç©äœã®é床㯠r Ï {\displaystyle r\omega } ã§äžããããããšãåããã
ããã«ã
ãèšç®ãããšã
ãšãªããåéåãããŠããç©äœã®é床ãšåéåã®äžå¿ãåç¹ãšããå Žåã®åº§æšã¯çŽäº€ããŠããããšãåãããããã«ãåéåãããŠããç©äœã®å é床ã¯ã
ãšãªããããã¯
ã«å¯Ÿå¿ããŠãããåéåããããªãç©äœã®å é床ã¯ãåéåãããç©äœã®åº§æšãš ã¡ããã©å察åãã«ãªãããšãåããã
ããã§ã¯ãåéåã®é床ãšå é床ãäžãããããã®å€ã¯ç©äœã®éåãæ±ºãŸãã°æ±ºãŸãå€ãªã®ã§ãåéåã®åŒããèšç®ã§ããããã ãå®éã«ãããã®åŒãåŸãããã«ã¯ãåéåã®åŒã®åŸ®åãè¡ãå¿
èŠããããããããã§ã¯è©³ããæ±ããªããå°åºã«ã€ããŠã¯ãå€å
žååŠãåç
§ã
ååŸr[m]ã®åäžãè§é床 Ï {\displaystyle \omega } ã§éåããç©äœã®å é床ã®å€§ãããèšç®ããã
ã«æ³šç®ãããšãããå³èŸºã«ã€ããŠåéåãããŠããç©äœã®åº§æšãåžžã«
ãæºããããšã«æ³šç®ãããšã
ãšãªãã
50Hzã§åéåããŠããç©äœã®åéåã®åšæãèšç®ããã
ãçšãããšã
ãšãªãã
以äžãã,åéåã®å éåºŠã®æåã¯
ãã£ãŠ,åéåããç©äœã®è³ªéã m {\displaystyle m} ,åå¿æ¹åã«åãå,ããªãã¡åå¿å(è±: centripetal force)ã F C {\displaystyle F_{\mathrm {C} }} ,æ¥ç·æ¹åã«åãåã F T {\displaystyle F_{\mathrm {T} }} ãšãããšéåæ¹çšåŒã¯
w:åå¿åãw:é å¿å(centrifugal force)
åéåãšé¢ä¿ã®æ·±ãç©äœã®éåãšããŠã忝å(è±: simple harmonic oscillation)ããããããã忝åã¯ããããæ¯åçŸè±¡ã®åºæ¬ã«ãªã£ãŠãããå¿çšç¯å²ãåºãéåã§ãããåéåãšåæ§ã忝åãäžè§é¢æ°ãçšããŠéåãèšè¿°ãããããŸããåšæãäœçžãããç¹ãåéåãšåãã§ããããŸãã忝åã¯æ³¢åã«é¢ããçŸè±¡ãšãé¢ä¿ãæ·±ããäœçžãæ¯å¹
ãªã©ã®éãå
±æããŠããã
ããããã¯ã忝åãããç©äœã®æ§è³ªããã詳ããèŠãŠè¡ãã
忝åã¯æ§ã
ãªæ
åµã§ãããããããåçŽãªäŸãšããŠã¯ããã¯ã®æ³åã§æ¯é
ãããã°ãã«æ¥ç¶ãããç©äœã®éåããããããã§ã¯ãã°ã宿° k {\displaystyle k} ã®ã°ãã«è³ªé m {\displaystyle m} ã®ç©äœãæ¥ç¶ãããšãããã°ãã®èªç¶é·ã®äœçœ®ãåç¹ãšããŠæå» t {\displaystyle t} ã«ãããåç¹ããã®ç©äœã®äœçœ®ã x ( t ) {\displaystyle x(t)} ãšããå Žåããã®ç©äœã«é¢ããéåæ¹çšåŒã¯
ã§äžããããããã®æ¹çšåŒã®äž¡èŸºã m {\displaystyle m} ã§å²ããšãå é床㯠d 2 x ( t ) d t 2 = â k m x ( t ) {\displaystyle {\frac {d^{2}x(t)}{dt^{2}}}=-{\frac {k}{m}}x(t)} ã§äžããããããšãåããããã®ããã«ãå é床ãšç©äœã®åº§æšãè² ã®æ¯äŸä¿æ°ãæã£ãŠæ¯äŸé¢ä¿ã«ããåŒãã忝åã®éåæ¹çšåŒã§ããããã®å Žåã忝åã®æ¯åäžå¿ã x = x C {\displaystyle x=x_{\mathrm {C} }} (忝åã§ã¯æ¯åäžå¿ã¯å®æ°),æå» t {\displaystyle t} ã«ãããç©äœã®éåãäœçœ® x ( t ) {\displaystyle x(t)} ,é床 v ( t ) {\displaystyle v(t)} ,å é床 a ( t ) {\displaystyle a(t)} ã§è¡šããš
ãšãªãã Ï {\displaystyle \omega } ã¯è§æ¯åæ°, ÎŽ {\displaystyle \delta } ã¯åæäœçžã§ããã
ããã§ã忝åã®éåæ¹çšåŒãšã忝åã®éåã®åŒãäžããããå®éã«ã¯åæ¯åã®éåã®åŒã¯éåæ¹çšåŒããå°åºã§ãããããã«ã€ããŠã¯w:åŸ®åæ¹çšåŒãæ±ãå¿
èŠãããã®ã§è©³ããå°åºã«ã€ããŠã¯ãå€å
žååŠãåç
§ã
sin {\displaystyle \sin } 颿°ã¯é¢æ°ã®å€ã®å¢å ã«äŒŽã£ãŠåšæçãªæ¯åãè¡ãªã颿°ãªã®ã§ãç©äœã¯ã x = 0 {\displaystyle x=0} ã®ãŸããã§åšæçãªæ¯åãããããšãåããããã ããäžã®åŒã®äžã§Aã¯w:æ¯å¹
ãšåŒã°ããç©äœã®æ¯åã®ç¯å²ã衚ãéã§ããã
ãã ãããã®å Žåã«ãããŠã¯ãããã®éã¯ç©äœã®åéåã§ã¯ãªããç©äœã®æ¯åã«ã€ããŠã®éã§ãããããããåäœæéåœããã«äœ[rad]ã ãäœçžãé²ããã®éãšæ¯åã®åšæã®äžã§ãã©ã®äœçœ®ã«ç©äœããããã衚ãéã«å¯Ÿå¿ããŠããããŸããåšæãšæ¯åæ°ãåéåã®å Žåãšåãå®çŸ©ã§äžããããã
ãŸãããã®å Žåã«ã€ããŠã¯éåæ¹çšåŒããè§æ¯åæ°ã決ãŸã
ã§äžããããã
(4.3)ã
ãšæžçŽã, A cos ÎŽ = a , A sin ÎŽ = b {\displaystyle A\cos \delta =a,\ A\sin \delta =b} ãšãããš
ãšãªã,æ¯å¹
ã¯
質émãæã€ããç©äœã«ã€ããŠãã°ã宿° k 1 {\displaystyle k_{1}} ã®ã°ããšã°ã宿° k 2 {\displaystyle k_{2}} ã®ã°ãã« ã€ãªãããå Žåã§ã¯ã ã©ã¡ãã®å Žåã®æ¹ãç©äœã®è§é床ã倧ãããªããã ãã ãã k 1 > k 2 {\displaystyle k_{1}>k_{2}} ãæãç«ã€ãšããããŸããåšæãšæ¯åæ°ã«ã€ããŠã¯ã©ããªããã
ãã®å Žåã«ã¯ãã®åæ¯åã®è§æ¯åæ°ã¯ã
ã§äžããããããã®éã¯ã°ã宿°kã倧ããã»ã©å€§ããã®ã§ãè§æ¯åæ°ã¯ ã°ã宿° k 1 {\displaystyle k_{1}} ãæã€ã°ãã®è§æ¯åæ°ã®æ¹ãã°ã宿° k 2 {\displaystyle k_{2}} ãæã€ã°ãã®è§æ¯åæ° ãã倧ãããªãããŸãã忝åã®æ¯åæ°ã¯åæ¯åã®è§æ¯åæ°ã«æ¯äŸããã®ã§ã æ¯åæ°ã«ã€ããŠãã ã°ã宿° k 1 {\displaystyle k_{1}} ãæã€ã°ãã®æ¯åæ°ã®æ¹ãã°ã宿° k 2 {\displaystyle k_{2}} ã æã€ã°ãã®æ¯åæ°ãã倧ãããªããäžæ¹ããã®å Žåã®åšæã«ã€ããŠã¯ã
ãæãç«ã€ãããã°ã宿°kãå°ããã»ã©å€§ãããªãããã£ãŠãåšæã«ã€ããŠã¯ ã°ã宿° k 2 {\displaystyle k_{2}} ãæã€ã°ãã®åšæã®æ¹ãã°ã宿° k 1 {\displaystyle k_{1}} ãæã€ã°ãã®åšæ ãã倧ãããªãã
éåã®ããäžã«é·ãl[m]ã®ã²ãã§ã€ããããç©äœã«ãã£ãŠäœãããç©äœã® éçŽäžåãã«åçŽãªæ¹åã®éåã忝åãšãªãããšãæ±ããã ãã ããæ¯ãåã®åãç¯å²ã¯å°ãããã®ãšããã ãã®ããã«åæ¯åãããæ¯ãåã 忝ãå(ãããµãããsimple pendlum) ãšåŒã¶ããšãããã
ã²ã ãåºå®ãããŠããäœçœ®ããéçŽã«äžãããçŽç·ãšãç©äœãã€ãªãããŠãã ã²ã ããªãè§åºŠã Ξ {\displaystyle \theta } ãšããããã®å Žåãå³åœ¢çã«èãããšãã®å Žåã®æ°Žå¹³æ¹åã®éåæ¹çšåŒã¯
ãšãªããããã§ã Ξ {\displaystyle \theta } ãå°ããå Žåã
ãšãªãããšã«æ³šæãããšãéåæ¹çšåŒã¯
ãšãªãå
ã»ã©ã®ã°ãã«ã€ãªãããç©äœã®éåæ¹çšåŒãšçãããªãã
ãã£ãŠããã®ç©äœã®éåã忝åã§èšè¿°ãããããšãåãã£ããããã«ã å
ã»ã©ã®è§æ¯åæ°ãšæ¯èŒãããšããã®å Žåã®è§æ¯åæ° Ï {\displaystyle \omega } ã¯
ãšãªãããšãåããã
ãããã®çµæããå°åŠæ ¡çç§ã®çµæã§ãã
ã®å®éšäºå®ãéåæ¹çšåŒã®çµæãšäžèŽããããšã確ãããããã
ãã®ç« ã§ã¯ãäžæåŒåã«ããéåãæ±ããäžæåŒåã¯å
šãŠã®ç©äœã®éã«ååšããŠãããããã®åãåªä»ããéåãšããŠæåãªãã®ã¯å€ªéœã®åããå転ããå°çã®éåããå°çèªèº«ã®åããå転ããæã®éåã§ãããå®éã«ã¯ãã®ãããªäœãã®åããå転ããæ§é ã¯å®å®å
šäœã«åºãèŠãããã
äŸãã°ã空ã«èŠãããæã¯w:ææãšåŒã°ãããããããã®æã®åãã«ã倪éœã«å¯Ÿããå°çãšåãããã«ãææãåããåã£ãŠãããšèããããå®éã«ãã®ãããªææã確èªãããææãããã(w:ç³»å€ææåç
§ã)
ãã®ããã«å®å®ã®äžã§äžæåŒåã«ããå転éåã¯åºã芳枬ããããããã§ã¯ãã®ãããªéåã¯ç©äœéã«åãã©ã®ãããªåã«ãã£ãŠèšè¿°ãããããèŠãŠããã
æŽå²çã«ã¯ãéã«ãã®ãããªç©äœã®éã®éåã説æãããããªåãèããããšã§ ç©äœéã«åãåãçºèŠããããæŽå²ã«ã€ããŠè©³ããã¯w:ãã¥ãŒãã³ãªã©ãåç
§ã
ãŸãã¯ãç©äœéã«åãäžæåŒå(glavitational constant)ã®æ³åãè¿°ã¹ããçš®ã
ã®èŠ³æž¬ã®çµæã«ãããšã質é m 1 {\displaystyle m_{1}} ãæã€ç©äœãšè³ªé m 2 {\displaystyle m_{2}} ãæã€ç©äœã®éã«ã¯
ã§è¡šããããåãåããããã§Gã¯ç©äœã«ãããªã宿°ã§ãäžæåŒå宿°ãšããã å€ã¯ G = 6.67 à 10 â 11 [ N â
m 2 / k g 2 ] {\displaystyle G=6.67\times 10^{-11}[{\mathrm {N} \cdot \mathrm {m} ^{2}/\mathrm {kg} ^{2}}]} ã§ããã
äžæåŒåã®æ³å
äžæåŒåã¯ç©äœéã®è·é¢ã®2ä¹ã«éæ¯äŸããåã§ããã
ç©äœã®å°ãªããšãçæ¹ãææã®ããã«å·šå€§ãªå Žåãç©äœéã®è·é¢rã¯ãéå¿éã®è·é¢ã§ããã
å°çã®äžæåŒåãèãããå°çã®è³ªéãMãå°çã®ååŸãRãæž¬å®ããç©äœã®è³ªéãmãšããå ŽåãéåFã¯
ãšãªãã
ãããå°è¡šè¿ãã§ã¯å€§ããã mg ãšçããã®ã§ã
å€åœ¢ããŠ
ãšãªããèšç®åé¡ã®ããããã®å€åœ¢ãçšããããå Žåãããã
å°çã¯èªè»¢ãããŠãããéåã®èšç®ã§ã¯ãå³å¯ã«ã¯èªè»¢ã«ããé å¿åãèããå¿
èŠãããããããããèªè»¢ã®é å¿åã®å€§ããã¯ãäžæåŒåã® 1 300 {\displaystyle {\frac {1}{300}}} åãŠãã©ãããªãã®ã§ãéåžžã¯èªè»¢ã«ããé å¿åãç¡èŠããå Žåãå€ãã
ãªããå°çã®èªè»¢ã®é å¿åã¯ãèµ€éäžã§ãã£ãšã倧ãããªãã
äººå·¥è¡æããå°çã®èªè»¢ãšåãåšæã§ãèªè»¢ãšåãåãã«çéåéåãããã°ããã®äººå·¥è¡æã¯å°äžããèŠãŠãã€ãã«å°é¢ã®äžç©ºã«ããã®ã§ãå°äžã®èŠ³æž¬è
ããã¯éæ¢ããŠèŠããããã®ãããªäººå·¥è¡æã®ããšãéæ¢è¡æãšããã
質émã®ç©äœã質éMã®å€§ããªç©äœã®åãããäžæåŒåã®åãåå¿åãšããŠãååŸrã®åéåãããŠããããã®å Žåã®åéåã®è§éåºŠãæ±ããã
ååŸrãè§é床 Ï {\displaystyle \omega } ã®åéåãããå Žåã®ç©äœã®åå¿å ã¯
ã§ãããäžæ¹ã質émãšè³ªéMã®ç©äœã®éã®è·é¢ãrã§ããå Žåã2ã€ã®ç©äœéã«åãéåã¯ãéåã®å€æ°ãfãšãããšã
ã§äžããããããã£ãŠããããã®åãçãããªãå Žåã«ã質émã®ç©äœã¯è³ªéMã®ç©äœã®ãŸãããåéåã§å転(å
¬è»¢)ããããšãã§ããããã£ãŠã Ï {\displaystyle \omega } ãæ±ããåŒã¯ã
ãšãªãã
å°ç衚é¢ã§ã®éåã«ããäœçœ®ãšãã«ã®ãŒãèããããã®ãšåæ§ã«ãäžæåŒåã«ããäœçœ®ãšãã«ã®ãŒãèããããšãã§ããã
äžæåŒåã«ããäœçœ®ãšãã«ã®ãŒãæ±ããã«ã¯ãäžæåŒåãç©åããã°ããã
質éMã®ç©äœããrã®è·é¢ã«è³ªémã®ç©äœãååšãããšããããã ããMã¯mããã¯ãã㫠倧ãããšãããç¡éé ç¹ãåºæºã«ãããš(ã€ãŸãç¡éé ã§ã¯äœçœ®ãšãã«ã®ãŒããŒã)ããã®å Žåã質émã®ç©äœã®äœçœ®ãšãã«ã®ãŒã¯
ã§äžããããã
笊å·ã«ãã€ãã¹ãã€ãããšã®ç©ççãªè§£éã¯ãéåãã€ããã ãç©äœã«è¿ã¥ãã»ã©ããã®ç©äœã®ã€ããã ãéååãè±åºããã«ã¯ããšãã«ã®ãŒã远å çã«å¿
èŠã«ãªãããã§ãããšè§£éã§ããã
ç¡éé ã§ã¯ r=+â ãšããã°ãããçµæã U=0 ã«ãªãã
ãªããäžæåŒåã¯ä¿ååã§ããã®ã§ãäœçœ®ãšãã«ã®ãŒã¯ãç¡éé ç¹ããã®çµè·¯ã«ããããçŸåšã®äœçœ®ã ãã§æ±ºãŸãã
ã®ããã«äžããããããŸãããã®ã°ã©ãã¯çŽèгçãªæå³ãæã£ãŠããã å®ã¯ããã®ã°ã©ãã®åŸãã¯ã°ã©ãã衚ããäœçœ®ãšãã«ã®ãŒãæã€ç¹ã«ç©äœã眮ããå Žåã ãã®ç©äœãåãåããæ¹åãšãã®å€§ããã衚ãããŠãããããã§ã¯ã äœçœ®ãšãã«ã®ãŒã®åŸããåžžã«r=0ã«èœã¡èŸŒãæ¹åã«çããŠããããç©äœMããè·é¢r (rã¯ä»»æã®å®æ°ã)ã®ç¹ã«éæ¢ããŠããç©äœã¯å¿
ãMã®æ¹åã«åžã蟌ãŸããŠè¡ãããšã 衚ãããŠããã(詳ããã¯å€å
žååŠåç
§ã)
ããææäžã«ããç©äœãå®å®ã®ç¡éé ãŸã§å°éãããããã«å®å®è¹ã«ææäžã§ äžããªããŠã¯ãããªãé床ã¯ã©ã®ããã«è¡šãããããããã ããèšç®ã«ã€ããŠã¯ æåã«å®å®è¹ãåºçºããææä»¥å€ã®å€©äœããã®åœ±é¿ã¯ç¡èŠãããšããã ãŸããææã®ååŸã¯Rã ææã®è³ªéã¯Mãšããã
ææã®åŒåã«ããäœçœ®ãšãã«ã®ãŒã¯ææè¡šé¢ã§
ã§ãããç¡éåç¹ã§ã¯0ã§ããããã ããmã¯å®å®è¹ã®è³ªéãšããã äžæ¹ãå®å®è¹ãç¡éåç¹ã«éããã«ã¯ãå®å®è¹ã®é床ãç¡éåç¹ã§ã¡ããã©0ã« çãããªãã°ãããããã§ãææäžã§ã®å®å®è¹ã®é床ãvãšãããšã ãšãã«ã®ãŒä¿ååããã
ãšãªãããã£ãŠãã®åŒããvãæ±ããã°ãããçã¯ã
äžèšã®èšç®ããåããããã«ãäžè¬ã«ãäžæåŒåã ããåããŠéåããç©äœã®ååŠçãšãã«ã®ãŒã¯ã
ã§ããã
ä»®ã«é«ãå±±ããç©äœãæ°Žå¹³ã«çºå°ãããšã(ç©ºæ°æµæã¯ç¡èŠãã)ãå°çã®ãŸãããåãç¶ããããã«å¿
èŠãªæå°ã®åé床ã®ããšã第äžå®å®é床ãšããã(â» ååã¯æèšããªããŠãããèŠããã¹ãã¯ãèšç®æ¹æ³ã§ããã) 第äžå®å®é床ã¯ãèŠããã«ãé å¿åãšåå¿åãã€ãããããã«å¿
èŠãªåé床ã§ããã
第äžå®å®é床ã¯ãç§éã§ã¯çŽ7.91km/sã§ããã
v1ã«ã€ããŠè§§ãã
ãªããããã R = 6400 à 10 m ã§ããã g = 9.8 m/s ã§ããã
ããã«åé床ã倧ãããªããšãç©äœã¯æ¥åè»éã«ãªãã
åé床ãçŽ11.2km/sã«ãªããšãè»éã¯æŸç©ç·ã«ãªããç©äœã¯ç¡éã®åœŒæ¹ã«é£ãã§ããã ãã®çŽ11.2km/sã®ããšã第äºå®å®é床ãšãããããã¯ãç¡éé ã®ç¹ã§ãé床ã0ãè¶
ããå€ã«ãªãããã«å¿
èŠãªåé床ã§ããã
ãªã®ã§ãèšç®ã§ç¬¬äºå®å®éåºŠãæ±ããã«ã¯ãšãã«ã®ãŒä¿ååãèšç®ã«ã¯äœ¿ãã
ã®åŒããvãæ±ãã
ã«ããã« G M = g R 2 {\displaystyle GM=gR^{2}} ã代å
¥ããŠã
ããã«é¢ä¿ãã宿°ã代å
¥ããã°ããã
ãªããããã R = 6400 à 10 m ã§ããã g = 9.8 m/s ã§ããã
åé床 11.2km/s以äžã§ã¯ãè»éã¯åæ²ç·ã«ãªããç©äœã¯ç¡éã®åœŒæ¹ã«é£ãã§ããã
â» æ€å®æç§æžã§ã¯ãèæ³šãªã©ã«æžããŠãã£ããããã å°çããå°åºããŠã倪éœç³»ã®å€ã«åºãããã«å¿
èŠãªæå°ã®åé床ã®ããšã第äžå®å®é床(çŽ 16.7 km/s) ã§ããã
ã®ãªã·ã£æä»£ããäžäžãŸã§ä¿¡ããããŠãã倩å説(è±: geocentric theory)ã«å¯Ÿã,16äžçŽåã°ã«ã³ãã«ãã¯ã¹ã¯å
šãŠã®ææ(è±: planet)ã倪éœãäžå¿ãšããåéåãããŠããå°å説ãæå±ããããã®åŸãã£ã³ã»ãã©ãŒãšã¯é·å¹Žã«ãããææã®èŠ³æž¬ãè¡ã,ãã®èŠ³æž¬çµæãåŒç¶ãã ã±ãã©ãŒã¯ãããã®çµæãããšã«èšç®ãè¡ã,ææã®éè¡ã«é¢ããæ³å,ã±ãã©ãŒã®æ³å(è±: Kepler's laws)ãçºèŠããããªã,æç§æžã¯å€ªéœãšææã®é¢ä¿ã§è«ããŠããã,ä»ã«ãææãšè¡æ(èªç¶è¡æ,äººå·¥è¡æ)ã§ãæãç«ã€ã
ææ(è¡æ)ã¯å€ªéœ(ææ)ã1ã€ã®çŠç¹ãšããæ¥åéåããã(æ¥åè»éã®æ³å)ã
ææ(è¡æ)ãšå€ªéœ(ææ)ãçµã¶ååŸãåäœæéã«æãé¢ç©(é¢ç©é床)ã¯äžå®ã§ãã(é¢ç©é床äžå®)ã
ææ(è¡æ)ã®å
¬è»¢åšæ T {\displaystyle T} ã®2ä¹ã¯æ¥åè»éã®é·ååŸ(åé·è»ž) a {\displaystyle a} ã®3ä¹ã«æ¯äŸããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "é«çåŠæ ¡çç§ ç©çåºç€ã§ã¯ãç©äœã®éåãçŽç·äžã®éåãäžå¿ã«æ±ã£ããç©çã§ã¯ãããè€éãªå¹³é¢äžã®éåãæ±ããå¹³é¢äžã®éåã§ã¯ãçŽç·äžã®éåãšã¯éã£ãŠãç©äœã®äœçœ®ã衚ããã®ã«å¿
èŠãªéã2ã€ã«ãªãããããã¯éåžž x , y {\\displaystyle x,\\ y} ãšãããã©ã¡ããæå» t {\\displaystyle t} ã®äžæã®é¢æ°ãšãªãã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãããã®é¢æ°ã¯ã©ããªãã®ã§ãããããããã§ã¯äž»ã«ãå®éã®ç©äœã®éåãšããŠããããããããã®ãæ±ãã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "å¹³é¢äž,ããªãã¡2次å
ã«ãããŠ,æå» t {\\displaystyle t} ã«ãããäœçœ®ã¯ r â ( t ) = ( x ( t ) , y ( t ) ) {\\displaystyle {\\overrightarrow {r}}(t)=(x(t),\\ y(t))} ,åŸ®å°æé Î t {\\displaystyle {\\mathit {\\Delta }}t} éã®å€äœã¯ Î r â = r â ( t + Î t ) â r â ( t ) = ( Î x , Î y ) {\\displaystyle {\\mathit {\\Delta }}{\\overrightarrow {r}}={\\overrightarrow {r}}(t+{\\mathit {\\Delta }}t)-{\\overrightarrow {r}}(t)=({\\mathit {\\Delta }}x,\\ {\\mathit {\\Delta }}y)} ãšå®çŸ©ãããããã®ãšã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ã Î t {\\displaystyle {\\mathit {\\Delta }}t} éã®å¹³åé床, Î t â 0 {\\displaystyle {\\mathit {\\Delta }}t\\to 0} ã®æ¥µé",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãæå» t {\\displaystyle t} ã§ã®(ç¬é)é床ãšããããªã,æå» t {\\displaystyle t} ã§ã®éã(é床ã®å€§ãã)ã¯",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãã®å Žåã,é床ããäœçœ®ãæ±ãŸã,åæåæ¯ã«",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãæãç«ã¡,ãããããã¯ãã«ãçšããŠã²ãšãŸãšãã«ããŠä»»æã®æå» t {\\displaystyle t} ã«ãããäœçœ®",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãæ±ããããã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãŸã,",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ã Î t {\\displaystyle {\\mathit {\\Delta }}t} éã®å¹³åå é床, Î t â 0 {\\displaystyle {\\mathit {\\Delta }}t\\to 0} ã®æ¥µé",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãæå» t {\\displaystyle t} ã§ã®(ç¬é)å é床ãšããã ãã®å Žåã,å é床ããéåºŠãæ±ãŸã,åæåæ¯ã«",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãæãç«ã¡,ãããããã¯ãã«ãçšããŠã²ãšãŸãšãã«ããŠä»»æã®æå» t {\\displaystyle t} ã«ãããé床",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãæ±ããããããªã,ããã r â ( 0 ) , v â ( 0 ) {\\displaystyle {\\overrightarrow {r}}(0),{\\overrightarrow {v}}(0)} ã®å€ãåæå€ãšããã ç¹ã«,å é床äžå®ã®ãšãã®éåã¯çå é床éåãšããã,äžèšã®å
¬åŒ(1.2, 1)ã¯ãããã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãšãªãã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "éåæ¹çšåŒã¯ãåãç©äœãåããå éåºŠã«æ¯äŸãããšããç¹ã¯ããããªãã ããããä»åã¯åãšå é床ã¯ã©ã¡ãããã¯ãã«éã§ããããã£ãŠãå€å f â = ( f x , f y ) {\\displaystyle {\\overrightarrow {f}}=(f_{x},\\ f_{y})} ãåã,å é床 a â = ( a x , a y ) {\\displaystyle {\\overrightarrow {a}}=(a_{x},\\ a_{y})} ã§éåããç©äœã®éåæ¹çšåŒã¯",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ãšããããã éåžžã¯ããã®æ¹çšåŒãè§£ãå Žåã¯èŠçŽ ããšã«ããã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ãšããããã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "æå»t = 0ã«ã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ã§ééããç©äœã®æå»tã§ã®äœçœ®ãæ±ããã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ç©äœã®xæ¹åãšyæ¹åã¯äºãã«ç¬ç«ã«çéçŽç·éåãããã ããã§ã¯xæ¹åãyæ¹åãé床",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ãªã®ã§ãçéçŽç·éåã®åŒã®ãã¯ãã«éãšããé",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ã«ä»£å
¥ãããšã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ãšãªãã èŠçŽ ããšã«ãããšã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ãšãªãã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "æå»t=0ã«åç¹(0,\\ 0)ãyæ¹åã«é床 v 0 {\\displaystyle v_{0}} ã§çéçŽç·éåããŠãã質émã®ç©äœã«ã xæ¹åã®äžæ§ãªåfããããå§ããããã®å Žåãæå»tã«ãããç©äœã®äœçœ®ãš éåºŠãæ±ããã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "x軞æ¹åã«ã¯çå é床éåãšãªãã ç©äœãåããå é床ã¯ãéåæ¹çšåŒã«ãã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ãšãªãã ããã«xæ¹åã®åé床0,åæäœçœ®0ã§ããããšãçå é床çŽç·éåã®åŒã« 代å
¥ãããšã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ãšãªãã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ããã«ãy軞æ¹åã®éåã¯çééåã§ããããã®åé床ã¯ã v 0 {\\displaystyle v_{0}} ,åæäœçœ®ã¯0ã§ããã®ã§ã ãã®å€ãçééåã®åŒã«ä»£å
¥ãããšã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ãåŸãããã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ãã®ç« ã§ã¯éåé(ããã©ãããããmomentum)ãæ±ããéåéã¯ãç©äœã®è¡çªã«çœ®ããŠãšãã«ã®ãŒãšäžŠã³ãä¿åéãšãªãéèŠãªéã§ããããŸãããã®ç« ã§ã¯åç©(ãããããimpulse)ãšããéãå°å
¥ãããåç©ã¯éåéã®æéå€åã衚ããéã§ããããã®å°åºã¯éåæ¹çšåŒãçšããŠæãããã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ç©äœãåããŠããå Žåãç©äœã®é床ãšè³ªéã®ç©ãç©äœã®éåé",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "ãšå®çŸ©ãããéåæ¹çšåŒ",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "ã®äž¡èŸºãæå» t = t 1 {\\displaystyle t=t_{1}} ãã t = t 2 {\\displaystyle t=t_{2}} ãŸã§ç©åãããš",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "ãšãªãã v â ( t 1 ) = v 1 â , v â ( t 2 ) = v 2 â {\\displaystyle {\\overrightarrow {v}}(t_{1})={\\vec {v_{1}}},{\\overrightarrow {v}}(t_{2})={\\vec {v_{2}}}} ãšãããš",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "ãã®åŒã®å·ŠèŸºã¯éåéå€å,å³èŸºã¯åç©(ãããããimpulse)ã§ããããã£ãŠ,éåéå€åã¯åç©ã«çããããšãåãããéåéå€åã Î p â {\\displaystyle {\\mathit {\\Delta }}{\\overrightarrow {p}}} ,åç©ã I â {\\displaystyle {\\overrightarrow {I}}} ãšãããš",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "ç¹ã«, f â = {\\displaystyle {\\overrightarrow {f}}=} äžå®ã®ãšã, t 2 â t 1 = Î t {\\displaystyle t_{2}-t_{1}={\\mathit {\\Delta }}t} ãšãããš",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "埮åãçšããå°åºã«ã€ããŠã¯ãå€å
žååŠãåç
§ã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "鿢ããŠããç©äœã«æé Î t {\\displaystyle {\\mathit {\\Delta }}t} ã®éããæ¹åã«äžæ§ãªåfãããããç©äœãåŸã éåéã¯ã©ãã ãããããã«ãç©äœã®è³ªéãmãšãããšãç©äœããã®æ¹åã« åŸãé床ã¯ã©ãã ããã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "éåéã®å€ååã¯ç©äœãåããåç©ã«çããã®ã§ãç©äœãåããåç©ãèšç®ããã° ãããç©äœãåããåç©ã¯",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "ã«çããã®ã§ãç©äœãåŸãéåéã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "ã«çãããããã«ãéåéã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ãæºããããšãèãããšãç©äœã®é床ã¯",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "ãšãªãã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "éåéã¯ãç©äœãå
šãåãåããªãå Žåã«ã¯ä¿åããããããã¯ç©äœã«åãåããªãå Žåã«ã¯ãç©äœã®åããåç©ã¯0ã§ããç©äœã®éåéå€åã0ã§ããããšããåœç¶ã§ããã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "ããã«ãè€æ°ã®ç©äœã®éåéã«ã€ããŠã¯ãå¥ã®éèŠãªæ§è³ªãèŠããããããã¯ãè€æ°ã®ç©äœã®ãã€éåéã®ç·åã¯ãããã®ç©äœã®éã®è¡çªã«éããŠä¿åãããšããããšã§ãããããã¯ã€ãŸããäŸãã°ãã2ã€ã®ç©äœãè¡çªããå Žåãå§ãã«2ç©äœãããããæã£ãŠããéåéã®åã¯è¡çªãçµãã£ãåŸã«2ç©äœãæã£ãŠããéåéã®åã«çãããšããããšã§ãããããã§ãããã€ãã®ç©äœãããå Žåãããã®æã€éåéã®ç·åãã察å¿ããç©äœç³»ã®å
šéåéãšããã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "ç©äœã®è¡çªã«ã€ããŠãéåéã¯åžžã«ä¿åãããããããç©äœç³»ã®å
šãšãã«ã®ãŒã¯åžžã«ä¿åãããšã¯éããªããäžè¬ã«ç©äœã®è¡çªã«ã€ããŠãšãã«ã®ãŒã¯åžžã«å€±ãããŠããããã£ãšãç©äœç³»ã«éããªãå
šãšãã«ã®ãŒã¯åžžã«äžå®ã§ããã®ã§ãç©äœãæã£ãŠãããšãã«ã®ãŒã¯é³ãç±ã®åœ¢ã§ç©äœç³»ã®å€ã«éããŠè¡ãã®ã§ãããç©äœãè¡çªã«ã€ããŠå€±ããšãã«ã®ãŒã¯è¡çªã«é¢ããç©äœãæã£ãŠããç©æ§å®æ°ã«ãã£ãŠæ±ºãŸãããã®ä¿æ°ãåçºä¿æ°(ã¯ãã±ã€ãããããcoefficient of restitution)ãšåŒã³ãeãªã©ã®èšå·ã§æžããåçºä¿æ°ã¯ãç©äœãè¡çªããããååŸã§ã®ç©äœéã®çžå¯ŸéåºŠã®æ¯ã«ãã£ãŠå®ããããã ç¹ã«ç©äœ1ãšç©äœ2ãè¡çªåã«é床 v 1 , v 2 {\\displaystyle v_{1},\\ v_{2}} ãæã£ãŠãããè¡çªåŸã«é床 v 1 â² , v 2 â² {\\displaystyle v_{1}',\\ v_{2}'} ãæã£ããšãããšãåçºä¿æ°eã¯",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "ã§å®ãããããããã§ãå³èŸºã®å§ãã® â {\\displaystyle -} 笊åã¯ãè¡çªã®ååŸã§ç©äœã®é床ããã倧ããç©äœã¯ãè¡çªåã«ããå°ããé床ãæã£ãŠããç©äœãããè¡çªåŸã«ã¯ããå°ããé床ãæã€ããšã«ãªãããã§ããã ãã®ãããåçºä¿æ°ã¯äžè¬ã«æ£ã®æ°ã§ããã ãŸãåçºä¿æ°ã¯1ããå°ããæ°ã§ãããç©äœéã®çžå¯Ÿé床ã¯è¡çªåããè¡çªåŸã®æ¹ãå°ãããªãã ç¹ã« e = 1 {\\displaystyle e=1} ã®å Žåã(å®å
š)匟æ§è¡çª(elastic collision)ãšåŒã³ããã£ãœã 0 < e < 1 {\\displaystyle 0<e<1} ã®å Žåãé匟æ§è¡çª(inelastic collision)ãšåŒã¶ã匟æ§è¡çªã®å Žåã¯ãååŠçãšãã«ã®ãŒã¯ä¿åããããšãç¥ãããŠãããäžæ¹ãé匟æ§è¡çªã® å Žåã¯ç©äœç³»ã®å
šãšãã«ã®ãŒã¯å€±ãããã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "ãã鿢ããŠããç©äœ2ã«éåépã§éåããŠããç©äœãè¡çªããããã®å Žåã è¡çªããåŸã®ç©äœ2ãéåé p 2 {\\displaystyle p_{2}} ãåŸããšãããšãè¡çªåŸã®ç©äœ1ã®éåé㯠ã©ãã ããšãªã£ããã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "éåéä¿ååãèãããšãè¡çªã®ååŸã§ç©äœ1ãšç©äœ2ã§æ§æãããç©äœç³»ã®å
šéåéã¯ä¿åããã ããã§ãè¡çªåã®ç©äœç³»ã®å
šéåéã¯pã§ããã®ã§ãè¡çªåŸã®ç©äœç³»ã®å
šéåéãpãšãªãã ããã«ãç©äœ2ã®è¡çªåŸã®éåéã p 2 {\\displaystyle p_{2}} ãªã®ã§ãç©äœ1ã®éåéã¯",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "ãšãªãã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "ããã§ãç©äœç³»ã®å
šéåéãä¿åãããããšã¯ãéåã«é¢ãã äœçšã»åäœçšã®æ³å ããåŸãã äœçšåäœçšã®æ³åãçšãããšãç©äœç³»ã®éã®è¡çªã«éããŠãè¡çªã«é¢ããããããã®ç©äœãåããåã¯ã倧ãããçããåãã¯å察ãšãªãã ãã®å Žåãããããã®åã«å¯ŸããŠãè¡çªã®æé Î t {\\displaystyle \\Delta t} ãããããã®ã¯ è¡çªã«éããŠããããã®ç©äœãåãåãåç©ã«çããã ããã§ãè¡çªã«é¢ããŠåãåã®åç©ãå
šãŠã®ç©äœã«ã€ããŠè¶³ãåããããšããããã®åã¯ãäžã®ããšãã0ãšãªãã ããããå
šéåéã®èšç®ã§ã¯ãŸãã«ãã®ãããªå
šç©äœã«ã€ããŠã®éåéã®ç·åãèšç®ããŠããã®ã§ã è¡çªã«ãã£ãŠåŸããããããªåç©ã®ç·åã¯ã0ã«çããã ãã£ãŠãè¡çªã«éããŠç©äœç³»ã®æã€å
šéåéã¯ä¿åãããã ãããéåéä¿åå(ããã©ãããã ã»ãããããmomentum conservation law)ãšããã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "質émã®2ã€ã®ç©äœãé床 v 1 {\\displaystyle v_{1}} , v 2 {\\displaystyle v_{2}} ã§ç§»åããŠããããããã®ç©äœãè¡çªããå Žåã è¡çªåŸã®ããããã®ç©äœã®é床ãããšãã«ã®ãŒä¿ååãšéåéä¿ååãçšã㊠èšç®ããããã ããç©äœã®è¡çªã«é¢ããŠãšãã«ã®ãŒã¯ä¿åãããšããã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ãã®åé¡ã¯2ã€ã®åã倧ããã®ç©äœãç°ãªã£ãé床ã§ã¶ã€ããå Žå ãã®çµæãã©ããªãããèšç®ããåé¡ã§ããã å®éšã®çµæã«ãããšãäžæ¹ã鿢ããŠããäžæ¹ãåããŠããå Žåã åããŠããç©äœã¯éæ¢ãã鿢ããŠããç©äœã¯åããŠããç©äœãæã£ãŠãã é床ãšåãé床ã§åãã ãããšãç¥ãããŠãããããã§ã¯ããããã® çµæãèšç®ã«ãã£ãŠç¢ºãããããããšãèŠãããšãåºæ¥ãã è¡çªåŸã®ç©äœã®é床ãããããç©äœ1ã«ã€ããŠã¯ v 1 â² {\\displaystyle v_{1}'} ,ç©äœ2ã«ã€ããŠã¯ v 2 â² {\\displaystyle v_{2}'} ãšããããã®å Žåãç©äœã®è¡çªã«ã€ããŠå
šãšãã«ã®ãŒãä¿åãããããšã çšãããšã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ãåŸããããããã«ãç©äœã®è¡çªã«ã€ããŠç©äœç³»ã®å
šéåéãä¿åãããããšãçšãããšã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "ãããã¯ã v 1 â² {\\displaystyle v'_{1}} , v 2 â² {\\displaystyle v'_{2}} ã«ã€ããŠã®2次æ¹çšåŒã§ãããè§£ãããšãåºæ¥ããå®éèšç®ãããšãè§£ãšããŠ",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "ãåŸããããåè
ã®è§£ã¯è¡çªã«éããŠç©äœã®é床ãå€åãã¬ããšã瀺ããŠããããããã¯å®éã®æ
åµãšããŠèãé£ãã®ã§ãåŸè
ã®è§£ãçŸå®ã®è§£ãšãªãããã®çµæãèŠããšãç©äœãæã€é床ãå
¥ãæ¿ããããšãåããã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "ãã®ããšã¯å®éã«åã倧ããã®çãçšããŠå®éšãè¡ããšã確ãããããšãã§ããã",
"title": "å¹³é¢äžã®éå"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "äœçœ®ã®ã¿ããã¡,倧ããããªãã®ã質ç¹ã§ãããåäœãšã¯,倧ãããããã圢ã倧ãããå€ããã¬ç©äœã®ããšã§ããã",
"title": "è§éåéãšåã®ã¢ãŒã¡ã³ã"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "åäœã®éåãèããåã«äžå®å¹³é¢äžã®éåã«ã€ããŠæ¬¡ã®ãããªäžè¬çèå¯ãè¡ãã",
"title": "è§éåéãšåã®ã¢ãŒã¡ã³ã"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "æå» t {\\displaystyle t} ã«ãã㊠x y {\\displaystyle xy} å¹³é¢å
ã®äœçœ® r â = ( x , y ) {\\displaystyle {\\overrightarrow {r}}=(x,\\ y)} ãé床 v â = ( v x , v y ) {\\displaystyle {\\overrightarrow {v}}=(v_{x},\\ v_{y})} ã§éåã,å F â = ( F x , F y ) {\\displaystyle {\\overrightarrow {F}}=(F_{x},\\ F_{y})} ãåããŠãã質é m {\\displaystyle m} ã®ç©äœã®éåæ¹çšåŒãæåã«åããŠè¡šãã°",
"title": "è§éåéãšåã®ã¢ãŒã¡ã³ã"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "2 Ã x â {\\displaystyle \\times x-} 1 Ã y {\\displaystyle \\times y} ãã",
"title": "è§éåéãšåã®ã¢ãŒã¡ã³ã"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "ãã®å·ŠèŸºã®",
"title": "è§éåéãšåã®ã¢ãŒã¡ã³ã"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "ãåç¹OãŸããã®è§éåéãšããã ããã§ v â {\\displaystyle {\\overrightarrow {v}}} ãš r â {\\displaystyle {\\overrightarrow {r}}} ã®ãªãè§ã Ξ , x {\\displaystyle \\theta ,\\ x} 軞㚠r â {\\displaystyle {\\overrightarrow {r}}} ã®ãªãè§ã Ï {\\displaystyle \\phi } ãšãããš",
"title": "è§éåéãšåã®ã¢ãŒã¡ã³ã"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "ãããã(3.1)ã«ä»£å
¥ãããš",
"title": "è§éåéãšåã®ã¢ãŒã¡ã³ã"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "ãåŸãããã",
"title": "è§éåéãšåã®ã¢ãŒã¡ã³ã"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "ç©äœãå転ãããåã®å¹æã®å€§ããã衚ãéãåã®ã¢ãŒã¡ã³ããšãããæŽã« F â {\\displaystyle {\\overrightarrow {F}}} ãš r â {\\displaystyle {\\overrightarrow {r}}} ã®ãªãè§ã Î {\\displaystyle {\\mathit {\\Theta }}} ãšãããš",
"title": "è§éåéãšåã®ã¢ãŒã¡ã³ã"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "ãã£ãŠåç¹OãŸããã®åã®ã¢ãŒã¡ã³ãã N {\\displaystyle N} ã§è¡šããš",
"title": "è§éåéãšåã®ã¢ãŒã¡ã³ã"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "ããã« r sin Î {\\displaystyle r\\sin {\\mathit {\\Theta }}} ã¯åç¹ããå F â {\\displaystyle {\\overrightarrow {F}}} ã®äœçšç·ã«äžããåç·ã®é·ãã§ãã,ãããå F â {\\displaystyle {\\overrightarrow {F}}} ã®åç¹ã«å¯Ÿããè
ã®é·ããšããããã ãåã®ã¢ãŒã¡ã³ãã¯å F â {\\displaystyle {\\overrightarrow {F}}} ãäœçœ®ãã¯ãã« r â {\\displaystyle {\\overrightarrow {r}}} ãåæèšåãã«åãåããæ£ãšããŠãã(æèšåãã®é㯠Π< 0 {\\displaystyle {\\mathit {\\Theta }}<0} ã§ r sin Î < 0 {\\displaystyle r\\sin {\\mathit {\\Theta }}<0} ãšèãã)ã 以äžãã,3(è§éåéã®æ¹çšåŒ)ã¯",
"title": "è§éåéãšåã®ã¢ãŒã¡ã³ã"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "ããã¯åã®ã¢ãŒã¡ã³ããå ããããçµæãšããŠè§éåéãå€åãããšããå æé¢ä¿ã衚ããç¹ã« N = 0 {\\displaystyle N=0} ãªãã°",
"title": "è§éåéãšåã®ã¢ãŒã¡ã³ã"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "ãšãªã,è§éåéãä¿åããã",
"title": "è§éåéãšåã®ã¢ãŒã¡ã³ã"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "ç©äœã®åéšåã«åãéåã®äœçšç¹ãéå¿(è±: centre of gravity)æãã¯è³ªéäžå¿(è±: centre of mass)ãšããã n {\\displaystyle n} ç©äœ(質é: m 1 , m 2 , ⯠⯠, m n {\\displaystyle m_{1},\\ m_{2},\\ \\cdots \\cdots ,\\ m_{n}} ,äœçœ® r 1 â , r 2 â , ⯠⯠, r n â {\\displaystyle {\\vec {r_{1}}},\\ {\\vec {r_{2}}},\\ \\cdots \\cdots ,\\ {\\vec {r_{n}}}} ( n {\\displaystyle n} ã¯èªç¶æ°)ã®éå¿ã®äœçœ® r G â {\\displaystyle {\\vec {r_{\\mathrm {G} }}}} ã¯ä»¥äžã®ããã«å®çŸ©ãããã",
"title": "è§éåéãšåã®ã¢ãŒã¡ã³ã"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "ãŸãéå¿é床 v G â {\\displaystyle {\\vec {v_{\\mathrm {G} }}}} 㯠d r k â d t = v k â ( k = 1 , 2 , ⯠⯠, n ) {\\displaystyle {\\frac {d{\\vec {r_{k}}}}{dt}}={\\vec {v_{k}}}\\ (k=1,\\ 2,\\ \\cdots \\cdots ,\\ n)} ãšãããš",
"title": "è§éåéãšåã®ã¢ãŒã¡ã³ã"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "ããã§ã¯ãåççãªå¹³é¢äžã®éåã®1ã€ãšããŠãåéå(è±: circular motion)ãšåæ¯å(è±: simple harmonic motion)ããã€ãããåéåã¯ã忝ãå(ãããµãããsimple pendlum)ã®éåã®é¡äŒŒç©ãšããŠãéèŠã§ããããããšãšãã«ããã®ããŒãžã§ã¯äžæåŒåã«ããéåãæ±ãã äžæåŒåã¯ããããéåãšåãåã§ããã ç©äœãšç©äœã®éã«å¿
ãçããåã§ãããäžæ¹ãããã®åã¯éåžžã«åŒ±ãããã ææã®ããã«å€§ããªè³ªéãæã£ãç©äœã®éåã«ããé¢ãããªãã ããã§ã¯ã倪éœã®ãŸãããå転ããææã®ãããªå€§ããªã¹ã±ãŒã«ã®éåããã€ããããã®ãããªéåã¯åã«è¿ãè»éãšãªãããšãããããã®ãããææã®éåãçè§£ããäžã§ãåéåãçè§£ããããšãéèŠã§ããã",
"title": "åéå"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "ç©äœãåãæãããã«éåããããšãåéåãšåŒã¶ãåãæããããªéåã¯ãäŸãã°ãå圢ã®ã°ã©ãŠã³ãã®ãŸãããèµ°ã人éã®ããã«äººéãææãæã£ãŠè¡ãªãå Žåãæãããèªç¶çŸè±¡ãšããŠèµ·ããå Žåãå€ããäŸãã°ã倪éœã®ãŸãããåãå°çã®éåããå°çã®åããåãæã®éåã¯ãããããåéåã§èšè¿°ãããããŸããäžå®ã®é·ãããã£ãã²ããšäžå®ã®è³ªéãæã£ãç©äœã§äœãããæ¯ãåã®éåã¯ãã²ããåºå®ããç¹ããäžå®ã®è·é¢ããããŠéåããŠãããããç©äœã¯åè»éäžãéåããŠãããåºãæå³ã§ã®åè»éãšãšãããããšãåºæ¥ããããã§ã¯ããã®ãããªå Žåã®ãã¡ã§ä»£è¡šçãªãã®ãšããŠãå®å
šãªåè»éäžãéåããç©äœã®éåããã€ããã",
"title": "åéå"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "åè»éäžãéåããç©äœã®åº§æšãäžè¬ã®å Žåãšåæ§",
"title": "åéå"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "ã§è¡šãããããç¹ã«åè»éã衚ãã颿°ã¯é«çåŠæ ¡æ°åŠII ãããããªé¢æ°ã§æ±ã£ãäžè§é¢æ°ã«å¯Ÿå¿ããŠããã",
"title": "åéå"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "ããã§ãåéåãäžè§é¢æ°ãçšããŠè¡šãããããšãè¿°ã¹ããããã®ããšã¯é«çåŠæ ¡æ°åŠCã®åªä»å€æ°è¡šç€ºãçšããŠãããåªä»å€æ°è¡šç€ºã«ã€ããŠè©³ããã¯ã察å¿ããé
ãåç
§ããŠã»ããã",
"title": "åéå"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "ååŸr[m]ã®åäžãçããé床ã§ãåéåããç©äœã®éåãèšè¿°ããããšãèããã ããã«ã座æšãåãå Žååç¹ã®äœçœ®ã¯åéåã®äžå¿ã®äœçœ®ãšããã ãã®å Žåã®ç©äœã®éåã¯ãx, y座æšãçšããŠã",
"title": "åéå"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "ã«ãã£ãŠæžãããããã ãããã®å Žå Ï {\\displaystyle \\omega } ã¯è§é床ãšåŒã°ãåäœã¯[rad/s]ã§äžããããããã ããããã§[rad]ã¯w:ã©ãžã¢ã³ã§ãããw:匧床æ³ã«ãã£ãŠè§åºŠã衚ãããå Žåã®åäœã§ããã匧床æ³ã«ã€ããŠã¯é«çåŠæ ¡æ°åŠII ãããããªé¢æ°ãåç
§ãè§é床ã¯åéåãããŠããç©äœãã©ã®çšåºŠã®æéã§åãäžåšãããã«å¯Ÿå¿ããŠããããªã,é«çåŠæ ¡ã®ç©çã«ãããŠè§é床ã¯ã¹ã«ã©ãŒãšããŠæ±ãããŸãããã®éã¯äžã§åããã®ã ããåéåããŠããç©äœã®éåºŠã«æ¯äŸããã",
"title": "åéå"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "ãŸããè§é床ã«å¯Ÿå¿ããŠã",
"title": "åéå"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "ã§äžããããéãw:åšæãšãããåšæã®åäœã¯[s]ã§ãããåšæã¯ç©äœãäœç§éããšã« åç¶ã1åšãããã衚ããéã§ããããã®å Žåã«ã¯ç©äœã¯T[s]ããšã«åç¶ã1åšãããããã«ã",
"title": "åéå"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "ãw:æ¯åæ°ãšåŒã¶ãæ¯åæ°ã¯åšæãšã¯éã«ãåäœæéåœããã«ç©äœãåç¶ãäœåšãããã æ°ããéã§ãããæ¯åæ°ã®åäœã«ã¯éåžž[Hz]ãçšãããããã¯ã[1/s]ã«çããåäœã§ããã ãŸããåšæTãšãæ¯åæ°fã¯ãé¢ä¿åŒ",
"title": "åéå"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "ãæºããããã®åŒã¯ããåéåãããŠããç©äœã«ã€ããŠããã®ç©äœã®åéåã® åšæã«å¯Ÿå¿ããæéã®éã«ã¯ãç©äœã¯åç¶ã1åšã ããããšããããšã«å¯Ÿå¿ããã",
"title": "åéå"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "ãŸãã",
"title": "åéå"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "ã®åŒã§ ÎŽ {\\displaystyle \\delta } ã¯ç©äœã®äœçœ®ã®w:äœçžãšåŒã°ããç©äœãåç¶ã®ã©ã®ç¹ã«ãããã瀺ã å€ã§ããã",
"title": "åéå"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "ãŸãããã®å Žåã®ç©äœã®é床ã®x, yèŠçŽ ã¯",
"title": "åéå"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "ã§äžããããããã®åŒãšãåŸã®åéåã®å é床ã®å°åºã«ã€ããŠã¯ãåŸã®çºå±ãåç
§ãããã§ãç©äœã®éããvãšãããšã",
"title": "åéå"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "ãšãªããç©äœã®é床㯠r Ï {\\displaystyle r\\omega } ã§äžããããããšãåããã",
"title": "åéå"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "ããã«ã",
"title": "åéå"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "ãèšç®ãããšã",
"title": "åéå"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "ãšãªããåéåãããŠããç©äœã®é床ãšåéåã®äžå¿ãåç¹ãšããå Žåã®åº§æšã¯çŽäº€ããŠããããšãåãããããã«ãåéåãããŠããç©äœã®å é床ã¯ã",
"title": "åéå"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "ãšãªããããã¯",
"title": "åéå"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "ã«å¯Ÿå¿ããŠãããåéåããããªãç©äœã®å é床ã¯ãåéåãããç©äœã®åº§æšãš ã¡ããã©å察åãã«ãªãããšãåããã",
"title": "åéå"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "ããã§ã¯ãåéåã®é床ãšå é床ãäžãããããã®å€ã¯ç©äœã®éåãæ±ºãŸãã°æ±ºãŸãå€ãªã®ã§ãåéåã®åŒããèšç®ã§ããããã ãå®éã«ãããã®åŒãåŸãããã«ã¯ãåéåã®åŒã®åŸ®åãè¡ãå¿
èŠããããããããã§ã¯è©³ããæ±ããªããå°åºã«ã€ããŠã¯ãå€å
žååŠãåç
§ã",
"title": "åéå"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "ååŸr[m]ã®åäžãè§é床 Ï {\\displaystyle \\omega } ã§éåããç©äœã®å é床ã®å€§ãããèšç®ããã",
"title": "åéå"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "ã«æ³šç®ãããšãããå³èŸºã«ã€ããŠåéåãããŠããç©äœã®åº§æšãåžžã«",
"title": "åéå"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "ãæºããããšã«æ³šç®ãããšã",
"title": "åéå"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "ãšãªãã",
"title": "åéå"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "50Hzã§åéåããŠããç©äœã®åéåã®åšæãèšç®ããã",
"title": "åéå"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "ãçšãããšã",
"title": "åéå"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "ãšãªãã",
"title": "åéå"
},
{
"paragraph_id": 104,
"tag": "p",
"text": "以äžãã,åéåã®å éåºŠã®æåã¯",
"title": "åéå"
},
{
"paragraph_id": 105,
"tag": "p",
"text": "ãã£ãŠ,åéåããç©äœã®è³ªéã m {\\displaystyle m} ,åå¿æ¹åã«åãå,ããªãã¡åå¿å(è±: centripetal force)ã F C {\\displaystyle F_{\\mathrm {C} }} ,æ¥ç·æ¹åã«åãåã F T {\\displaystyle F_{\\mathrm {T} }} ãšãããšéåæ¹çšåŒã¯",
"title": "åéå"
},
{
"paragraph_id": 106,
"tag": "p",
"text": "w:åå¿åãw:é å¿å(centrifugal force)",
"title": "åéå"
},
{
"paragraph_id": 107,
"tag": "p",
"text": "åéåãšé¢ä¿ã®æ·±ãç©äœã®éåãšããŠã忝å(è±: simple harmonic oscillation)ããããããã忝åã¯ããããæ¯åçŸè±¡ã®åºæ¬ã«ãªã£ãŠãããå¿çšç¯å²ãåºãéåã§ãããåéåãšåæ§ã忝åãäžè§é¢æ°ãçšããŠéåãèšè¿°ãããããŸããåšæãäœçžãããç¹ãåéåãšåãã§ããããŸãã忝åã¯æ³¢åã«é¢ããçŸè±¡ãšãé¢ä¿ãæ·±ããäœçžãæ¯å¹
ãªã©ã®éãå
±æããŠããã",
"title": "åéå"
},
{
"paragraph_id": 108,
"tag": "p",
"text": "ããããã¯ã忝åãããç©äœã®æ§è³ªããã詳ããèŠãŠè¡ãã",
"title": "åéå"
},
{
"paragraph_id": 109,
"tag": "p",
"text": "忝åã¯æ§ã
ãªæ
åµã§ãããããããåçŽãªäŸãšããŠã¯ããã¯ã®æ³åã§æ¯é
ãããã°ãã«æ¥ç¶ãããç©äœã®éåããããããã§ã¯ãã°ã宿° k {\\displaystyle k} ã®ã°ãã«è³ªé m {\\displaystyle m} ã®ç©äœãæ¥ç¶ãããšãããã°ãã®èªç¶é·ã®äœçœ®ãåç¹ãšããŠæå» t {\\displaystyle t} ã«ãããåç¹ããã®ç©äœã®äœçœ®ã x ( t ) {\\displaystyle x(t)} ãšããå Žåããã®ç©äœã«é¢ããéåæ¹çšåŒã¯",
"title": "åéå"
},
{
"paragraph_id": 110,
"tag": "p",
"text": "ã§äžããããããã®æ¹çšåŒã®äž¡èŸºã m {\\displaystyle m} ã§å²ããšãå é床㯠d 2 x ( t ) d t 2 = â k m x ( t ) {\\displaystyle {\\frac {d^{2}x(t)}{dt^{2}}}=-{\\frac {k}{m}}x(t)} ã§äžããããããšãåããããã®ããã«ãå é床ãšç©äœã®åº§æšãè² ã®æ¯äŸä¿æ°ãæã£ãŠæ¯äŸé¢ä¿ã«ããåŒãã忝åã®éåæ¹çšåŒã§ããããã®å Žåã忝åã®æ¯åäžå¿ã x = x C {\\displaystyle x=x_{\\mathrm {C} }} (忝åã§ã¯æ¯åäžå¿ã¯å®æ°),æå» t {\\displaystyle t} ã«ãããç©äœã®éåãäœçœ® x ( t ) {\\displaystyle x(t)} ,é床 v ( t ) {\\displaystyle v(t)} ,å é床 a ( t ) {\\displaystyle a(t)} ã§è¡šããš",
"title": "åéå"
},
{
"paragraph_id": 111,
"tag": "p",
"text": "ãšãªãã Ï {\\displaystyle \\omega } ã¯è§æ¯åæ°, ÎŽ {\\displaystyle \\delta } ã¯åæäœçžã§ããã",
"title": "åéå"
},
{
"paragraph_id": 112,
"tag": "p",
"text": "ããã§ã忝åã®éåæ¹çšåŒãšã忝åã®éåã®åŒãäžããããå®éã«ã¯åæ¯åã®éåã®åŒã¯éåæ¹çšåŒããå°åºã§ãããããã«ã€ããŠã¯w:åŸ®åæ¹çšåŒãæ±ãå¿
èŠãããã®ã§è©³ããå°åºã«ã€ããŠã¯ãå€å
žååŠãåç
§ã",
"title": "åéå"
},
{
"paragraph_id": 113,
"tag": "p",
"text": "sin {\\displaystyle \\sin } 颿°ã¯é¢æ°ã®å€ã®å¢å ã«äŒŽã£ãŠåšæçãªæ¯åãè¡ãªã颿°ãªã®ã§ãç©äœã¯ã x = 0 {\\displaystyle x=0} ã®ãŸããã§åšæçãªæ¯åãããããšãåããããã ããäžã®åŒã®äžã§Aã¯w:æ¯å¹
ãšåŒã°ããç©äœã®æ¯åã®ç¯å²ã衚ãéã§ããã",
"title": "åéå"
},
{
"paragraph_id": 114,
"tag": "p",
"text": "ãã ãããã®å Žåã«ãããŠã¯ãããã®éã¯ç©äœã®åéåã§ã¯ãªããç©äœã®æ¯åã«ã€ããŠã®éã§ãããããããåäœæéåœããã«äœ[rad]ã ãäœçžãé²ããã®éãšæ¯åã®åšæã®äžã§ãã©ã®äœçœ®ã«ç©äœããããã衚ãéã«å¯Ÿå¿ããŠããããŸããåšæãšæ¯åæ°ãåéåã®å Žåãšåãå®çŸ©ã§äžããããã",
"title": "åéå"
},
{
"paragraph_id": 115,
"tag": "p",
"text": "ãŸãããã®å Žåã«ã€ããŠã¯éåæ¹çšåŒããè§æ¯åæ°ã決ãŸã",
"title": "åéå"
},
{
"paragraph_id": 116,
"tag": "p",
"text": "ã§äžããããã",
"title": "åéå"
},
{
"paragraph_id": 117,
"tag": "p",
"text": "(4.3)ã",
"title": "åéå"
},
{
"paragraph_id": 118,
"tag": "p",
"text": "ãšæžçŽã, A cos ÎŽ = a , A sin ÎŽ = b {\\displaystyle A\\cos \\delta =a,\\ A\\sin \\delta =b} ãšãããš",
"title": "åéå"
},
{
"paragraph_id": 119,
"tag": "p",
"text": "ãšãªã,æ¯å¹
ã¯",
"title": "åéå"
},
{
"paragraph_id": 120,
"tag": "p",
"text": "質émãæã€ããç©äœã«ã€ããŠãã°ã宿° k 1 {\\displaystyle k_{1}} ã®ã°ããšã°ã宿° k 2 {\\displaystyle k_{2}} ã®ã°ãã« ã€ãªãããå Žåã§ã¯ã ã©ã¡ãã®å Žåã®æ¹ãç©äœã®è§é床ã倧ãããªããã ãã ãã k 1 > k 2 {\\displaystyle k_{1}>k_{2}} ãæãç«ã€ãšããããŸããåšæãšæ¯åæ°ã«ã€ããŠã¯ã©ããªããã",
"title": "åéå"
},
{
"paragraph_id": 121,
"tag": "p",
"text": "ãã®å Žåã«ã¯ãã®åæ¯åã®è§æ¯åæ°ã¯ã",
"title": "åéå"
},
{
"paragraph_id": 122,
"tag": "p",
"text": "ã§äžããããããã®éã¯ã°ã宿°kã倧ããã»ã©å€§ããã®ã§ãè§æ¯åæ°ã¯ ã°ã宿° k 1 {\\displaystyle k_{1}} ãæã€ã°ãã®è§æ¯åæ°ã®æ¹ãã°ã宿° k 2 {\\displaystyle k_{2}} ãæã€ã°ãã®è§æ¯åæ° ãã倧ãããªãããŸãã忝åã®æ¯åæ°ã¯åæ¯åã®è§æ¯åæ°ã«æ¯äŸããã®ã§ã æ¯åæ°ã«ã€ããŠãã ã°ã宿° k 1 {\\displaystyle k_{1}} ãæã€ã°ãã®æ¯åæ°ã®æ¹ãã°ã宿° k 2 {\\displaystyle k_{2}} ã æã€ã°ãã®æ¯åæ°ãã倧ãããªããäžæ¹ããã®å Žåã®åšæã«ã€ããŠã¯ã",
"title": "åéå"
},
{
"paragraph_id": 123,
"tag": "p",
"text": "ãæãç«ã€ãããã°ã宿°kãå°ããã»ã©å€§ãããªãããã£ãŠãåšæã«ã€ããŠã¯ ã°ã宿° k 2 {\\displaystyle k_{2}} ãæã€ã°ãã®åšæã®æ¹ãã°ã宿° k 1 {\\displaystyle k_{1}} ãæã€ã°ãã®åšæ ãã倧ãããªãã",
"title": "åéå"
},
{
"paragraph_id": 124,
"tag": "p",
"text": "éåã®ããäžã«é·ãl[m]ã®ã²ãã§ã€ããããç©äœã«ãã£ãŠäœãããç©äœã® éçŽäžåãã«åçŽãªæ¹åã®éåã忝åãšãªãããšãæ±ããã ãã ããæ¯ãåã®åãç¯å²ã¯å°ãããã®ãšããã ãã®ããã«åæ¯åãããæ¯ãåã 忝ãå(ãããµãããsimple pendlum) ãšåŒã¶ããšãããã",
"title": "åéå"
},
{
"paragraph_id": 125,
"tag": "p",
"text": "ã²ã ãåºå®ãããŠããäœçœ®ããéçŽã«äžãããçŽç·ãšãç©äœãã€ãªãããŠãã ã²ã ããªãè§åºŠã Ξ {\\displaystyle \\theta } ãšããããã®å Žåãå³åœ¢çã«èãããšãã®å Žåã®æ°Žå¹³æ¹åã®éåæ¹çšåŒã¯",
"title": "åéå"
},
{
"paragraph_id": 126,
"tag": "p",
"text": "ãšãªããããã§ã Ξ {\\displaystyle \\theta } ãå°ããå Žåã",
"title": "åéå"
},
{
"paragraph_id": 127,
"tag": "p",
"text": "ãšãªãããšã«æ³šæãããšãéåæ¹çšåŒã¯",
"title": "åéå"
},
{
"paragraph_id": 128,
"tag": "p",
"text": "ãšãªãå
ã»ã©ã®ã°ãã«ã€ãªãããç©äœã®éåæ¹çšåŒãšçãããªãã",
"title": "åéå"
},
{
"paragraph_id": 129,
"tag": "p",
"text": "ãã£ãŠããã®ç©äœã®éåã忝åã§èšè¿°ãããããšãåãã£ããããã«ã å
ã»ã©ã®è§æ¯åæ°ãšæ¯èŒãããšããã®å Žåã®è§æ¯åæ° Ï {\\displaystyle \\omega } ã¯",
"title": "åéå"
},
{
"paragraph_id": 130,
"tag": "p",
"text": "ãšãªãããšãåããã",
"title": "åéå"
},
{
"paragraph_id": 131,
"tag": "p",
"text": "ãããã®çµæããå°åŠæ ¡çç§ã®çµæã§ãã",
"title": "åéå"
},
{
"paragraph_id": 132,
"tag": "p",
"text": "ã®å®éšäºå®ãéåæ¹çšåŒã®çµæãšäžèŽããããšã確ãããããã",
"title": "åéå"
},
{
"paragraph_id": 133,
"tag": "p",
"text": "ãã®ç« ã§ã¯ãäžæåŒåã«ããéåãæ±ããäžæåŒåã¯å
šãŠã®ç©äœã®éã«ååšããŠãããããã®åãåªä»ããéåãšããŠæåãªãã®ã¯å€ªéœã®åããå転ããå°çã®éåããå°çèªèº«ã®åããå転ããæã®éåã§ãããå®éã«ã¯ãã®ãããªäœãã®åããå転ããæ§é ã¯å®å®å
šäœã«åºãèŠãããã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 134,
"tag": "p",
"text": "äŸãã°ã空ã«èŠãããæã¯w:ææãšåŒã°ãããããããã®æã®åãã«ã倪éœã«å¯Ÿããå°çãšåãããã«ãææãåããåã£ãŠãããšèããããå®éã«ãã®ãããªææã確èªãããææãããã(w:ç³»å€ææåç
§ã)",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 135,
"tag": "p",
"text": "ãã®ããã«å®å®ã®äžã§äžæåŒåã«ããå転éåã¯åºã芳枬ããããããã§ã¯ãã®ãããªéåã¯ç©äœéã«åãã©ã®ãããªåã«ãã£ãŠèšè¿°ãããããèŠãŠããã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 136,
"tag": "p",
"text": "æŽå²çã«ã¯ãéã«ãã®ãããªç©äœã®éã®éåã説æãããããªåãèããããšã§ ç©äœéã«åãåãçºèŠããããæŽå²ã«ã€ããŠè©³ããã¯w:ãã¥ãŒãã³ãªã©ãåç
§ã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 137,
"tag": "p",
"text": "ãŸãã¯ãç©äœéã«åãäžæåŒå(glavitational constant)ã®æ³åãè¿°ã¹ããçš®ã
ã®èŠ³æž¬ã®çµæã«ãããšã質é m 1 {\\displaystyle m_{1}} ãæã€ç©äœãšè³ªé m 2 {\\displaystyle m_{2}} ãæã€ç©äœã®éã«ã¯",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 138,
"tag": "p",
"text": "ã§è¡šããããåãåããããã§Gã¯ç©äœã«ãããªã宿°ã§ãäžæåŒå宿°ãšããã å€ã¯ G = 6.67 à 10 â 11 [ N â
m 2 / k g 2 ] {\\displaystyle G=6.67\\times 10^{-11}[{\\mathrm {N} \\cdot \\mathrm {m} ^{2}/\\mathrm {kg} ^{2}}]} ã§ããã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 139,
"tag": "p",
"text": "äžæåŒåã®æ³å",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 140,
"tag": "p",
"text": "äžæåŒåã¯ç©äœéã®è·é¢ã®2ä¹ã«éæ¯äŸããåã§ããã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 141,
"tag": "p",
"text": "ç©äœã®å°ãªããšãçæ¹ãææã®ããã«å·šå€§ãªå Žåãç©äœéã®è·é¢rã¯ãéå¿éã®è·é¢ã§ããã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 142,
"tag": "p",
"text": "å°çã®äžæåŒåãèãããå°çã®è³ªéãMãå°çã®ååŸãRãæž¬å®ããç©äœã®è³ªéãmãšããå ŽåãéåFã¯",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 143,
"tag": "p",
"text": "ãšãªãã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 144,
"tag": "p",
"text": "ãããå°è¡šè¿ãã§ã¯å€§ããã mg ãšçããã®ã§ã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 145,
"tag": "p",
"text": "å€åœ¢ããŠ",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 146,
"tag": "p",
"text": "ãšãªããèšç®åé¡ã®ããããã®å€åœ¢ãçšããããå Žåãããã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 147,
"tag": "p",
"text": "å°çã¯èªè»¢ãããŠãããéåã®èšç®ã§ã¯ãå³å¯ã«ã¯èªè»¢ã«ããé å¿åãèããå¿
èŠãããããããããèªè»¢ã®é å¿åã®å€§ããã¯ãäžæåŒåã® 1 300 {\\displaystyle {\\frac {1}{300}}} åãŠãã©ãããªãã®ã§ãéåžžã¯èªè»¢ã«ããé å¿åãç¡èŠããå Žåãå€ãã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 148,
"tag": "p",
"text": "ãªããå°çã®èªè»¢ã®é å¿åã¯ãèµ€éäžã§ãã£ãšã倧ãããªãã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 149,
"tag": "p",
"text": "",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 150,
"tag": "p",
"text": "äººå·¥è¡æããå°çã®èªè»¢ãšåãåšæã§ãèªè»¢ãšåãåãã«çéåéåãããã°ããã®äººå·¥è¡æã¯å°äžããèŠãŠãã€ãã«å°é¢ã®äžç©ºã«ããã®ã§ãå°äžã®èŠ³æž¬è
ããã¯éæ¢ããŠèŠããããã®ãããªäººå·¥è¡æã®ããšãéæ¢è¡æãšããã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 151,
"tag": "p",
"text": "",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 152,
"tag": "p",
"text": "質émã®ç©äœã質éMã®å€§ããªç©äœã®åãããäžæåŒåã®åãåå¿åãšããŠãååŸrã®åéåãããŠããããã®å Žåã®åéåã®è§éåºŠãæ±ããã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 153,
"tag": "p",
"text": "ååŸrãè§é床 Ï {\\displaystyle \\omega } ã®åéåãããå Žåã®ç©äœã®åå¿å ã¯",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 154,
"tag": "p",
"text": "ã§ãããäžæ¹ã質émãšè³ªéMã®ç©äœã®éã®è·é¢ãrã§ããå Žåã2ã€ã®ç©äœéã«åãéåã¯ãéåã®å€æ°ãfãšãããšã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 155,
"tag": "p",
"text": "ã§äžããããããã£ãŠããããã®åãçãããªãå Žåã«ã質émã®ç©äœã¯è³ªéMã®ç©äœã®ãŸãããåéåã§å転(å
¬è»¢)ããããšãã§ããããã£ãŠã Ï {\\displaystyle \\omega } ãæ±ããåŒã¯ã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 156,
"tag": "p",
"text": "ãšãªãã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 157,
"tag": "p",
"text": "å°ç衚é¢ã§ã®éåã«ããäœçœ®ãšãã«ã®ãŒãèããããã®ãšåæ§ã«ãäžæåŒåã«ããäœçœ®ãšãã«ã®ãŒãèããããšãã§ããã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 158,
"tag": "p",
"text": "äžæåŒåã«ããäœçœ®ãšãã«ã®ãŒãæ±ããã«ã¯ãäžæåŒåãç©åããã°ããã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 159,
"tag": "p",
"text": "質éMã®ç©äœããrã®è·é¢ã«è³ªémã®ç©äœãååšãããšããããã ããMã¯mããã¯ãã㫠倧ãããšãããç¡éé ç¹ãåºæºã«ãããš(ã€ãŸãç¡éé ã§ã¯äœçœ®ãšãã«ã®ãŒããŒã)ããã®å Žåã質émã®ç©äœã®äœçœ®ãšãã«ã®ãŒã¯",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 160,
"tag": "p",
"text": "ã§äžããããã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 161,
"tag": "p",
"text": "笊å·ã«ãã€ãã¹ãã€ãããšã®ç©ççãªè§£éã¯ãéåãã€ããã ãç©äœã«è¿ã¥ãã»ã©ããã®ç©äœã®ã€ããã ãéååãè±åºããã«ã¯ããšãã«ã®ãŒã远å çã«å¿
èŠã«ãªãããã§ãããšè§£éã§ããã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 162,
"tag": "p",
"text": "ç¡éé ã§ã¯ r=+â ãšããã°ãããçµæã U=0 ã«ãªãã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 163,
"tag": "p",
"text": "ãªããäžæåŒåã¯ä¿ååã§ããã®ã§ãäœçœ®ãšãã«ã®ãŒã¯ãç¡éé ç¹ããã®çµè·¯ã«ããããçŸåšã®äœçœ®ã ãã§æ±ºãŸãã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 164,
"tag": "p",
"text": "",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 165,
"tag": "p",
"text": "ã®ããã«äžããããããŸãããã®ã°ã©ãã¯çŽèгçãªæå³ãæã£ãŠããã å®ã¯ããã®ã°ã©ãã®åŸãã¯ã°ã©ãã衚ããäœçœ®ãšãã«ã®ãŒãæã€ç¹ã«ç©äœã眮ããå Žåã ãã®ç©äœãåãåããæ¹åãšãã®å€§ããã衚ãããŠãããããã§ã¯ã äœçœ®ãšãã«ã®ãŒã®åŸããåžžã«r=0ã«èœã¡èŸŒãæ¹åã«çããŠããããç©äœMããè·é¢r (rã¯ä»»æã®å®æ°ã)ã®ç¹ã«éæ¢ããŠããç©äœã¯å¿
ãMã®æ¹åã«åžã蟌ãŸããŠè¡ãããšã 衚ãããŠããã(詳ããã¯å€å
žååŠåç
§ã)",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 166,
"tag": "p",
"text": "",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 167,
"tag": "p",
"text": "ããææäžã«ããç©äœãå®å®ã®ç¡éé ãŸã§å°éãããããã«å®å®è¹ã«ææäžã§ äžããªããŠã¯ãããªãé床ã¯ã©ã®ããã«è¡šãããããããã ããèšç®ã«ã€ããŠã¯ æåã«å®å®è¹ãåºçºããææä»¥å€ã®å€©äœããã®åœ±é¿ã¯ç¡èŠãããšããã ãŸããææã®ååŸã¯Rã ææã®è³ªéã¯Mãšããã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 168,
"tag": "p",
"text": "ææã®åŒåã«ããäœçœ®ãšãã«ã®ãŒã¯ææè¡šé¢ã§",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 169,
"tag": "p",
"text": "ã§ãããç¡éåç¹ã§ã¯0ã§ããããã ããmã¯å®å®è¹ã®è³ªéãšããã äžæ¹ãå®å®è¹ãç¡éåç¹ã«éããã«ã¯ãå®å®è¹ã®é床ãç¡éåç¹ã§ã¡ããã©0ã« çãããªãã°ãããããã§ãææäžã§ã®å®å®è¹ã®é床ãvãšãããšã ãšãã«ã®ãŒä¿ååããã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 170,
"tag": "p",
"text": "ãšãªãããã£ãŠãã®åŒããvãæ±ããã°ãããçã¯ã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 171,
"tag": "p",
"text": "äžèšã®èšç®ããåããããã«ãäžè¬ã«ãäžæåŒåã ããåããŠéåããç©äœã®ååŠçãšãã«ã®ãŒã¯ã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 172,
"tag": "p",
"text": "ã§ããã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 173,
"tag": "p",
"text": "ä»®ã«é«ãå±±ããç©äœãæ°Žå¹³ã«çºå°ãããšã(ç©ºæ°æµæã¯ç¡èŠãã)ãå°çã®ãŸãããåãç¶ããããã«å¿
èŠãªæå°ã®åé床ã®ããšã第äžå®å®é床ãšããã(â» ååã¯æèšããªããŠãããèŠããã¹ãã¯ãèšç®æ¹æ³ã§ããã) 第äžå®å®é床ã¯ãèŠããã«ãé å¿åãšåå¿åãã€ãããããã«å¿
èŠãªåé床ã§ããã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 174,
"tag": "p",
"text": "第äžå®å®é床ã¯ãç§éã§ã¯çŽ7.91km/sã§ããã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 175,
"tag": "p",
"text": "v1ã«ã€ããŠè§§ãã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 176,
"tag": "p",
"text": "ãªããããã R = 6400 à 10 m ã§ããã g = 9.8 m/s ã§ããã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 177,
"tag": "p",
"text": "ããã«åé床ã倧ãããªããšãç©äœã¯æ¥åè»éã«ãªãã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 178,
"tag": "p",
"text": "åé床ãçŽ11.2km/sã«ãªããšãè»éã¯æŸç©ç·ã«ãªããç©äœã¯ç¡éã®åœŒæ¹ã«é£ãã§ããã ãã®çŽ11.2km/sã®ããšã第äºå®å®é床ãšãããããã¯ãç¡éé ã®ç¹ã§ãé床ã0ãè¶
ããå€ã«ãªãããã«å¿
èŠãªåé床ã§ããã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 179,
"tag": "p",
"text": "ãªã®ã§ãèšç®ã§ç¬¬äºå®å®éåºŠãæ±ããã«ã¯ãšãã«ã®ãŒä¿ååãèšç®ã«ã¯äœ¿ãã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 180,
"tag": "p",
"text": "ã®åŒããvãæ±ãã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 181,
"tag": "p",
"text": "ã«ããã« G M = g R 2 {\\displaystyle GM=gR^{2}} ã代å
¥ããŠã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 182,
"tag": "p",
"text": "ããã«é¢ä¿ãã宿°ã代å
¥ããã°ããã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 183,
"tag": "p",
"text": "ãªããããã R = 6400 à 10 m ã§ããã g = 9.8 m/s ã§ããã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 184,
"tag": "p",
"text": "åé床 11.2km/s以äžã§ã¯ãè»éã¯åæ²ç·ã«ãªããç©äœã¯ç¡éã®åœŒæ¹ã«é£ãã§ããã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 185,
"tag": "p",
"text": "",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 186,
"tag": "p",
"text": "â» æ€å®æç§æžã§ã¯ãèæ³šãªã©ã«æžããŠãã£ããããã å°çããå°åºããŠã倪éœç³»ã®å€ã«åºãããã«å¿
èŠãªæå°ã®åé床ã®ããšã第äžå®å®é床(çŽ 16.7 km/s) ã§ããã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 187,
"tag": "p",
"text": "ã®ãªã·ã£æä»£ããäžäžãŸã§ä¿¡ããããŠãã倩å説(è±: geocentric theory)ã«å¯Ÿã,16äžçŽåã°ã«ã³ãã«ãã¯ã¹ã¯å
šãŠã®ææ(è±: planet)ã倪éœãäžå¿ãšããåéåãããŠããå°å説ãæå±ããããã®åŸãã£ã³ã»ãã©ãŒãšã¯é·å¹Žã«ãããææã®èŠ³æž¬ãè¡ã,ãã®èŠ³æž¬çµæãåŒç¶ãã ã±ãã©ãŒã¯ãããã®çµæãããšã«èšç®ãè¡ã,ææã®éè¡ã«é¢ããæ³å,ã±ãã©ãŒã®æ³å(è±: Kepler's laws)ãçºèŠããããªã,æç§æžã¯å€ªéœãšææã®é¢ä¿ã§è«ããŠããã,ä»ã«ãææãšè¡æ(èªç¶è¡æ,äººå·¥è¡æ)ã§ãæãç«ã€ã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 188,
"tag": "p",
"text": "ææ(è¡æ)ã¯å€ªéœ(ææ)ã1ã€ã®çŠç¹ãšããæ¥åéåããã(æ¥åè»éã®æ³å)ã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 189,
"tag": "p",
"text": "ææ(è¡æ)ãšå€ªéœ(ææ)ãçµã¶ååŸãåäœæéã«æãé¢ç©(é¢ç©é床)ã¯äžå®ã§ãã(é¢ç©é床äžå®)ã",
"title": "äžæåŒåã®æ³å"
},
{
"paragraph_id": 190,
"tag": "p",
"text": "ææ(è¡æ)ã®å
¬è»¢åšæ T {\\displaystyle T} ã®2ä¹ã¯æ¥åè»éã®é·ååŸ(åé·è»ž) a {\\displaystyle a} ã®3ä¹ã«æ¯äŸããã",
"title": "äžæåŒåã®æ³å"
}
] | null | = ç©äœã®éå =
[[é«çåŠæ ¡çç§ ç©çåºç€]]ã§ã¯ãç©äœã®éåãçŽç·äžã®éåãäžå¿ã«æ±ã£ããç©çã§ã¯ãããè€éãªå¹³é¢äžã®éåãæ±ããå¹³é¢äžã®éåã§ã¯ãçŽç·äžã®éåãšã¯éã£ãŠãç©äœã®äœçœ®ã衚ããã®ã«å¿
èŠãªéã2ã€ã«ãªãããããã¯éåžž<math>x,\ y</math>ãšãããã©ã¡ããæå»<math>t</math>ã®äžæã®é¢æ°ãšãªãã
ãããã®é¢æ°ã¯ã©ããªãã®ã§ãããããããã§ã¯äž»ã«ãå®éã®ç©äœã®éåãšããŠããããããããã®ãæ±ãã
== å¹³é¢äžã®éå ==
{{See also|[[é«çåŠæ ¡ç©çåºç€/ååŠ#ïŒæ¬¡å
ã»ïŒæ¬¡å
ã«ãããäœçœ®ã»é床ã»å é床|é«çåŠæ ¡ç©çåºç€/ååŠ]]}}
å¹³é¢äžïŒããªãã¡ïŒæ¬¡å
ã«ãããŠïŒæå»<math>t</math>ã«ãããäœçœ®ã¯<math>\overrightarrow r(t)=(x(t),\ y(t))</math>ïŒåŸ®å°æé<math>\mathit{\Delta}t</math>éã®å€äœã¯<math>\mathit{\Delta}\overrightarrow r =\overrightarrow r(t +\mathit{\Delta}t)-\overrightarrow r(t)=(\mathit{\Delta}x,\ \mathit{\Delta}y)</math>ãšå®çŸ©ãããããã®ãšã
:<math>\bar \overrightarrow v =\frac{\overrightarrow r(t +\mathit{\Delta}t)-\overrightarrow r(t)}{\mathit{\Delta}t}=\frac{\mathit{\Delta}\overrightarrow r}{\mathit{\Delta}t}</math>
ã<math>\mathit{\Delta}t</math>éã®å¹³åé床ïŒ<math>\mathit{\Delta}t\to 0</math>ã®æ¥µé
:<math>\overrightarrow v(t)=\lim_{\mathit{\Delta}t\to 0}\frac{\overrightarrow r(t +\mathit{\Delta}t)-\overrightarrow r(t)}{\mathit{\Delta}t}=\frac{d\overrightarrow r(t)}{dt}=\left(\frac{dx(t)}{dt},\ \frac{dy(t)}{dt}\right)=(\dot x(t),\ \dot y(t))=(v_x(t),\ v_y(t))</math>
ãæå»<math>t</math>ã§ã®(ç¬é)é床ãšããããªãïŒæå»<math>t</math>ã§ã®éã(é床ã®å€§ãã)ã¯
:<math>v =|\overrightarrow v|=\sqrt{{v_x}^2 +{v_y}^2}</math>.
ãã®å ŽåãïŒé床ããäœçœ®ãæ±ãŸãïŒåæåæ¯ã«
:<math>x(t)= x(0)+\int _0 ^t v_x(t)dt</math>
:<math>y(t)= y(0)+\int _0 ^t v_y(t)dt</math>
ãæãç«ã¡ïŒãããããã¯ãã«ãçšããŠã²ãšãŸãšãã«ããŠä»»æã®æå»<math>t</math>ã«ãããäœçœ®
:<math>\overrightarrow r(t)=\overrightarrow r(0)+\int _0 ^t\overrightarrow v(t)dt</math> (1.1)
ãæ±ããããã
ãŸãïŒ
:<math>\bar \overrightarrow a =\frac{\overrightarrow v(t +\mathit{\Delta}t)-\overrightarrow v(t)}{\mathit{\Delta}t}=\frac{\mathit{\Delta}\overrightarrow v}{\mathit{\Delta}t}</math> (<math>\mathit{\Delta}\overrightarrow v</math>ã¯åŸ®å°æé<math>\mathit{\Delta}t</math>éã®é床å€å)
ã<math>\mathit{\Delta}t</math>éã®å¹³åå é床ïŒ<math>\mathit{\Delta}t\to 0</math>ã®æ¥µé
:<math>\begin{align}\overrightarrow a(t)=\lim_{\mathit{\Delta}t\to 0}\frac{\overrightarrow v(t +\mathit{\Delta}t)-\overrightarrow v(t)}{\mathit{\Delta}t}& =\frac{d\overrightarrow v(t)}{dt}=\left(\frac{dv_x(t)}{dt},\ \frac{dv_y(t)}{dt}\right)=(\dot v_x(t),\ \dot v_y(t))\\ & =\frac{d^2\overrightarrow r(t)}{dt^2}=\left(\frac{d^2x(t)}{dt^2},\ \frac{d^2y(t)}{dt^2}\right)=(\ddot x(t),\ \ddot y(t))\end{align}</math>
ãæå»<math>t</math>ã§ã®(ç¬é)å é床ãšããã
ãã®å ŽåãïŒå é床ããéåºŠãæ±ãŸãïŒåæåæ¯ã«
:<math>v_x(t)=v_x(0)+\int _0 ^t\frac{dv_x(t)}{dt}dt</math>
:<math>v_y(t)=v_y(0)+\int _0 ^t\frac{dv_y(t)}{dt}dt</math>
ãæãç«ã¡ïŒãããããã¯ãã«ãçšããŠã²ãšãŸãšãã«ããŠä»»æã®æå»<math>t</math>ã«ãããé床
:<math>\overrightarrow v(t)=\overrightarrow v(0)+\int _0 ^t\overrightarrow a(t)dt</math> (1.2)
ãæ±ããããããªãïŒããã<math>\overrightarrow r(0), \overrightarrow v(0)</math>ã®å€ãåæå€ãšããã
ç¹ã«ïŒå é床äžå®ã®ãšãã®éåã¯'''çå é床éå'''ãšãããïŒäžèšã®å
¬åŒ(1.2, 1)ã¯ãããã
:{|
|-
|<math>\overrightarrow v(t)</math>
|<math>=\overrightarrow v(0)+\int _0 ^t\overrightarrow adt</math> (1.3)
|-
|
|<math>=\overrightarrow v(0)+\overrightarrow at</math>
|}
:<math>\overrightarrow r(t)=\overrightarrow r(0)+\int _0 ^t(\overrightarrow v(0)+\overrightarrow at)dt =\overrightarrow r(0)+\overrightarrow v(0)t +\frac{1}{2}\overrightarrow at^2</math>
ãšãªãã
éåæ¹çšåŒã¯ãåãç©äœãåããå éåºŠã«æ¯äŸãããšããç¹ã¯ããããªãã
ããããä»åã¯åãšå é床ã¯ã©ã¡ãããã¯ãã«éã§ããããã£ãŠãå€å<math>\overrightarrow f=(f_x,\ f_y)</math>ãåãïŒå é床<math>\overrightarrow a=(a_x,\ a_y)</math>ã§éåããç©äœã®éåæ¹çšåŒã¯
:<math>
m\overrightarrow a =\overrightarrow f
</math>
ãšããããã
éåžžã¯ããã®æ¹çšåŒãè§£ãå Žåã¯èŠçŽ ããšã«ããã
:<math>
ma_x = f_x
</math>
:<math>
ma_y = f_y
</math>
ãšããããã
*åé¡äŸ
**åé¡
æå»t = 0ã«ã
:<math>
\overrightarrow x = (0,\ 0)
</math>
ã
:<math>
v = \frac 1 {\sqrt 2} (1,\ 1)v _0
</math>
ã§ééããç©äœã®æå»tã§ã®äœçœ®ãæ±ããã
**è§£ç
ç©äœã®xæ¹åãšyæ¹åã¯äºãã«ç¬ç«ã«çéçŽç·éåãããã
ããã§ã¯xæ¹åãyæ¹åãé床
:<math>
v = \frac 1 {\sqrt 2} v _0
</math>
ãªã®ã§ãçéçŽç·éåã®åŒã®ãã¯ãã«éãšããé
:<math>
\overrightarrow x = \overrightarrow v ( t - t _0) + \overrightarrow x _0
</math>
ã«ä»£å
¥ãããšã
:<math>
\overrightarrow x =
\frac 1 {\sqrt 2} (1,\ 1)v _0 t
</math>
ãšãªãã
èŠçŽ ããšã«ãããšã
:<math>
x = \frac 1 {\sqrt 2} v _0 t
</math>
:<math>
y= \frac 1 {\sqrt 2} v _0 t
</math>
ãšãªãã
** åé¡
æå»t=0ã«åç¹(0,\ 0)ãyæ¹åã«é床<math>v _0</math>ã§çéçŽç·éåããŠãã質émã®ç©äœã«ã
xæ¹åã®äžæ§ãªåfããããå§ããããã®å Žåãæå»tã«ãããç©äœã®äœçœ®ãš
éåºŠãæ±ããã
** è§£ç
x軞æ¹åã«ã¯çå é床éåãšãªãã
ç©äœãåããå é床ã¯ãéåæ¹çšåŒã«ãã
:<math>
a = \frac f m
</math>
ãšãªãã
ããã«xæ¹åã®åé床0ïŒåæäœçœ®0ã§ããããšãçå é床çŽç·éåã®åŒã«
代å
¥ãããšã
:<math>
x = \frac 1 2 a t^2
</math>
:<math>
= \frac 1 2 \frac f m t^2
</math>
:<math>
v = a t
</math>
:<math>
= \frac f m t
</math>
ãšãªãã
ããã«ãy軞æ¹åã®éåã¯çééåã§ããããã®åé床ã¯ã<math>v _0</math>ïŒåæäœçœ®ã¯0ã§ããã®ã§ã
ãã®å€ãçééåã®åŒã«ä»£å
¥ãããšã
:<math>
y = v _0 t
</math>
:<math>
v _y = v _0
</math>
ãåŸãããã
= éåéãšåç© =
ãã®ç« ã§ã¯éåéïŒããã©ãããããmomentumïŒãæ±ããéåéã¯ãç©äœã®è¡çªã«çœ®ããŠãšãã«ã®ãŒãšäžŠã³ãä¿åéãšãªãéèŠãªéã§ããããŸãããã®ç« ã§ã¯åç©ïŒãããããimpulseïŒãšããéãå°å
¥ãããåç©ã¯éåéã®æéå€åã衚ããéã§ããããã®å°åºã¯éåæ¹çšåŒãçšããŠæãããã
ç©äœãåããŠããå Žåãç©äœã®é床ãšè³ªéã®ç©ãç©äœã®éåé
:<math>\overrightarrow p = m\overrightarrow v</math> (2.1)
ãšå®çŸ©ãããéåæ¹çšåŒ
:<math>m\frac{d\overrightarrow v(t)}{dt}=\overrightarrow f</math> (<math>\overrightarrow v(t)</math>ã¯æå»<math>t</math>ã«ãããé床ïŒ<math>\overrightarrow f</math>ã¯åå)
ã®äž¡èŸºãæå»<math>t = t_1</math>ãã<math>t = t_2</math>ãŸã§ç©åãããš
:<math>\int _{t_1}^{t_2}m\frac{d\overrightarrow v(t)}{dt}dt =\int _{t_1}^{t_2}\overrightarrow fdt</math>
:<math>\therefore\int _{t_1}^{t_2}md\overrightarrow v(t)=\int _{t_1}^{t_2}\overrightarrow fdt</math>
:<math>\therefore[m\overrightarrow v(t)]_{t_1}^{t_2}=\int _{t_1}^{t_2}\overrightarrow fdt</math> (泚ïŒ<math>\overrightarrow f</math>ã¯äžå®ãšã¯éãã¬ã®ã§å³èŸºã¯ç©åå®è¡ã§ããªã)
:<math>\therefore m\overrightarrow v(t_2)- m\overrightarrow v(t_1)=\int _{t_1}^{t_2}\overrightarrow fdt</math>
ãšãªãã<math>\overrightarrow v(t_1)=\vec{v_1}, \overrightarrow v(t_2)=\vec{v_2}</math>ãšãããš
:<math>m\vec{v_2}- m\vec{v_1}=\int _{t_1}^{t_2}\overrightarrow fdt</math>. (2.2)
ãã®åŒã®å·ŠèŸºã¯éåéå€åïŒå³èŸºã¯åç©ïŒãããããimpulseïŒã§ããããã£ãŠïŒ'''éåéå€åã¯åç©ã«çãã'''ããšãåãããéåéå€åã<math>\mathit{\Delta}\overrightarrow p</math>ïŒåç©ã<math>\overrightarrow I</math>ãšãããš
:<math>\mathit{\Delta}\overrightarrow p = m(\vec{v_2}-\vec{v_1}), \overrightarrow I =\int _{t_1}^{t_2}\overrightarrow fdt,\ \mathit{\Delta}\overrightarrow p =\overrightarrow I</math>.
ç¹ã«ïŒ<math>\overrightarrow f =</math>äžå®ã®ãšãïŒ<math>t_2 - t_1 =\mathit{\Delta}t</math>ãšãããš
:<math>\overrightarrow I =\overrightarrow f(t_2 - t_1)=\overrightarrow f\mathit{\Delta}t</math>.
* çºå±: 埮åãšå€åé
埮åãçšããå°åºã«ã€ããŠã¯ã[[å€å
žååŠ]]ãåç
§ã
* åé¡äŸ
** åé¡
鿢ããŠããç©äœã«æé<math>\mathit{\Delta}t</math>ã®éããæ¹åã«äžæ§ãªåfãããããç©äœãåŸã
éåéã¯ã©ãã ãããããã«ãç©äœã®è³ªéãmãšãããšãç©äœããã®æ¹åã«
åŸãé床ã¯ã©ãã ããã
** è§£ç
éåéã®å€ååã¯ç©äœãåããåç©ã«çããã®ã§ãç©äœãåããåç©ãèšç®ããã°
ãããç©äœãåããåç©ã¯
:<math>
f\mathit{\Delta}t
</math>
ã«çããã®ã§ãç©äœãåŸãéåéã
:<math>
f\mathit{\Delta}t
</math>
ã«çãããããã«ãéåéã
:<math>
p = m v
</math>
ãæºããããšãèãããšãç©äœã®é床ã¯
:<math>
\frac 1 m f\mathit{\Delta}t
</math>
ãšãªãã
éåéã¯ãç©äœãå
šãåãåããªãå Žåã«ã¯ä¿åããããããã¯ç©äœã«åãåããªãå Žåã«ã¯ãç©äœã®åããåç©ã¯0ã§ããç©äœã®éåéå€åã0ã§ããããšããåœç¶ã§ããã
ããã«ãè€æ°ã®ç©äœã®éåéã«ã€ããŠã¯ãå¥ã®éèŠãªæ§è³ªãèŠããããããã¯ãè€æ°ã®ç©äœã®ãã€éåéã®ç·åã¯ãããã®ç©äœã®éã®è¡çªã«éããŠä¿åãããšããããšã§ãããããã¯ã€ãŸããäŸãã°ãã2ã€ã®ç©äœãè¡çªããå Žåãå§ãã«2ç©äœãããããæã£ãŠããéåéã®åã¯è¡çªãçµãã£ãåŸã«2ç©äœãæã£ãŠããéåéã®åã«çãããšããããšã§ãããããã§ãããã€ãã®ç©äœãããå Žåãããã®æã€éåéã®ç·åãã察å¿ããç©äœç³»ã®å
šéåéãšããã
ç©äœã®è¡çªã«ã€ããŠãéåéã¯åžžã«ä¿åãããããããç©äœç³»ã®å
šãšãã«ã®ãŒã¯åžžã«ä¿åãããšã¯éããªããäžè¬ã«ç©äœã®è¡çªã«ã€ããŠãšãã«ã®ãŒã¯åžžã«å€±ãããŠããããã£ãšãç©äœç³»ã«éããªãå
šãšãã«ã®ãŒã¯åžžã«äžå®ã§ããã®ã§ãç©äœãæã£ãŠãããšãã«ã®ãŒã¯é³ãç±ã®åœ¢ã§ç©äœç³»ã®å€ã«éããŠè¡ãã®ã§ãããç©äœãè¡çªã«ã€ããŠå€±ããšãã«ã®ãŒã¯è¡çªã«é¢ããç©äœãæã£ãŠããç©æ§å®æ°ã«ãã£ãŠæ±ºãŸãããã®ä¿æ°ãåçºä¿æ°ïŒã¯ãã±ã€ãããããcoefficient of restitutionïŒãšåŒã³ãeãªã©ã®èšå·ã§æžããåçºä¿æ°ã¯ãç©äœãè¡çªããããååŸã§ã®ç©äœéã®çžå¯ŸéåºŠã®æ¯ã«ãã£ãŠå®ããããã
ç¹ã«ç©äœ1ãšç©äœ2ãè¡çªåã«é床 <math>v_1,\ v_2</math>ãæã£ãŠãããè¡çªåŸã«é床<math>v_1',\ v_2'</math>ãæã£ããšãããšãåçºä¿æ°eã¯
:<math>v_1' - v_2' = -e(v_1 - v_2)\quad\therefore e = - \frac {v_1' - v_2'} {v_1 - v_2} </math>
ã§å®ãããããããã§ãå³èŸºã®å§ãã®<math>-</math>笊åã¯ãè¡çªã®ååŸã§ç©äœã®é床ããã倧ããç©äœã¯ãè¡çªåã«ããå°ããé床ãæã£ãŠããç©äœãããè¡çªåŸã«ã¯ããå°ããé床ãæã€ããšã«ãªãããã§ããã
ãã®ãããåçºä¿æ°ã¯äžè¬ã«æ£ã®æ°ã§ããã
ãŸãåçºä¿æ°ã¯1ããå°ããæ°ã§ãããç©äœéã®çžå¯Ÿé床ã¯è¡çªåããè¡çªåŸã®æ¹ãå°ãããªãã
ç¹ã«<math>e = 1</math>ã®å Žåã(å®å
š)匟æ§è¡çªïŒelastic collisionïŒãšåŒã³ããã£ãœã<math>0<e<1</math>ã®å Žåãé匟æ§è¡çªïŒinelastic collisionïŒãšåŒã¶ã匟æ§è¡çªã®å Žåã¯ãååŠçãšãã«ã®ãŒã¯ä¿åããããšãç¥ãããŠãããäžæ¹ãé匟æ§è¡çªã®
å Žåã¯ç©äœç³»ã®å
šãšãã«ã®ãŒã¯å€±ãããã
* åé¡äŸ
** åé¡
ãã鿢ããŠããç©äœ2ã«éåépã§éåããŠããç©äœãè¡çªããããã®å Žåã
è¡çªããåŸã®ç©äœ2ãéåé<math>p _2</math>ãåŸããšãããšãè¡çªåŸã®ç©äœ1ã®éåéã¯
ã©ãã ããšãªã£ããã
** è§£ç
éåéä¿ååãèãããšãè¡çªã®ååŸã§ç©äœ1ãšç©äœ2ã§æ§æãããç©äœç³»ã®å
šéåéã¯ä¿åããã
ããã§ãè¡çªåã®ç©äœç³»ã®å
šéåéã¯pã§ããã®ã§ãè¡çªåŸã®ç©äœç³»ã®å
šéåéãpãšãªãã
ããã«ãç©äœ2ã®è¡çªåŸã®éåéã
<math>p _2</math>ãªã®ã§ãç©äœ1ã®éåéã¯
:<math>
p - p _2
</math>
ãšãªãã
ããã§ãç©äœç³»ã®å
šéåéãä¿åãããããšã¯ãéåã«é¢ãã äœçšã»åäœçšã®æ³å ããåŸãã
äœçšåäœçšã®æ³åãçšãããšãç©äœç³»ã®éã®è¡çªã«éããŠãè¡çªã«é¢ããããããã®ç©äœãåããåã¯ã倧ãããçããåãã¯å察ãšãªãã
ãã®å Žåãããããã®åã«å¯ŸããŠãè¡çªã®æé<math>\Delta t</math>ãããããã®ã¯
è¡çªã«éããŠããããã®ç©äœãåãåãåç©ã«çããã
ããã§ãè¡çªã«é¢ããŠåãåã®åç©ãå
šãŠã®ç©äœã«ã€ããŠè¶³ãåããããšããããã®åã¯ãäžã®ããšãã0ãšãªãã
ããããå
šéåéã®èšç®ã§ã¯ãŸãã«ãã®ãããªå
šç©äœã«ã€ããŠã®éåéã®ç·åãèšç®ããŠããã®ã§ã
è¡çªã«ãã£ãŠåŸããããããªåç©ã®ç·åã¯ã0ã«çããã
ãã£ãŠãè¡çªã«éããŠç©äœç³»ã®æã€å
šéåéã¯ä¿åãããã
ããã'''éåéä¿åå'''ïŒããã©ãããã ã»ãããããmomentum conservation lawïŒãšããã
* åé¡äŸ
** åé¡
質émã®2ã€ã®ç©äœãé床<math>v _1</math>, <math>v _2</math>
ã§ç§»åããŠããããããã®ç©äœãè¡çªããå Žåã
è¡çªåŸã®ããããã®ç©äœã®é床ãããšãã«ã®ãŒä¿ååãšéåéä¿ååãçšããŠ
èšç®ããããã ããç©äœã®è¡çªã«é¢ããŠãšãã«ã®ãŒã¯ä¿åãããšããã
** è§£ç
ãã®åé¡ã¯2ã€ã®åã倧ããã®ç©äœãç°ãªã£ãé床ã§ã¶ã€ããå Žå
ãã®çµæãã©ããªãããèšç®ããåé¡ã§ããã
å®éšã®çµæã«ãããšãäžæ¹ã鿢ããŠããäžæ¹ãåããŠããå Žåã
åããŠããç©äœã¯éæ¢ãã鿢ããŠããç©äœã¯åããŠããç©äœãæã£ãŠãã
é床ãšåãé床ã§åãã ãããšãç¥ãããŠãããããã§ã¯ããããã®
çµæãèšç®ã«ãã£ãŠç¢ºãããããããšãèŠãããšãåºæ¥ãã
è¡çªåŸã®ç©äœã®é床ãããããç©äœ1ã«ã€ããŠã¯<math>v _1'</math>ïŒç©äœ2ã«ã€ããŠã¯
<math>v _2'</math>ãšããããã®å Žåãç©äœã®è¡çªã«ã€ããŠå
šãšãã«ã®ãŒãä¿åãããããšã
çšãããšã
:<math>
1/2 m v _1^2 + 1/2 m v _2^2
=
1/2 m v _1'{}^2 + 1/2 m v'{} _2^2
</math>
ãåŸããããããã«ãç©äœã®è¡çªã«ã€ããŠç©äœç³»ã®å
šéåéãä¿åãããããšãçšãããšã
:<math>
m v _1
+ m v _2 =
m v _1'
+ m v _2'
</math>
ãããã¯ã<math>v' _1</math>, <math>v '_2</math>ã«ã€ããŠã®2次æ¹çšåŒã§ãããè§£ãããšãåºæ¥ããå®éèšç®ãããšãè§£ãšããŠ
:<math>
(v '_1,\ v' _2 )=(v _1,\ v _2),\ (v _2,\ v _1)
</math>
ãåŸããããåè
ã®è§£ã¯è¡çªã«éããŠç©äœã®é床ãå€åãã¬ããšã瀺ããŠããããããã¯å®éã®æ
åµãšããŠèãé£ãã®ã§ãåŸè
ã®è§£ãçŸå®ã®è§£ãšãªãããã®çµæãèŠããšãç©äœãæã€é床ãå
¥ãæ¿ããããšãåããã
ãã®ããšã¯å®éã«åã倧ããã®çãçšããŠå®éšãè¡ããšã確ãããããšãã§ããã
<!-- ããã¯äŸãã°ã
<math>v _1=v,\ v _2=0</math>ã®æãèãããšãè¡çªåŸã®çµæã¯
<math>v _1=0,\ v _2=v</math>ãšãªããå®éšã®çµæãåçŸããããšã«ãªãã
-->
=åäœã®ã€ãåã=
äœçœ®ã®ã¿ããã¡ïŒå€§ããããªãã®ã質ç¹ã§ããã'''åäœ'''ãšã¯ïŒå€§ãããããã圢ã倧ãããå€ããã¬ç©äœã®ããšã§ããã
==è§éåéãšåã®ã¢ãŒã¡ã³ã==
åäœã®éåãèããåã«äžå®å¹³é¢äžã®éåã«ã€ããŠæ¬¡ã®ãããªäžè¬çèå¯ãè¡ãã
æå»<math>t</math>ã«ãããŠ<math>xy</math>å¹³é¢å
ã®äœçœ®<math>\overrightarrow r=(x,\ y)</math>ãé床<math>\overrightarrow v=(v_x,\ v_y)</math>ã§éåãïŒå<math>\overrightarrow F=(F_x,\ F_y)</math>ãåããŠãã質é<math>m</math>ã®ç©äœã®éåæ¹çšåŒãæåã«åããŠè¡šãã°
:<math>m\frac{dv_x}{dt}=F_x,\qquad\qquad\qquad\qquad\;\cdots\cdots</math>â
:<math>m\frac{dv_y}{dt}=F_y.\qquad\qquad\qquad\qquad\;\cdots\cdots</math>â¡
â¡<math>\times x -</math>â <math>\times y</math>ãã
:<math>m\left(x\frac{dv_y}{dt}-y\frac{dv_x}{dt}\right)=xF_y -yF_x</math>
:<math>\therefore \frac{d}{dt}\{m(xv_y -yv_x)\}=xF_y -yF_x.\cdots</math>â¢
ãã®å·ŠèŸºã®
:<math>l=m(xv_y -yv_x)</math> (3.1)
ãåç¹OãŸããã®è§éåéãšããã
ããã§<math>\overrightarrow v</math>ãš<math>\overrightarrow r</math>ã®ãªãè§ã<math>\theta,\ x</math>軞ãš<math>\overrightarrow r</math>ã®ãªãè§ã<math>\phi</math>ãšãããš
:<math>x=r\cos\phi,\ v_x=v\cos(\theta +\phi),\ y=r\sin\phi,\ v_y=v\sin(\theta +\phi)</math>.
ãããã(3.1)ã«ä»£å
¥ãããš
:<math>l=m(r\cos\phi\cdot v\sin(\theta +\phi)-r\sin\phi\cdot v\cos(\theta +\phi))=mrv\sin\theta</math> (3.1a)
ãåŸãããã
ç©äœãå転ãããåã®å¹æã®å€§ããã衚ãéã'''åã®ã¢ãŒã¡ã³ã'''ãšãããæŽã«<math>\overrightarrow F</math>ãš<math>\overrightarrow r</math>ã®ãªãè§ã<math>\mathit{\Theta}</math>ãšãããš
:<math>F_x=F\cos(\mathit{\Theta}+\phi),\ F_y=F\sin(\mathit{\Theta}+\phi)</math>.
ãã£ãŠ'''åç¹OãŸããã®åã®ã¢ãŒã¡ã³ã'''ã<math>N</math>ã§è¡šããš
:<math>N=xF_y -yF_x=r\cos\phi\cdot F\sin(\mathit{\Theta}+\phi)-r\sin\phi\cdot F\cos(\mathit{\Theta}+\phi)=Fr\sin\mathit{\Theta}</math>. (3.2)
ããã«<math>r\sin\mathit{\Theta}</math>ã¯åç¹ããå<math>\overrightarrow F</math>ã®äœçšç·ã«äžããåç·ã®é·ãã§ããïŒãããå<math>\overrightarrow F</math>ã®'''åç¹ã«å¯Ÿããè
ã®é·ã'''ãšããããã ãåã®ã¢ãŒã¡ã³ãã¯å<math>\overrightarrow F</math>ãäœçœ®ãã¯ãã«<math>\overrightarrow r</math>ãåæèšåãã«åãåããæ£ãšããŠãã(æèšåãã®éã¯<math>\mathit{\Theta}<0</math>ã§<math>r\sin\mathit{\Theta}<0</math>ãšèãã)ã
以äžããïŒâ¢(è§éåéã®æ¹çšåŒ)ã¯
:<math>\frac{dl}{dt}=N</math>. (3.3)
ããã¯åã®ã¢ãŒã¡ã³ããå ããããçµæãšããŠè§éåéãå€åãããšããå æé¢ä¿ã衚ããç¹ã«<math>N=0</math>ãªãã°
:<math>\frac{dl}{dt}=0\quad\therefore l=</math>äžå®
ãšãªãïŒè§éåéãä¿åããã
==åäœã«åãåã®ã¢ãŒã¡ã³ã==
==éå¿==
ç©äœã®åéšåã«åãéåã®äœçšç¹ã'''éå¿'''({{Lang-en-short|centre of gravity}})æãã¯è³ªéäžå¿({{Lang-en-short|centre of mass}})ãšããã<math>n</math>ç©äœ(質éïŒ<math>m_1,\ m_2,\ \cdots\cdots,\ m_n</math>ïŒäœçœ®<math>\vec{r_1},\ \vec{r_2},\ \cdots\cdots,\ \vec{r_n}</math> (<math>n</math>ã¯èªç¶æ°)ã®éå¿ã®äœçœ®<math>\vec{r_\mathrm{G}}</math>ã¯ä»¥äžã®ããã«å®çŸ©ãããã
:<math>\vec{r_\mathrm{G}}=\frac{m_1\vec{r_1}+m_2\vec{r_2}+\cdots\cdots +m_n\vec{r_n}}{m_1+m_2+\cdots\cdots +m_n}</math>.
ãŸãéå¿é床<math>\vec{v_\mathrm{G}}</math>ã¯<math>\frac{d\vec{r_k}}{dt}=\vec{v_k}\ (k=1,\ 2,\ \cdots\cdots,\ n)</math>ãšãããš
:<math>\vec{v_\mathrm{G}}=\frac{d\vec{r_\mathrm{G}}}{dt}=\frac{m_1\vec{v_1}+m_2\vec{v_2}+\cdots\cdots +m_n\vec{v_n}}{m_1+m_2+\cdots\cdots +m_n}</math>.
= åéåãšåæ¯å =
ããã§ã¯ãåççãªå¹³é¢äžã®éåã®1ã€ãšããŠãåéå({{Lang-en-short|circular motion}})ãšåæ¯å({{Lang-en-short|simple harmonic motion}})ããã€ãããåéåã¯ã忝ãåïŒãããµãããsimple pendlumïŒã®éåã®é¡äŒŒç©ãšããŠãéèŠã§ããããããšãšãã«ããã®ããŒãžã§ã¯äžæåŒåã«ããéåãæ±ãã
äžæåŒåã¯ããããéåãšåãåã§ããã
ç©äœãšç©äœã®éã«å¿
ãçããåã§ãããäžæ¹ãããã®åã¯éåžžã«åŒ±ãããã
ææã®ããã«å€§ããªè³ªéãæã£ãç©äœã®éåã«ããé¢ãããªãã
ããã§ã¯ã倪éœã®ãŸãããå転ããææã®ãããªå€§ããªã¹ã±ãŒã«ã®éåããã€ããããã®ãããªéåã¯åã«è¿ãè»éãšãªãããšãããããã®ãããææã®éåãçè§£ããäžã§ãåéåãçè§£ããããšãéèŠã§ããã
== åéå ==
ç©äœãåãæãããã«éåããããšãåéåãšåŒã¶ãåãæããããªéåã¯ãäŸãã°ãå圢ã®ã°ã©ãŠã³ãã®ãŸãããèµ°ã人éã®ããã«äººéãææãæã£ãŠè¡ãªãå Žåãæãããèªç¶çŸè±¡ãšããŠèµ·ããå Žåãå€ããäŸãã°ã倪éœã®ãŸãããåãå°çã®éåããå°çã®åããåãæã®éåã¯ãããããåéåã§èšè¿°ãããããŸããäžå®ã®é·ãããã£ãã²ããšäžå®ã®è³ªéãæã£ãç©äœã§äœãããæ¯ãåã®éåã¯ãã²ããåºå®ããç¹ããäžå®ã®è·é¢ããããŠéåããŠãããããç©äœã¯åè»éäžãéåããŠãããåºãæå³ã§ã®åè»éãšãšãããããšãåºæ¥ããããã§ã¯ããã®ãããªå Žåã®ãã¡ã§ä»£è¡šçãªãã®ãšããŠãå®å
šãªåè»éäžãéåããç©äœã®éåããã€ããã
åè»éäžãéåããç©äœã®åº§æšãäžè¬ã®å Žåãšåæ§
:<math>\overrightarrow r(t)=(x(t),\ y(t))</math>
ã§è¡šãããããç¹ã«åè»éã衚ãã颿°ã¯[[é«çåŠæ ¡æ°åŠII ãããããªé¢æ°]]ã§æ±ã£ãäžè§é¢æ°ã«å¯Ÿå¿ããŠããã
* çºå±: äžè§é¢æ°ãçšããåã®è¡šç€º
ããã§ãåéåãäžè§é¢æ°ãçšããŠè¡šãããããšãè¿°ã¹ããããã®ããšã¯[[é«çåŠæ ¡æ°åŠC]]ã®'''åªä»å€æ°è¡šç€º'''ãçšããŠãããåªä»å€æ°è¡šç€ºã«ã€ããŠè©³ããã¯ã察å¿ããé
ãåç
§ããŠã»ããã
ååŸr[m]ã®åäžãçããé床ã§ãåéåããç©äœã®éåãèšè¿°ããããšãèããã
ããã«ã座æšãåãå Žååç¹ã®äœçœ®ã¯åéåã®äžå¿ã®äœçœ®ãšããã
ãã®å Žåã®ç©äœã®éåã¯ãx, y座æšãçšããŠã
:<math>
x = r \cos (\omega t +\delta)
</math>
:<math>
y = r \sin (\omega t +\delta)
</math>
ã«ãã£ãŠæžãããããã ãããã®å Žå<math>\omega</math>ã¯è§é床ãšåŒã°ãåäœã¯[rad/s]ã§äžããããããã ããããã§[rad]ã¯[[w:ã©ãžã¢ã³]]ã§ããã[[w:匧床æ³]]ã«ãã£ãŠè§åºŠã衚ãããå Žåã®åäœã§ããã匧床æ³ã«ã€ããŠã¯[[é«çåŠæ ¡æ°åŠII ãããããªé¢æ°]]ãåç
§ãè§é床ã¯åéåãããŠããç©äœãã©ã®çšåºŠã®æéã§åãäžåšãããã«å¯Ÿå¿ããŠããããªãïŒé«çåŠæ ¡ã®ç©çã«ãããŠè§é床ã¯ã¹ã«ã©ãŒãšããŠæ±ãããŸãããã®éã¯äžã§åããã®ã ããåéåããŠããç©äœã®éåºŠã«æ¯äŸããã
ãŸããè§é床ã«å¯Ÿå¿ããŠã
:<math>
T = \frac {2\pi} \omega
</math>
ã§äžããããéã[[w:åšæ]]ãšãããåšæã®åäœã¯[s]ã§ãããåšæã¯ç©äœãäœç§éããšã«
åç¶ã1åšãããã衚ããéã§ããããã®å Žåã«ã¯ç©äœã¯T[s]ããšã«åç¶ã1åšãããããã«ã
:<math>
f = \frac \omega {2\pi}
</math>
ã[[w:æ¯åæ°]]ãšåŒã¶ãæ¯åæ°ã¯åšæãšã¯éã«ãåäœæéåœããã«ç©äœãåç¶ãäœåšãããã
æ°ããéã§ãããæ¯åæ°ã®åäœã«ã¯éåžž[Hz]ãçšãããããã¯ã[1/s]ã«çããåäœã§ããã
ãŸããåšæTãšãæ¯åæ°fã¯ãé¢ä¿åŒ
:<math>
Tf = 1
</math>
ãæºããããã®åŒã¯ããåéåãããŠããç©äœã«ã€ããŠããã®ç©äœã®åéåã®
åšæã«å¯Ÿå¿ããæéã®éã«ã¯ãç©äœã¯åç¶ã1åšã ããããšããããšã«å¯Ÿå¿ããã
ãŸãã
:<math>
x = r \cos (\omega t +\delta)
</math>
:<math>
y = r \sin (\omega t +\delta)
</math>
ã®åŒã§<math>\delta</math>ã¯ç©äœã®äœçœ®ã®[[w:äœçž]]ãšåŒã°ããç©äœãåç¶ã®ã©ã®ç¹ã«ãããã瀺ã
å€ã§ããã
ãŸãããã®å Žåã®ç©äœã®é床ã®x, yèŠçŽ ã¯
:<math>v_x =\frac{dx}{dt}= -r \omega \sin \omega t</math>
:<math>v_y =\frac{dy}{dt}= r \omega \cos \omega t</math>
ã§äžããããããã®åŒãšãåŸã®åéåã®å é床ã®å°åºã«ã€ããŠã¯ãåŸã®çºå±ãåç
§ãããã§ãç©äœã®éããvãšãããšã
:<math>
v = \sqrt {v _x ^2 +v _x ^2}
= \sqrt {r^2 \omega^2 (\sin^2 \omega t +\cos^2 \omega t) }
= r \omega
</math>
ãšãªããç©äœã®é床ã¯<math>r\omega</math>ã§äžããããããšãåããã
ããã«ã
:<math>
\overrightarrow r \cdot \overrightarrow v
</math>
ãèšç®ãããšã
:<math>
\overrightarrow r \cdot \overrightarrow v
</math>
:<math>
=( r \cos \omega t,\ r \sin \omega t) \cdot (-r \omega \sin \omega t,\ r \omega \cos \omega t)
</math>
:<math>
= r^2 \omega (\cos \omega t \sin \omega t - \cos \omega t \sin \omega t)
</math>
:<math>
= 0
</math>
ãšãªããåéåãããŠããç©äœã®é床ãšåéåã®äžå¿ãåç¹ãšããå Žåã®åº§æšã¯çŽäº€ããŠããããšãåãããããã«ãåéåãããŠããç©äœã®å é床ã¯ã
:<math>\frac{dv_x}{dt^2}= -r \omega^2 \cos \omega t</math>
:<math>\frac{dv_y}{dt^2}= -r \omega^2 \sin \omega t</math>
ãšãªããããã¯
:<math>\overrightarrow a = -\omega ^2 \overrightarrow r</math>
ã«å¯Ÿå¿ããŠãããåéåããããªãç©äœã®å é床ã¯ãåéåãããç©äœã®åº§æšãš
ã¡ããã©å察åãã«ãªãããšãåããã
* çºå±: åéåã®é床ãšå é床
ããã§ã¯ãåéåã®é床ãšå é床ãäžãããããã®å€ã¯ç©äœã®éåãæ±ºãŸãã°æ±ºãŸãå€ãªã®ã§ãåéåã®åŒããèšç®ã§ããããã ãå®éã«ãããã®åŒãåŸãããã«ã¯ãåéåã®åŒã®'''埮å'''ãè¡ãå¿
èŠããããããããã§ã¯è©³ããæ±ããªããå°åºã«ã€ããŠã¯ã[[å€å
žååŠ]]ãåç
§ã
* åé¡äŸ
** åé¡
ååŸr[m]ã®åäžãè§é床<math>\omega</math>ã§éåããç©äœã®å é床ã®å€§ãããèšç®ããã
** è§£ç
:<math>
\overrightarrow a = -\omega^2 \overrightarrow r
</math>
ã«æ³šç®ãããšãããå³èŸºã«ã€ããŠåéåãããŠããç©äœã®åº§æšãåžžã«
:<math>
\overrightarrow r ^2 = r^2
</math>
ãæºããããšã«æ³šç®ãããšã
:<math>
|\overrightarrow a| = \sqrt {\overrightarrow a^2}
</math>
:<math>
= \sqrt {r^2 \omega^4} = r \omega^2
</math>
ãšãªãã
** åé¡
50Hzã§åéåããŠããç©äœã®åéåã®åšæãèšç®ããã
** è§£ç
:<math>
T = \frac 1 f
</math>
ãçšãããšã
:<math>
T [\textrm s] = \frac 1 {50}[\textrm s]
</math>
:<math>
= 0.020 [\textrm s]
</math>
ãšãªãã
===åéåã®æ¹çšåŒ===
以äžããïŒåéåã®å éåºŠã®æåã¯
:åå¿æåïŒ<math>a_\mathrm{C}=r{\omega}^2=\frac{v^2}{r},</math>
:æ¥ç·æåïŒ<math>a_\mathrm{T}=\frac{dv}{dt}</math>.
ãã£ãŠïŒåéåããç©äœã®è³ªéã<math>m</math>ïŒåå¿æ¹åã«åãåïŒããªãã¡'''åå¿å'''({{Lang-en-short|centripetal force}})ã<math>F_\mathrm{C}</math>ïŒæ¥ç·æ¹åã«åãåã<math>F_\mathrm{T}</math>ãšãããšéåæ¹çšåŒã¯
:<math>mr{\omega}^2=F_\mathrm{C}\Longleftrightarrow m\frac{v^2}{r}=F_\mathrm{C},</math> (4.1)
:<math>m\frac{dv}{dt}=F_\mathrm{T}</math>. (4.2)
* â» å·çäžïŒèªè
ã«ååããé¡ãããŸããïŒ
[[w:åå¿å]]ã[[w:é å¿å]]ïŒcentrifugal forceïŒ
== 忝å ==
åéåãšé¢ä¿ã®æ·±ãç©äœã®éåãšããŠã忝åïŒ{{Lang-en-short|simple harmonic oscillation}}ïŒããããããã忝åã¯ããããæ¯åçŸè±¡ã®åºæ¬ã«ãªã£ãŠãããå¿çšç¯å²ãåºãéåã§ãããåéåãšåæ§ã忝åãäžè§é¢æ°ãçšããŠéåãèšè¿°ãããããŸããåšæãäœçžãããç¹ãåéåãšåãã§ããããŸãã忝åã¯æ³¢åã«é¢ããçŸè±¡ãšãé¢ä¿ãæ·±ããäœçžãæ¯å¹
ãªã©ã®éãå
±æããŠããã
ããããã¯ã忝åãããç©äœã®æ§è³ªããã詳ããèŠãŠè¡ãã
忝åã¯æ§ã
ãªæ
åµã§ãããããããåçŽãªäŸãšããŠã¯'''ããã¯ã®æ³å'''ã§æ¯é
ãããã°ãã«æ¥ç¶ãããç©äœã®éåããããããã§ã¯ãã°ã宿°<math>k</math>ã®ã°ãã«è³ªé<math>m</math>ã®ç©äœãæ¥ç¶ãããšãããã°ãã®èªç¶é·ã®äœçœ®ãåç¹ãšããŠæå»<math>t</math>ã«ãããåç¹ããã®ç©äœã®äœçœ®ã<math>x(t)</math>ãšããå Žåããã®ç©äœã«é¢ããéåæ¹çšåŒã¯
:<math>m\frac{d^2x(t)}{dt^2}= - kx(t)</math>
ã§äžããããããã®æ¹çšåŒã®äž¡èŸºã<math>m</math>ã§å²ããšãå é床ã¯<math>\frac{d^2x(t)}{dt^2}= -\frac{k}{m}x(t)</math>ã§äžããããããšãåããããã®ããã«ãå é床ãšç©äœã®åº§æšãè² ã®æ¯äŸä¿æ°ãæã£ãŠæ¯äŸé¢ä¿ã«ããåŒãã忝åã®éåæ¹çšåŒã§ããããã®å Žåã忝åã®æ¯åäžå¿ã<math>x = x_\mathrm{C}</math>(忝åã§ã¯æ¯åäžå¿ã¯å®æ°)ïŒæå»<math>t</math>ã«ãããç©äœã®éåãäœçœ®<math>x(t)</math>ïŒé床<math>v(t)</math>ïŒå é床<math>a(t)</math>ã§è¡šããš
:<math>x(t)= x_\mathrm{C}+ A \sin (\omega t +\delta),</math> (4.3)
:<math>v(t)= \frac{dx(t)}{dt} = A\omega\cos (\omega t +\delta),</math> (4.4)
:<math>\begin{align}a(t)=\frac{d^2 x(t)}{dt^2}& = -A\omega ^2 \sin (\omega t +\delta)\\ & =-\omega^2(x(t)- x_\mathrm{C})\end{align}</math> (4.5)
ãšãªãã<math>\omega</math>ã¯è§æ¯åæ°ïŒ<math>\delta</math>ã¯åæäœçžã§ããã
*çºå±: 忝åã®éåæ¹çšåŒ
ããã§ã忝åã®éåæ¹çšåŒãšã忝åã®éåã®åŒãäžããããå®éã«ã¯åæ¯åã®éåã®åŒã¯éåæ¹çšåŒããå°åºã§ãããããã«ã€ããŠã¯[[w:åŸ®åæ¹çšåŒ]]ãæ±ãå¿
èŠãããã®ã§è©³ããå°åºã«ã€ããŠã¯ã[[å€å
žååŠ]]ãåç
§ã
<math>\sin</math>颿°ã¯é¢æ°ã®å€ã®å¢å ã«äŒŽã£ãŠåšæçãªæ¯åãè¡ãªã颿°ãªã®ã§ãç©äœã¯ã<math>x=0</math>ã®ãŸããã§åšæçãªæ¯åãããããšãåããããã ããäžã®åŒã®äžã§Aã¯[[w:æ¯å¹
]]ãšåŒã°ããç©äœã®æ¯åã®ç¯å²ã衚ãéã§ããã
ãã ãããã®å Žåã«ãããŠã¯ãããã®éã¯ç©äœã®åéåã§ã¯ãªããç©äœã®æ¯åã«ã€ããŠã®éã§ãããããããåäœæéåœããã«äœ[rad]ã ãäœçžãé²ããã®éãšæ¯åã®åšæã®äžã§ãã©ã®äœçœ®ã«ç©äœããããã衚ãéã«å¯Ÿå¿ããŠããããŸããåšæãšæ¯åæ°ãåéåã®å Žåãšåãå®çŸ©ã§äžããããã
:<math>T = \frac {2\pi}\omega</math>
:<math>f =\frac \omega {2\pi}</math>
ãŸãããã®å Žåã«ã€ããŠã¯éåæ¹çšåŒããè§æ¯åæ°ã決ãŸã
:<math>m\frac{d^2 x(t)}{dt^2}=-kx(t)</math>
:<math>\begin{align}\therefore\frac{d^2 x(t)}{dt^2}& =-\frac{k}{m}x(t)\\ & =-\omega^2(x(t)- 0)\end{align}</math>
:<math>\therefore\omega^2=\frac{k}{m}\quad\therefore\omega = \sqrt{\frac{k}{m}}\ (\because\omega >0)</math>
ã§äžããããã
(4.3)ã
:<math>x(t)= x_\mathrm{C}+ A\sin\omega t\cos\delta +A\cos\omega t\sin\delta</math>
ãšæžçŽãïŒ<math>A\cos\delta=a,\ A\sin\delta=b</math>ãšãããš
:<math>x(t)= x_\mathrm{C}+ a\sin\omega t +b\cos\omega t,</math> (4.3a)
:<math>v(t)= \dot x(t)=\omega(a\cos\omega t -b\sin\omega t),</math> (4.4a)
:<math>a(t)= \ddot x(t)=-\omega^2(a\sin\omega t +b\cos\omega t)</math> (4.5a)
ãšãªãïŒæ¯å¹
ã¯
:<math>A=\sqrt{a^2+b^2}</math>. (4.6)
* åé¡äŸ
** åé¡
質émãæã€ããç©äœã«ã€ããŠãã°ã宿°<math>k _1</math>ã®ã°ããšã°ã宿°<math>k _2</math>ã®ã°ãã«
ã€ãªãããå Žåã§ã¯ã ã©ã¡ãã®å Žåã®æ¹ãç©äœã®è§é床ã倧ãããªããã
ãã ãã<math>k _1>k _2</math>ãæãç«ã€ãšããããŸããåšæãšæ¯åæ°ã«ã€ããŠã¯ã©ããªããã
** è§£ç
ãã®å Žåã«ã¯ãã®åæ¯åã®è§æ¯åæ°ã¯ã
:<math>
\omega = \sqrt {\frac k m}
</math>
ã§äžããããããã®éã¯ã°ã宿°kã倧ããã»ã©å€§ããã®ã§ãè§æ¯åæ°ã¯
ã°ã宿°<math>k _1</math>ãæã€ã°ãã®è§æ¯åæ°ã®æ¹ãã°ã宿°<math>k _2</math>ãæã€ã°ãã®è§æ¯åæ°
ãã倧ãããªãããŸãã忝åã®æ¯åæ°ã¯åæ¯åã®è§æ¯åæ°ã«æ¯äŸããã®ã§ã
æ¯åæ°ã«ã€ããŠãã ã°ã宿°<math>k _1</math>ãæã€ã°ãã®æ¯åæ°ã®æ¹ãã°ã宿°<math>k _2</math>ã
æã€ã°ãã®æ¯åæ°ãã倧ãããªããäžæ¹ããã®å Žåã®åšæã«ã€ããŠã¯ã
:<math>
T = \frac {2\pi} \omega = 2\pi \sqrt {\frac m k}
</math>
ãæãç«ã€ãããã°ã宿°kãå°ããã»ã©å€§ãããªãããã£ãŠãåšæã«ã€ããŠã¯
ã°ã宿°<math>k _2</math>ãæã€ã°ãã®åšæã®æ¹ãã°ã宿°<math>k _1</math>ãæã€ã°ãã®åšæ
ãã倧ãããªãã
** åé¡
éåã®ããäžã«é·ãl[m]ã®ã²ãã§ã€ããããç©äœã«ãã£ãŠäœãããç©äœã®
éçŽäžåãã«åçŽãªæ¹åã®éåã忝åãšãªãããšãæ±ããã
ãã ããæ¯ãåã®åãç¯å²ã¯å°ãããã®ãšããã
ãã®ããã«åæ¯åãããæ¯ãåã 忝ãåïŒãããµãããsimple pendlumïŒ ãšåŒã¶ããšãããã
** è§£ç
ã²ã ãåºå®ãããŠããäœçœ®ããéçŽã«äžãããçŽç·ãšãç©äœãã€ãªãããŠãã ã²ã ããªãè§åºŠã <math>\theta</math> ãšããããã®å Žåãå³åœ¢çã«èãããšãã®å Žåã®æ°Žå¹³æ¹åã®éåæ¹çšåŒã¯
:<math>m a _x =- mg \sin \theta </math>
ãšãªããããã§ã<math>\theta</math> ãå°ããå Žåã
:<math>\theta \sim \frac x l</math>
ãšãªãããšã«æ³šæãããšãéåæ¹çšåŒã¯
:<math>a _x = -g \frac x l</math>
:<math>a _x = - \frac g l x</math>
ãšãªãå
ã»ã©ã®ã°ãã«ã€ãªãããç©äœã®éåæ¹çšåŒãšçãããªãã
ãã£ãŠããã®ç©äœã®éåã忝åã§èšè¿°ãããããšãåãã£ããããã«ã
å
ã»ã©ã®è§æ¯åæ°ãšæ¯èŒãããšããã®å Žåã®è§æ¯åæ°<math>\omega</math>ã¯
:<math>\omega = \sqrt{\frac g l}</math>
ãšãªãããšãåããã
ãããã®çµæãã[[å°åŠæ ¡çç§]]ã®çµæã§ãã
:忝ãåã«ã€ããŠ
::ç©äœã®éãã¯æ¯ãåã®åšæãšé¢ä¿ããªãã
::æ¯ãåã®ã²ãã®é·ããé·ããªãã«ã€ããŠãæ¯ãåã®åšæã¯é·ããªãã
ã®å®éšäºå®ãéåæ¹çšåŒã®çµæãšäžèŽããããšã確ãããããã
= äžæåŒå =
ãã®ç« ã§ã¯ãäžæåŒåã«ããéåãæ±ããäžæåŒåã¯å
šãŠã®ç©äœã®éã«ååšããŠãããããã®åãåªä»ããéåãšããŠæåãªãã®ã¯å€ªéœã®åããå転ããå°çã®éåããå°çèªèº«ã®åããå転ããæã®éåã§ãããå®éã«ã¯ãã®ãããªäœãã®åããå転ããæ§é ã¯å®å®å
šäœã«åºãèŠãããã
äŸãã°ã空ã«èŠãããæã¯[[w:ææ]]ãšåŒã°ãããããããã®æã®åãã«ã倪éœã«å¯Ÿããå°çãšåãããã«ãææãåããåã£ãŠãããšèããããå®éã«ãã®ãããªææã確èªãããææãããã([[w:ç³»å€ææ]]åç
§ã)
ãã®ããã«å®å®ã®äžã§äžæåŒåã«ããå転éåã¯åºã芳枬ããããããã§ã¯ãã®ãããªéåã¯ç©äœéã«åãã©ã®ãããªåã«ãã£ãŠèšè¿°ãããããèŠãŠããã
* çºå±: äžæåŒåçºèŠã®æŽå²
æŽå²çã«ã¯ãéã«ãã®ãããªç©äœã®éã®éåã説æãããããªåãèããããšã§
ç©äœéã«åãåãçºèŠããããæŽå²ã«ã€ããŠè©³ããã¯[[w:ãã¥ãŒãã³]]ãªã©ãåç
§ã
== äžæåŒåã®æ³å ==
ãŸãã¯ãç©äœéã«åãäžæåŒåïŒglavitational constantïŒã®æ³åãè¿°ã¹ããçš®ã
ã®èŠ³æž¬ã®çµæã«ãããšã質é<math>m_1</math>ãæã€ç©äœãšè³ªé<math>m_2</math>ãæã€ç©äœã®éã«ã¯
:<math>F = -G \frac{m _1 m _2}{r^2}</math>
ã§è¡šããããåãåããããã§Gã¯ç©äœã«ãããªã宿°ã§ã'''äžæåŒå宿°'''ãšããã
å€ã¯<math> G = 6.67 \times 10^{-11} [ {\mathrm{N}\cdot\mathrm{m}^2/\mathrm{kg}^2}] </math> ã§ããã
äžæåŒåã®æ³å
:<math>F = -G \frac{m _1 m _2}{r^2}</math>
::F: äžæåŒå
::G: äžæåŒå宿°
::r: ç©äœéã®è·é¢
äžæåŒåã¯ç©äœéã®è·é¢ã®2ä¹ã«éæ¯äŸããåã§ããã
ç©äœã®å°ãªããšãçæ¹ãææã®ããã«å·šå€§ãªå Žåãç©äœéã®è·é¢rã¯ãéå¿éã®è·é¢ã§ããã
å°çã®äžæåŒåãèãããå°çã®è³ªéãMãå°çã®ååŸãRãæž¬å®ããç©äœã®è³ªéãmãšããå ŽåãéåFã¯
:<math>F = -G \frac{M m}{R^2}</math>
ãšãªãã
ãããå°è¡šè¿ãã§ã¯å€§ããã mg ãšçããã®ã§ã
:<math>G \frac{M m}{R^2} = mg </math>
å€åœ¢ããŠ
:<math>G M = gR^2 </math>
ãšãªããèšç®åé¡ã®ããããã®å€åœ¢ãçšããããå Žåãããã
;å°çã®èªè»¢ã®åœ±é¿
å°çã¯èªè»¢ãããŠãããéåã®èšç®ã§ã¯ãå³å¯ã«ã¯èªè»¢ã«ããé å¿åãèããå¿
èŠãããããããããèªè»¢ã®é å¿åã®å€§ããã¯ãäžæåŒåã®<math>\frac{1}{300}</math>åãŠãã©ãããªãã®ã§ãéåžžã¯èªè»¢ã«ããé å¿åãç¡èŠããå Žåãå€ãã
ãªããå°çã®èªè»¢ã®é å¿åã¯ãèµ€éäžã§ãã£ãšã倧ãããªãã
== éæ¢è¡æ ==
äººå·¥è¡æããå°çã®èªè»¢ãšåãåšæã§ãèªè»¢ãšåãåãã«çéåéåãããã°ããã®äººå·¥è¡æã¯å°äžããèŠãŠãã€ãã«å°é¢ã®äžç©ºã«ããã®ã§ãå°äžã®èŠ³æž¬è
ããã¯éæ¢ããŠèŠããããã®ãããªäººå·¥è¡æã®ããšã'''éæ¢è¡æ'''ãšããã
** åé¡
質émã®ç©äœã質éMã®å€§ããªç©äœã®åãããäžæåŒåã®åãåå¿åãšããŠãååŸrã®åéåãããŠããããã®å Žåã®åéåã®è§éåºŠãæ±ããã
** è§£ç
ååŸrãè§é床<math>\omega</math>ã®åéåãããå Žåã®ç©äœã®åå¿å ã¯
:<math>- mr \omega ^2</math>
ã§ãããäžæ¹ã質émãšè³ªéMã®ç©äœã®éã®è·é¢ãrã§ããå Žåã2ã€ã®ç©äœéã«åãéåã¯ãéåã®å€æ°ãfãšãããšã
:<math>f = - G\frac{mM}{r^2}</math>
ã§äžããããããã£ãŠããããã®åãçãããªãå Žåã«ã質émã®ç©äœã¯è³ªéMã®ç©äœã®ãŸãããåéåã§å転ïŒå
¬è»¢ïŒããããšãã§ããããã£ãŠã<math>\omega</math>ãæ±ããåŒã¯ã
:<math>- mr \omega^2 = - G\frac{mM}{r^2}</math>
:<math>\omega = \sqrt { G\frac M{r^3} }</math>
ãšãªãã
== äžæåŒåã«ããäœçœ®ãšãã«ã®ãŒ ==
å°ç衚é¢ã§ã®éåã«ããäœçœ®ãšãã«ã®ãŒãèããããã®ãšåæ§ã«ãäžæåŒåã«ããäœçœ®ãšãã«ã®ãŒãèããããšãã§ããã
:â» èªè
ãç©åãç¥ã£ãŠãããšãåæã«èª¬æãããæ°åŠ3ã®ç©åããŸãªãã ã»ããçè§£ã¯æ©ããé²åŠæ ¡ãªã©ã§ã¯ãç©åã§äœçœ®ãšãã«ã®ãŒãæ±ããã®ã宿
ã§ããã
äžæåŒåã«ããäœçœ®ãšãã«ã®ãŒãæ±ããã«ã¯ãäžæåŒåãç©åããã°ããã
質éMã®ç©äœããrã®è·é¢ã«è³ªémã®ç©äœãååšãããšããããã ããMã¯mããã¯ããã«
倧ãããšãããç¡éé ç¹ãåºæºã«ãããšïŒã€ãŸãç¡éé ã§ã¯äœçœ®ãšãã«ã®ãŒããŒãïŒããã®å Žåã質émã®ç©äœã®äœçœ®ãšãã«ã®ãŒã¯
:<math>U = -G \frac {mM} r</math>
ã§äžããããã
笊å·ã«ãã€ãã¹ãã€ãããšã®ç©ççãªè§£éã¯ãéåãã€ããã ãç©äœã«è¿ã¥ãã»ã©ããã®ç©äœã®ã€ããã ãéååãè±åºããã«ã¯ããšãã«ã®ãŒã远å çã«å¿
èŠã«ãªãããã§ãããšè§£éã§ããã
ç¡éé ã§ã¯ rïŒïŒâ ãšããã°ãããçµæã UïŒ0 ã«ãªãã
ãªããäžæåŒåã¯ä¿ååã§ããã®ã§ãäœçœ®ãšãã«ã®ãŒã¯ãç¡éé ç¹ããã®çµè·¯ã«ããããçŸåšã®äœçœ®ã ãã§æ±ºãŸãã
* å³åç
§
ã®ããã«äžããããããŸãããã®ã°ã©ãã¯çŽèгçãªæå³ãæã£ãŠããã
å®ã¯ããã®ã°ã©ãã®åŸãã¯ã°ã©ãã衚ããäœçœ®ãšãã«ã®ãŒãæã€ç¹ã«ç©äœã眮ããå Žåã
ãã®ç©äœãåãåããæ¹åãšãã®å€§ããã衚ãããŠãããããã§ã¯ã
äœçœ®ãšãã«ã®ãŒã®åŸããåžžã«r=0ã«èœã¡èŸŒãæ¹åã«çããŠããããç©äœMããè·é¢r
(rã¯ä»»æã®å®æ°ã)ã®ç¹ã«éæ¢ããŠããç©äœã¯å¿
ãMã®æ¹åã«åžã蟌ãŸããŠè¡ãããšã
衚ãããŠããã(詳ããã¯[[å€å
žååŠ]]åç
§ã)
* åé¡äŸ
** åé¡
ããææäžã«ããç©äœãå®å®ã®ç¡éé ãŸã§å°éãããããã«å®å®è¹ã«ææäžã§
äžããªããŠã¯ãããªãé床ã¯ã©ã®ããã«è¡šãããããããã ããèšç®ã«ã€ããŠã¯
æåã«å®å®è¹ãåºçºããææä»¥å€ã®å€©äœããã®åœ±é¿ã¯ç¡èŠãããšããã
ãŸããææã®ååŸã¯Rã ææã®è³ªéã¯Mãšããã
** è§£ç
ææã®åŒåã«ããäœçœ®ãšãã«ã®ãŒã¯ææè¡šé¢ã§
:<math>- G\frac {mM} R</math>
ã§ãããç¡éåç¹ã§ã¯0ã§ããããã ããmã¯å®å®è¹ã®è³ªéãšããã
äžæ¹ãå®å®è¹ãç¡éåç¹ã«éããã«ã¯ãå®å®è¹ã®é床ãç¡éåç¹ã§ã¡ããã©0ã«
çãããªãã°ãããããã§ãææäžã§ã®å®å®è¹ã®é床ãvãšãããšã
ãšãã«ã®ãŒä¿ååããã
:<math>\frac 1 2 m v^2 - G\frac {mM} R = 0 - 0</math>
ãšãªãããã£ãŠãã®åŒããvãæ±ããã°ãããçã¯ã
:<math>v = \sqrt {2G\frac {M} R }</math> (ç)
äžèšã®èšç®ããåããããã«ãäžè¬ã«ãäžæåŒåã ããåããŠéåããç©äœã®ååŠçãšãã«ã®ãŒã¯ã
:<math>E = \frac 1 2 m v^2 - G\frac {mM} R = </math> ã'''äžå®'''
ã§ããã
== äººå·¥è¡æã®è»é ==
=== å®å®é床 ===
[[ç»å:Newton Cannon.svg|thumb|300px|Cã第äžå®å®é床ã®è»éã]]
ä»®ã«é«ãå±±ããç©äœãæ°Žå¹³ã«çºå°ãããšãïŒç©ºæ°æµæã¯ç¡èŠããïŒãå°çã®ãŸãããåãç¶ããããã«å¿
èŠãªæå°ã®åé床ã®ããšã'''第äžå®å®é床'''ãšãããïŒâ» ååã¯æèšããªããŠãããèŠããã¹ãã¯ãèšç®æ¹æ³ã§ãããïŒ ç¬¬äžå®å®é床ã¯ãèŠããã«ãé å¿åãšåå¿åãã€ãããããã«å¿
èŠãªåé床ã§ããã
第äžå®å®é床ã¯ãç§éã§ã¯çŽ7.91km/sã§ããã
;第äžå®å®é床ã®èšç®
:<math> m\frac{ {v_1}^2 }{r} = G \frac{mM}{R^2}</math>
v<sub>1</sub>ã«ã€ããŠè§§ãã
:<math> v_1 = \sqrt {gR} </math>
ãªããããã R = 6400 à 10<sup>3</sup> m ã§ããã g = 9.8 m/s<sup>2</sup> ã§ããã
:<math> v_1 = \sqrt {9.8 \times 6400 \times 10^3 } = 7.9 \times 10^3 \textrm {m/s} = 7.9 \textrm {km/s} </math> ïŒçïŒ
----
ããã«åé床ã倧ãããªããšãç©äœã¯æ¥åè»éã«ãªãã
åé床ãçŽ11.2km/sã«ãªããšãè»éã¯æŸç©ç·ã«ãªããç©äœã¯ç¡éã®åœŒæ¹ã«é£ãã§ããã
ãã®çŽ11.2km/sã®ããšã'''第äºå®å®é床'''ãšãããããã¯ãç¡éé ã®ç¹ã§ãé床ã0ãè¶
ããå€ã«ãªãããã«å¿
èŠãªåé床ã§ããã
ãªã®ã§ãèšç®ã§ç¬¬äºå®å®éåºŠãæ±ããã«ã¯ãšãã«ã®ãŒä¿ååãèšç®ã«ã¯äœ¿ãã
;第äºå®å®é床ã®èšç®
:<math>\frac 1 2 m {v_2}^2 - G\frac {mM} R = 0 - 0</math>
ã®åŒããvãæ±ãã
:<math>v_2 = \sqrt {\frac {2GM} R }</math>
ã«ããã« <math> GM = gR^2 </math> ã代å
¥ããŠã
:<math> v_2 = \sqrt { 2gR }</math>
ããã«é¢ä¿ãã宿°ã代å
¥ããã°ããã
ãªããããã R = 6400 à 10<sup>3</sup> m ã§ããã g = 9.8 m/s<sup>2</sup> ã§ããã
:<math> v_2 = \sqrt { 2 \times 9.8 \times 6400 \times 10^3 } = 1.1 \times 10^4 \textrm {m/s}</math> ïŒçïŒ
----
åé床 11.2km/s以äžã§ã¯ãè»éã¯åæ²ç·ã«ãªããç©äœã¯ç¡éã®åœŒæ¹ã«é£ãã§ããã
{{ã³ã©ã |ç¡ééç¶æ
|
ïŒäžè¿°ã®åå
ããããããããã«ãïŒå°çã®åšå²ããŸãã£ãŠããäººå·¥è¡æã®ãªãã§ãç©ã®ééããªããªãæµ®ãã¹ãçç±ã¯ãéåãšé å¿åãã€ããã£ãŠããããã§ããããã®ãããªç¶æ
ã®ããšã'''ç¡ééç¶æ
'''ãšããã
äžéã§ã¯åœéå®å®ã¹ããŒã·ã§ã³ã®ãªãã§ç©ãæµ®ãã¶æ åãªã©ãæåã§ãããããããç¡ééç¶æ
ã§ããã
ãã£ããŠããïŒå°è¡šããé¢ããŠïŒéåã匱ãŸã£ãããäººå·¥è¡æã®äžãç¡éåã«ãªã£ããã®ã§ã¯ãªãïŒ äžéã«ã¯ãåéãããŠãã人ãå€ãããšãã«å
ç«¥ããã®ç§åŠçªçµãªã©ã§ã¯ã説æãäžååã«ãªããã¡ã§ãèŠèŽè
ã®åäŸã¯ããããåéããããŠããå Žåãå€ããèªè
ã¯ã髿 ¡çã«ãªã£ãããçè§£ããªããå¿
èŠããããïŒ
ãããããããåå¿åãšããŠã®éåãç¡ãã®ãªããè¡æã®è»éã¯åè»éã§ã¯ãªãããŸã£ããã«çŽç·è»éã«ãªã£ãŠããŸããå®å®ã®ããªãã«é£ãã§ãã£ãŠãã£ãŠããŸãã ããã
ãã ããæ
£ç¿çã«ãäººå·¥è¡æã®ãªãã§ééããªããªãç¶æ
ïŒç¡ééç¶æ
ïŒã®ããšãïŒèª€è§£ã®ããããããåŒã³æ¹ã ãïŒãç¡éåç¶æ
ããšããå Žåãå€ããå³å¯ã«ã¯ãç¡ééç¶æ
ãã§ããã
}}
;ïŒâ» åèïŒ ç¬¬äžå®å®é床
â» æ€å®æç§æžã§ã¯ãèæ³šãªã©ã«æžããŠãã£ããããã
å°çããå°åºããŠã倪éœç³»ã®å€ã«åºãããã«å¿
èŠãªæå°ã®åé床ã®ããšã'''第äžå®å®é床'''ïŒçŽ 16.7 km/sïŒ ã§ããã
== ã±ãã©ãŒã®æ³å ==
ã®ãªã·ã£æä»£ããäžäžãŸã§ä¿¡ããããŠãã[[w:倩å説|倩å説]]({{Lang-en-short|geocentric theory}})ã«å¯ŸãïŒ16äžçŽåã°ã«[[w:ãã³ã©ãŠã¹ã»ã³ãã«ãã¯ã¹|ã³ãã«ãã¯ã¹]]ã¯å
šãŠã®[[w:ææ|ææ]]({{Lang-en-short|planet}})ã倪éœãäžå¿ãšããåéåãããŠãã[[w:å°å説|å°å説]]ãæå±ããããã®åŸ[[w:ãã£ã³ã»ãã©ãŒãš|ãã£ã³ã»ãã©ãŒãš]]ã¯é·å¹Žã«ãããææã®èŠ³æž¬ãè¡ãïŒãã®èŠ³æž¬çµæãåŒç¶ãã [[w:ãšããã¹ã»ã±ãã©ãŒ|ã±ãã©ãŒ]]ã¯ãããã®çµæãããšã«èšç®ãè¡ãïŒææã®éè¡ã«é¢ããæ³åïŒ'''ã±ãã©ãŒã®æ³å'''({{Lang-en-short|Kepler's laws}})ãçºèŠããããªãïŒæç§æžã¯å€ªéœãšææã®é¢ä¿ã§è«ããŠãããïŒä»ã«ãææãšè¡æ(èªç¶è¡æïŒäººå·¥è¡æ)ã§ãæãç«ã€ã
===ã±ãã©ãŒã®ç¬¬ïŒæ³å===
ææ(è¡æ)ã¯å€ªéœ(ææ)ãïŒã€ã®çŠç¹ãšããæ¥åéåããã(æ¥åè»éã®æ³å)ã
===ã±ãã©ãŒã®ç¬¬ïŒæ³å===
[[File:Elliptical motion of man-made satellight.png|thumb|right|640px|å³ äººå·¥è¡æã®æ¥åéå]]
ææ(è¡æ)ãšå€ªéœ(ææ)ãçµã¶ååŸãåäœæéã«æãé¢ç©('''é¢ç©é床''')ã¯äžå®ã§ãã(é¢ç©é床äžå®)ã
* 蚌æ
:å°çã®åšããéåããäººå·¥è¡æã«ã€ããŠèãããå³å³ã®ããã«å°çã®äžå¿ãåç¹ãšããŠ<math>xy</math>å¹³é¢ããšãïŒå°çã®è³ªéã<math>M</math>ïŒäººå·¥è¡æã®è³ªéã<math>m</math>ïŒäžæåŒå宿°ã<math>G</math>ïŒæå»<math>t</math>ã«ãããäººå·¥è¡æã®äœçœ®ã<math>\overrightarrow r(t)=(x(t),\ y(t))</math>ãšãããäººå·¥è¡æã®è§éåéã<math>l</math>ãšãããš
::<math>l=m\left(x(t)\frac{dy(t)}{dt}-y(t)\frac{dx(t)}{dt}\right)</math>. ((3.1)ãåç
§)
:䞡蟺ãæé埮åããŠ
::<math>\begin{align}\frac{dl}{dt} & =m\left(\frac{dx(t)}{dt}\frac{dy(t)}{dt}+x(t)\frac{d^2y(t)}{dt^2}-\frac{dy(t)}{dt}\frac{dx(t)}{dt}-y(t)\frac{d^2x(t)}{dt^2}\right) \\ & =m\left(x(t)\frac{d^2y(t)}{dt^2}-y(t)\frac{d^2x(t)}{dt^2}\right).\cdots\cdots(*)\end{align}</math>
:ããã§ïŒæå»<math>t</math>ã«ãããäººå·¥è¡æã®éåæ¹çšåŒã¯
::<math>m\frac{d^2\overrightarrow r(t)}{dt^2}=-G\frac{Mm}{x(t)^2+y(t)^2}\Longleftrightarrow\begin{cases}m\frac{d^2x(t)}{dt^2}=-G\frac{Mm\cdot x(t)}{(x(t)^2+y(t)^2)^\frac{3}{2}} \\ m\frac{d^2y(t)}{dt^2}=-G\frac{Mm\cdot y(t)}{(x(t)^2+y(t)^2)^\frac{3}{2}}\end{cases}</math>
::<math>\therefore \frac{d^2x(t)}{dt^2}=-G\frac{M\cdot x(t)}{(x(t)^2+y(t)^2)^\frac{3}{2}},\ \frac{d^2y(t)}{dt^2}=-G\frac{M\cdot y(t)}{(x(t)^2+y(t)^2)^\frac{3}{2}}</math>.
:ãããã<math>(*)</math>ã«ä»£å
¥ããŠ
::<math>\frac{dl}{dt}=m\left\{x(t)\cdot\left(-G\frac{M\cdot y(t)}{(x(t)^2+y(t)^2)^\frac{3}{2}}\right)-y(t)\cdot\left(-G\frac{M\cdot x(t)}{(x(t)^2+y(t)^2)^\frac{3}{2}}\right)\right\}=0</math>.
:ããã«è§éåé<math>l</math>ã¯äžå®ã§ãã(è§éåéã¯ä¿åãã)ã
:ããã§ïŒæå»<math>t</math>ã«ãããäººå·¥è¡æã®é床<math>\frac{d\overrightarrow r(t)}{dt}=\overrightarrow v(t)</math>ãšãïŒå³ã®ããã«äººå·¥è¡æã®äœçœ®ãã¯ãã«<math>\overrightarrow r(t)</math>ãšé床ãã¯ãã«<math>\overrightarrow v(t)</math>ã®ãªãè§ã<math>\theta</math>ïŒäœçœ®ãã¯ãã«<math>\overrightarrow r(t)</math>ãš<math>x</math>軞ãšã®ãªãè§ã<math>\phi</math>ãšããã以äžãã
::<math>\begin{align}\frac{l}{2m}&=\frac{1}{2}\left(x(t)\frac{dy(t)}{dt}-y(t)\frac{dx(t)}{dt}\right) \\ &=\frac{1}{2}(|\overrightarrow r(t)|\cos\phi\cdot |\overrightarrow v(t)|\sin(\theta+\phi)-|\overrightarrow r(t)|\sin\phi\cdot |\overrightarrow v(t)|\cos(\theta+\phi)) \\ & =\frac{1}{2}(|\overrightarrow r(t)||\overrightarrow v(t)|\{\sin\theta(\cos^2\phi+\sin^2\phi)+\cos\phi\cos\theta\sin\phi-\sin\phi\cos\theta\cos\phi\} \\ & =\frac{1}{2}|\overrightarrow r(t)||\overrightarrow v(t)|\sin\theta=\mathrm{const}.\end{align}</math> (<math>\mathrm{const}.</math>ã¯äžå®ã®æå³)
===ã±ãã©ãŒã®ç¬¬ïŒæ³å===
ææ(è¡æ)ã®å
¬è»¢åšæ<math>T</math>ã®ïŒä¹ã¯æ¥åè»éã®é·ååŸ(åé·è»ž)<math>a</math>ã®ïŒä¹ã«æ¯äŸããã
:<math>\frac{T^2}{a^3}=</math>äžå®ïŒ
[[Category:é«çåŠæ ¡æè²|ç©ãµã€ã2ã¡ãããšãããšã]]
[[Category:ç©çåŠ|é«ãµã€ã2ã¡ãããšãããšã]]
[[Category:ç©çåŠæè²|é«ãµã€ã2ã¡ãããšãããšã]]
[[Category:é«çåŠæ ¡çç§ ç©çII|ã¡ãããšãããšã]] | 2005-05-08T07:30:55Z | 2024-03-02T15:54:32Z | [
"ãã³ãã¬ãŒã:ã³ã©ã ",
"ãã³ãã¬ãŒã:See also",
"ãã³ãã¬ãŒã:Lang-en-short"
] | https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E7%89%A9%E7%90%86/%E5%8A%9B%E5%AD%A6 |
1,944 | é«çåŠæ ¡ç©ç/ç©çII/黿°ãšç£æ° | ãŸãã髿 ¡ç©çã§ãããèªé»äœã(ããã§ããã)ãšã¯ãéåžžã®ã»ã©ããã¯ã鲿¯(ãã€ã«)ãªã©é»æ°ãéããªãç©è³ªã®ãã¡é«ãèªé»çã瀺ããã®ã§ãã
éå±ã¯å°äœãªã®ã§èªé»äœã§ã¯ãããŸããã
ã§ã¯ãèªé»äœã®ç©çã«ã€ããŠã説æããŸãã
ã³ã³ãã³ãµãŒã«èªé»äœãå
¥ãããšãèªé»äœãèªé»å極ãèµ·ãããããã³ã³ãã³ãµã®ãã©ã¹æ¥µæ¿ã§çºçãã黿°åç·ã®ããã€ããæã¡æ¶ãããŸãã
ãã®çµæãèªé»äœã®å
¥ã£ãã³ã³ãã³ãµãŒã®æ¥µæ¿éã®é»å Žã¯ã極æ¿ã®é»è·å¯åºŠã§çºçããé»è·ãç空äžã§ã€ããé»å Žããã匱ããªããŸãã
ãã®çµæãéé»å®¹éãå€ããŸãã
ããŠãç空äžã®éé»å®¹éã®å
¬åŒã¯ã
ã§ããã
èªé»äœã®ããå Žåã®éé»å®¹éã¯ã
ãšãªããŸãã
ããã§ã ε {\displaystyle \varepsilon } ãèªé»ç(ããã§ããã€)ãšãããŸãã ε 0 {\displaystyle \varepsilon _{0}} ããç空äžã®èªé»çãšãããŸãã
ããã§ãæ¯
ããæ¯èªé»ç(ã² ããã§ããã€)ãšãããŸãã
ã€ãŸãã ε r {\displaystyle \varepsilon _{r}} ã¯æ¯èªé»çã§ãã ãã£ãœãã ε 0 {\displaystyle \varepsilon _{0}} ãã㳠ε {\displaystyle \varepsilon } ã¯ãæ¯èªé»çã§ã¯ãããŸããã
æ¯èªé»ç ε r {\displaystyle \varepsilon _{r}} ããã¡ããã°ãéé»å®¹é C ã®åŒã¯ã
ãšæžããŸãã
U=2â1CV2
ç£ç³ã®ãŸããã«ã¯ç©äœãåããåã®ãããã®ãçããŠããŸãã ãããç£å Ž(ãã°)ãšåŒã¶ãç£ç(ããã)ãšãããã
黿µãæµããŠãããšãã«ãããã®ãŸããã«ã¯ãå³ããã®æ³å(right-handed screw rule)ã«åŸãåãã«ç£çãçããŸãã 黿µI[A]ãçŽç·çã«æµããŠãããšããç£çã®å€§ãã㯠B = ÎŒ 0 2 Ï a I {\displaystyle B={\frac {\mu _{0}}{2\pi a}}I} ã§ããããšãç¥ãããŠããŸãã
ããã§ãaã¯ç£æå¯åºŠã枬ãç¹ãšãé»ç·ã®è·é¢ã
ãŸãã ÎŒ 0 {\displaystyle \mu _{0}} ã¯ç空ã®éç£ç(ãšãããã€ãpermeability)ã衚ããå€ã¯ 4 Ï Ã 10 â 7 {\displaystyle 4\pi \times 10^{-7}} [H/m] ã§ãã
ç£å Žã䌎ãç©äœãéåãããšããã®ãŸããã«ã¯é»å Žãçããããšãé»ç£èªå°(ã§ããããã©ããelectromagnetic induction)ãšãããŸãã ä»®ã«ããœã¬ãã€ã(solenoidãã³ã€ã«ã®ããš)ã®è¿ãã§ãããè¡ãªã£ããšãããšãçããé»å Žã«ãã£ãŠãœã¬ãã€ãã®äžã«ã¯é»æµãæµããŸãã çããé»å Žã®å€§ããã¯ã E â = 1 2 Ï a d B â d t {\displaystyle {\vec {E}}={\frac {1}{2\pi a}}{\frac {d{\vec {B}}}{dt}}} ãšãªããŸãã(ååŸaã®å圢ã®ã³ã€ã«ã®å Žåã) Eã®åäœã¯[V/m]ã§ãããBã®åäœã¯[T]ã§ãã
ç£å Žã®åãã«ãã£ãŠé»å ŽãåŒãèµ·ããããããšãé»ç£èªå°ã®ã»ã¯ã·ã§ã³ã§èŠãã
ãŸããå®éã«ã¯é»å Žã®å€åã«ãã£ãŠç£å ŽãåŒãèµ·ããããããšãå®éšã«ãã£ãŠç¥ãããŠããŸãã ããã«ãã£ãŠäœããªã空éäžãé»å Žãšç£å ŽãäŒæããŠããããšãäºæ³ãããŸãã
(:é»ç£æ³¢ã®äŒæã®schematicãªçµµ)
ãŸããç©çå®éšå®¶ãã«ãã¯æŸé»å®éšã«ãããåä¿¡æ©ãåè·¯äžã«ã®ã£ããã®ããåè·¯ãšããŠãéä¿¡åŽã®æŸé»ã«ããé»å Žãé éçã«é¢ããäœçœ®ã«ããåä¿¡åŽã®åè·¯ã«äŒããããšã確èªããã
ãã®å®éšã®éããã«ãã¯åä¿¡åè·¯ã®åãããããããšå€ããŠå®éšããããšã«ãããéä¿¡æ©ã®åãã«å¯ŸããŠã®åä¿¡æ©ã®åãã«ãã£ãŠé»å Žã®äŒããæ¹ãç°ãªãããšãããé»å Žã®é éäœçšã«åå
æ§ãããäºãåãã£ãã
é»å Žã®ãã®äœçšã«ã¯åå
æ§ãããã®ã§ãæ³¢ã§ãããšã¿ãªãããšã¯åŠ¥åœã§ãããã
ãã«ãã®å®éšãããå®éšçã«ãããããšãšããŠ
ãå®éšçã«ããããŸãã
ç©çåŠã§ã¯ããã«ãã®å®éšã®ä»¥åãããçè«ç©çåŠè
ã®ãã¯ã¹ãŠã§ã«ã«ããã
é»ç£æ³¢ãšãããé»å Žãšç£å Žã®çžäºäœçšã«ãã£ãŠç空äžãäŒéããäºæž¬ãããŠããã
ãªã®ã§ããã«ãã®å®éšã¯ããã¯ã¹ãŠã§ã«ã®äºæž¬ããé»ç£æ³¢ã ãšã¿ãªãããã çŸä»£ã§ãç©çåŠè
ã¯ãããã¿ãªããŠããŸãã
ãªãããã¯ã¹ãŠã§ã«ãçè«èšç®ã§æ±ããé»ç£æ³¢ã®éåºŠãæ±ãããšããããã§ã«ç¥ãããŠããå
éã®å€§ãã(ããã 3Ã10 m/s )ã«ç²ŸåºŠããäžèŽããã
ãã®ããšããããå
ã¯é»ç£æ³¢ã®äžçš®ã§ããããšãåãããŸãã
ãã«ãã®å®éšã§ã¯ãå³å¯ã«ã¯å°ãªããšãæŸé»ã®é»å ŽãäŒããããšãã芳枬ã§ããŠãŸãããããããç£å Žããã®å®éšã§äŒãããšèããŠãæ¯éãçããŠç¡ãããå®éã«äººé¡ã«ã¯æ¯éã¯çããŠãªãã®ã§ãä»ã§ããã«ãã®å®éšããã¯ã¹ãŠã§ã«ã®äºæž¬ããé»ç£æ³¢ã®èšŒæã®å®éšãšããŠäŒããããŠããŸãã
ãªããå
ã«ã¯ãåå°ã屿ãåæããã€ã³ã°ã¹ãªããã®åæãªã©ããããã
ãã«ãã®æŸé»å®éšã®ãããªé»ç£æ³¢ã®ç«è±æŸé»ã®å®éšã§ããå
ã®å®éšãšåæ§ã®é
眮ã§ãé屿¿ãé
眮ããŠç¢ºèªããããšã§ãé»ç£æ³¢ãåå°ã屿ãåæããã€ã³ã°ã¹ãªããã®åæãªã©ã®çŸè±¡ãèµ·ããããšããå®éšçã«ã確èªãããŠããŸã(â» åèæç® :宿åºçã®å°éãç©çãã®æ€å®æç§æž)(â» ã€ã³ã°ã®ã¹ãªããã®é»ç£æ³¢å®éšã«é¢ããŠã¯åæé€šã®æç§æžãç©çãã«ãããŸã)ã
ãããã®ããšããããå
ã¯é»ç£æ³¢ã®äžçš®ã§ãããšã¿ãªãã®ã劥åœã§ããããšãåãããŸãã
ç£ç³ã®ãŸããã«ã¯å¥ã®ç£ç³ãåããåã®ããšãšãªããã®ãçããŠããŸãã ãããç£å Ž(ãã°ãmagnetic field)ãããã¯ç£ç(ããã)ãšåŒã¶ã(æ¥æ¬ã®ç©çåŠã§ã¯ç£å ŽãšåŒã¶ããšãå€ãããŸããæ¥æ¬ã®é»æ°å·¥åŠã§ã¯ç£çãšåŒã°ããããšãå€ããææ²»æã®èš³èªã®éã®ãæ¥æ¬åœå
ã®æ¥çããšã®éãã«éãããå°å瀟äŒçãªäºè±¡ã§ãããåŒã³æ¹ã¯ç©çã®æ¬è³ªãšã¯é¢ä¿ãªãã®ã§ãããã§ã¯ãã©ã¡ãã®è¡šçŸãçšãããã¯ãæ¬æžã§ã¯ç¹ã«ãã ãããŸãããè±èªã§ã¯ç©çåŠã»é»æ°å·¥åŠãšãâmagnetic fieldâã§å
±éããŠããŸãã)
éãã³ãã«ããããã±ã«ã«ç£ç³ãè¿ã¥ãããšãç£ç³ã«åžãä»ããããŸãã ãŸããéãã³ãã«ããããã±ã«ã«åŒ·ãç£åãäžãããšãéãã³ãã«ããããã±ã«ãã®ãã®ãç£å Žãåšå²ã«åãŒãããã«ãªããŸãã ãã®ãããªãããšããšã¯ç£å Žãæããªãã£ãç©äœãã匷ãç£å Žãåããããšã«ãã£ãŠç£å ŽãåãŒãããã«ãªãçŸè±¡ãç£å(ãããmagnetization)ãšãããŸãã
ãããã¯é»è·ã®éé»èªå°ãšå¯Ÿå¿ãããŠãç£åã®ããšãç£æ°èªå°(ããããã©ããmagnetic induction)ãšãããã ãããŠãéãã³ãã«ããããã±ã«ã®ããã«ãç£ç³ã«åŒãä»ããããããã«ç£åãããèœåãããç©äœãåŒ·ç£æ§äœ(ãããããããããferromagnet)ãšãããŸãã éãšã³ãã«ããšããã±ã«ã¯åŒ·ç£æ§äœã§ãã
é
ã¯ç£åããªãããé
ã¯ç£ç³ã«åŒãã€ããããªãã®ã§ãé
ã¯åŒ·ç£æ§äœã§ã¯ãããŸããã
éé»èªå°ãå©çšãããéé»é®èœ(ããã§ããããžã)ãšèšãããŸããäžç©ºã®å°äœãã€ãã£ãŠç©è³ªãå²ãããšã§å€éšé»å Žãé®èœããæ¹æ³ããã£ãã®ãšåæ§ã®ãç£æ°ã®é®èœããåŒ·ç£æ§äœã§ãåºæ¥ãŸããäžç©ºã®åŒ·ç£æ§äœãçšããŠãåŒ·ç£æ§äœã®å
éšã¯ç£å Žãé®èœã§ããŸãããããç£æ°é®èœ(ãããããžããmagnetic shielding)ãšãããŸããç£æ°ã·ãŒã«ããšãããã
åç£æ§äœãåããã¥ãããããããŸããããåã«ããã®ææã«å ããããç£å Žãæã¡æ¶ãæ¹åã«ãç£åãããã ãã®ææã§ãã
ãããããç£åç·ãšããŸãçžäºäœçšããªãç©è³ªãå€ããããšãã°ãã¬ã©ã¹ãæ°Žã«ããŸããç£æ°ãžã®åœ±é¿ã¯ãç空ã®å Žåãšã»ãšãã©å€ãããŸãããã¬ã©ã¹ãæ°Žã®æ¯éç£ç(ã² ãšãããã€) ÎŒ (ãã¥ãŒ)ã¯ãã»ãŒ1ã§ãã
ãªããéã®æ¯éç£çã¯ãç¶æ
ã«ãã£ãŠéç£çã«æ°çŸãæ°åã®éããããããwikipediaæ¥æ¬èªçã§èª¿ã¹ãå Žåã®éã®éç£çã¯çŽ5000ã§ãã
ã§ã¯ãéç£çãã»ãŒ1ã®ç©è³ªã¯ãç£å Žã®æ¹åã¯ãå€éšç£å ŽãåºæºãšããŠãã©ã¡ãåãã ããã? å€éšç£å Žãæã¡æ¶ãæ¹åã«ç£åããŠããã®ã ããã? ãããšããå€éšç£å Žãšåãæ¹åã«ç£åããŠããã®ã ããã?
ãã®éãããããåžžç£æ§(ãããããã)ãšåç£æ§(ã¯ãããã)ã®ã¡ãããã§ãã
ããç©è³ªããå€éšç£å Žã«ã»ãšãã©åå¿ããŸãããããããå°ãã ãå€éšç£å Žãšåãæ¹åã«ãç£åãããŠããçŸè±¡ã®ããšãåžžç£æ§ãšããã§ãããã®ãããªç©è³ªãåžžç£æ§äœãšãããŸããåžžç£æ§äœãããããç©è³ªãšããŠãã¢ã«ãããŠã ã空æ°ãªã©ãããŸãã
ãã£ãœããããç©è³ªããå€éšç£å Žã«ã»ãšãã©åå¿ããŸãããããããå°ãã ãå€éšç£å Žãæã¡æ¶ãæ¹åã«ãç£åãããŠããçŸè±¡ã®ããšãåç£æ§ãšããã§ãããã®ãããªç©è³ªãåç£æ§äœãšãããŸããåç£æ§äœãããããç©è³ªãšããŠãé
ãæ°Žãæ°ŽçŽ ãªã©ãªã©ãããŸãã
å
çŽ ãååã®çš®é¡ã«ãã£ãŠãç£æ§ã®ã¡ãããããçç±ãšããŠãååŠçµåã§ã®é»åè»éã«åå ããããšèããããŠãŸãã
ååŠã®æç§æžã®çºå±äºé
ã«ããsè»éãããpè»éããªã©ã®çè«ããããããã®çè«ã§ããã®çç±ã説æã§ãããšãããŠããŸãããªããçããå
ã«ãããšããdè»éãã®ç¹åŸŽããç£æ§ã®åå ã§ãã(蚌æã¯çç¥ããŸãã)
ããšããšã(ååŠçµåã§é»åæ®»(ã§ãããã)ã«çºçããããšã®ãããŸã)å€ç«é»åã«ã¯ç£æ§ãããããã®ç£æ§ãé»åã2åããã£ãŠ(å€ç«ã§ãªããªã)é»å察ã«ãªãäºã§ãç£æ§ãæã¡æ¶ããã£ãŠãããšèããããŸãããªããå€ç«é»åãããšããšæã£ãŠããç£æ§ã®ããšãã¹ãã³ãšãããŸããããååŠã®çè«ã§ã¯ãã¹ãã³ãäžç¢å°ãâããšäžç¢å°ãâãã®2çš®é¡ã§ããããäºãå€ãã®ã§ããããã®çç±ã¯ãããšããã©ãã°ãããããç£ç³ã®åãã2çš®é¡(ããšãã°N極ãšS極ãšãã2çš®é¡ã®æ¥µããããŸã)ã ããã§ãã
é»åæ®»ãšã¯ãååŠIã®å§ãã®ã»ãã§ãç¿ãããKæ®»ã¯8åã®é»åãå
¥ãããªã©ã®ãã¢ã¬ã®ããšã§ãã
ãŸãšãããšã
ãç£æ§äœã«ãåŒ·ç£æ§äœããããã®ãªããèªé»äœã«ãã匷èªé»äœããããã®ã?ãã®ãããªçåã¯ããšããããæãã§ãããã
ãã¿ã³é
žé PbTiO 3 {\displaystyle {\ce {PbTiO3}}} ããããªãé
žãªããŠã LiNbO 3 {\displaystyle {\ce {LiNbO3}}} ããã匷èªé»äœãã«åé¡ãããå ŽåããããŸãã
ããããåŒ·ç£æ§äœãç£æ°ããŒããç£æ°ããŒããã£ã¹ã¯ãªã©ã®èšé²ã¡ãã£ã¢ã«çšããããŠããç¶æ³ãšã¯ç°ãªããã匷èªé»äœãã¯èšé²ã¡ãã£ã¢ã«ã¯çšããããŠããŸãããéå»ã«ã¯ããã®ãããªã匷èªé»äœã¡ã¢ãªãŒããç®æãç ç©¶éçºããã£ãããããã2017å¹Žã®æç¹ã§ã¯ããŸã ã匷èªé»äœã¡ã¢ãªãŒãã®ãããªããã€ã¹ã¯å®çšåããŠããŸããã
ããããä»ã®çšéã§ããããã®ç©è³ªã¯ç£æ¥ã«å®çšåãããŠããŸãã
ãã¿ã³é
žéãããªãé
žãªããŠã ã¯ããã®ç©è³ªã«å§åããããããšé»å§ãçºçããäºãããå§é»äœ(ãã€ã§ããã)ãšããçŽ åãšããŠæŽ»çšãããŠããŸãã(â» ãé«çåŠæ ¡ååŠI/ã»ã©ããã¯ã¹ãã§ãå§é»æ§ã»ã©ããã¯ã¹ããšããŠå§é»äœã玹ä»ã髿 ¡ååŠã®ç¯å²å
ã§ãã2017幎ã®çŸåšã§ã¯é«æ ¡3幎ã®éžæååŠ(å°éååŠ)ã®ç¯å²å
ã§ãããã)
ãªãããããã®å§é»äœã«ãé»å§ããããããšãç©è³ªãã²ããã
ãã®ãããå§é»äœã«äº€æµé»å§ãå ããããšã§ãå§é»äœãçæéã§äœåãåšæçã«æ¯åããããšã«ãããå§é»äœã®åšå²ã«ãã空æ°ãæ¯åãããäºãã§ããã®ã§ãè¶
鳿³¢ãçºçããããã®çŽ åãšããŠããã§ã«å®çšåãããŠããŸãã
ãªããããçš®é¡ã®ç©è³ªããå§åããããããšé»å§ãçºçããçŸè±¡ãèµ·ããç©è³ªã®å Žåããã®ãããªæ§è³ªã®ããšãå§é»æ§(ãã€ã§ããã)ãšãããŸãã
ã±ã€çŽ Si ãã²ã«ãããŠã Ge ã¯ãå°äœãšçµ¶çžäœã®äžéã®æµæçããã€ããšãããã±ã€çŽ (ã·ãªã³ã³)ãã²ã«ãããŠã ãªã©ã¯åå°äœãšèšãããŸãã
ãã®åå°äœã®çµæ¶ã«ããããã«ããªã³Pãªã©ã®äžçŽç©ãå
¥ããããšã§ãæµæçã倧ããäžããããŸãã
ã·ãªã³ã³ååã¯äŸ¡é»åã4åã§ãããã·ãªã³ã³ã®çµæ¶ã¯ã4ã€ã®äŸ¡é»åãå
±æçµåãããŠããŸãã
ããã«ãªã³Pãå ãããšããªã³ã¯äŸ¡é»åã5åãªã®ã§ã1åã®äŸ¡é»åãäœãããã®äœã£ã䟡é»åãèªç±é»åãšããŠãçµæ¶ãåãåããããã«ãªããŸãã
ãã®ãããªä»çµã¿ã§ãã·ãªã³ã³ã«ãªã³ãå ããããšã§ãæµæçã倧ããäœäžããããšããã®ãå®èª¬ã§ãã
ãã®ããã«ãè² ã®é»åãäœãããšã§ãå°é»çãäžãã£ãŠãåå°äœã nååå°äœ ãšãããŸãã(ãnã㯠negative ã®ç¥ã)
ã·ãªã³ã³ã®çµæ¶ã«ãäžçŽç©ãšããŠãããŠçŽ Bãã¢ã«ãããŠã Alãªã©ã䟡é»åã3åã®å
çŽ ãå ãããšãé»åã1åãè¶³ããªããªããŸãã
ãã®ãé»åã®äžè¶³ããã¶ãã®ç©ºåžãããŒã«(postive holeãæ£å)ãšãããŸãã
ããŒã«ã¯æ£é»è·ããã¡ãŸãã
é»å§ãæãããšããã®ããŒã«ãåããããã«è¿ãã®çµåã«ãã£ãé»åãç§»åããŸãããããšã®é»åããã£ãå Žæã«æ°ããªããŒã«ãã§ããã®ã§ãèŠããäžã¯ããŒã«ãé»åãšéæ¹åã«åããããã«èŠããŸãã
ãã£ãŠãããŒã«ãåãããšã§ã黿µãæµãããšèŠãªããŸãã
ãŸãããã®ããã«ãæ£ã®é»è·ããã€ç²åã«ãã£ãŠå°é»çãäžãã£ãŠãåå°äœã pååå°äœ ãšãããŸãã(ãpã㯠positive ã®ç¥ã)
nååå°äœã§ã¯ãèªç±é»åã黿µãéã¶ã
pååå°äœã§ã¯ãããŒã«ã黿µãéã¶ã
ãã®ããã«ãåå°äœäžã§é»è·é»åã®æ
ãæãããã£ãªã¢(carrier)ãšãããŸãã
ã€ãŸããnååå°äœã®ãã£ãªã¢ã¯é»åã§ãpååå°äœã®ãã£ãªã¢ã¯ããŒã«ã§ãã
pååå°äœãšnååå°äœãæ¥åã(pnæ¥å)ãç©äœããäžæ¹åã®ã¿ã«é»æµãæµãã
ãã®ãããªéšåããã€ãªãŒã(diode)ãšãããŸãã
påŽã«æ£é»å§ãæããnåŽã«è² é»å§ãæããæã黿µãæµããŸãã
ãã£ãœããpåŽã«è² é»å§ãæããnåŽã«æ£é»å§ãæããŠãã黿µãæµããŸããã
åè·¯ã«ãããŠããã€ãªãŒãã黿µãæµãåããé æ¹å(ãã
ãã»ãããŸããã)ãšãããŸããé æ¹åãšã¯å察åããéæ¹åãšãããŸãããã€ãªãŒãã®éæ¹åã«ã¯ã黿µã¯æµããŸããã
ãã®ããã«äžæ¹åã«æµããä»çµã¿ã¯ããã€ãªãŒãã§ã¯ãã€ãã®ãããªä»çµã¿ã§ã黿µãæµããããã§ãã
ãã®ããã«äžæ¹åã«ã ã黿µãæµãããšãæŽæµ(ãããã
ã)ãšãããŸãããªããåå°äœã䜿ããªããŠããç空管ã§ãæŽæµã ããªãå¯èœã§ãã(ãã ãç空管ã®å Žåãç±ã®çºçãèšå€§ã§ãã£ãããèä¹
æ§ãå£ãã®ã§ãé»åéšåãšããŠã®å®çšæ§ã¯ã空管ã¯äœãã®ã§ãçŸä»£ã¯ç空管ã¯é»åéšåãšããŠã¯äœ¿ãããŠããŸããã)
ããœã³ã³ã§ãããžã¿ã«æ³¢åœ¢ãããžã¿ã«ä¿¡å·ã®ããã«åè§ã®é»æµæ³¢åœ¢ãäœã£ãŠããæ¹æ³ã¯ãããããããã®ãã€ãªãŒããšãåŸè¿°ãããã©ã³ãžã¹ã¿ãšããããŸãçµã¿åãããããšã§ãããžã¿ã«æ³¢åœ¢ãã€ãããšããä»çµã¿ã§ãã(â» æ°ç åºçã®æ€å®æç§æžããããããèŠè§£ã§ãã)
ãã€ãªãŒãã®påŽã«æ£é»å§ãããããã£ãœãnåŽã«è² é»å§ãããããšãpåŽã§ã¯æ£é»æ¥µã®æ£é»å§ããããŒã«ãåçºããŠæ¥åé¢ãžãšåããããã£ãœãnåŽã§ã¯èªç±é»åãè² é»æ¥µããåçºããŠæ¥åé¢ãžãšåããããããŠãæ¥åé¢ã§ãããŒã«ãšèªç±é»åãã§ãããæ¶æ»
ããŸãããã®çµæãèŠæãäžãæ£é»è·ããæ£é»æ¥µããè² é»æ¥µã«ç§»åããã®ãšãåçã®çµæã«ãªããŸãã
ãããŠãæ£é»æ¥µãããã€ãã€ããšããŒã«ãäŸçµŠãããã®ã§ã黿µãæµãç¶ããŸãã
ãã£ãœããpåŽã«è² é»å§ãæããnåŽã«æ£é»å§ãæããæãpåŽã§ã¯ããŒã«ã¯é»æ¥µ(黿¥µã«ã¯è² é»å§ãæãã£ãŠãŸã)ã«åŒãå¯ããããæ¥åé¢ããã¯é ããããŸããåæ§ã«nåŽã§ã¯èªç±é»åã黿¥µ(æ£é»å§ãæãã£ãŠãŸã)ã«åŒãå¯ããããæ¥åé¢ããã¯é ããããŸãã
ãã®çµæãæ¥åé¢ã«ã¯ãäœåãªããŒã«ãäœåãªèªç±é»åããªãç¶æ
ãšãªãããã£ãŠæ¥åé¢ã®ä»è¿ã«ã¯ãã£ãªã¢ããªãããã®æ¥åé¢ä»è¿ã®ãã£ãªã¢ã®ç¡ãéšåã¯ç©ºä¹å±€(ãããŒããããdepletion layer)ãšåŒã°ããŸãã
ãããŠããã以éã¯ãããŒã«ãèªç±é»åããããã©ãã«ãç§»åã®äœå°ããªãã®ã§ããã£ãŠé»æµãæµããŸããã
åå°äœã3ã€npnãŸãã¯pnpã®ããã«çµã¿åããããšã黿µãå¢å¹
(ãããµã)ããããšãã§ããŸããå¢å¹
äœçš(ãããµãããã)ãšãããŸãã
NPNãšã¯ãç端ããé ã«èŠãŠNåã»Påã»Nåã®é ã«äžŠãã§ããšããäºã§ãã
åæ§ã«ãPNPãšã¯ãç端ããé ã«èŠãŠNåã»Påã»Nåã®é ã«äžŠãã§ããšããäºã§ãã
å¢å¹
ãšãã£ãŠãããã£ããŠç¡ãããšãã«ã®ãŒãçºçããããã§ã¯ãªãã®ã§ãæ··åããªãããã«ã
説æã®ç°¡ç¥åã®ãããå€éšé»æºãçç¥ãããäºãããããå®éã¯å€éšé»æºãå¿
èŠã§ããåå°äœçŽ åã¯å°ããªé»æµããæµããªãã®ã§ã黿µãæžããããã®æµæçŽ åãšããŠã®ä¿è·æµæ(ã»ããŠãããŸããã)ãå¿
èŠã§ãã
ãªããå³ã®ããã«é·æ¹åœ¢ç¶ã«äžŠãã§ããæ¹åŒã®ãã©ã³ãžã¹ã¿ããã€ããŒã©ãã©ã³ãžã¹ã¿ãšãããŸãã(â» æ€å®æç§æžã®æ°ç åºçã®æç§æžã§ãããã€ããŒã©ãã©ã³ãžã¹ã¿ããã³ã©ã ã§ç¿ãã)
ãã€ããŒã©ãã©ã³ãžã¹ã¿ã«ã¯ã端åãäž»ã«3ã€ãããããšããã¿ãããããŒã¹ãããã³ã¬ã¯ã¿ããšããåèš3ã€ã®ç«¯åããããŸãã
ãã€ããŒã©ãã©ã³ãžã¹ã¿ã§ã®é»æµã®å¢å¹
ãšã¯ãããŒã¹é»æµãå¢å¹
ããŠã³ã¬ã¯ã¿ã«éããã§ã(PNPã®å Žå)ã黿µã®åãã¯PNPåã®ã°ãããš NPPåã®ã°ãããšã§ã¯ç°ãªãããã©ã¡ãã®å Žåã§ãããŒã¹é»æµãå¢å¹
ããããšããä»çµã¿ã¯å
±éã§ãã
ããŠãæš¡åŒå³ã§ã¯æš¡åŒçã«çãäžã®åå°äœã¯ããããå°ããã«æžãããããå®éã®ãã©ã³ãžã¹ã¿ã¯çãäžã®åå°äœã¯ããã§ã¯ãªãã®ã§ãåèçšåºŠã«ã
æè²ã§ã¯ãåå°äœã®é«æ ¡çãå°éå€(é»åå°æ»ä»¥å€)ã®äººããã«ã¯ããããã€ããŒã©ãã©ã³ãžã¹ã¿ãåçŽãªã®ã§ç޹ä»ãããããå®éã«åžè²©ã®ã³ã³ãã¥ãŒã¿éšåãªã©ã§ãã䜿ããããã©ã³ãžã¹ã¿ã®æ¹åŒã¯ããããšã¯åœ¢ç¶ããã£ããç°ãªããŸãã
åžè²©ã®ã³ã³ãã¥ãŒã¿éšåã®ãã©ã³ãžã¹ã¿ã«ã¯ãé»ç广ãã©ã³ãžã¹ã¿ãšããããæ¹åŒã®ãã®ããããçšããããŸãã(ãã¡ãããé»ç广ãã©ã³ãžã¹ã¿ã«ãããå¢å¹
ãã®æ©èœããããŸãã)
(⻠詳ããã¯å€§åŠã®é»æ°å·¥åŠãŸãã¯å·¥æ¥é«æ ¡ã®é»ååè·¯ãªã©ã®ç§ç®ã§ç¿ãã)
ãã©ã³ãžã¹ã¿ã¯ãåè·¯å³ã§ã¯ãæš¡åŒçã«äžå³ã®ããã«æžãããŸãã
ãã€ãªãŒãããã©ã³ãžã¹ã¿ã®ä»ã«ãåå°äœãçµã¿åãããé»åéšåã¯ããã®ã§ãã(ä»ã«ãããµã€ãªã¹ã¿ããªã©è²ã
ãšãããŸã)ã髿 ¡ç©çã®ç¯å²ãè¶
ããã®ã§ã説æã¯çç¥ããŸãã(â» ããä»äºã§å°éçãªæ
å ±ãå¿
èŠã«ãªãã°ãå·¥æ¥é«æ ¡ããã®ãé»ååè·¯ãã®æç§æžã«ãã£ãã詳ããæžããŠããã®ã§ããããèªãã°ããã§ãããªããæžåºã®è³æ Œã³ãŒããŒæ¬ã«ãã黿°å·¥äºå£«ã黿°äž»ä»»æè¡è
詊éšãªã©ã®å¯Ÿçåã«ã¯ãã»ãŒé»ååè·¯ãç¯å²å€ãªã®ã§ãããŸãé»ååè·¯ã®èª¬æã¯æžããŠãŸããããªã®ã§ãå·¥æ¥é«æ ¡ãé»ååè·¯ãã®æç§æžããŸãã¯å·¥æ¥é«å°ãªã©ã®åçã®ç§ç®ã®æç§æžãåç
§ã®ããšã)
ããœã³ã³ã®CPUãªã©ã®éšåããäžèº«ã®å€ãã¯åå°äœã§ããããã€ãªãŒãããã©ã³ãžã¹ã¿ãªã©ã®çŽ åãCPUãªã©ã®å
éšã«ãããããããŸãããšèšãããŠããŸãã(â» ä»ã«ããæ°Žæ¶æ¯ååããªã©è²ã
ãšCPUå
ã«ã¯ ããããç©ç2ã®ç¯å²å€ãªã®ã§èª¬æãçç¥ã)
éç©åè·¯ãLSI(Large Scale Integratedãå€§èŠæš¡éç©åè·¯)ãªã©ãšèšãããé»åéšåãããªã«ãéç©(ãéç©ããè±èªã§ integrate ã€ã³ãã°ã¬ãŒã ãšãã)ããã®ããšãããšãåå°äœçŽ åãéç©ãããšèšãæå³ã§ãã
ãªãããICã(ã¢ã€ã·ãŒ)ãšã¯ Integrated Circuit ã®ç¥ç§°ã§ããããããåèš³ãããã®ããéç©åè·¯ãã§ãã
ã€ãŸããéç©åè·¯ãLSIã®äžèº«ã¯ãåå°äœã§ããããã©ã³ãžã¹ã¿ãªã©ã®çŽ åãé«å¯åºŠã§ããã®åè·¯äžã«è©°ãŸã£ãŠããŸãã
é»åéšåã®åå°äœã®ææãšããŠã¯ãéåžžã¯ã·ãªã³ã³çµæ¶ã䜿ãããŸãã(â» åæé€šãæ°ç ãªã©ãçµæ¶ã§ããããšãèšåã)
ç ç©¶éçºã§ã¯ã·ãªã³ã³ä»¥å€ã®ææãç ç©¶ãããŠããäžéšã®ç¹æ®çšéã§ã¯GaAsãInGaPãªã©ãå©çšãããŠããã(â» æ°ç ã®æ€å®æç§æžã¯GaAsãInGaPãªã©ã«ã³ã©ã ã§èšå)ããããçŸç¶ã§ã¯ãã·ãªã³ã³ãåžè²©ã®ã³ã³ãã¥ãŒã¿éšåäžã®åå°äœçŽ åã®ææã§ã¯äž»æµã§ãã
ãªããã·ãªã³ã³åå°äœã®ææå
éšã¯ã·ãªã³ã³çµæ¶ã§ãããã衚é¢ã¯ä¿è·èããã³çµ¶çžã®ããã«é
žåãããããŠãããã·ãªã³ã³åå°äœè¡šé¢ã¯é
žåã·ãªã³ã³ã®ä¿è·èã«ãªã£ãŠããŸããã·ãªã³ã³ãé
žåãããšãçµ¶çžç©ã«ãªãã®ã§ãä¿è·èã«ãªãããã§ã(â» æ°ç åºçã®æç§æžãããèšã£ãŠããŸãã)
åå°äœã®å
éšã«ãæ·»å ç©ãªã©ã§ç¹æ§ãå€ããããšã«ãããæµæãã³ã³ãã³ãµãåå°äœå
éšã«è£œé ã§ããŸãã(â» æ°ç ããæµæãã³ã³ãã³ãµãåå°äœå
éšã§äœã£ãŠããäºã«èšåã)
(â» ç¯å²å€: )ããããã³ã€ã«ã¯åå°äœå
éšã«äœãããšãåºæ¥ç¡ãã§ãã
ç£å ŽBã®äžããé»è·qã®è·é»ç²åãé床vã§éåãããšãããŒã¬ã³ãåã¯ãã¯ãã«å€ç©ãçšã㊠f=qã»vÃB ã®åãç²åã«åãããããã§èŠ³æž¬è
ã®åº§æšç³»ãå€ãããšããŠãåãç²åããç²åãšåãæ¹åã«é床vã§åã座æšåœ¢Kã®äžã®èŠ³æž¬è
ããèŠããã©ããªãã? 座æšç³»Kã§ã¯ãç²åã®é床㯠v(K)=0 ã§ãããç£æã®é床ã Vb ãšãããšãåã®åº§æšç³»ã®ç²åãšã¯å察æ¹åã«åãã®ã§ã
æ°ãã座æšç³»Kãã芳枬ããŠããç²åã f=qã»vÃB ã®å€§ããã®åãåããŠå éãããããšã«ã¯å€ãããŸãããã座æšç³»kã§ã¯ãè·é»ç²åã¯éæ¢ããŠããã®ã«ãããŒã¬ã³ãåãåãããšèããã®ã¯äžåçã§ããç£æã¯ãVb=-v ã§éåããŠããã®ã§ãç£æã®éåã«ãã£ãŠ f=qã»(-Vb)ÃB = -qã»VbÃB ã®åãåãããšèããã¹ãã§ããç²åã質é0ã®è³ªç¹ãšã¿ãªãã°ã鿢ããŠããè·é»ç²åã«åãåãŒããã®ã¯ãé»å Žã ãã ãããã€ãŸãé床 Vb ã§éåããç£æãã E=-VbÃB ã®èªå°é»å Žãèªèµ·ããããšã«ãªããŸãããã®ãšããç£å Žãšèªå°ãããé»å Žã¯åçŽã§ãã
ããããéåããé»å Žã¯ç£çãäœãããšããã°ãã¢ã³ããŒã«ã®æ³å ãçŽç·ç¶ã«ç¡éã«é·ãå°ç·ãæµãã 黿µI ã¯è·é¢R ã ãé¢ããå Žæã« Bã»2Ïr=ÎŒI ã®ç£å ŽãäœãŸããããšããçŸè±¡ã¯ããã€ã¯ãå°ç·ã®äžã§è·é»ç²åãéåããããšã«ãã£ãŠãè·é»ç²åãšãã£ããã«ãã®ç²åãäœãé»å Žãåãããã®é»å Žã®éåããç£å Žãèªèµ·ããŠããŸããããšããå¯èœæ§ããããŸãã 黿µãæµããŠããç¡éé·ã®ããŸã£ãããªå°ç·ãèããŸããç·å¯åºŠ q[C/m] ã§ååžããé»è·ã¯ãå³ã®ããã«åç察称ãªé»è·ãäœãŸãã
(â» ããã«å³ãã)
çŽç·ããè·é¢rã®ãšãã®é»æ°åç·ã®å¯åºŠDã¯
ãã£ãŠ
黿µ I ã¯é»è·ååž q ãé床 Ve ã§éåããŠãããšããŠ
ãšå®çŸ©ããã°ã
黿µ qVe ãè·é¢ r ã®ãšããã«äœãç£å ŽBã¯ã¢ã³ããŒã«ã®æ³åããã
ãšãªããŸãã
ãã®ãšããç£å Žã®åãã¯ãVe ãã ååŸræ¹å ã«ãããåãåãã§ãã
åããŸã§ãµãããŠãã¯ãã«ç©ã§è¡šãã°ã
ã€ãŸã
ãšãããéèŠãªçµè«ãåŸãããŸãã
ãããã¯ã ÎŒH=B ããã¡ã㊠B=ÎŒH=εΌ Ve ÃE ãã
ã§ãã
ãŸãšã
é床 Vbã§éåããç£æBã¯
ã®èªå°é»å Žãèªèµ·ããŸãã ã»ã»â¡1
é床 Ve ã§éåããé»å Ž E ã¯
ã®èªå°ç£å ŽãäœãŸãã
E,Bã®ãããã«ãD,Hã䜿ã£ãŠè¡šèšããã°ã
ãã€
ããŠãé»ç£æ³¢ãé床Cã§ç空äžãäŒãããšããã°ã Vb = Ve = C ãšããŸãã â¡1åŒãšâ¡2åŒã®å€ç©ããšããšã
ãã£ãŠ
ã§ãã
ãã£ãŠãé»ç£æ³¢ã®é床㯠c = 1 ε ÎŒ {\displaystyle c={\frac {1}{\sqrt {\varepsilon \mu }}}} ãšäºæž¬ã§ããŸãã
ãã®ÎµãšÎŒã«å®æž¬å€ãå
¥ãããšãå
éã®æž¬å®å€ c = 299792458 m / s {\displaystyle c=299792458m/s} ãšãé«ã粟床ã§äžèŽããŸãã
ãã®äºãããå
ã¯ãé»ç£æ³¢ã§ããäºãåãããŸãããŸããé»ç£æ³¢ã¯ãå
é床Cã§ç空äžãäŒããŸãã
ãŸãããããããéåé»å Žã®èªå°ããç£å Žã¯
ãšãå€åœ¢ã§ããŸãã
3åŒããã¬ãŠã¹ã®æ³å(1åŒ) ãšçµã¿åããããšãã¢ã³ããŒã«ã®æ³å(2åŒ)ãåŸãããŸãã ãã£ãŠããé床 Ve ã§éåããé»å Ž E ã¯ã B=εΌ Ve ÃE ã®èªå°ç£å ŽãäœãŸããããšããéçšã劥åœã ã£ãããšãããããŸãã
é»ç£æ³¢ã§ã¯é»å Ž E ãšç£å Ž B ãå
é C ã§éåããŠããã®ã§ ç£æã®éåé床 Vb 㯠Vb = C ã§ãããèªå°é»å Ž E 㯠E =-VbÃB ã§ããã®ã§ãäž¡åŒãã E = -cÃB ã§ãã(é»ç£æ³¢ã®é»å Žãšç£å Žã®é¢ä¿åŒ)ãªã
ã§ããã®ã§ã é»ç£æ³¢ã¯
ã®æ¹åã«é²ãã§ããã¯ãã§ãããšããããšã泚ç®ããŸãããã
ãã® E à H {\displaystyle \mathbb {E} \times \mathbb {H} } ã§å®çŸ©ãããéã ãã€ã³ãã£ã³ã° ãã¯ãã« ãšãã¶ã ããã¯åäœé¢ç©ããšãã£ãŠæµãåºãé»ç£å Žã®ãšãã«ã®ãŒã®æµãã®éãããããã
ããŠãé»ç£å Žã®ãšãã«ã®ãŒå¯åºŠã¯ u = 1 2 ε E 2 + 1 2 ÎŒ H 2 {\displaystyle u={\frac {1}{2}}\varepsilon E^{2}+{\frac {1}{2}}\mu H^{2}} ãªã®ã§ãããã«é»ç£æ³¢ã®é»å Žãšç£å Žã®é¢ä¿åŒ E = â C à B {\displaystyle \mathbb {E} =-\mathbb {C} \times \mathbb {B} } ã代å
¥ããŠã
ã®é¢ä¿ãçšãããšã(ãšãã«ã®ãŒã§ã¯ã2ä¹ã«ãããã€ãã¹ç¬Šå·ããªããªãã®ã§ã絶察å€ãåã£ãŠ|E|=|cÃB| ãšããŠãããšãèšç®ãç°¡åã«ãªãå ŽåããããŸãã)
çµæãšããŠ
ãšãªããŸãã é»ç£æ³¢ããå£ã«ããã£ãŠåžåããããšããåäœæéã«åäœé¢ç©ããã å
éC ã®å€§ããã®äœç©ã®ãªãã®é»ç£æ³¢ãå£ã«è¡çªããã®ã§ã
ã®ãšãã«ã®ãŒããåäœæéã«åäœé¢ç©ã«æµã蟌ãã¯ãã§ãã
s= cã»u ã« u= εã»E^2 ã代å
¥ããŠã ε ÎŒ â
c 2 = 1 {\displaystyle \epsilon \mu \cdot c^{2}=1} ãš |E|=|cÃB|ãå©çšãããšãçµæçã«
ã§ãã
ãã£ãŠãã€ã³ãã£ã³ã° ãã¯ãã« EÃH ã¯åäœé¢ç©ãéã£ãŠæµãåºãé»ç£å Žã®ãšãã«ã®ãŒã®æµããããããã
ãã€ã³ãã£ã³ã° ãã¯ãã« S = EÃH = εΌ(C)EÃH ã¯
ã§ãã
倩äžãçãªèª¬æã§ããããã® G=DÃB ãšããéã¯ãéåéã®å¯åºŠã§ãããã®é G=DÃB ããé»ç£æ³¢ã®ãéåéå¯åºŠã(ããã©ããããã¿ã€ã©)ãšãããŸããå®éã«ãDÃB ã®åäœã¯
ãšãªããŸãã ãããã«ãéåéã®å¯åºŠã®åäœãšçããã
ãšããã§ãã®ã¡ã®åå
ã§ç¿ãããå
é»å¹æã§ã¯ ãšãã«ã®ãŒuãšéåépã®é¢ä¿ã¯ãå
é床Cããã¡ããŠã u=cp ãšæžããŸãã
ãããã
åããŸã§å«ããŠ
ãšãªã£ãŠã確ãã« G = DÃB ã¯éåéå¯åºŠãšãªããŸãã
é·ãLã®ãŸã£ãããªééããé床vã§ç£å ŽBã®äžã暪åããšããŸããç°¡åã®ãããééã®è»žãšé床vã®æ¹åãšç£å ŽBã¯åçŽãšããŸãããã®ãšããééã®äžã®é»è·ã«ãããåããã³é»å Žã¯ããŒã¬ã³ãåã«ããã
é»å ŽEã«ãã£ãŠé·ãLã ããé»è·qãäžãããããããšãã«ã®ãŒã¯ qEL å€åããŸããé»äœã¯ V=EL ã§ãã
ãããããèªå°é»å§ V ã¯ãç£æã®1ç§ãããã®æéå€åã«ãªããŸãã ã§ã¯ãä»®ã«åºå®ãããåè·¯ã®äžã«ãœã¬ãã€ããéããŠããã®ãœã¬ãã€ãã«äº€æµé»æµãæµããå Žåããåè·¯ã«èªå°é»å§ãçºçããã®ã ããããçãã¯ããããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ãŸãã髿 ¡ç©çã§ãããèªé»äœã(ããã§ããã)ãšã¯ãéåžžã®ã»ã©ããã¯ã鲿¯(ãã€ã«)ãªã©é»æ°ãéããªãç©è³ªã®ãã¡é«ãèªé»çã瀺ããã®ã§ãã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "éå±ã¯å°äœãªã®ã§èªé»äœã§ã¯ãããŸããã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ã§ã¯ãèªé»äœã®ç©çã«ã€ããŠã説æããŸãã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ã³ã³ãã³ãµãŒã«èªé»äœãå
¥ãããšãèªé»äœãèªé»å極ãèµ·ãããããã³ã³ãã³ãµã®ãã©ã¹æ¥µæ¿ã§çºçãã黿°åç·ã®ããã€ããæã¡æ¶ãããŸãã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãã®çµæãèªé»äœã®å
¥ã£ãã³ã³ãã³ãµãŒã®æ¥µæ¿éã®é»å Žã¯ã極æ¿ã®é»è·å¯åºŠã§çºçããé»è·ãç空äžã§ã€ããé»å Žããã匱ããªããŸãã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãã®çµæãéé»å®¹éãå€ããŸãã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ããŠãç空äžã®éé»å®¹éã®å
¬åŒã¯ã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ã§ããã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "èªé»äœã®ããå Žåã®éé»å®¹éã¯ã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãšãªããŸãã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ããã§ã ε {\\displaystyle \\varepsilon } ãèªé»ç(ããã§ããã€)ãšãããŸãã ε 0 {\\displaystyle \\varepsilon _{0}} ããç空äžã®èªé»çãšãããŸãã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ããã§ãæ¯",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ããæ¯èªé»ç(ã² ããã§ããã€)ãšãããŸãã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ã€ãŸãã ε r {\\displaystyle \\varepsilon _{r}} ã¯æ¯èªé»çã§ãã ãã£ãœãã ε 0 {\\displaystyle \\varepsilon _{0}} ãã㳠ε {\\displaystyle \\varepsilon } ã¯ãæ¯èªé»çã§ã¯ãããŸããã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "æ¯èªé»ç ε r {\\displaystyle \\varepsilon _{r}} ããã¡ããã°ãéé»å®¹é C ã®åŒã¯ã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ãšæžããŸãã",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "U=2â1CV2",
"title": "éé»èªå°ãšèªé»å極"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ç£ç³ã®ãŸããã«ã¯ç©äœãåããåã®ãããã®ãçããŠããŸãã ãããç£å Ž(ãã°)ãšåŒã¶ãç£ç(ããã)ãšãããã",
"title": "黿µã«ããç£ç"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "黿µãæµããŠãããšãã«ãããã®ãŸããã«ã¯ãå³ããã®æ³å(right-handed screw rule)ã«åŸãåãã«ç£çãçããŸãã 黿µI[A]ãçŽç·çã«æµããŠãããšããç£çã®å€§ãã㯠B = ÎŒ 0 2 Ï a I {\\displaystyle B={\\frac {\\mu _{0}}{2\\pi a}}I} ã§ããããšãç¥ãããŠããŸãã",
"title": "黿µã«ããç£ç"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ããã§ãaã¯ç£æå¯åºŠã枬ãç¹ãšãé»ç·ã®è·é¢ã",
"title": "黿µã«ããç£ç"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ãŸãã ÎŒ 0 {\\displaystyle \\mu _{0}} ã¯ç空ã®éç£ç(ãšãããã€ãpermeability)ã衚ããå€ã¯ 4 Ï Ã 10 â 7 {\\displaystyle 4\\pi \\times 10^{-7}} [H/m] ã§ãã",
"title": "黿µã«ããç£ç"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "",
"title": "黿µã«ããç£ç"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ç£å Žã䌎ãç©äœãéåãããšããã®ãŸããã«ã¯é»å Žãçããããšãé»ç£èªå°(ã§ããããã©ããelectromagnetic induction)ãšãããŸãã ä»®ã«ããœã¬ãã€ã(solenoidãã³ã€ã«ã®ããš)ã®è¿ãã§ãããè¡ãªã£ããšãããšãçããé»å Žã«ãã£ãŠãœã¬ãã€ãã®äžã«ã¯é»æµãæµããŸãã çããé»å Žã®å€§ããã¯ã E â = 1 2 Ï a d B â d t {\\displaystyle {\\vec {E}}={\\frac {1}{2\\pi a}}{\\frac {d{\\vec {B}}}{dt}}} ãšãªããŸãã(ååŸaã®å圢ã®ã³ã€ã«ã®å Žåã) Eã®åäœã¯[V/m]ã§ãããBã®åäœã¯[T]ã§ãã",
"title": "黿µã«ããç£ç"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "",
"title": "黿µã«ããç£ç"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ç£å Žã®åãã«ãã£ãŠé»å ŽãåŒãèµ·ããããããšãé»ç£èªå°ã®ã»ã¯ã·ã§ã³ã§èŠãã",
"title": "黿µã«ããç£ç"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ãŸããå®éã«ã¯é»å Žã®å€åã«ãã£ãŠç£å ŽãåŒãèµ·ããããããšãå®éšã«ãã£ãŠç¥ãããŠããŸãã ããã«ãã£ãŠäœããªã空éäžãé»å Žãšç£å ŽãäŒæããŠããããšãäºæ³ãããŸãã",
"title": "黿µã«ããç£ç"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "(:é»ç£æ³¢ã®äŒæã®schematicãªçµµ)",
"title": "黿µã«ããç£ç"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ãŸããç©çå®éšå®¶ãã«ãã¯æŸé»å®éšã«ãããåä¿¡æ©ãåè·¯äžã«ã®ã£ããã®ããåè·¯ãšããŠãéä¿¡åŽã®æŸé»ã«ããé»å Žãé éçã«é¢ããäœçœ®ã«ããåä¿¡åŽã®åè·¯ã«äŒããããšã確èªããã",
"title": "黿µã«ããç£ç"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ãã®å®éšã®éããã«ãã¯åä¿¡åè·¯ã®åãããããããšå€ããŠå®éšããããšã«ãããéä¿¡æ©ã®åãã«å¯ŸããŠã®åä¿¡æ©ã®åãã«ãã£ãŠé»å Žã®äŒããæ¹ãç°ãªãããšãããé»å Žã®é éäœçšã«åå
æ§ãããäºãåãã£ãã",
"title": "黿µã«ããç£ç"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "é»å Žã®ãã®äœçšã«ã¯åå
æ§ãããã®ã§ãæ³¢ã§ãããšã¿ãªãããšã¯åŠ¥åœã§ãããã",
"title": "黿µã«ããç£ç"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ãã«ãã®å®éšãããå®éšçã«ãããããšãšããŠ",
"title": "黿µã«ããç£ç"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ãå®éšçã«ããããŸãã",
"title": "黿µã«ããç£ç"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ç©çåŠã§ã¯ããã«ãã®å®éšã®ä»¥åãããçè«ç©çåŠè
ã®ãã¯ã¹ãŠã§ã«ã«ããã",
"title": "黿µã«ããç£ç"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "é»ç£æ³¢ãšãããé»å Žãšç£å Žã®çžäºäœçšã«ãã£ãŠç空äžãäŒéããäºæž¬ãããŠããã",
"title": "黿µã«ããç£ç"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "ãªã®ã§ããã«ãã®å®éšã¯ããã¯ã¹ãŠã§ã«ã®äºæž¬ããé»ç£æ³¢ã ãšã¿ãªãããã çŸä»£ã§ãç©çåŠè
ã¯ãããã¿ãªããŠããŸãã",
"title": "黿µã«ããç£ç"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "ãªãããã¯ã¹ãŠã§ã«ãçè«èšç®ã§æ±ããé»ç£æ³¢ã®éåºŠãæ±ãããšããããã§ã«ç¥ãããŠããå
éã®å€§ãã(ããã 3Ã10 m/s )ã«ç²ŸåºŠããäžèŽããã",
"title": "黿µã«ããç£ç"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "ãã®ããšããããå
ã¯é»ç£æ³¢ã®äžçš®ã§ããããšãåãããŸãã",
"title": "黿µã«ããç£ç"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "ãã«ãã®å®éšã§ã¯ãå³å¯ã«ã¯å°ãªããšãæŸé»ã®é»å ŽãäŒããããšãã芳枬ã§ããŠãŸãããããããç£å Žããã®å®éšã§äŒãããšèããŠãæ¯éãçããŠç¡ãããå®éã«äººé¡ã«ã¯æ¯éã¯çããŠãªãã®ã§ãä»ã§ããã«ãã®å®éšããã¯ã¹ãŠã§ã«ã®äºæž¬ããé»ç£æ³¢ã®èšŒæã®å®éšãšããŠäŒããããŠããŸãã",
"title": "黿µã«ããç£ç"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "ãªããå
ã«ã¯ãåå°ã屿ãåæããã€ã³ã°ã¹ãªããã®åæãªã©ããããã",
"title": "黿µã«ããç£ç"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "ãã«ãã®æŸé»å®éšã®ãããªé»ç£æ³¢ã®ç«è±æŸé»ã®å®éšã§ããå
ã®å®éšãšåæ§ã®é
眮ã§ãé屿¿ãé
眮ããŠç¢ºèªããããšã§ãé»ç£æ³¢ãåå°ã屿ãåæããã€ã³ã°ã¹ãªããã®åæãªã©ã®çŸè±¡ãèµ·ããããšããå®éšçã«ã確èªãããŠããŸã(â» åèæç® :宿åºçã®å°éãç©çãã®æ€å®æç§æž)(â» ã€ã³ã°ã®ã¹ãªããã®é»ç£æ³¢å®éšã«é¢ããŠã¯åæé€šã®æç§æžãç©çãã«ãããŸã)ã",
"title": "黿µã«ããç£ç"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "ãããã®ããšããããå
ã¯é»ç£æ³¢ã®äžçš®ã§ãããšã¿ãªãã®ã劥åœã§ããããšãåãããŸãã",
"title": "黿µã«ããç£ç"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "ç£ç³ã®ãŸããã«ã¯å¥ã®ç£ç³ãåããåã®ããšãšãªããã®ãçããŠããŸãã ãããç£å Ž(ãã°ãmagnetic field)ãããã¯ç£ç(ããã)ãšåŒã¶ã(æ¥æ¬ã®ç©çåŠã§ã¯ç£å ŽãšåŒã¶ããšãå€ãããŸããæ¥æ¬ã®é»æ°å·¥åŠã§ã¯ç£çãšåŒã°ããããšãå€ããææ²»æã®èš³èªã®éã®ãæ¥æ¬åœå
ã®æ¥çããšã®éãã«éãããå°å瀟äŒçãªäºè±¡ã§ãããåŒã³æ¹ã¯ç©çã®æ¬è³ªãšã¯é¢ä¿ãªãã®ã§ãããã§ã¯ãã©ã¡ãã®è¡šçŸãçšãããã¯ãæ¬æžã§ã¯ç¹ã«ãã ãããŸãããè±èªã§ã¯ç©çåŠã»é»æ°å·¥åŠãšãâmagnetic fieldâã§å
±éããŠããŸãã)",
"title": "ç£æ§äœ"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "éãã³ãã«ããããã±ã«ã«ç£ç³ãè¿ã¥ãããšãç£ç³ã«åžãä»ããããŸãã ãŸããéãã³ãã«ããããã±ã«ã«åŒ·ãç£åãäžãããšãéãã³ãã«ããããã±ã«ãã®ãã®ãç£å Žãåšå²ã«åãŒãããã«ãªããŸãã ãã®ãããªãããšããšã¯ç£å Žãæããªãã£ãç©äœãã匷ãç£å Žãåããããšã«ãã£ãŠç£å ŽãåãŒãããã«ãªãçŸè±¡ãç£å(ãããmagnetization)ãšãããŸãã",
"title": "ç£æ§äœ"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ãããã¯é»è·ã®éé»èªå°ãšå¯Ÿå¿ãããŠãç£åã®ããšãç£æ°èªå°(ããããã©ããmagnetic induction)ãšãããã ãããŠãéãã³ãã«ããããã±ã«ã®ããã«ãç£ç³ã«åŒãä»ããããããã«ç£åãããèœåãããç©äœãåŒ·ç£æ§äœ(ãããããããããferromagnet)ãšãããŸãã éãšã³ãã«ããšããã±ã«ã¯åŒ·ç£æ§äœã§ãã",
"title": "ç£æ§äœ"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "é
ã¯ç£åããªãããé
ã¯ç£ç³ã«åŒãã€ããããªãã®ã§ãé
ã¯åŒ·ç£æ§äœã§ã¯ãããŸããã",
"title": "ç£æ§äœ"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "éé»èªå°ãå©çšãããéé»é®èœ(ããã§ããããžã)ãšèšãããŸããäžç©ºã®å°äœãã€ãã£ãŠç©è³ªãå²ãããšã§å€éšé»å Žãé®èœããæ¹æ³ããã£ãã®ãšåæ§ã®ãç£æ°ã®é®èœããåŒ·ç£æ§äœã§ãåºæ¥ãŸããäžç©ºã®åŒ·ç£æ§äœãçšããŠãåŒ·ç£æ§äœã®å
éšã¯ç£å Žãé®èœã§ããŸãããããç£æ°é®èœ(ãããããžããmagnetic shielding)ãšãããŸããç£æ°ã·ãŒã«ããšãããã",
"title": "ç£æ§äœ"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "åç£æ§äœãåããã¥ãããããããŸããããåã«ããã®ææã«å ããããç£å Žãæã¡æ¶ãæ¹åã«ãç£åãããã ãã®ææã§ãã",
"title": "ç£æ§äœ"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "ãããããç£åç·ãšããŸãçžäºäœçšããªãç©è³ªãå€ããããšãã°ãã¬ã©ã¹ãæ°Žã«ããŸããç£æ°ãžã®åœ±é¿ã¯ãç空ã®å Žåãšã»ãšãã©å€ãããŸãããã¬ã©ã¹ãæ°Žã®æ¯éç£ç(ã² ãšãããã€) ÎŒ (ãã¥ãŒ)ã¯ãã»ãŒ1ã§ãã",
"title": "ç£æ§äœ"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "ãªããéã®æ¯éç£çã¯ãç¶æ
ã«ãã£ãŠéç£çã«æ°çŸãæ°åã®éããããããwikipediaæ¥æ¬èªçã§èª¿ã¹ãå Žåã®éã®éç£çã¯çŽ5000ã§ãã",
"title": "ç£æ§äœ"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "ã§ã¯ãéç£çãã»ãŒ1ã®ç©è³ªã¯ãç£å Žã®æ¹åã¯ãå€éšç£å ŽãåºæºãšããŠãã©ã¡ãåãã ããã? å€éšç£å Žãæã¡æ¶ãæ¹åã«ç£åããŠããã®ã ããã? ãããšããå€éšç£å Žãšåãæ¹åã«ç£åããŠããã®ã ããã?",
"title": "ç£æ§äœ"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "ãã®éãããããåžžç£æ§(ãããããã)ãšåç£æ§(ã¯ãããã)ã®ã¡ãããã§ãã",
"title": "ç£æ§äœ"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "ããç©è³ªããå€éšç£å Žã«ã»ãšãã©åå¿ããŸãããããããå°ãã ãå€éšç£å Žãšåãæ¹åã«ãç£åãããŠããçŸè±¡ã®ããšãåžžç£æ§ãšããã§ãããã®ãããªç©è³ªãåžžç£æ§äœãšãããŸããåžžç£æ§äœãããããç©è³ªãšããŠãã¢ã«ãããŠã ã空æ°ãªã©ãããŸãã",
"title": "ç£æ§äœ"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "ãã£ãœããããç©è³ªããå€éšç£å Žã«ã»ãšãã©åå¿ããŸãããããããå°ãã ãå€éšç£å Žãæã¡æ¶ãæ¹åã«ãç£åãããŠããçŸè±¡ã®ããšãåç£æ§ãšããã§ãããã®ãããªç©è³ªãåç£æ§äœãšãããŸããåç£æ§äœãããããç©è³ªãšããŠãé
ãæ°Žãæ°ŽçŽ ãªã©ãªã©ãããŸãã",
"title": "ç£æ§äœ"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "å
çŽ ãååã®çš®é¡ã«ãã£ãŠãç£æ§ã®ã¡ãããããçç±ãšããŠãååŠçµåã§ã®é»åè»éã«åå ããããšèããããŠãŸãã",
"title": "â» ç¯å²å€: ã¹ãã³ãšç£æ§äœ"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "ååŠã®æç§æžã®çºå±äºé
ã«ããsè»éãããpè»éããªã©ã®çè«ããããããã®çè«ã§ããã®çç±ã説æã§ãããšãããŠããŸãããªããçããå
ã«ãããšããdè»éãã®ç¹åŸŽããç£æ§ã®åå ã§ãã(蚌æã¯çç¥ããŸãã)",
"title": "â» ç¯å²å€: ã¹ãã³ãšç£æ§äœ"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ããšããšã(ååŠçµåã§é»åæ®»(ã§ãããã)ã«çºçããããšã®ãããŸã)å€ç«é»åã«ã¯ç£æ§ãããããã®ç£æ§ãé»åã2åããã£ãŠ(å€ç«ã§ãªããªã)é»å察ã«ãªãäºã§ãç£æ§ãæã¡æ¶ããã£ãŠãããšèããããŸãããªããå€ç«é»åãããšããšæã£ãŠããç£æ§ã®ããšãã¹ãã³ãšãããŸããããååŠã®çè«ã§ã¯ãã¹ãã³ãäžç¢å°ãâããšäžç¢å°ãâãã®2çš®é¡ã§ããããäºãå€ãã®ã§ããããã®çç±ã¯ãããšããã©ãã°ãããããç£ç³ã®åãã2çš®é¡(ããšãã°N極ãšS極ãšãã2çš®é¡ã®æ¥µããããŸã)ã ããã§ãã",
"title": "â» ç¯å²å€: ã¹ãã³ãšç£æ§äœ"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "é»åæ®»ãšã¯ãååŠIã®å§ãã®ã»ãã§ãç¿ãããKæ®»ã¯8åã®é»åãå
¥ãããªã©ã®ãã¢ã¬ã®ããšã§ãã",
"title": "â» ç¯å²å€: ã¹ãã³ãšç£æ§äœ"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "ãŸãšãããšã",
"title": "â» ç¯å²å€: ã¹ãã³ãšç£æ§äœ"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "ãç£æ§äœã«ãåŒ·ç£æ§äœããããã®ãªããèªé»äœã«ãã匷èªé»äœããããã®ã?ãã®ãããªçåã¯ããšããããæãã§ãããã",
"title": "â» ç¯å²å€: ã匷èªé»äœããšå§é»äœ"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "ãã¿ã³é
žé PbTiO 3 {\\displaystyle {\\ce {PbTiO3}}} ããããªãé
žãªããŠã LiNbO 3 {\\displaystyle {\\ce {LiNbO3}}} ããã匷èªé»äœãã«åé¡ãããå ŽåããããŸãã",
"title": "â» ç¯å²å€: ã匷èªé»äœããšå§é»äœ"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "ããããåŒ·ç£æ§äœãç£æ°ããŒããç£æ°ããŒããã£ã¹ã¯ãªã©ã®èšé²ã¡ãã£ã¢ã«çšããããŠããç¶æ³ãšã¯ç°ãªããã匷èªé»äœãã¯èšé²ã¡ãã£ã¢ã«ã¯çšããããŠããŸãããéå»ã«ã¯ããã®ãããªã匷èªé»äœã¡ã¢ãªãŒããç®æãç ç©¶éçºããã£ãããããã2017å¹Žã®æç¹ã§ã¯ããŸã ã匷èªé»äœã¡ã¢ãªãŒãã®ãããªããã€ã¹ã¯å®çšåããŠããŸããã",
"title": "â» ç¯å²å€: ã匷èªé»äœããšå§é»äœ"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "ããããä»ã®çšéã§ããããã®ç©è³ªã¯ç£æ¥ã«å®çšåãããŠããŸãã",
"title": "â» ç¯å²å€: ã匷èªé»äœããšå§é»äœ"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "ãã¿ã³é
žéãããªãé
žãªããŠã ã¯ããã®ç©è³ªã«å§åããããããšé»å§ãçºçããäºãããå§é»äœ(ãã€ã§ããã)ãšããçŽ åãšããŠæŽ»çšãããŠããŸãã(â» ãé«çåŠæ ¡ååŠI/ã»ã©ããã¯ã¹ãã§ãå§é»æ§ã»ã©ããã¯ã¹ããšããŠå§é»äœã玹ä»ã髿 ¡ååŠã®ç¯å²å
ã§ãã2017幎ã®çŸåšã§ã¯é«æ ¡3幎ã®éžæååŠ(å°éååŠ)ã®ç¯å²å
ã§ãããã)",
"title": "â» ç¯å²å€: ã匷èªé»äœããšå§é»äœ"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "ãªãããããã®å§é»äœã«ãé»å§ããããããšãç©è³ªãã²ããã",
"title": "â» ç¯å²å€: ã匷èªé»äœããšå§é»äœ"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "ãã®ãããå§é»äœã«äº€æµé»å§ãå ããããšã§ãå§é»äœãçæéã§äœåãåšæçã«æ¯åããããšã«ãããå§é»äœã®åšå²ã«ãã空æ°ãæ¯åãããäºãã§ããã®ã§ãè¶
鳿³¢ãçºçããããã®çŽ åãšããŠããã§ã«å®çšåãããŠããŸãã",
"title": "â» ç¯å²å€: ã匷èªé»äœããšå§é»äœ"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "ãªããããçš®é¡ã®ç©è³ªããå§åããããããšé»å§ãçºçããçŸè±¡ãèµ·ããç©è³ªã®å Žåããã®ãããªæ§è³ªã®ããšãå§é»æ§(ãã€ã§ããã)ãšãããŸãã",
"title": "â» ç¯å²å€: ã匷èªé»äœããšå§é»äœ"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "ã±ã€çŽ Si ãã²ã«ãããŠã Ge ã¯ãå°äœãšçµ¶çžäœã®äžéã®æµæçããã€ããšãããã±ã€çŽ (ã·ãªã³ã³)ãã²ã«ãããŠã ãªã©ã¯åå°äœãšèšãããŸãã",
"title": "åå°äœ"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "ãã®åå°äœã®çµæ¶ã«ããããã«ããªã³Pãªã©ã®äžçŽç©ãå
¥ããããšã§ãæµæçã倧ããäžããããŸãã",
"title": "åå°äœ"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "",
"title": "åå°äœ"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "",
"title": "åå°äœ"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "ã·ãªã³ã³ååã¯äŸ¡é»åã4åã§ãããã·ãªã³ã³ã®çµæ¶ã¯ã4ã€ã®äŸ¡é»åãå
±æçµåãããŠããŸãã",
"title": "åå°äœ"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "ããã«ãªã³Pãå ãããšããªã³ã¯äŸ¡é»åã5åãªã®ã§ã1åã®äŸ¡é»åãäœãããã®äœã£ã䟡é»åãèªç±é»åãšããŠãçµæ¶ãåãåããããã«ãªããŸãã",
"title": "åå°äœ"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "ãã®ãããªä»çµã¿ã§ãã·ãªã³ã³ã«ãªã³ãå ããããšã§ãæµæçã倧ããäœäžããããšããã®ãå®èª¬ã§ãã",
"title": "åå°äœ"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "ãã®ããã«ãè² ã®é»åãäœãããšã§ãå°é»çãäžãã£ãŠãåå°äœã nååå°äœ ãšãããŸãã(ãnã㯠negative ã®ç¥ã)",
"title": "åå°äœ"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "ã·ãªã³ã³ã®çµæ¶ã«ãäžçŽç©ãšããŠãããŠçŽ Bãã¢ã«ãããŠã Alãªã©ã䟡é»åã3åã®å
çŽ ãå ãããšãé»åã1åãè¶³ããªããªããŸãã",
"title": "åå°äœ"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "ãã®ãé»åã®äžè¶³ããã¶ãã®ç©ºåžãããŒã«(postive holeãæ£å)ãšãããŸãã",
"title": "åå°äœ"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "ããŒã«ã¯æ£é»è·ããã¡ãŸãã",
"title": "åå°äœ"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "é»å§ãæãããšããã®ããŒã«ãåããããã«è¿ãã®çµåã«ãã£ãé»åãç§»åããŸãããããšã®é»åããã£ãå Žæã«æ°ããªããŒã«ãã§ããã®ã§ãèŠããäžã¯ããŒã«ãé»åãšéæ¹åã«åããããã«èŠããŸãã",
"title": "åå°äœ"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "ãã£ãŠãããŒã«ãåãããšã§ã黿µãæµãããšèŠãªããŸãã",
"title": "åå°äœ"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "ãŸãããã®ããã«ãæ£ã®é»è·ããã€ç²åã«ãã£ãŠå°é»çãäžãã£ãŠãåå°äœã pååå°äœ ãšãããŸãã(ãpã㯠positive ã®ç¥ã)",
"title": "åå°äœ"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "nååå°äœã§ã¯ãèªç±é»åã黿µãéã¶ã",
"title": "åå°äœ"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "pååå°äœã§ã¯ãããŒã«ã黿µãéã¶ã",
"title": "åå°äœ"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "ãã®ããã«ãåå°äœäžã§é»è·é»åã®æ
ãæãããã£ãªã¢(carrier)ãšãããŸãã",
"title": "åå°äœ"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "ã€ãŸããnååå°äœã®ãã£ãªã¢ã¯é»åã§ãpååå°äœã®ãã£ãªã¢ã¯ããŒã«ã§ãã",
"title": "åå°äœ"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "pååå°äœãšnååå°äœãæ¥åã(pnæ¥å)ãç©äœããäžæ¹åã®ã¿ã«é»æµãæµãã",
"title": "åå°äœ"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "ãã®ãããªéšåããã€ãªãŒã(diode)ãšãããŸãã",
"title": "åå°äœ"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "påŽã«æ£é»å§ãæããnåŽã«è² é»å§ãæããæã黿µãæµããŸãã",
"title": "åå°äœ"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "ãã£ãœããpåŽã«è² é»å§ãæããnåŽã«æ£é»å§ãæããŠãã黿µãæµããŸããã",
"title": "åå°äœ"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "åè·¯ã«ãããŠããã€ãªãŒãã黿µãæµãåããé æ¹å(ãã
ãã»ãããŸããã)ãšãããŸããé æ¹åãšã¯å察åããéæ¹åãšãããŸãããã€ãªãŒãã®éæ¹åã«ã¯ã黿µã¯æµããŸããã",
"title": "åå°äœ"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "ãã®ããã«äžæ¹åã«æµããä»çµã¿ã¯ããã€ãªãŒãã§ã¯ãã€ãã®ãããªä»çµã¿ã§ã黿µãæµããããã§ãã",
"title": "åå°äœ"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "ãã®ããã«äžæ¹åã«ã ã黿µãæµãããšãæŽæµ(ãããã
ã)ãšãããŸãããªããåå°äœã䜿ããªããŠããç空管ã§ãæŽæµã ããªãå¯èœã§ãã(ãã ãç空管ã®å Žåãç±ã®çºçãèšå€§ã§ãã£ãããèä¹
æ§ãå£ãã®ã§ãé»åéšåãšããŠã®å®çšæ§ã¯ã空管ã¯äœãã®ã§ãçŸä»£ã¯ç空管ã¯é»åéšåãšããŠã¯äœ¿ãããŠããŸããã)",
"title": "åå°äœ"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "",
"title": "åå°äœ"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "ããœã³ã³ã§ãããžã¿ã«æ³¢åœ¢ãããžã¿ã«ä¿¡å·ã®ããã«åè§ã®é»æµæ³¢åœ¢ãäœã£ãŠããæ¹æ³ã¯ãããããããã®ãã€ãªãŒããšãåŸè¿°ãããã©ã³ãžã¹ã¿ãšããããŸãçµã¿åãããããšã§ãããžã¿ã«æ³¢åœ¢ãã€ãããšããä»çµã¿ã§ãã(â» æ°ç åºçã®æ€å®æç§æžããããããèŠè§£ã§ãã)",
"title": "åå°äœ"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "",
"title": "åå°äœ"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "",
"title": "åå°äœ"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "ãã€ãªãŒãã®påŽã«æ£é»å§ãããããã£ãœãnåŽã«è² é»å§ãããããšãpåŽã§ã¯æ£é»æ¥µã®æ£é»å§ããããŒã«ãåçºããŠæ¥åé¢ãžãšåããããã£ãœãnåŽã§ã¯èªç±é»åãè² é»æ¥µããåçºããŠæ¥åé¢ãžãšåããããããŠãæ¥åé¢ã§ãããŒã«ãšèªç±é»åãã§ãããæ¶æ»
ããŸãããã®çµæãèŠæãäžãæ£é»è·ããæ£é»æ¥µããè² é»æ¥µã«ç§»åããã®ãšãåçã®çµæã«ãªããŸãã",
"title": "åå°äœ"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "ãããŠãæ£é»æ¥µãããã€ãã€ããšããŒã«ãäŸçµŠãããã®ã§ã黿µãæµãç¶ããŸãã",
"title": "åå°äœ"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "ãã£ãœããpåŽã«è² é»å§ãæããnåŽã«æ£é»å§ãæããæãpåŽã§ã¯ããŒã«ã¯é»æ¥µ(黿¥µã«ã¯è² é»å§ãæãã£ãŠãŸã)ã«åŒãå¯ããããæ¥åé¢ããã¯é ããããŸããåæ§ã«nåŽã§ã¯èªç±é»åã黿¥µ(æ£é»å§ãæãã£ãŠãŸã)ã«åŒãå¯ããããæ¥åé¢ããã¯é ããããŸãã",
"title": "åå°äœ"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "ãã®çµæãæ¥åé¢ã«ã¯ãäœåãªããŒã«ãäœåãªèªç±é»åããªãç¶æ
ãšãªãããã£ãŠæ¥åé¢ã®ä»è¿ã«ã¯ãã£ãªã¢ããªãããã®æ¥åé¢ä»è¿ã®ãã£ãªã¢ã®ç¡ãéšåã¯ç©ºä¹å±€(ãããŒããããdepletion layer)ãšåŒã°ããŸãã",
"title": "åå°äœ"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "ãããŠããã以éã¯ãããŒã«ãèªç±é»åããããã©ãã«ãç§»åã®äœå°ããªãã®ã§ããã£ãŠé»æµãæµããŸããã",
"title": "åå°äœ"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "",
"title": "åå°äœ"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "åå°äœã3ã€npnãŸãã¯pnpã®ããã«çµã¿åããããšã黿µãå¢å¹
(ãããµã)ããããšãã§ããŸããå¢å¹
äœçš(ãããµãããã)ãšãããŸãã",
"title": "åå°äœ"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "NPNãšã¯ãç端ããé ã«èŠãŠNåã»Påã»Nåã®é ã«äžŠãã§ããšããäºã§ãã",
"title": "åå°äœ"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "åæ§ã«ãPNPãšã¯ãç端ããé ã«èŠãŠNåã»Påã»Nåã®é ã«äžŠãã§ããšããäºã§ãã",
"title": "åå°äœ"
},
{
"paragraph_id": 104,
"tag": "p",
"text": "å¢å¹
ãšãã£ãŠãããã£ããŠç¡ãããšãã«ã®ãŒãçºçããããã§ã¯ãªãã®ã§ãæ··åããªãããã«ã",
"title": "åå°äœ"
},
{
"paragraph_id": 105,
"tag": "p",
"text": "説æã®ç°¡ç¥åã®ãããå€éšé»æºãçç¥ãããäºãããããå®éã¯å€éšé»æºãå¿
èŠã§ããåå°äœçŽ åã¯å°ããªé»æµããæµããªãã®ã§ã黿µãæžããããã®æµæçŽ åãšããŠã®ä¿è·æµæ(ã»ããŠãããŸããã)ãå¿
èŠã§ãã",
"title": "åå°äœ"
},
{
"paragraph_id": 106,
"tag": "p",
"text": "",
"title": "åå°äœ"
},
{
"paragraph_id": 107,
"tag": "p",
"text": "ãªããå³ã®ããã«é·æ¹åœ¢ç¶ã«äžŠãã§ããæ¹åŒã®ãã©ã³ãžã¹ã¿ããã€ããŒã©ãã©ã³ãžã¹ã¿ãšãããŸãã(â» æ€å®æç§æžã®æ°ç åºçã®æç§æžã§ãããã€ããŒã©ãã©ã³ãžã¹ã¿ããã³ã©ã ã§ç¿ãã)",
"title": "åå°äœ"
},
{
"paragraph_id": 108,
"tag": "p",
"text": "ãã€ããŒã©ãã©ã³ãžã¹ã¿ã«ã¯ã端åãäž»ã«3ã€ãããããšããã¿ãããããŒã¹ãããã³ã¬ã¯ã¿ããšããåèš3ã€ã®ç«¯åããããŸãã",
"title": "åå°äœ"
},
{
"paragraph_id": 109,
"tag": "p",
"text": "ãã€ããŒã©ãã©ã³ãžã¹ã¿ã§ã®é»æµã®å¢å¹
ãšã¯ãããŒã¹é»æµãå¢å¹
ããŠã³ã¬ã¯ã¿ã«éããã§ã(PNPã®å Žå)ã黿µã®åãã¯PNPåã®ã°ãããš NPPåã®ã°ãããšã§ã¯ç°ãªãããã©ã¡ãã®å Žåã§ãããŒã¹é»æµãå¢å¹
ããããšããä»çµã¿ã¯å
±éã§ãã",
"title": "åå°äœ"
},
{
"paragraph_id": 110,
"tag": "p",
"text": "ããŠãæš¡åŒå³ã§ã¯æš¡åŒçã«çãäžã®åå°äœã¯ããããå°ããã«æžãããããå®éã®ãã©ã³ãžã¹ã¿ã¯çãäžã®åå°äœã¯ããã§ã¯ãªãã®ã§ãåèçšåºŠã«ã",
"title": "åå°äœ"
},
{
"paragraph_id": 111,
"tag": "p",
"text": "",
"title": "åå°äœ"
},
{
"paragraph_id": 112,
"tag": "p",
"text": "æè²ã§ã¯ãåå°äœã®é«æ ¡çãå°éå€(é»åå°æ»ä»¥å€)ã®äººããã«ã¯ããããã€ããŒã©ãã©ã³ãžã¹ã¿ãåçŽãªã®ã§ç޹ä»ãããããå®éã«åžè²©ã®ã³ã³ãã¥ãŒã¿éšåãªã©ã§ãã䜿ããããã©ã³ãžã¹ã¿ã®æ¹åŒã¯ããããšã¯åœ¢ç¶ããã£ããç°ãªããŸãã",
"title": "åå°äœ"
},
{
"paragraph_id": 113,
"tag": "p",
"text": "åžè²©ã®ã³ã³ãã¥ãŒã¿éšåã®ãã©ã³ãžã¹ã¿ã«ã¯ãé»ç广ãã©ã³ãžã¹ã¿ãšããããæ¹åŒã®ãã®ããããçšããããŸãã(ãã¡ãããé»ç广ãã©ã³ãžã¹ã¿ã«ãããå¢å¹
ãã®æ©èœããããŸãã)",
"title": "åå°äœ"
},
{
"paragraph_id": 114,
"tag": "p",
"text": "(⻠詳ããã¯å€§åŠã®é»æ°å·¥åŠãŸãã¯å·¥æ¥é«æ ¡ã®é»ååè·¯ãªã©ã®ç§ç®ã§ç¿ãã)",
"title": "åå°äœ"
},
{
"paragraph_id": 115,
"tag": "p",
"text": "ãã©ã³ãžã¹ã¿ã¯ãåè·¯å³ã§ã¯ãæš¡åŒçã«äžå³ã®ããã«æžãããŸãã",
"title": "åå°äœ"
},
{
"paragraph_id": 116,
"tag": "p",
"text": "",
"title": "åå°äœ"
},
{
"paragraph_id": 117,
"tag": "p",
"text": "ãã€ãªãŒãããã©ã³ãžã¹ã¿ã®ä»ã«ãåå°äœãçµã¿åãããé»åéšåã¯ããã®ã§ãã(ä»ã«ãããµã€ãªã¹ã¿ããªã©è²ã
ãšãããŸã)ã髿 ¡ç©çã®ç¯å²ãè¶
ããã®ã§ã説æã¯çç¥ããŸãã(â» ããä»äºã§å°éçãªæ
å ±ãå¿
èŠã«ãªãã°ãå·¥æ¥é«æ ¡ããã®ãé»ååè·¯ãã®æç§æžã«ãã£ãã詳ããæžããŠããã®ã§ããããèªãã°ããã§ãããªããæžåºã®è³æ Œã³ãŒããŒæ¬ã«ãã黿°å·¥äºå£«ã黿°äž»ä»»æè¡è
詊éšãªã©ã®å¯Ÿçåã«ã¯ãã»ãŒé»ååè·¯ãç¯å²å€ãªã®ã§ãããŸãé»ååè·¯ã®èª¬æã¯æžããŠãŸããããªã®ã§ãå·¥æ¥é«æ ¡ãé»ååè·¯ãã®æç§æžããŸãã¯å·¥æ¥é«å°ãªã©ã®åçã®ç§ç®ã®æç§æžãåç
§ã®ããšã)",
"title": "åå°äœ"
},
{
"paragraph_id": 118,
"tag": "p",
"text": "",
"title": "åå°äœ"
},
{
"paragraph_id": 119,
"tag": "p",
"text": "ããœã³ã³ã®CPUãªã©ã®éšåããäžèº«ã®å€ãã¯åå°äœã§ããããã€ãªãŒãããã©ã³ãžã¹ã¿ãªã©ã®çŽ åãCPUãªã©ã®å
éšã«ãããããããŸãããšèšãããŠããŸãã(â» ä»ã«ããæ°Žæ¶æ¯ååããªã©è²ã
ãšCPUå
ã«ã¯ ããããç©ç2ã®ç¯å²å€ãªã®ã§èª¬æãçç¥ã)",
"title": "åå°äœ"
},
{
"paragraph_id": 120,
"tag": "p",
"text": "éç©åè·¯ãLSI(Large Scale Integratedãå€§èŠæš¡éç©åè·¯)ãªã©ãšèšãããé»åéšåãããªã«ãéç©(ãéç©ããè±èªã§ integrate ã€ã³ãã°ã¬ãŒã ãšãã)ããã®ããšãããšãåå°äœçŽ åãéç©ãããšèšãæå³ã§ãã",
"title": "åå°äœ"
},
{
"paragraph_id": 121,
"tag": "p",
"text": "ãªãããICã(ã¢ã€ã·ãŒ)ãšã¯ Integrated Circuit ã®ç¥ç§°ã§ããããããåèš³ãããã®ããéç©åè·¯ãã§ãã",
"title": "åå°äœ"
},
{
"paragraph_id": 122,
"tag": "p",
"text": "ã€ãŸããéç©åè·¯ãLSIã®äžèº«ã¯ãåå°äœã§ããããã©ã³ãžã¹ã¿ãªã©ã®çŽ åãé«å¯åºŠã§ããã®åè·¯äžã«è©°ãŸã£ãŠããŸãã",
"title": "åå°äœ"
},
{
"paragraph_id": 123,
"tag": "p",
"text": "é»åéšåã®åå°äœã®ææãšããŠã¯ãéåžžã¯ã·ãªã³ã³çµæ¶ã䜿ãããŸãã(â» åæé€šãæ°ç ãªã©ãçµæ¶ã§ããããšãèšåã)",
"title": "åå°äœ"
},
{
"paragraph_id": 124,
"tag": "p",
"text": "ç ç©¶éçºã§ã¯ã·ãªã³ã³ä»¥å€ã®ææãç ç©¶ãããŠããäžéšã®ç¹æ®çšéã§ã¯GaAsãInGaPãªã©ãå©çšãããŠããã(â» æ°ç ã®æ€å®æç§æžã¯GaAsãInGaPãªã©ã«ã³ã©ã ã§èšå)ããããçŸç¶ã§ã¯ãã·ãªã³ã³ãåžè²©ã®ã³ã³ãã¥ãŒã¿éšåäžã®åå°äœçŽ åã®ææã§ã¯äž»æµã§ãã",
"title": "åå°äœ"
},
{
"paragraph_id": 125,
"tag": "p",
"text": "ãªããã·ãªã³ã³åå°äœã®ææå
éšã¯ã·ãªã³ã³çµæ¶ã§ãããã衚é¢ã¯ä¿è·èããã³çµ¶çžã®ããã«é
žåãããããŠãããã·ãªã³ã³åå°äœè¡šé¢ã¯é
žåã·ãªã³ã³ã®ä¿è·èã«ãªã£ãŠããŸããã·ãªã³ã³ãé
žåãããšãçµ¶çžç©ã«ãªãã®ã§ãä¿è·èã«ãªãããã§ã(â» æ°ç åºçã®æç§æžãããèšã£ãŠããŸãã)",
"title": "åå°äœ"
},
{
"paragraph_id": 126,
"tag": "p",
"text": "åå°äœã®å
éšã«ãæ·»å ç©ãªã©ã§ç¹æ§ãå€ããããšã«ãããæµæãã³ã³ãã³ãµãåå°äœå
éšã«è£œé ã§ããŸãã(â» æ°ç ããæµæãã³ã³ãã³ãµãåå°äœå
éšã§äœã£ãŠããäºã«èšåã)",
"title": "åå°äœ"
},
{
"paragraph_id": 127,
"tag": "p",
"text": "(â» ç¯å²å€: )ããããã³ã€ã«ã¯åå°äœå
éšã«äœãããšãåºæ¥ç¡ãã§ãã",
"title": "åå°äœ"
},
{
"paragraph_id": 128,
"tag": "p",
"text": "ç£å ŽBã®äžããé»è·qã®è·é»ç²åãé床vã§éåãããšãããŒã¬ã³ãåã¯ãã¯ãã«å€ç©ãçšã㊠f=qã»vÃB ã®åãç²åã«åãããããã§èŠ³æž¬è
ã®åº§æšç³»ãå€ãããšããŠãåãç²åããç²åãšåãæ¹åã«é床vã§åã座æšåœ¢Kã®äžã®èŠ³æž¬è
ããèŠããã©ããªãã? 座æšç³»Kã§ã¯ãç²åã®é床㯠v(K)=0 ã§ãããç£æã®é床ã Vb ãšãããšãåã®åº§æšç³»ã®ç²åãšã¯å察æ¹åã«åãã®ã§ã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 129,
"tag": "p",
"text": "æ°ãã座æšç³»Kãã芳枬ããŠããç²åã f=qã»vÃB ã®å€§ããã®åãåããŠå éãããããšã«ã¯å€ãããŸãããã座æšç³»kã§ã¯ãè·é»ç²åã¯éæ¢ããŠããã®ã«ãããŒã¬ã³ãåãåãããšèããã®ã¯äžåçã§ããç£æã¯ãVb=-v ã§éåããŠããã®ã§ãç£æã®éåã«ãã£ãŠ f=qã»(-Vb)ÃB = -qã»VbÃB ã®åãåãããšèããã¹ãã§ããç²åã質é0ã®è³ªç¹ãšã¿ãªãã°ã鿢ããŠããè·é»ç²åã«åãåãŒããã®ã¯ãé»å Žã ãã ãããã€ãŸãé床 Vb ã§éåããç£æãã E=-VbÃB ã®èªå°é»å Žãèªèµ·ããããšã«ãªããŸãããã®ãšããç£å Žãšèªå°ãããé»å Žã¯åçŽã§ãã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 130,
"tag": "p",
"text": "ããããéåããé»å Žã¯ç£çãäœãããšããã°ãã¢ã³ããŒã«ã®æ³å ãçŽç·ç¶ã«ç¡éã«é·ãå°ç·ãæµãã 黿µI ã¯è·é¢R ã ãé¢ããå Žæã« Bã»2Ïr=ÎŒI ã®ç£å ŽãäœãŸããããšããçŸè±¡ã¯ããã€ã¯ãå°ç·ã®äžã§è·é»ç²åãéåããããšã«ãã£ãŠãè·é»ç²åãšãã£ããã«ãã®ç²åãäœãé»å Žãåãããã®é»å Žã®éåããç£å Žãèªèµ·ããŠããŸããããšããå¯èœæ§ããããŸãã 黿µãæµããŠããç¡éé·ã®ããŸã£ãããªå°ç·ãèããŸããç·å¯åºŠ q[C/m] ã§ååžããé»è·ã¯ãå³ã®ããã«åç察称ãªé»è·ãäœãŸãã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 131,
"tag": "p",
"text": "(â» ããã«å³ãã)",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 132,
"tag": "p",
"text": "çŽç·ããè·é¢rã®ãšãã®é»æ°åç·ã®å¯åºŠDã¯",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 133,
"tag": "p",
"text": "ãã£ãŠ",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 134,
"tag": "p",
"text": "黿µ I ã¯é»è·ååž q ãé床 Ve ã§éåããŠãããšããŠ",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 135,
"tag": "p",
"text": "ãšå®çŸ©ããã°ã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 136,
"tag": "p",
"text": "黿µ qVe ãè·é¢ r ã®ãšããã«äœãç£å ŽBã¯ã¢ã³ããŒã«ã®æ³åããã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 137,
"tag": "p",
"text": "ãšãªããŸãã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 138,
"tag": "p",
"text": "ãã®ãšããç£å Žã®åãã¯ãVe ãã ååŸræ¹å ã«ãããåãåãã§ãã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 139,
"tag": "p",
"text": "åããŸã§ãµãããŠãã¯ãã«ç©ã§è¡šãã°ã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 140,
"tag": "p",
"text": "ã€ãŸã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 141,
"tag": "p",
"text": "ãšãããéèŠãªçµè«ãåŸãããŸãã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 142,
"tag": "p",
"text": "ãããã¯ã ÎŒH=B ããã¡ã㊠B=ÎŒH=εΌ Ve ÃE ãã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 143,
"tag": "p",
"text": "ã§ãã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 144,
"tag": "p",
"text": "ãŸãšã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 145,
"tag": "p",
"text": "é床 Vbã§éåããç£æBã¯",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 146,
"tag": "p",
"text": "ã®èªå°é»å Žãèªèµ·ããŸãã ã»ã»â¡1",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 147,
"tag": "p",
"text": "é床 Ve ã§éåããé»å Ž E ã¯",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 148,
"tag": "p",
"text": "ã®èªå°ç£å ŽãäœãŸãã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 149,
"tag": "p",
"text": "E,Bã®ãããã«ãD,Hã䜿ã£ãŠè¡šèšããã°ã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 150,
"tag": "p",
"text": "ãã€",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 151,
"tag": "p",
"text": "ããŠãé»ç£æ³¢ãé床Cã§ç空äžãäŒãããšããã°ã Vb = Ve = C ãšããŸãã â¡1åŒãšâ¡2åŒã®å€ç©ããšããšã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 152,
"tag": "p",
"text": "ãã£ãŠ",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 153,
"tag": "p",
"text": "ã§ãã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 154,
"tag": "p",
"text": "ãã£ãŠãé»ç£æ³¢ã®é床㯠c = 1 ε ÎŒ {\\displaystyle c={\\frac {1}{\\sqrt {\\varepsilon \\mu }}}} ãšäºæž¬ã§ããŸãã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 155,
"tag": "p",
"text": "ãã®ÎµãšÎŒã«å®æž¬å€ãå
¥ãããšãå
éã®æž¬å®å€ c = 299792458 m / s {\\displaystyle c=299792458m/s} ãšãé«ã粟床ã§äžèŽããŸãã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 156,
"tag": "p",
"text": "ãã®äºãããå
ã¯ãé»ç£æ³¢ã§ããäºãåãããŸãããŸããé»ç£æ³¢ã¯ãå
é床Cã§ç空äžãäŒããŸãã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 157,
"tag": "p",
"text": "ãŸãããããããéåé»å Žã®èªå°ããç£å Žã¯",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 158,
"tag": "p",
"text": "ãšãå€åœ¢ã§ããŸãã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 159,
"tag": "p",
"text": "3åŒããã¬ãŠã¹ã®æ³å(1åŒ) ãšçµã¿åããããšãã¢ã³ããŒã«ã®æ³å(2åŒ)ãåŸãããŸãã ãã£ãŠããé床 Ve ã§éåããé»å Ž E ã¯ã B=εΌ Ve ÃE ã®èªå°ç£å ŽãäœãŸããããšããéçšã劥åœã ã£ãããšãããããŸãã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 160,
"tag": "p",
"text": "é»ç£æ³¢ã§ã¯é»å Ž E ãšç£å Ž B ãå
é C ã§éåããŠããã®ã§ ç£æã®éåé床 Vb 㯠Vb = C ã§ãããèªå°é»å Ž E 㯠E =-VbÃB ã§ããã®ã§ãäž¡åŒãã E = -cÃB ã§ãã(é»ç£æ³¢ã®é»å Žãšç£å Žã®é¢ä¿åŒ)ãªã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 161,
"tag": "p",
"text": "ã§ããã®ã§ã é»ç£æ³¢ã¯",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 162,
"tag": "p",
"text": "ã®æ¹åã«é²ãã§ããã¯ãã§ãããšããããšã泚ç®ããŸãããã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 163,
"tag": "p",
"text": "ãã® E à H {\\displaystyle \\mathbb {E} \\times \\mathbb {H} } ã§å®çŸ©ãããéã ãã€ã³ãã£ã³ã° ãã¯ãã« ãšãã¶ã ããã¯åäœé¢ç©ããšãã£ãŠæµãåºãé»ç£å Žã®ãšãã«ã®ãŒã®æµãã®éãããããã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 164,
"tag": "p",
"text": "ããŠãé»ç£å Žã®ãšãã«ã®ãŒå¯åºŠã¯ u = 1 2 ε E 2 + 1 2 ÎŒ H 2 {\\displaystyle u={\\frac {1}{2}}\\varepsilon E^{2}+{\\frac {1}{2}}\\mu H^{2}} ãªã®ã§ãããã«é»ç£æ³¢ã®é»å Žãšç£å Žã®é¢ä¿åŒ E = â C à B {\\displaystyle \\mathbb {E} =-\\mathbb {C} \\times \\mathbb {B} } ã代å
¥ããŠã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 165,
"tag": "p",
"text": "ã®é¢ä¿ãçšãããšã(ãšãã«ã®ãŒã§ã¯ã2ä¹ã«ãããã€ãã¹ç¬Šå·ããªããªãã®ã§ã絶察å€ãåã£ãŠ|E|=|cÃB| ãšããŠãããšãèšç®ãç°¡åã«ãªãå ŽåããããŸãã)",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 166,
"tag": "p",
"text": "çµæãšããŠ",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 167,
"tag": "p",
"text": "ãšãªããŸãã é»ç£æ³¢ããå£ã«ããã£ãŠåžåããããšããåäœæéã«åäœé¢ç©ããã å
éC ã®å€§ããã®äœç©ã®ãªãã®é»ç£æ³¢ãå£ã«è¡çªããã®ã§ã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 168,
"tag": "p",
"text": "ã®ãšãã«ã®ãŒããåäœæéã«åäœé¢ç©ã«æµã蟌ãã¯ãã§ãã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 169,
"tag": "p",
"text": "s= cã»u ã« u= εã»E^2 ã代å
¥ããŠã ε ÎŒ â
c 2 = 1 {\\displaystyle \\epsilon \\mu \\cdot c^{2}=1} ãš |E|=|cÃB|ãå©çšãããšãçµæçã«",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 170,
"tag": "p",
"text": "ã§ãã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 171,
"tag": "p",
"text": "ãã£ãŠãã€ã³ãã£ã³ã° ãã¯ãã« EÃH ã¯åäœé¢ç©ãéã£ãŠæµãåºãé»ç£å Žã®ãšãã«ã®ãŒã®æµããããããã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 172,
"tag": "p",
"text": "ãã€ã³ãã£ã³ã° ãã¯ãã« S = EÃH = εΌ(C)EÃH ã¯",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 173,
"tag": "p",
"text": "ã§ãã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 174,
"tag": "p",
"text": "倩äžãçãªèª¬æã§ããããã® G=DÃB ãšããéã¯ãéåéã®å¯åºŠã§ãããã®é G=DÃB ããé»ç£æ³¢ã®ãéåéå¯åºŠã(ããã©ããããã¿ã€ã©)ãšãããŸããå®éã«ãDÃB ã®åäœã¯",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 175,
"tag": "p",
"text": "ãšãªããŸãã ãããã«ãéåéã®å¯åºŠã®åäœãšçããã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 176,
"tag": "p",
"text": "ãšããã§ãã®ã¡ã®åå
ã§ç¿ãããå
é»å¹æã§ã¯ ãšãã«ã®ãŒuãšéåépã®é¢ä¿ã¯ãå
é床Cããã¡ããŠã u=cp ãšæžããŸãã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 177,
"tag": "p",
"text": "ãããã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 178,
"tag": "p",
"text": "åããŸã§å«ããŠ",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 179,
"tag": "p",
"text": "ãšãªã£ãŠã確ãã« G = DÃB ã¯éåéå¯åºŠãšãªããŸãã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 180,
"tag": "p",
"text": "é·ãLã®ãŸã£ãããªééããé床vã§ç£å ŽBã®äžã暪åããšããŸããç°¡åã®ãããééã®è»žãšé床vã®æ¹åãšç£å ŽBã¯åçŽãšããŸãããã®ãšããééã®äžã®é»è·ã«ãããåããã³é»å Žã¯ããŒã¬ã³ãåã«ããã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 181,
"tag": "p",
"text": "é»å ŽEã«ãã£ãŠé·ãLã ããé»è·qãäžãããããããšãã«ã®ãŒã¯ qEL å€åããŸããé»äœã¯ V=EL ã§ãã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
},
{
"paragraph_id": 182,
"tag": "p",
"text": "ãããããèªå°é»å§ V ã¯ãç£æã®1ç§ãããã®æéå€åã«ãªããŸãã ã§ã¯ãä»®ã«åºå®ãããåè·¯ã®äžã«ãœã¬ãã€ããéããŠããã®ãœã¬ãã€ãã«äº€æµé»æµãæµããå Žåããåè·¯ã«èªå°é»å§ãçºçããã®ã ããããçãã¯ããããã",
"title": "çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ"
}
] | null | {{substub}}
== éé»èªå°ãšèªé»å極 ==
=== ã³ã³ãã³ãµãŒ ===
{{Main|é«çåŠæ ¡ç©ç/ç©çI/黿°#ã³ã³ãã³ãµãŒ}}
=== èªé»äœ ===
ãŸãã髿 ¡ç©çã§ãããèªé»äœãïŒããã§ãããïŒãšã¯ãéåžžã®ã»ã©ããã¯ã鲿¯ïŒãã€ã«ïŒããããã¯éåžžã®ãã©ã¹ããã¯ãªã©ã®ããã«ã黿°ãéããªãç©è³ªã§ãããã»ã©ããã¯ããã€ã«ã®ããã«ãç³ã®ãããªæ§è³ªããã€ç©è³ªããèªé»äœã§ããå Žåãå€ãã
ã€ãŸããéå±ã¯ãèªé»äœã§ã¯ãªããéå±ã¯ãèªé»äœã§ã¯ãªããïŒéå±ã¯ïŒå°äœã§ããã
ã§ã¯ãèªé»äœã®ç©çã«ã€ããŠã説æããã
[[File:èªé»äœã³ã³ãã³ãµãŒ.svg|thumb|400px|èªé»äœãå
¥ããã³ã³ãã³ãµãŒ]]
ã³ã³ãã³ãµãŒã«èªé»äœãå
¥ãããšãèªé»äœãèªé»å極ãèµ·ãããããã³ã³ãã³ãµã®ãã©ã¹æ¥µæ¿ã§çºçãã黿°åç·ã®ããã€ããæã¡æ¶ãããã
ãã®çµæãèªé»äœã®å
¥ã£ãã³ã³ãã³ãµãŒã®æ¥µæ¿éã®é»å Žã¯ã極æ¿ã®é»è·å¯åºŠã§çºçããé»è·ãç空äžã§ã€ããé»å Žããã匱ããªãã
ãã®çµæãéé»å®¹éãå€ããã
ããŠãç空äžã®éé»å®¹éã®å
¬åŒã¯ã
:<math>C=\varepsilon_0 \frac{S}{d}</math>
ã§ãã£ãã
èªé»äœã®ããå Žåã®éé»å®¹éã¯ã
:<math>C=\varepsilon \frac{S}{d}</math>
ãšãªãã
ããã§ã <math>\varepsilon </math>ã'''èªé»ç'''ïŒããã§ããã€ïŒãšããã
<math>\varepsilon_0 </math>ãã'''ç空äžã®èªé»ç'''ãšããã
{| class="wikitable" style="float:right"
|+ ç©è³ªã®æ¯èªé»ç
|- style="background:silver"
! ç©è³ª !! æ¯èªé»ç
|-
| ç©ºæ° (20â) || 1.0005
|-
| ãã©ãã£ã³ (20â) || 2.2
|-
| ããŒã«çŽ (20â) || 3.2
|-
| 鲿¯ || 7.0
|-
| æ°Ž (20â) || çŽ80
|-
| ãã¿ã³é
žããªãŠã || çŽ5000
|-
|}
ããã§ãæ¯
:<math> \varepsilon _r = \frac{\varepsilon}{\varepsilon_0}</math>
ãã'''æ¯èªé»ç'''ïŒã² ããã§ããã€ïŒãšããã
ã€ãŸãã<math> \varepsilon _r </math> ã¯æ¯èªé»çã§ããã
ãã£ãœãã <math> \varepsilon _0 </math> ããã³ <math> \varepsilon </math> ã¯ãæ¯èªé»çã§ã¯ãªãã
æ¯èªé»ç <math> \varepsilon _r </math> ããã¡ããã°ãéé»å®¹é C ã®åŒã¯ã
:<math> C = \varepsilon \frac{S}{d} = \varepsilon _r \varepsilon _0 \frac{S}{d} </math>
ãšæžããã
=== ã³ã³ãã³ãµã®éé»ãšãã«ã®ãŒ ===
:
U=2â»Â¹CV²
=2â»Â¹QV
=(2C)â»Â¹Q²
== 黿µã«ããç£ç ==
ç£ç³ã®ãŸããã«ã¯ç©äœãåããåã®ãããã®ãçããŠããã
ããã'''ç£å Ž'''ïŒãã°ïŒãšåŒã¶ã'''ç£ç'''ïŒãããïŒãšãããã
黿µãæµããŠãããšãã«ãããã®ãŸããã«ã¯ãå³ããã®æ³åïŒright-handed screw ruleïŒã«åŸãåãã«ç£çãçããã
黿µI[A]ãçŽç·çã«æµããŠãããšããç£çã®å€§ããã¯
<math>
B = \frac {\mu_0} {2\pi a} I
</math>
ã§ããããšãç¥ãããŠããã
ããã§ãaã¯ç£æå¯åºŠã枬ãç¹ãšãé»ç·ã®è·é¢ã
ãŸãã<math>\mu_0</math>ã¯ç空ã®éç£çïŒãšãããã€ãpermeabilityïŒã衚ããå€ã¯ <math>4\pi \times 10^{-7}</math>[H/m] ã§ããã
<!-- ã¢ã³ããŒã«ã®æ³å? -->
=== é»ç£èªå°ãšé»ç£æ³¢ ===
==== é»ç£èªå° ====
ç£å Žã䌎ãç©äœãéåãããšããã®ãŸããã«ã¯é»å Žãçããããšã'''é»ç£èªå°'''ïŒã§ããããã©ããelectromagnetic inductionïŒãšããã
ä»®ã«ããœã¬ãã€ãïŒsolenoidãã³ã€ã«ã®ããšïŒã®è¿ãã§ãããè¡ãªã£ããšãããšãçããé»å Žã«ãã£ãŠãœã¬ãã€ãã®äžã«ã¯é»æµãæµããã
çããé»å Žã®å€§ããã¯ã
<math>
\vec E = \frac 1 {2\pi a} \frac {d\vec B}{d t}
</math>
ãšãªãã(ååŸaã®å圢ã®ã³ã€ã«ã®å Žåã)
Eã®åäœã¯[V/m]ã§ãããBã®åäœã¯[T]ã§ããã
==== é»ç£æ³¢ ====
ç£å Žã®åãã«ãã£ãŠé»å ŽãåŒãèµ·ããããããšãé»ç£èªå°ã®ç¯ã§èŠãã
ãŸããå®éã«ã¯é»å Žã®å€åã«ãã£ãŠç£å ŽãåŒãèµ·ããããããšãå®éšã«ãã£ãŠç¥ãããŠããã
ããã«ãã£ãŠäœããªã空éäžãé»å Žãšç£å ŽãäŒæããŠããããšãäºæ³ãããã
(:é»ç£æ³¢ã®äŒæã®schematicãªçµµ)
:â» åžè²©ã®å€§åŠçããæç§æžãèªãã§ãããã¯ã«ãã«ãã®å®éšã説æããŠãªãã®ã§ã髿 ¡åŽã§èª¬æããã
:â» ãªãã髿 ¡ã§ã¯å°éãç©çãã§ç¿ãå
容ã
ãŸããç©çå®éšå®¶ãã«ãã¯æŸé»å®éšã«ãããåä¿¡æ©ãåè·¯äžã«ã®ã£ããã®ããåè·¯ãšããŠãéä¿¡åŽã®æŸé»ã«ããé»å Žãé éçã«é¢ããäœçœ®ã«ããåä¿¡åŽã®åè·¯ã«äŒããããšã確èªããã
ãã®å®éšã®éããã«ãã¯åä¿¡åè·¯ã®åãããããããšå€ããŠå®éšããããšã«ãããéä¿¡æ©ã®åãã«å¯ŸããŠã®åä¿¡æ©ã®åãã«ãã£ãŠé»å Žã®äŒããæ¹ãç°ãªãããšãããé»å Žã®é éäœçšã«åå
æ§ãããäºãåãã£ãã
:ïŒâ» ç¯å²å€ïŒãªããæ¹è§£ç³ãªã©ã«åå
äœçšã®ããããšã¯ããã§ã«ãã®æä»£ã«åãã£ãŠãããšæãããã
é»å Žã®ãã®äœçšã«ã¯åå
æ§ãããã®ã§ãæ³¢ã§ãããšã¿ãªãããšã¯åŠ¥åœã§ãããã
ãã«ãã®å®éšãããå®éšçã«ãããããšãšããŠ
:é»å Žã¯é éäœçšã§äŒããããš
:æŸé»ã¯é»å Žã®é éäœçšãçããããããš
:ãã®é»å Žã®é éäœçšã«ã¯ãåå
äœçšã®ããããš
ãå®éšçã«ãããã
ç©çåŠã§ã¯ããã«ãã®å®éšã®ä»¥åãããçè«ç©çåŠè
ã®ãã¯ã¹ãŠã§ã«ã«ããã
é»ç£æ³¢ãšãããé»å Žãšç£å Žã®çžäºäœçšã«ãã£ãŠç空äžãäŒéããäºæž¬ãããŠããã
ãªã®ã§ããã«ãã®å®éšã¯ããã¯ã¹ãŠã§ã«ã®äºæž¬ããé»ç£æ³¢ã ãšã¿ãªãããã
çŸä»£ã§ãç©çåŠè
ã¯ãããã¿ãªããŠããã
ãªãããã¯ã¹ãŠã§ã«ãçè«èšç®ã§æ±ããé»ç£æ³¢ã®éåºŠãæ±ãããšããããã§ã«ç¥ãããŠããå
éã®å€§ããïŒããã 3Ã10<sup>8</sup> m/s ïŒã«ç²ŸåºŠããäžèŽããã
ãã®ããšããããå
ã¯é»ç£æ³¢ã®äžçš®ã§ããããšãåããã
:ïŒåæé€šã®æç§æžã«ããäœè«: ïŒäœè«ã§ãããã人é¡åã®ç¡ç·éä¿¡ã«æåãã人ç©ã¯ãã«ã³ãŒãã§ããïŒãã«ãã§ã¯ãªãã®ã§ã誀解ããªãããã«ïŒã
ãã«ãã®å®éšã§ã¯ãå³å¯ã«ã¯å°ãªããšãæŸé»ã®é»å ŽãäŒããããšãã芳枬ã§ããŠãªããããããç£å Žããã®å®éšã§äŒãããšèããŠãæ¯éãçããŠç¡ãããå®éã«äººé¡ã«ã¯æ¯éã¯çããŠãªãã®ã§ãä»ã§ããã«ãã®å®éšããã¯ã¹ãŠã§ã«ã®äºæž¬ããé»ç£æ³¢ã®èšŒæã®å®éšãšããŠäŒããããŠããã
ãªããå
ã«ã¯ãåå°ã屿ãåæããã€ã³ã°ã¹ãªããã®åæãªã©ããããããã«ãã®æŸé»å®éšã®ãããªé»ç£æ³¢ã®ç«è±æŸé»ã®å®éšã§ããå
ã®å®éšãšåæ§ã®é
眮ã§ãé屿¿ãé
眮ããŠç¢ºèªããããšã§ãé»ç£æ³¢ãåå°ã屿ãåæããã€ã³ã°ã¹ãªããã®åæãªã©ã®çŸè±¡ãèµ·ããããšããå®éšçã«ã確èªãããŠããïŒâ» åèæç® :宿åºçã®å°éãç©çãã®æ€å®æç§æžïŒïŒâ» ã€ã³ã°ã®ã¹ãªããã®é»ç£æ³¢å®éšã«é¢ããŠã¯åæé€šã®æç§æžãç©çãã«ããïŒã
ãããã®ããšããããå
ã¯é»ç£æ³¢ã®äžçš®ã§ãããšã¿ãªãã®ã劥åœã§ããããšãåããã
:ïŒâ» ç¯å²å€ :ïŒãŸããé»ç£æ³¢ã®åå°ãå©çšããŠãé»ç£æ³¢ã®æ³¢é·ã枬å®ããããšã«ãã«ãã¯æåãã<ref>è¥¿æ¢æçŸãæž¬ãæ¹ã®ç§åŠå² II ååããçŽ ç²åãžããææç€Ÿã2012幎3æ15æ¥ åççºè¡ã45ããŒãž<br>
åæµ·é倧åŠåºçãè¿ä»£ç§åŠã®æºæµïœç©çåŠç·šã1974ïœ1977幎ããåèã«ããããã§ããããåæµ·é倧ã®ãã®æç®ã¯çµ¶ç</ref>ãé»ç£æ³¢ãåå°ãããã°ããã£ãŠããæ³¢ãšå¹²æžããŠå®åžžæ³¢ãã§ããã¯ãã§ããããã«ãã®å®éšäŸã§ã¯åä¿¡æ©ãéä¿¡æ©ããé¢ããš33cmããšã«é¡èãªåå¿ãåºããšããããã®å®éšã§ã¯åæ³¢é·ã33cmã ã£ãã®ã ãšæããããã€ãŸãæ³¢é·66cmã®é»ç£æ³¢ãå®éšã§çãããããšæãããã
:ãã ãããã«ãã®ãããªæ¹æ³ã§æž¬å®ã§ããæ³¢é·ã¯ã人éãèçŒã§ç¢ºèªã§ããŠæã§åããããããªçšåºŠã®æ³¢é·ã®å€§ããã®å Žåã ãã§ããããã€ãŸããã»ã³ãã¡ãŒãã«åäœã1ã¡ãŒãã«ä»¥äžãšãã®ãããªæ³¢é·ã§ããããã£ãœããããæ³¢é·ãããã¡ãŒãã«åäœããã€ã¯ãã¡ãŒãã«åäœãªã©ã®å Žåã¯ãåææ Œåãªã©ã䜿ã£ãŠæ³¢é·ã枬å®ããããšã«ãªãã詳ããã¯ã[[é«çåŠæ ¡ç©ç/ç©çII/ååãšååæ ž]]ãã®ã³ã©ã ãåç
§ããããã©ãŠã³ããŒãã¡ãŒãã©ã¶ãã©ãªãŒããªã©ã®ç©çåŠè
ãã¹ããã¥ã©ã åéãªã©ã®çŽ æãçšããŠåææ ŒåãäœæããŠããã
{{ã³ã©ã |ïŒâ» ç¯å²å€: ïŒå»çMRIã®ç£æ°ã®æ³¢ããç©çåŠçã«ã¯é»ç£æ³¢|
ãã¯ã¹ãŠã§ã«ã®æ¹çšåŒã§ã¯ãäžè¿°ã®ããã«é»å Žã®å€åãçãããšãç£å Žã®å€åãçããŠãããã«ãã®ç£å Žã®å€åã«ãããŸãé»å Žãå€åããŠããã»ã»ã»ãšããçŸè±¡ãåŸ®åæ¹çšåŒã§èšè¿°ããŠããã
ãã¯ã¹ãŠã§ã«æ¹çšåŒã®æçŸ©ãšããŠç§åŠé¢ã§ã¯ãæŸå°ç·ïŒXç·ïŒããã¬ã黿³¢ãã©ãžãªé»æ³¢ãå¯èŠå
ïŒå€ªéœå
ã黿°ç
§æãªã©ïŒãããã¹ãŠé»ç£æ³¢ã§ãããšããŠçµ±äžçã«åŒèšç®ãã§ããããã«ãªããšããç§åŠçãªæçŸ©ããããXç·ãšå¯èŠå
ãšã®éãã¯ãåã«æ³¢é·ïŒããã³ãæ³¢é·ã«ãã£ãŠæ±ºãŸãéåãšãã«ã®ãŒïŒã®å·®ã§ããããšçŸä»£ïŒ21äžçŽïŒã§ã¯èããããŠããã
ããã§ç£æ¥ãžã®å¿çšãšããŠæ°ã«ãªãã®ã¯ã20äžçŽåŸå以éã®å»çã§ã¯ãXç·ã«ããã¬ã³ãã²ã³æ®åœ±ã®ä»£ããã«ç£å Žã䜿ã£ãŠäººäœãªã©ã®å
éšã芳å¯ããMRIãªã©ã®æè¡ãããããšããäºã
MRIã¯ãç£å Žã°ãããåãäžããããŠãXç·ãšéã£ãŠå®å
šæ§ããããšäž»åŒµãããããããããã¯ã¹ãŠã§ã«ã®æ¹çšåŒããã§ã¯ãç£å Žã䜿ã£ã以äžãããšãMRIç£å Žã§ãã£ãŠãé»å Žã掟ççã«çºçããããºã§ããªãããã®é»ç£æ³¢ãçºçããäºã«ãªãïŒæ³¢é·ã¯ãšãããïŒã
ãããã倧åŠã®ç©çåŠã®æç§æžã倧åŠã®é»æ°é»åå·¥åŠã®é»ç£æ³¢å·¥åŠã®æç§æžãèªãã§ããããŸããããã£ãå®çšé¢ã®çåã¯çããŠããªããïŒMRIã®å°éæžã¯ã©ããç¥ããªãããå°ãªããšãããç©çåŠãããé»ç£æ³¢å·¥åŠããªã©ã®ç§ç®ã§ã¯ããŸã£ããæ€èšŒãããŠããªããïŒ
: â» MRI ã¯é«æ ¡ã§ãç¿ãããé»ç£æ³¢ãïŒåŸ®åã䜿ããªãç¯å²ã§ïŒä»çµã¿ã ãæç« ã§é«æ ¡ã§ç¿ããããããMRIã®é»ç£æ³¢ãã©ããªã£ãŠããã倧åŠã§ãããã¢ã«æ±ãããŠããªãã
ãªããMRIã¯ãäœå
ã®æ°ŽçŽ ååãšå
±é³Žããæ³¢é·ã ããéžæçã«äººäœã«ç
§å°ããŠããã®åå¿ã®é»ç£æ³¢ã芳å¯ããããšããä»çµã¿ã§ãããæ žç£æ°å
±é³Žæ³ïŒãããã ãããããã»ãïŒãšããä»çµã¿ã®äžçš®ãïŒãªããé»åã¬ã³ãžãããããšäŒŒããããªä»çµã¿ãïŒ
èªè
ã¯ãäœå
ãé»ç£æ³¢ãéã£ãŠãå¹³æ°ãªã®ãïŒããšããçåããããããããªããããªããšèµ€å€ç·ãäœå
ãééããŠããã®ã§ããã®ç¹ã¯èªè
ã¯å®å¿ããŠãããéè¡ATMãªã©ã«ãããéèèªèšŒãã·ã¹ãã ããèµ€å€ç·ã«ãã芳å¯ã·ã¹ãã ã§ããã
ç
é¢ãéè¡ã§ã¯ãïŒç§åŠãªãã©ã·ãŒã®ãšãŒããïŒå©çšè
ãå®å¿ãããããã«ãããšããã«Xç·ãšMRIãšèµ€å€ç·ãšã®å
±éç¹ïŒãã¹ãŠé»ç£æ³¢ã§ããïŒãæããªãããããç©çåŠã§ã¯ãXç·ãç£å Žã®æ³¢ãèµ€å€ç·ãããã¹ãŠé»ç£æ³¢ã§ããããããã¯é»ç£æ³¢ãçºçãããã¢ãã§ããããšãªã£ãŠããã®ãç©çåŠçãªæ¬åœã®èŠè§£ã§ããã
çŸå®ãšããŠãMRIãéè¡ATMéèèªèšŒã®å©çšã§ããã£ããŠïŒXç·ã®è¢«çã¿ããã«ïŒãMRIã§ïŒãããã¯éè¡ATMã§ïŒã¬ã³æ£è
ãçºçãããã ãšãããé»åã¬ã³ãžã¿ããã«å ç±ããŠç±å·ïŒãã£ãããïŒãããã ãšããããããäºä»¶ã¯ã寡èïŒãã¶ãïŒã«ããŠãç§åŠã®çéã§ã¯èããªãã
ãªããXç·ãšMRIã¯å
ã«ãªãé»ç£ãšãã«ã®ãŒã®çºçã®æ©æ§ãéããããšãã°Xç·ã¯äž»ã«ãæŸé»ã«ãã£ãŠçºçããããXç·ç®¡ããæ¯èŒçã«å€§é»å§ã§ã®æŸé»ç®¡ã®äžçš®ã§ãããïŒäžè¬ã®é»æ°ç
§æãªã©ã§ã¯Xç·ã¯çºçããŠããªãã®ã§ãå®å¿ããŠãããïŒ
MRIã®é»ç£æ³¢çºçè£
眮ã¯ãåºæ¬çã«ã¯é»ç£ç³ã«ããé»ç£ãšãã«ã®ãŒã®çºçã§ããã
éèèªèšŒã·ã¹ãã ãªã©ã®èµ€å€ç·çºçè£
眮ã¯ãåºæ¬çã«èµ€å€ç·LEDãªã©ã®åå°äœïŒLEDã¯åå°äœã®äžçš®ïŒã§ããã
åŠæ ¡æè²ã§ã¯ãåŒã®èšç®ããã¹ãã«åºããããã®ã§ãåŠçã¯ã€ããããããåŒã ãã§äœã§ãèšç®ã§ãããã®ããã«é¯èŠããã¡ã§ããããçŸå®ã«ã¯åŒã«ã¯å«ãŸããŠããªããè£
眮ãªã©ã®æ©æ§ã®æ
å ±ãç§åŠçãªæ€èšŒã«ã¯å¿
èŠã§ããã
}}
== ç£æ§äœ ==
[[File:Magnetic field near pole.svg|thumb|right|200px|æ£ç£ç³ã®åšãã«æ¹äœç£éã眮ããŠç£å Žã®åãã調ã¹ãã]]
ç£ç³ã®ãŸããã«ã¯å¥ã®ç£ç³ãåããåã®ããšãšãªããã®ãçããŠããã
ããã'''ç£å Ž'''ïŒãã°ãmagnetic fieldïŒãããã¯'''ç£ç'''ïŒãããïŒãšåŒã¶ãïŒæ¥æ¬ã®ç©çåŠã§ã¯ç£å ŽãšåŒã¶ããšãå€ãããŸããæ¥æ¬ã®é»æ°å·¥åŠã§ã¯ç£çãšåŒã°ããããšãå€ããææ²»æã®èš³èªã®éã®ãæ¥æ¬åœå
ã®æ¥çããšã®éãã«éãããå°å瀟äŒçãªäºè±¡ã§ãããåŒã³æ¹ã¯ç©çã®æ¬è³ªãšã¯é¢ä¿ãªãã®ã§ãããã§ã¯ãã©ã¡ãã®è¡šçŸãçšãããã¯ãæ¬æžã§ã¯ç¹ã«ãã ãããªããè±èªã§ã¯ç©çåŠã»é»æ°å·¥åŠãšãâmagnetic fieldâã§å
±éããŠãããïŒ
éãã³ãã«ããããã±ã«ã«ç£ç³ãè¿ã¥ãããšãç£ç³ã«åžãä»ããããã
ãŸããéãã³ãã«ããããã±ã«ã«åŒ·ãç£åãäžãããšãéãã³ãã«ããããã±ã«ãã®ãã®ãç£å Žãåšå²ã«åãŒãããã«ãªãã
ãã®ãããªãããšããšã¯ç£å Žãæããªãã£ãç©äœãã匷ãç£å Žãåããããšã«ãã£ãŠç£å ŽãåãŒãããã«ãªãçŸè±¡ã'''ç£å'''ïŒãããmagnetizationïŒãšããã
ãããã¯é»è·ã®éé»èªå°ãšå¯Ÿå¿ãããŠãç£åã®ããšã'''ç£æ°èªå°'''ïŒããããã©ããmagnetic inductionïŒãšãããã
ãããŠãéãã³ãã«ããããã±ã«ã®ããã«ãç£ç³ã«åŒãä»ããããããã«ç£åãããèœåãããç©äœã'''åŒ·ç£æ§äœ'''ïŒãããããããããferromagnetïŒãšããã
éãšã³ãã«ããšããã±ã«ã¯åŒ·ç£æ§äœã§ããã
é
ã¯ç£åããªãããé
ã¯ç£ç³ã«åŒãã€ããããªãã®ã§ãé
ã¯åŒ·ç£æ§äœã§ã¯ãªãã
;ç£æ°é®èœ
éé»èªå°ãå©çšãããéé»é®èœïŒããã§ããããžãïŒãšèšããããäžç©ºã®å°äœãã€ãã£ãŠç©è³ªãå²ãããšã§å€éšé»å Žãé®èœããæ¹æ³ããã£ãã®ãšåæ§ã®ãç£æ°ã®é®èœããåŒ·ç£æ§äœã§ãåºæ¥ããäžç©ºã®åŒ·ç£æ§äœãçšããŠãåŒ·ç£æ§äœã®å
éšã¯ç£å Žãé®èœã§ãããããã'''ç£æ°é®èœ'''ïŒãããããžããmagnetic shieldingïŒãšãããç£æ°ã·ãŒã«ããšãããã
:ç£æ§äœïŒmagnetic substance
:åŒ·ç£æ§äœïŒferromagnet
:åžžç£æ§äœïŒparamagnetic substance
:åç£æ§äœïŒdiamagnetic snbstance
åç£æ§äœãåããã¥ãããããããªãããåã«ããã®ææã«å ããããç£å Žãæã¡æ¶ãæ¹åã«ãç£åãããã ãã®ææã§ããã
ãããããç£åç·ãšããŸãçžäºäœçšããªãç©è³ªãå€ããããšãã°ãã¬ã©ã¹ãæ°Žã«ãããç£æ°ãžã®åœ±é¿ã¯ãç空ã®å Žåãšã»ãšãã©å€ãããªããã¬ã©ã¹ãæ°Žã®æ¯éç£çïŒã² ãšãããã€ïŒ ÎŒ ïŒãã¥ãŒïŒã¯ãã»ãŒ1ã§ããã
ãªããéã®æ¯éç£çã¯ãç¶æ
ã«ãã£ãŠéç£çã«æ°çŸãæ°åã®éããããããwikipediaæ¥æ¬èªçã§èª¿ã¹ãå Žåã®éã®éç£çã¯çŽ5000ã§ããã
ã§ã¯ãéç£çãã»ãŒ1ã®ç©è³ªã¯ãç£å Žã®æ¹åã¯ãå€éšç£å ŽãåºæºãšããŠãã©ã¡ãåãã ãããïŒ å€éšç£å Žãæã¡æ¶ãæ¹åã«ç£åããŠããã®ã ãããïŒ ãããšããå€éšç£å Žãšåãæ¹åã«ç£åããŠããã®ã ãããïŒ
ãã®éãããããåžžç£æ§ïŒããããããïŒãšåç£æ§ïŒã¯ããããïŒã®ã¡ãããã§ããã
ããç©è³ªããå€éšç£å Žã«ã»ãšãã©åå¿ããªããããããå°ãã ãå€éšç£å Žãšåãæ¹åã«ãç£åãããŠããçŸè±¡ã®ããšãåžžç£æ§ãšããããã®ãããªç©è³ªãåžžç£æ§äœãšãããåžžç£æ§äœãããããç©è³ªãšããŠãã¢ã«ãããŠã ã空æ°ãªã©ããã
äžæ¹ãããç©è³ªããå€éšç£å Žã«ã»ãšãã©åå¿ããªããããããå°ãã ãå€éšç£å Žãæã¡æ¶ãæ¹åã«ãç£åãããŠããçŸè±¡ã®ããšãåç£æ§ãšããããã®ãããªç©è³ªãåç£æ§äœãšãããåç£æ§äœãããããç©è³ªãšããŠãé
ãæ°Žãæ°ŽçŽ ãªã©ãããã
== â» ç¯å²å€: ã¹ãã³ãšç£æ§äœ ==
å
çŽ ãååã®çš®é¡ã«ãã£ãŠãç£æ§ã®ã¡ãããããçç±ãšããŠãååŠçµåã§ã®é»åè»éã«åå ããããšèããããŠããã
ååŠã®æç§æžã®çºå±äºé
ã«ããsè»éãããpè»éããªã©ã®çè«ããããããã®çè«ã§ããã®çç±ã説æã§ãããšãããŠããããªããçãå
ã«ãããšããdè»éãã®ç¹åŸŽããç£æ§ã®åå ã§ãããïŒèšŒæã¯çç¥ïŒ
å
ã
ãïŒååŠçµåã§é»åæ®»ïŒã§ããããïŒã«çºçããããšã®ããïŒå€ç«é»åã«ã¯ç£æ§ãããããã®ç£æ§ãé»åã2åããã£ãŠïŒå€ç«ã§ãªããªãïŒé»å察ã«ãªãäºã§ãç£æ§ãæã¡æ¶ããã£ãŠãããšèããããããªããå€ç«é»åãããšããšæã£ãŠããç£æ§ã®ããšã'''ã¹ãã³'''ãšãããããååŠã®çè«ã§ã¯ãã¹ãã³ãäžç¢å°ãâããšäžç¢å°ãâãã®2çš®é¡ã§ããããäºãå€ãã®ã§ãããããã®çç±ã¯ããšããã©ãã°ãããããç£ç³ã®åãã2çš®é¡ïŒããšãã°N極ãšS極ãšãã2çš®é¡ã®æ¥µãããïŒã§ããããã§ããã
é»åæ®»ãšã¯ãååŠIã®å§ãã®ã»ãã§ãç¿ãããKæ®»ã¯8åã®é»åãå
¥ãããªã©ã®ãã¢ã¬ã®ããšã§ããã
ãŸãšãããšã
:* ããããåç¬ã®1åã®é»åã«ã¯ããã€ã¯ç£æ§ãããããã®ãããå€ç«é»åã«ã¯ç£æ§ãããïŒã¹ãã³ïŒããããŠãã®ç£æ§ãããïŒé»åã®ãã¹ãã³ããšèšãããç£æ§ãããïŒãããããå€ç«é»åãé»å察ã«ãªãããšããçç±ã®ã²ãšã€ã§ãããã€ãŸãããããå
±æçµåãèµ·ããçç±ã®ã²ãšã€ã§ãããã
:* ããããååŠåå¿ã«ãã£ãŠå€ç«é»åã¯ãååŠçµåãšããŠãããã«åšå²ã®ååãååãšçµåããŠããŸãã®ã§ãå€ç«é»åã§ã¯ãªãé»å察ã«ãªã£ãŠããŸãã2åã®å察æ¹åã®ç£æ§ããã£ãé»å察ããç£æ§ãæã¡æ¶ããããããããããã®ãããªçç±ã«ãããå€ãã®ïŒååŠçµåã®çµæã§ããïŒç©è³ªã¯ãå€éšç£å Žãšã®çžäºäœçšã匱ãç©è³ªãå€ããåŒ·ç£æ§ãšãªãå
çŽ ãååã®ç©è³ªã¯å°ãªããå€ãã®å
çŽ ãååã®ç©è³ªã¯åžžç£æ§ãŸãã¯åç£æ§ã«ãªã£ãŠããŸãã§ãããã
{{ã³ã©ã |â» ç¯å²å€: ããŒããã£ã¹ã¯ã®ãã¹ãã³ãããããšã¯ïŒ|
ãã§ã«ããœã³ã³ãªã©ã®ããŒããã£ã¹ã¯ã®èªã¿ãšããããã®ã»ã³ãµãŒã§ãã¹ãã³ãããããšããæè¡ãå®çšåãããŠãããããããããã¯ããã£ããŠãåé»åã®ã¹ãã³ã«æ
å ±ãèšé²ããŠããããã§ã¯ãªãã
ãããããããŒããã£ã¹ã¯ã®ãã£ã¹ã¯åŽã®æè¡ã§ã¯ãªãããã£ã¹ã¯ã®æ
å ±ãèªã¿åãã»ã³ãµãŒã§ãããããåŽã®æè¡ã§ããã
ãã®ã¹ãã³ãããã¯ããå·šå€§ç£æ°æµæå¹æãïŒããã ã ãããŠããã ãããïŒãšèšãããçŸè±¡ãå©çšããŠããããã®ãããªç©ççŸè±¡ã®èµ·ããåçãšããŠä»®èª¬ãšããŠã¹ãã³ãæ³åãããŠããã®ã§ãã¹ãã³ãããããšããã®ã§ããã
ãå·šå€§ç£æ°æµæå¹æããšã¯ãåãã ãããïŒåã æ°ããã¡ãŒãã«ã»ã©ïŒã®éç£æ§äœã®å°äœéå±ããäžäžã«ç£æ§äœã®å±€ã§æããšããã®äžäžã®ç£æ§äœãåãåãã«ç£åããŠããå Žåãšããã£ãœãå察æ¹åã«ç£åããŠããå Žåãšã§ãæãŸããéç£æ§ã®å°äœéå±ã®é»æ°æµæã®å€ããéã£ãŠããããšããçŸè±¡ã§ããã
ããŒããã£ã¹ã¯ã®å¿çšã®ã»ãã«ããé«ç²ŸåºŠã®ç£æ°ã»ã³ãµãŒãšããŠããã¹ãã³ããããæè¡ã¯å®çšåããŠããã
ãã£ãœãããã®ãã¹ãã³ããããæè¡ãšã¯å¥ã«ãç£æ°æµæå¹æããããœã³ã³ã®ã¡ã¢ãªãŒå
ã«ããåã
ã®ã¡ã¢ãªãŒçŽ åã«å¿çšããäºã§å€§å®¹éãã€é»åæ¶è²»ã®ãããªããç£æ°ã¡ã¢ãªããã€ããããšããç ç©¶éçºããããŠããããšã¬ã¯ãããã¯ã¹ãªãã¬ãã¹ãã³ãããã¯ã¹ããšããŠæåŸ
ãããŠããããããããäžäžã®ç£æ§äœã®ç£åã®åããå€ããããã®é»æ°ã³ã€ã«åè·¯ããã©ããã£ãŠåŸ®å°åããŠãçŽ åãšããŠå€§éã«é
眮ããã°ããã®ãïŒããšããæªè§£æ±ºã®é£é¡ãããããã£ãŠ2017å¹Žã®æç¹ã§ã¯ããŸã ãé«å®¹éã®ç£æ°ã¡ã¢ãªãŒã¯å®çšåããŠããªãã
}}
== â» ç¯å²å€: ã匷èªé»äœããšå§é»äœ ==
ãç£æ§äœã«ãåŒ·ç£æ§äœããããã®ãªããèªé»äœã«ãã匷èªé»äœããããã®ãïŒãã®ãããªçåã¯ããšããããæãã§ãããã
ãã¿ã³é
žé <chem>PbTiO3</chem> ããããªãé
žãªããŠã <chem>LiNbO3</chem> ããã匷èªé»äœãã«åé¡ãããå Žåãããã
ããããåŒ·ç£æ§äœãç£æ°ããŒããç£æ°ããŒããã£ã¹ã¯ãªã©ã®èšé²ã¡ãã£ã¢ã«çšããããŠããç¶æ³ãšã¯ç°ãªããã匷èªé»äœãã¯èšé²ã¡ãã£ã¢ã«ã¯çšããããŠããªããéå»ã«ã¯ããã®ãããªã匷èªé»äœã¡ã¢ãªããç®æãç ç©¶éçºããã£ãããããã2017å¹Žã®æç¹ã§ã¯ããŸã ã匷èªé»äœã¡ã¢ãªãã®ãããªããã€ã¹ã¯å®çšåããŠããªãã
ãã ããä»ã®çšéã§ããããã®ç©è³ªã¯ç£æ¥ã«å®çšåãããŠããã
ãã¿ã³é
žéãããªãé
žãªããŠã ã¯ããã®ç©è³ªã«å§åããããããšé»å§ãçºçããäºãããå§é»äœïŒãã€ã§ãããïŒãšããçŽ åãšããŠæŽ»çšãããŠãããïŒâ» ã[[é«çåŠæ ¡ååŠI/ã»ã©ããã¯ã¹]]ãã§ãå§é»æ§ã»ã©ããã¯ã¹ããšããŠå§é»äœã玹ä»ã髿 ¡ååŠã®ç¯å²å
ã§ããã2017幎ã®çŸåšã§ã¯é«æ ¡3幎ã®éžæååŠïŒå°éååŠïŒã®ç¯å²å
ã ãããïŒ
ãªãããããã®å§é»äœã«ãé»å§ããããããšãç©è³ªãã²ããã
ãã®ãããå§é»äœã«äº€æµé»å§ãå ããããšã§ãå§é»äœãçæéã§äœåãåšæçã«æ¯åããããšã«ãããå§é»äœã®åšå²ã«ãã空æ°ãæ¯åãããäºãã§ããã®ã§ãè¶
鳿³¢ãçºçããããã®çŽ åãšããŠããã§ã«å®çšåãããŠããã
ãªããããçš®é¡ã®ç©è³ªããå§åããããããšé»å§ãçºçããçŸè±¡ãèµ·ããç©è³ªã®å Žåããã®ãããªæ§è³ªã®ããšãå§é»æ§ïŒãã€ã§ãããïŒãšããã
== åå°äœ ==
ã±ã€çŽ Si ãã²ã«ãããŠã Ge ã¯ãå°äœãšçµ¶çžäœã®äžéã®æµæçããã€ããšãããã±ã€çŽ ({{Lang-en-short|silicon}})ãã²ã«ãããŠã ({{Lang-en-short|germanium}})ãªã©ã¯åå°äœãšèšãããã
ãã®åå°äœã®çµæ¶ã«ããããã«ããªã³Pãªã©ã®äžçŽç©ãå
¥ããããšã§ãæµæçã倧ããäžããããã
:ïŒâ» ç¯å²å€ã泚é: ïŒæé»ã®åæãããã®ã§ãæ€å®æç§æžã§ã¯ãã¡ãã¡èª¬æãããªããããããªããããããããããœã³ã³ãããã³ã³ãã¥ãŒã¿ããªã©ã®ããŒããŠã§ã¢ã®å
éšã¯ãäž»ã«åå°äœãããªãéšåã§ããã
:ããœã³ã³éšåã®ãã¡ããããããã¡ã¢ãªããããªããšãããããããšãèšãããéšåã®ææã¯ããããŠããäžèšã®ãããªæå³ã§ã®ã·ãªã³ã³åå°äœãããªãéšåã§ããã
=== nååå°äœ ===
ã±ã€çŽ ååã¯äŸ¡é»åã4åã§ãããã±ã€çŽ ã®çµæ¶ã¯ã4ã€ã®äŸ¡é»åãå
±æçµåãããŠããã
ããã«ãªã³Pãå ãããšããªã³ã¯äŸ¡é»åã5åãªã®ã§ã1åã®äŸ¡é»åãäœãããã®äœã£ã䟡é»åãèªç±é»åãšããŠãçµæ¶ãåãåããããã«ãªãã
ãã®ãããªä»çµã¿ã§ãã±ã€çŽ ã«ãªã³ãå ããããšã§ãæµæçã倧ããäžããããšããã®ãå®èª¬ã§ããã
ãã®ããã«ãè² ã®é»åãäœãããšã§ãå°é»çãäžãã£ãŠãåå°äœã '''nååå°äœ''' ãšããã(ãnã㯠negative ã®ç¥ã)
=== pååå°äœ ===
ã·ãªã³ã³ã®çµæ¶ã«ãäžçŽç©ãšããŠãããŠçŽ Bãã¢ã«ãããŠã Alãªã©ã䟡é»åã3åã®å
çŽ ãå ãããšãé»åã1åãè¶³ããªããªãã
ãã®ãé»åã®äžè¶³ããã¶ãã®ç©ºåžã'''æ£å'''(postive holeãããŒã«)ãšããã
æ£åã¯æ£é»è·ããã€ã
é»å§ãæãããšããã®æ£åãåããããã«è¿ãã®çµåã«ãã£ãé»åãç§»åããããããšã®é»åããã£ãå Žæã«æ°ããªæ£åãã§ããã®ã§ãèŠããäžã¯æ£åãé»åãšéæ¹åã«åããããã«èŠããã
ãã£ãŠãæ£åãåãããšã§ã黿µãæµããŠããããšèŠãªããã
ãŸãããã®ããã«ãæ£ã®é»è·ããã€ç²åã«ãã£ãŠå°é»çãäžãã£ãŠãåå°äœã '''pååå°äœ''' ãšããã(ãpã㯠positive ã®ç¥ã)
=== ãã£ãªã¢ ===
nååå°äœã§ã¯é»åã黿µãéã¶ã
pååå°äœã§ã¯æ£åã黿µãéã¶ã
ãã®ããã«ãåå°äœäžã§ã®é»æµã®æ
ãæãã'''ãã£ãªã¢'''ïŒcarrierïŒãšããã
ã€ãŸããnååå°äœã®ãã£ãªã¢ã¯é»åã§ãpååå°äœã®ãã£ãªã¢ã¯æ£åã§ããã
=== pnæ¥å ===
[[File:ãã€ãªãŒãã®é æ¹å.svg|thumb|300px|ãã€ãªãŒãã®é æ¹åã黿µã¯æµããã]]
[[File:ãã€ãªãŒãã®éæ¹å.svg|thumb|300px|ãã€ãªãŒãã®éæ¹åã黿µã¯æµããªãã]]
pååå°äœãšnååå°äœãæ¥åã(pnæ¥å)ãç©äœããäžæ¹åã®ã¿ã«é»æµãæµãã
ãã®ãããªéšåã'''ãã€ãªãŒã'''ïŒdiodeïŒãšããã
påŽã«æ£é»å§ãæããnåŽã«è² é»å§ãæããæã黿µãæµããã
äžæ¹ãpåŽã«è² é»å§ãæããnåŽã«æ£é»å§ãæããŠãã黿µãæµããªãã
åè·¯ã«ãããŠããã€ãªãŒãã黿µãæµãåãã'''é æ¹å'''ïŒãã
ãã»ãããïŒãšãããé æ¹åãšã¯å察åãã'''éæ¹å'''ãšããããã€ãªãŒãã®éæ¹åã«ã¯ã黿µã¯æµããªãã
ãã®ããã«äžæ¹åã«æµããä»çµã¿ã¯ããã€ãªãŒãã§ã¯ãã€ãã®ãããªä»çµã¿ã§ã黿µãæµããããã§ããã
ãã®ããã«äžæ¹åã«ã ã黿µãæµãããšã'''æŽæµ'''ïŒãããã
ãïŒãšããããªããåå°äœã䜿ããªããŠããç空管ã§ãæŽæµã ããªãå¯èœã§ãããïŒãã ãç空管ã®å Žåãç±ã®çºçãèšå€§ã§ãã£ãããèä¹
æ§ãå£ãã®ã§ãé»åéšåãšããŠã®å®çšæ§ã¯ã空管ã¯äœãã®ã§ãçŸä»£ã¯ç空管ã¯é»åéšåãšããŠã¯äœ¿ãããŠããªããïŒ
ããœã³ã³ã§ãããžã¿ã«æ³¢åœ¢ãããžã¿ã«ä¿¡å·ã®ããã«åè§ã®é»æµæ³¢åœ¢ãäœã£ãŠããæ¹æ³ã¯ãããããããã®ãã€ãªãŒããšãåŸè¿°ãããã©ã³ãžã¹ã¿ãšããããŸãçµåããããšã§ãããžã¿ã«æ³¢åœ¢ãã€ãããšããä»çµã¿ã§ãããïŒâ» æ°ç åºçã®æ€å®æç§æžããããããèŠè§£ã§ãããïŒ
* påŽã«æ£é»å§ãæããnåŽã«è² é»å§ãæããæ
ãã€ãªãŒãã®påŽã«æ£é»å§ããããnåŽã«è² é»å§ãããããšãpåŽã§ã¯æ£é»æ¥µã®æ£é»å§ããæ£åãåçºããŠæ¥åé¢ãžãšåãããnåŽã§ã¯é»åãè² é»æ¥µããåçºããŠæ¥åé¢ãžãšåããããããŠãæ¥åé¢ã§æ£åãšé»åãã§ãããæ¶æ»
ããããã®çµæãèŠæãäžãæ£é»è·ããæ£é»æ¥µããè² é»æ¥µã«ç§»åããã®ãšãåçã®çµæã«ãªãã
ãããŠãæ£é»æ¥µãããã€ãã€ããšæ£åãäŸçµŠãããã®ã§ã黿µãæµãç¶ããã
* påŽã«è² é»å§ãæããnåŽã«æ£é»å§ãæããæ
ãã£ãœããpåŽã«è² é»å§ãæããnåŽã«æ£é»å§ãæããæãpåŽã§ã¯æ£åã¯é»æ¥µïŒé»æ¥µã«ã¯è² é»å§ãæãã£ãŠããïŒã«åŒãå¯ããããæ¥åé¢ããã¯é ããããåæ§ã«nåŽã§ã¯é»åã黿¥µïŒæ£é»å§ãæãã£ãŠãïŒã«åŒãå¯ããããæ¥åé¢ããã¯é ãããã
ãã®çµæãæ¥åé¢ã«ã¯ãäœåãªæ£åãäœåãªé»åããªãç¶æ
ãšãªãããã£ãŠæ¥åé¢ã®ä»è¿ã«ã¯ãã£ãªã¢ããªãããã®æ¥åé¢ä»è¿ã®ãã£ãªã¢ã®ç¡ãéšåã¯'''空ä¹å±€'''ïŒãããŒããããdepletion layerïŒãšåŒã°ããã
ãããŠããã以éã¯ãæ£åãé»åããããã©ãã«ãç§»åã®äœå°ããªãã®ã§ããã£ãŠé»æµãæµããªãã
{{ã³ã©ã |â» ç¯å²å€: ãåå°äœããšã¯ïŒ|
ç©çåŠãååŠã§ããåå°äœãšã¯ãäžè¿°ã®ããã«ãã·ãªã³ã³ãªã©ã®çµæ¶ããã³ããããã®çµæ¶ã«ãäžçŽç©ãå ããããšã§é»æ°ç¹æ§ã調æŽããç©è³ªã®äºã§ããã
ãã£ãœããç£æ§äœã¯ãåå°äœã§ã¯ãªãã
ããããäžéäžè¬ã§ã¯ãå€§äŒæ¥ã®ãåå°äœã¡ãŒã«ãŒããšãããäŒæ¥ãçç£ããé»åéšåãããŸãšããŠãåå°äœããšèšãããããšãããããã®ãããããšãç£æ§äœã掻çšãã補åã§ãããåå°äœãããŸã掻çšããŠããªã補åã§ãã£ãŠããåå°äœãšèšãããããšãå€ãã
ããããäŸãšããŠã¯ãç£æ°ããŒããã£ã¹ã¯ã§ãããåå°äœããšèšãããå Žåãããã
ããããç©çåŠã§ã¯ãç£æ§äœã¯ããã£ããŠåå°äœã§ã¯ãªããååŠã§ãåæ§ã«ããç£æ§äœã¯ããã£ããŠåå°äœã§ã¯ãªãããšããŠæ±ãã
ç£æ§äœã ãã§ãªããæ¶²æ¶ãåæ§ã§ããã åæ§ã«ãæ¶²æ¶ãã£ã¹ãã¬ã€ããæ¶²æ¶ã®ã¶ã¶ãã¯ãåå°äœã§ã¯ãªãã
倧åŠã®ç©çãååŠã§ããç£æ§äœã¯ãåå°äœã§ã¯ãªãããšããŠæ±ããæ¶²æ¶ãåæ§ã§ããã倧åŠã§ã¯ãæ¶²æ¶ã¯åå°äœã§ã¯ãªãããšããŠæ±ãã
æ¬wikibooks髿 ¡æç§æžã§ããç£æ§äœãæ¶²æ¶ã¯ãåå°äœã§ã¯ãªãããšããŠæ±ãã
ãªããäžåŠé«æ ¡ã®ç€ŸäŒç§ã®å°çç§ç®ã®å·¥æ¥çµ±èšã§ã¯ããã¡ããšãé»åéšåããšãã衚çŸã§ãåå°äœãæ¶²æ¶ãããŒããã£ã¹ã¯ãªã©ãããŸãšããŠè¡šçŸããŠããã
}}
=== ãã©ã³ãžã¹ã¿ ===
[[ãã¡ã€ã«:Transistor description ja.svg|right|frame|NPNåãã©ã³ãžã¹ã¿ã®æš¡åŒå³ïŒãã€ããŒã©ãã©ã³ãžã¹ã¿ïŒ]]
åå°äœã3ã€npnãŸãã¯pnpã®ããã«çµã¿åããããšã黿µãå¢å¹
ïŒãããµãïŒããããšãã§ããã'''å¢å¹
äœçš'''ïŒãããµããããïŒãšããã
NPNãšã¯ãç端ããé ã«èŠãŠNåã»Påã»Nåã®é ã«äžŠãã§ããšããäºã§ããã
åæ§ã«ãPNPãšã¯ãç端ããé ã«èŠãŠNåã»Påã»Nåã®é ã«äžŠãã§ããšããäºã§ããã
å¢å¹
ãšãã£ãŠãããã£ããŠç¡ãããšãã«ã®ãŒãçºçããããã§ã¯ãªãã®ã§ãæ··åããªãããã«ã
説æã®ç°¡ç¥åã®ãããå€éšé»æºãçç¥ãããäºãããããå®éã¯å€éšé»æºãå¿
èŠã§ãããåå°äœçŽ åã¯å°ããªé»æµããæµãã¬ããã黿µãæžããããã®æµæçŽ åãšããŠã®ä¿è·æµæïŒã»ããŠãããïŒãå¿
èŠã§ããã
ãªããå³ã®ããã«é·æ¹åœ¢ç¶ã«äžŠãã§ããæ¹åŒã®ãã©ã³ãžã¹ã¿ã'''ãã€ããŒã©ãã©ã³ãžã¹ã¿'''ãšãããïŒâ» æ€å®æç§æžã®æ°ç åºçã®æç§æžã§ãããã€ããŒã©ãã©ã³ãžã¹ã¿ããã³ã©ã ã§ç¿ããïŒ
ãã€ããŒã©ãã©ã³ãžã¹ã¿ã«ã¯ã端åãäž»ã«3ã€ãããããšããã¿ãããããŒã¹ãããã³ã¬ã¯ã¿ããšããåèš3ã€ã®ç«¯åãããã
ãã€ããŒã©ãã©ã³ãžã¹ã¿ã§ã®é»æµã®å¢å¹
ãšã¯ãããŒã¹é»æµãå¢å¹
ããŠã³ã¬ã¯ã¿ã«éããã§ããïŒPNPã®å ŽåïŒã黿µã®åãã¯PNPåã®ã°ãããš NPPåã®ã°ãããšã§ã¯ç°ãªãããã©ã¡ãã®å Žåã§ãããŒã¹é»æµãå¢å¹
ããããšããä»çµã¿ã¯å
±éã§ããã
ããŠãæš¡åŒå³ã§ã¯æš¡åŒçã«çãäžã®åå°äœã¯ããããå°ããã«æžãããããå®éã®ãã©ã³ãžã¹ã¿ã¯çãäžã®åå°äœã¯ããã§ã¯ãªãã®ã§ãåèçšåºŠã«ã
æè²ã§ã¯ãåå°äœã®é«æ ¡çãå°éå€ïŒé»åå°æ»ä»¥å€ïŒã®äººããã«ã¯ããããã€ããŒã©ãã©ã³ãžã¹ã¿ãåçŽãªã®ã§ç޹ä»ãããããå®éã«åžè²©ã®ã³ã³ãã¥ãŒã¿éšåãªã©ã§ãã䜿ããããã©ã³ãžã¹ã¿ã®æ¹åŒã¯ããããšã¯åœ¢ç¶ããã£ããç°ãªãã
åžè²©ã®ã³ã³ãã¥ãŒã¿éšåã®ãã©ã³ãžã¹ã¿ã«ã¯ãé»ç广ãã©ã³ãžã¹ã¿ãšããããæ¹åŒã®ãã®ããããçšãããããïŒãã¡ãããé»ç广ãã©ã³ãžã¹ã¿ã«ãããå¢å¹
ãã®æ©èœããããïŒ
:ïŒâ» åæé€šã®æ€å®æç§æžã§ããé»ç广ãã©ã³ãžã¹ã¿ããã³ã©ã æ¬ã§ç޹ä»ãããŠãããïŒ
:â» é»ç广åã®å Žåã¯ãããœãŒã¹ãããã²ãŒãããããã¬ã€ã³ããªã©ã®ç«¯åããããåçã¯ç°ãªãã®ã§ã察å¿ã¯ããªãã
ïŒâ» 詳ããã¯å€§åŠã®é»æ°å·¥åŠãŸãã¯å·¥æ¥é«æ ¡ã®é»ååè·¯ãªã©ã®ç§ç®ã§ç¿ããïŒ
{{-}}
ãã©ã³ãžã¹ã¿ã¯ãåè·¯å³ã§ã¯ãæš¡åŒçã«äžå³ã®ããã«æžãããã
[[File:NPN transistor symbol jp.svg|thumb|300px|left|NPNãã©ã³ãžã¹ã¿ã®å³èšå·ã]]
[[File:PNP transitor symbol.svg|thumb|center|PNPãã©ã³ãžã¹ã¿ã®å³èšå·ã]]
{{-}}
{{ã³ã©ã |åå°äœã®ç¯å²å€ã®è©±é¡ã®ãããã|
;ãç空管ãã©ã³ãžã¹ã¿ããšã¯å¥ç©
å®ã¯ã黿µå¢å¹
åè·¯ãã€ããã ããªããç空管ã§ãäœãããçŸä»£ã§ã¯ç空管ã«ã¯çµæžçãªå®çšæ§ãç¡ãã®ã§ãç空管ã®å¢å¹
åè·¯ã¯ãäžè¬ã®è£œåã«ããé»åéšåãšããŠã¯ã䜿ãããŠããªãããªããç空管ã®é»æµå¢å¹
åè·¯ã®ããšãããã©ã³ãžã¹ã¿ããšããã®ã§ãæ··åããªãããã«æ³šæã®ããšã
;é²å
æ©ãªãã§ãæäœæ¥ã§ãã©ã³ãžã¹ã¿ãäœãããšããå ±åãã
åŠè¡æžã®åºå
žã¯ç¡ãã®ã§ãããäžç¢ºãããªæ
å ±ã§ãããã å®ã¯ãã€ãªãŒãããã©ã³ãžã¹ã¿ã¯ãäœãã ããªããææãèããããã€ãŒããªã©ã®é«æž©çšèšåããããã°ãããšã¯ææã®ã·ãªã³ã³ãæ·»å ç©ã®ãªã³ãªã©ã ãã§ãäœããŠããŸããšèšãããŠãããïŒã€ãŸããé²å
æ©ïŒããããïŒãªã©ã®åŸ®çްå å·¥ã®èšåã¯ãç¡ããŠããã€ãªãŒããªã©ãäœããããšãããïŒ
ãããããåå°äœãã©ã³ãžã¹ã¿ã®çºæè
ã詊äœåãšããŠç¹æ¥è§Šãã©ã³ãžã¹ã¿ã補é ããæä»£ã«ã¯ããŸã é²å
æ©ãªã©ã®èšåã¯ç¡ãã£ãã®ã ãããèããŠã¿ãã°é²å
æ©ãªãã§ããã©ã³ãžã¹ã¿èªäœãå¯èœãªã®ã¯åœç¶ãšããã°åœç¶ã§ã¯ããã
æŽå²çãªçµç·¯ã§ãçç§æè²ã§ã¯åå°äœå·¥åŠã説æããéã«ããã©ã³ãžã¹ã¿ãªã©ã®çºæåœæã®å
端çè«ã§ãããéåååŠãïŒãããã ããããïŒãšããååã¹ã±ãŒã«ã®äžçã®ç©çæ³åã®çè«ããŸãšããŠèª¬æããã®ã§ãããããåå°äœã®è£œé ã«ãååã¹ã±ãŒã«ã®åŸ®çްå å·¥ã®ããã®èšåãäžå¯æ¬ ã®ããã«æ³åããã¡ã§ããããå®ã¯é²å
æ©ãªã©ã®èšåã¯ãªããŠããã©ã³ãžã¹ã¿ã¯äœããŠããŸããããã
é²å
æ©ãªã©ã䜿ããªãã§ææãšã«ãããªã©ã®æ¯èŒçã«åçŽãªèšåã ãã§æäœæ¥çã«èªäœããåå°äœã¯ãéç©åºŠãäœãã®ã§å®çšã«ã¯ç¡ããªãäºããããå·¥åŠæžãªã©ã§ã¯ç޹ä»ã¯ãããªãã®ã§ãããã
ïŒå¥ä»¶ãããããªãããïŒãããããåå°äœã®çºæåœæã¯ã女æ§å·¥å¡ãšãã«çްããé
ç·äœæ¥ãªã©ããããŠããæä»£ããã£ãïŒããã©ã³ãžã¹ã¿ã»ã¬ãŒã«ããšèšãããŠããïŒããšèšããããããã
}}
ãã€ãªãŒãããã©ã³ãžã¹ã¿ã®ä»ã«ãåå°äœãçµã¿åãããé»åéšåã¯ãããïŒä»ã«ãããµã€ãªã¹ã¿ããšãè²ã
ãšããïŒã髿 ¡ç©çã®ç¯å²ãè¶
ããã®ã§ã説æã¯çç¥ãããïŒâ» ããä»äºã§å°éçãªæ
å ±ãå¿
èŠã«ãªãã°ãå·¥æ¥é«æ ¡ããã®ãé»ååè·¯ãã®æç§æžã«ãã£ãã詳ããæžããŠããã®ã§ããããèªãã°ããããªããæžåºã®è³æ Œã³ãŒããŒæ¬ã«ãã黿°å·¥äºå£«ã黿°äž»ä»»æè¡è
詊éšãšãã®å¯Ÿçåã«ã¯ãã»ãŒé»ååè·¯ãç¯å²å€ãªã®ã§ãããŸãé»ååè·¯ã®èª¬æã¯æžããŠãªãããªã®ã§ãå·¥æ¥é«æ ¡ãé»ååè·¯ãã®æç§æžããŸãã¯å·¥æ¥é«å°ãªã©ã®åçã®ç§ç®ã®æç§æžãåç
§ã®ããšãïŒ
:â» éç©åè·¯ã«ã€ããŠã1990幎代ãããã®åèæžã®æ°ç åºçãã£ãŒãåŒã®ç©ç2ã«ãåŸè¿°ã®ãããªéç©åè·¯ãªã©ã®èª¬æããã£ãã
:2010幎以éã®çŸåšããæ
å ±ãæç§ã2000幎代ã«å ãã£ãã®ã§ãCPUãªã©ã®èª¬æã®äžéšããæ
å ±ãæç§ã«ç§»åããŠããã
ããœã³ã³ã®CPUãªã©ã®éšåããäžèº«ã®å€ãã¯åå°äœã§ããããã€ãªãŒãããã©ã³ãžã¹ã¿ãªã©ã®çŽ åãCPUãªã©ã®å
éšã«ããããããããšèšãããŠãããïŒâ» ä»ã«ããæ°Žæ¶æ¯ååããšãè²ã
ãšCPUå
ã«ã¯ ããããç©ç2ã®ç¯å²å€ãªã®ã§èª¬æãçç¥ãïŒ
éç©åè·¯ãLSI(Large Scale Integratedãå€§èŠæš¡éç©åè·¯)ãªã©ãšèšãããçµç¹ãããªã«ãéç©ïŒãéç©ããè±èªã§ integrate ã€ã³ãã°ã¬ãŒã ãšããïŒããã®ããšãããšãåå°äœçŽ åãéç©ãããšèšãæå³ã§ããã
ãªãããICãïŒã¢ã€ã·ãŒïŒãšã¯ Integrated Circuit ã®ç¥ç§°ã§ããããããåèš³ãããã®ããéç©åè·¯ãã§ããã
ã€ãŸããéç©åè·¯ãLSIã®äžèº«ã¯ãåå°äœã§ããããã©ã³ãžã¹ã¿ãªã©ã®çŽ åãé«å¯åºŠã§ããã®åè·¯äžã«è©°ãŸã£ãŠããã
é»åéšåã®åå°äœã®ææãšããŠã¯ãéåžžã¯ã·ãªã³ã³çµæ¶ã䜿ããããïŒâ» åæé€šãæ°ç ãªã©ãçµæ¶ã§ããããšãèšåãïŒ
ç ç©¶éçºã§ã¯ã·ãªã³ã³ä»¥å€ã®ææãç ç©¶ãããŠããäžéšã®ç¹æ®çšéã§ã¯GaAsãInGaPãªã©ãå©çšãããŠãããïŒâ» æ°ç ã®æ€å®æç§æžã¯GaAsãInGaPãªã©ã«ã³ã©ã ã§èšåïŒããããçŸç¶ã§ã¯ãã·ãªã³ã³ãåžè²©ã®ã³ã³ãã¥ãŒã¿éšåäžã®åå°äœçŽ åã®ææã§ã¯äž»æµã§ããã
ãªããã·ãªã³ã³åå°äœã®ææå
éšã¯ã·ãªã³ã³çµæ¶ã§ãããã衚é¢ã¯ä¿è·èããã³çµ¶çžã®ããã«é
žåãããããŠãããã·ãªã³ã³åå°äœè¡šé¢ã¯é
žåã·ãªã³ã³ã®ä¿è·èã«ãªã£ãŠãããã·ãªã³ã³ãé
žåãããšãçµ¶çžç©ã«ãªãã®ã§ãä¿è·èã«ãªãããã§ããïŒâ» æ°ç åºçã®æç§æžãããèšã£ãŠãããïŒ
åå°äœã®å
éšã«ãæ·»å ç©ãªã©ã§ç¹æ§ãå€ããããšã«ãããæµæãã³ã³ãã³ãµãåå°äœå
éšã«è£œé ã§ãããïŒâ» æ°ç ããæµæãã³ã³ãã³ãµãåå°äœå
éšã§äœã£ãŠããäºã«èšåãïŒ
ïŒâ» ç¯å²å€: ïŒããããã³ã€ã«ã¯åå°äœå
éšã«äœãããšãåºæ¥ç¡ãã
== çºå±ïŒ çžå¯Ÿè«ã®äžæ¬¡è¿äŒŒ ==
=== éåããç£æã¯é»å Žãèªèµ·ãã ===
ç£å ŽBã®äžããé»è·qã®è·é»ç²åãé床vã§éåãããšãããŒã¬ã³ãåã¯ãã¯ãã«å€ç©ãçšããŠãfïŒqã»vÃBãã®åãç²åã«åãããããã§èŠ³æž¬è
ã®åº§æšç³»ãå€ãããšããŠãåãç²åããç²åãšåãæ¹åã«é床ïœã§åã座æšåœ¢ïŒ«ã®äžã®èŠ³æž¬è
ããèŠããã©ããªããïŒã座æšç³»Kã§ã¯ãç²åã®é床㯠v(K)ïŒ0 ã§ãããç£æã®é床ã V<sub>b</sub> ãšãããšãåã®åº§æšç³»ã®ç²åãšã¯å察æ¹åã«åãã®ã§ã
:V<sub>b</sub> ïŒïŒv ã§ããã
æ°ãã座æšç³»Kãã芳枬ããŠããç²åã fïŒqã»vÃBãã®å€§ããã®åãåããŠå éãããããšã«ã¯å€ãããªããã座æšç³»ïœã§ã¯ãè·é»ç²åã¯éæ¢ããŠããã®ã«ãããŒã¬ã³ãåãåãããšèããã®ã¯äžåçã§ãããç£æã¯ãV<sub>b</sub>ïŒïŒv ã§éåããŠããã®ã§ãç£æã®éåã«ãã£ãŠãfïŒqã»ïŒïŒV<sub>b</sub>ïŒÃB ïŒ ïŒqã»V<sub>b</sub>ÃBãã®åãåãããšèããã¹ãã§ãããç²åã質é0ã®è³ªç¹ãšã¿ãªãã°ã鿢ããŠããè·é»ç²åã«åãåãŒããã®ã¯ãé»å Žã ãã ãããã€ãŸãé床 V<sub>b</sub> ã§éåããç£æãã EïŒïŒV<sub>b</sub>ÃB ã®èªå°é»å Žãèªèµ·ããããšã«ãªãããã®ãšããç£å Žãšèªå°ãããé»å Žã¯åçŽã§ããã
=== éåããé»å Žã¯ç£çãäœã ===
ããããéåããé»å Žã¯ç£çãäœãããšããã°ãã¢ã³ããŒã«ã®æ³åããçŽç·ç¶ã«ç¡éã«é·ãå°ç·ãæµããã黿µïŒ©ãã¯è·é¢ïŒ²ãã ãé¢ããå Žæã«ãBã»2ÏrïŒÎŒIãã®ç£å ŽãäœããããšããçŸè±¡ã¯ããã€ã¯ãå°ç·ã®äžã§è·é»ç²åãéåããããšã«ãã£ãŠãè·é»ç²åãšãã£ããã«ãã®ç²åãäœãé»å Žãåãããã®é»å Žã®éåããç£å Žãèªèµ·ããŠãããããšããå¯èœæ§ãããã
黿µãæµããŠããç¡éé·ã®ããŸã£ãããªå°ç·ãèãããç·å¯åºŠ q[C/m] ã§ååžããé»è·ã¯ãå³ã®ããã«åç察称ãªé»è·ãäœãã
ïŒâ» ããã«å³ããïŒ
çŽç·ããè·é¢ïœã®ãšãã®é»æ°åç·ã®å¯åºŠDã¯
:DïŒÎµEïŒ <math> \frac{q}{2\pi r}</math>
ãã£ãŠ
:εEã»2Ïr ïŒqãããâ
黿µ I ã¯é»è·ååž q ãé床 V<sub>e</sub> ã§éåããŠãããšããŠã
:I ïŒ qV<sub>e</sub>
:[A]ïŒ[c/m]ã»[m/s]ïŒ[c/m]
ãšå®çŸ©ããã°ã
黿µ qV<sub>e</sub> ãè·é¢ r ã®ãšããã«äœãç£å ŽBã¯ã¢ã³ããŒã«ã®æ³åããã
:Bã»2ÏrïŒïŒÎŒIïŒïŒ ÎŒqV<sub>e</sub>ãããâ¡
ãšãªãã
ãã®ãšããç£å Žã®åãã¯ãV<sub>e</sub> ãã ååŸræ¹å ã«ãããåãåãã§ããã
:â¡Ã·â ãã B/εE ïŒ ÎŒ V<sub>e</sub> BïŒÎµÎŒ V<sub>e</sub>ã»E
åããŸã§ãµãããŠãã¯ãã«ç©ã§è¡šãã°ã
:<math>\vec {B} </math>ïŒÎµÎŒ <math>\vec {V_e} \times \vec E</math> ãšãªãã
ã€ãŸã
:é床 V<sub>e</sub> ã§éåããé»å Ž E ã¯ãèªå°ç£å Ž BïŒÎµÎŒV<sub>e</sub>ÃE ãäœãã
ãšãããéèŠãªçµè«ãåŸãããã
ãããã¯ããÎŒHïŒBãããã¡ããŠãBïŒÎŒHïŒÎµÎŒ V<sub>e</sub> ÃEããã
:HïŒÎµÎŒV<sub>e</sub>ÃEããšãªã£ãŠãããã«ãDïŒÎµEãããã
:HïŒÎŒV<sub>e</sub>ÃDã
ã§ããã
ãŸãšã
é床 V<sub>b</sub>ã§éåããç£æBã¯ã
:EïŒïŒV<sub>b</sub>ÃB
ã®èªå°é»å Žãèªèµ·ããããããã»ã»â¡1
é床 V<sub>e</sub> ã§éåããé»å Ž E ã¯
:B ïŒ ÎµÎŒ V<sub>e</sub>ãà Eã
ã®èªå°ç£å Žãäœãã
E,Bã®ãããã«ãD,Hã䜿ã£ãŠè¡šèšããã°ã
:D ïŒ ïŒÎµ V<sub>b</sub> à B
ãã€
:H ïŒ V<sub>e</sub> à DãããïŒã»ã»ã»â¡2ïŒã
ããŠãé»ç£æ³¢ãé床Cã§ç空äžãäŒãããšããã°ã Vb ïŒ Ve ïŒ Cããšããã â¡1åŒãšâ¡2åŒã®å€ç©ããšããšã
: EÃH ïŒ(ïŒV<sub>b</sub>ÃB)à (V<sub>e</sub>ÃD) ïŒ (ïŒCÃÎŒH) à (CÃεE)ã
:ïŒãεΌ ( C<sup>2</sup>) EÃH
ãã£ãŠ
:εΌã»c<sup>2</sup> ïŒ1
ã§ããã
ãã£ãŠãé»ç£æ³¢ã®é床㯠<math> c = \frac{1}{ \sqrt{ \varepsilon \mu} }</math> ãšäºæž¬ã§ããã
ãã®ÎµãšÎŒã«å®æž¬å€ãå
¥ãããšãå
éã®æž¬å®å€ <math> c = 299792458 m/s</math> ãšãé«ã粟床ã§äžèŽããã
ãã®äºãããå
ã¯ãé»ç£æ³¢ã§ããäºãåããããŸããé»ç£æ³¢ã¯ãå
é床Cã§ç空äžãäŒããã
ãŸãããããããéåé»å Žã®èªå°ããç£å Žã¯
:B ïŒ (ïŒ/ C<sup>2</sup> )V<sub>e</sub>ÃEãããâ¢
ãšãå€åœ¢ã§ããã
â¢åŒããã¬ãŠã¹ã®æ³åïŒâ åŒïŒããšçµã¿åããããšãã¢ã³ããŒã«ã®æ³åïŒâ¡åŒïŒãåŸãããã
ãã£ãŠããé床 V<sub>e</sub> ã§éåããé»å Ž E ã¯ããBïŒÎµÎŒ V<sub>e</sub> ÃEãã®èªå°ç£å Žãäœããããšããéçšã劥åœã ã£ãããšããããã
=== ãã€ã³ãã£ã³ã° ãã¯ãã« ===
é»ç£æ³¢ã§ã¯é»å Ž E ãšç£å Ž B ãå
é C ã§éåããŠããã®ã§ãç£æã®éåé床 V<sub>b</sub> 㯠V<sub>b</sub> ïŒ C ã§ãããèªå°é»å Ž E 㯠E ïŒïŒV<sub>b</sub>ÃB ã§ããã®ã§ãäž¡åŒãã E ïŒ ïŒcÃBãã§ãããïŒé»ç£æ³¢ã®é»å Žãšç£å Žã®é¢ä¿åŒïŒãªã
:<math> \mathbb{B} = \mu \mathbb{H} </math>
ã§ããã®ã§ã
é»ç£æ³¢ã¯
:<math> \mathbb{E} \times \mathbb{H} </math>
ã®æ¹åã«é²ãã§ããã¯ãã ããšããããšã泚ç®ãããã
ãã® <math> \mathbb{E} \times \mathbb{H} </math> ã§å®çŸ©ãããéã '''ãã€ã³ãã£ã³ã°ããã¯ãã«''' ãšãã¶ã
ããã¯åäœé¢ç©ããšãã£ãŠæµãåºãé»ç£å Žã®ãšãã«ã®ãŒã®æµãã®éãããããã
ããŠãé»ç£å Žã®ãšãã«ã®ãŒå¯åºŠã¯ <math> u = \frac{1}{2}\varepsilon E^2 + \frac{1}{2}\mu H^2 </math> ãªã®ã§ãããã«é»ç£æ³¢ã®é»å Žãšç£å Žã®é¢ä¿åŒ <math> \mathbb{E} = - \mathbb{C} \times \mathbb{B} </math> ã代å
¥ããŠã
:<math> \varepsilon \mu \cdot c^2 = 1 </math>
ã®é¢ä¿ãçšãããšãïŒãšãã«ã®ãŒã§ã¯ã2ä¹ã«ãããã€ãã¹ç¬Šå·ããªããªãã®ã§ã絶察å€ãåã£ãŠïœïŒ¥ïœïŒïœïœÃïœããšããŠãããšãèšç®ãç°¡åã«ãªãå ŽåããããïŒ
çµæãšããŠã
:<math> u = \varepsilon E^2 </math>ãããïŒé»ç£æ³¢ã®ãšãã«ã®ãŒå¯åºŠïŒ
ãšãªãã
é»ç£æ³¢ããå£ã«ããã£ãŠåžåããããšããåäœæéã«åäœé¢ç©ããã å
éC ã®å€§ããã®äœç©ã®ãªãã®é»ç£æ³¢ãå£ã«è¡çªããã®ã§ãã
:cã»uã
ã®ãšãã«ã®ãŒããåäœæéã«åäœé¢ç©ã«æµã蟌ãã¯ãã§ããã
ïœïŒ cã»uãã« uïŒ Îµã»E^2 ã代å
¥ããŠã <math> \epsilon \mu \cdot c^2 = 1 </math> ãš ïœEïœïŒïœcÃBïœãå©çšãããšãçµæçã«
:ãs ïŒ <math> \frac{1}{ \sqrt{ \varepsilon \mu} } \epsilon E^2 </math> ïŒ<math> \frac{1}{ \sqrt{ \varepsilon \mu} } \epsilon |E||cB| </math> ïŒïœEïœã»ïœHïœ
ã§ããã
ãã£ãŠãã€ã³ãã£ã³ã°ããã¯ãã« EÃH ã¯åäœé¢ç©ãéã£ãŠæµãåºãé»ç£å Žã®ãšãã«ã®ãŒã®æµããããããã
:EÃHã®åäœã¯ã[V/m]ã»[A/m]ïŒ[Vã»AïŒm<sup>2</sup>]ïŒ[WïŒm<sup>2</sup>]
=== ãã€ã³ãã£ã³ã° ãã¯ãã« ãš éåéå¯åºŠ ===
ãã€ã³ãã£ã³ã° ãã¯ãã«ãS ïŒ EÃH ïŒ ÎµÎŒïŒC<sup>2</sup>ïŒEÃH ã¯
:DïŒÎµE ãš BïŒÎŒH ããã¡ã㊠S ïŒ EÃH ïŒïŒC<sup>2</sup>ïŒDÃB ãšãæžããã
:<math> \mathbb{D} \times \mathbb{B} = \frac{1}{c^2} \mathbb{E} \times \mathbb{H} </math>
ã§ããã
倩äžãçãªèª¬æã§ãããããã® GïŒDÃB ãšããéã¯ãéåéã®å¯åºŠã§ããããã®é GïŒDÃB ããé»ç£æ³¢ã®ãéåéå¯åºŠãïŒããã©ããããã¿ã€ã©ïŒãšãããå®éã«ãDÃB ã®åäœã¯
:[DÃB] ïŒ [ïœ1 / (C<sup>2</sup>)ïœ]ã[EÃH] ïŒ [1 / (ïœ/s)<sup>2</sup>] [W/m<sup>2</sup>]
:ïŒ [Nã»sïŒm<sup>3</sup>]
ãšãªãã
ãããã«ãéåéã®å¯åºŠã®åäœãšçããã
* çºå±: å
é»å¹æãšã®é¢ä¿
ãšããã§ãã®ã¡ã®åå
ã§ç¿ãããå
é»å¹æã§ã¯ ãšãã«ã®ãŒuãšéåépã®é¢ä¿ã¯ãå
é床Cããã¡ããŠã uïŒcp ãšæžããã
:sïŒcã»u 㯠sïŒ cu ïŒïœEÃHïœ ã§ããã uïŒcp ãšããããŠã
:sïŒc (cp) ïŒ (c<sup>2</sup>) p ïŒïœEÃHïœ
ãããã
:p ïŒ (1/c<sup>2</sup>) ïœEÃHïœ ïŒ ÎµÎŒ ïœEÃHïœã
: ïŒ ïœÎµEÃÎŒHïœ ïŒ ïœDÃBïœ
åããŸã§å«ããŠ
:p ïŒ DÃB
ãšãªã£ãŠã確ãã« G ïŒ DÃBãã¯éåéå¯åºŠãšãªãã
=== é»ç£èªå°ã®åæ€èš ===
é·ãã®ãŸã£ãããªééããé床ïœã§ç£å ŽïŒ¢ã®äžã暪åããšãããç°¡åã®ãããééã®è»žãšé床ïœã®æ¹åãšç£å ŽïŒ¢ã¯åçŽãšããããã®ãšããééã®äžã®é»è·ã«ãããåããã³é»å Žã¯ããŒã¬ã³ãåã«ããã
:F ïŒ q vÃB
:F/q ïŒ E ïŒ vÃB ã®é»äœããééã®é·ãæ¹åã«æŽŸçããã
é»å ŽïŒ¥ã«ãã£ãŠé·ãã ããé»è·ïœãäžãããããããšãã«ã®ãŒã¯ ïœïŒ¥ïŒ¬ å€åãããé»äœã¯ ïŒïŒ¥ïŒ¬ ã§ããã
:V ïŒ LvB ïŒ â¿ÎŠïŒâ¿tã
ãããããèªå°é»å§ V ã¯ãç£æã®1ç§ãããã®æéå€åã«ãªãã
ã§ã¯ãä»®ã«åºå®ãããåè·¯ã®äžã«ãœã¬ãã€ããéããŠããã®ãœã¬ãã€ãã«äº€æµé»æµãæµããå Žåããåè·¯ã«èªå°é»å§ãçºçããã®ã§ãããããçãã¯ããããã
{{ã³ã©ã |黿©èšåãªã©ã®ãåå°äœã|
ã³ã³ãã¥ãŒã¿ä»¥å€ã®çšéã§ããæ¯èŒçã«å€§ãç®ã®é»æµãé»å§ãªã©ãã€ãã黿©èšåã匷é»ïŒãããã§ãïŒèšåãªã©ã§ãæŽæµãªã©ã®ç®çã§ã黿©èšåã®ããã®å°çšã®åå°äœãã€ãªãŒãã䜿ãããšãããã
ããœã³ã³çšã®åå°äœãšã黿©èšåçšã®åå°äœãšã¯ãïŒç©çåŠçãªåçã¯ã»ãŒåãã§ãããïŒè£œåãšããŠã¯ããŸã£ãã宿 ŒïŒãŠãããïŒé»æµã»å®æ Œé»å§ãªã©ã®ä»æ§ã®ç°ãªãå¥è£œåãªã®ã§ãæ··åããªãããã«ã䜿çšå¯èœãªé»æµã®å®æ Œå€ããŸã£ããã±ã¿éãã«ïŒããœã³ã³çšãšé»æ°èšåçšãšã§ã¯ïŒéãã®ã§ãçµ¶å¯Ÿã«æ··åããŠã¯ãããªãã
ããä»®ã«ãæ¬æ¥ãªã黿°èšåçšã®åå°äœã§æŽæµãã¹ãå Žæããããœã³ã³çšã®åå°äœã§æŽæµãããšããã£ãšäºæ
ãªã©ã«ã€ãªããå±éºãªã®ã§ãçµ¶å¯Ÿã«æ··çšãã¬ããšã
}}
[[Category:é«çåŠæ ¡æè²|ç©ãµã€ã2ãŠãããšãã]]
[[Category:黿°|é«ãµã€ã2ãŠãããšãã]]
[[Category:ç©çåŠæè²|é«ãµã€ã2ãŠãããšãã]]
[[Category:é«çåŠæ ¡çç§ ç©çII|ãŠãããšãã]] | 2005-05-08T08:12:24Z | 2023-11-23T07:30:47Z | [
"ãã³ãã¬ãŒã:Main",
"ãã³ãã¬ãŒã:ã³ã©ã ",
"ãã³ãã¬ãŒã:-",
"ãã³ãã¬ãŒã:Substub"
] | https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E7%89%A9%E7%90%86/%E7%89%A9%E7%90%86II/%E9%9B%BB%E6%B0%97%E3%81%A8%E7%A3%81%E6%B0%97 |
1,945 | é«çåŠæ ¡ç©ç/ç©çII/ç©è³ªãšåå | é«çåŠæ ¡çç§ ç©çII > ç©è³ªãšåå
æ¬é
ã¯é«çåŠæ ¡çç§ ç©çIIã®ç©è³ªãšååã®è§£èª¬ã§ããã
ç©è³ªã«ã¯åºäœãæ¶²äœãæ°äœã®3ã€ã®çžãããã ãããç©è³ªã®äžæ
ãšåŒã¶ã ãããã¯ããããæž©åºŠã®é«ãé ãã æ°äœãæ¶²äœãåºäœãšãªã£ãŠãããã å®éã«ã¯å§åã®å€åã«ãã£ãŠ çžãå€ããããšãããã
ãã¹ãã³ã®äžã«ç©ºæ°ãã€ããŠãããŠãããš äœããæŒãè¿ããŠããããã«æããããããšãåãã ããã¯ããã¹ãã³ã®äžã®ç©ºæ°ãæŒãè¿ããŠããã®ã§ããã 空æ°ã¯å®éã«ã¯æ§ã
ãªçš®é¡ã®æ°äœã«ãã£ãŠ ã§ããŠããããããã®æ°äœã¯ããããã®ååã«ãã£ãŠ ã§ããŠãããããããã®åå㯠ããããã®é床ãæã£ãŠéåããŠããã ãããã®ã©ã³ãã ãªè¡çªãããã¹ãã³ãæŒãè¿ããŠããã®ã§ããã
çæ³æ°äœãèãããšã å§åãšæž©åºŠã®éã«ã¯ P V = n R T {\displaystyle PV=nRT} ã®é¢ä¿ãããããšãç¥ãããŠããã (çæ³æ°äœã®ç¶æ
æ¹çšåŒ) ããã§ãnã¯ã¢ã«æ¿åºŠ(mol/m 3 {\displaystyle {}^{3}} )ã§ããã Tã¯æž©åºŠ[K]ã§ããã
ç©è³ªãäœã圢æ
ã®1ã€ãååãšåŒã¶ã ååã¯ååæ žãšé»åã«ãã£ãŠæ§æãããŠããã ãããã¯å€å
žçã«ã¯å®å®ãªç¶æ
ãšã㊠ååšãåŸãªãããšãç¥ãããŠããã ããããå®å®ã§ããããã®ã¯å®éã«ã¯ 極埮ã®äžçã§ã¯ããããªã¹ã±ãŒã«ã§ã®äžçãš ç©çæ³åãå€ãã£ãŠæ¥ãããšã«ããã ãã®å Žåã¯é»åã¯æ³¢ã§ãããã®ããã«æ¯èãã ãã®æ§è³ªã«ãã£ãŠæ±ºãŸãããé
眮ã«ãããšãã®ã¿ å®å®ã§ããããããšãç¥ãããŠããã
é»åã®ç¶æ
ã«ãã£ãŠ åºäœã®é»æ°çæ§è³ªã決ãŸãã é»åãå±èµ·ããã®ã«ãšãã«ã®ãŒãå
ãããå¿
èŠã§ãªããšãã ãããå°äœãšåŒã¶ã äžæ¹å€ãã®ãšãã«ã®ãŒãå¿
èŠãšãããšãã ãããçµ¶çžäœ(äžå°äœ)ãšåŒã¶ã
ãŸãããã®äžéã«äœçœ®ãããããªãã®ã åå°äœãšåŒã¶ã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "é«çåŠæ ¡çç§ ç©çII > ç©è³ªãšåå",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "æ¬é
ã¯é«çåŠæ ¡çç§ ç©çIIã®ç©è³ªãšååã®è§£èª¬ã§ããã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ç©è³ªã«ã¯åºäœãæ¶²äœãæ°äœã®3ã€ã®çžãããã ãããç©è³ªã®äžæ
ãšåŒã¶ã ãããã¯ããããæž©åºŠã®é«ãé ãã æ°äœãæ¶²äœãåºäœãšãªã£ãŠãããã å®éã«ã¯å§åã®å€åã«ãã£ãŠ çžãå€ããããšãããã",
"title": "ç©è³ªãšåå"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãã¹ãã³ã®äžã«ç©ºæ°ãã€ããŠãããŠãããš äœããæŒãè¿ããŠããããã«æããããããšãåãã ããã¯ããã¹ãã³ã®äžã®ç©ºæ°ãæŒãè¿ããŠããã®ã§ããã 空æ°ã¯å®éã«ã¯æ§ã
ãªçš®é¡ã®æ°äœã«ãã£ãŠ ã§ããŠããããããã®æ°äœã¯ããããã®ååã«ãã£ãŠ ã§ããŠãããããããã®åå㯠ããããã®é床ãæã£ãŠéåããŠããã ãããã®ã©ã³ãã ãªè¡çªãããã¹ãã³ãæŒãè¿ããŠããã®ã§ããã",
"title": "ç©è³ªãšåå"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "çæ³æ°äœãèãããšã å§åãšæž©åºŠã®éã«ã¯ P V = n R T {\\displaystyle PV=nRT} ã®é¢ä¿ãããããšãç¥ãããŠããã (çæ³æ°äœã®ç¶æ
æ¹çšåŒ) ããã§ãnã¯ã¢ã«æ¿åºŠ(mol/m 3 {\\displaystyle {}^{3}} )ã§ããã Tã¯æž©åºŠ[K]ã§ããã",
"title": "ç©è³ªãšåå"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "",
"title": "ç©è³ªãšåå"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ç©è³ªãäœã圢æ
ã®1ã€ãååãšåŒã¶ã ååã¯ååæ žãšé»åã«ãã£ãŠæ§æãããŠããã ãããã¯å€å
žçã«ã¯å®å®ãªç¶æ
ãšã㊠ååšãåŸãªãããšãç¥ãããŠããã ããããå®å®ã§ããããã®ã¯å®éã«ã¯ 極埮ã®äžçã§ã¯ããããªã¹ã±ãŒã«ã§ã®äžçãš ç©çæ³åãå€ãã£ãŠæ¥ãããšã«ããã ãã®å Žåã¯é»åã¯æ³¢ã§ãããã®ããã«æ¯èãã ãã®æ§è³ªã«ãã£ãŠæ±ºãŸãããé
眮ã«ãããšãã®ã¿ å®å®ã§ããããããšãç¥ãããŠããã",
"title": "ç©è³ªãšåå"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "",
"title": "ç©è³ªãšåå"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "é»åã®ç¶æ
ã«ãã£ãŠ åºäœã®é»æ°çæ§è³ªã決ãŸãã é»åãå±èµ·ããã®ã«ãšãã«ã®ãŒãå
ãããå¿
èŠã§ãªããšãã ãããå°äœãšåŒã¶ã äžæ¹å€ãã®ãšãã«ã®ãŒãå¿
èŠãšãããšãã ãããçµ¶çžäœ(äžå°äœ)ãšåŒã¶ã",
"title": "ç©è³ªãšåå"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãŸãããã®äžéã«äœçœ®ãããããªãã®ã åå°äœãšåŒã¶ã",
"title": "ç©è³ªãšåå"
}
] | é«çåŠæ ¡çç§ ç©çII > ç©è³ªãšåå æ¬é
ã¯é«çåŠæ ¡çç§ ç©çIIã®ç©è³ªãšååã®è§£èª¬ã§ããã | <small>[[é«çåŠæ ¡çç§ ç©çII]] > ç©è³ªãšåå</small>
----
æ¬é
ã¯[[é«çåŠæ ¡çç§ ç©çII]]ã®ç©è³ªãšååã®è§£èª¬ã§ããã
==ç©è³ªãšåå==
===ååãååã®éå===
====ç©è³ªã®äžæ
====
ç©è³ªã«ã¯åºäœãæ¶²äœãæ°äœã®3ã€ã®çžãããã
ãããç©è³ªã®äžæ
ãšåŒã¶ã
ãããã¯ããããæž©åºŠã®é«ãé ãã
æ°äœãæ¶²äœãåºäœãšãªã£ãŠãããã
å®éã«ã¯å§åã®å€åã«ãã£ãŠ
çžãå€ããããšãããã
{{See also|é«çåŠæ ¡ç©ç/ç©çI/ç±|髿 ¡ååŠ ç©è³ªã®äžæ
}}
====ååã®éåãšå§å====
ãã¹ãã³ã®äžã«ç©ºæ°ãã€ããŠãããŠãããš
äœããæŒãè¿ããŠããããã«æããããããšãåãã
ããã¯ããã¹ãã³ã®äžã®ç©ºæ°ãæŒãè¿ããŠããã®ã§ããã
空æ°ã¯å®éã«ã¯æ§ã
ãªçš®é¡ã®æ°äœã«ãã£ãŠ
ã§ããŠããããããã®æ°äœã¯ããããã®ååã«ãã£ãŠ
ã§ããŠãããããããã®ååã¯
ããããã®é床ãæã£ãŠéåããŠããã
ãããã®ã©ã³ãã ãªè¡çªãããã¹ãã³ãæŒãè¿ããŠããã®ã§ããã
<!-- æ°äœéåè«ã䜿ã£ãå§åã®èšç®ãš -->
<!-- å®éšå€ãšã®æ¯èŒ? -->
çæ³æ°äœãèãããšã
å§åãšæž©åºŠã®éã«ã¯
<math>
PV = nRT
</math>
ã®é¢ä¿ãããããšãç¥ãããŠããã
(çæ³æ°äœã®ç¶æ
æ¹çšåŒ)
ããã§ãnã¯ã¢ã«æ¿åºŠ(mol/m<math>{}^3</math>)ã§ããã
Tã¯æž©åºŠ[K]ã§ããã
===ååãé»åãšç©è³ªã®æ§è³ª===
====ååãšé»å====
ç©è³ªãäœã圢æ
ã®1ã€ãååãšåŒã¶ã
ååã¯ååæ žãšé»åã«ãã£ãŠæ§æãããŠããã
ãããã¯å€å
žçã«ã¯å®å®ãªç¶æ
ãšããŠ
ååšãåŸãªãããšãç¥ãããŠããã
ããããå®å®ã§ããããã®ã¯å®éã«ã¯
極埮ã®äžçã§ã¯ããããªã¹ã±ãŒã«ã§ã®äžçãš
ç©çæ³åãå€ãã£ãŠæ¥ãããšã«ããã
ãã®å Žåã¯é»åã¯æ³¢ã§ãããã®ããã«æ¯èãã
ãã®æ§è³ªã«ãã£ãŠæ±ºãŸãããé
眮ã«ãããšãã®ã¿
å®å®ã§ããããããšãç¥ãããŠããã
====åºäœã®æ§è³ªãšé»å====
é»åã®ç¶æ
ã«ãã£ãŠ
åºäœã®é»æ°çæ§è³ªã決ãŸãã
é»åãå±èµ·ããã®ã«ãšãã«ã®ãŒãå
ãããå¿
èŠã§ãªããšãã
ãããå°äœãšåŒã¶ã
äžæ¹å€ãã®ãšãã«ã®ãŒãå¿
èŠãšãããšãã
ãããçµ¶çžäœ(äžå°äœ)ãšåŒã¶ã
ãŸãããã®äžéã«äœçœ®ãããããªãã®ã
åå°äœãšåŒã¶ã
[[Category:é«çåŠæ ¡æè²|ç©ãµã€ã2ãµã€ãã€ãšããã]]
[[Category:ç©çåŠ|é«ãµã€ã2ãµã€ãã€ãšããã]]
[[Category:ç©çåŠæè²|é«ãµã€ã2ãµã€ãã€ãšããã]]
[[Category:é«çåŠæ ¡çç§ ç©çII|ãµã€ãã€ãšããã]] | null | 2022-10-20T01:24:20Z | [
"ãã³ãã¬ãŒã:See also"
] | https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E7%89%A9%E7%90%86/%E7%89%A9%E7%90%86II/%E7%89%A9%E8%B3%AA%E3%81%A8%E5%8E%9F%E5%AD%90 |
1,946 | é«çåŠæ ¡ç©ç/ååç©ç | ããªã«ã³ã®å®éšãšã¯ãé§å¹ããªã©ã§äœæããæ²¹æ»Žã®åŸ®å°ãªé£æ²«ã«ãXç·ãã©ãžãŠã ãªã©ã§åž¯é»ãããããããŠãå€éšããé»å ŽãåŒç«ããããããšã油滎ã®éå(äžåã)ã®ã»ãã«ãé»å Žã«ããé黿°å(äžåãã«ãªãããã«é»æ¥µæ¿ãèšçœ®ãã)ãåãã®ã§ãé£ãåã£ãŠéæ¢ããç¶æ
ã«ãªã£ãæã®é»å Žãããé»è·ã®å€ã確ãããå®éšã§ããã
ãã®å®éšã§ç®åºã»æž¬å®ãããé»è·ã®å€ã 1.6Ã10 [C]ã®æŽæ°åã«ãªã£ãã®ã§ãé»å1åã®é»è·ã 1.6Ã10 [C]ã ãšåãã£ãã
ãªãããã® 1.6Ã10 [C]ã®ããšã黿°çŽ é(ã§ãããããã)ãšããã
è² ã®é»è·ã«åž¯é»ãããŠããé屿¿ã«ã玫å€ç·ãåœãŠããšãé»åãé£ã³åºããŠããããšãããããŸããæŸé»å®éšçšã®è² 極ã«é»åãåœãŠããšãé»åãé£ã³åºããŠããããšãããããã®çŸè±¡ããå
é»å¹æ(ããã§ã ããããphotoelectric effect)ãšããã1887幎ããã«ãã«ãã£ãŠãå
é»å¹æãçºèŠããããã¬ãŒãã«ãã«ãã£ãŠãå
é»å¹æã®ç¹åŸŽãæããã«ãªã£ãã
åœãŠãå
ã®æ¯åæ°ããäžå®ã®é«ã以äžã ãšãå
é»å¹æãèµ·ããããã®æ¯åæ°ãéçæ¯åæ°(ãããã ããã©ããã)ãšãããéçæ¯åæ°ããäœãå
ã§ã¯ãå
é»å¹æãèµ·ãããªãããŸããéçæ¯åæ°ã®ãšãã®æ³¢é·ããéçæ³¢é·(ãããã ã¯ã¡ãã)ãšããã
ç©è³ªã«ãã£ãŠãéçæ¯åæ°ã¯ç°ãªããäºéçã§ã¯çŽ«å€ç·ã§ãªããšå
é»å¹æãèµ·ããªãããã»ã·ãŠã ã§ã¯å¯èŠå
ã§ãå
é»å¹æãèµ·ããã
å
é»å¹æãšã¯ãç©è³ªäž(äž»ã«éå±)ã®é»åãå
ã®ãšãã«ã®ãŒãåãåã£ãŠå€éšã«é£ã³åºãçŸè±¡ã®ããšã§ããã ãã®é£ã³åºããé»åããå
é»åã(ããã§ãããphotoelectron)ãšããã
å
é»å¹æã«ã¯,次ã®ãããªç¹åŸŽçãªæ§è³ªãããã
ãããã®æ§è³ªã®ãã¡ã1çªããš2çªãã®æ§è³ªã¯ãå€å
žç©çåŠã§ã¯èª¬æã§ããªãã ã€ãŸããå
ããé»ç£æ³¢ãšããæ³¢åã®æ§è³ªã ããæããŠããŠã¯ãã€ãã€ãŸãåããªãã®ã§ããã
ãªããªããä»®ã«ãé»ç£æ³¢ã®é»ç(é»å Ž)ã«ãã£ãŠéå±ããé»åãæŸåºãããšèããå Žåãããå
ã®åŒ·ãã倧ãããªãã°ãæ¯å¹
ã倧ãããªãã®ã§ãé»ç(é»å Ž)ã倧ãããªãã¯ãã§ããã
ããããå®éšçµæã§ã¯ãå
é»åã®éåãšãã«ã®ãŒã¯ãå
ã®åŒ·ãã«ã¯äŸåããªãã
ãã£ãŠãå€å
žååŠã§ã¯èª¬æã§ããªãã
äžè¿°ã®ççŸ(å€å
žçãªé»ç£æ³¢çè«ã§ã¯ãå
é»å¹æã説æã§ããªãããš)ã解決ããããã«ã次ã®ãããªå
éå仮説ãã¢ã€ã³ã·ã¥ã¿ã€ã³ã«ãã£ãŠæå±ãããã
ãã®2ã€ãã®æ¡ä»¶ãå®åŒåãããšã
ãšãªãã
ãã®åŒã«ãããæ¯äŸå®æ°hã¯ãã©ã³ã¯å®æ°ãšãã°ãã宿°ã§ã
[Jã»s] ãšããå€ããšãã
ä»äºé¢æ°(ãããš ãããããwork function)ãšã¯ãå
é»å¹æãèµ·ããã®ã«å¿
èŠãªæå°ã®ãšãã«ã®ãŒã®ããšã§ãããéå±ã®çš®é¡ããšã«ã決ãŸã£ãå€ã§ããã
ä»äºé¢æ°ã®å€ã W[J] ãšãããšãå
åã®åŸãéåãšãã«ã®ãŒã®æå€§å€ K0 [J] ã«ã€ããŠã次åŒãåŸãããã
ãã®åŒãããå
é»å¹æãèµ·ããæ¡ä»¶ã¯ hΜâ§W ãšãªãããã㯠K0â§0 ã«çžåœããã
ãããããå
é»å¹æãèµ·ããéçæ¯åæ° Μ0 ã«ã€ããŠãhΜ0=W ãæãç«ã€ã
ãã®å
éå仮説ã«ãããå
é»å¹æã®1çªããš2çªãã®æ§è³ªã¯ã容æã«ãççŸãªã説æã§ããããã«ãªã£ããæ³¢åã¯ç²åã®ããã«æ¯èãã®ã§ããã ãªããå
é»å¹æã®3çªãã®æ§è³ªãããããå Žæã®å
ã®åŒ·ãã¯ã ãã®å Žæã®åäœé¢ç©ã«åäœæéã飿¥ããå
åã®æ°ã«æ¯äŸããããšãåããã
ãããããå
ã®æ³¢é·ã¯ãã©ããã£ãŠæž¬å®ãããã®ã ãããã
çŸåšã§ã¯ãããšãã°ååã®çºå
ã¹ãã¯ãã«ã®æ³¢é·æž¬å®ãªããåææ Œåãããªãºã ãšããŠäœ¿ãããšã«ãã£ãŠãæ³¢é·ããšã«åããæ³¢é·ã枬å®ãããŠããã(â» åèæç®: å¹é¢šé€š(ã°ããµããã)ãstep-up åºç€ååŠããæ¢¶æ¬èäº ç·šéãç³å·æ¥æš¹ ã»ãèã2015幎åçã25ããŒãž)
ãããŸããªåçãè¿°ã¹ããšãå¯èŠå
ãŠãã©ã®å
ã®æ³¢é·ã®æž¬å®ã¯ãåææ Œåã«ãã£ãŠæž¬å®ããããã ããã§ã¯ãã®åææ Œåã®çްããæ°çŸããã¡ãŒãã«ãæ°åããã¡ãŒãã«ãŠãã©ã®ééã®æ ŒåããŸãã©ããã£ãŠäœãã®ãããšããåé¡ã«è¡ãçããŠããŸãã
æŽå²çã«ã¯ãäžèšã®ããã«ãå¯èŠå
ã®æ³¢é·ã枬å®ãããŠãã£ãã
ãŸãã1805幎ããã®ãã€ã³ã°ã®å®éšãã§æåãªã€ã³ã°ãã®ç ç©¶ã«ãããå¯èŠå
ã®æ³¢é·ã¯ããããã 100nm(10m) ã 1000nm ã®çšåºŠã§ããããšã¯ããã®é ããããã§ã«äºæ³ãããŠããã
ãã®åŸããã€ãã®ã¬ã³ãºã®ç 磚工ã ã£ããã©ãŠã³ããŒãã¡ãŒããããããåææ Œåãéçºããå¯èŠå
ã®æ³¢é·ã粟å¯ã«æž¬å®ããäºã«æåããããã©ãŠã³ããŒãã¡ãŒã¯åææ Œåãäœãããã«çްãééãçšããå å·¥è£
眮ã補äœãããã®å å·¥æ©ã§è£œäœãããåææ ŒåãçšããŠãå
ã®æ³¢é·ã®æž¬å®ããå§ããã®ããç ç©¶ã®å§ãŸãã§ããã1821幎ã«ãã©ãŠã³ããŒãã¡ãŒã¯ã1cmãããæ Œåã130æ¬ã䞊ã¹ãåææ Œåã補äœããã
ãŸãã1870幎ã«ã¯ã¢ã¡ãªã«ã®ã©ã¶ãã©ãŒããã¹ããã¥ã©ã ãšããåéãçšããåå°åã®åææ Œåã補äœã(ãã®ã¹ããã¥ã©ã åéã¯å
ã®åå°æ§ãé«ã)ãããã«ãã£ãŠ1mmããã700æ¬ãã®æ Œåã®ããåææ Œåã補äœããã(èŠåºå
ž)
ããã«ãã®ããã®æä»£ãéãããã®æœ€æ»ã®ããã«æ°Žéãäœ¿ãæ°Žéæµ®éæ³ããç ç©¶éçºã§è¡ãããã
ããé«ç²ŸåºŠãªæ³¢é·æž¬å®ããã®ã¡ã®æä»£ã®ç©çåŠè
ãã€ã±ã«ãœã³ã«ãã£ãŠãå¹²æžèš(ããããããã)ãšãããã®ãçšããŠ(çžå¯Ÿæ§çè«ã®å
¥éæžã«ããåºãŠããè£
眮ã§ããã髿 ¡çã¯ããŸã çžå¯Ÿæ§çè«ãç¿ã£ãŠãªãã®ã§ãæ°ã«ããªããŠããã)ãå¹²æžèšã®åå°é¡ã粟å¯ããžã§çްããåããããšã«ãããé«ç²ŸåºŠãªæ³¢é·æž¬å®åšãã€ããããã®æž¬å®åšã«ãã£ãŠã«ãããŠã ã®èµ€è²ã¹ãã¯ãã«ç·ã枬å®ããçµæã®æ³¢é·ã¯643.84696nmã ã£ãããã€ã±ã«ãœã³ã®æž¬å®æ¹æ³ã¯ãèµ€è²ã¹ãã¯ãã«å
ã®æ³¢é·ããåœæã®ã¡ãŒãã«ååšãšæ¯èŒããããšã§æž¬å®ããã
ãã€ã±ã«ãœã³ã®å¶äœããå¹²æžèšã«ããæ°Žéæµ®éæ³ã®æè¡ãåãå
¥ããããŠããããšããã
ããã«ãããžã®æè¡é©æ°ã§ãããŒãã³ã»ããã(ãã¡ã«ãã³ã»ãããããšãèš³ã)ãšãããåŒŸåæ§ã®ããæè³ªã§ããžãã€ããããšã«ãã£ãŠèª€å·®ããªããããŠå¹³ååãããã®ã§ãè¶
çµ¶çã«é«ç²ŸåºŠã®éããããäœãæè¡ããã€ã®ãªã¹ã®ç©çåŠè
ããŒãã¹ã»ã©ã«ãã»ããŒãã³(è±:en:w:Thomas Ralph Merton )ãªã©ã«ãã£ãŠéçºãããã
ãªããçŸä»£ã§ããç ç©¶çšãšããŠå¹²æžèšãçšããæ³¢é·æž¬å®åšãçšããããŠããã(èŠåºå
ž) ã¡ãŒãã«ååšã¯ããã€ã±ã«ãœã³ã®å®éšã®åœæã¯é·ãã®ããããšã®æšæºã ã£ããã1983幎以éã¯ã¡ãŒãã«ååšã¯é·ãã®æšæºã«ã¯çšããããŠããªããçŸåšã®ã¡ãŒãã«å®çŸ©ã¯ä»¥äžã®éãã
倪éœé»æ± ããå
é»å¹æã®ãããªçŸè±¡ã§ããããšèããããŠããã(â» å®æåºçã®æç§æžãªã©ã§ãæ±ã£ãŠãã話é¡ã)
ãªãã倪éœé»æ± ã¯äžè¬çã«åå°äœã§ããããã€ãªãŒãåããPNæ¥åã®éšåã«å
ãåœãŠãå¿
èŠãããã
(PNæ¥åéšå以å€ã®å Žæã«ãå
ãããã£ãŠããçããé»åãã黿µãšããŠåãåºããªãã黿µãšããŠåãåºããããã«ããã«ã¯ãPNæ¥åã®éšåã«ãå
ãåœãŠãå¿
èŠãããããã®ãããPNæ¥åã®çæ¹ã®æè³ªããéæããããã«è¿ãå
ééçã®ææã«ããå¿
èŠãããããéæé»æ¥µããšããã)
(â» ç¯å²å€?: ) ãªããçºå
ãã€ãªãŒãåå°äœã¯ããã®éãã¿ãŒã³ãšããŠèããããŠãããå
é»å¹æã§ãããä»äºé¢æ°ãã«ããããšãã«ã®ãŒããã£ã黿µãæµãããšã«ããããã®åå°äœç©è³ªã®ãä»äºé¢æ°ãã«ããããšãã«ã®ãŒã®å
ããPNæ¥åã®æ¥åé¢ããæŸåºãããããšããä»çµã¿ã§ããã
ãªããCCDã«ã¡ã©ãªã©ã«äœ¿ãããCCDã¯ã倪éœé»æ± ã®ãããªæ©èœããã€åå°äœããé»åæºãšããŠã§ã¯ãªããå
ã®ã»ã³ãµãŒãšããŠæŽ»çšãããšããä»çµã¿ã®åå°äœã§ããã(â» å®æåºçã®æç§æžãªã©ã§ãæ±ã£ãŠãã話é¡ã)
(â» æ®éç§é«æ ¡ã®ãç©çãç³»ç§ç®ã§ã¯ç¿ããªããã)
ç©ççŸè±¡ã®éååãšããŠãå
é»å¹æãç©è³ªæ³¢ã®ã»ãã«ãååã¹ã±ãŒã«ã®ç©ççŸè±¡ã®éååã¯ãããããçš®é¡ã®è¶
äŒå°ç©è³ªã§ã¯ãããã«éããç£æãéååããçŸè±¡ãç¥ãããŠããã(â» å·¥æ¥é«æ ¡ã®ç§ç®ãå·¥æ¥ææãäžå·»(ãŸãã¯ç§ç®ã®åŸå)ã§ç¿ãã)
ç§åŠè
ã¬ã³ãã²ã³ã¯ã1895å¹ŽãæŸé»ç®¡ããã¡ããŠé°æ¥µç·ã®å®éšãããŠãããšããæŸé»ç®¡ã®ã¡ããã«çœ®ããŠãã£ãåç也æ¿ãæå
ããŠããäºã«æ°ä»ããã
圌(ã¬ã³ãã²ã³)ã¯ãé°æ¥µç·ãã¬ã©ã¹ã«åœãã£ããšãããªã«ãæªç¥ã®ãã®ãæŸå°ãããŠããšèããXç·ãšåã¥ããã
ãããŠãããŸããŸãªå®éšã«ãã£ãŠãXç·ã¯æ¬¡ã®æ§è³ªããã€ããšãæããã«ãªã£ãã
ãã®äºãããXç·ã¯ãè·é»ç²åã§ã¯ãªãäºãåããã(çµè«ããããšãXç·ã®æ£äœã¯ãæ³¢é·ã®çãé»ç£æ³¢ã§ããã)
ãŸãã
ãªã©ã®æ§è³ªãããã
ãªãçŸä»£ã§ã¯ãå»ççšã®Xç·ããã¬ã³ãã²ã³ããšãããã
1912幎ãç©çåŠè
ã©ãŠãšã¯ãXç·ãåçµæ¶ã«åœãŠããšãåçãã£ã«ã ã«å³ã®ãããªæç¹ã®æš¡æ§ã«ããããšãçºèŠããããããã©ãŠãšæç¹(ã¯ããŠã)ãšãããçµæ¶äžã®ååãåææ Œåã®åœ¹å²ãããããšã§çºçããå¹²æžçŸè±¡ã§ããã
1912幎ãç©çåŠè
ãã©ãã°ã¯ãåå°ã匷ãããæ¡ä»¶åŒãçºèŠããã
2d sinΞ = n λ
ããããã©ãã°ã®æ¡ä»¶ãšããã
äžåŒã®dã¯æ Œåé¢ã®ééã®å¹
ã§ããã
Xç·ãççŽ å¡ãªã©ã®(éå±ãšã¯éããªã)ç©è³ªã«åœãŠããã®æ£ä¹±ãããããšã®Xç·ã調ã¹ããšãããšã®Xç·ã®æ³¢é·ãããé·ããã®ããæ£ä¹±ããXç·ã«å«ãŸããã ãã®ããã«æ£ä¹±Xç·ã®æ³¢é·ã䌞ã³ãçŸè±¡ã¯ç©çåŠè
ã³ã³ããã³ã«ãã£ãŠè§£æãããã®ã§ãã³ã³ããã³å¹æ(ãŸãã¯ã³ã³ããã³æ£ä¹±)ãšããã
ãã®çŸè±¡ã¯ãXç·ãæ³¢ãšèããã®ã§ã¯èª¬æãã€ããªãã(ããä»®ã«æ³¢ãšèããå Žåãæ£ä¹±å
ã®æ³¢é·ã¯ãå
¥å°Xç·ãšåãæ³¢é·ã«ãªãã¯ãããªããªããæ°Žé¢ã®æ³¢ã«äŸãããªããããæ°Žé¢ãæ£ã§4ç§éã«1åã®ããŒã¹ã§æºãããããæ°Žé¢ã®æ³¢ãã4ç§éã«1åã®ããŒã¹ã§åšæãè¿ããã®ãšãåãçå±ã) ããŠãæ³¢åã®çè«ã§ã³ã³ããã³å¹æã説æã§ããªããªããç²åã®çè«ã§èª¬æãããã°è¯ãã ããã
ãã®åœæãã¢ã€ã³ã·ã¥ã¿ã€ã³ã¯å
éå仮説ã«ããšã¥ããå
åã¯ãšãã«ã®ãŒhΜããã€ã ãã§ãªããããã«æ¬¡ã®åŒã§è¡šãããéåépããã€ããšãçºèŠããŠããã
p = h Μ c ( = h Μ Μ λ = h λ ) {\displaystyle p={\frac {h\nu }{c}}(={\frac {h\nu }{\nu \lambda }}={\frac {h}{\lambda }})}
ç©çåŠè
ã³ã³ããã³ã¯ããã®çºèŠãå©çšããæ³¢é·Î»ã®Xç·ããéåé h λ {\displaystyle {\frac {h}{\lambda }}} ãšãšãã«ã®ãŒ h c λ {\displaystyle {\frac {hc}{\lambda }}} ãæã€ç²å(å
å)ã®æµããšèãã Xç·ã®æ£ä¹±ãããã®å
åãç©è³ªäžã®ããé»åãšå®å
šåŒŸæ§è¡çªãããçµæãšèããã
è§£æ³ã¯ãäžèšã®ãšããã
ãšãã«ã®ãŒä¿åã®åŒ
éåéä¿åã®åŒ
äžèšã®3ã€ã®åŒãé£ç«ãããã®é£ç«æ¹çšåŒãè§£ãããã«vãšÏãé£ç«èšç®ã§æ¶å»ãããŠããã λ â λ â² {\displaystyle \lambda \fallingdotseq \lambda '} ã®ãšã㫠λ â² â λ + h m c ( 1 â cos Ξ ) {\displaystyle \lambda '\fallingdotseq \lambda +{\frac {h}{mc}}(1-\cos \theta )} ãåŸãããã
ãã®åŒãå®éšåŒãšããäžèŽããã®ã§ãã³ã³ããã³ã®èª¬ã®æ£ããã¯å®èšŒãããã
(ç·šéè
ãž: èšè¿°ããŠãã ããã)(Gimyamma ãããè§£æ³ãæžããŠã¿ãŸããã)
åŒ(1),(2),(3)ããã v {\displaystyle v} ãš Ï {\displaystyle \phi } ãæ¶å»ããŠã λ , λ â² , Ξ {\displaystyle \lambda ,\lambda ',\theta } ã®é¢ä¿åŒãæ±ããã°ããã
( m v sin Ï ) 2 = ( â h λ â² sin Ξ ) 2 {\displaystyle (mv\sin \phi )^{2}=(-{\frac {h}{\lambda '}}\sin \theta )^{2}}
m 2 v 2 = ( h λ â h λ â² cos Ξ ) 2 + ( â h λ â² sin Ξ ) 2 + h 2 λ â² 2 {\displaystyle m^{2}v^{2}=({\frac {h}{\lambda }}-{\frac {h}{\lambda '}}\cos \theta )^{2}+(-{\frac {h}{\lambda '}}\sin \theta )^{2}+{\frac {h^{2}}{\lambda '^{2}}}}
ãåŸãã
åŒ(1)ã®å³èŸºã®ç¬¬2é
ãå€åœ¢ããŠåŒ(4)ã代å
¥ããã
ãããåŒ(1)ã®å³èŸºã«ä»£å
¥ãããš
ãåŸãã
ãã®åŒãåŒ(5)ã®å³èŸºç¬¬2é
ã«ä»£å
¥ãããšã
ãã®åŒã®å³èŸºã®ç¬¬1é
ãç§»è¡ããåŒãå€åœ¢ãããš
䞡蟺㫠λ λ â² {\displaystyle \lambda \lambda '} ãæãããš
Xç·ã®æ£ä¹±ã§ã¯ã λ â² â λ {\displaystyle \lambda '\fallingdotseq \lambda } ãªã®ã§
æ
ã«åŒ(6)ãã
ããã§ãææã®åŒãå°åºãããã
å
ã®éåé P[kgã»m/s]=hΜ/c ã«ã€ããŠã
ãŸã cP=hΜ[J] ãšå€åœ¢ããŠã¿ããšããé床ã«éåéãããããã®ããšãã«ã®ãŒã§ããããšããå
容ã®å
¬åŒã«ãªã£ãŠããã
ãããçè§£ãããããã²ãšãŸããå
ãç²åã§ãããšåæã«æµäœã§ãããšèããŠããã®é»ç£æ³¢ãåäœäœç©ãããã®éåépãæã£ãŠãããšããŠããã®æµäœã®éåéã®å¯åºŠ(éåéå¯åºŠ)ã p [(kgã»m/s)/m]ãšãããããã®å Žåã®é»ç£æ³¢ã¯æµäœãªã®ã§ãéåéã¯ããã®å¯åºŠã§èããå¿
èŠãããã
é»ç£æ³¢ãç©äœã«ç
§å°ããŠãå
ãç©äœã«åžåããããšããããåå°ã¯ãªããšããŠãå
ã®ãšãã«ã®ãŒã¯ãã¹ãŠç©äœã«åžåããããšãããç°¡åã®ãããç©äœå£ã«åçŽã«å
ãç
§å°ãããšãããç©äœãžã®å
ã®ç
§å°é¢ç©ãA[m]ãšããã
é»ç£æ³¢ã¯å
é c[m/s] ã§é²ãã®ã ãããå£ããcã®è·é¢ã®éã«ãããã¹ãŠã®å
åã¯ããã¹ãŠåäœæéåŸã«åžåãããäºã«ãªããåäœæéã«å£ã«åžåãããå
åã®éã¯ããã®åäœæéã®ããã ã«å£ã«æµã蟌ãã å
åã®éã§ããã®ã§ã
å³ã®ããã«ãä»®ã«åºé¢ãA[m]ãšããŠãé«ãhã c ( hã®å€§ããã¯cã«çãããåäœæét=1ãããããšããã° h=cã»1 ã§ãã)[m]ãšããæ±ã®äœç© AÃc[m]äžã«å«ãŸããå
åã®éã®ç·åã«çããã
ãã£ãœããéåéå¯åºŠã¯ p[(kgã»m/s)/m]ã ã£ãã®ã§ããã®æ± AÃh ã«å«ãŸããéåéã®ç·åã¯ã AÃhÃp[kgã»m/s]ã§ããã
å
ãåžåããç©äœã®éåéã¯ãåäœæéã«Ahpã®éåéãå¢å ããããšã«ãªãããh=cã§ãã£ãã®ã§ãã€ãŸããéåéãåäœæéãããã« Acp[kgã»m/s] ã ãå£ã«æµãããããšã«ãªãã
ãã£ãœãã髿 ¡ç©çã®ååŠã®çè«ã«ããããéåéã®æéãããã®å€åã¯ãåã§ãããã§ãã£ãã®ã§ãã€ãŸãç©äœã¯ãAcp[N]ã®åãåããã
åãåããã®ã¯ç
§å°ãããé¢ã ãããå[N]ãé¢ç©ã§å²ãã°å§åã®æ¬¡å
[N/m]=[Pa]ã«ãªãã
å®éã«é¢ç©ã§å²ãèšç®ãããã°ãå§åãšã㊠cp[N/m]=[Pa]=[J/m] ãåããäºãèšç®çã«åãããããã«ãå§åã®æ¬¡å
ã¯[N/m]=[Pa]=[J/m]ãšå€åœ¢ã§ããã®ã§ããå§åã¯ãåäœäœç©ãããã®ãšãã«ã®ãŒã®å¯åºŠ(ããšãã«ã®ãŒå¯åºŠããšãã)ã§ããããšèãããã
ãšããã° cp ã®æ¬¡å
ã¯ã[å§å]=[ãšãã«ã®ãŒå¯åºŠ] ãšãªãã
ãã®ãšãã«ã®ãŒå¯åºŠã«ãhΜã察å¿ããŠãããšèããã°ãåççã§ããã
èŠããã«ãå
ã®ãããªãäºå®äžã¯ç¡éã«å§çž®ã§ããæ³¢ã»æµäœã§ã¯ã
å
¬åŒãšããŠãé床ãvãéåéå¯åºŠãpããšãã«ã®ãŒå¯åºŠãεãšããŠèããã°ã
ãšããé¢ä¿ããªããã€ã
(ãªããæ°Žã空æ°ã®ãããªæ®éã®æµäœã§ã¯ãç¡éã«ã¯å§çž®ã§ããªãã®ã§ãäžèšã®å
¬åŒã¯æãç«ããªãã)
ãããããã³ã³ããã³å¹æã®åŠç¿ã§åãã£ãéåéã®å
¬åŒ p = h Μ c {\displaystyle p={\frac {h\nu }{c}}} ã¯ãéåéå¯åºŠãšãšãã«ã®ãŒå¯åºŠã®é¢ä¿åŒã«ãå
écãšå
é»å¹æã®ãšãã«ã®ãŒhΜã代å
¥ãããã®ã«ãªã£ãŠããã
äžèšã®èå¯ã¯ãå
ãæµäœãšããŠèããé»ç£æ³¢ã®éåéã ããç²åãšããŠè§£éãããå
åã®éåéã«ãã cP=hΜ ãšããé¢ä¿ãæãç«ã€ãšèãããã
ããèªè
ããå§åããšãã«ã®ãŒå¯åºŠãšèããã®ãåããã¥ãããã°ãããšãã°ç±ååŠã®ä»äºã®å
¬åŒ W=Pâ¿V ã®é¡æšãããŠã¯ã©ãã? ãªããäžèšã®éåéãšãšãã«ã®ãŒã®é¢ä¿åŒã®å°åºã¯å€§ãŸããªèª¬æã§ãããæ£ç¢ºãªå°åºæ³ã¯ã(倧åŠã§ç¿ã)ãã¯ã¹ãŠã§ã«ã®æ¹çšåŒã«ãããªããã°ãªããªãã
ããããã ãå
ã¯ãé»åã«äœçšãããšãã«ãå
ãç²åãšããŠæ¯èã(ãµããŸã)ã ãšããã®ãæ£ããã ããã
ãã£ãœãããã¿ããã«ãå
ã¯ç²å! å
ã¯æ³¢åã§ã¯ãªã!!ã(Ã)ãšãããã®ã¯ãåãªã銬鹿ã®ã²ãšã€èŠãã§ããã
ãã¯ã¹ãŠã§ã«ã®æ¹çšåŒã§ã¯ãå
(é»ç£æ³¢)ã¯æ³¢åãšããŠããã€ããã®ã§ããã
ããããå
é»å¹æã§èµ·ããçŸè±¡ã§ã¯ãæŸåºé»åã®ãã€éåãšãã«ã®ãŒã¯ãå
ã®åŒ·åºŠãšã¯ç¡é¢ä¿ã§ãããåçŽãªæµäœãšããŠèãããªãã(ããšãã°éå
ããããå
ãéãããããŠã)å
ã®åŒ·åºŠãäžããã°ãéåéå¯åºŠãäžããããºã ãããã®åž°çµã®æŸåºé»åã®ãšãã«ã®ãŒå¯åºŠãäžããããºã ããããšããäºæž¬ãæãç«ã¡ããã ãããããå®éšçµæã¯ãã®äºæž¬ãšã¯ç°ãªããå
é»å¹æã¯å
ã®åŒ·åºŠãšã¯ç¡é¢ä¿ã«å
ã®åšæ³¢æ°ã«ãã£ãŠæŸåºé»åã®ãšãã«ã®ãŒã決ãŸããã»ã»ã»ãšããã®ããå®éšäºå®ã§ããã
ãã®ãããªå®éšçµæããã20äžçŽåé ã®åœæãåèããŠããéåååŠãªã©ãšé¢é£ã¥ããŠããå
ãæ³¢ã§ãããšåæã«ç²åã§ããããšæå®ããã®ãããŒãã«è²¡å£ãªã©ã§ãããå
é»å¹æãå
ã®ç²åèª¬ã®æ ¹æ ã®ã²ãšã€ãšããã®ãã¢ã€ã³ã·ã¥ã¿ã€ã³ã®ä»®èª¬ã§ãããã¢ã€ã³ã·ã¥ã¿ã€ã³ã®ãã®ä»®èª¬ãå®èª¬ãšããŠèªå®ããã®ãããŒãã«è²¡å£ã§ãããçŸåšã®ç©çåŠã§ã¯ãå
é»å¹æãå
åèª¬ã®æ ¹æ ãšããŠé説ã«ãªã£ãŠããã
å
é»å¹æã®å®éšçµæãã®ãã®ã¯ãåã«ãå
é»å¹æã«ããããå
ãããåçŽãªæµäœã»æ³¢åãšããŠã¯èããããªãã ããã»ã»ã»ãšããã ãã®äºã§ããã
çµå±ãç©çåŠã¯å®éšç§åŠã§ãããå®éšçµæã«ããšã¥ãå®éšæ³åãèŠãããããªãããå
åããšããã¢ã€ãã¢ã¯ããå
é»å¹æã®æŸåºé»å1åãããã®ãšãã«ã®ãŒã¯ãå
¥å°å
ã®åŒ·åºŠã«å¯ãããå
ã®æ³¢é·(åšæ³¢æ°)ã«ããããšããäºãèŠããããããããã®ææ®µã«ããããã¢ã€ã³ã·ã¥ã¿ã€ã³ãšãã®æ¯æè
ã«ãšã£ãŠã¯ããå
ã®ç²å説ããšããã®ããèŠããããããããã®ã¢ãã«ã ã£ãã ãã§ãã(ç²åãªã®ã«æ³¢é·(åšæ³¢æ°)ãšã¯ãæå³äžæã ã)ããããŠéåéå¯åºŠãšãšãã«ã®ãŒå¯åºŠã®é¢ä¿ vp=ε ãšããç¥èããŸããå
é»å¹æã®å
¬åŒ cP=hΜ ãèŠããããããããã®ææ®µã«ãããªãã
ãã£ããã®å
ã¯ãåçŽãªæ³¢ã§ããªããåçŽãªç²åã§ããªãããã åã«ãå
ã¯å
ã§ãããå
ã§ãããªãã
ãå
ã®ç²å説ããšããã®ã¯ãç空äžã§åªè³ª(ã°ããã€)ããªããŠãå
ãäŒããããšããçšåºŠã®æå³åãã§ãããªãã ãããã¢ã€ã³ã·ã¥ã¿ã€ã³ãç¹æ®çžå¯Ÿæ§çè«ãçºè¡šããåãŸã§ã¯ã(20äžç€ä»¥éããçŸä»£ã§ã¯åŠå®ãããŠãããã)ãã€ãŠããšãŒãã«ããšããå
ãäŒããåªè³ªã®ååšãä¿¡ããããŠããããããã¢ã€ã³ã·ã¥ã¿ã€ã³ã¯çžå¯Ÿæ§çè«ã«ããããšãŒãã«ã®ååšãåŠå®ããã
ãå
ã®ç²å説ããçºè¡šããŠããè
ãåããã¢ã€ã³ã·ã¥ã¿ã€ã³ã ã£ãã®ã§ãããŒãã«è²¡å£ã¯ãæ¬æ¥ãªãç¹çžå¯Ÿæ§çè«ã§ããŒãã«è³ãæãããããã«ãå
å説ã§ããŒãã«è³ãã¢ã€ã³ã·ã¥ã¿ã€ã³ã«æããã ãã ãã
ç©çåŠè
ãã»ããã€ã¯ãæ³¢ãšèããããŠãå
ãç²åã®æ§è³ªããã€ãªãã°ããã£ãšé»åãç²åãšããŠã®æ§è³ªã ãã§ãªããé»åãæ³¢åã®ããã«æ¯èãã ãããšèããã
ãããŠãé»åã ãã§ãªããäžè¬ã®ç²åã«å¯ŸããŠãããã®èããé©çšããæ¬¡ã®å
¬åŒãæå±ããã
ããã¯ãã»ããã€ã«ãã仮説ã§ãã£ãããçŸåšã§ã¯æ£ãããšèªããããŠããã
ãã®æ³¢ã¯ãç©è³ªæ³¢(material wave)ãšåŒã°ããããã»ããã€æ³¢(de Broglie wave length)ãšãããã ããªãã¡ãå
åãé»åã«éãããããããç©è³ªã¯ç²åæ§ã𿳢忧ããããæã€ãšãããã
ãã®ç©è³ªæ³¢ãšãã説ã«ãããšããããé»åç·ãç©è³ªã«åœãŠãã°ãåæãªã©ã®çŸè±¡ãèµ·ããã¯ãã§ããã
1927幎ã1928幎ã«ãããŠãããããœã³ãšã¬ãŒããŒã¯ãããã±ã«ãªã©ã®ç©è³ªã«é»åç·ãåœãŠãå®éšãè¡ããXç·åæãšåæ§ã«é»åç·ã§ãåæãèµ·ããããšãå®èšŒãããæ¥æ¬ã§ã1928幎ã«èæ± æ£å£«(ããã¡ ããã)ã鲿¯çã«é»åç·ãåœãŠãå®éšã«ããåæãèµ·ããããšã確èªããã
é»åç·ã®æ³¢é·ã¯ãé«é»å§ããããŠé»åãå éããŠé床ãé«ããã°ãç©è³ªæ³¢ã®æ³¢é·ã¯ããªãå°ããã§ããã®ã§ãå¯èŠå
ã®æ³¢é·ãããå°ãããªãã
ãã®ãããå¯èŠå
ã§ã¯èŠ³æž¬ã§ããªããã£ãçµæ¶æ§é ããé»åæ³¢ãXç·ãªã©ã§èŠ³æž¬ã§ããããã«ãªã£ããçç©åŠã§ãŠã€ã«ã¹ãé»åé¡åŸ®é¡ã§èŠ³æž¬ã§ããããã«ãªã£ãã®ããé»åã®ç©è³ªæ³¢ãå¯èŠå
ããã倧å¹
ã«å°ããããã§ããã
äžè¿°ã®ãããªãããŸããŸãªå®éšã®çµæããããã¹ãŠã®ç©è³ªã«ã¯ãååãŠãã©ã®å€§ããã®äžç(以éãåã«ãååã¹ã±ãŒã«ããªã©ãšç¥èšãã)ã§ã¯ãæ³¢åæ§ãšç²åæ§ã®äž¡æ¹ã®æ§è³ªããã€ãšèããããŠããã ãã®ããšãç²åãšæ³¢åã®äºéæ§ãšããã
ãããŠãååã¹ã±ãŒã«ã§ã¯ãããäžã€ã®ç©è³ª(äž»ã«é»åã®ãããªç²å)ã«ã€ããŠããã®äœçœ®ãšéåéã®äž¡æ¹ãåæã«æ±ºå®ããäºã¯ã§ããªãããã®ããšãäžç¢ºå®æ§åç(ãµãããŠããã ããã)ãšããã
ç©çåŠè
ã¬ã€ã¬ãŒãšç©çåŠè
ããŒã¹ãã³ã¯ã(ã©ãžãŠã ããåºãã)αç²åããããéã±ãã«åœãŠãå®éšãè¡ããαç²åã®æ£ä¹±ã®æ§åã調ã¹ãã(ãªããαç²åã®æ£äœã¯ããªãŠã ã®ååæ žã)ãã®çµæãã»ãšãã©ã®Î±ç²åã¯éã±ããçŽ éãããããéã±ãäžã®äžéšã®å Žæã®è¿ããéã£ãαç²åã ãã倧å¹
ã«æ£ä¹±ããçŸè±¡ãçºèŠããã
ãã®å®éšçµæããã©ã¶ãã©ãŒãã¯ãååæ žã®ååšãã€ããšããã
ååã¯ãäžå¿ã«ååæ žãããããã®ãŸãããé»åãéåãããšããã©ã¶ãã©ãŒãã¢ãã«ãšãã°ããã¢ãã«ã«ãã£ãŠèª¬æãããã
åå(atom)ã¯ãå
šäœãšããŠã¯é»æ°çã«äžæ§ã§ãããè² ã®é»è·ãæããé»åãé»åæ®»ã«æã€ã ããã§ãããªã«ã³ã®å®éš ã«ããçµæãªã©ãããé»åã®è³ªéã¯æ°ŽçŽ ã€ãªã³ã®è³ªéã®çŽ1/1840çšåºŠãããªãããšãåãã£ãŠããã ããªãã¡ãååã¯é»åãšéœã€ãªã³ãšãå«ãŸãããã質éã®å€§éšåã¯éœã€ãªã³ããã€ããšãåããã ååæ žã®å€§ããã¯ååå
šäœã®1/10000çšåºŠã§ãããããååã®å€§éšåã¯ç空ã§ããã ååæ žã¯ãæ£ã®é»è·ããã€Zåã®éœå(proton)ãšã黿°çã«äžæ§ãª(AâZ)åã®äžæ§å(neutron)ãããªãã éœåãšäžæ§åã®åæ°ã®åèšãè³ªéæ°(mass number)ãšããã éœåãšäžæ§åã®è³ªéã¯ã»ãŒçãããããååæ žã®è³ªéã¯ãè³ªéæ°Aã«ã»ãŒæ¯äŸããã
髿ž©ã®ç©äœããçºå
ãããå
ã«ã¯ãã©ã®(å¯èŠå
ã®)è²ã®æ³¢é·(åšæ³¢æ°)ãããããã®ãããªé£ç¶çãªæ³¢é·ã®å
ãé£ç¶ã¹ãã¯ãã«ãšããã
ãã£ãœãããããªãŠã ãæ°ŽçŽ ãªã©ã®ãç¹å®ã®ç©è³ªã«é»å§ãããããæŸé»ãããšãã«çºå
ããæ³¢é·ã¯ãç¹å®ã®æ°æ¬ã®æ³¢é·ããå«ãŸããŠãããããã®ãããªã¹ãã¯ãã«ãèŒç·(ããã)ãšããã
ãã«ããŒã¯ãæ°ŽçŽ ååã®æ°æ¬ããèŒç·ã®æ³¢é·ããæ¬¡ã®å
¬åŒã§è¡šçŸã§ããããšã«æ°ã¥ããã
λ = 3.65 à 10 â 7 m à ( n 2 n 2 â 4 ) {\displaystyle \lambda =3.65\times 10^{-7}\mathrm {m} \times \left({n^{2} \over n^{2}-4}\right)} (ãã ããn=3, 4 , 5 ,6 ,ã»ã»ã»)
äžåŒäžã®ãmãã¯ã¡ãŒãã«åäœãšããæå³ã(äžåŒã®mã¯ä»£æ°ã§ã¯ãªãã®ã§ãééããªãããã«ã)
ãã®åŸãæ°ŽçŽ ä»¥å€ã®ååããå¯èŠå
以å€ã®é åã«ã€ããŠããç©çåŠè
ãã¡ã«ãã£ãŠèª¿ã¹ãããæ¬¡ã®å
¬åŒãžãšãç©çåŠè
ãªã¥ãŒãããªã«ãã£ãŠããŸãšããããã
äžåŒã®Rã¯ãªã¥ãŒãããªå®æ°ãšããã R = 1.097 à 10 7 / m {\displaystyle R=1.097\times 10^{7}/m} ã§ããã
ã©ã¶ãã©ãŒãã®ååæš¡åã«åŸãã°ãé»åã¯ããŸãã§ææã®å
¬è»¢ã®ããã«ååæ žãäžå¿ãšããåè»éã®äžãäžå®ã®é床ã§éåããã
ååæ žãäžå¿ãšããååŸr[m]ã®åè»éãéãv[m/s]ã§å転ããé»åã®è§éåé r p = r m v {\displaystyle rp=rmv} ã¯ã h 2 Ï {\displaystyle {\frac {h}{2\pi }}} ã®æ£æŽæ°åã«ãªããªããã°ãªããªã(è§éåéã®éåå)ã
ãæºãããã°ãªããªãã
åŸå¹Ž(1924幎)ããã»ããã€ã¯ãç©è³ªç²åã¯æ³¢åæ§ãæã¡ã
ããã«åŸãã°ãããŒã¢ã®é忡件ã®ä»®å®ã¯ããé»åè»éã®é·ãã¯ãé»åã®ç©è³ªæ³¢ã®æ³¢é·ã®æ£æŽæ°åã§ããããšè¡šçŸã§ããã
é»åã¯ããããŸã£ããšã³ãšã³ã®ãšãã«ã®ãŒããæããªãããã®ãšã³ãšã³ã®ãšãã«ã®ãŒå€ããšãã«ã®ãŒé äœãšããã
æ°ŽçŽ ååã«ãããŠãé»åè»éäžã«ããé»åã®ãšãã«ã®ãŒãæ±ããèšç®ããããããŸãããã®ããã«ã¯ãååã®ååŸãæ±ããå¿
èŠãããã
æ°ŽçŽ ã®é»åãååæ ž H + {\displaystyle H^{+}} ãäžå¿ãšããååŸrã®åè»éäžãäžå®ã®é床vã§éåããŠãããšããã°ãéåæ¹çšåŒã¯
ã§è¡šãããã
äžæ¹ãé»åãå®åžžæ³¢ã®æ¡ä»¶ãæºããå¿
èŠãããã®ã§ãåé
ã®åŒ(1)ããã
ã§ããã
ãã®vãããã»ã©ã®åéåã®åŒã«ä»£å
¥ããŠæŽé ããã°ã
(ãã ããn=1, 2 , 3 ,ã»ã»ã»)
ã«ãªããããããŠãæ°ŽçŽ ååã®é»åã®è»éååŸãæ±ãŸãã
ããã»ã©ã®è»éååŸã®åŒã§n=1ã®ãšãååŸr1ããããŒã¢ååŸããšããã
ååã®äžçã§ããéåãšãã«ã®ãŒKãšäœçœ®ãšãã«ã®ãŒUã®åãããšãã«ã®ãŒã§ããã
äœçœ®ãšãã«ã®ãŒUã¯ããã®æ°ŽçŽ ã®é»åã®å Žåãªããé黿°ãšãã«ã®ãŒãæ±ããã°å
åã§ãããé»äœã®åŒã«ãã£ãŠæ±ããããŠã
ãšãªãã
éåãšãã«ã®ãŒKã¯ã K = 1 2 m v 2 {\displaystyle K={\frac {1}{2}}mv^{2}} ãªã®ã§
äžåŒã®å³èŸºç¬¬äžé
ã«ã
m v 2 = k 0 e 2 r {\displaystyle mv^{2}=k_{0}{\frac {e^{2}}{r}}} ã代å
¥ããã°ã
ãšãªãã
ããã«ãããã«é»åã®è»éååŸ r = r n {\displaystyle r=r_{n}} ã®åŒ(3)ã代å
¥ããã°ã
ãšãªãããããæ°ŽçŽ ååã®ãšãã«ã®ãŒæºäœã§ããã
ãšãã«ã®ãŒæºäœã®å
¬åŒãããèŠããšããŸãããšãã«ã®ãŒãããšã³ãšã³ã®å€ã«ãªãããšãåããããŸãããšãã«ã®ãŒãè² ã«ãªãäºããããã
n=1ã®ãšããããã£ãšããšãã«ã®ãŒã®äœãç¶æ
ã§ããããã®ãããn=1ã®ãšããå®å®ãªç¶æ
ã§ããããã£ãŠãé»åã¯éåžžãn=1ã®ç¶æ
ã«ãªãã
ãªãã
æ°ŽçŽ ååã®çºããå
ã®ã¹ãã¯ãã«ã®å®æž¬å€ã衚ããªã¥ãŒãããªã®çµéšåŒã«ã€ããŠã¯ãæ¢ã«ãæ°ŽçŽ ååã®ã¹ãã¯ãã«ãã®é
ã§ã§èª¬æããã
é»åããšãã«ã®ãŒé äœ E n {\displaystyle E_{n}} ãããäœããšãã«ã®ãŒé äœ E m {\displaystyle E_{m}} ã«é·ç§»ãããšãã«ãæ¯åæ° Îœ = E n â E m h {\displaystyle \nu ={\frac {E_{n}-E_{m}}{h}}} ã®å
åãäžåæŸåºããã
1 λ = E n â E m c h {\displaystyle {\frac {1}{\lambda }}={\frac {E_{n}-E_{m}}{ch}}} ã§äžããããã®ã§ãå³èŸºã®ãšãã«ã®ãŒé äœã«åŒ(4)ã代å
¥ãããš
ãåŸãããã R â 2 Ï 2 k 0 2 m e 4 c h 3 {\displaystyle {\bf {R}}\triangleq {\frac {2\pi ^{2}k_{0}{}^{2}me^{4}}{ch^{3}}}} ã§ããªã¥ãŒãããªå®æ°Rãå®çŸ©ãããšãåŒ(5)ã¯
Rã®å®çŸ©åŒäžã®è«žå®æ°ã«å€ããããŠèšç®ãããš
é©ãã¹ãããšã«ããªã¥ãŒãããªã®çµéšåŒããèŠäºã«å°åºã§ããã®ã§ããã ããã¯ãããŒã¢ã®ä»®èª¬ã®åŠ¥åœæ§ã瀺ããã®ãšèšãããã
(â» æªèšè¿°)
ååæ žã¯ãéœåãšäžæ§åããã§ããŠããã éœåã¯æ£é»è·ããã¡ãäžæ§åã¯é»è·ããããªãã
ã§ã¯ããªããã©ã¹ã®é»è·ããã€éœåã©ãããããªãã¯ãŒãã³åã§åçºããŠããŸããªãã®ã ããã?
ãã®çç±ãšããŠãã€ãŸãéœåã©ãããã¯ãŒãã³åã§åçºããªãããã®çç±ãšããŠã次ã®ãããªçç±ãèããããŠããã
ãŸããéœåã«äžæ§åãè¿ã¥ããŠæ··åãããšããæ žåããšããéåžžã«åŒ·ãçµååãçºçãã ãã®æ žåãéœåå士ã®ã¯ãŒãã³åã«ããåŒ·ãæ¥åã«æã¡åã€ã®ã§ãéœåãšäžæ§åã¯çµåããŠãããšèããããŠããã(å¿
ããããéœåãšäžæ§åã®åæ°ã¯åäžã§ãªããŠããããå®éã«ãåšæè¡šã«ããããã€ãã®å
çŽ ã§ããéœåãšäžæ§åã®åæ°ã¯ç°ãªãã)
æ¯å©çã«èšãæãã°ãäžæ§åã¯ãéœåãšéœåãçµã³ã€ãããããªã®ãããªåœ¹å²ãããŠãããšãèããããŠããã
ãªããåç§°ãšããŠãéœåãšäžæ§åããŸãšããŠãæ žåããšåŒã°ããã
ããå
çŽ ã®ååæ žã®éœåã®æ°ã¯ãåšæè¡šã®ååçªå·ãšäžèŽããã
ãŸããéœåãšäžæ§åã®æ°ã®åã¯è³ªéæ°ãšãã°ããã
è³ªéæ°Aã®ååæ žã¯éåžžã«åŒ·ãæ žåã®ããã«ãå°ããªçäœç¶ã®ç©ºéã®äžã«åºãŸã£ãŠããããã®ååŸrã¯ã 1.2 {\displaystyle 1.2} ~ 1.4 à 10 â 15 à A 1 3 {\displaystyle 1.4\times 10^{-15}\times A^{\frac {1}{3}}} ã§ããããšãç¥ãããŠããã
ä»»æã®ååæ žã¯ããããæ§æããæ žåã§ããéœåãšäžæ§åãèªç±ã§ãããšãã®è³ªé(åäœè³ªéãšãã)ã®åãããå°ãã質éããã€ããã®æžã£ã質éããè³ªéæ¬ æãšåŒã¶ã è³ªéæ°Aãååçªå·Zã®ååæ žã®è³ªéæ¬ æ Î m {\displaystyle \Delta m} ããåŒã§æžãã°, ååæ žã®è³ªéãmãéœåãšäžæ§åã®åäœè³ªéããããã m p , m n {\displaystyle m_{p},\ m_{n}} ãšãããšãã
枬å®å®éšã®äºå®ãšããŠãéœååç¬ãäžæ§ååç¬ã®è³ªéã®åæ°ãåãããããããã®çµåããååæ žã®ã»ãã質éãäœãã®ã§ãéœåãäžæ§åãçµåãããšè³ªéã®äžéšãæ¬ æãããšããã®ããæž¬å®çµæã®äºå®ã§ããã
ãªã®ã§ãè³ªéæ¬ æã®ãšããããã®åå ãšããŠèããããŠããã®ã¯ãéœåãäžæ§åã©ããã®çµåã§ãããšèããããŠããã
ã ããã§ã¯ããªãéœåãäžæ§åãååæ žãšããŠçµåãããšè³ªéãæ¬ æãããã®çç±ãšããŠã¯ããã£ããŠãçµåã ããããšããçç±ã§ã¯èª¬æãã€ããªãã
ãªã®ã§ãç©çåŠè
ãã¡ã¯ãè³ªéæ¬ æã®èµ·ããæ ¹æ¬çãªåå ãšãªãç©çæ³åããŠãã¢ã€ã³ã·ã¥ã¿ã€ã³ã®çžå¯Ÿæ§çè«ãé©çšããŠããã(æ€å®æç§æžã§ããçžå¯Ÿæ§çè«ã®çµæã§ãããšããŠèª¬æããç«å Ž)
(ã¢ã€ã³ã·ã¥ã¿ã€ã³ã®ç¹æ®)çžå¯Ÿæ§çè«ããå°ãããçµæãšããŠ(â» åè: çžå¯Ÿè«ã«ã¯äžè¬çžå¯Ÿè«ãšç¹æ®çžå¯Ÿè«ã®2çš®é¡ããã)ã質émãšãšãã«ã®ãŒEã«ã¯ã
ãšããé¢ä¿åŒããããšãããã
ãªããC ãšã¯å
éã®å€ã§ããã
ãããã¯å¥ã®æžåŒãšããŠãå€åã衚ããã«ã¿èšå·Îã䜿ãŠã
ãªã©ãšæžãå Žåãããã
ã€ãŸããããäœããã®çç±ã§ãç空ãã質éãçºçãŸãã¯æ¶å€±ããã°ããã®ã¶ãã®è«å€§ãªãšãã«ã®ãŒãçºçãããšããã®ããçžå¯Ÿæ§çè«ã§ã®ã¢ã€ã³ã·ã¥ã¿ã€ã³ãªã©ã®äž»åŒµã§ããã
ããŠãèªç±ãªéœåãšäžæ§åã¯ãæ žåã«ããçµåãããšãããã®çµåãšãã«ã®ãŒã«çžåœããw:ã¬ã³ãç·ãæŸå°ããããšãç¥ãããŠããã
ãããŠãã¬ã³ãç·ã«ããšãã«ã®ãŒãããã
ãªã®ã§ãéœåãšäžæ§åã®çµåãããšãã®ã¬ã³ãç·ã®ãšãã«ã®ãŒã¯ãè³ªéæ¬ æã«ãã£ãŠçãããšèãããšã枬å®çµæãšããžãããåãã(枬å®çµæã¯ããããŸã§è³ªéãæ¬ æããããšãŸã§ã)
æ žåã®çµåã«ãããŠãè³ªéæ¬ æ Î m {\displaystyle \Delta m} ããã¬ã³ãç·ãªã©ã®ãšãã«ã®ãŒã«è»¢åããããšç©çåŠè
ãã¡ã¯èããŠããã
å
çŽ ã®äžã«ã¯ãæŸå°ç·(radiation)ãåºãæ§è³ªããã€ãã®ãããããã®æ§è³ªãæŸå°èœ(radioactivity)ãšããã ãŸããæŸå°èœããã€ç©è³ªã¯æŸå°æ§ç©è³ªãšããããã æŸå°ç·ã«ã¯3çš®é¡ååšããããããαç·ãβç·ãγç·ãšããã
α厩å£ã¯ã芪ååæ žããããªãŠã ååæ žãæŸå°ãããçŸè±¡ã§ããã ãã®ããªãŠã ååæ žã¯Î±ç²åãšãã°ããã α厩å£åŸã芪ååæ žã®è³ªéæ°ã¯4å°ãããªããååçªå·ã¯2å°ãããªãã
β厩å£ã¯ã芪ååæ žã®äžæ§åãéœåãšé»åã«å€åããããšã§ãé»åãæŸå°ãããçŸè±¡ã§ããã (åè: ãã®ãšããåãã¥ãŒããªããšãã°ãã埮å°ãªç²åãåæã«æŸåºããããšãè¿å¹Žã®åŠèª¬ã§ã¯èããããŠããã)
ãªãããã®é»å(ããŒã¿åŽ©å£ãšããŠæŸåºãããé»åã®ããš)ã¯ãβç²åããšããã°ããã
β厩å£åŸã芪ååæ žã®è³ªéæ°ã¯å€åããªãããååçªå·ã¯1å¢å ããã
γç·ã¯ãα厩å£ãŸãã¯Î²åŽ©å£çŽåŸã®é«ãšãã«ã®ãŒã®ååæ žããäœãšãã«ã®ãŒã®å®å®ãªç¶æ
ã«é·ç§»ãããšãã«æŸå°ãããã γç·ã®æ£äœã¯å
åã§ãXç·ããæ³¢é·ã®çãé»ç£æ³¢ã§ããã
α厩å£ãβ厩å£ã«ãã£ãŠããšã®ååæ žã®æ°ã¯åŸã
ã«æžã£ãŠãããããããã®åŽ©å£ã¯ååæ žã®çš®é¡ããšã«æ±ºãŸã£ãäžå®ã®ç¢ºçã§èµ·ããã®ã§ã厩å£ã«ãã£ãŠããšã®ååæ žã®æ°ãæžãé床ã¯ååæ žã®åæ°ã«æ¯äŸããŠå€åããããããã厩å£ã«ãã£ãŠããšã®ååæ žã®æ°ãåæžããã®ã«ãããæéã¯ãååæ žã®çš®é¡ã ãã«ãã£ãŠããŸããããã§ããã®æéã®ããšããã®ååæ žã® åæžæ(ã¯ãããããhalf life ) ãšåŒã¶ã厩å£ã«ãã£ãŠååæ žã®åæ°ãã©ãã ãã«ãªããã¯ããã®åæžæãçšããŠèšè¿°ããããšãã§ãããååæ žã®åæžæãTãæå»tã§ã®ååæ žã®åæ°ãN(t)ãšãããšã
ãæãç«ã€ã
ååæ žã®åŽ©å£é床ã¯ãååæ žã®åæ°ã«æ¯äŸãããšè¿°ã¹ããå®ã¯ãäžã«è¿°ã¹ãå
¬åŒã¯ãã®æ
å ±ã ãããçŽç²ã«æ°åŠçã«å°ãåºãããšãã§ãããã®ã§ãããé«çåŠæ ¡ã§ã¯æ±ããªãæ°åŠãçšããããèå³ã®ããèªè
ã®ããã«ãã®æŠèŠãèšããŠããã
ååæ žã®åæ°ãšåŽ©å£é床ã®éã®æ¯äŸå®æ°ã¯ååæ žã®çš®é¡ã«ãã£ãŠæ±ºãŸãããã®å®æ°ããã®ååæ žã®åŽ©å£å®æ°ãšããã厩å£å®æ°ãλã®ååæ žã®æå»tã§ã®åæ°ãN(t)ãšãããšããã®å€åé床ãããªãã¡N(t)ã®åŸ®åã¯ã
ã§è¡šãããããã®ãããªããã颿°ãšãã®åŸ®åãšã®é¢ä¿ã衚ããåŒãåŸ®åæ¹çšåŒãšãããåŸ®åæ¹çšåŒãæºãããããªé¢æ°ãæ±ããããšããåŸ®åæ¹çšåŒãè§£ããšããã(詳ããè§£æ³ã¯è§£æåŠåºç€/åžžåŸ®åæ¹çšåŒã§èª¬æãããã)ãã®åŸ®åæ¹çšåŒãè§£ããš
ãåŸãããã(ãã®åŒã確ãã«å
ã»ã©ã®åŸ®åæ¹çšåŒãæºãããŠããããšã確ãããŠã¿ã)
åæžæTãšã¯ã N ( t ) = 1 2 N ( 0 ) {\displaystyle N(t)={\frac {1}{2}}N(0)} ãšãªãtã®ããšãªã®ã§ãå
ã»ã©ã®åŒãã
ãåŸãããããã£ãŠã
ãåŸãããã
ã©ã¶ãã©ãŒãã¯ãçªçŽ ã¬ã¹ãå¯éããç®±ã«Î±ç·æºããããšãæ£é»è·ããã£ãç²åãçºçããããšãçºèŠããã
ãã®æ£é»è·ã®ç²åããéœåã§ãããã€ãŸããã©ã¶ãã©ãŒãã¯éœåãçºèŠããã
åæã«ãé
žçŽ ãçºçããããšãçºèŠãããã®çç±ã¯çªçŽ ãé
žçŽ ã«å€æãããããã§ãããã€ãŸããååæ žãå€ããåå¿ãçºèŠããã
ãããã®ããšãåŒã«ãŸãšãããšã
ã§ããã
ãã®ããã«ãããå
çŽ ã®ååããå¥ã®å
çŽ ã®ååã«å€ããåå¿ã®ããšã ååæ žåå¿ ãšããããŸãã¯ããæ žåå¿ããšããã
ãŸããå®å®ç·ã®èŠ³æž¬ã«ãããÎŒç²åãšããã®ããçºèŠãããŠããã
ãããããã©ããã£ãŠçŽ ç²åã芳枬ããããšãããšãããã€ãã®æ¹æ³ããããã
ãªã©ã䜿ãããã
(â» é«æ ¡ã§ç¿ãç¯å²å
ãXç·ãååæ žã®åå
ã§ãé§ç®±(ããã°ã)ãç¿ãã)
é§ç®±(ããã°ã)ãšãããèžæ°ã®ã€ãŸã£ãè£
眮ãã€ãããšããªããã®ç²åãééãããšããã®ç²åã®è»è·¡ã§ãæ°äœããæ¶²äœããåçãèµ·ããã®ã§ãè»è·¡ããç®ã«èŠããã®ã§ããã(â» æ€å®æç§æžã§ã¯ãååæ žã®åéã§ãé§ç®±ã«ã€ããŠç¿ãã)(ã€ã¡ãŒãžçã«ã¯ãé£è¡æ©é²ã®ãããªã®ããã€ã¡ãŒãžããŠãã ããã)
ã§ãç£å Žãå ããå Žåã®ãè»è·¡ã®æ²ããããçãªã©ãããæ¯é»è·ãŸã§ãäºæ³ã§ããã
ãã®ããã«ãé§ç®±ãã€ãã£ãå®éšã«ããã20äžçŽååãäžç€ããã«ã¯ããããããªç²åãçºèŠãããã
ÎŒç²å以å€ã«ããéœé»å(ããã§ãã)ããé§ç®±ã«ãã£ãŠçºèŠãããŠããã
(â» ç¯å²å€:)äžçåã§éœé»åãå®éšçã«èŠ³æž¬ããã¢ã³ããŒãœã³ã¯ãé§ç®±ã«éæ¿ãå
¥ããããšã§éœé»åãçºèŠããã
ãšãããã(ÎŒç²åã®çºèŠããã)éœé»åã®ã»ããçºèŠã¯æ©ãã
(â» ç¯å²å€:)ãŸããéœé»åã¯ãéåååŠã®ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã«ãç¹æ®çžå¯Ÿæ§çè«ãšãçµã¿åããããããã£ã©ãã¯ã®æ¹çšåŒããããçè«çã«äºæ³ãããŠããã
ãŸãããéœé»åããšããç©è³ªã1932幎ã«éæ¿ãå
¥ããé§ç®±(ããã°ã)ã®å®éšã§ã¢ã³ããŒãœã³(人å)ã«ãã£ãŠçºèŠãããŠãããéœé»åã¯è³ªéãé»åãšåãã ããé»è·ãé»åã®å察ã§ãã(ã€ãŸãéœé»åã®é»è·ã¯ãã©ã¹eã¯ãŒãã³ã§ãã)ã(â» éæ¿ã«ã€ããŠã¯é«æ ¡ã®ç¯å²å€ã)
ãããŠãé»åãšéœé»åãè¡çªãããšã2mcã®ãšãã«ã®ãŒãæŸåºããŠãæ¶æ»
ããã(ãã®çŸè±¡(é»åãšéœé»åãè¡çªãããš2mcã®ãšãã«ã®ãŒãæŸåºããŠæ¶æ»
ããçŸè±¡)ã®ããšãããå¯Ÿæ¶æ»
ã(ã€ãããããã€)ãšããã)
éœåã«å¯ŸããŠãããåéœåãããããåéœåã¯ãé»è·ãéœåãšå察ã ãã質éãéœåãšåãã§ãããéœåãšè¡çªãããšå¯Ÿæ¶æ»
ãããã
äžæ§åã«å¯ŸããŠãããåäžæ§åãããããåäžæ§åã¯ãé»è·ã¯ãŒãã ã(ãŒãã®é»è·ã®Â±ãå察ã«ããŠããŒãã®ãŸãŸ)ã質éãåãã§ãäžæ§åãšå¯Ÿæ¶æ»
ãããã
éœé»åãåéœåãåäžæ§åã®ãããªç©è³ªããŸãšããŠãåç©è³ªãšããã
(â» ç¯å²å€: )æŸå°æ§åäœäœã®ãªãã«ã¯ã厩å£ã®ãšãã«éœé»åãæŸåºãããã®ããããæå
端ã®ç
é¢ã§äœ¿ãããPET(éœé»åæå±€æ®åæ³)æè¡ã¯ããããå¿çšãããã®ã§ãããããçŽ ããµãããã«ãªãããªãã·ã°ã«ã³ãŒã¹ãšããç©è³ªã¯ã¬ã³çްèã«ããåã蟌ãŸãããPET蚺æã§ã¯ãããã«(ãã«ãªãããªãã·ã°ã«ã³ãŒã¹ã«)æŸå°æ§ã®ããçŽ F ããšãããã æŸå°æ§ãã«ãªãããªãã·ã°ã«ã³ãŒã¹ãçšããŠããã(â» åæé€šã®ãååŠåºç€ãã®æç§æžã«ãçºå±äºé
ãšããŠãã«ãªãããªãã·ã°ã«ã³ãŒã¹ãPET蚺æã§äœ¿ãããŠãããšã玹ä»ãããŠããã)
åç©è³ªãšã¯å¥ã«ãÎŒç²åããå®å®ç·ã®èŠ³æž¬ããã1937幎ã«èŠã€ãã£ãã
ãã®ÎŒç²åã¯ãé»è·ã¯ãé»åãšåãã ãã質éãé»åãšã¯éããÎŒç²åã®è³ªéã¯ããªããšé»åã®çŽ200åã®è³ªéã§ããã
ÎŒç²åã¯ãã¹ã€ã«éœåãé»åã®åç©è³ªã§ã¯ãªãã®ã§ãã¹ã€ã«éœåãšãå¯Ÿæ¶æ»
ãèµ·ãããªãããé»åãšãå¯Ÿæ¶æ»
ãèµ·ãããªãã
ãªããÎŒç²åã«ããåÎŒç²åãšãããåç©è³ªãååšããããšãåãã£ãŠããã
ãã®ãããªç©è³ªããããããã®äœãã§ããå°äžã§èŠã€ãããªãã®ã¯ãåã«å°äžã®å€§æ°ãªã©ãšè¡çªããŠæ¶æ»
ããŠããŸãããã§ããã
ãªã®ã§ãé«å±±ã®é äžä»è¿ãªã©ã§èŠ³æž¬å®éšããããšãÎŒç²åã®çºèŠã®å¯èœæ§ãé«ãŸãã
ãªã21äžçŽã®çŸåšãÎŒç²åãæŽ»çšããæè¡ãšããŠãçŸåšãç«å±±ãªã©ã®å
éšã芳å¯ããã®ã«ã掻çšãããŠãããÎŒç²åã¯ãééåãé«ãããå°äžã®ç©è³ªãšåå¿ããŠããããã«æ¶æ»
ããŠããŸãã®ã§ããã®ãããªæ§è³ªãå©çšããŠãç«å±±å
éšã®ããã«äººéãå
¥ã蟌ããªãå Žæã芳å¯ãããšããæè¡ãããã§ã«ããã
ãã®ãããªèŠ³æž¬ã«äœ¿ãããÎŒç²åãã©ããã£ãŠçºçãããã®ã?
å®å®ç·ããé£ãã§ããÎŒç²åããã®ãŸãŸäœ¿ããšããæ¹æ³ããããããå®è¡ããŠããç ç©¶è
ããããããããšã¯å¥ã®ææ³ãšããŠãå éåšãªã©ã§äººå·¥çã«ÎŒç²åãªã©ãçºçããããšããæ¹æ³ãããã
å éåšã䜿ã£ãæ¹æ³ã¯ãäžèšã®éãã
ãŸããã·ã¯ãããã³ããµã€ã¯ãããã³ã䜿ã£ãŠãé»åãªã©ãè¶
é«éã«å éããããããäžè¬ã®ç©è³ª(ã°ã©ãã¡ã€ããªã©)ã«åœãŠãã
ãããšãåœç¶ãããããªç²åãçºçããã
ãã®ãã¡ãÏäžéåããç£æ°ã«åå¿ãã(ãšèããããŠãã)ã®ã§ã倧ããªé»ç£ç³ã³ã€ã«ã§ãÏäžéåãæç²ããã
ãã®Ïäžéåã厩å£ããŠãÎŒç²åãçºçããã
ããããå®å®ç·ãäœã«ãã£ãŠçºçããŠãããã®çºçåå ã¯ãçŸæç¹ã®äººé¡ã«ã¯äžæã§ããã(â» åèæç®: æ°ç åºçã®è³æéã®ãå³èª¬ç©çã)
è¶
æ°æ(ã¡ãããããã)ççºã«ãã£ãŠå®å®ç·ãçºçããã®ã§ã¯ããšãã説ããããããšã«ããå®å®ç·ã®çºçåå ã«ã€ããŠã¯æªè§£æã§ããã
é»åãéœåãäžæ§åãªã©ã¯ããã¹ãã³ããšããç£ç³ã®ãããªæ§è³ªããã£ãŠãããç£ç³ã«N極ãšS極ãããããã«ãã¹ãã³ã«ãã2çš®é¡ã®åãããããã¹ãã³ã®ãã®2çš®é¡ã®åãã¯ããäžåãããšãäžåããã«ãããäŸãããããç£ç³ã®ç£åã®çºçåå ã¯ãç£ç³äžã®ååã®æå€æ®»é»åã®ã¹ãã³ã®åããåäžæ¹åã«ããã£ãŠãããããã§ãããšèããããŠããã
å
šååã¯ãé»åãéœåãäžæ§åãå«ãã®ã«ããªã®ã«å€ãã®ç©è³ªããããŸãç£æ§ãçºçããªãã®ã¯ãå察笊å·ã®ã¹ãã³ããã€é»åãçµåãããããšã§ãæã¡æ¶ãããããã§ããã
(ãŠã£ãããé»åãšéœåã®ãããªé»è·ããã€ç²åã«ããã¹ãã³ããªããšèª€è§£ããŠãã人ãããããäžæ§åã«ãã¹ãã³ã¯ããã)
äžåŠé«æ ¡ã§èŠ³æž¬ãããããªæ®éã®æ¹æ³ã§ã¯ãã¹ãã³ã芳枬ã§ããªãããååãªã©ã®ç©è³ªã«ç£æ°ãå ãã€ã€é«åšæ³¢ãå ãããªã©ãããšãã¹ãã³ã®åœ±é¿ã«ãã£ãŠããã®ååã®æ¯åããããåšæ³¢æ°ãéããªã©ã®çŸè±¡ããã¡ããŠã鿥çã«(é»åãªã©ã®)ã¹ãã³ã芳枬ã§ããã(ãªããæ žç£æ°å
±é³Žæ³(NMRãnuclear magnetic resonance)ã®åçã§ããã â» çè«çãªè§£æã¯ã倧åŠã¬ãã«ã®ååŠã®ç¥èãå¿
èŠã«ãªãã®ã§çç¥ããã) ååäžã®æ°ŽçŽ ååããããçš®ã®æŸå°æ§åäœäœ(äžæ§åããã£ã1åãµããã ãã®åäœäœ)ãªã©ãé«åšæ³¢ã®åœ±é¿ãåããããããã®çç±ã®ã²ãšã€ããã¹ãã³ã«ãããã®ã ãšèããããŠãã(â» ãªããå»çã§çšããããMRI(magnetic resonance imaging)ã¯ããã®æ žç£æ°å
±é³Žæ³(NMR)ãå©çšããŠäººäœå
éšãªã©ã芳枬ããããšããæ©åšã§ããã)
ããŠãå®ã¯çŽ ç²åããã¹ãã³ããã€ã®ãæ®éã§ããã
ÎŒç²åã¯ã¹ãã³ããã€ã
ÎŒç²åã®ãã¹ãã³ããšããæ§è³ªã«ããç£æ°ãšãÎŒç²åã®ééæ§ã®é«ããå©çšããŠãç©è³ªå
éšã®ç£å Žã®èŠ³æž¬æ¹æ³ãšããŠæ¢ã«ç ç©¶ãããŠããããã®ãããªèŠ³æž¬æè¡ããÎŒãªã³ã¹ãã³å転ããšãããè¶
äŒå°äœã®å
éšã®èŠ³æž¬ãªã©ã«ãããã§ã«ãÎŒãªã³ã¹ãã³å転ãã«ãã芳枬ãç ç©¶ãããŠããã
ãŠã£ãããã£ã¢èšäºãw:ãã¥ãªã³ã¹ãã³å転ãã«ãããšãÎŒãªã³ã®åީ壿ã«éœé»åãæŸåºããã®ã§ãéœé»åã®èŠ³æž¬æè¡ãå¿
èŠã§ããã(髿 ¡ã®ç¯å²å€ã§ãããã)ããããã®åŠçã¯ããããããšå匷ããäºãå€ãã
éœåãšäžæ§åã¯ã質éã¯ã»ãšãã©åãã§ãããé»è·ãéãã ãã§ããã
ãããŠãé»åãšæ¯ã¹ããšãéœåãäžæ§åãã質éãããªã倧ããã
ãã®äºããããéœåãäžæ§åã«ããããã«äžèº«ããããå¥ã®ç²åãè©°ãŸã£ãŠããã®ã§ã¯?ããšããçåãçãŸããŠããŠãéœåãäžæ§åã®å
éšã®æ¢çŽ¢ãå§ãŸã£ãã
ããããçŸåšã§ããéœåãäžæ§åã®å
éšã®æ§é ã¯ãå®éšçã«ã¯åãåºããŠã¯ããªãã(â» éœåãäžæ§åã®å
éšæ§é ãšããŠèª¬æãããŠãããã¯ã©ãŒã¯ãã¯ãåç¬ã§ã¯çºèŠãããŠããªããã¯ã©ãŒã¯ã¯åã«ãå
éšã®èª¬æã®ããã®ãæŠå¿µã§ããã)
æŽå²çã«ã¯ããŸããéœåãšäžæ§åã®å
éšæ§é ãšããŠãæ¶ç©ºã®çŽ ç²åãèããããéœåãšäžæ§åã¯ããããã®çŽ ç²åã®ç¶æ
ãéãã ãããšèããããã
ãã£ãœããé»åã«ã¯ãå
éšæ§é ããªãããšèãããŠããã
ããã20äžçŽãªãã°ãéåååŠã§ã¯ããã®ããããã§ã«ãé»åã®ç¶æ
ãšããŠãã¹ãã³ããšããæŠå¿µããã¿ã€ãã£ãŠãããéåååŠã§ã¯ãååŠçµåã§äŸ¡é»åã2åãŸã§çµåããŠé»å察ã«ãªãçç±ã¯ããã®ã¹ãã³ã2çš®é¡ãããªããŠãå察åãã®ã¹ãã³ã®é»å2åã ããçµåããããã§ããããšãããŠããã
ã¹ãã³ã®2çš®é¡ã®ç¶æ
ã¯ããäžåãããäžåãããšãããµãã«ãããäŸããããã(å®éã®æ¹åã§ã¯ãªãã®ã§ãããŸãæ·±å
¥ãããªãããã«ã)
ãã®ãããªéåååŠãåèã«ããŠãéœåãšäžæ§åã§ããã¢ã€ãœã¹ãã³ããšããæŠå¿µãèããããã(â» ãã¢ã€ãœã¹ãã³ãã¯é«æ ¡ç¯å²å€ã)
éœåãšäžæ§åã¯ãã¢ã€ãœã¹ãã³ã®ç¶æ
ãéãã ãããšèããããã
ãã®åŸã20äžçŽåã°é ããããã¢ã€ãœã¹ãã³ããçºå±ããããã¯ã©ãŒã¯ããšããçè«ãæå±ãããã
æ¶ç©ºã®ãã¯ã©ãŒã¯ããšãã3åã®çŽ ç²åãä»®å®ãããšãå®åšã®éœåãäžæ§åã®æãç«ã€ã¢ãã«ããå®éšçµæãããŸã説æã§ããäºãåãã£ãã
é»è·( + 2 3 e {\displaystyle +{\frac {2}{3}}e} )ããã€çŽ ç²åãã¢ããã¯ã©ãŒã¯ããšã±( â 1 3 e {\displaystyle -{\frac {1}{3}}e} )ããã€çŽ ç²åãããŠã³ã¯ã©ãŒã¯ãããã£ãŠã
ãšèãããšããããããªçŽ ç²åå®éšã®çµæãããŸã説æã§ããäºãåãã£ãã
ãªããé»åã«ã¯ããã®ãããªå
éšæ§é ã¯ãªãããšèãããããã
ã¢ããã¯ã©ãŒã¯ã¯ãuããšç¥èšãããããŠã³ã¯ã©ãŒã¯ã¯ãdããšç¥èšãããã
éœåã®ã¯ã©ãŒã¯æ§é ã¯uudãšç¥èšããã(ã¢ãããã¢ãããããŠã³)ã
äžæ§åã®ã¯ã©ãŒã¯æ§é ã¯uddãšç¥èšããã(ã¢ãããããŠã³ãããŠã³)ã
ãªããäžèšã®èª¬æã§ã¯çç¥ãããããããã1950ã60幎代ãããŸã§ã«ãé«å±±ã§ã®å®å®ç·ã®èŠ³æž¬ãããããã¯æŸå°ç·ã®èŠ³æž¬ãããŸããããã¯ãµã€ã¯ãããã³ãªã©ã«ããç²åã®å éåšè¡çªå®éšã«ãããéœåãäžæ§åã®ã»ãã«ããåçšåºŠã®è³ªéã®ããŸããŸãªç²åãçºèŠãããŠããããããæ°çš®ã®ç²åã¯ãäžéåãã«åé¡ãããã
ããããããã¯ã©ãŒã¯ãã®çè«ã¯ããã®ãããª20äžçŽåã°ãããŸã§ã®å®éšã芳枬ããäœçŸåãã®æ°çš®ã®ç²åãçºèŠãããŠããŸãããã®ãããªçµç·¯ããã£ãã®ã§ãã¯ã©ãŒã¯ã®çè«ãæå±ãããã®ã§ããã
ããŠããäžéåã(ã¡ã
ãããããmason ã¡ãœã³)ãšã¯ãããšããšçè«ç©çåŠè
ã®æ¹¯å·ç§æš¹ã1930å¹Žä»£ã«æå±ãããéœåãšäžæ§åãšãåŒãä»ããŠãããšãããæ¶ç©ºã®ç²åã§ãã£ããã20äžçŽãªãã°ã«æ°çš®ã®ç²åãçºèŠãããéããäžéåãã®ååã䜿ãããããšã«ãªã£ãã
ããŠãå®éšçã«æ¯èŒçæ©ãææããçºèŠããããäžéåãã§ã¯ããÏäžéåãããããããçš®é¡ã®Ïäžéåã¯ãã¢ããã¯ã©ãŒã¯ãšåããŠã³ã¯ã©ãŒã¯ãããªããÏãšç¥èšãããã(ããŠã³ã¯ã©ãŒã¯ã®åç©è³ªããåããŠã³ã¯ã©ãŒã¯ã) Ï= u d Ì {\displaystyle u{\overline {d}}}
å¥ã®ããçš®é¡ã®Ïäžéåã¯ãããŠã³ã¯ã©ãŒã¯ãšåã¢ããã¯ã©ãŒã¯ãããªããÏãšç¥èšããããÏ= u Ì d {\displaystyle {\overline {u}}d}
ãã®ããã«ãããç²åå
ã®ã¯ã©ãŒã¯ã¯åèš2åã®ã§ãã£ãŠãè¯ãå Žåãããã(ããªãããããéœåã®ããã«ã¯ã©ãŒã¯3åã§ãªããŠãããŸããªãå Žåãããã)
(â» ãã®ãããªå®éšäŸãããç²åå
ã«åèš5åã®ã¯ã©ãŒã¯ã7åã®ã¯ã©ãŒã¯ãèããçè«ãããããããã髿 ¡ç©çã®ç¯å²ã倧å¹
ã«è¶
ããã®ã§ã説æãçç¥ã)
ãŸããäžéåã¯ãèªç¶çã§ã¯çæéã®ããã ã ããååšã§ããç²åã ãšããäºãã芳枬å®éšã«ãã£ãŠãåãã£ãŠããã(äžéåã®ååšã§ããæé(ã寿åœã)ã¯çããããã«ãä»ã®å®å®ãªç²åã«å€æããŠããŸãã)
ããããã¢ãããšããŠã³ã ãã§ã¯ã説æããããªãç²åããã©ãã©ããšçºèŠãããŠãããã¯ã©ãŒã¯ã®æå±æã®åœåã¯ãããããã ãã¯ã©ãŒã¯ã®ã¢ãããšããŠã³ã§ããã£ãšãã»ãšãã©ã®äžéåã®æ§é ã説æã§ããã ããã ãšæåŸ
ãããŠããã®ã ããããããããå®å®ç·ãã1940幎代ã«çºèŠããããKäžéåãã®æ§é ã§ãããã¢ãããšããŠã³ã§ã¯èª¬æã§ããªãã£ãã
ãã®ã»ããå éåšã®çºéãªã©ã«ãããã¢ãããšããŠã³ã®çµã¿åããã ãã§èª¬æã§ããæ°ãè¶
ããŠãã©ãã©ããšæ°çš®ã®ãäžéåããçºèŠãããŠããŸãããã¯ãã¢ãããšããŠã³ã ãã§ã¯ãäžéåã®æ§é ã説æãã¥ãããªã£ãŠããäžãÎŒç²åãã説æã§ããªãã
ãŸããå éåšå®éšã«ããã1970幎代ã«ãDäžéåããªã©ãããŸããŸãªäžéåããå®éšçã«å®åšã確èªãããã
ãã®ããã«ãã¢ãããšããŠã³ã ãã§ã¯èª¬æã®ã§ããªãããããããªç²åãååšããããšãåããããã®ãããçŽ ç²åçè«ã§ã¯ããã¢ããã(u)ãšãããŠã³ã(d)ãšãã2çš®é¡ã®ç¶æ
ã®ä»ã«ããããã«ç¶æ
ãèããå¿
èŠã«ãããŸãããããããŠãæ°ããç¶æ
ãšããŠããŸãããã£ãŒã ã(èšå·c)ãšãã¹ãã¬ã³ãžã(èšå·s)ãèãããããå éåšå®éšã®æè¡ãçºå±ããå éåšå®éšã®è¡çªã®ãšãã«ã®ãŒãäžãã£ãŠãããšãããã«ããããã(èšå·t)ãšãããã ã(èšå·b)ãšããã®ãèããããã
ãªããÎŒç²åã«ã¯å
éšæ§é ã¯ãªãããéœåãäžæ§åã«é»åã察å¿ãããã®ãšåæ§ã«(第1äžä»£)ããã£ãŒã ãã¹ãã¬ã³ãžãããªãéœåçã»äžæ§åçãªç²åãšÎŒç²åã察å¿ããã(第2äžä»£)ãåæ§ã«ãããããããã ãããªãç²åã«ÎŒç²åã察å¿ããã(第3äžä»£)ã
é»åãÎŒç²åã¯å
éšæ§é ããããªããšèããããŠããããã¬ããã³ããšãããå
éšæ§é ããããªããšãããã°ã«ãŒãã«åé¡ãããã
ãKäžéåãã¯ã第1äžä»£ã®ã¯ã©ãŒã¯ãšç¬¬2äžä»£ã®ã¯ã©ãŒã¯ããæãç«ã£ãŠããäºããåãã£ãŠããã(â» æ€å®æç§æžã®ç¯å²å
ã)
ãããŠã2017幎ã®çŸåšãŸã§ãã£ãšãã¯ã©ãŒã¯ã®çè«ããçŽ ç²åã®æ£ããçè«ãšãããŠããã
çŽ ç²åã®èгç¹ããåé¡ããå Žåã®ãéœåãšäžæ§åã®ããã«ãã¯ã©ãŒã¯3åãããªãç²åã®ããšãããŸãšããŠãããªãªã³ã(éç²å)ãšãããÏäžéå(Ï= u d Ì {\displaystyle u{\overline {d}}} )ãªã©ãã¯ã©ãŒã¯ã2åã®ç²åã¯ãããªãªã³ã«å«ãŸãªãã
ããããäžéåã®ãªãã«ããã©ã ãç²å(udsãã¢ããããŠã³ã¹ãã¬ã³ãžã®çµã¿åãã)ã®ããã«ãã¯ã©ãŒã¯3åãããªãç²åããããã©ã ãç²åãªã©ããããªãªã³ã«å«ããã
éœåãšäžæ§åãã©ã ãç²åãªã©ãšãã£ãããªãªã³ã«ãããã«äžéå(äžéåã¯äœçš®é¡ããã)ãå ããã°ã«ãŒãããŸãšããŠãããããã³ããšããã
ãªããæ®éã®ç©è³ªã®ååæ žã§ã¯ãéœåãšäžæ§åãååæ žã«éãŸã£ãŠãããããã®ããã«éœåãšäžæ§åãååæ žã«åŒãåãããåã®ããšãæ žåãšãããæ žåã®æ£äœã¯ããŸã ãããŸãè§£æãããŠããªã(å°ãªããšã髿 ¡ã§æããã»ã©ã«ã¯ããŸã å
åã«ã¯è§£æãããŠããªã)ã
ãšããããããªãªã³ã«ã¯ãæ žåãåããé説ã§ã¯ãäžéåã«ããæ žåã¯åããšãããŠãããã€ãŸãããããã³ã«ãæ žåãåãã
ãããã³ã¯ãããããã¯ã©ãŒã¯ããæ§æãããŠããäºããããããããã¯ã©ãŒã¯ã«æ žåãåãã®ã ãããçãªäºããèããããŠããã
çè«ã§ã¯ãã¯ã©ãŒã¯ãšã¯ã©ãŒã¯ã©ãããåŒãä»ãããæ¶ç©ºã®ç²åãšããŠãã°ã«ãŒãªã³ããèããããŠãããç©çåŠè
ããçè«ãæå±ãããŠãããããã®æ£äœã¯ããŸã ãããŸãè§£æãããŠãªããããããç©çåŠè
ãã¡ã¯ãã°ã«ãŒãªã³ãçºèŠããããšäž»åŒµããŠããã
çŸåšã®ç©çåŠã§ã¯ãã¯ã©ãŒã¯ãåç¬ã§ã¯åãåºããŠããªãã®ãšåæ§ã«ãã°ã«ãŒãªã³ãåç¬ã§ã¯åãåºããŠã¯ããªãã
ããŠãç©çåŠã§ã¯ã20äžçŽãããéåååŠããšããçè«ããã£ãŠããã®çè«ã«ãããç©çæ³åã®æ ¹æºã§ã¯ãæ³¢ãšç²åãåºå¥ããã®ãç¡æå³ã ãšèšãããŠããããã®ããããã€ãŠã¯æ³¢ã ãšèããããŠããé»ç£æ³¢ããå Žåã«ãã£ãŠã¯ãå
åããšããç²åãšããŠæ±ãããããã«ãªã£ãã
ãã®ããã«ãããæ³¢ãåå Ž(ããã°)ãªã©ããçè«é¢ã§ã¯ç²åã«çœ®ãæããŠè§£éããŠæ±ãäœæ¥ã®ããšããç©çåŠã§ã¯äžè¬ã«ãéååããšããã
ã°ã«ãŒãªã³ããã¯ã©ãŒã¯ãšã¯ã©ãŒã¯ãåŒãä»ããåããéååãããã®ã§ããããé»è·ãšã®é¡æšã§ãã¯ã©ãŒã¯ã«ãè²è·(ã«ã©ãŒè·)ãšããã®ãèããŠãããããã®æ§è³ªã¯ãããŸãè§£æãããŠãªã(å°ãªããšã髿 ¡ã§æããã»ã©ã«ã¯ããŸã å
åã«ã¯è§£æãããŠããªã)ã
ã°ã«ãŒãªã³ã®ããã«ãåãåªä»ããç²åã®ããšãã²ãŒãžç²åãšããã
éåãåªä»ããæ¶ç©ºã®ç²åã®ããšãéåå(ã°ã©ããã³)ãšãããããŸã çºèŠãããŠããªããç©çåŠè
ãã¡ããã°ã©ããã³ã¯ããŸã æªçºèŠã§ããããšäž»åŒµããŠããã
é»ç£æ°åãåªä»ããç²åã¯å
å(ãã©ãã³)ãšããããããã¯åã«ãé»ç£å Žãä»®æ³çãªç²åãšããŠçœ®ãæããŠæ±ã£ãã ãã§ããããã©ãã³ã¯ã髿 ¡ç©çã®é»ç£æ°åéã§ç¿ããããªå€å
žçãªé»ç£æ°èšç®ã§ã¯ããŸã£ãã圹ç«ããªãã
ãªããå
åãã²ãŒãžç²åã«å«ããã
ã€ãŸããå
åãã°ã«ãŒãªã³ã¯ãã²ãŒãžç²åã§ããã
ããŒã¿åŽ©å£ãã€ããã©ãåã®ããšãã匱ãåããšããããã®åãåªä»ããç²åãããŠã£ãŒã¯ããœã³ããšããããæ§è³ªã¯ãããåãã£ãŠããªãããããç©çåŠè
ãã¡ã¯ããŠã£ãŒã¯ããœã³ãçºèŠããããšäž»åŒµããŠããã
ãããããããœã³ããšã¯äœã?
éåååŠã®ã»ãã§ã¯ãé»åã®ãããªãäžç®æã«ããã ãæ°åãŸã§ããååšã§ããªãç²åããŸãšããŠãã§ã«ããªã³ãšããããã§ã«ããªã³çã§ãªãå¥çš®ã®ç²åãšããŠããœã³ããããå
åããããœã³ãšããŠæ±ãããã
ããŠã£ãŒã¯ããœã³ããšã¯ãããããã匱ãåãåªä»ããããœã³ã ãããŠã£ãŒã¯ããœã³ãšåŒãã§ããã®ã ããã
ããŠãé»è·ãšã®é¡æšã§ãã匱ãåãã«é¢ããã匱è·ã(ãããã)ãšããã®ãæå±ãããŠãããããããããã®æ§è³ªã¯ãããŸãè§£æãããŠãªã(å°ãªããšã髿 ¡ã§æããã»ã©ã«ã¯ããŸã å
åã«ã¯è§£æãããŠããªã)ã
ããŠãã匱ãåãã®ããäžæ¹ãã°ã«ãŒãªã³ã®åªä»ããåã®ããšãã匷ãåããšãããã
1956幎ã«ãé»åã®ã¹ãã³ã®æ¹åãšãããŒã¿åŽ©å£ç²åã®åºãŠæ¥ãæ¹åãšã®é¢ä¿ãèŠãããã®å®éšãšããŠãã³ãã«ãã®æŸå°æ§åäœäœã§ããã³ãã«ã60ããã¡ããŠæ¬¡ã®ãããªå®éšããã¢ã¡ãªã«ã§è¡ãããã
ã³ãã«ãå
çŽ (å
çŽ èšå·: Co )ã®æŸå°æ§åäœäœã§ããã³ãã«ã60ãæ¥µäœæž©ã«å·åŽããç£å ŽããããŠå€æ°ã®ã³ãã«ãååã®é»åæ®»ã®å€ç«é»åã¹ãã³ã®æ¹åãããããç¶æ
ã§ãã³ãã«ã60ãããŒã¿åŽ©å£ããŠçºçããããŒã¿ç²åã®åºãæ¹åã調ã¹ãå®éšãã1956幎ã«ã¢ã¡ãªã«ã§è¡ãããã
éãšããã±ã«ãšã³ãã«ãã¯ãããããéå±åäœã§ç£æ§äœã«ãªãå
çŽ ã§ãããå
çŽ åäœã§ç£æ§äœã«ãªãå
çŽ ã¯ããã®3ã€(éãããã±ã«ãã³ãã«ã)ãããªãã(ãªããæŸå°æ§åäœäœã§ãªãéåžžã®ã³ãã«ãã®ååéã¯59ã§ããã)
ãã®3ã€(éãããã±ã«ãã³ãã«ã)ã®ãªãã§ãã³ãã«ããäžçªãç£æ°ã«å¯äžããé»åã®æ°ãå€ãããšãéåååŠã®çè«ã«ããæ¢ã«ç¥ãããããã®ã§(ã³ãã«ãããã£ãšããdè»éã®é»åã®æ°ãå€ã )ãããŒã¿åŽ©å£ãšã¹ãã³ãšã®é¢ä¿ãã¿ãããã®å®éšã«ãã³ãã«ãã®æŸå°æ§åäœäœã§ããã³ãã«ã60ã䜿ãããã®ã§ããã
å®éšã®çµæãã³ãã«ã60ãããŒã¿åŽ©å£ããŠããŒã¿ç²åã®åºãŠããæ¹åã¯ãã³ãã«ã60ã®ã¹ãã³ã®ç£æ°ã®æ¹åãš(åãæ¹åããã)éã®æ¹åã«å€ãæŸåºãããŠããã®ã芳枬ããããããã¯ã2çš®é¡(ã¹ãã³ãšåæ¹åã«ããŒã¿ç²åã®åºãå Žåãšãã¹ãã³ãšå察æ¹åã«ããŒã¿ç²åã®åºãå Žå)ã®åŽ©å£ã®ç¢ºçãç°ãªã£ãŠãããããŒã¿åŽ©å£ã®ç¢ºçã®(ã¹ãã³æ¹åãåºæºãšããå Žåã®)æ¹å察称æ§ãæããŠããããšã«ãªãã
ãã®ãããªå®éšäºå®ã«ãããã匱ãåãã¯é察称ã§ããããšããã®ãå®èª¬ã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ããªã«ã³ã®å®éšãšã¯ãé§å¹ããªã©ã§äœæããæ²¹æ»Žã®åŸ®å°ãªé£æ²«ã«ãXç·ãã©ãžãŠã ãªã©ã§åž¯é»ãããããããŠãå€éšããé»å ŽãåŒç«ããããããšã油滎ã®éå(äžåã)ã®ã»ãã«ãé»å Žã«ããé黿°å(äžåãã«ãªãããã«é»æ¥µæ¿ãèšçœ®ãã)ãåãã®ã§ãé£ãåã£ãŠéæ¢ããç¶æ
ã«ãªã£ãæã®é»å Žãããé»è·ã®å€ã確ãããå®éšã§ããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãã®å®éšã§ç®åºã»æž¬å®ãããé»è·ã®å€ã 1.6Ã10 [C]ã®æŽæ°åã«ãªã£ãã®ã§ãé»å1åã®é»è·ã 1.6Ã10 [C]ã ãšåãã£ãã",
"title": "é»åãšå
"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãªãããã® 1.6Ã10 [C]ã®ããšã黿°çŽ é(ã§ãããããã)ãšããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "",
"title": "é»åãšå
"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "",
"title": "é»åãšå
"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "è² ã®é»è·ã«åž¯é»ãããŠããé屿¿ã«ã玫å€ç·ãåœãŠããšãé»åãé£ã³åºããŠããããšãããããŸããæŸé»å®éšçšã®è² 極ã«é»åãåœãŠããšãé»åãé£ã³åºããŠããããšãããããã®çŸè±¡ããå
é»å¹æ(ããã§ã ããããphotoelectric effect)ãšããã1887幎ããã«ãã«ãã£ãŠãå
é»å¹æãçºèŠããããã¬ãŒãã«ãã«ãã£ãŠãå
é»å¹æã®ç¹åŸŽãæããã«ãªã£ãã",
"title": "é»åãšå
"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "åœãŠãå
ã®æ¯åæ°ããäžå®ã®é«ã以äžã ãšãå
é»å¹æãèµ·ããããã®æ¯åæ°ãéçæ¯åæ°(ãããã ããã©ããã)ãšãããéçæ¯åæ°ããäœãå
ã§ã¯ãå
é»å¹æãèµ·ãããªãããŸããéçæ¯åæ°ã®ãšãã®æ³¢é·ããéçæ³¢é·(ãããã ã¯ã¡ãã)ãšããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ç©è³ªã«ãã£ãŠãéçæ¯åæ°ã¯ç°ãªããäºéçã§ã¯çŽ«å€ç·ã§ãªããšå
é»å¹æãèµ·ããªãããã»ã·ãŠã ã§ã¯å¯èŠå
ã§ãå
é»å¹æãèµ·ããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "å
é»å¹æãšã¯ãç©è³ªäž(äž»ã«éå±)ã®é»åãå
ã®ãšãã«ã®ãŒãåãåã£ãŠå€éšã«é£ã³åºãçŸè±¡ã®ããšã§ããã ãã®é£ã³åºããé»åããå
é»åã(ããã§ãããphotoelectron)ãšããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "å
é»å¹æã«ã¯,次ã®ãããªç¹åŸŽçãªæ§è³ªãããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãããã®æ§è³ªã®ãã¡ã1çªããš2çªãã®æ§è³ªã¯ãå€å
žç©çåŠã§ã¯èª¬æã§ããªãã ã€ãŸããå
ããé»ç£æ³¢ãšããæ³¢åã®æ§è³ªã ããæããŠããŠã¯ãã€ãã€ãŸãåããªãã®ã§ããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãªããªããä»®ã«ãé»ç£æ³¢ã®é»ç(é»å Ž)ã«ãã£ãŠéå±ããé»åãæŸåºãããšèããå Žåãããå
ã®åŒ·ãã倧ãããªãã°ãæ¯å¹
ã倧ãããªãã®ã§ãé»ç(é»å Ž)ã倧ãããªãã¯ãã§ããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ããããå®éšçµæã§ã¯ãå
é»åã®éåãšãã«ã®ãŒã¯ãå
ã®åŒ·ãã«ã¯äŸåããªãã",
"title": "é»åãšå
"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãã£ãŠãå€å
žååŠã§ã¯èª¬æã§ããªãã",
"title": "é»åãšå
"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "äžè¿°ã®ççŸ(å€å
žçãªé»ç£æ³¢çè«ã§ã¯ãå
é»å¹æã説æã§ããªãããš)ã解決ããããã«ã次ã®ãããªå
éå仮説ãã¢ã€ã³ã·ã¥ã¿ã€ã³ã«ãã£ãŠæå±ãããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ãã®2ã€ãã®æ¡ä»¶ãå®åŒåãããšã",
"title": "é»åãšå
"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ãšãªãã",
"title": "é»åãšå
"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ãã®åŒã«ãããæ¯äŸå®æ°hã¯ãã©ã³ã¯å®æ°ãšãã°ãã宿°ã§ã",
"title": "é»åãšå
"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "[Jã»s] ãšããå€ããšãã",
"title": "é»åãšå
"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ä»äºé¢æ°(ãããš ãããããwork function)ãšã¯ãå
é»å¹æãèµ·ããã®ã«å¿
èŠãªæå°ã®ãšãã«ã®ãŒã®ããšã§ãããéå±ã®çš®é¡ããšã«ã決ãŸã£ãå€ã§ããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ä»äºé¢æ°ã®å€ã W[J] ãšãããšãå
åã®åŸãéåãšãã«ã®ãŒã®æå€§å€ K0 [J] ã«ã€ããŠã次åŒãåŸãããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ãã®åŒãããå
é»å¹æãèµ·ããæ¡ä»¶ã¯ hΜâ§W ãšãªãããã㯠K0â§0 ã«çžåœããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ãããããå
é»å¹æãèµ·ããéçæ¯åæ° Μ0 ã«ã€ããŠãhΜ0=W ãæãç«ã€ã",
"title": "é»åãšå
"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ãã®å
éå仮説ã«ãããå
é»å¹æã®1çªããš2çªãã®æ§è³ªã¯ã容æã«ãççŸãªã説æã§ããããã«ãªã£ããæ³¢åã¯ç²åã®ããã«æ¯èãã®ã§ããã ãªããå
é»å¹æã®3çªãã®æ§è³ªãããããå Žæã®å
ã®åŒ·ãã¯ã ãã®å Žæã®åäœé¢ç©ã«åäœæéã飿¥ããå
åã®æ°ã«æ¯äŸããããšãåããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "",
"title": "é»åãšå
"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ãããããå
ã®æ³¢é·ã¯ãã©ããã£ãŠæž¬å®ãããã®ã ãããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "çŸåšã§ã¯ãããšãã°ååã®çºå
ã¹ãã¯ãã«ã®æ³¢é·æž¬å®ãªããåææ Œåãããªãºã ãšããŠäœ¿ãããšã«ãã£ãŠãæ³¢é·ããšã«åããæ³¢é·ã枬å®ãããŠããã(â» åèæç®: å¹é¢šé€š(ã°ããµããã)ãstep-up åºç€ååŠããæ¢¶æ¬èäº ç·šéãç³å·æ¥æš¹ ã»ãèã2015幎åçã25ããŒãž)",
"title": "é»åãšå
"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ãããŸããªåçãè¿°ã¹ããšãå¯èŠå
ãŠãã©ã®å
ã®æ³¢é·ã®æž¬å®ã¯ãåææ Œåã«ãã£ãŠæž¬å®ããããã ããã§ã¯ãã®åææ Œåã®çްããæ°çŸããã¡ãŒãã«ãæ°åããã¡ãŒãã«ãŠãã©ã®ééã®æ ŒåããŸãã©ããã£ãŠäœãã®ãããšããåé¡ã«è¡ãçããŠããŸãã",
"title": "é»åãšå
"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "æŽå²çã«ã¯ãäžèšã®ããã«ãå¯èŠå
ã®æ³¢é·ã枬å®ãããŠãã£ãã",
"title": "é»åãšå
"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ãŸãã1805幎ããã®ãã€ã³ã°ã®å®éšãã§æåãªã€ã³ã°ãã®ç ç©¶ã«ãããå¯èŠå
ã®æ³¢é·ã¯ããããã 100nm(10m) ã 1000nm ã®çšåºŠã§ããããšã¯ããã®é ããããã§ã«äºæ³ãããŠããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ãã®åŸããã€ãã®ã¬ã³ãºã®ç 磚工ã ã£ããã©ãŠã³ããŒãã¡ãŒããããããåææ Œåãéçºããå¯èŠå
ã®æ³¢é·ã粟å¯ã«æž¬å®ããäºã«æåããããã©ãŠã³ããŒãã¡ãŒã¯åææ Œåãäœãããã«çްãééãçšããå å·¥è£
眮ã補äœãããã®å å·¥æ©ã§è£œäœãããåææ ŒåãçšããŠãå
ã®æ³¢é·ã®æž¬å®ããå§ããã®ããç ç©¶ã®å§ãŸãã§ããã1821幎ã«ãã©ãŠã³ããŒãã¡ãŒã¯ã1cmãããæ Œåã130æ¬ã䞊ã¹ãåææ Œåã補äœããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ãŸãã1870幎ã«ã¯ã¢ã¡ãªã«ã®ã©ã¶ãã©ãŒããã¹ããã¥ã©ã ãšããåéãçšããåå°åã®åææ Œåã補äœã(ãã®ã¹ããã¥ã©ã åéã¯å
ã®åå°æ§ãé«ã)ãããã«ãã£ãŠ1mmããã700æ¬ãã®æ Œåã®ããåææ Œåã補äœããã(èŠåºå
ž)",
"title": "é»åãšå
"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ããã«ãã®ããã®æä»£ãéãããã®æœ€æ»ã®ããã«æ°Žéãäœ¿ãæ°Žéæµ®éæ³ããç ç©¶éçºã§è¡ãããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "ããé«ç²ŸåºŠãªæ³¢é·æž¬å®ããã®ã¡ã®æä»£ã®ç©çåŠè
ãã€ã±ã«ãœã³ã«ãã£ãŠãå¹²æžèš(ããããããã)ãšãããã®ãçšããŠ(çžå¯Ÿæ§çè«ã®å
¥éæžã«ããåºãŠããè£
眮ã§ããã髿 ¡çã¯ããŸã çžå¯Ÿæ§çè«ãç¿ã£ãŠãªãã®ã§ãæ°ã«ããªããŠããã)ãå¹²æžèšã®åå°é¡ã粟å¯ããžã§çްããåããããšã«ãããé«ç²ŸåºŠãªæ³¢é·æž¬å®åšãã€ããããã®æž¬å®åšã«ãã£ãŠã«ãããŠã ã®èµ€è²ã¹ãã¯ãã«ç·ã枬å®ããçµæã®æ³¢é·ã¯643.84696nmã ã£ãããã€ã±ã«ãœã³ã®æž¬å®æ¹æ³ã¯ãèµ€è²ã¹ãã¯ãã«å
ã®æ³¢é·ããåœæã®ã¡ãŒãã«ååšãšæ¯èŒããããšã§æž¬å®ããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "ãã€ã±ã«ãœã³ã®å¶äœããå¹²æžèšã«ããæ°Žéæµ®éæ³ã®æè¡ãåãå
¥ããããŠããããšããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "ããã«ãããžã®æè¡é©æ°ã§ãããŒãã³ã»ããã(ãã¡ã«ãã³ã»ãããããšãèš³ã)ãšãããåŒŸåæ§ã®ããæè³ªã§ããžãã€ããããšã«ãã£ãŠèª€å·®ããªããããŠå¹³ååãããã®ã§ãè¶
çµ¶çã«é«ç²ŸåºŠã®éããããäœãæè¡ããã€ã®ãªã¹ã®ç©çåŠè
ããŒãã¹ã»ã©ã«ãã»ããŒãã³(è±:en:w:Thomas Ralph Merton )ãªã©ã«ãã£ãŠéçºãããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "ãªããçŸä»£ã§ããç ç©¶çšãšããŠå¹²æžèšãçšããæ³¢é·æž¬å®åšãçšããããŠããã(èŠåºå
ž) ã¡ãŒãã«ååšã¯ããã€ã±ã«ãœã³ã®å®éšã®åœæã¯é·ãã®ããããšã®æšæºã ã£ããã1983幎以éã¯ã¡ãŒãã«ååšã¯é·ãã®æšæºã«ã¯çšããããŠããªããçŸåšã®ã¡ãŒãã«å®çŸ©ã¯ä»¥äžã®éãã",
"title": "é»åãšå
"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "",
"title": "é»åãšå
"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "",
"title": "é»åãšå
"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "倪éœé»æ± ããå
é»å¹æã®ãããªçŸè±¡ã§ããããšèããããŠããã(â» å®æåºçã®æç§æžãªã©ã§ãæ±ã£ãŠãã話é¡ã)",
"title": "é»åãšå
"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "ãªãã倪éœé»æ± ã¯äžè¬çã«åå°äœã§ããããã€ãªãŒãåããPNæ¥åã®éšåã«å
ãåœãŠãå¿
èŠãããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "(PNæ¥åéšå以å€ã®å Žæã«ãå
ãããã£ãŠããçããé»åãã黿µãšããŠåãåºããªãã黿µãšããŠåãåºããããã«ããã«ã¯ãPNæ¥åã®éšåã«ãå
ãåœãŠãå¿
èŠãããããã®ãããPNæ¥åã®çæ¹ã®æè³ªããéæããããã«è¿ãå
ééçã®ææã«ããå¿
èŠãããããéæé»æ¥µããšããã)",
"title": "é»åãšå
"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "(â» ç¯å²å€?: ) ãªããçºå
ãã€ãªãŒãåå°äœã¯ããã®éãã¿ãŒã³ãšããŠèããããŠãããå
é»å¹æã§ãããä»äºé¢æ°ãã«ããããšãã«ã®ãŒããã£ã黿µãæµãããšã«ããããã®åå°äœç©è³ªã®ãä»äºé¢æ°ãã«ããããšãã«ã®ãŒã®å
ããPNæ¥åã®æ¥åé¢ããæŸåºãããããšããä»çµã¿ã§ããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ãªããCCDã«ã¡ã©ãªã©ã«äœ¿ãããCCDã¯ã倪éœé»æ± ã®ãããªæ©èœããã€åå°äœããé»åæºãšããŠã§ã¯ãªããå
ã®ã»ã³ãµãŒãšããŠæŽ»çšãããšããä»çµã¿ã®åå°äœã§ããã(â» å®æåºçã®æç§æžãªã©ã§ãæ±ã£ãŠãã話é¡ã)",
"title": "é»åãšå
"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "(â» æ®éç§é«æ ¡ã®ãç©çãç³»ç§ç®ã§ã¯ç¿ããªããã)",
"title": "é»åãšå
"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "ç©ççŸè±¡ã®éååãšããŠãå
é»å¹æãç©è³ªæ³¢ã®ã»ãã«ãååã¹ã±ãŒã«ã®ç©ççŸè±¡ã®éååã¯ãããããçš®é¡ã®è¶
äŒå°ç©è³ªã§ã¯ãããã«éããç£æãéååããçŸè±¡ãç¥ãããŠããã(â» å·¥æ¥é«æ ¡ã®ç§ç®ãå·¥æ¥ææãäžå·»(ãŸãã¯ç§ç®ã®åŸå)ã§ç¿ãã)",
"title": "é»åãšå
"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "ç§åŠè
ã¬ã³ãã²ã³ã¯ã1895å¹ŽãæŸé»ç®¡ããã¡ããŠé°æ¥µç·ã®å®éšãããŠãããšããæŸé»ç®¡ã®ã¡ããã«çœ®ããŠãã£ãåç也æ¿ãæå
ããŠããäºã«æ°ä»ããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "圌(ã¬ã³ãã²ã³)ã¯ãé°æ¥µç·ãã¬ã©ã¹ã«åœãã£ããšãããªã«ãæªç¥ã®ãã®ãæŸå°ãããŠããšèããXç·ãšåã¥ããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "ãããŠãããŸããŸãªå®éšã«ãã£ãŠãXç·ã¯æ¬¡ã®æ§è³ªããã€ããšãæããã«ãªã£ãã",
"title": "é»åãšå
"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "ãã®äºãããXç·ã¯ãè·é»ç²åã§ã¯ãªãäºãåããã(çµè«ããããšãXç·ã®æ£äœã¯ãæ³¢é·ã®çãé»ç£æ³¢ã§ããã)",
"title": "é»åãšå
"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "ãŸãã",
"title": "é»åãšå
"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "ãªã©ã®æ§è³ªãããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "ãªãçŸä»£ã§ã¯ãå»ççšã®Xç·ããã¬ã³ãã²ã³ããšãããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "",
"title": "é»åãšå
"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "1912幎ãç©çåŠè
ã©ãŠãšã¯ãXç·ãåçµæ¶ã«åœãŠããšãåçãã£ã«ã ã«å³ã®ãããªæç¹ã®æš¡æ§ã«ããããšãçºèŠããããããã©ãŠãšæç¹(ã¯ããŠã)ãšãããçµæ¶äžã®ååãåææ Œåã®åœ¹å²ãããããšã§çºçããå¹²æžçŸè±¡ã§ããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "",
"title": "é»åãšå
"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "1912幎ãç©çåŠè
ãã©ãã°ã¯ãåå°ã匷ãããæ¡ä»¶åŒãçºèŠããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "2d sinΞ = n λ",
"title": "é»åãšå
"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "ããããã©ãã°ã®æ¡ä»¶ãšããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "äžåŒã®dã¯æ Œåé¢ã®ééã®å¹
ã§ããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "",
"title": "é»åãšå
"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "",
"title": "é»åãšå
"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "Xç·ãççŽ å¡ãªã©ã®(éå±ãšã¯éããªã)ç©è³ªã«åœãŠããã®æ£ä¹±ãããããšã®Xç·ã調ã¹ããšãããšã®Xç·ã®æ³¢é·ãããé·ããã®ããæ£ä¹±ããXç·ã«å«ãŸããã ãã®ããã«æ£ä¹±Xç·ã®æ³¢é·ã䌞ã³ãçŸè±¡ã¯ç©çåŠè
ã³ã³ããã³ã«ãã£ãŠè§£æãããã®ã§ãã³ã³ããã³å¹æ(ãŸãã¯ã³ã³ããã³æ£ä¹±)ãšããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "",
"title": "é»åãšå
"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "ãã®çŸè±¡ã¯ãXç·ãæ³¢ãšèããã®ã§ã¯èª¬æãã€ããªãã(ããä»®ã«æ³¢ãšèããå Žåãæ£ä¹±å
ã®æ³¢é·ã¯ãå
¥å°Xç·ãšåãæ³¢é·ã«ãªãã¯ãããªããªããæ°Žé¢ã®æ³¢ã«äŸãããªããããæ°Žé¢ãæ£ã§4ç§éã«1åã®ããŒã¹ã§æºãããããæ°Žé¢ã®æ³¢ãã4ç§éã«1åã®ããŒã¹ã§åšæãè¿ããã®ãšãåãçå±ã) ããŠãæ³¢åã®çè«ã§ã³ã³ããã³å¹æã説æã§ããªããªããç²åã®çè«ã§èª¬æãããã°è¯ãã ããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "ãã®åœæãã¢ã€ã³ã·ã¥ã¿ã€ã³ã¯å
éå仮説ã«ããšã¥ããå
åã¯ãšãã«ã®ãŒhΜããã€ã ãã§ãªããããã«æ¬¡ã®åŒã§è¡šãããéåépããã€ããšãçºèŠããŠããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "p = h Μ c ( = h Μ Μ λ = h λ ) {\\displaystyle p={\\frac {h\\nu }{c}}(={\\frac {h\\nu }{\\nu \\lambda }}={\\frac {h}{\\lambda }})}",
"title": "é»åãšå
"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "ç©çåŠè
ã³ã³ããã³ã¯ããã®çºèŠãå©çšããæ³¢é·Î»ã®Xç·ããéåé h λ {\\displaystyle {\\frac {h}{\\lambda }}} ãšãšãã«ã®ãŒ h c λ {\\displaystyle {\\frac {hc}{\\lambda }}} ãæã€ç²å(å
å)ã®æµããšèãã Xç·ã®æ£ä¹±ãããã®å
åãç©è³ªäžã®ããé»åãšå®å
šåŒŸæ§è¡çªãããçµæãšèããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "è§£æ³ã¯ãäžèšã®ãšããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "ãšãã«ã®ãŒä¿åã®åŒ",
"title": "é»åãšå
"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "éåéä¿åã®åŒ",
"title": "é»åãšå
"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "äžèšã®3ã€ã®åŒãé£ç«ãããã®é£ç«æ¹çšåŒãè§£ãããã«vãšÏãé£ç«èšç®ã§æ¶å»ãããŠããã λ â λ â² {\\displaystyle \\lambda \\fallingdotseq \\lambda '} ã®ãšã㫠λ â² â λ + h m c ( 1 â cos Ξ ) {\\displaystyle \\lambda '\\fallingdotseq \\lambda +{\\frac {h}{mc}}(1-\\cos \\theta )} ãåŸãããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "ãã®åŒãå®éšåŒãšããäžèŽããã®ã§ãã³ã³ããã³ã®èª¬ã®æ£ããã¯å®èšŒãããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "(ç·šéè
ãž: èšè¿°ããŠãã ããã)(Gimyamma ãããè§£æ³ãæžããŠã¿ãŸããã)",
"title": "é»åãšå
"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "åŒ(1),(2),(3)ããã v {\\displaystyle v} ãš Ï {\\displaystyle \\phi } ãæ¶å»ããŠã λ , λ â² , Ξ {\\displaystyle \\lambda ,\\lambda ',\\theta } ã®é¢ä¿åŒãæ±ããã°ããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "( m v sin Ï ) 2 = ( â h λ â² sin Ξ ) 2 {\\displaystyle (mv\\sin \\phi )^{2}=(-{\\frac {h}{\\lambda '}}\\sin \\theta )^{2}}",
"title": "é»åãšå
"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "m 2 v 2 = ( h λ â h λ â² cos Ξ ) 2 + ( â h λ â² sin Ξ ) 2 + h 2 λ â² 2 {\\displaystyle m^{2}v^{2}=({\\frac {h}{\\lambda }}-{\\frac {h}{\\lambda '}}\\cos \\theta )^{2}+(-{\\frac {h}{\\lambda '}}\\sin \\theta )^{2}+{\\frac {h^{2}}{\\lambda '^{2}}}}",
"title": "é»åãšå
"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "ãåŸãã",
"title": "é»åãšå
"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "åŒ(1)ã®å³èŸºã®ç¬¬2é
ãå€åœ¢ããŠåŒ(4)ã代å
¥ããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "ãããåŒ(1)ã®å³èŸºã«ä»£å
¥ãããš",
"title": "é»åãšå
"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "ãåŸãã",
"title": "é»åãšå
"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "ãã®åŒãåŒ(5)ã®å³èŸºç¬¬2é
ã«ä»£å
¥ãããšã",
"title": "é»åãšå
"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "ãã®åŒã®å³èŸºã®ç¬¬1é
ãç§»è¡ããåŒãå€åœ¢ãããš",
"title": "é»åãšå
"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "䞡蟺㫠λ λ â² {\\displaystyle \\lambda \\lambda '} ãæãããš",
"title": "é»åãšå
"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "Xç·ã®æ£ä¹±ã§ã¯ã λ â² â λ {\\displaystyle \\lambda '\\fallingdotseq \\lambda } ãªã®ã§",
"title": "é»åãšå
"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "æ
ã«åŒ(6)ãã",
"title": "é»åãšå
"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "ããã§ãææã®åŒãå°åºãããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "å
ã®éåé P[kgã»m/s]=hΜ/c ã«ã€ããŠã",
"title": "é»åãšå
"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "ãŸã cP=hΜ[J] ãšå€åœ¢ããŠã¿ããšããé床ã«éåéãããããã®ããšãã«ã®ãŒã§ããããšããå
容ã®å
¬åŒã«ãªã£ãŠããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "ãããçè§£ãããããã²ãšãŸããå
ãç²åã§ãããšåæã«æµäœã§ãããšèããŠããã®é»ç£æ³¢ãåäœäœç©ãããã®éåépãæã£ãŠãããšããŠããã®æµäœã®éåéã®å¯åºŠ(éåéå¯åºŠ)ã p [(kgã»m/s)/m]ãšãããããã®å Žåã®é»ç£æ³¢ã¯æµäœãªã®ã§ãéåéã¯ããã®å¯åºŠã§èããå¿
èŠãããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "é»ç£æ³¢ãç©äœã«ç
§å°ããŠãå
ãç©äœã«åžåããããšããããåå°ã¯ãªããšããŠãå
ã®ãšãã«ã®ãŒã¯ãã¹ãŠç©äœã«åžåããããšãããç°¡åã®ãããç©äœå£ã«åçŽã«å
ãç
§å°ãããšãããç©äœãžã®å
ã®ç
§å°é¢ç©ãA[m]ãšããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "é»ç£æ³¢ã¯å
é c[m/s] ã§é²ãã®ã ãããå£ããcã®è·é¢ã®éã«ãããã¹ãŠã®å
åã¯ããã¹ãŠåäœæéåŸã«åžåãããäºã«ãªããåäœæéã«å£ã«åžåãããå
åã®éã¯ããã®åäœæéã®ããã ã«å£ã«æµã蟌ãã å
åã®éã§ããã®ã§ã",
"title": "é»åãšå
"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "",
"title": "é»åãšå
"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "å³ã®ããã«ãä»®ã«åºé¢ãA[m]ãšããŠãé«ãhã c ( hã®å€§ããã¯cã«çãããåäœæét=1ãããããšããã° h=cã»1 ã§ãã)[m]ãšããæ±ã®äœç© AÃc[m]äžã«å«ãŸããå
åã®éã®ç·åã«çããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "ãã£ãœããéåéå¯åºŠã¯ p[(kgã»m/s)/m]ã ã£ãã®ã§ããã®æ± AÃh ã«å«ãŸããéåéã®ç·åã¯ã AÃhÃp[kgã»m/s]ã§ããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "å
ãåžåããç©äœã®éåéã¯ãåäœæéã«Ahpã®éåéãå¢å ããããšã«ãªãããh=cã§ãã£ãã®ã§ãã€ãŸããéåéãåäœæéãããã« Acp[kgã»m/s] ã ãå£ã«æµãããããšã«ãªãã",
"title": "é»åãšå
"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "ãã£ãœãã髿 ¡ç©çã®ååŠã®çè«ã«ããããéåéã®æéãããã®å€åã¯ãåã§ãããã§ãã£ãã®ã§ãã€ãŸãç©äœã¯ãAcp[N]ã®åãåããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "åãåããã®ã¯ç
§å°ãããé¢ã ãããå[N]ãé¢ç©ã§å²ãã°å§åã®æ¬¡å
[N/m]=[Pa]ã«ãªãã",
"title": "é»åãšå
"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "å®éã«é¢ç©ã§å²ãèšç®ãããã°ãå§åãšã㊠cp[N/m]=[Pa]=[J/m] ãåããäºãèšç®çã«åãããããã«ãå§åã®æ¬¡å
ã¯[N/m]=[Pa]=[J/m]ãšå€åœ¢ã§ããã®ã§ããå§åã¯ãåäœäœç©ãããã®ãšãã«ã®ãŒã®å¯åºŠ(ããšãã«ã®ãŒå¯åºŠããšãã)ã§ããããšèãããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "ãšããã° cp ã®æ¬¡å
ã¯ã[å§å]=[ãšãã«ã®ãŒå¯åºŠ] ãšãªãã",
"title": "é»åãšå
"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "ãã®ãšãã«ã®ãŒå¯åºŠã«ãhΜã察å¿ããŠãããšèããã°ãåççã§ããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "èŠããã«ãå
ã®ãããªãäºå®äžã¯ç¡éã«å§çž®ã§ããæ³¢ã»æµäœã§ã¯ã",
"title": "é»åãšå
"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "å
¬åŒãšããŠãé床ãvãéåéå¯åºŠãpããšãã«ã®ãŒå¯åºŠãεãšããŠèããã°ã",
"title": "é»åãšå
"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "ãšããé¢ä¿ããªããã€ã",
"title": "é»åãšå
"
},
{
"paragraph_id": 104,
"tag": "p",
"text": "(ãªããæ°Žã空æ°ã®ãããªæ®éã®æµäœã§ã¯ãç¡éã«ã¯å§çž®ã§ããªãã®ã§ãäžèšã®å
¬åŒã¯æãç«ããªãã)",
"title": "é»åãšå
"
},
{
"paragraph_id": 105,
"tag": "p",
"text": "ãããããã³ã³ããã³å¹æã®åŠç¿ã§åãã£ãéåéã®å
¬åŒ p = h Μ c {\\displaystyle p={\\frac {h\\nu }{c}}} ã¯ãéåéå¯åºŠãšãšãã«ã®ãŒå¯åºŠã®é¢ä¿åŒã«ãå
écãšå
é»å¹æã®ãšãã«ã®ãŒhΜã代å
¥ãããã®ã«ãªã£ãŠããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 106,
"tag": "p",
"text": "äžèšã®èå¯ã¯ãå
ãæµäœãšããŠèããé»ç£æ³¢ã®éåéã ããç²åãšããŠè§£éãããå
åã®éåéã«ãã cP=hΜ ãšããé¢ä¿ãæãç«ã€ãšèãããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 107,
"tag": "p",
"text": "ããèªè
ããå§åããšãã«ã®ãŒå¯åºŠãšèããã®ãåããã¥ãããã°ãããšãã°ç±ååŠã®ä»äºã®å
¬åŒ W=Pâ¿V ã®é¡æšãããŠã¯ã©ãã? ãªããäžèšã®éåéãšãšãã«ã®ãŒã®é¢ä¿åŒã®å°åºã¯å€§ãŸããªèª¬æã§ãããæ£ç¢ºãªå°åºæ³ã¯ã(倧åŠã§ç¿ã)ãã¯ã¹ãŠã§ã«ã®æ¹çšåŒã«ãããªããã°ãªããªãã",
"title": "é»åãšå
"
},
{
"paragraph_id": 108,
"tag": "p",
"text": "ããããã ãå
ã¯ãé»åã«äœçšãããšãã«ãå
ãç²åãšããŠæ¯èã(ãµããŸã)ã ãšããã®ãæ£ããã ããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 109,
"tag": "p",
"text": "ãã£ãœãããã¿ããã«ãå
ã¯ç²å! å
ã¯æ³¢åã§ã¯ãªã!!ã(Ã)ãšãããã®ã¯ãåãªã銬鹿ã®ã²ãšã€èŠãã§ããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 110,
"tag": "p",
"text": "ãã¯ã¹ãŠã§ã«ã®æ¹çšåŒã§ã¯ãå
(é»ç£æ³¢)ã¯æ³¢åãšããŠããã€ããã®ã§ããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 111,
"tag": "p",
"text": "ããããå
é»å¹æã§èµ·ããçŸè±¡ã§ã¯ãæŸåºé»åã®ãã€éåãšãã«ã®ãŒã¯ãå
ã®åŒ·åºŠãšã¯ç¡é¢ä¿ã§ãããåçŽãªæµäœãšããŠèãããªãã(ããšãã°éå
ããããå
ãéãããããŠã)å
ã®åŒ·åºŠãäžããã°ãéåéå¯åºŠãäžããããºã ãããã®åž°çµã®æŸåºé»åã®ãšãã«ã®ãŒå¯åºŠãäžããããºã ããããšããäºæž¬ãæãç«ã¡ããã ãããããå®éšçµæã¯ãã®äºæž¬ãšã¯ç°ãªããå
é»å¹æã¯å
ã®åŒ·åºŠãšã¯ç¡é¢ä¿ã«å
ã®åšæ³¢æ°ã«ãã£ãŠæŸåºé»åã®ãšãã«ã®ãŒã決ãŸããã»ã»ã»ãšããã®ããå®éšäºå®ã§ããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 112,
"tag": "p",
"text": "ãã®ãããªå®éšçµæããã20äžçŽåé ã®åœæãåèããŠããéåååŠãªã©ãšé¢é£ã¥ããŠããå
ãæ³¢ã§ãããšåæã«ç²åã§ããããšæå®ããã®ãããŒãã«è²¡å£ãªã©ã§ãããå
é»å¹æãå
ã®ç²åèª¬ã®æ ¹æ ã®ã²ãšã€ãšããã®ãã¢ã€ã³ã·ã¥ã¿ã€ã³ã®ä»®èª¬ã§ãããã¢ã€ã³ã·ã¥ã¿ã€ã³ã®ãã®ä»®èª¬ãå®èª¬ãšããŠèªå®ããã®ãããŒãã«è²¡å£ã§ãããçŸåšã®ç©çåŠã§ã¯ãå
é»å¹æãå
åèª¬ã®æ ¹æ ãšããŠé説ã«ãªã£ãŠããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 113,
"tag": "p",
"text": "å
é»å¹æã®å®éšçµæãã®ãã®ã¯ãåã«ãå
é»å¹æã«ããããå
ãããåçŽãªæµäœã»æ³¢åãšããŠã¯èããããªãã ããã»ã»ã»ãšããã ãã®äºã§ããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 114,
"tag": "p",
"text": "çµå±ãç©çåŠã¯å®éšç§åŠã§ãããå®éšçµæã«ããšã¥ãå®éšæ³åãèŠãããããªãããå
åããšããã¢ã€ãã¢ã¯ããå
é»å¹æã®æŸåºé»å1åãããã®ãšãã«ã®ãŒã¯ãå
¥å°å
ã®åŒ·åºŠã«å¯ãããå
ã®æ³¢é·(åšæ³¢æ°)ã«ããããšããäºãèŠããããããããã®ææ®µã«ããããã¢ã€ã³ã·ã¥ã¿ã€ã³ãšãã®æ¯æè
ã«ãšã£ãŠã¯ããå
ã®ç²å説ããšããã®ããèŠããããããããã®ã¢ãã«ã ã£ãã ãã§ãã(ç²åãªã®ã«æ³¢é·(åšæ³¢æ°)ãšã¯ãæå³äžæã ã)ããããŠéåéå¯åºŠãšãšãã«ã®ãŒå¯åºŠã®é¢ä¿ vp=ε ãšããç¥èããŸããå
é»å¹æã®å
¬åŒ cP=hΜ ãèŠããããããããã®ææ®µã«ãããªãã",
"title": "é»åãšå
"
},
{
"paragraph_id": 115,
"tag": "p",
"text": "ãã£ããã®å
ã¯ãåçŽãªæ³¢ã§ããªããåçŽãªç²åã§ããªãããã åã«ãå
ã¯å
ã§ãããå
ã§ãããªãã",
"title": "é»åãšå
"
},
{
"paragraph_id": 116,
"tag": "p",
"text": "ãå
ã®ç²å説ããšããã®ã¯ãç空äžã§åªè³ª(ã°ããã€)ããªããŠãå
ãäŒããããšããçšåºŠã®æå³åãã§ãããªãã ãããã¢ã€ã³ã·ã¥ã¿ã€ã³ãç¹æ®çžå¯Ÿæ§çè«ãçºè¡šããåãŸã§ã¯ã(20äžç€ä»¥éããçŸä»£ã§ã¯åŠå®ãããŠãããã)ãã€ãŠããšãŒãã«ããšããå
ãäŒããåªè³ªã®ååšãä¿¡ããããŠããããããã¢ã€ã³ã·ã¥ã¿ã€ã³ã¯çžå¯Ÿæ§çè«ã«ããããšãŒãã«ã®ååšãåŠå®ããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 117,
"tag": "p",
"text": "ãå
ã®ç²å説ããçºè¡šããŠããè
ãåããã¢ã€ã³ã·ã¥ã¿ã€ã³ã ã£ãã®ã§ãããŒãã«è²¡å£ã¯ãæ¬æ¥ãªãç¹çžå¯Ÿæ§çè«ã§ããŒãã«è³ãæãããããã«ãå
å説ã§ããŒãã«è³ãã¢ã€ã³ã·ã¥ã¿ã€ã³ã«æããã ãã ãã",
"title": "é»åãšå
"
},
{
"paragraph_id": 118,
"tag": "p",
"text": "ç©çåŠè
ãã»ããã€ã¯ãæ³¢ãšèããããŠãå
ãç²åã®æ§è³ªããã€ãªãã°ããã£ãšé»åãç²åãšããŠã®æ§è³ªã ãã§ãªããé»åãæ³¢åã®ããã«æ¯èãã ãããšèããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 119,
"tag": "p",
"text": "ãããŠãé»åã ãã§ãªããäžè¬ã®ç²åã«å¯ŸããŠãããã®èããé©çšããæ¬¡ã®å
¬åŒãæå±ããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 120,
"tag": "p",
"text": "ããã¯ãã»ããã€ã«ãã仮説ã§ãã£ãããçŸåšã§ã¯æ£ãããšèªããããŠããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 121,
"tag": "p",
"text": "ãã®æ³¢ã¯ãç©è³ªæ³¢(material wave)ãšåŒã°ããããã»ããã€æ³¢(de Broglie wave length)ãšãããã ããªãã¡ãå
åãé»åã«éãããããããç©è³ªã¯ç²åæ§ã𿳢忧ããããæã€ãšãããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 122,
"tag": "p",
"text": "ãã®ç©è³ªæ³¢ãšãã説ã«ãããšããããé»åç·ãç©è³ªã«åœãŠãã°ãåæãªã©ã®çŸè±¡ãèµ·ããã¯ãã§ããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 123,
"tag": "p",
"text": "1927幎ã1928幎ã«ãããŠãããããœã³ãšã¬ãŒããŒã¯ãããã±ã«ãªã©ã®ç©è³ªã«é»åç·ãåœãŠãå®éšãè¡ããXç·åæãšåæ§ã«é»åç·ã§ãåæãèµ·ããããšãå®èšŒãããæ¥æ¬ã§ã1928幎ã«èæ± æ£å£«(ããã¡ ããã)ã鲿¯çã«é»åç·ãåœãŠãå®éšã«ããåæãèµ·ããããšã確èªããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 124,
"tag": "p",
"text": "é»åç·ã®æ³¢é·ã¯ãé«é»å§ããããŠé»åãå éããŠé床ãé«ããã°ãç©è³ªæ³¢ã®æ³¢é·ã¯ããªãå°ããã§ããã®ã§ãå¯èŠå
ã®æ³¢é·ãããå°ãããªãã",
"title": "é»åãšå
"
},
{
"paragraph_id": 125,
"tag": "p",
"text": "ãã®ãããå¯èŠå
ã§ã¯èŠ³æž¬ã§ããªããã£ãçµæ¶æ§é ããé»åæ³¢ãXç·ãªã©ã§èŠ³æž¬ã§ããããã«ãªã£ããçç©åŠã§ãŠã€ã«ã¹ãé»åé¡åŸ®é¡ã§èŠ³æž¬ã§ããããã«ãªã£ãã®ããé»åã®ç©è³ªæ³¢ãå¯èŠå
ããã倧å¹
ã«å°ããããã§ããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 126,
"tag": "p",
"text": "äžè¿°ã®ãããªãããŸããŸãªå®éšã®çµæããããã¹ãŠã®ç©è³ªã«ã¯ãååãŠãã©ã®å€§ããã®äžç(以éãåã«ãååã¹ã±ãŒã«ããªã©ãšç¥èšãã)ã§ã¯ãæ³¢åæ§ãšç²åæ§ã®äž¡æ¹ã®æ§è³ªããã€ãšèããããŠããã ãã®ããšãç²åãšæ³¢åã®äºéæ§ãšããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 127,
"tag": "p",
"text": "ãããŠãååã¹ã±ãŒã«ã§ã¯ãããäžã€ã®ç©è³ª(äž»ã«é»åã®ãããªç²å)ã«ã€ããŠããã®äœçœ®ãšéåéã®äž¡æ¹ãåæã«æ±ºå®ããäºã¯ã§ããªãããã®ããšãäžç¢ºå®æ§åç(ãµãããŠããã ããã)ãšããã",
"title": "é»åãšå
"
},
{
"paragraph_id": 128,
"tag": "p",
"text": "",
"title": "é»åãšå
"
},
{
"paragraph_id": 129,
"tag": "p",
"text": "ç©çåŠè
ã¬ã€ã¬ãŒãšç©çåŠè
ããŒã¹ãã³ã¯ã(ã©ãžãŠã ããåºãã)αç²åããããéã±ãã«åœãŠãå®éšãè¡ããαç²åã®æ£ä¹±ã®æ§åã調ã¹ãã(ãªããαç²åã®æ£äœã¯ããªãŠã ã®ååæ žã)ãã®çµæãã»ãšãã©ã®Î±ç²åã¯éã±ããçŽ éãããããéã±ãäžã®äžéšã®å Žæã®è¿ããéã£ãαç²åã ãã倧å¹
ã«æ£ä¹±ããçŸè±¡ãçºèŠããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 130,
"tag": "p",
"text": "ãã®å®éšçµæããã©ã¶ãã©ãŒãã¯ãååæ žã®ååšãã€ããšããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 131,
"tag": "p",
"text": "ååã¯ãäžå¿ã«ååæ žãããããã®ãŸãããé»åãéåãããšããã©ã¶ãã©ãŒãã¢ãã«ãšãã°ããã¢ãã«ã«ãã£ãŠèª¬æãããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 132,
"tag": "p",
"text": "åå(atom)ã¯ãå
šäœãšããŠã¯é»æ°çã«äžæ§ã§ãããè² ã®é»è·ãæããé»åãé»åæ®»ã«æã€ã ããã§ãããªã«ã³ã®å®éš ã«ããçµæãªã©ãããé»åã®è³ªéã¯æ°ŽçŽ ã€ãªã³ã®è³ªéã®çŽ1/1840çšåºŠãããªãããšãåãã£ãŠããã ããªãã¡ãååã¯é»åãšéœã€ãªã³ãšãå«ãŸãããã質éã®å€§éšåã¯éœã€ãªã³ããã€ããšãåããã ååæ žã®å€§ããã¯ååå
šäœã®1/10000çšåºŠã§ãããããååã®å€§éšåã¯ç空ã§ããã ååæ žã¯ãæ£ã®é»è·ããã€Zåã®éœå(proton)ãšã黿°çã«äžæ§ãª(AâZ)åã®äžæ§å(neutron)ãããªãã éœåãšäžæ§åã®åæ°ã®åèšãè³ªéæ°(mass number)ãšããã éœåãšäžæ§åã®è³ªéã¯ã»ãŒçãããããååæ žã®è³ªéã¯ãè³ªéæ°Aã«ã»ãŒæ¯äŸããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 133,
"tag": "p",
"text": "髿ž©ã®ç©äœããçºå
ãããå
ã«ã¯ãã©ã®(å¯èŠå
ã®)è²ã®æ³¢é·(åšæ³¢æ°)ãããããã®ãããªé£ç¶çãªæ³¢é·ã®å
ãé£ç¶ã¹ãã¯ãã«ãšããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 134,
"tag": "p",
"text": "ãã£ãœãããããªãŠã ãæ°ŽçŽ ãªã©ã®ãç¹å®ã®ç©è³ªã«é»å§ãããããæŸé»ãããšãã«çºå
ããæ³¢é·ã¯ãç¹å®ã®æ°æ¬ã®æ³¢é·ããå«ãŸããŠãããããã®ãããªã¹ãã¯ãã«ãèŒç·(ããã)ãšããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 135,
"tag": "p",
"text": "ãã«ããŒã¯ãæ°ŽçŽ ååã®æ°æ¬ããèŒç·ã®æ³¢é·ããæ¬¡ã®å
¬åŒã§è¡šçŸã§ããããšã«æ°ã¥ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 136,
"tag": "p",
"text": "λ = 3.65 à 10 â 7 m à ( n 2 n 2 â 4 ) {\\displaystyle \\lambda =3.65\\times 10^{-7}\\mathrm {m} \\times \\left({n^{2} \\over n^{2}-4}\\right)} (ãã ããn=3, 4 , 5 ,6 ,ã»ã»ã»)",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 137,
"tag": "p",
"text": "äžåŒäžã®ãmãã¯ã¡ãŒãã«åäœãšããæå³ã(äžåŒã®mã¯ä»£æ°ã§ã¯ãªãã®ã§ãééããªãããã«ã)",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 138,
"tag": "p",
"text": "ãã®åŸãæ°ŽçŽ ä»¥å€ã®ååããå¯èŠå
以å€ã®é åã«ã€ããŠããç©çåŠè
ãã¡ã«ãã£ãŠèª¿ã¹ãããæ¬¡ã®å
¬åŒãžãšãç©çåŠè
ãªã¥ãŒãããªã«ãã£ãŠããŸãšããããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 139,
"tag": "p",
"text": "äžåŒã®Rã¯ãªã¥ãŒãããªå®æ°ãšããã R = 1.097 à 10 7 / m {\\displaystyle R=1.097\\times 10^{7}/m} ã§ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 140,
"tag": "p",
"text": "ã©ã¶ãã©ãŒãã®ååæš¡åã«åŸãã°ãé»åã¯ããŸãã§ææã®å
¬è»¢ã®ããã«ååæ žãäžå¿ãšããåè»éã®äžãäžå®ã®é床ã§éåããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 141,
"tag": "p",
"text": "ååæ žãäžå¿ãšããååŸr[m]ã®åè»éãéãv[m/s]ã§å転ããé»åã®è§éåé r p = r m v {\\displaystyle rp=rmv} ã¯ã h 2 Ï {\\displaystyle {\\frac {h}{2\\pi }}} ã®æ£æŽæ°åã«ãªããªããã°ãªããªã(è§éåéã®éåå)ã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 142,
"tag": "p",
"text": "ãæºãããã°ãªããªãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 143,
"tag": "p",
"text": "åŸå¹Ž(1924幎)ããã»ããã€ã¯ãç©è³ªç²åã¯æ³¢åæ§ãæã¡ã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 144,
"tag": "p",
"text": "ããã«åŸãã°ãããŒã¢ã®é忡件ã®ä»®å®ã¯ããé»åè»éã®é·ãã¯ãé»åã®ç©è³ªæ³¢ã®æ³¢é·ã®æ£æŽæ°åã§ããããšè¡šçŸã§ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 145,
"tag": "p",
"text": "é»åã¯ããããŸã£ããšã³ãšã³ã®ãšãã«ã®ãŒããæããªãããã®ãšã³ãšã³ã®ãšãã«ã®ãŒå€ããšãã«ã®ãŒé äœãšããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 146,
"tag": "p",
"text": "æ°ŽçŽ ååã«ãããŠãé»åè»éäžã«ããé»åã®ãšãã«ã®ãŒãæ±ããèšç®ããããããŸãããã®ããã«ã¯ãååã®ååŸãæ±ããå¿
èŠãããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 147,
"tag": "p",
"text": "æ°ŽçŽ ã®é»åãååæ ž H + {\\displaystyle H^{+}} ãäžå¿ãšããååŸrã®åè»éäžãäžå®ã®é床vã§éåããŠãããšããã°ãéåæ¹çšåŒã¯",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 148,
"tag": "p",
"text": "ã§è¡šãããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 149,
"tag": "p",
"text": "äžæ¹ãé»åãå®åžžæ³¢ã®æ¡ä»¶ãæºããå¿
èŠãããã®ã§ãåé
ã®åŒ(1)ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 150,
"tag": "p",
"text": "ã§ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 151,
"tag": "p",
"text": "ãã®vãããã»ã©ã®åéåã®åŒã«ä»£å
¥ããŠæŽé ããã°ã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 152,
"tag": "p",
"text": "(ãã ããn=1, 2 , 3 ,ã»ã»ã»)",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 153,
"tag": "p",
"text": "ã«ãªããããããŠãæ°ŽçŽ ååã®é»åã®è»éååŸãæ±ãŸãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 154,
"tag": "p",
"text": "ããã»ã©ã®è»éååŸã®åŒã§n=1ã®ãšãååŸr1ããããŒã¢ååŸããšããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 155,
"tag": "p",
"text": "",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 156,
"tag": "p",
"text": "ååã®äžçã§ããéåãšãã«ã®ãŒKãšäœçœ®ãšãã«ã®ãŒUã®åãããšãã«ã®ãŒã§ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 157,
"tag": "p",
"text": "äœçœ®ãšãã«ã®ãŒUã¯ããã®æ°ŽçŽ ã®é»åã®å Žåãªããé黿°ãšãã«ã®ãŒãæ±ããã°å
åã§ãããé»äœã®åŒã«ãã£ãŠæ±ããããŠã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 158,
"tag": "p",
"text": "ãšãªãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 159,
"tag": "p",
"text": "éåãšãã«ã®ãŒKã¯ã K = 1 2 m v 2 {\\displaystyle K={\\frac {1}{2}}mv^{2}} ãªã®ã§",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 160,
"tag": "p",
"text": "äžåŒã®å³èŸºç¬¬äžé
ã«ã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 161,
"tag": "p",
"text": "m v 2 = k 0 e 2 r {\\displaystyle mv^{2}=k_{0}{\\frac {e^{2}}{r}}} ã代å
¥ããã°ã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 162,
"tag": "p",
"text": "ãšãªãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 163,
"tag": "p",
"text": "ããã«ãããã«é»åã®è»éååŸ r = r n {\\displaystyle r=r_{n}} ã®åŒ(3)ã代å
¥ããã°ã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 164,
"tag": "p",
"text": "ãšãªãããããæ°ŽçŽ ååã®ãšãã«ã®ãŒæºäœã§ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 165,
"tag": "p",
"text": "ãšãã«ã®ãŒæºäœã®å
¬åŒãããèŠããšããŸãããšãã«ã®ãŒãããšã³ãšã³ã®å€ã«ãªãããšãåããããŸãããšãã«ã®ãŒãè² ã«ãªãäºããããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 166,
"tag": "p",
"text": "n=1ã®ãšããããã£ãšããšãã«ã®ãŒã®äœãç¶æ
ã§ããããã®ãããn=1ã®ãšããå®å®ãªç¶æ
ã§ããããã£ãŠãé»åã¯éåžžãn=1ã®ç¶æ
ã«ãªãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 167,
"tag": "p",
"text": "ãªãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 168,
"tag": "p",
"text": "æ°ŽçŽ ååã®çºããå
ã®ã¹ãã¯ãã«ã®å®æž¬å€ã衚ããªã¥ãŒãããªã®çµéšåŒã«ã€ããŠã¯ãæ¢ã«ãæ°ŽçŽ ååã®ã¹ãã¯ãã«ãã®é
ã§ã§èª¬æããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 169,
"tag": "p",
"text": "é»åããšãã«ã®ãŒé äœ E n {\\displaystyle E_{n}} ãããäœããšãã«ã®ãŒé äœ E m {\\displaystyle E_{m}} ã«é·ç§»ãããšãã«ãæ¯åæ° Îœ = E n â E m h {\\displaystyle \\nu ={\\frac {E_{n}-E_{m}}{h}}} ã®å
åãäžåæŸåºããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 170,
"tag": "p",
"text": "1 λ = E n â E m c h {\\displaystyle {\\frac {1}{\\lambda }}={\\frac {E_{n}-E_{m}}{ch}}} ã§äžããããã®ã§ãå³èŸºã®ãšãã«ã®ãŒé äœã«åŒ(4)ã代å
¥ãããš",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 171,
"tag": "p",
"text": "ãåŸãããã R â 2 Ï 2 k 0 2 m e 4 c h 3 {\\displaystyle {\\bf {R}}\\triangleq {\\frac {2\\pi ^{2}k_{0}{}^{2}me^{4}}{ch^{3}}}} ã§ããªã¥ãŒãããªå®æ°Rãå®çŸ©ãããšãåŒ(5)ã¯",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 172,
"tag": "p",
"text": "Rã®å®çŸ©åŒäžã®è«žå®æ°ã«å€ããããŠèšç®ãããš",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 173,
"tag": "p",
"text": "é©ãã¹ãããšã«ããªã¥ãŒãããªã®çµéšåŒããèŠäºã«å°åºã§ããã®ã§ããã ããã¯ãããŒã¢ã®ä»®èª¬ã®åŠ¥åœæ§ã瀺ããã®ãšèšãããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 174,
"tag": "p",
"text": "",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 175,
"tag": "p",
"text": "(â» æªèšè¿°)",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 176,
"tag": "p",
"text": "ååæ žã¯ãéœåãšäžæ§åããã§ããŠããã éœåã¯æ£é»è·ããã¡ãäžæ§åã¯é»è·ããããªãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 177,
"tag": "p",
"text": "ã§ã¯ããªããã©ã¹ã®é»è·ããã€éœåã©ãããããªãã¯ãŒãã³åã§åçºããŠããŸããªãã®ã ããã?",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 178,
"tag": "p",
"text": "ãã®çç±ãšããŠãã€ãŸãéœåã©ãããã¯ãŒãã³åã§åçºããªãããã®çç±ãšããŠã次ã®ãããªçç±ãèããããŠããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 179,
"tag": "p",
"text": "ãŸããéœåã«äžæ§åãè¿ã¥ããŠæ··åãããšããæ žåããšããéåžžã«åŒ·ãçµååãçºçãã ãã®æ žåãéœåå士ã®ã¯ãŒãã³åã«ããåŒ·ãæ¥åã«æã¡åã€ã®ã§ãéœåãšäžæ§åã¯çµåããŠãããšèããããŠããã(å¿
ããããéœåãšäžæ§åã®åæ°ã¯åäžã§ãªããŠããããå®éã«ãåšæè¡šã«ããããã€ãã®å
çŽ ã§ããéœåãšäžæ§åã®åæ°ã¯ç°ãªãã)",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 180,
"tag": "p",
"text": "æ¯å©çã«èšãæãã°ãäžæ§åã¯ãéœåãšéœåãçµã³ã€ãããããªã®ãããªåœ¹å²ãããŠãããšãèããããŠããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 181,
"tag": "p",
"text": "ãªããåç§°ãšããŠãéœåãšäžæ§åããŸãšããŠãæ žåããšåŒã°ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 182,
"tag": "p",
"text": "ããå
çŽ ã®ååæ žã®éœåã®æ°ã¯ãåšæè¡šã®ååçªå·ãšäžèŽããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 183,
"tag": "p",
"text": "ãŸããéœåãšäžæ§åã®æ°ã®åã¯è³ªéæ°ãšãã°ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 184,
"tag": "p",
"text": "è³ªéæ°Aã®ååæ žã¯éåžžã«åŒ·ãæ žåã®ããã«ãå°ããªçäœç¶ã®ç©ºéã®äžã«åºãŸã£ãŠããããã®ååŸrã¯ã 1.2 {\\displaystyle 1.2} ~ 1.4 à 10 â 15 à A 1 3 {\\displaystyle 1.4\\times 10^{-15}\\times A^{\\frac {1}{3}}} ã§ããããšãç¥ãããŠããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 185,
"tag": "p",
"text": "ä»»æã®ååæ žã¯ããããæ§æããæ žåã§ããéœåãšäžæ§åãèªç±ã§ãããšãã®è³ªé(åäœè³ªéãšãã)ã®åãããå°ãã質éããã€ããã®æžã£ã質éããè³ªéæ¬ æãšåŒã¶ã è³ªéæ°Aãååçªå·Zã®ååæ žã®è³ªéæ¬ æ Î m {\\displaystyle \\Delta m} ããåŒã§æžãã°, ååæ žã®è³ªéãmãéœåãšäžæ§åã®åäœè³ªéããããã m p , m n {\\displaystyle m_{p},\\ m_{n}} ãšãããšãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 186,
"tag": "p",
"text": "",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 187,
"tag": "p",
"text": "",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 188,
"tag": "p",
"text": "",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 189,
"tag": "p",
"text": "枬å®å®éšã®äºå®ãšããŠãéœååç¬ãäžæ§ååç¬ã®è³ªéã®åæ°ãåãããããããã®çµåããååæ žã®ã»ãã質éãäœãã®ã§ãéœåãäžæ§åãçµåãããšè³ªéã®äžéšãæ¬ æãããšããã®ããæž¬å®çµæã®äºå®ã§ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 190,
"tag": "p",
"text": "ãªã®ã§ãè³ªéæ¬ æã®ãšããããã®åå ãšããŠèããããŠããã®ã¯ãéœåãäžæ§åã©ããã®çµåã§ãããšèããããŠããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 191,
"tag": "p",
"text": "ã ããã§ã¯ããªãéœåãäžæ§åãååæ žãšããŠçµåãããšè³ªéãæ¬ æãããã®çç±ãšããŠã¯ããã£ããŠãçµåã ããããšããçç±ã§ã¯èª¬æãã€ããªãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 192,
"tag": "p",
"text": "ãªã®ã§ãç©çåŠè
ãã¡ã¯ãè³ªéæ¬ æã®èµ·ããæ ¹æ¬çãªåå ãšãªãç©çæ³åããŠãã¢ã€ã³ã·ã¥ã¿ã€ã³ã®çžå¯Ÿæ§çè«ãé©çšããŠããã(æ€å®æç§æžã§ããçžå¯Ÿæ§çè«ã®çµæã§ãããšããŠèª¬æããç«å Ž)",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 193,
"tag": "p",
"text": "(ã¢ã€ã³ã·ã¥ã¿ã€ã³ã®ç¹æ®)çžå¯Ÿæ§çè«ããå°ãããçµæãšããŠ(â» åè: çžå¯Ÿè«ã«ã¯äžè¬çžå¯Ÿè«ãšç¹æ®çžå¯Ÿè«ã®2çš®é¡ããã)ã質émãšãšãã«ã®ãŒEã«ã¯ã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 194,
"tag": "p",
"text": "ãšããé¢ä¿åŒããããšãããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 195,
"tag": "p",
"text": "ãªããC ãšã¯å
éã®å€ã§ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 196,
"tag": "p",
"text": "ãããã¯å¥ã®æžåŒãšããŠãå€åã衚ããã«ã¿èšå·Îã䜿ãŠã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 197,
"tag": "p",
"text": "ãªã©ãšæžãå Žåãããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 198,
"tag": "p",
"text": "ã€ãŸããããäœããã®çç±ã§ãç空ãã質éãçºçãŸãã¯æ¶å€±ããã°ããã®ã¶ãã®è«å€§ãªãšãã«ã®ãŒãçºçãããšããã®ããçžå¯Ÿæ§çè«ã§ã®ã¢ã€ã³ã·ã¥ã¿ã€ã³ãªã©ã®äž»åŒµã§ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 199,
"tag": "p",
"text": "ããŠãèªç±ãªéœåãšäžæ§åã¯ãæ žåã«ããçµåãããšãããã®çµåãšãã«ã®ãŒã«çžåœããw:ã¬ã³ãç·ãæŸå°ããããšãç¥ãããŠããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 200,
"tag": "p",
"text": "ãããŠãã¬ã³ãç·ã«ããšãã«ã®ãŒãããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 201,
"tag": "p",
"text": "ãªã®ã§ãéœåãšäžæ§åã®çµåãããšãã®ã¬ã³ãç·ã®ãšãã«ã®ãŒã¯ãè³ªéæ¬ æã«ãã£ãŠçãããšèãããšã枬å®çµæãšããžãããåãã(枬å®çµæã¯ããããŸã§è³ªéãæ¬ æããããšãŸã§ã)",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 202,
"tag": "p",
"text": "æ žåã®çµåã«ãããŠãè³ªéæ¬ æ Î m {\\displaystyle \\Delta m} ããã¬ã³ãç·ãªã©ã®ãšãã«ã®ãŒã«è»¢åããããšç©çåŠè
ãã¡ã¯èããŠããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 203,
"tag": "p",
"text": "å
çŽ ã®äžã«ã¯ãæŸå°ç·(radiation)ãåºãæ§è³ªããã€ãã®ãããããã®æ§è³ªãæŸå°èœ(radioactivity)ãšããã ãŸããæŸå°èœããã€ç©è³ªã¯æŸå°æ§ç©è³ªãšããããã æŸå°ç·ã«ã¯3çš®é¡ååšããããããαç·ãβç·ãγç·ãšããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 204,
"tag": "p",
"text": "α厩å£ã¯ã芪ååæ žããããªãŠã ååæ žãæŸå°ãããçŸè±¡ã§ããã ãã®ããªãŠã ååæ žã¯Î±ç²åãšãã°ããã α厩å£åŸã芪ååæ žã®è³ªéæ°ã¯4å°ãããªããååçªå·ã¯2å°ãããªãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 205,
"tag": "p",
"text": "β厩å£ã¯ã芪ååæ žã®äžæ§åãéœåãšé»åã«å€åããããšã§ãé»åãæŸå°ãããçŸè±¡ã§ããã (åè: ãã®ãšããåãã¥ãŒããªããšãã°ãã埮å°ãªç²åãåæã«æŸåºããããšãè¿å¹Žã®åŠèª¬ã§ã¯èããããŠããã)",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 206,
"tag": "p",
"text": "ãªãããã®é»å(ããŒã¿åŽ©å£ãšããŠæŸåºãããé»åã®ããš)ã¯ãβç²åããšããã°ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 207,
"tag": "p",
"text": "β厩å£åŸã芪ååæ žã®è³ªéæ°ã¯å€åããªãããååçªå·ã¯1å¢å ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 208,
"tag": "p",
"text": "γç·ã¯ãα厩å£ãŸãã¯Î²åŽ©å£çŽåŸã®é«ãšãã«ã®ãŒã®ååæ žããäœãšãã«ã®ãŒã®å®å®ãªç¶æ
ã«é·ç§»ãããšãã«æŸå°ãããã γç·ã®æ£äœã¯å
åã§ãXç·ããæ³¢é·ã®çãé»ç£æ³¢ã§ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 209,
"tag": "p",
"text": "α厩å£ãβ厩å£ã«ãã£ãŠããšã®ååæ žã®æ°ã¯åŸã
ã«æžã£ãŠãããããããã®åŽ©å£ã¯ååæ žã®çš®é¡ããšã«æ±ºãŸã£ãäžå®ã®ç¢ºçã§èµ·ããã®ã§ã厩å£ã«ãã£ãŠããšã®ååæ žã®æ°ãæžãé床ã¯ååæ žã®åæ°ã«æ¯äŸããŠå€åããããããã厩å£ã«ãã£ãŠããšã®ååæ žã®æ°ãåæžããã®ã«ãããæéã¯ãååæ žã®çš®é¡ã ãã«ãã£ãŠããŸããããã§ããã®æéã®ããšããã®ååæ žã® åæžæ(ã¯ãããããhalf life ) ãšåŒã¶ã厩å£ã«ãã£ãŠååæ žã®åæ°ãã©ãã ãã«ãªããã¯ããã®åæžæãçšããŠèšè¿°ããããšãã§ãããååæ žã®åæžæãTãæå»tã§ã®ååæ žã®åæ°ãN(t)ãšãããšã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 210,
"tag": "p",
"text": "ãæãç«ã€ã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 211,
"tag": "p",
"text": "ååæ žã®åŽ©å£é床ã¯ãååæ žã®åæ°ã«æ¯äŸãããšè¿°ã¹ããå®ã¯ãäžã«è¿°ã¹ãå
¬åŒã¯ãã®æ
å ±ã ãããçŽç²ã«æ°åŠçã«å°ãåºãããšãã§ãããã®ã§ãããé«çåŠæ ¡ã§ã¯æ±ããªãæ°åŠãçšããããèå³ã®ããèªè
ã®ããã«ãã®æŠèŠãèšããŠããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 212,
"tag": "p",
"text": "ååæ žã®åæ°ãšåŽ©å£é床ã®éã®æ¯äŸå®æ°ã¯ååæ žã®çš®é¡ã«ãã£ãŠæ±ºãŸãããã®å®æ°ããã®ååæ žã®åŽ©å£å®æ°ãšããã厩å£å®æ°ãλã®ååæ žã®æå»tã§ã®åæ°ãN(t)ãšãããšããã®å€åé床ãããªãã¡N(t)ã®åŸ®åã¯ã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 213,
"tag": "p",
"text": "ã§è¡šãããããã®ãããªããã颿°ãšãã®åŸ®åãšã®é¢ä¿ã衚ããåŒãåŸ®åæ¹çšåŒãšãããåŸ®åæ¹çšåŒãæºãããããªé¢æ°ãæ±ããããšããåŸ®åæ¹çšåŒãè§£ããšããã(詳ããè§£æ³ã¯è§£æåŠåºç€/åžžåŸ®åæ¹çšåŒã§èª¬æãããã)ãã®åŸ®åæ¹çšåŒãè§£ããš",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 214,
"tag": "p",
"text": "ãåŸãããã(ãã®åŒã確ãã«å
ã»ã©ã®åŸ®åæ¹çšåŒãæºãããŠããããšã確ãããŠã¿ã)",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 215,
"tag": "p",
"text": "åæžæTãšã¯ã N ( t ) = 1 2 N ( 0 ) {\\displaystyle N(t)={\\frac {1}{2}}N(0)} ãšãªãtã®ããšãªã®ã§ãå
ã»ã©ã®åŒãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 216,
"tag": "p",
"text": "ãåŸãããããã£ãŠã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 217,
"tag": "p",
"text": "ãåŸãããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 218,
"tag": "p",
"text": "ã©ã¶ãã©ãŒãã¯ãçªçŽ ã¬ã¹ãå¯éããç®±ã«Î±ç·æºããããšãæ£é»è·ããã£ãç²åãçºçããããšãçºèŠããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 219,
"tag": "p",
"text": "ãã®æ£é»è·ã®ç²åããéœåã§ãããã€ãŸããã©ã¶ãã©ãŒãã¯éœåãçºèŠããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 220,
"tag": "p",
"text": "åæã«ãé
žçŽ ãçºçããããšãçºèŠãããã®çç±ã¯çªçŽ ãé
žçŽ ã«å€æãããããã§ãããã€ãŸããååæ žãå€ããåå¿ãçºèŠããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 221,
"tag": "p",
"text": "ãããã®ããšãåŒã«ãŸãšãããšã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 222,
"tag": "p",
"text": "ã§ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 223,
"tag": "p",
"text": "ãã®ããã«ãããå
çŽ ã®ååããå¥ã®å
çŽ ã®ååã«å€ããåå¿ã®ããšã ååæ žåå¿ ãšããããŸãã¯ããæ žåå¿ããšããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 224,
"tag": "p",
"text": "",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 225,
"tag": "p",
"text": "",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 226,
"tag": "p",
"text": "ãŸããå®å®ç·ã®èŠ³æž¬ã«ãããÎŒç²åãšããã®ããçºèŠãããŠããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 227,
"tag": "p",
"text": "ãããããã©ããã£ãŠçŽ ç²åã芳枬ããããšãããšãããã€ãã®æ¹æ³ããããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 228,
"tag": "p",
"text": "ãªã©ã䜿ãããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 229,
"tag": "p",
"text": "(â» é«æ ¡ã§ç¿ãç¯å²å
ãXç·ãååæ žã®åå
ã§ãé§ç®±(ããã°ã)ãç¿ãã)",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 230,
"tag": "p",
"text": "é§ç®±(ããã°ã)ãšãããèžæ°ã®ã€ãŸã£ãè£
眮ãã€ãããšããªããã®ç²åãééãããšããã®ç²åã®è»è·¡ã§ãæ°äœããæ¶²äœããåçãèµ·ããã®ã§ãè»è·¡ããç®ã«èŠããã®ã§ããã(â» æ€å®æç§æžã§ã¯ãååæ žã®åéã§ãé§ç®±ã«ã€ããŠç¿ãã)(ã€ã¡ãŒãžçã«ã¯ãé£è¡æ©é²ã®ãããªã®ããã€ã¡ãŒãžããŠãã ããã)",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 231,
"tag": "p",
"text": "ã§ãç£å Žãå ããå Žåã®ãè»è·¡ã®æ²ããããçãªã©ãããæ¯é»è·ãŸã§ãäºæ³ã§ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 232,
"tag": "p",
"text": "ãã®ããã«ãé§ç®±ãã€ãã£ãå®éšã«ããã20äžçŽååãäžç€ããã«ã¯ããããããªç²åãçºèŠãããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 233,
"tag": "p",
"text": "ÎŒç²å以å€ã«ããéœé»å(ããã§ãã)ããé§ç®±ã«ãã£ãŠçºèŠãããŠããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 234,
"tag": "p",
"text": "(â» ç¯å²å€:)äžçåã§éœé»åãå®éšçã«èŠ³æž¬ããã¢ã³ããŒãœã³ã¯ãé§ç®±ã«éæ¿ãå
¥ããããšã§éœé»åãçºèŠããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 235,
"tag": "p",
"text": "ãšãããã(ÎŒç²åã®çºèŠããã)éœé»åã®ã»ããçºèŠã¯æ©ãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 236,
"tag": "p",
"text": "(â» ç¯å²å€:)ãŸããéœé»åã¯ãéåååŠã®ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã«ãç¹æ®çžå¯Ÿæ§çè«ãšãçµã¿åããããããã£ã©ãã¯ã®æ¹çšåŒããããçè«çã«äºæ³ãããŠããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 237,
"tag": "p",
"text": "ãŸãããéœé»åããšããç©è³ªã1932幎ã«éæ¿ãå
¥ããé§ç®±(ããã°ã)ã®å®éšã§ã¢ã³ããŒãœã³(人å)ã«ãã£ãŠçºèŠãããŠãããéœé»åã¯è³ªéãé»åãšåãã ããé»è·ãé»åã®å察ã§ãã(ã€ãŸãéœé»åã®é»è·ã¯ãã©ã¹eã¯ãŒãã³ã§ãã)ã(â» éæ¿ã«ã€ããŠã¯é«æ ¡ã®ç¯å²å€ã)",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 238,
"tag": "p",
"text": "ãããŠãé»åãšéœé»åãè¡çªãããšã2mcã®ãšãã«ã®ãŒãæŸåºããŠãæ¶æ»
ããã(ãã®çŸè±¡(é»åãšéœé»åãè¡çªãããš2mcã®ãšãã«ã®ãŒãæŸåºããŠæ¶æ»
ããçŸè±¡)ã®ããšãããå¯Ÿæ¶æ»
ã(ã€ãããããã€)ãšããã)",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 239,
"tag": "p",
"text": "éœåã«å¯ŸããŠãããåéœåãããããåéœåã¯ãé»è·ãéœåãšå察ã ãã質éãéœåãšåãã§ãããéœåãšè¡çªãããšå¯Ÿæ¶æ»
ãããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 240,
"tag": "p",
"text": "äžæ§åã«å¯ŸããŠãããåäžæ§åãããããåäžæ§åã¯ãé»è·ã¯ãŒãã ã(ãŒãã®é»è·ã®Â±ãå察ã«ããŠããŒãã®ãŸãŸ)ã質éãåãã§ãäžæ§åãšå¯Ÿæ¶æ»
ãããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 241,
"tag": "p",
"text": "éœé»åãåéœåãåäžæ§åã®ãããªç©è³ªããŸãšããŠãåç©è³ªãšããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 242,
"tag": "p",
"text": "(â» ç¯å²å€: )æŸå°æ§åäœäœã®ãªãã«ã¯ã厩å£ã®ãšãã«éœé»åãæŸåºãããã®ããããæå
端ã®ç
é¢ã§äœ¿ãããPET(éœé»åæå±€æ®åæ³)æè¡ã¯ããããå¿çšãããã®ã§ãããããçŽ ããµãããã«ãªãããªãã·ã°ã«ã³ãŒã¹ãšããç©è³ªã¯ã¬ã³çްèã«ããåã蟌ãŸãããPET蚺æã§ã¯ãããã«(ãã«ãªãããªãã·ã°ã«ã³ãŒã¹ã«)æŸå°æ§ã®ããçŽ F ããšãããã æŸå°æ§ãã«ãªãããªãã·ã°ã«ã³ãŒã¹ãçšããŠããã(â» åæé€šã®ãååŠåºç€ãã®æç§æžã«ãçºå±äºé
ãšããŠãã«ãªãããªãã·ã°ã«ã³ãŒã¹ãPET蚺æã§äœ¿ãããŠãããšã玹ä»ãããŠããã)",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 243,
"tag": "p",
"text": "åç©è³ªãšã¯å¥ã«ãÎŒç²åããå®å®ç·ã®èŠ³æž¬ããã1937幎ã«èŠã€ãã£ãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 244,
"tag": "p",
"text": "ãã®ÎŒç²åã¯ãé»è·ã¯ãé»åãšåãã ãã質éãé»åãšã¯éããÎŒç²åã®è³ªéã¯ããªããšé»åã®çŽ200åã®è³ªéã§ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 245,
"tag": "p",
"text": "ÎŒç²åã¯ãã¹ã€ã«éœåãé»åã®åç©è³ªã§ã¯ãªãã®ã§ãã¹ã€ã«éœåãšãå¯Ÿæ¶æ»
ãèµ·ãããªãããé»åãšãå¯Ÿæ¶æ»
ãèµ·ãããªãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 246,
"tag": "p",
"text": "ãªããÎŒç²åã«ããåÎŒç²åãšãããåç©è³ªãååšããããšãåãã£ãŠããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 247,
"tag": "p",
"text": "ãã®ãããªç©è³ªããããããã®äœãã§ããå°äžã§èŠã€ãããªãã®ã¯ãåã«å°äžã®å€§æ°ãªã©ãšè¡çªããŠæ¶æ»
ããŠããŸãããã§ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 248,
"tag": "p",
"text": "ãªã®ã§ãé«å±±ã®é äžä»è¿ãªã©ã§èŠ³æž¬å®éšããããšãÎŒç²åã®çºèŠã®å¯èœæ§ãé«ãŸãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 249,
"tag": "p",
"text": "ãªã21äžçŽã®çŸåšãÎŒç²åãæŽ»çšããæè¡ãšããŠãçŸåšãç«å±±ãªã©ã®å
éšã芳å¯ããã®ã«ã掻çšãããŠãããÎŒç²åã¯ãééåãé«ãããå°äžã®ç©è³ªãšåå¿ããŠããããã«æ¶æ»
ããŠããŸãã®ã§ããã®ãããªæ§è³ªãå©çšããŠãç«å±±å
éšã®ããã«äººéãå
¥ã蟌ããªãå Žæã芳å¯ãããšããæè¡ãããã§ã«ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 250,
"tag": "p",
"text": "",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 251,
"tag": "p",
"text": "ãã®ãããªèŠ³æž¬ã«äœ¿ãããÎŒç²åãã©ããã£ãŠçºçãããã®ã?",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 252,
"tag": "p",
"text": "å®å®ç·ããé£ãã§ããÎŒç²åããã®ãŸãŸäœ¿ããšããæ¹æ³ããããããå®è¡ããŠããç ç©¶è
ããããããããšã¯å¥ã®ææ³ãšããŠãå éåšãªã©ã§äººå·¥çã«ÎŒç²åãªã©ãçºçããããšããæ¹æ³ãããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 253,
"tag": "p",
"text": "å éåšã䜿ã£ãæ¹æ³ã¯ãäžèšã®éãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 254,
"tag": "p",
"text": "ãŸããã·ã¯ãããã³ããµã€ã¯ãããã³ã䜿ã£ãŠãé»åãªã©ãè¶
é«éã«å éããããããäžè¬ã®ç©è³ª(ã°ã©ãã¡ã€ããªã©)ã«åœãŠãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 255,
"tag": "p",
"text": "ãããšãåœç¶ãããããªç²åãçºçããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 256,
"tag": "p",
"text": "ãã®ãã¡ãÏäžéåããç£æ°ã«åå¿ãã(ãšèããããŠãã)ã®ã§ã倧ããªé»ç£ç³ã³ã€ã«ã§ãÏäžéåãæç²ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 257,
"tag": "p",
"text": "ãã®Ïäžéåã厩å£ããŠãÎŒç²åãçºçããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 258,
"tag": "p",
"text": "ããããå®å®ç·ãäœã«ãã£ãŠçºçããŠãããã®çºçåå ã¯ãçŸæç¹ã®äººé¡ã«ã¯äžæã§ããã(â» åèæç®: æ°ç åºçã®è³æéã®ãå³èª¬ç©çã)",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 259,
"tag": "p",
"text": "è¶
æ°æ(ã¡ãããããã)ççºã«ãã£ãŠå®å®ç·ãçºçããã®ã§ã¯ããšãã説ããããããšã«ããå®å®ç·ã®çºçåå ã«ã€ããŠã¯æªè§£æã§ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 260,
"tag": "p",
"text": "é»åãéœåãäžæ§åãªã©ã¯ããã¹ãã³ããšããç£ç³ã®ãããªæ§è³ªããã£ãŠãããç£ç³ã«N極ãšS極ãããããã«ãã¹ãã³ã«ãã2çš®é¡ã®åãããããã¹ãã³ã®ãã®2çš®é¡ã®åãã¯ããäžåãããšãäžåããã«ãããäŸãããããç£ç³ã®ç£åã®çºçåå ã¯ãç£ç³äžã®ååã®æå€æ®»é»åã®ã¹ãã³ã®åããåäžæ¹åã«ããã£ãŠãããããã§ãããšèããããŠããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 261,
"tag": "p",
"text": "å
šååã¯ãé»åãéœåãäžæ§åãå«ãã®ã«ããªã®ã«å€ãã®ç©è³ªããããŸãç£æ§ãçºçããªãã®ã¯ãå察笊å·ã®ã¹ãã³ããã€é»åãçµåãããããšã§ãæã¡æ¶ãããããã§ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 262,
"tag": "p",
"text": "(ãŠã£ãããé»åãšéœåã®ãããªé»è·ããã€ç²åã«ããã¹ãã³ããªããšèª€è§£ããŠãã人ãããããäžæ§åã«ãã¹ãã³ã¯ããã)",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 263,
"tag": "p",
"text": "äžåŠé«æ ¡ã§èŠ³æž¬ãããããªæ®éã®æ¹æ³ã§ã¯ãã¹ãã³ã芳枬ã§ããªãããååãªã©ã®ç©è³ªã«ç£æ°ãå ãã€ã€é«åšæ³¢ãå ãããªã©ãããšãã¹ãã³ã®åœ±é¿ã«ãã£ãŠããã®ååã®æ¯åããããåšæ³¢æ°ãéããªã©ã®çŸè±¡ããã¡ããŠã鿥çã«(é»åãªã©ã®)ã¹ãã³ã芳枬ã§ããã(ãªããæ žç£æ°å
±é³Žæ³(NMRãnuclear magnetic resonance)ã®åçã§ããã â» çè«çãªè§£æã¯ã倧åŠã¬ãã«ã®ååŠã®ç¥èãå¿
èŠã«ãªãã®ã§çç¥ããã) ååäžã®æ°ŽçŽ ååããããçš®ã®æŸå°æ§åäœäœ(äžæ§åããã£ã1åãµããã ãã®åäœäœ)ãªã©ãé«åšæ³¢ã®åœ±é¿ãåããããããã®çç±ã®ã²ãšã€ããã¹ãã³ã«ãããã®ã ãšèããããŠãã(â» ãªããå»çã§çšããããMRI(magnetic resonance imaging)ã¯ããã®æ žç£æ°å
±é³Žæ³(NMR)ãå©çšããŠäººäœå
éšãªã©ã芳枬ããããšããæ©åšã§ããã)",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 264,
"tag": "p",
"text": "ããŠãå®ã¯çŽ ç²åããã¹ãã³ããã€ã®ãæ®éã§ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 265,
"tag": "p",
"text": "ÎŒç²åã¯ã¹ãã³ããã€ã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 266,
"tag": "p",
"text": "ÎŒç²åã®ãã¹ãã³ããšããæ§è³ªã«ããç£æ°ãšãÎŒç²åã®ééæ§ã®é«ããå©çšããŠãç©è³ªå
éšã®ç£å Žã®èŠ³æž¬æ¹æ³ãšããŠæ¢ã«ç ç©¶ãããŠããããã®ãããªèŠ³æž¬æè¡ããÎŒãªã³ã¹ãã³å転ããšãããè¶
äŒå°äœã®å
éšã®èŠ³æž¬ãªã©ã«ãããã§ã«ãÎŒãªã³ã¹ãã³å転ãã«ãã芳枬ãç ç©¶ãããŠããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 267,
"tag": "p",
"text": "ãŠã£ãããã£ã¢èšäºãw:ãã¥ãªã³ã¹ãã³å転ãã«ãããšãÎŒãªã³ã®åީ壿ã«éœé»åãæŸåºããã®ã§ãéœé»åã®èŠ³æž¬æè¡ãå¿
èŠã§ããã(髿 ¡ã®ç¯å²å€ã§ãããã)ããããã®åŠçã¯ããããããšå匷ããäºãå€ãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 268,
"tag": "p",
"text": "éœåãšäžæ§åã¯ã質éã¯ã»ãšãã©åãã§ãããé»è·ãéãã ãã§ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 269,
"tag": "p",
"text": "ãããŠãé»åãšæ¯ã¹ããšãéœåãäžæ§åãã質éãããªã倧ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 270,
"tag": "p",
"text": "ãã®äºããããéœåãäžæ§åã«ããããã«äžèº«ããããå¥ã®ç²åãè©°ãŸã£ãŠããã®ã§ã¯?ããšããçåãçãŸããŠããŠãéœåãäžæ§åã®å
éšã®æ¢çŽ¢ãå§ãŸã£ãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 271,
"tag": "p",
"text": "ããããçŸåšã§ããéœåãäžæ§åã®å
éšã®æ§é ã¯ãå®éšçã«ã¯åãåºããŠã¯ããªãã(â» éœåãäžæ§åã®å
éšæ§é ãšããŠèª¬æãããŠãããã¯ã©ãŒã¯ãã¯ãåç¬ã§ã¯çºèŠãããŠããªããã¯ã©ãŒã¯ã¯åã«ãå
éšã®èª¬æã®ããã®ãæŠå¿µã§ããã)",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 272,
"tag": "p",
"text": "æŽå²çã«ã¯ããŸããéœåãšäžæ§åã®å
éšæ§é ãšããŠãæ¶ç©ºã®çŽ ç²åãèããããéœåãšäžæ§åã¯ããããã®çŽ ç²åã®ç¶æ
ãéãã ãããšèããããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 273,
"tag": "p",
"text": "ãã£ãœããé»åã«ã¯ãå
éšæ§é ããªãããšèãããŠããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 274,
"tag": "p",
"text": "ããã20äžçŽãªãã°ãéåååŠã§ã¯ããã®ããããã§ã«ãé»åã®ç¶æ
ãšããŠãã¹ãã³ããšããæŠå¿µããã¿ã€ãã£ãŠãããéåååŠã§ã¯ãååŠçµåã§äŸ¡é»åã2åãŸã§çµåããŠé»å察ã«ãªãçç±ã¯ããã®ã¹ãã³ã2çš®é¡ãããªããŠãå察åãã®ã¹ãã³ã®é»å2åã ããçµåããããã§ããããšãããŠããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 275,
"tag": "p",
"text": "ã¹ãã³ã®2çš®é¡ã®ç¶æ
ã¯ããäžåãããäžåãããšãããµãã«ãããäŸããããã(å®éã®æ¹åã§ã¯ãªãã®ã§ãããŸãæ·±å
¥ãããªãããã«ã)",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 276,
"tag": "p",
"text": "ãã®ãããªéåååŠãåèã«ããŠãéœåãšäžæ§åã§ããã¢ã€ãœã¹ãã³ããšããæŠå¿µãèããããã(â» ãã¢ã€ãœã¹ãã³ãã¯é«æ ¡ç¯å²å€ã)",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 277,
"tag": "p",
"text": "éœåãšäžæ§åã¯ãã¢ã€ãœã¹ãã³ã®ç¶æ
ãéãã ãããšèããããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 278,
"tag": "p",
"text": "ãã®åŸã20äžçŽåã°é ããããã¢ã€ãœã¹ãã³ããçºå±ããããã¯ã©ãŒã¯ããšããçè«ãæå±ãããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 279,
"tag": "p",
"text": "æ¶ç©ºã®ãã¯ã©ãŒã¯ããšãã3åã®çŽ ç²åãä»®å®ãããšãå®åšã®éœåãäžæ§åã®æãç«ã€ã¢ãã«ããå®éšçµæãããŸã説æã§ããäºãåãã£ãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 280,
"tag": "p",
"text": "é»è·( + 2 3 e {\\displaystyle +{\\frac {2}{3}}e} )ããã€çŽ ç²åãã¢ããã¯ã©ãŒã¯ããšã±( â 1 3 e {\\displaystyle -{\\frac {1}{3}}e} )ããã€çŽ ç²åãããŠã³ã¯ã©ãŒã¯ãããã£ãŠã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 281,
"tag": "p",
"text": "ãšèãããšããããããªçŽ ç²åå®éšã®çµæãããŸã説æã§ããäºãåãã£ãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 282,
"tag": "p",
"text": "ãªããé»åã«ã¯ããã®ãããªå
éšæ§é ã¯ãªãããšèãããããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 283,
"tag": "p",
"text": "ã¢ããã¯ã©ãŒã¯ã¯ãuããšç¥èšãããããŠã³ã¯ã©ãŒã¯ã¯ãdããšç¥èšãããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 284,
"tag": "p",
"text": "éœåã®ã¯ã©ãŒã¯æ§é ã¯uudãšç¥èšããã(ã¢ãããã¢ãããããŠã³)ã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 285,
"tag": "p",
"text": "äžæ§åã®ã¯ã©ãŒã¯æ§é ã¯uddãšç¥èšããã(ã¢ãããããŠã³ãããŠã³)ã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 286,
"tag": "p",
"text": "ãªããäžèšã®èª¬æã§ã¯çç¥ãããããããã1950ã60幎代ãããŸã§ã«ãé«å±±ã§ã®å®å®ç·ã®èŠ³æž¬ãããããã¯æŸå°ç·ã®èŠ³æž¬ãããŸããããã¯ãµã€ã¯ãããã³ãªã©ã«ããç²åã®å éåšè¡çªå®éšã«ãããéœåãäžæ§åã®ã»ãã«ããåçšåºŠã®è³ªéã®ããŸããŸãªç²åãçºèŠãããŠããããããæ°çš®ã®ç²åã¯ãäžéåãã«åé¡ãããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 287,
"tag": "p",
"text": "ããããããã¯ã©ãŒã¯ãã®çè«ã¯ããã®ãããª20äžçŽåã°ãããŸã§ã®å®éšã芳枬ããäœçŸåãã®æ°çš®ã®ç²åãçºèŠãããŠããŸãããã®ãããªçµç·¯ããã£ãã®ã§ãã¯ã©ãŒã¯ã®çè«ãæå±ãããã®ã§ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 288,
"tag": "p",
"text": "ããŠããäžéåã(ã¡ã
ãããããmason ã¡ãœã³)ãšã¯ãããšããšçè«ç©çåŠè
ã®æ¹¯å·ç§æš¹ã1930å¹Žä»£ã«æå±ãããéœåãšäžæ§åãšãåŒãä»ããŠãããšãããæ¶ç©ºã®ç²åã§ãã£ããã20äžçŽãªãã°ã«æ°çš®ã®ç²åãçºèŠãããéããäžéåãã®ååã䜿ãããããšã«ãªã£ãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 289,
"tag": "p",
"text": "ããŠãå®éšçã«æ¯èŒçæ©ãææããçºèŠããããäžéåãã§ã¯ããÏäžéåãããããããçš®é¡ã®Ïäžéåã¯ãã¢ããã¯ã©ãŒã¯ãšåããŠã³ã¯ã©ãŒã¯ãããªããÏãšç¥èšãããã(ããŠã³ã¯ã©ãŒã¯ã®åç©è³ªããåããŠã³ã¯ã©ãŒã¯ã) Ï= u d Ì {\\displaystyle u{\\overline {d}}}",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 290,
"tag": "p",
"text": "å¥ã®ããçš®é¡ã®Ïäžéåã¯ãããŠã³ã¯ã©ãŒã¯ãšåã¢ããã¯ã©ãŒã¯ãããªããÏãšç¥èšããããÏ= u Ì d {\\displaystyle {\\overline {u}}d}",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 291,
"tag": "p",
"text": "ãã®ããã«ãããç²åå
ã®ã¯ã©ãŒã¯ã¯åèš2åã®ã§ãã£ãŠãè¯ãå Žåãããã(ããªãããããéœåã®ããã«ã¯ã©ãŒã¯3åã§ãªããŠãããŸããªãå Žåãããã)",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 292,
"tag": "p",
"text": "(â» ãã®ãããªå®éšäŸãããç²åå
ã«åèš5åã®ã¯ã©ãŒã¯ã7åã®ã¯ã©ãŒã¯ãèããçè«ãããããããã髿 ¡ç©çã®ç¯å²ã倧å¹
ã«è¶
ããã®ã§ã説æãçç¥ã)",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 293,
"tag": "p",
"text": "ãŸããäžéåã¯ãèªç¶çã§ã¯çæéã®ããã ã ããååšã§ããç²åã ãšããäºãã芳枬å®éšã«ãã£ãŠãåãã£ãŠããã(äžéåã®ååšã§ããæé(ã寿åœã)ã¯çããããã«ãä»ã®å®å®ãªç²åã«å€æããŠããŸãã)",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 294,
"tag": "p",
"text": "ããããã¢ãããšããŠã³ã ãã§ã¯ã説æããããªãç²åããã©ãã©ããšçºèŠãããŠãããã¯ã©ãŒã¯ã®æå±æã®åœåã¯ãããããã ãã¯ã©ãŒã¯ã®ã¢ãããšããŠã³ã§ããã£ãšãã»ãšãã©ã®äžéåã®æ§é ã説æã§ããã ããã ãšæåŸ
ãããŠããã®ã ããããããããå®å®ç·ãã1940幎代ã«çºèŠããããKäžéåãã®æ§é ã§ãããã¢ãããšããŠã³ã§ã¯èª¬æã§ããªãã£ãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 295,
"tag": "p",
"text": "ãã®ã»ããå éåšã®çºéãªã©ã«ãããã¢ãããšããŠã³ã®çµã¿åããã ãã§èª¬æã§ããæ°ãè¶
ããŠãã©ãã©ããšæ°çš®ã®ãäžéåããçºèŠãããŠããŸãããã¯ãã¢ãããšããŠã³ã ãã§ã¯ãäžéåã®æ§é ã説æãã¥ãããªã£ãŠããäžãÎŒç²åãã説æã§ããªãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 296,
"tag": "p",
"text": "ãŸããå éåšå®éšã«ããã1970幎代ã«ãDäžéåããªã©ãããŸããŸãªäžéåããå®éšçã«å®åšã確èªãããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 297,
"tag": "p",
"text": "ãã®ããã«ãã¢ãããšããŠã³ã ãã§ã¯èª¬æã®ã§ããªãããããããªç²åãååšããããšãåããããã®ãããçŽ ç²åçè«ã§ã¯ããã¢ããã(u)ãšãããŠã³ã(d)ãšãã2çš®é¡ã®ç¶æ
ã®ä»ã«ããããã«ç¶æ
ãèããå¿
èŠã«ãããŸãããããããŠãæ°ããç¶æ
ãšããŠããŸãããã£ãŒã ã(èšå·c)ãšãã¹ãã¬ã³ãžã(èšå·s)ãèãããããå éåšå®éšã®æè¡ãçºå±ããå éåšå®éšã®è¡çªã®ãšãã«ã®ãŒãäžãã£ãŠãããšãããã«ããããã(èšå·t)ãšãããã ã(èšå·b)ãšããã®ãèããããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 298,
"tag": "p",
"text": "ãªããÎŒç²åã«ã¯å
éšæ§é ã¯ãªãããéœåãäžæ§åã«é»åã察å¿ãããã®ãšåæ§ã«(第1äžä»£)ããã£ãŒã ãã¹ãã¬ã³ãžãããªãéœåçã»äžæ§åçãªç²åãšÎŒç²åã察å¿ããã(第2äžä»£)ãåæ§ã«ãããããããã ãããªãç²åã«ÎŒç²åã察å¿ããã(第3äžä»£)ã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 299,
"tag": "p",
"text": "é»åãÎŒç²åã¯å
éšæ§é ããããªããšèããããŠããããã¬ããã³ããšãããå
éšæ§é ããããªããšãããã°ã«ãŒãã«åé¡ãããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 300,
"tag": "p",
"text": "ãKäžéåãã¯ã第1äžä»£ã®ã¯ã©ãŒã¯ãšç¬¬2äžä»£ã®ã¯ã©ãŒã¯ããæãç«ã£ãŠããäºããåãã£ãŠããã(â» æ€å®æç§æžã®ç¯å²å
ã)",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 301,
"tag": "p",
"text": "ãããŠã2017幎ã®çŸåšãŸã§ãã£ãšãã¯ã©ãŒã¯ã®çè«ããçŽ ç²åã®æ£ããçè«ãšãããŠããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 302,
"tag": "p",
"text": "çŽ ç²åã®èгç¹ããåé¡ããå Žåã®ãéœåãšäžæ§åã®ããã«ãã¯ã©ãŒã¯3åãããªãç²åã®ããšãããŸãšããŠãããªãªã³ã(éç²å)ãšãããÏäžéå(Ï= u d Ì {\\displaystyle u{\\overline {d}}} )ãªã©ãã¯ã©ãŒã¯ã2åã®ç²åã¯ãããªãªã³ã«å«ãŸãªãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 303,
"tag": "p",
"text": "ããããäžéåã®ãªãã«ããã©ã ãç²å(udsãã¢ããããŠã³ã¹ãã¬ã³ãžã®çµã¿åãã)ã®ããã«ãã¯ã©ãŒã¯3åãããªãç²åããããã©ã ãç²åãªã©ããããªãªã³ã«å«ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 304,
"tag": "p",
"text": "éœåãšäžæ§åãã©ã ãç²åãªã©ãšãã£ãããªãªã³ã«ãããã«äžéå(äžéåã¯äœçš®é¡ããã)ãå ããã°ã«ãŒãããŸãšããŠãããããã³ããšããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 305,
"tag": "p",
"text": "ãªããæ®éã®ç©è³ªã®ååæ žã§ã¯ãéœåãšäžæ§åãååæ žã«éãŸã£ãŠãããããã®ããã«éœåãšäžæ§åãååæ žã«åŒãåãããåã®ããšãæ žåãšãããæ žåã®æ£äœã¯ããŸã ãããŸãè§£æãããŠããªã(å°ãªããšã髿 ¡ã§æããã»ã©ã«ã¯ããŸã å
åã«ã¯è§£æãããŠããªã)ã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 306,
"tag": "p",
"text": "ãšããããããªãªã³ã«ã¯ãæ žåãåããé説ã§ã¯ãäžéåã«ããæ žåã¯åããšãããŠãããã€ãŸãããããã³ã«ãæ žåãåãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 307,
"tag": "p",
"text": "ãããã³ã¯ãããããã¯ã©ãŒã¯ããæ§æãããŠããäºããããããããã¯ã©ãŒã¯ã«æ žåãåãã®ã ãããçãªäºããèããããŠããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 308,
"tag": "p",
"text": "çè«ã§ã¯ãã¯ã©ãŒã¯ãšã¯ã©ãŒã¯ã©ãããåŒãä»ãããæ¶ç©ºã®ç²åãšããŠãã°ã«ãŒãªã³ããèããããŠãããç©çåŠè
ããçè«ãæå±ãããŠãããããã®æ£äœã¯ããŸã ãããŸãè§£æãããŠãªããããããç©çåŠè
ãã¡ã¯ãã°ã«ãŒãªã³ãçºèŠããããšäž»åŒµããŠããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 309,
"tag": "p",
"text": "çŸåšã®ç©çåŠã§ã¯ãã¯ã©ãŒã¯ãåç¬ã§ã¯åãåºããŠããªãã®ãšåæ§ã«ãã°ã«ãŒãªã³ãåç¬ã§ã¯åãåºããŠã¯ããªãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 310,
"tag": "p",
"text": "ããŠãç©çåŠã§ã¯ã20äžçŽãããéåååŠããšããçè«ããã£ãŠããã®çè«ã«ãããç©çæ³åã®æ ¹æºã§ã¯ãæ³¢ãšç²åãåºå¥ããã®ãç¡æå³ã ãšèšãããŠããããã®ããããã€ãŠã¯æ³¢ã ãšèããããŠããé»ç£æ³¢ããå Žåã«ãã£ãŠã¯ãå
åããšããç²åãšããŠæ±ãããããã«ãªã£ãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 311,
"tag": "p",
"text": "ãã®ããã«ãããæ³¢ãåå Ž(ããã°)ãªã©ããçè«é¢ã§ã¯ç²åã«çœ®ãæããŠè§£éããŠæ±ãäœæ¥ã®ããšããç©çåŠã§ã¯äžè¬ã«ãéååããšããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 312,
"tag": "p",
"text": "ã°ã«ãŒãªã³ããã¯ã©ãŒã¯ãšã¯ã©ãŒã¯ãåŒãä»ããåããéååãããã®ã§ããããé»è·ãšã®é¡æšã§ãã¯ã©ãŒã¯ã«ãè²è·(ã«ã©ãŒè·)ãšããã®ãèããŠãããããã®æ§è³ªã¯ãããŸãè§£æãããŠãªã(å°ãªããšã髿 ¡ã§æããã»ã©ã«ã¯ããŸã å
åã«ã¯è§£æãããŠããªã)ã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 313,
"tag": "p",
"text": "ã°ã«ãŒãªã³ã®ããã«ãåãåªä»ããç²åã®ããšãã²ãŒãžç²åãšããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 314,
"tag": "p",
"text": "éåãåªä»ããæ¶ç©ºã®ç²åã®ããšãéåå(ã°ã©ããã³)ãšãããããŸã çºèŠãããŠããªããç©çåŠè
ãã¡ããã°ã©ããã³ã¯ããŸã æªçºèŠã§ããããšäž»åŒµããŠããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 315,
"tag": "p",
"text": "é»ç£æ°åãåªä»ããç²åã¯å
å(ãã©ãã³)ãšããããããã¯åã«ãé»ç£å Žãä»®æ³çãªç²åãšããŠçœ®ãæããŠæ±ã£ãã ãã§ããããã©ãã³ã¯ã髿 ¡ç©çã®é»ç£æ°åéã§ç¿ããããªå€å
žçãªé»ç£æ°èšç®ã§ã¯ããŸã£ãã圹ç«ããªãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 316,
"tag": "p",
"text": "ãªããå
åãã²ãŒãžç²åã«å«ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 317,
"tag": "p",
"text": "ã€ãŸããå
åãã°ã«ãŒãªã³ã¯ãã²ãŒãžç²åã§ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 318,
"tag": "p",
"text": "ããŒã¿åŽ©å£ãã€ããã©ãåã®ããšãã匱ãåããšããããã®åãåªä»ããç²åãããŠã£ãŒã¯ããœã³ããšããããæ§è³ªã¯ãããåãã£ãŠããªãããããç©çåŠè
ãã¡ã¯ããŠã£ãŒã¯ããœã³ãçºèŠããããšäž»åŒµããŠããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 319,
"tag": "p",
"text": "ãããããããœã³ããšã¯äœã?",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 320,
"tag": "p",
"text": "éåååŠã®ã»ãã§ã¯ãé»åã®ãããªãäžç®æã«ããã ãæ°åãŸã§ããååšã§ããªãç²åããŸãšããŠãã§ã«ããªã³ãšããããã§ã«ããªã³çã§ãªãå¥çš®ã®ç²åãšããŠããœã³ããããå
åããããœã³ãšããŠæ±ãããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 321,
"tag": "p",
"text": "ããŠã£ãŒã¯ããœã³ããšã¯ãããããã匱ãåãåªä»ããããœã³ã ãããŠã£ãŒã¯ããœã³ãšåŒãã§ããã®ã ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 322,
"tag": "p",
"text": "ããŠãé»è·ãšã®é¡æšã§ãã匱ãåãã«é¢ããã匱è·ã(ãããã)ãšããã®ãæå±ãããŠãããããããããã®æ§è³ªã¯ãããŸãè§£æãããŠãªã(å°ãªããšã髿 ¡ã§æããã»ã©ã«ã¯ããŸã å
åã«ã¯è§£æãããŠããªã)ã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 323,
"tag": "p",
"text": "ããŠãã匱ãåãã®ããäžæ¹ãã°ã«ãŒãªã³ã®åªä»ããåã®ããšãã匷ãåããšãããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 324,
"tag": "p",
"text": "1956幎ã«ãé»åã®ã¹ãã³ã®æ¹åãšãããŒã¿åŽ©å£ç²åã®åºãŠæ¥ãæ¹åãšã®é¢ä¿ãèŠãããã®å®éšãšããŠãã³ãã«ãã®æŸå°æ§åäœäœã§ããã³ãã«ã60ããã¡ããŠæ¬¡ã®ãããªå®éšããã¢ã¡ãªã«ã§è¡ãããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 325,
"tag": "p",
"text": "ã³ãã«ãå
çŽ (å
çŽ èšå·: Co )ã®æŸå°æ§åäœäœã§ããã³ãã«ã60ãæ¥µäœæž©ã«å·åŽããç£å ŽããããŠå€æ°ã®ã³ãã«ãååã®é»åæ®»ã®å€ç«é»åã¹ãã³ã®æ¹åãããããç¶æ
ã§ãã³ãã«ã60ãããŒã¿åŽ©å£ããŠçºçããããŒã¿ç²åã®åºãæ¹åã調ã¹ãå®éšãã1956幎ã«ã¢ã¡ãªã«ã§è¡ãããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 326,
"tag": "p",
"text": "éãšããã±ã«ãšã³ãã«ãã¯ãããããéå±åäœã§ç£æ§äœã«ãªãå
çŽ ã§ãããå
çŽ åäœã§ç£æ§äœã«ãªãå
çŽ ã¯ããã®3ã€(éãããã±ã«ãã³ãã«ã)ãããªãã(ãªããæŸå°æ§åäœäœã§ãªãéåžžã®ã³ãã«ãã®ååéã¯59ã§ããã)",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 327,
"tag": "p",
"text": "ãã®3ã€(éãããã±ã«ãã³ãã«ã)ã®ãªãã§ãã³ãã«ããäžçªãç£æ°ã«å¯äžããé»åã®æ°ãå€ãããšãéåååŠã®çè«ã«ããæ¢ã«ç¥ãããããã®ã§(ã³ãã«ãããã£ãšããdè»éã®é»åã®æ°ãå€ã )ãããŒã¿åŽ©å£ãšã¹ãã³ãšã®é¢ä¿ãã¿ãããã®å®éšã«ãã³ãã«ãã®æŸå°æ§åäœäœã§ããã³ãã«ã60ã䜿ãããã®ã§ããã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 328,
"tag": "p",
"text": "å®éšã®çµæãã³ãã«ã60ãããŒã¿åŽ©å£ããŠããŒã¿ç²åã®åºãŠããæ¹åã¯ãã³ãã«ã60ã®ã¹ãã³ã®ç£æ°ã®æ¹åãš(åãæ¹åããã)éã®æ¹åã«å€ãæŸåºãããŠããã®ã芳枬ããããããã¯ã2çš®é¡(ã¹ãã³ãšåæ¹åã«ããŒã¿ç²åã®åºãå Žåãšãã¹ãã³ãšå察æ¹åã«ããŒã¿ç²åã®åºãå Žå)ã®åŽ©å£ã®ç¢ºçãç°ãªã£ãŠãããããŒã¿åŽ©å£ã®ç¢ºçã®(ã¹ãã³æ¹åãåºæºãšããå Žåã®)æ¹å察称æ§ãæããŠããããšã«ãªãã",
"title": "ååã»ååæ žã»çŽ ç²å"
},
{
"paragraph_id": 329,
"tag": "p",
"text": "ãã®ãããªå®éšäºå®ã«ãããã匱ãåãã¯é察称ã§ããããšããã®ãå®èª¬ã",
"title": "ååã»ååæ žã»çŽ ç²å"
}
] | null | == é»åãšå
==
=== ããªã«ã³ã®å®éš ===
ããªã«ã³ã®å®éšãšã¯ãé§å¹ããªã©ã§äœæããæ²¹æ»Žã®åŸ®å°ãªé£æ²«ã«ãXç·ãã©ãžãŠã ãªã©ã§åž¯é»ãããããããŠãå€éšããé»å ŽãåŒç«ããããããšã油滎ã®éåïŒäžåãïŒã®ã»ãã«ãé»å Žã«ããé黿°åïŒäžåãã«ãªãããã«é»æ¥µæ¿ãèšçœ®ããïŒãåãã®ã§ãé£ãåã£ãŠéæ¢ããç¶æ
ã«ãªã£ãæã®é»å Žãããé»è·ã®å€ã確ãããå®éšã§ããã
ãã®å®éšã§ç®åºã»æž¬å®ãããé»è·ã®å€ã 1.6Ã10<sup>-6</sup> CïŒœã®æŽæ°åã«ãªã£ãã®ã§ãé»å1åã®é»è·ã 1.6Ã10<sup>-19</sup> Cã ãšåãã£ãã
ãªãããã® 1.6Ã10<sup>-19</sup> Cã®ããšã'''黿°çŽ é'''ïŒã§ããããããïŒãšããã
{{ã³ã©ã |ïŒâ» ç¯å²å€:ïŒããªã«ã³ä»¥åãããé»åã®é»è·ã¯æž¬å®ãããŠãã|
ååŠã®é»æ°åè§£ã®å®éšã§ãéå±ã®é»æ°åè§£ã®å®éšã®æã«çºçããæ°äœã垯é»ããŠããããšã¯ãã©ãã¢ãžãšãªã©ã«ãã£ãŠå€ãããç¥ãããŠãããå®éšç©çåŠè
ã¿ãŠã³ãŒã³ãã¯ãçºçããæ°äœã®ã¢ã«æ°ãšãéé»èªå°ãªã©ã«ãã£ãŠçºçããé»è·ã®åèšã枬å®ããããšã«ãããé»å1åãããã®é»è·ãæŠç®ããã
粟床ã¯ãçŸä»£ã®é»åã®é»è·ãšã±ã¿ãåããããã®ç²ŸåºŠã§ãã¿ãŠã³ãŒã³ãã¯é»åã®é»è·ã®æž¬å®å€ãåŸãã
}}
{{ã³ã©ã |ïŒâ» ç¯å²å€:ïŒ ããªã«ã³ã«äžæ£ã®çããã|
äžçååœã®ç©çåŠã®æè²ã§ã¯ã20äžçŽååã®ããªã«ã³ã®å®éšããé»åã®è³ªéãæ±ããå®éšãšããŠãé·ãã玹ä»ãããŠããã
ããã20äžçŽåŸåãããããããªã«ã³ã®å®éšã«å¯Ÿããç念ãç§åŠçããæåºãããŠããããã®çæã®å
容ã¯ãããªã«ã³ã¯ãèªèº«ã®æå±ãã仮説ã«é©åããªã枬å®å€ããæž¬å®èª€å·®ã ãšããŠæå®ããŠããŸãã仮説ã«ãããªã枬å®å€ãæé€ããŠããŸã£ãŠããã®ãããããªãããšããçæã§ããã
ãã®çæã«åããåè«ããŸããç§åŠçããæåºãããŠããã
ã©ã¡ããæ£ãããã«ã€ããŠã¯ã髿 ¡æç§æžã§ã¯èªããããªããšã§ã¯ãªãã®ã§ãããã«ã€ããŠã¯èª¬æãçç¥ããã
ã©ã¡ãã«ãããçŸä»£ã§ã¯ãè«æã®æçš¿ã§ã¯ããã仮説ã«ãããªã枬å®å€ãèªè
ã«ã ãŸã£ãŠæé€ããŠããŸãããªã®ã«ãããšã®å®éšããŒã¿ãã®ãŸãŸã®ããã«è«æçºè¡šããŠããŸã£ãããããŒã¿æ¹ç«ïŒããããïŒã«ããäžæ£è¡çºãšã¿ãªãããã®ãååã§ããã
ããäŸå€çã«ãã©ãããŠãè«æãªã©ã§è€æ°ããæž¬å®å€ã®ããã€ããæç²ããããåŸãªããããªäºæ
ã®ããå Žåã«ã¯
:ïŒããšãã°å®éšããŒã¿ã倧éã«ãããããŠããã¹ãŠã玹ä»ããããªãå Žåã
:ãããã¯ã仮説ã®å
容ã説æããããã«ãè€æ°åã®å®éšãããŠããã®ãã¡æã仮説ã«é©åããåã®å®éšããŒã¿ãå
¬è¡šããå Žåããªã©ïŒã
ãã®ãããªå Žåã«ã¯ããŸãè«æã«ãæç²ããéšåçãªããŒã¿ã§ããããšãæèšããªããã°ãªããªãã ããããã©ãããåºæºã§æç²ãè¡ã£ãããæèšããªããã°ãªããªãã ããã
çŸä»£ã®ç§åŠè«æã§ã¯ãå®éšçµæã®ããŒã¿ãæžãéã«ã¯ãååçã«ãå®éã®å®éšã§åŸãããããŒã¿ããã®ãŸãŸèšè¿°ããããã«åªããŠãè«æãæžããªãããã°ãªããªãã
:â» çŸä»£ã§ãããã°ãã°åŠçå®éšãªã©ã§ãæªæ°ããªããŠãã仮説ã«ãããªãå®éšããŒã¿ãããå®éšãã¹ããšæå®ããŠããŸããæž¬å®å€ãæžãæããŠããŸã£ããããããã¯ã仮説ã«ãããªã枬å®å€ãé ããŠããŸãäžæ£è¡çºãèµ·ããããšãããããã®ãããªäžæ£è¡çºãããªããããæ°ãã€ããªããã°ãªããªãã
ãã®ããã«ãããªã«ã³ã®å®éšã«ã€ããŠã¯ããããããšåé¡ç¹ãããã®ã§ã倧åŠå
¥è©Šã«ã¯ãããªã«ã³ã®å®éšã«ã€ããŠãããŸãç£æ«ïŒããŸã€ïŒãªããšã¯åºé¡ãããªãã ããããããããªã«ã³ã®å®éšã®çµæãæèšãããããªå
¥è©Šåé¡ãåºé¡ããããšããããåºé¡è
ã®èŠèãçãããã
ãŸããããããããªã«ã³ã®å®éšã®æ¹æ³ã¯ãããŸã粟床ãè¯ããªããç²ŸåºŠãæªãå®é𿹿³ã ãããããäžèšã®ãããªçæãæ®ã£ãŠããŸãã®ã§ãããã
}}
=== å
ã®ç²åæ§ ===
==== å
é»å¹æ ====
:ïŒâ» å®éšçµæã°ã©ãã远å ããããšãïŒ
[[File:Photoelectric effect diagram no label.svg|thumb|300px|é»åã®éåãšãã«ã®ãŒã®æå€§å€ãšãå
ã®æ¯åæ°ãšã®é¢ä¿]]
è² ã®é»è·ã«åž¯é»ãããŠããé屿¿ã«ã玫å€ç·ãåœãŠããšãé»åãé£ã³åºããŠããããšãããããŸããæŸé»å®éšçšã®è² 極ã«é»åãåœãŠããšãé»åãé£ã³åºããŠããããšãããããã®çŸè±¡ãã'''å
é»å¹æ'''ïŒããã§ã ããããphotoelectric effectïŒãšããã1887幎ããã«ãã«ãã£ãŠãå
é»å¹æãçºèŠããããã¬ãŒãã«ãã«ãã£ãŠãå
é»å¹æã®ç¹åŸŽãæããã«ãªã£ãã
åœãŠãå
ã®æ¯åæ°ããäžå®ã®é«ã以äžã ãšãå
é»å¹æãèµ·ããããã®æ¯åæ°ã'''éçæ¯åæ°'''ïŒãããã ããã©ãããïŒãšãããéçæ¯åæ°ããäœãå
ã§ã¯ãå
é»å¹æãèµ·ãããªãããŸããéçæ¯åæ°ã®ãšãã®æ³¢é·ãã'''éçæ³¢é·'''ïŒãããã ã¯ã¡ããïŒãšããã
ç©è³ªã«ãã£ãŠãéçæ¯åæ°ã¯ç°ãªããäºéçã§ã¯çŽ«å€ç·ã§ãªããšå
é»å¹æãèµ·ããªãããã»ã·ãŠã ã§ã¯å¯èŠå
ã§ãå
é»å¹æãèµ·ããã
å
é»å¹æãšã¯ãç©è³ªäžïŒäž»ã«éå±ïŒã®é»åãå
ã®ãšãã«ã®ãŒãåãåã£ãŠå€éšã«é£ã³åºãçŸè±¡ã®ããšã§ããã
ãã®é£ã³åºããé»åããå
é»åãïŒããã§ãããphotoelectronïŒãšããã
å
é»å¹æã«ã¯ïŒæ¬¡ã®ãããªç¹åŸŽçãªæ§è³ªãããã
:* å
é»å¹æã¯ãå
ã®æ¯åæ°ãããæ¯åæ°ïŒéçæ¯åæ°ïŒä»¥äžã§ãªããšèµ·ãããªãã
:* å
é»åã®éåãšãã«ã®ãŒã®æå€§å€ã¯ãåœãŠãå
ã®æ¯åæ°ã®ã¿ã«äŸåããå
ã®åŒ·ãã«ã¯äŸåããªãã
:* åäœæéãããã«é£ã³åºãå
é»åæ°ã¯ãå
ã®åŒ·ãã«æ¯äŸããã
ãããã®æ§è³ªã®ãã¡ã1çªããš2çªãã®æ§è³ªã¯ãå€å
žç©çåŠã§ã¯èª¬æã§ããªãã
ã€ãŸããå
ããé»ç£æ³¢ãšããæ³¢åã®æ§è³ªã ããæããŠããŠã¯ãã€ãã€ãŸãåããªãã®ã§ããã
ãªããªããä»®ã«ãé»ç£æ³¢ã®é»çïŒé»å ŽïŒã«ãã£ãŠéå±ããé»åãæŸåºãããšèããå Žåãããå
ã®åŒ·ãã倧ãããªãã°ãæ¯å¹
ã倧ãããªãã®ã§ãé»çïŒé»å ŽïŒã倧ãããªãã¯ãã§ããã
ããããå®éšçµæã§ã¯ãå
é»åã®éåãšãã«ã®ãŒã¯ãå
ã®åŒ·ãã«ã¯äŸåããªãã
ãã£ãŠãå€å
žååŠã§ã¯èª¬æã§ããªãã
===== ã¢ã€ã³ã·ã¥ã¿ã€ã³ã® å
éå仮説 =====
äžè¿°ã®ççŸïŒå€å
žçãªé»ç£æ³¢çè«ã§ã¯ãå
é»å¹æã説æã§ããªãããšïŒã解決ããããã«ã次ã®ãããª'''å
éå仮説'''ãã¢ã€ã³ã·ã¥ã¿ã€ã³ã«ãã£ãŠæå±ãããã
* å
ã¯ãå
åïŒããããphotonïŒã®æµãã§ãããå
åããå
éåïŒããããããïŒãšãããã
* å
å1åã®ãšãã«ã®ãŒEã¯ãå
ã®æ¯åæ° <math>\nu </math>HzïŒœã«æ¯äŸããã
ãã®2ã€ãã®æ¡ä»¶ãå®åŒåãããšã
:<math>E = h \nu </math>
ãšãªãã
ãã®åŒã«ãããæ¯äŸå®æ°hã¯'''ãã©ã³ã¯å®æ°'''ãšãã°ãã宿°ã§ã
:<math> h = 6.626 \times 10 ^{-34} </math>
[Jã»s] ãšããå€ããšãã
'''ä»äºé¢æ°'''ïŒãããš ãããããwork functionïŒãšã¯ãå
é»å¹æãèµ·ããã®ã«å¿
èŠãªæå°ã®ãšãã«ã®ãŒã®ããšã§ãããéå±ã®çš®é¡ããšã«ã決ãŸã£ãå€ã§ããã
ä»äºé¢æ°ã®å€ã WJ ãšãããšãå
åã®åŸãéåãšãã«ã®ãŒã®æå€§å€ K<sub>0</sub> J ã«ã€ããŠã次åŒãåŸãããã
:<math> K _0 = h \nu - W </math> (1.1)
ãã®åŒãããå
é»å¹æãèµ·ããæ¡ä»¶ã¯ hΜâ§W ãšãªãããã㯠K<sub>0</sub>â§0 ã«çžåœããã
ãããããå
é»å¹æãèµ·ããéçæ¯åæ° Μ<sub>0</sub> ã«ã€ããŠãhΜ<sub>0</sub>ïŒW ãæãç«ã€ã
ãã®å
éå仮説ã«ãããå
é»å¹æã®1çªããš2çªãã®æ§è³ªã¯ã容æã«ãççŸãªã説æã§ããããã«ãªã£ããæ³¢åã¯ç²åã®ããã«æ¯èãã®ã§ããã
ãªããå
é»å¹æã®3çªãã®æ§è³ªãããããå Žæã®å
ã®åŒ·ãã¯ã
ãã®å Žæã®åäœé¢ç©ã«åäœæéã飿¥ããå
åã®æ°ã«æ¯äŸããããšãåããã
{{ã³ã©ã |ïŒâ» ç¯å²å€ïŒãã€ã¯ã説æã®é åºãé|
髿 ¡ã§å
ã«å
é»å¹æãç¿ãã倧åŠã§ããšããããã©ã³ã¯ã®çè«ãç¿ãã
ããããå®ã¯ãç©çåŠè
ãã©ã³ã¯ãå
ã«ïŒã¢ã€ã³ã·ã¥ã¿ã€ã³ãããæ©ãïŒããšãã«ã®ãŒã®ãããšãã®åäœã hΜ ã§ããããšãçºèŠãã<ref>å±±æ¬çŸ©éãååã»ååæ žã»åååãã岩波æžåºã2015幎3æ24æ¥ ç¬¬1å·ã94ããŒãž</ref>ããããããã ãããã宿° h ããã©ã³ã¯å®æ°ãšããã®ã§ãããã€ãŸããããçš®ã®ç©ççŸè±¡ã«ãããŠãšãã«ã®ãŒã®ãããšãã®åäœãhΜã§ããããšã¯ããã£ããŠã¢ã€ã³ã·ã¥ã¿ã€ã³ãæå±ããã®ã§ã¯ãªãïŒãã©ã³ã¯ã®æå±ã§ããïŒã
ãã©ã³ã¯ã¯ã髿ž©ç©äœã«ãããå
ã®æŸå°ïŒãç±æŸå°ãããç±èŒ»å°ããªã©ãšããïŒã®ç ç©¶ããããã®ãããªçºèŠãããã
ã§ã¯ãã¢ã€ã³ã·ã¥ã¿ã€ã³ãäœãçºèŠããã®ããšãããšã
*ç±èŒ»å°ã ãã§ãªãå
é»å¹æã«ããã©ã³ã¯å®æ°ãé©çšã§ãããšããåŠèª¬ã
*å
ã®ç²åèª¬ã®æå±ã
ã§ããã
ãªããå
é»å¹æã®æ¯äŸä¿æ°ã枬å®ããå®éšã¯ãã¢ã€ã³ã·ã¥ã¿ã€ã³ã®æå±åŸã«ç©çåŠè
ããªã«ã³ã調ã¹ãŠããããããã«ãã©ã³ã¯å®æ°ãšã»ãŒåãæ°å€ã§ããäºã確èªããŠãã<ref>å±±æ¬çŸ©éãååã»ååæ žã»åååãã岩波æžåºã2015幎3æ24æ¥ ç¬¬1å·ã95ããŒãž</ref>ã
ããŠããã©ã³ã¯ã®å®éšãæ¯ãè¿ããšããã©ã³ã¯ã¯ã¢ã€ã³ã·ã¥ã¿ã€ã³ã®ç ç©¶ãšã¯å¥ã«ããããããªããšã調ã¹ãŠããã
ãã€ã¯ã20äžçŽååã®ç©çåŠè
ã®ãŠã£ãŒã³ïŒäººåïŒããã©ã³ã¯ïŒäººåïŒãªã©ã髿ž©ã®ç©äœããåºãŠããå
ã®æ³¢é·ãšåšæ³¢æ°ãåæãããšããã
次ã®ãããªåšæ³¢æ°fãšåšæ³¢æ°Îœã®é¢ä¿åŒãåãã£ãŠããã
:<math>f(\lambda) = \frac{8\pi hc}{\lambda^5}~\frac{1}{e^\frac{h \nu}{kT}-1}</math>
å³èŸºã®ææ°é¢æ°ã®åæ¯ã«ããkããã«ããã³å®æ°ã§ããã
ãããŠãå³èŸºã®ææ°é¢æ°ã®åæ¯ã«ããh ããã©ã³ã¯å®æ°ãšèšããã宿°ã§ãããããã¯ã髿 ¡ãç©çIIãã®ååç©çã®åå
ã§ã®ã¡ã«ç¿ããå
é»å¹æãïŒããã§ããããïŒã«åºãŠãããã©ã³ã¯å®æ° h ãšåã宿°ã§ããã
ãã®åŒïŒããã³ããã®åŒã®ã¢ã€ãã¢ã®å
ã«ãªã£ããŠã£ãŒã³ã®å
¬åŒïŒã¯ãå®éšçã«æž¬å®ããŠç¢ºèªã§ããåŒã§ãããïŒããã¡ãŒã¿ãŒãšèšãããæž¬å®åšããç±é»å¯ŸïŒãã€ã§ãã€ãïŒãšãã°ããåéææãããã€ããã¹ããŒã³ããªããžãšèšããã黿°åè·¯ã䜿ããïŒ
ãããŠãå³èŸºã®åæ¯ã«ãã
:<math>~\frac{1}{e^\frac{h \nu}{kT}-1}</math>
ã«æ³šç®ããã
ããã«é«æ ¡æ°åŠã§ç¿ãçæ¯æ°åã®åã®å
¬åŒ
:<math>a+ar+ar^2+\cdots+ar^{n-1}+\cdots = \frac{a}{1-r}</math> ïŒãã ã ïœrïœïŒ1ïŒ
ãæãåºããŠããããåèã«ç¡éçŽæ°
:<math>S= 1+e^{- \frac{ 1 h \nu}{kT} } + e^{- \frac{ 2 h \nu}{kT} } + e^{- \frac{ 3 h \nu}{kT} } \cdots + e^{- \frac{n h \nu}{kT} }+ </math>
ã®åãæ±ããŠã¿ããšïŒææ°éšã«ãã€ãã¹ãã€ããŠããã®ã§ãå¿
ãåæããïŒã
:<math>e^{- \frac{ 1 h \nu}{kT} } S= e^{- \frac{ 1 h \nu}{kT} } + e^{- \frac{ 2 h \nu}{kT} } + e^{- \frac{ 3 h \nu}{kT} } \cdots + e^{- \frac{n h \nu}{kT} }+ </math>
ãšãªãã®ã§ãïŒå³èŸºã©ããã巊蟺ã©ãããïŒèŸºã
ãåŒãç®ããŠ
:<math>(1 - e^{- \frac{ 1 h \nu}{kT} }) S= 1 </math>
巊蟺ã®ä¿æ°ãç§»é
ããŠ
:<math> S= \frac{1}{1 - e^{- \frac{ h \nu}{kT} } } </math>
ãšããã䌌ãåŒãåºãŠããã
ããã§çµããããŠããŸããšããã©ã³ã¯ã®åŒã®åæ¯ã®ææ°ã®åŒãšã¯ã䌌ãŠéãªãåŒã§çµãã£ãŠããŸããïŒãããããã°ã°ã£ãŠããããã§çµããããŠããŸã£ãŠãããäžå匷ãªäººãå€ããç©çåŠãã¡ã³ãåä¹ããªãããã£ãšå匷ããŠã»ãããïŒ ïŒãªãããã®æ°åSã¯ãéåçµ±èšååŠã«ããããåé
颿°ããšãããïŒ
ãšããã§ãäœãã®ãšãã«ã®ãŒã®å€ãEãšãããšãã<math> e^{-\frac{E}{k T}} </math> ã®ããšãã'''ãã«ããã³å å'''ãšããããããªã倩äžãçã«ååãåºãããããã«ããã³å åã¯ããšãããªã確çã¿ãããªãã®ã§ããã
ãŸããäžèšã®æ°å S ã®ç©ççãªæå³ã¯ã確çèšç®ãããããã®ãå
šç¢ºçã1ãšããããã®èŠæ Œåã®ããã®ä¿æ°ã§ããã
ãŸããèšç®ããããããã«ãã«ããã³å åãæ¬¡ã®ããã« <math> \beta = \frac{1}{kT} </math>ã䜿ã£ãŠå€åœ¢ãããã
ãããšããã«ããã³å åã¯ã
<math> e^{-\beta E} </math>
ãšãªãã
ãŸããåé
ä¿æ° S ã®åãæ±ããåã®åœ¢ã®åŒããβã䜿ã£ããã«ããã³å åã®åŒã§çœ®ãæãããã
<math>S= 1+e^{- \beta h \nu} + e^{- 2 \beta h \nu} + e^{- 3 \beta h \nu} \cdots + e^{- n \beta h \nu} + </math>
ãšãªãã
ããŠãæ¬¡ã®æ°å P ãæ±ãããã
:<math> P = (0 h \nu) \cdot 1 + (1 h \nu) \cdot e^{- \frac{ 1 h \nu}{kT} } + (2 h \nu) \cdot e^{- \frac{ 2 h \nu}{kT} } + (3 h \nu) \cdot e^{- \frac{ 3 h \nu}{kT} } \cdots + (n h \nu) \cdot e^{- \frac{n h \nu}{kT} }+ </math>
ãã®æ°åPã®ç©ççãªæå³ã¯ãé£ã³é£ã³ãªãšãã«ã®ãŒ n hΜ ïŒãã ã nïŒ1,2,3,4ã»ã»ã»ã»ïŒããããšããå Žåã®ç¢ºççãªå¹³åãšãã«ã®ãŒå€ <E> ã«æ¯äŸããæ°ã§ããã
ãªãããšãã«ã®ãŒã®å¹³åå€<E>ã®åŒã¯ãPãSã§å²ã£ãå€ã§ããã
:<math> \left \langle E \right \rangle = \frac{P}{S} </math>
èšç®ãããããã㫠β ã§æžãæãããã
:<math> P = (0 h \nu) \cdot 1 + (1 h \nu) \cdot e^{- \beta h \nu } + (2 h \nu) \cdot e^{- 2 \beta h \nu } + (3 h \nu) \cdot e^{-3 \beta h \nu } \cdots + (n h \nu) \cdot e^{- n \beta h \nu }+ </math>
ããŠãæ°åPãããããSãšæ¯ã¹ãŠã¿ãããæ¯ã¹å®ãããã«åæ²ããŠãããèªè
ã¯äœãæ°ã¥ãããšã¯ãªãããªïŒ ïŒãã³ã: 埮åïŒ
:<math>S= 1+e^{- \beta h \nu} + e^{- 2 \beta h \nu} + e^{- 3 \beta h \nu} \cdots + e^{- n \beta h \nu} + </math>
æ¯ã¹ãŠã¿ããšããªããšæ°åPã®åé
ã¯æ°åSã®åé
ãβã§åŸ®åãããã®ã«ãã€ãã¹ãæããå€ã«ãªã£ãŠããïŒïŒ
ã€ãŸã
:<math> -\frac{\partial}{\partial \beta} S = P </math>
:â» <math> \partial </math> ãšã¯ãå€å€æ°é¢æ°ã®åŸ®åïŒå埮åïŒã®èšå·ã倧åŠã§ç¿ãããã©ãŠã³ã ãã£ãŒããªã©ãšèªãã
ãšããã§ãæ°åSã¯é«æ ¡ã¬ãã«ã®çæ¯çŽæ°ã®åã®å
¬åŒã«ãã
:<math> S= \frac{1}{1 - e^{- \frac{ h \nu}{kT} } } </math>
ãšãæžããã®ã§ãã£ãã
èšç®ããããããã«Î²ã§çœ®æããŠã
:<math> S= \frac{1}{1 - e^{- \frac{ h \nu}{kT} } } = \frac{1}{1 - e^{- \beta h \nu } } </math>
ãšãªãã
ããã«åŸ®åããããããã«
:<math> S= \frac{1}{1 - e^{- \frac{ h \nu}{kT} } } = \frac{1}{1 - e^{- \beta h \nu } } = (1 - e^{- \beta h \nu } ) ^{-1} </math>
ãšæžãæãããã
ãã®æ°åSã®åã®å
¬åŒãšãå
ã»ã©ã®ãã€ãã¹åŸ®åã®åŒ <math> -\frac{\partial}{\partial \beta} S = P </math> ãšãé£ç«ãããŠã¿ããã
ãããšã
<math> P = -\frac{\partial}{\partial \beta} S = -\frac{\partial}{\partial \beta} (1 - e^{- \beta h \nu } ) ^{-1} = (-1) (1 - e^{- \beta h \nu } ) ^{-2} (-1) (-1)(-h \nu) = \frac{h \nu}{ (1 - e^{- \beta h \nu } ) ^{-2}} e^{- \beta h \nu } </math>
ãšPãæ±ããããã
ããããç§ãã¡ãæçµçã«æ±ãããã®ã¯ãPã§ãªããŠããšãã«ã®ãŒã®å¹³åå€ïŒEïŒã§ãã£ãã
ïŒEïŒã®åŒãåæ²ãããšã
:<math> \left \langle E \right \rangle = \frac{P}{S} </math>
ã§ãã£ãã
ãããŠãPãSãçŽæ°åã®åŒãæ±ããããŠããã®ã§ãããã代å
¥ãããšã
:<math> \left \langle E \right \rangle = \frac{P}{S} = \frac{h \nu}{ (1 - e^{- \beta h \nu } ) ^{2}} \frac{1}{ \frac{1}
{ \frac{1}
{
1 - e^{- \beta h \nu }
}
}
}
e^{- \beta h \nu }
=
\frac{h \nu}{ (1 - e^{- \beta h \nu } ) }
e^{- \beta h \nu }
=
\frac{h \nu}{1- e^{- \beta h \nu } }
e^{- \beta h \nu }
</math>
ãšãªããååã®ææ°é¢æ°ãæ¶ãããã«ã忝ãšååã«ãšãã« <math> e^{- \beta h \nu } </math> ãæãç®ããŠçŽåãããã
ãããšã
:
:<math> \left \langle E \right \rangle = \frac{P}{S} =
\frac{h \nu}{1- e^{- \beta h \nu } }
e^{- \beta h \nu }
=
\frac{h \nu}{e^{ \beta h \nu }- 1 }
</math>
ãšãªãã®ã§ãã ãã¶ãã©ã³ã¯ã®åŒã«äŒŒãŠããã
ãã©ã³ã¯ã®åŒãåæ²ãããšã
:<math>f(\lambda) = \frac{8\pi hc}{\lambda^5}~\frac{1}{e^\frac{h \nu}{kT}-1}</math>
ã§ãã£ãã
ãšããã§ã髿 ¡ç©çã§ç¿ãå
ã®æ³¢é·Î»ãšé床Cãšåšæ³¢æ°Îœã®é¢ä¿åŒ CïŒÎœÎ» ã䜿ãã°ããã©ã³ã¯ã®åŒã¯ã
:<math>f(\lambda) = \frac{8\pi hc}{\lambda^5}~\frac{1}{e^\frac{h \nu}{kT}-1} = \frac{8\pi h \nu \lambda}{\lambda^5}~\frac{1}{e^\frac{h \nu}{kT}-1} = \frac{8\pi }{\lambda^4}~\frac{h \nu}{e^\frac{h \nu}{kT}-1} </math>
ã§ããã
ãã©ã³ã¯ã¯ããã®åŒããåŒå€åœ¢ã§ã
:<math>f(\lambda) = \frac{8\pi hc}{\lambda^5}~\frac{1}{e^\frac{h \nu}{kT}-1} = \frac{8\pi h \nu \lambda}{\lambda^5}~\frac{1}{e^\frac{h \nu}{kT}-1} = \frac{8\pi }{\lambda^4}~\frac{h \nu}{e^\frac{h \nu}{kT}-1} = \frac{8\pi }{\lambda^4}~ \sum_{n=0}^\infty (n h \nu )e^{- \beta n h \nu} </math>
ãšãããµãã«ãçŽæ°ã®åã®åœ¢ã«æžãæããããããšã«æ°ã¥ããã
ãã®ããšã¯ãã€ãŸãã髿ž©ç©äœããã®æŸå°ãšãã«ã®ãŒãåºãå
ã®ãšãã«ã®ãŒããæŸå°çŸè±¡ã®ã©ããã§ <math> h \nu </math> ã®æŽæ°åã ãã«éãããæ©æ§ã®ããããšãæå³ããã
ãã®ãããªæãã®ãã©ã³ã¯ã®ã²ãããã«ãããçŸä»£ã«ãéåååŠããšèšãããåéã19äžçŽã«è±éããã
ã¢ã€ã³ã·ã¥ã¿ã€ã³ã®å
é»å¹æã®å
ç²å説ã¯ãåã«ããã©ã³ã¯ã®ãã®ãããªç ç©¶ãããšã«ãå
é»å¹æã«ãåœãŠã¯ããŠé£æ³ããã ãã§ããã
ãã®åŸãã¢ã¡ãªã«äººã®ç©çåŠè
ã®æž¬å®ãªã©ã«ãããå
é»å¹æã®ä¿æ°ãããã©ã³ã¯ãæŸå°ã®ç ç©¶ã§çšãã宿° h ãšåãããšã確èªãããã
ãã©ã³ã¯èªèº«ã¯ããããŸã§éååãããŠããã®ã¯ãå®éšçã«ç¢ºèªãããŠããã®ã¯é«æž©ç©äœã®æŸå°ã«ãããçŸè±¡ã ãšæ
éã ã£ãããã§ããã
å
ãæ³¢ãç²åãã®çºèšã«ã¯ãã©ã³ã¯ã¯ããŸãé¢ãããªãã£ãã
ã ãããã®åŸãã¢ã€ã³ã·ã¥ã¿ã€ã³ã®å
ç²å説ãããŒãã«è³ããšã£ãŠããŸã£ãããšãªã©ãããããããäžççã«å
ã®ç²åæ§ã®åŠèª¬ãåºãŸã£ãŠãã£ãã
ãªããã¢ã€ã³ã·ã¥ã¿ã€ã³ã®å
é»å¹æã®ããŒãã«è³ã¯ãæ¬åœã¯çžå¯Ÿæ§çè«ã«ããŒãã«è³ããããããšããŒãã«è³ã®å¯©æ»å¡ã¯èãããããããåœæã®åŠäŒã«ã¯çžå¯Ÿæ§çè«ãžã®å察æèŠãå€ãã£ãã®ã§ãåœããéãã®ãªããããªå
é»å¹æã®ç ç©¶ã§ããŒãã«è³ãã¢ã€ã³ã·ã¥ã¿ã€ã³ã«æäžããã ãã§ããã
ããŠãå
é»å¹æã®åŒ EïŒhΜïŒW ãšããã©ã³ã¯ã®æŸå°åŒãæ¯ã¹ãã°åããããã©ã¡ããç°¡åãªåŒããšãããšãæããã«å
é»å¹æã®åŒã®ã»ããä¿æ°ã®çš®é¡ãå°ãªãåçŽãªåœ¢ã§ããã
ãªã®ã§ãããã£ãšãå
é»å¹æã®ã»ãããããåºæ¬çãªç©çæ³åã«è¿ãçŸè±¡ãªã®ã ããããšèããã®ã劥åœã§ããããæè²ã§å
ã«å
é»å¹æãæããŠãããããšãããã©ã³ã¯ã®ç ç©¶ææãæããã®ããåççãããããªãã
ãã ãããã®åºæ¬çãªç©ççŸè±¡ãšããããã¯ãããŠå
ã®ç²å説ãã©ããã¯ãå®éšã¯äœãä¿èšŒããŠãããŠãªããåã«ã人éãã¡ããããŒãã«è³ãªã©ã®äººé瀟äŒã®æš©åšã®éœåã«ããšã¥ããŠåæã«ãå
ã®ç²å説ããããå
é»å¹æã®åŒã®åœ¢ãç°¡åã«ãªã£ãŠããçç±ã ããšæã蟌ãã§ããã ãã§ããã
}}
==== åè: å
ã®æ³¢é·ã®æž¬å® ====
:(â» ç¯å²å€)
ãããããå
ã®æ³¢é·ã¯ãã©ããã£ãŠæž¬å®ãããã®ã ãããã
çŸåšã§ã¯ãããšãã°ååã®çºå
ã¹ãã¯ãã«ã®æ³¢é·æž¬å®ãªããåææ Œåãããªãºã ãšããŠäœ¿ãããšã«ãã£ãŠãæ³¢é·ããšã«åããæ³¢é·ã枬å®ãããŠãããïŒâ» åèæç®: å¹é¢šé€šïŒã°ããµãããïŒãstep-up åºç€ååŠããæ¢¶æ¬èäº ç·šéãç³å·æ¥æš¹ ã»ãèã2015幎åçã25ããŒãžïŒ
ãããŸããªåçãè¿°ã¹ããšãå¯èŠå
ãŠãã©ã®å
ã®æ³¢é·ã®æž¬å®ã¯ãåææ Œåã«ãã£ãŠæž¬å®ããããã ããã§ã¯ãã®åææ Œåã®çްããæ°çŸããã¡ãŒãã«ãæ°åããã¡ãŒãã«ãŠãã©ã®ééã®æ ŒåããŸãã©ããã£ãŠäœãã®ãããšããåé¡ã«è¡ãçããŠããŸãã
æŽå²çã«ã¯ãäžèšã®ããã«ãå¯èŠå
ã®æ³¢é·ã枬å®ãããŠãã£ãã
ãŸãã1805幎ããã®ãã€ã³ã°ã®å®éšãã§æåãªã€ã³ã°ãã®ç ç©¶ã«ãããå¯èŠå
ã®æ³¢é·ã¯ããããã 100nmïŒ10<sup>-7</sup>mïŒ ã 1000nm ã®çšåºŠã§ããããšã¯ããã®é ããããã§ã«äºæ³ãããŠããã
ãã®åŸããã€ãã®ã¬ã³ãºã®ç 磚工ã ã£ããã©ãŠã³ããŒãã¡ãŒããããããåææ Œåãéçºããå¯èŠå
ã®æ³¢é·ã粟å¯ã«æž¬å®ããäºã«æåããããã©ãŠã³ããŒãã¡ãŒã¯åææ Œåãäœãããã«çްãééãçšããå å·¥è£
眮ã補äœãããã®å å·¥æ©ã§è£œäœãããåææ ŒåãçšããŠãå
ã®æ³¢é·ã®æž¬å®ããå§ããã®ããç ç©¶ã®å§ãŸãã§ããã1821幎ã«ãã©ãŠã³ããŒãã¡ãŒã¯ã1cmãããæ Œåã130æ¬ã䞊ã¹ãåææ Œåã補äœããã<ref>ãçŸä»£ç·åç§åŠæè²å€§ç³»ãSOPHIA21ã第7å·»ãéåãšãšãã«ã®ãŒããè¬è«ç€Ÿãçºè¡ïŒæå59幎4æ21æ¥ç¬¬äžå·çºè¡çºè¡</ref>
ãŸãã1870幎ã«ã¯ã¢ã¡ãªã«ã®ã©ã¶ãã©ãŒããã¹ããã¥ã©ã ãšããåéãçšããåå°åã®åææ Œåã補äœãïŒãã®ã¹ããã¥ã©ã åéã¯å
ã®åå°æ§ãé«ãïŒãããã«ãã£ãŠ1mmããã700æ¬ãã®æ Œåã®ããåææ Œåã補äœãããïŒèŠåºå
žïŒ
ããã«ãã®ããã®æä»£ãéãããã®æœ€æ»ã®ããã«æ°Žéãäœ¿ãæ°Žéæµ®éæ³ããç ç©¶éçºã§è¡ãããã
ããé«ç²ŸåºŠãªæ³¢é·æž¬å®ããã®ã¡ã®æä»£ã®ç©çåŠè
ãã€ã±ã«ãœã³ã«ãã£ãŠãå¹²æžèšïŒãããããããïŒãšãããã®ãçšããŠïŒçžå¯Ÿæ§çè«ã®å
¥éæžã«ããåºãŠããè£
眮ã§ããã髿 ¡çã¯ããŸã çžå¯Ÿæ§çè«ãç¿ã£ãŠãªãã®ã§ãæ°ã«ããªããŠãããïŒãå¹²æžèšã®åå°é¡ã粟å¯ããžã§çްããåããããšã«ãããé«ç²ŸåºŠãªæ³¢é·æž¬å®åšãã€ããããã®æž¬å®åšã«ãã£ãŠã«ãããŠã ã®èµ€è²ã¹ãã¯ãã«ç·ã枬å®ããçµæã®æ³¢é·ã¯643.84696nmã ã£ãããã€ã±ã«ãœã³ã®æž¬å®æ¹æ³ã¯ãèµ€è²ã¹ãã¯ãã«å
ã®æ³¢é·ããåœæã®ã¡ãŒãã«ååšãšæ¯èŒããããšã§æž¬å®ããã<ref>å·äžèŠªèã»ããæ°å³è©³ãšãªã¢æç§èŸå
žãç©çããåŠç ãçºè¡ïŒ1994幎3æ10æ¥æ°æ¹èšç第äžå·ãP.244 ããã³ P.233</ref>
ãã€ã±ã«ãœã³ã®å¶äœããå¹²æžèšã«ããæ°Žéæµ®éæ³ã®æè¡ãåãå
¥ããããŠããããšãã<ref>ã¯ãªã¹ã»ãšãŽã¡ã³ã¹ èãæ©æ¬æŽã»äžéæ» å
±èš³ã粟å¯ã®æŽå²ãã倧河åºçã2001幎11æ28æ¥ åçã185ããŒãž</ref>ã
ããã«ãããžã®æè¡é©æ°ã§ãããŒãã³ã»ãããïŒãã¡ã«ãã³ã»ãããããšãèš³ãïŒãšãããåŒŸåæ§ã®ããæè³ªã§ããžãã€ããããšã«ãã£ãŠèª€å·®ããªããããŠå¹³ååãããã®ã§ãè¶
çµ¶çã«é«ç²ŸåºŠã®éããããäœãæè¡ããã€ã®ãªã¹ã®ç©çåŠè
ããŒãã¹ã»ã©ã«ãã»ããŒãã³ïŒè±:[[:en:w:Thomas Ralph Merton]] ïŒãªã©ã«ãã£ãŠéçºãããã
ãªããçŸä»£ã§ããç ç©¶çšãšããŠå¹²æžèšãçšããæ³¢é·æž¬å®åšãçšããããŠãããïŒèŠåºå
žïŒ ã¡ãŒãã«ååšã¯ããã€ã±ã«ãœã³ã®å®éšã®åœæã¯é·ãã®ããããšã®æšæºã ã£ããã1983幎以éã¯ã¡ãŒãã«ååšã¯é·ãã®æšæºã«ã¯çšããããŠããªããçŸåšã®ã¡ãŒãã«å®çŸ©ã¯ä»¥äžã®éãã
;ã¡ãŒãã«ã®å®çŸ©
:ç空äžã®å
ã®éã ''c'' ãåäœ [[W:ã¡ãŒãã«|m]] [[W:ç§|s]]<sup>â1</sup> ã§è¡šãããšãã«ããã®æ°å€ã {{val|299792458}} ãšå®ããããšã«ãã£ãŠå®çŸ©ãããã
:ããã§ãç§ã¯ã»ã·ãŠã åšæ³¢æ° ''âΜ''<sub>Cs</sub> ã«ãã£ãŠå®çŸ©ãããã
==== å
é»å¹æã®æž¬å® ====
:ïŒâ» æªèšè¿°ïŒ
:ïŒâ» åè·¯å³ã远å ããããšãïŒ
:ïŒâ» å®éšçµæã°ã©ãã远å ããããšãïŒ
[[File:Cellule photoelectriqie.JPG|thumb|300px|å
é»å¹æã®å®éš]]
[[File:Caracteristique courant tension (frequence fixe).JPG|thumb|300px|é»äœãšå
黿µã®é¢ä¿]]
{{-}}
==== åè ====
倪éœé»æ± ããå
é»å¹æã®ãããªçŸè±¡ã§ããããšèããããŠãããïŒâ» 宿åºçã®æç§æžãªã©ã§ãæ±ã£ãŠãã話é¡ãïŒ
ãªãã倪éœé»æ± ã¯äžè¬çã«åå°äœã§ããããã€ãªãŒãåããPNæ¥åã®éšåã«å
ãåœãŠãå¿
èŠãããã
ïŒPNæ¥åéšå以å€ã®å Žæã«ãå
ãããã£ãŠããçããé»åãã黿µãšããŠåãåºããªãã黿µãšããŠåãåºããããã«ããã«ã¯ãPNæ¥åã®éšåã«ãå
ãåœãŠãå¿
èŠãããããã®ãããPNæ¥åã®çæ¹ã®æè³ªããéæããããã«è¿ãå
ééçã®ææã«ããå¿
èŠãããããéæé»æ¥µããšãããïŒ
ïŒâ» ç¯å²å€ïŒ: ïŒ ãªããçºå
ãã€ãªãŒãåå°äœã¯ããã®éãã¿ãŒã³ãšããŠèããããŠãããå
é»å¹æã§ãããä»äºé¢æ°ãã«ããããšãã«ã®ãŒããã£ã黿µãæµãããšã«ããããã®åå°äœç©è³ªã®ãä»äºé¢æ°ãã«ããããšãã«ã®ãŒã®å
ããPNæ¥åã®æ¥åé¢ããæŸåºãããããšããä»çµã¿ã§ããã
ãªããCCDã«ã¡ã©ãªã©ã«äœ¿ãããCCDã¯ã倪éœé»æ± ã®ãããªæ©èœããã€åå°äœããé»åæºãšããŠã§ã¯ãªããå
ã®ã»ã³ãµãŒãšããŠæŽ»çšãããšããä»çµã¿ã®åå°äœã§ãããïŒâ» 宿åºçã®æç§æžãªã©ã§ãæ±ã£ãŠãã話é¡ãïŒ
=== â» æ®éç§ã®ç¯å²å€: è¶
äŒå°ã®ç£æã®éåå ===
ïŒâ» æ®éç§é«æ ¡ã®ãç©çãç³»ç§ç®ã§ã¯ç¿ããªãããïŒ
ç©ççŸè±¡ã®éååãšããŠãå
é»å¹æãç©è³ªæ³¢ã®ã»ãã«ãååã¹ã±ãŒã«ã®ç©ççŸè±¡ã®éååã¯ãããããçš®é¡ã®è¶
äŒå°ç©è³ªã§ã¯ãããã«éããç£æãéååããçŸè±¡ãç¥ãããŠãããïŒâ» å·¥æ¥é«æ ¡ã®ç§ç®ãå·¥æ¥ææãäžå·»ïŒãŸãã¯ç§ç®ã®åŸåïŒã§ç¿ããïŒ
:â» ãå·¥æ¥ææãã®æç§æžã«ã¯æžãããŠãªã話é¡ã ããç£æã®éååã¯ãžã§ã»ããœã³çŽ åãªã©ãšããŠãé»å§èšæž¬ãªã©ã®åœå®¶æšæºåšãšããŠãæ¥æ¬ããµããäžçã®å·¥æ¥åœã®ååœã§æ¡çšãããŠããã
:â» ã¢ã€ã³ã·ã¥ã¿ã€ã³ã®ãå
éå仮説ããåŒã³åã®ãšããããããŸã§ä»®èª¬ãªäžæ¹ã§ãè¶
äŒå°ã«ãããç£æã®éååã¯ïŒèª¬ã§ã¯ãªãïŒèŠ³æž¬äºå®ã»å®éšäºå®ã§ãããå®éã«è¶
äŒå°ã«éããç£æãèªå°çŸè±¡ã§ã€ããé»å§ã粟å¯ã«æž¬å®ãããšãé»å§ã«ãŒããéæ®µç¶ã«ã®ã¶ã®ã¶ã«ãªã£ãããããïŒå³å¯ã«èšããšã芳枬ãããã®ã¯ç£æã®ã€ããèªå°é»å§ã®éååã ãã»ã»ã»ïŒ
:â» å·¥æ¥é«æ ¡ã§ã¯ãæè²ã®é åºãšããŠããããããããå
é»å¹æãããããè¶
äŒå°ã§ã®ç£æã®éååããå
ã«æããŠããå¯èœæ§ããããïŒæ®éç§ã®å°éãç©çãã3幎çã§æããäžæ¹ããå·¥æ¥ææãã¯1ïœ2幎çã§æããå Žåãããã®ã§ïŒãã²ãã£ãšãããå°æ¥çã«æ®éç§é«æ ¡ã§ããç£æã®éååããå
ã«æããå¯èœæ§ãããããã
=== Xç· ===
==== Xç·ã®çºèŠ ====
[[File:Rotating anode x-ray tube (labeled).jpg|thumb|250px|Xç·ç®¡<br>é°æ¥µããåºãé°æ¥µç·ãéœæ¥µã«ã¶ã€ãããšãã¶ã€ãã£ãæã«Xç·ãåºãã]]
[[File:Tube RX a fenetre laterale.png|thumb|Xç·ç®¡ã®åç]]
ç§åŠè
ã¬ã³ãã²ã³ã¯ã1895å¹ŽãæŸé»ç®¡ããã¡ããŠé°æ¥µç·ã®å®éšãããŠãããšããæŸé»ç®¡ã®ã¡ããã«çœ®ããŠãã£ãåç也æ¿ãæå
ããŠããäºã«æ°ä»ããã
圌ïŒã¬ã³ãã²ã³ïŒã¯ãé°æ¥µç·ãã¬ã©ã¹ã«åœãã£ããšãããªã«ãæªç¥ã®ãã®ãæŸå°ãããŠããšèããXç·ãšåã¥ããã
ãããŠãããŸããŸãªå®éšã«ãã£ãŠãXç·ã¯æ¬¡ã®æ§è³ªããã€ããšãæããã«ãªã£ãã
:æ§è³ª: ç£å Žãé»å Žã§æ²ãããªãã
ãã®äºãããXç·ã¯ãè·é»ç²åã§ã¯ãªãäºãåãããïŒçµè«ããããšãXç·ã®æ£äœã¯ãæ³¢é·ã®çãé»ç£æ³¢ã§ãããïŒ
ãŸãã
:æ§è³ª: Xç·ãç
§å°ãããç©è³ªã¯ã€ãªã³ã«é»é¢ãããã
:æ§è³ª: å¯èŠå
ç·ãéããªãç©è³ªã§ããXç·ãªãééã§ããå Žåãããã
ãªã©ã®æ§è³ªãããã
ãªãçŸä»£ã§ã¯ãå»ççšã®Xç·ããã¬ã³ãã²ã³ããšãããã
==== Xç·ã®ã¹ãã¯ãã« ====
[[File:TubeSpectrum.jpg|thumb|240px|ç¹æ§Xç·ïŒKç·ïŒ]]
:ç¹æ§Xç·
:é£ç¶Xç·
{{-}}
==== Xç·ã®æ³¢åæ§ ====
1912幎ãç©çåŠè
ã©ãŠãšã¯ãXç·ãåçµæ¶ã«åœãŠããšãåçãã£ã«ã ã«å³ã®ãããªæç¹ã®æš¡æ§ã«ããããšãçºèŠãããããã'''ã©ãŠãšæç¹'''ïŒã¯ããŠãïŒãšãããçµæ¶äžã®ååãåææ Œåã®åœ¹å²ãããããšã§çºçããå¹²æžçŸè±¡ã§ããã
[[File:Bragg diffraction 2.svg|thumb|400px|ãã©ãã°ã®æ¡ä»¶]]
1912幎ãç©çåŠè
ãã©ãã°ã¯ãåå°ã匷ãããæ¡ä»¶åŒãçºèŠããã
:<math>2d\sin\theta = n\lambda</math>
ã'''ãã©ãã°ã®æ¡ä»¶'''ãšããã
äžåŒã®dã¯æ Œåé¢ã®ééã®å¹
ã§ããã
{{-}}
:ïŒâ» ç¯å²å€:ïŒ ãã£ãœããã¬ã©ã¹ãªã©éæ¶è³ªã®ææã®å Žåããã©ãã°åå°ã®ãããªæç¢ºãªåæã¯èµ·ããªããïŒâ» åèæç®: æ±äº¬ååŠå人ãç¡æ©ååŠ ãã®çŸä»£çã¢ãããŒã 第2çãã平尟äžä¹ ãªã©èã2013幎第2çã2014幎第2å·ïŒ
==== Xç·ã®ç²åæ§ ====
* ã³ã³ããã³å¹æ
Xç·ãççŽ å¡ãªã©ã®ïŒéå±ãšã¯éããªãïŒç©è³ªã«åœãŠããã®æ£ä¹±ãããããšã®Xç·ã調ã¹ããšãããšã®Xç·ã®æ³¢é·ãããé·ããã®ããæ£ä¹±ããXç·ã«å«ãŸããã
ãã®ããã«æ£ä¹±Xç·ã®æ³¢é·ã䌞ã³ãçŸè±¡ã¯ç©çåŠè
ã³ã³ããã³ã«ãã£ãŠè§£æãããã®ã§ã'''ã³ã³ããã³å¹æ'''ïŒãŸãã¯ã³ã³ããã³æ£ä¹±ïŒãšããã
[[File:Compton ex1.jpg||400px|thumb|right|ã³ã³ããã³ã«ããå®éšç¥å³ããªããå³äžã®ãåçµæ¶ãã¯æ³¢é·ã®æž¬å®çšã§ãã <ref>åå³¶é®®ãåçéåååŠãïŒè£³è¯æ¿ã2014幎第40çãåçã¯1972幎ïŒ</ref> ããåçµæ¶ãã®æè³ªã¯æ¹è§£ç³ã®çµæ¶ã§ãããæ£ä¹±æ³¢é·ã¯ãã©ãã°åå°ãªã©ã掻çšããŠæž¬å®ãããïŒã³ã³ããã³æ¬äººã®è«æâThe Spectrum of Scattered X-Raysâ(May 9, 1923).ã«ãæ¹è§£ç³ïŒcalciteïŒã䜿ã£ãŠããããšãšããã©ãã°åå°ïŒBragg ?ïŒãããŠããäºãæžãããŠãããïŒ]]
ãã®çŸè±¡ã¯ãXç·ãæ³¢ãšèããã®ã§ã¯èª¬æãã€ããªããïŒããä»®ã«æ³¢ãšèããå Žåãæ£ä¹±å
ã®æ³¢é·ã¯ãå
¥å°Xç·ãšåãæ³¢é·ã«ãªãã¯ãããªããªããæ°Žé¢ã®æ³¢ã«äŸãããªããããæ°Žé¢ãæ£ã§4ç§éã«1åã®ããŒã¹ã§æºãããããæ°Žé¢ã®æ³¢ãã4ç§éã«1åã®ããŒã¹ã§åšæãè¿ããã®ãšãåãçå±ãïŒ
ããŠãæ³¢åã®çè«ã§ã³ã³ããã³å¹æã説æã§ããªããªããç²åã®çè«ã§èª¬æãããã°è¯ãã ããã
ãã®åœæãã¢ã€ã³ã·ã¥ã¿ã€ã³ã¯å
éå仮説ã«ããšã¥ããå
åã¯ãšãã«ã®ãŒhΜããã€ã ãã§ãªããããã«æ¬¡ã®åŒã§è¡šãããéåépããã€ããšãçºèŠããŠããã
<math>p=\frac{h\nu}{c}(=\frac{h\nu}{\nu \lambda}=\frac{h}{\lambda})</math>
ç©çåŠè
ã³ã³ããã³ã¯ããã®çºèŠãå©çšããæ³¢é·Î»ã®Xç·ããéåé<math>\frac{h}{\lambda}</math>
ãšãšãã«ã®ãŒ<math>\frac{hc}{\lambda}</math>ãæã€ç²åïŒå
åïŒã®æµããšèãã
Xç·ã®æ£ä¹±ãããã®å
åãç©è³ªäžã®ããé»åãšå®å
šåŒŸæ§è¡çªãããçµæãšèããã
:ã³ã³ããã³ã¯ãã®èãã«åºã¥ããå
åãšé»åã®è¡çªåã®éåéåãšãšãã«ã®ãŒåãè¡çªåŸãä¿åããããšä»®å®ããŠèšç®ããŠãå®éšçµæãšè¯ãåãããçµæãåŸãããããšãçºèŠããã
[[File:Compton effect illust.svg|thumb|400px|ã³ã³ããã³å¹æ<br>ãã®å³ãèŠããšãããããç空äžããã ããé»åã«é»ç£æ³¢ãç
§å°ããããã«èŠããããããã§ã¯ãªããã³ã³ããã³å¹æã®çºèŠããã1920幎代ã®åœæã«ã¯ããŸã ã空äžã«é»åããã ããããŠç²ŸåºŠããé»ç£æ³¢ãç
§å°ããæè¡ãªã©ãç¡ããå®éã«ã³ã³ããã³ãè¡ã£ãå®éšã¯ãç³å¢šã®ççŽ ãªã©ã®ç©è³ªã«Xç·ãç
§å°ããå®éšã§ãããå³äžã®é»åã¯ãççŽ ãªã©ã®ååãæäŸããé»åã§ããã<br>ã³ã³ããã³æ¬äººã®è«æã«ããã®ãããªæãã®å³ãæžãããŠãããããã§ãã®ãããªå³ãæ®åãããã®ãšæãããã]]
è§£æ³ã¯ãäžèšã®ãšããã
:ãšãã«ã®ãŒä¿åã®åŒãç«ãŠãã
:ãããŠãéåéã®ä¿åã®åŒãç«ãŠããå
·äœçã«ã¯ãx軞æ¹åã®éåéã®ä¿åã®åŒãšãy軞æ¹åã®éåéã®ä¿åã®åŒãç«ãŠãã
----
ãšãã«ã®ãŒä¿åã®åŒ
:<math>\frac{hc}{\lambda} = \frac{hc}{\lambda '} + \frac{1}{2}mv^2 \qquad \qquad</math> (1.2a)
éåéä¿åã®åŒ
:x軞: <math> \frac{h}{\lambda} =\frac{h}{\lambda '} \cos \theta + mv \cos \phi \quad</math> (1.2b)
:y軞: <math> 0 =\frac{h}{\lambda '} \sin \theta - mv \sin \phi \qquad</math>(1.2c)
----
äžèšã®3ã€ã®åŒãé£ç«ãããã®é£ç«æ¹çšåŒãè§£ãããã«vãšÏãé£ç«èšç®ã§æ¶å»ãããŠããã<math>\lambda \fallingdotseq \lambda '</math>ã®ãšãã«
<math>\lambda ' \fallingdotseq \lambda + \frac{h}{mc} (1 -\cos \theta )</math>
ãåŸãããã
ãã®åŒãå®éšåŒãšããäžèŽããã®ã§ãã³ã³ããã³ã®èª¬ã®æ£ããã¯å®èšŒãããã
----
* ã³ã³ããã³å¹æã®é£ç«æ¹çšåŒã®å
·äœçãªè§£æ³
ïŒç·šéè
ãž: èšè¿°ããŠãã ãããïŒïŒGimyamma ãããè§£æ³ãæžããŠã¿ãŸãããïŒ
----
åŒ(1.2a),(1.2b),(1.2c)ããã<math>v</math>ãš<math>\phi</math>ãæ¶å»ããŠã
<math>\lambda,\lambda ',\theta</math>ã®é¢ä¿åŒãæ±ããã°ããã
:â
°ïŒãŸããåŒ(1.2b),(1.2c)ãã<math>\phi</math>ãæ¶å»ããã
:åŒ(1.2b)ãã
:<math>(mv \cos \phi)^2 = (\frac{h}{\lambda}-\frac{h}{\lambda '} \cos \theta)^2
</math>
:åŒ(1.2c)ãã
:<math>(mv \sin \phi)^2 = (-\frac{h}{\lambda '} \sin \theta)^2</math>
:ãã®äž¡åŒãå ãããš
:<math>m^2 v^2 = (\frac{h}{\lambda}-\frac{h}{\lambda '} \cos \theta)^2+(-\frac{h}{\lambda '} \sin \theta)^2+\frac{h^2}{\lambda '^2}</math>
:ãã®å³èŸºãæŽé ãããšãææã®
:<math>m^2 v^2 =\frac{h^2}{\lambda^2}-2\frac{h^2}{\lambda \lambda '}\cos \theta
+\frac{h^2}{\lambda '^2}\quad</math> (1.2d)
ãåŸãã
:â
±ïŒåŒ(1.2d)ãåŒ(1.2e)ã«ä»£å
¥ããŠvãæ¶å»ãã:
åŒ(1.2a)ã®å³èŸºã®ç¬¬2é
ãå€åœ¢ããŠåŒ(1.2d)ã代å
¥ããã
:<math>\frac{1}{2}mv^2 =\frac{1}{2m}m^2v^2 = \frac{1}{2m}\bigl(\frac{h^2}{\lambda^2}-2\frac{h^2}{\lambda \lambda '}\cos \theta\bigr)+\frac{h^2}{\lambda '^2}</math>
ãããåŒ(1.2a)ã®å³èŸºã«ä»£å
¥ãããš
:<math>\frac{hc}{\lambda} = \frac{hc}{\lambda '} + \frac{1}{2m}\Bigl(\frac{h^2}{\lambda^2}-2\frac{h^2}{\lambda \lambda '}\cos \theta +\frac{h^2}{\lambda '^2}\Bigr)</math>
䞡蟺ã<math>hc</math>ã§å²ããš
:<math>\frac{1}{\lambda} = \frac{1}{\lambda '} + \frac{h}{2mc}\Bigl(\frac{1}{\lambda^2}-2\frac{1}{\lambda \lambda '}\cos \theta +\frac{1}{\lambda '^2}\Bigr)</math> (1.2e)
ãåŸãã
ãã®åŒã®å³èŸºã®ç¬¬2é
ã®æ¬åŒ§å
ãæ¬¡ã®ããã«å€åœ¢ããã
:<math>\frac{1}{\lambda^2}-2\frac{1}{\lambda \lambda '}\cos \theta +\frac{1}{\lambda '^2}=\bigl(\frac{1}{\lambda}-\frac{1}{\lambda'}\bigr)^2+\frac{2}{\lambda \lambda'}(1-\cos \theta)</math>
ãã®åŒãåŒ(1.2e)ã®å³èŸºç¬¬2é
ã«ä»£å
¥ãããš
:<math>\frac{1}{\lambda} = \frac{1}{\lambda '} +
\frac{h}{2mc}\Bigl(
\bigl(\frac{1}{\lambda}-\frac{1}{\lambda'}\bigr)^2+\frac{2}{\lambda \lambda'}(1-\cos \theta)
\Bigr)</math>
ãã®åŒã®å³èŸºã®ç¬¬ïŒé
ãç§»è¡ããåŒãå€åœ¢ãããš
:<math>\frac{\lambda'-\lambda}{\lambda\lambda '}=
\frac{h}{2mc}\Bigl(
\bigl(\frac{\lambda'-\lambda}{\lambda \lambda'}\bigr)^2+\frac{2}{\lambda \lambda'}(1-\cos \theta)
\Bigr)</math>
䞡蟺ã«<math>\lambda \lambda'</math>ãæãããš
:<math>\lambda'-\lambda=
\frac{h}{2mc}\Bigl(
\frac{(\lambda'-\lambda)^2}{\lambda \lambda'}+2(1-\cos \theta)
\Bigr)</math> (1.2f)
Xç·ã®æ£ä¹±ã§ã¯ã<math>\lambda'\fallingdotseq \lambda</math>ãªã®ã§
:<math>\frac{(\lambda'-\lambda)^2}{\lambda \lambda'}</math>ã¯ãæ³¢é·ã«æ¯ã¹ãŠéåžžã«å°ããå€ã«ãªãç¡èŠã§ããã
æ
ã«åŒ(1.2f)ãã
:<math>\lambda'-\lambda \fallingdotseq
\frac{h}{mc}
(1-\cos \theta)
\qquad</math> (1.2g)
ããã§ãææã®åŒãå°åºãããã
----
==== ç¯å²å€: å
åã®æµäœååŠçè§£éãšéåéå¯åºŠ ====
[[File:Photon-fluid-understanding jp.svg|thumb|400px|å
åã®æµäœååŠçè§£é]]
å
ã®éåé Pkgã»m/s=hΜ/ïœ ã«ã€ããŠã
ãŸã cPïŒhΜJ ãšå€åœ¢ããŠã¿ããšããé床ã«éåéãããããã®ããšãã«ã®ãŒã§ããããšããå
容ã®å
¬åŒã«ãªã£ãŠããã
ãããçè§£ãããããã²ãšãŸããå
ãç²åã§ãããšåæã«æµäœã§ãããšèããŠããã®é»ç£æ³¢ãåäœäœç©ãããã®éåépãæã£ãŠãããšããŠããã®æµäœã®éåéã®å¯åºŠïŒéåéå¯åºŠïŒã p ïŒkgã»m/sïŒ/m<sup>3</sup>ãšãããããã®å Žåã®é»ç£æ³¢ã¯æµäœãªã®ã§ãéåéã¯ããã®å¯åºŠã§èããå¿
èŠãããã
é»ç£æ³¢ãç©äœã«ç
§å°ããŠãå
ãç©äœã«åžåããããšããããåå°ã¯ãªããšããŠãå
ã®ãšãã«ã®ãŒã¯ãã¹ãŠç©äœã«åžåããããšãããç°¡åã®ãããç©äœå£ã«åçŽã«å
ãç
§å°ãããšãããç©äœãžã®å
ã®ç
§å°é¢ç©ãAm<sup>2</sup>ãšããã
é»ç£æ³¢ã¯å
é cm/s ã§é²ãã®ã ãããå£ããcã®è·é¢ã®éã«ãããã¹ãŠã®å
åã¯ããã¹ãŠåäœæéåŸã«åžåãããäºã«ãªããåäœæéã«å£ã«åžåãããå
åã®éã¯ããã®åäœæéã®ããã ã«å£ã«æµã蟌ãã å
åã®éã§ããã®ã§ã
å³ã®ããã«ãä»®ã«åºé¢ãAïœ<sup>2</sup>ãšããŠãé«ãhã c ïŒ hã®å€§ããã¯cã«çãããåäœæétïŒ1ãããããšããã° hïŒcã»1 ã§ããïŒïŒ»mãšããæ±ã®äœç©ãAÃcm<sup>3</sup>äžã«å«ãŸããå
åã®éã®ç·åã«çããã
ãã£ãœããéåéå¯åºŠã¯ pïŒkgã»m/sïŒ/m<sup>3</sup>ã ã£ãã®ã§ããã®æ± AÃh ã«å«ãŸããéåéã®ç·åã¯ã
AÃhÃpkgã»m/sã§ããã
å
ãåžåããç©äœã®éåéã¯ãåäœæéã«Ahpã®éåéãå¢å ããããšã«ãªãããhïŒcã§ãã£ãã®ã§ãã€ãŸããéåéãåäœæéãããã« Acpkgã»m/s ã ãå£ã«æµãããããšã«ãªãã
ãã£ãœãã髿 ¡ç©çã®ååŠã®çè«ã«ããããéåéã®æéãããã®å€åã¯ãåã§ãããã§ãã£ãã®ã§ãã€ãŸãç©äœã¯ãAïœpNã®åãåããã
åãåããã®ã¯ç
§å°ãããé¢ã ãããåNãé¢ç©ã§å²ãã°å§åã®æ¬¡å
N/m<sup>2</sup>ïŒïŒ»Paã«ãªãã
å®éã«é¢ç©ã§å²ãèšç®ãããã°ãå§åãšã㊠cpN/ïœ<sup>2</sup>ïŒ[Pa]ïŒ[J/ïœ<sup>3</sup>] ãåããäºãèšç®çã«åãããããã«ãå§åã®æ¬¡å
ã¯ïŒ»N/ïœ<sup>2</sup>ïŒ[Pa]ïŒ[J/ïœ<sup>3</sup>]ãšå€åœ¢ã§ããã®ã§ããå§åã¯ãåäœäœç©ãããã®ãšãã«ã®ãŒã®å¯åºŠ(ããšãã«ã®ãŒå¯åºŠããšãã)ã§ããããšèãããã
ãšããã° cp ã®æ¬¡å
ã¯ãå§åïŒïŒ»ãšãã«ã®ãŒå¯åºŠïŒœ ãšãªãã
ãã®ãšãã«ã®ãŒå¯åºŠã«ãhΜã察å¿ããŠãããšèããã°ãåççã§ããã
èŠããã«ãå
ã®ãããªãäºå®äžã¯ç¡éã«å§çž®ã§ããæ³¢ã»æµäœã§ã¯ã
å
¬åŒãšããŠãé床ãvãéåéå¯åºŠãpããšãã«ã®ãŒå¯åºŠãεãšããŠèããã°ã
:vpïŒÎµ
ãšããé¢ä¿ããªããã€ã
ïŒãªããæ°Žã空æ°ã®ãããªæ®éã®æµäœã§ã¯ãç¡éã«ã¯å§çž®ã§ããªãã®ã§ãäžèšã®å
¬åŒã¯æãç«ããªããïŒ
ãããããã³ã³ããã³å¹æã®åŠç¿ã§åãã£ãéåéã®å
¬åŒ <math>p=\frac{h\nu}{c}</math> ã¯ãéåéå¯åºŠãšãšãã«ã®ãŒå¯åºŠã®é¢ä¿åŒã«ãå
écãšå
é»å¹æã®ãšãã«ã®ãŒhΜã代å
¥ãããã®ã«ãªã£ãŠããã
äžèšã®èå¯ã¯ãå
ãæµäœãšããŠèããé»ç£æ³¢ã®éåéã ããç²åãšããŠè§£éãããå
åã®éåéã«ãã
ïœPïŒhΜ ãšããé¢ä¿ãæãç«ã€ãšèãããã
ããèªè
ããå§åããšãã«ã®ãŒå¯åºŠãšèããã®ãåããã¥ãããã°ãããšãã°ç±ååŠã®ä»äºã®å
¬åŒ W=Pâ¿V ã®é¡æšãããŠã¯ã©ããïŒ ãªããäžèšã®éåéãšãšãã«ã®ãŒã®é¢ä¿åŒã®å°åºã¯å€§ãŸããªèª¬æã§ãããæ£ç¢ºãªå°åºæ³ã¯ãïŒå€§åŠã§ç¿ãïŒãã¯ã¹ãŠã§ã«ã®æ¹çšåŒã«ãããªããã°ãªããªãã
ããããã ãå
ã¯ãé»åã«äœçšãããšãã«ãå
ãç²åãšããŠæ¯èãïŒãµããŸãïŒã ãšããã®ãæ£ããã ããã
ãã£ãœãããã¿ããã«ãå
ã¯ç²åïŒãå
ã¯æ³¢åã§ã¯ãªãïŒïŒãïŒÃïŒãšãããã®ã¯ãåãªã銬鹿ã®ã²ãšã€èŠãã§ããã
ãã¯ã¹ãŠã§ã«ã®æ¹çšåŒã§ã¯ãå
ïŒé»ç£æ³¢ïŒã¯æ³¢åãšããŠããã€ããã®ã§ããã
ããããå
é»å¹æã§èµ·ããçŸè±¡ã§ã¯ãæŸåºé»åã®ãã€éåãšãã«ã®ãŒã¯ãå
ã®åŒ·åºŠãšã¯ç¡é¢ä¿ã§ãããåçŽãªæµäœãšããŠèãããªããïŒããšãã°éå
ããããå
ãéãããããŠãïŒå
ã®åŒ·åºŠãäžããã°ãéåéå¯åºŠãäžããããºã ãããã®åž°çµã®æŸåºé»åã®ãšãã«ã®ãŒå¯åºŠãäžããããºã ããããšããäºæž¬ãæãç«ã¡ããã ãããããå®éšçµæã¯ãã®äºæž¬ãšã¯ç°ãªããå
é»å¹æã¯å
ã®åŒ·åºŠãšã¯ç¡é¢ä¿ã«å
ã®åšæ³¢æ°ã«ãã£ãŠæŸåºé»åã®ãšãã«ã®ãŒã決ãŸããã»ã»ã»ãšããã®ããå®éšäºå®ã§ããã
ãã®ãããªå®éšçµæããã20äžçŽåé ã®åœæãåèããŠããéåååŠãªã©ãšé¢é£ã¥ããŠããå
ãæ³¢ã§ãããšåæã«ç²åã§ããããšæå®ããã®ãããŒãã«è²¡å£ãªã©ã§ãããå
é»å¹æãå
ã®ç²åèª¬ã®æ ¹æ ã®ã²ãšã€ãšããã®ãã¢ã€ã³ã·ã¥ã¿ã€ã³ã®ä»®èª¬ã§ãããã¢ã€ã³ã·ã¥ã¿ã€ã³ã®ãã®ä»®èª¬ãå®èª¬ãšããŠèªå®ããã®ãããŒãã«è²¡å£ã§ãããçŸåšã®ç©çåŠã§ã¯ãå
é»å¹æãå
åèª¬ã®æ ¹æ ãšããŠé説ã«ãªã£ãŠããã
å
é»å¹æã®å®éšçµæãã®ãã®ã¯ãåã«ãå
é»å¹æã«ããããå
ãããåçŽãªæµäœã»æ³¢åãšããŠã¯èããããªãã ããã»ã»ã»ãšããã ãã®äºã§ããã
çµå±ãç©çåŠã¯å®éšç§åŠã§ãããå®éšçµæã«ããšã¥ãå®éšæ³åãèŠãããããªãããå
åããšããã¢ã€ãã¢ã¯ããå
é»å¹æã®æŸåºé»å1åãããã®ãšãã«ã®ãŒã¯ãå
¥å°å
ã®åŒ·åºŠã«å¯ãããå
ã®æ³¢é·ïŒåšæ³¢æ°ïŒã«ããããšããäºãèŠããããããããã®ææ®µã«ããããã¢ã€ã³ã·ã¥ã¿ã€ã³ãšãã®æ¯æè
ã«ãšã£ãŠã¯ããå
ã®ç²å説ããšããã®ããèŠããããããããã®ã¢ãã«ã ã£ãã ãã§ããïŒç²åãªã®ã«æ³¢é·ïŒåšæ³¢æ°ïŒãšã¯ãæå³äžæã ãïŒããããŠéåéå¯åºŠãšãšãã«ã®ãŒå¯åºŠã®é¢ä¿ vpïŒÎµ ãšããç¥èããŸããå
é»å¹æã®å
¬åŒ cPïŒhΜ ãèŠããããããããã®ææ®µã«ãããªãã
ãã£ããã®å
ã¯ãåçŽãªæ³¢ã§ããªããåçŽãªç²åã§ããªãããã åã«ãå
ã¯å
ã§ãããå
ã§ãããªãã
ãå
ã®ç²å説ããšããã®ã¯ãç空äžã§åªè³ªïŒã°ããã€ïŒããªããŠãå
ãäŒããããšããçšåºŠã®æå³åãã§ãããªãã ãããã¢ã€ã³ã·ã¥ã¿ã€ã³ãç¹æ®çžå¯Ÿæ§çè«ãçºè¡šããåãŸã§ã¯ãïŒ20äžç€ä»¥éããçŸä»£ã§ã¯åŠå®ãããŠããããïŒãã€ãŠããšãŒãã«ããšããå
ãäŒããåªè³ªã®ååšãä¿¡ããããŠããããããã¢ã€ã³ã·ã¥ã¿ã€ã³ã¯çžå¯Ÿæ§çè«ã«ããããšãŒãã«ã®ååšãåŠå®ããã
ãå
ã®ç²å説ããçºè¡šããŠããè
ãåããã¢ã€ã³ã·ã¥ã¿ã€ã³ã ã£ãã®ã§ãããŒãã«è²¡å£ã¯ãæ¬æ¥ãªãç¹çžå¯Ÿæ§çè«ã§ããŒãã«è³ãæãããããã«ãå
å説ã§ããŒãã«è³ãã¢ã€ã³ã·ã¥ã¿ã€ã³ã«æããã ãã ãã
=== ç²åã®æ³¢åæ§ ===
==== ç©è³ªæ³¢ ====
ç©çåŠè
ãã»ããã€ã¯ãæ³¢ãšèããããŠãå
ãç²åã®æ§è³ªããã€ãªãã°ããã£ãšé»åãç²åãšããŠã®æ§è³ªã ãã§ãªããé»åãæ³¢åã®ããã«æ¯èãã ãããšèããã
ãããŠãé»åã ãã§ãªããäžè¬ã®ç²åã«å¯ŸããŠãããã®èããé©çšããæ¬¡ã®å
¬åŒãæå±ããã
:質émãéãvã®ç²åã¯æ³¢åæ§ããã¡ããã®æ³¢é·ã¯æ¬¡åŒã§äžããããã
:<math>\lambda = \frac h {mv} </math>
ããã¯ãã»ããã€ã«ãã仮説ã§ãã£ãããçŸåšã§ã¯æ£ãããšèªããããŠããã
ãã®æ³¢ã¯ã'''ç©è³ªæ³¢'''ïŒmaterial waveïŒãšåŒã°ããã'''ãã»ããã€æ³¢'''ïŒde Broglie wave lengthïŒãšãããã
ããªãã¡ãå
åãé»åã«éãããããããç©è³ªã¯ç²åæ§ã𿳢忧ããããæã€ãšãããã
ãã®ç©è³ªæ³¢ãšãã説ã«ãããšããããé»åç·ãç©è³ªã«åœãŠãã°ãåæãªã©ã®çŸè±¡ãèµ·ããã¯ãã§ããã
1927幎ã1928幎ã«ãããŠãããããœã³ãšã¬ãŒããŒã¯ãããã±ã«ãªã©ã®ç©è³ªã«é»åç·ãåœãŠãå®éšãè¡ããXç·åæãšåæ§ã«é»åç·ã§ãåæãèµ·ããããšãå®èšŒãããæ¥æ¬ã§ã1928幎ã«èæ± æ£å£«ïŒããã¡ ãããïŒã鲿¯çã«é»åç·ãåœãŠãå®éšã«ããåæãèµ·ããããšã確èªããã
é»åç·ã®æ³¢é·ã¯ãé«é»å§ããããŠé»åãå éããŠé床ãé«ããã°ãç©è³ªæ³¢ã®æ³¢é·ã¯ããªãå°ããã§ããã®ã§ãå¯èŠå
ã®æ³¢é·ãããå°ãããªãã
ãã®ãããå¯èŠå
ã§ã¯èŠ³æž¬ã§ããªããã£ãçµæ¶æ§é ããé»åæ³¢ãXç·ãªã©ã§èŠ³æž¬ã§ããããã«ãªã£ããçç©åŠã§ãŠã€ã«ã¹ãé»åé¡åŸ®é¡ã§èŠ³æž¬ã§ããããã«ãªã£ãã®ããé»åã®ç©è³ªæ³¢ãå¯èŠå
ããã倧å¹
ã«å°ããããã§ããã
=== ç²åãšæ³¢åã®äºéæ§ ===
{{ã³ã©ã |åè: é»åããŒã ã«ããæ³¢åæ§ã®å¹²æžå®éš|
[[Image:Egun.jpg|thumb|250px|right|ãã©ãŠã³ç®¡ã®é»åé]]
[[ãã¡ã€ã«:double-slit.svg|thumb|right|350px|é»åã®äºéã¹ãªããã®å¹²æžå®éš]]
[[ãã¡ã€ã«:Doubleslitexperiment_results_Tanamura_1.gif|thumb|left|250px|äºéã¹ãªããå®éšã®çµæ]]
:ïŒâ» æ€å®æç§æžã§ç¿ãç¯å²å
ã§ããïŒ
é»åéïŒã§ãããã
ãïŒãšããå®éšè£
眮ããããéãšãã£ãŠããã¹ã€ã«SFã®ãããªå
µåšã§ã¯ãªããé»åéãšã¯åã«é»åãæŸåºããã ãã®è£
眮ã§ããã
ããŠããã®é»åéããã¡ããŠã1åã¥ã€é»åãåœãŠãå®éšããäºéã¹ãªããã䜿ã£ãŠå®éšãããšãå³ã®ããã«ãæ³¢åã®ããã«ãé»åã®å€ãåœãã£ãå Žæãšé»åã®å°ãªãåœããå Žæãšã®çžæš¡æ§ãã§ããã
{{-}}
ãã®ããã«ãé»åã«ãç²åæ§ã𿳢忧ããããé»åã¯ç²åã§ããã€ã€ãäºéã¹ãªããã«åãã£ãŠé»åãæã¡èŸŒããšå¹²æžãèµ·ãããšããæ³¢åæ§ãæã£ãŠããã
}}
äžè¿°ã®ãããªãããŸããŸãªå®éšã®çµæããããã¹ãŠã®ç©è³ªã«ã¯ãååãŠãã©ã®å€§ããã®äžçïŒä»¥éãåã«ãååã¹ã±ãŒã«ããªã©ãšç¥èšããïŒã§ã¯ãæ³¢åæ§ãšç²åæ§ã®äž¡æ¹ã®æ§è³ªããã€ãšèããããŠããã
ãã®ããšã'''ç²åãšæ³¢åã®äºéæ§'''ãšããã
* åè: äžç¢ºå®æ§åç
[[File:Bundesarchiv Bild183-R57262, Werner Heisenberg.jpg|thumb|ç©çåŠè
ãã€ãŒã³ãã«ã° <br>äžç¢ºå®æ§åçã®äž»èŠãªæå±è
ã§ããã]]
ãããŠãååã¹ã±ãŒã«ã§ã¯ãããäžã€ã®ç©è³ªïŒäž»ã«é»åã®ãããªç²åïŒã«ã€ããŠããã®äœçœ®ãšéåéã®äž¡æ¹ãåæã«æ±ºå®ããäºã¯ã§ããªãããã®ããšã'''äžç¢ºå®æ§åç'''ïŒãµãããŠããã ãããïŒãšããã
{{-}}
== ååã»ååæ žã»çŽ ç²å ==
===åå===
[[File:Geiger-Marsden experiment expectation and result (Japanese).svg|right|400px|thumb|]]
ç©çåŠè
ã¬ã€ã¬ãŒãšç©çåŠè
ããŒã¹ãã³ã¯ãïŒã©ãžãŠã ããåºããïŒÎ±ç²åããããéã±ãã«åœãŠãå®éšãè¡ããαç²åã®æ£ä¹±ã®æ§åã調ã¹ããïŒãªããαç²åã®æ£äœã¯ããªãŠã ã®ååæ žãïŒãã®çµæãã»ãšãã©ã®Î±ç²åã¯éã±ããçŽ éãããããéã±ãäžã®äžéšã®å Žæã®è¿ããéã£ãαç²åã ãã倧å¹
ã«æ£ä¹±ããçŸè±¡ãçºèŠããã
ãã®å®éšçµæããã©ã¶ãã©ãŒãã¯ãååæ žã®ååšãã€ããšããã
ååã¯ãäžå¿ã«ååæ žãããããã®ãŸãããé»åãéåãããšããã©ã¶ãã©ãŒãã¢ãã«ãšãã°ããã¢ãã«ã«ãã£ãŠèª¬æãããã
ååïŒatomïŒã¯ãå
šäœãšããŠã¯é»æ°çã«äžæ§ã§ãããè² ã®é»è·ãæããé»åãé»åæ®»ã«æã€ã
ããã§ãããªã«ã³ã®å®éš ã«ããçµæãªã©ãããé»åã®è³ªéã¯æ°ŽçŽ ã€ãªã³ã®è³ªéã®çŽ1/1840çšåºŠãããªãããšãåãã£ãŠããã
ããªãã¡ãååã¯é»åãšéœã€ãªã³ãšãå«ãŸãããã質éã®å€§éšåã¯éœã€ãªã³ããã€ããšãåããã
ååæ žã®å€§ããã¯ååå
šäœã®1/10000çšåºŠã§ãããããååã®å€§éšåã¯ç空ã§ããã
ååæ žã¯ãæ£ã®é»è·ããã€Zåã®éœåïŒprotonïŒãšã黿°çã«äžæ§ãª(AâZ)åã®äžæ§åïŒneutronïŒãããªãã
éœåãšäžæ§åã®åæ°ã®åèšãè³ªéæ°ïŒmass numberïŒãšããã
éœåãšäžæ§åã®è³ªéã¯ã»ãŒçãããããååæ žã®è³ªéã¯ãè³ªéæ°Aã«ã»ãŒæ¯äŸããã
==== æ°ŽçŽ ååã®ã¹ãã¯ãã« ====
髿ž©ã®ç©äœããçºå
ãããå
ã«ã¯ãã©ã®ïŒå¯èŠå
ã®ïŒè²ã®æ³¢é·ïŒåšæ³¢æ°ïŒãããããã®ãããªé£ç¶çãªæ³¢é·ã®å
ãé£ç¶ã¹ãã¯ãã«ãšããã
ãã£ãœãããããªãŠã ãæ°ŽçŽ ãªã©ã®ãç¹å®ã®ç©è³ªã«é»å§ãããããæŸé»ãããšãã«çºå
ããæ³¢é·ã¯ãç¹å®ã®æ°æ¬ã®æ³¢é·ããå«ãŸããŠãããããã®ãããªã¹ãã¯ãã«ãèŒç·ïŒãããïŒãšããã
ãã«ããŒã¯ãæ°ŽçŽ ååã®æ°æ¬ããèŒç·ã®æ³¢é·ããæ¬¡ã®å
¬åŒã§è¡šçŸã§ããããšã«æ°ã¥ããã
:<math>\lambda = 3.65 \times 10^{-7} \mathrm{m} \times \left( {n^2 \over n^2 - 4} \right).\quad(n=3,\ 4,\ 5,\ 6,\cdots\cdots)</math> (2.1)
äžåŒäžã®ãmãã¯ã¡ãŒãã«åäœãšããæå³ãïŒäžåŒã®mã¯ä»£æ°ã§ã¯ãªãã®ã§ãééããªãããã«ãïŒ
ãã®åŸãæ°ŽçŽ ä»¥å€ã®ååããå¯èŠå
以å€ã®é åã«ã€ããŠããç©çåŠè
ãã¡ã«ãã£ãŠèª¿ã¹ãããæ¬¡ã®å
¬åŒãžãšãç©çåŠè
ãªã¥ãŒãããªã«ãã£ãŠããŸãšããããã
:<math>\frac{1}{\lambda} =R \left( \frac{1}{m^2} -\frac{1}{n^2} \right).\ \left(\begin{array}{lcl}m =1,\ 2,\ 3,\cdots\cdots, \\ n = m+1,\ m+2,\ m+3,\cdots\cdots \end{array}\right)</math> (2.2)
äžåŒã®Rã¯ãªã¥ãŒãããªå®æ°ãšããã<math>R=1.097 \times 10^7</math>/mã§ããã
==== éåè«ãšååã®æ§é ====
[[File:Stationary wave Quantum rule in atom.svg|thumb|300px|ååå
ã®å®åžžæ³¢]]
ã©ã¶ãã©ãŒãã®ååæš¡åã«åŸãã°ãé»åã¯ããŸãã§ææã®å
¬è»¢ã®ããã«ååæ žãäžå¿ãšããåè»éã®äžãäžå®ã®é床ã§éåããã
:åéåãã質ç¹ã¯å é床ããã€ã®ã§ããã®ã¢ãã«ã®é»åã¯å é床éåãç¶ããããšã«ãªãã
:ãšãããå€å
žé»ç£æ°åŠã®åéã§ãå é床éåããããªãé»è·ã¯é»ç£æ³¢ãæŸåºããŠããšãã«ã®ãŒã倱ããšããæ³åãæ¢ã«çºèŠãããŠããã
:ãã®æ³åã«ããã°ãååæ žã®åšãããŸããé»åã¯é»ç£æ³¢ãæŸåºãç¶ãããšãã«ã®ãŒãçµ¶ããæžãããŠãããããã«ã€ããŠé»åã¯ååæ žã«åããŠèœäžããŠãããããååæ žãšã®è·é¢ãå°ããããªããååæ žã®åšããå転ãããããŠååæ žã«è¡çªããŠããŸããåè»éã®äžãå®å®çã«éåããããšã¯äžå¯èœãªã®ã§ããã
:ç©çåŠè
ããŒã¢ã¯ã©ã¶ãã©ãŒãã®ååæš¡åã®æ·±å»ãªççŸãå
æããããã«æ°ŽçŽ ååã®æŸåºããç·ã¹ãã¯ãã«ã«ã€ããŠã説æã§ããååæš¡åãäœãããã
:ãã©ã³ã¯ã®æå±ãããšãã«ã®ãŒéååã®èããšã¢ã€ã³ã·ã¥ã¿ã€ã³ã®å
éåè«ãåãå
¥ãã倧èãªä»®èª¬ãç«ãŠã(1913幎ïŒã
*仮説1ïŒé忡件
ååæ žãäžå¿ãšããååŸïœ[m]ã®åè»éãéãïœ[m/s]ã§å転ããé»åã®è»éè§éåé<math>rp=mrv</math>ã¯<math>\frac{h}{2\pi}</math>ã®æ£æŽæ°åãããšãããªãïŒããªãã¡
:<math>mrv=n\frac{h}{2\pi} \quad (n=1,\ 2,\ 3,\cdots\cdots)</math> (2.3)
ãæºãããã°ãªããªãïŒè§éåéã®éååïŒããã®ç¶æ
ã'''å®åžžç¶æ
'''ïŒãã®æ¡ä»¶ã'''é忡件'''ãšããã
:ããã§ãm[kg]ã¯é»åã®è³ªéããh㯠[[w:ãã©ã³ã¯å®æ° |ãã©ã³ã¯å®æ°]]ã§ããã
:ãã®ããŒã¢ã®åŒã®æ£æŽæ°nã'''éåæ°'''ïŒããããããïŒãšããã
åŸå¹Ž(1924幎ïŒããã»ããã€ã¯ãç©è³ªç²åã¯æ³¢åæ§ãæã¡ããã®æ³¢ïŒç©è³ªæ³¢ïŒã¯ãæ³¢é·
:<math>\lambda=\frac{h}{p}=\frac{h}{mv}</math>
ããã€ããšæå±ããããŸãïŒ(2.3)ãå€åœ¢ãããš
:<math>2\pi r=n\frac{h}{mv}=n\lambda</math>.
ãããã¯é»åã®è»éäžåšã®é·ããé»åã®ç©è³ªæ³¢ã®æ³¢é·ã®æ£æŽæ°åã®ãšãïŒé»åæ³¢ã¯å®åžžæ³¢ã«ãªãããšã瀺ããŠããã
:ããã¯ãåè»éäžã«å®åžžæ³¢ãã§ããããã®æ¡ä»¶ãšåãã§ããã
:â» æ€å®æç§æžã§ããããŒã¢ã®åŒã®è¡šèšã¯ãé床vãã€ãã£ãŠè¡šããã衚èšã§ããã
*仮説2ïŒæ¯åæ°æ¡ä»¶
é»åã¯ããããŸã£ããšã³ãšã³ã®ãšãã«ã®ãŒããæããªãããã®ãšã³ãšã³ã®ãšãã«ã®ãŒå€ããšãã«ã®ãŒé äœãšããã
:é»åããšãã«ã®ãŒé äœã<math>E'</math>ãã<math>E(<E')</math>ã«é·ç§»ããïŒãšãã«ã®ãŒã倱ã)ãšãã«ã¯ã<math>E'-E=h\nu</math>ã§ããŸãæ¯åæ°<math>\nu</math>ã®äžåã®å
åãæŸåºãã
:éã«ãšãã«ã®ãŒé äœEã®é»åãå€éšãããšãã«ã®ãŒ<math>h\nu = E'-E</math>ãåŸããšããšãã«ã®ãŒé äœE'ã«é·ç§»ããã
==== ãšãã«ã®ãŒæºäœ ====
[[File:Circular-motion-electron-in-atom jp.svg|thumb|400px|æ°ŽçŽ ååå
ã§ã®é»åã®åéå]]
æ°ŽçŽ ååã«ãããŠãé»åè»éäžã«ããé»åã®ãšãã«ã®ãŒãæ±ããèšç®ããããããŸãããã®ããã«ã¯ãååã®ååŸãæ±ããå¿
èŠãããã
* ååŸ
æ°ŽçŽ ã®é»åãååæ ž<math>H^+</math>ãäžå¿ãšããååŸïœã®åè»éäžãäžå®ã®é床ïœã§éåããŠãããšããã°ãéåæ¹çšåŒã¯
:<math> m \frac{v^2}{r} = k_0 \frac {e^2}{r^2} </math>
ã§è¡šãããã
äžæ¹ãé»åãå®åžžæ³¢ã®æ¡ä»¶ãæºããå¿
èŠãããã®ã§ãåé
ã®åŒïŒïŒïŒããã
:<math> v (= v_n) = \frac {nh}{2 \pi m r } \qquad \qquad (2)</math>
ã§ããã
ãã®vãããã»ã©ã®åéåã®åŒã«ä»£å
¥ããŠæŽé ããã°ã
:<math> r(=r_n) = \frac {h^2}{4 \pi ^2 k_0 me^2} n^2\qquad \qquad (3)</math>
ïŒãã ããnïŒ1, 2 , 3 ,ã»ã»ã»ïŒ
ã«ãªããããããŠãæ°ŽçŽ ååã®é»åã®è»éååŸãæ±ãŸãã
ããã»ã©ã®è»éååŸã®åŒã§nïŒ1ã®ãšãååŸr<sub>1</sub>ããããŒã¢ååŸããšããã
* ãšãã«ã®ãŒæºäœ
ååã®äžçã§ããéåãšãã«ã®ãŒKãšäœçœ®ãšãã«ã®ãŒUã®åãããšãã«ã®ãŒã§ããã
äœçœ®ãšãã«ã®ãŒUã¯ããã®æ°ŽçŽ ã®é»åã®å Žåãªããé黿°ãšãã«ã®ãŒãæ±ããã°å
åã§ãããé»äœã®åŒã«ãã£ãŠæ±ããããŠã
:<math> U = - k_0 \frac {e^2}{r}</math>
ãšãªãã
éåãšãã«ã®ãŒKã¯ã<math> K = \frac{1}{2}mv^2</math>ãªã®ã§
:<math> E = K+U = \frac{1}{2}mv{}^2 - k_0 \frac {e^2}{r}</math>
äžåŒã®å³èŸºç¬¬äžé
ã«ã
:åéåã®æ¹çšåŒ<math> m \frac{v^2}{r} = k_0 \frac {e^2}{r^2} </math>ã®äž¡èŸºã«ïœãæãã
<math> m v^2 = k_0 \frac {e^2}{r} </math>ã代å
¥ããã°ã
:<math>E(= E_n )= K+U = \frac{1}{2} k_0 \frac {e^2}{r}- k_0 \frac {e^2}{r} = - \frac{k_0e^2}{2r} </math>
ãšãªãã
ããã«ãããã«é»åã®è»éååŸ<math>r=r_n</math>ã®åŒ(3)ã代å
¥ããã°ã
:<math>E(=E_n) = -\frac{2\pi ^2 k_0{}^2 me^4} {h^2} \frac{1}{n^2} \quad (n=1,2,3,,,) \qquad \qquad (4)</math>
ãšãªãããããæ°ŽçŽ ååã®ãšãã«ã®ãŒæºäœã§ããã
ãšãã«ã®ãŒæºäœã®å
¬åŒãããèŠããšããŸãããšãã«ã®ãŒãããšã³ãšã³ã®å€ã«ãªãããšãåããããŸãããšãã«ã®ãŒãè² ã«ãªãäºããããã
nïŒ1ã®ãšããããã£ãšããšãã«ã®ãŒã®äœãç¶æ
ã§ããããã®ãããnïŒ1ã®ãšããå®å®ãªç¶æ
ã§ããããã£ãŠãé»åã¯éåžžãnïŒ1ã®ç¶æ
ã«ãªãã
ãªãã
:<math> -\frac{2\pi ^2 k_0{}^2 me^4} {h^2}</math>ã«è«žå®æ°ã®å€ãå
¥ããŠèšç®ãããš
:<math> - \frac{13.6}{n^2} \ \ \mathrm{eV}</math>ãšãªãã®ã§ã
:æ°ŽçŽ ååã®ãšãã«ã®ãŒé äœã¯
:<math>E(=E_n) = - \frac{13.6}{n^2} \ \ \mathrm{eV}</math>ãšæžããã
:<math>E_1</math>ã¯ãçŽ 13.6 eV ã«ãªãããããã¯æ°ŽçŽ ã®ã€ãªã³åãšãã«ã®ãŒã®å€ã§ãããããã¯ãå®éšå€ã«ããããäžèŽããã
=====ãæ°ŽçŽ ååã®ã¹ãã¯ãã«ã®çµéšåŒã®çè«çå°åº =====
æ°ŽçŽ ååã®çºããå
ã®ã¹ãã¯ãã«ã®å®æž¬å€ã衚ããªã¥ãŒãããªã®çµéšåŒã«ã€ããŠã¯ãæ¢ã«ãæ°ŽçŽ ååã®ã¹ãã¯ãã«ãã®é
ã§ã§èª¬æããã
:ããŒã¢ã®æ°ŽçŽ ååã¢ãã«ã«åºã¥ããŠåŸããããšãã«ã®ãŒé äœãšæ¯åæ°æ¡ä»¶ã®ä»®èª¬ãçšããã°ããã®åŒã以äžã®ããã«çè«çã«å°åºã§ããã
:ä»»æã®æ£æŽæ°ïœãïœïŒïŒïœïŒãèããã
:ãããšãæ¯åæ°æ¡ä»¶ã®ä»®èª¬ã«ãã
é»åããšãã«ã®ãŒé äœ<math>E_n</math>ãããäœããšãã«ã®ãŒé äœ<math>E_m</math>ã«é·ç§»ãããšãã«ãæ¯åæ°
<math>\nu=\frac{E_n-E_m}{h}</math>
ã®å
åãäžåæŸåºããã
:ãã®å
åã®æ³¢é·Î»ã¯
<math>\frac{1}{\lambda} = \frac{E_n-E_m}{ch}</math>
ã§äžããããã®ã§ãå³èŸºã®ãšãã«ã®ãŒé äœã«åŒïŒïŒïŒã代å
¥ãããš
:<math>\frac{1}{\lambda} = \frac{2\pi ^2 k_0{}^2 me^4} {ch^3}(\frac{1}{m^2}-\frac{1}{n^2}) \qquad \qquad (5)</math>
ãåŸãããã
<math>{\bf R}\triangleq \frac{2\pi ^2 k_0{}^2 me^4} {ch^3}</math>
ã§ããªã¥ãŒãããªå®æ°Rãå®çŸ©ãããšãåŒ(5)ã¯
:<math>\frac{1}{\lambda} = {\bf R}(\frac{1}{m^2}-\frac{1}{n^2}) \qquad \qquad (5')</math>
Rã®å®çŸ©åŒäžã®è«žå®æ°ã«å€ããããŠèšç®ãããš
:<math>{\bf R}=1.097\times 10^7 \ [1/m] \qquad \qquad \qquad (6)</math>
é©ãã¹ãããšã«ããªã¥ãŒãããªã®çµéšåŒããèŠäºã«å°åºã§ããã®ã§ããã
ããã¯ãããŒã¢ã®ä»®èª¬ã®åŠ¥åœæ§ã瀺ããã®ãšèšãããã
{{ã³ã©ã |éä¿çãªãå
ã¯ç²åã§ããæ³¢ã§ããããšãã説æ ïŒâ» ç¯å²å€ïŒ|
ç²åãšæ³¢åã®äºéæ§ã«ã€ããŠã®ãå
ã¯ç²åã§ããæ³¢ã§ããããšãã説æã¯ãåããããããæå³ãåéãããããã
ããæ£ããã¯ã
ãååã¹ã±ãŒã«ãŠãã©ã®ç©ççŸè±¡ãæ±ããšãã¯ãå€å
žç©çã®ãããªïŒäººéã®èçŒã§ã芳å¯ã§ããçšåºŠã®å€§ããã®ïŒå·šèŠçãªåéã®ãç²åããšãæ³¢ãã§ã¯ãåºå¥ã§ããªãçŸè±¡ã«ãééãããããšã§ãèšãã»ãããããæ£ç¢ºã§ããã
å®éšäºå®ãšããŠã®ãå
ãã¯ãå·šèŠçãªåéã§ã¯åºæ¬çã«ã¯ãå
ãã¯æ³¢ã®æ§è³ªããã€ãããããå·šèŠçã§ãªãååãªã©ã®åŸ®çްãªç²åãžã®ãå
ãã®äœçšãªã©ãèããå Žåã«ã¯ãå
é»å¹æã®ããã«äžå®ã®ãšãã«ã®ãŒã®ãããŸãæ¯ã«äžé£ç¶ã«äœçšããçŸè±¡ãããããã§ãããããé£ç¶éã§ããïŒå€å
žçãªïŒæ³¢ãšã¯æ§è³ªãéãã
ããšãã£ãŠãååã«åœããæ³¢ã¯åŸ®èŠçã ãããšãã£ãŠãååã«åœãã£ããæ³¢ãããã£ããŠè³ªéããã€ããã«ãªãããã§ãªãã質éã«ã¯ã€ããŠã¯å€å
žçãªæ³¢ãšåæ§ã«ãååã¹ã±ãŒã«ã®åŸ®èŠçãªæ³¢ã§ãã質éã¯æããªãã
ãã®ããã«ååã¹ã±ãŒã«ã®åŸ®èŠçãªãæ³¢ãã§ãã質éã«ã€ããŠã¯ãå€å
žçãªæ³¢ãšå
±éãããæ³¢ããã®ãã®ã¯è³ªéããããªãã
ãã®ããã«ãååã¹ã±ãŒã«ã®æ³¢ã«ãããŠãã質éãªã© ããã€ãã®æ§è³ªã§ã¯ãå·šèŠã¹ã±ãŒã«ãšã²ãã€ã¥ãåæ§ã®æ§è³ªããã£ãŠããèŠçŽ ãããã
åæ§ã«ãé»ç£æŸå°ã®åé¡ã®ããã«ãé»åãæ³¢ã®æ§è³ªããã€ãçŸè±¡ããããããããé»åã¯è³ªéããã€ããŸããååŠçµåã®ããã«ã¯ïŒååŠ1ã®ææ¥ã§ãç¿ãããã«ïŒã䟡é»åããšããé»åã®ç²å1åãã€ã®åäœãèããã®ã§ããããããã®ããã«ååã¹ã±ãŒã«ã§ãã£ãŠããé»åã¯å€å
žçãªç²åãšå
±éããæ§è³ªã ããã€ãæã£ãŠããã
ããããååããã®é»ç£æŸå°ã®ãªãããšããè«ççã«èšããããšã¯ãåã«ãå·šèŠçãªåéãšãååã®ãããªåŸ®èŠçãªåéã§ã¯ããæ³åãéãããšããäºã ãã§ããããã®äºã ãã§ã¯ãå¿
ããããé»åã¯æ³¢ã§ããããšã¯æå®ã§ããªãããºã§ããã®ã ããããã人é¡ã¯ãç©è³ªæ³¢ãªã©ãã®ä»ã®å®éšçµæãããšã«ã人é¡ã¯ãé»åã¯æ³¢ã§ããããšä»®å®ããŠã20äžçŽåé ããã«ç©çåŠã®æ°çè«ïŒåœæïŒãçè«æ§ç¯ãããããçŸä»£ã§ãç¶ããŠããã
}}
:(â» ç¯å²å€: 倧åŠã®ç¯å²) å®éã®ç¹æ§ã¹ãã¯ãã«ã®æ³¢é·ã¯ãååå
éšã®é»åã®åœ±é¿ã«ãããè¥å¹²ããºã¬ãããããã£ãå
éšé»åã®è£æ£ãèæ
®ããããã粟床ã®é«ãåŒãšããŠãã¢ãŒãºãªãŒã®å
¬åŒããšããã®ãç¥ãããŠããããªãæŽå²çãªé åºã¯ãäžè¿°ã®èª¬æã®é åºãšã¯éã§ããããã€ã¯å
ã«ã¢ãŒãºãªãŒã®åŒãçºèŠãããããšãããã¢ãŒãºãªãŒãšã¯å¥ã«ç¬ç«ã«ç ç©¶ãããŠããäžè¿°ã®ãããªããŒã¢ãã©ã¶ãã©ãŒãã®çè«ãçšãããšãã¢ãŒãºãªãŒã®å
¬åŒãããŸã説æã§ãããšããäºãç©çåŠè
ã³ãã»ã«ã«ãã£ãŠçºèŠããã<ref>å±±æ¬çŸ©éãååã»ååæ žã»åååãã岩波æžåºã2015幎3æ24æ¥ ç¬¬1å·ã140ããŒãž</ref>ããªãã¢ãŒãºãªãŒã®å
¬åŒã«ã€ããŠèª¿ã¹ãããªãã倧åŠç§åŠã®éåååŠãªã©ã®ç§ç®åã®æç§æžã«èšèŒãããã ããã
==== åºåºç¶æ
ãšå±èµ·ç¶æ
====
ïŒâ» æªèšè¿°ïŒ
=== ååæ ž ===
==== ååæ žã®æ§é ====
ååæ žã¯ãéœåãšäžæ§åããã§ããŠããã
éœåã¯æ£é»è·ããã¡ãäžæ§åã¯é»è·ããããªãã
ã§ã¯ããªããã©ã¹ã®é»è·ããã€éœåã©ãããããªãã¯ãŒãã³åã§åçºããŠããŸããªãã®ã ãããïŒ
ãã®çç±ãšããŠãã€ãŸãéœåã©ãããã¯ãŒãã³åã§åçºããªãããã®çç±ãšããŠã次ã®ãããªçç±ãèããããŠããã
ãŸããéœåã«äžæ§åãè¿ã¥ããŠæ··åãããšããæ žåããšããéåžžã«åŒ·ãçµååãçºçãã
ãã®æ žåãéœåå士ã®ã¯ãŒãã³åã«ããåŒ·ãæ¥åã«æã¡åã€ã®ã§ãéœåãšäžæ§åã¯çµåããŠãããšèããããŠãããïŒå¿
ããããéœåãšäžæ§åã®åæ°ã¯åäžã§ãªããŠããããå®éã«ãåšæè¡šã«ããããã€ãã®å
çŽ ã§ããéœåãšäžæ§åã®åæ°ã¯ç°ãªããïŒ
æ¯å©çã«èšãæãã°ãäžæ§åã¯ãéœåãšéœåãçµã³ã€ãããããªã®ãããªåœ¹å²ãããŠãããšãèããããŠããã
:ïŒâ» ç¯å²å€:ïŒ ååçªå·ã®äœãå
çŽ ã«ãããŠãéœåãšäžæ§åã®åæ°ã¯ãã»ãŒåæ°ã§ããå Žåãå€ããããšãã°ãé
žçŽ ãçªçŽ ã§ã¯ãéœåãšäžæ§åã¯åæ°ã§ãããäžæ¹ãå
çŽ çªå·ã®é«ãå
çŽ ã»ã©ïŒã€ãŸãåšæè¡šã§äžã®ã»ãã®å
çŽ ïŒãéœåãããäžæ§åãå€ããããšãã°ãŠã©ã³235ã¯äžæ§åæ°ãéœåæ°ã®1.5åã§ããããã®ãããªãåšæè¡šã«ãããéœåæ°ãšäžæ§åæ°ã®èŠ³æž¬äºå®ãããïŒåšæè¡šã調ã¹ãã°ãããã«åããïŒãããã«ã¯æ žåã®æ§è³ªãé¢ä¿ããŠãããšèããããŠãã<ref>å±±æ¬çŸ©éãååã»ååæ žã»åååãã岩波æžåºã2015幎3æ24æ¥ ç¬¬1å·ã190ããŒãž</ref>ã
:ïŒçºå±: ïŒãªãã20äžçŽåŸå以éã®çŽ ç²åè«ã§ã¯ãéœåãšäžæ§åã¯ããã«å°ããªç©è³ªããæãç«ã£ãŠãããšããããã ãã髿 ¡çã¯ãã®åå
ã®åŠç¿ã§ã¯ãååæ žã®æ§æèŠçŽ ãšããŠã¯ããšããããéœåãšäžæ§åãŸã§ãèããã°ååã§ããã
ãªããåç§°ãšããŠãéœåãšäžæ§åããŸãšããŠãæ žåããšåŒã°ããã
ããå
çŽ ã®ååæ žã®éœåã®æ°ã¯ãåšæè¡šã®'''ååçªå·'''ãšäžèŽããã
ãŸããéœåãšäžæ§åã®æ°ã®åã¯'''è³ªéæ°'''ãšãã°ããã
è³ªéæ°Aã®ååæ žã¯éåžžã«åŒ·ãæ žåã®ããã«ãå°ããªçäœç¶ã®ç©ºéã®äžã«åºãŸã£ãŠããããã®ååŸïœã¯ã
<math>1.2</math>ïœ<math>1.4\times 10^{-15}\times A^{\frac{1}{3}}</math>
ã§ããããšãç¥ãããŠããã
==== ååæ žã®çµåãšãã«ã®ãŒ ãšè³ªéæ¬ æ ====
ä»»æã®ååæ žã¯ããããæ§æããæ žåã§ããéœåãšäžæ§åãèªç±ã§ãããšãã®è³ªéïŒåäœè³ªéãšããïŒã®åãããå°ãã質éããã€ããã®æžã£ã質éããè³ªéæ¬ æãšåŒã¶ã
è³ªéæ°Aãååçªå·Zã®ååæ žã®è³ªéæ¬ æ<math>\Delta m</math>ããåŒã§æžãã°,
ååæ žã®è³ªéãïœãéœåãšäžæ§åã®åäœè³ªéããããã<math>m_p,\ m_n</math>ãšãããšãã
:<math>\Delta m = m_{p}Z+m_{n}(A-Z)- m</math>ã§ããã
:ïŒâ» ç¯å²å€: ïŒååã«ãããããäžè¬ã«è³ªéæ¬ æã®å€§ããã¯ãããæ¬ æã®ãªãç¶æ
ãšããŠä»®å®ããå Žåã®çè«å€ã®1%ãŠãã©<ref>[https://kotobank.jp/word/%E8%B3%AA%E9%87%8F%E6%AC%A0%E6%90%8D-74242 ã³ããã³ã¯ãæ¥æ¬å€§çŸç§å
šæž(ããããã«)ã®è§£èª¬ãïŒåæ±åŒæ²»ãå
å Žä¿éïŒãªã© ]</ref>ã§ãããç²Ÿå¯æž¬å®ã§1%ãšããã®ã¯ããã£ãã倧ããå²åã§ããã
:ïŒâ» ç¯å²å€: ïŒè³ªéæ¬ æã®åŸã§ããè³ªéæ°ïŒæ žåã«ãããéœåãšäžæ§åã®åæ°ã®åèšïŒã¯éåžžã¯ä¿åãããŠãã<ref>å±±æ¬çŸ©éãååã»ååæ žã»åååãã岩波æžåºã2015幎3æ24æ¥ ç¬¬1å·ã222ããŒãž</ref>ãã€ãŸããè³ªéæ°ãä¿åãããŠããã®ã«ããããããã質éïŒããã°ã©ã ïŒã枬å®ããã°ããã®æ žåã®è³ªéïŒããã°ã©ã ïŒããããã«æ¬ æããŠããã®ã§ããã
{{ã³ã©ã |ååã¬ãã«ã®è³ªéã®æž¬å®æ³|
[[File:Mass spectrometer schematics.png|thumb|right|質éåæåšã®æš¡åŒå³ã詊æå°å
¥éšããã³ã€ãªã³æºïŒå·ŠäžïŒãåæéšïŒå·Šäžãç£å ŽåååïŒãã€ãªã³æ€åºéšïŒå³äžïŒãããŒã¿åŠçéšïŒå³äžïŒãããªãã]]
ãããããã©ããã£ãŠååãååã®è³ªéã粟床ããæž¬å®ãããïŒ
ããã¯ããè³ªéæž¬å®æ³ããšèšãããæè¡åéã«ãªãã髿 ¡ã¬ãã«ã§ã¯èª¬æã§ããªããïŒã¢ã€ã³ã·ã¥ã¿ã€ã³ãæãããŠããããã£ãæž¬å®æè¡ãç¥ã£ãŠãããã©ãããçããããã§ãããïŒ
åèæç®ãæªå
¥æãªã®ã§ãæèšã¯ã§ããªãããäžè¬ã«ååã¬ãã«ã®è³ªéæž¬å®æ³ãšããŠç²Ÿå¯ç§åŠã§ããç¥ããããã®ãšããŠãå³å³ã®ãããªãç£å Žã«ãã£ãŠè·é»ç²åãæ²ããæ¹åŒã®ãã®ãããïŒâ» 髿 ¡ç©çã®ããŒã¬ã³ãåã®èšç®ã§ãã䌌ããããªå®éšè£
眮ã§ã®åè»éã®èšç®ãç¿ãïŒã
ãã®ãããªç£å ŽãšããŒã¬ã³ãåãçšããæ¹åŒã«ããè³ªéæž¬å®ã¯äžè¬ã«ããç£å Žåååããšããããã
ãã®ãããªè£
眮ã«ãããç£å Žãé»åã®å€§ããã¯å®éšçã«æ±ºå®ã§ããã®ã§ãæ²çã質éã®é¢æ°ã«ãªãã®ã§ãã€ãŸãååŸãã質éãéç®ã§ããã
枬å®å¯Ÿè±¡ã®å
çŽ ææãäžæ§ã®ååã§ãã£ãŠãããã®ååãåºäœãªããããã«é»åããŒã ãåœãŠãŠãé»åã«ãã£ãŠåŒŸãé£ã°ãããææã垯é»ããŠã€ãªã³åããŠããã®ã§ããããããäžèšã®ãããªç£å Žã«ããè³ªéæž¬å®ãå¯èœã«ãªãã
:ïŒâ» ããããåèæç®ãæªå
¥æãªã®ã§ãã¯ãããŠãã®æ¹æ³ã§è³ªéæ¬ æã枬å®ã§ãããã©ããã¯æªç¢ºèªãïŒ
æç®ã
:è¥¿æ¢æçŸãæž¬ãæ¹ã®ç§åŠå² II ååããçŽ ç²åãžããææç€Ÿã2012幎3æ15æ¥ åççºè¡ã77ããŒãžã
ãã«ãããšã1919幎ã«ç§åŠè
ã¢ã¹ãã³ïŒäººåïŒã«ãã£ãŠè³ªéåæåšãçºæãããã®ã§ãè³ªéæ¬ æããããçšããŠæž¬å®ãããããšãã®æç®ã§ã¯äž»åŒµãããŠããã
éèŠãªããšãšããŠããããååã®è³ªéã¯æž¬å®çã«æ±ºå®ã§ããæ°å€ã§ããããã£ããŠãäœããã®ä»®å®ã«ããšã¥ãçè«èšç®ã§ã¯ãªãããŸããå€å
žç©ç以äžã®ç¥èïŒçžå¯Ÿæ§çè«ãéåååŠãªã©ïŒãå¿
èŠãšããªããå€å
žçãªé»ç£æ°åŠãªã©ã®å€å
žç©çåŠã«ããšã¥ãå®éšè£
çœ®ã§æž¬å®ã§ããå®éšäºå®ã§ããã
ãªããååŠã®åäœäœã®ååšããã®è³ªéãããã®ããããã®ãããªè£
眮ã§çºèŠãããã
ãªãïŒé«æ ¡ã§ã¯ç¿ããªããïŒãåå質éãããã€ãã®å
çŽ ã§æž¬å®ã§ããã®ã§ã掟ççã«ããŸã
ååŠã®çè«ã§åããååçªå·ZãšååéAãšã枬å®ãããååã®è³ªéã®æž¬å®å€Mãããšã«ã
Z,AããMãæ±ããå
¬åŒãäœæãããïŒã¯ã€ããŒãã«ãŒã®å
¬åŒã1935幎ïŒã
ãŸããååååŸã®äºæ³å€ãªã©ãç®åºãããŠãã£ãïŒã¬ã€ã³ãŠã©ãŒã¿ãŒïŒäººåïŒã1953幎ïŒã
}}
=====ãè³ªéæ¬ æã®åå ã=====
枬å®å®éšã®äºå®ãšããŠãéœååç¬ãäžæ§ååç¬ã®è³ªéã®åæ°ãåãããããããã®çµåããååæ žã®ã»ãã質éãäœãã®ã§ãéœåãäžæ§åãçµåãããšè³ªéã®äžéšãæ¬ æãããšããã®ããæž¬å®çµæã®äºå®ã§ããã
ãªã®ã§ãè³ªéæ¬ æã®ãšããããã®åå ãšããŠèããããŠããã®ã¯ãéœåãäžæ§åã©ããã®çµåã§ãã<ref>[https://kotobank.jp/word/%E8%B3%AA%E9%87%8F%E6%AC%A0%E6%90%8D-74242 ã³ããã³ã¯ãäžç倧çŸç§äºå
ž 第ïŒçã®è§£èª¬ããªã© ]</ref>ãšèããããŠããã
ã ããã§ã¯ããªãéœåãäžæ§åãååæ žãšããŠçµåãããšè³ªéãæ¬ æãããã®çç±ãšããŠã¯ããã£ããŠãçµåã ããããšããçç±ã§ã¯èª¬æãã€ããªãã
ãªã®ã§ãç©çåŠè
ãã¡ã¯ãè³ªéæ¬ æã®èµ·ããæ ¹æ¬çãªåå ãšãªãç©çæ³åããŠãã¢ã€ã³ã·ã¥ã¿ã€ã³ã®çžå¯Ÿæ§çè«ãé©çšããŠãããïŒæ€å®æç§æžã§ããçžå¯Ÿæ§çè«ã®çµæã§ãããšããŠèª¬æããç«å ŽïŒ
ïŒã¢ã€ã³ã·ã¥ã¿ã€ã³ã®ç¹æ®ïŒçžå¯Ÿæ§çè«ããå°ãããçµæãšããŠïŒâ» åè: çžå¯Ÿè«ã«ã¯äžè¬çžå¯Ÿè«ãšç¹æ®çžå¯Ÿè«ã®2çš®é¡ãããïŒã質émãšãšãã«ã®ãŒEã«ã¯ã
:<math>E=m c^2</math>
ãšããé¢ä¿åŒããããšãããã
ãªããC ãšã¯å
éã®å€ã§ããã
ãããã¯å¥ã®æžåŒãšããŠãå€åã衚ããã«ã¿èšå·Îã䜿ãŠã
:<math>E= c^2 \cdot \Delta m </math>
ãªã©ãšæžãå Žåãããã
ã€ãŸããããäœããã®çç±ã§ãç空ãã質éãçºçãŸãã¯æ¶å€±ããã°ããã®ã¶ãã®è«å€§ãªãšãã«ã®ãŒãçºçãããšããã®ããçžå¯Ÿæ§çè«ã§ã®ã¢ã€ã³ã·ã¥ã¿ã€ã³ãªã©ã®äž»åŒµã§ããã
ããŠãèªç±ãªéœåãšäžæ§åã¯ãæ žåã«ããçµåãããšãããã®çµåãšãã«ã®ãŒã«çžåœãã[[w:ã¬ã³ãç·]]ãæŸå°ããããšãç¥ãããŠããã
ãããŠãã¬ã³ãç·ã«ããšãã«ã®ãŒãããã
ãªã®ã§ãéœåãšäžæ§åã®çµåãããšãã®ã¬ã³ãç·ã®ãšãã«ã®ãŒã¯ãè³ªéæ¬ æã«ãã£ãŠçãããšèãããšã枬å®çµæãšããžãããåããïŒæž¬å®çµæã¯ããããŸã§è³ªéãæ¬ æããããšãŸã§ãïŒ
æ žåã®çµåã«ãããŠãè³ªéæ¬ æ<math>\Delta m </math>ããã¬ã³ãç·ãªã©ã®ãšãã«ã®ãŒã«è»¢åããããšç©çåŠè
ãã¡ã¯èããŠããã
==== æŸå°èœãšæŸå°ç· ====
å
çŽ ã®äžã«ã¯ãæŸå°ç·ïŒradiationïŒãåºãæ§è³ªããã€ãã®ãããããã®æ§è³ªãæŸå°èœïŒradioactivityïŒãšããã
ãŸããæŸå°èœããã€ç©è³ªã¯æŸå°æ§ç©è³ªãšããããã
æŸå°ç·ã«ã¯3çš®é¡ååšããããããαç·ãβç·ãγç·ãšããã
α厩å£ã¯ã芪ååæ žããããªãŠã ååæ žãæŸå°ãããçŸè±¡ã§ããã
ãã®ããªãŠã ååæ žã¯Î±ç²åãšãã°ããã
α厩å£åŸã芪ååæ žã®è³ªéæ°ã¯4å°ãããªããååçªå·ã¯2å°ãããªãã
β厩å£ã¯ã芪ååæ žã®äžæ§åãéœåãšé»åã«å€åããããšã§ãé»åãæŸå°ãããçŸè±¡ã§ããã
ïŒåè: ãã®ãšããåãã¥ãŒããªããšãã°ãã埮å°ãªç²åãåæã«æŸåºããããšãè¿å¹Žã®åŠèª¬ã§ã¯èããããŠãããïŒ
ãªãããã®é»å(ããŒã¿åŽ©å£ãšããŠæŸåºãããé»åã®ããš)ã¯ãβç²åããšããã°ããã
β厩å£åŸã芪ååæ žã®è³ªéæ°ã¯å€åããªãããååçªå·ã¯1å¢å ããã
γç·ã¯ãα厩å£ãŸãã¯Î²åŽ©å£çŽåŸã®é«ãšãã«ã®ãŒã®ååæ žããäœãšãã«ã®ãŒã®å®å®ãªç¶æ
ã«é·ç§»ãããšãã«æŸå°ãããã
γç·ã®æ£äœã¯å
åã§ãXç·ããæ³¢é·ã®çãé»ç£æ³¢ã§ããã
α厩å£ãβ厩å£ã«ãã£ãŠããšã®ååæ žã®æ°ã¯åŸã
ã«æžã£ãŠãããããããã®åŽ©å£ã¯ååæ žã®çš®é¡ããšã«æ±ºãŸã£ãäžå®ã®ç¢ºçã§èµ·ããã®ã§ã厩å£ã«ãã£ãŠããšã®ååæ žã®æ°ãæžãé床ã¯ååæ žã®åæ°ã«æ¯äŸããŠå€åããããããã厩å£ã«ãã£ãŠããšã®ååæ žã®æ°ãåæžããã®ã«ãããæéã¯ãååæ žã®çš®é¡ã ãã«ãã£ãŠããŸããããã§ããã®æéã®ããšããã®ååæ žã® '''åæžæ'''ïŒã¯ãããããhalf life ïŒ ãšåŒã¶ã厩å£ã«ãã£ãŠååæ žã®åæ°ãã©ãã ãã«ãªããã¯ããã®åæžæãçšããŠèšè¿°ããããšãã§ãããååæ žã®åæžæãTãæå»tã§ã®ååæ žã®åæ°ãN(t)ãšãããšã
:<math>N(t)=N(0)(\frac{1}{2})^{\frac{t}{T}}</math>
ãæãç«ã€ã
===== çºå±ã»å
¬åŒã®å°åº =====
ååæ žã®åŽ©å£é床ã¯ãååæ žã®åæ°ã«æ¯äŸãããšè¿°ã¹ããå®ã¯ãäžã«è¿°ã¹ãå
¬åŒã¯ãã®æ
å ±ã ãããçŽç²ã«æ°åŠçã«å°ãåºãããšãã§ãããã®ã§ãããé«çåŠæ ¡ã§ã¯æ±ããªãæ°åŠãçšããããèå³ã®ããèªè
ã®ããã«ãã®æŠèŠãèšããŠããã
ååæ žã®åæ°ãšåŽ©å£é床ã®éã®æ¯äŸå®æ°ã¯ååæ žã®çš®é¡ã«ãã£ãŠæ±ºãŸãããã®å®æ°ããã®ååæ žã®åŽ©å£å®æ°ãšããã厩å£å®æ°ãλã®ååæ žã®æå»tã§ã®åæ°ãN(t)ãšãããšããã®å€åé床ãããªãã¡N(t)ã®åŸ®åã¯ã
:<math>\frac{d}{dt} N(t) = -\lambda N(t)</math>
ã§è¡šãããããã®ãããªããã颿°ãšãã®åŸ®åãšã®é¢ä¿ã衚ããåŒãåŸ®åæ¹çšåŒãšãããåŸ®åæ¹çšåŒãæºãããããªé¢æ°ãæ±ããããšããåŸ®åæ¹çšåŒãè§£ããšãããïŒè©³ããè§£æ³ã¯[[è§£æåŠåºç€/åžžåŸ®åæ¹çšåŒ]]ã§èª¬æããããïŒãã®åŸ®åæ¹çšåŒãè§£ããš
:<math>N(t)= N(0) e^{-\lambda t}</math>
ãåŸããããïŒãã®åŒã確ãã«å
ã»ã©ã®åŸ®åæ¹çšåŒãæºãããŠããããšã確ãããŠã¿ãïŒ
åæžæTãšã¯ã<math>N(t)=\frac{1}{2}N(0)</math>ãšãªãtã®ããšãªã®ã§ãå
ã»ã©ã®åŒãã
:<math>T=\frac{\log 2}{\lambda}</math>
ãåŸãããããã£ãŠã
:<math>N(t)=N(0) e^{-\lambda t}=N(0) 2^{\frac{-\lambda t}{\log 2}}=N(0) (\frac{1}{2})^{\frac{t}{T}}</math>
ãåŸãããã
{{ã³ã©ã ||
:ïŒâ» ç¯å²å€: ç§åŠææ³ã«ããã圱é¿.ïŒãäžè¿°ã®ãåæžæã¯ååæ žã®çš®é¡ã«ãã£ãŠæ±ºãŸãããšããäºã¯ãèšãæããã°ãåæžæã¯ååæ žã®çš®é¡ã«ãã£ãŠ'''ãã'''決ãŸããªãããšããäºã§ããããããã®æå³ããäºã¯ããã倩äžãïŒããŸãã ãïŒçãªèª¬æã ããäžè¿°ã®ãããªæŸå°æ§å£å€ãªã©ã®çŸè±¡ã¯ãæŸå°å£å€ã¯ã確çè«çã«çºçããŠããç©ççŸè±¡ã§ããããšããå¯èœæ§ãé«ãããšããæå³ã§ããã
:ããšãã°ããŠã©ã³é±ç³ããïŒçºèŠåœæã®æè¡ã§ã¯ç¡çã ãïŒåå1åã¶ããåãåºããããšãåæžæã®æéãçµã£ãããã£ãŠããã®ãŠã©ã³ååãããã£ããŠã確å®ã«æŸå°å£å€ããŠå¥ååã«å€åããŠããããšã¯'''èšããªã'''ãã®ã§ããã確çè«çã»çµ±èšæ°åŠçã«ãåæžæã®æéãçµéããããã ããããã®ãããã®éã確çã§æŸå°å£å€ããŠããããšããèšããªãããšããæå³ã§ããã
:ïŒãã®ä»ãååæ°ãªã©ã§ã¯æ±ºãŸããªãäºããããã£ããŠå€å
žçãªç±ååŠã®ãããªãè€æ°ã®ååéïŒãããã¯è€æ°ã®ååéïŒã«ãããçžäºäœçšã®çŸè±¡ã§ããªãããšããäºãæå³ããããŸããæž©åºŠã«ãã£ãŠåæžæãæŸå°å£å€ã®çµæãå€åããªãäºãããååŠåå¿ã§ã¯ãªãããšãèšãã<ref>å±±æ¬çŸ©éãååã»ååæ žã»åååãã岩波æžåºã2015幎3æ24æ¥ ç¬¬1å·ã154ããŒãž</ref>ãïŒ
:ã確çè«ããšããçšèªã«å¯ŸããŠäžæ¹ããæ±ºå®è«ãïŒãã£ãŠãããïŒãšããå¥ã®å²åŠçãªçšèªããããå€å
žååŠããããããã¥ãŒãã³ååŠãªã©ã®ãããªåæå€ãåé床ããæ±ºãŸãã°åççã«ã¯ãæªæ¥ã®çŸè±¡ã粟床ããèšç®ã§ãããããªçŸè±¡ãããã¯äžç芳ã®ããšãããæ±ºå®è«ããšããã
:ãã€ãŠãã¬ãªã¬ãªããã¥ãŒãã³ãªã©ã®å€ãæä»£ã®ç©çåŠã¯ã決å®è«çãªäžç芳ãåæãšããŠããïŒã¬ãªã¬ãªãªã©ããæ±ºå®è«ããšããçšèªãç¥ã£ãŠãããã¯ããšãããïŒã
:ããããæŸå°å£å€ãªã©ã®çŸè±¡ãã確çè«çã§ããããšããäºã®æå³ã¯ã€ãŸãããšãããæ±ºå®è«ãã«å¯ŸããŠãæŸå°å£å€ãªã©ãåäŸã®ãããªçŸè±¡ã«ãªã£ãŠãããšããæå³ã§ãããããã¯ã€ãŸãããã以åã®æ±ºå®è«çãªäžç芳ã«å¯Ÿããã倧å€é©ãæå³ããã
:èªè
ã®é«æ ¡çããç©ç1ïŒç©çåºç€ïŒãªã©ã®ç§ç®ã§ã確çã®æ¹çšåŒãªã©ãèŠãããšãç¡ãã ãããå°ãªããšã髿 ¡ç©çã®ïŒç©ç1ãç©çåºç€ã®ãããªïŒååŠã®ç¯å²ã§ã¯ãå°ãªããšãæ³åãèšè¿°ããåŒãšããŠã¯ãææ°ã察æ°ã®åŒããèªè
ã¯è³ªç¹ã®åŠã§ã¯èŠãããšãç¡ãããºã ãïŒç±ååŠã®å
¬åŒã§ã¯ãçºå±çïŒããç¯å²å€ïŒãªåéã®æ³åã«ãææ°ã䜿ãå
¬åŒãè¥å¹²ãããïŒ
:ãªããç±ååŠã§ã¯çµ±èšçãªèãæ¹ãçšããããããã¯æ±ºå®è«çãªäžçèŠ³ã®æä»£ã®å€ãç©çåŠè
ã«ãšã£ãŠã¯ããããæ°äœååã1åã ããªãããã®éåã¯æ±ºå®è«çã«èšè¿°ã§ãããããããååã®åæ°ãèšå€§ãããã®ã§ã人éãèšç®ã§ããªããããããããªãçµ±èšçãªèãæ¹ã䜿ã£ãŠããã ãã§ããããšãã颚ã«ã䟿å®çã«çµ±èšãçšããŠããã ãã§ãããšããäžç芳ã§ãããå€å
žç±ååŠã¯æ±ºå®è«ã®ç Žç¶»ãšã¯æãããŠããªãã£ãã
:å®éã髿 ¡ç©ç2ã®ç±ååŠã§ç¿ããããªæ°äœååéåè«ããçè«ã®åµå§è
ã§ãããã¯ã¹ãŠã§ã«ããã«ããã³ãªã©ã¯ã決å®è«çãªåæã§ãæ°äœååã®éåãè§£æããŠãã<ref>[http://www.ivis.co.jp/text/201205230606.pdf ç§åŠå²åŠå
¥é2 ãç系人ã«åœ¹ç«ã€ç§åŠå²åŠããèªã]ã25ããŒãž</ref>ã
:ããããååç©çã«ãããæŸå°å£å€ã¯ããã§ã¯ãªããããããæ±ãç©è³ªïŒããšãã°ãŠã©ã³é±ç³ãªã©ïŒãæ°äœã§ããå¿
èŠã¯ç¡ãããïŒãŠã©ã³é±ç³ãªã©ã¯åºäœãªã®ã§éæ¢ããŠããïŒããããéåããŠãªããããŸãã倿°ã®ååã®éå£ã§ããå¿
èŠããããªããã€ãŸãåççã«ã¯1åã®ååãŸãã¯æ°åçšåºŠãããªãçµæ¶ã§ãã£ãŠãè¯ããã€ãŸãæ°äœç±ååŠã®ãããªå€æ°ã®ç²åãããªãå
éšæ§é ããããªãã«ãé¢ããããæŸå°æ¹å€ã¯ãã®æ³åã衚ãåºæ¬å
¬åŒã®ãã®ãã®èªäœ4ã«ãçµ±èšçãªåŒãå«ãŸããŠããã
:ãããæŸå°å£å€ã¯ãç©è³ªãæ§æããååãã®ãã®ã®çŸè±¡ã§ããã
:ã ãããç±ååŠã®å Žåãšã¯éããæŸå°å£å€ã¯ãïŒã®ã¡ã®ç©çåŠããã®åŸç¥æµã§ãããïŒæ±ºå®è«çãªäžç芳ã ãã§ã¯èª¬æã§ããªãäºã§ãããã®ã¡ã®éåååŠïŒããããããããïŒãªã©ã«ã€ãªããããããããçŸä»£ç©çåŠããšããããã(æŸå°å£å€ã®åéããåŸç¥æµã ã)ç©çåŠã®æ°ããäžç芳ã«ã€ãªããåéã®å
é§ããšãªã£ããšããæçŸ©ãããã
::ïŒâ» ã»ã»ã»ãšãããããªæãã®ããšããããç§åŠå²ãªã©ã§èªãããã®ã ããããããããã§ç¢ºèªããç¯å²ã§ã¯è£ã¥ãã«ãªããããªè³æã»è«æãªã©ãåŸãããªãã£ããïŒ
::ïŒããã髿 ¡ç©çã§ã¯ãäžè¿°ã®ãããªæãã®ããšãç©çç§ã®æåž«ãææ¥äžã«å£é ã§èª¬æãããããå Žåãããããããç§åŠææ³ãªã©ã¯é«æ ¡ç©çã®ç¯å²å€ãªã®ã§ãæ€å®æç§æžã«ã¯èšèŒãããªãããŸããå¿
ç¶çã«å€§åŠå
¥è©Šã«ãåºé¡ãããªãã®ã§ãäžè¿°ã®ç§åŠå²ã®æŽå²èгã«ã€ããŠã¯äžžæèšã¯äžèŠã
髿 ¡ç©çã§ã¯ãæŸå°èœã®åéãšã¯å¥ã«ãååã®ãç©è³ªæ³¢ããšããé»åã®ãæ³¢åæ§ããšãã®çŸä»£ç©ççãªæ³¢åã®æŠå¿µããç©ç2ïŒå°éç©çïŒç§ç®ã§ç¿ãããããã£ãæ³¢åæ§ã«é¢ããäºãããã¥ãŒãã³ååŠçãªæ±ºå®è«ã®ç Žç¶»ã«ãªããã ãããã®ãæ³¢åæ§ãããã¬ãã®çè«ãåæãšããªããŠããæŸå°å£å€ãšããå®éšäºå®ã ãã§ããïŒè³ªç¹ãåäœã®éåã®ãããªïŒãã¥ãŒãã³ååŠçãªæ±ºå®è«çãªäžç芳ãããã€ããããããããã®ã§ããã
å®éãã³ã©ã å€ã®äžèšã®æ¬æã®è©±é¡ã§ã¯ãäžåãé»åãååãªã©ã«æ³¢åæ§ããããã©ããã®è©±é¡ã¯ããŠããªãã
ãªãã髿 ¡ç©çã®æè²ã§ã¯ããããæŸå°ç Žå€ã®åå
ã§ãäžè¿°ã®ããã«ãã¥ãŒãã³ååŠã®æ±ºå®è«ãç Žç¶»ããŠããäºãæããããšã«ããã髿 ¡ã®é ãçŸä»£ç©ççãªäžç芳ã«ãªãããããšã§ãã®ã¡ã®åå
ã®ç©è³ªæ³¢ãé»åã®æ³¢åæ§ãªã©ã®åå
ã«å°å
¥ããããããã«ãããã»ã»ã»ãšãããããªæè²ææ³ãè¡ããããããã
}}
==== ååæ žåå¿ ====
[[File:Cloud chamber ani bionerd.gif|thumb|right|300px|é§ç®±ïŒããã°ãïŒã®å®éšãéœåã¯é»è·ïŒæ£é»è·ïŒããã£ãŠãããããé§ç®±ã§ã芳枬ããããšãã§ããã ïŒâ» ãã®ç»åã¯ãéœåã®èŠ³æž¬å®éšã§ã¯ãªããé§ç®±ã®åç説æã®ããã®ç»åã§ãããïŒ<br>é§ç®±ïŒããã°ãïŒãšãããèžæ°ã®ã€ãŸã£ãè£
眮ãã€ãããšããªããã®ç²åãééãããšããã®ç²åã®è»è·¡ã§ãæ°äœããæ¶²äœããåçãèµ·ããã®ã§ãè»è·¡ããç®ã«èŠããã®ã§ãããïŒã€ã¡ãŒãžçã«ã¯ãé£è¡æ©é²ã®ãããªã®ããã€ã¡ãŒãžããŠãã ãããïŒ
ã§ãç£å Žãå ããå Žåã®ãè»è·¡ã®æ²ããããçãªã©ãããæ¯é»è·ãŸã§ãäºæ³ã§ããã]]
* éœåã®çºèŠ
ã©ã¶ãã©ãŒãã¯ãçªçŽ ã¬ã¹ãå¯éããç®±ã«Î±ç·æºããããšãæ£é»è·ããã£ãç²åãçºçããããšãçºèŠããã
ãã®æ£é»è·ã®ç²åããéœåã§ãããã€ãŸããã©ã¶ãã©ãŒãã¯éœåãçºèŠããã
åæã«ãé
žçŽ ãçºçããããšãçºèŠãããã®çç±ã¯çªçŽ ãé
žçŽ ã«å€æãããããã§ãããã€ãŸããååæ žãå€ããåå¿ãçºèŠããã
ãããã®ããšãåŒã«ãŸãšãããšã
:<math>_{\ 7}^{14} \mathrm{N} + {}_{2}^{4} \mathrm{He} \rightarrow {}_{\ 8}^{17} \mathrm{O} + {}_{1}^{1} \mathrm{H} </math>
ã§ããã
ãã®ããã«ãããå
çŽ ã®ååããå¥ã®å
çŽ ã®ååã«å€ããåå¿ã®ããšã '''ååæ žåå¿''' ãšããããŸãã¯ããæ žåå¿ããšããã
:ïŒâ» ç¯å²å€: ïŒé§ç®±ã¯ãçš®é¡ã«ãããããæ®éããšã¿ããŒã«ãŸãã¯ã¢ã«ãŽã³ã®æ°äœãå°å
¥ããã<ref>å±±æ¬çŸ©éãååã»ååæ žã»åååãã岩波æžåºã2015幎3æ24æ¥ ç¬¬1å·çºè¡ãP80</ref>ã
:é§ç®±ã®ãããªå®éšè£
眮ã®çšéãšããŠãéœåã®å®éšã®çšéã®ã»ããååæ žåå¿ã®åæ°ã芳枬ããç®çã§ã䜿ãããšãåºæ¥ããæŸå°ç·ã®æž¬å®åšã®ãããããã¬ã€ã¬ãŒã«ãŠã³ã¿ãŒãã®åçããé§ç®±ãšé¡äŒŒããŠãããåççãªæŸå°ç·æž¬å®åšã§ããã¬ã€ã¬ãŒã»ãã¥ã©ãŒç®¡ã«ã¯æ°äœïŒã¢ã«ãŽã³ããšãã¬ã³ã¬ã¹ãªã©ã®äžæŽ»æ§ãªæ°äœïŒãå°å
¥ãããŠãããé§ç®±ã®ããã«æ°æ°äœãå°å
¥ããæž¬å®ç®¡ã«ãé«é»å§ãããã黿°æ¥µæ¿ã远å ããããšã§ãæŸå°ç·ããšãããããã«ãããã®ãã¬ã€ã¬ãŒç®¡ã§ãã[http://www.agc.a.u-tokyo.ac.jp/radioecology/pdf/190930_radioecology_supplement2.pdf ]ãç©çåŠè
ã¬ã€ã¬ãŒã¯ããã®ãããªæž¬å®åšãéçºããããã«ååæ žåå¿ã«ãã£ãŠçæãããããªãŠã ååãéããŠæ°äœãšããŠå°å
¥ããïŒâ» wikiè£è¶³: ãã®ããªãŠã ã«æ°äœã®ç¶æ
æ¹çšåŒãªã©ãé©çšããäºã«ãããïŒåœæãšããŠã¯æé«æ°Žæºã®ç²ŸåºŠã§ã¢ãã¬ãã宿°ã枬å®ããäºã«æåãã<ref>å±±æ¬çŸ©éãååã»ååæ žã»åååãã岩波æžåºã2015幎3æ24æ¥ ç¬¬1å·çºè¡ãP81</ref>ãåœæç¥ãããŠããããã©ã³ã¯ã®ç±èŒ»å°ã®çè«ããç®åºãããã¢ãã¬ãã宿°ã®å€ãïŒãã«ããã³å®æ° Na k ãšæ°äœå®æ° k ã®æ¯ããã¢ãã¬ãã宿° Na ãæ±ããããïŒç©çåŠè
ãã©ã³ããã©ãŠã³éåããæ±ããã¢ãã¬ãã宿°ã«ãã¬ã€ã¬ãŒã®ã¢ãã¬ãã宿°ã®ç²ŸåºŠã¯å¹æµãã粟床ã§ãã£ã<ref>å±±æ¬çŸ©éãååã»ååæ žã»åååãã岩波æžåºã2015幎3æ24æ¥ ç¬¬1å·çºè¡ãP82</ref>ã
* äžæ§åã®çºèŠ
===çŽ ç²å===
[[File:Cloud chamber ani bionerd.gif|thumb|right|300px|é§ç®±å®éšããµããšçŸããçœãè»è·¡ããè·é»ç²åãæŸå°ç·ãééããè·¡ã]]
[[File:Physicist Studying Alpha Rays GPN-2000-000381.jpg|thumb|right|300px|é§ç®±ãèŠã蟌ãç©çåŠè
ïŒ1957幎ïŒãäžå¿ã«ããããŠã ã眮ãããŠãããããããæŸå°ãããæŸå°ç·ïŒã¢ã«ãã¡ç²åïŒããè±ã³ãã®ãããªåœ¢ã§å¯èŠåãããŠããã]]
ãŸããå®å®ç·ã®èŠ³æž¬ã«ãããÎŒç²åãšããã®ããçºèŠãããŠããã
==== ç¯å²å€: ã©ããã£ãŠçŽ ç²åã芳枬ããã ====
ãããããã©ããã£ãŠçŽ ç²åã芳枬ããããšãããšãããã€ãã®æ¹æ³ããããã
:åç也æ¿ãïŒçŽ ç²å芳枬çšã®ä¹Ÿæ¿ããååæ žä¹Ÿæ¿ããšããïŒ
:é§ç®±
ãªã©ã䜿ãããã
==== é§ç®±ïŒããã°ãïŒ ====
(â» é«æ ¡ã§ç¿ãç¯å²å
ãXç·ãååæ žã®åå
ã§ãé§ç®±ïŒããã°ãïŒãç¿ãã)
é§ç®±ïŒããã°ãïŒãšãããèžæ°ã®ã€ãŸã£ãè£
眮ãã€ãããšããªããã®ç²åãééãããšããã®ç²åã®è»è·¡ã§ãæ°äœããæ¶²äœããåçãèµ·ããã®ã§ãè»è·¡ããç®ã«èŠããã®ã§ãããïŒâ» æ€å®æç§æžã§ã¯ãååæ žã®åéã§ãé§ç®±ã«ã€ããŠç¿ããïŒïŒã€ã¡ãŒãžçã«ã¯ãé£è¡æ©é²ã®ãããªã®ããã€ã¡ãŒãžããŠãã ãããïŒ
ã§ãç£å Žãå ããå Žåã®ãè»è·¡ã®æ²ããããçãªã©ãããæ¯é»è·ãŸã§ãäºæ³ã§ããã
ãã®ããã«ãé§ç®±ãã€ãã£ãå®éšã«ããã20äžçŽååãäžç€ããã«ã¯ããããããªç²åãçºèŠãããã
ÎŒç²å以å€ã«ããéœé»åïŒããã§ããïŒããé§ç®±ã«ãã£ãŠçºèŠãããŠããã
ïŒâ» ç¯å²å€:ïŒäžçåã§éœé»åãå®éšçã«èŠ³æž¬ããã¢ã³ããŒãœã³ã¯ãé§ç®±ã«éæ¿ãå
¥ããããšã§éœé»åãçºèŠããã
ãšããããïŒÎŒç²åã®çºèŠãããïŒéœé»åã®ã»ããçºèŠã¯æ©ãã
ïŒâ» ç¯å²å€:ïŒãŸããéœé»åã¯ãéåååŠã®ã·ã¥ã¬ãŒãã£ã³ã¬ãŒæ¹çšåŒã«ãç¹æ®çžå¯Ÿæ§çè«ãšãçµã¿åããããããã£ã©ãã¯ã®æ¹çšåŒããããçè«çã«äºæ³ãããŠããã
==== åç©è³ª ====
ãŸãããéœé»åããšããç©è³ªã1932幎ã«éæ¿ãå
¥ããé§ç®±ïŒããã°ãïŒã®å®éšã§ã¢ã³ããŒãœã³ïŒäººåïŒã«ãã£ãŠçºèŠãããŠãããéœé»åã¯è³ªéãé»åãšåãã ããé»è·ãé»åã®å察ã§ããïŒã€ãŸãéœé»åã®é»è·ã¯ãã©ã¹eã¯ãŒãã³ã§ããïŒãïŒâ» éæ¿ã«ã€ããŠã¯é«æ ¡ã®ç¯å²å€ãïŒ
ãããŠãé»åãšéœé»åãè¡çªãããšã2mc<sup>2</sup>ã®ãšãã«ã®ãŒãæŸåºããŠãæ¶æ»
ãããïŒãã®çŸè±¡ïŒé»åãšéœé»åãè¡çªãããš2mc<sup>2</sup>ã®ãšãã«ã®ãŒãæŸåºããŠæ¶æ»
ããçŸè±¡ïŒã®ããšãããå¯Ÿæ¶æ»
ãïŒã€ãããããã€ïŒãšãããïŒ
éœåã«å¯ŸããŠãããåéœåãããããåéœåã¯ãé»è·ãéœåãšå察ã ãã質éãéœåãšåãã§ãããéœåãšè¡çªãããšå¯Ÿæ¶æ»
ãããã
äžæ§åã«å¯ŸããŠãããåäžæ§åãããããåäžæ§åã¯ãé»è·ã¯ãŒãã ãïŒãŒãã®é»è·ã®Â±ãå察ã«ããŠããŒãã®ãŸãŸïŒã質éãåãã§ãäžæ§åãšå¯Ÿæ¶æ»
ãããã
éœé»åãåéœåãåäžæ§åã®ãããªç©è³ªããŸãšããŠãåç©è³ªãšããã
ïŒâ» ç¯å²å€: ïŒæŸå°æ§åäœäœã®ãªãã«ã¯ã厩å£ã®ãšãã«éœé»åãæŸåºãããã®ããããæå
端ã®ç
é¢ã§äœ¿ãããPETïŒéœé»åæå±€æ®åæ³ïŒæè¡ã¯ããããå¿çšãããã®ã§ãããããçŽ ããµãããã«ãªãããªãã·ã°ã«ã³ãŒã¹ãšããç©è³ªã¯ã¬ã³çްèã«ããåã蟌ãŸãããPET蚺æã§ã¯ãããã«ïŒãã«ãªãããªãã·ã°ã«ã³ãŒã¹ã«ïŒæŸå°æ§ã®ããçŽ <sup>18</sup>F ããšãããã æŸå°æ§ãã«ãªãããªãã·ã°ã«ã³ãŒã¹ãçšããŠãããïŒâ» åæé€šã®ãååŠåºç€ãã®æç§æžã«ãçºå±äºé
ãšããŠãã«ãªãããªãã·ã°ã«ã³ãŒã¹ãPET蚺æã§äœ¿ãããŠãããšã玹ä»ãããŠãããïŒ
==== ÎŒç²å ====
[[File:Cosmic-radiation-Shower detection--fr.png|thumb|400px|å®å®ç·ã¯ãå³ã®ããã«ãå°çã®å€§æ°åãªã©ã«å«ãŸããååæ žã«è¡çªããããšã«ãããããã€ãã®äºæ¬¡çãªå®å®ç·ãçºçãããå°çã®é«å±±ã§èŠ³æž¬ã§ããå®å®ç·ã¯ãäºæ¬¡çãªå®å®ç·ã®ã»ãã§ããããã£ãœããå®å®ç©ºéãé£ãã§ããå®å®ç·ã¯ãäžæ¬¡å®å®ç·ãšãããïŒâ» 髿 ¡ã®ç¯å²å
ïŒ å®å®ç·ãšããŠèŠ³æž¬ãããÎŒç²åãéœé»åãÏäžéåã¯ããã®ãããªçŸè±¡ã«ãã£ãŠçºçãããšèããããŠããã]]
åç©è³ªãšã¯å¥ã«ãÎŒç²åããå®å®ç·ã®èŠ³æž¬ããã1937幎ã«èŠã€ãã£ãã
ãã®ÎŒç²åã¯ãé»è·ã¯ãé»åãšåãã ãã質éãé»åãšã¯éããÎŒç²åã®è³ªéã¯ããªããšé»åã®çŽ200åã®è³ªéã§ããã
ÎŒç²åã¯ãã¹ã€ã«éœåãé»åã®åç©è³ªã§ã¯ãªãã®ã§ãã¹ã€ã«éœåãšãå¯Ÿæ¶æ»
ãèµ·ãããªãããé»åãšãå¯Ÿæ¶æ»
ãèµ·ãããªãã
ãªããÎŒç²åã«ããåÎŒç²åãšãããåç©è³ªãååšããããšãåãã£ãŠããã
ãã®ãããªç©è³ªããããããã®äœãã§ããå°äžã§èŠã€ãããªãã®ã¯ãåã«å°äžã®å€§æ°ãªã©ãšè¡çªããŠæ¶æ»
ããŠããŸãããã§ããã
ãªã®ã§ãé«å±±ã®é äžä»è¿ãªã©ã§èŠ³æž¬å®éšããããšãÎŒç²åã®çºèŠã®å¯èœæ§ãé«ãŸãã
ãªã21äžçŽã®çŸåšãÎŒç²åãæŽ»çšããæè¡ãšããŠãçŸåšãç«å±±ãªã©ã®å
éšã芳å¯ããã®ã«ã掻çšãããŠãããÎŒç²åã¯ãééåãé«ãããå°äžã®ç©è³ªãšåå¿ããŠããããã«æ¶æ»
ããŠããŸãã®ã§ããã®ãããªæ§è³ªãå©çšããŠãç«å±±å
éšã®ããã«äººéãå
¥ã蟌ããªãå Žæã芳å¯ãããšããæè¡ãããã§ã«ããã
:ÎŒç²åãªã©ã®çŽ ç²åãæ€åºããããã«ãåç也æ¿ã䜿ããéåžžã®åç也æ¿ãšã¯éããç²åç·ã®ãããªçްãããã®ãæãããããããã«èª¿æŽãããŠããããååæ žä¹Ÿæ¿ããšãããïŒãååæ žä¹Ÿæ¿ãã«ã€ããŠã¯ç¯å²å€ãïŒ
:也æ¿äžã®æåã«ÎŒç²åãåœããããšã§ã黿°ååŠçãªåå¿ãèµ·ããã也æ¿ãåå¿ããã
:æ©ã話ãXç·ãšXç·ä¹Ÿæ¿ã®åçãšåããããªåçã§ãÎŒç²åã䜿ã£ãïŒç«å±±ãªã©ã®ïŒå
éšç ç©¶ãè¡ãããŠããè¿å¹Žã¯ãååæ žä¹Ÿæ¿ã®ä»£ããã«ãåå°äœã»ã³ãµãŒã䜿ã£ãŠãæ€åºããŠããïŒèŠããã«ãããžã«ã¡ã®å
ã»ã³ãµãŒãªã©ãšåãåçïŒã
* ÎŒç²åã®çºçæ¹æ³
ãã®ãããªèŠ³æž¬ã«äœ¿ãããÎŒç²åãã©ããã£ãŠçºçãããã®ãïŒ
å®å®ç·ããé£ãã§ããÎŒç²åããã®ãŸãŸäœ¿ããšããæ¹æ³ããããããå®è¡ããŠããç ç©¶è
ããããããããšã¯å¥ã®ææ³ãšããŠãå éåšãªã©ã§äººå·¥çã«ÎŒç²åãªã©ãçºçããããšããæ¹æ³ãããã
å éåšã䜿ã£ãæ¹æ³ã¯ãäžèšã®éãã
ãŸããã·ã¯ãããã³ããµã€ã¯ãããã³ã䜿ã£ãŠãé»åãªã©ãè¶
é«éã«å éããããããäžè¬ã®ç©è³ªïŒã°ã©ãã¡ã€ããªã©ïŒã«åœãŠãã
ãããšãåœç¶ãããããªç²åãçºçããã
ãã®ãã¡ãÏäžéåããç£æ°ã«åå¿ããïŒãšèããããŠããïŒã®ã§ã倧ããªé»ç£ç³ã³ã€ã«ã§ãÏäžéåãæç²ããã
ãã®Ïäžéåã厩å£ããŠãÎŒç²åãçºçããã
==== â» ç¯å²å€: å®å®ç·ã®çºçåå ã¯äžæ ====
ããããå®å®ç·ãäœã«ãã£ãŠçºçããŠãããã®çºçåå ã¯ãçŸæç¹ã®äººé¡ã«ã¯äžæã§ãããïŒâ» åèæç®: æ°ç åºçã®è³æéã®ãå³èª¬ç©çãïŒ
è¶
æ°æïŒã¡ããããããïŒççºã«ãã£ãŠå®å®ç·ãçºçããã®ã§ã¯ããšãã説ããããããšã«ããå®å®ç·ã®çºçåå ã«ã€ããŠã¯æªè§£æã§ããã
==== ç¯å²å€ïŒ: ã¹ãã³ ====
é»åãéœåãäžæ§åãªã©ã¯ããã¹ãã³ããšããç£ç³ã®ãããªæ§è³ªããã£ãŠãããç£ç³ã«N極ãšS極ãããããã«ãã¹ãã³ã«ãã2çš®é¡ã®åãããããã¹ãã³ã®ãã®2çš®é¡ã®åãã¯ããäžåãããšãäžåããã«ãããäŸãããããç£ç³ã®ç£åã®çºçåå ã¯ãç£ç³äžã®ååã®æå€æ®»é»åã®ã¹ãã³ã®åããåäžæ¹åã«ããã£ãŠãããããã§ãããšèããããŠããã
å
šååã¯ãé»åãéœåãäžæ§åãå«ãã®ã«ããªã®ã«å€ãã®ç©è³ªããããŸãç£æ§ãçºçããªãã®ã¯ãå察笊å·ã®ã¹ãã³ããã€é»åãçµåãããããšã§ãæã¡æ¶ãããããã§ããã
ïŒãŠã£ãããé»åãšéœåã®ãããªé»è·ããã€ç²åã«ããã¹ãã³ããªããšèª€è§£ããŠãã人ãããããäžæ§åã«ãã¹ãã³ã¯ãããïŒ
äžåŠé«æ ¡ã§èŠ³æž¬ãããããªæ®éã®æ¹æ³ã§ã¯ãã¹ãã³ã芳枬ã§ããªãããååãªã©ã®ç©è³ªã«ç£æ°ãå ãã€ã€é«åšæ³¢ãå ãããªã©ãããšãã¹ãã³ã®åœ±é¿ã«ãã£ãŠããã®ååã®æ¯åããããåšæ³¢æ°ãéããªã©ã®çŸè±¡ããã¡ããŠã鿥çã«ïŒé»åãªã©ã®ïŒã¹ãã³ã芳枬ã§ãããïŒãªããæ žç£æ°å
±é³Žæ³ïŒNMRãnuclear magnetic resonanceïŒã®åçã§ããã â» çè«çãªè§£æã¯ã倧åŠã¬ãã«ã®ååŠã®ç¥èãå¿
èŠã«ãªãã®ã§çç¥ãããïŒ ååäžã®æ°ŽçŽ ååããããçš®ã®æŸå°æ§åäœäœïŒäžæ§åããã£ã1åãµããã ãã®åäœäœïŒãªã©ãé«åšæ³¢ã®åœ±é¿ãåããããããã®çç±ã®ã²ãšã€ããã¹ãã³ã«ãããã®ã ãšèããããŠããïŒâ» ãªããå»çã§çšããããMRIïŒmagnetic resonance imagingïŒã¯ããã®æ žç£æ°å
±é³Žæ³ïŒNMRïŒãå©çšããŠäººäœå
éšãªã©ã芳枬ããããšããæ©åšã§ãããïŒ
ããŠãå®ã¯çŽ ç²åããã¹ãã³ããã€ã®ãæ®éã§ããã
ÎŒç²åã¯ã¹ãã³ããã€ã
ÎŒç²åã®ãã¹ãã³ããšããæ§è³ªã«ããç£æ°ãšãÎŒç²åã®ééæ§ã®é«ããå©çšããŠãç©è³ªå
éšã®ç£å Žã®èŠ³æž¬æ¹æ³ãšããŠæ¢ã«ç ç©¶ãããŠããããã®ãããªèŠ³æž¬æè¡ããÎŒãªã³ã¹ãã³å転ããšãããè¶
äŒå°äœã®å
éšã®èŠ³æž¬ãªã©ã«ãããã§ã«ãÎŒãªã³ã¹ãã³å転ãã«ãã芳枬ãç ç©¶ãããŠããã
ãŠã£ãããã£ã¢èšäºã[[w:ãã¥ãªã³ã¹ãã³å転]]ãã«ãããšãÎŒãªã³ã®åީ壿ã«éœé»åãæŸåºããã®ã§ãéœé»åã®èŠ³æž¬æè¡ãå¿
èŠã§ãããïŒé«æ ¡ã®ç¯å²å€ã§ããããïŒããããã®åŠçã¯ããããããšå匷ããäºãå€ãã
==== éœåãšäžæ§åã®ã¢ã€ãœã¹ãã³ ====
éœåãšäžæ§åã¯ã質éã¯ã»ãšãã©åãã§ãããé»è·ãéãã ãã§ããã
ãããŠãé»åãšæ¯ã¹ããšãéœåãäžæ§åãã質éãããªã倧ããã
ãã®äºããããéœåãäžæ§åã«ããããã«äžèº«ããããå¥ã®ç²åãè©°ãŸã£ãŠããã®ã§ã¯ïŒããšããçåãçãŸããŠããŠãéœåãäžæ§åã®å
éšã®æ¢çŽ¢ãå§ãŸã£ãã
ããããçŸåšã§ããéœåãäžæ§åã®å
éšã®æ§é ã¯ãå®éšçã«ã¯åãåºããŠã¯ããªããïŒâ» éœåãäžæ§åã®å
éšæ§é ãšããŠèª¬æãããŠãããã¯ã©ãŒã¯ãã¯ãåç¬ã§ã¯çºèŠãããŠããªããã¯ã©ãŒã¯ã¯åã«ãå
éšã®èª¬æã®ããã®ãæŠå¿µã§ãããïŒ
æŽå²çã«ã¯ããŸããéœåãšäžæ§åã®å
éšæ§é ãšããŠãæ¶ç©ºã®çŽ ç²åãèããããéœåãšäžæ§åã¯ããããã®çŽ ç²åã®ç¶æ
ãéãã ãããšèããããã
ãã£ãœããé»åã«ã¯ãå
éšæ§é ããªãããšèãããŠããã
ããã20äžçŽãªãã°ãéåååŠã§ã¯ããã®ããããã§ã«ãé»åã®ç¶æ
ãšããŠãã¹ãã³ããšããæŠå¿µããã¿ã€ãã£ãŠãããéåååŠã§ã¯ãååŠçµåã§äŸ¡é»åã2åãŸã§çµåããŠé»å察ã«ãªãçç±ã¯ããã®ã¹ãã³ã2çš®é¡ãããªããŠãå察åãã®ã¹ãã³ã®é»å2åã ããçµåããããã§ããããšãããŠããã
ã¹ãã³ã®2çš®é¡ã®ç¶æ
ã¯ããäžåãããäžåãããšãããµãã«ãããäŸãããããïŒå®éã®æ¹åã§ã¯ãªãã®ã§ãããŸãæ·±å
¥ãããªãããã«ãïŒ
ãã®ãããªéåååŠãåèã«ããŠãéœåãšäžæ§åã§ããã¢ã€ãœã¹ãã³ããšããæŠå¿µãèãããããïŒâ» ãã¢ã€ãœã¹ãã³ãã¯é«æ ¡ç¯å²å€ãïŒ
éœåãšäžæ§åã¯ãã¢ã€ãœã¹ãã³ã®ç¶æ
ãéãã ãããšèããããã
==== ã¯ã©ãŒã¯ ====
ãã®åŸã20äžçŽåã°é ããããã¢ã€ãœã¹ãã³ããçºå±ããããã¯ã©ãŒã¯ããšããçè«ãæå±ãããã
æ¶ç©ºã®ãã¯ã©ãŒã¯ããšãã3åã®çŽ ç²åãä»®å®ãããšãå®åšã®éœåãäžæ§åã®æãç«ã€ã¢ãã«ããå®éšçµæãããŸã説æã§ããäºãåãã£ãã
é»è·(<math>+\frac{2}{3}e</math>)ããã€çŽ ç²åãã¢ããã¯ã©ãŒã¯ããšã±(<math>-\frac{1}{3}e</math>)ããã€çŽ ç²åãããŠã³ã¯ã©ãŒã¯ãããã£ãŠã
:<math>\frac{2}{3}e - \frac{1}{3}e - \frac{1}{3}e=0e</math>ã§éœåã
:<math>\frac{2}{3}e + \frac{2}{3}e - \frac{1}{3}e=1e</math>ã§éœåã
ãšèãããšããããããªçŽ ç²åå®éšã®çµæãããŸã説æã§ããäºãåãã£ãã
ãªããé»åã«ã¯ããã®ãããªå
éšæ§é ã¯ãªãããšèãããããã
ã¢ããã¯ã©ãŒã¯ã¯ãuããšç¥èšãããããŠã³ã¯ã©ãŒã¯ã¯ãdããšç¥èšãããã
éœåã®ã¯ã©ãŒã¯æ§é ã¯uudãšç¥èšãããïŒã¢ãããã¢ãããããŠã³ïŒã
äžæ§åã®ã¯ã©ãŒã¯æ§é ã¯uddãšç¥èšãããïŒã¢ãããããŠã³ãããŠã³ïŒã
==== å éåšå®éšãšäžéå ====
ãªããäžèšã®èª¬æã§ã¯çç¥ãããããããã1950ã60幎代ãããŸã§ã«ãé«å±±ã§ã®å®å®ç·ã®èŠ³æž¬ãããããã¯æŸå°ç·ã®èŠ³æž¬ãããŸããããã¯ãµã€ã¯ãããã³ãªã©ã«ããç²åã®å éåšè¡çªå®éšã«ãããéœåãäžæ§åã®ã»ãã«ããåçšåºŠã®è³ªéã®ããŸããŸãªç²åãçºèŠãããŠããããããæ°çš®ã®ç²åã¯ãäžéåãã«åé¡ãããã
ããããããã¯ã©ãŒã¯ãã®çè«ã¯ããã®ãããª20äžçŽåã°ãããŸã§ã®å®éšã芳枬ããäœçŸåãã®æ°çš®ã®ç²åãçºèŠãããŠããŸãããã®ãããªçµç·¯ããã£ãã®ã§ãã¯ã©ãŒã¯ã®çè«ãæå±ãããã®ã§ããã
ããŠããäžéåãïŒã¡ã
ãããããmason ã¡ãœã³ïŒãšã¯ãããšããšçè«ç©çåŠè
ã®æ¹¯å·ç§æš¹ã1930å¹Žä»£ã«æå±ãããéœåãšäžæ§åãšãåŒãä»ããŠãããšãããæ¶ç©ºã®ç²åã§ãã£ããã20äžçŽãªãã°ã«æ°çš®ã®ç²åãçºèŠãããéããäžéåãã®ååã䜿ãããããšã«ãªã£ãã
ããŠãå®éšçã«æ¯èŒçæ©ãææããçºèŠããããäžéåãã§ã¯ããÏäžéåãããããããçš®é¡ã®Ïäžéåã¯ãã¢ããã¯ã©ãŒã¯ãšåããŠã³ã¯ã©ãŒã¯ãããªããÏ<sup>+</sup>ãšç¥èšããããïŒããŠã³ã¯ã©ãŒã¯ã®åç©è³ªããåããŠã³ã¯ã©ãŒã¯ãïŒ Ï<sup>ïŒ</sup>ïŒ<math>u\overline{d}</math>
å¥ã®ããçš®é¡ã®Ïäžéåã¯ãããŠã³ã¯ã©ãŒã¯ãšåã¢ããã¯ã©ãŒã¯ãããªããÏ<sup>ãŒ</sup>ãšç¥èšããããÏ<sup>-</sup>ïŒ<math>\overline{u}d</math>
ãã®ããã«ãããç²åå
ã®ã¯ã©ãŒã¯ã¯åèš2åã®ã§ãã£ãŠãè¯ãå ŽåããããïŒããªãããããéœåã®ããã«ã¯ã©ãŒã¯3åã§ãªããŠãããŸããªãå ŽåããããïŒ
ïŒâ» ãã®ãããªå®éšäŸãããç²åå
ã«åèš5åã®ã¯ã©ãŒã¯ã7åã®ã¯ã©ãŒã¯ãèããçè«ãããããããã髿 ¡ç©çã®ç¯å²ã倧å¹
ã«è¶
ããã®ã§ã説æãçç¥ãïŒ
ãŸããäžéåã¯ãèªç¶çã§ã¯çæéã®ããã ã ããååšã§ããç²åã ãšããäºãã芳枬å®éšã«ãã£ãŠãåãã£ãŠãããïŒäžéåã®ååšã§ããæéïŒã寿åœãïŒã¯çããããã«ãä»ã®å®å®ãªç²åã«å€æããŠããŸããïŒ
==== 第2äžä»£ä»¥éã®çŽ ç²å ====
ããããã¢ãããšããŠã³ã ãã§ã¯ã説æããããªãç²åããã©ãã©ããšçºèŠãããŠãããã¯ã©ãŒã¯ã®æå±æã®åœåã¯ãããããã ãã¯ã©ãŒã¯ã®ã¢ãããšããŠã³ã§ããã£ãšãã»ãšãã©ã®äžéåã®æ§é ã説æã§ããã ããã ãšæåŸ
ãããŠããã®ã ããããããããå®å®ç·ãã1940幎代ã«çºèŠããããKäžéåãã®æ§é ã§ãããã¢ãããšããŠã³ã§ã¯èª¬æã§ããªãã£ãã
ãã®ã»ããå éåšã®çºéãªã©ã«ãããã¢ãããšããŠã³ã®çµã¿åããã ãã§èª¬æã§ããæ°ãè¶
ããŠãã©ãã©ããšæ°çš®ã®ãäžéåããçºèŠãããŠããŸãããã¯ãã¢ãããšããŠã³ã ãã§ã¯ãäžéåã®æ§é ã説æãã¥ãããªã£ãŠããäžãÎŒç²åãã説æã§ããªãã
ãŸããå éåšå®éšã«ããã1970幎代ã«ãDäžéåããªã©ãããŸããŸãªäžéåããå®éšçã«å®åšã確èªãããã
ãã®ããã«ãã¢ãããšããŠã³ã ãã§ã¯èª¬æã®ã§ããªãããããããªç²åãååšããããšãåããããã®ãããçŽ ç²åçè«ã§ã¯ããã¢ãããïŒuïŒãšãããŠã³ãïŒdïŒãšãã2çš®é¡ã®ç¶æ
ã®ä»ã«ããããã«ç¶æ
ãèããå¿
èŠã«ãããŸãããããããŠãæ°ããç¶æ
ãšããŠããŸãããã£ãŒã ãïŒèšå·cïŒãšãã¹ãã¬ã³ãžãïŒèšå·sïŒãèãããããå éåšå®éšã®æè¡ãçºå±ããå éåšå®éšã®è¡çªã®ãšãã«ã®ãŒãäžãã£ãŠãããšãããã«ãããããïŒèšå·tïŒãšãããã ãïŒèšå·bïŒãšããã®ãèããããã
ãªããÎŒç²åã«ã¯å
éšæ§é ã¯ãªãããéœåãäžæ§åã«é»åã察å¿ãããã®ãšåæ§ã«ïŒç¬¬1äžä»£ïŒããã£ãŒã ãã¹ãã¬ã³ãžãããªãéœåçã»äžæ§åçãªç²åãšÎŒç²åã察å¿ãããïŒç¬¬2äžä»£ïŒãåæ§ã«ãããããããã ãããªãç²åã«ÎŒç²åã察å¿ãããïŒç¬¬3äžä»£ïŒã
{| class="wikitable"
|+ ã¯ã©ãŒã¯ãšã¬ããã³
|-
! çš®é¡ !! é»è· !! 第1äžä»£ !! 第2äžä»£ !! 第3äžä»£
|-
! rowspan="2"| ã¯ã©ãŒã¯
! <math>\frac{2}{3}e</math>
| ã¢ãã (u)
| ãã£ãŒã (c)
| ããã (t)
|-
! <math>-\frac{1}{3}e</math>
| ããŠã³ (d)
| ã¹ãã¬ã³ãž (s)
| ããã (b)
|-
! rowspan="2"| ã¬ããã³
! rowspan="2"| <math>-e</math>
| é»å (e<sup>ãŒ</sup> )
| ÎŒç²å (''ÎŒ''<sup>ãŒ</sup> )
| Ïç²å (''Ï''<sup>ãŒ</sup> )
|-
| é»åãã¥ãŒããªãïŒ''Μ''<sub>e</sub> ïŒ
| ÎŒãã¥ãŒããªãïŒ''Μ''<sub>''ÎŒ''</sub> ïŒ
| Ïãã¥ãŒããªãïŒ''Μ''<sub>''Ï''</sub> ïŒ
|-
|}
é»åãÎŒç²åã¯å
éšæ§é ããããªããšèããããŠããããã¬ããã³ããšãããå
éšæ§é ããããªããšãããã°ã«ãŒãã«åé¡ãããã
ãKäžéåãã¯ã第1äžä»£ã®ã¯ã©ãŒã¯ãšç¬¬2äžä»£ã®ã¯ã©ãŒã¯ããæãç«ã£ãŠããäºããåãã£ãŠãããïŒâ» æ€å®æç§æžã®ç¯å²å
ãïŒ
ãããŠã2017幎ã®çŸåšãŸã§ãã£ãšãã¯ã©ãŒã¯ã®çè«ããçŽ ç²åã®æ£ããçè«ãšãããŠããã
==== çšèª ====
çŽ ç²åã®èгç¹ããåé¡ããå Žåã®ãéœåãšäžæ§åã®ããã«ãã¯ã©ãŒã¯3åãããªãç²åã®ããšãããŸãšããŠãããªãªã³ãïŒéç²åïŒãšãããÏäžéåïŒÏ<sup>ïŒ</sup>ïŒ<math>u\overline{d}</math>ïŒãªã©ãã¯ã©ãŒã¯ã2åã®ç²åã¯ãããªãªã³ã«å«ãŸãªãã
ããããäžéåã®ãªãã«ããã©ã ãç²åïŒudsãã¢ããããŠã³ã¹ãã¬ã³ãžã®çµã¿åããïŒã®ããã«ãã¯ã©ãŒã¯3åãããªãç²åããããã©ã ãç²åãªã©ããããªãªã³ã«å«ããã
éœåãšäžæ§åãã©ã ãç²åãªã©ãšãã£ãããªãªã³ã«ãããã«äžéåïŒäžéåã¯äœçš®é¡ãããïŒãå ããã°ã«ãŒãããŸãšããŠãããããã³ããšããã
ãªããæ®éã®ç©è³ªã®ååæ žã§ã¯ãéœåãšäžæ§åãååæ žã«éãŸã£ãŠãããããã®ããã«éœåãšäžæ§åãååæ žã«åŒãåãããåã®ããšã'''æ žå'''ãšãããæ žåã®æ£äœã¯ããŸã ãããŸãè§£æãããŠããªãïŒå°ãªããšã髿 ¡ã§æããã»ã©ã«ã¯ããŸã å
åã«ã¯è§£æãããŠããªãïŒã
ãšããããããªãªã³ã«ã¯ãæ žåãåããé説ã§ã¯ãäžéåã«ããæ žåã¯åããšãããŠãããã€ãŸãããããã³ã«ãæ žåãåãã
ãããã³ã¯ãããããã¯ã©ãŒã¯ããæ§æãããŠããäºããããããããã¯ã©ãŒã¯ã«æ žåãåãã®ã ãããçãªäºããèããããŠããã
çè«ã§ã¯ãã¯ã©ãŒã¯ãšã¯ã©ãŒã¯ã©ãããåŒãä»ãããæ¶ç©ºã®ç²åãšããŠãã°ã«ãŒãªã³ããèããããŠãããç©çåŠè
ããçè«ãæå±ãããŠãããããã®æ£äœã¯ããŸã ãããŸãè§£æãããŠãªããããããç©çåŠè
ãã¡ã¯ãã°ã«ãŒãªã³ãçºèŠããããšäž»åŒµããŠããã
çŸåšã®ç©çåŠã§ã¯ãã¯ã©ãŒã¯ãåç¬ã§ã¯åãåºããŠããªãã®ãšåæ§ã«ãã°ã«ãŒãªã³ãåç¬ã§ã¯åãåºããŠã¯ããªãã
ããŠãç©çåŠã§ã¯ã20äžçŽãããéåååŠããšããçè«ããã£ãŠããã®çè«ã«ãããç©çæ³åã®æ ¹æºã§ã¯ãæ³¢ãšç²åãåºå¥ããã®ãç¡æå³ã ãšèšãããŠããããã®ããããã€ãŠã¯æ³¢ã ãšèããããŠããé»ç£æ³¢ããå Žåã«ãã£ãŠã¯ãå
åããšããç²åãšããŠæ±ãããããã«ãªã£ãã
ãã®ããã«ãããæ³¢ãåå ŽïŒããã°ïŒãªã©ããçè«é¢ã§ã¯ç²åã«çœ®ãæããŠè§£éããŠæ±ãäœæ¥ã®ããšããç©çåŠã§ã¯äžè¬ã«ãéååããšããã
ã°ã«ãŒãªã³ããã¯ã©ãŒã¯ãšã¯ã©ãŒã¯ãåŒãä»ããåããéååãããã®ã§ããããé»è·ãšã®é¡æšã§ãã¯ã©ãŒã¯ã«ãè²è·ïŒã«ã©ãŒè·ïŒãšããã®ãèããŠãããããã®æ§è³ªã¯ãããŸãè§£æãããŠãªãïŒå°ãªããšã髿 ¡ã§æããã»ã©ã«ã¯ããŸã å
åã«ã¯è§£æãããŠããªãïŒã
ã°ã«ãŒãªã³ã®ããã«ãåãåªä»ããç²åã®ããšãã²ãŒãžç²åãšããã
{| class="wikitable" style="float: right; text-align: center; margin: 2pt;"
|+ 4ã€ã®åãšã²ãŒãžç²å
|-
! åã®çš®é¡
! ã²ãŒãžç²å
|-
! é»ç£æ°å
| ãå
åã<br>ïŒé»ç£å Žãéååãããã®ïŒ
|-
! ã匷ãåã<br>ïŒã¯ã©ãŒã¯ãåŒãä»ãããåã®ããšïŒ
| ã°ã«ãŒãªã³
|-
! ã匱ãåã<br>ïŒÎ²åŽ©å£ãã€ããã©ããåãã®ããšïŒ
| ãŠã£ãŒã¯ããœã³
|-
! äžæåŒåïŒãéåãïŒ<br>
| ã°ã©ããã³<br>ïŒæªçºèŠïŒ
|-
|}
éåãåªä»ããæ¶ç©ºã®ç²åã®ããšãéååïŒã°ã©ããã³ïŒãšãããããŸã çºèŠãããŠããªããç©çåŠè
ãã¡ããã°ã©ããã³ã¯ããŸã æªçºèŠã§ããããšäž»åŒµããŠããã
é»ç£æ°åãåªä»ããç²åã¯å
åïŒãã©ãã³ïŒãšããããããã¯åã«ãé»ç£å Žãä»®æ³çãªç²åãšããŠçœ®ãæããŠæ±ã£ãã ãã§ããããã©ãã³ã¯ã髿 ¡ç©çã®é»ç£æ°åéã§ç¿ããããªå€å
žçãªé»ç£æ°èšç®ã§ã¯ããŸã£ãã圹ç«ããªãã
ãªããå
åãã²ãŒãžç²åã«å«ããã
ã€ãŸããå
åãã°ã«ãŒãªã³ã¯ãã²ãŒãžç²åã§ããã
ããŒã¿åŽ©å£ãã€ããã©ãåã®ããšãã匱ãåããšããããã®åãåªä»ããç²åãããŠã£ãŒã¯ããœã³ããšããããæ§è³ªã¯ãããåãã£ãŠããªãããããç©çåŠè
ãã¡ã¯ããŠã£ãŒã¯ããœã³ãçºèŠããããšäž»åŒµããŠããã
ãããããããœã³ããšã¯äœãïŒ
éåååŠã®ã»ãã§ã¯ãé»åã®ãããªãäžç®æã«ããã ãæ°åãŸã§ããååšã§ããªãç²åããŸãšããŠãã§ã«ããªã³ãšããããã§ã«ããªã³çã§ãªãå¥çš®ã®ç²åãšããŠããœã³ããããå
åããããœã³ãšããŠæ±ãããã
ããŠã£ãŒã¯ããœã³ããšã¯ãããããã匱ãåãåªä»ããããœã³ã ãããŠã£ãŒã¯ããœã³ãšåŒãã§ããã®ã ããã
ããŠãé»è·ãšã®é¡æšã§ãã匱ãåãã«é¢ããã匱è·ãïŒããããïŒãšããã®ãæå±ãããŠãããããããããã®æ§è³ªã¯ãããŸãè§£æãããŠãªãïŒå°ãªããšã髿 ¡ã§æããã»ã©ã«ã¯ããŸã å
åã«ã¯è§£æãããŠããªãïŒã
ããŠãã匱ãåãã®ããäžæ¹ãã°ã«ãŒãªã³ã®åªä»ããåã®ããšãã匷ãåããšãããã
==== â» ç¯å²å€: ã³ãã«ã60ã®ããŒã¿åŽ©å£ãšã匱ãåã ====
1956幎ã«ãé»åã®ã¹ãã³ã®æ¹åãšãããŒã¿åŽ©å£ç²åã®åºãŠæ¥ãæ¹åãšã®é¢ä¿ãèŠãããã®å®éšãšããŠãã³ãã«ãã®æŸå°æ§åäœäœã§ããã³ãã«ã60ããã¡ããŠæ¬¡ã®ãããªå®éšããã¢ã¡ãªã«ã§è¡ãããã
ã³ãã«ãå
çŽ ïŒå
çŽ èšå·: Co ïŒã®æŸå°æ§åäœäœã§ããã³ãã«ã60ãæ¥µäœæž©ã«å·åŽããç£å ŽããããŠå€æ°ã®ã³ãã«ãååã®é»åæ®»ã®å€ç«é»åã¹ãã³ã®æ¹åãããããç¶æ
ã§ãã³ãã«ã60ãããŒã¿åŽ©å£ããŠçºçããããŒã¿ç²åã®åºãæ¹åã調ã¹ãå®éšãã1956幎ã«ã¢ã¡ãªã«ã§è¡ãããã
éãšããã±ã«ãšã³ãã«ãã¯ãããããéå±åäœã§ç£æ§äœã«ãªãå
çŽ ã§ãããå
çŽ åäœã§ç£æ§äœã«ãªãå
çŽ ã¯ããã®3ã€ïŒéãããã±ã«ãã³ãã«ãïŒãããªããïŒãªããæŸå°æ§åäœäœã§ãªãéåžžã®ã³ãã«ãã®ååéã¯59ã§ãããïŒ
ãã®3ã€ïŒéãããã±ã«ãã³ãã«ãïŒã®ãªãã§ãã³ãã«ããäžçªãç£æ°ã«å¯äžããé»åã®æ°ãå€ãããšãéåååŠã®çè«ã«ããæ¢ã«ç¥ãããããã®ã§ïŒã³ãã«ãããã£ãšããdè»éã®é»åã®æ°ãå€ã ïŒãããŒã¿åŽ©å£ãšã¹ãã³ãšã®é¢ä¿ãã¿ãããã®å®éšã«ãã³ãã«ãã®æŸå°æ§åäœäœã§ããã³ãã«ã60ã䜿ãããã®ã§ããã
å®éšã®çµæãã³ãã«ã60ãããŒã¿åŽ©å£ããŠããŒã¿ç²åã®åºãŠããæ¹åã¯ãã³ãã«ã60ã®ã¹ãã³ã®ç£æ°ã®æ¹åãšïŒåãæ¹åãããïŒéã®æ¹åã«å€ãæŸåºãããŠããã®ã芳枬ããããããã¯ã2çš®é¡ïŒã¹ãã³ãšåæ¹åã«ããŒã¿ç²åã®åºãå Žåãšãã¹ãã³ãšå察æ¹åã«ããŒã¿ç²åã®åºãå ŽåïŒã®åŽ©å£ã®ç¢ºçãç°ãªã£ãŠãããããŒã¿åŽ©å£ã®ç¢ºçã®ïŒã¹ãã³æ¹åãåºæºãšããå Žåã®ïŒæ¹å察称æ§ãæããŠããããšã«ãªãã
ãã®ãããªå®éšäºå®ã«ãããã匱ãåãã¯é察称ã§ããããšããã®ãå®èª¬ã
{{-}}
== èæ³šã»åèæç®ãªã© ==
[[Category:é«çåŠæ ¡æè²|ç©ãµã€ã2ããããšããããã]]
[[Category:ç©çåŠ|é«ãµã€ã2ããããšããããã]]
[[Category:ç©çåŠæè²|é«ãµã€ã2ããããšããããã]]
[[Category:é«çåŠæ ¡çç§ ç©çII|ããããšããããã]] | 2005-05-08T08:19:59Z | 2024-03-04T16:10:52Z | [
"ãã³ãã¬ãŒã:ã³ã©ã ",
"ãã³ãã¬ãŒã:Val",
"ãã³ãã¬ãŒã:-"
] | https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E7%89%A9%E7%90%86/%E5%8E%9F%E5%AD%90%E7%89%A9%E7%90%86 |
1,971 | åšæåŸãšå
çŽ ã®è«žç¹æ§/å
žåå
çŽ /ã¢ã«ã«ãªåé¡éå±å
çŽ | ã¢ã«ã«ãªåé¡éå±ãšã¯ç¬¬2æå
çŽ ã®ããšããã€ãŠã¯ãåšæè¡šã®2æã®ãã¡ãCa(ã«ã«ã·ãŠã )ãSr(ã¹ããã³ããŠã )ãBa(ããªãŠã )ãRa(ã©ãžãŠã )ã®4ã€ã®å
çŽ ãæããŠããããçŸåšã§ã¯ããã«å ããBe(ããªãªãŠã )ãMg(ãã°ãã·ãŠã )ãã¢ã«ã«ãªåé¡éå±ã«å«ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ã¢ã«ã«ãªåé¡éå±ãšã¯ç¬¬2æå
çŽ ã®ããšããã€ãŠã¯ãåšæè¡šã®2æã®ãã¡ãCa(ã«ã«ã·ãŠã )ãSr(ã¹ããã³ããŠã )ãBa(ããªãŠã )ãRa(ã©ãžãŠã )ã®4ã€ã®å
çŽ ãæããŠããããçŸåšã§ã¯ããã«å ããBe(ããªãªãŠã )ãMg(ãã°ãã·ãŠã )ãã¢ã«ã«ãªåé¡éå±ã«å«ããã",
"title": ""
}
] | ã¢ã«ã«ãªåé¡éå±ãšã¯ç¬¬2æå
çŽ ã®ããšããã€ãŠã¯ãåšæè¡šã®2æã®ãã¡ãCaïŒã«ã«ã·ãŠã ïŒãSrïŒã¹ããã³ããŠã ïŒãBaïŒããªãŠã ïŒãRaïŒã©ãžãŠã ïŒã®4ã€ã®å
çŽ ãæããŠããããçŸåšã§ã¯ããã«å ããBeïŒããªãªãŠã ïŒãMgïŒãã°ãã·ãŠã ïŒãã¢ã«ã«ãªåé¡éå±ã«å«ããã | '''ã¢ã«ã«ãªåé¡éå±'''ãšã¯'''第2æå
çŽ '''ã®ããšããã€ãŠã¯ãåšæè¡šã®2æã®ãã¡ãCaïŒã«ã«ã·ãŠã ïŒãSrïŒã¹ããã³ããŠã ïŒãBaïŒããªãŠã ïŒãRaïŒã©ãžãŠã ïŒã®4ã€ã®å
çŽ ãæããŠããããçŸåšã§ã¯ããã«å ããBeïŒããªãªãŠã ïŒãMgïŒãã°ãã·ãŠã ïŒãã¢ã«ã«ãªåé¡éå±ã«å«ããã
{{stub}}
[[ã«ããŽãª:å
çŽ ]] | 2005-05-09T13:58:57Z | 2023-08-19T09:40:29Z | [
"ãã³ãã¬ãŒã:Stub"
] | https://ja.wikibooks.org/wiki/%E5%91%A8%E6%9C%9F%E5%BE%8B%E3%81%A8%E5%85%83%E7%B4%A0%E3%81%AE%E8%AB%B8%E7%89%B9%E6%80%A7/%E5%85%B8%E5%9E%8B%E5%85%83%E7%B4%A0/%E3%82%A2%E3%83%AB%E3%82%AB%E3%83%AA%E5%9C%9F%E9%A1%9E%E9%87%91%E5%B1%9E%E5%85%83%E7%B4%A0 |
1,972 | åšæåŸãšå
çŽ ã®è«žç¹æ§/å
žåå
çŽ /ã¢ã«ã«ãªéå±å
çŽ | ã¢ã«ã«ãªéå±ãšã¯ãæ°ŽçŽ ãé€ããåšæè¡šç¬¬1æã®6ã€ã®å
çŽ ãLi(ãªããŠã )ãNa(ãããªãŠã )ãK(ã«ãªãŠã )ãRb(ã«ããžãŠã )ãCs(ã»ã·ãŠã )ãFr(ãã©ã³ã·ãŠã )ãæãã åºåºç¶æ
ã®æå€æ®»é»åé
眮ã¯(ns)(n=2,3,ã»ã»ã»,7)ã§ãããsé»åã1ã€å€±ã£ãŠã1䟡ã®éœã€ãªã³ã«ãªãããããèªç¶çã«ååšããã¢ã«ã«ãªéå±ã¯ãã¹ãŠé
žåæ°+1ã®ç¶æ
ã§ããã
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "ã¢ã«ã«ãªéå±ãšã¯ãæ°ŽçŽ ãé€ããåšæè¡šç¬¬1æã®6ã€ã®å
çŽ ãLi(ãªããŠã )ãNa(ãããªãŠã )ãK(ã«ãªãŠã )ãRb(ã«ããžãŠã )ãCs(ã»ã·ãŠã )ãFr(ãã©ã³ã·ãŠã )ãæãã åºåºç¶æ
ã®æå€æ®»é»åé
眮ã¯(ns)(n=2,3,ã»ã»ã»,7)ã§ãããsé»åã1ã€å€±ã£ãŠã1䟡ã®éœã€ãªã³ã«ãªãããããèªç¶çã«ååšããã¢ã«ã«ãªéå±ã¯ãã¹ãŠé
žåæ°+1ã®ç¶æ
ã§ããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "",
"title": ""
}
] | ã¢ã«ã«ãªéå±ãšã¯ãæ°ŽçŽ ãé€ããåšæè¡šç¬¬1æã®6ã€ã®å
çŽ ãLiïŒãªããŠã ïŒãNaïŒãããªãŠã ïŒãKïŒã«ãªãŠã ïŒãRbïŒã«ããžãŠã ïŒãCsïŒã»ã·ãŠã ïŒãFrïŒãã©ã³ã·ãŠã ïŒãæãã
ãåºåºç¶æ
ã®æå€æ®»é»åé
眮ã¯(ns)1ïŒn=2,3,ã»ã»ã»,7ïŒã§ãããsé»åã1ã€å€±ã£ãŠã1䟡ã®éœã€ãªã³ã«ãªãããããèªç¶çã«ååšããã¢ã«ã«ãªéå±ã¯ãã¹ãŠé
žåæ°ïŒ1ã®ç¶æ
ã§ããã | '''ã¢ã«ã«ãªéå±'''ãšã¯ãæ°ŽçŽ ãé€ããåšæè¡šç¬¬1æã®6ã€ã®å
çŽ ãLiïŒãªããŠã ïŒãNaïŒãããªãŠã ïŒãKïŒã«ãªãŠã ïŒãRbïŒã«ããžãŠã ïŒãCsïŒã»ã·ãŠã ïŒãFrïŒãã©ã³ã·ãŠã ïŒãæãã
ãåºåºç¶æ
ã®æå€æ®»é»åé
眮ã¯(ns)<sup>1</sup>ïŒn=2,3,ã»ã»ã»,7ïŒã§ãããsé»åã1ã€å€±ã£ãŠã1䟡ã®éœã€ãªã³ã«ãªãããããèªç¶çã«ååšããã¢ã«ã«ãªéå±ã¯ãã¹ãŠé
žåæ°ïŒ1ã®ç¶æ
ã§ããã
== çè²åå¿ ==
{{stub}}
[[ã«ããŽãª:å
çŽ ]] | null | 2023-01-25T13:27:42Z | [
"ãã³ãã¬ãŒã:Stub"
] | https://ja.wikibooks.org/wiki/%E5%91%A8%E6%9C%9F%E5%BE%8B%E3%81%A8%E5%85%83%E7%B4%A0%E3%81%AE%E8%AB%B8%E7%89%B9%E6%80%A7/%E5%85%B8%E5%9E%8B%E5%85%83%E7%B4%A0/%E3%82%A2%E3%83%AB%E3%82%AB%E3%83%AA%E9%87%91%E5%B1%9E%E5%85%83%E7%B4%A0 |
1,975 | æ§èª²çš(-2012幎床)é«çåŠæ ¡æ°åŠB/æ°å€èšç®ãšã³ã³ãã¥ãŒã¿ãŒ | åççãªç®æ³ãæ±ããèšç®æ©ãçšããŠãããèšç®ããæ¹æ³ãåŠã¶ãããã°ã©ã äŸãšããŠã¯ãPythonãšSchemeãšããèšèªãæ±ããèšèªã®è©³çްã«ç«ã¡å
¥ãããèãæ¹ãåŠã¶ããšãéèŠãšãªãã
ãŠãŒã¯ãªããã®äºé€æ³ã¯2ã€ã®æŽæ°ã®æå€§å
¬çŽæ°ãæ±ããç®æ³ã§ãããããæŽæ°m, n (m > n > 0) ããšãããã®ãšããŠãŒã¯ãªããã®äºé€æ³ã¯
ã§äžããããã
(å°åº)
m,nãäºãã«çŽ ã§ãããšããèãããmãnã§å²ã£ãåãaãäœããrãšãããšãã
ãæãç«ã€ãããã§ãä»®ã«nãrãå
±éå æ°ãæã€ãªããã®å æ°ã¯mã®å æ°ã§ããããããã¯mãnãäºãã«çŽ ã§ããããšã«ççŸããããã£ãŠãnãrã¯äºãã«çŽ ã§ãããããããäžã®1ã2ãè¡ãªããšäºãã«çŽ ã§ããããå°ãã2ã€ã®æŽæ°n,rãåŸãããããããç¹°ãããããšå°ããåŽã®æŽæ°ã¯1ãšãªãã
å®éäœãã2以äžã«ãªããšãã¯2æ°ãäºãã«çŽ ã§ããããšãããæ¬¡ã®èšç®ã§æŽã«å°ããæ°ãåŸãããäœãã0ã«ãªãããšã¯å°ããæ¹ã®æ°ã1ã§ããå Žåãé€ããŠã2æ°ãäºãã«çŽ ã§ããããšã«åããããã£ãŠã確ãã«å°ããåŽã®æŽæ°ã¯1ãšãªãããã£ãŠãm,nãäºãã«çŽ ã§ãããšããŠãŒã¯ãªããã®äºé€æ³ã¯ç¢ºããããããæ¬¡ã«m,nãæå€§å
¬çŽæ°Mãæã€ãšããèããããã®ãšããmãnã§å²ã£ãåãaãäœããrãšãããšãã
ãæãç«ã€ãã
ãèãããšãrãmãnãšåãæå€§å
¬çŽæ°Mãæã€ãr,m,nãMã§å²ã£ããã®ãããããr',m',n'ãšãããšããããã¯äºãã«çŽ ã§ããã(æå€§å
¬çŽæ°ã®å®çŸ©)ããã®ãšãäžã®2æ°ãäºãã«çŽ ã§ãããšãã®ãŠãŒã¯ãªããäºé€æ³ã®å°åºããå°ããæ¹ã®æŽæ°ã¯1ãåŸãããããã£ãŠå
ã®æŽæ°ã«æ»ãããã«Mããããããšã§ããã®æ¹æ³ã2æ°ã®æå€§å
¬çŽæ°Mãäžããããšãåããããã£ãŠãmãnãå
±éå æ°ãæã€å Žåã«ããŠãŒã¯ãªããäºé€æ³ã¯ç€ºãããã
å®éã®èšç®ã«ã¯èšç®æ©ãçšãããš(ç¹ã«2æ°ã倧ãããšãã«ã¯)䟿å©ã§ããã
ãã颿°f(x)ãšx軞ãšã®æ¥ç¹ãæ±ããæ¹æ³ã®1ã€ã«ã2åæ³ããããç¹ã«f(x)ãæ±ããç¹ã§æ£ã®åŸããæã£ãŠãããã®ãšããŠèããããã®æ¹æ³ã¯ã
ãã®æ¹æ³ã¯å
ã
ã®ç¯å²[a,b]ã®äžç¹ãåããè§£ãäžç¹ããèŠãŠã©ã¡ãã«ãããã倿ããç¯å²ãçããŠããæ¹æ³ã§ããã
å°åœ¢å
¬åŒã¯ãããã°ã©ãf(x)ãšx軞ãšx=a,x=bã«å²ãŸããé¢ç©ãè¿äŒŒçã«æ±ããå
¬åŒã§ããããã®å
¬åŒã§ã¯ã[a,b]ã®ç¯å²ãNåã®å°ããç¯å²ã«åããiåç®ã®ç¯å²ãã [ x i , x i + 1 ] {\displaystyle [x_{i},x_{i+1}]} ãšæžãããã®ãšããã®ç¯å²ã«ãããŠã¯æ±ããé¢ç©ãå°åœ¢ã§è¿äŒŒããŠãé¢ç©ã®ããã¯å°ããã
ããã§ãå°åœ¢ã®é¢ç© s i {\displaystyle s_{i}} ã¯
ã§æžãããããšãèæ
®ãããšãæ±ããé¢ç©Sã¯ã
ã§è¿äŒŒã§ããããšãåããã
Pythonã«ããããã°ã©ã äŸã§ã¯ãååŸ1ã®åã®é¢ç©ãè¿äŒŒçã«æ±ããããã«ãã£ãŠ Ï {\displaystyle \pi } ã®å€ãèšç®ããã
å®éã® Ï {\displaystyle \pi } ã®å€ãšè¿ãå€ãåŸãããŠããããšãåããã
Schemeã«ããããã°ã©ã äŸ
ãã¡ããå®éã® Ï {\displaystyle \pi } ã®å€ãšè¿ãå€ãåŸãããŠããããšãåããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "åççãªç®æ³ãæ±ããèšç®æ©ãçšããŠãããèšç®ããæ¹æ³ãåŠã¶ãããã°ã©ã äŸãšããŠã¯ãPythonãšSchemeãšããèšèªãæ±ããèšèªã®è©³çްã«ç«ã¡å
¥ãããèãæ¹ãåŠã¶ããšãéèŠãšãªãã",
"title": "æ°å€èšç®ãšã³ã³ãã¥ãŒã¿ãŒ"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãŠãŒã¯ãªããã®äºé€æ³ã¯2ã€ã®æŽæ°ã®æå€§å
¬çŽæ°ãæ±ããç®æ³ã§ãããããæŽæ°m, n (m > n > 0) ããšãããã®ãšããŠãŒã¯ãªããã®äºé€æ³ã¯",
"title": "æ°å€èšç®ãšã³ã³ãã¥ãŒã¿ãŒ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ã§äžããããã",
"title": "æ°å€èšç®ãšã³ã³ãã¥ãŒã¿ãŒ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "(å°åº)",
"title": "æ°å€èšç®ãšã³ã³ãã¥ãŒã¿ãŒ"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "m,nãäºãã«çŽ ã§ãããšããèãããmãnã§å²ã£ãåãaãäœããrãšãããšãã",
"title": "æ°å€èšç®ãšã³ã³ãã¥ãŒã¿ãŒ"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãæãç«ã€ãããã§ãä»®ã«nãrãå
±éå æ°ãæã€ãªããã®å æ°ã¯mã®å æ°ã§ããããããã¯mãnãäºãã«çŽ ã§ããããšã«ççŸããããã£ãŠãnãrã¯äºãã«çŽ ã§ãããããããäžã®1ã2ãè¡ãªããšäºãã«çŽ ã§ããããå°ãã2ã€ã®æŽæ°n,rãåŸãããããããç¹°ãããããšå°ããåŽã®æŽæ°ã¯1ãšãªãã",
"title": "æ°å€èšç®ãšã³ã³ãã¥ãŒã¿ãŒ"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "å®éäœãã2以äžã«ãªããšãã¯2æ°ãäºãã«çŽ ã§ããããšãããæ¬¡ã®èšç®ã§æŽã«å°ããæ°ãåŸãããäœãã0ã«ãªãããšã¯å°ããæ¹ã®æ°ã1ã§ããå Žåãé€ããŠã2æ°ãäºãã«çŽ ã§ããããšã«åããããã£ãŠã確ãã«å°ããåŽã®æŽæ°ã¯1ãšãªãããã£ãŠãm,nãäºãã«çŽ ã§ãããšããŠãŒã¯ãªããã®äºé€æ³ã¯ç¢ºããããããæ¬¡ã«m,nãæå€§å
¬çŽæ°Mãæã€ãšããèããããã®ãšããmãnã§å²ã£ãåãaãäœããrãšãããšãã",
"title": "æ°å€èšç®ãšã³ã³ãã¥ãŒã¿ãŒ"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãæãç«ã€ãã",
"title": "æ°å€èšç®ãšã³ã³ãã¥ãŒã¿ãŒ"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãèãããšãrãmãnãšåãæå€§å
¬çŽæ°Mãæã€ãr,m,nãMã§å²ã£ããã®ãããããr',m',n'ãšãããšããããã¯äºãã«çŽ ã§ããã(æå€§å
¬çŽæ°ã®å®çŸ©)ããã®ãšãäžã®2æ°ãäºãã«çŽ ã§ãããšãã®ãŠãŒã¯ãªããäºé€æ³ã®å°åºããå°ããæ¹ã®æŽæ°ã¯1ãåŸãããããã£ãŠå
ã®æŽæ°ã«æ»ãããã«Mããããããšã§ããã®æ¹æ³ã2æ°ã®æå€§å
¬çŽæ°Mãäžããããšãåããããã£ãŠãmãnãå
±éå æ°ãæã€å Žåã«ããŠãŒã¯ãªããäºé€æ³ã¯ç€ºãããã",
"title": "æ°å€èšç®ãšã³ã³ãã¥ãŒã¿ãŒ"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "å®éã®èšç®ã«ã¯èšç®æ©ãçšãããš(ç¹ã«2æ°ã倧ãããšãã«ã¯)䟿å©ã§ããã",
"title": "æ°å€èšç®ãšã³ã³ãã¥ãŒã¿ãŒ"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãã颿°f(x)ãšx軞ãšã®æ¥ç¹ãæ±ããæ¹æ³ã®1ã€ã«ã2åæ³ããããç¹ã«f(x)ãæ±ããç¹ã§æ£ã®åŸããæã£ãŠãããã®ãšããŠèããããã®æ¹æ³ã¯ã",
"title": "æ°å€èšç®ãšã³ã³ãã¥ãŒã¿ãŒ"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãã®æ¹æ³ã¯å
ã
ã®ç¯å²[a,b]ã®äžç¹ãåããè§£ãäžç¹ããèŠãŠã©ã¡ãã«ãããã倿ããç¯å²ãçããŠããæ¹æ³ã§ããã",
"title": "æ°å€èšç®ãšã³ã³ãã¥ãŒã¿ãŒ"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "å°åœ¢å
¬åŒã¯ãããã°ã©ãf(x)ãšx軞ãšx=a,x=bã«å²ãŸããé¢ç©ãè¿äŒŒçã«æ±ããå
¬åŒã§ããããã®å
¬åŒã§ã¯ã[a,b]ã®ç¯å²ãNåã®å°ããç¯å²ã«åããiåç®ã®ç¯å²ãã [ x i , x i + 1 ] {\\displaystyle [x_{i},x_{i+1}]} ãšæžãããã®ãšããã®ç¯å²ã«ãããŠã¯æ±ããé¢ç©ãå°åœ¢ã§è¿äŒŒããŠãé¢ç©ã®ããã¯å°ããã",
"title": "æ°å€èšç®ãšã³ã³ãã¥ãŒã¿ãŒ"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ããã§ãå°åœ¢ã®é¢ç© s i {\\displaystyle s_{i}} ã¯",
"title": "æ°å€èšç®ãšã³ã³ãã¥ãŒã¿ãŒ"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ã§æžãããããšãèæ
®ãããšãæ±ããé¢ç©Sã¯ã",
"title": "æ°å€èšç®ãšã³ã³ãã¥ãŒã¿ãŒ"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ã§è¿äŒŒã§ããããšãåããã",
"title": "æ°å€èšç®ãšã³ã³ãã¥ãŒã¿ãŒ"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "Pythonã«ããããã°ã©ã äŸã§ã¯ãååŸ1ã®åã®é¢ç©ãè¿äŒŒçã«æ±ããããã«ãã£ãŠ Ï {\\displaystyle \\pi } ã®å€ãèšç®ããã",
"title": "æ°å€èšç®ãšã³ã³ãã¥ãŒã¿ãŒ"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "å®éã® Ï {\\displaystyle \\pi } ã®å€ãšè¿ãå€ãåŸãããŠããããšãåããã",
"title": "æ°å€èšç®ãšã³ã³ãã¥ãŒã¿ãŒ"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "Schemeã«ããããã°ã©ã äŸ",
"title": "æ°å€èšç®ãšã³ã³ãã¥ãŒã¿ãŒ"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ãã¡ããå®éã® Ï {\\displaystyle \\pi } ã®å€ãšè¿ãå€ãåŸãããŠããããšãåããã",
"title": "æ°å€èšç®ãšã³ã³ãã¥ãŒã¿ãŒ"
}
] | null | {{pathnav|frame=1|é«çåŠæ ¡æ°åŠ|é«çåŠæ ¡æ°åŠB}}
==æ°å€èšç®ãšã³ã³ãã¥ãŒã¿ãŒ==
åççãªç®æ³ãæ±ããèšç®æ©ãçšããŠãããèšç®ããæ¹æ³ãåŠã¶ãããã°ã©ã äŸãšããŠã¯ã[[Python]]ãš[[Scheme]]ãšããèšèªãæ±ããèšèªã®è©³çްã«ç«ã¡å
¥ãããèãæ¹ãåŠã¶ããšãéèŠãšãªãã
===æŽæ°ã®ç®æ³===
====ãŠãŒã¯ãªããã®äºé€æ³====
ãŠãŒã¯ãªããã®äºé€æ³ã¯2ã€ã®æŽæ°ã®æå€§å
¬çŽæ°ãæ±ããç®æ³ã§ãããããæŽæ°m, n (m > n > 0) ããšãããã®ãšããŠãŒã¯ãªããã®äºé€æ³ã¯
#mãnã§å²ã£ãäœããèšç®ãããããrãšããããã®ãšãr=0ãªã3ã«é²ã¿ã<math>r \ne 0</math>ãªãã2ã«é²ãã
#mã以åã®nã®å€ã§çœ®ãæããnãrã®å€ã§çœ®ãæãã1ã«æ»ãã
#nã®å€ãæå€§å
¬çŽæ°ãšãªã£ãŠããã
ã§äžããããã
(å°åº)
m,nãäºãã«çŽ ã§ãããšããèãããmãnã§å²ã£ãåãaãäœããrãšãããšãã
:<math>m=na+r</math> ãã ã <math>(r<n<m)</math>
ãæãç«ã€ãããã§ãä»®ã«nãrãå
±éå æ°ãæã€ãªããã®å æ°ã¯mã®å æ°ã§ããããããã¯mãnãäºãã«çŽ ã§ããããšã«ççŸããããã£ãŠãnãrã¯äºãã«çŽ ã§ãããããããäžã®1ã2ãè¡ãªããšäºãã«çŽ ã§ããããå°ãã2ã€ã®æŽæ°n,rãåŸãããããããç¹°ãããããšå°ããåŽã®æŽæ°ã¯1ãšãªãã
å®éäœãã2以äžã«ãªããšãã¯2æ°ãäºãã«çŽ ã§ããããšãããæ¬¡ã®èšç®ã§æŽã«å°ããæ°ãåŸãããäœãã0ã«ãªãããšã¯å°ããæ¹ã®æ°ã1ã§ããå Žåãé€ããŠã2æ°ãäºãã«çŽ ã§ããããšã«åããããã£ãŠã確ãã«å°ããåŽã®æŽæ°ã¯1ãšãªãããã£ãŠãm,nãäºãã«çŽ ã§ãããšããŠãŒã¯ãªããã®äºé€æ³ã¯ç¢ºããããããæ¬¡ã«m,nãæå€§å
¬çŽæ°Mãæã€ãšããèããããã®ãšããmãnã§å²ã£ãåãaãäœããrãšãããšãã
:<math>m=na+r</math> ãã ã <math>(r<n<m)</math>
ãæãç«ã€ãã
:<math>r = m - na</math>
ãèãããšãrãmãnãšåãæå€§å
¬çŽæ°Mãæã€ãr,m,nãMã§å²ã£ããã®ãããããr',m',n'ãšãããšããããã¯äºãã«çŽ ã§ãããïŒæå€§å
¬çŽæ°ã®å®çŸ©ïŒããã®ãšãäžã®2æ°ãäºãã«çŽ ã§ãããšãã®ãŠãŒã¯ãªããäºé€æ³ã®å°åºããå°ããæ¹ã®æŽæ°ã¯1ãåŸãããããã£ãŠå
ã®æŽæ°ã«æ»ãããã«Mããããããšã§ããã®æ¹æ³ã2æ°ã®æå€§å
¬çŽæ°Mãäžããããšãåããããã£ãŠãmãnãå
±éå æ°ãæã€å Žåã«ããŠãŒã¯ãªããäºé€æ³ã¯ç€ºãããã
å®éã®èšç®ã«ã¯èšç®æ©ãçšãããšïŒç¹ã«2æ°ã倧ãããšãã«ã¯ïŒäŸ¿å©ã§ããã
;[https://paiza.io/projects/mArZ05TFJbs_RlcxXzbJPw?language=python3 Pythonã«ããããã°ã©ã äŸ]:<syntaxhighlight lang=python3>
def euclid(m, n):
print(f"euclid({m}, {n})")
if (n == 0):
return m
return euclid(n, m % n)
print(euclid(45,30))
print(euclid(45,28))
print(euclid(30,28))
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
euclid(45, 30)
euclid(30, 15)
euclid(15, 0)
15
euclid(45, 28)
euclid(28, 17)
euclid(17, 11)
euclid(11, 6)
euclid(6, 5)
euclid(5, 1)
euclid(1, 0)
1
euclid(30, 28)
euclid(28, 2)
euclid(2, 0)
2
</syntaxhighlight>
;[[Scheme]]ã«ããããã°ã©ã äŸ:<syntaxhighlight lang="Scheme">
(define (euclid m n)
(let ((r (modulo m n)))
(if (zero? r) ;ãããŸã§ãå°åºéçšã®1
n ;ãããå°åºéçšã®3
(euclid n r)))) ;ãããå°åºéçšã®2
;;;å®è¡äŸ
;;> (euclid 45 30)
;;15
;;> (euclid 45 28)
;;1
;;> (euclid 30 28)
;;2
</syntaxhighlight>
===宿°ã®ç®æ³===
==== 2åæ³====
ãã颿°f(x)ãšx軞ãšã®æ¥ç¹ãæ±ããæ¹æ³ã®1ã€ã«ã2åæ³ããããç¹ã«f(x)ãæ±ããç¹ã§æ£ã®åŸããæã£ãŠãããã®ãšããŠèããããã®æ¹æ³ã¯ã
# ç¯å²[a,b]å
ã«xè»žãšæ±ãã颿°f(x)ã®æ¥ç¹ãå«ãŸããããã«ã2æ°a,bãå®ããã
# mid_point = (a+b)/2 ãèšç®ãããããf(mid_point)ãååã«0ã«è¿ããã°4ã«é²ãã
# ããf(mid_point)<math>></math>0ãªããmid_pointã®å€ãbã®å€ã«ä»£å
¥ãã2ã«æ»ãããããf(mid_point)<math><</math>0ãªããmid_pointã®å€ãaã®å€ã«ä»£å
¥ãã2ã«æ»ãã
# mid_pointã®å€ãæ±ããæ¥ç¹ã®x座æšã§ããã
ãã®æ¹æ³ã¯å
ã
ã®ç¯å²[a,b]ã®äžç¹ãåããè§£ãäžç¹ããèŠãŠã©ã¡ãã«ãããã倿ããç¯å²ãçããŠããæ¹æ³ã§ããã
;[[Python]]ã«ãã[https://paiza.io/projects/mslsT2vksLfwnt8HqWmn-A?language=python3 ã³ãŒãäŸ]:<syntaxhighlight lang=python3>
from math import isfinite
def bisection(func, left: float, right: float) -> float:
# acceptance inspection
assert (callable(func)),"func is not callable."
assert (isfinite(left)),f"The left({left}) is not a finite number."
assert (isfinite(right)),f"The right({right}) side is not a finite number."
assert (left <= right),f"The left({left}) is bigger than the right({right})."
# Implementation of core algorithms
def core(f, low: float, high: float) -> float:
x = (low + high) / 2
fx = f(x)
if (abs(fx) < +1.0e-10):
return x
if fx < 0.0:
low = x
else:
high = x
return core(f, low, high)
return core(func, left, right)
print(bisection(lambda x: x-1, 0.0, 3.0))
print(bisection(lambda x: x*x-1, 0, 3))
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
0.9999999999417923
1.0000000000291038
</syntaxhighlight>
:ãã®ã³ãŒãã¯<math>\lambda(x)=x-1</math>ããŸãã¯ã<math>\lambda(x)=x^2-1</math>ã®ãšãã«è©Šããããçµæã¯ 0.9999999999417923 ããã³ 1.0000000000291038 ã§ãããå
å1.0ã«è¿ãå€ãè¿ããŠããã
:
;[[Scheme]]ã«ãã[https://paiza.io/projects/4Du9cGTR0Q3-UWWN24JEqw ã³ãŒãäŸ]:<syntaxhighlight lang="Scheme">
(define (bisection f a b) ;æé 1ã
(let ((e (expt 10 -10))
(mid_point (/ (+ a b) 2))) ;æé 2ãäžç¹ã®èšç®ã
(cond ((or (zero? (f mid_point))
(< (- e) (f mid_point) e))
(exact->inexact mid_point)) ;ãããŸã§ãæé 4ã
((> (f mid_point) 0)
(bisection f a mid_point))
(else (bisection f mid_point b))))) ;ãããŸã§ãæé 3
(print (bisection (lambda (x) (- x 1)) 0 3)) ;x-1ã®è§£ã0ã3éã§æ¢ãã
(print (bisection (lambda (x) (- (expt x 2) 1)) 0 3)) ;x^2-1ã®è§£ã0ã3éã§æ¢ãã
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
0.9999999999417923
1.0000000000291038
</syntaxhighlight>
:ãã®ã³ãŒãã<math>\lambda(x)=x-1</math>ããŸãã¯ã<math>\lambda(x)=x^2-1</math>ã®ãšãã«è©Šãããã[[Python]]çã®çµæãšäžèŽããŠããã
==== å°åœ¢å
¬åŒ====
å°åœ¢å
¬åŒã¯ãããã°ã©ãf(x)ãšx軞ãšx=a,x=bã«å²ãŸããé¢ç©ãè¿äŒŒçã«æ±ããå
¬åŒã§ããããã®å
¬åŒã§ã¯ã[a,b]ã®ç¯å²ãNåã®å°ããç¯å²ã«åããiåç®ã®ç¯å²ãã<math>[x _i,x _{i+1}]</math>ãšæžãããã®ãšããã®ç¯å²ã«ãããŠã¯æ±ããé¢ç©ãå°åœ¢ã§è¿äŒŒããŠãé¢ç©ã®ããã¯å°ããã
:æ£ç¢ºãªé¢ç©ãšå°åœ¢ã®é¢ç©ã®ããã®çµµ
ããã§ãå°åœ¢ã®é¢ç©<math>s _i</math>ã¯
:<math>
s _i = \frac12 \{ f(x _i)+f(x _{i+1}) \} \cdot (x _{i+1}-x _i )
</math>
ã§æžãããããšãèæ
®ãããšãæ±ããé¢ç©Sã¯ã
:<math>
S=\sum _{i=0} ^N s _i
</math>
ã§è¿äŒŒã§ããããšãåããã
[[Python]]ã«ããããã°ã©ã äŸã§ã¯ãååŸ1ã®åã®ååã®ïŒã®é¢ç©ãè¿äŒŒçã«æ±ããããã«ãã£ãŠ<math>\pi/4</math>ã®å€ãèšç®ããã
;[https://paiza.io/projects/MCQYVUDrCC7EFyh3OFg1bg?language=python3 trapezoid.py]:<syntaxhighlight lang=python3>
from math import sqrt,pi
from numbers import Number
def trapezoid_formula(f, a, b):
assert callable(f), "f must be a callable"
assert isinstance(a, Number), "a must be a number"
assert isinstance(b, Number), "b must be a number"
n = 20
dx = (b - a) / n
sum = 0
for i in range(n):
sum += (f(a + dx * i) + f(a + dx * (i + 1))) * dx / 2
return sum
print(trapezoid_formula(lambda x: sqrt(1 - x ** 2), 0, 1))
print(pi/4)
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
0.7821162199387454
0.7853981633974483
</syntaxhighlight>
å®éã®<math>\pi/4</math>ã®å€ãšè¿ãå€ãåŸãããŠããããšãåããã
[[Scheme]]ã«ããããã°ã©ã äŸ
;[https://paiza.io/projects/YAGiEEO9bJtET0tSvA9_2A?language=scheme trapezoid.scm]:<syntaxhighlight lang="Scheme">
(define (trapezoid_formula f a b)
(let ((n 20))
(let ((dx (/ (- b a) n)))
(let loop ((i 0) (sum 0))
(if (= i n)
(exact->inexact sum)
(loop (+ i 1)
(+ sum (* (+ (f (+ a (* dx i)))
(f (+ a (* dx (+ i 1)))))
(/ dx 2)))))))))
(print (trapezoid_formula (lambda (x)
(sqrt (- 1 (expt x 2))))
0 1) )
(print (atan 1.0))
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
0.7821162199387455
0.7853981633974483
</syntaxhighlight>
ãã¡ããå®éã®<math>\pi/4</math>ã®å€ãšè¿ãå€ãåŸãããŠããããšãåããã
[[Category:é«çåŠæ ¡æ°åŠB|ããã¡ãããããšããã²ãã]]
[[ã«ããŽãª:ã³ã³ãã¥ãŒã¿]] | 2005-05-11T12:03:16Z | 2024-02-28T22:35:57Z | [
"ãã³ãã¬ãŒã:Pathnav"
] | https://ja.wikibooks.org/wiki/%E6%97%A7%E8%AA%B2%E7%A8%8B(-2012%E5%B9%B4%E5%BA%A6)%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E6%95%B0%E5%AD%A6B/%E6%95%B0%E5%80%A4%E8%A8%88%E7%AE%97%E3%81%A8%E3%82%B3%E3%83%B3%E3%83%94%E3%83%A5%E3%83%BC%E3%82%BF%E3%83%BC |
1,979 | é»ç£æ°åŠ | æ¬é
ã¯ç©çåŠ é»ç£æ°åŠ (Electromagnetism) ã®è§£èª¬ã§ããã
ããã§ã¯é»æ°ã»ç£æ°ãé¢é£ããçŸè±¡ãæ±ããæŽå²çã«ã¯é»å Žãšç£å Žã«ããçžäºäœçšã¯æ©ãããç¥ãããŠãããçŸä»£ã®æè¡ã®å€ãã¯ãããã®åã«ãã£ãŠããããŸããããã ãã§ã¯ãªããäžã®äžã«ååšããåã®ãã¡ã®ã»ãšãã©ã¯é»ç£æ°åã§æžãããããšãç¥ãããŠãããããã¯ãé»ç£æ°åãä»ã®çžäºäœçšãšæ¯ã¹ãŠãå·šèŠçã«èŠãå Žåã«çžå¯Ÿçã«åŒ·ãåã«ãããã®ã§ããããã§ãããäŸå€çã«ã倩äœãšå€©äœã®éã®çžäºäœçšã¯éåã«ãã£ãŠèšè¿°ãããããããã¯æãå
šäœãšããŠé»æ°çã«äžæ§ã§ãããä»ã®å€©äœãšæ¯èŒçå°ããé»ç£çãªçžäºäœçšããæããªãããšã«ããã
ããã§ã¯ãç¹ã«é»ç£æ°ã«ããåã®ãã¡ã®åççãªèšè¿°æ³ãèŠãŠè¡ãããã®éšåã¯ãååŠãçç©ã黿°ãªã©ããããåéã«å¿çšããããããçç³»åéã«é²ãå
šãŠã®åŠçãããç¿çããŠãããã°ãªããªãã
ãŸãããã®åéã¯é«çæè²ã®é»æ°ãšç£æ°ã«åœãããååŠè
ã¯è©²åœæç§æžãçè§£ã®å©ããšãªãããåŠç¿ã«è¡ãè©°ãŸã£ããåç
§ããé¡ããããã
ç©çåŠç§ã«é²ãåŠçã¯ããã®åŸé»ç£æ°åŠII以éã§çžå¯Ÿè«çãªèšè¿°æ³ãšæŽåçãªèšè¿°ã«ããé»ç£æ°åŠãåŠã¶ããšã«ãªããé»ç£æ°åŠã§ã¯ãã®ãããªèŠç¹ã¯çšãããå€å
žçãª3次å
çèšè¿°æ³ã«ãšã©ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ¬é
ã¯ç©çåŠ é»ç£æ°åŠ (Electromagnetism) ã®è§£èª¬ã§ããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ããã§ã¯é»æ°ã»ç£æ°ãé¢é£ããçŸè±¡ãæ±ããæŽå²çã«ã¯é»å Žãšç£å Žã«ããçžäºäœçšã¯æ©ãããç¥ãããŠãããçŸä»£ã®æè¡ã®å€ãã¯ãããã®åã«ãã£ãŠããããŸããããã ãã§ã¯ãªããäžã®äžã«ååšããåã®ãã¡ã®ã»ãšãã©ã¯é»ç£æ°åã§æžãããããšãç¥ãããŠãããããã¯ãé»ç£æ°åãä»ã®çžäºäœçšãšæ¯ã¹ãŠãå·šèŠçã«èŠãå Žåã«çžå¯Ÿçã«åŒ·ãåã«ãããã®ã§ããããã§ãããäŸå€çã«ã倩äœãšå€©äœã®éã®çžäºäœçšã¯éåã«ãã£ãŠèšè¿°ãããããããã¯æãå
šäœãšããŠé»æ°çã«äžæ§ã§ãããä»ã®å€©äœãšæ¯èŒçå°ããé»ç£çãªçžäºäœçšããæããªãããšã«ããã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ããã§ã¯ãç¹ã«é»ç£æ°ã«ããåã®ãã¡ã®åççãªèšè¿°æ³ãèŠãŠè¡ãããã®éšåã¯ãååŠãçç©ã黿°ãªã©ããããåéã«å¿çšããããããçç³»åéã«é²ãå
šãŠã®åŠçãããç¿çããŠãããã°ãªããªãã",
"title": ""
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãŸãããã®åéã¯é«çæè²ã®é»æ°ãšç£æ°ã«åœãããååŠè
ã¯è©²åœæç§æžãçè§£ã®å©ããšãªãããåŠç¿ã«è¡ãè©°ãŸã£ããåç
§ããé¡ããããã",
"title": ""
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ç©çåŠç§ã«é²ãåŠçã¯ããã®åŸé»ç£æ°åŠII以éã§çžå¯Ÿè«çãªèšè¿°æ³ãšæŽåçãªèšè¿°ã«ããé»ç£æ°åŠãåŠã¶ããšã«ãªããé»ç£æ°åŠã§ã¯ãã®ãããªèŠç¹ã¯çšãããå€å
žçãª3次å
çèšè¿°æ³ã«ãšã©ããã",
"title": ""
}
] | æ¬é
ã¯ç©çåŠ é»ç£æ°åŠ (Electromagnetism) ã®è§£èª¬ã§ããã ããã§ã¯é»æ°ã»ç£æ°ãé¢é£ããçŸè±¡ãæ±ããæŽå²çã«ã¯é»å Žãšç£å Žã«ããçžäºäœçšã¯æ©ãããç¥ãããŠãããçŸä»£ã®æè¡ã®å€ãã¯ãããã®åã«ãã£ãŠããããŸããããã ãã§ã¯ãªããäžã®äžã«ååšããåã®ãã¡ã®ã»ãšãã©ã¯é»ç£æ°åã§æžãããããšãç¥ãããŠãããããã¯ãé»ç£æ°åãä»ã®çžäºäœçšãšæ¯ã¹ãŠãå·šèŠçã«èŠãå Žåã«çžå¯Ÿçã«åŒ·ãåã«ãããã®ã§ããããã§ãããäŸå€çã«ã倩äœãšå€©äœã®éã®çžäºäœçšã¯éåã«ãã£ãŠèšè¿°ãããããããã¯æãå
šäœãšããŠé»æ°çã«äžæ§ã§ãããä»ã®å€©äœãšæ¯èŒçå°ããé»ç£çãªçžäºäœçšããæããªãããšã«ããã ããã§ã¯ãç¹ã«é»ç£æ°ã«ããåã®ãã¡ã®åççãªèšè¿°æ³ãèŠãŠè¡ãããã®éšåã¯ãååŠãçç©ã黿°ãªã©ããããåéã«å¿çšããããããçç³»åéã«é²ãå
šãŠã®åŠçãããç¿çããŠãããã°ãªããªãã ãŸãããã®åéã¯é«çæè²ã®é»æ°ãšç£æ°ã«åœãããååŠè
ã¯è©²åœæç§æžãçè§£ã®å©ããšãªãããåŠç¿ã«è¡ãè©°ãŸã£ããåç
§ããé¡ããããã ç©çåŠç§ã«é²ãåŠçã¯ããã®åŸé»ç£æ°åŠII以éã§çžå¯Ÿè«çãªèšè¿°æ³ãšæŽåçãªèšè¿°ã«ããé»ç£æ°åŠãåŠã¶ããšã«ãªããé»ç£æ°åŠã§ã¯ãã®ãããªèŠç¹ã¯çšãããå€å
žçãª3次å
çèšè¿°æ³ã«ãšã©ããã | {{åä¿è·S}}
{{Pathnav|ã¡ã€ã³ããŒãž|èªç¶ç§åŠ|ç©çåŠ|frame=1|small=1}}
{{Wikiversity|Topic:é»ç£æ°åŠ|é»ç£æ°åŠ|}}
æ¬é
ã¯ç©çåŠ é»ç£æ°åŠ (Electromagnetism) ã®è§£èª¬ã§ããã
ããã§ã¯é»æ°ã»ç£æ°ãé¢é£ããçŸè±¡ãæ±ããæŽå²çã«ã¯é»å Žãšç£å Žã«ããçžäºäœçšã¯æ©ãããç¥ãããŠãããçŸä»£ã®æè¡ã®å€ãã¯ãããã®åã«ãã£ãŠããããŸããããã ãã§ã¯ãªããäžã®äžã«ååšããåã®ãã¡ã®ã»ãšãã©ã¯é»ç£æ°åã§æžãããããšãç¥ãããŠãããããã¯ãé»ç£æ°åãä»ã®çžäºäœçšãšæ¯ã¹ãŠãå·šèŠçã«èŠãå Žåã«çžå¯Ÿçã«åŒ·ãåã«ãããã®ã§ããããã§ãããäŸå€çã«ã倩äœãšå€©äœã®éã®çžäºäœçšã¯éåã«ãã£ãŠèšè¿°ãããããããã¯æãå
šäœãšããŠé»æ°çã«äžæ§ã§ãããä»ã®å€©äœãšæ¯èŒçå°ããé»ç£çãªçžäºäœçšããæããªãããšã«ããã
ããã§ã¯ãç¹ã«é»ç£æ°ã«ããåã®ãã¡ã®åççãªèšè¿°æ³ãèŠãŠè¡ãããã®éšåã¯ãååŠãçç©ã黿°ãªã©ããããåéã«å¿çšããããããçç³»åéã«é²ãå
šãŠã®åŠçãããç¿çããŠãããã°ãªããªãã
ãŸãããã®åéã¯é«çæè²ã®[[é«çåŠæ ¡_ç©ç#黿°ãšç£æ°|黿°ãšç£æ°]]ã«åœãããååŠè
ã¯è©²åœæç§æžãçè§£ã®å©ããšãªãããåŠç¿ã«è¡ãè©°ãŸã£ããåç
§ããé¡ããããã
ç©çåŠç§ã«é²ãåŠçã¯ããã®åŸ[[é»ç£æ°åŠII]]以éã§çžå¯Ÿè«çãªèšè¿°æ³ãšæŽåçãªèšè¿°ã«ããé»ç£æ°åŠãåŠã¶ããšã«ãªãã[[é»ç£æ°åŠ]]ã§ã¯ãã®ãããªèŠç¹ã¯çšãããå€å
žçãª3次å
çèšè¿°æ³ã«ãšã©ããã
== ç®æ¬¡ ==
# [[é»ç£æ°åŠ/éé»å Ž|éé»å Ž]]{{鲿|75%|2023-11-05}}
## [[é»ç£æ°åŠ/éé»å Ž#é»è·ã®éã«åãå|é»è·ã®éã«åãå]]
## [[é»ç£æ°åŠ/éé»å Ž#é»ç|é»ç]]
## [[é»ç£æ°åŠ/éé»å Ž#é»äœ|é»äœ]]
## [[é»ç£æ°åŠ/éé»å Ž#èªé»äœ|èªé»äœ]]
# [[é»ç£æ°åŠ/éç£å Ž|éç£å Ž]]{{鲿|75%|2023-11-05}}
## [[é»ç£æ°åŠ/éç£å Ž#ç£æ°çãªåã®å°å
¥|ç£æ°çãªåã®å°å
¥]]
## [[é»ç£æ°åŠ/éç£å Ž#ç£ç|ç£ç]]
## [[é»ç£æ°åŠ/éç£å Ž#ããª-ãµããŒã«ã®æ³å|ããª-ãµããŒã«ã®æ³å]]
# [[é»ç£æ°åŠ/é»ç£èªå°|é»ç£èªå°]]{{鲿|25%|2023-11-05}}
# [[é»ç£æ°åŠ/ãã¯ã¹ãŠã§ã«ã®æ¹çšåŒ|ãã¯ã¹ãŠã§ã«ã®æ¹çšåŒ]]
# [[é»ç£æ°åŠ/é»ç£æ³¢ã®åŒã®å°åº|é»ç£æ³¢ã®åŒã®å°åº]]{{鲿|100%|2023-11-05}}
# [[é»ç£æ°åŠ/é»ç£å Ž|é»ç£å Ž]]{{鲿|25%|2023-11-05}}
{{DEFAULTSORT:ãŠããããã}}
[[Category:é»ç£æ°åŠ|*]]
{{NDC|427}} | 2005-05-12T11:11:37Z | 2023-11-05T01:48:05Z | [
"ãã³ãã¬ãŒã:Wikiversity",
"ãã³ãã¬ãŒã:鲿",
"ãã³ãã¬ãŒã:NDC",
"ãã³ãã¬ãŒã:åä¿è·S",
"ãã³ãã¬ãŒã:Pathnav"
] | https://ja.wikibooks.org/wiki/%E9%9B%BB%E7%A3%81%E6%B0%97%E5%AD%A6 |
1,980 | ç¹æ®çžå¯Ÿè« | 倧åŠã®æç§æž èªç¶ç§åŠ: æ°åŠ - ç©çåŠ; å€å
žååŠ éåååŠ - ååŠ; ç¡æ©ååŠ ææ©ååŠ - çç©åŠ; æ€ç©åŠ ç ç©¶æè¡ - å°çç§åŠ - å»åŠ; è§£ååŠ èªåŠ: æ¥æ¬èª è±èª ãšã¹ãã©ã³ã æé®®èª ãã³ããŒã¯èª ãã€ãèª ãã©ã³ã¹èª ã©ãã³èª ã«ãŒããã¢èª 人æç§åŠ: æŽå²åŠ; æ¥æ¬å² äžåœå² äžçå² æŽå²èг - å¿çåŠ - å²åŠ - èžè¡; 鳿¥œ çŸè¡ - æåŠ; å€å
žæåŠ æŒ¢è©© 瀟äŒç§åŠ: æ³åŠ - çµæžåŠ - å°çåŠ - æè²åŠ; åŠæ ¡æè² æè²å² æ
å ±æè¡: æ
å ±å·¥åŠ; MS-DOS/PC DOS UNIX/Linux TeX/LaTeX CGI - ããã°ã©ãã³ã°; BASIC Cèšèª C++ Dèšèª HTML Java JavaScript Lisp Mizar Perl PHP Python Ruby Scheme SVG å°ã»äžã»é«æ ¡ã®æç§æž å°åŠ: åœèª ç€ŸäŒ ç®æ° çç§ è±èª äžåŠ: åœèª ç€ŸäŒ æ°åŠ çç§ è±èª 髿 ¡: åœèª - å°æŽ - å
¬æ° - æ°åŠ; å
¬åŒé - çç§; ç©ç ååŠ å°åŠ çç© - å€åœèª - æ
å ± 解説æžã»å®çšæžã»åèæž è¶£å³: æçæ¬ - ã¹ããŒã - ã²ãŒã 詊éš: è³æ Œè©Šéš - å
¥åŠè©Šéš ãã®ä»ã®æ¬: é²çœ - çæŽ»ãšé²è·¯ - ãŠã£ãããã£ã¢ã®æžãæ¹ - ãžã§ãŒã¯é
æ¬é
ã¯ç¹æ®çžå¯Ÿè«ã®è§£èª¬ã§ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "倧åŠã®æç§æž èªç¶ç§åŠ: æ°åŠ - ç©çåŠ; å€å
žååŠ éåååŠ - ååŠ; ç¡æ©ååŠ ææ©ååŠ - çç©åŠ; æ€ç©åŠ ç ç©¶æè¡ - å°çç§åŠ - å»åŠ; è§£ååŠ èªåŠ: æ¥æ¬èª è±èª ãšã¹ãã©ã³ã æé®®èª ãã³ããŒã¯èª ãã€ãèª ãã©ã³ã¹èª ã©ãã³èª ã«ãŒããã¢èª 人æç§åŠ: æŽå²åŠ; æ¥æ¬å² äžåœå² äžçå² æŽå²èг - å¿çåŠ - å²åŠ - èžè¡; 鳿¥œ çŸè¡ - æåŠ; å€å
žæåŠ æŒ¢è©© 瀟äŒç§åŠ: æ³åŠ - çµæžåŠ - å°çåŠ - æè²åŠ; åŠæ ¡æè² æè²å² æ
å ±æè¡: æ
å ±å·¥åŠ; MS-DOS/PC DOS UNIX/Linux TeX/LaTeX CGI - ããã°ã©ãã³ã°; BASIC Cèšèª C++ Dèšèª HTML Java JavaScript Lisp Mizar Perl PHP Python Ruby Scheme SVG å°ã»äžã»é«æ ¡ã®æç§æž å°åŠ: åœèª ç€ŸäŒ ç®æ° çç§ è±èª äžåŠ: åœèª ç€ŸäŒ æ°åŠ çç§ è±èª 髿 ¡: åœèª - å°æŽ - å
¬æ° - æ°åŠ; å
¬åŒé - çç§; ç©ç ååŠ å°åŠ çç© - å€åœèª - æ
å ± 解説æžã»å®çšæžã»åèæž è¶£å³: æçæ¬ - ã¹ããŒã - ã²ãŒã 詊éš: è³æ Œè©Šéš - å
¥åŠè©Šéš ãã®ä»ã®æ¬: é²çœ - çæŽ»ãšé²è·¯ - ãŠã£ãããã£ã¢ã®æžãæ¹ - ãžã§ãŒã¯é",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "æ¬é
ã¯ç¹æ®çžå¯Ÿè«ã®è§£èª¬ã§ãã",
"title": ""
}
] | æ¬é
ã¯ç¹æ®çžå¯Ÿè«ã®è§£èª¬ã§ãã ã¯ããã«
æŽå²çå°å
¥
å
¥é
ãã³ãœã«
èšç®äŸ
æéã®é
ã
ããŒã¬ã³ãåçž®
é床ã®åæå
4å
éåé éåæ¹çšåŒ
é»ç£æ°åŠãžã®å°å
¥ | {{Pathnav|ã¡ã€ã³ããŒãž|èªç¶ç§åŠ|ç©çåŠ|frame=1|small=1}}
{{é²æç¶æ³}}
{{èµæžäžèЧ}}
æ¬é
ã¯ç¹æ®çžå¯Ÿè«ã®è§£èª¬ã§ãã
* [[ç¹æ®çžå¯Ÿè« ã¯ããã«|ã¯ããã«]]
* [[ç¹æ®çžå¯Ÿè« æŽå²çå°å
¥|æŽå²çå°å
¥]]
* [[ç¹æ®çžå¯Ÿè« å
¥é|å
¥é]]
* [[ç¹æ®çžå¯Ÿè« ãã³ãœã«|ãã³ãœã«]]
* èšç®äŸ
** [[ç¹æ®çžå¯Ÿè« æéã®é
ã|æéã®é
ã]]
** [[ç¹æ®çžå¯Ÿè« ããŒã¬ã³ãåçž®|ããŒã¬ã³ãåçž®]]
** [[ç¹æ®çžå¯Ÿè« é床ã®åæå|é床ã®åæå]]
* [[ç¹æ®çžå¯Ÿè« 4å
éåé|4å
éåé]]
<!-- E = mc^2 !!! -->
* [[ç¹æ®çžå¯Ÿè« éåæ¹çšåŒ|éåæ¹çšåŒ]]
* [[ç¹æ®çžå¯Ÿè« é»ç£æ°åŠãžã®å°å
¥|é»ç£æ°åŠãžã®å°å
¥]]
{{DEFAULTSORT:ãšããããããããã}}
[[Category:ç¹æ®çžå¯Ÿè«|*]]
{{NDC|421.2}} | 2005-05-13T11:01:46Z | 2024-03-16T03:14:04Z | [
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:é²æç¶æ³",
"ãã³ãã¬ãŒã:èµæžäžèЧ",
"ãã³ãã¬ãŒã:NDC"
] | https://ja.wikibooks.org/wiki/%E7%89%B9%E6%AE%8A%E7%9B%B8%E5%AF%BE%E8%AB%96 |
1,981 | ç¹æ®çžå¯Ÿè« ã¯ããã« | è·é¢ãšããã®ã¯äŸãã°ã d s 2 = d x 2 + d y 2 + d z 2 {\displaystyle ds^{2}=dx^{2}+dy^{2}+dz^{2}} ãšããããã«ãã®äžã3次å
ã§ããããã3ã€ã®å€æ°x,y,zãçšããŠæžããããããããäžçã«ã¯ããã²ãšã€æéæ¹åã®èªç±åºŠãããããã«æãããã€ãŸãããããã®ãšãã®é£ã®ãã®ãšãããã®ãèããããšãåºæ¥ãããã«ãããæéã®ãããã®ãšãå°ãæéãçµã£ãŠããã®ãããã®ãšãããã®ãèããããšãåºæ¥ãããã®ãšããæéãäžã®åŒã®ãããªè¡šåŒã§è¡šãããããšéœåããããå®éå®éšçã«ã d s 2 = c 2 d t 2 â d x 2 â d y 2 â d z 2 {\displaystyle ds^{2}=c^{2}dt^{2}-dx^{2}-dy^{2}-dz^{2}} ã§ããããšãç¥ãããŠããã
éèŠãªã®ã¯ããã®åŒãã©ããªé床ã§ãã£ãŠããçéçŽç·éåãã芳枬è
ããèŠãå Žåã«ã¯ãåžžã«æãç«ã£ãŠããããšã§ããã ãã®ããã«çéçŽç·éåãã芳枬è
ããèŠãå Žåã«å€åããªãéãããŒã¬ã³ãäžå€éãšãã¶ã
ãã®ããšã¯éã£ãéåãããŠããç©äœããèŠãå Žåã®ãéåã®éããèšç®ããæ¹æ³ãäžããŠããããã®ãããªå Žåã«é¢ããç©äœã®éåãèŠãŠè¡ãããšããã®ææžã®ç®çãšãªãã
æ°åŠçã«ã¯ãã®ãããªå¯Ÿç§°æ§ãæ±ãè¯ãæ¹æ³ãç¥ãããŠããã®ã§ããŸãã¯ãããå°å
¥ããããããçšãããšã d s 2 = c 2 d t 2 â d x 2 â d y 2 â d z 2 {\displaystyle ds^{2}=c^{2}dt^{2}-dx^{2}-dy^{2}-dz^{2}} = η ÎŒ Μ d x ÎŒ d x Μ {\displaystyle =\eta _{\mu \nu }dx^{\mu }dx^{\nu }} ãšæžãããšãåºæ¥ãããã®èšæ³ã¯ãã³ãœã«ã®ã»ã¯ã·ã§ã³ã§å°å
¥ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "è·é¢ãšããã®ã¯äŸãã°ã d s 2 = d x 2 + d y 2 + d z 2 {\\displaystyle ds^{2}=dx^{2}+dy^{2}+dz^{2}} ãšããããã«ãã®äžã3次å
ã§ããããã3ã€ã®å€æ°x,y,zãçšããŠæžããããããããäžçã«ã¯ããã²ãšã€æéæ¹åã®èªç±åºŠãããããã«æãããã€ãŸãããããã®ãšãã®é£ã®ãã®ãšãããã®ãèããããšãåºæ¥ãããã«ãããæéã®ãããã®ãšãå°ãæéãçµã£ãŠããã®ãããã®ãšãããã®ãèããããšãåºæ¥ãããã®ãšããæéãäžã®åŒã®ãããªè¡šåŒã§è¡šãããããšéœåããããå®éå®éšçã«ã d s 2 = c 2 d t 2 â d x 2 â d y 2 â d z 2 {\\displaystyle ds^{2}=c^{2}dt^{2}-dx^{2}-dy^{2}-dz^{2}} ã§ããããšãç¥ãããŠããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "éèŠãªã®ã¯ããã®åŒãã©ããªé床ã§ãã£ãŠããçéçŽç·éåãã芳枬è
ããèŠãå Žåã«ã¯ãåžžã«æãç«ã£ãŠããããšã§ããã ãã®ããã«çéçŽç·éåãã芳枬è
ããèŠãå Žåã«å€åããªãéãããŒã¬ã³ãäžå€éãšãã¶ã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãã®ããšã¯éã£ãéåãããŠããç©äœããèŠãå Žåã®ãéåã®éããèšç®ããæ¹æ³ãäžããŠããããã®ãããªå Žåã«é¢ããç©äœã®éåãèŠãŠè¡ãããšããã®ææžã®ç®çãšãªãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "æ°åŠçã«ã¯ãã®ãããªå¯Ÿç§°æ§ãæ±ãè¯ãæ¹æ³ãç¥ãããŠããã®ã§ããŸãã¯ãããå°å
¥ããããããçšãããšã d s 2 = c 2 d t 2 â d x 2 â d y 2 â d z 2 {\\displaystyle ds^{2}=c^{2}dt^{2}-dx^{2}-dy^{2}-dz^{2}} = η ÎŒ Μ d x ÎŒ d x Μ {\\displaystyle =\\eta _{\\mu \\nu }dx^{\\mu }dx^{\\nu }} ãšæžãããšãåºæ¥ãããã®èšæ³ã¯ãã³ãœã«ã®ã»ã¯ã·ã§ã³ã§å°å
¥ããã",
"title": "ã¯ããã«"
}
] | null | ==ã¯ããã«==
è·é¢ãšããã®ã¯äŸãã°ã
<math>
ds^2 = dx^2+dy^2+dz^2
</math>
ãšããããã«ãã®äžã3次å
ã§ããããã3ã€ã®å€æ°x,y,zãçšããŠæžããããããããäžçã«ã¯ããã²ãšã€æéæ¹åã®èªç±åºŠãããããã«æãããã€ãŸãããããã®ãšãã®é£ã®ãã®ãšãããã®ãèããããšãåºæ¥ãããã«ãããæéã®ãããã®ãšãå°ãæéãçµã£ãŠããã®ãããã®ãšãããã®ãèããããšãåºæ¥ãããã®ãšããæéãäžã®åŒã®ãããªè¡šåŒã§è¡šãããããšéœåããããå®éå®éšçã«ã
<math>
ds^2 = c^2 dt^2 -dx^2-dy^2-dz^2
</math>
ã§ããããšãç¥ãããŠããã
éèŠãªã®ã¯ããã®åŒãã©ããªé床ã§ãã£ãŠããçéçŽç·éåãã芳枬è
ããèŠãå Žåã«ã¯ãåžžã«æãç«ã£ãŠããããšã§ããã ãã®ããã«çéçŽç·éåãã芳枬è
ããèŠãå Žåã«å€åããªãéãããŒã¬ã³ãäžå€éãšãã¶ã
ãã®ããšã¯éã£ãéåãããŠããç©äœããèŠãå Žåã®ãéåã®éããèšç®ããæ¹æ³ãäžããŠããããã®ãããªå Žåã«é¢ããç©äœã®éåãèŠãŠè¡ãããšããã®ææžã®ç®çãšãªãã
æ°åŠçã«ã¯ãã®ãããªå¯Ÿç§°æ§ãæ±ãè¯ãæ¹æ³ãç¥ãããŠããã®ã§ããŸãã¯ãããå°å
¥ããããããçšãããšã
<math>
ds^2 = c^2 dt^2 -dx^2-dy^2-dz^2
</math>
<math>
= \eta _{\mu\nu} dx^\mu dx^\nu
</math>
ãšæžãããšãåºæ¥ãããã®èšæ³ã¯ãã³ãœã«ã®ã»ã¯ã·ã§ã³ã§å°å
¥ããã
<!-- 次ã®ã»ã¯ã·ã§ã³ã"ãã³ãœã«"ã§ãããšä»®å®ããŠã¯ãªããªã...ã -->
[[Category:ç¹æ®çžå¯Ÿè«|ã¯ããã«]] | 2005-05-14T04:32:23Z | 2024-03-16T03:15:09Z | [] | https://ja.wikibooks.org/wiki/%E7%89%B9%E6%AE%8A%E7%9B%B8%E5%AF%BE%E8%AB%96_%E3%81%AF%E3%81%98%E3%82%81%E3%81%AB |
1,982 | ç¹æ®çžå¯Ÿè« ãã³ãœã« | ç¹æ®çžå¯Ÿè« > ãã³ãœã«
ããããã¯ãã³ãœã«ãšããéãçšããã æ°åŠçã«ã¯ãéåžžç©çã§æ±ã 3次å
ã®ãã¯ãã«ã¯ã SO(3)矀ãšãã矀ã®è¡šçŸã®1ã€ãšãªã£ãŠããã ããã§ããããŒã¬ã³ãäžå€æ§ã¯ã ããŒã¬ã³ã矀SO(3,1)ã«å¯Ÿå¿ããŠããã ããã矀ã®è¡šçŸãè¯ãç¥ãããŠããã
ãŸãã ããŒã¬ã³ã倿ã§å€åããªãéã ã¹ã«ã©ãŒãšåŒã¶ã 次ã«ãããŒã¬ã³ã倿ã«å¯ŸããŠã A â² ÎŒ = ΠΜ ÎŒ A Μ {\displaystyle {A'}^{\mu }=\Lambda _{\nu }^{\mu }A^{\nu }} ãšãªãéããã¯ãã«ãšåŒã¶ã
ΠΜ ÎŒ {\displaystyle \Lambda _{\nu }^{\mu }} ã¯ã6ã€ã®4*4ã®è¡åã§äžãããããã¯ãã«ã«å¯ŸããŠã¯ ΠΜ ÎŒ {\displaystyle \Lambda _{\nu }^{\mu }} ã¯ã B 1 = γ ( 1 β 0 0 β 1 0 0 0 0 1 0 0 0 0 1 ) {\displaystyle B_{1}=\gamma {\begin{pmatrix}1&\beta &0&0\\\beta &1&0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}}} , B 2 = γ ( 1 0 0 0 0 1 β 0 0 β 1 0 0 0 0 1 ) {\displaystyle B_{2}=\gamma {\begin{pmatrix}1&0&0&0\\0&1&\beta &0\\0&\beta &1&0\\0&0&0&1\end{pmatrix}}} , B 3 = γ ( 1 0 0 0 0 1 0 0 0 0 1 β 0 0 β 1 ) {\displaystyle B_{3}=\gamma {\begin{pmatrix}1&0&0&0\\0&1&0&0\\0&0&1&\beta \\0&0&\beta &1\end{pmatrix}}} , R 1 = ( 1 0 0 0 0 1 0 0 0 0 cos a â sin a 0 0 sin a cos a ) {\displaystyle R_{1}={\begin{pmatrix}1&0&0&0\\0&1&0&0\\0&0&\cos a&-\sin a\\0&0&\sin a&\cos a\end{pmatrix}}} , R 2 = ( 1 0 0 0 0 cos a 0 sin a 0 0 1 0 0 â sin a 0 cos a ) {\displaystyle R_{2}={\begin{pmatrix}1&0&0&0\\0&\cos a&0&\sin a\\0&0&1&0\\0&-\sin a&0&\cos a\end{pmatrix}}} , R 3 = ( 1 0 0 0 0 cos a â sin a 0 0 sin a cos a 0 0 0 0 1 ) {\displaystyle R_{3}={\begin{pmatrix}1&0&0&0\\0&\cos a&-\sin a&0\\0&\sin a&\cos a&0\\0&0&0&1\\\end{pmatrix}}} ã§äžããããã ãã ãããã㧠β = v c {\displaystyle \beta ={\frac {v}{c}}} γ = 1 1 â v 2 / c 2 {\displaystyle \gamma ={\frac {1}{\sqrt {1-v^{2}/c^{2}}}}} ãçšããã (ããŒã¬ã³ã矀ã®è¡šçŸã®æ£ç¢ºãªå®çŸ©ã¯ãããããç©çæ°åŠãããã㯠æ°åŠã®"ãªãŒçŸ€"ã§äžããããã) ç¹ã«x軞æ¹åã«é床vã§ããã芳枬è
ã®èгå¯ããç©çéã åŸãã«ã¯ p â² ÎŒ = γ ( 1 β 0 0 β 1 0 0 0 0 1 0 0 0 0 1 ) p ÎŒ {\displaystyle p'^{\mu }=\gamma {\begin{pmatrix}1&\beta &0&0\\\beta &1&0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}}p^{\mu }} ãšãªããç¹ã«xæ¹åã ãã«æ³šç®ãããšãã«ã¯ å€åãèµ·ãããªãyãzæ¹åãç¡èŠããŠ å€æè¡åã γ ( 1 β β 1 ) {\displaystyle \gamma {\begin{pmatrix}1&\beta \\\beta &1\end{pmatrix}}} ãšçãæžãããšãããã
ãããããäŸãã°ã A â² ÎŒ A ⲠΜ {\displaystyle {A'}^{\mu }{A'}^{\nu }} ãšãããããªéãäœããšã ãã®é㯠A â² ÎŒ A ⲠΜ = Î Ï ÎŒ A Ï Î Ï Îœ A Ï {\displaystyle {A'}^{\mu }{A'}^{\nu }=\Lambda _{\rho }^{\mu }A^{\rho }\Lambda _{\sigma }^{\nu }A^{\sigma }} ãšããããã«å€æããããšãåãã ããã§ã T ÎŒ Μ = Î Ï ÎŒ Î Ï Îœ T Ï Ï {\displaystyle T^{\mu \nu }=\Lambda _{\rho }^{\mu }\Lambda _{\sigma }^{\nu }T^{\rho \sigma }} ãšããããã«æ¯èãéã 2éã®ãã³ãœã«ãšåŒã¶ã ããã¯æ·»åã2ã€ããããšã«ããã ãŸãããã¯ãã«ã¯1éã®ãã³ãœã«ã ã¹ã«ã©ãŒã¯0éã®ãã³ãœã«ãšããããšãã§ããã (ç¹ã«æ·»åãäžã«ãããã®ãåå€ãã³ãœã« ãšåŒã¶ããšãããã)
ããã§ãèšéãã³ãœã«ãšããç¹å¥ãª2éã®ãã³ãœã«ã å®çŸ©ããã η ÎŒ Μ = η ÎŒ Μ = ( 1 0 0 0 0 â 1 0 0 0 0 â 1 0 0 0 0 â 1 ) {\displaystyle \eta ^{\mu \nu }=\eta _{\mu \nu }={\begin{pmatrix}1&0&0&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&-1\end{pmatrix}}} ããã§ããã®éãçšããŠãã¯ãã«ã®2ä¹ ( A ÎŒ ) 2 = η ÎŒ Μ A ÎŒ A Μ = ( A 0 ) 2 â ( A 1 ) 2 â ( A 2 ) 2 â ( A 3 ) 2 {\displaystyle {\begin{matrix}(A^{\mu })^{2}=\eta _{\mu \nu }A^{\mu }A^{\nu }\\=(A^{0})^{2}-(A^{1})^{2}-(A^{2})^{2}-(A^{3})^{2}\end{matrix}}} ãåãã
ããããã®æ·»å㯠åãæ·»åãäžäžã«ãããšãã«ã0-3ãŸã§ã®åãåã£ãŠã æã¡æ¶ãããšãåºæ¥ãã äŸãã°ã A ÎŒ A ÎŒ = â m = 0 3 ( A m ) 2 {\displaystyle A^{\mu }A_{\mu }=\sum _{m=0}^{3}(A^{m})^{2}}
äžä»ãæ·»åã®éãå
±å€ãã¯ãã«ãšåŒã³ã察å¿ãã åå€ãã¯ãã«ãšèšéãã³ãœã«ãçšããŠå®çŸ©ããããšãåºæ¥ãã
ãããã®æ·»åã¯ã èšéãã³ãœã« η ÎŒ Μ = η ÎŒ Μ = ( 1 0 0 0 0 â 1 0 0 0 0 â 1 0 0 0 0 â 1 ) {\displaystyle \eta ^{\mu \nu }=\eta _{\mu \nu }={\begin{pmatrix}1&0&0&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&-1\end{pmatrix}}} ã«ãã£ãŠãäžäžã«ç§»åãããããšãåºæ¥ãã äŸãã°ã x ÎŒ = η ÎŒ Μ x Μ {\displaystyle x_{\mu }=\eta _{\mu \nu }x^{\nu }} ãšãªããããã«ãã£ãŠäžä»ãæ·»åã®éãå®çŸ©ããããšãåºæ¥ãã ç¹ã«ãäžä»ãæ·»åã ããæã€ãã³ãœã«ãå
±å€ãã³ãœã«ãšåŒã¶ããšãããã ãŸãã äžä»ããšäžä»ãã®æ·»åãäž¡æ¹æã€ãã³ãœã«ãæ··åãã³ãœã«ãš åŒã¶ããšãããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç¹æ®çžå¯Ÿè« > ãã³ãœã«",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ããããã¯ãã³ãœã«ãšããéãçšããã æ°åŠçã«ã¯ãéåžžç©çã§æ±ã 3次å
ã®ãã¯ãã«ã¯ã SO(3)矀ãšãã矀ã®è¡šçŸã®1ã€ãšãªã£ãŠããã ããã§ããããŒã¬ã³ãäžå€æ§ã¯ã ããŒã¬ã³ã矀SO(3,1)ã«å¯Ÿå¿ããŠããã ããã矀ã®è¡šçŸãè¯ãç¥ãããŠããã",
"title": "ãã³ãœã«"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãŸãã ããŒã¬ã³ã倿ã§å€åããªãéã ã¹ã«ã©ãŒãšåŒã¶ã 次ã«ãããŒã¬ã³ã倿ã«å¯ŸããŠã A â² ÎŒ = ΠΜ ÎŒ A Μ {\\displaystyle {A'}^{\\mu }=\\Lambda _{\\nu }^{\\mu }A^{\\nu }} ãšãªãéããã¯ãã«ãšåŒã¶ã",
"title": "ãã³ãœã«"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ΠΜ ÎŒ {\\displaystyle \\Lambda _{\\nu }^{\\mu }} ã¯ã6ã€ã®4*4ã®è¡åã§äžãããããã¯ãã«ã«å¯ŸããŠã¯ ΠΜ ÎŒ {\\displaystyle \\Lambda _{\\nu }^{\\mu }} ã¯ã B 1 = γ ( 1 β 0 0 β 1 0 0 0 0 1 0 0 0 0 1 ) {\\displaystyle B_{1}=\\gamma {\\begin{pmatrix}1&\\beta &0&0\\\\\\beta &1&0&0\\\\0&0&1&0\\\\0&0&0&1\\end{pmatrix}}} , B 2 = γ ( 1 0 0 0 0 1 β 0 0 β 1 0 0 0 0 1 ) {\\displaystyle B_{2}=\\gamma {\\begin{pmatrix}1&0&0&0\\\\0&1&\\beta &0\\\\0&\\beta &1&0\\\\0&0&0&1\\end{pmatrix}}} , B 3 = γ ( 1 0 0 0 0 1 0 0 0 0 1 β 0 0 β 1 ) {\\displaystyle B_{3}=\\gamma {\\begin{pmatrix}1&0&0&0\\\\0&1&0&0\\\\0&0&1&\\beta \\\\0&0&\\beta &1\\end{pmatrix}}} , R 1 = ( 1 0 0 0 0 1 0 0 0 0 cos a â sin a 0 0 sin a cos a ) {\\displaystyle R_{1}={\\begin{pmatrix}1&0&0&0\\\\0&1&0&0\\\\0&0&\\cos a&-\\sin a\\\\0&0&\\sin a&\\cos a\\end{pmatrix}}} , R 2 = ( 1 0 0 0 0 cos a 0 sin a 0 0 1 0 0 â sin a 0 cos a ) {\\displaystyle R_{2}={\\begin{pmatrix}1&0&0&0\\\\0&\\cos a&0&\\sin a\\\\0&0&1&0\\\\0&-\\sin a&0&\\cos a\\end{pmatrix}}} , R 3 = ( 1 0 0 0 0 cos a â sin a 0 0 sin a cos a 0 0 0 0 1 ) {\\displaystyle R_{3}={\\begin{pmatrix}1&0&0&0\\\\0&\\cos a&-\\sin a&0\\\\0&\\sin a&\\cos a&0\\\\0&0&0&1\\\\\\end{pmatrix}}} ã§äžããããã ãã ãããã㧠β = v c {\\displaystyle \\beta ={\\frac {v}{c}}} γ = 1 1 â v 2 / c 2 {\\displaystyle \\gamma ={\\frac {1}{\\sqrt {1-v^{2}/c^{2}}}}} ãçšããã (ããŒã¬ã³ã矀ã®è¡šçŸã®æ£ç¢ºãªå®çŸ©ã¯ãããããç©çæ°åŠãããã㯠æ°åŠã®\"ãªãŒçŸ€\"ã§äžããããã) ç¹ã«x軞æ¹åã«é床vã§ããã芳枬è
ã®èгå¯ããç©çéã åŸãã«ã¯ p â² ÎŒ = γ ( 1 β 0 0 β 1 0 0 0 0 1 0 0 0 0 1 ) p ÎŒ {\\displaystyle p'^{\\mu }=\\gamma {\\begin{pmatrix}1&\\beta &0&0\\\\\\beta &1&0&0\\\\0&0&1&0\\\\0&0&0&1\\end{pmatrix}}p^{\\mu }} ãšãªããç¹ã«xæ¹åã ãã«æ³šç®ãããšãã«ã¯ å€åãèµ·ãããªãyãzæ¹åãç¡èŠããŠ å€æè¡åã γ ( 1 β β 1 ) {\\displaystyle \\gamma {\\begin{pmatrix}1&\\beta \\\\\\beta &1\\end{pmatrix}}} ãšçãæžãããšãããã",
"title": "ãã³ãœã«"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãããããäŸãã°ã A â² ÎŒ A ⲠΜ {\\displaystyle {A'}^{\\mu }{A'}^{\\nu }} ãšãããããªéãäœããšã ãã®é㯠A â² ÎŒ A ⲠΜ = Î Ï ÎŒ A Ï Î Ï Îœ A Ï {\\displaystyle {A'}^{\\mu }{A'}^{\\nu }=\\Lambda _{\\rho }^{\\mu }A^{\\rho }\\Lambda _{\\sigma }^{\\nu }A^{\\sigma }} ãšããããã«å€æããããšãåãã ããã§ã T ÎŒ Μ = Î Ï ÎŒ Î Ï Îœ T Ï Ï {\\displaystyle T^{\\mu \\nu }=\\Lambda _{\\rho }^{\\mu }\\Lambda _{\\sigma }^{\\nu }T^{\\rho \\sigma }} ãšããããã«æ¯èãéã 2éã®ãã³ãœã«ãšåŒã¶ã ããã¯æ·»åã2ã€ããããšã«ããã ãŸãããã¯ãã«ã¯1éã®ãã³ãœã«ã ã¹ã«ã©ãŒã¯0éã®ãã³ãœã«ãšããããšãã§ããã (ç¹ã«æ·»åãäžã«ãããã®ãåå€ãã³ãœã« ãšåŒã¶ããšãããã)",
"title": "ãã³ãœã«"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ããã§ãèšéãã³ãœã«ãšããç¹å¥ãª2éã®ãã³ãœã«ã å®çŸ©ããã η ÎŒ Μ = η ÎŒ Μ = ( 1 0 0 0 0 â 1 0 0 0 0 â 1 0 0 0 0 â 1 ) {\\displaystyle \\eta ^{\\mu \\nu }=\\eta _{\\mu \\nu }={\\begin{pmatrix}1&0&0&0\\\\0&-1&0&0\\\\0&0&-1&0\\\\0&0&0&-1\\end{pmatrix}}} ããã§ããã®éãçšããŠãã¯ãã«ã®2ä¹ ( A ÎŒ ) 2 = η ÎŒ Μ A ÎŒ A Μ = ( A 0 ) 2 â ( A 1 ) 2 â ( A 2 ) 2 â ( A 3 ) 2 {\\displaystyle {\\begin{matrix}(A^{\\mu })^{2}=\\eta _{\\mu \\nu }A^{\\mu }A^{\\nu }\\\\=(A^{0})^{2}-(A^{1})^{2}-(A^{2})^{2}-(A^{3})^{2}\\end{matrix}}} ãåãã",
"title": "ãã³ãœã«"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ããããã®æ·»å㯠åãæ·»åãäžäžã«ãããšãã«ã0-3ãŸã§ã®åãåã£ãŠã æã¡æ¶ãããšãåºæ¥ãã äŸãã°ã A ÎŒ A ÎŒ = â m = 0 3 ( A m ) 2 {\\displaystyle A^{\\mu }A_{\\mu }=\\sum _{m=0}^{3}(A^{m})^{2}}",
"title": "ãã³ãœã«"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "äžä»ãæ·»åã®éãå
±å€ãã¯ãã«ãšåŒã³ã察å¿ãã åå€ãã¯ãã«ãšèšéãã³ãœã«ãçšããŠå®çŸ©ããããšãåºæ¥ãã",
"title": "ãã³ãœã«"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãããã®æ·»åã¯ã èšéãã³ãœã« η ÎŒ Μ = η ÎŒ Μ = ( 1 0 0 0 0 â 1 0 0 0 0 â 1 0 0 0 0 â 1 ) {\\displaystyle \\eta ^{\\mu \\nu }=\\eta _{\\mu \\nu }={\\begin{pmatrix}1&0&0&0\\\\0&-1&0&0\\\\0&0&-1&0\\\\0&0&0&-1\\end{pmatrix}}} ã«ãã£ãŠãäžäžã«ç§»åãããããšãåºæ¥ãã äŸãã°ã x ÎŒ = η ÎŒ Μ x Μ {\\displaystyle x_{\\mu }=\\eta _{\\mu \\nu }x^{\\nu }} ãšãªããããã«ãã£ãŠäžä»ãæ·»åã®éãå®çŸ©ããããšãåºæ¥ãã ç¹ã«ãäžä»ãæ·»åã ããæã€ãã³ãœã«ãå
±å€ãã³ãœã«ãšåŒã¶ããšãããã ãŸãã äžä»ããšäžä»ãã®æ·»åãäž¡æ¹æã€ãã³ãœã«ãæ··åãã³ãœã«ãš åŒã¶ããšãããã",
"title": "ãã³ãœã«"
}
] | ç¹æ®çžå¯Ÿè« > ãã³ãœã« | <small>[[ ç¹æ®çžå¯Ÿè« ]]> ãã³ãœã« </small>
----
==ãã³ãœã«==
ããããã¯ãã³ãœã«ãšããéãçšããã
æ°åŠçã«ã¯ãéåžžç©çã§æ±ã
3次å
ã®ãã¯ãã«ã¯ã
SO(3)矀ãšãã矀ã®è¡šçŸã®1ã€ãšãªã£ãŠããã
ããã§ããããŒã¬ã³ãäžå€æ§ã¯ã
ããŒã¬ã³ã矀SO(3,1)ã«å¯Ÿå¿ããŠããã
ããã矀ã®è¡šçŸãè¯ãç¥ãããŠããã
ãŸãã
ããŒã¬ã³ã倿ã§å€åããªãéã
ã¹ã«ã©ãŒãšåŒã¶ã
次ã«ãããŒã¬ã³ã倿ã«å¯ŸããŠã
<math>
{A'} ^\mu = \Lambda ^\mu _\nu A^\nu
</math>
ãšãªãéããã¯ãã«ãšåŒã¶ã
<math>
\Lambda ^\mu _\nu
</math>
ã¯ã6ã€ã®4*4ã®è¡åã§äžãããããã¯ãã«ã«å¯ŸããŠã¯
<math>
\Lambda ^\mu _\nu
</math>
ã¯ã
<math>
B _1 =\gamma
\begin{pmatrix}
1 &\beta &0&0\\
\beta &1 & 0&0\\
0&0&1&0\\
0&0&0&1
\end{pmatrix}
</math>
,
<math>
B _2 = \gamma
\begin{pmatrix}
1&0&0&0\\
0&1 &\beta &0\\
0&\beta &1 & 0\\
0&0&0&1
\end{pmatrix}
</math>
,
<math>
B _3 =\gamma
\begin{pmatrix}
1&0&0&0\\
0&1&0&0\\
0 &0&1 &\beta \\
0 &0&\beta &1
\end{pmatrix}
</math>
,
<math>
R _1 =
\begin{pmatrix}
1 &0 &0&0\\
0 &1 & 0&0\\
0&0&\cos a & -\sin a\\
0&0&\sin a &\cos a
\end{pmatrix}
</math>
,
<math>
R _2 =
\begin{pmatrix}
1 &0 &0&0\\
0&\cos a &0& \sin a\\
0 &0 & 1&0\\
0&-\sin a &0&\cos a
\end{pmatrix}
</math>
,
<math>
R _3 =
\begin{pmatrix}
1 &0 &0&0\\
0&\cos a & -\sin a&0\\
0&\sin a &\cos a&0\\
0 &0 &0&1\\
\end{pmatrix}
</math>
ã§äžããããã
ãã ããããã§
<math>
\beta = \frac v c
</math>
<math>
\gamma = \frac 1 {\sqrt { 1 - v^2/c^2}}
</math>
ãçšããã
<!-- 宿ãªã³ããŒã¢ã³ãããŒã¹ãã¯...ã -->
(ããŒã¬ã³ã矀ã®è¡šçŸã®æ£ç¢ºãªå®çŸ©ã¯ãããããç©çæ°åŠããããã¯
æ°åŠã®"ãªãŒçŸ€"ã§äžããããã)
<!-- (ããŒã¬ã³ã矀ã¯å€å
žãªãŒçŸ€ã«å«ãŸããªãããšã«æ³šæã -->
<!-- ãã®ããæ°åŠã®(å°ãªããšããªãŒçŸ€ã®)æç§æžã«ã¯ãå«ãŸããªãããç¥ããªãã -->
ç¹ã«x軞æ¹åã«é床vã§ããã芳枬è
ã®èгå¯ããç©çéã
åŸãã«ã¯
<math>
p'^\mu = \gamma
\begin{pmatrix}
1&\beta&0&0\\
\beta&1&0&0\\
0&0&1&0\\
0&0&0&1
\end{pmatrix}
p^\mu
</math>
ãšãªããç¹ã«xæ¹åã ãã«æ³šç®ãããšãã«ã¯
å€åãèµ·ãããªãyãzæ¹åãç¡èŠããŠ
倿è¡åã
<math>
\gamma
\begin{pmatrix}
1&\beta\\
\beta&1
\end{pmatrix}
</math>
ãšçãæžãããšãããã
ãããããäŸãã°ã
<math>
{A'} ^\mu {A'} ^\nu
</math>
ãšãããããªéãäœããšã
ãã®éã¯
<math>
{A'} ^\mu {A'} ^\nu =\Lambda ^\mu _\rho A^\rho \Lambda ^\nu _\sigma A^\sigma
</math>
ãšããããã«å€æããããšãåãã
<!-- ?? -->
ããã§ã
<math>
T^{\mu\nu} = \Lambda ^\mu _\rho \Lambda ^\nu _ \sigma T ^{\rho \sigma}
</math>
ãšããããã«æ¯èãéã
2éã®ãã³ãœã«ãšåŒã¶ã
ããã¯æ·»åã2ã€ããããšã«ããã
ãŸãããã¯ãã«ã¯1éã®ãã³ãœã«ã
ã¹ã«ã©ãŒã¯0éã®ãã³ãœã«ãšããããšãã§ããã
(ç¹ã«æ·»åãäžã«ãããã®ãåå€ãã³ãœã«
ãšåŒã¶ããšãããã)
ããã§ãèšéãã³ãœã«ãšããç¹å¥ãª2éã®ãã³ãœã«ã
å®çŸ©ããã
<math>
\eta^{\mu\nu} =
\eta _{\mu\nu} =
\begin{pmatrix}
1&0&0&0\\
0&-1&0&0\\
0&0&-1&0\\
0&0&0&-1
\end{pmatrix}
</math>
ããã§ããã®éãçšããŠãã¯ãã«ã®2ä¹
<math>
\begin{matrix}
(A^\mu) ^2 = \eta _{\mu\nu} A^\mu A^\nu\\
= (A^0)^2-(A^1)^2 -(A^2)^2 -(A^3)^2
\end{matrix}
</math>
ãåãã
ããããã®æ·»åã¯
åãæ·»åãäžäžã«ãããšãã«ã0-3ãŸã§ã®åãåã£ãŠã
æã¡æ¶ãããšãåºæ¥ãã
äŸãã°ã
<math>
A^\mu A _\mu = \sum _ {m =0} ^3 (A^m )^2
</math>
äžä»ãæ·»åã®éãå
±å€ãã¯ãã«ãšåŒã³ã察å¿ãã
åå€ãã¯ãã«ãšèšéãã³ãœã«ãçšããŠå®çŸ©ããããšãåºæ¥ãã
ãããã®æ·»åã¯ã
èšéãã³ãœã«
<math>
\eta^{\mu\nu} =
\eta _{\mu\nu} =
\begin{pmatrix}
1&0&0&0\\
0&-1&0&0\\
0&0&-1&0\\
0&0&0&-1
\end{pmatrix}
</math>
ã«ãã£ãŠãäžäžã«ç§»åãããããšãåºæ¥ãã
äŸãã°ã
<math>
x _\mu = \eta _{\mu\nu} x^\nu
</math>
ãšãªããããã«ãã£ãŠäžä»ãæ·»åã®éãå®çŸ©ããããšãåºæ¥ãã
ç¹ã«ãäžä»ãæ·»åã ããæã€ãã³ãœã«ãå
±å€ãã³ãœã«ãšåŒã¶ããšãããã
ãŸãã
äžä»ããšäžä»ãã®æ·»åãäž¡æ¹æã€ãã³ãœã«ãæ··åãã³ãœã«ãš
åŒã¶ããšãããã
[[Category:ç¹æ®çžå¯Ÿè«|ãŠããã]] | 2005-05-14T04:40:32Z | 2024-03-16T03:15:52Z | [] | https://ja.wikibooks.org/wiki/%E7%89%B9%E6%AE%8A%E7%9B%B8%E5%AF%BE%E8%AB%96_%E3%83%86%E3%83%B3%E3%82%BD%E3%83%AB |
1,983 | ç¹æ®çžå¯Ÿè« æéã®é
ã | ç¹æ®çžå¯Ÿè« > æéã®é
ã
ããç¹(0,0)ããé床vã§åãã ããç²åã¯ éæ¢ããŠãã芳枬è
ããèŠãŠ (ct,vt)ãšãªãæå»ã«ãããŠã èªåèªèº«ããèŠã座æšç³»ã§ã¯ã γ ( 1 â β â β 1 ) ( c t v t ) {\displaystyle \gamma {\begin{pmatrix}1&-\beta \\-\beta &1\end{pmatrix}}{\begin{pmatrix}ct\\vt\end{pmatrix}}} = γ t ( c â β v â c β + v ) {\displaystyle =\gamma t{\begin{pmatrix}c-\beta v\\-c\beta +v\end{pmatrix}}} = γ t ( c â β v 0 ) {\displaystyle =\gamma t{\begin{pmatrix}c-\beta v\\0\end{pmatrix}}} ãšãªããæåŸã®èšç®ã§
ãçšããã ããã§ãç²åãšäžç·ã«åããŠãã芳枬è
ããèŠãŠ ç²åã®äœçœ®åº§æšã0ã§ããããšã¯ã ç²åãšäžç·ã«åã芳枬è
ã«åã£ãŠ ç²åã¯åããŠããªãããã«èŠããããšã«å¯Ÿå¿ããŠããã ç²åãšå
±ã«éåãã芳枬è
ã«åã£ãŠã®æéçµéã¯
ãšãªãããã£ãŠã ç²åãšäžç·ã«åã芳枬è
ã«åã£ãŠåºçºããŠããçµéããæéãã 鿢ããŠãã芳枬è
ã«åã£ãŠã® æéããããã£ãããšçµéããŠããããšã瀺ããŠããã ããã¯çŽèгçã«ã¯ãç²åãããé床ã§åããŠããåã ããæéã®æ¹åã« éåããŠããé床ãé
ããªã£ããã®ãšã¿ãªãããšãåºæ¥ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç¹æ®çžå¯Ÿè« > æéã®é
ã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "",
"title": "æéã®é
ã"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ããç¹(0,0)ããé床vã§åãã ããç²åã¯ éæ¢ããŠãã芳枬è
ããèŠãŠ (ct,vt)ãšãªãæå»ã«ãããŠã èªåèªèº«ããèŠã座æšç³»ã§ã¯ã γ ( 1 â β â β 1 ) ( c t v t ) {\\displaystyle \\gamma {\\begin{pmatrix}1&-\\beta \\\\-\\beta &1\\end{pmatrix}}{\\begin{pmatrix}ct\\\\vt\\end{pmatrix}}} = γ t ( c â β v â c β + v ) {\\displaystyle =\\gamma t{\\begin{pmatrix}c-\\beta v\\\\-c\\beta +v\\end{pmatrix}}} = γ t ( c â β v 0 ) {\\displaystyle =\\gamma t{\\begin{pmatrix}c-\\beta v\\\\0\\end{pmatrix}}} ãšãªããæåŸã®èšç®ã§",
"title": "æéã®é
ã"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãçšããã ããã§ãç²åãšäžç·ã«åããŠãã芳枬è
ããèŠãŠ ç²åã®äœçœ®åº§æšã0ã§ããããšã¯ã ç²åãšäžç·ã«åã芳枬è
ã«åã£ãŠ ç²åã¯åããŠããªãããã«èŠããããšã«å¯Ÿå¿ããŠããã ç²åãšå
±ã«éåãã芳枬è
ã«åã£ãŠã®æéçµéã¯",
"title": "æéã®é
ã"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãšãªãããã£ãŠã ç²åãšäžç·ã«åã芳枬è
ã«åã£ãŠåºçºããŠããçµéããæéãã 鿢ããŠãã芳枬è
ã«åã£ãŠã® æéããããã£ãããšçµéããŠããããšã瀺ããŠããã ããã¯çŽèгçã«ã¯ãç²åãããé床ã§åããŠããåã ããæéã®æ¹åã« éåããŠããé床ãé
ããªã£ããã®ãšã¿ãªãããšãåºæ¥ãã",
"title": "æéã®é
ã"
}
] | ç¹æ®çžå¯Ÿè« > æéã®é
ã | <small> [[ç¹æ®çžå¯Ÿè«]] > æéã®é
ã
----
==æéã®é
ã==
ããç¹(0,0)ããé床vã§åãã ããç²åã¯
鿢ããŠãã芳枬è
ããèŠãŠ
(ct,vt)ãšãªãæå»ã«ãããŠã
èªåèªèº«ããèŠã座æšç³»ã§ã¯ã
<math>
\gamma
\begin{pmatrix}
1 & -\beta \\
-\beta & 1
\end{pmatrix}
\begin{pmatrix}
ct\\
vt
\end{pmatrix}
</math>
<math>
= \gamma t
\begin{pmatrix}
c -\beta v \\
-c \beta + v
\end{pmatrix}
</math>
<math>
= \gamma t
\begin{pmatrix}
c -\beta v \\
0
\end{pmatrix}
</math>
ãšãªããæåŸã®èšç®ã§
:<math>
\beta = v / c
</math>
ãçšããã
ããã§ãç²åãšäžç·ã«åããŠãã芳枬è
ããèŠãŠ
ç²åã®äœçœ®åº§æšã0ã§ããããšã¯ã
ç²åãšäžç·ã«åã芳枬è
ã«åã£ãŠ
ç²åã¯åããŠããªãããã«èŠããããšã«å¯Ÿå¿ããŠããã
ç²åãšå
±ã«éåãã芳枬è
ã«åã£ãŠã®æéçµéã¯
:<math>
\gamma t (c - \beta v ) = \gamma t(c - v^2 /c)
</math>
:<math>
= \gamma c t(1 - v^2 /c^2)
</math>
:<math>
= ct \sqrt{1-\beta^2}
</math>
:<math>
< ct
</math>
:= (鿢ããŠãã芳枬è
ããèŠãå Žåã®ç²åã®æé)
ãšãªãããã£ãŠã
ç²åãšäžç·ã«åã芳枬è
ã«åã£ãŠåºçºããŠããçµéããæéãã
鿢ããŠãã芳枬è
ã«åã£ãŠã®
æéããããã£ãããšçµéããŠããããšã瀺ããŠããã
ããã¯çŽèгçã«ã¯ãç²åãããé床ã§åããŠããåã ããæéã®æ¹åã«
éåããŠããé床ãé
ããªã£ããã®ãšã¿ãªãããšãåºæ¥ãã
[[Category:ç¹æ®çžå¯Ÿè«|ãããã®ããã]] | 2005-05-14T04:46:35Z | 2024-03-16T03:16:44Z | [] | https://ja.wikibooks.org/wiki/%E7%89%B9%E6%AE%8A%E7%9B%B8%E5%AF%BE%E8%AB%96_%E6%99%82%E9%96%93%E3%81%AE%E9%81%85%E3%82%8C |
1,992 | ç¹æ®çžå¯Ÿè« ããŒã¬ã³ãåçž® | ç¹æ®çžå¯Ÿè« > ããŒã¬ã³ãåçž®
ãã芳枬è
ã«ãšã£ãŠ æå»0ã§ãx=0ã«å·Šç«¯ãããã x=lã«å³ç«¯ããã æ£ãèããã ãã®ãšãxæ¹åã«é床vã§ç§»åããŠãã 芳枬è
ã«ãšã£ãŠ (0,0)ã¯ãã®ãŸãŸã§ããããã©ã (0,l)ã¯ã γ ( 1 â β â β 1 ) ( 0 l ) {\displaystyle \gamma {\begin{pmatrix}1&-\beta \\-\beta &1\end{pmatrix}}{\begin{pmatrix}0\\l\end{pmatrix}}} = γ ( â β l l ) {\displaystyle =\gamma {\begin{pmatrix}-\beta l\\l\end{pmatrix}}} ãåŸãããå³ç«¯ãšå·Šç«¯ã¯ ç°ãªã£ãæéã«ããããã«èŠããããšãåãã
å³ç«¯ã¯é床vã§åããŠãã芳枬è
ããèŠãŠ é床vã§åããŠããããã«èŠããããšãã å³ç«¯ã®åããŠãã芳枬è
ã«å¯Ÿããéå㯠( x â x 0 = v ( t â t 0 ) {\displaystyle x-x_{0}=v(t-t_{0})} ã«é©åãªå€ã代å
¥ãããšã) x â γ l = v ( t â 1 c γ β l ) {\displaystyle x-\gamma l=v(t-{\frac {1}{c}}\gamma \beta l)} ãšæžãããã t = 0 ãšãããšã x = γ l â 1 c γ β v l {\displaystyle x=\gamma l-{\frac {1}{c}}\gamma \beta vl} , x = γ l ( 1 â β 2 ) {\displaystyle x=\gamma l(1-\beta ^{2})} , x = l 1 â β 2 {\displaystyle x=l{\sqrt {1-\beta ^{2}}}} ãåŸããã x < l {\displaystyle x<l} ã€ãŸããæ£ãçž®ãã§ããããã«èŠããããšãåããã ãã®ããšãããŒã¬ã³ãåçž®ãšåŒã¶ã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç¹æ®çžå¯Ÿè« > ããŒã¬ã³ãåçž®",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãã芳枬è
ã«ãšã£ãŠ æå»0ã§ãx=0ã«å·Šç«¯ãããã x=lã«å³ç«¯ããã æ£ãèããã ãã®ãšãxæ¹åã«é床vã§ç§»åããŠãã 芳枬è
ã«ãšã£ãŠ (0,0)ã¯ãã®ãŸãŸã§ããããã©ã (0,l)ã¯ã γ ( 1 â β â β 1 ) ( 0 l ) {\\displaystyle \\gamma {\\begin{pmatrix}1&-\\beta \\\\-\\beta &1\\end{pmatrix}}{\\begin{pmatrix}0\\\\l\\end{pmatrix}}} = γ ( â β l l ) {\\displaystyle =\\gamma {\\begin{pmatrix}-\\beta l\\\\l\\end{pmatrix}}} ãåŸãããå³ç«¯ãšå·Šç«¯ã¯ ç°ãªã£ãæéã«ããããã«èŠããããšãåãã",
"title": "ããŒã¬ã³ãåçž®"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "å³ç«¯ã¯é床vã§åããŠãã芳枬è
ããèŠãŠ é床vã§åããŠããããã«èŠããããšãã å³ç«¯ã®åããŠãã芳枬è
ã«å¯Ÿããéå㯠( x â x 0 = v ( t â t 0 ) {\\displaystyle x-x_{0}=v(t-t_{0})} ã«é©åãªå€ã代å
¥ãããšã) x â γ l = v ( t â 1 c γ β l ) {\\displaystyle x-\\gamma l=v(t-{\\frac {1}{c}}\\gamma \\beta l)} ãšæžãããã t = 0 ãšãããšã x = γ l â 1 c γ β v l {\\displaystyle x=\\gamma l-{\\frac {1}{c}}\\gamma \\beta vl} , x = γ l ( 1 â β 2 ) {\\displaystyle x=\\gamma l(1-\\beta ^{2})} , x = l 1 â β 2 {\\displaystyle x=l{\\sqrt {1-\\beta ^{2}}}} ãåŸããã x < l {\\displaystyle x<l} ã€ãŸããæ£ãçž®ãã§ããããã«èŠããããšãåããã ãã®ããšãããŒã¬ã³ãåçž®ãšåŒã¶ã",
"title": "ããŒã¬ã³ãåçž®"
}
] | ç¹æ®çžå¯Ÿè« > ããŒã¬ã³ãåçž® | <small> [[ç¹æ®çžå¯Ÿè«]] > ããŒã¬ã³ãåçž®
----
==ããŒã¬ã³ãåçž®==
ãã芳枬è
ã«ãšã£ãŠ
æå»0ã§ãx=0ã«å·Šç«¯ãããã
x=lã«å³ç«¯ããã
æ£ãèããã
ãã®ãšãxæ¹åã«é床vã§ç§»åããŠãã
芳枬è
ã«ãšã£ãŠ
(0,0)ã¯ãã®ãŸãŸã§ããããã©ã
(0,l)ã¯ã
<math>
\gamma
\begin{pmatrix}
1 & -\beta \\
-\beta & 1
\end{pmatrix}
\begin{pmatrix}
0 \\
l
\end{pmatrix}
</math>
<math>
=\gamma
\begin{pmatrix}
-\beta l \\
l
\end{pmatrix}
</math>
ãåŸãããå³ç«¯ãšå·Šç«¯ã¯
ç°ãªã£ãæéã«ããããã«èŠããããšãåãã
<!-- æéã®æ¬¡å
ã -->
<!-- æéã§æž¬ããš -->
<!-- \frac 1 c ( -\beta l , l) ã«ãªã...ãããŠãã©ããããã -->
<!-- æéãé·ãã§æž¬ãããšã«ãããããŒã¬ã³ã倿ã«cãã€ããã...ã -->
<!-- åãæéã«çŸãããããã«ãããšã -->
å³ç«¯ã¯é床vã§åããŠãã芳枬è
ããèŠãŠ
é床vã§åããŠããããã«èŠããããšãã
å³ç«¯ã®åããŠãã芳枬è
ã«å¯Ÿããéåã¯
(<math>x-x _0 = v (t - t _0 )</math> ã«é©åãªå€ã代å
¥ãããšã)
<math>
x - \gamma l = v (t - \frac 1 c \gamma \beta l)
</math>
ãšæžãããã
t = 0 ãšãããšã
<math>
x = \gamma l - \frac 1 c \gamma \beta v l
</math>,
<math>
x= \gamma l ( 1 - \beta^2)
</math>,
<math>
x= l \sqrt{ 1 - \beta^2}
</math>
ãåŸããã
<math>
x < l
</math>
ã€ãŸããæ£ãçž®ãã§ããããã«èŠããããšãåããã
ãã®ããšãããŒã¬ã³ãåçž®ãšåŒã¶ã
[[Category:ç¹æ®çžå¯Ÿè«|ããããã€ãããããã]] | 2005-05-14T09:27:48Z | 2024-03-16T03:17:05Z | [] | https://ja.wikibooks.org/wiki/%E7%89%B9%E6%AE%8A%E7%9B%B8%E5%AF%BE%E8%AB%96_%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E5%8F%8E%E7%B8%AE |
1,993 | ç¹æ®çžå¯Ÿè« é»ç£æ°åŠãžã®å°å
¥ | ç¹æ®çžå¯Ÿè« > é»ç£æ°åŠãžã®å°å
¥
ããŒã¬ã³ã倿ã«å¯Ÿã㊠ãã倿ããããšããèŠè«ã¯ éåžžã«å€å²ã«ããã£ãŠåœãŠã¯ãŸãããšã ç¥ãããŠãããããã®äŸãšã㊠ç¹ã«æåãªãã®ã¯ é»ç£æ°åŠã§ããã 詳现ã¯é»ç£æ°åŠã§è¿°ã¹ããããã é»ç£æ°åŠã®åºç€æ¹çšåŒã¯ â ÎŒ F ÎŒ Μ = 4 Ï J Μ {\displaystyle \partial _{\mu }F^{\mu \nu }=4\pi J^{\nu }} , â Ï F ÎŒ Μ + â Μ F Ï ÎŒ + â ÎŒ F Μ Ï = 0 {\displaystyle \partial _{\rho }F_{\mu \nu }+\partial _{\nu }F_{\rho \mu }+\partial _{\mu }F_{\nu \rho }=0} ãšãªãããšãç¥ãããŠããã (Maxwellæ¹çšåŒ) | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç¹æ®çžå¯Ÿè« > é»ç£æ°åŠãžã®å°å
¥",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ããŒã¬ã³ã倿ã«å¯Ÿã㊠ãã倿ããããšããèŠè«ã¯ éåžžã«å€å²ã«ããã£ãŠåœãŠã¯ãŸãããšã ç¥ãããŠãããããã®äŸãšã㊠ç¹ã«æåãªãã®ã¯ é»ç£æ°åŠã§ããã 詳现ã¯é»ç£æ°åŠã§è¿°ã¹ããããã é»ç£æ°åŠã®åºç€æ¹çšåŒã¯ â ÎŒ F ÎŒ Μ = 4 Ï J Μ {\\displaystyle \\partial _{\\mu }F^{\\mu \\nu }=4\\pi J^{\\nu }} , â Ï F ÎŒ Μ + â Μ F Ï ÎŒ + â ÎŒ F Μ Ï = 0 {\\displaystyle \\partial _{\\rho }F_{\\mu \\nu }+\\partial _{\\nu }F_{\\rho \\mu }+\\partial _{\\mu }F_{\\nu \\rho }=0} ãšãªãããšãç¥ãããŠããã (Maxwellæ¹çšåŒ)",
"title": "é»ç£æ°åŠãžã®å°å
¥"
}
] | ç¹æ®çžå¯Ÿè« > é»ç£æ°åŠãžã®å°å
¥ | <small> [[ç¹æ®çžå¯Ÿè«]] > é»ç£æ°åŠãžã®å°å
¥ </small>
----
==[[é»ç£æ°åŠ]]ãžã®å°å
¥==
ããŒã¬ã³ã倿ã«å¯ŸããŠ
ãã倿ããããšããèŠè«ã¯
éåžžã«å€å²ã«ããã£ãŠåœãŠã¯ãŸãããšã
ç¥ãããŠãããããã®äŸãšããŠ
ç¹ã«æåãªãã®ã¯
é»ç£æ°åŠã§ããã
詳现ã¯[[é»ç£æ°åŠ]]ã§è¿°ã¹ããããã
é»ç£æ°åŠã®åºç€æ¹çšåŒã¯
<math>
\partial _\mu F^{\mu\nu} = 4\pi J^\nu
</math>,
<math>
\partial_\rho F_{\mu\nu}+ \partial_\nu F_{\rho\mu}+ \partial_\mu F_{\nu\rho} = 0
</math>
ãšãªãããšãç¥ãããŠããã
(Maxwellæ¹çšåŒ)
[[ã«ããŽãª:é»ç£æ°åŠ|ãšããããããããããŠããããããžã®ãšãã«ãã]]
[[Category:ç¹æ®çžå¯Ÿè«|ãŠããããããžã®ãšãã«ãã]] | null | 2022-12-01T04:16:55Z | [] | https://ja.wikibooks.org/wiki/%E7%89%B9%E6%AE%8A%E7%9B%B8%E5%AF%BE%E8%AB%96_%E9%9B%BB%E7%A3%81%E6%B0%97%E5%AD%A6%E3%81%B8%E3%81%AE%E5%B0%8E%E5%85%A5 |
1,994 | ç¹æ®çžå¯Ÿè« éåæ¹çšåŒ | ç¹æ®çžå¯Ÿè« > éåæ¹çšåŒ
SO(3,1)ã®ãã¡ã§ãæåã®3ã¯SO(3)ã®3ãšåäžã§ããã ãã®ããããã3次å
ã®ãã¯ãã«ãåã£ããšã ãããšé©åœãªéãçµã¿åãããŠ4次å
ã®ãã¯ãã«ã äœãããšãåºæ¥ãã d s 2 {\displaystyle ds^{2}} ãã¹ã«ã©ãŒã§ããããšãã x ÎŒ = ( c t x y z ) {\displaystyle x^{\mu }={\begin{pmatrix}ct\\x\\y\\z\end{pmatrix}}} ã®ããã«ãtãšãx,y,zãçµã¿åãããããããã«æããã ããã«ã åºææé d s 2 = d t 2 1 â ( v / c ) 2 {\displaystyle ds^{2}=dt^{2}{\sqrt {1-(v/c)^{2}}}} ãå°å
¥ãããšããã®éã¯ã¹ã«ã©ãŒã«ãªãã
ãã®ãšãã éåæ¹çšåŒã¯ã ããå f ÎŒ {\displaystyle f^{\mu }} ãæ³å®ãããšã (note: å€ãã®å Žåé»ç£æ°åãæ³å®ããŠããã) d p ÎŒ d s = f ÎŒ {\displaystyle {\frac {d{p^{\mu }}}{d{s}}}=f^{\mu }} ãšæžãããã ããã¯ãéåæ¹çšåŒã ããŒã¬ã³ã倿ã«å¯ŸããŠããæ§è³ªã ãã£ãŠããªããŠã¯ãããªããšãã èŠè«ããæ¥ãŠããã ãã¥ãŒãã³ã®æ¹çšåŒ d p â d t = f â {\displaystyle {\frac {d{\vec {p}}}{dt}}={\vec {f}}} ãã䞡蟺ã3次å
ã®ãã¯ãã«ã§ããããšãã SO(3)ã®å€æã«ã€ããŠè¯ãæ§è³ªããã£ãŠããã äžã®åŒã¯ããã®æ¡åŒµãšèããããšãåºæ¥ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç¹æ®çžå¯Ÿè« > éåæ¹çšåŒ",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "SO(3,1)ã®ãã¡ã§ãæåã®3ã¯SO(3)ã®3ãšåäžã§ããã ãã®ããããã3次å
ã®ãã¯ãã«ãåã£ããšã ãããšé©åœãªéãçµã¿åãããŠ4次å
ã®ãã¯ãã«ã äœãããšãåºæ¥ãã d s 2 {\\displaystyle ds^{2}} ãã¹ã«ã©ãŒã§ããããšãã x ÎŒ = ( c t x y z ) {\\displaystyle x^{\\mu }={\\begin{pmatrix}ct\\\\x\\\\y\\\\z\\end{pmatrix}}} ã®ããã«ãtãšãx,y,zãçµã¿åãããããããã«æããã ããã«ã åºææé d s 2 = d t 2 1 â ( v / c ) 2 {\\displaystyle ds^{2}=dt^{2}{\\sqrt {1-(v/c)^{2}}}} ãå°å
¥ãããšããã®éã¯ã¹ã«ã©ãŒã«ãªãã",
"title": "éåæ¹çšåŒ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãã®ãšãã éåæ¹çšåŒã¯ã ããå f ÎŒ {\\displaystyle f^{\\mu }} ãæ³å®ãããšã (note: å€ãã®å Žåé»ç£æ°åãæ³å®ããŠããã) d p ÎŒ d s = f ÎŒ {\\displaystyle {\\frac {d{p^{\\mu }}}{d{s}}}=f^{\\mu }} ãšæžãããã ããã¯ãéåæ¹çšåŒã ããŒã¬ã³ã倿ã«å¯ŸããŠããæ§è³ªã ãã£ãŠããªããŠã¯ãããªããšãã èŠè«ããæ¥ãŠããã ãã¥ãŒãã³ã®æ¹çšåŒ d p â d t = f â {\\displaystyle {\\frac {d{\\vec {p}}}{dt}}={\\vec {f}}} ãã䞡蟺ã3次å
ã®ãã¯ãã«ã§ããããšãã SO(3)ã®å€æã«ã€ããŠè¯ãæ§è³ªããã£ãŠããã äžã®åŒã¯ããã®æ¡åŒµãšèããããšãåºæ¥ãã",
"title": "éåæ¹çšåŒ"
}
] | ç¹æ®çžå¯Ÿè« > éåæ¹çšåŒ | <small> [[ç¹æ®çžå¯Ÿè«]] > éåæ¹çšåŒ </small>
----
==éåæ¹çšåŒ==
SO(3,1)ã®ãã¡ã§ãæåã®3ã¯SO(3)ã®3ãšåäžã§ããã
ãã®ããããã3次å
ã®ãã¯ãã«ãåã£ããšã
ãããšé©åœãªéãçµã¿åãããŠ4次å
ã®ãã¯ãã«ã
äœãããšãåºæ¥ãã
<math>ds^2</math>ãã¹ã«ã©ãŒã§ããããšãã
<math>
x^\mu =
\begin{pmatrix}
ct \\
x \\
y \\
z
\end{pmatrix}
</math>
ã®ããã«ãtãšãx,y,zãçµã¿åãããããããã«æããã
ããã«ã
åºææé
<math>
ds^2 = dt ^2 \sqrt{1-(v/c)^2}
</math>
ãå°å
¥ãããšããã®éã¯ã¹ã«ã©ãŒã«ãªãã
ãã®ãšãã
éåæ¹çšåŒã¯ã
ããå<math>f^{\mu}</math>ãæ³å®ãããšã
(note:
<!-- %ããã¯æã§æŒããå Žåã®åã§ããããã(?)
-->
å€ãã®å Žåé»ç£æ°åãæ³å®ããŠããã)
<math>
\frac {d {p^\mu }}{d { s} } = f^\mu
</math>
ãšæžãããã
ããã¯ãéåæ¹çšåŒã
ããŒã¬ã³ã倿ã«å¯ŸããŠããæ§è³ªã
ãã£ãŠããªããŠã¯ãããªããšãã
èŠè«ããæ¥ãŠããã
ãã¥ãŒãã³ã®æ¹çšåŒ
<math>
\frac {d {\vec p }}{d t } = \vec f
</math>
ãã䞡蟺ã3次å
ã®ãã¯ãã«ã§ããããšãã
SO(3)ã®å€æã«ã€ããŠè¯ãæ§è³ªããã£ãŠããã
äžã®åŒã¯ããã®æ¡åŒµãšèããããšãåºæ¥ãã
[[Category:ç¹æ®çžå¯Ÿè«|ãããšãã»ããŠããã]] | 2005-05-14T09:33:30Z | 2024-03-16T03:17:50Z | [] | https://ja.wikibooks.org/wiki/%E7%89%B9%E6%AE%8A%E7%9B%B8%E5%AF%BE%E8%AB%96_%E9%81%8B%E5%8B%95%E6%96%B9%E7%A8%8B%E5%BC%8F |
1,996 | çµæžåŠ çŸä»£çµæžã®ä»çµã¿ è²¡æ¿ | çµæžåŠ>çŸä»£çµæžã®ä»çµã¿>財æ¿
æã£ãŠãã ãããããªããæããªããã°ãªããªãçšéã®é¡ã¯ããªãã®åå
¥ã«ãã£ãŠæ±ºãŸã£ãŠããã¯ãã§ãããªããªã,çšéã¯é«æåŸè
ããäœæåŸè
ã«ç§»ããéã ããã§ãã髿åŸã§ããã°ããã»ã©æããªããã°ãªããªãçšéã¯å¢ããããã§ãããã ã,æ¶è²»çšããã°ãçšãªã©ã®éæ¥çšã¯ãã®æ±ºãŸãã«åããŠããŸãã
æ¿åºãããçµæžæŽ»åã®ããšã財æ¿ãšãããŸãããªãã£ãŒãã»ãã¹ã°ã¬ã€ã(Richard Abel Musgrave)ã¯èæžã財æ¿çè«(The Theory of Public Finance 1959)ãã§è²¡æ¿ã®æ©èœãè³æºã®åé
,æåŸååé
,çµæžã®å®å®åãšãã3ã€ã«åé¡ããŸãããã©ããåžå Žã®å€±æãè£ãæ©èœã§ãã19äžçŽãŸã§ã¯è²¡æ¿ã¯å¿
èŠæäœé床ã«ãããŠããŸããã,çŸä»£ã§ã¯è²¡æ¿èŠæš¡ã¯å€§ãããªã,åé¡åãããããªã£ãŠããŸãã
ç§çšãäºç®ãªã©ã®ååã¯,æ¥æ¬åœæ²æ³ 第7ç« è²¡æ¿ã§å®ããããŠããŸãã
è³æ¬äž»çŸ©çµæžã§ã¯åžå ŽãéããŠè³æºãåé
åããŸãã,å
Œ
±è²¡ã¯åžå ŽãéããŠååŒãããã®ã§ã¯ãããŸããããããã£ãŠ,å
Œ
±è²¡ã¯æ¿åºãä»ããŠé
åãããªããã°ãªããŸããã
åžå ŽãæåŸãå
¬å¹³ã«åé
ããããšã¯ã§ããŸãããæ¿åºã,髿åŸè
ã«ã¯æåŸçšãªã©ã®çޝé²èª²çšã,äœæåŸè
ã«ã¯ç€ŸäŒä¿éãªã©ã®ç§çšã®æ¯æ¿æ¯åºãããããšã§æåŸãåè¡¡ã«ããããšãã財æ¿ã®æ©èœã®ããšã§ãã
åžå Žçµæžã§ã¯æ¯æ°ã®å€åã«æ³¢ããã,éåžžã«äžå®å®ã§ããçµæžã®å®å®åæ©èœãŸãã¯æ¯æ°èª¿ç¯æ©èœãšãããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "çµæžåŠ>çŸä»£çµæžã®ä»çµã¿>財æ¿",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "æã£ãŠãã ãããããªããæããªããã°ãªããªãçšéã®é¡ã¯ããªãã®åå
¥ã«ãã£ãŠæ±ºãŸã£ãŠããã¯ãã§ãããªããªã,çšéã¯é«æåŸè
ããäœæåŸè
ã«ç§»ããéã ããã§ãã髿åŸã§ããã°ããã»ã©æããªããã°ãªããªãçšéã¯å¢ããããã§ãããã ã,æ¶è²»çšããã°ãçšãªã©ã®éæ¥çšã¯ãã®æ±ºãŸãã«åããŠããŸãã",
"title": "çšéïŒæããªããé§ç®ïŒ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "æ¿åºãããçµæžæŽ»åã®ããšã財æ¿ãšãããŸãããªãã£ãŒãã»ãã¹ã°ã¬ã€ã(Richard Abel Musgrave)ã¯èæžã財æ¿çè«(The Theory of Public Finance 1959)ãã§è²¡æ¿ã®æ©èœãè³æºã®åé
,æåŸååé
,çµæžã®å®å®åãšãã3ã€ã«åé¡ããŸãããã©ããåžå Žã®å€±æãè£ãæ©èœã§ãã19äžçŽãŸã§ã¯è²¡æ¿ã¯å¿
èŠæäœé床ã«ãããŠããŸããã,çŸä»£ã§ã¯è²¡æ¿èŠæš¡ã¯å€§ãããªã,åé¡åãããããªã£ãŠããŸãã",
"title": "財æ¿ãšã¯"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ç§çšãäºç®ãªã©ã®ååã¯,æ¥æ¬åœæ²æ³ 第7ç« è²¡æ¿ã§å®ããããŠããŸãã",
"title": "財æ¿ã®ä»çµã¿"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "è³æ¬äž»çŸ©çµæžã§ã¯åžå ŽãéããŠè³æºãåé
åããŸãã,å
Œ
±è²¡ã¯åžå ŽãéããŠååŒãããã®ã§ã¯ãããŸããããããã£ãŠ,å
Œ
±è²¡ã¯æ¿åºãä»ããŠé
åãããªããã°ãªããŸããã",
"title": "è²¡æ¿æ¿ç"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "åžå ŽãæåŸãå
¬å¹³ã«åé
ããããšã¯ã§ããŸãããæ¿åºã,髿åŸè
ã«ã¯æåŸçšãªã©ã®çޝé²èª²çšã,äœæåŸè
ã«ã¯ç€ŸäŒä¿éãªã©ã®ç§çšã®æ¯æ¿æ¯åºãããããšã§æåŸãåè¡¡ã«ããããšãã財æ¿ã®æ©èœã®ããšã§ãã",
"title": "è²¡æ¿æ¿ç"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "åžå Žçµæžã§ã¯æ¯æ°ã®å€åã«æ³¢ããã,éåžžã«äžå®å®ã§ããçµæžã®å®å®åæ©èœãŸãã¯æ¯æ°èª¿ç¯æ©èœãšãããŸãã",
"title": "è²¡æ¿æ¿ç"
}
] | çµæžåŠïŒçŸä»£çµæžã®ä»çµã¿ïŒè²¡æ¿ | [[çµæžåŠ]]ïŒ[[çµæžåŠ_çŸä»£çµæžã®ä»çµã¿|çŸä»£çµæžã®ä»çµã¿]]ïŒè²¡æ¿
----
__TOC__
<div style="margin:0px; padding:0px; background-color:#CCFF99; border:solid #00CC00 1px; width:100%;">
== çšéïŒæããªããé§ç®ïŒ ==
æã£ãŠãã ãããããªããæããªããã°ãªããªãçšéã®é¡ã¯ããªãã®åå
¥ã«ãã£ãŠæ±ºãŸã£ãŠããã¯ãã§ãããªããªãïŒçšéã¯é«æåŸè
ããäœæåŸè
ã«ç§»ããéã ããã§ãã髿åŸã§ããã°ããã»ã©æããªããã°ãªããªãçšéã¯å¢ããããã§ãããã ãïŒæ¶è²»çšããã°ãçšãªã©ã®éæ¥çšã¯ãã®æ±ºãŸãã«åããŠããŸãã
</div>
== 財æ¿ãšã¯ ==
[[çµæžåŠ_çŸä»£çµæžã®ä»çµã¿_çµæžäž»äœãšãã®æŽ»å#æ¿åº|æ¿åº]]ãããçµæžæŽ»åã®ããšã'''財æ¿'''ãšãããŸãã[[w:ãªãã£ãŒãã»ãã¹ã°ã¬ã€ã|ãªãã£ãŒãã»ãã¹ã°ã¬ã€ã(Richard Abel Musgrave)]]ã¯èæžã財æ¿çè«(The Theory of Public Finance 1959)ãã§è²¡æ¿ã®æ©èœãè³æºã®åé
ïŒæåŸååé
ïŒçµæžã®å®å®åãšããïŒã€ã«åé¡ããŸãããã©ãã[[çµæžåŠ_çŸä»£çµæžã®å€å®¹_çµæžã®å€å®¹_äžççµæžã®å€å®¹_è³æ¬äž»çŸ©çµæž#åžå Žã®å€±æ|åžå Žã®å€±æ]]ãè£ãæ©èœã§ãã19äžçŽãŸã§ã¯è²¡æ¿ã¯å¿
èŠæäœé床ã«ãããŠããŸãããïŒçŸä»£ã§ã¯è²¡æ¿èŠæš¡ã¯å€§ãããªãïŒåé¡åãããããªã£ãŠããŸãã
== 財æ¿ã®ä»çµã¿ ==
ç§çšãäºç®ãªã©ã®ååã¯ïŒ[[Wikisource:æ¥æ¬åæ²æ³#第äžç« 財æ¿|æ¥æ¬åœæ²æ³ 第ïŒç« 財æ¿]]ã§å®ããããŠããŸãã
=== ç§çš ===
== è²¡æ¿æ¿ç ==
=== è³æºã®åé
æ©èœ ===
[[çµæžåŠ_çŸä»£çµæžã®å€å®¹_çµæžã®å€å®¹_äžççµæžã®å€å®¹_è³æ¬äž»çŸ©çµæž|è³æ¬äž»çŸ©çµæž]]ã§ã¯åžå ŽãéããŠè³æºãåé
åããŸããïŒ[[çµæžåŠ_çŸä»£çµæžã®å€å®¹_çµæžã®å€å®¹_çµæžãšã¯äœã#財ç©|å
Œ
±è²¡]]ã¯åžå ŽãéããŠååŒãããã®ã§ã¯ãããŸããããããã£ãŠïŒå
Œ
±è²¡ã¯æ¿åºãä»ããŠé
åãããªããã°ãªããŸããã
=== æåŸååé
æ©èœ ===
åžå ŽãæåŸãå
¬å¹³ã«åé
ããããšã¯ã§ããŸãããæ¿åºãïŒé«æåŸè
ã«ã¯æåŸçšãªã©ã®çޝé²èª²çšãïŒäœæåŸè
ã«ã¯[[çµæžåŠ_瀟äŒä¿éå¶åºŠ|瀟äŒä¿é]]ãªã©ã®ç§çšã®æ¯æ¿æ¯åºãããããšã§æåŸãåè¡¡ã«ããããšãã財æ¿ã®æ©èœã®ããšã§ãã
=== çµæžã®å®å®åæ©èœ ===
åžå Žçµæžã§ã¯æ¯æ°ã®å€åã«æ³¢ãããïŒéåžžã«äžå®å®ã§ããçµæžã®å®å®åæ©èœãŸãã¯æ¯æ°èª¿ç¯æ©èœãšãããŸãã
== 財æ¿ã®èª²é¡ ==
{{stub}}
[[Category:çµæžåŠ|*]] | null | 2009-11-26T04:07:28Z | [
"ãã³ãã¬ãŒã:Stub"
] | https://ja.wikibooks.org/wiki/%E7%B5%8C%E6%B8%88%E5%AD%A6_%E7%8F%BE%E4%BB%A3%E7%B5%8C%E6%B8%88%E3%81%AE%E4%BB%95%E7%B5%84%E3%81%BF_%E8%B2%A1%E6%94%BF |
1,999 | å€å
žæåŠ | æåŠ > å€å
žæåŠ > ç®æ¬¡
倧åŠã®æç§æž èªç¶ç§åŠ: æ°åŠ - ç©çåŠ; å€å
žååŠ éåååŠ - ååŠ; ç¡æ©ååŠ ææ©ååŠ - çç©åŠ; æ€ç©åŠ ç ç©¶æè¡ - å°çç§åŠ - å»åŠ; è§£ååŠ èªåŠ: æ¥æ¬èª è±èª ãšã¹ãã©ã³ã æé®®èª ãã³ããŒã¯èª ãã€ãèª ãã©ã³ã¹èª ã©ãã³èª ã«ãŒããã¢èª 人æç§åŠ: æŽå²åŠ; æ¥æ¬å² äžåœå² äžçå² æŽå²èг - å¿çåŠ - å²åŠ - èžè¡; 鳿¥œ çŸè¡ - æåŠ; å€å
žæåŠ æŒ¢è©© 瀟äŒç§åŠ: æ³åŠ - çµæžåŠ - å°çåŠ - æè²åŠ; åŠæ ¡æè² æè²å² æ
å ±æè¡: æ
å ±å·¥åŠ; MS-DOS/PC DOS UNIX/Linux TeX/LaTeX CGI - ããã°ã©ãã³ã°; BASIC Cèšèª C++ Dèšèª HTML Java JavaScript Lisp Mizar Perl PHP Python Ruby Scheme SVG å°ã»äžã»é«æ ¡ã®æç§æž å°åŠ: åœèª ç€ŸäŒ ç®æ° çç§ è±èª äžåŠ: åœèª ç€ŸäŒ æ°åŠ çç§ è±èª 髿 ¡: åœèª - å°æŽ - å
¬æ° - æ°åŠ; å
¬åŒé - çç§; ç©ç ååŠ å°åŠ çç© - å€åœèª - æ
å ± 解説æžã»å®çšæžã»åèæž è¶£å³: æçæ¬ - ã¹ããŒã - ã²ãŒã 詊éš: è³æ Œè©Šéš - å
¥åŠè©Šéš ãã®ä»ã®æ¬: é²çœ - çæŽ»ãšé²è·¯ - ãŠã£ãããã£ã¢ã®æžãæ¹ - ãžã§ãŒã¯é | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æåŠ > å€å
žæåŠ > ç®æ¬¡",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "倧åŠã®æç§æž èªç¶ç§åŠ: æ°åŠ - ç©çåŠ; å€å
žååŠ éåååŠ - ååŠ; ç¡æ©ååŠ ææ©ååŠ - çç©åŠ; æ€ç©åŠ ç ç©¶æè¡ - å°çç§åŠ - å»åŠ; è§£ååŠ èªåŠ: æ¥æ¬èª è±èª ãšã¹ãã©ã³ã æé®®èª ãã³ããŒã¯èª ãã€ãèª ãã©ã³ã¹èª ã©ãã³èª ã«ãŒããã¢èª 人æç§åŠ: æŽå²åŠ; æ¥æ¬å² äžåœå² äžçå² æŽå²èг - å¿çåŠ - å²åŠ - èžè¡; 鳿¥œ çŸè¡ - æåŠ; å€å
žæåŠ æŒ¢è©© 瀟äŒç§åŠ: æ³åŠ - çµæžåŠ - å°çåŠ - æè²åŠ; åŠæ ¡æè² æè²å² æ
å ±æè¡: æ
å ±å·¥åŠ; MS-DOS/PC DOS UNIX/Linux TeX/LaTeX CGI - ããã°ã©ãã³ã°; BASIC Cèšèª C++ Dèšèª HTML Java JavaScript Lisp Mizar Perl PHP Python Ruby Scheme SVG å°ã»äžã»é«æ ¡ã®æç§æž å°åŠ: åœèª ç€ŸäŒ ç®æ° çç§ è±èª äžåŠ: åœèª ç€ŸäŒ æ°åŠ çç§ è±èª 髿 ¡: åœèª - å°æŽ - å
¬æ° - æ°åŠ; å
¬åŒé - çç§; ç©ç ååŠ å°åŠ çç© - å€åœèª - æ
å ± 解説æžã»å®çšæžã»åèæž è¶£å³: æçæ¬ - ã¹ããŒã - ã²ãŒã 詊éš: è³æ Œè©Šéš - å
¥åŠè©Šéš ãã®ä»ã®æ¬: é²çœ - çæŽ»ãšé²è·¯ - ãŠã£ãããã£ã¢ã®æžãæ¹ - ãžã§ãŒã¯é",
"title": ""
}
] | æåŠ > å€å
žæåŠ > ç®æ¬¡ | [[æåŠ]] > [[å€å
žæåŠ]] > ç®æ¬¡
----
[[ç»å:å€å
žæåŠ_æçµµ.jpg|480px|center]]
{{èµæžäžèЧ}}
== æ¥æ¬ã®å€å
ž ==
=== 察蚳ã»è§£èª¬ ===
*[[æ¥æ¬ã®å€å
ž]]
* [[/ããã¯æ|ããã¯æ]]{{鲿|50%|2005-06-11}}
=== å€å
žææ³ ===
* [[å€å
žæåŠ/å€å
žææ³|å€å
žææ³]]
* [[å€å
žæåŠ/å€å
žææ³/æŽå²çä»®åé£ã|æŽå²çä»®åé£ã]]{{鲿|75%|2005-05-15}}
* [[å€å
žæåŠ/å€å
žææ³/åè©|åè©]]
* [[å€å
žæåŠ/å€å
žææ³/圢容è©|圢容è©]]
* [[å€å
žæåŠ/å€å
žææ³/圢容åè©|圢容åè©]]
* [[å€å
žæåŠ/å€å
žææ³/åè©|åè©]]
* [[å€å
žæåŠ/å€å
žææ³/é£äœè©|é£äœè©]]
* [[å€å
žæåŠ/å€å
žææ³/å¯è©|å¯è©]]
* [[å€å
žæåŠ/å€å
žææ³/æ¥ç¶è©|æ¥ç¶è©]]
* [[å€å
žæåŠ/å€å
žææ³/æåè©|æåè©]]
* [[å€å
žæåŠ/å€å
žææ³/å©åè©|å©åè©]]
* [[å€å
žæåŠ/å€å
žææ³/å©è©|å©è©]]
* [[å€å
žæåŠ/å€å
žææ³/æ¬èª|æ¬èª]]
* [[å€å
žæåŠ/å€å
žææ³/ä¿ãçµã³ã®æ³å|ä¿ãçµã³ã®æ³å]]
* [[å€å
žæåŠ/å€å
žææ³/æã»é£æ|æã»é£æ]]
* [[å€å
žæåŠ/å€å
žææ³/ä¿®èŸ|ä¿®èŸ]]
*[[å€å
žæåŠ/å€å
žææ³/å€å
žçšèªã»åèª|å€å
žçšèªã»åèª]]
{{é²æç¶æ³}}
== äžåœã®å€å
ž ==
===察話ã»è§£èª¬===
*[[äžåœã®å€å
ž]]
===挢æãææ³===
* [[挢詩]]
[[Category:å€å
žæåŠ|*]]
[[Category:æžåº«|ããŠããµããã]] | 2005-05-14T14:28:41Z | 2024-01-22T09:26:08Z | [
"ãã³ãã¬ãŒã:èµæžäžèЧ",
"ãã³ãã¬ãŒã:鲿",
"ãã³ãã¬ãŒã:é²æç¶æ³"
] | https://ja.wikibooks.org/wiki/%E5%8F%A4%E5%85%B8%E6%96%87%E5%AD%A6 |
2,003 | HTML/ãªããžã§ã¯ã |
ç»åã®æ¿å
¥ã«ã¯imgèŠçŽ ã䜿çšãããäž»ã«äœ¿çšãããç»å圢åŒã¯JPEGãGIFãPNGã§ããã
ããã¹ããã©ãŠã¶ã®ãããªç»å衚瀺ãåºæ¥ãªããã©ãŠã¶ã§ã¯imgèŠçŽ å
ã®alt屿§ã§æå®ããæååã衚瀺ãããã
ããã¹ããã©ãŠã¶ãç»å衚瀺ãããªãããã«èšå®ããŠããã¯ã©ã€ã¢ã³ããžã®é
æ
®ãšããŠãalt屿§ã¯ä»£æ¿ãšãªããã衚çŸãèšèŒããããšãšãªã£ãŠãããåã«è£
食çãªæå³ã§çšããŠããç»åçã®ããã«ä»£æ¿ãã¹ãæå衚çŸããªãå Žåã¯ç©ºæååãæå® (alt="") ããããš(çç¥ã¯åºæ¥ãªã)ã
HTMLã®æ¬æå
ã«èšèŒããããããããã衚瀺ãããç»å(äžèšã³ãŒãã§ã¯ sample.png )ãæå
ã®ã³ã³ãã¥ãŒã¿ã«æºåããŠãããŠãHTMLãã¡ã€ã«ãšåããã©ã«ãã«å
¥ããŠããã
ãªã width ã¯ç»åã®æšªå¹
ãheight ã¯ç»åã®çžŠå¹
ã§ããã
imgèŠçŽ ã«ã¯çµäºã¿ã°ããªãããã</img>ã¯èšèŒããªããsrc屿§ã«ã¯ã衚瀺ãããç»åãã¡ã€ã«ã®URI(ã¢ãã¬ã¹)ãèšèŒãããçžå¯ŸURI(*) ã§æå®ããããšãå¯èœã§ãããåäžãµã€ãå
ã§ã®ç»åãåç
§ããå Žåã¯çžå¯ŸURIãçšããããšãå€ããwidth屿§ãšheight屿§ã§ç»åã®æšªå¹
ãšçžŠå¹
ãæå®ã§ããã
(*)ãã®HTMLãã¡ã€ã«ãååšããå°ç¹(äžè¬çã«ã¯ãã£ã¬ã¯ããª)ããã®ç»åãã¡ã€ã«ã®äœçœ®ã«ãã瀺ãããURIãHTML/ãã€ããŒãªã³ã¯#çžå¯Ÿãã¹ãšçµ¶å¯Ÿãã¹ãåç
§ã
äžã®ã³ãŒãã§ã¯ãç»åã®äžéšãç¹å®é åã«ãªã³ã¯ãèšå®ãããã®é åãã¯ãªãã¯ããå Žåæå®ãããªã³ã¯å
ãžé£ã¹ãããã«ããŠããã
決ããŠãç»åã«åãåè§åœ¢ãªã©ãæç»ããããã§ã¯ãªãã®ã§ãæ··åããªãããã«ããªãããªã³ã¯ããé åã®äœçœ®ã¯ãäžèšã³ãŒãã®å Žåãã¢ãã¿ãŒã®èšå®ã倧ãããªã©ã«ãå¯ãããæ®éã®ããŒãããœã³ã³ã§èŠãå Žåãªããªã³ã¯é åã¯æšªã«äžŠãã§ãã(ç»åã«åãåè§åœ¢ã衚瀺ãããããã§ã¯ãªãã®ã§ãå®è¡ããŠãèŠããªã)ã(ãªããHTMLã§åãåè§ãªã©ã®åºæ¬å³åœ¢ãæç»ãããå ŽåãHTML5以éãªããHTML/HTML5#canvasèŠçŽ ãã§è§£èª¬ããæ¹æ³ã§åãªã©ãæç»ã§ããã)
ãªã³ã¯é åã®äœçœ®ã«ããŠã¹ã«ãŒãœã«ãåããã°ãç»é¢å·Šäžãªã©ãããèŠãã°ããªã³ã¯å
ã®åç§°ã衚瀺ãããŠããã
imgèŠçŽ ã«usemap屿§ã§ãããããèšå®ãããã€ã¡ãŒãžãããã®ååãã#ãããåããšæå®ããããšã«ããå©çšå¯èœãšãªããã€ã¡ãŒãžããããèšå®ãããšãã¯map屿§ã§ãããåã®å®çŸ©ãè¡ããareaèŠçŽ ã®space屿§ã§é åã®åœ¢ç¶ããcoords屿§ã§åº§æšãæå®ãããåº§æšæå®ã®éã座æšã¯ã³ã³ãã§åºåãã
ãªãã€ã¡ãŒãžãããã®å Žåãããã¹ããã©ãŠã¶ãç»åé衚瀺ãšãªã£ãŠãããã©ãŠã¶ã®ããã«ãªã³ã¯å
ãäœã§ãããã瀺ãalt屿§ãæå®ãã¹ãã§ããããã®å Žå空æååãæå®ãã¹ãã§ã¯ãªãã
embedèŠçŽ ã¯ãã©ã°ã€ã³ãåã蟌ã¿ããã©ãŠã¶ãçŽæ¥åçã§ããªããã¡ã€ã«ãããŒãžã³ã³ãã³ãã®äžéšãšããŠå©çšãããã®ã§ããããã©ã°ã€ã³ã¯äºããã©ãŠã¶åŽã«ã€ã³ã¹ããŒã«ããŠããå¿
èŠãããã該åœã®ãã©ã°ã€ã³ããªããšã³ã³ãã³ããå©çšã§ããªãå Žåãããããã ãå
šãŠã®ç°å¢ã§ãã©ã°ã€ã³ãå©çšã§ããããã§ã¯ãªãããã<noembed>ã</noembed>å
ã§å©çšã§ããªãç°å¢ã§è¡šç€ºãããå
å®¹ãæžãã¹ãã§ããããã®éããã©ã°ã€ã³ãæå¹ã«ããŠãã ããããããã©ã°ã€ã³ãã€ã³ã¹ããŒã«ãããŠããå¿
èŠããããŸãããªã©ãšããããã±ãŒã¹ããããããã®ãããªèšè¿°ã¯å¥œãŸãããªãã代æ¿çãªå
容(äŸãã°Flashã«ããã¡ãã¥ãŒãåã蟌ãã§ããå Žåã¯HTMLã§ã®ã¡ãã¥ãŒ)ãèšè¿°ããŠããããå¿
èŠããªããã°äœãæžããªãã»ããè¯ãã
objectã¯ãŠã§ãããŒãžã«æ§ã
ãªããŒã¿ãåã蟌ãããã®ãã®ã§ããããã©ãŠã¶ãçŽæ¥åŠçã§ãããã¡ã€ã«ã§ããã°ãã©ãŠã¶ãçŽæ¥åŠçãè¡ããçŽæ¥åŠçãè¡ããªãå Žåã¯ãã©ã°ã€ã³ãå©çšããŠãã¡ã€ã«ãå©çšããããã ãå©çšã§ããªããã©ãŠã¶ãå€ããããäŸãã°ãã©ã°ã€ã³ãåã蟌ã¿ããå Žåã¯embedèŠçŽ ãªã©ä»ã®èŠçŽ ãåã蟌ãå¿
èŠããããobjectèŠçŽ ã«å²ãŸããéšåã¯ããã®ãªããžã§ã¯ããå©çšã§ããå Žåãã©ãŠã¶ã¯paramèŠçŽ ãšmapèŠçŽ ãé€ããå
šãŠã®èŠçŽ ãç¡èŠãããªããžã§ã¯ããå©çšã§ããªãå Žåã¯object, param, mapèŠçŽ ãç¡èŠããŠããã«ããä»ã®èŠçŽ ã®èšè¿°ãé©çšããã
Windows Media Playerã®ãã©ã°ã€ã³ãåã蟌ãã äŸã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ç»åã®æ¿å
¥ã«ã¯imgèŠçŽ ã䜿çšãããäž»ã«äœ¿çšãããç»å圢åŒã¯JPEGãGIFãPNGã§ããã",
"title": "ç»åã®æ¿å
¥"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ããã¹ããã©ãŠã¶ã®ãããªç»å衚瀺ãåºæ¥ãªããã©ãŠã¶ã§ã¯imgèŠçŽ å
ã®alt屿§ã§æå®ããæååã衚瀺ãããã",
"title": "ç»åã®æ¿å
¥"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ããã¹ããã©ãŠã¶ãç»å衚瀺ãããªãããã«èšå®ããŠããã¯ã©ã€ã¢ã³ããžã®é
æ
®ãšããŠãalt屿§ã¯ä»£æ¿ãšãªããã衚çŸãèšèŒããããšãšãªã£ãŠãããåã«è£
食çãªæå³ã§çšããŠããç»åçã®ããã«ä»£æ¿ãã¹ãæå衚çŸããªãå Žåã¯ç©ºæååãæå® (alt=\"\") ããããš(çç¥ã¯åºæ¥ãªã)ã",
"title": "ç»åã®æ¿å
¥"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "HTMLã®æ¬æå
ã«èšèŒããããããããã衚瀺ãããç»å(äžèšã³ãŒãã§ã¯ sample.png )ãæå
ã®ã³ã³ãã¥ãŒã¿ã«æºåããŠãããŠãHTMLãã¡ã€ã«ãšåããã©ã«ãã«å
¥ããŠããã",
"title": "ç»åã®æ¿å
¥"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãªã width ã¯ç»åã®æšªå¹
ãheight ã¯ç»åã®çžŠå¹
ã§ããã",
"title": "ç»åã®æ¿å
¥"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "imgèŠçŽ ã«ã¯çµäºã¿ã°ããªãããã</img>ã¯èšèŒããªããsrc屿§ã«ã¯ã衚瀺ãããç»åãã¡ã€ã«ã®URI(ã¢ãã¬ã¹)ãèšèŒãããçžå¯ŸURI(*) ã§æå®ããããšãå¯èœã§ãããåäžãµã€ãå
ã§ã®ç»åãåç
§ããå Žåã¯çžå¯ŸURIãçšããããšãå€ããwidth屿§ãšheight屿§ã§ç»åã®æšªå¹
ãšçžŠå¹
ãæå®ã§ããã",
"title": "ç»åã®æ¿å
¥"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "(*)ãã®HTMLãã¡ã€ã«ãååšããå°ç¹(äžè¬çã«ã¯ãã£ã¬ã¯ããª)ããã®ç»åãã¡ã€ã«ã®äœçœ®ã«ãã瀺ãããURIãHTML/ãã€ããŒãªã³ã¯#çžå¯Ÿãã¹ãšçµ¶å¯Ÿãã¹ãåç
§ã",
"title": "ç»åã®æ¿å
¥"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "äžã®ã³ãŒãã§ã¯ãç»åã®äžéšãç¹å®é åã«ãªã³ã¯ãèšå®ãããã®é åãã¯ãªãã¯ããå Žåæå®ãããªã³ã¯å
ãžé£ã¹ãããã«ããŠããã",
"title": "ã€ã¡ãŒãžããã"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "決ããŠãç»åã«åãåè§åœ¢ãªã©ãæç»ããããã§ã¯ãªãã®ã§ãæ··åããªãããã«ããªãããªã³ã¯ããé åã®äœçœ®ã¯ãäžèšã³ãŒãã®å Žåãã¢ãã¿ãŒã®èšå®ã倧ãããªã©ã«ãå¯ãããæ®éã®ããŒãããœã³ã³ã§èŠãå Žåãªããªã³ã¯é åã¯æšªã«äžŠãã§ãã(ç»åã«åãåè§åœ¢ã衚瀺ãããããã§ã¯ãªãã®ã§ãå®è¡ããŠãèŠããªã)ã(ãªããHTMLã§åãåè§ãªã©ã®åºæ¬å³åœ¢ãæç»ãããå ŽåãHTML5以éãªããHTML/HTML5#canvasèŠçŽ ãã§è§£èª¬ããæ¹æ³ã§åãªã©ãæç»ã§ããã)",
"title": "ã€ã¡ãŒãžããã"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãªã³ã¯é åã®äœçœ®ã«ããŠã¹ã«ãŒãœã«ãåããã°ãç»é¢å·Šäžãªã©ãããèŠãã°ããªã³ã¯å
ã®åç§°ã衚瀺ãããŠããã",
"title": "ã€ã¡ãŒãžããã"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "imgèŠçŽ ã«usemap屿§ã§ãããããèšå®ãããã€ã¡ãŒãžãããã®ååãã#ãããåããšæå®ããããšã«ããå©çšå¯èœãšãªããã€ã¡ãŒãžããããèšå®ãããšãã¯map屿§ã§ãããåã®å®çŸ©ãè¡ããareaèŠçŽ ã®space屿§ã§é åã®åœ¢ç¶ããcoords屿§ã§åº§æšãæå®ãããåº§æšæå®ã®éã座æšã¯ã³ã³ãã§åºåãã",
"title": "ã€ã¡ãŒãžããã"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãªãã€ã¡ãŒãžãããã®å Žåãããã¹ããã©ãŠã¶ãç»åé衚瀺ãšãªã£ãŠãããã©ãŠã¶ã®ããã«ãªã³ã¯å
ãäœã§ãããã瀺ãalt屿§ãæå®ãã¹ãã§ããããã®å Žå空æååãæå®ãã¹ãã§ã¯ãªãã",
"title": "ã€ã¡ãŒãžããã"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "embedèŠçŽ ã¯ãã©ã°ã€ã³ãåã蟌ã¿ããã©ãŠã¶ãçŽæ¥åçã§ããªããã¡ã€ã«ãããŒãžã³ã³ãã³ãã®äžéšãšããŠå©çšãããã®ã§ããããã©ã°ã€ã³ã¯äºããã©ãŠã¶åŽã«ã€ã³ã¹ããŒã«ããŠããå¿
èŠãããã該åœã®ãã©ã°ã€ã³ããªããšã³ã³ãã³ããå©çšã§ããªãå Žåãããããã ãå
šãŠã®ç°å¢ã§ãã©ã°ã€ã³ãå©çšã§ããããã§ã¯ãªãããã<noembed>ã</noembed>å
ã§å©çšã§ããªãç°å¢ã§è¡šç€ºãããå
å®¹ãæžãã¹ãã§ããããã®éããã©ã°ã€ã³ãæå¹ã«ããŠãã ããããããã©ã°ã€ã³ãã€ã³ã¹ããŒã«ãããŠããå¿
èŠããããŸãããªã©ãšããããã±ãŒã¹ããããããã®ãããªèšè¿°ã¯å¥œãŸãããªãã代æ¿çãªå
容(äŸãã°Flashã«ããã¡ãã¥ãŒãåã蟌ãã§ããå Žåã¯HTMLã§ã®ã¡ãã¥ãŒ)ãèšè¿°ããŠããããå¿
èŠããªããã°äœãæžããªãã»ããè¯ãã",
"title": "ãã«ãã¡ãã£ã¢ã®æ¿å
¥"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "objectã¯ãŠã§ãããŒãžã«æ§ã
ãªããŒã¿ãåã蟌ãããã®ãã®ã§ããããã©ãŠã¶ãçŽæ¥åŠçã§ãããã¡ã€ã«ã§ããã°ãã©ãŠã¶ãçŽæ¥åŠçãè¡ããçŽæ¥åŠçãè¡ããªãå Žåã¯ãã©ã°ã€ã³ãå©çšããŠãã¡ã€ã«ãå©çšããããã ãå©çšã§ããªããã©ãŠã¶ãå€ããããäŸãã°ãã©ã°ã€ã³ãåã蟌ã¿ããå Žåã¯embedèŠçŽ ãªã©ä»ã®èŠçŽ ãåã蟌ãå¿
èŠããããobjectèŠçŽ ã«å²ãŸããéšåã¯ããã®ãªããžã§ã¯ããå©çšã§ããå Žåãã©ãŠã¶ã¯paramèŠçŽ ãšmapèŠçŽ ãé€ããå
šãŠã®èŠçŽ ãç¡èŠãããªããžã§ã¯ããå©çšã§ããªãå Žåã¯object, param, mapèŠçŽ ãç¡èŠããŠããã«ããä»ã®èŠçŽ ã®èšè¿°ãé©çšããã",
"title": "ãã«ãã¡ãã£ã¢ã®æ¿å
¥"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "Windows Media Playerã®ãã©ã°ã€ã³ãåã蟌ãã äŸã",
"title": "ãã«ãã¡ãã£ã¢ã®æ¿å
¥"
}
] | null | {{Pathnav|HTML|frame=1|small=1}}
== ç»åã®æ¿å
¥ ==
ç»åã®æ¿å
¥ã«ã¯imgèŠçŽ ã䜿çšãããäž»ã«äœ¿çšãããç»å圢åŒã¯[[w:JPEG|JPEG]]ã[[w:Graphics Interchange Format|GIF]]ã[[w:Portable Network Graphics|PNG]]ã§ããã
ããã¹ããã©ãŠã¶ã®ãããªç»å衚瀺ãåºæ¥ãªããã©ãŠã¶ã§ã¯imgèŠçŽ å
ã®alt屿§ã§æå®ããæååã衚瀺ãããã
ããã¹ããã©ãŠã¶ãç»å衚瀺ãããªãããã«èšå®ããŠããã¯ã©ã€ã¢ã³ããžã®é
æ
®ãšããŠãalt屿§ã¯ä»£æ¿ãšãªããã衚çŸãèšèŒããããšãšãªã£ãŠãããåã«è£
食çãªæå³ã§çšããŠããç»åçã®ããã«ä»£æ¿ãã¹ãæå衚çŸããªãå Žåã¯ç©ºæååãæå® (<code>alt=""</code>) ããããšïŒçç¥ã¯åºæ¥ãªãïŒã
=== äœæäŸ ===
HTMLã®æ¬æå
ã«èšèŒããããããããã衚瀺ãããç»åïŒäžèšã³ãŒãã§ã¯ sample.png ïŒãæå
ã®ã³ã³ãã¥ãŒã¿ã«æºåããŠãããŠãHTMLãã¡ã€ã«ãšåããã©ã«ãã«å
¥ããŠããã
<syntaxhighlight lang="html4strict">
<img src="sample.png" width="200" height="100" alt="Wikibooks">
</syntaxhighlight>
ãªã width ã¯ç»åã®æšªå¹
ãheight ã¯ç»åã®çžŠå¹
ã§ããã
imgèŠçŽ ã«ã¯çµäºã¿ã°ããªãããã<code></img></code>ã¯èšèŒããªããsrc屿§ã«ã¯ã衚瀺ãããç»åãã¡ã€ã«ã®URIïŒã¢ãã¬ã¹ïŒãèšèŒãããçžå¯ŸURI(*) ã§æå®ããããšãå¯èœã§ãããåäžãµã€ãå
ã§ã®ç»åãåç
§ããå Žåã¯çžå¯ŸURIãçšããããšãå€ããwidth屿§ãšheight屿§ã§ç»åã®æšªå¹
ãšçžŠå¹
ãæå®ã§ããã
(*)<small>ãã®HTMLãã¡ã€ã«ãååšããå°ç¹ïŒäžè¬çã«ã¯ãã£ã¬ã¯ããªïŒããã®ç»åãã¡ã€ã«ã®äœçœ®ã«ãã瀺ãããURIã[[HTML/ãã€ããŒãªã³ã¯#çžå¯Ÿãã¹ãšçµ¶å¯Ÿãã¹]]ãåç
§ã</small>
== ã€ã¡ãŒãžããã ==
<div class="preoverflow">
<syntaxhighlight lang="html4strict"><img border="0" src="sample.png" usemap="#sample" alt="ãµã³ãã«" width="500" height="200">
<map name="sample">
<area href="http://ja.wikipedia.org/" shape="circle" alt="ãŠã£ãããã£ã¢" coords="100,100,50">
<area href="http://ja.wikinews.org/" shape="square" alt="ãŠã£ã¯ã·ã§ããªãŒ" coords="250,10,300,190">
<area href="http://ja.wikiquote.org/" shape="poly" alt="ãŠã£ãã¯ãªãŒã" coords="350,250,450,190,450,10,350,250">
</map>
</syntaxhighlight>
</div>
äžã®ã³ãŒãã§ã¯ãç»åã®äžéšãç¹å®é åã«ãªã³ã¯ãèšå®ãããã®é åãã¯ãªãã¯ããå Žåæå®ãããªã³ã¯å
ãžé£ã¹ãããã«ããŠããã
決ããŠãç»åã«åãåè§åœ¢ãªã©ãæç»ããããã§ã¯ãªãã®ã§ãæ··åããªãããã«ããªãããªã³ã¯ããé åã®äœçœ®ã¯ãäžèšã³ãŒãã®å Žåãã¢ãã¿ãŒã®èšå®ã倧ãããªã©ã«ãå¯ãããæ®éã®ããŒãããœã³ã³ã§èŠãå Žåãªããªã³ã¯é åã¯æšªã«äžŠãã§ããïŒç»åã«åãåè§åœ¢ã衚瀺ãããããã§ã¯ãªãã®ã§ãå®è¡ããŠãèŠããªãïŒãïŒãªããHTMLã§åãåè§ãªã©ã®åºæ¬å³åœ¢ãæç»ãããå ŽåãHTML5以éãªãã[[HTML/HTML5#canvasèŠçŽ ]]ãã§è§£èª¬ããæ¹æ³ã§åãªã©ãæç»ã§ãããïŒ
ãªã³ã¯é åã®äœçœ®ã«ããŠã¹ã«ãŒãœã«ãåããã°ãç»é¢å·Šäžãªã©ãããèŠãã°ããªã³ã¯å
ã®åç§°ã衚瀺ãããŠããã
imgèŠçŽ ã«usemap屿§ã§ãããããèšå®ãããã€ã¡ãŒãžãããã®ååãã#ãããåããšæå®ããããšã«ããå©çšå¯èœãšãªããã€ã¡ãŒãžããããèšå®ãããšãã¯map屿§ã§ãããåã®å®çŸ©ãè¡ããareaèŠçŽ ã®space屿§ã§é åã®åœ¢ç¶ããcoords屿§ã§åº§æšãæå®ãããåº§æšæå®ã®éã座æšã¯ã³ã³ãã§åºåãã
ãªãã€ã¡ãŒãžãããã®å Žåãããã¹ããã©ãŠã¶ãç»åé衚瀺ãšãªã£ãŠãããã©ãŠã¶ã®ããã«ãªã³ã¯å
ãäœã§ãããã瀺ãalt屿§ãæå®ãã¹ãã§ããããã®å Žå空æååãæå®ãã¹ãã§ã¯ãªãã
{| class="wikitable"
|-
! style="width:3em;" | åœ¢ç¶ !! space屿§ã®å€ !! coords屿§ã®å€
|-
| å圢 || circle || äžå¿ã®åº§æš (x,y) ãšååŸã®å€ãé çªã«æå®ã
|-
| é·æ¹åœ¢ || square || å·Šäžã®åº§æš (x1,y1) ãšå³äžã®åº§æš (x2,y2) ãé çªã«æå®ã
|-
| å€è§åœ¢ || poly || å
šãŠã®è§ã®xãšyã®åº§æšãé çªã«æå®ãæå®æ°ã«éãã¯ãªãããå§ç¹ãšçµç¹ã¯å¿
ãåã座æšãæå®ããªããã°ãªããªãã
|}
== ãã«ãã¡ãã£ã¢ã®æ¿å
¥ ==
=== embedèŠçŽ ===
embedèŠçŽ ã¯ãã©ã°ã€ã³ãåã蟌ã¿ããã©ãŠã¶ãçŽæ¥åçã§ããªããã¡ã€ã«ãããŒãžã³ã³ãã³ãã®äžéšãšããŠå©çšãããã®ã§ããããã©ã°ã€ã³ã¯äºããã©ãŠã¶åŽã«ã€ã³ã¹ããŒã«ããŠããå¿
èŠãããã該åœã®ãã©ã°ã€ã³ããªããšã³ã³ãã³ããå©çšã§ããªãå Žåãããããã ãå
šãŠã®ç°å¢ã§ãã©ã°ã€ã³ãå©çšã§ããããã§ã¯ãªãããã<code><noembed></code>ã<code></noembed></code>å
ã§å©çšã§ããªãç°å¢ã§è¡šç€ºãããå
å®¹ãæžãã¹ãã§ããããã®éããã©ã°ã€ã³ãæå¹ã«ããŠãã ããããããã©ã°ã€ã³ãã€ã³ã¹ããŒã«ãããŠããå¿
èŠããããŸãããªã©ãšããããã±ãŒã¹ããããããã®ãããªèšè¿°ã¯å¥œãŸãããªãã代æ¿çãªå
容ïŒäŸãã°Flashã«ããã¡ãã¥ãŒãåã蟌ãã§ããå Žåã¯HTMLã§ã®ã¡ãã¥ãŒïŒãèšè¿°ããŠããããå¿
èŠããªããã°äœãæžããªãã»ããè¯ãã
;src
:察象ãšãªããã¡ã€ã«ã®æå®ã
;type
:[[w:Multipurpose Internet Mail Extensions|MIME]]ã¿ã€ãã®æå®ããã¡ã€ã«ã¿ã€ããæ£ããæå®ããããšã§ãã©ãŠã¶åŽãé©åãªãã©ã°ã€ã³ãå²ãåœãŠãŠãªããžã§ã¯ããåçãããæå®ããªãã£ãå Žåã¯ãã©ãŠã¶äŸåãšãªãèªåçã«ãã©ã°ã€ã³ãå²ãåœãŠãããããèªåå²ãåœãŠã®ãã©ã°ã€ã³ãåçãããã¡ã€ã«ã«å¯Ÿå¿ããŠããªãå Žåãããã®ã§æå®ããããšãæãŸããã ããã
:ãã ãç¹å®ç°å¢ã§ããå©çšã§ããªããã©ã°ã€ã³ãæå®ãããšãŠãŒã¶ãŒã®å©äŸ¿æ§ãæãªãããšã«ãªãããããã®ãããªå Žåã¯äœããã®é
æ
®ãè¡ãã¹ãã§ããã
;width,height
:ãªããžã§ã¯ãã®å€§ãããpxåäœã§æå®ãããæå®ããªãã£ãå Žåãã©ã°ã€ã³äŸåã«ãªããããã®æ¹æ³ã ãšãã©ã°ã€ã³ãé©åãªãµã€ãºãèªèããã®ã«æéãæããŠããŸããããŒãžã®èªã¿èŸŒã¿éäžã§çªç¶åã蟌ã¿é åã®å€§ãããå€åããŠããŸãå Žåããããåã蟌ã¿é åã®å€§ãããçªç¶å€åããããšã§ãããããäžã«ããã³ã³ãã³ãã®ïŒç»é¢äžã«ïŒè¡šç€ºäœçœ®ããããŠããŸãããå¯èœã§ããã°æå®ããããšãæãŸããã
;autostart/autoplay
:æå®ããã鳿¥œãåç»ã®åçèšå®ãtrueãŸãã¯1ã§èªååçãå®è¡ããfalseãŸãã¯0ã§èªååçãè¡ããªãããã©ã°ã€ã³ã®çš®é¡ã«ãã£ãŠã©ã¡ãã䜿ãããç°ãªããããé©åã«äœ¿ãåããå¿
èŠãããã
;loop
:ã«ãŒãåçã®èšå®ãloop屿§å€ã«å
·äœçãªæ°åãæå®ããå Žåãã®åæ°ã ãã«ãŒãåçãè¡ãããããã«ãªããtrueã-1ãªã©ãæå®ããå Žåã«ã¯ç¡éã«ãŒãåçãšãªãããŸããfalseã0ãæå®ããããšã§èªååçãè¡ããªãããã ãèªååçãç¡éã«ãŒãåçã¯å«ããããããšãå€ãã人ã«ãã£ãŠã¯èªåã§é³æ¥œããªã£ãç¬éã«ããŒãžãéãã人ããããå¿
èŠããªããã°ãªãã¹ãèªåçãªåçãè¡ãã¹ãã§ã¯ãªãã ããã
;hidden
:åã蟌ã¿ãªããžã§ã¯ããé ãèšå®ã1ã§ãªããžã§ã¯ããé ãã0ã§ãªããžã§ã¯ãã衚瀺ããïŒããã©ã«ãïŒããã ããããã¯åçã忢ã®åãæ¿ãããŠãŒã¶ãŒã«è¡ãããªãããšã«ããªãã®ã§loop屿§åæ§äœ¿çšã«ã¯æ³šæãå¿
èŠã§ããã
;volume
:åã蟌ã¿ãªããžã§ã¯ãã®åçé³éãWindows Media Playerã®å Žå-1000ãæå°ã§0ãæå€§ãQuickTimeã®å Žå0ãæå°ã§100ãæå€§ãšèšã£ãå
·åã«ãã©ã°ã€ã³ã®çš®é¡ã§å€ã®èšå®æ¹æ³ãç°ãªãããããã©ã°ã€ã³ã®çš®é¡ãæå®ããªãã£ãå Žåãšãã§ããªãããšã«ãªã£ãŠããŸãã
;pluginpage
:ãªããžã§ã¯ããåçãããã©ã°ã€ã³ã®å
¥æå
URLã瀺ããæå®ãããªãã£ãå Žåã®åŠçã¯ãã©ãŠã¶äŸåã
=== objectèŠçŽ ===
objectã¯ãŠã§ãããŒãžã«æ§ã
ãªããŒã¿ãåã蟌ãããã®ãã®ã§ããããã©ãŠã¶ãçŽæ¥åŠçã§ãããã¡ã€ã«ã§ããã°ãã©ãŠã¶ãçŽæ¥åŠçãè¡ããçŽæ¥åŠçãè¡ããªãå Žåã¯ãã©ã°ã€ã³ãå©çšããŠãã¡ã€ã«ãå©çšããããã ãå©çšã§ããªããã©ãŠã¶ãå€ããããäŸãã°ãã©ã°ã€ã³ãåã蟌ã¿ããå Žåã¯embedèŠçŽ ãªã©ä»ã®èŠçŽ ãåã蟌ãå¿
èŠããããobjectèŠçŽ ã«å²ãŸããéšåã¯ããã®ãªããžã§ã¯ããå©çšã§ããå Žåãã©ãŠã¶ã¯paramèŠçŽ ãšmapèŠçŽ ãé€ããå
šãŠã®èŠçŽ ãç¡èŠãããªããžã§ã¯ããå©çšã§ããªãå Žåã¯object, param, mapèŠçŽ ãç¡èŠããŠããã«ããä»ã®èŠçŽ ã®èšè¿°ãé©çšããã
;data
:ãã¡ã€ã«ã®ããå Žæ
;type
:MIMEã¿ã€ãã®èšå®
;width,height
:ãªããžã§ã¯ãã®å€§ãã
;classid
:ãã©ã°ã€ã³ã®çš®é¡ãèå¥ããããã®ã³ãŒãããã©ã°ã€ã³ã®çš®é¡ããšã«æ±ºãŸã£ãå€ãå®ããããŠããã
;codebase
:ãŠãŒã¶ãŒã®ã³ã³ãã¥ãŒã¿ã«ã€ã³ã¹ããŒã«ãããŠããActiveXã®ããŒãžã§ã³ãæ€åºããããã«äœ¿çšããããURLã®æ«å°Ÿã«ãã<code>#Version=</code>ã¯æäœåäœç°å¢ã瀺ããã®ã§ãããŒãžã§ã³ãå€ãå Žåãã©ã°ã€ã³ãšããŠäœ¿çšãããŠããã¢ããªã±ãŒã·ã§ã³ãã¢ããããŒããå®è¡ããå Žåãããã
;paramèŠçŽ
:åã蟌ããªããžã§ã¯ãã«é¢ãã詳现èšå®ãè¡ãèŠçŽ ãEMBEDèŠçŽ ã«ãŠè©³çްèšå®ãè¡ãå屿§ã®å€ããparamèŠçŽ ã®name屿§å€ãšvalue屿§å€ã«å²ãåœãŠãããããå
šãŠã®èŠçŽ ãparamèŠçŽ ã«å²ãåœãŠãããããã§ã¯ãªããå²ãåœãŠåœ¢åŒãèšå®å¯èœãªãªãã·ã§ã³ã¯ãã©ã°ã€ã³ã®çš®é¡ã«ãã£ãŠç°ãªãã
=== ãã¡ã€ã«ã¿ã€ãã®æå®äŸ ===
{|class="wikitable"
!colspan="2"|[[w:Windows Media Player|Windows Media Player]]
|-
!ã¯ã©ã¹ID
||CLSID:22d6f312-b0f6-11d0-94ab-0080c74c7e95
|-
!Codebase
||<nowiki>http://activex.microsoft.com/activex/controls/mplayer/en/nsmp2inf.cab#Version=6,4,5,715</nowiki>
|-
!MIMEã¿ã€ã
||application/x-mplayer2
|-
!colspan="2"|[[w:Quick Time Player|Quick Time]]
|-
!ã¯ã©ã¹ID
||clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B
|-
!Codebase
||<nowiki>http://www.apple.com/qtactivex/qtplugin.cab</nowiki>
|-
!MIMEã¿ã€ã
||audio/quicktimeïŒãªãŒãã£ãªã®å ŽåïŒ,video/quicktimeïŒåç»ã®å ŽåïŒ
|-
!colspan="2"|[[w:Adobe Flash|Adobe Flash]]
|-
!ã¯ã©ã¹ID
||clsid:D27CDB6E-AE6D-11cf-96B8-444553540000
|-
!Codebase
||<nowiki>http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=8,0,22,0</nowiki>
|-
!MIMEã¿ã€ã
||application/x-shockwave-flash
|}
=== èšè¿°äŸ ===
Windows Media Playerã®ãã©ã°ã€ã³ãåã蟌ãã äŸã
<div class="preoverflow">
<syntaxhighlight lang="html4strict">
<object
classid="CLSID:22d6f312-b0f6-11d0-94ab-0080c74c7e95"
codebase="http://activex.microsoft.com/activex/controls/mplayer/en/nsmp2inf.cab#Version=6,4,5,715"
standby="Loading Microsoft Windows Media Player components..."
type="application/x-oleobject"
height="69"
width="300">
<param name="filename" value="http://www.dummyurl.com/file/music/example.mp3">
<param name="autostart" value="true">
<param name="showcontrols" value="true">
<param name="showstatusbar" value="true">
<param name="showpositioncontrols" value="false">
<param name="showtracker" value="true">
<param name="allowchangedisplaysize" value="false">
<param name="autosize" value="False">
<param name="volume" value="-500">
<param name="enablecontextmenu" value="false">
<embed
type="application/x-mplayer2"
src="http://www.dummyurl.com/file/music/example.mp3"
autostart="1"
showcontrols="1"
showpositioncontrols="0"
showtracker="1"
showstatusbar="1"
volume="-500"
enablecontextmenu="0"
nojava="true"
height="69"
width="300">
<noembed>
</object>
</syntaxhighlight>
</div>
[[en:HyperText Markup Language/Images]]
[[it:HTML/Immagini]]
[[Category:HTML|ããµããããš]] | null | 2021-11-01T03:49:56Z | [
"ãã³ãã¬ãŒã:Pathnav"
] | https://ja.wikibooks.org/wiki/HTML/%E3%82%AA%E3%83%96%E3%82%B8%E3%82%A7%E3%82%AF%E3%83%88 |
2,004 | HTML/æ¬æ | 段èœã§ããäºã衚ãã«ã¯pèŠçŽ (Paragraphã®ç¥)ã䜿ããå€ãã®ãŠã§ããµã€ãã§ã¯æ®µèœã瀺ãããã«brèŠçŽ ãçšããŠãããããã®çšæ³ã¯HTMLã®æ£ããæžãæ¹ã§ãªããé£ç¶ããbrèŠçŽ ã¯äžéšã®ãã©ãŠã¶ã§ã¯ãŸãšããŠäžã€ã®æ¹è¡ãšããŠè¡šç€ºãããŠããŸãã
Strictã§ã¯bodyèŠçŽ çŽäžã«ãããã¯èŠçŽ ã眮ããŠãã®äžã«æ¬æãæžãå¿
èŠããããbodyèŠçŽ çŽäžã«æ¬æããã¹ããæžããŠã¯ãªããªãã
ãšãã«PèŠçŽ ã«ã€ããŠãäœ¿ãæ¹ãã https://ja.wikiversity.org/wiki/Topic:HTML ã«æžããŠããŸããäœ¿ãæ¹ã«ã€ããŠåå ããŠæ¬²ããã§ã
å®¶ã«åž°ããšã楜ãã¿ã«ããŠããããã€ãé£ã¹ãããŠããã仿¹ãç¡ãã®ã§PCãèµ·åãããã®ãŠã§ãæ¥èšãæŽæ°ããŠããã
仿¥ã¯å
æ¥è²·ã£ãè³æãåèã«ãã€ã€ããŠã£ãããã£ã¢ã«é
ç®ãäžã€æçš¿ããããšæããããŠäœæéæããã ãããã
èŠåºãã§ããäºã衚ãã«ã¯h1~h6èŠçŽ (hã¯Headingã®ç¥)ã䜿ããããäžäœã®èŠåºãã»ã©ãhã®åŸã«ç¶ãæ°åã倧ãããªããäžè¬çãªãã©ãŠã¶ã§ã¯æåãµã€ãºãæåã®å€ªããå€åãããããã®èŠçŽ ã倧æåã倪åç®çã§äœ¿çšããŠã¯ãªããªãã
æ¥æ¬åœ(ã«ã»ããããã«ã£ãœããã)ã¯ãã¢ãžã¢(ãŠãŒã©ã·ã¢å€§éž)ã®æ±æ¹ã«ããå³¶åœã§ããã
åã€ã®å€§ããªå³¶ãåæµ·éãæ¬å·ãååœãä¹å·ãšãåå³¶åå³¶ãå°ç¬ å諞島ãççåå³¶ãªã©åšèŸºã®å°å³¶ãããªãåå³¶(島匧)ãé åã®äžå¿ããªãã
倧åã®å°åã¯æž©åž¯ã«å±ãããåæ¹ã®è«žå³¶ã¯äºç±åž¯ãåæ¹ã¯äºå¯åž¯çæ°åã瀺ããæµ·æŽæ§æ°åã ããã¢ã³ã¹ãŒã³ã®åœ±é¿ãåãã坿ã®å·®ã¯å€§ããã
äžèšäºäŸã®æç« ã¯Wikipediaã«ããæ¥æ¬ã®é
ç®ã®èšè¿°ãå©çšããŠããã
åŒçšã§ããäºã衚ãã«ã¯ãblockquoteèŠçŽ ãããã¯qèŠçŽ (Quotationã®ç¥)ã䜿ããblockquoteèŠçŽ ã¯ãããã¯ã¬ãã«ã®åŒçšã«äœ¿çšããqèŠçŽ ã¯ã€ã³ã©ã€ã³ã§ã®åŒçšã«äœ¿çšãããäž¡èŠçŽ ã«ã€ããŠãåºå
žã®URIã衚ããã®ãšããŠcite屿§ãããã®ã¿ã€ãã«ã衚ããã®ãšããŠtitle屿§ãå©çšã§ããããŸããåºå
žãããã¯åç
§å
ã瀺ããã®ãšããŠciteèŠçŽ ãããããã®èŠçŽ ã§å²ã£ãéšåãåºå
žã§ããããšã瀺ãããã«äœ¿çšããã
äžè¬çãªãã©ãŠã¶ã§ã¯ãblockquoteèŠçŽ ã¯å·Šå³ã«ã€ã³ãã³ããããç¶æ
ã§ãqèŠçŽ ã¯åŒçšç¬Šã«æ¬ãããç¶æ
(äžéšç°å¢æªå¯Ÿå¿)ã§ãciteèŠçŽ ã¯æäœã§è¡šç€ºãããããªããå·Šå³ã«ç©ºçœãåãããã«blockquoteèŠçŽ ã䜿çšããã±ãŒã¹ãããããããã¯äžé©åã§ããç°å¢ã«ãã£ãŠã¯ãã®å
容ãåŒçšã§ãããšèªèãããããªããã¹ã¿ã€ã«ã·ãŒãã䜿ã£ãŠç©ºçœãåãããšãæãŸããã
ãŠã£ãã¡ãã£ã¢è²¡å£ã«ã€ããŠããŠã£ãããã£ã¢ã§ã¯ã以äžã®æ§ã«èª¬æããŠããã
ãŠã£ãã¡ãã£ã¢è²¡å£ (Wikimedia Foundation Inc.) ã¯ãŠã£ãããã£ã¢ãéå¶ãããã®æ¯äœãšãªãå£äœã§ããã ç±³åœãããªãå·æ³ã«ããéå¶å©çµç¹ã§ããããŠã£ãããã£ã¢ã®åµç«è
ã®äžäººã§ããããžããŒã»ãŠã§ãŒã«ãºã«ãã£ãŠèšç«ãããã 財å£åç§°ã®ãŠã£ãã¡ãã£ã¢ã¯è±èªçãŠã£ãããã£ã¢ã®åå è
ã·ã§ã«ãã³ã»ã©ã³ããã³ã®åœåã«ããããŠã£ããšãã«ãã¡ãã£ã¢ããé èªãããã
å財å£ã®ç®çã¯ããŠã£ããçšãããªãŒãã³ã³ã³ãã³ãã®ç¥çè³æºãéçºãããããžã§ã¯ãã®ä¿é²ãããã³ãã®è³æºãç¡æãåºåãªãã§åºãå
¬è¡ã«æäŸããããšã«ããã
åé
ç®ã«ããè¥å¹Žå±€åãã®æè²ã³ã³ãã³ãããŠã£ããžã¥ãã¢ãã®äœæã«ã¯èå³ãåŒããšããã§ããã
匷調ã衚ãã«ã¯emèŠçŽ (EMphasisã®ç¥)ãstrongèŠçŽ ã䜿ããstrongèŠçŽ ã®æ¹ããã匷ã匷調ã衚ããäžè¬çãªãã©ãŠã¶ã§ã¯emèŠçŽ ã¯æäœåã§ãstrongèŠçŽ ã¯å€ªåã§è¡šç€ºããããäžéšã®é³å£°ãã©ãŠã¶ã¯ãã®èŠçŽ ãèªèãã匷調é³å£°ã§ããã¹ããèªã¿äžããå Žåãããã
åã¯
æãããã寧ãç±ãã
ããã¹ããã¡ã€ã«ã§ã®æ¹è¡ã¯è¡šç€ºã«ã¯ã»ãŒåœ±é¿ããªã(ãã©ãŠã¶ã«ãã£ãŠã¯ã¹ããŒã¹ãéãããšããã)ã匷å¶çã«æ¹è¡ãããããšãã«ã¯<br>ã䜿ãããªããXHTMLã«ãããŠã¯ã<br />(XHTML 1.0ã§ã¯brãš/ã®éã«åè§ã¹ããŒã¹ãå
¥ããããšãæšå¥šãããŠããããå¿
é ã§ã¯ãªã)ãšããããã«å®ããããŠãããHTMLã§ã<br />ã䜿ãããšã¯åºæ¥ãããææ³äžæ£ããæžãæ¹ã§ã¯ãªãã®ã§èŠæ Œã«æ²¿ã£ãHTMLãæžããããšãã¯æ³šæãããã
æ¹è¡ããŸãã ã¯ãããã?
ããããªããšã ã!
XHTMLã®ãšãã¯ããã£ã¡ã§ã ã!
divèŠçŽ ã¯ãããã¯ã¬ãã«èŠçŽ ãspanèŠçŽ ã¯ã€ã³ã©ã€ã³èŠçŽ ã§ãããããã以å€ã®æå³ã¯ãªãåäœã§æå®ããŠãããã©ãŠã¶ãç¹å¥ãªæ±ããè¡ã£ããã衚瀺ãç¹å¥å€åãããããããšã¯ãªã(ãã ãdivèŠçŽ ã¯ãããã¯ã¬ãã«èŠçŽ ã§ãããååŸã«æ¹è¡ãå
¥ã)ãid屿§ãclass屿§ã䜿ã£ãŠã¹ã¿ã€ã«ã·ãŒããé©çšããããlang屿§ãªã©ãæå®ãããäž»ã«ä»ã®èŠçŽ ã§ã¯ä»£çšã§ããªã(ä»ã®èŠçŽ ãçšãããšç¯å²å
ã«äžå¿
èŠãªæ
å ±ãå®çŸ©ããŠããŸã)ããšãè¡ãæ±çšèŠçŽ ãšããŠçšããããã
HTMLã§åè§è±æ°ã® < ã > ãšãã£ãå¶åŸ¡çšã®æåãã®ãã®ã衚瀺ãããå Žåã«ã¯ã
< ãšè¡šç€ºããããªã < ãšå
¥åããã
> ãšè¡šç€ºããããªã > ãšå
¥åããã
ltãgtã®çŽåŸã®èšå·ã¯ã»ãã³ãã³(;)ã§ããã(ã³ãã³(:)ã§ã¯ãªãã)
HTMLã«éãããããã°ã©ãã³ã°ãé¡äŒŒã®ã³ãŒãã£ã³ã°ã«ãããŠããã®ããã«å¶åŸ¡æåãã®ãã®ãå
¥åããããã®å
¥åæ¹æ³ã®ããšãããšã¹ã±ãŒãã·ãŒã±ã³ã¹ããšããã
HTMLã®ãšã¹ã±ãŒãã·ãŒã±ã³ã¹ã«ã€ããŠã¯ãçš®é¡ãå€ãã®ã§ã詳ããã¯ããããªã©ã§æ€çŽ¢ããŠãããããã
ãªããæŽŸççãªè©±é¡ã ãã < ãšwebããŒãžã§è¡šç€ºãããå Žåã &lt;ãšHTMLã«å
¥åããã
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "段èœã§ããäºã衚ãã«ã¯pèŠçŽ (Paragraphã®ç¥)ã䜿ããå€ãã®ãŠã§ããµã€ãã§ã¯æ®µèœã瀺ãããã«brèŠçŽ ãçšããŠãããããã®çšæ³ã¯HTMLã®æ£ããæžãæ¹ã§ãªããé£ç¶ããbrèŠçŽ ã¯äžéšã®ãã©ãŠã¶ã§ã¯ãŸãšããŠäžã€ã®æ¹è¡ãšããŠè¡šç€ºãããŠããŸãã",
"title": "段èœ"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "Strictã§ã¯bodyèŠçŽ çŽäžã«ãããã¯èŠçŽ ã眮ããŠãã®äžã«æ¬æãæžãå¿
èŠããããbodyèŠçŽ çŽäžã«æ¬æããã¹ããæžããŠã¯ãªããªãã",
"title": "段èœ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãšãã«PèŠçŽ ã«ã€ããŠãäœ¿ãæ¹ãã https://ja.wikiversity.org/wiki/Topic:HTML ã«æžããŠããŸããäœ¿ãæ¹ã«ã€ããŠåå ããŠæ¬²ããã§ã",
"title": "段èœ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "å®¶ã«åž°ããšã楜ãã¿ã«ããŠããããã€ãé£ã¹ãããŠããã仿¹ãç¡ãã®ã§PCãèµ·åãããã®ãŠã§ãæ¥èšãæŽæ°ããŠããã",
"title": "段èœ"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "仿¥ã¯å
æ¥è²·ã£ãè³æãåèã«ãã€ã€ããŠã£ãããã£ã¢ã«é
ç®ãäžã€æçš¿ããããšæããããŠäœæéæããã ãããã",
"title": "段èœ"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "èŠåºãã§ããäºã衚ãã«ã¯h1~h6èŠçŽ (hã¯Headingã®ç¥)ã䜿ããããäžäœã®èŠåºãã»ã©ãhã®åŸã«ç¶ãæ°åã倧ãããªããäžè¬çãªãã©ãŠã¶ã§ã¯æåãµã€ãºãæåã®å€ªããå€åãããããã®èŠçŽ ã倧æåã倪åç®çã§äœ¿çšããŠã¯ãªããªãã",
"title": "èŠåºã"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "æ¥æ¬åœ(ã«ã»ããããã«ã£ãœããã)ã¯ãã¢ãžã¢(ãŠãŒã©ã·ã¢å€§éž)ã®æ±æ¹ã«ããå³¶åœã§ããã",
"title": "èŠåºã"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "åã€ã®å€§ããªå³¶ãåæµ·éãæ¬å·ãååœãä¹å·ãšãåå³¶åå³¶ãå°ç¬ å諞島ãççåå³¶ãªã©åšèŸºã®å°å³¶ãããªãåå³¶(島匧)ãé åã®äžå¿ããªãã",
"title": "èŠåºã"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "倧åã®å°åã¯æž©åž¯ã«å±ãããåæ¹ã®è«žå³¶ã¯äºç±åž¯ãåæ¹ã¯äºå¯åž¯çæ°åã瀺ããæµ·æŽæ§æ°åã ããã¢ã³ã¹ãŒã³ã®åœ±é¿ãåãã坿ã®å·®ã¯å€§ããã",
"title": "èŠåºã"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "äžèšäºäŸã®æç« ã¯Wikipediaã«ããæ¥æ¬ã®é
ç®ã®èšè¿°ãå©çšããŠããã",
"title": "èŠåºã"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "åŒçšã§ããäºã衚ãã«ã¯ãblockquoteèŠçŽ ãããã¯qèŠçŽ (Quotationã®ç¥)ã䜿ããblockquoteèŠçŽ ã¯ãããã¯ã¬ãã«ã®åŒçšã«äœ¿çšããqèŠçŽ ã¯ã€ã³ã©ã€ã³ã§ã®åŒçšã«äœ¿çšãããäž¡èŠçŽ ã«ã€ããŠãåºå
žã®URIã衚ããã®ãšããŠcite屿§ãããã®ã¿ã€ãã«ã衚ããã®ãšããŠtitle屿§ãå©çšã§ããããŸããåºå
žãããã¯åç
§å
ã瀺ããã®ãšããŠciteèŠçŽ ãããããã®èŠçŽ ã§å²ã£ãéšåãåºå
žã§ããããšã瀺ãããã«äœ¿çšããã",
"title": "åŒçšãšåºå
ž"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "äžè¬çãªãã©ãŠã¶ã§ã¯ãblockquoteèŠçŽ ã¯å·Šå³ã«ã€ã³ãã³ããããç¶æ
ã§ãqèŠçŽ ã¯åŒçšç¬Šã«æ¬ãããç¶æ
(äžéšç°å¢æªå¯Ÿå¿)ã§ãciteèŠçŽ ã¯æäœã§è¡šç€ºãããããªããå·Šå³ã«ç©ºçœãåãããã«blockquoteèŠçŽ ã䜿çšããã±ãŒã¹ãããããããã¯äžé©åã§ããç°å¢ã«ãã£ãŠã¯ãã®å
容ãåŒçšã§ãããšèªèãããããªããã¹ã¿ã€ã«ã·ãŒãã䜿ã£ãŠç©ºçœãåãããšãæãŸããã",
"title": "åŒçšãšåºå
ž"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãŠã£ãã¡ãã£ã¢è²¡å£ã«ã€ããŠããŠã£ãããã£ã¢ã§ã¯ã以äžã®æ§ã«èª¬æããŠããã",
"title": "匷調"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãŠã£ãã¡ãã£ã¢è²¡å£ (Wikimedia Foundation Inc.) ã¯ãŠã£ãããã£ã¢ãéå¶ãããã®æ¯äœãšãªãå£äœã§ããã ç±³åœãããªãå·æ³ã«ããéå¶å©çµç¹ã§ããããŠã£ãããã£ã¢ã®åµç«è
ã®äžäººã§ããããžããŒã»ãŠã§ãŒã«ãºã«ãã£ãŠèšç«ãããã 財å£åç§°ã®ãŠã£ãã¡ãã£ã¢ã¯è±èªçãŠã£ãããã£ã¢ã®åå è
ã·ã§ã«ãã³ã»ã©ã³ããã³ã®åœåã«ããããŠã£ããšãã«ãã¡ãã£ã¢ããé èªãããã",
"title": "匷調"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "å財å£ã®ç®çã¯ããŠã£ããçšãããªãŒãã³ã³ã³ãã³ãã®ç¥çè³æºãéçºãããããžã§ã¯ãã®ä¿é²ãããã³ãã®è³æºãç¡æãåºåãªãã§åºãå
¬è¡ã«æäŸããããšã«ããã",
"title": "匷調"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "åé
ç®ã«ããè¥å¹Žå±€åãã®æè²ã³ã³ãã³ãããŠã£ããžã¥ãã¢ãã®äœæã«ã¯èå³ãåŒããšããã§ããã",
"title": "匷調"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "匷調ã衚ãã«ã¯emèŠçŽ (EMphasisã®ç¥)ãstrongèŠçŽ ã䜿ããstrongèŠçŽ ã®æ¹ããã匷ã匷調ã衚ããäžè¬çãªãã©ãŠã¶ã§ã¯emèŠçŽ ã¯æäœåã§ãstrongèŠçŽ ã¯å€ªåã§è¡šç€ºããããäžéšã®é³å£°ãã©ãŠã¶ã¯ãã®èŠçŽ ãèªèãã匷調é³å£°ã§ããã¹ããèªã¿äžããå Žåãããã",
"title": "匷調"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "åã¯",
"title": "匷調"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "æãããã寧ãç±ãã",
"title": "匷調"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ããã¹ããã¡ã€ã«ã§ã®æ¹è¡ã¯è¡šç€ºã«ã¯ã»ãŒåœ±é¿ããªã(ãã©ãŠã¶ã«ãã£ãŠã¯ã¹ããŒã¹ãéãããšããã)ã匷å¶çã«æ¹è¡ãããããšãã«ã¯<br>ã䜿ãããªããXHTMLã«ãããŠã¯ã<br />(XHTML 1.0ã§ã¯brãš/ã®éã«åè§ã¹ããŒã¹ãå
¥ããããšãæšå¥šãããŠããããå¿
é ã§ã¯ãªã)ãšããããã«å®ããããŠãããHTMLã§ã<br />ã䜿ãããšã¯åºæ¥ãããææ³äžæ£ããæžãæ¹ã§ã¯ãªãã®ã§èŠæ Œã«æ²¿ã£ãHTMLãæžããããšãã¯æ³šæãããã",
"title": "匷調"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "æ¹è¡ããŸãã ã¯ãããã?",
"title": "匷調"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ããããªããšã ã!",
"title": "匷調"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "XHTMLã®ãšãã¯ããã£ã¡ã§ã ã!",
"title": "匷調"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "divèŠçŽ ã¯ãããã¯ã¬ãã«èŠçŽ ãspanèŠçŽ ã¯ã€ã³ã©ã€ã³èŠçŽ ã§ãããããã以å€ã®æå³ã¯ãªãåäœã§æå®ããŠãããã©ãŠã¶ãç¹å¥ãªæ±ããè¡ã£ããã衚瀺ãç¹å¥å€åãããããããšã¯ãªã(ãã ãdivèŠçŽ ã¯ãããã¯ã¬ãã«èŠçŽ ã§ãããååŸã«æ¹è¡ãå
¥ã)ãid屿§ãclass屿§ã䜿ã£ãŠã¹ã¿ã€ã«ã·ãŒããé©çšããããlang屿§ãªã©ãæå®ãããäž»ã«ä»ã®èŠçŽ ã§ã¯ä»£çšã§ããªã(ä»ã®èŠçŽ ãçšãããšç¯å²å
ã«äžå¿
èŠãªæ
å ±ãå®çŸ©ããŠããŸã)ããšãè¡ãæ±çšèŠçŽ ãšããŠçšããããã",
"title": "匷調"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "",
"title": "匷調"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "HTMLã§åè§è±æ°ã® < ã > ãšãã£ãå¶åŸ¡çšã®æåãã®ãã®ã衚瀺ãããå Žåã«ã¯ã",
"title": "匷調"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "< ãšè¡šç€ºããããªã < ãšå
¥åããã",
"title": "匷調"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "> ãšè¡šç€ºããããªã > ãšå
¥åããã",
"title": "匷調"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ltãgtã®çŽåŸã®èšå·ã¯ã»ãã³ãã³(;)ã§ããã(ã³ãã³(:)ã§ã¯ãªãã)",
"title": "匷調"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "HTMLã«éãããããã°ã©ãã³ã°ãé¡äŒŒã®ã³ãŒãã£ã³ã°ã«ãããŠããã®ããã«å¶åŸ¡æåãã®ãã®ãå
¥åããããã®å
¥åæ¹æ³ã®ããšãããšã¹ã±ãŒãã·ãŒã±ã³ã¹ããšããã",
"title": "匷調"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "HTMLã®ãšã¹ã±ãŒãã·ãŒã±ã³ã¹ã«ã€ããŠã¯ãçš®é¡ãå€ãã®ã§ã詳ããã¯ããããªã©ã§æ€çŽ¢ããŠãããããã",
"title": "匷調"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ãªããæŽŸççãªè©±é¡ã ãã < ãšwebããŒãžã§è¡šç€ºãããå Žåã &lt;ãšHTMLã«å
¥åããã",
"title": "匷調"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "",
"title": "匷調"
}
] | null | <div class="toclimit-2">__TOC__</div>
== æ®µèœ ==
段èœã§ããäºã衚ãã«ã¯pèŠçŽ ïŒParagraphã®ç¥ïŒã䜿ããå€ãã®ãŠã§ããµã€ãã§ã¯æ®µèœã瀺ãããã«brèŠçŽ ãçšããŠãããããã®çšæ³ã¯HTMLã®æ£ããæžãæ¹ã§ãªããé£ç¶ããbrèŠçŽ ã¯äžéšã®ãã©ãŠã¶ã§ã¯ãŸãšããŠäžã€ã®æ¹è¡ãšããŠè¡šç€ºãããŠããŸãã
Strictã§ã¯bodyèŠçŽ çŽäžã«ãããã¯èŠçŽ ã眮ããŠãã®äžã«æ¬æãæžãå¿
èŠããããbodyèŠçŽ çŽäžã«æ¬æããã¹ããæžããŠã¯ãªããªãã
=== èšè¿°äŸ ===
<syntaxhighlight lang="html4strict">
<p>å®¶ã«åž°ããšã楜ãã¿ã«ããŠããããã€ãé£ã¹ãããŠããã仿¹ãç¡ãã®ã§PCãèµ·åãããã®ãŠã§ãæ¥èšãæŽæ°ããŠããã</p>
<p>仿¥ã¯å
æ¥è²·ã£ãè³æãåèã«ãã€ã€ããŠã£ãããã£ã¢ã«é
ç®ãäžã€æçš¿ããããšæããããŠäœæéæããã ãããã</p>
</syntaxhighlight>
ãšãã«PèŠçŽ ã«ã€ããŠãäœ¿ãæ¹ãã
https://ja.wikiversity.org/wiki/Topic:HTML
ã«æžããŠããŸããäœ¿ãæ¹ã«ã€ããŠåå ããŠæ¬²ããã§ã
=== è¡šç€ºäŸ ===
<div style="border:#000 1px dashed;padding:1em">
<p>å®¶ã«åž°ããšã楜ãã¿ã«ããŠããããã€ãé£ã¹ãããŠããã仿¹ãç¡ãã®ã§PCãèµ·åãããã®ãŠã§ãæ¥èšãæŽæ°ããŠããã</p>
<p>仿¥ã¯å
æ¥è²·ã£ãè³æãåèã«ãã€ã€ããŠã£ãããã£ã¢ã«é
ç®ãäžã€æçš¿ããããšæããããŠäœæéæããã ãããã</p>
</div>
== èŠåºã ==
èŠåºãã§ããäºã衚ãã«ã¯h1ïœh6èŠçŽ ïŒhã¯Headingã®ç¥ïŒã䜿ããããäžäœã®èŠåºãã»ã©ãhã®åŸã«ç¶ãæ°åã倧ãããªããäžè¬çãªãã©ãŠã¶ã§ã¯æåãµã€ãºãæåã®å€ªããå€åãããããã®èŠçŽ ã倧æåã倪åç®çã§äœ¿çšããŠã¯ãªããªãã
=== èšè¿°äŸ ===
<div class="preoverflow">
<syntaxhighlight lang="html4strict">
<h1>æ¥æ¬</h1>
<p>æ¥æ¬åœïŒã«ã»ããããã«ã£ãœãããïŒã¯ãã¢ãžã¢ïŒãŠãŒã©ã·ã¢å€§éžïŒã®æ±æ¹ã«ããå³¶åœã§ããã</p>
<h2>å°ç</h2>
<p>åã€ã®å€§ããªå³¶ãåæµ·éãæ¬å·ãååœãä¹å·ãšãåå³¶åå³¶ãå°ç¬ å諞島ãççåå³¶ãªã©åšèŸºã®å°å³¶ãããªãåå³¶ïŒå³¶åŒ§ïŒãé åã®äžå¿ããªãã</p>
<h3>æ°å</h3>
<p>倧åã®å°åã¯æž©åž¯ã«å±ãããåæ¹ã®è«žå³¶ã¯äºç±åž¯ãåæ¹ã¯äºå¯åž¯çæ°åã瀺ããæµ·æŽæ§æ°åã ããã¢ã³ã¹ãŒã³ã®åœ±é¿ãåãã坿ã®å·®ã¯å€§ããã</p>
</syntaxhighlight>
</div>
=== è¡šç€ºäŸ ===
<div style="border:#000 1px dashed;padding:1em">
<div style="color: black;background: none;font-weight: normal;margin: 0 0 1em 0;padding-top: .5em;padding-bottom: .17em;font-size:188%;">æ¥æ¬</div>
æ¥æ¬åœïŒã«ã»ããããã«ã£ãœãããïŒã¯ãã¢ãžã¢ïŒãŠãŒã©ã·ã¢å€§éžïŒã®æ±æ¹ã«ããå³¶åœã§ããã
<div style="color: black; background: none; font-weight: bold; margin: 0 0 1em 0; padding-top: .5em; padding-bottom: .17em; font-size: 150%;">å°ç</div>
åã€ã®å€§ããªå³¶ãåæµ·éãæ¬å·ãååœãä¹å·ãšãåå³¶åå³¶ãå°ç¬ å諞島ãççåå³¶ãªã©åšèŸºã®å°å³¶ãããªãåå³¶ïŒå³¶åŒ§ïŒãé åã®äžå¿ããªãã
<div style="color: black; background: none; font-weight: bold; margin: 0 0 1em 0; padding-top: .5em; padding-bottom: .17em; font-size: 120%;">æ°å</div>
倧åã®å°åã¯æž©åž¯ã«å±ãããåæ¹ã®è«žå³¶ã¯äºç±åž¯ãåæ¹ã¯äºå¯åž¯çæ°åã瀺ããæµ·æŽæ§æ°åã ããã¢ã³ã¹ãŒã³ã®åœ±é¿ãåãã坿ã®å·®ã¯å€§ããã
</div>
äžèšäºäŸã®æç« ã¯Wikipediaã«ãã[[w:æ¥æ¬|æ¥æ¬]]ã®é
ç®ã®èšè¿°ãå©çšããŠããã
== åŒçšãšåºå
ž ==
åŒçšã§ããäºã衚ãã«ã¯ãblockquoteèŠçŽ ãããã¯qèŠçŽ ïŒQuotationã®ç¥ïŒã䜿ããblockquoteèŠçŽ ã¯ãããã¯ã¬ãã«ã®åŒçšã«äœ¿çšããqèŠçŽ ã¯ã€ã³ã©ã€ã³ã§ã®åŒçšã«äœ¿çšãããäž¡èŠçŽ ã«ã€ããŠãåºå
žã®URIã衚ããã®ãšããŠcite屿§ãããã®ã¿ã€ãã«ã衚ããã®ãšããŠtitle屿§ãå©çšã§ããããŸããåºå
žãããã¯åç
§å
ã瀺ããã®ãšããŠciteèŠçŽ ãããããã®èŠçŽ ã§å²ã£ãéšåãåºå
žã§ããããšã瀺ãããã«äœ¿çšããã
äžè¬çãªãã©ãŠã¶ã§ã¯ãblockquoteèŠçŽ ã¯å·Šå³ã«ã€ã³ãã³ããããç¶æ
ã§ãqèŠçŽ ã¯åŒçšç¬Šã«æ¬ãããç¶æ
ïŒäžéšç°å¢æªå¯Ÿå¿ïŒã§ãciteèŠçŽ ã¯æäœã§è¡šç€ºãããããªããå·Šå³ã«ç©ºçœãåãããã«blockquoteèŠçŽ ã䜿çšããã±ãŒã¹ãããããããã¯äžé©åã§ããç°å¢ã«ãã£ãŠã¯ãã®å
容ãåŒçšã§ãããšèªèãããããªããã¹ã¿ã€ã«ã·ãŒãã䜿ã£ãŠç©ºçœãåãããšãæãŸããã
=== èšè¿°äŸ ===
<div class="preoverflow">
<syntaxhighlight lang="html4strict">
<p>ãŠã£ãã¡ãã£ã¢è²¡å£ã«ã€ããŠã<cite>ãŠã£ãããã£ã¢</cite>ã§ã¯ã以äžã®æ§ã«èª¬æããŠããã</p>
<blockquote cite="http://ja.wikipedia.org/wiki/ãŠã£ãã¡ãã£ã¢" title="ãŠã£ãã¡ãã£ã¢ - Wikipedia">
<p>ãŠã£ãã¡ãã£ã¢è²¡å£ (Wikimedia Foundation Inc.) ã¯ãŠã£ãããã£ã¢ãéå¶ãããã®æ¯äœãšãªãå£äœã§ããã
ç±³åœãããªãå·æ³ã«ããéå¶å©çµç¹ã§ããããŠã£ãããã£ã¢ã®åµç«è
ã®äžäººã§ããããžããŒã»ãŠã§ãŒã«ãºã«ãã£ãŠèšç«ãããã
財å£åç§°ã®ãŠã£ãã¡ãã£ã¢ã¯è±èªçãŠã£ãããã£ã¢ã®åå è
ã·ã§ã«ãã³ã»ã©ã³ããã³ã®åœåã«ããããŠã£ããšãã«ãã¡ãã£ã¢ããé èªãããã</p>
<p>å財å£ã®ç®çã¯ããŠã£ããçšãããªãŒãã³ã³ã³ãã³ãã®ç¥çè³æºãéçºãããããžã§ã¯ãã®ä¿é²ãããã³ãã®è³æºãç¡æãåºåãªãã§åºãå
¬è¡ã«æäŸããããšã«ããã</p>
</blockquote>
<p>åé
ç®ã«ããè¥å¹Žå±€åãã®æè²ã³ã³ãã³ãããŠã£ããžã¥ãã¢ãã®äœæã«ã¯èå³ãåŒããšããã§ããã</p>
</syntaxhighlight>
</pre>
=== è¡šç€ºäŸ ===
<div style="border:#000 1px dashed;padding:1em">
<p>ãŠã£ãã¡ãã£ã¢è²¡å£ã«ã€ããŠã<cite>ãŠã£ãããã£ã¢</cite>ã§ã¯ã以äžã®æ§ã«èª¬æããŠããã</p>
<blockquote cite="http://ja.wikipedia.org/wiki/ãŠã£ãã¡ãã£ã¢" title="ãŠã£ãã¡ãã£ã¢ - Wikipedia">
<p>ãŠã£ãã¡ãã£ã¢è²¡å£ (Wikimedia Foundation Inc.) ã¯ãŠã£ãããã£ã¢ãéå¶ãããã®æ¯äœãšãªãå£äœã§ããã
ç±³åœãããªãå·æ³ã«ããéå¶å©çµç¹ã§ããããŠã£ãããã£ã¢ã®åµç«è
ã®äžäººã§ããããžããŒã»ãŠã§ãŒã«ãºã«ãã£ãŠèšç«ãããã
財å£åç§°ã®ãŠã£ãã¡ãã£ã¢ã¯è±èªçãŠã£ãããã£ã¢ã®åå è
ã·ã§ã«ãã³ã»ã©ã³ããã³ã®åœåã«ããããŠã£ããšãã«ãã¡ãã£ã¢ããé èªãããã</p>
<p>å財å£ã®ç®çã¯ããŠã£ããçšãããªãŒãã³ã³ã³ãã³ãã®ç¥çè³æºãéçºãããããžã§ã¯ãã®ä¿é²ãããã³ãã®è³æºãç¡æãåºåãªãã§åºãå
¬è¡ã«æäŸããããšã«ããã</p>
</blockquote>
<p>åé
ç®ã«ããè¥å¹Žå±€åãã®æè²ã³ã³ãã³ãããŠã£ããžã¥ãã¢ãã®äœæã«ã¯èå³ãåŒããšããã§ããã</p>
</div>
== 匷調 ==
匷調ã衚ãã«ã¯emèŠçŽ ïŒEMphasisã®ç¥ïŒãstrongèŠçŽ ã䜿ããstrongèŠçŽ ã®æ¹ããã匷ã匷調ã衚ããäžè¬çãªãã©ãŠã¶ã§ã¯emèŠçŽ ã¯æäœåã§ãstrongèŠçŽ ã¯å€ªåã§è¡šç€ºããããäžéšã®é³å£°ãã©ãŠã¶ã¯ãã®èŠçŽ ãèªèãã匷調é³å£°ã§ããã¹ããèªã¿äžããå Žåãããã
=== èšè¿°äŸ ===
<syntaxhighlight lang="html4strict">
<p><em>æã</em>ããã寧ã<strong>ç±ã</strong>ã</p>
</syntaxhighlight>
åã¯
<syntaxhighlight lang="html4strict">
<p><em>æã</em>ããã寧ã<b>ç±ã</b>ã</p>
</syntaxhighlight>
=== è¡šç€ºäŸ ===
<div style="border:#000 1px dashed;padding:1em">
<p><em>æã</em>ããã寧ã<strong>ç±ã</strong>ã</p>
</div>
== æ±çšå±æ§ ==
;lang
:ãã®èŠçŽ å
ã§ã©ã®èšèªã䜿çšãããŠãããã瀺ãã
;id
:ãã®èŠçŽ ã®ååãæå®ããããããæå®ãããèŠçŽ ã«ã¯ãCSSã§èšå®ãããã¹ã¿ã€ã«ãå²ãåœãŠããããããšãå¯èœã§ããã1ã€ã®ããã¥ã¡ã³ãå
ã§1åãã䜿çšããããšãã§ããªãã
;class
:ãã®èŠçŽ ãšCSSãªã©ã§æå®ãããã¯ã©ã¹ãé¢ä¿ã¥ãããid屿§ãšåæ§ãCSSã§èšå®ãããã¹ã¿ã€ã«ãå²ãåœãŠãããšãå¯èœã§ãããã1ã€ã®ããã¥ã¡ã³ãå
ã§äœåã䜿çšããããšãã§ããã
;title
:æå®ãããèŠçŽ ã«å¯Ÿããã¿ã€ãã«ã瀺ããç°¡åãªèª¬æãèšè¿°ããããšãå€ããäžéšã®ãã©ãŠã¶ã§ã¯ããã®èŠçŽ ãããŠã¹ãªãŒããŒãããšãã®å
容ãããŒã«ããããšããŠè¡šç€ºããã
;style
:CSSãªã©ã®ã¹ã¿ã€ã«ã·ãŒããèšè¿°ããããããããå²ãåœãŠãªã©ãèšå®ãããŠããªãã¹ã¿ã€ã«ãçŽæ¥ãã®èŠçŽ ã«å¯ŸããŠæå®ã§ããã
;dir
:æåã®æ¹åãæå®ããã屿§å€ã«ltr(left to right)ãæå®ãããšæåãå·Šããå³ãžãrtl(right to left)ãæå®ãããšæåãå³ããå·Šãžè¡šç€ºãããã
== ãã®ä»ããã¹ãé¢ä¿ã®èŠçŽ ==
;dfn
:ãã®èªãå®çŸ©å¯Ÿè±¡ã®çšèªã§ããããšã瀺ããæç« äžã§ãã®èªãå§ããŠåºãŠããå Žåãªã©ã«äœ¿çšãããäžè¬çãªãã©ãŠã¶ã§ã¯ãã€ã¿ãªãã¯è¡šç€ºãšãªãã
;abbr,acronym
:abbrã¯ãã®èªãç¥èªã§ããããšããacronymã¯ãã®èªãé åèªã§ããããšã瀺ããtitle屿§ãæå®ãããã®èªã®çç¥ããªãåœ¢ãæžãããšãå¿
é ãšãããŠããããã©ãŠã¶ã«ãã£ãŠã¯ããã®èŠçŽ ãæå®ãããèªã¯ç¹ç·è¡šç€ºãããããInternet Explorerã¯å¯Ÿå¿ããŠããªãã
;sup,sub
:supã¯æåãäžä»ãã«ãsubã¯æåãäžä»ãã«ããã
;pre
:æå®ãããããã¹ããçå¹
<!-- ã»ç¡æ¹è¡ -->ã§è¡šç€ºããããœãŒã¹ã³ãŒããªã©ã衚瀺ãããšãã«äœ¿çšãããHTMLã¯æå¹ã ããæ¹è¡ãã¹ããŒã¹ã¯ãã®ãŸãŸè¡šç€ºãããã
;kbd
:æäœæ³èª¬æãªã©ã«ãããŠãããŒããŒãããå
¥åããæåã瀺ããäžè¬çãªãã©ãŠã¶ã§ã¯çå¹
ã§è¡šç€ºãããã
;code
:ãã®éšåããœãŒã¹ã³ãŒãã§ããããšãæç€ºãããäžè¬çãªãã©ãŠã¶ã§ã¯çå¹
ã§è¡šç€ºãããã
;samp
:ããã«ããå
容ããããã°ã©ã ãªã©ã«ããåºåãããå
容ã®ãµã³ãã«ã§ããããšã瀺ããäžè¬çãªãã©ãŠã¶ã§ã¯çå¹
ã§è¡šç€ºãããã
;var
:倿°ãåŒæ°ã瀺ããšãã«äœ¿çšãããäžè¬çãªç°å¢ã§ã¯ã€ã¿ãªãã¯è¡šç€ºãšãªãã
;ins,del
:insèŠçŽ ã¯ãã®éšåãåŸããæ¿å
¥ããå
容ã§ããããšããdelèŠçŽ ã¯ãã®éšåãåŸããåé€ããå
容ã§ããããšã瀺ããdatetime屿§ïŒISO 8601圢åŒïŒãçšããŠæ¿å
¥ã»å逿¥æãèšè¿°ããããcite屿§ãçšããŠæ
å ±ã®å
žæ ã瀺ããããtitle屿§ãçšããŠç°¡åãªèª¬æãèšè¿°ãããããããšãåºæ¥ãã
:datetime屿§ã¯ã幎ïŒåæ¡ïŒ-æïŒäºæ¡ïŒ-æ¥ïŒäºæ¡ïŒTæ:å:ç§+9:00ã®åœ¢åŒïŒæ¥æ¬æéã®å ŽåïŒã§èšè¿°ãããäŸãã°2010幎1æ1æ¥9æã¡ããã©ã§ããã°<code>2010-01-01T09:00:00+9:00</code>ãšããæžåŒã«ãªãã
:æå®äœçœ®ã«å¿ããŠãããã¯èŠçŽ ãšããŠãã€ã³ã©ã€ã³èŠçŽ ãšããŠã䜿çšããããšãåºæ¥ããããããã¯èŠçŽ ãšããŠæ±ã£ãŠãCSSã§ã®ã¹ã¿ã€ã«æå®ã¯ã€ã³ã©ã€ã³èŠçŽ ãšåãæ±ãã«ãªãã
;bdo
:æå®ãããããã¹ãã®è¡šç€ºæ¹åããdir屿§ã§èšå®ããã
== åŒ·å¶æ¹è¡ ==
ããã¹ããã¡ã€ã«ã§ã®æ¹è¡ã¯è¡šç€ºã«ã¯ã»ãŒåœ±é¿ããªãïŒãã©ãŠã¶ã«ãã£ãŠã¯ã¹ããŒã¹ãéãããšãããïŒã匷å¶çã«æ¹è¡ãããããšãã«ã¯<br>ã䜿ãããªãã[[w:Extensible HyperText Markup Language|XHTML]]ã«ãããŠã¯ã<br />ïŒXHTML 1.0ã§ã¯brãš/ã®éã«åè§ã¹ããŒã¹ãå
¥ããããšãæšå¥šãããŠããããå¿
é ã§ã¯ãªãïŒãšããããã«å®ããããŠãããHTMLã§ã<br />ã䜿ãããšã¯åºæ¥ãããææ³äžæ£ããæžãæ¹ã§ã¯ãªãã®ã§èŠæ Œã«æ²¿ã£ãHTMLãæžããããšãã¯æ³šæãããã<!-- å€ãã¢ããªã®ãµããŒãã§XHTMLã®æ
å ±ã䜿ãã®ã§ãHTML5æä»£ã§ããXHTMLã®è©±é¡ãæ®ããããšæããŸãã -->
=== èšè¿°äŸ ===
<syntaxhighlight lang="html4strict">
<p>æ¹è¡ããŸãã
ã¯ãããã?</p>
<p>ããããªããšã<br>
ã!</p>
<p>XHTMLã®ãšãã¯ããã£ã¡ã§ã<br />
ã!</p>
</syntaxhighlight>
=== è¡šç€ºäŸ ===
<div style="border:#000 1px dashed;padding:1em">
<p>æ¹è¡ããŸãã
ã¯ãããã?</p>
<p>ããããªããšã<br />
ã!</p>
<p>XHTMLã®ãšãã¯ããã£ã¡ã§ã<br />
ã!</p>
</div>
== div, spanèŠçŽ ==
divèŠçŽ ã¯ãããã¯ã¬ãã«èŠçŽ ãspanèŠçŽ ã¯ã€ã³ã©ã€ã³èŠçŽ ã§ãããããã以å€ã®æå³ã¯ãªãåäœã§æå®ããŠãããã©ãŠã¶ãç¹å¥ãªæ±ããè¡ã£ããã衚瀺ãç¹å¥å€åãããããããšã¯ãªãïŒãã ãdivèŠçŽ ã¯ãããã¯ã¬ãã«èŠçŽ ã§ãããååŸã«æ¹è¡ãå
¥ãïŒãid屿§ãclass屿§ã䜿ã£ãŠã¹ã¿ã€ã«ã·ãŒããé©çšããããlang屿§ãªã©ãæå®ãããäž»ã«ä»ã®èŠçŽ ã§ã¯ä»£çšã§ããªãïŒä»ã®èŠçŽ ãçšãããšç¯å²å
ã«äžå¿
èŠãªæ
å ±ãå®çŸ©ããŠããŸãïŒããšãè¡ãæ±çšèŠçŽ ãšããŠçšããããã
== ãšã¹ã±ãŒãã·ãŒã±ã³ã¹ ==
HTMLã§åè§è±æ°ã® <nowiki> < </nowiki> ã <nowiki> > </nowiki>ãšãã£ãå¶åŸ¡çšã®æåãã®ãã®ã衚瀺ãããå Žåã«ã¯ã
<nowiki> < </nowiki> ãšè¡šç€ºããããªã <code>&lt;</code> ãšå
¥åããã
<nowiki> > </nowiki> ãšè¡šç€ºããããªã <code>&gt;</code> ãšå
¥åããã
ltãgtã®çŽåŸã®èšå·ã¯ã»ãã³ãã³(;)ã§ããã(ã³ãã³(:)ã§ã¯ãªãã)
HTMLã«éãããããã°ã©ãã³ã°ãé¡äŒŒã®ã³ãŒãã£ã³ã°ã«ãããŠããã®ããã«å¶åŸ¡æåãã®ãã®ãå
¥åããããã®å
¥åæ¹æ³ã®ããšãããšã¹ã±ãŒãã·ãŒã±ã³ã¹ããšããã
HTMLã®ãšã¹ã±ãŒãã·ãŒã±ã³ã¹ã«ã€ããŠã¯ãçš®é¡ãå€ãã®ã§ã詳ããã¯ããããªã©ã§æ€çŽ¢ããŠãããããã
ãªããæŽŸççãªè©±é¡ã ãã <code>&lt;</code> ãšwebããŒãžã§è¡šç€ºãããå Žåã <code>&amp;lt;</code>ãšHTMLã«å
¥åããã
<!--
以äžã¯[[HTML/è£
食]]åã äžæŠã³ã¡ã³ãã¢ãŠã
== bodyèŠçŽ ==
=== ç»é¢èæ¯ã®èšå® ===
ç»é¢ã®èæ¯ã¯
#èæ¯è²ãèšå®
#èæ¯ã«ç»åãèšå®
ã®2ã€ã«åé¡ã§ããã
äžè¬çã«èŠèŠçãªå¹æã®èª¿æŽã¯[[CSS]]ãçšããŠè¡ãã¹ããšãããŠããããããã§ã¯CSSã䜿ããããã簡䟿ãªHTMLã§èæ¯ãèšå®ããæ¹æ³ã玹ä»ãããèæ¯è²ãèæ¯ç»åãšãèŠçŽ ã«å±æ§ãæå®ããããšã§èšå®ããã
==== èæ¯è² ====
<syntaxhighlight lang="html4strict"><body bgcolor="#FFFFFF"></syntaxhighlight>
bgcolor屿§ã«ã¯èšå®ãããè²ãæå®ãããè²ã®æå®ã¯è²ã®åç§°ïŒwhiteãblackãªã©ïŒããããã¯16鲿°ã§æå®ããã16鲿°ã§æå®ããå Žåã¯ãæåã«<nowiki>#</nowiki>ãã€ããRïŒèµ€èŠçŽ ïŒGïŒç·èŠçŽ ïŒBïŒéèŠçŽ ïŒã®é çªã«ãããã00ïœFFã®æ°å€ãæå®ããã
==== èæ¯ç»å ====
<syntaxhighlight lang="html4strict"><body background="wiki.png"></syntaxhighlight>
background屿§ã«ã¯èæ¯ç»åã®ãã¡ã€ã«ã®ã¢ãã¬ã¹ãæå®ãããã¢ãã¬ã¹ã®æå®ã¯çµ¶å¯Ÿãã¹ïŒ<nowiki>http://ïœïœ/wiki.png</nowiki>ïŒãçžå¯Ÿãã¹ïŒ./wiki.pngïŒã䜿çšãããç»å圢åŒã¯äžè¬çã«JPEGãGIFãPNGã®ããããã䜿çšããã[[w:Windows bitmap|BMP]]圢åŒã®ç»åã䜿ã人ãããããBMPã¯Windowsçšã®ãã¡ã€ã«åœ¢åŒã§ããããšã«å ããã¡ã€ã«ãµã€ãºãã®ãã®ã倧ããã®ã§äœ¿ããªãããã«ãããã
-->
[[Category:HTML|HTML ã»ããµã]] | null | 2022-10-22T01:50:12Z | [] | https://ja.wikibooks.org/wiki/HTML/%E6%9C%AC%E6%96%87 |
2,007 | ç·å代æ°åŠ |
ãMVã#è¶
çµ¶ãããã/mona(CV:å€å·æ€è)ãHoneyWorksã âæ:mona(CV:å€å·æ€è) âäœè©ã»äœæ²ã»ç·šæ²:HoneyWorks âæè©ç¿»è¯:Fir(@Fir3k0) â»ä»¥AIèŒå©ç¿»è¯,æä»¥ç®åæ©ç¿»å§w èªå·±æ ¡æ£ææ
ã#è¶
çµ¶ããããã
åã®3åç§ã«ãã ãã åç»ã¯ãã®ãŸãŸã§ è«äœ 絊æ3åéæéå§ åœ±çéæš£æŸç就奜
ç§ã®ãããããšã äŒããã°å¬ããã§ã èŠæ¯èœåäœ å³éå°æç坿ä¹è ææåŸé«èå¢
ç»é¢è¶ãã§è§Šããªããã© ç§ã¯ãããã ã éç¶éçç«é¢æ²èŸŠæ³è§žç¢°å° äœæå°±åšé裡å
ã³ã¡ã³ããæ®ã㊠åãèªç¥ãã㊠ä¹è«çäžçèš è®æèªèå°äœ
ããããåãªã㊠ãããããããã© éç¶å¯æçå©å å€äžåæž
ããããããå㯠ç§ããããªã äœéæŒå¯æçå©å éæè«å±¬
ãããšãããã£ãŠ ãããç§ã ã£ãŠ å°±ç®éåå°è£å¯æ é乿¯æçäžé¢å¢
åã®äžçªã«ãªããŸã§ãããªã çŽå°æçºäœ ç第äžä¹åéœäžæçœ·äŒ
åã®å€§å¥œããªäººã¯ã ãŒã? äœ æåæ¡ç人æ¯èª°~å¢?
è¶
çµ¶ãããã mona è¶
çµå¯æç mona
åãæããŠã人ã¯ã ãŒã? äœ æåæç人æ¯èª°~å¢?
è¶
çµ¶ãããã mona è¶
çµå¯æç mona
ç§ã倧奜ãã ãã æäººå士ã ã æä¹æåæ¡äœ äº æä»¥æ¯å
©æ
çžæ
çæäººå¢
è±å«ä¿®æ¥é 匵ãã æ°åšä¿®è¡ææåªå以赎å¢
ãããã°ãããã®ã¢ããŒã«ã« ãä»ãåããã ãã éå±çŸèªèº«çæ©æ è«åå€å¥éªæäžæå
å§
ç§ã®ãããããšã äŒããã°å¬ããã§ã èŠæ¯èœåäœ å³éå°æç坿ä¹è ææåŸé«èå¢
身é·ã è¶³ã®ãµã€ãºã é ããŠããã¯ãã 身é«ä¹å¥œ éè
³å°ºå¯žä¹å¥œ é±èçç£ä¹å¥œ
æšããªãåœç¶ç¥ã£ãŠãã¯ãã ãã? åŠææ¯äž»æšçè©±äœ ç¶ç¶æç¥éå§?
ãã¡ã³ã倧åã£ãŠ åœããåã ãã© éç¶ç²çµ²åŸéèŠ éæ¯çç¶ç¶ç¶ç
ãããªã«å¥œããšã ç§ããããªã äœåæ¡å°éçš®å°æ¥ éæè«å±¬
ã¯ãµãããèšè? ã ã£ãŠæ¬åœã ãã éäºè©±éœèœå°è©äº? å çºéæ¯çå¿è©±åŠ
åã®äžçªã«ãªããŸã§ãããªã çŽå°æçºäœ ç第äžä¹åéœäžæçœ·äŒ
åãèã«ããã®ã¯ã ãŒã? è®äœ æçºä¿èçæ¯èª°~å¢?
è¶
çµ¶ãããã mona è¶
çµå¯æç mona
åã幞ãã«ããã®ã ãŒã? è®äœ è®åŸå¹žçŠçæ¯èª°~å¢?
è¶
çµ¶ãããã mona è¶
çµå¯æç mona
ãã£ãšæããŠãããã 責任åãããã å³äŸ¿æåŸæŽæ·±ä¹å¯ä»¥å ææè² 起責任å¢
æµ®æ°ãªããŠãããªããã æäžæè®äœ äžå¿å
©æçåŠ
åã®å€§å¥œããªäººã¯ã ãŒã? äœ æåæ¡ç人æ¯èª°~å¢?
è¶
çµ¶ãããã mona è¶
çµå¯æç mona
åãæããŠã人ã¯ã ãŒã? äœ æåæç人æ¯èª°~å¢?
è¶
çµ¶ãããã mona è¶
çµå¯æç mona
ç§ã倧奜ãã ãã æäººå士ã ã æä¹æåæ¡äœ äº æä»¥æ¯å
©æ
çžæ
çæäººå¢
è±å«ä¿®æ¥é 匵ãã æ°åšä¿®è¡ææåªåä»¥èµŽå¢ | [
{
"paragraph_id": 0,
"tag": "p",
"text": "",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãMVã#è¶
çµ¶ãããã/mona(CV:å€å·æ€è)ãHoneyWorksã âæ:mona(CV:å€å·æ€è) âäœè©ã»äœæ²ã»ç·šæ²:HoneyWorks âæè©ç¿»è¯:Fir(@Fir3k0) â»ä»¥AIèŒå©ç¿»è¯,æä»¥ç®åæ©ç¿»å§w èªå·±æ ¡æ£ææ",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ã#è¶
çµ¶ããããã",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "åã®3åç§ã«ãã ãã åç»ã¯ãã®ãŸãŸã§ è«äœ 絊æ3åéæéå§ åœ±çéæš£æŸç就奜",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ç§ã®ãããããšã äŒããã°å¬ããã§ã èŠæ¯èœåäœ å³éå°æç坿ä¹è ææåŸé«èå¢",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ç»é¢è¶ãã§è§Šããªããã© ç§ã¯ãããã ã éç¶éçç«é¢æ²èŸŠæ³è§žç¢°å° äœæå°±åšé裡å",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ã³ã¡ã³ããæ®ã㊠åãèªç¥ãã㊠ä¹è«çäžçèš è®æèªèå°äœ ",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ããããåãªã㊠ãããããããã© éç¶å¯æçå©å å€äžåæž",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ããããããå㯠ç§ããããªã äœéæŒå¯æçå©å éæè«å±¬",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãããšãããã£ãŠ ãããç§ã ã£ãŠ å°±ç®éåå°è£å¯æ é乿¯æçäžé¢å¢",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "åã®äžçªã«ãªããŸã§ãããªã çŽå°æçºäœ ç第äžä¹åéœäžæçœ·äŒ",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "åã®å€§å¥œããªäººã¯ã ãŒã? äœ æåæ¡ç人æ¯èª°~å¢?",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "è¶
çµ¶ãããã mona è¶
çµå¯æç mona",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "åãæããŠã人ã¯ã ãŒã? äœ æåæç人æ¯èª°~å¢?",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "è¶
çµ¶ãããã mona è¶
çµå¯æç mona",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ç§ã倧奜ãã ãã æäººå士ã ã æä¹æåæ¡äœ äº æä»¥æ¯å
©æ
çžæ
çæäººå¢",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "è±å«ä¿®æ¥é 匵ãã æ°åšä¿®è¡ææåªå以赎å¢",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ãããã°ãããã®ã¢ããŒã«ã« ãä»ãåããã ãã éå±çŸèªèº«çæ©æ è«åå€å¥éªæäžæå
å§",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ç§ã®ãããããšã äŒããã°å¬ããã§ã èŠæ¯èœåäœ å³éå°æç坿ä¹è ææåŸé«èå¢",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "身é·ã è¶³ã®ãµã€ãºã é ããŠããã¯ãã 身é«ä¹å¥œ éè
³å°ºå¯žä¹å¥œ é±èçç£ä¹å¥œ",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "æšããªãåœç¶ç¥ã£ãŠãã¯ãã ãã? åŠææ¯äž»æšçè©±äœ ç¶ç¶æç¥éå§?",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ãã¡ã³ã倧åã£ãŠ åœããåã ãã© éç¶ç²çµ²åŸéèŠ éæ¯çç¶ç¶ç¶ç",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ãããªã«å¥œããšã ç§ããããªã äœåæ¡å°éçš®å°æ¥ éæè«å±¬",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ã¯ãµãããèšè? ã ã£ãŠæ¬åœã ãã éäºè©±éœèœå°è©äº? å çºéæ¯çå¿è©±åŠ",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "åã®äžçªã«ãªããŸã§ãããªã çŽå°æçºäœ ç第äžä¹åéœäžæçœ·äŒ",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "åãèã«ããã®ã¯ã ãŒã? è®äœ æçºä¿èçæ¯èª°~å¢?",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "è¶
çµ¶ãããã mona è¶
çµå¯æç mona",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "åã幞ãã«ããã®ã ãŒã? è®äœ è®åŸå¹žçŠçæ¯èª°~å¢?",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "è¶
çµ¶ãããã mona è¶
çµå¯æç mona",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ãã£ãšæããŠãããã 責任åãããã å³äŸ¿æåŸæŽæ·±ä¹å¯ä»¥å ææè² 起責任å¢",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "æµ®æ°ãªããŠãããªããã æäžæè®äœ äžå¿å
©æçåŠ",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "åã®å€§å¥œããªäººã¯ã ãŒã? äœ æåæ¡ç人æ¯èª°~å¢?",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "è¶
çµ¶ãããã mona è¶
çµå¯æç mona",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "åãæããŠã人ã¯ã ãŒã? äœ æåæç人æ¯èª°~å¢?",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "è¶
çµ¶ãããã mona è¶
çµå¯æç mona",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "ç§ã倧奜ãã ãã æäººå士ã ã æä¹æåæ¡äœ äº æä»¥æ¯å
©æ
çžæ
çæäººå¢",
"title": "äžç·ã«æããŸãããïŒ"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "è±å«ä¿®æ¥é 匵ãã æ°åšä¿®è¡ææåªå以赎å¢",
"title": "äžç·ã«æããŸãããïŒ"
}
] | null | {{pathnav|frame=1|ã¡ã€ã³ããŒãž|æ°åŠ|代æ°åŠ}}
æ¬é
ã¯ç·åœ¢ä»£æ°åŠã®è§£èª¬ã§ãã
{{é²æç¶æ³}}
== åºè«ã»å°å
¥ ==
* [[/åºè«|åºè«]]
* [[/ãã¯ãã«|ãã¯ãã«]]
** [[é«çåŠæ ¡æ°åŠC/ãã¯ãã«]]ãåç
§ã®ããšã
* [[/è¡åæŠè«|è¡åæŠè«]]
** [[æ§èª²çšé«çåŠæ ¡æ°åŠC/è¡å]]ãåç
§ã®ããšã
== ç·åæ¹çšåŒ ==
* [[/ç·åæ¹çšåŒ|ç·åæ¹çšåŒåºè«]]
* [[/è¡åã®åºæ¬å€åœ¢|è¡åã®åºæ¬å€åœ¢]] {{鲿|100%|2009-05-31}}
* [[/éè¡å|éè¡å]]ã{{鲿|100%|2009-06-2}}
* [[/ç·åæ¹çšåŒã®è§£|ç·åæ¹çšåŒã®è§£]]ã{{鲿|50%|2009-06-28}}
== è¡ååŒ ==
* [[ç·åœ¢ä»£æ°åŠ/è¡ååŒ|è¡ååŒ]] {{鲿|25%|2021-03-09}}
* [[ç·åœ¢ä»£æ°åŠ/äœå åè¡å|äœå åè¡å]]
* [[/ã¯ã©ã¡ã«ã®å
¬åŒ|ã¯ã©ã¡ã«ã®å
¬åŒ]]
== ç·åœ¢ç©ºé ==
* [[/ç·å空é|ç·å空é]]
* [[/ç·åœ¢åå|ç·åœ¢åå]]
* [[/åºåºã𿬡å
|åºåºã𿬡å
]]
* [[/èšéãã¯ãã«ç©ºé|èšéãã¯ãã«ç©ºé]]
== 察è§åãšåºæå€ ==
* [[/åºæå€ãšåºæãã¯ãã«|åºæå€ãšåºæãã¯ãã«]]
* [[/è¡åã®äžè§å|è¡åã®äžè§å]]
* [[/è¡åã®å¯Ÿè§å|è¡åã®å¯Ÿè§å]] {{鲿|50%|2018-11-29}}
* [[/äºæ¬¡åœ¢åŒ|äºæ¬¡åœ¢åŒ]]{{鲿|25%|2020-8-19}}
== ãžã§ã«ãã³æšæºåœ¢ ==
* [[/åå å|åå å]]
* [[/ãžã§ã«ãã³æšæºåœ¢|ãžã§ã«ãã³æšæºåœ¢]]
{{stub}}
[[Category:ç·åœ¢ä»£æ°åŠ|*]]
[[Category:æ°åŠ|ãããããããããã]] | 2005-05-17T01:42:42Z | 2023-11-19T12:19:21Z | [] | https://ja.wikibooks.org/wiki/%E7%B7%9A%E5%9E%8B%E4%BB%A3%E6%95%B0%E5%AD%A6 |
2,008 | ç·å代æ°åŠ/ç·åæ¹çšåŒ | ç·å代æ°åŠ > ç·åæ¹çšåŒ
ç·åæ¹çšåŒ(é£ç«1次æ¹çšåŒ)ãšã¯ã a i , j , b i â K ( 1 †i †m , 1 †j †n ) {\displaystyle a_{i,j},b_{i}\in \mathbf {K} (1\leq i\leq m,1\leq j\leq n)} ãçšããŠ
ã§è¡šããããæ¹çšåŒã§ããã
äžã®é£ç«æ¹çšåŒã¯ã
ãšããã° A x = b {\displaystyle \ Ax=b} ãšè¡åãçšããŠæžããã
ä»®ã«ãAãæ£æ¹è¡åã§éè¡åãæã€ãªãã ãã®åŒã®äžè¬è§£ã¯ã x = A â 1 b {\displaystyle \ x=A^{-1}b} ãšãªãã
ããããããã¯éåžžã«ç¹æ®ãªå Žåã§ãããäžè¬ã«ã¯è§£ãååšããªãããšãããã°ãããã€ãã®è§£ã®éãåãã(æ£ããã¯ç·åœ¢çµå)ãšããŠè¡šããããããšãããã
ãã®ç« ã§ã¯ãéè¡åã®åå®çŸ©ããå§ããè¡åã®åºæ¬å€åœ¢ãéæ°çãå°å
¥ããæçµçã«ã¯äžã®ç·åæ¹çšåŒã®äžè¬è§£ãå°ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç·å代æ°åŠ > ç·åæ¹çšåŒ",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ç·åæ¹çšåŒ(é£ç«1次æ¹çšåŒ)ãšã¯ã a i , j , b i â K ( 1 †i †m , 1 †j †n ) {\\displaystyle a_{i,j},b_{i}\\in \\mathbf {K} (1\\leq i\\leq m,1\\leq j\\leq n)} ãçšããŠ",
"title": "ç·åæ¹çšåŒ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ã§è¡šããããæ¹çšåŒã§ããã",
"title": "ç·åæ¹çšåŒ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "äžã®é£ç«æ¹çšåŒã¯ã",
"title": "ç·åæ¹çšåŒ"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãšããã° A x = b {\\displaystyle \\ Ax=b} ãšè¡åãçšããŠæžããã",
"title": "ç·åæ¹çšåŒ"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ä»®ã«ãAãæ£æ¹è¡åã§éè¡åãæã€ãªãã ãã®åŒã®äžè¬è§£ã¯ã x = A â 1 b {\\displaystyle \\ x=A^{-1}b} ãšãªãã",
"title": "ç·åæ¹çšåŒ"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ããããããã¯éåžžã«ç¹æ®ãªå Žåã§ãããäžè¬ã«ã¯è§£ãååšããªãããšãããã°ãããã€ãã®è§£ã®éãåãã(æ£ããã¯ç·åœ¢çµå)ãšããŠè¡šããããããšãããã",
"title": "ç·åæ¹çšåŒ"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãã®ç« ã§ã¯ãéè¡åã®åå®çŸ©ããå§ããè¡åã®åºæ¬å€åœ¢ãéæ°çãå°å
¥ããæçµçã«ã¯äžã®ç·åæ¹çšåŒã®äžè¬è§£ãå°ãã",
"title": "ç·åæ¹çšåŒ"
}
] | ç·å代æ°åŠ > ç·åæ¹çšåŒ | <small> [[ç·å代æ°åŠ]] > ç·åæ¹çšåŒ </small>
== ç·åæ¹çšåŒ ==
ç·åæ¹çšåŒïŒé£ç«1次æ¹çšåŒïŒãšã¯ã<math> a_{i,j},b_i \in \mathbf K (1 \leq i \leq m,1 \leq j \leq n) </math> ãçšããŠ
:<math>\begin{cases}
a _{1,1}x _1 + \cdots + a _{1,n}x _n = b _1 \\
\vdots \\
a _{m,1}x _1 + \cdots + a _{m,n}x _n = b _m
\end{cases}</math>
ã§è¡šããããæ¹çšåŒã§ããã
äžã®é£ç«æ¹çšåŒã¯ã
:<math>
A = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n}\\
\vdots & \ddots & \vdots\\
a_{m,1} & \cdots & a_{m,n}\\ \end{pmatrix} ,
x = \begin{pmatrix} x_1\\ x_2 \\ \vdots \\ x_n \end{pmatrix} ,
b = \begin{pmatrix} b_1\\ b_2 \\ \vdots \\ b_m \end{pmatrix}</math>
ãšããã°
<math>
\ Ax = b
</math>
ãšè¡åãçšããŠæžããã
ä»®ã«ãAãæ£æ¹è¡åã§éè¡åãæã€ãªãã
ãã®åŒã®äžè¬è§£ã¯ã
<math>
\ x = A^{-1} b
</math>
ãšãªãã
ããããããã¯éåžžã«ç¹æ®ãªå Žåã§ãããäžè¬ã«ã¯è§£ãååšããªãããšãããã°ãããã€ãã®è§£ã®éãåããïŒæ£ããã¯ç·åœ¢çµåïŒãšããŠè¡šããããããšãããã
ãã®ç« ã§ã¯ãéè¡åã®åå®çŸ©ããå§ããè¡åã®åºæ¬å€åœ¢ãéæ°çãå°å
¥ããæçµçã«ã¯äžã®ç·åæ¹çšåŒã®äžè¬è§£ãå°ãã
[[Category:ç·åœ¢ä»£æ°åŠ|ããããã»ããŠããã]] | null | 2022-08-31T07:55:07Z | [] | https://ja.wikibooks.org/wiki/%E7%B7%9A%E5%9E%8B%E4%BB%A3%E6%95%B0%E5%AD%A6/%E7%B7%9A%E5%9E%8B%E6%96%B9%E7%A8%8B%E5%BC%8F |
2,010 | ç·åœ¢ä»£æ°åŠ/è¡ååŒ | 1 , 2 , ⯠, n {\displaystyle {1,2,\cdots ,n}} ãäºãã«éè€ããªãããã«ã 1 , 2 , ⯠, n {\displaystyle {1,2,\cdots ,n}} ã«ãã€ãæäœãn次ã®çœ®æãšããã
眮æ Ï {\displaystyle \sigma } ã«ãã£ãŠiããã€ãããè¡ãå
ã Ï ( i ) {\displaystyle \sigma (i)} ãšè¡šãã
眮æ Ï {\displaystyle \sigma } ã¯ã次ã®ããã«ãäžã«ããšã®å
ããäžã®è¡ãå
ã䞊ã¹ãŠè¡šçŸãããã
ããã¯ãè¡åãšåã衚çŸã ããè¡åã§ã¯ãªãããšã«æ³šæããã
äŸãã°ã 1ã2ã«ã2ã3ã«ã3ã1ã«ãã€ã眮æ Ï {\displaystyle \sigma } ã¯ã3次ã®çœ®æã§ããã Ï ( 1 ) = 2 , Ï ( 2 ) = 3 , Ï ( 3 ) = 1 {\displaystyle \sigma (1)=2,\sigma (2)=3,\sigma (3)=1} ãšãªãããã®çœ®æã¯ã Ï = ( 1 2 3 2 3 1 ) {\displaystyle \sigma ={\begin{pmatrix}1&2&3\\2&3&1\end{pmatrix}}} ãšè¡šããã
e = ( 1 2 ⯠n 1 2 ⯠n ) {\displaystyle e={\begin{pmatrix}1&2&\cdots &n\\1&2&\cdots &n\end{pmatrix}}} ã®ããã«ããã¹ãŠã®æŽæ°ãå€åããªã眮æã®ããšãåäœçœ®æãšããã
ãã眮æ Ï {\displaystyle \sigma } ã«å¯Ÿãã Ï â 1 = ( Ï ( 1 ) Ï ( 2 ) â¯ Ï ( n ) 1 2 ⯠n ) {\displaystyle \sigma ^{-1}={\begin{pmatrix}\sigma (1)&\sigma (2)&\cdots &\sigma (n)\\1&2&\cdots &n\end{pmatrix}}} ãé眮æãšããã
n次ã®çœ®æå
šäœã®éåã S n {\displaystyle S_{n}} ãšè¡šãã äŸãã°ã S 3 = { ( 1 2 3 1 2 3 ) , ( 1 2 3 1 3 2 ) , ( 1 2 3 3 2 1 ) , ( 1 2 3 2 1 3 ) , ( 1 2 3 3 1 2 ) , ( 1 2 3 2 3 1 ) } {\displaystyle S_{3}=\left\{{\begin{pmatrix}1&2&3\\1&2&3\end{pmatrix}},{\begin{pmatrix}1&2&3\\1&3&2\end{pmatrix}},{\begin{pmatrix}1&2&3\\3&2&1\end{pmatrix}},{\begin{pmatrix}1&2&3\\2&1&3\end{pmatrix}},{\begin{pmatrix}1&2&3\\3&1&2\end{pmatrix}},{\begin{pmatrix}1&2&3\\2&3&1\end{pmatrix}}\right\}} ã§ããã
n次ã®çœ®æå
šäœã®éåã®åæ°ã n ! {\displaystyle n!} ã§ããããšã¯èªæã§ãããã
眮æ Ï , Ï â S n {\displaystyle \sigma ,\tau \in S_{n}} ã«å¯Ÿãã眮æã®åæã Ï Ï = ( 1 2 ⯠n Ï ( 1 ) Ï ( 2 ) â¯ Ï ( n ) ) ( 1 2 ⯠n Ï ( 1 ) Ï ( 2 ) â¯ Ï ( n ) ) = ( 1 2 ⯠n Ï ( Ï ( 1 ) ) Ï ( Ï ( 2 ) ) â¯ Ï ( Ï ( n ) ) ) {\displaystyle \sigma \tau ={\begin{pmatrix}1&2&\cdots &n\\\sigma (1)&\sigma (2)&\cdots &\sigma (n)\end{pmatrix}}{\begin{pmatrix}1&2&\cdots &n\\\tau (1)&\tau (2)&\cdots &\tau (n)\end{pmatrix}}={\begin{pmatrix}1&2&\cdots &n\\\sigma (\tau (1))&\sigma (\tau (2))&\cdots &\sigma (\tau (n))\end{pmatrix}}} ãšå®ããã ããã¯ã 1 †i †n {\displaystyle 1\leq i\leq n} ã«å¯Ÿãã Ï Ï ( i ) = Ï ( Ï ( i ) ) {\displaystyle \sigma \tau (i)=\sigma (\tau (i))} ãšè¡šèšããããšãã§ããã ãããããšãèšè¿°éãå°ãªããªãã䟿å©ã ããã
眮æã«ã€ããŠã以äžã®æ§è³ªãæãç«ã€ã
Ï = ( 1 2 ⯠i ⯠j ⯠n 1 2 ⯠j ⯠i ⯠n ) {\displaystyle \sigma ={\begin{pmatrix}1&2&\cdots &i&\cdots &j&\cdots n\\1&2&\cdots &j&\cdots &i&\cdots n\end{pmatrix}}} ã®ããã«ãiãšjã ãã亀æãã眮æãäºæãšããã
ä»»æã®çœ®æã¯äºæã®ç©ã§è¡šãããšãã§ããäºæã®åæ°ã®å¶å¥ã¯äºæã®ãšãæ¹ã«ããããåãã§ãããšããæ§è³ªãããã 眮æãäºæã®ç©ã§è¡šãããšããäºæã®åæ°ãå¶æ°åã®çœ®æãå¶çœ®æã奿°åã®çœ®æãå¥çœ®æãšããã
sgn ( Ï ) = { 1 Ï ã å¶ çœ® æ ã® ãš ã â 1 Ï ã å¥ çœ® æ ã® ãš ã {\displaystyle \operatorname {sgn}(\sigma )={\begin{cases}1&\sigma {\text{ã å¶ çœ® æ ã® ãš ã}}\\-1&\sigma {\mbox{ã å¥ çœ® æ ã® ãš ã}}\end{cases}}\ } ã Ï {\displaystyle \sigma } ã®ç¬Šå·ãšããã
è¡å A = ( a 11 ⯠a 1 n â® â± â® a n 1 ⯠a n n ) {\displaystyle A={\begin{pmatrix}a_{11}&\cdots &a_{1n}\\\vdots &\ddots &\vdots \\a_{n1}&\cdots &a_{nn}\end{pmatrix}}} ã«å¯ŸããŠã
| A | = det A = â Ï â S n sgn ( Ï ) a 1 , Ï ( 1 ) ⯠a n , Ï ( n ) {\displaystyle |A|=\det A=\sum _{\sigma \in S_{n}}\operatorname {sgn}(\sigma )a_{1,\sigma (1)}\cdots a_{n,\sigma (n)}} ãAã®è¡ååŒãšããã
â» â Ï â S n {\displaystyle \sum _{\sigma \in S_{n}}} ãšã¯ã Ï {\displaystyle \sigma } ã« S n {\displaystyle S_{n}} ã®å
ããã¹ãŠä»£å
¥ããŠè¶³ãåããããšããæå³ã§ããã ããšãã°ã A = { 1 , 2 , 3 } {\displaystyle A=\{1,2,3\}} ã®ãšãã â i â A {\displaystyle \sum _{i\in A}} ãš â i = 1 3 {\displaystyle \sum _{i=1}^{3}} ã¯åãæå³ã§ããã
2æ¬¡æ£æ¹è¡å A = ( a b c d ) {\displaystyle A={\begin{pmatrix}a&b\\c&d\end{pmatrix}}} ã®è¡ååŒãæ±ããŠã¿ããã è¡ååŒã®å®çŸ©ã«åœãŠã¯ãããšã | A | = â Ï â S 2 sgn ( Ï ) a 1 , Ï ( 1 ) a n , Ï ( 2 ) {\displaystyle |A|=\sum _{\sigma \in S_{2}}\operatorname {sgn}(\sigma )a_{1,\sigma (1)}a_{n,\sigma (2)}} ã§ããã S 2 = { ( 1 2 1 2 ) , ( 1 2 2 1 ) } , sgn ( 1 2 1 2 ) = 1 , sgn ( 1 2 2 1 ) = â 1 {\displaystyle S_{2}=\left\{{\begin{pmatrix}1&2\\1&2\end{pmatrix}},{\begin{pmatrix}1&2\\2&1\end{pmatrix}}\right\},\ \operatorname {sgn} {\begin{pmatrix}1&2\\1&2\end{pmatrix}}=1,\ \operatorname {sgn} {\begin{pmatrix}1&2\\2&1\end{pmatrix}}=-1} ã§ããããè¡ååŒã¯ a d â b c {\displaystyle ad-bc} ã§ããã
3次ã®è¡ååŒã§ã¯ã
det A = | a b c d e f g h i | = a e i + b f g + c d h â a f h â b d i â c e g {\displaystyle \det A={\begin{vmatrix}a&b&c\\d&e&f\\g&h&i\\\end{vmatrix}}=aei+bfg+cdh-afh-bdi-ceg}
ãšãªãã
ããã¯ããSarrus(ãµã©ã¹)ã®å±éããŸãã¯ãSarrusã®æ¹æ³ããããããããã®æ³ããšåŒã¶ãã®ã§ãå³å³ã®ããã«æãã«æ°ãä¹ãããã®ã®åãšèããããšãã§ããã äŸãã°ã第1é
a e i {\displaystyle aei} ã¯ã1è¡1åã® a {\displaystyle a} ããã3è¡3åã® i {\displaystyle i} ãŸã§ãå³äžã«åãã£ãŠé ã«ä¹ãããã®ã«çããããŸããæ¬¡ã® b f g {\displaystyle bfg} ã¯ã1è¡2åã® b {\displaystyle b} ããå§ããŠãå³äžã«åãã£ãŠé ã«ä¹ãããã®ã«çããã2è¡3åã® f {\displaystyle f} ã®æ¬¡ã¯ç«¯ãçªãæããŠã3è¡1åã® g {\displaystyle g} ã«è³ãã第3é
ãåæ§ã§ããã 4ãã6çªç®ã®é
ã¯ãå³äžã«åãã£ãŠã§ã¯ãªãå·Šäž(å³å³ã§ã¯å³äž)ã«åãã£ãŠä¹ããŠã笊å·ãå転ãããã®ã§ããã
4 à 4 {\displaystyle 4\times 4} 以éã®è¡åã§ã¯ãã®ãããªç°¡åãªèšç®æ³ã¯åŸãããªãã é
ã®æ°ã¯ n à n {\displaystyle n\times n} è¡åã§ n ! {\displaystyle n!} åã§ããããã倧ããªè¡åã«ã€ããŠèšç®æ©ã䜿ããã«è¡ååŒãèšç®ããã®ã¯å°é£ã§ããã
è¡ååŒã«ã€ããŠæãç«ã€æ§è³ªã®ãã¡ã以äžã®4ã€ã¯åºæ¬çã§ããã
1. ãš 2. ã®æ§è³ªãåãããŠãåã«ã€ããŠã®å€éç·åæ§ããšããã3. ã®æ§è³ªã¯ãåã«ã€ããŠã®äº€ä»£æ§ããšãããäžè¬ã«ä»»æã®æ£æ¹è¡å A {\displaystyle A} ã«ã€ã㊠| A | = | t A | {\displaystyle |A|=|{}^{t}\!A|} ã§ããããããããã®æ§è³ªã¯è¡ã«ã€ããŠãæãç«ã€ã
ä»»æã®æ£æ¹è¡åã«å¯ŸããŠãã宿°ã察å¿ä»ããäœçšã®ãã¡ããã®4ã€ã®æ§è³ªãå
šãŠæºããã®ã¯è¡ååŒã ãã§ããããã®æ§è³ªãå®çŸ©ãšããŠè¡ååŒãå°åºã§ããã
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "1 , 2 , ⯠, n {\\displaystyle {1,2,\\cdots ,n}} ãäºãã«éè€ããªãããã«ã 1 , 2 , ⯠, n {\\displaystyle {1,2,\\cdots ,n}} ã«ãã€ãæäœãn次ã®çœ®æãšããã",
"title": "眮æ"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "眮æ Ï {\\displaystyle \\sigma } ã«ãã£ãŠiããã€ãããè¡ãå
ã Ï ( i ) {\\displaystyle \\sigma (i)} ãšè¡šãã",
"title": "眮æ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "眮æ Ï {\\displaystyle \\sigma } ã¯ã次ã®ããã«ãäžã«ããšã®å
ããäžã®è¡ãå
ã䞊ã¹ãŠè¡šçŸãããã",
"title": "眮æ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ããã¯ãè¡åãšåã衚çŸã ããè¡åã§ã¯ãªãããšã«æ³šæããã",
"title": "眮æ"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "äŸãã°ã 1ã2ã«ã2ã3ã«ã3ã1ã«ãã€ã眮æ Ï {\\displaystyle \\sigma } ã¯ã3次ã®çœ®æã§ããã Ï ( 1 ) = 2 , Ï ( 2 ) = 3 , Ï ( 3 ) = 1 {\\displaystyle \\sigma (1)=2,\\sigma (2)=3,\\sigma (3)=1} ãšãªãããã®çœ®æã¯ã Ï = ( 1 2 3 2 3 1 ) {\\displaystyle \\sigma ={\\begin{pmatrix}1&2&3\\\\2&3&1\\end{pmatrix}}} ãšè¡šããã",
"title": "眮æ"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "e = ( 1 2 ⯠n 1 2 ⯠n ) {\\displaystyle e={\\begin{pmatrix}1&2&\\cdots &n\\\\1&2&\\cdots &n\\end{pmatrix}}} ã®ããã«ããã¹ãŠã®æŽæ°ãå€åããªã眮æã®ããšãåäœçœ®æãšããã",
"title": "眮æ"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãã眮æ Ï {\\displaystyle \\sigma } ã«å¯Ÿãã Ï â 1 = ( Ï ( 1 ) Ï ( 2 ) â¯ Ï ( n ) 1 2 ⯠n ) {\\displaystyle \\sigma ^{-1}={\\begin{pmatrix}\\sigma (1)&\\sigma (2)&\\cdots &\\sigma (n)\\\\1&2&\\cdots &n\\end{pmatrix}}} ãé眮æãšããã",
"title": "眮æ"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "n次ã®çœ®æå
šäœã®éåã S n {\\displaystyle S_{n}} ãšè¡šãã äŸãã°ã S 3 = { ( 1 2 3 1 2 3 ) , ( 1 2 3 1 3 2 ) , ( 1 2 3 3 2 1 ) , ( 1 2 3 2 1 3 ) , ( 1 2 3 3 1 2 ) , ( 1 2 3 2 3 1 ) } {\\displaystyle S_{3}=\\left\\{{\\begin{pmatrix}1&2&3\\\\1&2&3\\end{pmatrix}},{\\begin{pmatrix}1&2&3\\\\1&3&2\\end{pmatrix}},{\\begin{pmatrix}1&2&3\\\\3&2&1\\end{pmatrix}},{\\begin{pmatrix}1&2&3\\\\2&1&3\\end{pmatrix}},{\\begin{pmatrix}1&2&3\\\\3&1&2\\end{pmatrix}},{\\begin{pmatrix}1&2&3\\\\2&3&1\\end{pmatrix}}\\right\\}} ã§ããã",
"title": "眮æ"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "n次ã®çœ®æå
šäœã®éåã®åæ°ã n ! {\\displaystyle n!} ã§ããããšã¯èªæã§ãããã",
"title": "眮æ"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "眮æ Ï , Ï â S n {\\displaystyle \\sigma ,\\tau \\in S_{n}} ã«å¯Ÿãã眮æã®åæã Ï Ï = ( 1 2 ⯠n Ï ( 1 ) Ï ( 2 ) â¯ Ï ( n ) ) ( 1 2 ⯠n Ï ( 1 ) Ï ( 2 ) â¯ Ï ( n ) ) = ( 1 2 ⯠n Ï ( Ï ( 1 ) ) Ï ( Ï ( 2 ) ) â¯ Ï ( Ï ( n ) ) ) {\\displaystyle \\sigma \\tau ={\\begin{pmatrix}1&2&\\cdots &n\\\\\\sigma (1)&\\sigma (2)&\\cdots &\\sigma (n)\\end{pmatrix}}{\\begin{pmatrix}1&2&\\cdots &n\\\\\\tau (1)&\\tau (2)&\\cdots &\\tau (n)\\end{pmatrix}}={\\begin{pmatrix}1&2&\\cdots &n\\\\\\sigma (\\tau (1))&\\sigma (\\tau (2))&\\cdots &\\sigma (\\tau (n))\\end{pmatrix}}} ãšå®ããã ããã¯ã 1 †i †n {\\displaystyle 1\\leq i\\leq n} ã«å¯Ÿãã Ï Ï ( i ) = Ï ( Ï ( i ) ) {\\displaystyle \\sigma \\tau (i)=\\sigma (\\tau (i))} ãšè¡šèšããããšãã§ããã ãããããšãèšè¿°éãå°ãªããªãã䟿å©ã ããã",
"title": "眮æ"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "眮æã«ã€ããŠã以äžã®æ§è³ªãæãç«ã€ã",
"title": "眮æ"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "Ï = ( 1 2 ⯠i ⯠j ⯠n 1 2 ⯠j ⯠i ⯠n ) {\\displaystyle \\sigma ={\\begin{pmatrix}1&2&\\cdots &i&\\cdots &j&\\cdots n\\\\1&2&\\cdots &j&\\cdots &i&\\cdots n\\end{pmatrix}}} ã®ããã«ãiãšjã ãã亀æãã眮æãäºæãšããã",
"title": "眮æ"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ä»»æã®çœ®æã¯äºæã®ç©ã§è¡šãããšãã§ããäºæã®åæ°ã®å¶å¥ã¯äºæã®ãšãæ¹ã«ããããåãã§ãããšããæ§è³ªãããã 眮æãäºæã®ç©ã§è¡šãããšããäºæã®åæ°ãå¶æ°åã®çœ®æãå¶çœ®æã奿°åã®çœ®æãå¥çœ®æãšããã",
"title": "眮æ"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "sgn ( Ï ) = { 1 Ï ã å¶ çœ® æ ã® ãš ã â 1 Ï ã å¥ çœ® æ ã® ãš ã {\\displaystyle \\operatorname {sgn}(\\sigma )={\\begin{cases}1&\\sigma {\\text{ã å¶ çœ® æ ã® ãš ã}}\\\\-1&\\sigma {\\mbox{ã å¥ çœ® æ ã® ãš ã}}\\end{cases}}\\ } ã Ï {\\displaystyle \\sigma } ã®ç¬Šå·ãšããã",
"title": "眮æ"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "è¡å A = ( a 11 ⯠a 1 n â® â± â® a n 1 ⯠a n n ) {\\displaystyle A={\\begin{pmatrix}a_{11}&\\cdots &a_{1n}\\\\\\vdots &\\ddots &\\vdots \\\\a_{n1}&\\cdots &a_{nn}\\end{pmatrix}}} ã«å¯ŸããŠã",
"title": "è¡ååŒ"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "| A | = det A = â Ï â S n sgn ( Ï ) a 1 , Ï ( 1 ) ⯠a n , Ï ( n ) {\\displaystyle |A|=\\det A=\\sum _{\\sigma \\in S_{n}}\\operatorname {sgn}(\\sigma )a_{1,\\sigma (1)}\\cdots a_{n,\\sigma (n)}} ãAã®è¡ååŒãšããã",
"title": "è¡ååŒ"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "â» â Ï â S n {\\displaystyle \\sum _{\\sigma \\in S_{n}}} ãšã¯ã Ï {\\displaystyle \\sigma } ã« S n {\\displaystyle S_{n}} ã®å
ããã¹ãŠä»£å
¥ããŠè¶³ãåããããšããæå³ã§ããã ããšãã°ã A = { 1 , 2 , 3 } {\\displaystyle A=\\{1,2,3\\}} ã®ãšãã â i â A {\\displaystyle \\sum _{i\\in A}} ãš â i = 1 3 {\\displaystyle \\sum _{i=1}^{3}} ã¯åãæå³ã§ããã",
"title": "è¡ååŒ"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "2æ¬¡æ£æ¹è¡å A = ( a b c d ) {\\displaystyle A={\\begin{pmatrix}a&b\\\\c&d\\end{pmatrix}}} ã®è¡ååŒãæ±ããŠã¿ããã è¡ååŒã®å®çŸ©ã«åœãŠã¯ãããšã | A | = â Ï â S 2 sgn ( Ï ) a 1 , Ï ( 1 ) a n , Ï ( 2 ) {\\displaystyle |A|=\\sum _{\\sigma \\in S_{2}}\\operatorname {sgn}(\\sigma )a_{1,\\sigma (1)}a_{n,\\sigma (2)}} ã§ããã S 2 = { ( 1 2 1 2 ) , ( 1 2 2 1 ) } , sgn ( 1 2 1 2 ) = 1 , sgn ( 1 2 2 1 ) = â 1 {\\displaystyle S_{2}=\\left\\{{\\begin{pmatrix}1&2\\\\1&2\\end{pmatrix}},{\\begin{pmatrix}1&2\\\\2&1\\end{pmatrix}}\\right\\},\\ \\operatorname {sgn} {\\begin{pmatrix}1&2\\\\1&2\\end{pmatrix}}=1,\\ \\operatorname {sgn} {\\begin{pmatrix}1&2\\\\2&1\\end{pmatrix}}=-1} ã§ããããè¡ååŒã¯ a d â b c {\\displaystyle ad-bc} ã§ããã",
"title": "è¡ååŒ"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "3次ã®è¡ååŒã§ã¯ã",
"title": "è¡ååŒ"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "det A = | a b c d e f g h i | = a e i + b f g + c d h â a f h â b d i â c e g {\\displaystyle \\det A={\\begin{vmatrix}a&b&c\\\\d&e&f\\\\g&h&i\\\\\\end{vmatrix}}=aei+bfg+cdh-afh-bdi-ceg}",
"title": "è¡ååŒ"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ãšãªãã",
"title": "è¡ååŒ"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ããã¯ããSarrus(ãµã©ã¹)ã®å±éããŸãã¯ãSarrusã®æ¹æ³ããããããããã®æ³ããšåŒã¶ãã®ã§ãå³å³ã®ããã«æãã«æ°ãä¹ãããã®ã®åãšèããããšãã§ããã äŸãã°ã第1é
a e i {\\displaystyle aei} ã¯ã1è¡1åã® a {\\displaystyle a} ããã3è¡3åã® i {\\displaystyle i} ãŸã§ãå³äžã«åãã£ãŠé ã«ä¹ãããã®ã«çããããŸããæ¬¡ã® b f g {\\displaystyle bfg} ã¯ã1è¡2åã® b {\\displaystyle b} ããå§ããŠãå³äžã«åãã£ãŠé ã«ä¹ãããã®ã«çããã2è¡3åã® f {\\displaystyle f} ã®æ¬¡ã¯ç«¯ãçªãæããŠã3è¡1åã® g {\\displaystyle g} ã«è³ãã第3é
ãåæ§ã§ããã 4ãã6çªç®ã®é
ã¯ãå³äžã«åãã£ãŠã§ã¯ãªãå·Šäž(å³å³ã§ã¯å³äž)ã«åãã£ãŠä¹ããŠã笊å·ãå転ãããã®ã§ããã",
"title": "è¡ååŒ"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "4 à 4 {\\displaystyle 4\\times 4} 以éã®è¡åã§ã¯ãã®ãããªç°¡åãªèšç®æ³ã¯åŸãããªãã é
ã®æ°ã¯ n à n {\\displaystyle n\\times n} è¡åã§ n ! {\\displaystyle n!} åã§ããããã倧ããªè¡åã«ã€ããŠèšç®æ©ã䜿ããã«è¡ååŒãèšç®ããã®ã¯å°é£ã§ããã",
"title": "è¡ååŒ"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "è¡ååŒã«ã€ããŠæãç«ã€æ§è³ªã®ãã¡ã以äžã®4ã€ã¯åºæ¬çã§ããã",
"title": "è¡ååŒ"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "1. ãš 2. ã®æ§è³ªãåãããŠãåã«ã€ããŠã®å€éç·åæ§ããšããã3. ã®æ§è³ªã¯ãåã«ã€ããŠã®äº€ä»£æ§ããšãããäžè¬ã«ä»»æã®æ£æ¹è¡å A {\\displaystyle A} ã«ã€ã㊠| A | = | t A | {\\displaystyle |A|=|{}^{t}\\!A|} ã§ããããããããã®æ§è³ªã¯è¡ã«ã€ããŠãæãç«ã€ã",
"title": "è¡ååŒ"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ä»»æã®æ£æ¹è¡åã«å¯ŸããŠãã宿°ã察å¿ä»ããäœçšã®ãã¡ããã®4ã€ã®æ§è³ªãå
šãŠæºããã®ã¯è¡ååŒã ãã§ããããã®æ§è³ªãå®çŸ©ãšããŠè¡ååŒãå°åºã§ããã",
"title": "è¡ååŒ"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "",
"title": "è¡ååŒ"
}
] | null | {{ããã²ãŒã·ã§ã³|æ¬=[[ç·å代æ°åŠ]]|åããŒãž=[[ç·å代æ°åŠ/ç·åæ¹çšåŒã®è§£|ç·åæ¹çšåŒã®è§£]]|ããŒãžå=è¡ååŒ|次ããŒãž=[[ç·åœ¢ä»£æ°åŠ/äœå åè¡å|äœå åè¡å]]}}
==眮æ==
===眮æ===
<math>{1,2, \cdots, n}</math>ãäºãã«éè€ããªãããã«ã<math>{1,2, \cdots, n}</math>ã«ãã€ãæäœã'''n次ã®çœ®æ'''ãšããã
眮æ<math>\sigma</math>ã«ãã£ãŠiããã€ãããè¡ãå
ã<math>\sigma (i)</math>ãšè¡šãã
眮æ<math>\sigma</math>ã¯ã次ã®ããã«ãäžã«ããšã®å
ããäžã®è¡ãå
ã䞊ã¹ãŠè¡šçŸãããã
:<math>\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma (1) & \sigma (2) & \cdots & \sigma (n) \end{pmatrix}</math>
ããã¯ãè¡åãšåã衚çŸã ããè¡åã§ã¯ãªãããšã«æ³šæããã
äŸãã°ã
1ã2ã«ã2ã3ã«ã3ã1ã«ãã€ã眮æ<math>\sigma</math>ã¯ã3次ã®çœ®æã§ããã<math>\sigma (1) = 2, \sigma (2) = 3, \sigma (3) = 1</math>ãšãªãããã®çœ®æã¯ã
<math>\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}</math>ãšè¡šããã
===åäœçœ®æ===
<math>e = \begin{pmatrix} 1 & 2 & \cdots & n \\ 1 & 2 & \cdots &n \end{pmatrix}</math>ã®ããã«ããã¹ãŠã®æŽæ°ãå€åããªã眮æã®ããšã'''åäœçœ®æ'''ãšããã
===é眮æ===
ãã眮æ<math>\sigma</math>ã«å¯Ÿãã<math>\sigma ^{-1} = \begin{pmatrix} \sigma (1) & \sigma (2) & \cdots & \sigma (n) \\ 1 & 2 & \cdots & n \end{pmatrix}</math>ã'''é眮æ'''ãšããã
===眮æå
šäœã®éå===
n次ã®çœ®æå
šäœã®éåã<math>S_n</math>ãšè¡šãã
äŸãã°ã<math>S_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \right\}</math>ã§ããã
n次ã®çœ®æå
šäœã®éåã®åæ°ã<math>n!</math>ã§ããããšã¯èªæã§ãããã
===眮æã®åæ===
眮æ<math>\sigma, \tau \in S_n</math>ã«å¯Ÿãã眮æã®åæã<math>\sigma \tau = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma (1) & \sigma (2) & \cdots & \sigma (n) \end{pmatrix} \begin{pmatrix} 1 & 2 & \cdots & n \\ \tau (1) & \tau (2) & \cdots & \tau (n) \end{pmatrix} =\begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma (\tau (1)) & \sigma (\tau (2)) & \cdots & \sigma (\tau (n)) \end{pmatrix}</math>ãšå®ããã<br>
ããã¯ã<math>1 \le i \le n</math>ã«å¯Ÿãã<math>\sigma \tau (i) = \sigma (\tau(i))</math>ãšè¡šèšããããšãã§ããã
ãããããšãèšè¿°éãå°ãªããªãã䟿å©ã ããã
===眮æã®æ§è³ª===
眮æã«ã€ããŠã以äžã®æ§è³ªãæãç«ã€ã
#<math>(\sigma \tau) \rho = \sigma (\tau \rho) </math>
#<math> \sigma e = e \sigma = \sigma </math>
#<math>\sigma \sigma^{-1} = \sigma^{-1} \sigma = e</math>
; 蚌æ
#<math>1 \le i \le n</math>ã«å¯Ÿãã<br><math>((\sigma \tau) \rho)(i) = (\sigma \tau) (\rho (i)) = \sigma (\tau (\rho (i)))</math><br><br><math>(\sigma (\tau \rho))(i) = (\sigma)(\tau \rho (i)) = \sigma (\tau (\rho (i)))</math><br><br>ãã£ãŠã<math>(\sigma \tau) \rho = \sigma (\tau \rho) </math>ã§ããã<br><br><br>
#<math>1 \le i \le n</math>ã«å¯Ÿãã<br><math> (\sigma e)(i) = (\sigma (e(i))) = \sigma (i)</math><br><br><math> e \sigma = (e (\sigma(i))) = \sigma (i)</math><br><br>ãã£ãŠ<math> \sigma e = e \sigma = \sigma </math>ã§ããã<br><br><br>
#<math>1 \le i \le n</math>ã«å¯Ÿãã<br><math>(\sigma \sigma^{-1})(i) = (\sigma (\sigma^{-1} (i) )) = i</math><br><br><math>(\sigma^{-1} \sigma)(i) = (\sigma^{-1} (\sigma (i) )) = i</math><br><br>ãã£ãŠ<math>\sigma \sigma^{-1} = \sigma^{-1} \sigma = e</math>ã§ããã
===äºæ===
<math>\sigma = \begin{pmatrix} 1 & 2 & \cdots & i & \cdots & j & \cdots n \\ 1 & 2 & \cdots & j & \cdots & i & \cdots n \end{pmatrix}</math>ã®ããã«ãiãšjã ãã亀æãã眮æã'''äºæ'''ãšããã
ä»»æã®çœ®æã¯äºæã®ç©ã§è¡šãããšãã§ããäºæã®åæ°ã®å¶å¥ã¯äºæã®ãšãæ¹ã«ããããåãã§ãããšããæ§è³ªãããã
眮æãäºæã®ç©ã§è¡šãããšããäºæã®åæ°ãå¶æ°åã®çœ®æã'''å¶çœ®æ'''ã奿°åã®çœ®æã'''å¥çœ®æ'''ãšããã
; 蚌æ
=== 笊å·===
<math>
\sgn(\sigma) = \begin{cases} 1 & \sigma \text{ã å¶ çœ® æ ã® ãš ã} \\ -1 & \sigma \mbox{ã å¥ çœ® æ ã® ãš ã} \end{cases}\
</math> ã <math>\sigma</math> ã®'''笊å·'''ãšããã
==è¡ååŒ==
è¡å
<math>
A =
\begin{pmatrix}
a _{11} & \cdots & a _{1n} \\
\vdots & \ddots & \vdots \\
a _{n1} & \cdots & a _{nn}
\end{pmatrix}
</math>
ã«å¯ŸããŠã
<math>
|A| = \det A = \sum _{\sigma \in S_n} \sgn(\sigma) a _{1, \sigma (1)} \cdots a _{n, \sigma (n)}
</math>
ãAã®è¡ååŒãšããã
â» <math>\sum _{\sigma \in S_n}</math> ãšã¯ã<math>\sigma</math> ã« <math>S_n</math> ã®å
ããã¹ãŠä»£å
¥ããŠè¶³ãåããããšããæå³ã§ããã<br>
ããšãã°ã<math>A=\{1,2,3\}</math> ã®ãšãã<math>\sum_{i \in A}</math> ãš <math>\sum_{i=1}^{3}</math> ã¯åãæå³ã§ããã
2æ¬¡æ£æ¹è¡å<math>
A =
\begin{pmatrix}
a&b\\
c&d
\end{pmatrix}
</math>ã®è¡ååŒãæ±ããŠã¿ããã<br>
è¡ååŒã®å®çŸ©ã«åœãŠã¯ãããšã<math>|A| = \sum _{\sigma \in S_2} \sgn(\sigma) a _{1, \sigma (1)} a _{n, \sigma (2)}</math> ã§ããã<br>
<math>S_2 = \left\{ \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \right\},\ \sgn \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} = 1,\ \sgn \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = -1</math><br>
ã§ããããè¡ååŒã¯ <math>ad-bc</math> ã§ããã
3次ã®è¡ååŒã§ã¯ã
<math>
\det A =
\begin{vmatrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{vmatrix}
= aei + bfg + cdh - afh - bdi -ceg
</math>
ãšãªãã
[[File:Schema sarrus-regel.png|alt=|thumb|ãµã©ã¹ã®æ¹æ³: å·Šäžåã®è¡ååŒã¯ãèµ€ç·ã§çµãã æãäžé
ã®ç©ã®åããéç·ã§çµãã éæãäžé
ã®ç©ã®åãåŒãããã®ã«ãªãã]]
ããã¯ããSarrus(ãµã©ã¹)ã®å±éããŸãã¯ãSarrusã®æ¹æ³ããããããããã®æ³ããšåŒã¶ãã®ã§ãå³å³ã®ããã«æãã«æ°ãä¹ãããã®ã®åãšèããããšãã§ããã
äŸãã°ã第1é
<math>aei</math> ã¯ã1è¡1åã® <math>a</math> ããã3è¡3åã® <math>i</math> ãŸã§ãå³äžã«åãã£ãŠé ã«ä¹ãããã®ã«çããããŸããæ¬¡ã® <math>bfg</math> ã¯ã1è¡2åã® <math>b</math> ããå§ããŠãå³äžã«åãã£ãŠé ã«ä¹ãããã®ã«çããã2è¡3åã® <math>f</math> ã®æ¬¡ã¯ç«¯ãçªãæããŠã3è¡1åã® <math>g</math> ã«è³ãã第3é
ãåæ§ã§ããã
4ãã6çªç®ã®é
ã¯ãå³äžã«åãã£ãŠã§ã¯ãªãå·ŠäžïŒå³å³ã§ã¯å³äžïŒã«åãã£ãŠä¹ããŠã笊å·ãå転ãããã®ã§ããã
<math>4 \times 4</math> 以éã®è¡åã§ã¯ãã®ãããªç°¡åãªèšç®æ³ã¯åŸãããªãã
é
ã®æ°ã¯ <math>n \times n</math> è¡åã§ <math>n!</math> åã§ããããã倧ããªè¡åã«ã€ããŠèšç®æ©ã䜿ããã«è¡ååŒãèšç®ããã®ã¯å°é£ã§ããã
===è¡ååŒã®åºæ¬æ§è³ª===
è¡ååŒã«ã€ããŠæãç«ã€æ§è³ªã®ãã¡ã以äžã®4ã€ã¯åºæ¬çã§ããã
#<math>\begin{vmatrix}
a_{1,1} & \cdots & a_{1,i} + a_{1,i}' & \cdots & a_{1,n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n,1} & \cdots & a_{n,i} + a_{n,i}' & \cdots & a_{n,n} \\
\end{vmatrix} =
\begin{vmatrix}
a_{1,1} & \cdots & a_{1,i} & \cdots & a_{1,n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n,1} & \cdots & a_{n,i} & \cdots & a_{n,n} \\ \end{vmatrix} +
\begin{vmatrix}
a_{1,1} & \cdots & a_{1,i}' & \cdots & a_{1,n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n,1} & \cdots & a_{n,i}' & \cdots & a_{n,n} \\
\end{vmatrix}
</math>
#<math>\begin{vmatrix}
a_{1,1} & \cdots & c a_{1,i} & \cdots & a_{1,n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n,1} & \cdots & c a_{n,i} & \cdots & a_{n,n} \\ \end{vmatrix} =
c \begin{vmatrix}
a_{1,1} & \cdots & a_{1,i} & \cdots & a_{1,n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n,1} & \cdots & a_{n,i} & \cdots & a_{n,n} \\ \end{vmatrix}
</math>
#<math>\begin{vmatrix}a_{1,1} & \cdots & a_{1,i} & \cdots & a_{1,j} & \cdots & a_{1,n} \\
\vdots & \ddots & \vdots & \ddots& \vdots & \ddots & \vdots \\
a_{n,1} & \cdots & a_{n,i} & \cdots & a_{n,j} & \cdots & a_{n,n} \\ \end{vmatrix}
= - \begin{vmatrix}a_{1,1} & \cdots & a_{1,j} & \cdots & a_{1,i} & \cdots & a_{1,n} \\
\vdots & \ddots & \vdots & \ddots& \vdots & \ddots & \vdots \\
a_{n,1} & \cdots & a_{n,j} & \cdots & a_{n,i} & \cdots & a_{n,n} \\ \end{vmatrix}</math>
#åäœè¡åã®è¡ååŒã¯1ã
1. ãš 2. ã®æ§è³ªãåãããŠãåã«ã€ããŠã®'''å€éç·åæ§'''ããšããã3. ã®æ§è³ªã¯ãåã«ã€ããŠã®'''亀代æ§'''ããšãããäžè¬ã«ä»»æã®æ£æ¹è¡å <math>A</math> ã«ã€ããŠ<math>|A|=|{}^t\!A|</math> ã§ããããããããã®æ§è³ªã¯è¡ã«ã€ããŠãæãç«ã€ã
; 蚌æ
#<math>\sum_{\sigma \in S_n} \sgn(\sigma) a_{1,\sigma(1)} \cdots (a_{i,\sigma(i)} + a_{i,\sigma(i)}') \cdots a_{n,\sigma(n)}
= \sum_{\sigma \in S_n} (\sgn(\sigma) a_{1,\sigma(1)} \cdots a_{i,\sigma(i)} \cdots a_{n,\sigma(n)}
+ \sgn(\sigma) a_{1,\sigma(1)} \cdots a_{i,\sigma(i)}' \cdots a_{n,\sigma(n)})</math><br><math>
= \sum_{\sigma \in S_n} \sgn(\sigma) a_{1,\sigma(1)} \cdots a_{i,\sigma(i)} \cdots a_{n,\sigma(n)}
+ \sum_{\sigma \in S_n} \sgn(\sigma) a_{1,\sigma(1)} \cdots a_{i,\sigma(i)}' \cdots a_{n,\sigma(n)}.</math> ãã£ãŠèšŒæãããã
#<math>\sum_{\sigma \in S_n} \sgn(\sigma) a_{1,\sigma(1)} \cdots c a_{i,\sigma(i)} \cdots a_{n,\sigma(n)}
= c \sum_{\sigma \in S_n} \sgn(\sigma) a_{1,\sigma(1)} \cdots a_{i,\sigma(i)} \cdots a_{n,\sigma(n)}.</math> ãã£ãŠèšŒæãããã
# n次ã®çœ®æ <math>\sigma</math> ã« <math>i,j</math> ã®äºæãåæãã眮æã <math>\tau</math> ãšããããã®ãšã <math>\sigma(i)=\tau(j),\ \sigma(j)=\tau(i),\ \sigma(k)=\tau(k)\ (k\neq i,j)</math> ã§ããããã <math>\sigma</math> ãå¥çœ®æã§ããã° <math>\tau</math> ã¯å¶çœ®æã<math>\sigma</math> ãå¶çœ®æã§ããã° <math>\tau</math> ã¯å¥çœ®æã§ãããã <math>\sgn(\tau) = - \sgn(\sigma)</math> ã§ãããããã«<br><math>
\sum_{\sigma \in S_n} \sgn(\sigma) a_{1,\sigma(1)} \cdots a_{i,\sigma(i)} \cdots a_{j,\sigma(j)} \cdots a_{n,\sigma(n)}
= \sum_{\tau \in S_n} (- \sgn(\tau)) a_{1,\tau(1)} \cdots a_{i,\tau(j)} \cdots a_{j,\tau(i)} \cdots a_{n,\tau(n)}</math><br><math>
= - \sum_{\tau \in S_n} \sgn(\tau) a_{1,\tau(1)} \cdots a_{i,\tau(i)} \cdots a_{j,\tau(j)} \cdots a_{n,\tau(n)}.</math> ãã£ãŠèšŒæãããã
# è¡ååŒãèšç®ãããšãå¯Ÿè§æåã®ç©ã®é
ã1ããã以å€ã®é
ã¯0ã«ãªãããšããçŽã¡ã«åŸãããã
: (転眮ã«ã€ããŠã®äžå€æ§)ãä»»æã®çœ®æãšãã®é眮æã«ã€ããŠç¬Šå·ã¯çããããã<math>\tau = \sigma^{-1}</math> ãšããŠä»¥äžã®ããã«ç€ºãããã
:: <math>|{}^t\!A| = \sum_{\sigma \in S_n} \sgn(\sigma) a_{\sigma(1),1} \cdots a_{\sigma(n),n}
= \sum_{\sigma \in S_n} \sgn(\sigma^{-1}) a_{1,\sigma^{-1}(1)} \cdots a_{n,\sigma^{-1}(n)}
= \sum_{\tau \in S_n} \sgn(\tau) a_{1,\tau(1)} \cdots a_{n,\tau(n)} = |A|.</math>
ä»»æã®æ£æ¹è¡åã«å¯ŸããŠãã宿°ã察å¿ä»ããäœçšã®ãã¡ããã®4ã€ã®æ§è³ªãå
šãŠæºããã®ã¯è¡ååŒã ãã§ããããã®æ§è³ªãå®çŸ©ãšããŠè¡ååŒãå°åºã§ããã
{{ããã²ãŒã·ã§ã³|æ¬=[[ç·å代æ°åŠ]]|åããŒãž=[[ç·å代æ°åŠ/ç·åæ¹çšåŒã®è§£|ç·åæ¹çšåŒã®è§£]]|ããŒãžå=è¡ååŒ|次ããŒãž=[[ç·åœ¢ä»£æ°åŠ/äœå åè¡å|äœå åè¡å]]}}
[[Category:ç·åœ¢ä»£æ°åŠ|ããããã€ãã]] | null | 2021-03-09T12:38:08Z | [
"ãã³ãã¬ãŒã:ããã²ãŒã·ã§ã³"
] | https://ja.wikibooks.org/wiki/%E7%B7%9A%E5%BD%A2%E4%BB%A3%E6%95%B0%E5%AD%A6/%E8%A1%8C%E5%88%97%E5%BC%8F |
2,013 | ç·åœ¢ä»£æ°åŠ/äœå åè¡å | æ£æ¹è¡å A {\displaystyle A} ã«å¯ŸããŠã è¡åã® i {\displaystyle i} è¡ç®ãš j {\displaystyle j} åç®ãåãé€ããŠåŸãããè¡åã A i j {\displaystyle A_{ij}} ãšè¡šãããã®ãšãã
a ~ i j = ( â 1 ) i + j | A i j | {\displaystyle {\tilde {a}}_{ij}=(-1)^{i+j}|A_{ij}|} ã A {\displaystyle A} ã® ( i , j ) {\displaystyle (i,j)} äœå åãšããã
( 5 0 8 1 9 3 7 5 2 ) {\displaystyle {\begin{pmatrix}5&0&8\\1&9&3\\7&5&2\end{pmatrix}}} ã® ( 2 , 2 ) {\displaystyle (2,2)} äœå åã¯ã ( â 1 ) 2 + 2 | 5 8 7 2 | = â 46 {\displaystyle (-1)^{2+2}{\begin{vmatrix}5&8\\7&2\end{vmatrix}}=-46} ã§ããã
次ã®ããã«ãäœå åãå©çšããããšã§ãè¡ååŒãæ±ããããšãã§ããã
| A | = a j 1 a ~ j 1 + a j 2 a ~ j 2 + ⯠+ a j n a ~ j n ( 1 †j †n ) {\displaystyle |A|=a_{j1}{\tilde {a}}_{j1}+a_{j2}{\tilde {a}}_{j2}+\cdots +a_{jn}{\tilde {a}}_{jn}(1\leq j\leq n)}
| A | = a 1 i a ~ 1 i + a 2 i a ~ 2 i + ⯠+ a n i a ~ n i ( 1 †i †n ) {\displaystyle |A|=a_{1i}{\tilde {a}}_{1i}+a_{2i}{\tilde {a}}_{2i}+\cdots +a_{ni}{\tilde {a}}_{ni}(1\leq i\leq n)}
ãã ãã A {\displaystyle A} 㯠n {\displaystyle n} æ¬¡æ£æ¹è¡åã§ããã
ããããäœå åå±éãšããã
蚌æ
A = ( a 11 ⯠a 1 n ⮠Ⱡ⮠a n 1 ⯠a n n ) {\displaystyle A={\begin{pmatrix}a_{11}&\cdots &a_{1n}\\\vdots &\ddots &\vdots \\a_{n1}&\cdots &a_{nn}\end{pmatrix}}}
ãšããããã®ãšãã
ã§ãããããã§ãè¡å A {\displaystyle A} ã® j {\displaystyle j} åç® ( a 1 j a 2 j â® a n j ) {\displaystyle {\begin{pmatrix}a_{1j}\\a_{2j}\\\vdots \\a_{nj}\end{pmatrix}}} ã¯ã a 1 j ( 1 0 â® 0 ) + a 2 j ( 0 1 â® 0 ) + ⯠+ a n j ( 0 0 â® 1 ) {\displaystyle a_{1j}{\begin{pmatrix}1\\0\\\vdots \\0\end{pmatrix}}+a_{2j}{\begin{pmatrix}0\\1\\\vdots \\0\end{pmatrix}}+\cdots +a_{nj}{\begin{pmatrix}0\\0\\\vdots \\1\end{pmatrix}}} ãšè¡šãããšãã§ãã (1)åŒã¯ã | ( a 11 a 21 â® a n 1 ) , ⯠, a 1 j ( 1 0 â® 0 ) + a 2 j ( 0 1 â® 0 ) + ⯠+ a n j ( 0 0 â® 1 ) , ⯠, ( a n 1 a n 2 â® a n n ) | {\displaystyle \left|{\begin{pmatrix}a_{11}\\a_{21}\\\vdots \\a_{n1}\end{pmatrix}},\cdots ,a_{1j}{\begin{pmatrix}1\\0\\\vdots \\0\end{pmatrix}}+a_{2j}{\begin{pmatrix}0\\1\\\vdots \\0\end{pmatrix}}+\cdots +a_{nj}{\begin{pmatrix}0\\0\\\vdots \\1\end{pmatrix}},\cdots ,{\begin{pmatrix}a_{n1}\\a_{n2}\\\vdots \\a_{nn}\end{pmatrix}}\right|} ãšã衚ãããšãã§ãããããã«ãè¡ååŒã®æ§è³ªã䜿ãã°ã a 1 j | a 11 ⯠1 ⯠a 1 n a 21 ⯠0 ⯠a 2 n â® â± â® â± â® a n 1 ⯠0 ⯠a n n | + a 2 j | a 11 ⯠0 ⯠a 1 n a 21 ⯠1 ⯠a 2 n â® â± â® â± â® a n 1 ⯠0 ⯠a n n | + ⯠+ a n j | a 11 ⯠0 ⯠a 1 n a 21 ⯠0 ⯠a 2 n â® â± â® â± â® a n 1 ⯠1 ⯠a n n | ⯠( 2 ) {\displaystyle a_{1j}{\begin{vmatrix}a_{11}&\cdots &1&\cdots &a_{1n}\\a_{21}&\cdots &0&\cdots &a_{2n}\\\vdots &\ddots &\vdots &\ddots &\vdots \\a_{n1}&\cdots &0&\cdots &a_{nn}\end{vmatrix}}+a_{2j}{\begin{vmatrix}a_{11}&\cdots &0&\cdots &a_{1n}\\a_{21}&\cdots &1&\cdots &a_{2n}\\\vdots &\ddots &\vdots &\ddots &\vdots \\a_{n1}&\cdots &0&\cdots &a_{nn}\end{vmatrix}}+\cdots +a_{nj}{\begin{vmatrix}a_{11}&\cdots &0&\cdots &a_{1n}\\a_{21}&\cdots &0&\cdots &a_{2n}\\\vdots &\ddots &\vdots &\ddots &\vdots \\a_{n1}&\cdots &1&\cdots &a_{nn}\end{vmatrix}}\cdots (2)} ã§ããã
ããã§ã | a 11 ⯠0 ⯠a 1 n a 21 ⯠0 ⯠a 2 n â® â± â® â± â® a i 1 ⯠1 ⯠a i n â® â± â® â± â® a n 1 ⯠0 ⯠a n n | {\displaystyle {\begin{vmatrix}a_{11}&\cdots &0&\cdots &a_{1n}\\a_{21}&\cdots &0&\cdots &a_{2n}\\\vdots &\ddots &\vdots &\ddots &\vdots \\a_{i1}&\cdots &1&\cdots &a_{in}\\\vdots &\ddots &\vdots &\ddots &\vdots \\a_{n1}&\cdots &0&\cdots &a_{nn}\end{vmatrix}}} ã«ã€ããŠèããã
ãã®è¡åã® i {\displaystyle i} è¡ç®ãšã i â 1 {\displaystyle i-1} è¡ç®ãå
¥ãæ¿ãã i â 1 {\displaystyle i-1} è¡ç®ãšã i â 2 {\displaystyle i-2} è¡ç®ãå
¥ãæ¿ãããã»ã»ã» 2 {\displaystyle 2} è¡ç®ãšã 1 {\displaystyle 1} è¡ç®ãå
¥ãæ¿ããããšããæäœããããšã次ã®ãããªè¡åã«ãªãã ( â 1 ) i â 1 | a i 1 ⯠1 ⯠a i n a 11 ⯠0 ⯠a 1 n a 21 ⯠0 ⯠a 2 n â® â± â® â± â® a i â 1 , 1 ⯠0 ⯠a i â 1 , n a i + 1 , 1 ⯠0 ⯠a i + 1 , n â® â± â® â± â® a n 1 ⯠0 ⯠a n n | {\displaystyle (-1)^{i-1}{\begin{vmatrix}a_{i1}&\cdots &1&\cdots &a_{in}\\a_{11}&\cdots &0&\cdots &a_{1n}\\a_{21}&\cdots &0&\cdots &a_{2n}\\\vdots &\ddots &\vdots &\ddots &\vdots \\a_{i-1,1}&\cdots &0&\cdots &a_{i-1,n}\\a_{i+1,1}&\cdots &0&\cdots &a_{i+1,n}\\\vdots &\ddots &\vdots &\ddots &\vdots \\a_{n1}&\cdots &0&\cdots &a_{nn}\end{vmatrix}}}
è¡åã®è¡ãŸãã¯åãå
¥ãæ¿ãããšãè¡ååŒã®å€ã¯ â 1 {\displaystyle -1} åãããã®ã ã£ãããã®æäœã§ã¯ã i â 1 {\displaystyle i-1} åã®å
¥ãæ¿ããè¡ãã®ã§ããã®åŒã¯ã ( â 1 ) i â 1 {\displaystyle (-1)^{i-1}} åãããŠããã
次ã«ãåãããã«ã j {\displaystyle j} åç®ãšã j â 1 {\displaystyle j-1} åç®ãå
¥ãæ¿ããã j â 1 {\displaystyle j-1} åç®ãšã j â 2 {\displaystyle j-2} åç®ãå
¥ãæ¿ãããã»ã»ã» 2 {\displaystyle 2} åç®ãšã 1 {\displaystyle 1} åç®ãå
¥ãæ¿ããããšããæäœãããããããšã次ã®ãããªè¡åã«ãªãã
( â 1 ) i + j | 1 a i 1 ⯠a i , j â 1 a i , j + 1 ⯠a i n 0 a 11 ⯠a 1 , j â 1 a 1 , j + 1 ⯠a 1 n 0 a 12 ⯠a 2 , j â 1 a 2 , j + 1 ⯠a 2 n â® â® â± â® â® â± â® 0 a i â 1 , 1 ⯠a i â 1 , j â 1 a i â 1 , j + 1 ⯠a i â 1 , n 0 a i + 1 , 1 ⯠a i + 1 , j â 1 a i + 1 , j + 1 ⯠a i + 1 , n â® â® â± â® â® â± â® 0 a n 1 ⯠a n , j â 1 a n , j + 1 ⯠a n n | {\displaystyle (-1)^{i+j}{\begin{vmatrix}1&a_{i1}&\cdots &a_{i,j-1}&a_{i,j+1}&\cdots &a_{in}\\0&a_{11}&\cdots &a_{1,j-1}&a_{1,j+1}&\cdots &a_{1n}\\0&a_{12}&\cdots &a_{2,j-1}&a_{2,j+1}&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots &\vdots &\ddots &\vdots \\0&a_{i-1,1}&\cdots &a_{i-1,j-1}&a_{i-1,j+1}&\cdots &a_{i-1,n}\\0&a_{i+1,1}&\cdots &a_{i+1,j-1}&a_{i+1,j+1}&\cdots &a_{i+1,n}\\\vdots &\vdots &\ddots &\vdots &\vdots &\ddots &\vdots \\0&a_{n1}&\cdots &a_{n,j-1}&a_{n,j+1}&\cdots &a_{nn}\end{vmatrix}}}
( â 1 ) i + j â 2 = ( â 1 ) i + j {\displaystyle (-1)^{i+j-2}=(-1)^{i+j}} ã§ããããšã«ã€ããŠã®èª¬æã¯äžèŠã§ãããã ããããè¡ååŒã®å®çŸ©ã«åŸã£ãŠå±éããã
äžè¡ç®ã§ã(1,1)èŠçŽ ãéžã°ãªãé
ã¯ãããããäžåç®ã®0ãéžã¶ã®ã§ã0ãšãªãã ãªã®ã§ãäžè¡ç®ã§ã(1,1)èŠçŽ ãéžã¶é
ã ããèããã°è¯ãããããã¯ã | A i , j | {\displaystyle |A_{i,j}|} ãšäžèŽããã ãã£ãŠããã®è¡ååŒã¯ã ( â 1 ) i + j | A i j | = a ~ i j {\displaystyle (-1)^{i+j}|A_{ij}|={\tilde {a}}_{ij}} ã§ããã
ãããã(2)åŒã«ä»£å
¥ããã°ã | A | = a j 1 a ~ j 1 + a j 2 a ~ j 2 + ⯠+ a j n a ~ j n {\displaystyle |A|=a_{j1}{\tilde {a}}_{j1}+a_{j2}{\tilde {a}}_{j2}+\cdots +a_{jn}{\tilde {a}}_{jn}} ãšãªãã蚌æãããã
ãããšåæ§ã®è°è«ãè¡ã«ãè¡ãã°ãããäžæ¹ã®åŒãå°ãããšãã§ããã
A ~ = ( a ~ j , i ) {\displaystyle {\tilde {A}}=({\tilde {a}}_{j,i})} ãAã®äœå åè¡åãšããã
äœå åè¡åã«ã¯ã以äžã®æ§è³ªãããã
蚌æ
A ~ A = ( a ~ 11 ⯠a ~ m 1 â® â± â® a ~ 1 n ⯠a ~ m n ) ( a 11 ⯠a 1 n â® â± â® a n 1 ⯠a m n ) {\displaystyle {\tilde {A}}A={\begin{pmatrix}{\tilde {a}}_{11}&\cdots &{\tilde {a}}_{m1}\\\vdots &\ddots &\vdots \\{\tilde {a}}_{1n}&\cdots &{\tilde {a}}_{mn}\end{pmatrix}}{\begin{pmatrix}a_{11}&\cdots &a_{1n}\\\vdots &\ddots &\vdots \\a_{n1}&\cdots &a_{mn}\end{pmatrix}}} ãªã®ã§ã è¡å A ~ A {\displaystyle {\tilde {A}}A} ã® ( i , j ) {\displaystyle (i,j)} æåã¯ã
a 1 i a ~ 1 j + a 2 i a ~ 2 j + ⯠+ a n i a ~ n j ⯠( 1 ) {\displaystyle a_{1i}{\tilde {a}}_{1j}+a_{2i}{\tilde {a}}_{2j}+\cdots +a_{ni}{\tilde {a}}_{nj}\cdots (1)} ã§ããã
(i) i = j {\displaystyle i=j} ã®ãšã
(ii) i â j {\displaystyle i\neq j} ã®ãšã
ãŸãšãããšã a 1 i a ~ 1 j + a 2 i a ~ 2 j + ⯠+ a n i a ~ n j = { | A | ( i = j ) 0 ( i â j ) {\displaystyle a_{1i}{\tilde {a}}_{1j}+a_{2i}{\tilde {a}}_{2j}+\cdots +a_{ni}{\tilde {a}}_{nj}={\begin{cases}|A|(i=j)\\0(i\neq j)\\\end{cases}}} ã§ããã ãã£ãŠ A ~ A = | A | E {\displaystyle {\tilde {A}}A=|A|E} ã§ãããåæ§ã®è°è«ãè¡ãã°ã A A ~ = | A | E {\displaystyle A{\tilde {A}}=|A|E} ãå°ãããšãã§ããã
| A | â 0 {\displaystyle |A|\neq 0} ã®ãšã A â 1 {\displaystyle A^{-1}} ãååšããã®ã§ã A ~ A = | A | E {\displaystyle {\tilde {A}}A=|A|E} ã« A â 1 {\displaystyle A^{-1}} ãå³ãããã | A | {\displaystyle |A|} ã§å²ãã°ã A â 1 = A ~ | A | {\displaystyle A^{-1}={\frac {\tilde {A}}{|A|}}} ã§ããäºããããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ£æ¹è¡å A {\\displaystyle A} ã«å¯ŸããŠã è¡åã® i {\\displaystyle i} è¡ç®ãš j {\\displaystyle j} åç®ãåãé€ããŠåŸãããè¡åã A i j {\\displaystyle A_{ij}} ãšè¡šãããã®ãšãã",
"title": "äœå åè¡å"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "a ~ i j = ( â 1 ) i + j | A i j | {\\displaystyle {\\tilde {a}}_{ij}=(-1)^{i+j}|A_{ij}|} ã A {\\displaystyle A} ã® ( i , j ) {\\displaystyle (i,j)} äœå åãšããã",
"title": "äœå åè¡å"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "( 5 0 8 1 9 3 7 5 2 ) {\\displaystyle {\\begin{pmatrix}5&0&8\\\\1&9&3\\\\7&5&2\\end{pmatrix}}} ã® ( 2 , 2 ) {\\displaystyle (2,2)} äœå åã¯ã ( â 1 ) 2 + 2 | 5 8 7 2 | = â 46 {\\displaystyle (-1)^{2+2}{\\begin{vmatrix}5&8\\\\7&2\\end{vmatrix}}=-46} ã§ããã",
"title": "äœå åè¡å"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "次ã®ããã«ãäœå åãå©çšããããšã§ãè¡ååŒãæ±ããããšãã§ããã",
"title": "äœå åè¡å"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "| A | = a j 1 a ~ j 1 + a j 2 a ~ j 2 + ⯠+ a j n a ~ j n ( 1 †j †n ) {\\displaystyle |A|=a_{j1}{\\tilde {a}}_{j1}+a_{j2}{\\tilde {a}}_{j2}+\\cdots +a_{jn}{\\tilde {a}}_{jn}(1\\leq j\\leq n)}",
"title": "äœå åè¡å"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "| A | = a 1 i a ~ 1 i + a 2 i a ~ 2 i + ⯠+ a n i a ~ n i ( 1 †i †n ) {\\displaystyle |A|=a_{1i}{\\tilde {a}}_{1i}+a_{2i}{\\tilde {a}}_{2i}+\\cdots +a_{ni}{\\tilde {a}}_{ni}(1\\leq i\\leq n)}",
"title": "äœå åè¡å"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãã ãã A {\\displaystyle A} 㯠n {\\displaystyle n} æ¬¡æ£æ¹è¡åã§ããã",
"title": "äœå åè¡å"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ããããäœå åå±éãšããã",
"title": "äœå åè¡å"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "蚌æ",
"title": "äœå åè¡å"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "A = ( a 11 ⯠a 1 n ⮠Ⱡ⮠a n 1 ⯠a n n ) {\\displaystyle A={\\begin{pmatrix}a_{11}&\\cdots &a_{1n}\\\\\\vdots &\\ddots &\\vdots \\\\a_{n1}&\\cdots &a_{nn}\\end{pmatrix}}}",
"title": "äœå åè¡å"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãšããããã®ãšãã",
"title": "äœå åè¡å"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ã§ãããããã§ãè¡å A {\\displaystyle A} ã® j {\\displaystyle j} åç® ( a 1 j a 2 j â® a n j ) {\\displaystyle {\\begin{pmatrix}a_{1j}\\\\a_{2j}\\\\\\vdots \\\\a_{nj}\\end{pmatrix}}} ã¯ã a 1 j ( 1 0 â® 0 ) + a 2 j ( 0 1 â® 0 ) + ⯠+ a n j ( 0 0 â® 1 ) {\\displaystyle a_{1j}{\\begin{pmatrix}1\\\\0\\\\\\vdots \\\\0\\end{pmatrix}}+a_{2j}{\\begin{pmatrix}0\\\\1\\\\\\vdots \\\\0\\end{pmatrix}}+\\cdots +a_{nj}{\\begin{pmatrix}0\\\\0\\\\\\vdots \\\\1\\end{pmatrix}}} ãšè¡šãããšãã§ãã (1)åŒã¯ã | ( a 11 a 21 â® a n 1 ) , ⯠, a 1 j ( 1 0 â® 0 ) + a 2 j ( 0 1 â® 0 ) + ⯠+ a n j ( 0 0 â® 1 ) , ⯠, ( a n 1 a n 2 â® a n n ) | {\\displaystyle \\left|{\\begin{pmatrix}a_{11}\\\\a_{21}\\\\\\vdots \\\\a_{n1}\\end{pmatrix}},\\cdots ,a_{1j}{\\begin{pmatrix}1\\\\0\\\\\\vdots \\\\0\\end{pmatrix}}+a_{2j}{\\begin{pmatrix}0\\\\1\\\\\\vdots \\\\0\\end{pmatrix}}+\\cdots +a_{nj}{\\begin{pmatrix}0\\\\0\\\\\\vdots \\\\1\\end{pmatrix}},\\cdots ,{\\begin{pmatrix}a_{n1}\\\\a_{n2}\\\\\\vdots \\\\a_{nn}\\end{pmatrix}}\\right|} ãšã衚ãããšãã§ãããããã«ãè¡ååŒã®æ§è³ªã䜿ãã°ã a 1 j | a 11 ⯠1 ⯠a 1 n a 21 ⯠0 ⯠a 2 n â® â± â® â± â® a n 1 ⯠0 ⯠a n n | + a 2 j | a 11 ⯠0 ⯠a 1 n a 21 ⯠1 ⯠a 2 n â® â± â® â± â® a n 1 ⯠0 ⯠a n n | + ⯠+ a n j | a 11 ⯠0 ⯠a 1 n a 21 ⯠0 ⯠a 2 n â® â± â® â± â® a n 1 ⯠1 ⯠a n n | ⯠( 2 ) {\\displaystyle a_{1j}{\\begin{vmatrix}a_{11}&\\cdots &1&\\cdots &a_{1n}\\\\a_{21}&\\cdots &0&\\cdots &a_{2n}\\\\\\vdots &\\ddots &\\vdots &\\ddots &\\vdots \\\\a_{n1}&\\cdots &0&\\cdots &a_{nn}\\end{vmatrix}}+a_{2j}{\\begin{vmatrix}a_{11}&\\cdots &0&\\cdots &a_{1n}\\\\a_{21}&\\cdots &1&\\cdots &a_{2n}\\\\\\vdots &\\ddots &\\vdots &\\ddots &\\vdots \\\\a_{n1}&\\cdots &0&\\cdots &a_{nn}\\end{vmatrix}}+\\cdots +a_{nj}{\\begin{vmatrix}a_{11}&\\cdots &0&\\cdots &a_{1n}\\\\a_{21}&\\cdots &0&\\cdots &a_{2n}\\\\\\vdots &\\ddots &\\vdots &\\ddots &\\vdots \\\\a_{n1}&\\cdots &1&\\cdots &a_{nn}\\end{vmatrix}}\\cdots (2)} ã§ããã",
"title": "äœå åè¡å"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ããã§ã | a 11 ⯠0 ⯠a 1 n a 21 ⯠0 ⯠a 2 n â® â± â® â± â® a i 1 ⯠1 ⯠a i n â® â± â® â± â® a n 1 ⯠0 ⯠a n n | {\\displaystyle {\\begin{vmatrix}a_{11}&\\cdots &0&\\cdots &a_{1n}\\\\a_{21}&\\cdots &0&\\cdots &a_{2n}\\\\\\vdots &\\ddots &\\vdots &\\ddots &\\vdots \\\\a_{i1}&\\cdots &1&\\cdots &a_{in}\\\\\\vdots &\\ddots &\\vdots &\\ddots &\\vdots \\\\a_{n1}&\\cdots &0&\\cdots &a_{nn}\\end{vmatrix}}} ã«ã€ããŠèããã",
"title": "äœå åè¡å"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãã®è¡åã® i {\\displaystyle i} è¡ç®ãšã i â 1 {\\displaystyle i-1} è¡ç®ãå
¥ãæ¿ãã i â 1 {\\displaystyle i-1} è¡ç®ãšã i â 2 {\\displaystyle i-2} è¡ç®ãå
¥ãæ¿ãããã»ã»ã» 2 {\\displaystyle 2} è¡ç®ãšã 1 {\\displaystyle 1} è¡ç®ãå
¥ãæ¿ããããšããæäœããããšã次ã®ãããªè¡åã«ãªãã ( â 1 ) i â 1 | a i 1 ⯠1 ⯠a i n a 11 ⯠0 ⯠a 1 n a 21 ⯠0 ⯠a 2 n â® â± â® â± â® a i â 1 , 1 ⯠0 ⯠a i â 1 , n a i + 1 , 1 ⯠0 ⯠a i + 1 , n â® â± â® â± â® a n 1 ⯠0 ⯠a n n | {\\displaystyle (-1)^{i-1}{\\begin{vmatrix}a_{i1}&\\cdots &1&\\cdots &a_{in}\\\\a_{11}&\\cdots &0&\\cdots &a_{1n}\\\\a_{21}&\\cdots &0&\\cdots &a_{2n}\\\\\\vdots &\\ddots &\\vdots &\\ddots &\\vdots \\\\a_{i-1,1}&\\cdots &0&\\cdots &a_{i-1,n}\\\\a_{i+1,1}&\\cdots &0&\\cdots &a_{i+1,n}\\\\\\vdots &\\ddots &\\vdots &\\ddots &\\vdots \\\\a_{n1}&\\cdots &0&\\cdots &a_{nn}\\end{vmatrix}}}",
"title": "äœå åè¡å"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "è¡åã®è¡ãŸãã¯åãå
¥ãæ¿ãããšãè¡ååŒã®å€ã¯ â 1 {\\displaystyle -1} åãããã®ã ã£ãããã®æäœã§ã¯ã i â 1 {\\displaystyle i-1} åã®å
¥ãæ¿ããè¡ãã®ã§ããã®åŒã¯ã ( â 1 ) i â 1 {\\displaystyle (-1)^{i-1}} åãããŠããã",
"title": "äœå åè¡å"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "次ã«ãåãããã«ã j {\\displaystyle j} åç®ãšã j â 1 {\\displaystyle j-1} åç®ãå
¥ãæ¿ããã j â 1 {\\displaystyle j-1} åç®ãšã j â 2 {\\displaystyle j-2} åç®ãå
¥ãæ¿ãããã»ã»ã» 2 {\\displaystyle 2} åç®ãšã 1 {\\displaystyle 1} åç®ãå
¥ãæ¿ããããšããæäœãããããããšã次ã®ãããªè¡åã«ãªãã",
"title": "äœå åè¡å"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "( â 1 ) i + j | 1 a i 1 ⯠a i , j â 1 a i , j + 1 ⯠a i n 0 a 11 ⯠a 1 , j â 1 a 1 , j + 1 ⯠a 1 n 0 a 12 ⯠a 2 , j â 1 a 2 , j + 1 ⯠a 2 n â® â® â± â® â® â± â® 0 a i â 1 , 1 ⯠a i â 1 , j â 1 a i â 1 , j + 1 ⯠a i â 1 , n 0 a i + 1 , 1 ⯠a i + 1 , j â 1 a i + 1 , j + 1 ⯠a i + 1 , n â® â® â± â® â® â± â® 0 a n 1 ⯠a n , j â 1 a n , j + 1 ⯠a n n | {\\displaystyle (-1)^{i+j}{\\begin{vmatrix}1&a_{i1}&\\cdots &a_{i,j-1}&a_{i,j+1}&\\cdots &a_{in}\\\\0&a_{11}&\\cdots &a_{1,j-1}&a_{1,j+1}&\\cdots &a_{1n}\\\\0&a_{12}&\\cdots &a_{2,j-1}&a_{2,j+1}&\\cdots &a_{2n}\\\\\\vdots &\\vdots &\\ddots &\\vdots &\\vdots &\\ddots &\\vdots \\\\0&a_{i-1,1}&\\cdots &a_{i-1,j-1}&a_{i-1,j+1}&\\cdots &a_{i-1,n}\\\\0&a_{i+1,1}&\\cdots &a_{i+1,j-1}&a_{i+1,j+1}&\\cdots &a_{i+1,n}\\\\\\vdots &\\vdots &\\ddots &\\vdots &\\vdots &\\ddots &\\vdots \\\\0&a_{n1}&\\cdots &a_{n,j-1}&a_{n,j+1}&\\cdots &a_{nn}\\end{vmatrix}}}",
"title": "äœå åè¡å"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "( â 1 ) i + j â 2 = ( â 1 ) i + j {\\displaystyle (-1)^{i+j-2}=(-1)^{i+j}} ã§ããããšã«ã€ããŠã®èª¬æã¯äžèŠã§ãããã ããããè¡ååŒã®å®çŸ©ã«åŸã£ãŠå±éããã",
"title": "äœå åè¡å"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "äžè¡ç®ã§ã(1,1)èŠçŽ ãéžã°ãªãé
ã¯ãããããäžåç®ã®0ãéžã¶ã®ã§ã0ãšãªãã ãªã®ã§ãäžè¡ç®ã§ã(1,1)èŠçŽ ãéžã¶é
ã ããèããã°è¯ãããããã¯ã | A i , j | {\\displaystyle |A_{i,j}|} ãšäžèŽããã ãã£ãŠããã®è¡ååŒã¯ã ( â 1 ) i + j | A i j | = a ~ i j {\\displaystyle (-1)^{i+j}|A_{ij}|={\\tilde {a}}_{ij}} ã§ããã",
"title": "äœå åè¡å"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "",
"title": "äœå åè¡å"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ãããã(2)åŒã«ä»£å
¥ããã°ã | A | = a j 1 a ~ j 1 + a j 2 a ~ j 2 + ⯠+ a j n a ~ j n {\\displaystyle |A|=a_{j1}{\\tilde {a}}_{j1}+a_{j2}{\\tilde {a}}_{j2}+\\cdots +a_{jn}{\\tilde {a}}_{jn}} ãšãªãã蚌æãããã",
"title": "äœå åè¡å"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ãããšåæ§ã®è°è«ãè¡ã«ãè¡ãã°ãããäžæ¹ã®åŒãå°ãããšãã§ããã",
"title": "äœå åè¡å"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "A ~ = ( a ~ j , i ) {\\displaystyle {\\tilde {A}}=({\\tilde {a}}_{j,i})} ãAã®äœå åè¡åãšããã",
"title": "äœå åè¡å"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "äœå åè¡åã«ã¯ã以äžã®æ§è³ªãããã",
"title": "äœå åè¡å"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "蚌æ",
"title": "äœå åè¡å"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "A ~ A = ( a ~ 11 ⯠a ~ m 1 â® â± â® a ~ 1 n ⯠a ~ m n ) ( a 11 ⯠a 1 n â® â± â® a n 1 ⯠a m n ) {\\displaystyle {\\tilde {A}}A={\\begin{pmatrix}{\\tilde {a}}_{11}&\\cdots &{\\tilde {a}}_{m1}\\\\\\vdots &\\ddots &\\vdots \\\\{\\tilde {a}}_{1n}&\\cdots &{\\tilde {a}}_{mn}\\end{pmatrix}}{\\begin{pmatrix}a_{11}&\\cdots &a_{1n}\\\\\\vdots &\\ddots &\\vdots \\\\a_{n1}&\\cdots &a_{mn}\\end{pmatrix}}} ãªã®ã§ã è¡å A ~ A {\\displaystyle {\\tilde {A}}A} ã® ( i , j ) {\\displaystyle (i,j)} æåã¯ã",
"title": "äœå åè¡å"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "a 1 i a ~ 1 j + a 2 i a ~ 2 j + ⯠+ a n i a ~ n j ⯠( 1 ) {\\displaystyle a_{1i}{\\tilde {a}}_{1j}+a_{2i}{\\tilde {a}}_{2j}+\\cdots +a_{ni}{\\tilde {a}}_{nj}\\cdots (1)} ã§ããã",
"title": "äœå åè¡å"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "(i) i = j {\\displaystyle i=j} ã®ãšã",
"title": "äœå åè¡å"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "(ii) i â j {\\displaystyle i\\neq j} ã®ãšã",
"title": "äœå åè¡å"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ãŸãšãããšã a 1 i a ~ 1 j + a 2 i a ~ 2 j + ⯠+ a n i a ~ n j = { | A | ( i = j ) 0 ( i â j ) {\\displaystyle a_{1i}{\\tilde {a}}_{1j}+a_{2i}{\\tilde {a}}_{2j}+\\cdots +a_{ni}{\\tilde {a}}_{nj}={\\begin{cases}|A|(i=j)\\\\0(i\\neq j)\\\\\\end{cases}}} ã§ããã ãã£ãŠ A ~ A = | A | E {\\displaystyle {\\tilde {A}}A=|A|E} ã§ãããåæ§ã®è°è«ãè¡ãã°ã A A ~ = | A | E {\\displaystyle A{\\tilde {A}}=|A|E} ãå°ãããšãã§ããã",
"title": "äœå åè¡å"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "| A | â 0 {\\displaystyle |A|\\neq 0} ã®ãšã A â 1 {\\displaystyle A^{-1}} ãååšããã®ã§ã A ~ A = | A | E {\\displaystyle {\\tilde {A}}A=|A|E} ã« A â 1 {\\displaystyle A^{-1}} ãå³ãããã | A | {\\displaystyle |A|} ã§å²ãã°ã A â 1 = A ~ | A | {\\displaystyle A^{-1}={\\frac {\\tilde {A}}{|A|}}} ã§ããäºããããã",
"title": "äœå åè¡å"
}
] | null | {{ããã²ãŒã·ã§ã³|æ¬=[[ç·å代æ°åŠ]]|åããŒãž=[[ç·åœ¢ä»£æ°åŠ/è¡ååŒ|è¡ååŒ]]|ããŒãžå=äœå åè¡å|次ããŒãž=[[ç·å代æ°åŠ/ã¯ã©ã¡ã«ã®å
¬åŒ|ã¯ã©ã¡ã«ã®å
¬åŒ]]}}
==äœå åè¡å==
===äœå å===
æ£æ¹è¡å<math>A</math>ã«å¯ŸããŠã è¡åã®<math>i</math>è¡ç®ãš<math>j</math>åç®ãåãé€ããŠåŸãããè¡åã<math>A_{ij}</math>ãšè¡šãããã®ãšãã
<math>\tilde a_{ij} = (-1)^{i+j} | A_{ij} |</math>
ã<math>A</math>ã®<math>(i,j)</math>'''äœå å'''ãšããã
;äŸ
<math>\begin{pmatrix}
5 & 0 & 8 \\
1 & 9 & 3 \\
7 & 5 & 2
\end{pmatrix}</math>
ã®<math>(2,2)</math>äœå åã¯ã<math>(-1)^{2+2} \begin{vmatrix} 5 & 8 \\ 7 & 2 \end{vmatrix} = -46</math>ã§ããã
===äœå åå±é===
次ã®ããã«ãäœå åãå©çšããããšã§ãè¡ååŒãæ±ããããšãã§ããã
<math>|A| = a_{j1} \tilde a_{j1} + a_{j2} \tilde a_{j2} + \cdots + a_{jn} \tilde a_{jn} (1 \le j \le n)</math>
<math>|A| = a_{1i} \tilde a_{1i} + a_{2i} \tilde a_{2i} + \cdots + a_{ni} \tilde a_{ni} (1\le i \le n)</math>
ãã ãã<math>A</math>ã¯<math>n</math>æ¬¡æ£æ¹è¡åã§ããã
ãããã'''äœå åå±é'''ãšããã
'''蚌æ'''
<math>A = \begin{pmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{nn}
\end{pmatrix}</math>
ãšããããã®ãšãã
:<math>|A| = \begin{vmatrix}
a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{nj} & \cdots & a_{nn}
\end{vmatrix}</math>
ã§ãããããã§ãè¡å<math>A</math>ã®<math>j</math>åç®<math>\begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{nj} \end{pmatrix}</math>ã¯ã
<math>a_{1j} \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + a_{2j} \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \cdots + a_{nj} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} </math>ãšè¡šãããšãã§ãã
(1)åŒã¯ã
<math>
\left| \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix}, \cdots, a_{1j} \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + a_{2j} \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \cdots + a_{nj} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}, \cdots, \begin{pmatrix}a_{n1} \\ a_{n2} \\ \vdots \\ a_{nn} \end{pmatrix} \right|
</math>ãšã衚ãããšãã§ãããããã«ãè¡ååŒã®æ§è³ªã䜿ãã°ã
<math>
a_{1j} \begin{vmatrix} a_{11} & \cdots & 1 &\cdots& a_{1n} \\ a_{21} & \cdots & 0 & \cdots& a_{2n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & 0 &\cdots& a_{nn} \end{vmatrix} +
a_{2j} \begin{vmatrix} a_{11} & \cdots & 0 &\cdots& a_{1n} \\ a_{21} & \cdots & 1 & \cdots & a_{2n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & 0 &\cdots& a_{nn} \end{vmatrix} + \cdots +
a_{nj} \begin{vmatrix} a_{11} & \cdots & 0 &\cdots& a_{1n} \\ a_{21} & \cdots & 0 & \cdots & a_{2n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & 1 &\cdots& a_{nn} \end{vmatrix} \cdots (2)
</math>
ã§ããã
ããã§ã<math>\begin{vmatrix}
a_{11} & \cdots & 0 &\cdots& a_{1n} \\
a_{21} & \cdots & 0 & \cdots& a_{2n} \\
\vdots & \ddots & \vdots & \ddots & \vdots\\
a_{i1} & \cdots & 1 & \cdots & a_{in} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n1} & \cdots & 0 &\cdots& a_{nn}
\end{vmatrix}</math>ã«ã€ããŠèããã
ãã®è¡åã®<math>i</math>è¡ç®ãšã<math>i-1</math>è¡ç®ãå
¥ãæ¿ãã<math>i-1</math>è¡ç®ãšã<math>i-2</math>è¡ç®ãå
¥ãæ¿ãããã»ã»ã»<math>2</math>è¡ç®ãšã<math>1</math>è¡ç®ãå
¥ãæ¿ããããšããæäœããããšã次ã®ãããªè¡åã«ãªãã
<math> (-1)^{i-1} \begin{vmatrix}
a_{i1} & \cdots & 1 & \cdots & a_{in} \\
a_{11} & \cdots & 0 &\cdots& a_{1n} \\
a_{21} & \cdots & 0 & \cdots& a_{2n} \\
\vdots & \ddots & \vdots & \ddots & \vdots\\
a_{i-1,1} & \cdots & 0 & \cdots & a_{i-1,n} \\
a_{i+1,1} & \cdots & 0 & \cdots & a_{i+1,n} \\
\vdots & \ddots & \vdots & \ddots & \vdots\\
a_{n1} & \cdots & 0 &\cdots& a_{nn}
\end{vmatrix}
</math>
è¡åã®è¡ãŸãã¯åãå
¥ãæ¿ãããšãè¡ååŒã®å€ã¯<math>-1</math>åãããã®ã ã£ãããã®æäœã§ã¯ã<math>i-1</math>åã®å
¥ãæ¿ããè¡ãã®ã§ããã®åŒã¯ã<math>(-1)^{i-1}</math>åãããŠããã
次ã«ãåãããã«ã<math>j</math>åç®ãšã<math>j-1</math>åç®ãå
¥ãæ¿ããã<math>j-1</math>åç®ãšã<math>j-2</math>åç®ãå
¥ãæ¿ãããã»ã»ã»<math>2</math>åç®ãšã<math>1</math>åç®ãå
¥ãæ¿ããããšããæäœãããããããšã次ã®ãããªè¡åã«ãªãã<br>
<math> (-1)^{i+j} \begin{vmatrix}
1 & a_{i1} & \cdots & a_{i,j-1}& a_{i,j+1}& \cdots & a_{in} \\
0 & a_{11} & \cdots & a_{1,j-1}&a_{1,j+1}& \cdots & a_{1n} \\
0 & a_{12} & \cdots & a_{2,j-1}&a_{2,j+1}& \cdots & a_{2n} \\
\vdots & \vdots & \ddots& \vdots & \vdots & \ddots & \vdots\\
0 & a_{i-1,1} & \cdots & a_{i-1,j-1} & a_{i-1,j+1}& \cdots & a_{i-1,n} \\
0 & a_{i+1,1} & \cdots & a_{i+1,j-1} & a_{i+1,j+1}& \cdots & a_{i+1,n} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots\\
0 & a_{n1} & \cdots & a_{n,j-1} & a_{n,j+1} & \cdots& a_{nn}
\end{vmatrix}
</math>
<math>(-1)^{i+j-2}=(-1)^{i+j}</math>ã§ããããšã«ã€ããŠã®èª¬æã¯äžèŠã§ãããã
ããããè¡ååŒã®å®çŸ©ã«åŸã£ãŠå±éããã
äžè¡ç®ã§ã(1,1)èŠçŽ ãéžã°ãªãé
ã¯ãããããäžåç®ã®0ãéžã¶ã®ã§ã0ãšãªãã
ãªã®ã§ãäžè¡ç®ã§ã(1,1)èŠçŽ ãéžã¶é
ã ããèããã°è¯ãããããã¯ã<math>|A_{i,j}|</math>ãšäžèŽããã
ãã£ãŠããã®è¡ååŒã¯ã<math>(-1)^{i+j} |A_{ij}| = \tilde a_{ij}</math>ã§ããã
ãããã(2)åŒã«ä»£å
¥ããã°ã<math>|A| = a_{j1} \tilde a_{j1} + a_{j2} \tilde a_{j2} + \cdots + a_{jn} \tilde a_{jn}</math>ãšãªãã蚌æãããã
ãããšåæ§ã®è°è«ãè¡ã«ãè¡ãã°ãããäžæ¹ã®åŒãå°ãããšãã§ããã
===äœå åè¡å===
<math>\tilde A = (\tilde a_{j,i})</math>ãAã®äœå åè¡åãšããã
äœå åè¡åã«ã¯ã以äžã®æ§è³ªãããã
:<math>A \tilde A = \tilde A A = |A|E</math>
'''蚌æ'''
<math>\tilde A A = \begin{pmatrix} \tilde a_{11} & \cdots & \tilde a_{m1} \\ \vdots & \ddots & \vdots \\ \tilde a_{1n} & \cdots & \tilde a_{mn} \end{pmatrix} \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{mn} \end{pmatrix}</math>ãªã®ã§ã
è¡å<math>\tilde A A</math>ã®<math>(i,j)</math>æåã¯ã
<math>a_{1i} \tilde a_{1j} + a_{2i} \tilde a_{2j} + \cdots + a_{ni} \tilde a_{nj} \cdots (1)</math>ã§ããã
(i)<math>i=j</math>ã®ãšã
:(1)åŒã¯ãè¡å<math>A</math>ã®<math>i</math>åç®ã«é¢ããŠäœå åå±éãããåŒãšäžèŽããã®ã§ã(1)åŒã¯<math>i=j</math>ã®ãšãã<math>|A|</math>ã§ããã<br>
(ii)<math>i\neq j</math>ã®ãšã
:è¡å<math>A</math>ã®<math>i</math>åç®ãè¡å<math>A</math>ã®<math>j</math>åç®ã«ãªã£ãŠããè¡åã®è¡ååŒã«ã€ããŠèããããã®è¡ååŒã¯ä»¥äžã®ããã«ãªãã<br>
:<math>
\begin{vmatrix}
a_{11} & \cdots & a_{1,i-1} & a_{1j} & a_{1,i+1} & \cdots & a_{1j} & \cdots & a_{1n} \\
a_{21} & \cdots & a_{2,i-1} & a_{2j} & a_{2,i+1} & \cdots & a_{2j} & \cdots & a_{2n} \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{n,i-1} & a_{nj} & a_{n,i+1} & \cdots & a_{nj} & \cdots & a_{nn} \\
\end{vmatrix}
</math>
:ãã®è¡åã®iåç®ã«ã€ããŠãäœå åå±éãè¡ããšã(1)åŒãšäžèŽããã
:åãåãããè¡åã®è¡ååŒã¯0ã«ãªãã®ã ã£ãããªã®ã§ã(1)åŒã¯ã<math>i\neq j</math>ã®ãšãã0ã§ããã <br>
ãŸãšãããšã<math>a_{1i} \tilde a_{1j} + a_{2i} \tilde a_{2j} + \cdots + a_{ni} \tilde a_{nj} =
\begin{cases}
|A| (i=j) \\
0 (i \neq j) \\
\end{cases}
</math>ã§ããã
ãã£ãŠ<math>\tilde A A = |A|E</math>ã§ãããåæ§ã®è°è«ãè¡ãã°ã<math>A \tilde A = |A|E</math>ãå°ãããšãã§ããã
===éè¡åã®èšç®===
<math>|A| \neq 0</math>ã®ãšã<math>A^{-1}</math>ãååšããã®ã§ã<math>\tilde A A = |A|E</math>ã«<math>A^{-1}</math>ãå³ãããã<math>|A|</math>ã§å²ãã°ã
<math>A^{-1} = \frac{\tilde A}{|A|}</math>ã§ããäºããããã
{{ããã²ãŒã·ã§ã³|æ¬=[[ç·å代æ°åŠ]]|åããŒãž=[[ç·åœ¢ä»£æ°åŠ/è¡ååŒ|è¡ååŒ]]|ããŒãžå=äœå åè¡å|次ããŒãž=[[ç·å代æ°åŠ/ã¯ã©ã¡ã«ã®å
¬åŒ|ã¯ã©ã¡ã«ã®å
¬åŒ]]}}
[[Category:ç·åœ¢ä»£æ°åŠ|ãããããããããã ããããããããã€]] | null | 2021-01-29T11:11:46Z | [
"ãã³ãã¬ãŒã:ããã²ãŒã·ã§ã³"
] | https://ja.wikibooks.org/wiki/%E7%B7%9A%E5%BD%A2%E4%BB%A3%E6%95%B0%E5%AD%A6/%E4%BD%99%E5%9B%A0%E5%AD%90%E8%A1%8C%E5%88%97 |
2,014 | ç·åœ¢ä»£æ°åŠ/éè¡åã®äžè¬å | ç·å代æ°åŠ > éè¡åã®äžè¬å
éè¡åã¯ã
A â 1 = 1 det A C {\displaystyle A^{-1}={\frac {1}{\det A}}C} ã§æžãããã ããã§Cã¯ãAã®äœå åè¡åã§ããã
å°åº
第lè¡ã«ã€ããŠèããã(l = 1 , ... , n) ãã®ãšããlè¡låã«ã€ã㊠ACãèãããšã â m = 1 n a l m c m l {\displaystyle \sum _{m=1}^{n}a_{lm}c_{ml}} = â m = 1 n a l m ( â 1 ) m + l b l m {\displaystyle =\sum _{m=1}^{n}a_{lm}(-1)^{m+l}b_{lm}} , ( b l m {\displaystyle b_{lm}} ã¯ãè¡åAã®è¡lãåmã«é¢ããå°è¡ååŒã) = det A {\displaystyle =\det A} (åŒã®å±éã®é) ãŸããlè¡ã§ãiå(i = 1, ... , n : l 以å€) ã«ã€ã㊠ACãèãããšã â m = 1 n a l m c m i {\displaystyle \sum _{m=1}^{n}a_{lm}c_{mi}} â m = 1 n a l m ( â 1 ) m + i b i m {\displaystyle \sum _{m=1}^{n}a_{lm}(-1)^{m+i}b_{im}} ããã¯ãè¡åAã§ãiè¡ç®ãlè¡ç®ã§çœ®ãæããè¡åã®è¡ååŒã«çããã è¡ååŒã§è¡åã®ãã¡ã®ããè¡ããããåãä»ã®è¡ãä»ã®åãšäžèŽããå Žåã ãã®2ã€ã®è¡ãŸãã¯åããã®å¯äžã¯å¿
ãæã¡æ¶ãããã (å°åº?) ãã£ãŠiåããã®å¯äžã¯0ã«çããã ãã£ãŠæ±ããè¡å ACã¯ã det ( A ) E {\displaystyle \det(A)E} ãšãªãã 1 det A C {\displaystyle {\frac {1}{\det A}}C} ã¯ã(Cã¯Aã®äœå åè¡å) Aã®éè¡åã«çããããšãåãã
å®éã«ã¯ãã®èšç®ã¯å€ãã®èšç®éãå¿
èŠãšããã®ã§ å®çšçãªèšç®ã«ã¯çšããããªãã å®çšçãªèšç®ã«ã¯ã¬ãŠã¹ã®æ¶å»æ³ã çšããããããšãå€ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç·å代æ°åŠ > éè¡åã®äžè¬å",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "éè¡åã¯ã",
"title": "éè¡åã®äžè¬å"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "A â 1 = 1 det A C {\\displaystyle A^{-1}={\\frac {1}{\\det A}}C} ã§æžãããã ããã§Cã¯ãAã®äœå åè¡åã§ããã",
"title": "éè¡åã®äžè¬å"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "å°åº",
"title": "éè¡åã®äžè¬å"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "第lè¡ã«ã€ããŠèããã(l = 1 , ... , n) ãã®ãšããlè¡låã«ã€ã㊠ACãèãããšã â m = 1 n a l m c m l {\\displaystyle \\sum _{m=1}^{n}a_{lm}c_{ml}} = â m = 1 n a l m ( â 1 ) m + l b l m {\\displaystyle =\\sum _{m=1}^{n}a_{lm}(-1)^{m+l}b_{lm}} , ( b l m {\\displaystyle b_{lm}} ã¯ãè¡åAã®è¡lãåmã«é¢ããå°è¡ååŒã) = det A {\\displaystyle =\\det A} (åŒã®å±éã®é) ãŸããlè¡ã§ãiå(i = 1, ... , n : l 以å€) ã«ã€ã㊠ACãèãããšã â m = 1 n a l m c m i {\\displaystyle \\sum _{m=1}^{n}a_{lm}c_{mi}} â m = 1 n a l m ( â 1 ) m + i b i m {\\displaystyle \\sum _{m=1}^{n}a_{lm}(-1)^{m+i}b_{im}} ããã¯ãè¡åAã§ãiè¡ç®ãlè¡ç®ã§çœ®ãæããè¡åã®è¡ååŒã«çããã è¡ååŒã§è¡åã®ãã¡ã®ããè¡ããããåãä»ã®è¡ãä»ã®åãšäžèŽããå Žåã ãã®2ã€ã®è¡ãŸãã¯åããã®å¯äžã¯å¿
ãæã¡æ¶ãããã (å°åº?) ãã£ãŠiåããã®å¯äžã¯0ã«çããã ãã£ãŠæ±ããè¡å ACã¯ã det ( A ) E {\\displaystyle \\det(A)E} ãšãªãã 1 det A C {\\displaystyle {\\frac {1}{\\det A}}C} ã¯ã(Cã¯Aã®äœå åè¡å) Aã®éè¡åã«çããããšãåãã",
"title": "éè¡åã®äžè¬å"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "å®éã«ã¯ãã®èšç®ã¯å€ãã®èšç®éãå¿
èŠãšããã®ã§ å®çšçãªèšç®ã«ã¯çšããããªãã å®çšçãªèšç®ã«ã¯ã¬ãŠã¹ã®æ¶å»æ³ã çšããããããšãå€ãã",
"title": "éè¡åã®äžè¬å"
}
] | ç·å代æ°åŠ > éè¡åã®äžè¬å | <small> [[ç·å代æ°åŠ]] > éè¡åã®äžè¬å </small>
----
==éè¡åã®äžè¬å==
éè¡åã¯ã
<math>
A^{-1} = \frac 1 {\det A} C
</math>
ã§æžãããã
ããã§Cã¯ãAã®äœå åè¡åã§ããã
'''å°åº'''
第''l''è¡ã«ã€ããŠèããã(l = 1 , ... , n)
ãã®ãšããlè¡låã«ã€ããŠ
ACãèãããšã
<math>
\sum _{m=1} ^ n a _{lm} c _{ml}
</math>
<math>
=\sum _{m=1} ^ n a _{lm} (-1)^{m+ l} b _{lm}
</math>,
(<math>b _{lm}</math>ã¯ãè¡åAã®è¡lãåmã«é¢ããå°è¡ååŒã)
<math>
=\det A
</math>
(åŒã®å±éã®é)
ãŸããlè¡ã§ãiå(i = 1, ... , n : l 以å€) ã«ã€ããŠ
ACãèãããšã
<math>
\sum _{m=1} ^ n a _{lm} c _{mi}
</math>
<math>
\sum _{m=1} ^ n a _{lm} (-1)^{m+ i} b _{im}
</math>
ããã¯ãè¡åAã§ãiè¡ç®ãlè¡ç®ã§çœ®ãæããè¡åã®è¡ååŒã«çããã
è¡ååŒã§è¡åã®ãã¡ã®ããè¡ããããåãä»ã®è¡ãä»ã®åãšäžèŽããå Žåã
ãã®2ã€ã®è¡ãŸãã¯åããã®å¯äžã¯å¿
ãæã¡æ¶ãããã
(å°åº?)
ãã£ãŠiåããã®å¯äžã¯0ã«çããã
ãã£ãŠæ±ããè¡å
ACã¯ã
<math>
\det (A ) E
</math>
ãšãªãã
<math>
\frac 1 {\det A} C
</math>
ã¯ã(Cã¯Aã®äœå åè¡å)
Aã®éè¡åã«çããããšãåãã
å®éã«ã¯ãã®èšç®ã¯å€ãã®èšç®éãå¿
èŠãšããã®ã§
å®çšçãªèšç®ã«ã¯çšããããªãã
å®çšçãªèšç®ã«ã¯ã¬ãŠã¹ã®æ¶å»æ³ã
çšããããããšãå€ãã
<!-- ã¬ãŠã¹ã®æ¶å»æ³ã¯èšç®æ©ç§åŠãç·åœ¢ä»£æ°ã... -->
<!-- ç·åœ¢ä»£æ°ã ãããªããã£ã±ã...ã -->
[[Category:ç·åœ¢ä»£æ°åŠ|ãããããããã€ã®ãã€ã¯ããã]] | null | 2015-09-13T05:59:54Z | [] | https://ja.wikibooks.org/wiki/%E7%B7%9A%E5%BD%A2%E4%BB%A3%E6%95%B0%E5%AD%A6/%E9%80%86%E8%A1%8C%E5%88%97%E3%81%AE%E4%B8%80%E8%88%AC%E5%9E%8B |
2,019 | ææ©ååŠ/ã¢ã«ã«ã³ | ææ©ååŠ>ã¢ã«ã«ã³
ççŽ éã«åçµåã®ã¿ãå«ãçåæ°ŽçŽ ãã¢ã«ã«ã³ (alkane) ãšããã
ãªã©ã¯ãã¹ãŠã¢ã«ã«ã³ã§ããã
ççŽ ååã1åã®ã¢ã«ã«ã³ã®åååŒã¯ C H 4 {\displaystyle CH_{4}} ã§ããã åãããã«ãççŽ ååã2åã®ã¢ã«ã«ã³ã¯ C 2 H 6 {\displaystyle C_{2}H_{6}} ã3åãªã C 3 H 8 {\displaystyle C_{3}H_{8}} ã4åã§ C 4 H 10 {\displaystyle C_{4}H_{10}} ãã§ããã ãã®ããã«ã¢ã«ã«ã³ã¯äžè¬çã« C n H 2 n + 2 {\displaystyle C_{n}H_{2n+2}} ã§è¡šãããããã®åŒãã¢ã«ã«ã³ã®äžè¬åŒãšããã
ãã®è¡šããåãããšãããã¢ã«ã«ã³ã®ååã¯ãæ°ãã衚ãéšåãšãã¢ã«ã«ã³ãã衚ãã-aneãããæã£ãŠããã
åååŒã¯åãã§ããããæ§é ãæ§è³ªã®ç°ãªãååç©ããäºãã«ç°æ§äœãšåŒã¶ã ç°æ§äœã«ã¯ãæ§é åŒã®éãæ§é ç°æ§äœãšãæ§é åŒã¯åãã ãç«äœæ§é ã®ç°ãªãç«äœç°æ§äœãããã æ§é ç°æ§äœãåã«ç°æ§äœãšåŒã¶ããšãããã
ã¢ã«ã«ã³ã¯ãççŽ ååã4å以äžã®ãšãæ§é ç°æ§äœãæã€ã ãã®ãããåãåååŒãæã€ã¢ã«ã«ã³ã§ãæ§é ç°æ§äœå士ã§åºå¥ããå¿
èŠãããã
äŸãã°ã
ãšããã¢ã«ã«ã³ãèããã
ãŸããã®äžã§äžçªé·ãççŽ ã®éãæ¢ãã äžçªé·ãã®ã¯çãäžã®åã®ççŽ 10åã§ã¯ç¡ãã çãäžã®åã®å·Šãã9åãšã9åç®ããäžã«3åã®ãåãããŠ12åãäžçªé·ãççŽ ã®éã§ããããããäž»éãšããã ãã®ããã«äž»éã¯æ§é åŒã®ã©ãã«æžããŠãããã¯é¢ä¿ãªãã
äž»éã12åãšæ±ºãŸã£ãã®ã§ãã®ã¢ã«ã«ã³ã¯ã~ããã«ã³ãã§çµããã ãã以å€ã®ççŽ ãšæ°ŽçŽ ã®å¡ã¯ããã¹ãŠçœ®æåºãšããŠæ±ãããã ã¢ã«ã«ã³ã®çœ®æåºã¯ãå¥ã®å°ããã¢ã«ã«ã³ããæ°ŽçŽ ååãäžã€åãé€ãããã®ãšããŠè¡šããããããã¢ã«ãã«åº(alkyl group)ãšããã ã¢ã«ãã«åºã®åç§°ã¯ãã¢ã«ã«ã³ã®aneãylã«çœ®ãæããããšã§äœãã å·Šãã2åç®ã®ççŽ ããåºãŠãã眮æåºã¯ã¡ã¿ã³(methane)ããæ°ŽçŽ ååãäžã€åãé€ãããã®ã«çããã®ã§ãã¡ãã«(methyl)åºãšããããšã«ãªãã åæ§ã«ãå·Šãã3åç®ã®ççŽ ããåºãŠããã®ããšãã«(ethyl)åºãå·Šãã4åç®ã®ççŽ ããåºãŠããã®ããããã«(propyl)åºãå·Šãã9çªç®ã®ççŽ ããå³ã«åºãŠããã®ãã¡ãã«åºã§ããã
ãããããŸãã¢ã«ãã¡ãããé ã«äžŠã¹ãããããšãethylãmethylãpropylã®é ã«ãªãã æ¬¡ã«ããšãã«åºããé ã«ãäž»éã®äœçªç®ã®ççŽ ã«ä»ããŠãããã瀺ãã ããã§ãå·Šããæ°ããã®ã§3çªç®ãšããèãæ¹ãšãå³ããæ°ããã®ã§10çªç®ãšããèãæ¹ããããããªãã¹ãçªå·ãå°ãªããªãããã«ã€ããã ãã£ãŠãã3-ãšãã«~ããšãªãã
次ã«ãã¡ãã«åºã¯ãµãã€ä»ããŠããã®ã§ãããž(di)ã¡ãã«ããšãã颚ã«ãããäœçœ®çªå·ã¯ãäžåºŠæ±ºããçªå·ã¯å€ããªãã®ã§ãã2,9-ãžã¡ãã«ããšãªããæåãšæ°åã®éããã€ãã³ã§ã€ãªããšãã3-ãšãã«-2,9-ãžã¡ãã«~ããšãªãã
æåŸã«ãããã«åºã¯ã4-ãããã«ããšãªãã®ã§ããã¹ãŠãã€ãªãã§ãã®ã¢ã«ã«ã³ã®ååã¯ã3-ãšãã«-2,9-ãžã¡ãã«-4-ãããã«ããã«ã³ããšãªãã
åºãäœåãããã¯ã®ãªã·ã£èªã®æ°è©ã䜿ã£ãŠè¡šãã 1ãã10ãŸã§ãé ã«ãã¢ã (mono)ã»ãž (di)ã»ã㪠(tri)ã»ããã© (tetra)ã»ãã³ã¿ (penta)ã»ãããµ (hexa)ã»ããã¿ (hepta)ã»ãªã¯ã¿ (octa)ã»ãã (nona)ã»ãã« (deca)ã§ããã5ãã10ãŸã§ã¯ã¢ã«ã«ã³ã®åç§°ãšãé¢ä¿ããã
眮æåå¿ãšã¯ãåå(å£)ãä»ã®åå(å£)ãšçœ®ãæããåå¿ã§ããã ã¢ã«ã«ã³ã¯ã玫å€ç·(æ¥å
)ã®ååšäžã§ããã²ã³ãšé£ç¶çã«çœ®æåå¿ãèµ·ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ææ©ååŠ>ã¢ã«ã«ã³",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ççŽ éã«åçµåã®ã¿ãå«ãçåæ°ŽçŽ ãã¢ã«ã«ã³ (alkane) ãšããã",
"title": "ã¢ã«ã«ã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãªã©ã¯ãã¹ãŠã¢ã«ã«ã³ã§ããã",
"title": "ã¢ã«ã«ã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ççŽ ååã1åã®ã¢ã«ã«ã³ã®åååŒã¯ C H 4 {\\displaystyle CH_{4}} ã§ããã åãããã«ãççŽ ååã2åã®ã¢ã«ã«ã³ã¯ C 2 H 6 {\\displaystyle C_{2}H_{6}} ã3åãªã C 3 H 8 {\\displaystyle C_{3}H_{8}} ã4åã§ C 4 H 10 {\\displaystyle C_{4}H_{10}} ãã§ããã ãã®ããã«ã¢ã«ã«ã³ã¯äžè¬çã« C n H 2 n + 2 {\\displaystyle C_{n}H_{2n+2}} ã§è¡šãããããã®åŒãã¢ã«ã«ã³ã®äžè¬åŒãšããã",
"title": "ã¢ã«ã«ã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãã®è¡šããåãããšãããã¢ã«ã«ã³ã®ååã¯ãæ°ãã衚ãéšåãšãã¢ã«ã«ã³ãã衚ãã-aneãããæã£ãŠããã",
"title": "ã¢ã«ã«ã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "åååŒã¯åãã§ããããæ§é ãæ§è³ªã®ç°ãªãååç©ããäºãã«ç°æ§äœãšåŒã¶ã ç°æ§äœã«ã¯ãæ§é åŒã®éãæ§é ç°æ§äœãšãæ§é åŒã¯åãã ãç«äœæ§é ã®ç°ãªãç«äœç°æ§äœãããã æ§é ç°æ§äœãåã«ç°æ§äœãšåŒã¶ããšãããã",
"title": "ã¢ã«ã«ã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ã¢ã«ã«ã³ã¯ãççŽ ååã4å以äžã®ãšãæ§é ç°æ§äœãæã€ã ãã®ãããåãåååŒãæã€ã¢ã«ã«ã³ã§ãæ§é ç°æ§äœå士ã§åºå¥ããå¿
èŠãããã",
"title": "ã¢ã«ã«ã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "äŸãã°ã",
"title": "ã¢ã«ã«ã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãšããã¢ã«ã«ã³ãèããã",
"title": "ã¢ã«ã«ã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãŸããã®äžã§äžçªé·ãççŽ ã®éãæ¢ãã äžçªé·ãã®ã¯çãäžã®åã®ççŽ 10åã§ã¯ç¡ãã çãäžã®åã®å·Šãã9åãšã9åç®ããäžã«3åã®ãåãããŠ12åãäžçªé·ãççŽ ã®éã§ããããããäž»éãšããã ãã®ããã«äž»éã¯æ§é åŒã®ã©ãã«æžããŠãããã¯é¢ä¿ãªãã",
"title": "ã¢ã«ã«ã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "äž»éã12åãšæ±ºãŸã£ãã®ã§ãã®ã¢ã«ã«ã³ã¯ã~ããã«ã³ãã§çµããã ãã以å€ã®ççŽ ãšæ°ŽçŽ ã®å¡ã¯ããã¹ãŠçœ®æåºãšããŠæ±ãããã ã¢ã«ã«ã³ã®çœ®æåºã¯ãå¥ã®å°ããã¢ã«ã«ã³ããæ°ŽçŽ ååãäžã€åãé€ãããã®ãšããŠè¡šããããããã¢ã«ãã«åº(alkyl group)ãšããã ã¢ã«ãã«åºã®åç§°ã¯ãã¢ã«ã«ã³ã®aneãylã«çœ®ãæããããšã§äœãã å·Šãã2åç®ã®ççŽ ããåºãŠãã眮æåºã¯ã¡ã¿ã³(methane)ããæ°ŽçŽ ååãäžã€åãé€ãããã®ã«çããã®ã§ãã¡ãã«(methyl)åºãšããããšã«ãªãã åæ§ã«ãå·Šãã3åç®ã®ççŽ ããåºãŠããã®ããšãã«(ethyl)åºãå·Šãã4åç®ã®ççŽ ããåºãŠããã®ããããã«(propyl)åºãå·Šãã9çªç®ã®ççŽ ããå³ã«åºãŠããã®ãã¡ãã«åºã§ããã",
"title": "ã¢ã«ã«ã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãããããŸãã¢ã«ãã¡ãããé ã«äžŠã¹ãããããšãethylãmethylãpropylã®é ã«ãªãã æ¬¡ã«ããšãã«åºããé ã«ãäž»éã®äœçªç®ã®ççŽ ã«ä»ããŠãããã瀺ãã ããã§ãå·Šããæ°ããã®ã§3çªç®ãšããèãæ¹ãšãå³ããæ°ããã®ã§10çªç®ãšããèãæ¹ããããããªãã¹ãçªå·ãå°ãªããªãããã«ã€ããã ãã£ãŠãã3-ãšãã«~ããšãªãã",
"title": "ã¢ã«ã«ã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "次ã«ãã¡ãã«åºã¯ãµãã€ä»ããŠããã®ã§ãããž(di)ã¡ãã«ããšãã颚ã«ãããäœçœ®çªå·ã¯ãäžåºŠæ±ºããçªå·ã¯å€ããªãã®ã§ãã2,9-ãžã¡ãã«ããšãªããæåãšæ°åã®éããã€ãã³ã§ã€ãªããšãã3-ãšãã«-2,9-ãžã¡ãã«~ããšãªãã",
"title": "ã¢ã«ã«ã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "æåŸã«ãããã«åºã¯ã4-ãããã«ããšãªãã®ã§ããã¹ãŠãã€ãªãã§ãã®ã¢ã«ã«ã³ã®ååã¯ã3-ãšãã«-2,9-ãžã¡ãã«-4-ãããã«ããã«ã³ããšãªãã",
"title": "ã¢ã«ã«ã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "åºãäœåãããã¯ã®ãªã·ã£èªã®æ°è©ã䜿ã£ãŠè¡šãã 1ãã10ãŸã§ãé ã«ãã¢ã (mono)ã»ãž (di)ã»ã㪠(tri)ã»ããã© (tetra)ã»ãã³ã¿ (penta)ã»ãããµ (hexa)ã»ããã¿ (hepta)ã»ãªã¯ã¿ (octa)ã»ãã (nona)ã»ãã« (deca)ã§ããã5ãã10ãŸã§ã¯ã¢ã«ã«ã³ã®åç§°ãšãé¢ä¿ããã",
"title": "ã¢ã«ã«ã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "眮æåå¿ãšã¯ãåå(å£)ãä»ã®åå(å£)ãšçœ®ãæããåå¿ã§ããã ã¢ã«ã«ã³ã¯ã玫å€ç·(æ¥å
)ã®ååšäžã§ããã²ã³ãšé£ç¶çã«çœ®æåå¿ãèµ·ããã",
"title": "眮æåå¿"
}
] | ææ©ååŠïŒã¢ã«ã«ã³ | [[ææ©ååŠ]]ïŒã¢ã«ã«ã³
== ã¢ã«ã«ã³ã®å®çŸ©ãšåœåæ³ ==
=== ã¢ã«ã«ã³ã®å®çŸ© ===
ççŽ éã«åçµåã®ã¿ãå«ãçåæ°ŽçŽ ãã¢ã«ã«ã³ (alkane) ãšããã
H
|
H-C-H
|
H
H H H
| | |
H-C-C-C-H
| | |
H H H
H H H H
| | | |
H-C-C-C-C-H
| | | |
H | H H
H-C-H
|
H
ãªã©ã¯ãã¹ãŠã¢ã«ã«ã³ã§ããã
=== ã¢ã«ã«ã³ã®äžè¬åŒ ===
ççŽ ååã1åã®ã¢ã«ã«ã³ã®åååŒã¯<math>CH _4</math>ã§ããã<br>
åãããã«ãççŽ ååã2åã®ã¢ã«ã«ã³ã¯<math>C _2 H _6</math>ã3åãªã<math>C _3 H _8</math>ã4åã§<math>C _4 H _{10}</math>ãã§ããã<br>
ãã®ããã«ã¢ã«ã«ã³ã¯äžè¬çã«<math>C _n H _{2n+2}</math>ã§è¡šãããããã®åŒãã¢ã«ã«ã³ã®'''äžè¬åŒ'''ãšããã
=== çŽéã¢ã«ã«ã³ã®åœåæ³ ===
{| class="wikitable"
|+ çŽéã¢ã«ã«ã³ã®åœåæ³
|-
! ççŽ æ° !! åååŒ !! ç¶Žã !! èªã¿
|-
| 1 || <math>CH _4</math> || methane || ã¡ã¿ã³
|-
|-
| 2 || <math>C _2 H _6</math> || ethane || ãšã¿ã³
|-
| 3 || <math>C _3 H _8</math> || propane || ãããã³
|-
| 4 || <math>C _4 H _{10}</math> || butane || ãã¿ã³
|-
| 5 || <math>C _5 H _{12}</math> || pentane || ãã³ã¿ã³
|-
| 6 || <math>C _6 H _{14}</math> || hexane || ãããµã³
|-
| 7 || <math>C _7 H _{16}</math> || heptane || ããã¿ã³
|-
| 8 || <math>C _8 H _{18}</math> || octane || ãªã¯ã¿ã³
|-
| 9 || <math>C _9 H _{20}</math> || nonane || ããã³
|-
| 10 || <math>C _{10} H _{22}</math> || decane || ãã«ã³
|-
| 11 || <math>C _{11} H _{24}</math> || undecane || ãŠã³ãã«ã³
|-
| 12 || <math>C _{12} H _{26}</math> || dodecane || ããã«ã³
|}
ãã®è¡šããåãããšãããã¢ã«ã«ã³ã®ååã¯ãæ°ãã衚ãéšåãšãã¢ã«ã«ã³ãã衚ãã-aneãããæã£ãŠããã
=== ç°æ§äœ ===
åååŒã¯åãã§ããããæ§é ãæ§è³ªã®ç°ãªãååç©ããäºãã«'''ç°æ§äœ'''ãšåŒã¶ã
ç°æ§äœã«ã¯ã[[w:ååŠåŒ|æ§é åŒ]]ã®éã'''æ§é ç°æ§äœ'''ãšãæ§é åŒã¯åãã ãç«äœæ§é ã®ç°ãªã'''ç«äœç°æ§äœ'''ãããã
æ§é ç°æ§äœãåã«ç°æ§äœãšåŒã¶ããšãããã
=== ã¢ã«ã«ã³ã®ç°æ§äœ ===
ã¢ã«ã«ã³ã¯ãççŽ ååã4å以äžã®ãšãæ§é ç°æ§äœãæã€ã
ãã®ãããåãåååŒãæã€ã¢ã«ã«ã³ã§ãæ§é ç°æ§äœå士ã§åºå¥ããå¿
èŠãããã
=== åå²ã®ããã¢ã«ã«ã³ã®åœåæ³ ===
äŸãã°ã
CH2-CH3 CH3-CH2-CH2
| |
CH3-CH-CH-CH-CH2-CH2-CH2-CH2-CH-CH3
| |
CH3 CH2-CH2-CH3
ãšããã¢ã«ã«ã³ãèããã
ãŸããã®äžã§äžçªé·ãççŽ ã®éãæ¢ãã
äžçªé·ãã®ã¯çãäžã®åã®ççŽ 10å'''ã§ã¯ç¡ã'''ã
çãäžã®åã®å·Šãã9åãšã9åç®ããäžã«3åã®ãåãããŠ12åãäžçªé·ãççŽ ã®éã§ããããããäž»éãšããã
ãã®ããã«'''äž»éã¯æ§é åŒã®ã©ãã«æžããŠãããã¯é¢ä¿ãªã'''ã
äž»éã12åãšæ±ºãŸã£ãã®ã§ãã®ã¢ã«ã«ã³ã¯ãïœããã«ã³ãã§çµããã
ãã以å€ã®ççŽ ãšæ°ŽçŽ ã®å¡ã¯ããã¹ãŠ[[ææ©ååŠ åº|眮æåº]]ãšããŠæ±ãããã
ã¢ã«ã«ã³ã®çœ®æåºã¯ãå¥ã®å°ããã¢ã«ã«ã³ããæ°ŽçŽ ååãäžã€åãé€ãããã®ãšããŠè¡šãããããã'''ã¢ã«ãã«åº'''(alkyl group)ãšããã
ã¢ã«ãã«åºã®åç§°ã¯ãã¢ã«ã«ã³ã®aneãylã«çœ®ãæããããšã§äœãã
å·Šãã2åç®ã®ççŽ ããåºãŠãã眮æåºã¯ã¡ã¿ã³(methane)ããæ°ŽçŽ ååãäžã€åãé€ãããã®ã«çããã®ã§ãã¡ãã«(methyl)åºãšããããšã«ãªãã
åæ§ã«ãå·Šãã3åç®ã®ççŽ ããåºãŠããã®ããšãã«(ethyl)åºãå·Šãã4åç®ã®ççŽ ããåºãŠããã®ããããã«(propyl)åºãå·Šãã9çªç®ã®ççŽ ããå³ã«åºãŠããã®ãã¡ãã«åºã§ããã
ãããããŸã'''ã¢ã«ãã¡ãããé '''ã«äžŠã¹ãããããšãethylãmethylãpropylã®é ã«ãªãã
次ã«ããšãã«åºããé ã«ãäž»éã®äœçªç®ã®ççŽ ã«ä»ããŠãããã瀺ãã
ããã§ãå·Šããæ°ããã®ã§3çªç®ãšããèãæ¹ãšãå³ããæ°ããã®ã§10çªç®ãšããèãæ¹ããããã'''ãªãã¹ãçªå·ãå°ãªããªãããã«'''ã€ããã
ãã£ãŠãã3-ãšãã«ïœããšãªãã
次ã«ãã¡ãã«åºã¯ãµãã€ä»ããŠããã®ã§ãããž(di)ã¡ãã«ããšãã颚ã«ãããäœçœ®çªå·ã¯ã'''äžåºŠæ±ºããçªå·ã¯å€ããªã'''ã®ã§ãã2,9-ãžã¡ãã«ããšãªãã'''æåãšæ°åã®éããã€ãã³ã§ã€ãªã'''ãšãã3-ãšãã«-2,9-ãžã¡ãã«ïœããšãªãã
æåŸã«ãããã«åºã¯ã4-ãããã«ããšãªãã®ã§ããã¹ãŠãã€ãªãã§ãã®ã¢ã«ã«ã³ã®ååã¯ã3-ãšãã«-2,9-ãžã¡ãã«-4-ãããã«ããã«ã³ããšãªãã
åºãäœåãããã¯ã®ãªã·ã£èªã®æ°è©ã䜿ã£ãŠè¡šãã
1ãã10ãŸã§ãé ã«ãã¢ã (mono)ã»ãž (di)ã»ã㪠(tri)ã»ããã© (tetra)ã»ãã³ã¿ (penta)ã»ãããµ (hexa)ã»ããã¿ (hepta)ã»ãªã¯ã¿ (octa)ã»ãã (nona)ã»ãã« (deca)ã§ããã5ãã10ãŸã§ã¯ã¢ã«ã«ã³ã®åç§°ãšãé¢ä¿ããã
== ã¢ã«ã«ã³ã®æ§è³ª ==
*æ°Žã«ã¯æº¶ãã«ããããææ©æº¶åªã«ã¯ããæº¶ããã
*åžžæž©ã§ã¯åå¿æ§ã«ä¹ãããé
žå¡©åºãšã¯åå¿ãããé
žåæ§ã»éå
æ§ããªãã
*ççŒããããçºç±éã倧ããã
**CH<sub>4</sub>ïŒ2O<sub>2</sub>ïŒCO<sub>2</sub>ïŒ2H<sub>2</sub>OïŒ890kJ
== 眮æåå¿ ==
眮æåå¿ãšã¯ãåå(å£)ãä»ã®åå(å£)ãšçœ®ãæããåå¿ã§ããã
ã¢ã«ã«ã³ã¯ã玫å€ç·ïŒæ¥å
ïŒã®ååšäžã§ããã²ã³ãšé£ç¶çã«çœ®æåå¿ãèµ·ããã
*CH<sub>4</sub>ïŒCl<sub>2</sub>→CH<sub>3</sub>ClïŒHCl
*CH<sub>3</sub>ClïŒCl<sub>2</sub>→CH<sub>2</sub>Cl<sub>2</sub>ïŒHCl
*CH<sub>2</sub>Cl<sub>2</sub>ïŒCl<sub>2</sub>→CHCl<sub>3</sub>ïŒHCl
*CHCl<sub>3</sub>ïŒCl<sub>2</sub>→CCl<sub>4</sub>ïŒHCl
== å€éšãªã³ã¯ ==
{{Wikipedia|ã¢ã«ã«ã³}}
[[ã«ããŽãª:ææ©ååŠ]]
[[en:Organic Chemistry/Alkanes]] | null | 2022-11-23T05:32:44Z | [
"ãã³ãã¬ãŒã:Wikipedia"
] | https://ja.wikibooks.org/wiki/%E6%9C%89%E6%A9%9F%E5%8C%96%E5%AD%A6/%E3%82%A2%E3%83%AB%E3%82%AB%E3%83%B3 |
2,021 | ææ©ååŠ/åº | ææ©ååŠ>åº
åºãšã¯å®èœåºãçåæ°ŽçŽ åºãªã©ã²ãšãŸãšãŸãã®ååå£ãæãã
ã¢ã«ã«ã³ããHååã1åãšãã®ããããã®ãã¢ã«ãã«åºãšãããã¢ã«ã«ã³ã®ååã®aneãylã«å€ããŠåœåããã ãšãã¬ã³ããHååã1åãšãã®ããããã®ãããã«åºãšããã è³éŠæçåæ°ŽçŽ ããHååã1åãšãã®ããããã®ãã¢ãªãŒã«åºãšããã
çåæ°ŽçŽ åºã¯äžè¬ã«ãR-ããšè¡šãããããšãããã
ããã²ã³ååãåºãšããŠåããããã²ã³ååãåºãšããŠåãå Žåãããã²ãåºãšãããåã
åååãšéãååãäžããããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ææ©ååŠ>åº",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "åºãšã¯å®èœåºãçåæ°ŽçŽ åºãªã©ã²ãšãŸãšãŸãã®ååå£ãæãã",
"title": "åºãšã¯äœã"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ã¢ã«ã«ã³ããHååã1åãšãã®ããããã®ãã¢ã«ãã«åºãšãããã¢ã«ã«ã³ã®ååã®aneãylã«å€ããŠåœåããã ãšãã¬ã³ããHååã1åãšãã®ããããã®ãããã«åºãšããã è³éŠæçåæ°ŽçŽ ããHååã1åãšãã®ããããã®ãã¢ãªãŒã«åºãšããã",
"title": "çåæ°ŽçŽ åºã®çš®é¡"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "çåæ°ŽçŽ åºã¯äžè¬ã«ãR-ããšè¡šãããããšãããã",
"title": "çåæ°ŽçŽ åºã®çš®é¡"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ããã²ã³ååãåºãšããŠåããããã²ã³ååãåºãšããŠåãå Žåãããã²ãåºãšãããåã
åååãšéãååãäžããããã",
"title": "ããã²ãåº"
}
] | ææ©ååŠïŒåº | [[ææ©ååŠ]]ïŒåº
==åºãšã¯äœã==
åºãšã¯[[ææ©ååŠ#å®èœåºãšçåæ°ŽçŽ åº|å®èœåºãçåæ°ŽçŽ åº]]ãªã©ã²ãšãŸãšãŸãã®ååå£ãæãã
==å®èœåºã®çš®é¡==
===é
žçŽ ãå«ãååç©===
<table border="1" class="wikitable">
<tr><th colspan="2">å®èœåº</th><th>ååç©ã®äžè¬å</th><th colspan="2">ååç©ã®äŸ</th></tr>
<tr><td rowspan="2">ããããã·åº</td><td rowspan="2">ïŒOH</td><td>[[ææ©ååŠ_ã¢ã«ã³ãŒã«|ã¢ã«ã³ãŒã«]]</td><td>ã¡ã¿ããŒã«</td><td>CH<sub>3</sub>ïŒOH</td></tr>
<tr><td>ãã§ããŒã«é¡</td><td>ãã§ããŒã«</td><td>C<sub>6</sub>H<sub>5</sub>ïŒOH</td></tr>
<tr><td>ã¢ã«ãããåº</td><td>ïŒCHO</td><td>[[ææ©ååŠ_ã¢ã«ããã|ã¢ã«ããã]]</td><td>ã¢ã»ãã¢ã«ããã</td><td>CH<sub>3</sub>ïŒCHO</td></tr>
<tr><td>ã«ã«ããã«åº</td><td>ïŒCO</td><td>[[ææ©ååŠ_ã±ãã³|ã±ãã³]]</td><td>ã¢ã»ãã³</td><td>CH<sub>3</sub>ïŒCOïŒCH<sub>3</sub></td></tr>
<tr><td>ã«ã«ããã·åº</td><td>ïŒCOOH</td><td>[[ææ©ååŠ_ã«ã«ãã³é
ž|ã«ã«ãã³é
ž]]</td><td>é
¢é
ž</<td>CH<sub>3</sub>ïŒCOOH</td></tr>
<tr><td>ãããåº</td><td>ïŒNO<sub>2</sub></td><td>ãããååç©</td><td>ããããã³ãŒã³</td><td>C<sub>6</sub>H<sub>5</sub>ïŒNO<sub>2</sub></td></tr>
<tr><td>ã¢ããåº</td><td>ïŒNH<sub>2</sub></td><td>ã¢ãã³</td><td>ã¢ããªã³</td><td>C<sub>6</sub>H<sub>5</sub>ïŒNH<sub>2</sub></td></tr>
<tr><td>ã¹ã«ãåº</td><td>ïŒSO<sub>3</sub>H</td><td>ã¹ã«ãã³é
ž</td><td>ãã³ãŒã³ã¹ã«ãã³é
ž</td><td>C<sub>6</sub>H<sub>5</sub>ïŒSO<sub>3</sub>H</td></tr>
<tr><td>ãšãŒãã«çµå</td><td>ïŒOïŒ</td><td>[[ææ©ååŠ_ãšãŒãã«|ãšãŒãã«]]</td><td>ãžã¡ãã«ãšãŒãã«</td><td>CH<sub>3</sub>ïŒOïŒCH<sub>3</sub></td></tr>
<tr><td>ãšã¹ãã«çµå</td><td>ïŒCOOïŒ</td><td>[[ææ©ååŠ_ãšã¹ãã«|ãšã¹ãã«]]</td><td>é
¢é
žã¡ãã«</td><td>CH<sub>3</sub>ïŒCOOïŒCH<sub>3</sub></td></tr>
</table>
==çåæ°ŽçŽ åºã®çš®é¡==
<table border="1" class="wikitable">
<tr><th>çåæ°ŽçŽ åºã®ã°ã«ãŒã</th><th colspan="2">çåæ°ŽçŽ åº</th></tr>
<tr><td rowspan="4">ã¢ã«ãã«åº</td><td>ã¡ãã«åº</td><td>CH<sub>3</sub>ïŒ</td></tr>
<tr><td>ãšãã«åº</td><td>C<sub>2</sub>H<sub>5</sub>ïŒ</td></tr>
<tr><td>(ãã«ãã«)ãããã«åº</td><td>CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>ïŒ</td></tr>
<tr><td>ã€ãœãããã«åº</td><td>(CH<sub>3</sub>)<sub>2</sub>CHïŒ</td></tr>
<tr><td colspan="2">ããã«åº</td><td>CH<sub>2</sub>ïŒCHïŒ</td></tr>
<tr><td rowspan="2">ã¢ãªãŒã«åº</td><td>ãã§ãã«åº</td><td>C<sub>6</sub>H<sub>5</sub>ïŒ</td></tr>
<tr><td>ãããã«åº</td><td>C<sub>10</sub>H<sub>7</sub>ïŒ</td></tr>
</table>
[[ææ©ååŠ_ã¢ã«ã«ã³|ã¢ã«ã«ã³]]ããHååã1åãšãã®ããããã®ãã¢ã«ãã«åºãšãããã¢ã«ã«ã³ã®ååã®aneãylã«å€ããŠåœåããã
[[ææ©ååŠ_ã¢ã«ã±ã³|ãšãã¬ã³]]ããHååã1åãšãã®ããããã®ãããã«åºãšããã
è³éŠæçåæ°ŽçŽ ããHååã1åãšãã®ããããã®ãã¢ãªãŒã«åºãšããã
çåæ°ŽçŽ åºã¯äžè¬ã«ãRïŒããšè¡šãããããšãããã
==ããã²ãåº==
ããã²ã³ååãåºãšããŠåããããã²ã³ååãåºãšããŠåãå Žåãããã²ãåºãšãããåã
åååãšéãååãäžããããã
<table border="1" class="wikitable">
<tr><th>ããã²ãåº</th><th>åç§°</th><th>ååã®è±å</th></tr>
<tr><td>FïŒ</td><td>ãã«ãªãåº(Fluoro)</td><td>ãã«ãªãªã³(Fluorine)</td></tr>
<tr><td>ClïŒ</td><td>ã¯ããåº(Chloro)</td><td>ã¯ããªã³(Chlorine)</td></tr>
<tr><td>BrïŒ</td><td>ããã¢åº(Bromo)</td><td>ãããã³(Bromine)</td></tr>
<tr><td>IïŒ</td><td>ãšãŒãåº(Iodo)</td><td>ãšãŒãã£ã³(Iodine)</td></tr>
<tr><td>AtïŒ</td><td>ã¢ã¹ã¿ãåº(Astato)</td><td>ã¢ã¹ã¿ãã£ã³(Astatine)</td></tr>
</table>
[[ã«ããŽãª:ææ©ååŠ]] | null | 2022-11-23T05:33:30Z | [] | https://ja.wikibooks.org/wiki/%E6%9C%89%E6%A9%9F%E5%8C%96%E5%AD%A6/%E5%9F%BA |
2,022 | ææ©ååŠ/ã¢ã«ã±ã³ | ææ©ååŠ>ã¢ã«ã±ã³
ççŽ éã«Ïçµåã1ã€ã ãå«ãèèªæçåæ°ŽçŽ ãã¢ã«ã±ã³ (alkene) ãšããã ã¢ã«ã±ã³ã¯äžè¬åŒCnH2nã§è¡šãããã å®çŸ©ãããççŽ ååã1ã€ã®ã¢ã«ã±ã³ã¯ååšããªãã
ã¢ã«ã«ã³ã®èªå°Ÿaneãeneã«å€ããã ãšãã³ (ethen)ããããã³ (propene)ãããã³ (buthene)ããã³ãã³ (pentene)ã»ã»ã»
äœãããšãã³ã¯æ£åŒãªåç§°(äœç³»å)ãããæ
£çšåãšãã¬ã³(ethylene)ã®æ¹ãè¯ã䜿ãããã ãããã³ãæ
£çšåãããã¬ã³(propylene)ãäœç³»åãšåçšåºŠäœ¿ãããã
ããã³ä»¥äžã®é·ãã®ã¢ã«ã±ã³ã«ã¯ãäºéçµåã®äœçœ®ã«ããæ§é ç°æ§äœãååšããã ãã®å Žåãšãäºéçµåãäž»éã®ã©ãã«ããããåºæ¥ãã ãå°ããçªå·ã«ãã£ãŠè¡šãã
CH2=CHCH2CH3ã1-ããã³ã
CH3CH=CHCH3ã2-ããã³ã
ã¡ãªã¿ã«ããã³ã®ç°æ§äœã«ã¯CH2=C(CH3)2(2-ã¡ãã«ãããã³)ãååšããã
äºéçµåãæã€2ã€ã®ççŽ ååãšããã«çµåãã4ã€ã®ååã¯åäžå¹³é¢äžã«ãããäºéçµåã軞ã«ã²ããããã«å転ãããããšã¯ã§ããªãããã®ãããäºéçµåãæã€äž¡æ¹ã®ççŽ ååã«ããããéãåå(å£)ãæ¥ç¶ããŠãããšãã2ã€ã®ç«äœç°æ§äœãååšããããããã·ã¹ã»ãã©ã³ã¹ç°æ§äœãšããã
äŸãã°2-ããã³ã¯CH3>C=C<CH3ãšCH3>C=C<Hã®2ã€ãååšããããã®ãšããäž»é(ççŽ æ°æå€ã®é)ãšãªãççŽ éªšæ Œãäºéçµåã®åãåŽã«ããæ¹ãã·ã¹ (cis) åãå察åŽã«ããæ¹ããã©ã³ã¹ (trans) åãšããã®ã§ãåè
ã¯ãã·ã¹-2-ããã³ããåŸè
ã¯ããã©ã³ã¹-2-ããã³ãã§ããããã£ãŠããã³ã«ã¯æ§é ç°æ§äœã®1-ããã³, 2-ã¡ãã«ãããã³ãå«ãã4çš®ã®ç«äœç°æ§äœãååšãããæ³šæãã¹ãã¯ãåçš®ã®ååå£ãåãåŽã«ãããå察åŽã«ãããã«ãã£ãŠcis/transãåºå¥ããã®ã§ã¯ãªãããããŸã§äž»éãåãåŽã«ãããå察åŽã«ãããã«ãã£ãŠåºå¥ããç¹ã§ãããäŸãã°ãCH3>C=C<CH3ãšCH3>C=C<C2H5ã§ã¯ãåè
ãtransãåŸè
ãcisã§ããã
äºéçµåã®ãã¡çæ¹ã¯ÏçµåãšåŒã°ããå
ãçµåãããçæ¹ã¯ÏçµåãšåŒã°ãã匱ãçµåã§ãæ°ŽçŽ ãããã²ã³ãªã©ãè¿ã¥ããšÏçµåãåãåå¿ããããããä»å åå¿ãšããã
ã¢ã«ã±ã³å士ãä»å åå¿ãèµ·ãããšã倿°ã®ã¢ã«ã±ã³ãã€ãªãã£ã倧ããªååãåºæ¥ãããã®åå¿ãä»å éåãšããã
ä»å éåã¯ããã«åºãæã€ãã®ãèµ·ãããäžè¬çã«æžããš
ãšãªãã
äºéçµåã¯é
žåããããããé
žåå€ãäžãããšäºéçµåãéè£ããã±ãã³ãã¢ã«ããããã«ã«ãã³é
žãªã©ã«ãªãã
éãã³ã¬ã³é
žå¡©ãåé
žåãªã¹ããŠã ã«ããé
žåã§ã¯ã2䟡ã¢ã«ã³ãŒã«(1,2-ãžãªãŒã«)ãçããã
éé
ž-OOHã«ããé
žåã§ã¯ã-C-O-C-ã§æ§æãããäžå¡ç°ååç©ããšããã·ããçããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ææ©ååŠ>ã¢ã«ã±ã³",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ççŽ éã«Ïçµåã1ã€ã ãå«ãèèªæçåæ°ŽçŽ ãã¢ã«ã±ã³ (alkene) ãšããã ã¢ã«ã±ã³ã¯äžè¬åŒCnH2nã§è¡šãããã å®çŸ©ãããççŽ ååã1ã€ã®ã¢ã«ã±ã³ã¯ååšããªãã",
"title": "ã¢ã«ã±ã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ã¢ã«ã«ã³ã®èªå°Ÿaneãeneã«å€ããã ãšãã³ (ethen)ããããã³ (propene)ãããã³ (buthene)ããã³ãã³ (pentene)ã»ã»ã»",
"title": "ã¢ã«ã±ã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "äœãããšãã³ã¯æ£åŒãªåç§°(äœç³»å)ãããæ
£çšåãšãã¬ã³(ethylene)ã®æ¹ãè¯ã䜿ãããã ãããã³ãæ
£çšåãããã¬ã³(propylene)ãäœç³»åãšåçšåºŠäœ¿ãããã",
"title": "ã¢ã«ã±ã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ããã³ä»¥äžã®é·ãã®ã¢ã«ã±ã³ã«ã¯ãäºéçµåã®äœçœ®ã«ããæ§é ç°æ§äœãååšããã ãã®å Žåãšãäºéçµåãäž»éã®ã©ãã«ããããåºæ¥ãã ãå°ããçªå·ã«ãã£ãŠè¡šãã",
"title": "ã¢ã«ã±ã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "CH2=CHCH2CH3ã1-ããã³ã",
"title": "ã¢ã«ã±ã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "CH3CH=CHCH3ã2-ããã³ã",
"title": "ã¢ã«ã±ã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ã¡ãªã¿ã«ããã³ã®ç°æ§äœã«ã¯CH2=C(CH3)2(2-ã¡ãã«ãããã³)ãååšããã",
"title": "ã¢ã«ã±ã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "äºéçµåãæã€2ã€ã®ççŽ ååãšããã«çµåãã4ã€ã®ååã¯åäžå¹³é¢äžã«ãããäºéçµåã軞ã«ã²ããããã«å転ãããããšã¯ã§ããªãããã®ãããäºéçµåãæã€äž¡æ¹ã®ççŽ ååã«ããããéãåå(å£)ãæ¥ç¶ããŠãããšãã2ã€ã®ç«äœç°æ§äœãååšããããããã·ã¹ã»ãã©ã³ã¹ç°æ§äœãšããã",
"title": "ã¢ã«ã±ã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "äŸãã°2-ããã³ã¯CH3>C=C<CH3ãšCH3>C=C<Hã®2ã€ãååšããããã®ãšããäž»é(ççŽ æ°æå€ã®é)ãšãªãççŽ éªšæ Œãäºéçµåã®åãåŽã«ããæ¹ãã·ã¹ (cis) åãå察åŽã«ããæ¹ããã©ã³ã¹ (trans) åãšããã®ã§ãåè
ã¯ãã·ã¹-2-ããã³ããåŸè
ã¯ããã©ã³ã¹-2-ããã³ãã§ããããã£ãŠããã³ã«ã¯æ§é ç°æ§äœã®1-ããã³, 2-ã¡ãã«ãããã³ãå«ãã4çš®ã®ç«äœç°æ§äœãååšãããæ³šæãã¹ãã¯ãåçš®ã®ååå£ãåãåŽã«ãããå察åŽã«ãããã«ãã£ãŠcis/transãåºå¥ããã®ã§ã¯ãªãããããŸã§äž»éãåãåŽã«ãããå察åŽã«ãããã«ãã£ãŠåºå¥ããç¹ã§ãããäŸãã°ãCH3>C=C<CH3ãšCH3>C=C<C2H5ã§ã¯ãåè
ãtransãåŸè
ãcisã§ããã",
"title": "ã¢ã«ã±ã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "äºéçµåã®ãã¡çæ¹ã¯ÏçµåãšåŒã°ããå
ãçµåãããçæ¹ã¯ÏçµåãšåŒã°ãã匱ãçµåã§ãæ°ŽçŽ ãããã²ã³ãªã©ãè¿ã¥ããšÏçµåãåãåå¿ããããããä»å åå¿ãšããã",
"title": "ã¢ã«ã±ã³ã®æ§è³ª"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ã¢ã«ã±ã³å士ãä»å åå¿ãèµ·ãããšã倿°ã®ã¢ã«ã±ã³ãã€ãªãã£ã倧ããªååãåºæ¥ãããã®åå¿ãä»å éåãšããã",
"title": "ã¢ã«ã±ã³ã®æ§è³ª"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ä»å éåã¯ããã«åºãæã€ãã®ãèµ·ãããäžè¬çã«æžããš",
"title": "ã¢ã«ã±ã³ã®æ§è³ª"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãšãªãã",
"title": "ã¢ã«ã±ã³ã®æ§è³ª"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "äºéçµåã¯é
žåããããããé
žåå€ãäžãããšäºéçµåãéè£ããã±ãã³ãã¢ã«ããããã«ã«ãã³é
žãªã©ã«ãªãã",
"title": "ã¢ã«ã±ã³ã®æ§è³ª"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "éãã³ã¬ã³é
žå¡©ãåé
žåãªã¹ããŠã ã«ããé
žåã§ã¯ã2䟡ã¢ã«ã³ãŒã«(1,2-ãžãªãŒã«)ãçããã",
"title": "ã¢ã«ã±ã³ã®æ§è³ª"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "éé
ž-OOHã«ããé
žåã§ã¯ã-C-O-C-ã§æ§æãããäžå¡ç°ååç©ããšããã·ããçããã",
"title": "ã¢ã«ã±ã³ã®æ§è³ª"
}
] | ææ©ååŠïŒã¢ã«ã±ã³ | [[ææ©ååŠ]]ïŒã¢ã«ã±ã³
== ã¢ã«ã±ã³ã®å®çŸ©ãšåœåæ³ ==
=== ã¢ã«ã±ã³ã®å®çŸ© ===
ççŽ éã«Ïçµåã1ã€ã ãå«ãèèªæçåæ°ŽçŽ ãã¢ã«ã±ã³ (alkene) ãšããã
ã¢ã«ã±ã³ã¯[[ææ©ååŠ_ã¢ã«ã«ã³#ã¢ã«ã«ã³ã®äžè¬åŒ|äžè¬åŒ]]C<sub>n</sub>H<sub>2n</sub>ã§è¡šãããã
å®çŸ©ãããççŽ ååã1ã€ã®ã¢ã«ã±ã³ã¯ååšããªãã
=== åœåæ³ ===
[[ææ©ååŠ_ã¢ã«ã«ã³#åœåæ³|ã¢ã«ã«ã³]]ã®èªå°Ÿaneãeneã«å€ããã
ãšãã³ (ethen)ããããã³ (propene)ãããã³ (buthene)ããã³ãã³ (pentene)ã»ã»ã»
äœãããšãã³ã¯æ£åŒãªåç§°ïŒäœç³»åïŒãããæ
£çšåãšãã¬ã³(ethylene)ã®æ¹ãè¯ã䜿ãããã
ãããã³ãæ
£çšåãããã¬ã³(propylene)ãäœç³»åãšåçšåºŠäœ¿ãããã
<gallery>
File:Ethene structural.svg|ãšãã³
File:Propene-2D-flat.png|ãããã³
</gallery>
ããã³ä»¥äžã®é·ãã®ã¢ã«ã±ã³ã«ã¯ãäºéçµåã®äœçœ®ã«ãã[[ææ©ååŠ_ã¢ã«ã«ã³#ç°æ§äœ|æ§é ç°æ§äœ]]ãååšããã
ãã®å Žåãšãäºéçµåã[[ææ©ååŠ_ã¢ã«ã«ã³#ã¢ã«ã«ã³ã®è©³ããåœåæ³|äž»é]]ã®ã©ãã«ããããåºæ¥ãã ãå°ããçªå·ã«ãã£ãŠè¡šãã
CH<sub>2</sub>=CHCH<sub>2</sub>CH<sub>3</sub>ã1-ããã³ã
CH<sub>3</sub>CH=CHCH<sub>3</sub>ã2-ããã³ã
ã¡ãªã¿ã«ããã³ã®ç°æ§äœã«ã¯CH<sub>2</sub>=C(CH<sub>3</sub>)<sub>2</sub>(2ïŒã¡ãã«ãããã³)ãååšããã
<gallery>
File:1-butene.svg|1ïŒããã³
File:Cis-2-butene.svg|2ïŒããã³ïŒã·ã¹åïŒ
File:Methylpropene.PNG|2ïŒã¡ãã«ãããã³
</gallery>
=== ã·ã¹ã»ãã©ã³ã¹ç°æ§äœ ===
äºéçµåãæã€2ã€ã®ççŽ ååãšããã«çµåãã4ã€ã®ååã¯åäžå¹³é¢äžã«ãããäºéçµåã軞ã«ã²ããããã«å転ãããããšã¯ã§ããªãããã®ãããäºéçµåãæã€äž¡æ¹ã®ççŽ ååã«ããããéãåå(å£)ãæ¥ç¶ããŠãããšãã2ã€ã®[[ææ©ååŠ_ã¢ã«ã«ã³#ç°æ§äœ|ç«äœç°æ§äœ]]ãååšãããããã'''ã·ã¹ã»ãã©ã³ã¹ç°æ§äœ'''ãšããã
äŸãã°2ïŒããã³ã¯<sub>CH3</sub><sup>H</sup>ïŒCïŒCïŒ<sup>H</sup><sub>CH3</sub>ãš<sub>CH3</sub><sup>H</sup>ïŒCïŒCïŒ<sub>H</sub><sup>CH3</sup>ã®2ã€ãååšããããã®ãšããäž»éïŒççŽ æ°æå€ã®éïŒãšãªãççŽ éªšæ Œãäºéçµåã®åãåŽã«ããæ¹ã'''ã·ã¹''' (cis) åãå察åŽã«ããæ¹ã'''ãã©ã³ã¹''' (trans) åãšããã®ã§ãåè
ã¯ãã·ã¹ïŒ2ïŒããã³ããåŸè
ã¯ããã©ã³ã¹ïŒ2ïŒããã³ãã§ããããã£ãŠããã³ã«ã¯æ§é ç°æ§äœã®1-ããã³, 2-ã¡ãã«ãããã³ãå«ãã4çš®ã®ç«äœç°æ§äœãååšãããæ³šæãã¹ãã¯ãåçš®ã®ååå£ãåãåŽã«ãããå察åŽã«ãããã«ãã£ãŠcis/transãåºå¥ããã®ã§ã¯ãªãããããŸã§äž»éãåãåŽã«ãããå察åŽã«ãããã«ãã£ãŠåºå¥ããç¹ã§ãããäŸãã°ã<sub>CH3</sub><sup>H</sup>ïŒCïŒCïŒ<sup>C2H5</sup><sub>CH3</sub>ãš<sub>CH3</sub><sup>H</sup>ïŒCïŒCïŒ<sub>C2H5</sub><sup>CH3</sup>ã§ã¯ãåè
ãtransãåŸè
ãcisã§ããã
<gallery>
File:Cis-2-butene.svg|2ïŒããã³ïŒã·ã¹åïŒ
File:Trans-2-butene.svg|2ïŒããã³ïŒãã©ã³ã¹åïŒ
</gallery>
== ã¢ã«ã±ã³ã®æ§è³ª ==
=== ä»å åå¿ ===
äºéçµåã®ãã¡çæ¹ã¯σçµåãšåŒã°ããå
ãçµåãããçæ¹ã¯πçµåãšåŒã°ãã匱ãçµåã§ãæ°ŽçŽ ãããã²ã³ãªã©ãè¿ã¥ããšπçµåãåãåå¿ãããããã'''ä»å åå¿'''ãšããã
*CH<sub>2</sub>ïŒCH<sub>2</sub> ïŒ H<sub>2</sub> → CH<sub>3</sub>ïŒCH<sub>3</sub>
*CH<sub>2</sub>ïŒCH<sub>2</sub> ïŒ Br<sub>2</sub> → CH<sub>2</sub>BrïŒCH<sub>2</sub>Br
**ã¢ã«ã±ã³ã¯1molã«ã€ã1molã®èçŽ æ°Žãè±è²ããã[[ææ©ååŠ_ã¢ã«ã«ã³#ã¢ã«ã«ã³ã®æ§è³ª|ã¢ã«ã«ã³]]ã¯èçŽ æ°Žãè±è²ããªããã[[ææ©ååŠ_ã¢ã«ãã³#ä»å åå¿|ã¢ã«ãã³]]ã¯1molã«ã€ã2molã®èçŽ æ°Žãè±è²ããã®ã§åºå¥ã§ããã
*CH<sub>2</sub>ïŒCH<sub>2</sub> ïŒ H<sub>2</sub>O → CH<sub>3</sub>ïŒCH<sub>2</sub>OH
**äžè¬ã«ã¢ã«ã±ã³ã«æ°Žãä»å ãããšã¢ã«ã³ãŒã«ã«ãªãã
*CH<sub>2</sub>ïŒCHïŒCH<sub>3</sub> ïŒ HCl → CH<sub>3</sub>ïŒCHClïŒCH<sub>3</sub>
**HClãH<sub>2</sub>OçãHXåã®ååç©ãä»å ãããšããHååã¯Cååã«çŽæ¥çµåããHååã®å€ãæ¹ã«çµåãããããããã«ã³ããã³ãåãšããã
**ãã ãããã©ã³é¡(BH<sub>3</sub>, BHR<sub>2</sub>ãªã©)ã®ä»å ã«ãããŠã¯ãHååãCååã«çŽæ¥çµåããHååã®å°ãªãæ¹ã«çµåãããéãã«ã³ããã³ãåãé©çšãããã
=== ä»å éå ===
ã¢ã«ã±ã³å士ãä»å åå¿ãèµ·ãããšã倿°ã®ã¢ã«ã±ã³ãã€ãªãã£ã倧ããªååãåºæ¥ãããã®åå¿ã'''ä»å éå'''ãšããã
ä»å éåã¯[[ææ©ååŠ_åº#çåæ°ŽçŽ åºã®çš®é¡|ããã«åº]]ãæã€ãã®ãèµ·ãããäžè¬çã«æžããš
*n CH<sub>2</sub>ïŒCHX → (ïŒCH<sub>2</sub>ïŒCHXïŒ)<sub>n</sub>
ãšãªãã
=== éå
æ§ ===
äºéçµåã¯é
žåããããããé
žåå€ãäžãããšäºéçµåãéè£ããã±ãã³ãã¢ã«ããããã«ã«ãã³é
žãªã©ã«ãªãã
*CH<sub>3</sub>CH<sub>2</sub>CHïŒCHCH<sub>3</sub> ïŒ 4(O) → (CH<sub>3</sub>CH<sub>2</sub>CHO ïŒCH<sub>3</sub>CHO ïŒ 2(O)) → CH<sub>3</sub>CH<sub>2</sub>COOH ïŒ CH<sub>3</sub>COOH
éãã³ã¬ã³é
žå¡©ãåé
žåãªã¹ããŠã ã«ããé
žåã§ã¯ã2䟡ã¢ã«ã³ãŒã«(1,2-ãžãªãŒã«)ãçããã
*CH<sub>2</sub>ïŒCH<sub>2</sub> ïŒ (O) ïŒ H<sub>2</sub>O → CH<sub>2</sub>OHïŒCH<sub>2</sub>OH
éé
ž-OOHã«ããé
žåã§ã¯ã-C-O-C-ã§æ§æãããäžå¡ç°ååç©ããšããã·ããçããã
[[ã«ããŽãª:ææ©ååŠ]]
[[en:Organic Chemistry/Alkenes]] | null | 2022-11-23T05:32:51Z | [] | https://ja.wikibooks.org/wiki/%E6%9C%89%E6%A9%9F%E5%8C%96%E5%AD%A6/%E3%82%A2%E3%83%AB%E3%82%B1%E3%83%B3 |
2,024 | ææ©ååŠ/ã¢ã«ãã³ | ææ©ååŠ>ã¢ã«ãã³
ççŽ éã«äžéçµåã1ã€ã ãå«ãèèªæçåæ°ŽçŽ ãã¢ã«ãã³ (alkyne) ãšããã ã¢ã«ãã³ã¯äžè¬åŒCnH2n-2ã§è¡šãããã å®çŸ©ãããççŽ ååã1ã€ã®ã¢ã«ãã³ã¯ååšããªãã
ã¢ã«ã«ã³ã®èªå°Ÿaneãyneã«å€ããã ãšãã³ (ethyn)ããããã³ (propyne)ãããã³ (buthyne)ããã³ãã³ (pentyne)ã»ã»ã»
äœãããšãã³ããããã³ã¯æ£åŒãªåç§°(åœéå)ãããæ
£çšåã¢ã»ãã¬ã³ãã¡ãã«ã¢ã»ãã¬ã³ã®æ¹ãè¯ã䜿ãããã
æ§é ç°æ§äœã®åœåã«ã€ããŠã¯ã¢ã«ã±ã³ãšåãã§ããã
Câ¡Cã«çŽæ¥çµåããHååã¯åŒ±ãã€ãªã³æ§ã瀺ãã®ã§ãã¢ã³ã¢ãã¢æ§ç¡é
žé氎溶液([Ag(NH3)2]ãå«ãã æº¶æ¶²)ã«ã¢ã»ãã¬ã³ãéãããšéã¢ã»ããªã(çœè²æ²æ®¿)ãçãããã¢ã»ããªãã¯äžå®å®ã§ãç¹ã«ä¹Ÿç¥ãããã®ã¯ççºæ§ããããæ«ç«¯äžéçµåã®æ€åºã«çšããããã
H-Câ¡C-H + 2Ag â Ag-Câ¡C-Ag + 2H
H-Câ¡C-CH2-CH3 + Ag â Ag-Câ¡C-CH2-CH3
äžéçµåã®ãã¡1æ¬ã¯Ïçµåãæ®ãã®2æ¬ã¯Ïçµåã§ããããã£ãŠãã¢ã«ãã³ã¯ä»å åå¿ããã
ã¢ã»ãã¬ã³ååã¯å°æ°ã§ä»å éåããã
ã¢ã»ãã¬ã³äžååãéåãããšãã³ãŒã³ãçããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ææ©ååŠ>ã¢ã«ãã³",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ççŽ éã«äžéçµåã1ã€ã ãå«ãèèªæçåæ°ŽçŽ ãã¢ã«ãã³ (alkyne) ãšããã ã¢ã«ãã³ã¯äžè¬åŒCnH2n-2ã§è¡šãããã å®çŸ©ãããççŽ ååã1ã€ã®ã¢ã«ãã³ã¯ååšããªãã",
"title": "ã¢ã«ãã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ã¢ã«ã«ã³ã®èªå°Ÿaneãyneã«å€ããã ãšãã³ (ethyn)ããããã³ (propyne)ãããã³ (buthyne)ããã³ãã³ (pentyne)ã»ã»ã»",
"title": "ã¢ã«ãã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "äœãããšãã³ããããã³ã¯æ£åŒãªåç§°(åœéå)ãããæ
£çšåã¢ã»ãã¬ã³ãã¡ãã«ã¢ã»ãã¬ã³ã®æ¹ãè¯ã䜿ãããã",
"title": "ã¢ã«ãã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "æ§é ç°æ§äœã®åœåã«ã€ããŠã¯ã¢ã«ã±ã³ãšåãã§ããã",
"title": "ã¢ã«ãã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "Câ¡Cã«çŽæ¥çµåããHååã¯åŒ±ãã€ãªã³æ§ã瀺ãã®ã§ãã¢ã³ã¢ãã¢æ§ç¡é
žé氎溶液([Ag(NH3)2]ãå«ãã æº¶æ¶²)ã«ã¢ã»ãã¬ã³ãéãããšéã¢ã»ããªã(çœè²æ²æ®¿)ãçãããã¢ã»ããªãã¯äžå®å®ã§ãç¹ã«ä¹Ÿç¥ãããã®ã¯ççºæ§ããããæ«ç«¯äžéçµåã®æ€åºã«çšããããã",
"title": "ã¢ã«ãã³ã®æ§è³ª"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "H-Câ¡C-H + 2Ag â Ag-Câ¡C-Ag + 2H",
"title": "ã¢ã«ãã³ã®æ§è³ª"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "H-Câ¡C-CH2-CH3 + Ag â Ag-Câ¡C-CH2-CH3",
"title": "ã¢ã«ãã³ã®æ§è³ª"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "äžéçµåã®ãã¡1æ¬ã¯Ïçµåãæ®ãã®2æ¬ã¯Ïçµåã§ããããã£ãŠãã¢ã«ãã³ã¯ä»å åå¿ããã",
"title": "ã¢ã«ãã³ã®æ§è³ª"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ã¢ã»ãã¬ã³ååã¯å°æ°ã§ä»å éåããã",
"title": "ã¢ã«ãã³ã®æ§è³ª"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ã¢ã»ãã¬ã³äžååãéåãããšãã³ãŒã³ãçããã",
"title": "ã¢ã«ãã³ã®æ§è³ª"
}
] | ææ©ååŠïŒã¢ã«ãã³ | [[ææ©ååŠ]]ïŒã¢ã«ãã³
== ã¢ã«ãã³ã®å®çŸ©ãšåœåæ³ ==
=== ã¢ã«ãã³ã®å®çŸ© ===
ççŽ éã«äžéçµåã1ã€ã ãå«ãèèªæçåæ°ŽçŽ ãã¢ã«ãã³ (alkyne) ãšããã
ã¢ã«ãã³ã¯äžè¬åŒC<sub>n</sub>H<sub>2nïŒ2</sub>ã§è¡šãããã
å®çŸ©ãããççŽ ååã1ã€ã®ã¢ã«ãã³ã¯ååšããªãã
=== åœåæ³ ===
[[ææ©ååŠ_ã¢ã«ã«ã³#åœåæ³|ã¢ã«ã«ã³]]ã®èªå°Ÿaneãyneã«å€ããã
ãšãã³ (ethyn)ããããã³ (propyne)ãããã³ (buthyne)ããã³ãã³ (pentyne)ã»ã»ã»
äœãããšãã³ããããã³ã¯æ£åŒãªåç§°ïŒåœéåïŒãããæ
£çšåã¢ã»ãã¬ã³ãã¡ãã«ã¢ã»ãã¬ã³ã®æ¹ãè¯ã䜿ãããã
[[ææ©ååŠ_ã¢ã«ã«ã³#ç°æ§äœ|æ§é ç°æ§äœ]]ã®åœåã«ã€ããŠã¯[[ææ©ååŠ_ã¢ã«ã±ã³#åœåæ³|ã¢ã«ã±ã³]]ãšåãã§ããã
== ã¢ã«ãã³ã®æ§è³ª ==
*ã¢ã»ãã¬ã³CH≡CHã¯çŽç·æ§é ããšãã
*[[ææ©ååŠ_ã¢ã«ã«ã³#ã¢ã«ã«ã³ã®æ§è³ª|眮æåå¿]]ã[[ææ©ååŠ_ã¢ã«ã±ã³#ä»å åå¿|ä»å åå¿]]ã®ã©ã¡ããèµ·ããã
=== 眮æåå¿ ===
Câ¡Cã«çŽæ¥çµåããHååã¯åŒ±ãã€ãªã³æ§ã瀺ãã®ã§ãã¢ã³ã¢ãã¢æ§ç¡é
žé氎溶液ïŒïŒ»Ag(NH<sub>3</sub>)<sub>2</sub><sup>ïŒ</sup>ãå«ãã æº¶æ¶²ïŒã«ã¢ã»ãã¬ã³ãéãããšéã¢ã»ããªãïŒçœè²æ²æ®¿ïŒãçãããã¢ã»ããªãã¯äžå®å®ã§ãç¹ã«ä¹Ÿç¥ãããã®ã¯ççºæ§ããããæ«ç«¯äžéçµåã®æ€åºã«çšããããã
HïŒCâ¡CïŒH ïŒ 2Ag<sup>ïŒ</sup> → AgïŒCâ¡CïŒAg ïŒ 2H<sup>ïŒ</sup>
HïŒCâ¡CïŒCH<sub>2</sub>ïŒCH<sub>3</sub>ã+ Ag<sup>ïŒ</sup> → AgïŒCâ¡CïŒCH<sub>2</sub>ïŒCH<sub>3</sub>
=== ä»å åå¿ ===
äžéçµåã®ãã¡1æ¬ã¯[[ææ©ååŠ_ã¢ã«ã±ã³#ä»å åå¿|σçµå]]ãæ®ãã®2æ¬ã¯[[ææ©ååŠ_ã¢ã«ã±ã³#ä»å åå¿|πçµå]]ã§ããããã£ãŠãã¢ã«ãã³ã¯ä»å åå¿ããã
*HïŒCâ¡CïŒH ïŒ 2H<sub>2</sub> → CH<sub>2</sub>ïŒCH<sub>2</sub> ïŒ H<sub>2</sub> → CH<sub>3</sub>ïŒCH<sub>3</sub>
*HïŒCâ¡CïŒH ïŒ 2Cl<sub>2</sub> → (CHClïŒCHCl ïŒ Cl<sub>2</sub>) → CHCl<sub>2</sub>ïŒCHCl<sub>2</sub>
**æ°ŽçŽ ä»å ã¯ã¢ã«ãã³ããã¢ã«ã±ã³ãã¢ã«ã±ã³ããã¢ã«ã«ã³ãžãšé£ç¶çã«å€åããããããã²ã³ä»å ã¯ã¢ã«ãã³ããäžæ°ã«ã¢ã«ã«ã³ã«ãªãã
*HïŒCâ¡CïŒH ïŒ 2Br<sub>2</sub> → CHBr<sub>2</sub>ïŒCHBr<sub>2</sub>
**1molã«ã€ã2molã®èçŽ ãè±è²ããã®ã§ã[[ææ©ååŠ_ã¢ã«ã«ã³#ã¢ã«ã«ã³ã®æ§è³ª|ã¢ã«ã«ã³]]ã[[ææ©ååŠ_ã¢ã«ã±ã³#ä»å åå¿|ã¢ã«ã±ã³]]ãšåºå¥ã§ããã
*HïŒCâ¡CïŒH ïŒ H<sub>2</sub>O → (CH<sub>2</sub>ïŒCHOH) → CH<sub>3</sub>ïŒCHO
**ããã«ã¢ã«ã³ãŒã«CH<sub>2</sub>ïŒCHOHã¯äžå®å®ãªã®ã§ã[[ææ©ååŠ_åº#å®èœåºã®çš®é¡|ããããã·ã«åº]]ã®Hååãäºéçµåã®å察åŽã«é£ãã§äºå€ç°æ§ãèµ·ãããã¢ã»ãã¢ã«ããããšãªãã
=== ä»å éå ===
ã¢ã»ãã¬ã³ååã¯å°æ°ã§ä»å éåããã
*2 HïŒCâ¡CïŒH → CH<sub>2</sub>ïŒCHïŒCâ¡CH
**çæ¹ã®ååã®äžéçµåã1æ¬éããããçæ¹ã®ååã¯CHéã®çµåãåããŠããããçµåããã
ã¢ã»ãã¬ã³äžååãéåãããšãã³ãŒã³ãçããã
*3 HïŒCâ¡CïŒH → C<sub>6</sub>H<sub>6</sub>
**ãã³ãŒã³C<sub>6</sub>H<sub>6</sub>ã¯è³éŠæååç©ã®æå°åäœã§ããã
CH=CH
/ \
CH CH
\\ //
CH-CH
ãã³ãŒã³C6H6
[[ã«ããŽãª:ææ©ååŠ]]
[[en:Organic Chemistry/Alkynes]] | null | 2022-11-23T05:32:47Z | [] | https://ja.wikibooks.org/wiki/%E6%9C%89%E6%A9%9F%E5%8C%96%E5%AD%A6/%E3%82%A2%E3%83%AB%E3%82%AD%E3%83%B3 |
2,027 | HTML/å€éšãªã³ã¯ | HTMLã®äœæã«åœ¹ç«ã€æ
å ±æºã玹ä»ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "HTMLã®äœæã«åœ¹ç«ã€æ
å ±æºã玹ä»ããã",
"title": ""
}
] | HTMLã®äœæã«åœ¹ç«ã€æ
å ±æºã玹ä»ããã | {{Pathnav|HTML|frame=1|small=1}}
{{Wikipedia|HTML|HTML}}
HTMLã®äœæã«åœ¹ç«ã€æ
å ±æºã玹ä»ããã
== ãªã³ã¯ ==
* [https://whatwg.org/ Web Hypertext Application Technology Working Group(WHATWG)]ïŒW3Cã«ä»£ãã£ãŠHTML/DOMçã®æšæºçå®ãè¡ãå£äœ
** [https://html.spec.whatwg.org/ HTML Living Standard]ïŒ[https://momdo.github.io/html/ æ¥æ¬èªèš³]ïŒïŒææ°ã®HTMLæšæº
** [https://dom.spec.whatwg.org/ DOM Living Standard]ïŒ[https://triple-underscore.github.io/DOM4-ja.html æ¥æ¬èªèš³]ïŒïŒææ°ã®DOMæšæº
* [https://www.w3.org/ World Wide Web Consortium (W3C)]ïŒHTML4.01ãŸã§ã®æšæºãæå±ããŠããæ©é¢W3Cã®ãµã€ã
** [https://www.w3.org/TR/html5/ https://www.w3.org/TR/html5/]ã¯[https://html.spec.whatwg.org/ https://html.spec.whatwg.org/]ãžã®ãªãã€ã¬ã¯ã
** [https://www.w3.org/TR/ All Standards and Drafts - W3C]ïŒW3Cã®æšæºãšãã®èæ¡ãäžèŠ§ã»æ€çŽ¢ã§ãã
** [https://www.w3.org/MarkUp/ W3C HTML Home Page] -- 2010-12-17: The XHTML2 Working Group is closed.
** [http://validator.w3.org/ The W3C Markup Validation Service]ïŒHTMLææ³ãã§ãã«ãŒïŒå¶äœããHTMLã«èª€ãçãç¡ããããã§ãã¯åºæ¥ã
** [https://www.w3.org/Style/CSS/ W3C Cascading Style Sheets]
** [https://jigsaw.w3.org/css-validator/ W3C CSS æ€èšŒãµãŒãã¹]ïŒCSSææ³ãã§ãã«ãŒ
* [http://www.asahi-net.or.jp/%7Esd5a-ucd/rec-html40j/ HTML 4仿§æžéŠèš³èšç»]ïŒéå
¬åŒã®æ¥æ¬èªèš³
== ãªã³ã¯åã ==
* <del> <!-- http://htmllint.itc.keio.ac.jp/htmllint/htmllint.html --> Another HTML-lint gatewayïŒHTMLææ³ãã§ãã«ãŒïŒæ¥æ¬èªïŒ</del> ⻠以äžããªã³ã¯åã
* <del> <!-- [http://www.mozilla.gr.jp/standards/ Webæšæºæ®åãããžã§ã¯ã]-->Webæšæºæ®åãããžã§ã¯ãïŒ[[w:ãããçµ|ãããçµ]]ã«ããWebæšæºåTips</del>
* <del> <!-- [http://operawiki.info/WebDevToolbar Web Developer Toolbar & Menu for Opera] --> "Web Developer Toolbar & Menu for Opera" - Operaã§äœ¿ããéçºããŒã«ïŒè±èªçïŒ</del>
[[Category:World Wide Web|HTML ãããµããã]]
[[en:HyperText Markup Language/Links]] | null | 2021-06-06T02:35:48Z | [
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:Wikipedia"
] | https://ja.wikibooks.org/wiki/HTML/%E5%A4%96%E9%83%A8%E3%83%AA%E3%83%B3%E3%82%AF |
2,035 | ç¹æ®çžå¯Ÿè« 4å
éåé | ç¹æ®çžå¯Ÿè« > 4å
éåé
è§£æååŠãèãããšã空éã®çæ¹æ§ããéåéä¿åã 瀺ãããã®ãšåæ§ã«ãæéã«å¯Ÿããäžæ§æ§ãããšãã«ã®ãŒã® ä¿ååãå°ãåºãããã ãã®ããã x ÎŒ = ( c t x y z ) {\displaystyle x^{\mu }={\begin{pmatrix}ct\\x\\y\\z\end{pmatrix}}} ã®ããã«çµã¿åãããŠ4å
ãã¯ãã«ãäœã£ãããšã«å¯Ÿå¿ããŠã p ÎŒ = ( ε / c p x p y p z ) {\displaystyle p^{\mu }={\begin{pmatrix}\epsilon /c\\p_{x}\\p_{y}\\p_{z}\end{pmatrix}}} ã«ãã£ãŠã4å
ãã¯ãã«ãäœãããšãåºæ¥ãã ããã§ã ε {\displaystyle \epsilon } ã¯ãšãã«ã®ãŒã§ããã ãã®4å
ãã¯ãã«ã4å
éåéãšåŒã¶ã ãã鿢ããç©äœã«ã€ããŠã¯ p â = 0 {\displaystyle {\vec {p}}=0} ãæãç«ã€ã®ã§ã p ÎŒ = ( ε / c 0 0 0 ) {\displaystyle p^{\mu }={\begin{pmatrix}\epsilon /c\\0\\0\\0\end{pmatrix}}} ãšãªãã ãã®ãšã㮠ε {\displaystyle \epsilon } ã®å€ãããã質émããã€ç©äœã«å¯ŸããŠã mc ãšçœ®ãã ε / c = m c {\displaystyle \epsilon /c=mc} ã€ãŸã, ε = m c 2 {\displaystyle \epsilon =mc^{2}} ã«æ³šæã (ãšãã«ã®ãŒã®å®æ°å€ã¯ã©ã®ããã«ã§ãåããããç¹ã«ãã®ããã« éžã¶ã®ã¯å®éšçã«è³ªéãšãšãã«ã®ãŒã®å倿§ãç¥ãããŠããããšã« ãã£ãŠãããã®ãšæãããã) ãã®ãšãã ε {\displaystyle \epsilon } ãš | p â | {\displaystyle |{\vec {p}}|} ã®é¢ä¿ã¯ã4å
éåéã®2ä¹ãããŒã¬ã³ãã¹ã«ã©ãŒã§ããããšãã p ÎŒ p ÎŒ = ε 2 / c 2 â p â 2 = m 2 c 2 {\displaystyle p^{\mu }p_{\mu }=\epsilon ^{2}/c^{2}-{\vec {p}}^{2}=m^{2}c^{2}} ãšãªãã ãã£ãŠã ε = c | p â | 2 + m 2 c 2 {\displaystyle \epsilon =c{\sqrt {|{\vec {p}}|^{2}+m^{2}c^{2}}}} ãåŸãããã p â 2 {\displaystyle {\vec {p}}^{2}} ãå°ãããšããŠãã€ã©ãŒå±éãè¡ãªããšã ε = m c 2 + p â 2 2 m + O ( p â 4 ) {\displaystyle \epsilon =mc^{2}+{\frac {{\vec {p}}^{2}}{2m}}+O({\vec {p}}^{4})} ãåŸãããéåžžã®ãšãã«ã®ãŒãšéåéã®é¢ä¿åŒ ε = p â 2 2 m {\displaystyle \epsilon ={\frac {{\vec {p}}^{2}}{2m}}} ãšã宿° m c 2 {\displaystyle mc^{2}} ãé€ããŠäžèŽããã 宿° m c 2 {\displaystyle mc^{2}} ã鿢ãšãã«ã®ãŒãšåŒã¶ããšãããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç¹æ®çžå¯Ÿè« > 4å
éåé",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "è§£æååŠãèãããšã空éã®çæ¹æ§ããéåéä¿åã 瀺ãããã®ãšåæ§ã«ãæéã«å¯Ÿããäžæ§æ§ãããšãã«ã®ãŒã® ä¿ååãå°ãåºãããã ãã®ããã x ÎŒ = ( c t x y z ) {\\displaystyle x^{\\mu }={\\begin{pmatrix}ct\\\\x\\\\y\\\\z\\end{pmatrix}}} ã®ããã«çµã¿åãããŠ4å
ãã¯ãã«ãäœã£ãããšã«å¯Ÿå¿ããŠã p ÎŒ = ( ε / c p x p y p z ) {\\displaystyle p^{\\mu }={\\begin{pmatrix}\\epsilon /c\\\\p_{x}\\\\p_{y}\\\\p_{z}\\end{pmatrix}}} ã«ãã£ãŠã4å
ãã¯ãã«ãäœãããšãåºæ¥ãã ããã§ã ε {\\displaystyle \\epsilon } ã¯ãšãã«ã®ãŒã§ããã ãã®4å
ãã¯ãã«ã4å
éåéãšåŒã¶ã ãã鿢ããç©äœã«ã€ããŠã¯ p â = 0 {\\displaystyle {\\vec {p}}=0} ãæãç«ã€ã®ã§ã p ÎŒ = ( ε / c 0 0 0 ) {\\displaystyle p^{\\mu }={\\begin{pmatrix}\\epsilon /c\\\\0\\\\0\\\\0\\end{pmatrix}}} ãšãªãã ãã®ãšã㮠ε {\\displaystyle \\epsilon } ã®å€ãããã質émããã€ç©äœã«å¯ŸããŠã mc ãšçœ®ãã ε / c = m c {\\displaystyle \\epsilon /c=mc} ã€ãŸã, ε = m c 2 {\\displaystyle \\epsilon =mc^{2}} ã«æ³šæã (ãšãã«ã®ãŒã®å®æ°å€ã¯ã©ã®ããã«ã§ãåããããç¹ã«ãã®ããã« éžã¶ã®ã¯å®éšçã«è³ªéãšãšãã«ã®ãŒã®å倿§ãç¥ãããŠããããšã« ãã£ãŠãããã®ãšæãããã) ãã®ãšãã ε {\\displaystyle \\epsilon } ãš | p â | {\\displaystyle |{\\vec {p}}|} ã®é¢ä¿ã¯ã4å
éåéã®2ä¹ãããŒã¬ã³ãã¹ã«ã©ãŒã§ããããšãã p ÎŒ p ÎŒ = ε 2 / c 2 â p â 2 = m 2 c 2 {\\displaystyle p^{\\mu }p_{\\mu }=\\epsilon ^{2}/c^{2}-{\\vec {p}}^{2}=m^{2}c^{2}} ãšãªãã ãã£ãŠã ε = c | p â | 2 + m 2 c 2 {\\displaystyle \\epsilon =c{\\sqrt {|{\\vec {p}}|^{2}+m^{2}c^{2}}}} ãåŸãããã p â 2 {\\displaystyle {\\vec {p}}^{2}} ãå°ãããšããŠãã€ã©ãŒå±éãè¡ãªããšã ε = m c 2 + p â 2 2 m + O ( p â 4 ) {\\displaystyle \\epsilon =mc^{2}+{\\frac {{\\vec {p}}^{2}}{2m}}+O({\\vec {p}}^{4})} ãåŸãããéåžžã®ãšãã«ã®ãŒãšéåéã®é¢ä¿åŒ ε = p â 2 2 m {\\displaystyle \\epsilon ={\\frac {{\\vec {p}}^{2}}{2m}}} ãšã宿° m c 2 {\\displaystyle mc^{2}} ãé€ããŠäžèŽããã 宿° m c 2 {\\displaystyle mc^{2}} ã鿢ãšãã«ã®ãŒãšåŒã¶ããšãããã",
"title": "4å
éåé"
}
] | ç¹æ®çžå¯Ÿè« > 4å
éåé | <small> [[ç¹æ®çžå¯Ÿè«]] > 4å
éåé</small>
----
==4å
éåé==
è§£æååŠãèãããšã空éã®çæ¹æ§ããéåéä¿åã
瀺ãããã®ãšåæ§ã«ãæéã«å¯Ÿããäžæ§æ§ãããšãã«ã®ãŒã®
ä¿ååãå°ãåºãããã
ãã®ããã
<math>
x^\mu =
\begin{pmatrix}
ct \\
x \\
y \\
z
\end{pmatrix}
</math>
ã®ããã«çµã¿åãããŠ4å
ãã¯ãã«ãäœã£ãããšã«å¯Ÿå¿ããŠã
<math>
p^\mu =
\begin{pmatrix}
\epsilon / c \\
p _x \\
p _y \\
p _z
\end{pmatrix}
</math>
ã«ãã£ãŠã4å
ãã¯ãã«ãäœãããšãåºæ¥ãã
ããã§ã
<math>
\epsilon
</math>
ã¯ãšãã«ã®ãŒã§ããã
ãã®4å
ãã¯ãã«ã4å
éåéãšåŒã¶ã
ãã鿢ããç©äœã«ã€ããŠã¯
<math>
\vec p = 0
</math>
ãæãç«ã€ã®ã§ã
<math>
p^\mu =
\begin{pmatrix}
\epsilon / c \\
0\\
0 \\
0
\end{pmatrix}
</math>
ãšãªãã
ãã®ãšãã® <math>\epsilon</math> ã®å€ãããã質émããã€ç©äœã«å¯ŸããŠã
mc ãšçœ®ãã
<math>
\epsilon / c = mc
</math>
ã€ãŸã,
<math>
\epsilon = mc^2
</math>
ã«æ³šæã
(ãšãã«ã®ãŒã®å®æ°å€ã¯ã©ã®ããã«ã§ãåããããç¹ã«ãã®ããã«
éžã¶ã®ã¯å®éšçã«è³ªéãšãšãã«ã®ãŒã®å倿§ãç¥ãããŠããããšã«
ãã£ãŠãããã®ãšæãããã)
<!-- ? -->
ãã®ãšãã
<math>\epsilon</math>ãš
<math>
| \vec p |
</math>
ã®é¢ä¿ã¯ã4å
éåéã®2ä¹ãããŒã¬ã³ãã¹ã«ã©ãŒã§ããããšãã
<math>
p^\mu p _\mu =\epsilon ^2 /c^2 - \vec p^2 = m^2 c^2
</math>
ãšãªãã
ãã£ãŠã
<math>
\epsilon =c \sqrt {|\vec p |^2 + m^2 c^2 }
</math>
ãåŸãããã
<math> \vec p ^2 </math> ãå°ãããšããŠãã€ã©ãŒå±éãè¡ãªããšã
<math>
\epsilon = mc^2 + \frac {\vec p^2} {2m} + O (\vec p^4)
</math>
ãåŸãããéåžžã®ãšãã«ã®ãŒãšéåéã®é¢ä¿åŒ
<math>
\epsilon = \frac {\vec p^2} {2m}
</math>
ãšã宿°<math>mc^2</math>ãé€ããŠäžèŽããã
宿°<math>mc^2</math>ã鿢ãšãã«ã®ãŒãšåŒã¶ããšãããã
[[Category:ç¹æ®çžå¯Ÿè«|ããããããšãããã]] | 2005-05-24T08:24:12Z | 2024-03-16T03:17:34Z | [] | https://ja.wikibooks.org/wiki/%E7%89%B9%E6%AE%8A%E7%9B%B8%E5%AF%BE%E8%AB%96_4%E5%85%83%E9%81%8B%E5%8B%95%E9%87%8F |
2,036 | ç±ååŠ | æ¬é
ã¯ç©çåŠ ç±ååŠã®è§£èª¬ã§ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ¬é
ã¯ç©çåŠ ç±ååŠã®è§£èª¬ã§ãã",
"title": ""
}
] | æ¬é
ã¯ç©çåŠ ç±ååŠã®è§£èª¬ã§ãã ã¯ããã« (2017-05-25)
枩床(ç±ååŠã®ç¬¬0æ³å) (2020-10-21)
ç±ãšä»äº(ç±ååŠã®ç¬¬1æ³å) (2017-05-25)
ç¬¬äºæ³åããã³å¯ééçšããã³ãšã³ããããŒã«ã€ããŠãé«çåŠæ ¡ç©ç/ç©çII/ç±ååŠã (2017-05-25) ç±ååŠçãªãšãã«ã®ãŒ (2017-05-25) ïŒãã®ãã¹ã®èªç±ãšãã«ã®ãŒãã®å®çŸ©ïŒ | {{Pathnav|ã¡ã€ã³ããŒãž|èªç¶ç§åŠ|ç©çåŠ|frame=1|small=1}}
{{wikiversity|Topic:ç±åŠ|ç±åŠ}}
æ¬é
ã¯ç©çåŠ ç±ååŠã®è§£èª¬ã§ãã
* [[ç±ååŠ/ã¯ããã«|ã¯ããã«]] {{鲿|25%|2017-05-25}}
* [[ç±ååŠ/枩床|枩床(ç±ååŠã®ç¬¬0æ³å)]] {{鲿|00%|2020-10-21}}
* [[ç±ååŠ/ç±ãšä»äº|ç±ãšä»äº(ç±ååŠã®ç¬¬1æ³å)]] {{鲿|00%|2017-05-25}}
* ç¬¬äºæ³åããã³å¯ééçšããã³ãšã³ããããŒã«ã€ããŠã[[é«çåŠæ ¡ç©ç/ç©çII/ç±ååŠ]]ã{{鲿|50%|2017-05-25}} ïŒâ» 髿 ¡ç¯å²å€ã ããç¬¬äºæ³åãå¯ééçšããã³ãšã³ããããŒã«ã€ããŠæžããŠãããïŒ
:* [[ç±ååŠ/ç±ååŠã®ç¬¬2æ³å|ç±ååŠã®ç¬¬2æ³å]] {{鲿|25%|2017-05-25}}ïŒâ» çŸæç¹ã§ã¯ãã»ãŒé«æ ¡ç©çã®ã³ããŒãå çä¿®æ£ããé¡ãããŸããïŒ
:* [[ç±ååŠ/å¯ééçš|å¯ééçš]] {{鲿|25%|2017-05-25}} ïŒâ» çŸæç¹ã§ã¯ãã»ãŒé«æ ¡ç©çã®ã³ããŒãå çä¿®æ£ããé¡ãããŸããïŒ
:* [[ç±ååŠ/ãšã³ããããŒ|ãšã³ããããŒ]] {{鲿|25%|2017-05-25}}ïŒâ» çŸæç¹ã§ã¯ãã»ãŒé«æ ¡ç©çã®ã³ããŒãå çä¿®æ£ããé¡ãããŸããïŒ
* [[ç±ååŠ/ç±ååŠçãªãšãã«ã®ãŒ|ç±ååŠçãªãšãã«ã®ãŒ]] {{鲿|25%|2017-05-25}} ïŒãã®ãã¹ã®èªç±ãšãã«ã®ãŒãã®å®çŸ©ïŒ
{{stub}}
{{DEFAULTSORT:ãã€ãããã}}
[[Category:ç±ååŠ|*]]
{{NDC|426}} | 2005-05-24T09:01:01Z | 2024-03-17T10:31:29Z | [
"ãã³ãã¬ãŒã:NDC",
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:Wikiversity",
"ãã³ãã¬ãŒã:鲿",
"ãã³ãã¬ãŒã:Stub"
] | https://ja.wikibooks.org/wiki/%E7%86%B1%E5%8A%9B%E5%AD%A6 |
2,037 | ç±ååŠ/ã¯ããã« | ç±ååŠ > ã¯ããã«
ãã®åéã¯é«çæè²ã®ç±ååŠã«åœãããŸããååŠè
ã¯è©²åœæç§æžãçè§£ã®å©ããšãªããŸãã®ã§åŠç¿ã«è¡ãè©°ãŸã£ããåç
§ããŠãã ããã
çŸåšã§ã¯ç±ã100% ã®å¹çã§ãä»äºã«å€ããããšã¯åºæ¥ãªãããšãç¥ãããŠããã ãã®ããšã¯ç±ã埮èŠçãªç©äœã®ä¹±éãªåãããæ§æãããŠããã 確ãã«ãããã¯ãšãã«ã®ãŒãæã£ãŠã¯ããã®ã ãããããã ç§©åºã ã£ã仿¹ã§åãåºããäœããã®ããšã«åœ¹ç«ãŠãããšã å°é£ã§ããããšã«ãã£ãŠããã
ãã®é
ã§ã¯ã埮èŠçãªç©äœã®åãããåŸãããå·šèŠçãªéã çšããŠãç±ãšä»äºã®é¢ä¿ãèŠãŠããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç±ååŠ > ã¯ããã«",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãã®åéã¯é«çæè²ã®ç±ååŠã«åœãããŸããååŠè
ã¯è©²åœæç§æžãçè§£ã®å©ããšãªããŸãã®ã§åŠç¿ã«è¡ãè©°ãŸã£ããåç
§ããŠãã ããã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "çŸåšã§ã¯ç±ã100% ã®å¹çã§ãä»äºã«å€ããããšã¯åºæ¥ãªãããšãç¥ãããŠããã ãã®ããšã¯ç±ã埮èŠçãªç©äœã®ä¹±éãªåãããæ§æãããŠããã 確ãã«ãããã¯ãšãã«ã®ãŒãæã£ãŠã¯ããã®ã ãããããã ç§©åºã ã£ã仿¹ã§åãåºããäœããã®ããšã«åœ¹ç«ãŠãããšã å°é£ã§ããããšã«ãã£ãŠããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãã®é
ã§ã¯ã埮èŠçãªç©äœã®åãããåŸãããå·šèŠçãªéã çšããŠãç±ãšä»äºã®é¢ä¿ãèŠãŠããã",
"title": "ã¯ããã«"
}
] | ç±ååŠ > ã¯ããã« ãã®åéã¯é«çæè²ã®ç±ååŠã«åœãããŸããååŠè
ã¯è©²åœæç§æžãçè§£ã®å©ããšãªããŸãã®ã§åŠç¿ã«è¡ãè©°ãŸã£ããåç
§ããŠãã ããã | <small> [[ç±ååŠ]] > ã¯ããã«</small>
----
ãã®åéã¯é«çæè²ã®[[é«çåŠæ ¡_ç©ç#ç±ååŠ|ç±ååŠ]]ã«åœãããŸããååŠè
ã¯è©²åœæç§æžãçè§£ã®å©ããšãªããŸãã®ã§åŠç¿ã«è¡ãè©°ãŸã£ããåç
§ããŠãã ããã
==ã¯ããã«==
çŸåšã§ã¯ç±ã100%
ã®å¹çã§ãä»äºã«å€ããããšã¯åºæ¥ãªãããšãç¥ãããŠããã
ãã®ããšã¯ç±ã埮èŠçãªç©äœã®ä¹±éãªåãããæ§æãããŠããã
確ãã«ãããã¯ãšãã«ã®ãŒãæã£ãŠã¯ããã®ã ãããããã
ç§©åºã ã£ã仿¹ã§åãåºããäœããã®ããšã«åœ¹ç«ãŠãããšã
å°é£ã§ããããšã«ãã£ãŠããã
ãã®é
ã§ã¯ã埮èŠçãªç©äœã®åãããåŸãããå·šèŠçãªéã
çšããŠãç±ãšä»äºã®é¢ä¿ãèŠãŠããã
[[Category:ç±ååŠ|ã¯ããã«]] | 2005-05-24T09:02:01Z | 2023-10-24T16:30:30Z | [] | https://ja.wikibooks.org/wiki/%E7%86%B1%E5%8A%9B%E5%AD%A6/%E3%81%AF%E3%81%98%E3%82%81%E3%81%AB |
2,038 | ç±ååŠ/ç±ãšä»äº | ç±ååŠ > ç±ãšä»äº
ããç©äœã«ã€ããŠããšãã«ã®ãŒã®åæ¯ãèããã d Q {\displaystyle dQ} ãç©äœãåãåã£ãç±ã d U {\displaystyle dU} ãç©äœã®å
éšãšãã«ã®ãŒã®å€åã d W {\displaystyle dW} ãç©äœããããä»äº(å€ã«ä»äºããããšãã d W {\displaystyle dW} ã¯è² ã«ãªãã)ãšãããšãã å®éšçã«
ãç¥ãããŠããã ãã®åŒãç±ååŠã®ç¬¬1æ³åãšåŒã¶ã (å®éã«ã¯ç©äœãåãåã£ãç±ã®ãã¡ãããç©äœä»¥å€ã®å€çã«å¯Ÿã㊠è¡ãªãä»äºãåŒãå»ã£ããã®ããç©äœã®æã€å
éšãšãã«ã®ãŒãšåŒãã§ããã ãã®ããããã®åŒã¯å
éšãšãã«ã®ãŒã®å®çŸ©ã®åŒãšããŠã¿ãããšãåºæ¥ãã) ãã®åŒã¯ãç©äœã«ç±ãäžããããšã¯ãŸãã§ç©äœã«ä»äºã ããããšã§ãããã®ããã«æãããããšãããããšããããšã 瀺ããŠããã äŸãã°ãæ°Žã®äžã«é»ç±ç·ããããŠé»æ°ãæµãããšãèããã ãã®ãšãã黿°ã¯ãã®ãšãã«ã®ãŒãç±ãšããŠæŸåºããã ããã«ãã£ãŠæ°Žã®æž©åºŠãäžããã ããã¯é»æ°ãšãã«ã®ãŒãé»ç±ç·ã«ãã£ãŠç±ãšãã«ã®ãŒã«å€æãã ãããæ°Žã«äžãããããã®ãšè§£éããããšãåºæ¥ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç±ååŠ > ç±ãšä»äº",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ããç©äœã«ã€ããŠããšãã«ã®ãŒã®åæ¯ãèããã d Q {\\displaystyle dQ} ãç©äœãåãåã£ãç±ã d U {\\displaystyle dU} ãç©äœã®å
éšãšãã«ã®ãŒã®å€åã d W {\\displaystyle dW} ãç©äœããããä»äº(å€ã«ä»äºããããšãã d W {\\displaystyle dW} ã¯è² ã«ãªãã)ãšãããšãã å®éšçã«",
"title": "ç±ãšä»äº(ç±ååŠã®ç¬¬1æ³å)"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãç¥ãããŠããã ãã®åŒãç±ååŠã®ç¬¬1æ³åãšåŒã¶ã (å®éã«ã¯ç©äœãåãåã£ãç±ã®ãã¡ãããç©äœä»¥å€ã®å€çã«å¯Ÿã㊠è¡ãªãä»äºãåŒãå»ã£ããã®ããç©äœã®æã€å
éšãšãã«ã®ãŒãšåŒãã§ããã ãã®ããããã®åŒã¯å
éšãšãã«ã®ãŒã®å®çŸ©ã®åŒãšããŠã¿ãããšãåºæ¥ãã) ãã®åŒã¯ãç©äœã«ç±ãäžããããšã¯ãŸãã§ç©äœã«ä»äºã ããããšã§ãããã®ããã«æãããããšãããããšããããšã 瀺ããŠããã äŸãã°ãæ°Žã®äžã«é»ç±ç·ããããŠé»æ°ãæµãããšãèããã ãã®ãšãã黿°ã¯ãã®ãšãã«ã®ãŒãç±ãšããŠæŸåºããã ããã«ãã£ãŠæ°Žã®æž©åºŠãäžããã ããã¯é»æ°ãšãã«ã®ãŒãé»ç±ç·ã«ãã£ãŠç±ãšãã«ã®ãŒã«å€æãã ãããæ°Žã«äžãããããã®ãšè§£éããããšãåºæ¥ãã",
"title": "ç±ãšä»äº(ç±ååŠã®ç¬¬1æ³å)"
}
] | ç±ååŠ > ç±ãšä»äº | <small> [[ç±ååŠ]] > ç±ãšä»äº</small>
----
==ç±ãšä»äº(ç±ååŠã®ç¬¬1æ³å)==
ããç©äœã«ã€ããŠããšãã«ã®ãŒã®åæ¯ãèããã
<math>dQ</math> ãç©äœãåãåã£ãç±ã<math>dU</math> ãç©äœã®å
éšãšãã«ã®ãŒã®å€åã
<math>dW</math> ãç©äœããããä»äº(å€ã«ä»äºããããšãã<math>dW</math> ã¯è² ã«ãªãã)ãšãããšãã
å®éšçã«
: <math>dQ = dU - dW</math>
ãç¥ãããŠããã
ãã®åŒãç±ååŠã®ç¬¬1æ³åãšåŒã¶ã
(å®éã«ã¯ç©äœãåãåã£ãç±ã®ãã¡ãããç©äœä»¥å€ã®å€çã«å¯ŸããŠ
è¡ãªãä»äºãåŒãå»ã£ããã®ããç©äœã®æã€å
éšãšãã«ã®ãŒãšåŒãã§ããã
ãã®ããããã®åŒã¯å
éšãšãã«ã®ãŒã®å®çŸ©ã®åŒãšããŠã¿ãããšãåºæ¥ãã)
<!-- ? -->
ãã®åŒã¯ãç©äœã«ç±ãäžããããšã¯ãŸãã§ç©äœã«ä»äºã
ããããšã§ãããã®ããã«æãããããšãããããšããããšã
瀺ããŠããã
äŸãã°ãæ°Žã®äžã«é»ç±ç·ããããŠé»æ°ãæµãããšãèããã
ãã®ãšãã黿°ã¯ãã®ãšãã«ã®ãŒãç±ãšããŠæŸåºããã
ããã«ãã£ãŠæ°Žã®æž©åºŠãäžããã
ããã¯é»æ°ãšãã«ã®ãŒãé»ç±ç·ã«ãã£ãŠç±ãšãã«ã®ãŒã«å€æãã
ãããæ°Žã«äžãããããã®ãšè§£éããããšãåºæ¥ãã
[[Category:ç±ååŠ|ãã€ãšãããš]] | null | 2022-12-01T04:09:27Z | [] | https://ja.wikibooks.org/wiki/%E7%86%B1%E5%8A%9B%E5%AD%A6/%E7%86%B1%E3%81%A8%E4%BB%95%E4%BA%8B |
2,039 | ç±ååŠ/ç±ååŠã®ç¬¬2æ³å | ç±ååŠ > ç±ååŠã®ç¬¬2æ³å
ç±ã®å·šèŠçãªæ§è³ªãšããŠã "枩床ã®äœããã®ããæž©åºŠã®é«ããã®ã«å¯Ÿã㊠ä»ã®ç©äœã«åœ±é¿ãäžããäºç¡ãã«ç±ãäžããããããšã¯ã§ããªãã" ããšãç¥ãããŠããã ãããç±ååŠã®ç¬¬2æ³åãšããã äŸãã°ãä»®ã«ãã®ããšãå¯èœã ã£ããšãããšã å·ããæ°Žãšç±ãæ¹¯ãæ··ãããšã å·ããæ°Žã¯ããå·ãããæ¹¯ã¯ããç±ããšããããšã èµ·ããåŸãããšãäºæ³ããããå®éã«ã¯ çµéšçã«ãããã®ããšãèµ·ãããªãããšãç¥ãããŠããã
æ°äœã®å€æ°ã®å€æ°p,V,Tã¯ãçæ³æ°äœã§ããããã¡ã³ãã«ã¯ãŒã«ã¹æ°äœã§ãããç¶æ
æ¹çšåŒ(çæ³æ°äœããã¡ã³ãã«ã¯ãŒã«ã¹æ°äœãã¯ãããã§ã¯åããªã)ããããªãã°ã倿°p,V,Tã®ãã¡ã®ãã©ããäºã€ã決ãŸãã°ãæ°äœã®ç¶æ
æ¹çšåŒããæ®ãã®å€æ°ã決ãŸããããããŠ3倿°p,V,Tãæ±ºãŸãã
å
éšãšãã«ã®ãŒã¯ãçæ³æ°äœã§ããããã¡ã³ãã«ã¯ãŒã«ã¹æ°äœã§ãããã©ã¡ãã«ããŠãã倿°p,V,Tã®ãã¡ãã©ããäºã€ã決ãŸãã°ãæ°äœã®æ¹çšåŒããæ®ãã®æ¹çšåŒã決ãŸããæ±ºãŸã£ã3倿°ã®p,V,Tã«ãã£ãŠãå
éšãšãã«ã®ãŒã決ãŸã£ãŠããŸãããã®ãããªãç¶æ
倿°ã«ãã£ãŠã®ã¿æ±ºãŸãç©çéãç¶æ
é(ãããããããã)ãšããã 3倿°ã®p,V,Tãæ±ºãŸãã°å
éšãšãã«ã®ãŒã決å®ãããã®ã§ãå
éšãšãã«ã€ã®ãŒã¯ç¶æ
éã§ããã å
éšãšãã«ã®ãŒã決ãã3倿°ã®ãã¡ãçã«ç¬ç«å€æ°ãªã®ã¯ããã®ãã¡ã®2åã®ã¿ã§ããã倿°p,V,Tã®ã©ãã2åãŸã§ç¬ç«å€æ°ã«éžãã§ãããããæ®ãã®1åã¯æ¢ã«éžãã 倿°ã®åŸå±å€æ°ã«ãªãã
ã©ã®å€æ°ãç¬ç«å€æ°ã«éžã¶ãšãç¥ãããçããæ±ãããããã¯ãåé¡ã«ããã
(å€å€æ°ã®é¢æ°ã®åŸ®åç©åã«ã€ããŠã¯ã倧åŠçç§ç³»ã§æè²ããããå€å€æ°é¢æ°ã®åŸ®åãå埮åãšããã解説ã¯é«æ ¡ã¬ãã«ãè¶
ããã®ã§çç¥ã)
åç¯ã§èšåããã3ã€ã®å€æ°(å§åpãäœç©Vãæž©åºŠT)ã®ã»ãããšã³ããããŒSãå
éšãšãã«ã®ãŒUãªã©ãç±ååŠç³»ã®å¹³è¡¡ç¶æ
ãç¹åŸŽä»ããç¶æ
éã§ããã
åç¯ãšåæ§ã5ã€ã®ç¶æ
ép,V,T,U,Sã®ãã¡ä»»æã®2ã€ãç¬ç«å€æ°ã«éžã¶å Žåã«ããæ®ã3ã€ã®å€æ°ã¯ããã2ã€ã®ç¬ç«å€æ°ã§è¡šãããåŸå±å€æ°ãšããŠæ±ããã
ãã®5ã€ã®å€æ°ã®ä»»æã®çµã¿åãããç¬ç«å€æ°ã«ãã€ç¶æ
éã¯ãäžè¬ã«ç±ååŠé¢æ°ãšåŒã°ããã
å
éšãšãã«ã®ãŒU(S,V)ã®ã»ããåŸã®ç« ã«ãŠèšåããããšã³ããããŒS(U,V)ããšã³ã¿ã«ããŒH(S,p)ããã«ã ãã«ãã®èªç±ãšãã«ã®ãŒF(V,T)ãã®ãã¹ã®èªç±ãšãã«ã®ãŒG(T,p)ãªã©ãç±ååŠé¢æ°ã§ããã
(ãã®ç¯ã§ã¯ã髿 ¡æ°åŠã®æ°åŠIIIçžåœã®åŸ®åç©åãçšãããåãããªããã°æ°åŠIIIãåç
§ã®ããšã)
å§åãpãšæžããšãããäœç©ãVãã¢ã«æ°ãnãæ®éæ°äœå®æ°ãnãæž©åºŠã絶察枩床ã§Tãšããã
ä»äºWã®ãç¬éçãªä»äºã®å€§ããã¯åŸ®åãçšããŠdWãšè¡šãããäœç©Vã®ããã®ç¬éã®äœç©å€åã¯åŸ®åãçšããŠdVãšè¡šãããããããçšããã°ã
d W = p d V {\displaystyle dW=pdV}
ãšåŸ®åæ¹çšåŒã§è¡šããã(å®å§å€åã§ã¯ç¡ãããããã®åŒã®pã¯å€æ°ã§ããã)
äœç©ãV1ããV2ãŸã§å€åãããæã®ä»äºã¯ãç©åãçšããŠä»¥äžã®ããã«æžã衚ããã
W = â« V 1 V 2 p d V {\displaystyle W=\int _{V_{1}}^{V_{2}}pdV}
ããã«ãç¶æ
æ¹çšåŒã® p V = n R T {\displaystyle pV=nRT} ããçµã¿åãããã
ç©å倿°ã®Vã«åãããŠãpãæžãæãããã
p = n R T V {\displaystyle p={\frac {nRT}{V}}}
ã§ããããããããä»äºã®åŒã¯ã
W = â« V 1 V 2 p d V = â« V 1 V 2 n R T V d V = n R T â« V 1 V 2 d V V = n R T log V 2 V 1 {\displaystyle W=\int _{V_{1}}^{V_{2}}pdV=\int _{V_{1}}^{V_{2}}{\frac {nRT}{V}}dV=nRT\int _{V_{1}}^{V_{2}}{\frac {dV}{V}}=nRT\log {\frac {V_{2}}{V_{1}}}}
ãšãªãã(ãªããlogã¯èªç¶å¯Ÿæ°ã§ããã) çµè«ããŸãšãããšã
ã§ããã
å
éšãšãã«ã®ãŒUã¯ãçæ³æ°äœã§ã¯æž©åºŠã®ã¿ã®é¢æ°ã§ãçæž©å€åã§ã¯æž©åºŠãå€åããªãããã
ã§ããã
ãããã£ãŠãçæž©å€åã§ã¯
ã§ããã
ãŸããç±ãšå
éšãšãã«ã®ãŒãšä»äºã®é¢ä¿åŒ
ããæ¬¡ã®ããã«åŸ®åæ¹çšåŒã«æžãæãããå
éšãšãã«ã®ãŒã®å€åã埮å°å€åãšããŠdUãšè¡šãããšãããšãç±éQãä»äºWã埮å°å€åã«ãªãã®ã§ã以äžã®æ§ãªåŒã«ãªãã
QãWã®åŸ®åæŒç®èšå·dã®äžã«ç¹ã â² {\displaystyle '} ããä»ããŠããã®ã¯ãå³å¯ã«èšããšãç±éQãä»äºWã¯ç¶æ
éã§ç¡ããããåºå¥ããããã«çšããŠããã
æç±å€åã§ã¯
ãªã®ã§ãã€ãŸãã
ãšãªãã
ä»äºã«é¢ããŠã¯
ã§ããã å
éšãšãã«ã®ãŒã®åŸ®å°å€åã¯ãå®ç©ã¢ã«æ¯ç±ãçšããŠã
ãšæžããã
ãªã®ã§ãããçãåŒ 0 = d U + d â² W {\displaystyle 0=dU+d'W} ã«ä»£å
¥ãã
ãšæžããã 䞡蟺ãpVã§å²ããšã
ã§ããããpV=nRTãå©çšãããšã
ãšãªãã
ãã®åŸ®åæ¹çšåŒãè§£ãããŸãç§»é
ããŠã
ãšãªãã ç©åããŠã
ããã§ã C o n s t {\displaystyle Const} ã¯ç©å宿°ãšããã(ç©å宿°ã C {\displaystyle C} ãšæžããªãã£ãã®ã¯ãæ¯ç±ã®èšå·ãšã®æ··åãé¿ããããã) 察æ°ã®æ§è³ªãããä¿æ°R/Cvã察æ°log()ã®äžã®å€æ°ã®ææ°ã«æã£ãŠããã(æ°åŠIIçžåœ)ã®ã§ãèšç®ãããšã
ããã«ç§»é
ããŠã倿°ã巊蟺ã«ãŸãšãããšã
察æ°ã®æ§è³ªããã察æ°å士ã®åã¯ãäžã®å€æ°ã®ç©ã«å€ããããã®ã§ã
ã§ããã 察æ°ã®å®çŸ©ãããèªç¶å¯Ÿæ°ã®åºãeãšããã°
ã§ããã e C o n s t {\displaystyle e^{Const}} ãæ°ãããå¥ã®å®æ°ãšããŠã宿°âconstantâãšçœ®ãçŽãã°ã
ã§ããã ããã§æç±å€åã®æž©åºŠãšäœç©ã®é¢ä¿åŒã®å
¬åŒãæ±ãŸã£ãã
ä»äºWãšã®é¢ä¿ãèŠããã®ã§ãå
ã»ã©æ±ããäžã®å
¬åŒãpãšTã®åŒã«æžãæããäºãèãããç¶æ
æ¹çšåŒ p V = n R T {\displaystyle pV=nRT} ãçšããŠTããPãšVãçšããåŒã«æžãæãããšããŸã代å
¥ããããããã«ç¶æ
æ¹çšåŒã
ãšæžãæããŠããããå
¬åŒã«ä»£å
¥ããã°ã
1 n R {\displaystyle {\frac {1}{nR}}} ã¯å®æ°ãªã®ã§ãããã宿°éšã«ãŸãšããŠããŸãã°ãå¥ã®å®æ°ãConst2ãšã§ã眮ããŠã
ãšæžããã ããã§ãææ°éšã®åŒã¯ããã€ã€ãŒã®åŒ C p = C v + R {\displaystyle Cp=Cv+R} ãããå®å§ã¢ã«æ¯ç±ã§æžãæããå¯èœã§ããã
ã§ããã ããã§ã: C p C V {\displaystyle {\frac {C_{p}}{C_{V}}}} ãæ¯ç±æ¯(heat capacity ratio)ãšèšããæ¯ç±æ¯ã®èšå·ã¯äžè¬ã« γ {\displaystyle \gamma } ã§è¡šãã ãããçšãããšã
ã§ããã
ãŸããæž©åºŠãšäœç©ã®é¢ä¿åŒ
ã«æ¯ç±æ¯ã代å
¥ãããšã
ã«ãªãã
ãããã®ãå§åãšäœç©ã®å
¬åŒãããã³æž©åºŠãšäœç©ã®å
¬åŒã®äºåŒããã¢ãœã³ã®åŒãšããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç±ååŠ > ç±ååŠã®ç¬¬2æ³å",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ç±ã®å·šèŠçãªæ§è³ªãšããŠã \"枩床ã®äœããã®ããæž©åºŠã®é«ããã®ã«å¯Ÿã㊠ä»ã®ç©äœã«åœ±é¿ãäžããäºç¡ãã«ç±ãäžããããããšã¯ã§ããªãã\" ããšãç¥ãããŠããã ãããç±ååŠã®ç¬¬2æ³åãšããã äŸãã°ãä»®ã«ãã®ããšãå¯èœã ã£ããšãããšã å·ããæ°Žãšç±ãæ¹¯ãæ··ãããšã å·ããæ°Žã¯ããå·ãããæ¹¯ã¯ããç±ããšããããšã èµ·ããåŸãããšãäºæ³ããããå®éã«ã¯ çµéšçã«ãããã®ããšãèµ·ãããªãããšãç¥ãããŠããã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "æ°äœã®å€æ°ã®å€æ°p,V,Tã¯ãçæ³æ°äœã§ããããã¡ã³ãã«ã¯ãŒã«ã¹æ°äœã§ãããç¶æ
æ¹çšåŒ(çæ³æ°äœããã¡ã³ãã«ã¯ãŒã«ã¹æ°äœãã¯ãããã§ã¯åããªã)ããããªãã°ã倿°p,V,Tã®ãã¡ã®ãã©ããäºã€ã決ãŸãã°ãæ°äœã®ç¶æ
æ¹çšåŒããæ®ãã®å€æ°ã決ãŸããããããŠ3倿°p,V,Tãæ±ºãŸãã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "å
éšãšãã«ã®ãŒã¯ãçæ³æ°äœã§ããããã¡ã³ãã«ã¯ãŒã«ã¹æ°äœã§ãããã©ã¡ãã«ããŠãã倿°p,V,Tã®ãã¡ãã©ããäºã€ã決ãŸãã°ãæ°äœã®æ¹çšåŒããæ®ãã®æ¹çšåŒã決ãŸããæ±ºãŸã£ã3倿°ã®p,V,Tã«ãã£ãŠãå
éšãšãã«ã®ãŒã決ãŸã£ãŠããŸãããã®ãããªãç¶æ
倿°ã«ãã£ãŠã®ã¿æ±ºãŸãç©çéãç¶æ
é(ãããããããã)ãšããã 3倿°ã®p,V,Tãæ±ºãŸãã°å
éšãšãã«ã®ãŒã決å®ãããã®ã§ãå
éšãšãã«ã€ã®ãŒã¯ç¶æ
éã§ããã å
éšãšãã«ã®ãŒã決ãã3倿°ã®ãã¡ãçã«ç¬ç«å€æ°ãªã®ã¯ããã®ãã¡ã®2åã®ã¿ã§ããã倿°p,V,Tã®ã©ãã2åãŸã§ç¬ç«å€æ°ã«éžãã§ãããããæ®ãã®1åã¯æ¢ã«éžãã 倿°ã®åŸå±å€æ°ã«ãªãã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ã©ã®å€æ°ãç¬ç«å€æ°ã«éžã¶ãšãç¥ãããçããæ±ãããããã¯ãåé¡ã«ããã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "(å€å€æ°ã®é¢æ°ã®åŸ®åç©åã«ã€ããŠã¯ã倧åŠçç§ç³»ã§æè²ããããå€å€æ°é¢æ°ã®åŸ®åãå埮åãšããã解説ã¯é«æ ¡ã¬ãã«ãè¶
ããã®ã§çç¥ã)",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "åç¯ã§èšåããã3ã€ã®å€æ°(å§åpãäœç©Vãæž©åºŠT)ã®ã»ãããšã³ããããŒSãå
éšãšãã«ã®ãŒUãªã©ãç±ååŠç³»ã®å¹³è¡¡ç¶æ
ãç¹åŸŽä»ããç¶æ
éã§ããã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "åç¯ãšåæ§ã5ã€ã®ç¶æ
ép,V,T,U,Sã®ãã¡ä»»æã®2ã€ãç¬ç«å€æ°ã«éžã¶å Žåã«ããæ®ã3ã€ã®å€æ°ã¯ããã2ã€ã®ç¬ç«å€æ°ã§è¡šãããåŸå±å€æ°ãšããŠæ±ããã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãã®5ã€ã®å€æ°ã®ä»»æã®çµã¿åãããç¬ç«å€æ°ã«ãã€ç¶æ
éã¯ãäžè¬ã«ç±ååŠé¢æ°ãšåŒã°ããã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "å
éšãšãã«ã®ãŒU(S,V)ã®ã»ããåŸã®ç« ã«ãŠèšåããããšã³ããããŒS(U,V)ããšã³ã¿ã«ããŒH(S,p)ããã«ã ãã«ãã®èªç±ãšãã«ã®ãŒF(V,T)ãã®ãã¹ã®èªç±ãšãã«ã®ãŒG(T,p)ãªã©ãç±ååŠé¢æ°ã§ããã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "(ãã®ç¯ã§ã¯ã髿 ¡æ°åŠã®æ°åŠIIIçžåœã®åŸ®åç©åãçšãããåãããªããã°æ°åŠIIIãåç
§ã®ããšã)",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "å§åãpãšæžããšãããäœç©ãVãã¢ã«æ°ãnãæ®éæ°äœå®æ°ãnãæž©åºŠã絶察枩床ã§Tãšããã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ä»äºWã®ãç¬éçãªä»äºã®å€§ããã¯åŸ®åãçšããŠdWãšè¡šãããäœç©Vã®ããã®ç¬éã®äœç©å€åã¯åŸ®åãçšããŠdVãšè¡šãããããããçšããã°ã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "d W = p d V {\\displaystyle dW=pdV}",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ãšåŸ®åæ¹çšåŒã§è¡šããã(å®å§å€åã§ã¯ç¡ãããããã®åŒã®pã¯å€æ°ã§ããã)",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "äœç©ãV1ããV2ãŸã§å€åãããæã®ä»äºã¯ãç©åãçšããŠä»¥äžã®ããã«æžã衚ããã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "W = â« V 1 V 2 p d V {\\displaystyle W=\\int _{V_{1}}^{V_{2}}pdV}",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ããã«ãç¶æ
æ¹çšåŒã® p V = n R T {\\displaystyle pV=nRT} ããçµã¿åãããã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ç©å倿°ã®Vã«åãããŠãpãæžãæãããã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "p = n R T V {\\displaystyle p={\\frac {nRT}{V}}}",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ã§ããããããããä»äºã®åŒã¯ã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "W = â« V 1 V 2 p d V = â« V 1 V 2 n R T V d V = n R T â« V 1 V 2 d V V = n R T log V 2 V 1 {\\displaystyle W=\\int _{V_{1}}^{V_{2}}pdV=\\int _{V_{1}}^{V_{2}}{\\frac {nRT}{V}}dV=nRT\\int _{V_{1}}^{V_{2}}{\\frac {dV}{V}}=nRT\\log {\\frac {V_{2}}{V_{1}}}}",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ãšãªãã(ãªããlogã¯èªç¶å¯Ÿæ°ã§ããã) çµè«ããŸãšãããšã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ã§ããã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "å
éšãšãã«ã®ãŒUã¯ãçæ³æ°äœã§ã¯æž©åºŠã®ã¿ã®é¢æ°ã§ãçæž©å€åã§ã¯æž©åºŠãå€åããªãããã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ã§ããã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ãããã£ãŠãçæž©å€åã§ã¯",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ã§ããã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ãŸããç±ãšå
éšãšãã«ã®ãŒãšä»äºã®é¢ä¿åŒ",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ããæ¬¡ã®ããã«åŸ®åæ¹çšåŒã«æžãæãããå
éšãšãã«ã®ãŒã®å€åã埮å°å€åãšããŠdUãšè¡šãããšãããšãç±éQãä»äºWã埮å°å€åã«ãªãã®ã§ã以äžã®æ§ãªåŒã«ãªãã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "QãWã®åŸ®åæŒç®èšå·dã®äžã«ç¹ã â² {\\displaystyle '} ããä»ããŠããã®ã¯ãå³å¯ã«èšããšãç±éQãä»äºWã¯ç¶æ
éã§ç¡ããããåºå¥ããããã«çšããŠããã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "æç±å€åã§ã¯",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "ãªã®ã§ãã€ãŸãã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "ãšãªãã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "ä»äºã«é¢ããŠã¯",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "ã§ããã å
éšãšãã«ã®ãŒã®åŸ®å°å€åã¯ãå®ç©ã¢ã«æ¯ç±ãçšããŠã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "ãšæžããã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "ãªã®ã§ãããçãåŒ 0 = d U + d â² W {\\displaystyle 0=dU+d'W} ã«ä»£å
¥ãã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "ãšæžããã 䞡蟺ãpVã§å²ããšã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "ã§ããããpV=nRTãå©çšãããšã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "ãšãªãã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ãã®åŸ®åæ¹çšåŒãè§£ãããŸãç§»é
ããŠã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "ãšãªãã ç©åããŠã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "ããã§ã C o n s t {\\displaystyle Const} ã¯ç©å宿°ãšããã(ç©å宿°ã C {\\displaystyle C} ãšæžããªãã£ãã®ã¯ãæ¯ç±ã®èšå·ãšã®æ··åãé¿ããããã) 察æ°ã®æ§è³ªãããä¿æ°R/Cvã察æ°log()ã®äžã®å€æ°ã®ææ°ã«æã£ãŠããã(æ°åŠIIçžåœ)ã®ã§ãèšç®ãããšã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "ããã«ç§»é
ããŠã倿°ã巊蟺ã«ãŸãšãããšã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "察æ°ã®æ§è³ªããã察æ°å士ã®åã¯ãäžã®å€æ°ã®ç©ã«å€ããããã®ã§ã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "ã§ããã 察æ°ã®å®çŸ©ãããèªç¶å¯Ÿæ°ã®åºãeãšããã°",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "ã§ããã e C o n s t {\\displaystyle e^{Const}} ãæ°ãããå¥ã®å®æ°ãšããŠã宿°âconstantâãšçœ®ãçŽãã°ã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "ã§ããã ããã§æç±å€åã®æž©åºŠãšäœç©ã®é¢ä¿åŒã®å
¬åŒãæ±ãŸã£ãã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "ä»äºWãšã®é¢ä¿ãèŠããã®ã§ãå
ã»ã©æ±ããäžã®å
¬åŒãpãšTã®åŒã«æžãæããäºãèãããç¶æ
æ¹çšåŒ p V = n R T {\\displaystyle pV=nRT} ãçšããŠTããPãšVãçšããåŒã«æžãæãããšããŸã代å
¥ããããããã«ç¶æ
æ¹çšåŒã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "ãšæžãæããŠããããå
¬åŒã«ä»£å
¥ããã°ã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "1 n R {\\displaystyle {\\frac {1}{nR}}} ã¯å®æ°ãªã®ã§ãããã宿°éšã«ãŸãšããŠããŸãã°ãå¥ã®å®æ°ãConst2ãšã§ã眮ããŠã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "ãšæžããã ããã§ãææ°éšã®åŒã¯ããã€ã€ãŒã®åŒ C p = C v + R {\\displaystyle Cp=Cv+R} ãããå®å§ã¢ã«æ¯ç±ã§æžãæããå¯èœã§ããã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ã§ããã ããã§ã: C p C V {\\displaystyle {\\frac {C_{p}}{C_{V}}}} ãæ¯ç±æ¯(heat capacity ratio)ãšèšããæ¯ç±æ¯ã®èšå·ã¯äžè¬ã« γ {\\displaystyle \\gamma } ã§è¡šãã ãããçšãããšã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ã§ããã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "ãŸããæž©åºŠãšäœç©ã®é¢ä¿åŒ",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "ã«æ¯ç±æ¯ã代å
¥ãããšã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "ã«ãªãã",
"title": "ç±ååŠã®ç¬¬2æ³å"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "ãããã®ãå§åãšäœç©ã®å
¬åŒãããã³æž©åºŠãšäœç©ã®å
¬åŒã®äºåŒããã¢ãœã³ã®åŒãšããã",
"title": "ç±ååŠã®ç¬¬2æ³å"
}
] | ç±ååŠ > ç±ååŠã®ç¬¬2æ³å | <small> [[ç±ååŠ]] > ç±ååŠã®ç¬¬2æ³å</small>
----
==ç±ååŠã®ç¬¬2æ³å==
ç±ã®å·šèŠçãªæ§è³ªãšããŠã
"枩床ã®äœããã®ããæž©åºŠã®é«ããã®ã«å¯ŸããŠ
ä»ã®ç©äœã«åœ±é¿ãäžããäºç¡ãã«ç±ãäžããããããšã¯ã§ããªãã"
ããšãç¥ãããŠããã
ãããç±ååŠã®ç¬¬2æ³åãšããã
äŸãã°ãä»®ã«ãã®ããšãå¯èœã ã£ããšãããšã
å·ããæ°Žãšç±ãæ¹¯ãæ··ãããšã
å·ããæ°Žã¯ããå·ãããæ¹¯ã¯ããç±ããšããããšã
èµ·ããåŸãããšãäºæ³ããããå®éã«ã¯
çµéšçã«ãããã®ããšãèµ·ãããªãããšãç¥ãããŠããã
[[Category:ç±ååŠ|ãã€ããããã®ããã«ã»ããã]]
=== ç¶æ
é ===
æ°äœã®å€æ°ã®å€æ°p,V,Tã¯ãçæ³æ°äœã§ããããã¡ã³ãã«ã¯ãŒã«ã¹æ°äœã§ãããç¶æ
æ¹çšåŒïŒçæ³æ°äœããã¡ã³ãã«ã¯ãŒã«ã¹æ°äœãã¯ãããã§ã¯åããªãïŒããããªãã°ã倿°p,V,Tã®ãã¡ã®ãã©ããäºã€ã決ãŸãã°ãæ°äœã®ç¶æ
æ¹çšåŒããæ®ãã®å€æ°ã決ãŸããããããŠ3倿°p,V,Tãæ±ºãŸãã
å
éšãšãã«ã®ãŒã¯ãçæ³æ°äœã§ããããã¡ã³ãã«ã¯ãŒã«ã¹æ°äœã§ãããã©ã¡ãã«ããŠãã倿°p,V,Tã®ãã¡ãã©ããäºã€ã決ãŸãã°ãæ°äœã®æ¹çšåŒããæ®ãã®æ¹çšåŒã決ãŸããæ±ºãŸã£ã3倿°ã®p,V,Tã«ãã£ãŠãå
éšãšãã«ã®ãŒã決ãŸã£ãŠããŸãããã®ãããªãç¶æ
倿°ã«ãã£ãŠã®ã¿æ±ºãŸãç©çéã'''ç¶æ
é'''ïŒããããããããïŒãšããã
3倿°ã®p,V,Tãæ±ºãŸãã°å
éšãšãã«ã®ãŒã決å®ãããã®ã§ãå
éšãšãã«ã€ã®ãŒã¯ç¶æ
éã§ããã
å
éšãšãã«ã®ãŒã決ãã3倿°ã®ãã¡ãçã«ç¬ç«å€æ°ãªã®ã¯ããã®ãã¡ã®2åã®ã¿ã§ããã倿°p,V,Tã®ã©ãã2åãŸã§ç¬ç«å€æ°ã«éžãã§ãããããæ®ãã®1åã¯æ¢ã«éžãã 倿°ã®åŸå±å€æ°ã«ãªãã
ã©ã®å€æ°ãç¬ç«å€æ°ã«éžã¶ãšãç¥ãããçããæ±ãããããã¯ãåé¡ã«ããã
ïŒå€å€æ°ã®é¢æ°ã®åŸ®åç©åã«ã€ããŠã¯ã倧åŠçç§ç³»ã§æè²ããããå€å€æ°é¢æ°ã®åŸ®åãå埮åãšããã解説ã¯é«æ ¡ã¬ãã«ãè¶
ããã®ã§çç¥ãïŒ
=== ç±ååŠé¢æ° ===
åç¯ã§èšåãããïŒã€ã®å€æ°ïŒå§åpãäœç©Vãæž©åºŠTïŒã®ã»ãããšã³ããããŒSãå
éšãšãã«ã®ãŒUãªã©ãç±ååŠç³»ã®å¹³è¡¡ç¶æ
ãç¹åŸŽä»ããç¶æ
éã§ããã
åç¯ãšåæ§ã5ã€ã®ç¶æ
ép,V,T,U,Sã®ãã¡ä»»æã®2ã€ãç¬ç«å€æ°ã«éžã¶å Žåã«ããæ®ã3ã€ã®å€æ°ã¯ããã2ã€ã®ç¬ç«å€æ°ã§è¡šãããåŸå±å€æ°ãšããŠæ±ããã
ãã®5ã€ã®å€æ°ã®ä»»æã®çµã¿åãããç¬ç«å€æ°ã«ãã€ç¶æ
éã¯ãäžè¬ã«ç±ååŠé¢æ°ãšåŒã°ããã
å
éšãšãã«ã®ãŒU(S,V)ã®ã»ããåŸã®ç« ã«ãŠèšåããããšã³ããããŒS(U,V)ããšã³ã¿ã«ããŒH(S,p)ããã«ã ãã«ãã®èªç±ãšãã«ã®ãŒF(V,T)ãã®ãã¹ã®èªç±ãšãã«ã®ãŒG(T,p)ãªã©ãç±ååŠé¢æ°ã§ããã
=== çæž©å€å ===
ïŒãã®ç¯ã§ã¯ã髿 ¡æ°åŠã®æ°åŠIIIçžåœã®åŸ®åç©åãçšãããåãããªããã°æ°åŠIIIãåç
§ã®ããšãïŒ
å§åãpãšæžããšãããäœç©ãVãã¢ã«æ°ãnãæ®éæ°äœå®æ°ãnãæž©åºŠã絶察枩床ã§Tãšããã
ä»äºWã®ãç¬éçãªä»äºã®å€§ããã¯åŸ®åãçšããŠdWãšè¡šãããäœç©Vã®ããã®ç¬éã®äœç©å€åã¯åŸ®åãçšããŠdVãšè¡šãããããããçšããã°ã
<math> dW=pdV </math>
ãšåŸ®åæ¹çšåŒã§è¡šãããïŒå®å§å€åã§ã¯ç¡ãããããã®åŒã®pã¯å€æ°ã§ãããïŒ
äœç©ãV<sub>1</sub>ããV<sub>2</sub>ãŸã§å€åãããæã®ä»äºã¯ãç©åãçšããŠä»¥äžã®ããã«æžã衚ããã
<math> W=\int_{V_1}^{V_2} p dV </math>
ããã«ãç¶æ
æ¹çšåŒã® <math> pV = nRT </math> ããçµã¿åãããã
ç©å倿°ã®Vã«åãããŠãpãæžãæãããã
<math>p=\frac{nRT}{V}</math>
ã§ããããããããä»äºã®åŒã¯ã
<math> W=\int_{V_1}^{V_2} p dV= \int_{V_1}^{V_2} \frac{nRT}{V} dV = nRT\int_{V_1}^{V_2}\frac{dV}{V} = nRT\log \frac{V_2}{V_1 }</math>
ãšãªããïŒãªããlogã¯èªç¶å¯Ÿæ°ã§ãããïŒ
çµè«ããŸãšãããšã
:<math> W = nRT \log{\frac{V_2}{V_1}} </math>
ã§ããã
å
éšãšãã«ã®ãŒUã¯ãçæ³æ°äœã§ã¯æž©åºŠã®ã¿ã®é¢æ°ã§ãçæž©å€åã§ã¯æž©åºŠãå€åããªãããã
:<math>\Delta U=0</math>
ã§ããã
ãããã£ãŠãçæž©å€åã§ã¯
:<math>Q=W</math>
ã§ããã
=== æç±å€å ===
ãŸããç±ãšå
éšãšãã«ã®ãŒãšä»äºã®é¢ä¿åŒ
:<math>Q=U+W</math>
ããæ¬¡ã®ããã«åŸ®åæ¹çšåŒã«æžãæãããå
éšãšãã«ã®ãŒã®å€åã埮å°å€åãšããŠdUãšè¡šãããšãããšãç±éQãä»äºWã埮å°å€åã«ãªãã®ã§ã以äžã®æ§ãªåŒã«ãªãã
:<math>d'Q=dU+d'W</math>
QãWã®åŸ®åæŒç®èšå·dã®äžã«ç¹ã<math>'</math>ããä»ããŠããã®ã¯ãå³å¯ã«èšããšãç±éQãä»äºWã¯ç¶æ
éã§ç¡ããããåºå¥ããããã«çšããŠããã
æç±å€åã§ã¯
:<math>d'Q=0</math>
ãªã®ã§ãã€ãŸãã
:<math>0=dU+d'W</math>
ãšãªãã
ä»äºã«é¢ããŠã¯
:<math>d'W=pdV</math>
ã§ããã
å
éšãšãã«ã®ãŒã®åŸ®å°å€åã¯ãå®ç©ã¢ã«æ¯ç±ãçšããŠã
:<math>dU=nC_{V}dT</math>
ãšæžããã
ãªã®ã§ãããçãåŒ <math>0=dU+d'W</math> ã«ä»£å
¥ãã
:<math>0=nC_{V}dT+pdV</math>
ãšæžããã
䞡蟺ãpVã§å²ããšã
:<math>0=\frac{nC_VdT}{pV}+{pdV}{pV}=\frac{nC_VdT}{pV}+\frac{dV}{V}</math>
ã§ããããpV=nRTãå©çšãããšã
:<math>0=\frac{nC_VdT}{nRT}+\frac{dV}{V}=\frac{C_V}{R}\frac{dT}{T}+\frac{dV}{V}</math>
ãšãªãã
ãã®åŸ®åæ¹çšåŒãè§£ãããŸãç§»é
ããŠã
:<math>\frac{dT}{T}=-\frac{R}{C_V}\frac{dV}{V}</math>
ãšãªãã
ç©åããŠã
:<math>\log T=- \frac{R}{C_V} \log{V}+Const</math>
ããã§ã<math>Const</math>ã¯ç©å宿°ãšãããïŒç©å宿°ã <math>C</math> ãšæžããªãã£ãã®ã¯ãæ¯ç±ã®èšå·ãšã®æ··åãé¿ãããããïŒ
察æ°ã®æ§è³ªãããä¿æ°R/Cvã察æ°log()ã®äžã®å€æ°ã®ææ°ã«æã£ãŠãããïŒæ°åŠIIçžåœïŒã®ã§ãèšç®ãããšã
:<math>\log T=-\log{V^{\frac{R}{C_V}}}+Const</math>
ããã«ç§»é
ããŠã倿°ã巊蟺ã«ãŸãšãããšã
:<math>\log T+\log V^{\frac{R}{C_V}}=Const</math>
察æ°ã®æ§è³ªããã察æ°å士ã®åã¯ãäžã®å€æ°ã®ç©ã«å€ããããã®ã§ã
:<math>\log TV^{\frac{R}{C_V}}=Const</math>
ã§ããã
察æ°ã®å®çŸ©ãããèªç¶å¯Ÿæ°ã®åºãeãšããã°
:<math>TV^{\frac{R}{C_V}}=e^{Const}</math>
ã§ããã
<math>e^{Const}</math>ãæ°ãããå¥ã®å®æ°ãšããŠã宿°âconstantâãšçœ®ãçŽãã°ã
:<math>TV^{\frac{R}{C_V}}=constant</math>
ã§ããã
ããã§æç±å€åã®æž©åºŠãšäœç©ã®é¢ä¿åŒã®å
¬åŒãæ±ãŸã£ãã
;枩床ãšäœç©ã®é¢ä¿åŒ
ä»äºWãšã®é¢ä¿ãèŠããã®ã§ãå
ã»ã©æ±ããäžã®å
¬åŒãpãšTã®åŒã«æžãæããäºãèãããç¶æ
æ¹çšåŒ<math>pV=nRT</math>ãçšããŠTããPãšVãçšããåŒã«æžãæãããšããŸã代å
¥ããããããã«ç¶æ
æ¹çšåŒã
:<math>T=\frac{pV}{nR}</math>
ãšæžãæããŠããããå
¬åŒã«ä»£å
¥ããã°ã
:<math>TV^{\frac{R}{C_V}}=\frac{pV}{nR}V^{\frac{R}{C_V}}=\frac{1}{nR}pVV^{\frac{R}{C_V}}=\frac{1}{nR}pV^{1+\frac{R}{C_V}}=constant</math>
;å§åãšäœç©ã®é¢ä¿åŒ
<math>\frac{1}{nR}</math>ã¯å®æ°ãªã®ã§ãããã宿°éšã«ãŸãšããŠããŸãã°ãå¥ã®å®æ°ãConst<sub>2</sub>ãšã§ã眮ããŠã
:<math>pV^{1+\frac{R}{C_V}}=Const_2</math>
ãšæžããã
ããã§ãææ°éšã®åŒã¯ããã€ã€ãŒã®åŒ<math>Cp=Cv+R</math>ãããå®å§ã¢ã«æ¯ç±ã§æžãæããå¯èœã§ããã
:<math>pV^{\frac{C_p}{C_V}}=Const_2</math>
ã§ããã
ããã§ã:<math>\frac{C_p}{C_V}</math>ã{{ruby|'''æ¯ç±æ¯'''|ã²ãã€ã²}}ïŒheat capacity ratioïŒãšèšããæ¯ç±æ¯ã®èšå·ã¯äžè¬ã«<math>\gamma</math>ã§è¡šãã
ãããçšãããšã
:<math>pV^{\gamma}=Const_2</math>
ã§ããã
ãŸããæž©åºŠãšäœç©ã®é¢ä¿åŒ
:<math>TV^{\frac{R}{C_V}}=constant</math>
ã«æ¯ç±æ¯ã代å
¥ãããšã
:<math>TV^{\gamma -1}=constant</math>
ã«ãªãã
ãããã®ãå§åãšäœç©ã®å
¬åŒãããã³æž©åºŠãšäœç©ã®å
¬åŒã®äºåŒã'''ãã¢ãœã³ã®åŒ'''ãšããã | null | 2022-12-01T04:09:28Z | [
"ãã³ãã¬ãŒã:Ruby"
] | https://ja.wikibooks.org/wiki/%E7%86%B1%E5%8A%9B%E5%AD%A6/%E7%86%B1%E5%8A%9B%E5%AD%A6%E3%81%AE%E7%AC%AC2%E6%B3%95%E5%89%87 |
2,040 | ç±ååŠ/ãšã³ããã㌠| ç±ååŠ > ãšã³ããããŒ
ããæž©åºŠTã®ç©äœã«å¯ŸããŠæºéçã« ç±dQãäžãããããšããã®ç©äœã¯ d S = d Q T {\displaystyle dS={\frac {dQ}{T}}} ã®ãšã³ããããŒãåŸããšããã ãã®å€ãçšããŠç¬¬2æ³åãæžãæããããšãåºæ¥ãã ããæž©åºŠ T 1 {\displaystyle T_{1}} ãš T 2 {\displaystyle T_{2}} ( T 1 > T 2 {\displaystyle T_{1}>T_{2}} )ã®ç©äœã(ç©äœ1,ç©äœ2ãšããã) æ¥è§Šããããšãã第2æ³å㯠ããéã®ç±ã T 1 {\displaystyle T_{1}} ã®ç©äœãã T 2 {\displaystyle T_{2}} ã®ç©äœã«ç§»ãããããšãäºèšããã ãã®ãšããããããã®ç©äœãåŸããšã³ããããŒã®éãèšç®ãããš ç©äœ1ã«ã€ããŠã¯ã d S 1 = â d Q T 1 {\displaystyle dS_{1}=-{\frac {dQ}{T_{1}}}} ãåŸãããç©äœ2ã«ã€ããŠã¯ d S 2 = d Q T 2 {\displaystyle dS_{2}={\frac {dQ}{T_{2}}}} ãåŸãããã2ã€ãåãããå Žåãå
šç³»ãšåŒã³ãå
šç³»ã®ãšã³ããããŒã d S tot {\displaystyle dS_{\textrm {tot}}} ãšæžããšã d S tot = d Q ( 1 T 2 â 1 T 1 ) > 0 {\displaystyle dS_{\textrm {tot}}=dQ({\frac {1}{T_{2}}}-{\frac {1}{T_{1}}})>0} ãåŸãããã ãã®ããšããã第2æ³å㯠"å
šç³»ã®ãšã³ããããŒãå¢å€§ããæ¹åã«ç±ã®ç§»åãèµ·ããã" ãšæžãçŽãããšãåºæ¥ãã
ãŸãã d Q = T d S {\displaystyle dQ=TdS} ã®é¢ä¿ãçšããŠã第1æ³åãæžãæããããšãåºæ¥ãã d Q = d U â d W {\displaystyle dQ=dU-dW} ãæžãæããŠã d U = T d S + d W {\displaystyle dU=TdS+dW} ãåŸãããã ç¹ã«æ°äœã«ã€ã㊠d W = â P d V {\displaystyle dW=-PdV} ãšãªããã®ãšããŠãå§åãå®çŸ©ãããš d U = T d S â P d V {\displaystyle dU=TdS-PdV} ãåŸãããã
(泚æ:ããã¯å¯ééçšãèãããšãã®èšè¿°ã§ããäžå¯ééçšãèãããšã㯠...)
ç±å¹çã®å®çŸ©åŒãšãã«ã«ããŒãµã€ã¯ã«ã®ç±å¹çã®æž©åºŠã®é¢ä¿åŒãé£ç«ãããŠã¿ããã ãŸãã髿ž©ç±æºã®æž©åºŠãThãšæžããšããŠã髿ž©ç±æºããç±æ©é¢ã«æž¡ãç±éãQhãšæžããšãããã äœæž©ç±æºã®æž©åºŠã¯TcãšããŠãç±æ©é¢ããäœæž©ç±æºã«æŸç±ãããç±éãQcãšæžããšãããã ç±å¹çeã®å®çŸ©åŒã¯ã
ã§ãã£ãããã£ãœããã«ã«ããŒãµã€ã¯ã«ã®ç±å¹çã¯ã
ã§ããã
ãããããã
ã§ãããããã¯ã
ãšãæžããŠã䞡蟺ã®1ãåŒããŠæ¶å»ããŠã
ãšãªãããã€ãã¹ãããã®ã§ãç§»é
ããã°ã
ã§ããã æ·»åãåãéã©ããããŸãšããã°ã
ãšãªããããã§ã Q T {\displaystyle {\frac {Q}{T}}} ãæ°ããç©çéãšããŠå®çŸ©ããŠããã®éã¯ãšã³ããããŒ(entropy)ãšåŒã°ããããšã³ããããŒã®èšå·ã¯Sãšçœ®ããšããããŸãããšã³ããããŒã®åäœã¯[J/K]ã§ããã ã€ãŸãã S = Q T {\displaystyle S={\frac {Q}{T}}} ã§ããããããããšãåŒ(1)ã¯
ãšæžããã
ç±æ©é¢ã®åäœã®é åºã¯ããŸãæ©é¢ã髿ž©ç±æºããç±ãè²°ã£ãŠãããäœæž©ç±æºã«ç±ãæž¡ãã®ã§ãã£ãã(éã«å
ã«äœé³ç±æºã«æŸç±ããŠãã髿ž©ç±æºã§åžç±ããã®ã¯äžå¯èœã§ãããç±æ©é¢ã¯ãããã£ãŠãªãç±ã¯æž¡ããªããç±ååŠã®ç¬¬äºæ³åããåœç¶ã§ããã)ã ãããæéçã«ã¯ãç±æ©é¢ã®ãšã³ããããŒSã¯ããŸãå
ã«S=Shã«ãªã£ãŠãããæéãçµã£ãŠãããšããS=Scã«ãªã£ãã®ã§ããã ãããŠåŒ(2)ããã S h {\displaystyle S_{h}} ⊠S c {\displaystyle S_{c}} ã§ãããããç±æ©é¢ã®ãšã³ããããŒã¯ãæéãçµã£ãŠãå¢å€§ããããšãåããã
以äžã®è«èšŒãããç±æ©é¢ã®ãšã³ããããŒã¯ãããªããå¢å€§ãããããããšã³ããããŒå¢å€§ã®æ³åãšããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç±ååŠ > ãšã³ããããŒ",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ããæž©åºŠTã®ç©äœã«å¯ŸããŠæºéçã« ç±dQãäžãããããšããã®ç©äœã¯ d S = d Q T {\\displaystyle dS={\\frac {dQ}{T}}} ã®ãšã³ããããŒãåŸããšããã ãã®å€ãçšããŠç¬¬2æ³åãæžãæããããšãåºæ¥ãã ããæž©åºŠ T 1 {\\displaystyle T_{1}} ãš T 2 {\\displaystyle T_{2}} ( T 1 > T 2 {\\displaystyle T_{1}>T_{2}} )ã®ç©äœã(ç©äœ1,ç©äœ2ãšããã) æ¥è§Šããããšãã第2æ³å㯠ããéã®ç±ã T 1 {\\displaystyle T_{1}} ã®ç©äœãã T 2 {\\displaystyle T_{2}} ã®ç©äœã«ç§»ãããããšãäºèšããã ãã®ãšããããããã®ç©äœãåŸããšã³ããããŒã®éãèšç®ãããš ç©äœ1ã«ã€ããŠã¯ã d S 1 = â d Q T 1 {\\displaystyle dS_{1}=-{\\frac {dQ}{T_{1}}}} ãåŸãããç©äœ2ã«ã€ããŠã¯ d S 2 = d Q T 2 {\\displaystyle dS_{2}={\\frac {dQ}{T_{2}}}} ãåŸãããã2ã€ãåãããå Žåãå
šç³»ãšåŒã³ãå
šç³»ã®ãšã³ããããŒã d S tot {\\displaystyle dS_{\\textrm {tot}}} ãšæžããšã d S tot = d Q ( 1 T 2 â 1 T 1 ) > 0 {\\displaystyle dS_{\\textrm {tot}}=dQ({\\frac {1}{T_{2}}}-{\\frac {1}{T_{1}}})>0} ãåŸãããã ãã®ããšããã第2æ³å㯠\"å
šç³»ã®ãšã³ããããŒãå¢å€§ããæ¹åã«ç±ã®ç§»åãèµ·ããã\" ãšæžãçŽãããšãåºæ¥ãã",
"title": "ãšã³ããããŒ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãŸãã d Q = T d S {\\displaystyle dQ=TdS} ã®é¢ä¿ãçšããŠã第1æ³åãæžãæããããšãåºæ¥ãã d Q = d U â d W {\\displaystyle dQ=dU-dW} ãæžãæããŠã d U = T d S + d W {\\displaystyle dU=TdS+dW} ãåŸãããã ç¹ã«æ°äœã«ã€ã㊠d W = â P d V {\\displaystyle dW=-PdV} ãšãªããã®ãšããŠãå§åãå®çŸ©ãããš d U = T d S â P d V {\\displaystyle dU=TdS-PdV} ãåŸãããã",
"title": "ãšã³ããããŒ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "(泚æ:ããã¯å¯ééçšãèãããšãã®èšè¿°ã§ããäžå¯ééçšãèãããšã㯠...)",
"title": "ãšã³ããããŒ"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ç±å¹çã®å®çŸ©åŒãšãã«ã«ããŒãµã€ã¯ã«ã®ç±å¹çã®æž©åºŠã®é¢ä¿åŒãé£ç«ãããŠã¿ããã ãŸãã髿ž©ç±æºã®æž©åºŠãThãšæžããšããŠã髿ž©ç±æºããç±æ©é¢ã«æž¡ãç±éãQhãšæžããšãããã äœæž©ç±æºã®æž©åºŠã¯TcãšããŠãç±æ©é¢ããäœæž©ç±æºã«æŸç±ãããç±éãQcãšæžããšãããã ç±å¹çeã®å®çŸ©åŒã¯ã",
"title": "ãšã³ããããŒ"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ã§ãã£ãããã£ãœããã«ã«ããŒãµã€ã¯ã«ã®ç±å¹çã¯ã",
"title": "ãšã³ããããŒ"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ã§ããã",
"title": "ãšã³ããããŒ"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãããããã",
"title": "ãšã³ããããŒ"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ã§ãããããã¯ã",
"title": "ãšã³ããããŒ"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãšãæžããŠã䞡蟺ã®1ãåŒããŠæ¶å»ããŠã",
"title": "ãšã³ããããŒ"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãšãªãããã€ãã¹ãããã®ã§ãç§»é
ããã°ã",
"title": "ãšã³ããããŒ"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ã§ããã æ·»åãåãéã©ããããŸãšããã°ã",
"title": "ãšã³ããããŒ"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãšãªããããã§ã Q T {\\displaystyle {\\frac {Q}{T}}} ãæ°ããç©çéãšããŠå®çŸ©ããŠããã®éã¯ãšã³ããããŒ(entropy)ãšåŒã°ããããšã³ããããŒã®èšå·ã¯Sãšçœ®ããšããããŸãããšã³ããããŒã®åäœã¯[J/K]ã§ããã ã€ãŸãã S = Q T {\\displaystyle S={\\frac {Q}{T}}} ã§ããããããããšãåŒ(1)ã¯",
"title": "ãšã³ããããŒ"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãšæžããã",
"title": "ãšã³ããããŒ"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ç±æ©é¢ã®åäœã®é åºã¯ããŸãæ©é¢ã髿ž©ç±æºããç±ãè²°ã£ãŠãããäœæž©ç±æºã«ç±ãæž¡ãã®ã§ãã£ãã(éã«å
ã«äœé³ç±æºã«æŸç±ããŠãã髿ž©ç±æºã§åžç±ããã®ã¯äžå¯èœã§ãããç±æ©é¢ã¯ãããã£ãŠãªãç±ã¯æž¡ããªããç±ååŠã®ç¬¬äºæ³åããåœç¶ã§ããã)ã ãããæéçã«ã¯ãç±æ©é¢ã®ãšã³ããããŒSã¯ããŸãå
ã«S=Shã«ãªã£ãŠãããæéãçµã£ãŠãããšããS=Scã«ãªã£ãã®ã§ããã ãããŠåŒ(2)ããã S h {\\displaystyle S_{h}} ⊠S c {\\displaystyle S_{c}} ã§ãããããç±æ©é¢ã®ãšã³ããããŒã¯ãæéãçµã£ãŠãå¢å€§ããããšãåããã",
"title": "ãšã³ããããŒ"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "以äžã®è«èšŒãããç±æ©é¢ã®ãšã³ããããŒã¯ãããªããå¢å€§ãããããããšã³ããããŒå¢å€§ã®æ³åãšããã",
"title": "ãšã³ããããŒ"
}
] | ç±ååŠ > ãšã³ããã㌠| <small> [[ç±ååŠ]] > ãšã³ããããŒ</small>
----
==ãšã³ããããŒ==
ããæž©åºŠTã®ç©äœã«å¯ŸããŠæºéçã«
ç±dQãäžãããããšããã®ç©äœã¯
<math>
dS = \frac {dQ} T
</math>
ã®ãšã³ããããŒãåŸããšããã
ãã®å€ãçšããŠç¬¬2æ³åãæžãæããããšãåºæ¥ãã
ããæž©åºŠ<math>T _1</math>ãš<math>T _2</math>(<math>T _1>T _2</math>)ã®ç©äœã(ç©äœ1,ç©äœ2ãšããã)
æ¥è§Šããããšãã第2æ³åã¯
ããéã®ç±ã<math>T _1</math>ã®ç©äœãã<math>T _2</math>ã®ç©äœã«ç§»ãããããšãäºèšããã
ãã®ãšããããããã®ç©äœãåŸããšã³ããããŒã®éãèšç®ãããš
ç©äœ1ã«ã€ããŠã¯ã
<math>
d S _1 = -\frac {d Q} {T _1}
</math>
ãåŸãããç©äœ2ã«ã€ããŠã¯
<math>
d S _2 = \frac {d Q} {T _2}
</math>
ãåŸãããã2ã€ãåãããå Žåãå
šç³»ãšåŒã³ãå
šç³»ã®ãšã³ããããŒã
<math>
d S _{\textrm{tot}}
</math>
ãšæžããšã
<math>
d S _{\textrm{tot}} = dQ (\frac 1 {T _2} -\frac 1 {T _1}) >0
</math>
ãåŸãããã
ãã®ããšããã第2æ³åã¯
"å
šç³»ã®ãšã³ããããŒãå¢å€§ããæ¹åã«ç±ã®ç§»åãèµ·ããã"
ãšæžãçŽãããšãåºæ¥ãã
ãŸãã
<math>
dQ = TdS
</math>
ã®é¢ä¿ãçšããŠã第1æ³åãæžãæããããšãåºæ¥ãã
<math>
dQ = dU - dW
</math>
ãæžãæããŠã
<math>
dU = TdS + dW
</math>
ãåŸãããã
ç¹ã«æ°äœã«ã€ããŠ
<math>
dW = -P dV
</math>
ãšãªããã®ãšããŠãå§åãå®çŸ©ãããš
<math>
dU = TdS - PdV
</math>
ãåŸãããã
(泚æ:ããã¯å¯ééçšãèãããšãã®èšè¿°ã§ããäžå¯ééçšãèãããšãã¯
...)
{{stub}}
=== ãšã³ããã㌠===
ç±å¹çã®å®çŸ©åŒãšãã«ã«ããŒãµã€ã¯ã«ã®ç±å¹çã®æž©åºŠã®é¢ä¿åŒãé£ç«ãããŠã¿ããã
ãŸãã髿ž©ç±æºã®æž©åºŠãT<sub>h</sub>ãšæžããšããŠã髿ž©ç±æºããç±æ©é¢ã«æž¡ãç±éãQ<sub>h</sub>ãšæžããšãããã
äœæž©ç±æºã®æž©åºŠã¯T<sub>c</sub>ãšããŠãç±æ©é¢ããäœæž©ç±æºã«æŸç±ãããç±éãQ<sub>c</sub>ãšæžããšãããã
ç±å¹çeã®å®çŸ©åŒã¯ã
:<math>e=\frac{Q_h-Q_c}{Q_h}</math>
ã§ãã£ãããã£ãœããã«ã«ããŒãµã€ã¯ã«ã®ç±å¹çã¯ã
:<math>e</math>'''âŠ'''<math>\frac{T_h-T_c}{T_h}</math>
ã§ããã
ãããããã
:<math>\frac{Q_h-Q_c}{Q_h}</math>'''âŠ'''<math>\frac{T_h-T_c}{T_h}</math>
ã§ãããããã¯ã
:<math>1-\frac{Q_c}{Q_h}</math>'''âŠ'''<math>1-\frac{T_c}{T_h}</math>
ãšãæžããŠã䞡蟺ã®1ãåŒããŠæ¶å»ããŠã
:<math>-\frac{Q_c}{Q_h}</math>'''âŠ'''<math>-\frac{T_c}{T_h}</math>
ãšãªãããã€ãã¹ãããã®ã§ãç§»é
ããã°ã
:<math>\frac{T_c}{T_h}</math>'''âŠ'''<math>\frac{Q_c}{Q_h}</math>
ã§ããã
æ·»åãåãéã©ããããŸãšããã°ã
:<math>\frac{Q_h}{T_h}</math>'''âŠ'''<math>\frac{Q_c}{T_c}</math>ããããããïŒ1ïŒ
ãšãªããããã§ã<math>\frac{Q}{T}</math>ãæ°ããç©çéãšããŠå®çŸ©ããŠããã®éã¯'''ãšã³ããããŒ'''ïŒentropyïŒãšåŒã°ããããšã³ããããŒã®èšå·ã¯Sãšçœ®ããšããããŸãããšã³ããããŒã®åäœã¯[J/K]ã§ããã
ã€ãŸãã
<math>S=\frac{Q}{T}</math>
ã§ããããããããšãåŒ(1)ã¯
:<math>S_h</math>'''âŠ'''<math>S_c</math>ããããããïŒ2ïŒ
ãšæžããã
ç±æ©é¢ã®åäœã®é åºã¯ããŸãæ©é¢ã髿ž©ç±æºããç±ãè²°ã£ãŠãããäœæž©ç±æºã«ç±ãæž¡ãã®ã§ãã£ããïŒéã«å
ã«äœé³ç±æºã«æŸç±ããŠãã髿ž©ç±æºã§åžç±ããã®ã¯äžå¯èœã§ãããç±æ©é¢ã¯ãããã£ãŠãªãç±ã¯æž¡ããªããç±ååŠã®ç¬¬äºæ³åããåœç¶ã§ãããïŒã ãããæéçã«ã¯ãç±æ©é¢ã®ãšã³ããããŒSã¯ããŸãå
ã«S=S<sub>h</sub>ã«ãªã£ãŠãããæéãçµã£ãŠãããšããS=S<sub>c</sub>ã«ãªã£ãã®ã§ããã
ãããŠåŒ(2)ããã<math>S_h</math>'''âŠ'''<math>S_c</math>ãã§ãããããç±æ©é¢ã®ãšã³ããããŒã¯ãæéãçµã£ãŠãå¢å€§ããããšãåããã
以äžã®è«èšŒãããç±æ©é¢ã®ãšã³ããããŒã¯ãããªããå¢å€§ãããããã'''ãšã³ããããŒå¢å€§ã®æ³å'''ãšããã
[[Category:ç±ååŠ|ãããšãã²ã]] | null | 2022-12-01T04:09:28Z | [
"ãã³ãã¬ãŒã:Stub"
] | https://ja.wikibooks.org/wiki/%E7%86%B1%E5%8A%9B%E5%AD%A6/%E3%82%A8%E3%83%B3%E3%83%88%E3%83%AD%E3%83%94%E3%83%BC |
2,041 | ç±ååŠ/ç±ååŠçãªãšãã«ã®ãŒ | ç±ååŠ > ç±ååŠçãªãšãã«ã®ãŒ
ããç³»ã«ã€ããŠ4ã€ã®ãã©ã¡ãŒã¿ T,S,V,Pãèãããšã ãã®ãã¡ã®2ã€ãå®ãããšãä»ã®2ã€ã¯èªåçã«æ±ºå®ãããã (å°åº?)
ããã§ d U = T d S â P d V {\displaystyle dU=TdS-PdV} ã®åŒãããå
éšãšãã«ã®ãŒUã«ãšã£ãŠèªç¶ãªå€æ°ã¯ SãšVã§ããããšããããã (T,Pã¯S,Vã®é¢æ°ã§ããã) ãã®ãšããã以å€ã®2ã€ã®éãèªç¶ãªå€æ°ãšã㊠æã€éãå®çŸ©ããã
äŸãã°ãS,Pãèªç¶ãªå€æ°ãæã€éãšã㊠H = U + P V {\displaystyle H=U+PV} ãå®çŸ©ãããHããšã³ã¿ã«ããŒãšåŒã¶ã
(å°åº) d H = d U + d ( P V ) {\displaystyle dH=dU+d(PV)} = T d S â P d V + V d P + P d V {\displaystyle =TdS-PdV+VdP+PdV} = T d S + V d P {\displaystyle =TdS+VdP} ãšãªãã確ãã«SãšPã倿°ãšãªã£ãŠããã
åæ§ã«ã㊠F = U â T S {\displaystyle F=U-TS} (ãã«ã ãã«ãã®èªç±ãšãã«ã®ãŒ) ,
G = U â T S + P V = H â T S {\displaystyle G=U-TS+PV=H-TS} (ã®ãã¹ã®èªç±ãšãã«ã®ãŒ) ãå®çŸ©ããã ã®ãã¹ã®èªç±ãšãã«ã®ãŒã¯çæž©çå§ã®æ¡ä»¶ã§è¡ãªããã å®éšã«ãããŠããçšããããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç±ååŠ > ç±ååŠçãªãšãã«ã®ãŒ",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ããç³»ã«ã€ããŠ4ã€ã®ãã©ã¡ãŒã¿ T,S,V,Pãèãããšã ãã®ãã¡ã®2ã€ãå®ãããšãä»ã®2ã€ã¯èªåçã«æ±ºå®ãããã (å°åº?)",
"title": "ç±ååŠçãªãšãã«ã®ãŒ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ããã§ d U = T d S â P d V {\\displaystyle dU=TdS-PdV} ã®åŒãããå
éšãšãã«ã®ãŒUã«ãšã£ãŠèªç¶ãªå€æ°ã¯ SãšVã§ããããšããããã (T,Pã¯S,Vã®é¢æ°ã§ããã) ãã®ãšããã以å€ã®2ã€ã®éãèªç¶ãªå€æ°ãšã㊠æã€éãå®çŸ©ããã",
"title": "ç±ååŠçãªãšãã«ã®ãŒ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "äŸãã°ãS,Pãèªç¶ãªå€æ°ãæã€éãšã㊠H = U + P V {\\displaystyle H=U+PV} ãå®çŸ©ãããHããšã³ã¿ã«ããŒãšåŒã¶ã",
"title": "ç±ååŠçãªãšãã«ã®ãŒ"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "(å°åº) d H = d U + d ( P V ) {\\displaystyle dH=dU+d(PV)} = T d S â P d V + V d P + P d V {\\displaystyle =TdS-PdV+VdP+PdV} = T d S + V d P {\\displaystyle =TdS+VdP} ãšãªãã確ãã«SãšPã倿°ãšãªã£ãŠããã",
"title": "ç±ååŠçãªãšãã«ã®ãŒ"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "åæ§ã«ã㊠F = U â T S {\\displaystyle F=U-TS} (ãã«ã ãã«ãã®èªç±ãšãã«ã®ãŒ) ,",
"title": "ç±ååŠçãªãšãã«ã®ãŒ"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "G = U â T S + P V = H â T S {\\displaystyle G=U-TS+PV=H-TS} (ã®ãã¹ã®èªç±ãšãã«ã®ãŒ) ãå®çŸ©ããã ã®ãã¹ã®èªç±ãšãã«ã®ãŒã¯çæž©çå§ã®æ¡ä»¶ã§è¡ãªããã å®éšã«ãããŠããçšããããã",
"title": "ç±ååŠçãªãšãã«ã®ãŒ"
}
] | ç±ååŠ > ç±ååŠçãªãšãã«ã®ãŒ | <small> [[ç±ååŠ]] > ç±ååŠçãªãšãã«ã®ãŒ</small>
----
==ç±ååŠçãªãšãã«ã®ãŒ==
ããç³»ã«ã€ããŠ4ã€ã®ãã©ã¡ãŒã¿
T,S,V,Pãèãããšã
ãã®ãã¡ã®2ã€ãå®ãããšãä»ã®2ã€ã¯èªåçã«æ±ºå®ãããã
(å°åº?)
<!--
(å°åº? (ç¶æ
æ¹çšåŒã§P,V,Tã¯äºãã«ç§»ãå€ããããšãåºæ¥ãããšã³ããããŒã¯
T = 0ã®ãšãããšã³ããããŒã®0ãšããŠåããäœããã®éçšãã€ãããŠç±ã
äžããŠããã° ... (ããããããããã®ç¶æ
ã«å¯Ÿãããšã³ããããŒã®å€ã
äžæçã«æ±ºãŸããªã???) ))
(çµ±èšååŠãæµçšãããªãç³»ã®åé
颿°ãã
T,Vã®é¢æ°ãšããŠèªç±ãšãã«ã®ãŒFãæ±ããã
<math>
P = -\frac {\partial F}{\partial V } ,S = - \frac {\partial F}{\partial T }
</math>
ãšããŠS,Pãæ±ããããã®ã§ã2ã€ã決ããããšã§
ç³»ã®ç¶æ
ãæå®ãããããšã¯åœç¶ãšãªãã
ãããäžã®è°è«ã®æ¬ ç¹ã¯ã©ãã ããã...?)
(ç±ååŠã§ã¯èªç¶ãªå€æ°ã®ç±ååŠé¢æ°ã埩å
ã§ããæããã¹ãŠã®ç±ååŠçç¶æ
ãèšè¿°ã§ããã
ç±ååŠçç¶æ
ãèšè¿°ããã«ã¯
<math>
dS = \frac {1}{T} dU - \frac {P}{T} dV
</math>
ãçšæãããã®äžæ¬¡åœ¢åŒã«å¯ŸããŠç©åãæœãããšã§å®æ°ã®ä»»ææ§ãé€ããŠ
<math>
S = S(U ,V)
</math>
ãšããŠåçŸã§ãã(ãã¢ã³ã«ã¬ã®è£é¡)
-->
ããã§
<math>
dU = TdS - PdV
</math>
ã®åŒãããå
éšãšãã«ã®ãŒUã«ãšã£ãŠèªç¶ãªå€æ°ã¯
SãšVã§ããããšããããã
(T,Pã¯S,Vã®é¢æ°ã§ããã)
ãã®ãšããã以å€ã®2ã€ã®éãèªç¶ãªå€æ°ãšããŠ
æã€éãå®çŸ©ããã
äŸãã°ãS,Pãèªç¶ãªå€æ°ãæã€éãšããŠ
<math>
H = U + PV
</math>
ãå®çŸ©ãããHããšã³ã¿ã«ããŒãšåŒã¶ã
(å°åº)
<math>
dH = dU + d(PV)
</math>
<math>
= TdS - PdV+ VdP + PdV
</math>
<math>
= TdS + VdP
</math>
ãšãªãã確ãã«SãšPã倿°ãšãªã£ãŠããã
åæ§ã«ããŠ
<math>
F = U-TS
</math>
(ãã«ã ãã«ãã®èªç±ãšãã«ã®ãŒ)
,
<math>
G = U-TS + PV = H -TS
</math>
(ã®ãã¹ã®èªç±ãšãã«ã®ãŒ)
ãå®çŸ©ããã
ã®ãã¹ã®èªç±ãšãã«ã®ãŒã¯çæž©çå§ã®æ¡ä»¶ã§è¡ãªããã
å®éšã«ãããŠããçšããããã
[[Category:ç±ååŠ|ãã€ãããããŠããªãããã]]
[[ã«ããŽãª:ãšãã«ã®ãŒ]] | 2005-05-24T09:12:28Z | 2024-02-06T05:19:38Z | [] | https://ja.wikibooks.org/wiki/%E7%86%B1%E5%8A%9B%E5%AD%A6/%E7%86%B1%E5%8A%9B%E5%AD%A6%E7%9A%84%E3%81%AA%E3%82%A8%E3%83%8D%E3%83%AB%E3%82%AE%E3%83%BC |
2,047 | ç¹æ®çžå¯Ÿè« é床ã®åæå | ç¹æ®çžå¯Ÿè« > é床ã®åæå
ããé床 v 1 {\displaystyle v_{1}} ãæã€ç©äœ1ããèŠããšãã« ããé床 v 2 {\displaystyle v_{2}} ãæã€ç©äœ2ã ã鿢ããŠãã芳枬è
ããèŠããšãã® é床ãèšç®ããã (NewtonååŠã§ã¯ v 1 + v 2 {\displaystyle v_{1}+v_{2}} ãšãªãããšã«æ³šæã)
ããŒã¬ã³ãçŸ€ã®æ§è³ªãã v 1 {\displaystyle v_{1}} ã䜿ã£ãå€æãš v 1 {\displaystyle v_{1}} ã䜿ã£ã倿ãåãããŠäœ¿ãããšã§ã 鿢ãã芳枬è
ããèŠãå Žåã®ç©äœ2ã®éåºŠã æ±ãŸãããšãçšãããšã
γ 1 ( 1 β 1 β 1 1 ) à γ 2 ( 1 β 2 β 2 1 ) = γ 3 ( 1 β 3 β 3 1 ) {\displaystyle \gamma _{1}{\begin{pmatrix}1&\beta _{1}\\\beta _{1}&1\end{pmatrix}}\times \gamma _{2}{\begin{pmatrix}1&\beta _{2}\\\beta _{2}&1\end{pmatrix}}=\gamma _{3}{\begin{pmatrix}1&\beta _{3}\\\beta _{3}&1\end{pmatrix}}} ãšãªãããšãåããã 巊蟺ã®1è¡1åæåãèšç®ãããšã = γ 1 γ 2 ( 1 + β 1 β 2 ) {\displaystyle =\gamma _{1}\gamma _{2}(1+\beta _{1}\beta _{2})} ãšãªãããšããããã å³èŸºã®1è¡1åæåãšèŠããã¹ããšã γ 1 γ 2 ( 1 + β 1 β 2 ) = γ 3 {\displaystyle \gamma _{1}\gamma _{2}(1+\beta _{1}\beta _{2})=\gamma _{3}} ãåŸãããã 䞡蟺ã2ä¹ãããšã 1 1 â v 3 2 / c 2 = 1 1 â v 1 2 / c 2 1 1 â v 2 2 / c 2 ( 1 + v 1 v 2 / c 2 ) 2 {\displaystyle {\frac {1}{1-v_{3}^{2}/c^{2}}}={\frac {1}{1-v_{1}^{2}/c^{2}}}{\frac {1}{1-v_{2}^{2}/c^{2}}}(1+v_{1}v_{2}/c^{2})^{2}} 䞡蟺ã®éæ°ãåããšã 1 â v 3 2 / c 2 = ( 1 â v 1 2 / c 2 ) ( 1 â v 2 2 / c 2 ) 1 ( 1 + v 1 v 2 / c 2 ) 2 {\displaystyle 1-v_{3}^{2}/c^{2}=(1-v_{1}^{2}/c^{2})(1-v_{2}^{2}/c^{2}){\frac {1}{(1+v_{1}v_{2}/c^{2})^{2}}}} ãã£ãŠã ( v 3 / c ) 2 = 1 â 1 ( 1 + v 1 v 2 / c 2 ) 2 ( 1 â v 1 2 / c 2 ) ( 1 â v 2 2 / c 2 ) = 1 ( 1 + v 1 v 2 / c 2 ) 2 ( ( 1 + v 1 v 2 / c 2 ) 2 â ( 1 â v 1 2 / c 2 ) ( 1 â v 2 2 / c 2 ) ) = 1 ( 1 + v 1 v 2 / c 2 ) 2 ( 2 v 1 v 2 / c 2 â ( â v 1 2 / c 2 â v 2 2 / c 2 ) ) = 1 ( 1 + v 1 v 2 / c 2 ) 2 ( v 1 / c + v 2 / c ) 2 {\displaystyle {\begin{matrix}(v_{3}/c)^{2}=1-{\frac {1}{(1+v_{1}v_{2}/c^{2})^{2}}}(1-v_{1}^{2}/c^{2})(1-v_{2}^{2}/c^{2})\\={\frac {1}{(1+v_{1}v_{2}/c^{2})^{2}}}((1+v_{1}v_{2}/c^{2})^{2}-(1-v_{1}^{2}/c^{2})(1-v_{2}^{2}/c^{2}))\\={\frac {1}{(1+v_{1}v_{2}/c^{2})^{2}}}(2v_{1}v_{2}/c^{2}-(-v_{1}^{2}/c^{2}-v_{2}^{2}/c^{2}))\\={\frac {1}{(1+v_{1}v_{2}/c^{2})^{2}}}(v_{1}/c+v_{2}/c)^{2}\end{matrix}}}
ããããã v 3 / c = ( v 1 / c + v 2 / c ) 1 + v 1 v 2 / c 2 {\displaystyle v_{3}/c={\frac {(v_{1}/c+v_{2}/c)}{1+v_{1}v_{2}/c^{2}}}} ãåŸãããã ããã§ v 2 = c {\displaystyle v_{2}=c} ãšãããšã v 3 / c = ( v 1 / c + 1 ) 1 + v 1 / c {\displaystyle v_{3}/c={\frac {(v_{1}/c+1)}{1+v_{1}/c}}} ã€ãŸãã v 3 = c {\displaystyle v_{3}=c} ãåŸãããã ããã¯ãããéã v 1 {\displaystyle v_{1}} ãæã£ã芳枬è
1ãã芳枬è
1ããèŠãŠ å
éã«è¿ãéãã§åãç©äœ2ãèŠããšããŠãã鿢ãã芳枬è
ããèŠãç©äœ2ã®éã㯠å
écããéããªãããšã¯ç¡ããšããããšã瀺ããŠããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç¹æ®çžå¯Ÿè« > é床ã®åæå",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ããé床 v 1 {\\displaystyle v_{1}} ãæã€ç©äœ1ããèŠããšãã« ããé床 v 2 {\\displaystyle v_{2}} ãæã€ç©äœ2ã ã鿢ããŠãã芳枬è
ããèŠããšãã® é床ãèšç®ããã (NewtonååŠã§ã¯ v 1 + v 2 {\\displaystyle v_{1}+v_{2}} ãšãªãããšã«æ³šæã)",
"title": "é床ã®åæå"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ããŒã¬ã³ãçŸ€ã®æ§è³ªãã v 1 {\\displaystyle v_{1}} ã䜿ã£ãå€æãš v 1 {\\displaystyle v_{1}} ã䜿ã£ã倿ãåãããŠäœ¿ãããšã§ã 鿢ãã芳枬è
ããèŠãå Žåã®ç©äœ2ã®éåºŠã æ±ãŸãããšãçšãããšã",
"title": "é床ã®åæå"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "γ 1 ( 1 β 1 β 1 1 ) à γ 2 ( 1 β 2 β 2 1 ) = γ 3 ( 1 β 3 β 3 1 ) {\\displaystyle \\gamma _{1}{\\begin{pmatrix}1&\\beta _{1}\\\\\\beta _{1}&1\\end{pmatrix}}\\times \\gamma _{2}{\\begin{pmatrix}1&\\beta _{2}\\\\\\beta _{2}&1\\end{pmatrix}}=\\gamma _{3}{\\begin{pmatrix}1&\\beta _{3}\\\\\\beta _{3}&1\\end{pmatrix}}} ãšãªãããšãåããã 巊蟺ã®1è¡1åæåãèšç®ãããšã = γ 1 γ 2 ( 1 + β 1 β 2 ) {\\displaystyle =\\gamma _{1}\\gamma _{2}(1+\\beta _{1}\\beta _{2})} ãšãªãããšããããã å³èŸºã®1è¡1åæåãšèŠããã¹ããšã γ 1 γ 2 ( 1 + β 1 β 2 ) = γ 3 {\\displaystyle \\gamma _{1}\\gamma _{2}(1+\\beta _{1}\\beta _{2})=\\gamma _{3}} ãåŸãããã 䞡蟺ã2ä¹ãããšã 1 1 â v 3 2 / c 2 = 1 1 â v 1 2 / c 2 1 1 â v 2 2 / c 2 ( 1 + v 1 v 2 / c 2 ) 2 {\\displaystyle {\\frac {1}{1-v_{3}^{2}/c^{2}}}={\\frac {1}{1-v_{1}^{2}/c^{2}}}{\\frac {1}{1-v_{2}^{2}/c^{2}}}(1+v_{1}v_{2}/c^{2})^{2}} 䞡蟺ã®éæ°ãåããšã 1 â v 3 2 / c 2 = ( 1 â v 1 2 / c 2 ) ( 1 â v 2 2 / c 2 ) 1 ( 1 + v 1 v 2 / c 2 ) 2 {\\displaystyle 1-v_{3}^{2}/c^{2}=(1-v_{1}^{2}/c^{2})(1-v_{2}^{2}/c^{2}){\\frac {1}{(1+v_{1}v_{2}/c^{2})^{2}}}} ãã£ãŠã ( v 3 / c ) 2 = 1 â 1 ( 1 + v 1 v 2 / c 2 ) 2 ( 1 â v 1 2 / c 2 ) ( 1 â v 2 2 / c 2 ) = 1 ( 1 + v 1 v 2 / c 2 ) 2 ( ( 1 + v 1 v 2 / c 2 ) 2 â ( 1 â v 1 2 / c 2 ) ( 1 â v 2 2 / c 2 ) ) = 1 ( 1 + v 1 v 2 / c 2 ) 2 ( 2 v 1 v 2 / c 2 â ( â v 1 2 / c 2 â v 2 2 / c 2 ) ) = 1 ( 1 + v 1 v 2 / c 2 ) 2 ( v 1 / c + v 2 / c ) 2 {\\displaystyle {\\begin{matrix}(v_{3}/c)^{2}=1-{\\frac {1}{(1+v_{1}v_{2}/c^{2})^{2}}}(1-v_{1}^{2}/c^{2})(1-v_{2}^{2}/c^{2})\\\\={\\frac {1}{(1+v_{1}v_{2}/c^{2})^{2}}}((1+v_{1}v_{2}/c^{2})^{2}-(1-v_{1}^{2}/c^{2})(1-v_{2}^{2}/c^{2}))\\\\={\\frac {1}{(1+v_{1}v_{2}/c^{2})^{2}}}(2v_{1}v_{2}/c^{2}-(-v_{1}^{2}/c^{2}-v_{2}^{2}/c^{2}))\\\\={\\frac {1}{(1+v_{1}v_{2}/c^{2})^{2}}}(v_{1}/c+v_{2}/c)^{2}\\end{matrix}}}",
"title": "é床ã®åæå"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ããããã v 3 / c = ( v 1 / c + v 2 / c ) 1 + v 1 v 2 / c 2 {\\displaystyle v_{3}/c={\\frac {(v_{1}/c+v_{2}/c)}{1+v_{1}v_{2}/c^{2}}}} ãåŸãããã ããã§ v 2 = c {\\displaystyle v_{2}=c} ãšãããšã v 3 / c = ( v 1 / c + 1 ) 1 + v 1 / c {\\displaystyle v_{3}/c={\\frac {(v_{1}/c+1)}{1+v_{1}/c}}} ã€ãŸãã v 3 = c {\\displaystyle v_{3}=c} ãåŸãããã ããã¯ãããéã v 1 {\\displaystyle v_{1}} ãæã£ã芳枬è
1ãã芳枬è
1ããèŠãŠ å
éã«è¿ãéãã§åãç©äœ2ãèŠããšããŠãã鿢ãã芳枬è
ããèŠãç©äœ2ã®éã㯠å
écããéããªãããšã¯ç¡ããšããããšã瀺ããŠããã",
"title": "é床ã®åæå"
}
] | ç¹æ®çžå¯Ÿè« > é床ã®åæå | <small> [[ç¹æ®çžå¯Ÿè«]] > é床ã®åæå</small>
----
==é床ã®åæå==
ããé床<math>v _1</math>ãæã€ç©äœ1ããèŠããšãã«
ããé床<math>v _2</math>ãæã€ç©äœ2ã
ã鿢ããŠãã芳枬è
ããèŠããšãã®
é床ãèšç®ããã
(NewtonååŠã§ã¯ <math>v _1 +v _2</math>ãšãªãããšã«æ³šæã)
ããŒã¬ã³ãçŸ€ã®æ§è³ªãã
<math>v _1</math>ã䜿ã£ã倿ãš
<math>v _1</math>ã䜿ã£ã倿ãåãããŠäœ¿ãããšã§ã
鿢ãã芳枬è
ããèŠãå Žåã®ç©äœ2ã®é床ã
æ±ãŸãããšãçšãããšã
<math>
\gamma _1
\begin{pmatrix}
1&\beta _1\\
\beta _1&1
\end{pmatrix}
\times
\gamma _2
\begin{pmatrix}
1&\beta _2\\
\beta _2&1
\end{pmatrix}
=
\gamma _3
\begin{pmatrix}
1&\beta _3\\
\beta _3&1
\end{pmatrix}
</math>
ãšãªãããšãåããã
巊蟺ã®1è¡1åæåãèšç®ãããšã
<math>
= \gamma _1 \gamma _2 (1+\beta _1\beta _2)
</math>
ãšãªãããšããããã
å³èŸºã®1è¡1åæåãšèŠããã¹ããšã
<math>
\gamma _1 \gamma _2 (1+\beta _1\beta _2) = \gamma _3
</math>
ãåŸãããã
䞡蟺ã2ä¹ãããšã
<math>
\frac 1 {1 - v _3^2/c^2} = \frac 1 {1 - v _1^2/c^2}\frac 1 {1 - v _2^2/c^2}
(1+ v _1 v _2 /c^2)^2
</math>
䞡蟺ã®éæ°ãåããšã
<math>
1 - v _3^2/c^2 = (1 - v _1^2/c^2)(1 - v _2^2/c^2)
\frac 1 {(1+ v _1 v _2 /c^2)^2}
</math>
ãã£ãŠã
<math>
\begin{matrix}
(v _3/c )^2 =
1 - \frac 1 {(1+ v _1 v _2 /c^2)^2} (1 - v _1^2/c^2)(1 - v _2^2/c^2)\\
= \frac 1 {(1+ v _1 v _2 /c^2)^2}
((1+ v _1 v _2 /c^2)^2- (1 - v _1^2/c^2)(1 - v _2^2/c^2))\\
=\frac 1 {(1+ v _1 v _2 /c^2)^2}(2 v _1 v _2 /c^2 -(- v _1^2 /c^2 - v _2^2 /c^2 ))\\
=\frac 1 {(1+ v _1 v _2 /c^2)^2}(v _1/c + v _2/c ) ^2
\end{matrix}
</math>
ããããã
<math>
v _3 /c = \frac {( v _1/c + v _2/c )} {1+ v _1 v _2 /c^2}
</math>
ãåŸãããã
ããã§<math>v _2=c</math>ãšãããšã
<math>
v _3 /c = \frac {( v _1/c + 1 )} {1+ v _1 /c}
</math>
ã€ãŸãã
<math>
v _3 = c
</math>
ãåŸãããã
ããã¯ãããéã<math>v _1</math>ãæã£ã芳枬è
1ãã芳枬è
1ããèŠãŠ
å
éã«è¿ãéãã§åãç©äœ2ãèŠããšããŠãã鿢ãã芳枬è
ããèŠãç©äœ2ã®éãã¯
å
écããéããªãããšã¯ç¡ããšããããšã瀺ããŠããã
[[Category:ç¹æ®çžå¯Ÿè«|ãããšã®ãããããã]] | 2005-05-24T13:10:27Z | 2024-03-16T03:17:21Z | [] | https://ja.wikibooks.org/wiki/%E7%89%B9%E6%AE%8A%E7%9B%B8%E5%AF%BE%E8%AB%96_%E9%80%9F%E5%BA%A6%E3%81%AE%E5%90%88%E6%88%90%E5%89%87 |
2,048 | ææ©ååŠ/ã·ã¯ãã¢ã«ã«ã³ | ææ©ååŠ>ã·ã¯ãã¢ã«ã«ã³
ã·ã¯ãã¢ã«ã«ã³(cycloalkanes)ã¯äžè¬åŒCnH2nã§è¡šãããç°åŒäžé£œåçåæ°ŽçŽ ã®ç·ç§°ã§ãããã·ã¯ãã¢ã«ã«ã³ã¯C-Cçµåããã¹ãŠåçµåã§ããããšãããäžè¬ã«ã¢ã«ã«ã³ã«äŒŒãæ§è³ªã瀺ããäžè¬åŒãåãã¢ã«ã±ã³ãšã¯ç°ãªããã·ã¯ãã¢ã«ã«ã³ã¯ä»å åå¿ããªããåœåã«ã¯åãççŽ æ°ã®ã¢ã«ã«ã³ã®åã«ãã·ã¯ã(cyclo-)ããã€ãããã·ã¯ãã¢ã«ã«ã³ãæãããããªnåã®ååã§æ§æãããç°ã¯äžè¬ã«nå¡ç°(äžå¡ç°ãåå¡ç°ã...)ãšåŒã°ãããäŸãã°ãã·ã¯ããããã³(n=3)ã¯äžå¡ç°ã§ããã
ååè»éã®æ··æçè«ã«ãããšãççŽ ååã«4åã®åå(矀)ãçµåããææ©ååç©ã«ãããŠãççŽ ååäžã®4åã®çµåã¯spæ··æè»éãšåŒã°ãã4ã€ã®æ··æè»éãšããŠè¡šçŸããããããã«ãããã¡ã¿ã³(CH4)ãªã©ã«ã¿ãããæã察称æ§ãé«ãspæ··æè»éã§ã¯ãççŽ ååãéå¿ãšããŠæ£åé¢äœã®åé ç¹ãžäŒžã³ããæ£åé¢äœåœ¢ãã®ååäŸ¡ç¶æ
ãçŸããããã®ãšãã®çæ³çãªspæ··æè»éã®çµåè§ã¯cos(1/3)â109.5°ãšèšç®ããããã·ã¯ãã¢ã«ã«ã³äžã®ççŽ ååã¯ãã¹ãŠspæ··æã§ããã109.5°ã倧ããé¢ããçµåè§ãæããã·ã¯ãã¢ã«ã«ã³ã¯å€§ããªç°ã²ãã¿ã«ããäžå®å®ã«ãªãã
ã·ã¯ããããã³ä»¥å€ã®ã·ã¯ãã¢ã«ã«ã³ã¯åäžå¹³é¢äžã«å
šãŠã®ççŽ ååãååšããæ§é ããšããªããããç«äœé
座ãèæ
®ãããããšãå€ããã·ã¯ããã³ã¿ã³(n=5)ãšã·ã¯ããããµã³(n=6)ãæ¯èŒãããšãæ£äºè§åœ¢ã®å
è§ã¯108Â°ãæ£å
è§åœ¢ã®å
è§ã¯120°ã§ãããå¹³é¢ååã§ãããªãã°ã·ã¯ããã³ã¿ã³ãããå®å®ã§ãããšäºæ³ããããããããå®éã«ã¯ã·ã¯ããããµã³ãã»ãŒçæ³çãªåœ¢ç¶ã®spæ··æè»éãæããŠãããã·ã¯ããã³ã¿ã³ãããå®å®ãšãªããn=3â10çšåºŠã®ã·ã¯ãã¢ã«ã«ã³ãæ¯èŒãããšn=6ã«è¿ããã®ã»ã©å®å®ã§ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ææ©ååŠ>ã·ã¯ãã¢ã«ã«ã³",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ã·ã¯ãã¢ã«ã«ã³(cycloalkanes)ã¯äžè¬åŒCnH2nã§è¡šãããç°åŒäžé£œåçåæ°ŽçŽ ã®ç·ç§°ã§ãããã·ã¯ãã¢ã«ã«ã³ã¯C-Cçµåããã¹ãŠåçµåã§ããããšãããäžè¬ã«ã¢ã«ã«ã³ã«äŒŒãæ§è³ªã瀺ããäžè¬åŒãåãã¢ã«ã±ã³ãšã¯ç°ãªããã·ã¯ãã¢ã«ã«ã³ã¯ä»å åå¿ããªããåœåã«ã¯åãççŽ æ°ã®ã¢ã«ã«ã³ã®åã«ãã·ã¯ã(cyclo-)ããã€ãããã·ã¯ãã¢ã«ã«ã³ãæãããããªnåã®ååã§æ§æãããç°ã¯äžè¬ã«nå¡ç°(äžå¡ç°ãåå¡ç°ã...)ãšåŒã°ãããäŸãã°ãã·ã¯ããããã³(n=3)ã¯äžå¡ç°ã§ããã",
"title": "ã·ã¯ãã¢ã«ã«ã³ã®å®çŸ©"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ååè»éã®æ··æçè«ã«ãããšãççŽ ååã«4åã®åå(矀)ãçµåããææ©ååç©ã«ãããŠãççŽ ååäžã®4åã®çµåã¯spæ··æè»éãšåŒã°ãã4ã€ã®æ··æè»éãšããŠè¡šçŸããããããã«ãããã¡ã¿ã³(CH4)ãªã©ã«ã¿ãããæã察称æ§ãé«ãspæ··æè»éã§ã¯ãççŽ ååãéå¿ãšããŠæ£åé¢äœã®åé ç¹ãžäŒžã³ããæ£åé¢äœåœ¢ãã®ååäŸ¡ç¶æ
ãçŸããããã®ãšãã®çæ³çãªspæ··æè»éã®çµåè§ã¯cos(1/3)â109.5°ãšèšç®ããããã·ã¯ãã¢ã«ã«ã³äžã®ççŽ ååã¯ãã¹ãŠspæ··æã§ããã109.5°ã倧ããé¢ããçµåè§ãæããã·ã¯ãã¢ã«ã«ã³ã¯å€§ããªç°ã²ãã¿ã«ããäžå®å®ã«ãªãã",
"title": "å®å®æ§ãšç«äœé
座"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ã·ã¯ããããã³ä»¥å€ã®ã·ã¯ãã¢ã«ã«ã³ã¯åäžå¹³é¢äžã«å
šãŠã®ççŽ ååãååšããæ§é ããšããªããããç«äœé
座ãèæ
®ãããããšãå€ããã·ã¯ããã³ã¿ã³(n=5)ãšã·ã¯ããããµã³(n=6)ãæ¯èŒãããšãæ£äºè§åœ¢ã®å
è§ã¯108Â°ãæ£å
è§åœ¢ã®å
è§ã¯120°ã§ãããå¹³é¢ååã§ãããªãã°ã·ã¯ããã³ã¿ã³ãããå®å®ã§ãããšäºæ³ããããããããå®éã«ã¯ã·ã¯ããããµã³ãã»ãŒçæ³çãªåœ¢ç¶ã®spæ··æè»éãæããŠãããã·ã¯ããã³ã¿ã³ãããå®å®ãšãªããn=3â10çšåºŠã®ã·ã¯ãã¢ã«ã«ã³ãæ¯èŒãããšn=6ã«è¿ããã®ã»ã©å®å®ã§ããã",
"title": "å®å®æ§ãšç«äœé
座"
}
] | ææ©ååŠïŒã·ã¯ãã¢ã«ã«ã³ | [[ææ©ååŠ]]ïŒã·ã¯ãã¢ã«ã«ã³
== ã·ã¯ãã¢ã«ã«ã³ã®å®çŸ© ==
ã·ã¯ãã¢ã«ã«ã³(cycloalkanes)ã¯[[ææ©ååŠ_ã¢ã«ã«ã³#ã¢ã«ã«ã³ã®äžè¬åŒ|äžè¬åŒ]]C<sub>n</sub>H<sub>2n</sub>ã§è¡šããã[[ææ©ååŠ#ææ©ååç©ã®åé¡|ç°åŒäžé£œåçåæ°ŽçŽ ]]ã®ç·ç§°ã§ãããã·ã¯ãã¢ã«ã«ã³ã¯C-Cçµåããã¹ãŠåçµåã§ããããšãããäžè¬ã«[[ææ©ååŠ_ã¢ã«ã«ã³#ã¢ã«ã«ã³ã®æ§è³ª|ã¢ã«ã«ã³]]ã«äŒŒãæ§è³ªã瀺ããäžè¬åŒãåã[[ææ©ååŠ_ã¢ã«ã±ã³#ã¢ã«ã±ã³ã®å®çŸ©|ã¢ã«ã±ã³]]ãšã¯ç°ãªããã·ã¯ãã¢ã«ã«ã³ã¯[[ææ©ååŠ_ã¢ã«ã±ã³#ä»å åå¿|ä»å åå¿]]ããªããåœåã«ã¯åãççŽ æ°ã®[[ææ©ååŠ_ã¢ã«ã«ã³#åœåæ³|ã¢ã«ã«ã³]]ã®åã«ãã·ã¯ã(cyclo-)ããã€ãããã·ã¯ãã¢ã«ã«ã³ãæãããããªnåã®ååã§æ§æãããç°ã¯äžè¬ã«nå¡ç°(äžå¡ç°ãåå¡ç°ãâŠ)ãšåŒã°ãããäŸãã°ãã·ã¯ããããã³(n=3)ã¯äžå¡ç°ã§ããã
CH2 CH2-CH2
/ \ | |
CH2-CH2 CH2-CH2
ã·ã¯ããããã³ ã·ã¯ããã¿ã³
CH2 CH2-CH2
/ \ / \
CH2 CH2 CH2 CH2
\ / \ /
CH2-CH2 CH2-CH2
ã·ã¯ããã³ã¿ã³ ã·ã¯ããããµã³
== å®å®æ§ãšç«äœé
座 ==
ååè»éã®æ··æçè«ã«ãããšãççŽ ååã«4åã®ååïŒçŸ€ïŒãçµåããææ©ååç©ã«ãããŠãççŽ ååäžã®4åã®çµåã¯sp<sup>3</sup>æ··æè»éãšåŒã°ãã4ã€ã®æ··æè»éãšããŠè¡šçŸããããããã«ãããã¡ã¿ã³(CH<sub>4</sub>)ãªã©ã«ã¿ãããæã察称æ§ãé«ãsp<sup>3</sup>æ··æè»éã§ã¯ãççŽ ååã[[w:éå¿|éå¿]]ãšããŠ[[w:æ£åé¢äœ|æ£åé¢äœ]]ã®åé ç¹ãžäŒžã³ããæ£åé¢äœåœ¢ãã®ååäŸ¡ç¶æ
ãçŸããããã®ãšãã®çæ³çãªsp<sup>3</sup>æ··æè»éã®çµåè§ã¯cos<sup>â1</sup>(1/3)â109.5°ãšèšç®ããããã·ã¯ãã¢ã«ã«ã³äžã®ççŽ ååã¯ãã¹ãŠsp<sup>3</sup>æ··æã§ããã109.5°ã倧ããé¢ããçµåè§ãæããã·ã¯ãã¢ã«ã«ã³ã¯å€§ããª[[ç°ã²ãã¿|ç°ã²ãã¿]]ã«ããäžå®å®ã«ãªãã
ã·ã¯ããããã³ä»¥å€ã®ã·ã¯ãã¢ã«ã«ã³ã¯åäžå¹³é¢äžã«å
šãŠã®ççŽ ååãååšããæ§é ããšããªãããã[[ç«äœé
座]]ãèæ
®ãããããšãå€ããã·ã¯ããã³ã¿ã³(n=5)ãšã·ã¯ããããµã³(n=6)ãæ¯èŒãããšãæ£äºè§åœ¢ã®å
è§ã¯108Â°ãæ£å
è§åœ¢ã®å
è§ã¯120°ã§ãããå¹³é¢ååã§ãããªãã°ã·ã¯ããã³ã¿ã³ãããå®å®ã§ãããšäºæ³ããããããããå®éã«ã¯ã·ã¯ããããµã³ãã»ãŒçæ³çãªåœ¢ç¶ã®sp<sup>3</sup>æ··æè»éãæããŠãããã·ã¯ããã³ã¿ã³ãããå®å®ãšãªããn=3â10çšåºŠã®ã·ã¯ãã¢ã«ã«ã³ãæ¯èŒãããšn=6ã«è¿ããã®ã»ã©å®å®ã§ããã
[[ã«ããŽãª:ææ©ååŠ]]
[[en:Organic Chemistry/Cycloalkanes]] | null | 2022-11-23T05:33:17Z | [] | https://ja.wikibooks.org/wiki/%E6%9C%89%E6%A9%9F%E5%8C%96%E5%AD%A6/%E3%82%B7%E3%82%AF%E3%83%AD%E3%82%A2%E3%83%AB%E3%82%AB%E3%83%B3 |
2,049 | ææ©ååŠ/ã·ã¯ãã¢ã«ã±ã³ | ææ©ååŠ>ã·ã¯ãã¢ã«ã±ã³
äºéçµåãã²ãšã€ã ãæã€èç°åŒçåæ°ŽçŽ ã§ããã æ§è³ªã¯ã¢ã«ã±ã³ã«äŒŒãŠããã äžè¬åŒã¯CnH2n-2ã§ãããã¢ã«ãã³ãšåãã§ãããããããã·ã¯ãã¢ã«ã±ã³ã¯çœ®æåå¿ããªãã®ã§åºå¥ã§ããã åœåã¯ã¢ã«ã±ã³ã®åã«ãã·ã¯ã(cyclo)ããã€ããã ã·ã¯ãã¢ã«ã«ã³ãšåãããã·ã¯ããã³ãã³ãšã·ã¯ãããã»ã³ãå®å®ã§ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ææ©ååŠ>ã·ã¯ãã¢ã«ã±ã³",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "äºéçµåãã²ãšã€ã ãæã€èç°åŒçåæ°ŽçŽ ã§ããã æ§è³ªã¯ã¢ã«ã±ã³ã«äŒŒãŠããã äžè¬åŒã¯CnH2n-2ã§ãããã¢ã«ãã³ãšåãã§ãããããããã·ã¯ãã¢ã«ã±ã³ã¯çœ®æåå¿ããªãã®ã§åºå¥ã§ããã åœåã¯ã¢ã«ã±ã³ã®åã«ãã·ã¯ã(cyclo)ããã€ããã ã·ã¯ãã¢ã«ã«ã³ãšåãããã·ã¯ããã³ãã³ãšã·ã¯ãããã»ã³ãå®å®ã§ããã",
"title": "ã·ã¯ãã¢ã«ã±ã³ã®å®çŸ©ãšæ§è³ª"
}
] | ææ©ååŠïŒã·ã¯ãã¢ã«ã±ã³ | [[ææ©ååŠ]]ïŒã·ã¯ãã¢ã«ã±ã³
==ã·ã¯ãã¢ã«ã±ã³ã®å®çŸ©ãšæ§è³ª==
äºéçµåãã²ãšã€ã ãæã€èç°åŒçåæ°ŽçŽ ã§ããã
æ§è³ªã¯[[ææ©ååŠ_ã¢ã«ã±ã³#ã¢ã«ã±ã³ã®æ§è³ª|ã¢ã«ã±ã³]]ã«äŒŒãŠããã
[[ææ©ååŠ_ã¢ã«ã«ã³#ã¢ã«ã«ã³ã®äžè¬åŒ|äžè¬åŒ]]ã¯C<sub>n</sub>H<sub>2n-2</sub>ã§ããã[[ææ©ååŠ_ã¢ã«ãã³#ã¢ã«ãã³ã®å®çŸ©|ã¢ã«ãã³]]ãšåãã§ãããããããã·ã¯ãã¢ã«ã±ã³ã¯[[ææ©ååŠ_ã¢ã«ã«ã³#眮æåå¿|眮æåå¿]]ããªãã®ã§åºå¥ã§ããã
åœåã¯[[ææ©ååŠ_ã¢ã«ã±ã³#åœåæ³|ã¢ã«ã±ã³]]ã®åã«ãã·ã¯ã(cyclo)ããã€ããã
[[ææ©ååŠ_ã·ã¯ãã¢ã«ã«ã³#å®å®æ§|ã·ã¯ãã¢ã«ã«ã³]]ãšåãããã·ã¯ããã³ãã³ãšã·ã¯ãããã»ã³ãå®å®ã§ããã
[[ã«ããŽãª:ææ©ååŠ]] | null | 2022-11-23T05:33:20Z | [] | https://ja.wikibooks.org/wiki/%E6%9C%89%E6%A9%9F%E5%8C%96%E5%AD%A6/%E3%82%B7%E3%82%AF%E3%83%AD%E3%82%A2%E3%83%AB%E3%82%B1%E3%83%B3 |
2,054 | åçæ°åŠå
¬åŒé/åç幟äœ/äœç© | ãã®ããŒãžã§ã¯äœç©ã®å
¬åŒã®è§£èª¬ãããŸãã
V = abh
V = a
V = Sh
V = 1 3 S h {\displaystyle V={\frac {1}{3}}Sh}
éäœã®é ç¹ããåºé¢ S {\displaystyle S} (å³å³ã§ã¯ A b {\displaystyle A_{b}} )ã«åç·ãäžããŠãé ç¹ãã x ( 0 †x †h ) {\displaystyle x(0\leq x\leq h)} ã®è·é¢ã§åºé¢ãšå¹³è¡ã«éäœãåãåã£ãããšã§åŸãããå³åœ¢ã A x {\displaystyle A_{x}} ãšããã
ãã®æãéäœã®å®çŸ©ããã S {\displaystyle S} ãš A x {\displaystyle A_{x}} ã¯çžäŒŒã§ããã
çžäŒŒãªå³åœ¢ã®é¢ç©æ¯ã¯ãçžäŒŒæ¯ã®2ä¹ã«çããããšããã
S : A x = h 2 : x 2 {\displaystyle S:A_{x}=h^{2}:x^{2}}
åŸã£ãŠã
A x = x 2 S h 2 {\displaystyle A_{x}={\frac {x^{2}S}{h^{2}}}}
éäœã®äœç©ã¯ãå¹³é¢å³åœ¢ A x {\displaystyle A_{x}} ã«é¢ããŠã 0 †x †h {\displaystyle 0\leq x\leq h} ã®åºéã§å€åãã环ç©ãããã®ã§ããããã A x {\displaystyle A_{x}} ãåºé [ 0 , h ] {\displaystyle [0,h]} ã§ç©åããããšã«ããåŸãããã
V = â« 0 h A x d x {\displaystyle V=\int _{0}^{h}A_{x}\,dx} = â« 0 h x 2 S h 2 d x {\displaystyle =\int _{0}^{h}{\frac {x^{2}S}{h^{2}}}\,dx} = S h 2 â« 0 h x 2 d x {\displaystyle ={\frac {S}{h^{2}}}\int _{0}^{h}x^{2}\,dx} = S h 2 [ x 3 3 ] 0 h {\displaystyle ={\frac {S}{h^{2}}}\left[{\frac {x^{3}}{3}}\right]_{0}^{h}} = S h 2 ( h 3 3 ) {\displaystyle ={\frac {S}{h^{2}}}\left({\frac {h^{3}}{3}}\right)} = 1 3 S h {\displaystyle ={\frac {1}{3}}Sh}
äžåºã®é¢ç© s {\displaystyle s} (å³å³ã§ã¯ A 2 {\displaystyle A_{2}} )ãäžåºã®é¢ç© S {\displaystyle S} (å³å³ã§ã¯ A 1 {\displaystyle A_{1}} )ãé«ã h {\displaystyle h} ã®éå°ã®äœç© V {\displaystyle V}
éå°ã¯ãå¥åãåé éäœãã®ãšããã S {\displaystyle S} ãåºãšããéäœ: P 1 {\displaystyle P_{1}} ããã s {\displaystyle s} ãåºãšããçžäŒŒãªéäœ: P 2 {\displaystyle P_{2}} ãé€ãããã®ãšãããã
éäœ: P 1 {\displaystyle P_{1}} ã®é«ãã H {\displaystyle H} ãšãããšãéäœ: P 2 {\displaystyle P_{2}} ã®é«ã㯠H â h {\displaystyle H-h} ãšãªããåã
ã®äœç©ã¯ã
çžäŒŒæ¯ãšé¢ç©æ¯ã®é¢ä¿ããã
åŸã£ãŠã
ããããâ»ã«ä»£å
¥ãããšã以äžã®åŒãåŸãã
ããã³åœ¢ã®äžèŸºããåºé¢ã«åç·ãäžããŠãé ç¹ãã x ( 0 †x †h ) {\displaystyle x(0\leq x\leq h)} ã®è·é¢ã§åºé¢ãšå¹³è¡ã«ããã³åœ¢ãåãåã£ãããšã§åŸãããå³åœ¢(é·æ¹åœ¢)ã S x {\displaystyle S_{x}} ãšããã
ãã®é·æ¹åœ¢ã®çžŠæšªã¯æ¯äŸã®é¢ä¿ãã以äžã®ãšãããšãªãã
ããã³åœ¢ã®äœç©ã¯ãå¹³é¢å³åœ¢ S x {\displaystyle S_{x}} ã«é¢ããŠã 0 †x †h {\displaystyle 0\leq x\leq h} ã®åºéã§å€åãã环ç©ãããã®ã§ããããã S x {\displaystyle S_{x}} ãåºé [ 0 , h ] {\displaystyle [0,h]} ã§ç©åããããšã«ããåŸãããã
V = â« 0 h S x d x {\displaystyle V=\int _{0}^{h}S_{x}\,dx} = â« 0 h ( ( a â c ) b x 2 h 2 + b c x h ) d x {\displaystyle =\int _{0}^{h}\left({\frac {(a-c)bx^{2}}{h^{2}}}+{\frac {bcx}{h}}\right)dx} = b h 2 â« 0 h ( ( a â c ) x 2 + c h x ) d x {\displaystyle ={\frac {b}{h^{2}}}\int _{0}^{h}((a-c)x^{2}+chx)dx} = b h 2 [ ( a â c ) x 3 3 + c h x 2 2 ] 0 h {\displaystyle ={\frac {b}{h^{2}}}\left[{\frac {(a-c)x^{3}}{3}}+{\frac {chx^{2}}{2}}\right]_{0}^{h}} = b h 2 ( ( a â c ) h 3 3 + c h 3 2 ) {\displaystyle ={\frac {b}{h^{2}}}\left({\frac {(a-c)h^{3}}{3}}+{\frac {ch^{3}}{2}}\right)} = b h ( a 3 + c 6 ) {\displaystyle =bh\left({\frac {a}{3}}+{\frac {c}{6}}\right)}
V = 2 12 a 3 {\displaystyle V={\frac {\sqrt {2}}{12}}a^{3}}
æ£åé¢äœã®äœç©ã¯ãç«æ¹äœãšã®é¢ä¿ãããå°åºããããšãã§ããŸãã ç«æ¹äœãšé ç¹ãå
±æããæ£åé¢äœã¯ãå
šãŠã®èŸºãç«æ¹äœã®é¢ã®å¯Ÿè§ç·ã«ãªã£ãŠããŸãã ãã£ãŠãç«æ¹äœããäœã£ãäœç©ãåŒãã°ãæ£åé¢äœã®äœç©ãå°ãåºãããšãã§ããŸãã
æ£åé¢äœã®1蟺ã®é·ããaãšããŸãã äœã£ãéšåã¯å
šéšã§4ã€ãããŸããã蟺ã®é·ãã¯å
šãŠããããçããã®ã§ããããã¯ååã«ãªããŸãã
ç«æ¹äœã®1蟺ã®é·ãã¯ãæ£æ¹åœ¢ã®èŸºãšå¯Ÿè§ç·ã®é·ãã®æ¯ã 1 : 2 {\displaystyle 1:{\sqrt {2}}} ãããã
äœã£ãéšåã¯äžè§éãšã¿ãªãããšãã§ããã®ã§ãè§éã®äœç©ããã
æåŸã«ç«æ¹äœããè§é4ã€ãåŒããŸãã
V = 2 3 a 3 {\displaystyle V={\frac {\sqrt {2}}{3}}a^{3}}
æ£å
«é¢äœã¯ãäœç©ã®çããæ£åè§éã2ã€ãããšèŠãããšãã§ããŸãã ãããã®è§éã®é«ãã¯ãè§éã®åºé¢ã®å¯Ÿè§ç·ã®äº€ç¹ããæ±ããããšãã§ããŸãã åºé¢ã«å¯Ÿããé äžã®é ç¹ãšåºé¢ã®å¯Ÿè§ç·ã®äº€ç¹ãçµã¶çŽç·ã¯åçŽã«ãªãã®ã§ã é«ãã¯ãè§éã®æ¯ç·ãšå¯Ÿè§ç·ãããäžå¹³æ¹ã®å®çã§å°åºã§ããŸãã
察è§ç·ã®é·ãã¯ã
察è§ç·ã¯äºãã®äžç¹ã§äº€ããã®ã§ã
é«ãã¯ãæ¯ç·ãšå¯Ÿè§ç·ã®ååããã
å®ã¯ãæ£å
«é¢äœã¯ã©ãã§æ£åè§é2ã€ã«åé¢ããŠããé«ãã¯åäžã§ããããã察è§ç·ã®ååãæ¢ã«é«ãã«ãªã£ãŠããŸãã æåŸã«ãéäœã®äœç©ã®å
¬åŒããã
V = 15 + 7 5 4 a 3 {\displaystyle V={\frac {15+7{\sqrt {5}}}{4}}a^{3}}
V = 5 ( 3 + 5 ) 12 a 3 {\displaystyle V={\frac {5(3+{\sqrt {5}})}{12}}a^{3}}
V = 4 3 Ï r 3 {\displaystyle V={\frac {4}{3}}\pi r^{3}}
ååŸ r {\displaystyle r} ã®å; C {\displaystyle C} ããåã®äžå¿ããã®è·é¢ R {\displaystyle R} (äœãã r {\displaystyle r} ⊠R {\displaystyle R} ãšãã)ã®çŽç·ã軞ãšããŠå転ãããåç°äœ(ããŒã©ã¹ãããŒããå)
(è§£æ³) | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ãã®ããŒãžã§ã¯äœç©ã®å
¬åŒã®è§£èª¬ãããŸãã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "V = abh",
"title": "çŽæ¹äœã®äœç©"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "V = a",
"title": "ç«æ¹äœã®äœç©"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "V = Sh",
"title": "æ±äœã®äœç©"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "V = 1 3 S h {\\displaystyle V={\\frac {1}{3}}Sh}",
"title": "éäœã®äœç©"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "éäœã®é ç¹ããåºé¢ S {\\displaystyle S} (å³å³ã§ã¯ A b {\\displaystyle A_{b}} )ã«åç·ãäžããŠãé ç¹ãã x ( 0 †x †h ) {\\displaystyle x(0\\leq x\\leq h)} ã®è·é¢ã§åºé¢ãšå¹³è¡ã«éäœãåãåã£ãããšã§åŸãããå³åœ¢ã A x {\\displaystyle A_{x}} ãšããã",
"title": "éäœã®äœç©"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãã®æãéäœã®å®çŸ©ããã S {\\displaystyle S} ãš A x {\\displaystyle A_{x}} ã¯çžäŒŒã§ããã",
"title": "éäœã®äœç©"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "çžäŒŒãªå³åœ¢ã®é¢ç©æ¯ã¯ãçžäŒŒæ¯ã®2ä¹ã«çããããšããã",
"title": "éäœã®äœç©"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "S : A x = h 2 : x 2 {\\displaystyle S:A_{x}=h^{2}:x^{2}}",
"title": "éäœã®äœç©"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "åŸã£ãŠã",
"title": "éäœã®äœç©"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "A x = x 2 S h 2 {\\displaystyle A_{x}={\\frac {x^{2}S}{h^{2}}}}",
"title": "éäœã®äœç©"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "éäœã®äœç©ã¯ãå¹³é¢å³åœ¢ A x {\\displaystyle A_{x}} ã«é¢ããŠã 0 †x †h {\\displaystyle 0\\leq x\\leq h} ã®åºéã§å€åãã环ç©ãããã®ã§ããããã A x {\\displaystyle A_{x}} ãåºé [ 0 , h ] {\\displaystyle [0,h]} ã§ç©åããããšã«ããåŸãããã",
"title": "éäœã®äœç©"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "V = â« 0 h A x d x {\\displaystyle V=\\int _{0}^{h}A_{x}\\,dx} = â« 0 h x 2 S h 2 d x {\\displaystyle =\\int _{0}^{h}{\\frac {x^{2}S}{h^{2}}}\\,dx} = S h 2 â« 0 h x 2 d x {\\displaystyle ={\\frac {S}{h^{2}}}\\int _{0}^{h}x^{2}\\,dx} = S h 2 [ x 3 3 ] 0 h {\\displaystyle ={\\frac {S}{h^{2}}}\\left[{\\frac {x^{3}}{3}}\\right]_{0}^{h}} = S h 2 ( h 3 3 ) {\\displaystyle ={\\frac {S}{h^{2}}}\\left({\\frac {h^{3}}{3}}\\right)} = 1 3 S h {\\displaystyle ={\\frac {1}{3}}Sh}",
"title": "éäœã®äœç©"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "äžåºã®é¢ç© s {\\displaystyle s} (å³å³ã§ã¯ A 2 {\\displaystyle A_{2}} )ãäžåºã®é¢ç© S {\\displaystyle S} (å³å³ã§ã¯ A 1 {\\displaystyle A_{1}} )ãé«ã h {\\displaystyle h} ã®éå°ã®äœç© V {\\displaystyle V}",
"title": "éå°ã®äœç©"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "éå°ã¯ãå¥åãåé éäœãã®ãšããã S {\\displaystyle S} ãåºãšããéäœ: P 1 {\\displaystyle P_{1}} ããã s {\\displaystyle s} ãåºãšããçžäŒŒãªéäœ: P 2 {\\displaystyle P_{2}} ãé€ãããã®ãšãããã",
"title": "éå°ã®äœç©"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "éäœ: P 1 {\\displaystyle P_{1}} ã®é«ãã H {\\displaystyle H} ãšãããšãéäœ: P 2 {\\displaystyle P_{2}} ã®é«ã㯠H â h {\\displaystyle H-h} ãšãªããåã
ã®äœç©ã¯ã",
"title": "éå°ã®äœç©"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "çžäŒŒæ¯ãšé¢ç©æ¯ã®é¢ä¿ããã",
"title": "éå°ã®äœç©"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "åŸã£ãŠã",
"title": "éå°ã®äœç©"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ããããâ»ã«ä»£å
¥ãããšã以äžã®åŒãåŸãã",
"title": "éå°ã®äœç©"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ããã³åœ¢ã®äžèŸºããåºé¢ã«åç·ãäžããŠãé ç¹ãã x ( 0 †x †h ) {\\displaystyle x(0\\leq x\\leq h)} ã®è·é¢ã§åºé¢ãšå¹³è¡ã«ããã³åœ¢ãåãåã£ãããšã§åŸãããå³åœ¢(é·æ¹åœ¢)ã S x {\\displaystyle S_{x}} ãšããã",
"title": "ããã³åœ¢ã®äœç©"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ãã®é·æ¹åœ¢ã®çžŠæšªã¯æ¯äŸã®é¢ä¿ãã以äžã®ãšãããšãªãã",
"title": "ããã³åœ¢ã®äœç©"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ããã³åœ¢ã®äœç©ã¯ãå¹³é¢å³åœ¢ S x {\\displaystyle S_{x}} ã«é¢ããŠã 0 †x †h {\\displaystyle 0\\leq x\\leq h} ã®åºéã§å€åãã环ç©ãããã®ã§ããããã S x {\\displaystyle S_{x}} ãåºé [ 0 , h ] {\\displaystyle [0,h]} ã§ç©åããããšã«ããåŸãããã",
"title": "ããã³åœ¢ã®äœç©"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "V = â« 0 h S x d x {\\displaystyle V=\\int _{0}^{h}S_{x}\\,dx} = â« 0 h ( ( a â c ) b x 2 h 2 + b c x h ) d x {\\displaystyle =\\int _{0}^{h}\\left({\\frac {(a-c)bx^{2}}{h^{2}}}+{\\frac {bcx}{h}}\\right)dx} = b h 2 â« 0 h ( ( a â c ) x 2 + c h x ) d x {\\displaystyle ={\\frac {b}{h^{2}}}\\int _{0}^{h}((a-c)x^{2}+chx)dx} = b h 2 [ ( a â c ) x 3 3 + c h x 2 2 ] 0 h {\\displaystyle ={\\frac {b}{h^{2}}}\\left[{\\frac {(a-c)x^{3}}{3}}+{\\frac {chx^{2}}{2}}\\right]_{0}^{h}} = b h 2 ( ( a â c ) h 3 3 + c h 3 2 ) {\\displaystyle ={\\frac {b}{h^{2}}}\\left({\\frac {(a-c)h^{3}}{3}}+{\\frac {ch^{3}}{2}}\\right)} = b h ( a 3 + c 6 ) {\\displaystyle =bh\\left({\\frac {a}{3}}+{\\frac {c}{6}}\\right)}",
"title": "ããã³åœ¢ã®äœç©"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "V = 2 12 a 3 {\\displaystyle V={\\frac {\\sqrt {2}}{12}}a^{3}}",
"title": "æ£å€é¢äœã®äœç©"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "æ£åé¢äœã®äœç©ã¯ãç«æ¹äœãšã®é¢ä¿ãããå°åºããããšãã§ããŸãã ç«æ¹äœãšé ç¹ãå
±æããæ£åé¢äœã¯ãå
šãŠã®èŸºãç«æ¹äœã®é¢ã®å¯Ÿè§ç·ã«ãªã£ãŠããŸãã ãã£ãŠãç«æ¹äœããäœã£ãäœç©ãåŒãã°ãæ£åé¢äœã®äœç©ãå°ãåºãããšãã§ããŸãã",
"title": "æ£å€é¢äœã®äœç©"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "æ£åé¢äœã®1蟺ã®é·ããaãšããŸãã äœã£ãéšåã¯å
šéšã§4ã€ãããŸããã蟺ã®é·ãã¯å
šãŠããããçããã®ã§ããããã¯ååã«ãªããŸãã",
"title": "æ£å€é¢äœã®äœç©"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ç«æ¹äœã®1蟺ã®é·ãã¯ãæ£æ¹åœ¢ã®èŸºãšå¯Ÿè§ç·ã®é·ãã®æ¯ã 1 : 2 {\\displaystyle 1:{\\sqrt {2}}} ãããã",
"title": "æ£å€é¢äœã®äœç©"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "äœã£ãéšåã¯äžè§éãšã¿ãªãããšãã§ããã®ã§ãè§éã®äœç©ããã",
"title": "æ£å€é¢äœã®äœç©"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "æåŸã«ç«æ¹äœããè§é4ã€ãåŒããŸãã",
"title": "æ£å€é¢äœã®äœç©"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "",
"title": "æ£å€é¢äœã®äœç©"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "V = 2 3 a 3 {\\displaystyle V={\\frac {\\sqrt {2}}{3}}a^{3}}",
"title": "æ£å€é¢äœã®äœç©"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "æ£å
«é¢äœã¯ãäœç©ã®çããæ£åè§éã2ã€ãããšèŠãããšãã§ããŸãã ãããã®è§éã®é«ãã¯ãè§éã®åºé¢ã®å¯Ÿè§ç·ã®äº€ç¹ããæ±ããããšãã§ããŸãã åºé¢ã«å¯Ÿããé äžã®é ç¹ãšåºé¢ã®å¯Ÿè§ç·ã®äº€ç¹ãçµã¶çŽç·ã¯åçŽã«ãªãã®ã§ã é«ãã¯ãè§éã®æ¯ç·ãšå¯Ÿè§ç·ãããäžå¹³æ¹ã®å®çã§å°åºã§ããŸãã",
"title": "æ£å€é¢äœã®äœç©"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "察è§ç·ã®é·ãã¯ã",
"title": "æ£å€é¢äœã®äœç©"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "察è§ç·ã¯äºãã®äžç¹ã§äº€ããã®ã§ã",
"title": "æ£å€é¢äœã®äœç©"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "é«ãã¯ãæ¯ç·ãšå¯Ÿè§ç·ã®ååããã",
"title": "æ£å€é¢äœã®äœç©"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "å®ã¯ãæ£å
«é¢äœã¯ã©ãã§æ£åè§é2ã€ã«åé¢ããŠããé«ãã¯åäžã§ããããã察è§ç·ã®ååãæ¢ã«é«ãã«ãªã£ãŠããŸãã æåŸã«ãéäœã®äœç©ã®å
¬åŒããã",
"title": "æ£å€é¢äœã®äœç©"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "V = 15 + 7 5 4 a 3 {\\displaystyle V={\\frac {15+7{\\sqrt {5}}}{4}}a^{3}}",
"title": "æ£å€é¢äœã®äœç©"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "V = 5 ( 3 + 5 ) 12 a 3 {\\displaystyle V={\\frac {5(3+{\\sqrt {5}})}{12}}a^{3}}",
"title": "æ£å€é¢äœã®äœç©"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "V = 4 3 Ï r 3 {\\displaystyle V={\\frac {4}{3}}\\pi r^{3}}",
"title": "çã®äœç©"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "ååŸ r {\\displaystyle r} ã®å; C {\\displaystyle C} ããåã®äžå¿ããã®è·é¢ R {\\displaystyle R} (äœãã r {\\displaystyle r} ⊠R {\\displaystyle R} ãšãã)ã®çŽç·ã軞ãšããŠå転ãããåç°äœ(ããŒã©ã¹ãããŒããå)",
"title": "åç°äœïŒããŒã©ã¹ïŒã®äœç©"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "(è§£æ³)",
"title": "åç°äœïŒããŒã©ã¹ïŒã®äœç©"
}
] | ãã®ããŒãžã§ã¯äœç©ã®å
¬åŒã®è§£èª¬ãããŸãã | ãã®ããŒãžã§ã¯äœç©ã®å
¬åŒã®è§£èª¬ãããŸãã
==çŽæ¹äœã®äœç©==
''V'' = ''abh''
==ç«æ¹äœã®äœç©==
''V'' = ''a''<sup>3</sup>
==æ±äœã®äœç©==
''V'' = ''Sh''
==éäœã®äœç©==
<math>V = \frac{1}{3} Sh</math>
[[File:Right circular cone (parameters r,h,x,Ab,Ax).svg|thumb|200px|right|éäœ]]
éäœã®é ç¹ããåºé¢<math>S</math>ïŒå³å³ã§ã¯<math>A_b</math>ïŒã«åç·ãäžããŠãé ç¹ãã<math>x (0 \leq x \leq h)</math>ã®è·é¢ã§åºé¢ãšå¹³è¡ã«éäœãåãåã£ãããšã§åŸãããå³åœ¢ã<math>A_x</math>ãšããã
ãã®æãéäœã®å®çŸ©ããã<math>S</math>ãš<math>A_x</math>ã¯çžäŒŒã§ããã
çžäŒŒãªå³åœ¢ã®é¢ç©æ¯ã¯ãçžäŒŒæ¯ã®ïŒä¹ã«çããããšããã
<math>S : A_x = h^2 : x^2</math>
åŸã£ãŠã
<math>A_x = \frac{x^2 S}{h^2} </math>
éäœã®äœç©ã¯ãå¹³é¢å³åœ¢<math>A_x</math>ã«é¢ããŠã<math>0 \leq x \leq h</math>ã®åºéã§å€åãã环ç©ãããã®ã§ããããã<math>A_x</math>ãåºé<math>[0,h]</math>ã§ç©åããããšã«ããåŸãããã
<math>V = \int_0^h A_x\,dx </math> <math> = \int_0^h \frac{x^2 S}{h^2}\,dx </math> <math> = \frac{S}{h^2} \int_0^h x^2 \,dx </math> <math> = \frac{S}{h^2} \left[ \frac{x^3}{3}\right]_0^h </math> <math> = \frac{S}{h^2} \left(\frac{h^3}{3}\right) </math><math> = \frac{1}{3} Sh</math>
==éå°ã®äœç©==
[[File:Pyramidenstumpf.svg|thumb|200px|right|éå°]]
äžåºã®é¢ç© <math>s</math>ïŒå³å³ã§ã¯<math>A_2</math>ïŒãäžåºã®é¢ç© <math>S</math>ïŒå³å³ã§ã¯<math>A_1</math>ïŒãé«ã <math>h</math> ã®éå°ã®äœç© <math>V</math>
éå°ã¯ãå¥åãåé éäœãã®ãšããã<math>S</math>ãåºãšããéäœ:<math>P_1</math>ããã<math>s</math>ãåºãšããçžäŒŒãªéäœ:<math>P_2</math>ãé€ãããã®ãšãããã
éäœ:<math>P_1</math>ã®é«ãã <math>H</math>ãšãããšãéäœ:<math>P_2</math>ã®é«ã㯠<math>H-h</math>ãšãªããåã
ã®äœç©ã¯ã
:<math>V_1 = \frac{1}{3} SH</math>, <math>V_2 = \frac{1}{3} s(H-h)</math> ãšãªãã®ã§ãæ±ããäœç©<math>V = \frac{1}{3} ( SH - s(H-h) ) = \frac{1}{3} ( H(S - s) +hs) )</math>(â»)ãšãªãã
çžäŒŒæ¯ãšé¢ç©æ¯ã®é¢ä¿ããã
:<math>S : s = H^2 : (H-h)^2</math>
åŸã£ãŠã
:<math>\sqrt{S} : \sqrt{s} = H : (H-h)</math>
:<math>H\sqrt{s} = (H-h)\sqrt{S}</math>
:<math>H(\sqrt{S}-\sqrt{s}) = h\sqrt{S}</math>
:<math>H = \frac{ h\sqrt{S}}{\sqrt{S}-\sqrt{s}}</math><math>= \frac{ h\sqrt{S}(\sqrt{S}+\sqrt{s})}{S-s}</math><math>= \frac{ h(S+\sqrt{sS})}{S-s}</math>
ããããâ»ã«ä»£å
¥ãããšã以äžã®åŒãåŸãã
:<math>V = \frac h 3 (s + \sqrt{s S} + S) </math>
==ããã³åœ¢ã®äœç©==
[[File:Geometric_wedge.png|right|200px|thumb|ããã³åœ¢]]
* äžåºã 瞊ã®ãªãã ''a''ãæšªã®ãªãã ''b''ã®é·æ¹åœ¢ã瞊ãšå¹³è¡ã§ããäžèŸºã®ãªãã ''c''ãé«ã ''h'' ã®'''ããã³åœ¢'''ã®äœç© ''V''ïŒ
*:<math>V = bh\left(\frac{a}{3}+\frac{c}{6}\right) </math>
ããã³åœ¢ã®äžèŸºããåºé¢ã«åç·ãäžããŠãé ç¹ãã<math>x (0 \leq x \leq h)</math>ã®è·é¢ã§åºé¢ãšå¹³è¡ã«ããã³åœ¢ãåãåã£ãããšã§åŸãããå³åœ¢ïŒé·æ¹åœ¢ïŒã<math>S_x</math>ãšããã
ãã®é·æ¹åœ¢ã®çžŠæšªã¯æ¯äŸã®é¢ä¿ãã以äžã®ãšãããšãªãã
*瞊:<math>\frac{(a-c)x}{h}+c</math>, 暪:<math>\frac{bx}{h}</math>
*<math>S_x = \left(\frac{(a-c)x}{h}+c\right)\left(\frac{bx}{h}\right)</math><math> = \frac{(a-c)bx^2}{h^2}+\frac{bcx}{h}</math>
ããã³åœ¢ã®äœç©ã¯ãå¹³é¢å³åœ¢<math>S_x</math>ã«é¢ããŠã<math>0 \leq x \leq h</math>ã®åºéã§å€åãã环ç©ãããã®ã§ããããã<math>S_x</math>ãåºé<math>[0,h]</math>ã§ç©åããããšã«ããåŸãããã
<math>V = \int_0^h S_x\,dx </math> <math> = \int_0^h \left( \frac{(a-c)bx^2}{h^2}+\frac{bcx}{h}\right)dx </math> <math> = \frac{b}{h^2} \int_0^h ((a-c)x^2+chx)dx </math> <math> = \frac{b}{h^2} \left[ \frac{(a-c)x^3}{3}+\frac{chx^2}{2} \right]_0^h </math> <math> = \frac{b}{h^2} \left(\frac{(a-c)h^3}{3}+\frac{ch^3}{2} \right) </math><math> = bh\left(\frac{a}{3}+\frac{c}{6}\right)</math>
==æ£å€é¢äœã®äœç©==
===æ£åé¢äœã®äœç©===
<math>V = \frac{\sqrt{2}}{12} a^3</math>
[[ç»å:æ£åé¢äœã®äœç©.png|right|]]
:ãŸãåºé¢ããèšç®ããŸãã
:æ£åé¢äœã®é äžã®é ç¹ã¯ãåºé¢ã圢æãã3ç¹ããçããäœçœ®ã«ããã®ã§ã
:ããããçäžãžç·ã䌞ã°ãããšãããã®ç·ãšåºé¢ãšã®äº€ç¹ã¯ã3ç¹ããçããäœçœ®ãå³ã¡äžå¿(å€å¿ãå
å¿ãéå¿ãåå¿)ã«äœçœ®ããããšã«ãªããŸãã
:ããã«åºé¢ã®å³åœ¢ã¯æ£äžè§åœ¢ãªã®ã§ãããããã®ç¹ããäžå¿ããšããã察蟺ã«ç¹ããç·åãåŒããšã3ç·å
šãŠãã察蟺ãåçŽã«2çåããŸãã
:ãã®ãšãããã®ç·åã®é·ã(å³å³äžã®èµ€ç·ã®é·ã)ã¯ãäžå¹³æ¹ã®å®çã«ãã£ãŠã
:<math> \begin{matrix} \sqrt{{\color{Green}a}^2 - \left({1 \over 2}a \right)^2} &=& \sqrt{{\color{Green}a}^2 - {1 \over 4}a^2}
\\ \\ & = & \sqrt{{3 \over 4}a^2}
\\ \\ & = & {\color{Red}{\sqrt{3} \over 2}a} \end{matrix}</math>
:次ã«éç·2æ¬ãšç·ç·1æ¬ã§åœ¢æãããäºç蟺äžè§åœ¢ã«ãç·ç·ã察象ã®è»žãšããç·å¯Ÿç§°ãªäºç蟺äžè§åœ¢ãäœå³ããŸãã
:ãã®äºç蟺äžè§åœ¢ã¯ãåºè§ã30ïŸ(æ£äžè§åœ¢ã®è§ã®2çåç·ã§ãããã)ãªã®ã§ã2ã€ç¹ãããš60ïŸã«ãªããŸãã
:2蟺ãçããããã®éã®è§ã60ïŸã§ããäºç蟺äžè§åœ¢ã¯æ£äžè§åœ¢ãªã®ã§ã
:å³å³äžã®é»ç·å
šäœã®é·ãã¯ãéç·ã®é·ãã«çãããäºç蟺äžè§åœ¢ã®é è§ã®äºçåç·ã¯ãåºèŸºãåçŽã«2çåããããã
:ãã®é»ç·ã®ãã¡æ£äžè§åœ¢ã®å
åŽã«å
¥ãé»ç·ã®é·ãã¯ãéç·ã®é·ãã®ååãã€ãŸããèµ€ç·ã®é·ãã®<math>{1 \over 3}</math>ãšãªããŸãã
:éã«éç·ã®é·ãã¯èµ€ç·ã®é·ãã®<math>{2 \over 3}</math>ãªã®ã§ã
:<math> \begin{matrix} {\color{Red} {\sqrt{3} \over 2}a} \times {2 \over 3} &=& {\sqrt{3} \times 2\!\!\!/ \over 2\!\!\!/ \times 3}a
\\ \\ &=& {\color{Blue}{\sqrt{3} \over 3}a} \end{matrix} </math>
:ç¶ããŠé«ããé«ãã¯ãããŸã§ã«èª¿ã¹ãé·ããšäžå¹³æ¹ã®å®çãå©çšããã°ã
:<math> \begin{matrix} \sqrt{{\color{Green}a}^2 - \left({\color{Blue}{\sqrt{3} \over 3}a} \right)^2}
&=& \sqrt{{\color{Green}a}^2 - {1 \over 3}a^2}
\\ \\ &=& \sqrt{{2 \over 3}a^2}
\\ \\ &=& {\color{Brown} a \sqrt{{2 \over 3}}} \end{matrix} </math>
:åºé¢ç©ãé«ããåºãã®ã§ã
:<math> \begin{matrix}
V &=& {\color{Green}a} \times {\color{Red}{\sqrt{3} \over 2}a}
\times {1 \over 2} \times {\color{Brown}a \sqrt{{2 \over 3}}} \times {1 \over 3}
\\ \\ &=& {{\color{Green}a} \times {\color{Red}a \sqrt{3}\!\!\!/} \times {\color{Brown}a \sqrt{2}}
\over 2 \times {\color{Red} 2} \times 3 \times {\color{Brown}\sqrt{3}\!\!\!/}}
\\ \\ &=& {\sqrt{2} \over 12} a^3
\end{matrix}</math>
====ç«æ¹äœããèãã====
[[ç»å:æ£åé¢äœã®äœç©2.png]]
æ£åé¢äœã®äœç©ã¯ãç«æ¹äœãšã®é¢ä¿ãããå°åºããããšãã§ããŸãã<br>
ç«æ¹äœãšé ç¹ãå
±æããæ£åé¢äœã¯ãå
šãŠã®èŸºãç«æ¹äœã®é¢ã®å¯Ÿè§ç·ã«ãªã£ãŠããŸãã<br>
ãã£ãŠãç«æ¹äœããäœã£ãäœç©ãåŒãã°ãæ£åé¢äœã®äœç©ãå°ãåºãããšãã§ããŸãã
æ£åé¢äœã®1蟺ã®é·ãã''a''ãšããŸãã<br>
äœã£ãéšåã¯å
šéšã§4ã€ãããŸããã蟺ã®é·ãã¯å
šãŠããããçããã®ã§ããããã¯ååã«ãªããŸãã
ç«æ¹äœã®1蟺ã®é·ãã¯ãæ£æ¹åœ¢ã®èŸºãšå¯Ÿè§ç·ã®é·ãã®æ¯ã<math>1 : \sqrt{2}</math>ãããã
:<math> a \times \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}a </math>
äœã£ãéšåã¯äžè§éãšã¿ãªãããšãã§ããã®ã§ãè§éã®äœç©ããã
::<math> \frac{1}{3} \times \frac{1}{2} \times \frac{\sqrt{2}}{2}a \times \frac{\sqrt{2}}{2}a \times \frac{\sqrt{2}}{2}a </math><br>
:<math> = \frac{1}{6} \times \left( \frac{\sqrt{2}}{2}a \right)^3 </math><br>
:<math> = \frac{1}{6} \times \frac{\sqrt{2}}{4}a^3 </math><br>
:<math> = \frac{\sqrt{2}}{24}a^3 </math>
æåŸã«ç«æ¹äœããè§é4ã€ãåŒããŸãã
::<math> \left( \frac{\sqrt{2}}{2}a \right)^3 - 4 \left( \frac{\sqrt{2}}{24}a^3 \right) </math><br>
:<math> = \frac{\sqrt{2}}{4}a^3 - \frac{\sqrt{2}}{6}a^3 </math><br>
:<math> = \frac{3 \sqrt{2}}{12}a^3 - \frac{2 \sqrt{2}}{12}a^3 </math><br>
:<math> = \frac{\sqrt{2}}{12}a^3 </math>
<!--===æ£å
é¢äœã®äœç©===-->
===æ£å
«é¢äœã®äœç©===
<math>V = \frac{\sqrt{2}}{3}a^3</math>
[[ç»å:æ£å
«é¢äœã®äœç©.png|thumb|right|é«ãã¯åºé¢ã®å¯Ÿè§ç·ã®äº€ç¹ããæ±ããããšãã§ããŸãã]]
æ£å
«é¢äœã¯ãäœç©ã®çããæ£åè§éã2ã€ãããšèŠãããšãã§ããŸãã<br>
ãããã®è§éã®é«ãã¯ãè§éã®åºé¢ã®å¯Ÿè§ç·ã®äº€ç¹ããæ±ããããšãã§ããŸãã<br>
åºé¢ã«å¯Ÿããé äžã®é ç¹ãšåºé¢ã®å¯Ÿè§ç·ã®äº€ç¹ãçµã¶çŽç·ã¯åçŽã«ãªãã®ã§ã<br>
é«ãã¯ãè§éã®æ¯ç·ãšå¯Ÿè§ç·ãããäžå¹³æ¹ã®å®çã§å°åºã§ããŸãã
察è§ç·ã®é·ãã¯ã
:<math>\sqrt{a^2 + a^2} = a \sqrt{2}</math>
察è§ç·ã¯äºãã®äžç¹ã§äº€ããã®ã§ã
:<math>\frac{a \sqrt{2}}{2}</math>
é«ãã¯ãæ¯ç·ãšå¯Ÿè§ç·ã®ååããã
::<math>\sqrt{a^2 - \left( \frac{a\sqrt{2}}{2} \right)^2}</math>
:<math>= \sqrt{a^2 - \frac{a^2}{2}}</math>
:<math>= \sqrt{\frac{a^2}{2}}</math>
:<math>= {\color{red}\frac{a \sqrt{2}}{2}}</math>
å®ã¯ãæ£å
«é¢äœã¯ã©ãã§æ£åè§é2ã€ã«åé¢ããŠããé«ãã¯åäžã§ããããã察è§ç·ã®ååãæ¢ã«é«ãã«ãªã£ãŠããŸãã<br>
æåŸã«ãéäœã®äœç©ã®å
¬åŒããã
:<math>V = 2 \times \frac{1}{3} \times a^2 \times {\color{red}\frac{a \sqrt{2}}{2}}</math>
::<math>= \frac{1}{3} \times \sqrt{2}a^3</math>
::<math>= \frac{\sqrt{2}}{3}a^3</math>
===æ£åäºé¢äœã®äœç©===
<math>V = \frac{15+7\sqrt{5}}{4}a^3</math>
===æ£äºåé¢äœã®äœç©===
<math>V = \frac{5(3+\sqrt{5})}{12}a^3</math>
==çã®äœç©==
<math>V = \frac{4}{3}\pi r^3</math>
:<math>x^2 + y^2 + z^2 = r^2</math>ã§ããçãèããã
:<math>x = t</math>ã§ãã®çãåæãããšãååŸ<math>\sqrt{r^2-t^2}</math>ã§ããå;<math>C</math>ãåŸããããã®å;<math>C</math>ã®é¢ç©ã¯<math>\pi (r^2-t^2)</math>ã§ããã
:çã®äœç©ã¯ããã®å;<math>C</math>ã«é¢ããŠã<math>-r \leq t \leq r</math>ã®åºéã§å€åãã环ç©ãããã®ã§ããããã<math>\pi (r^2-t^2)</math>ãåºé<math>[-r,r]</math>ã§ç©åããããšã«ããåŸãããã
:<math>V = \int_{-r}^{r} \pi (r^2-t^2)\,dt </math> = <math>\pi \int_{-r}^{r} (r^2-t^2)\,dt </math> = <math>\pi \int_{-r}^{r} (r^2-t^2)\,dt </math> = <math>\pi \left[ tr^2 - \frac{t^3}{3}\right]_{-r}^{r} </math> = <math>\pi \left\{ \left( r^3 - \frac{r^3}{3}\right) - \left( -r^3 + \frac{r^3}{3}\right) \right\}</math> = <math>\frac{4}{3}\pi r^3</math>
==åç°äœïŒããŒã©ã¹ïŒã®äœç©==
{{wikipedia|ããŒã©ã¹}}
[[File:Torus-rotations-flaeche-r.svg|right|250px|thumb|åç°äœã»ããŒã©ã¹]]
ååŸ<math>r</math>ã®å;<math>C</math>ããåã®äžå¿ããã®è·é¢<math>R</math>ïŒäœãã<math>r</math>ãâŠã<math>R</math>ãšããïŒã®çŽç·ã軞ãšããŠå転ãããåç°äœïŒ[[w:ããŒã©ã¹|ããŒã©ã¹]]ãããŒããåïŒ
:ïŒåèïŒ
:*ãã®æã ååŸ<math>r</math>ããå°ååŸããååŸ<math>R</math>ãã倧ååŸããšåŒã¶ããšãããã
:*åç°äœã®å
çžéšã®åã®ååŸ<math>a</math>ãšå€çžéšã®åã®ååŸ<math>b</math>ãäžããããããšãããããã®æã¯ã以äžã®é¢ä¿ãå©çšãèå¯ã
:*:<math>r = \frac{-a+b}{2}</math>, <math>R = \frac{a+b}{2}</math>
[[File:Superficie tórica.svg|right|250px|thumb|åç°äœã®åæå³åœ¢]]
(è§£æ³)
:å;<math>C</math>ã®äžå¿ããè·é¢<math>t</math>ïŒ0âŠ<math>t</math>âŠ<math>r</math>ïŒã®äœçœ®ã§ãåç°äœã®å転軞ã«åçŽã«åãåããšãååŸ;<math>R-\sqrt{r^2-t^2}</math>ã®åãå
åŽã®å;<math>C_1</math>ãšããååŸ;<math>R+\sqrt{r^2-t^2}</math>ã®å;<math>C_2</math>ãå€åŽã®åãšããå³åœ¢ãåŸãããã
:ãã®å³åœ¢ã®é¢ç©ã<math>S</math>ãšãããšã
::<math>S = \pi \left( R+\sqrt{r^2-t^2} \right)^2 - \pi \left( R-\sqrt{r^2-t^2} \right)^2 = 4\pi R\sqrt{r^2-t^2}</math>
:ãããã<math>0 \leq t \leq r</math>ã®åºéã§å€åãã环ç©ãããšãåç°äœã®1/2ã®äœç©;<math>V_h</math>ãåŸãããã
:::<math>V_h = \int_{0}^{r} 4\pi R\sqrt{r^2-t^2}dt = 4\pi R \int_{0}^{r} \sqrt{r^2-t^2}dt </math>
:::::<math>\int_{0}^{r} \sqrt{r^2-t^2}dt </math> ãè§£ããïŒçœ®æç©åæ³ãå©çšïŒ
:::::*<math>t = r\sin{\theta}</math>ãšçœ®ãã
::::::<math>t</math>ã<math>\theta</math>ã§åŸ®åãããšã<math>\frac{dt}{d\theta} = r\cos{\theta}</math>ã<math>\therefore</math>ã<math>dt = r\cos{\theta} d\theta</math>
::::::*<math>t = 0</math>ã®æã<math>\theta = 0</math>
::::::*<math>t = r</math>ã®æã<math>\theta = \frac{\pi}{2}</math>
:::::<math>\int_{0}^{r} \sqrt{r^2-t^2}dt = \int_{0}^{\frac{\pi}{2}} \sqrt{r^2-r^2 \sin ^2 \theta}\cdot(r\cos{\theta}) d\theta = r^2 \int_{0}^{\frac{\pi}{2}} \sqrt{1-\sin ^2 \theta}\cdot (\cos{\theta}) d\theta</math>
:::::<math>= r^2 \int_{0}^{\frac{\pi}{2}} \cos ^2\theta d\theta</math> (<math>\because</math> <math>\sqrt{1-\sin ^2 \theta} = \sqrt{\cos ^2 \theta} = |cos \theta|</math>ã<math>0 \leq \theta \leq \frac{\pi}{2}</math>ã§ããã®ã§ã<math> = cos\theta</math>)
:::::<math>= r^2 \int_{0}^{\frac{\pi}{2}} \frac{1+\cos 2\theta}{2} d\theta</math> (<math>\because</math> <math>\cos ^2 \theta = \frac{1+\cos 2\theta}{2}</math>)
:::::<math>= r^2 \left[ \frac{\theta}{2}+\frac{\sin 2\theta}{4} \right]_{0}^{\frac{\pi}{2}} = \frac{r^2 \pi}{4}</math>
:::<math>V_h = 4\pi R \cdot \frac{r^2 \pi}{4} = \pi^2 r^2 R</math>
:<math>\therefore</math>ã <math>V = 2 \pi^2 r^2 R = (\pi r^2) (2 \pi R)</math>
:::åŸåŒã¯ããå¹³é¢äžã«ããå³åœ¢<math>F</math>ã®é¢ç©ã<math>S</math>ãšãã<math>F</math>ãšåãå¹³é¢äžã«ãã<math>F</math>ãéããªã軞<math>l</math>ã®åšãã§<math>F</math>ãäžå転ãããå転äœã®äœç©ã<math>V</math>ãšãããå転ãããå³åœ¢<math>F</math>ã®éå¿<math>G</math>ããå転軞<math>l</math>ãŸã§ã®è·é¢ã<math>R</math>ãšãããšãã
::::<math>V=2\pi RS</math>
:::ãæãç«ã€ããšãã[[w:ãããã¹ïŒã®ã¥ã«ãã³ã®å®ç|ãããã¹ïŒã®ã¥ã«ãã³ã®å®ç]]第äºå®çãšäžèŽããŠããã
[[Category:æ°åŠæè²|ãããšãããããããããããã]]
[[Category:åçæ°åŠå
¬åŒé|ãããã]] | null | 2021-09-03T22:35:09Z | [
"ãã³ãã¬ãŒã:Wikipedia"
] | https://ja.wikibooks.org/wiki/%E5%88%9D%E7%AD%89%E6%95%B0%E5%AD%A6%E5%85%AC%E5%BC%8F%E9%9B%86/%E5%88%9D%E7%AD%89%E5%B9%BE%E4%BD%95/%E4%BD%93%E7%A9%8D |
2,056 | åçæ°åŠå
¬åŒé/åç代æ°/å±éå
¬åŒ | ããã§ã¯å±éå
¬åŒã®è§£èª¬ãããŸãã
æŒç¿åé¡ ä»¥äžã®åŒãå±éããã
è§£ç
蚌æ
æŒç¿åé¡ ä»¥äžã®åŒãå±éããã
è§£ç
蚌æ
æŒç¿åé¡ ä»¥äžã®åŒãå±éããã
è§£ç
æŒç¿åé¡ ä»¥äžã®åŒãå±éããã
è§£ç
蚌æ
æŒç¿åé¡ ä»¥äžã®åŒãå±éããã
è§£ç | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ããã§ã¯å±éå
¬åŒã®è§£èª¬ãããŸãã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "æŒç¿åé¡ ä»¥äžã®åŒãå±éããã",
"title": "åºæ¬çãªåœ¢"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "è§£ç",
"title": "åºæ¬çãªåœ¢"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "蚌æ",
"title": "2æ°ã®åã»å·®ã®2ä¹"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "æŒç¿åé¡ ä»¥äžã®åŒãå±éããã",
"title": "2æ°ã®åã»å·®ã®2ä¹"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "è§£ç",
"title": "2æ°ã®åã»å·®ã®2ä¹"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "蚌æ",
"title": "åãšå·®ã®ç©"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "æŒç¿åé¡ ä»¥äžã®åŒãå±éããã",
"title": "åãšå·®ã®ç©"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "è§£ç",
"title": "åãšå·®ã®ç©"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "æŒç¿åé¡ ä»¥äžã®åŒãå±éããã",
"title": "äžè¬çãª2次ã®å±éå
¬åŒ"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "è§£ç",
"title": "äžè¬çãª2次ã®å±éå
¬åŒ"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "",
"title": "äžè¬çãª2次ã®å±éå
¬åŒ"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "蚌æ",
"title": "2æ°ã®åã»å·®ã®3ä¹"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "æŒç¿åé¡ ä»¥äžã®åŒãå±éããã",
"title": "2æ°ã®åã»å·®ã®3ä¹"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "è§£ç",
"title": "2æ°ã®åã»å·®ã®3ä¹"
}
] | ããã§ã¯å±éå
¬åŒã®è§£èª¬ãããŸãã | {{Pathnav|ã¡ã€ã³ããŒãž|æ°åŠ|frame=1}}
ããã§ã¯å±éå
¬åŒã®è§£èª¬ãããŸãã
== åºæ¬çãªåœ¢ ==
* <math>(a+b)(c+d) = ac + ad + bc + bd</math>
; 蚌æ
: <math>A = (a+b)</math>ãšçœ®ããšããã®åŒã¯ã<math>A(c+d)</math>ãšãªãã
: åé
æ³åãé©çšãããšã<math>Ac+Ad</math>ã
: <math>A</math>ãæ»ããš<math>(a+b)c+(a+b)d</math>ã
: ããããã«åé
æ³åãé©çšãããšã<math>ac + ad + bc + bd</math>ãšãªã蚌æãããã
'''æŒç¿åé¡''' 以äžã®åŒãå±éããã
# <math>(x-2)(2x+5)</math>
# <math>(2a-4b)(5c+d)</math>
'''è§£ç'''
# <math>2x^2 + x - 10</math>
# <math>10ac + 2ad - 20bc -4bd</math>
== 2æ°ã®åã»å·®ã®2ä¹ ==
* <math>(a+b)^2 = a^2 + 2ab + b^2</math>
* <math>(a-b)^2 = a^2 - 2ab + b^2</math>
'''蚌æ'''
*<math>(a+b)^2 = (a+b)(a+b) = a^2 + ab + ba + b^2 = a^2 + 2ab + b^2</math>
*<math>(a-b)^2 = (a-b)(a-b) = a^2 -ab -ba + b^2 = a^2 -2ab + b^2</math>
'''æŒç¿åé¡''' 以äžã®åŒãå±éããã
# <math>(x+1)^2</math>
# <math>(2a+4b)^2</math>
# <math>(5a-3b)^2</math>
'''è§£ç'''
# <math>x^2 + 2x + 1</math>
# <math>4a^2 + 16ab + 16b^2</math>
# <math>25a^2 -30ab + 9b^2</math>
== åãšå·®ã®ç© ==
* <math>(a+b)(a-b) = a^2- b^2</math>
'''蚌æ'''
:<math>(a+b)(a-b) = a^2 -ab + ba - b^2 = a^2 - b^2</math>
'''æŒç¿åé¡'''ã以äžã®åŒãå±éããã
# <math>(5x+1)(5x-1)</math>
# <math>(2a-3b)(2a+3b)</math>
'''è§£ç'''
# <math>25x^2 - 1</math>
# <math>4a^2 - 9b^2</math>
== äžè¬çãª2次ã®å±éå
¬åŒ ==
* <math>(x+a)(x+b) = x^2 + (a+b)x + ab</math>
* <math>(ax+b)(cx+d) = acx^2 + (ad+bc)x + bd</math>
; 蚌æ
: <math>(x+a)(x+b) = x^2 + bx + ax + ab = x^2 + (a+b)x+ab</math>
: <math>(ax+b)(cx+d) = acx^2 + adx + bcx + bd = acx^2 + (ad + bc)x + bd</math>
'''æŒç¿åé¡'''ã以äžã®åŒãå±éããã
# <math>(x+1)(x+3)</math>
# <math>(2x - 3)( 5x + 5)</math>
# <math>(7ab +9)(-2ab + 10)</math>
'''è§£ç'''
# <math>x^2 + 4x + 3</math>
# <math>10x^2 -5x -15</math>
# <math>-14a^2b^2 +52ab + 90</math>
== 2æ°ã®åã»å·®ã®3ä¹ ==
* <math>(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3</math>
* <math>(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3</math>
'''蚌æ'''
*<math>(a+b)^3 = (a+b)^2(a+b) = (a^2 + 2ab + b^2)(a+b) = a(a^2 + 2ab + b^2) + b(a^2 + 2ab + b^2) = a^3 + 2a^2b + ab^ 2 + a^2b + 2ab^2 + b^3 = a^3 + 3a^2b + 3ab^2 + b^3</math>
*<math>(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3</math>ã®<math>b</math>ã«<math>-b</math>ã代å
¥ãããšã<math>(a-b)^3 = a^3 + 3a^2(-b) + 3a(-b)^2 + (-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3</math>
'''æŒç¿åé¡'''ã以äžã®åŒãå±éããã
# <math>(2a + b)^3</math>
# <math>(4x^2 - 7)^3</math>
'''è§£ç'''
# <math>8a^3 + 12a^2b + 6ab^2 + b^3</math>
# <math>64x^6 - 336x^4 + 588x^2 - 343</math>
== 2æ°ã®3ä¹ã®åã»å·® ==
* <math>(a+b)(a^2 - ab + b^2) = a^3 + b^3</math>
* <math>(a-b)(a^2 + ab + b^2) = a^3 - b^3</math>
== 3æ°ã®åã®nä¹ ==
* <math>(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca</math>
* <math>(a+b+c)^3 = a^3 + b^3 + c^3 + 3a^2b + 3ab^2 + 3b^2c + 3bc^2 + 3c^2a + 3a^2c+ 6abc</math>
* <math>(a+b+c)^4 = a^4 + b^4 + c^4 + 4a^3b + 4ab^3 + 4b^3c + 4ca^3 + 4bc^3 + 4c^3a + 6a^2b^2 + 6b^2c^2 + 6c^2a^2 + 12a^2bc + 12ab^2c + 12abc^2</math>
== ãã®ä»ã®å±éå
¬åŒ ==
* <math>(a+b+c)(a^2 + b^2 + c^2 - ab - bc - ca) = a^3 + b^3 + c^3 - 3abc</math>
* <math>(x+a)(x+b)(x+c) = x^3 + (a+b+c)x^2 + (ab + bc + ca)x +abc</math>
* <math>(a-b)(a^{n-1} + a^{n-2}b + a^{n-3}b^2 + \cdots + b^{n-1}) = a^n - b^n</math>
[[Category:æ°åŠæè²|ãããšãããããããããããã ãŠããããããã]]
[[Category:æ°åŠ|ãããšãããããããããããã ãŠããããããã]]
[[Category:åçæ°åŠå
¬åŒé|ãŠããããããã]] | null | 2021-07-09T22:41:26Z | [
"ãã³ãã¬ãŒã:Pathnav"
] | https://ja.wikibooks.org/wiki/%E5%88%9D%E7%AD%89%E6%95%B0%E5%AD%A6%E5%85%AC%E5%BC%8F%E9%9B%86/%E5%88%9D%E7%AD%89%E4%BB%A3%E6%95%B0/%E5%B1%95%E9%96%8B%E5%85%AC%E5%BC%8F |
2,058 | ææ©ååŠ/ã¢ã«ã³ãŒã« | ææ©ååŠ>ã¢ã«ã³ãŒã«
èèªæçåæ°ŽçŽ ã®CHéã«Oãå
¥ã£ããã®ãã€ãŸããèèªæçåæ°ŽçŽ åºã«ããããã·åºãçµåãããã®ãäžè¬åŒã¯R-OHã§è¡šããããã¡ãªã¿ã«ãè³éŠæçåæ°ŽçŽ åºã®ãã³ãŒã³ç°ã«ããããã·åºãçŽæ¥çµåãããã®ã¯ãã§ããŒã«é¡ãšåŒã°ããã
åœåã¯ã¢ã«ã«ã³ãã¢ã«ã±ã³ãã¢ã«ãã³ãã·ã¯ãã¢ã«ã«ã³ãããã¯ã·ã¯ãã¢ã«ã±ã³ã®-eã-olã«å€ãããæ
£çšåã¯çåæ°ŽçŽ åºã®ååã®åŸãã«ãã¢ã«ã³ãŒã«ããã€ããã CH3CH2CH2CH2OHã¯1-ãã¿ããŒã«ãCH3CH2CH(OH)CH3ã¯2-ãã¿ããŒã«ã§ããã
ããããã·åºã1ååäžã«nåã€ããŠãããã®ãn䟡ã¢ã«ã³ãŒã«ãšããã2䟡以äžãå€äŸ¡ã¢ã«ã³ãŒã«ãšãããå€äŸ¡ã¢ã«ã³ãŒã«ã®ååã¯-olã®åã«ã®ãªã·ã£èªã®æ°è©ãã€ããã
-OHã®ã€ããŠããCååãnåã®Cååãšçµåã(3-n)åã®HååãšçµåããŠãããšããããã第nçŽã¢ã«ã³ãŒã«ãšããã ãã ãã¡ã¿ããŒã«CH3OHã¯ç¬¬é¶çŽã¢ã«ã³ãŒã«ã§ã¯ãªã第äžçŽã¢ã«ã³ãŒã«ãšããŠæ±ãããã
第äžçŽã¢ã«ã³ãŒã«ã¯é
žåããããšã¢ã«ããããçµãŠã«ã«ãã³é
žã«ãªãã 第äºçŽã¢ã«ã³ãŒã«ã¯é
žåããããšã±ãã³ã«ãªãã 第äžçŽã¢ã«ã³ãŒã«ã¯é
žåããã«ããã
ã¢ã«ã³ãŒã«ã¯å®çŸ©ã«ã瀺ãããŠããããããããã·åºãæããŠããããã®ãããååå
ã«æ¥µæ§ãååšãããåŸã£ãŠã極æ§ãæããç©è³ªãšæ··ãããããåŸåããããããšãã°ãæ°Žãã¢ã³ã¢ãã¢ã§ããããã®æ§è³ªã¯çåæ°ŽçŽ åºã®å€§ãããšããããã·åºã®æ°ãé¢é£ããŠãããçåæ°ŽçŽ åºã®å°ããã¡ã¿ããŒã«ããšã¿ããŒã«ããããããŒã«ã¯å®å
šã«æ°Žãšæ··ãããããããã¿ããŒã«ã¯20°Cã®ç¶æ
ã§ã¯1ãªããã«ã«ã€ãã77gãŸã§ããæº¶ããªãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ææ©ååŠ>ã¢ã«ã³ãŒã«",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "èèªæçåæ°ŽçŽ ã®CHéã«Oãå
¥ã£ããã®ãã€ãŸããèèªæçåæ°ŽçŽ åºã«ããããã·åºãçµåãããã®ãäžè¬åŒã¯R-OHã§è¡šããããã¡ãªã¿ã«ãè³éŠæçåæ°ŽçŽ åºã®ãã³ãŒã³ç°ã«ããããã·åºãçŽæ¥çµåãããã®ã¯ãã§ããŒã«é¡ãšåŒã°ããã",
"title": "ã¢ã«ã³ãŒã«ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "åœåã¯ã¢ã«ã«ã³ãã¢ã«ã±ã³ãã¢ã«ãã³ãã·ã¯ãã¢ã«ã«ã³ãããã¯ã·ã¯ãã¢ã«ã±ã³ã®-eã-olã«å€ãããæ
£çšåã¯çåæ°ŽçŽ åºã®ååã®åŸãã«ãã¢ã«ã³ãŒã«ããã€ããã CH3CH2CH2CH2OHã¯1-ãã¿ããŒã«ãCH3CH2CH(OH)CH3ã¯2-ãã¿ããŒã«ã§ããã",
"title": "ã¢ã«ã³ãŒã«ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ããããã·åºã1ååäžã«nåã€ããŠãããã®ãn䟡ã¢ã«ã³ãŒã«ãšããã2䟡以äžãå€äŸ¡ã¢ã«ã³ãŒã«ãšãããå€äŸ¡ã¢ã«ã³ãŒã«ã®ååã¯-olã®åã«ã®ãªã·ã£èªã®æ°è©ãã€ããã",
"title": "ã¢ã«ã³ãŒã«ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "-OHã®ã€ããŠããCååãnåã®Cååãšçµåã(3-n)åã®HååãšçµåããŠãããšããããã第nçŽã¢ã«ã³ãŒã«ãšããã ãã ãã¡ã¿ããŒã«CH3OHã¯ç¬¬é¶çŽã¢ã«ã³ãŒã«ã§ã¯ãªã第äžçŽã¢ã«ã³ãŒã«ãšããŠæ±ãããã",
"title": "ã¢ã«ã³ãŒã«ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "第äžçŽã¢ã«ã³ãŒã«ã¯é
žåããããšã¢ã«ããããçµãŠã«ã«ãã³é
žã«ãªãã 第äºçŽã¢ã«ã³ãŒã«ã¯é
žåããããšã±ãã³ã«ãªãã 第äžçŽã¢ã«ã³ãŒã«ã¯é
žåããã«ããã",
"title": "ã¢ã«ã³ãŒã«ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ã¢ã«ã³ãŒã«ã¯å®çŸ©ã«ã瀺ãããŠããããããããã·åºãæããŠããããã®ãããååå
ã«æ¥µæ§ãååšãããåŸã£ãŠã極æ§ãæããç©è³ªãšæ··ãããããåŸåããããããšãã°ãæ°Žãã¢ã³ã¢ãã¢ã§ããããã®æ§è³ªã¯çåæ°ŽçŽ åºã®å€§ãããšããããã·åºã®æ°ãé¢é£ããŠãããçåæ°ŽçŽ åºã®å°ããã¡ã¿ããŒã«ããšã¿ããŒã«ããããããŒã«ã¯å®å
šã«æ°Žãšæ··ãããããããã¿ããŒã«ã¯20°Cã®ç¶æ
ã§ã¯1ãªããã«ã«ã€ãã77gãŸã§ããæº¶ããªãã",
"title": "ã¢ã«ã³ãŒã«ã®æ§è³ª"
}
] | ææ©ååŠïŒã¢ã«ã³ãŒã« | [[ææ©ååŠ]]ïŒã¢ã«ã³ãŒã«
==ã¢ã«ã³ãŒã«ã®å®çŸ©ãšåœåæ³==
èèªæçåæ°ŽçŽ ã®CHéã«Oãå
¥ã£ããã®ãã€ãŸãã[[ææ©ååŠ_åº#çåæ°ŽçŽ åºã®çš®é¡|èèªæçåæ°ŽçŽ åº]]ã«[[ææ©ååŠ_åº#å®èœåºã®çš®é¡|ããããã·åº]]ãçµåãããã®ã[[ææ©ååŠ_ã¢ã«ã«ã³#äžè¬åŒ|äžè¬åŒ]]ã¯RïŒOHã§è¡šããããã¡ãªã¿ã«ãè³éŠæçåæ°ŽçŽ åºã®ãã³ãŒã³ç°ã«ããããã·åºãçŽæ¥çµåãããã®ã¯ãã§ããŒã«é¡ãšåŒã°ããã
åœåã¯[[ææ©ååŠ_ã¢ã«ã«ã³#åœåæ³|ã¢ã«ã«ã³]]ã[[ææ©ååŠ_ã¢ã«ã±ã³#åœåæ³|ã¢ã«ã±ã³]]ã[[ææ©ååŠ_ã¢ã«ãã³#åœåæ³|ã¢ã«ãã³]]ã[[ææ©ååŠ_ã·ã¯ãã¢ã«ã«ã³|ã·ã¯ãã¢ã«ã«ã³]]ãããã¯[[ææ©ååŠ_ã·ã¯ãã¢ã«ã±ã³|ã·ã¯ãã¢ã«ã±ã³]]ã®ïŒeãïŒolã«å€ãããæ
£çšåã¯çåæ°ŽçŽ åºã®ååã®åŸãã«ãã¢ã«ã³ãŒã«ããã€ããã
CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OHã¯1ïŒãã¿ããŒã«ãCH<sub>3</sub>CH<sub>2</sub>CH(OH)CH<sub>3</sub>ã¯2ïŒãã¿ããŒã«ã§ããã
ããããã·åºã1ååäžã«nåã€ããŠãããã®ãn䟡ã¢ã«ã³ãŒã«ãšããã2䟡以äžãå€äŸ¡ã¢ã«ã³ãŒã«ãšãããå€äŸ¡ã¢ã«ã³ãŒã«ã®ååã¯ïŒolã®åã«ã®ãªã·ã£èªã®æ°è©ãã€ããã
ïŒOHã®ã€ããŠããCååãnåã®Cååãšçµåã(3-n)åã®HååãšçµåããŠãããšããããã第nçŽã¢ã«ã³ãŒã«ãšããã
ãã ãã¡ã¿ããŒã«CH<sub>3</sub>OHã¯ç¬¬é¶çŽã¢ã«ã³ãŒã«ã§ã¯ãªã第äžçŽã¢ã«ã³ãŒã«ãšããŠæ±ãããã
C C C
| | |
H-C-OH C-C-OH C-C-OH
| | |
H H C
第äžçŽ ç¬¬äºçŽ ç¬¬äžçŽ
第äžçŽã¢ã«ã³ãŒã«ã¯é
žåããããš[[ææ©ååŠ_ã¢ã«ããã|ã¢ã«ããã]]ãçµãŠ[[ææ©ååŠ_ã«ã«ãã³é
ž|ã«ã«ãã³é
ž]]ã«ãªãã
第äºçŽã¢ã«ã³ãŒã«ã¯é
žåããããš[[ææ©ååŠ_ã±ãã³|ã±ãã³]]ã«ãªãã
第äžçŽã¢ã«ã³ãŒã«ã¯é
žåããã«ããã
== ã¢ã«ã³ãŒã«ã®æ§è³ª ==
ã¢ã«ã³ãŒã«ã¯å®çŸ©ã«ã瀺ãããŠããããããããã·åºãæããŠããããã®ãããååå
ã«æ¥µæ§ãååšãããåŸã£ãŠã極æ§ãæããç©è³ªãšæ··ãããããåŸåããããããšãã°ãæ°Žãã¢ã³ã¢ãã¢ã§ããããã®æ§è³ªã¯çåæ°ŽçŽ åºã®å€§ãããšããããã·åºã®æ°ãé¢é£ããŠãããçåæ°ŽçŽ åºã®å°ããã¡ã¿ããŒã«ããšã¿ããŒã«ããããããŒã«ã¯å®å
šã«æ°Žãšæ··ãããããããã¿ããŒã«ã¯20âã®ç¶æ
ã§ã¯1ãªããã«ã«ã€ãã77gãŸã§ããæº¶ããªãã
[[ã«ããŽãª:ææ©ååŠ]]
[[en:Organic Chemistry/Alcohols]] | null | 2022-11-23T05:32:54Z | [] | https://ja.wikibooks.org/wiki/%E6%9C%89%E6%A9%9F%E5%8C%96%E5%AD%A6/%E3%82%A2%E3%83%AB%E3%82%B3%E3%83%BC%E3%83%AB |
2,060 | ãŠã£ãããã£ã¢ã®æžãæ¹/å
¥éç·š/è³æã®æ¢ãæ¹ | <å
é ã«æ»ã
ã€ã³ã¿ãŒãããäžã§ã®æ
å ±åéã¯ããŠã£ãããã£ã¢ã³ãã¡ã«ãšã£ãŠã¯ãã£ãšã身è¿ãªææ®µã®äžã€ãšãããã§ããããæ€çŽ¢çªã«åèªãå
¥ããã ãã§æ¬²ããæ
å ±ãæã«å
¥ãã€ã³ã¿ãŒãããã¯ããšãŠã䟿å©ãªããŒã«ã§ãã
ãã ã䟿å©ãªåé¢ãæ°ãã€ããªããã°ãããªãããšããããŸãã
æ€çŽ¢ãšã³ãžã³ã«ã¯ããã£ã¬ã¯ããªåãšããããåã®2çš®é¡ã®æ€çŽ¢ãšã³ãžã³ããããŸãããã£ã¬ã¯ããªåã¯äººã®æã§ãµã€ãæ
å ±ãå
¥åããæ€çŽ¢ãšã³ãžã³ã§ãããããåã¯ãã¯ããŒã©ãŒãšããããããã°ã©ã ãèªåçã«ãµã€ãæ
å ±ãåé¡ãããã®ã§ããããããã«é·æã»çæãããã®ã§ããŸã䜿ãåããå¿
èŠããããŸãããçŸåšã§ã¯å€§æã®æ€çŽ¢ãšã³ãžã³ã¯ã©ã¡ãã䜵çšããŠãããã®ãå€ããªã£ãŠããŸãã
ã€ã³ã¿ãŒãããäžã§äœãã質åãããããããã(Googleã§æ€çŽ¢ãã)ãšäžèšã§è¿äºãè¿ã£ãŠãããGoogleã¯ã€ã³ã¿ãŒãããäžã§æ€çŽ¢ããããšãã«éåžžã«åŒ·åãªããŒã«ã«ãªããŸãã
åºæ¬ã®äœ¿ãæ¹ã¯ãhttp://www.google.co.jp/ã«ã¢ã¯ã»ã¹ããŠãããã«ããæ€çŽ¢çªã«èª¿ã¹ããåèªãå
¥ããã ãã§ãããããã§ã¯ããããå°ã䟿å©ãªãã¯ããã¯ãèŠããŠãã£ãŠãã ããã
ãå€ã®æãåºããªã©ãæ¬ã®ã¿ã€ãã«ã決ãŸãæå¥ãåºæåè©ãªã©ãæ€çŽ¢ããããšãã«æŽ»çšã§ãããã¯ããã¯ã§ããæ®éã®æ€çŽ¢ã§ã¯ããå€ããæãåºããšããäºã€ã®åèªãäž¡æ¹åºãŠããããŒãžãæ¢ããŠãããŸããã"å€ã®æãåº"ãšããã°ãå€ã®æãåº ãšç¶ããŠåºãŠæ¥ãå Žåã®ã¿ãæ€çŽ¢ããããšãã§ããŸãã
äžã«æžãããããªæ€çŽ¢ãšã³ãžã³ã¯ãäžã€äžã€ã®æ€çŽ¢ãšã³ãžã³ã§é çªã«èª¿ã¹ãŠè¡ããªããŠã¯ãªããŸãããããããªããããããäžçºã§æ€çŽ¢ããŠããŸããµã€ãããããŸããäŸãã°ãJWordã䜿ã£ãŠæ€çŽ¢ãããŠã¿ãŸããããJWordã¯ããããããªæ€çŽ¢ãµã€ã(Yahooã»Exciteã»BIGLOBEã»Fresheyeã»MSNã»Infoseekã»goo)ãæ¯èŒããªããæ€çŽ¢ããããšãã§ããŸããJWordãã©ã°ã€ã³ã䜿ããšãã€ã³ã¿ãŒããããšã¯ã¹ãããŒã©ãŒãããã¢ãã¬ã¹ããŒã«æ€çŽ¢ãããæååãå
¥åããŠããšã³ã¿ãŒããŒãæŒããšãæ¯èŒæ€çŽ¢ãã§ããŸãããŸããç»é²ãããŠããäŒæ¥ã»ãµã€ãã¯ããµã€ãåãå
¥åãããšãèªåçã«ãã®ãµã€ããžãžã£ã³ãããŸãã
峿žé€šã«ã¯ãæ¬ã貞ãåºãã®ãšã¯å¥ã«ãè³æãæ
å ±ãåéãããšããéèŠãªåœ¹å²ããããŸããå°åã®æŽå²ãæåãç¹å®ã®äŒæ¥ãåŠæ ¡ã®æŽå²ããããã¯ãªã¯ãšã¹ãã®å°ãªãå€å
žæåŠå
šéãªã©ã¯ãéæ¶æžåº«ã調æ»ç 究宀ãªã©ãäžè¬ã®å©çšè
ããã¯å°ãæã®å±ãã«ãããšããã«ãããŠããã®ãæ®éã§ãã
峿žé€šã¯ãã¡ãããçã«ãªãŒãã³ã«ããŠããè³æãèªãã ãã§ãæ²¢å±±ã®æ
å ±ãéããããšãã§ããŸãããéæ¶æžåº«ã調æ»ç 究宀ãå©çšããã°ãçŸç§äºå
žãæžãã®ã«çžå¿ããæ²¢å±±ã®æ
å ±ãåŸãããšãã§ããŸããåãã¯å°ããæ·å±
ãé«ããšæãããããããŸãããããã²ããã¯ã³ã©ã³ã¯äžã®å³æžé€šæŽ»çšæ³ãèŠããŸãããã
貎éãªæ¬ã®æå·ãé²ãããã«ãæ¬æ£ã§ã¯ãªãå¥¥ã®æ¬æ£ã«çœ®ããŠããäºããããŸãããããã£ãæ¬ã鿶峿žãšãããŸãã 鿶峿žã¯æ¬æ£ãèŠãŠãããããªãã®ã§ãã€ã³ã¿ãŒããããã峿žé€šã®äžã«ãããŠã峿žèµæžæ€çŽ¢ãªã©ã®èª¿ã¹ã端æ«çãããå Žåãããã䜿ã£ãŠèª¿ã¹ãŠã¿ãã®ãè¯ãã§ããããããžã£ã³ã«å¥ããåºç幎æ€çŽ¢ããå©çšããŠã¿ããšè¯ãã§ãããã
äžå€®å³æžé€šã倧åŠå³æžé€šãªã©ã倧ããªå³æžé€šã«è¡ãã°ããªãŒãã³ã«ããŠãã空éãšã¯å¥ã«ãçŸç§äºå
žãå°éèŸæžã幎éãªã©ãåºããŠãããŠãã空éããããŸããäžè¬ã«ãããã«ã¯å°ä»»ã®ãåžæžããšåŒã°ããè·å¡ãããŠãè³æãæ¢ãæå©ããããŠãããããšãã§ããŸãã
å
¥ãã«ããé°å²æ°ã®ãšãããå€ããæåã¯ç·åŒµãããããããŸããããåæ°ãåºããŠå
¥ã£ãŠã¿ãŸãããã
峿žé€šåžæžã¯ãè³æãæ¢ãå°éå®¶ã§ã¯ãããŸããããããšããããåéã«ç²ŸéããŠããããã§ã¯ãããŸãããã§ãã®ã§ã調ã¹ããäºæã«ã€ããŠããã«ããŸããã³ããåºãããéèŠãšãªããŸãã調ã¹ããããšãæç¢ºã«ããã®ã¯ãã¡ããã§ãã
ãªã©ãæçœã«ããŠããå¿
èŠããããŸããå€åœã®äººåãå°åãªã©ã«ã€ããŠã¯ãã«ã¿ã«ãã§ã®é³ã ãã§ã¯ãªãã¢ã«ãã¡ããããåèªã§ã®ç¶Žãã調ã¹ãŠãããšèª¿æ»ã楜ã«ãªããŸãã
倧æµã®å³æžé€šã§ã¯ãè³æã®ãªã¯ãšã¹ããšããå¶åºŠããããŸããã©ããããµãŒãã¹ããšãããšããã®å³æžé€šã«ã¯ãªãè³æãè¿é£ã®åžã®å³æžé€šãªã©ããåãå¯ããŠãããããæ°ãã賌å
¥ããŠãããããããµãŒãã¹ã§ããå°ãæéã¯ããããŸããã貎éãªè³æãèªãããšãã§ããŸãã®ã§ããã²å©çšããŠã¿ãŸãããã
ããæ¬ããã®äžã«ååšããã®ãã©ããããããã¯ãŸã æµéããŠããæ¬ãªã®ãã©ãããªã©ããããäžã§èª¿ã¹ãæ¹æ³ãããã®ã§ã玹ä»ããŠãããŸãã
ãããäžã«ã¯æžç±ãéèªãåŠè¡è«æãªã©ã®æ
å ±ããŸãšããããŒã¿ããŒã¹ãååšããŸããäžã«ã¯ææã®ãã®ããããŸããã䜿çšããã ããªãç¡æã®ãã®ããããŸãããããäžã§åç
§ã§ããè³æãå€ããããããè³æãçšããã°æè»œã«èšäºã®ã°ã¬ãŒããäžããäºãã§ããŸããæ§ã
ãªãã®ããããŸãããããã§ã¯ç¥å床ããããç¡æã§å©çšã§ããCiNiiãšåœç«åœäŒå³æžé€šã®ãµãŒãã¹ã玹ä»ããŸãã
åœç«æ
å ±åŠç ç©¶æãéå¶ããåŠè¡æ
å ±ããŒã¿ããŒã¹ã§ãããCiNii ArticlesãããCiNii BooksãããCiNii Dissertationsãã®3ã€ã®ããŒã¿ããŒã¹ããããããããåŠè¡è«æã倧åŠå³æžé€šã®æžç±ãåå£«è«æãæ€çŽ¢ã§ããŸããäžéšé²èŠ§ãææã®è«æããããŸãããå©çšèªäœã¯ç¡æã§ãã
åœç«åœäŒå³æžé€šã®ãµã€ã(ãã¡ã)ã§ã¯ãå峿žé€šã«åèµãããŠããæ§ã
ãªè³æãæ€çŽ¢ã§ããŸããå€ãã®ãµãŒãã¹ããããŸããã以äžã«ãã䜿ãããæ©èœãæããŠãããŸãããŸããåœç«å³æžé€šã«ããã°ããã€ãã®ææããŒã¿ããŒã¹ãç¡æã§å©çšå¯èœã§ãããã¡ããèŠããŠãããŸãããã
ã¡ã€ã³ããŒãžããå©çšã§ããæ€çŽ¢æ©èœã§ããããŒã¯ãŒãã«é¢ä¿ããæžç±ãèšäºã»è«æãªã©ãæ€çŽ¢ã§ããŸãã
å€å
žç±ãå€ãæ°èãæ¿åºåè¡ç©ãç§åŠæ åãªã©ã®ããžã¿ã«è³æãæ€çŽ¢ã§ãããµãŒãã¹ã§ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "<å
é ã«æ»ã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ã€ã³ã¿ãŒãããäžã§ã®æ
å ±åéã¯ããŠã£ãããã£ã¢ã³ãã¡ã«ãšã£ãŠã¯ãã£ãšã身è¿ãªææ®µã®äžã€ãšãããã§ããããæ€çŽ¢çªã«åèªãå
¥ããã ãã§æ¬²ããæ
å ±ãæã«å
¥ãã€ã³ã¿ãŒãããã¯ããšãŠã䟿å©ãªããŒã«ã§ãã",
"title": "æ€çŽ¢ãšã³ãžã³ãå©çšãã"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãã ã䟿å©ãªåé¢ãæ°ãã€ããªããã°ãããªãããšããããŸãã",
"title": "æ€çŽ¢ãšã³ãžã³ãå©çšãã"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "æ€çŽ¢ãšã³ãžã³ã«ã¯ããã£ã¬ã¯ããªåãšããããåã®2çš®é¡ã®æ€çŽ¢ãšã³ãžã³ããããŸãããã£ã¬ã¯ããªåã¯äººã®æã§ãµã€ãæ
å ±ãå
¥åããæ€çŽ¢ãšã³ãžã³ã§ãããããåã¯ãã¯ããŒã©ãŒãšããããããã°ã©ã ãèªåçã«ãµã€ãæ
å ±ãåé¡ãããã®ã§ããããããã«é·æã»çæãããã®ã§ããŸã䜿ãåããå¿
èŠããããŸãããçŸåšã§ã¯å€§æã®æ€çŽ¢ãšã³ãžã³ã¯ã©ã¡ãã䜵çšããŠãããã®ãå€ããªã£ãŠããŸãã",
"title": "æ€çŽ¢ãšã³ãžã³ãå©çšãã"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ã€ã³ã¿ãŒãããäžã§äœãã質åãããããããã(Googleã§æ€çŽ¢ãã)ãšäžèšã§è¿äºãè¿ã£ãŠãããGoogleã¯ã€ã³ã¿ãŒãããäžã§æ€çŽ¢ããããšãã«éåžžã«åŒ·åãªããŒã«ã«ãªããŸãã",
"title": "æ€çŽ¢ãšã³ãžã³ãå©çšãã"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "åºæ¬ã®äœ¿ãæ¹ã¯ãhttp://www.google.co.jp/ã«ã¢ã¯ã»ã¹ããŠãããã«ããæ€çŽ¢çªã«èª¿ã¹ããåèªãå
¥ããã ãã§ãããããã§ã¯ããããå°ã䟿å©ãªãã¯ããã¯ãèŠããŠãã£ãŠãã ããã",
"title": "æ€çŽ¢ãšã³ãžã³ãå©çšãã"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãå€ã®æãåºããªã©ãæ¬ã®ã¿ã€ãã«ã決ãŸãæå¥ãåºæåè©ãªã©ãæ€çŽ¢ããããšãã«æŽ»çšã§ãããã¯ããã¯ã§ããæ®éã®æ€çŽ¢ã§ã¯ããå€ããæãåºããšããäºã€ã®åèªãäž¡æ¹åºãŠããããŒãžãæ¢ããŠãããŸããã\"å€ã®æãåº\"ãšããã°ãå€ã®æãåº ãšç¶ããŠåºãŠæ¥ãå Žåã®ã¿ãæ€çŽ¢ããããšãã§ããŸãã",
"title": "æ€çŽ¢ãšã³ãžã³ãå©çšãã"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "äžã«æžãããããªæ€çŽ¢ãšã³ãžã³ã¯ãäžã€äžã€ã®æ€çŽ¢ãšã³ãžã³ã§é çªã«èª¿ã¹ãŠè¡ããªããŠã¯ãªããŸãããããããªããããããäžçºã§æ€çŽ¢ããŠããŸããµã€ãããããŸããäŸãã°ãJWordã䜿ã£ãŠæ€çŽ¢ãããŠã¿ãŸããããJWordã¯ããããããªæ€çŽ¢ãµã€ã(Yahooã»Exciteã»BIGLOBEã»Fresheyeã»MSNã»Infoseekã»goo)ãæ¯èŒããªããæ€çŽ¢ããããšãã§ããŸããJWordãã©ã°ã€ã³ã䜿ããšãã€ã³ã¿ãŒããããšã¯ã¹ãããŒã©ãŒãããã¢ãã¬ã¹ããŒã«æ€çŽ¢ãããæååãå
¥åããŠããšã³ã¿ãŒããŒãæŒããšãæ¯èŒæ€çŽ¢ãã§ããŸãããŸããç»é²ãããŠããäŒæ¥ã»ãµã€ãã¯ããµã€ãåãå
¥åãããšãèªåçã«ãã®ãµã€ããžãžã£ã³ãããŸãã",
"title": "æ€çŽ¢ãšã³ãžã³ãå©çšãã"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "峿žé€šã«ã¯ãæ¬ã貞ãåºãã®ãšã¯å¥ã«ãè³æãæ
å ±ãåéãããšããéèŠãªåœ¹å²ããããŸããå°åã®æŽå²ãæåãç¹å®ã®äŒæ¥ãåŠæ ¡ã®æŽå²ããããã¯ãªã¯ãšã¹ãã®å°ãªãå€å
žæåŠå
šéãªã©ã¯ãéæ¶æžåº«ã調æ»ç 究宀ãªã©ãäžè¬ã®å©çšè
ããã¯å°ãæã®å±ãã«ãããšããã«ãããŠããã®ãæ®éã§ãã",
"title": "峿žé€šãå©çšãã"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "峿žé€šã¯ãã¡ãããçã«ãªãŒãã³ã«ããŠããè³æãèªãã ãã§ãæ²¢å±±ã®æ
å ±ãéããããšãã§ããŸãããéæ¶æžåº«ã調æ»ç 究宀ãå©çšããã°ãçŸç§äºå
žãæžãã®ã«çžå¿ããæ²¢å±±ã®æ
å ±ãåŸãããšãã§ããŸããåãã¯å°ããæ·å±
ãé«ããšæãããããããŸãããããã²ããã¯ã³ã©ã³ã¯äžã®å³æžé€šæŽ»çšæ³ãèŠããŸãããã",
"title": "峿žé€šãå©çšãã"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "貎éãªæ¬ã®æå·ãé²ãããã«ãæ¬æ£ã§ã¯ãªãå¥¥ã®æ¬æ£ã«çœ®ããŠããäºããããŸãããããã£ãæ¬ã鿶峿žãšãããŸãã 鿶峿žã¯æ¬æ£ãèŠãŠãããããªãã®ã§ãã€ã³ã¿ãŒããããã峿žé€šã®äžã«ãããŠã峿žèµæžæ€çŽ¢ãªã©ã®èª¿ã¹ã端æ«çãããå Žåãããã䜿ã£ãŠèª¿ã¹ãŠã¿ãã®ãè¯ãã§ããããããžã£ã³ã«å¥ããåºç幎æ€çŽ¢ããå©çšããŠã¿ããšè¯ãã§ãããã",
"title": "峿žé€šãå©çšãã"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "äžå€®å³æžé€šã倧åŠå³æžé€šãªã©ã倧ããªå³æžé€šã«è¡ãã°ããªãŒãã³ã«ããŠãã空éãšã¯å¥ã«ãçŸç§äºå
žãå°éèŸæžã幎éãªã©ãåºããŠãããŠãã空éããããŸããäžè¬ã«ãããã«ã¯å°ä»»ã®ãåžæžããšåŒã°ããè·å¡ãããŠãè³æãæ¢ãæå©ããããŠãããããšãã§ããŸãã",
"title": "峿žé€šãå©çšãã"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "å
¥ãã«ããé°å²æ°ã®ãšãããå€ããæåã¯ç·åŒµãããããããŸããããåæ°ãåºããŠå
¥ã£ãŠã¿ãŸãããã",
"title": "峿žé€šãå©çšãã"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "峿žé€šåžæžã¯ãè³æãæ¢ãå°éå®¶ã§ã¯ãããŸããããããšããããåéã«ç²ŸéããŠããããã§ã¯ãããŸãããã§ãã®ã§ã調ã¹ããäºæã«ã€ããŠããã«ããŸããã³ããåºãããéèŠãšãªããŸãã調ã¹ããããšãæç¢ºã«ããã®ã¯ãã¡ããã§ãã",
"title": "峿žé€šãå©çšãã"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãªã©ãæçœã«ããŠããå¿
èŠããããŸããå€åœã®äººåãå°åãªã©ã«ã€ããŠã¯ãã«ã¿ã«ãã§ã®é³ã ãã§ã¯ãªãã¢ã«ãã¡ããããåèªã§ã®ç¶Žãã調ã¹ãŠãããšèª¿æ»ã楜ã«ãªããŸãã",
"title": "峿žé€šãå©çšãã"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "倧æµã®å³æžé€šã§ã¯ãè³æã®ãªã¯ãšã¹ããšããå¶åºŠããããŸããã©ããããµãŒãã¹ããšãããšããã®å³æžé€šã«ã¯ãªãè³æãè¿é£ã®åžã®å³æžé€šãªã©ããåãå¯ããŠãããããæ°ãã賌å
¥ããŠãããããããµãŒãã¹ã§ããå°ãæéã¯ããããŸããã貎éãªè³æãèªãããšãã§ããŸãã®ã§ããã²å©çšããŠã¿ãŸãããã",
"title": "峿žé€šãå©çšãã"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ããæ¬ããã®äžã«ååšããã®ãã©ããããããã¯ãŸã æµéããŠããæ¬ãªã®ãã©ãããªã©ããããäžã§èª¿ã¹ãæ¹æ³ãããã®ã§ã玹ä»ããŠãããŸãã",
"title": "çµã¿åãã"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ãããäžã«ã¯æžç±ãéèªãåŠè¡è«æãªã©ã®æ
å ±ããŸãšããããŒã¿ããŒã¹ãååšããŸããäžã«ã¯ææã®ãã®ããããŸããã䜿çšããã ããªãç¡æã®ãã®ããããŸãããããäžã§åç
§ã§ããè³æãå€ããããããè³æãçšããã°æè»œã«èšäºã®ã°ã¬ãŒããäžããäºãã§ããŸããæ§ã
ãªãã®ããããŸãããããã§ã¯ç¥å床ããããç¡æã§å©çšã§ããCiNiiãšåœç«åœäŒå³æžé€šã®ãµãŒãã¹ã玹ä»ããŸãã",
"title": "ããŒã¿ããŒã¹ãå©çšãã"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "åœç«æ
å ±åŠç ç©¶æãéå¶ããåŠè¡æ
å ±ããŒã¿ããŒã¹ã§ãããCiNii ArticlesãããCiNii BooksãããCiNii Dissertationsãã®3ã€ã®ããŒã¿ããŒã¹ããããããããåŠè¡è«æã倧åŠå³æžé€šã®æžç±ãåå£«è«æãæ€çŽ¢ã§ããŸããäžéšé²èŠ§ãææã®è«æããããŸãããå©çšèªäœã¯ç¡æã§ãã",
"title": "ããŒã¿ããŒã¹ãå©çšãã"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "åœç«åœäŒå³æžé€šã®ãµã€ã(ãã¡ã)ã§ã¯ãå峿žé€šã«åèµãããŠããæ§ã
ãªè³æãæ€çŽ¢ã§ããŸããå€ãã®ãµãŒãã¹ããããŸããã以äžã«ãã䜿ãããæ©èœãæããŠãããŸãããŸããåœç«å³æžé€šã«ããã°ããã€ãã®ææããŒã¿ããŒã¹ãç¡æã§å©çšå¯èœã§ãããã¡ããèŠããŠãããŸãããã",
"title": "ããŒã¿ããŒã¹ãå©çšãã"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ã¡ã€ã³ããŒãžããå©çšã§ããæ€çŽ¢æ©èœã§ããããŒã¯ãŒãã«é¢ä¿ããæžç±ãèšäºã»è«æãªã©ãæ€çŽ¢ã§ããŸãã",
"title": "ããŒã¿ããŒã¹ãå©çšãã"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "å€å
žç±ãå€ãæ°èãæ¿åºåè¡ç©ãç§åŠæ åãªã©ã®ããžã¿ã«è³æãæ€çŽ¢ã§ãããµãŒãã¹ã§ãã",
"title": "ããŒã¿ããŒã¹ãå©çšãã"
}
] | ïŒå
é ã«æ»ã
| [[Image:Libri books2.jpg|right|500px]]
{{æžãæ¹å
¥éç·šNav}}
==æ€çŽ¢ãšã³ãžã³ãå©çšãã==
ã€ã³ã¿ãŒãããäžã§ã®æ
å ±åéã¯ããŠã£ãããã£ã¢ã³ãã¡ã«ãšã£ãŠã¯ãã£ãšã身è¿ãªææ®µã®äžã€ãšãããã§ããããæ€çŽ¢çªã«åèªãå
¥ããã ãã§æ¬²ããæ
å ±ãæã«å
¥ãã€ã³ã¿ãŒãããã¯ããšãŠã䟿å©ãªããŒã«ã§ãã
ãã ã䟿å©ãªåé¢ãæ°ãã€ããªããã°ãããªãããšããããŸãã
*ããé¢ïŒãªã³ã©ã€ã³ã«ã¯æ²¢å±±ã®ãµã€ãããããŸããæ¬å±ã§éžãã æžç±ãèªãããããã»ã©é¢çœãç¥èãè©°ãŸã£ããµã€ããå€ãã§ããããããŸãã¡ãžã£ãŒã§ã¯ãªããã®ãææ°æ
å ±ãæ¢ãã®ã«ã¯ãæ Œå¥œã®ããŒã«ã§ãããšããããŸãã
*æªãé¢ïŒãªã³ã©ã€ã³ã§ã¯èª°ããæ
å ±ã®çºä¿¡è
ãšãªããããšãé
åã§ããããã©ããããã¯è£ãè¿ãã°ãæ ¡æ£ãæ»èªãçµãŠããªããããã°æ£ç¢ºæ§ã®æªããæ
å ±ãé£ã³äº€ã£ãŠãããšèšãããšã«ããªããŸãã
===ãã£ã¬ã¯ããªåãšããããåãšã³ãžã³===
[[w:æ€çŽ¢ãšã³ãžã³|æ€çŽ¢ãšã³ãžã³]]ã«ã¯ããã£ã¬ã¯ããªåãšããããåã®2çš®é¡ã®æ€çŽ¢ãšã³ãžã³ããããŸãããã£ã¬ã¯ããªåã¯äººã®æã§ãµã€ãæ
å ±ãå
¥åããæ€çŽ¢ãšã³ãžã³ã§ãããããåã¯ãã¯ããŒã©ãŒãšããããããã°ã©ã ãèªåçã«ãµã€ãæ
å ±ãåé¡ãããã®ã§ããããããã«é·æã»çæãããã®ã§ããŸã䜿ãåããå¿
èŠããããŸãããçŸåšã§ã¯å€§æã®æ€çŽ¢ãšã³ãžã³ã¯ã©ã¡ãã䜵çšããŠãããã®ãå€ããªã£ãŠããŸãã
*ãã£ã¬ã¯ããªå
*:äººã®æã§æŽæ°ããã®ã§ãæ
å ±éã®å°ãªãã¯ãããŸãããå
¬åŒãµã€ããªã©ç¢ºå®ãªæ
å ±ã«ãã©ãçãã確çã¯é«ããªããŸãã倧æã®æ€çŽ¢ãšã³ãžã³ã§ã¯ãªããç¹å®ã®ãžã£ã³ã«ã«ã€ããŠèª¿ã¹ããšããããšãã«äœ¿ãæ©äŒãå€ããããããŸãããããšãã°ãæŽå²ã§ãã£ãããã¡ãã·ã§ã³ã§ãã£ãããšãã£ãç¹å®ã®ãžã£ã³ã«ã«ç¹åããæ€çŽ¢ãšã³ãžã³ããããŸãã
*ããããå
*:æ€çŽ¢æ°ã®å€ããããªããšãã£ãŠãããããåãšã³ãžã³ã®é·æã§ãããã ããã®åé¢ã§ããããããæ
å ±ãåéããããã«ãããŸãæ
å ±ã®ãªããµã€ãããå
šãé¢ä¿ãªããµã€ããå€ãåŒã£ããããšããçæããããŸãã
====Google====
ã€ã³ã¿ãŒãããäžã§äœãã質åããããããããïŒGoogleã§æ€çŽ¢ããïŒãšäžèšã§è¿äºãè¿ã£ãŠãããGoogleã¯ã€ã³ã¿ãŒãããäžã§æ€çŽ¢ããããšãã«éåžžã«åŒ·åãªããŒã«ã«ãªããŸãã
åºæ¬ã®äœ¿ãæ¹ã¯ã[http://www.google.co.jp/ http://www.google.co.jp/]ã«ã¢ã¯ã»ã¹ããŠãããã«ããæ€çŽ¢çªã«èª¿ã¹ããåèªãå
¥ããã ãã§ãããããã§ã¯ããããå°ã䟿å©ãªãã¯ããã¯ãèŠããŠãã£ãŠãã ããã
====åŒçšç¬Š====
ãå€ã®æãåºããªã©ãæ¬ã®ã¿ã€ãã«ã決ãŸãæå¥ãåºæåè©ãªã©ãæ€çŽ¢ããããšãã«æŽ»çšã§ãããã¯ããã¯ã§ããæ®éã®æ€çŽ¢ã§ã¯ããå€ããæãåºããšããäºã€ã®åèªãäž¡æ¹åºãŠããããŒãžãæ¢ããŠãããŸããã'''"å€ã®æãåº"'''ãšããã°ãå€ã®æãåºããšç¶ããŠåºãŠæ¥ãå Žåã®ã¿ãæ€çŽ¢ããããšãã§ããŸãã
===JWORD===
äžã«æžãããããªæ€çŽ¢ãšã³ãžã³ã¯ãäžã€äžã€ã®æ€çŽ¢ãšã³ãžã³ã§é çªã«èª¿ã¹ãŠè¡ããªããŠã¯ãªããŸãããããããªããããããäžçºã§æ€çŽ¢ããŠããŸããµã€ãããããŸããäŸãã°ã[http://www.jword.jp/ JWord]ã䜿ã£ãŠæ€çŽ¢ãããŠã¿ãŸããããJWordã¯ããããããªæ€çŽ¢ãµã€ãïŒYahooã»Exciteã»BIGLOBEã»Fresheyeã»MSNã»Infoseekã»gooïŒãæ¯èŒããªããæ€çŽ¢ããããšãã§ããŸããJWordãã©ã°ã€ã³ã䜿ããšãã€ã³ã¿ãŒããããšã¯ã¹ãããŒã©ãŒãããã¢ãã¬ã¹ããŒã«æ€çŽ¢ãããæååãå
¥åããŠããšã³ã¿ãŒããŒãæŒããšãæ¯èŒæ€çŽ¢ãã§ããŸãããŸããç»é²ãããŠããäŒæ¥ã»ãµã€ãã¯ããµã€ãåãå
¥åãããšãèªåçã«ãã®ãµã€ããžãžã£ã³ãããŸãã
*[http://search.jword.jp/cns.dll?type=sb&fm=11&agent=&partner=AP&lang=euc&name=%A5%A6%A5%A3%A5%AD%A5%E1%A5%C7%A5%A3%A5%A2%BA%E2%C3%C4&sbox11_5=%B8%A1%BA%F7 JWordæ€çŽ¢çµæ ããŠã£ãã¡ãã£ã¢è²¡å£ã]
*[http://search.jword.jp/cns.dll?type=sb&fm=2&agent=&partner=AP&lang=euc&name=%A5%A6%A5%A3%A5%AD%A5%DA%A5%C7%A5%A3%A5%A2&bypass=&selsecategory=&service=jwd&style=1 JWordæ€çŽ¢çµæ ããŠã£ãããã£ã¢ã]
==峿žé€šãå©çšãã==
峿žé€šã«ã¯ãæ¬ã貞ãåºãã®ãšã¯å¥ã«ã''è³æãæ
å ±ãåéãã''ãšããéèŠãªåœ¹å²ããããŸããå°åã®æŽå²ãæåãç¹å®ã®äŒæ¥ãåŠæ ¡ã®æŽå²ããããã¯ãªã¯ãšã¹ãã®å°ãªãå€å
žæåŠå
šéãªã©ã¯ãéæ¶æžåº«ã調æ»ç 究宀ãªã©ãäžè¬ã®å©çšè
ããã¯å°ãæã®å±ãã«ãããšããã«ãããŠããã®ãæ®éã§ãã
峿žé€šã¯ãã¡ãããçã«ãªãŒãã³ã«ããŠããè³æãèªãã ãã§ãæ²¢å±±ã®æ
å ±ãéããããšãã§ããŸãããéæ¶æžåº«ã調æ»ç 究宀ãå©çšããã°ãçŸç§äºå
žãæžãã®ã«çžå¿ããæ²¢å±±ã®æ
å ±ãåŸãããšãã§ããŸããåãã¯å°ããæ·å±
ãé«ããšæãããããããŸãããããã²ããã¯ã³ã©ã³ã¯äžã®å³æžé€šæŽ»çšæ³ãèŠããŸãããã
===éæ¶æžåº«ã«ããæ¬ã®æ¢ãæ¹===
貎éãªæ¬ã®æå·ãé²ãããã«ãæ¬æ£ã§ã¯ãªãå¥¥ã®æ¬æ£ã«çœ®ããŠããäºããããŸãããããã£ãæ¬ã鿶峿žãšãããŸãã
鿶峿žã¯æ¬æ£ãèŠãŠãããããªãã®ã§ãã€ã³ã¿ãŒããããã峿žé€šã®äžã«ãããŠã峿žèµæžæ€çŽ¢ãªã©ã®èª¿ã¹ã端æ«çãããå Žåãããã䜿ã£ãŠèª¿ã¹ãŠã¿ãã®ãè¯ãã§ããããããžã£ã³ã«å¥ããåºç幎æ€çŽ¢ããå©çšããŠã¿ããšè¯ãã§ãããã
===調æ»ç 究宀===
äžå€®å³æžé€šã倧åŠå³æžé€šãªã©ã倧ããªå³æžé€šã«è¡ãã°ããªãŒãã³ã«ããŠãã空éãšã¯å¥ã«ãçŸç§äºå
žãå°éèŸæžã幎éãªã©ãåºããŠãããŠãã空éããããŸããäžè¬ã«ãããã«ã¯å°ä»»ã®ãåžæžããšåŒã°ããè·å¡ãããŠãè³æãæ¢ãæå©ããããŠãããããšãã§ããŸãã
å
¥ãã«ããé°å²æ°ã®ãšãããå€ããæåã¯ç·åŒµãããããããŸããããåæ°ãåºããŠå
¥ã£ãŠã¿ãŸãããã
===ãªãã¡ã¬ã³ã¹ãµãŒãã¹ã®äžæãªäœ¿ãæ¹===
峿žé€šåžæžã¯ãè³æãæ¢ãå°éå®¶ã§ã¯ãããŸããããããšããããåéã«ç²ŸéããŠããããã§ã¯ãããŸãããã§ãã®ã§ã調ã¹ããäºæã«ã€ããŠããã«ããŸããã³ããåºãããéèŠãšãªããŸãã調ã¹ããããšãæç¢ºã«ããã®ã¯ãã¡ããã§ãã
*äœã®ããã«
*äœã®ãžã£ã³ã«ã«ã€ããŠ
ãªã©ãæçœã«ããŠããå¿
èŠããããŸããå€åœã®äººåãå°åãªã©ã«ã€ããŠã¯ãã«ã¿ã«ãã§ã®é³ã ãã§ã¯ãªãã¢ã«ãã¡ããããåèªã§ã®ç¶Žãã調ã¹ãŠãããšèª¿æ»ã楜ã«ãªããŸãã
=== ãã®å Žã«ãªãæ¬ãèªã ===
倧æµã®å³æžé€šã§ã¯ãè³æã®ãªã¯ãšã¹ããšããå¶åºŠããããŸããã©ããããµãŒãã¹ããšãããšããã®å³æžé€šã«ã¯ãªãè³æãè¿é£ã®åžã®å³æžé€šãªã©ããåãå¯ããŠãããããæ°ãã賌å
¥ããŠãããããããµãŒãã¹ã§ããå°ãæéã¯ããããŸããã貎éãªè³æãèªãããšãã§ããŸãã®ã§ããã²å©çšããŠã¿ãŸãããã
==çµã¿åãã==
ããæ¬ããã®äžã«ååšããã®ãã©ããããããã¯ãŸã æµéããŠããæ¬ãªã®ãã©ãããªã©ããããäžã§èª¿ã¹ãæ¹æ³ãããã®ã§ã玹ä»ããŠãããŸãã
*[http://www.books.or.jp/ Books.or.jp] - æ¥æ¬åœå
ã§åºçããããã€æµéããŠããæ¬ãã©ããã調ã¹ãããã®ãµãŒãã¹ã§ããã€ãŸããçµ¶çæ¬ãæ¬å±ã§æ¢ããšããæéã®ç¡é§ãçãããšãåºæ¥ãŸãã
*<!--[http://webcat.nii.ac.jp/ NACSIS Webcat] - 倧åŠå³æžé€šã®æèµè³æã®ããŒã¿ããŒã¹ã暪æçã«æ€çŽ¢ã§ããã·ã¹ãã ã--><!--ãªã³ã¯åãã®ãã-->
== ããŒã¿ããŒã¹ãå©çšãã ==
ãããäžã«ã¯æžç±ãéèªãåŠè¡è«æãªã©ã®æ
å ±ããŸãšããããŒã¿ããŒã¹ãååšããŸããäžã«ã¯ææã®ãã®ããããŸããã䜿çšããã ããªãç¡æã®ãã®ããããŸãããããäžã§åç
§ã§ããè³æãå€ããããããè³æãçšããã°æè»œã«èšäºã®ã°ã¬ãŒããäžããäºãã§ããŸããæ§ã
ãªãã®ããããŸãããããã§ã¯ç¥å床ããããç¡æã§å©çšã§ããCiNiiãšåœç«åœäŒå³æžé€šã®ãµãŒãã¹ã玹ä»ããŸãã
=== CiNii ===
åœç«æ
å ±åŠç ç©¶æãéå¶ããåŠè¡æ
å ±ããŒã¿ããŒã¹ã§ããã'''CiNii Articles'''ããã'''CiNii Books'''ããã'''CiNii Dissertations'''ãã®3ã€ã®ããŒã¿ããŒã¹ããããããããåŠè¡è«æã倧åŠå³æžé€šã®æžç±ãåå£«è«æãæ€çŽ¢ã§ããŸããäžéšé²èŠ§ãææã®è«æããããŸãããå©çšèªäœã¯ç¡æã§ãã
* [http://ci.nii.ac.jp/ CiNii Articles - æ¥æ¬ã®è«æãããã]
* [http://ci.nii.ac.jp/books/ CiNii Books - 倧åŠå³æžé€šã®æ¬ãããã]
* [http://ci.nii.ac.jp/d/ CiNii Dissertations - æ¥æ¬ã®åå£«è«æãããã]
=== åœç«åœäŒå³æžé€š ===
åœç«åœäŒå³æžé€šã®ãµã€ãïŒ[http://www.ndl.go.jp/index.html ãã¡ã]ïŒã§ã¯ãå峿žé€šã«åèµãããŠããæ§ã
ãªè³æãæ€çŽ¢ã§ããŸããå€ãã®ãµãŒãã¹ããããŸããã以äžã«ãã䜿ãããæ©èœãæããŠãããŸãããŸããåœç«å³æžé€šã«ããã°ããã€ãã®ææããŒã¿ããŒã¹ãç¡æã§å©çšå¯èœã§ãããã¡ããèŠããŠãããŸãããã
*åœç«åœäŒå³æžé€šãµãŒã
ã¡ã€ã³ããŒãžããå©çšã§ããæ€çŽ¢æ©èœã§ããããŒã¯ãŒãã«é¢ä¿ããæžç±ãèšäºã»è«æãªã©ãæ€çŽ¢ã§ããŸãã
*åœç«åœäŒå³æžé€šããžã¿ã«ã³ã¬ã¯ã·ã§ã³
å€å
žç±ãå€ãæ°èãæ¿åºåè¡ç©ãç§åŠæ åãªã©ã®ããžã¿ã«è³æãæ€çŽ¢ã§ãããµãŒãã¹ã§ãã<!--ãããã®äžããã€ã³ã¿ãŒãããã§é²èЧå¯èœãªè¿ä»£ã®è³æãéãããè¿ä»£ããžã¿ã«ã©ã€ãã©ãªãŒããšãããµãŒãã¹ããããŸãã--><!--çµ±åã®ãã-->
==åèæç®==
*åå³¶éæ¹ ä»ç£ä¿®ã峿žé€šæŠè«ãïŒæš¹ææ¿ïŒISBN 4-88367-001-5
*é·æŸ€é
ç·ãèãæ
å ±ãšæç®ã®æ¢çŽ¢ç¬¬3çãïŒäžžåïŒISBN 4-621-03943
== å€éšãªã³ã¯ ==
*[http://www.ndl.go.jp/jp/data/theme.html åœç«åœäŒå³æžé€šããŒãå¥èª¿ã¹æ¹æ¡å
]
[[Category:ãŠã£ãããã£ã¢ã®æžãæ¹|ã«ã
ããã04]] | null | 2020-05-06T04:21:02Z | [
"ãã³ãã¬ãŒã:æžãæ¹å
¥éç·šNav"
] | https://ja.wikibooks.org/wiki/%E3%82%A6%E3%82%A3%E3%82%AD%E3%83%9A%E3%83%87%E3%82%A3%E3%82%A2%E3%81%AE%E6%9B%B8%E3%81%8D%E6%96%B9/%E5%85%A5%E9%96%80%E7%B7%A8/%E8%B3%87%E6%96%99%E3%81%AE%E6%8E%A2%E3%81%97%E6%96%B9 |
2,061 | ææ©ååŠ/ãšãŒãã« | ææ©ååŠ>ãšãŒãã«
C-O-Cã®åœ¢ã®çµåããšãŒãã«çµåãšãããããããã€ååç©ããšãŒãã«ãšããã åœåæ³ã¯çåæ°ŽçŽ åºã®åç§°ã®åŸã«ããšãŒãã«ããã€ããã äŸãã°CH3CH2-O-CH3ã¯ããšãã«ã¡ãã«ãšãŒãã«ãã§ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ææ©ååŠ>ãšãŒãã«",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "C-O-Cã®åœ¢ã®çµåããšãŒãã«çµåãšãããããããã€ååç©ããšãŒãã«ãšããã åœåæ³ã¯çåæ°ŽçŽ åºã®åç§°ã®åŸã«ããšãŒãã«ããã€ããã äŸãã°CH3CH2-O-CH3ã¯ããšãã«ã¡ãã«ãšãŒãã«ãã§ããã",
"title": "ãšãŒãã«ã®å®çŸ©ãšåœåæ³"
}
] | ææ©ååŠïŒãšãŒãã« | [[ææ©ååŠ]]ïŒãšãŒãã«
==ãšãŒãã«ã®å®çŸ©ãšåœåæ³==
CïŒOïŒCã®åœ¢ã®çµåããšãŒãã«çµåãšãããããããã€ååç©ããšãŒãã«ãšããã
åœåæ³ã¯[[ææ©ååŠ_åº#çåæ°ŽçŽ åºã®çš®é¡|çåæ°ŽçŽ åº]]ã®åç§°ã®åŸã«ããšãŒãã«ããã€ããã
äŸãã°CH<sub>3</sub>CH<sub>2</sub>ïŒOïŒCH<sub>3</sub>ã¯ããšãã«ã¡ãã«ãšãŒãã«ãã§ããã
[[ã«ããŽãª:ææ©ååŠ]]
[[en:Organic Chemistry/Ethers]] | null | 2022-11-23T05:33:06Z | [] | https://ja.wikibooks.org/wiki/%E6%9C%89%E6%A9%9F%E5%8C%96%E5%AD%A6/%E3%82%A8%E3%83%BC%E3%83%86%E3%83%AB |
2,063 | ææ©ååŠ/ã±ãã³ | ææ©ååŠ>ã±ãã³
ã±ãã³ã¯ã±ãã³åº-CO-ãæã€ååç©ã§ãããåœéåã¯ã¢ã«ã«ã³ã®èªå°Ÿneãnoneã«å€ããããããŸã䜿ãããªãã
第äºçŽã¢ã«ã³ãŒã«ãé
žåãããšãããããã·ã«åºã2åã®ã¢ã«ã³ãŒã«ãã§ããã
ãã ããã²ãšã€ã®Cå
çŽ ã«ããããã·åºã2åä»ããšãããã«è±æ°Žåå¿ãèµ·ããã ãã£ãŠãã®ç©è³ªã¯äžç¬ååšããã ãã§ããã«å¥ã®ç©è³ªã«å€ããã
ãã®ãšããã®>C=Oã®éšåãã±ãã³åºãšãããç°¡åã«>COãšæžãã
>C=Oã¯å®ã¯äžè¬çã«ã¯ã«ã«ããã«åºãšããããããã ããå³å¯ã«ã¯ã«ã«ããã«åº=ã±ãã³åºã§ã¯ãªãã ãªããªãã>C=Oããã€åºã¯ä»ã«ãã¢ã«ãããåº-CHOãã«ã«ããã·ã«åº-COOHãããããã§ããã ã«ã«ããã«åºã¯ãããã®ç·ç§°ãšããŠååšãããã±ãã³åºã¯ãã«ã«ããã«åºã®ãã¡>COã®äŸ¡æšã®äž¡åŽã«çåæ°ŽçŽ åºãä»ãããã®ã§ãããã«ã«ããã«åºã®äžçš®ã§ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ææ©ååŠ>ã±ãã³",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ã±ãã³ã¯ã±ãã³åº-CO-ãæã€ååç©ã§ãããåœéåã¯ã¢ã«ã«ã³ã®èªå°Ÿneãnoneã«å€ããããããŸã䜿ãããªãã",
"title": "ã±ãã³ã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "第äºçŽã¢ã«ã³ãŒã«ãé
žåãããšãããããã·ã«åºã2åã®ã¢ã«ã³ãŒã«ãã§ããã",
"title": "ã±ãã³ã®çæ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãã ããã²ãšã€ã®Cå
çŽ ã«ããããã·åºã2åä»ããšãããã«è±æ°Žåå¿ãèµ·ããã ãã£ãŠãã®ç©è³ªã¯äžç¬ååšããã ãã§ããã«å¥ã®ç©è³ªã«å€ããã",
"title": "ã±ãã³ã®çæ"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãã®ãšããã®>C=Oã®éšåãã±ãã³åºãšãããç°¡åã«>COãšæžãã",
"title": "ã±ãã³ã®çæ"
},
{
"paragraph_id": 5,
"tag": "p",
"text": ">C=Oã¯å®ã¯äžè¬çã«ã¯ã«ã«ããã«åºãšããããããã ããå³å¯ã«ã¯ã«ã«ããã«åº=ã±ãã³åºã§ã¯ãªãã ãªããªãã>C=Oããã€åºã¯ä»ã«ãã¢ã«ãããåº-CHOãã«ã«ããã·ã«åº-COOHãããããã§ããã ã«ã«ããã«åºã¯ãããã®ç·ç§°ãšããŠååšãããã±ãã³åºã¯ãã«ã«ããã«åºã®ãã¡>COã®äŸ¡æšã®äž¡åŽã«çåæ°ŽçŽ åºãä»ãããã®ã§ãããã«ã«ããã«åºã®äžçš®ã§ããã",
"title": "ã«ã«ããã«åº"
}
] | ææ©ååŠïŒã±ãã³ | [[ææ©ååŠ]]ïŒã±ãã³
==ã±ãã³ã®å®çŸ©ãšåœåæ³==
ã±ãã³ã¯ã±ãã³åºïŒCOïŒãæã€ååç©ã§ãããåœéåã¯ã¢ã«ã«ã³ã®èªå°Ÿneãnoneã«å€ããããããŸã䜿ãããªãã
*CH<sub>3</sub>COCH<sub>3</sub> 2-ããããã³→'''ã¢ã»ãã³'''
*CH<sub>3</sub>CH<sub>2</sub>COCH<sub>3</sub> 2ïŒãã¿ãã³→'''ãšãã«ã¡ãã«ã±ãã³'''
==ã±ãã³ã®çæ==
[[ææ©ååŠ_ã¢ã«ã³ãŒã«|第äºçŽã¢ã«ã³ãŒã«]]ãé
žåãããšãããããã·ã«åºã2åã®ã¢ã«ã³ãŒã«ãã§ããã
*RïŒCH(OH)ïŒR ïŒ (O) â RïŒC(OH)2ïŒR
ãã ããã²ãšã€ã®Cå
çŽ ã«ããããã·åºã2åä»ããšãããã«è±æ°Žåå¿ãèµ·ããã ãã£ãŠãã®ç©è³ªã¯äžç¬ååšããã ãã§ããã«å¥ã®ç©è³ªã«å€ããã
R R
| |
R-C-OH ---> R-C=O
| -H2O
OH
ãã®ãšããã®ïŒCïŒOã®éšåãã±ãã³åºãšãããç°¡åã«ïŒCOãšæžãã
==ã«ã«ããã«åº==
ïŒCïŒOã¯å®ã¯äžè¬çã«ã¯ã«ã«ããã«åºãšããããããã ããå³å¯ã«ã¯ã«ã«ããã«åºïŒã±ãã³åºã§ã¯ãªãã
ãªããªããïŒCïŒOããã€åºã¯ä»ã«ãã¢ã«ãããåºïŒCHOãã«ã«ããã·ã«åºïŒCOOHãããããã§ããã
ã«ã«ããã«åºã¯ãããã®ç·ç§°ãšããŠååšãããã±ãã³åºã¯ãã«ã«ããã«åºã®ãã¡ïŒCOã®äŸ¡æšã®äž¡åŽã«çåæ°ŽçŽ åºãä»ãããã®ã§ãããã«ã«ããã«åºã®äžçš®ã§ããã
[[ã«ããŽãª:ææ©ååŠ]] | null | 2022-11-23T05:33:13Z | [] | https://ja.wikibooks.org/wiki/%E6%9C%89%E6%A9%9F%E5%8C%96%E5%AD%A6/%E3%82%B1%E3%83%88%E3%83%B3 |
2,064 | ææ©ååŠ/ã«ã«ãã³é
ž | ææ©ååŠ>ã«ã«ãã³é
ž
ã«ã«ããã·ã«åº-COOHããã€ååç©ãã«ã«ãã³é
žãšããã åœéåã¯ã¢ã«ã«ã³ã®ååã®åŸã«ãé
žããã€ãããããŸã䜿ãããªãã HCOOHãè»(ã®)é
žãCH3COOHãé
¢é
žãšããã
ã«ã«ãã³é
žã¯ã«ã«ããã·åºãæã£ãŠããé
žæ§ã§ãããã«ã«ãã³é
žã¯æãå°ããªççŽ äžã€ã®ã®é
žãããççŽ 16åã®ãã«ããã³é
žãªã©å€§ãããæ§ã
ã§ãããã眮æåºãæããªãã«ã«ãã³é
žã¯ååéã倧ãããªãã«ã€ããæ°ŽçŽ ã€ãªã³ã®è§£é¢ãæžã£ãŠãããã€ãŸããé
žãšããŠã®åŒ·ããæžãã®ã§ããããããã©ããã£ãçç±ã«ããã®ããšãããšãã«ã«ããã·åºã®é»åå¯åºŠãé«ããäœããã«ãã£ãŠæ±ºãŸããã¢ã«ãã«åºã¯é»åäŸäžæ§åºã§ããããããçµåããŠããååã眮æåºã¯é»åãã¢ã«ãã«åºããæŒãä»ããããã®ã§(æŒãä»ãããããšããã®ã¯æ¯å©è¡šçŸã§ãã£ãŠãååãåšåããé»åã®åæ°ãå¢ãããšããããã§ã¯ãªãã)ãé»åã®å¯åºŠãé«ããªãããããããšãã«ã«ããã·åºã®é
žçŽ ã®é»åå¯åºŠãé«ããªããããæ°ŽçŽ ãšã®éã®çµåãå
ç¢ã«ãªããçµæãæ°ŽçŽ ã¯ã«ã«ããã·åºããé¢ãã«ãããªããé
žæ§åºŠãäœäžãããã¢ã«ãã«åºãæ§æããççŽ ã®æ°ãå€ãã»ã©ãã®åŸåã¯é¡èã§ããã
éã«ãã«ã«ãã³é
žã®ã«ã«ããã·åºã«é£æ¥ããççŽ ã«é»åæ±åŒæ§åºãçµåããŠããå Žåãé
žæ§åºŠã¯åŒ·ããªããäŸãã°ãã¯ããé
¢é
ž(CH2Cl-COOH)ã¯é
¢é
žããã匷ããé»åæ±åŒæ§åºã®æ°ãå¢ããã°ããã«é
žæ§åºŠã¯åŒ·ããªãã
ã«ã«ãã³é
žã¯ä»¥äžã®åå¿ã«ãã£ãŠçæããã
ã¢ã«ããããé
žåãããšã
ãã®R以å€ã®éšåãã«ã«ããã·åºãšãããç°¡åã«-COOHãšè¡šãã
ã«ã«ãã³é
žã®åå¿ã¯ãã®é
žãšããŠã®åŽé¢ãšã«ã«ããã«ååç©ãšããŠã®åŽé¢ã«ãã£ãŠèµ·ãããã«ã«ããã«ååç©ãšããŠã®åå¿ã¯ã±ãã³ã®ç« ã詳ããããã¢ã«ãããçãšã¢ã«ããŒã«çž®åãªã©ãèµ·ãããããšããããšãä»ãå ããŠãããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ææ©ååŠ>ã«ã«ãã³é
ž",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ã«ã«ããã·ã«åº-COOHããã€ååç©ãã«ã«ãã³é
žãšããã åœéåã¯ã¢ã«ã«ã³ã®ååã®åŸã«ãé
žããã€ãããããŸã䜿ãããªãã HCOOHãè»(ã®)é
žãCH3COOHãé
¢é
žãšããã",
"title": "ã«ã«ãã³é
žã®å®çŸ©ãšåœåæ³"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ã«ã«ãã³é
žã¯ã«ã«ããã·åºãæã£ãŠããé
žæ§ã§ãããã«ã«ãã³é
žã¯æãå°ããªççŽ äžã€ã®ã®é
žãããççŽ 16åã®ãã«ããã³é
žãªã©å€§ãããæ§ã
ã§ãããã眮æåºãæããªãã«ã«ãã³é
žã¯ååéã倧ãããªãã«ã€ããæ°ŽçŽ ã€ãªã³ã®è§£é¢ãæžã£ãŠãããã€ãŸããé
žãšããŠã®åŒ·ããæžãã®ã§ããããããã©ããã£ãçç±ã«ããã®ããšãããšãã«ã«ããã·åºã®é»åå¯åºŠãé«ããäœããã«ãã£ãŠæ±ºãŸããã¢ã«ãã«åºã¯é»åäŸäžæ§åºã§ããããããçµåããŠããååã眮æåºã¯é»åãã¢ã«ãã«åºããæŒãä»ããããã®ã§(æŒãä»ãããããšããã®ã¯æ¯å©è¡šçŸã§ãã£ãŠãååãåšåããé»åã®åæ°ãå¢ãããšããããã§ã¯ãªãã)ãé»åã®å¯åºŠãé«ããªãããããããšãã«ã«ããã·åºã®é
žçŽ ã®é»åå¯åºŠãé«ããªããããæ°ŽçŽ ãšã®éã®çµåãå
ç¢ã«ãªããçµæãæ°ŽçŽ ã¯ã«ã«ããã·åºããé¢ãã«ãããªããé
žæ§åºŠãäœäžãããã¢ã«ãã«åºãæ§æããççŽ ã®æ°ãå€ãã»ã©ãã®åŸåã¯é¡èã§ããã",
"title": "ã«ã«ãã³é
žã®æ§è³ª"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "éã«ãã«ã«ãã³é
žã®ã«ã«ããã·åºã«é£æ¥ããççŽ ã«é»åæ±åŒæ§åºãçµåããŠããå Žåãé
žæ§åºŠã¯åŒ·ããªããäŸãã°ãã¯ããé
¢é
ž(CH2Cl-COOH)ã¯é
¢é
žããã匷ããé»åæ±åŒæ§åºã®æ°ãå¢ããã°ããã«é
žæ§åºŠã¯åŒ·ããªãã",
"title": "ã«ã«ãã³é
žã®æ§è³ª"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ã«ã«ãã³é
žã¯ä»¥äžã®åå¿ã«ãã£ãŠçæããã",
"title": "ã«ã«ãã³é
žã®çæ"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ã¢ã«ããããé
žåãããšã",
"title": "ã«ã«ãã³é
žã®çæ"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãã®R以å€ã®éšåãã«ã«ããã·åºãšãããç°¡åã«-COOHãšè¡šãã",
"title": "ã«ã«ãã³é
žã®çæ"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ã«ã«ãã³é
žã®åå¿ã¯ãã®é
žãšããŠã®åŽé¢ãšã«ã«ããã«ååç©ãšããŠã®åŽé¢ã«ãã£ãŠèµ·ãããã«ã«ããã«ååç©ãšããŠã®åå¿ã¯ã±ãã³ã®ç« ã詳ããããã¢ã«ãããçãšã¢ã«ããŒã«çž®åãªã©ãèµ·ãããããšããããšãä»ãå ããŠãããã",
"title": "ã«ã«ãã³é
žã®åå¿"
}
] | ææ©ååŠïŒã«ã«ãã³é
ž | [[ææ©ååŠ]]ïŒã«ã«ãã³é
ž
==ã«ã«ãã³é
žã®å®çŸ©ãšåœåæ³==
ã«ã«ããã·ã«åºïŒCOOHããã€ååç©ãã«ã«ãã³é
žãšããã
åœéåã¯ã¢ã«ã«ã³ã®ååã®åŸã«ãé
žããã€ãããããŸã䜿ãããªãã
HCOOHãè»(ã®)é
žãCH<sub>3</sub>COOHãé
¢é
žãšããã
==ã«ã«ãã³é
žã®æ§è³ª==
ã«ã«ãã³é
žã¯ã«ã«ããã·åºãæã£ãŠããé
žæ§ã§ãããã«ã«ãã³é
žã¯æãå°ããªççŽ äžã€ã®ã®é
žãããççŽ 16åã®ãã«ããã³é
žãªã©å€§ãããæ§ã
ã§ãããã眮æåºãæããªãã«ã«ãã³é
žã¯ååéã倧ãããªãã«ã€ããæ°ŽçŽ ã€ãªã³ã®è§£é¢ãæžã£ãŠãããã€ãŸããé
žãšããŠã®åŒ·ããæžãã®ã§ããããããã©ããã£ãçç±ã«ããã®ããšãããšãã«ã«ããã·åºã®é»åå¯åºŠãé«ããäœããã«ãã£ãŠæ±ºãŸããã¢ã«ãã«åºã¯é»åäŸäžæ§åºã§ããããããçµåããŠããååã眮æåºã¯é»åãã¢ã«ãã«åºããæŒãä»ããããã®ã§(æŒãä»ãããããšããã®ã¯æ¯å©è¡šçŸã§ãã£ãŠãååãåšåããé»åã®åæ°ãå¢ãããšããããã§ã¯ãªãã)ãé»åã®å¯åºŠãé«ããªãããããããšãã«ã«ããã·åºã®é
žçŽ ã®é»åå¯åºŠãé«ããªããããæ°ŽçŽ ãšã®éã®çµåãå
ç¢ã«ãªããçµæãæ°ŽçŽ ã¯ã«ã«ããã·åºããé¢ãã«ãããªããé
žæ§åºŠãäœäžãããã¢ã«ãã«åºãæ§æããççŽ ã®æ°ãå€ãã»ã©ãã®åŸåã¯é¡èã§ããã
éã«ãã«ã«ãã³é
žã®ã«ã«ããã·åºã«é£æ¥ããççŽ ã«é»åæ±åŒæ§åºãçµåããŠããå Žåãé
žæ§åºŠã¯åŒ·ããªããäŸãã°ãã¯ããé
¢é
ž(CH<sub>2</sub>Cl-COOH)ã¯é
¢é
žããã匷ããé»åæ±åŒæ§åºã®æ°ãå¢ããã°ããã«é
žæ§åºŠã¯åŒ·ããªãã
==ã«ã«ãã³é
žã®çæ==
ã«ã«ãã³é
žã¯ä»¥äžã®åå¿ã«ãã£ãŠçæããã
*ã¢ã«ã³ãŒã«ã®é
žå(éãã³ã¬ã³é
žã«ãªãŠã KMnO<sub>4</sub>ãªã©ã®åŒ·ãé
žåå€ãçšããã)
*ã¢ã«ãããã®é
žå
*ã¢ããã®åè§£
*ãšã¹ãã«ã®åè§£
*ã°ãªãã£ãŒã«è©Šè¬ãšäºé
žåççŽ ã®åå¿
===ã¢ã«ãããã®é
žå===
ã¢ã«ããããé
žåãããšã
H O-H
| ---> |
R-C=O +(O) R-C=O
ãã®R以å€ã®éšåãã«ã«ããã·åºãšãããç°¡åã«ïŒCOOHãšè¡šãã
==ã«ã«ãã³é
žã®åå¿==
*äžããã²ã³åãªã³ãšåå¿ããŠããã²ã³åã¢ã·ã«ãšãªãã
*匷åãªéå
å€(æ°ŽçŽ åãªããŠã ã¢ã«ãããŠã ç)ãšåå¿ããŠã¢ã«ã³ãŒã«ã«ãªãã
*ã¢ã«ã³ãŒã«ãšé
žè§Šåªäžã§åå¿ããŠãšã¹ãã«ãäœãã
*ã¢ã³ã¢ãã¢ãªããã¢ãã³ãšåå¿ããŠã¢ãããšãªãã
*ã¢ã«ã«ãªéå±ãšåå¿ããŠã«ã«ãã³é
žå¡©ãäœããèæ§ãœãŒããšã«ã«ãã³é
žã®å¡©ã¯ãã£ãããšããŠããç¥ãããã
*ç¡«é
žã«ãã£ãŠè±æ°Žããã«ã«ãã³é
žç¡æ°Žç©ãšãªãã
ã«ã«ãã³é
žã®åå¿ã¯ãã®é
žãšããŠã®åŽé¢ãšã«ã«ããã«ååç©ãšããŠã®åŽé¢ã«ãã£ãŠèµ·ãããã«ã«ããã«ååç©ãšããŠã®åå¿ã¯ã±ãã³ã®ç« ã詳ããããã¢ã«ãããçãšã¢ã«ããŒã«çž®åãªã©ãèµ·ãããããšããããšãä»ãå ããŠãããã
[[ã«ããŽãª:ææ©ååŠ]] | null | 2022-11-23T05:33:09Z | [] | https://ja.wikibooks.org/wiki/%E6%9C%89%E6%A9%9F%E5%8C%96%E5%AD%A6/%E3%82%AB%E3%83%AB%E3%83%9C%E3%83%B3%E9%85%B8 |
2,067 | é«çåŠæ ¡æ°åŠI/æ°ãšåŒ | ãã¡ããåç
§
3ã12ãªã©ã®æ°(宿°)ãã x {\displaystyle x} ã y {\displaystyle y} ãªã©ã®æå(倿°)ãæãããããŠã§ããåŒãé
(ãããterm)ãšããã
次ã®ãããªãã®ãé
ã§ããã
ãã®ããã«äžã€ã®é
ã ãããã§ããŠããåŒãåé
åŒ(ãããããããmonomial)ãšããã
â» ãããããŠãæŽåŒããå®çŸ©ãããšã次ã®ãããªå®çŸ©ã«ãªãã
1ã€ä»¥äžã®åé
åŒãè¶³ãããããŠã§ããåŒãæŽåŒ(ãããã)ãšããã
以äžã¯æŽåŒã®äŸã§ããã
åé
åŒã§ããé
ã1ã€ãããªãæŽåŒã®äžã€ã§ãããšèããããšãã§ããã®ã§ããæŽåŒããšããæŠå¿µã䜿ãããšã«ãããå€é
åŒãšåé
åŒãšã®åºå¥ã®å¿
èŠããªããªãã
x â y {\displaystyle x-y} ã®ããã«æžæ³ãå«ãåŒã¯ã x â y = x + ( â y ) = â y + x {\displaystyle x-y=x+(-y)=-y+x} ãšæžæ³ãå æ³ã«çŽãããšãã§ããã®ã§ã x , â y {\displaystyle x,-y} ãé
ã«ãã€æŽåŒã§ãããšèãããããããªãã¡ãå€é
åŒã®é
ãšã¯ãå€é
åŒãè¶³ãç®ã®åœ¢ã«çŽãããšãã®ãäžã€äžã€ã®è¶³ããããã£ãŠããåŒã®ããšã§ãããããšãã° 5 + a â 13 x 2 y = 5 + a + ( â 13 x 2 y ) {\displaystyle 5+a-13x^{2}y=5+a+(-13x^{2}y)} ã®é
㯠5 , a , â 13 x 2 y {\displaystyle 5,a,-13x^{2}y} ã®3ã€ã§ããã
次ã®åŒã®ãã¡åé
åŒã§ãããã®ãçããã
(1), (2) ãåé
åŒã (3) ã¯é
ã6ã€ããããåé
åŒã§ã¯ãªãã
äžã®å
šãŠã®åŒã¯æŽåŒã§ãããã
3 x 2 {\displaystyle 3x^{2}} + 5 x 2 + 8 x {\displaystyle 5x^{2}+8x} ã® 3 x 2 {\displaystyle 3x^{2}} ãš 5 x 2 {\displaystyle 5x^{2}} ã®ããã«ãå€é
åŒã®æåãšææ°ããŸã£ããåãã§ããé
ãç·ç§°ããŠåé¡é
(ã©ããããããlike terms)ãšããã
åé¡é
ã¯åé
æ³å a b + a c = a ( b + c ) {\displaystyle ab+ac=a(b+c)} ã䜿ã£ãŠãŸãšããããšãã§ãããããšãã° 3 x 2 + 5 x 2 + 8 x = ( 3 + 5 ) x 2 + 8 x = 8 x 2 + 8 x {\displaystyle 3x^{2}+5x^{2}+8x=(3+5)x^{2}+8x=8x^{2}+8x} ã§ããã 8 x 2 {\displaystyle 8x^{2}} ãš 8 x {\displaystyle 8x} ã¯æåã¯åãã§ãããææ°ãç°ãªãã®ã§ãåé¡é
ã§ã¯ãªãã
次ã®å€é
åŒã®åé¡é
ãæŽçããã
3 x {\displaystyle 3x} ãšããåé
åŒã¯ã3ãšããæ°ãš x {\displaystyle x} ãšããæåã«åããŠèããããšãã§ãããæ°ã®éšåãåé
åŒã®ä¿æ°(ãããããcoefficient)ãšããã
ããšãã° â x = ( â 1 ) x {\displaystyle -x=(-1)x} ãšããåé
åŒã®ä¿æ°ã¯ -1 ã§ããã
256 x y 2 {\displaystyle 256xy^{2}} ãšããåé
åŒã¯ã256ãšããæ°ãš x , y , y {\displaystyle x,y,y} ãšããæåã«åããŠèããããšãã§ããã®ã§ããã®åé
åŒã®ä¿æ°ã¯256ã§ãããäžæ¹ãæãããããæåã®æ°ãåé
åŒã®æ¬¡æ°(ããããdegree)ãšããã 256 x y 2 {\displaystyle 256xy^{2}} 㯠x , y , y {\displaystyle x,y,y} ãšãã3ã€ã®æåãæãããããŠã§ããŠããã®ã§ããã®åé
åŒã®æ¬¡æ°ã¯3ã§ããã0ãšããåé
åŒã®æ¬¡æ°ã¯ 0 = 0 x = 0 x 2 = 0 x 3 = ⯠{\displaystyle 0=0x=0x^{2}=0x^{3}=\cdots } ãšäžã€ã«å®ãŸããªãã®ã§ãããã§ã¯èããªãã
åé
åŒã®ä¿æ°ã𿬡æ°ã¯ãåã«æ°ãšæåã«åããŠèããã®ã§ã¯ãªããããæåã倿°ãšããŠèŠããšãã«ãæ®ãã®æåã宿°ãšããŠæ°ãšåãããã«æ±ãããšãããã
ããšãã° â 5 a b c x 3 {\displaystyle -5abcx^{3}} ãšããåé
åŒãã x 3 {\displaystyle x^{3}} ã ãã倿°ã§ãæ®ãã®æå a , b , c {\displaystyle a,b,c} ã¯å®æ°ãšèããããšãã§ããã ãã®ãšã ( â 5 a b c ) x 3 {\displaystyle (-5abc)x^{3}} ãšåããããã®ã§ããã®åé
åŒã®ä¿æ°ã¯ â 5 a b c {\displaystyle -5abc} ã倿°ã¯ x 3 {\displaystyle x^{3}} ã§ã次æ°ã¯3ã§ãããšãããã
ãã®ããšã â 5 a b c x 3 {\displaystyle -5abcx^{3}} ãšããåé
åŒã¯ãã x {\displaystyle x} ã«çç®ãããšãä¿æ°ã¯ â 5 a b c {\displaystyle -5abc} ãæ¬¡æ°ã¯3ã§ããããªã©ãšããå Žåãããã
ããã㯠â 5 a b c x 3 {\displaystyle -5abcx^{3}} ã® a {\displaystyle a} ãš b {\displaystyle b} ã«çç®ããã°ã ( â 5 c x 3 ) a b {\displaystyle (-5cx^{3})ab} ãšåãããã a {\displaystyle a} ãš b {\displaystyle b} ã«çç®ãããšãã®ãã®åé
åŒã®ä¿æ°ã¯ â 5 c x 3 {\displaystyle -5cx^{3}} ã倿°ã¯ a b {\displaystyle ab} ã§ã次æ°ã¯2ã§ãããšãããã
æ
£ç¿çã«ã¯ a , b , c , ⯠{\displaystyle a,b,c,\cdots } ãªã©ã®ã¢ã«ãã¡ãããã®æåã®æ¹ã®æåã宿°ã衚ãã®ã«äœ¿ãã ⯠, x , y , z {\displaystyle \cdots ,x,y,z} ãªã©ã®ã¢ã«ãã¡ãããã®æåŸã®æ¹ã®æåã倿°ã衚ãã®ã«çšããããäžè¬çã«ã¯ãã®éãã§ãªãã
å€é
åŒã®æ¬¡æ°ãšã¯ãå€é
åŒã®åé¡é
ããŸãšãããšãã«ããã£ãšã次æ°ã®é«ãé
ã®æ¬¡æ°ããããããšãã° x 3 + 3 x 2 y + 2 y {\displaystyle x^{3}+3x^{2}y+2y} ã§ã¯ããã£ãšã次æ°ã®é«ãé
㯠x 3 {\displaystyle x^{3}} ã§ããã®ã§ããã®å€é
åŒã®æ¬¡æ°ã¯3ã§ããããã x 3 + 3 x 2 y + 2 y {\displaystyle x^{3}+3x^{2}y+2y} ( x {\displaystyle x} ã¯å®æ°)ã§ããã°ãããªãã¡å€é
åŒã® y {\displaystyle y} ã«ã€ããŠçç®ãããšããã£ãšã次æ°ã®é«ãé
㯠3 x 2 y {\displaystyle 3x^{2}y} ãš 2 y {\displaystyle 2y} ã§ããã®ã§ããã®å€é
åŒã®æ¬¡æ°ã¯1ã§ããããã®ãšãçç®ããæåãå«ãŸãªãé
x 3 {\displaystyle x^{3}} ã¯å®æ°é
(ãŠããããããconstant term)ãšããŠæ°ãšåãããã«æ±ãããã
次ã®å€é
åŒã® x {\displaystyle x} ãŸã㯠y {\displaystyle y} ã«çç®ãããšãã®æ¬¡æ°ãšå®æ°é
ãããããããã
ããšãã°ã
ã®ããã«ã次æ°ã®é«ãé
ããå
ã«é
ããªãã¹ãããšããéã¹ãã(ããã¹ã)ãšããã
ããŠãåŒã䜿ãç®çã«ãã£ãŠã¯ã次æ°ã®ã²ããé
ããå
ã«æžããã»ãã䟿å©ãªå Žåãããã
ããšãã°ã x {\displaystyle x} ã çŽ0.01 ã®ãããª1æªæºã®å°ããæ°ã®å ŽåãåŒ x 2 + 6 x + 7 {\displaystyle x^{2}+6x+7} ã®å€ãæ±ããããªããæå x {\displaystyle x} ã®æ¬¡æ°ã®å°ããé
ã®ã»ãã圱é¿ãé«ãã
ãªã®ã§ã ç®çã«ãã£ãŠã¯
ã®ããã«ã次æ°ã®ã²ããé
ããå
ã«æžãå Žåãããã
7 + 6 x + x 2 {\displaystyle 7+6x+x^{2}} ã®ããã«ã次æ°ã®äœãé
ããå
ã«é
ããªãã¹ãããšããæã¹ãã(ãããã¹ã)ãšããã
å€é
åŒã«2ã€ä»¥äžã®æåããããšããç¹å®ã®1ã€ã®æåã«æ³šç®ããŠäžŠã³å€ãããšã䜿ãããããªãããšãããã
ããšãã°ã
ã®é
ããxã®æ¬¡æ°ãå€ãé
ããå
ã«äžŠã³ãããåé¡é
ããŸãšãããš
ãšãªãã
ãã®(äŸ2)ã®ããã«ãç¹å®ã®æåã ãã«çç®ããŠããã®æåã®æ¬¡æ°ã®é«ãé ã«äžŠã³ããããšäŸ¿å©ãªããšããã°ãã°ããã
äŸ2ã¯ã x {\displaystyle x} ã«ã€ã㊠éã¹ã ã®é ã«äžŠã³å€ããæŽåŒã§ããã
çç®ããŠãªãæåã«ã€ããŠã¯ãäžŠã³æãã®ãšãã¯å®æ°ã®ããã«æ±ãã
ãã£ãœãã x {\displaystyle x} ã«ã€ããŠã次æ°ã®ã²ããé
ããé ã«äžŠã¹ããšã次ã®ãããªåŒã«ãªãã
ãã®ããã«ãç¹å®ã®æåã®æ¬¡æ°ãäœããã®ããé ã«äžŠã³ããããšäŸ¿å©ãªããšããã°ãã°ããã
äŸ3ã¯ãxã«ã€ã㊠æã¹ã ã®é ã«äžŠã³å€ããæŽåŒã§ããã
ããšãã°ãåŒ
ãšããåŒã®å³èŸº
ã®æ¬¡æ°ã¯ããããã§ããããã
aãšxãçããæåãšããŠæ±ãã®ã§ããã°ã a x {\displaystyle ax} ã®æ¬¡æ°ã¯
ãã 1+1 =2 ãªã®ã§ããã®åŒã®æ¬¡æ°ã¯2ã§ããã(é
bã¯æ¬¡æ°1ãªã®ã§ã a x {\displaystyle ax} ã®æ¬¡æ°2ãããäœãã®ã§ç¡èŠããã)
ãããããããã®åŒãã宿° a {\displaystyle a} ãä¿æ°ãšãã倿° x {\displaystyle x} ã«ã€ããŠã®äžæ¬¡é¢æ°ãšã¿ãã®ã§ããã°ãäžæ¬¡åŒãšæãã®ãåççã ããã
ãã®ãããªå Žåãç¹å®ã®æåã ãã«æ³šç®ãããã®åŒã®æ¬¡æ°ãèãããšããã
ããšãã°ãæåxã ãã«æ³šç®ããŠãåŒ a x + b {\displaystyle ax+b} ã®æ¬¡æ°ã決ããŠã¿ããã
ãããšãæåxã«æ³šç®ããå Žåã®åŒ a x + b {\displaystyle ax+b} ã®æ¬¡æ°ã¯1ã«ãªãã
ãªããªã
ãã£ãŠãæå x {\displaystyle x} ã«æ³šç®ããå Žåã®é
a x {\displaystyle ax} ã®æ¬¡æ°ã¯ã 0+1 ãªã®ã§ã1ã§ããã
ãã®ããã«èããå Žåãå¿
èŠã«å¿ããŠã©ã®æåã«æ³šç®ããããæèšããŠãæåâ¯â¯ã«æ³šç®ããæ¬¡æ°ãã®ããã«è¿°ã¹ããšããã
å€é
åŒã®ç©ã¯åé
æ³åã䜿ã£ãŠèšç®ããããšãã§ããã
ãã®ããã«å€é
åŒã®ç©ã§è¡šãããåŒãäžã€ã®å€é
åŒã«ç¹°ãåºããããšããå€é
åŒãå±é(ãŠããããexpand)ãããšããã
a {\displaystyle a} ã n {\displaystyle n} åæãããã®ã a n {\displaystyle a^{n}} ãšæžããaã®nä¹(-ããããa to the n-th power)ãšããããã ã a 1 = a {\displaystyle a^{1}=a} ãšå®çŸ©ãããããšãã°ã
ã§ããã a , a 2 , a 3 , a 4 , a 5 , ⯠, a n {\displaystyle a,a^{2},a^{3},a^{4},a^{5},\cdots ,a^{n}} ãç·ç§°ã㊠a {\displaystyle a} ã®çޝä¹(ããããããexponentiationãåªä¹ãã¹ãããããåªãã¹ã)ãšããã a n {\displaystyle a^{n}} ã® n ãææ°(ããããexponent)ãšãã(a ã¯åº(ãŠããbase)ãšãã)ãããã§ã¯èªç¶æ°ãããªãã¡æ£ã®æŽæ°ã®ææ°ãèããã环ä¹ã¯æ¬¡ã®ããã«èããããšãã§ããã
环ä¹ã©ãããæãããããç©ã¯ã次ã®ããã«èšç®ããããšãã§ããã
环ä¹ã©ãããå²ã£ãåã¯ã次ã®ããã«èšç®ããããšãã§ããã
环ä¹ã®çޝä¹ã¯ã次ã®ããã«èšç®ããããšãã§ããã
ç©ã®çޝä¹ã¯ã次ã®ããã«èšç®ããããšãã§ããã
ããããããããŠææ°æ³å(ãããã»ããããexponential law)ãšããã
环ä¹ã®å®çŸ©ããæããã
次ã®åŒãèšç®ããªããã
次ã®åŒãå±éããã
ãŸãšãããšã次ã®ããã«ãªãã
次ã®åŒãå±éããªããã
è€éãªåŒã®å±éã¯ãåŒã®äžéšåãäžã€ã®æåã«ãããŠå
¬åŒã䜿ããšããã
次ã®åŒãå±éããªããã
次ã®åŒãå æ°åè§£ããªããã
次ã®åŒãå æ°åè§£ããªããã
次ã®åŒãå æ°åè§£ããªããã
a=b^2ãæãç«ã€ãšããa=2ãšãªããããªbãããªãã¡ 2 {\displaystyle {\sqrt {2}}} ã®å
·äœçãªå€ãã©ã®ãããªãã®ãã調ã¹ãŠã¿ããã
ãã®ããã«ãbãæ§ã
ã«æ±ºããŠããaã¯ãªããªã2ã«ãªããªãã
å®ã¯ 2 {\displaystyle {\sqrt {2}}} ã¯ã忝ååå
±ã«æŽæ°ã®åæ°ã§è¡šãããšã¯ã§ããªãããã®ããã«æŽæ°ã忝ååã«æã€åæ°ã§è¡šããªããããªæ°ãç¡çæ°ãšãããäŸãã°ãååšçÏã¯ç¡çæ°ã§ãããããã«å¯ŸããŠãæŽæ°ã埪ç°å°æ°ãªã©ã忝ååå
±ã«æŽæ°ã®åæ°ã§è¡šãããšã®ã§ããæ°ãæçæ°ãšããã
æçæ°ãšç¡çæ°ãåãããŠå®æ°ãšãããã©ããªå®æ°ã§ãæ°çŽç·äžã®ç¹ãšããŠè¡šããããŸããã©ããªå®æ°ããæéå°æ°ãããã¯ç¡éå°æ°ãšããŠè¡šããã (äžèšã®ãç¡éå°æ°ãã®ç¯ãåç
§)
2 {\displaystyle {\sqrt {2}}} ãæçæ°ã§ãããšä»®å®ãããšãäºãã«çŽ ãª(1以å€ã«å
¬çŽæ°ããããªã)æŽæ° m, n ãçšããŠã
ãšè¡šããããšãã§ããããã®ãšãã䞡蟺ã2ä¹ããŠåæ¯ãæããšã
ãã£ãŠ m ã¯2ã®åæ°ã§ãããæŽæ° l ãçšã㊠m = 2 l {\displaystyle m=2l} ãšè¡šãããšãã§ãããããã (1) ã®åŒã«ä»£å
¥ããŠæŽçãããšã
ãã£ãŠ n ã2ã®åæ°ã§ãããããã㯠m, n ã2ãå
¬çŽæ°ã«ãã€ããšã«ãªããäºãã«çŽ ãšä»®å®ããããšã«ççŸããããããã£ãŠ 2 {\displaystyle {\sqrt {2}}} ã¯ç¡çæ°ã§ãã(èçæ³)ã
0.1 ã 0.123456789 ã®ããã«ãããäœã§çµããå°æ°ãæéå°æ°ãšããã
äžæ¹ã 0.1234512345 ⯠{\displaystyle 0.1234512345\cdots } ã 3.1415926535 ⯠{\displaystyle 3.1415926535\cdots } ã®ããã«ç¡éã«ç¶ãå°æ°ã ç¡éå°æ°(ããã ããããã)ãšããã
ç¡éå°æ°ã®ãã¡ãããäœããäžãããããé
åã®æ°åã®ç¹°ãè¿ãã«ãªã£ãŠãããã®ã 埪ç°å°æ°(ãã
ããã ããããã)ãšãããäŸãã° 0.3333333333 ⯠{\displaystyle 0.3333333333\cdots } ã 0.1428571428 ⯠{\displaystyle 0.1428571428\cdots } ã 0.1232323232 ⯠{\displaystyle 0.1232323232\cdots } ãªã©ã§ãããç¹°ãè¿ãã®æå°åäœã埪ç°ç¯ãšããã埪ç°å°æ°ã¯åŸªç°ç¯1ã€ãçšã㊠0. 3 Ì {\displaystyle 0.{\dot {3}}} ã 0. 1 Ì 4285 7 Ì {\displaystyle 0.{\dot {1}}4285{\dot {7}}} ã 0.1 2 Ì 3 Ì {\displaystyle 0.1{\dot {2}}{\dot {3}}} ã®ããã«åŸªç°ç¯ã®æåãšæåŸ(埪ç°ç¯ãäžæ¡ã®å Žåã¯ã²ãšã€ã ã)ã®äžã«ç¹ãã€ããŠè¡šãã
å
šãŠã®åŸªç°å°æ°ã¯åæ°ã«çŽããã
ãšçœ®ããšã
ã§ããã(2)ãŒ(1) ãã 9 a = 3 {\displaystyle 9a=3} ããã£ãŠ a = 3 9 = 1 3 {\displaystyle a={\frac {3}{9}}={\frac {1}{3}}} ã§ããã
a = 0. 1 Ì 4285 7 Ì 1000000 a = 142857. 1 Ì 4285 7 Ì 999999 a = 142857 a = 142857 999999 = 1 7 {\displaystyle {\begin{aligned}a&=0.{\dot {1}}4285{\dot {7}}\\1000000a&=142857.{\dot {1}}4285{\dot {7}}\\999999a&=142857\\a&={\frac {142857}{999999}}\ ={\frac {1}{7}}\end{aligned}}}
a = 0.1 2 Ì 3 Ì 100 a = 12.3 2 Ì 3 Ì 99 a = 12.2 a = 12.2 99 = 61 495 {\displaystyle {\begin{aligned}a&=0.1{\dot {2}}{\dot {3}}\\100a&=12.3{\dot {2}}{\dot {3}}\\99a&=12.2\\a&={\frac {12.2}{99}}\ ={\frac {61}{495}}\end{aligned}}}
宿° a ã«ã€ããŠãa ã®æ°çŽç·äžã§ã®åç¹ãšã®è·é¢ã a ã®çµ¶å¯Ÿå€ãšããã | a | {\displaystyle |a|} ã§è¡šãã
ããšãã°
ã§ããã
å®çŸ©ãã | a | = | â a | {\displaystyle |a|=|-a|} ããããããŸãã a , b {\displaystyle a,b} ãä»»æã®å®æ°ãšãããšããããããã«å¯Ÿå¿ããæ°çŽç·äžã®ä»»æã®2ç¹ P ( a ) , Q ( b ) {\displaystyle \mathrm {P} (a),\mathrm {Q} (b)} éã®è·é¢ã«ã€ããŠã¯ã次ã®ããšããããã
ä»ã2ä¹ããŠaã«ãªãæ°bãèããã
a = 1 {\displaystyle a=1} ã®ãšãã b = 1 {\displaystyle b=1} ãšããŠçµããã«ããŠã¯ãããªãã確ãã« b = 1 {\displaystyle b=1} ãæ¡ä»¶ãæºããã b = â 1 {\displaystyle b=-1} ãæ¡ä»¶ãæºããããã£ãŠ b = 1 {\displaystyle b=1} ãŸã㯠b = â 1 {\displaystyle b=-1} ã§ããã
äžè¬ã«æ£ã®æ°aã«ã€ããŠa=b^2ãšãªãbã¯äºã€ããããã®äºã€ã¯çµ¶å¯Ÿå€ãçããããã®äºã€ã®bãaã®å¹³æ¹æ ¹ãšãããaã®å¹³æ¹æ ¹ã®ãã¡ãæ£ã§ãããã®ã a {\displaystyle {\sqrt {a}}} ãè² ã§ãããã®ã â a {\displaystyle -{\sqrt {a}}} ãšæžãã a {\displaystyle {\sqrt {a}}} ã¯ãã«ãŒãaããšèªãã
äžæ¹ãè² ã®æ°aã«ã€ããŠèããŠã¿ãŠãäžæãbãèŠã€ããããšã¯ã§ããªããå®éã®ãšãããè² ã®æ°ã®å¹³æ¹æ ¹ã¯å®æ°ã§è¡šãããšã¯ã§ããªãã
2 , 4 , 9 , 12 {\displaystyle 2\ ,\ 4\ ,\ 9\ ,\ 12} ã®å¹³æ¹æ ¹ãæ±ããã
± 2 , ± 2 , ± 3 , ± 2 3 {\displaystyle \pm {\sqrt {2}}\ ,\ \pm 2\ ,\ \pm 3\ ,\ \pm 2{\sqrt {3}}}
ããããã®ã«ãŒããèšç®ãã ± {\displaystyle \pm } ãã€ããã°ããããã ããå¹³æ¹æ ¹ã®ã«ãŒã«ã«åŸã£ãŠãç°¡ååã§ãããã®ã¯ç°¡ååããããšãèŠæ±ãããã
äŸãã°ã 2 {\displaystyle 2} ã«å¯ŸããŠã¯ã ± 2 {\displaystyle \pm {\sqrt {2}}} ãšãªãã
äžè¬ã«ã A 2 = | A | {\displaystyle {\sqrt {A^{2}}}=|A|} ã§ããã
æ ¹å·ã«ã€ããŠã次ã®å
¬åŒãæãç«ã€ã
ãŸãã a b {\displaystyle {\sqrt {ab}}} ãšã¯ãå®çŸ©ã«ããšã¥ããŠèãããšã2ä¹ãããš ab ã«ãªãæ°ã®ãã¡ãæ£ã®ã»ãã®æ°ãšããæå³ã§ããã
ãªã®ã§ãå
¬åŒã a b = a b {\displaystyle {\sqrt {a}}{\sqrt {b}}={\sqrt {ab}}} ãã蚌æããã«ã¯ããã®ããšã蚌æããã°ããã
ãªã®ã§ããŸãã a b {\displaystyle {\sqrt {a}}{\sqrt {b}}} ã2ä¹ãããšã
ãšãªãã
ããã« a b {\displaystyle {\sqrt {a}}{\sqrt {b}}} ã¯ããŸãæ¡ä»¶ã2ä¹ãããšabã«ãªãããæºããã
ãããŠãæ£ã®æ°ã®å¹³æ¹æ ¹ã¯æ£ãªã®ã§ã a b {\displaystyle {\sqrt {a}}{\sqrt {b}}} ãæ£ã§ããããã£ãŠ a b {\displaystyle {\sqrt {a}}{\sqrt {b}}} ã¯ãã2ä¹ãããšabã«ãªããæ°ã®ãã¡ã®æ£ã®ã»ãã§ããã
(蚌æããã)
ããã«ãäžã®å
¬åŒ(1)ã«ãããæ¬¡ã®å
¬åŒãå°ãããã
èšç®ããã
åæ¯ã«æ ¹å·ãå«ãŸãªãåŒã«ããããšãã忝ãæçåãããšãããæçåã¯ã忝ãšååã«åãæ°ããããŠãããããšãå©çšããŠè¡ãã
ããšãã°ã 1 2 {\displaystyle {\frac {1}{\sqrt {2}}}} ãæçåãããšã 1 2 = 1 2 2 2 = 2 2 {\displaystyle {\frac {1}{\sqrt {2}}}\ =\ {\frac {1{\sqrt {2}}}{{\sqrt {2}}{\sqrt {2}}}}\ =\ {\frac {\sqrt {2}}{2}}} ãšãªãã
ãŸãããšãã« a b + c {\displaystyle {\frac {a}{b+c}}} ã«ã€ããŠã b 2 â c 2 = 1 {\displaystyle b^{2}-c^{2}=1} ã®ãšãã a b + c = a ( b â c ) ( b + c ) ( b â c ) = a ( b â c ) b 2 â c 2 = a ( b â c ) 1 = a ( b â c ) {\displaystyle {\frac {a}{b+c}}\ =\ {\frac {a(b-c)}{(b+c)(b-c)}}\ =\ {\frac {a(b-c)}{b^{2}-c^{2}}}\ =\ {\frac {a(b-c)}{1}}\ =\ a(b-c)} ã§ããã
ããšãã°ã a = 1 , b = 2 , c = 1 {\displaystyle a=1,b={\sqrt {2}},c=1} ãšãããšã 1 2 + 1 = 2 â 1 {\displaystyle {\frac {1}{{\sqrt {2}}+1}}={\sqrt {2}}-1} ã§ããã
忝ãæçåããã
äºéæ ¹å·ãšã¯ãæ ¹å·ã2éã«ãªã£ãŠããåŒã®ããšã§ãããäºéæ ¹å·ã¯åžžã«å€ããããã§ã¯ãªããæ ¹å·ã®äžã«å«ãŸããåŒã«ãã£ãŠç°¡åã«ã§ãããã©ãããæ±ºãŸããäžè¬ã«ãæ ¹å·å
ã®åŒãã x 2 {\displaystyle x^{2}} ã®åœ¢ã«å€åœ¢ã§ããå Žåã«ã¯ãå€åŽã®æ ¹å·ãå€ãããšãã§ããã
3 + 2 2 {\displaystyle {\sqrt {3+2{\sqrt {2}}}}} ãç°¡åã«ããã
3 + 2 2 {\displaystyle 3+2{\sqrt {2}}} ã ( ⯠) 2 {\displaystyle (\cdots )^{2}} ã®åœ¢ã«ã§ããããèããã
ä»®ã«ã ( a + b ) 2 {\displaystyle ({\sqrt {a}}+{\sqrt {b}})^{2}} (a,bã¯æ£ã®æŽæ°)ã®åœ¢ã«ã§ãããšãããšã 3 + 2 2 = a + b + 2 a b {\displaystyle 3+2{\sqrt {2}}=a+b+2{\sqrt {ab}}} ãšãªãã
ãæºããæŽæ°a,bãæ¢ãã°ããããã®é¢ä¿ã¯ãa=1,b=2(a,bãå
¥ãæããŠãå¯ã)ã«ãã£ãŠæºããããã®ã§ã 3 + 2 2 = ( 2 + 1 ) 2 {\displaystyle 3+2{\sqrt {2}}\ =\ ({\sqrt {2}}+1)^{2}} ãæãç«ã€ã
ãã£ãŠã 3 + 2 2 = ( 2 + 1 ) 2 = 2 + 1 {\displaystyle {\sqrt {3+2{\sqrt {2}}}}\ =\ {\sqrt {({\sqrt {2}}+1)^{2}}}\ =\ {\sqrt {2}}+1} ãšãªãã
次ã®åŒãèšç®ããã
åã倧ããã®éã=ã§çµãã åŒãæ¹çšåŒãšåŒã¶ããšãæ¢ã«åŠç¿ãããããã§ã¯ãç°ãªã£ãéã®å€§ããã®éãã衚ãèšå·ãå°å
¥ãããã®æ§è³ªã«ã€ããŠãŸãšããã
ããæ°A,BããããšããAãBãã倧ããããšã A > B {\displaystyle A>B} ãšè¡šããAãBããå°ããããšã A < B {\displaystyle A<B} ãšè¡šããããã§ã<ãš>ã®ããšãäžçå·ãšåŒã³ããã®ãããªåŒãäžçåŒãšåŒã¶ããŸãã †, ⥠{\displaystyle \leq ,\geq } ã䌌ãæå³ã®äžçåŒã§ããããããããAãšBãçããå€ã§ããå Žåãå«ããã®ã§ããã
ãªããæ¥æ¬ã®æè²ã«ãããŠã¯ã †, ⥠{\displaystyle \leq ,\geq } ã®ä»£ããã«ãäžçå·ã®äžã«çå·ãèšãã ⊠, â§ {\displaystyle \leqq ,\geqq } ã䜿ãããšãå€ãã
x > 7 {\displaystyle x>7} ãšããäžçåŒããããšããxã¯7ãã倧ãã宿°ã§ããããŸãã x ⥠7 {\displaystyle x\geq 7} ã®æã«ã¯ãxã¯7以äžã®å®æ°ã§ããã
äžçåŒã§ã¯çåŒãšåãããã«ãäž¡èŸºã«æŒç®ãããŠãäžçå·ã®é¢ä¿ãå€ãããªãããšããããäŸãã°ã䞡蟺ã«åãæ°ãè¶³ããŠãã䞡蟺ã®å€§å°é¢ä¿ã¯å€åããªãããã ãã䞡蟺ã«è² ã®æ°ãããããšãã«ã¯ãäžçå·ã®åããå€åããããšã«æ³šæãå¿
èŠã§ãããããã¯ãè² ã®æ°ãããããšäž¡èŸºã®å€ã¯ã0ãäžå¿ã«æ°çŽç·ãæãè¿ããå°ç¹ã«ç§»ãããããšã«ããã
x > y {\displaystyle x>y} ãæãç«ã€ãšãã«ã¯ã x + 3 > y + 3 {\displaystyle x+3>y+3} ã 4 x > 4 y {\displaystyle 4x>4y} ãæãç«ã€ããŸãã â x < â y {\displaystyle -x<-y} ãæãç«ã€ã
äžçåŒã®æ§è³ªã䜿ã£ãŠ
ã®äž¡èŸºãã3ãåŒããš
ãã£ãŠ
ãšãªãã ãã®ããã«ãäžçåŒã§ãç§»é
ããããšãã§ããã
ã°ã©ããçšããŠèãããšããäžçåŒã¯ã°ã©ãäžã®é åã衚ããé åã®å¢çã¯äžçå·ãçå·ã«çœ®ãæããéšåã察å¿ãããããã¯ãäžçå·ãæç«ãããã©ããããã®ç·äžã§å
¥ãæ¿ããããšã«ãã£ãŠããã(詳ããã¯æ°åŠII å³åœ¢ãšæ¹çšåŒã§åŠç¿ããã)
y > x + 1 {\displaystyle y>x+1} , y < 2 x + 1 {\displaystyle y<2x+1} , x < 3 {\displaystyle x<3} ã®ã°ã©ã(æ£ããã¯ãé åã)ãæãã
y > x + 1 {\displaystyle y>x+1} ã®ã°ã©ã(é å)ã¯æ¬¡ã®ããã«ãªãããã ããå¢çã¯å«ãŸãªãã
y < 2 x + 1 {\displaystyle y<2x+1} ã®ã°ã©ã(é å)ã¯æ¬¡ã®ããã«ãªãããã ããå¢çã¯å«ãŸãªãã
x < 3 {\displaystyle x<3} ã®ã°ã©ã(é å)ã¯æ¬¡ã®ããã«ãªãããã ããå¢çã¯å«ãŸãªãã
次ã®äžçåŒãè§£ãã
ããã€ãã®äžçåŒãçµã¿åããããã®ãé£ç«äžçåŒãšããããããã®äžçåŒãåæã«æºãã x {\displaystyle x} ã®å€ã®ç¯å²ãæ±ããããšããé£ç«äžçåŒãè§£ããšããã
次ã®é£ç«äžçåŒãè§£ãã (i)
(ii)
(i) x + 2 < 2 x + 4 {\displaystyle x+2<2x+4} ãã â x < 2 {\displaystyle -x<2}
10 â x ⥠3 x â 6 {\displaystyle 10-x\geq 3x-6} ãã â 4 x ⥠â 16 {\displaystyle -4x\geq -16}
(1),(2)ãåæã«æºãã x {\displaystyle x} ã®å€ã®ç¯å²ã¯
(ii) x ⥠1 â x {\displaystyle x\geq 1-x} ãã 2 x ⥠1 {\displaystyle 2x\geq 1}
2 ( x + 1 ) > x â 2 {\displaystyle 2(x+1)>x-2} ãã 2 x + 2 > x â 2 {\displaystyle 2x+2>x-2}
(1),(2)ãåæã«æºãã x {\displaystyle x} ã®å€ã®ç¯å²ã¯
絶察å€ãå«ãäžçåŒã«ã€ããŠèãããã çµ¶å¯Ÿå€ | x | {\displaystyle |x|} ã¯ãæ°çŽç·äžã§ãåç¹ O {\displaystyle \mathrm {O} } ãšç¹ P ( x ) {\displaystyle \mathrm {P} (x)} ã®éã®è·é¢ã衚ããŠããã ãããã£ãŠã a > 0 {\displaystyle a>0} ã®ãšã
次ã®äžçåŒãè§£ãã (i)
(ii)
(iii)
(iv)
(i)
(ii)
(iii)
(iv)
äžè¬ã®äºæ¬¡æ¹çšåŒ a x 2 + b x + c = 0 {\displaystyle ax^{2}+bx+c=0} ( a {\displaystyle a} , b {\displaystyle b} , c {\displaystyle c} ã¯å®æ°ã a â 0 {\displaystyle a\neq 0} )ã®è§£ x {\displaystyle x} ãæ±ããå
¬åŒã«ã€ããŠèããã
ããã§æçåŒ x 2 + 2 y x = ( x + y ) 2 â y 2 {\displaystyle x^{2}+2yx=(x+y)^{2}-y^{2}} ãš (1) ã®å·ŠèŸºãä¿æ°æ¯èŒãããšã
ã§ããããã(1) ã®åŒã¯æ¬¡ã®ããã«å€åœ¢ã§ãã(å¹³æ¹å®æ)ã
b 2 â 4 a c ⥠0 {\displaystyle b^{2}-4ac\geq 0} ã®ãšã䞡蟺ã®å¹³æ¹æ ¹ããšããšã
ãããäºæ¬¡æ¹çšåŒã®è§£ã®å
¬åŒ(ã«ãã»ããŠãããã®ããã®ãããããquadratic formula; äºæ¬¡å
¬åŒ)ã§ãããè§£ã®å
¬åŒãäºæ¬¡æ¹çšåŒã®äžè¬åœ¢ã«ä»£å
¥ãããšãå³èŸºã¯0ã«ãªãã¯ãã§ããã
ã§ããããšãçšãããšã
ãšãªãã確ãã«æ£ããããšããããã
ãããããè§£ã®å
¬åŒãå æ°åè§£ãçšããŠè§£ããªããã
çµæã®åŒã«æ ¹å·ãçŸããªãå Žåã«ã¯ãäœããã®ä»æ¹ã§å æ°åè§£ãã§ããããããããããã®æ¹æ³ã䜿ãã«ãããæ ¹å·ã¯ã§ããéãã®ä»æ¹ã§ç°¡ååããããšãéèŠã§ããã
(i)ã¯ç°¡åã«å æ°åè§£ã§ããã®ã§ãè§£ã®å
¬åŒãçšããå¿
èŠã¯ãªãã
ããã
ãçããšãªãã(ii)ã§ã¯ãå æ°åè§£ãåºæ¥ãªãã®ã§ãè§£ã®å
¬åŒãçšãããå æ°åè§£ãã§ãããã©ããã¯å®éã«è©Šè¡é¯èª€ããŠèŠåãããããªãã
ã«ãè§£ã®å
¬åŒãçšãããšãa=5, b= 2, c=-1ããã
ãšãªãã(iii),(iv)ã§ããå æ°åè§£ã¯åºæ¥ãªãã®ã§ãè§£ã®å
¬åŒãçšãããçãã¯ã (iii)
(iv)
(v)
ãšå æ°åè§£ã§ããã®ã§ãçãã¯
ãšãªãã
å
šåãéããŠãå æ°åè§£ãå¯èœãªæ¹çšåŒã«å¯ŸããŠããè§£ã®å
¬åŒã䜿çšããŠãæ§ããªãã
äºæ¬¡æ¹çšåŒ a x 2 + 2 b â² x + c = 0 ( a â 0 ) {\displaystyle ax^{2}+2b'x+c=0(a\neq 0)} ã«ã€ããŠèããã è§£ã®å
¬åŒã« b= 2b' ã代å
¥ãããš
ãã£ãŠãäºæ¬¡æ¹çšåŒ a x 2 + 2 b â² x + c = 0 {\displaystyle ax^{2}+2b'x+c=0} ã®è§£ã¯
ãšãªãã
ãäžã®è§£ã®å
¬åŒãçšããŠè§£ããªããã
äžã®è§£ã®å
¬åŒãçšãããšãa=3, b'= 3, c=-2ããã
ãšãªãã
2次æ¹çšåŒ a x 2 + b x + c = 0 {\displaystyle ax^{2}+bx+c=0} ã®è§£ã¯ x = â b ± b 2 â 4 a c 2 a {\displaystyle x={\frac {-b\pm {\sqrt {b^{2}-4ac}}}{2a}}} ã§ããã ãã®åŒã®æ ¹å·ã®äžèº«ã ãåãåºãããã®ãå€å¥åŒãšåŒã³ã2次æ¹çšåŒã®è§£ã®åæ°ãç°¡åã«å€å¥ã§ããã
D = b 2 â 4 a c {\displaystyle D=b^{2}-4ac} ã®å€ã«ãã£ãŠæ¬¡ã®ããã«ãªãã
(1) D > 0 {\displaystyle D>0} ã®ãšããç°ãªã2ã€ã®è§£ x = â b + b 2 â 4 a c 2 a {\displaystyle x={\frac {-b+{\sqrt {b^{2}-4ac}}}{2a}}} ãš x = â b â b 2 â 4 a c 2 a {\displaystyle x={\frac {-b-{\sqrt {b^{2}-4ac}}}{2a}}} ãæã€ã (2) D = 0 {\displaystyle D=0} ã®ãšãã ± b 2 â 4 a c = ± 0 {\displaystyle \pm {\sqrt {b^{2}-4ac}}=\pm 0} ã§ããã®ã§ã2ã€ã®è§£ã¯äžèŽããŠããã 1ã€ã®è§£ x = â b 2 a {\displaystyle x=-{\frac {b}{2a}}} ãæã€ãããã¯2ã€ã®è§£ãéãªã£ããã®ãšèããŠãéè§£ãšããã (3) D < 0 {\displaystyle D<0} ã®ãšãã宿°ã®ç¯å²ã§ã¯è§£ã¯ãªãã
2次æ¹çšåŒ a x 2 + b x + c = 0 {\displaystyle ax^{2}+bx+c=0} ã®è§£ã®åæ°ã¯ D = b 2 â 4 a c {\displaystyle D=b^{2}-4ac} ã®å€ã§å€å®ã§ããã
次ã®2次æ¹çšåŒã®è§£ã®åæ°ãæ±ããã
(I)
ã ããã宿°è§£ã¯ãªãã (II)
ã ãããéè§£ããã€ã (III)
ã ãããç°ãªã2ã€ã®å®æ°ã®è§£ããã€ã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ãã¡ããåç
§",
"title": "éåãšè«ç"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "3ã12ãªã©ã®æ°(宿°)ãã x {\\displaystyle x} ã y {\\displaystyle y} ãªã©ã®æå(倿°)ãæãããããŠã§ããåŒãé
(ãããterm)ãšããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "次ã®ãããªãã®ãé
ã§ããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãã®ããã«äžã€ã®é
ã ãããã§ããŠããåŒãåé
åŒ(ãããããããmonomial)ãšããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "â» ãããããŠãæŽåŒããå®çŸ©ãããšã次ã®ãããªå®çŸ©ã«ãªãã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "1ã€ä»¥äžã®åé
åŒãè¶³ãããããŠã§ããåŒãæŽåŒ(ãããã)ãšããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "以äžã¯æŽåŒã®äŸã§ããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "åé
åŒã§ããé
ã1ã€ãããªãæŽåŒã®äžã€ã§ãããšèããããšãã§ããã®ã§ããæŽåŒããšããæŠå¿µã䜿ãããšã«ãããå€é
åŒãšåé
åŒãšã®åºå¥ã®å¿
èŠããªããªãã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "x â y {\\displaystyle x-y} ã®ããã«æžæ³ãå«ãåŒã¯ã x â y = x + ( â y ) = â y + x {\\displaystyle x-y=x+(-y)=-y+x} ãšæžæ³ãå æ³ã«çŽãããšãã§ããã®ã§ã x , â y {\\displaystyle x,-y} ãé
ã«ãã€æŽåŒã§ãããšèãããããããªãã¡ãå€é
åŒã®é
ãšã¯ãå€é
åŒãè¶³ãç®ã®åœ¢ã«çŽãããšãã®ãäžã€äžã€ã®è¶³ããããã£ãŠããåŒã®ããšã§ãããããšãã° 5 + a â 13 x 2 y = 5 + a + ( â 13 x 2 y ) {\\displaystyle 5+a-13x^{2}y=5+a+(-13x^{2}y)} ã®é
㯠5 , a , â 13 x 2 y {\\displaystyle 5,a,-13x^{2}y} ã®3ã€ã§ããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "次ã®åŒã®ãã¡åé
åŒã§ãããã®ãçããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "(1), (2) ãåé
åŒã (3) ã¯é
ã6ã€ããããåé
åŒã§ã¯ãªãã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "äžã®å
šãŠã®åŒã¯æŽåŒã§ãããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "3 x 2 {\\displaystyle 3x^{2}} + 5 x 2 + 8 x {\\displaystyle 5x^{2}+8x} ã® 3 x 2 {\\displaystyle 3x^{2}} ãš 5 x 2 {\\displaystyle 5x^{2}} ã®ããã«ãå€é
åŒã®æåãšææ°ããŸã£ããåãã§ããé
ãç·ç§°ããŠåé¡é
(ã©ããããããlike terms)ãšããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "åé¡é
ã¯åé
æ³å a b + a c = a ( b + c ) {\\displaystyle ab+ac=a(b+c)} ã䜿ã£ãŠãŸãšããããšãã§ãããããšãã° 3 x 2 + 5 x 2 + 8 x = ( 3 + 5 ) x 2 + 8 x = 8 x 2 + 8 x {\\displaystyle 3x^{2}+5x^{2}+8x=(3+5)x^{2}+8x=8x^{2}+8x} ã§ããã 8 x 2 {\\displaystyle 8x^{2}} ãš 8 x {\\displaystyle 8x} ã¯æåã¯åãã§ãããææ°ãç°ãªãã®ã§ãåé¡é
ã§ã¯ãªãã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "次ã®å€é
åŒã®åé¡é
ãæŽçããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "3 x {\\displaystyle 3x} ãšããåé
åŒã¯ã3ãšããæ°ãš x {\\displaystyle x} ãšããæåã«åããŠèããããšãã§ãããæ°ã®éšåãåé
åŒã®ä¿æ°(ãããããcoefficient)ãšããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ããšãã° â x = ( â 1 ) x {\\displaystyle -x=(-1)x} ãšããåé
åŒã®ä¿æ°ã¯ -1 ã§ããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "256 x y 2 {\\displaystyle 256xy^{2}} ãšããåé
åŒã¯ã256ãšããæ°ãš x , y , y {\\displaystyle x,y,y} ãšããæåã«åããŠèããããšãã§ããã®ã§ããã®åé
åŒã®ä¿æ°ã¯256ã§ãããäžæ¹ãæãããããæåã®æ°ãåé
åŒã®æ¬¡æ°(ããããdegree)ãšããã 256 x y 2 {\\displaystyle 256xy^{2}} 㯠x , y , y {\\displaystyle x,y,y} ãšãã3ã€ã®æåãæãããããŠã§ããŠããã®ã§ããã®åé
åŒã®æ¬¡æ°ã¯3ã§ããã0ãšããåé
åŒã®æ¬¡æ°ã¯ 0 = 0 x = 0 x 2 = 0 x 3 = ⯠{\\displaystyle 0=0x=0x^{2}=0x^{3}=\\cdots } ãšäžã€ã«å®ãŸããªãã®ã§ãããã§ã¯èããªãã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "åé
åŒã®ä¿æ°ã𿬡æ°ã¯ãåã«æ°ãšæåã«åããŠèããã®ã§ã¯ãªããããæåã倿°ãšããŠèŠããšãã«ãæ®ãã®æåã宿°ãšããŠæ°ãšåãããã«æ±ãããšãããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ããšãã° â 5 a b c x 3 {\\displaystyle -5abcx^{3}} ãšããåé
åŒãã x 3 {\\displaystyle x^{3}} ã ãã倿°ã§ãæ®ãã®æå a , b , c {\\displaystyle a,b,c} ã¯å®æ°ãšèããããšãã§ããã ãã®ãšã ( â 5 a b c ) x 3 {\\displaystyle (-5abc)x^{3}} ãšåããããã®ã§ããã®åé
åŒã®ä¿æ°ã¯ â 5 a b c {\\displaystyle -5abc} ã倿°ã¯ x 3 {\\displaystyle x^{3}} ã§ã次æ°ã¯3ã§ãããšãããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ãã®ããšã â 5 a b c x 3 {\\displaystyle -5abcx^{3}} ãšããåé
åŒã¯ãã x {\\displaystyle x} ã«çç®ãããšãä¿æ°ã¯ â 5 a b c {\\displaystyle -5abc} ãæ¬¡æ°ã¯3ã§ããããªã©ãšããå Žåãããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ããã㯠â 5 a b c x 3 {\\displaystyle -5abcx^{3}} ã® a {\\displaystyle a} ãš b {\\displaystyle b} ã«çç®ããã°ã ( â 5 c x 3 ) a b {\\displaystyle (-5cx^{3})ab} ãšåãããã a {\\displaystyle a} ãš b {\\displaystyle b} ã«çç®ãããšãã®ãã®åé
åŒã®ä¿æ°ã¯ â 5 c x 3 {\\displaystyle -5cx^{3}} ã倿°ã¯ a b {\\displaystyle ab} ã§ã次æ°ã¯2ã§ãããšãããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "æ
£ç¿çã«ã¯ a , b , c , ⯠{\\displaystyle a,b,c,\\cdots } ãªã©ã®ã¢ã«ãã¡ãããã®æåã®æ¹ã®æåã宿°ã衚ãã®ã«äœ¿ãã ⯠, x , y , z {\\displaystyle \\cdots ,x,y,z} ãªã©ã®ã¢ã«ãã¡ãããã®æåŸã®æ¹ã®æåã倿°ã衚ãã®ã«çšããããäžè¬çã«ã¯ãã®éãã§ãªãã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "å€é
åŒã®æ¬¡æ°ãšã¯ãå€é
åŒã®åé¡é
ããŸãšãããšãã«ããã£ãšã次æ°ã®é«ãé
ã®æ¬¡æ°ããããããšãã° x 3 + 3 x 2 y + 2 y {\\displaystyle x^{3}+3x^{2}y+2y} ã§ã¯ããã£ãšã次æ°ã®é«ãé
㯠x 3 {\\displaystyle x^{3}} ã§ããã®ã§ããã®å€é
åŒã®æ¬¡æ°ã¯3ã§ããããã x 3 + 3 x 2 y + 2 y {\\displaystyle x^{3}+3x^{2}y+2y} ( x {\\displaystyle x} ã¯å®æ°)ã§ããã°ãããªãã¡å€é
åŒã® y {\\displaystyle y} ã«ã€ããŠçç®ãããšããã£ãšã次æ°ã®é«ãé
㯠3 x 2 y {\\displaystyle 3x^{2}y} ãš 2 y {\\displaystyle 2y} ã§ããã®ã§ããã®å€é
åŒã®æ¬¡æ°ã¯1ã§ããããã®ãšãçç®ããæåãå«ãŸãªãé
x 3 {\\displaystyle x^{3}} ã¯å®æ°é
(ãŠããããããconstant term)ãšããŠæ°ãšåãããã«æ±ãããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "次ã®å€é
åŒã® x {\\displaystyle x} ãŸã㯠y {\\displaystyle y} ã«çç®ãããšãã®æ¬¡æ°ãšå®æ°é
ãããããããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ããšãã°ã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ã®ããã«ã次æ°ã®é«ãé
ããå
ã«é
ããªãã¹ãããšããéã¹ãã(ããã¹ã)ãšããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ããŠãåŒã䜿ãç®çã«ãã£ãŠã¯ã次æ°ã®ã²ããé
ããå
ã«æžããã»ãã䟿å©ãªå Žåãããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ããšãã°ã x {\\displaystyle x} ã çŽ0.01 ã®ãããª1æªæºã®å°ããæ°ã®å ŽåãåŒ x 2 + 6 x + 7 {\\displaystyle x^{2}+6x+7} ã®å€ãæ±ããããªããæå x {\\displaystyle x} ã®æ¬¡æ°ã®å°ããé
ã®ã»ãã圱é¿ãé«ãã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "ãªã®ã§ã ç®çã«ãã£ãŠã¯",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "ã®ããã«ã次æ°ã®ã²ããé
ããå
ã«æžãå Žåãããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "7 + 6 x + x 2 {\\displaystyle 7+6x+x^{2}} ã®ããã«ã次æ°ã®äœãé
ããå
ã«é
ããªãã¹ãããšããæã¹ãã(ãããã¹ã)ãšããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "å€é
åŒã«2ã€ä»¥äžã®æåããããšããç¹å®ã®1ã€ã®æåã«æ³šç®ããŠäžŠã³å€ãããšã䜿ãããããªãããšãããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "ããšãã°ã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "ã®é
ããxã®æ¬¡æ°ãå€ãé
ããå
ã«äžŠã³ãããåé¡é
ããŸãšãããš",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "ãšãªãã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "ãã®(äŸ2)ã®ããã«ãç¹å®ã®æåã ãã«çç®ããŠããã®æåã®æ¬¡æ°ã®é«ãé ã«äžŠã³ããããšäŸ¿å©ãªããšããã°ãã°ããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "äŸ2ã¯ã x {\\displaystyle x} ã«ã€ã㊠éã¹ã ã®é ã«äžŠã³å€ããæŽåŒã§ããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "çç®ããŠãªãæåã«ã€ããŠã¯ãäžŠã³æãã®ãšãã¯å®æ°ã®ããã«æ±ãã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "ãã£ãœãã x {\\displaystyle x} ã«ã€ããŠã次æ°ã®ã²ããé
ããé ã«äžŠã¹ããšã次ã®ãããªåŒã«ãªãã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "ãã®ããã«ãç¹å®ã®æåã®æ¬¡æ°ãäœããã®ããé ã«äžŠã³ããããšäŸ¿å©ãªããšããã°ãã°ããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "äŸ3ã¯ãxã«ã€ã㊠æã¹ã ã®é ã«äžŠã³å€ããæŽåŒã§ããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "ããšãã°ãåŒ",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "ãšããåŒã®å³èŸº",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "ã®æ¬¡æ°ã¯ããããã§ããããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "aãšxãçããæåãšããŠæ±ãã®ã§ããã°ã a x {\\displaystyle ax} ã®æ¬¡æ°ã¯",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "ãã 1+1 =2 ãªã®ã§ããã®åŒã®æ¬¡æ°ã¯2ã§ããã(é
bã¯æ¬¡æ°1ãªã®ã§ã a x {\\displaystyle ax} ã®æ¬¡æ°2ãããäœãã®ã§ç¡èŠããã)",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "ãããããããã®åŒãã宿° a {\\displaystyle a} ãä¿æ°ãšãã倿° x {\\displaystyle x} ã«ã€ããŠã®äžæ¬¡é¢æ°ãšã¿ãã®ã§ããã°ãäžæ¬¡åŒãšæãã®ãåççã ããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "ãã®ãããªå Žåãç¹å®ã®æåã ãã«æ³šç®ãããã®åŒã®æ¬¡æ°ãèãããšããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ããšãã°ãæåxã ãã«æ³šç®ããŠãåŒ a x + b {\\displaystyle ax+b} ã®æ¬¡æ°ã決ããŠã¿ããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ãããšãæåxã«æ³šç®ããå Žåã®åŒ a x + b {\\displaystyle ax+b} ã®æ¬¡æ°ã¯1ã«ãªãã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "ãªããªã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "ãã£ãŠãæå x {\\displaystyle x} ã«æ³šç®ããå Žåã®é
a x {\\displaystyle ax} ã®æ¬¡æ°ã¯ã 0+1 ãªã®ã§ã1ã§ããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "ãã®ããã«èããå Žåãå¿
èŠã«å¿ããŠã©ã®æåã«æ³šç®ããããæèšããŠãæåâ¯â¯ã«æ³šç®ããæ¬¡æ°ãã®ããã«è¿°ã¹ããšããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "å€é
åŒã®ç©ã¯åé
æ³åã䜿ã£ãŠèšç®ããããšãã§ããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "ãã®ããã«å€é
åŒã®ç©ã§è¡šãããåŒãäžã€ã®å€é
åŒã«ç¹°ãåºããããšããå€é
åŒãå±é(ãŠããããexpand)ãããšããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "a {\\displaystyle a} ã n {\\displaystyle n} åæãããã®ã a n {\\displaystyle a^{n}} ãšæžããaã®nä¹(-ããããa to the n-th power)ãšããããã ã a 1 = a {\\displaystyle a^{1}=a} ãšå®çŸ©ãããããšãã°ã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "ã§ããã a , a 2 , a 3 , a 4 , a 5 , ⯠, a n {\\displaystyle a,a^{2},a^{3},a^{4},a^{5},\\cdots ,a^{n}} ãç·ç§°ã㊠a {\\displaystyle a} ã®çޝä¹(ããããããexponentiationãåªä¹ãã¹ãããããåªãã¹ã)ãšããã a n {\\displaystyle a^{n}} ã® n ãææ°(ããããexponent)ãšãã(a ã¯åº(ãŠããbase)ãšãã)ãããã§ã¯èªç¶æ°ãããªãã¡æ£ã®æŽæ°ã®ææ°ãèããã环ä¹ã¯æ¬¡ã®ããã«èããããšãã§ããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "环ä¹ã©ãããæãããããç©ã¯ã次ã®ããã«èšç®ããããšãã§ããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "环ä¹ã©ãããå²ã£ãåã¯ã次ã®ããã«èšç®ããããšãã§ããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "环ä¹ã®çޝä¹ã¯ã次ã®ããã«èšç®ããããšãã§ããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "ç©ã®çޝä¹ã¯ã次ã®ããã«èšç®ããããšãã§ããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "ããããããããŠææ°æ³å(ãããã»ããããexponential law)ãšããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "环ä¹ã®å®çŸ©ããæããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "次ã®åŒãèšç®ããªããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "次ã®åŒãå±éããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "ãŸãšãããšã次ã®ããã«ãªãã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "次ã®åŒãå±éããªããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "è€éãªåŒã®å±éã¯ãåŒã®äžéšåãäžã€ã®æåã«ãããŠå
¬åŒã䜿ããšããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "次ã®åŒãå±éããªããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "次ã®åŒãå æ°åè§£ããªããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "次ã®åŒãå æ°åè§£ããªããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "次ã®åŒãå æ°åè§£ããªããã",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "",
"title": "åŒã®å±éãšå æ°åè§£"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "a=b^2ãæãç«ã€ãšããa=2ãšãªããããªbãããªãã¡ 2 {\\displaystyle {\\sqrt {2}}} ã®å
·äœçãªå€ãã©ã®ãããªãã®ãã調ã¹ãŠã¿ããã",
"title": "宿°"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "ãã®ããã«ãbãæ§ã
ã«æ±ºããŠããaã¯ãªããªã2ã«ãªããªãã",
"title": "宿°"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "å®ã¯ 2 {\\displaystyle {\\sqrt {2}}} ã¯ã忝ååå
±ã«æŽæ°ã®åæ°ã§è¡šãããšã¯ã§ããªãããã®ããã«æŽæ°ã忝ååã«æã€åæ°ã§è¡šããªããããªæ°ãç¡çæ°ãšãããäŸãã°ãååšçÏã¯ç¡çæ°ã§ãããããã«å¯ŸããŠãæŽæ°ã埪ç°å°æ°ãªã©ã忝ååå
±ã«æŽæ°ã®åæ°ã§è¡šãããšã®ã§ããæ°ãæçæ°ãšããã",
"title": "宿°"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "æçæ°ãšç¡çæ°ãåãããŠå®æ°ãšãããã©ããªå®æ°ã§ãæ°çŽç·äžã®ç¹ãšããŠè¡šããããŸããã©ããªå®æ°ããæéå°æ°ãããã¯ç¡éå°æ°ãšããŠè¡šããã (äžèšã®ãç¡éå°æ°ãã®ç¯ãåç
§)",
"title": "宿°"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "2 {\\displaystyle {\\sqrt {2}}} ãæçæ°ã§ãããšä»®å®ãããšãäºãã«çŽ ãª(1以å€ã«å
¬çŽæ°ããããªã)æŽæ° m, n ãçšããŠã",
"title": "宿°"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "ãšè¡šããããšãã§ããããã®ãšãã䞡蟺ã2ä¹ããŠåæ¯ãæããšã",
"title": "宿°"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "ãã£ãŠ m ã¯2ã®åæ°ã§ãããæŽæ° l ãçšã㊠m = 2 l {\\displaystyle m=2l} ãšè¡šãããšãã§ãããããã (1) ã®åŒã«ä»£å
¥ããŠæŽçãããšã",
"title": "宿°"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "ãã£ãŠ n ã2ã®åæ°ã§ãããããã㯠m, n ã2ãå
¬çŽæ°ã«ãã€ããšã«ãªããäºãã«çŽ ãšä»®å®ããããšã«ççŸããããããã£ãŠ 2 {\\displaystyle {\\sqrt {2}}} ã¯ç¡çæ°ã§ãã(èçæ³)ã",
"title": "宿°"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "0.1 ã 0.123456789 ã®ããã«ãããäœã§çµããå°æ°ãæéå°æ°ãšããã",
"title": "宿°"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "äžæ¹ã 0.1234512345 ⯠{\\displaystyle 0.1234512345\\cdots } ã 3.1415926535 ⯠{\\displaystyle 3.1415926535\\cdots } ã®ããã«ç¡éã«ç¶ãå°æ°ã ç¡éå°æ°(ããã ããããã)ãšããã",
"title": "宿°"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "ç¡éå°æ°ã®ãã¡ãããäœããäžãããããé
åã®æ°åã®ç¹°ãè¿ãã«ãªã£ãŠãããã®ã 埪ç°å°æ°(ãã
ããã ããããã)ãšãããäŸãã° 0.3333333333 ⯠{\\displaystyle 0.3333333333\\cdots } ã 0.1428571428 ⯠{\\displaystyle 0.1428571428\\cdots } ã 0.1232323232 ⯠{\\displaystyle 0.1232323232\\cdots } ãªã©ã§ãããç¹°ãè¿ãã®æå°åäœã埪ç°ç¯ãšããã埪ç°å°æ°ã¯åŸªç°ç¯1ã€ãçšã㊠0. 3 Ì {\\displaystyle 0.{\\dot {3}}} ã 0. 1 Ì 4285 7 Ì {\\displaystyle 0.{\\dot {1}}4285{\\dot {7}}} ã 0.1 2 Ì 3 Ì {\\displaystyle 0.1{\\dot {2}}{\\dot {3}}} ã®ããã«åŸªç°ç¯ã®æåãšæåŸ(埪ç°ç¯ãäžæ¡ã®å Žåã¯ã²ãšã€ã ã)ã®äžã«ç¹ãã€ããŠè¡šãã",
"title": "宿°"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "å
šãŠã®åŸªç°å°æ°ã¯åæ°ã«çŽããã",
"title": "宿°"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "ãšçœ®ããšã",
"title": "宿°"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "ã§ããã(2)ãŒ(1) ãã 9 a = 3 {\\displaystyle 9a=3} ããã£ãŠ a = 3 9 = 1 3 {\\displaystyle a={\\frac {3}{9}}={\\frac {1}{3}}} ã§ããã",
"title": "宿°"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "a = 0. 1 Ì 4285 7 Ì 1000000 a = 142857. 1 Ì 4285 7 Ì 999999 a = 142857 a = 142857 999999 = 1 7 {\\displaystyle {\\begin{aligned}a&=0.{\\dot {1}}4285{\\dot {7}}\\\\1000000a&=142857.{\\dot {1}}4285{\\dot {7}}\\\\999999a&=142857\\\\a&={\\frac {142857}{999999}}\\ ={\\frac {1}{7}}\\end{aligned}}}",
"title": "宿°"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "a = 0.1 2 Ì 3 Ì 100 a = 12.3 2 Ì 3 Ì 99 a = 12.2 a = 12.2 99 = 61 495 {\\displaystyle {\\begin{aligned}a&=0.1{\\dot {2}}{\\dot {3}}\\\\100a&=12.3{\\dot {2}}{\\dot {3}}\\\\99a&=12.2\\\\a&={\\frac {12.2}{99}}\\ ={\\frac {61}{495}}\\end{aligned}}}",
"title": "宿°"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "宿° a ã«ã€ããŠãa ã®æ°çŽç·äžã§ã®åç¹ãšã®è·é¢ã a ã®çµ¶å¯Ÿå€ãšããã | a | {\\displaystyle |a|} ã§è¡šãã",
"title": "宿°"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "ããšãã°",
"title": "宿°"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "ã§ããã",
"title": "宿°"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "å®çŸ©ãã | a | = | â a | {\\displaystyle |a|=|-a|} ããããããŸãã a , b {\\displaystyle a,b} ãä»»æã®å®æ°ãšãããšããããããã«å¯Ÿå¿ããæ°çŽç·äžã®ä»»æã®2ç¹ P ( a ) , Q ( b ) {\\displaystyle \\mathrm {P} (a),\\mathrm {Q} (b)} éã®è·é¢ã«ã€ããŠã¯ã次ã®ããšããããã",
"title": "宿°"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "",
"title": "宿°"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "",
"title": "宿°"
},
{
"paragraph_id": 104,
"tag": "p",
"text": "ä»ã2ä¹ããŠaã«ãªãæ°bãèããã",
"title": "宿°"
},
{
"paragraph_id": 105,
"tag": "p",
"text": "a = 1 {\\displaystyle a=1} ã®ãšãã b = 1 {\\displaystyle b=1} ãšããŠçµããã«ããŠã¯ãããªãã確ãã« b = 1 {\\displaystyle b=1} ãæ¡ä»¶ãæºããã b = â 1 {\\displaystyle b=-1} ãæ¡ä»¶ãæºããããã£ãŠ b = 1 {\\displaystyle b=1} ãŸã㯠b = â 1 {\\displaystyle b=-1} ã§ããã",
"title": "宿°"
},
{
"paragraph_id": 106,
"tag": "p",
"text": "äžè¬ã«æ£ã®æ°aã«ã€ããŠa=b^2ãšãªãbã¯äºã€ããããã®äºã€ã¯çµ¶å¯Ÿå€ãçããããã®äºã€ã®bãaã®å¹³æ¹æ ¹ãšãããaã®å¹³æ¹æ ¹ã®ãã¡ãæ£ã§ãããã®ã a {\\displaystyle {\\sqrt {a}}} ãè² ã§ãããã®ã â a {\\displaystyle -{\\sqrt {a}}} ãšæžãã a {\\displaystyle {\\sqrt {a}}} ã¯ãã«ãŒãaããšèªãã",
"title": "宿°"
},
{
"paragraph_id": 107,
"tag": "p",
"text": "äžæ¹ãè² ã®æ°aã«ã€ããŠèããŠã¿ãŠãäžæãbãèŠã€ããããšã¯ã§ããªããå®éã®ãšãããè² ã®æ°ã®å¹³æ¹æ ¹ã¯å®æ°ã§è¡šãããšã¯ã§ããªãã",
"title": "宿°"
},
{
"paragraph_id": 108,
"tag": "p",
"text": "2 , 4 , 9 , 12 {\\displaystyle 2\\ ,\\ 4\\ ,\\ 9\\ ,\\ 12} ã®å¹³æ¹æ ¹ãæ±ããã",
"title": "宿°"
},
{
"paragraph_id": 109,
"tag": "p",
"text": "± 2 , ± 2 , ± 3 , ± 2 3 {\\displaystyle \\pm {\\sqrt {2}}\\ ,\\ \\pm 2\\ ,\\ \\pm 3\\ ,\\ \\pm 2{\\sqrt {3}}}",
"title": "宿°"
},
{
"paragraph_id": 110,
"tag": "p",
"text": "ããããã®ã«ãŒããèšç®ãã ± {\\displaystyle \\pm } ãã€ããã°ããããã ããå¹³æ¹æ ¹ã®ã«ãŒã«ã«åŸã£ãŠãç°¡ååã§ãããã®ã¯ç°¡ååããããšãèŠæ±ãããã",
"title": "宿°"
},
{
"paragraph_id": 111,
"tag": "p",
"text": "äŸãã°ã 2 {\\displaystyle 2} ã«å¯ŸããŠã¯ã ± 2 {\\displaystyle \\pm {\\sqrt {2}}} ãšãªãã",
"title": "宿°"
},
{
"paragraph_id": 112,
"tag": "p",
"text": "äžè¬ã«ã A 2 = | A | {\\displaystyle {\\sqrt {A^{2}}}=|A|} ã§ããã",
"title": "宿°"
},
{
"paragraph_id": 113,
"tag": "p",
"text": "æ ¹å·ã«ã€ããŠã次ã®å
¬åŒãæãç«ã€ã",
"title": "宿°"
},
{
"paragraph_id": 114,
"tag": "p",
"text": "ãŸãã a b {\\displaystyle {\\sqrt {ab}}} ãšã¯ãå®çŸ©ã«ããšã¥ããŠèãããšã2ä¹ãããš ab ã«ãªãæ°ã®ãã¡ãæ£ã®ã»ãã®æ°ãšããæå³ã§ããã",
"title": "宿°"
},
{
"paragraph_id": 115,
"tag": "p",
"text": "ãªã®ã§ãå
¬åŒã a b = a b {\\displaystyle {\\sqrt {a}}{\\sqrt {b}}={\\sqrt {ab}}} ãã蚌æããã«ã¯ããã®ããšã蚌æããã°ããã",
"title": "宿°"
},
{
"paragraph_id": 116,
"tag": "p",
"text": "ãªã®ã§ããŸãã a b {\\displaystyle {\\sqrt {a}}{\\sqrt {b}}} ã2ä¹ãããšã",
"title": "宿°"
},
{
"paragraph_id": 117,
"tag": "p",
"text": "ãšãªãã",
"title": "宿°"
},
{
"paragraph_id": 118,
"tag": "p",
"text": "ããã« a b {\\displaystyle {\\sqrt {a}}{\\sqrt {b}}} ã¯ããŸãæ¡ä»¶ã2ä¹ãããšabã«ãªãããæºããã",
"title": "宿°"
},
{
"paragraph_id": 119,
"tag": "p",
"text": "ãããŠãæ£ã®æ°ã®å¹³æ¹æ ¹ã¯æ£ãªã®ã§ã a b {\\displaystyle {\\sqrt {a}}{\\sqrt {b}}} ãæ£ã§ããããã£ãŠ a b {\\displaystyle {\\sqrt {a}}{\\sqrt {b}}} ã¯ãã2ä¹ãããšabã«ãªããæ°ã®ãã¡ã®æ£ã®ã»ãã§ããã",
"title": "宿°"
},
{
"paragraph_id": 120,
"tag": "p",
"text": "(蚌æããã)",
"title": "宿°"
},
{
"paragraph_id": 121,
"tag": "p",
"text": "ããã«ãäžã®å
¬åŒ(1)ã«ãããæ¬¡ã®å
¬åŒãå°ãããã",
"title": "宿°"
},
{
"paragraph_id": 122,
"tag": "p",
"text": "",
"title": "宿°"
},
{
"paragraph_id": 123,
"tag": "p",
"text": "èšç®ããã",
"title": "宿°"
},
{
"paragraph_id": 124,
"tag": "p",
"text": "åæ¯ã«æ ¹å·ãå«ãŸãªãåŒã«ããããšãã忝ãæçåãããšãããæçåã¯ã忝ãšååã«åãæ°ããããŠãããããšãå©çšããŠè¡ãã",
"title": "宿°"
},
{
"paragraph_id": 125,
"tag": "p",
"text": "ããšãã°ã 1 2 {\\displaystyle {\\frac {1}{\\sqrt {2}}}} ãæçåãããšã 1 2 = 1 2 2 2 = 2 2 {\\displaystyle {\\frac {1}{\\sqrt {2}}}\\ =\\ {\\frac {1{\\sqrt {2}}}{{\\sqrt {2}}{\\sqrt {2}}}}\\ =\\ {\\frac {\\sqrt {2}}{2}}} ãšãªãã",
"title": "宿°"
},
{
"paragraph_id": 126,
"tag": "p",
"text": "ãŸãããšãã« a b + c {\\displaystyle {\\frac {a}{b+c}}} ã«ã€ããŠã b 2 â c 2 = 1 {\\displaystyle b^{2}-c^{2}=1} ã®ãšãã a b + c = a ( b â c ) ( b + c ) ( b â c ) = a ( b â c ) b 2 â c 2 = a ( b â c ) 1 = a ( b â c ) {\\displaystyle {\\frac {a}{b+c}}\\ =\\ {\\frac {a(b-c)}{(b+c)(b-c)}}\\ =\\ {\\frac {a(b-c)}{b^{2}-c^{2}}}\\ =\\ {\\frac {a(b-c)}{1}}\\ =\\ a(b-c)} ã§ããã",
"title": "宿°"
},
{
"paragraph_id": 127,
"tag": "p",
"text": "ããšãã°ã a = 1 , b = 2 , c = 1 {\\displaystyle a=1,b={\\sqrt {2}},c=1} ãšãããšã 1 2 + 1 = 2 â 1 {\\displaystyle {\\frac {1}{{\\sqrt {2}}+1}}={\\sqrt {2}}-1} ã§ããã",
"title": "宿°"
},
{
"paragraph_id": 128,
"tag": "p",
"text": "忝ãæçåããã",
"title": "宿°"
},
{
"paragraph_id": 129,
"tag": "p",
"text": "äºéæ ¹å·ãšã¯ãæ ¹å·ã2éã«ãªã£ãŠããåŒã®ããšã§ãããäºéæ ¹å·ã¯åžžã«å€ããããã§ã¯ãªããæ ¹å·ã®äžã«å«ãŸããåŒã«ãã£ãŠç°¡åã«ã§ãããã©ãããæ±ºãŸããäžè¬ã«ãæ ¹å·å
ã®åŒãã x 2 {\\displaystyle x^{2}} ã®åœ¢ã«å€åœ¢ã§ããå Žåã«ã¯ãå€åŽã®æ ¹å·ãå€ãããšãã§ããã",
"title": "宿°"
},
{
"paragraph_id": 130,
"tag": "p",
"text": "3 + 2 2 {\\displaystyle {\\sqrt {3+2{\\sqrt {2}}}}} ãç°¡åã«ããã",
"title": "宿°"
},
{
"paragraph_id": 131,
"tag": "p",
"text": "3 + 2 2 {\\displaystyle 3+2{\\sqrt {2}}} ã ( ⯠) 2 {\\displaystyle (\\cdots )^{2}} ã®åœ¢ã«ã§ããããèããã",
"title": "宿°"
},
{
"paragraph_id": 132,
"tag": "p",
"text": "ä»®ã«ã ( a + b ) 2 {\\displaystyle ({\\sqrt {a}}+{\\sqrt {b}})^{2}} (a,bã¯æ£ã®æŽæ°)ã®åœ¢ã«ã§ãããšãããšã 3 + 2 2 = a + b + 2 a b {\\displaystyle 3+2{\\sqrt {2}}=a+b+2{\\sqrt {ab}}} ãšãªãã",
"title": "宿°"
},
{
"paragraph_id": 133,
"tag": "p",
"text": "ãæºããæŽæ°a,bãæ¢ãã°ããããã®é¢ä¿ã¯ãa=1,b=2(a,bãå
¥ãæããŠãå¯ã)ã«ãã£ãŠæºããããã®ã§ã 3 + 2 2 = ( 2 + 1 ) 2 {\\displaystyle 3+2{\\sqrt {2}}\\ =\\ ({\\sqrt {2}}+1)^{2}} ãæãç«ã€ã",
"title": "宿°"
},
{
"paragraph_id": 134,
"tag": "p",
"text": "ãã£ãŠã 3 + 2 2 = ( 2 + 1 ) 2 = 2 + 1 {\\displaystyle {\\sqrt {3+2{\\sqrt {2}}}}\\ =\\ {\\sqrt {({\\sqrt {2}}+1)^{2}}}\\ =\\ {\\sqrt {2}}+1} ãšãªãã",
"title": "宿°"
},
{
"paragraph_id": 135,
"tag": "p",
"text": "次ã®åŒãèšç®ããã",
"title": "宿°"
},
{
"paragraph_id": 136,
"tag": "p",
"text": "åã倧ããã®éã=ã§çµãã åŒãæ¹çšåŒãšåŒã¶ããšãæ¢ã«åŠç¿ãããããã§ã¯ãç°ãªã£ãéã®å€§ããã®éãã衚ãèšå·ãå°å
¥ãããã®æ§è³ªã«ã€ããŠãŸãšããã",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 137,
"tag": "p",
"text": "ããæ°A,BããããšããAãBãã倧ããããšã A > B {\\displaystyle A>B} ãšè¡šããAãBããå°ããããšã A < B {\\displaystyle A<B} ãšè¡šããããã§ã<ãš>ã®ããšãäžçå·ãšåŒã³ããã®ãããªåŒãäžçåŒãšåŒã¶ããŸãã †, ⥠{\\displaystyle \\leq ,\\geq } ã䌌ãæå³ã®äžçåŒã§ããããããããAãšBãçããå€ã§ããå Žåãå«ããã®ã§ããã",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 138,
"tag": "p",
"text": "ãªããæ¥æ¬ã®æè²ã«ãããŠã¯ã †, ⥠{\\displaystyle \\leq ,\\geq } ã®ä»£ããã«ãäžçå·ã®äžã«çå·ãèšãã ⊠, â§ {\\displaystyle \\leqq ,\\geqq } ã䜿ãããšãå€ãã",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 139,
"tag": "p",
"text": "x > 7 {\\displaystyle x>7} ãšããäžçåŒããããšããxã¯7ãã倧ãã宿°ã§ããããŸãã x ⥠7 {\\displaystyle x\\geq 7} ã®æã«ã¯ãxã¯7以äžã®å®æ°ã§ããã",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 140,
"tag": "p",
"text": "äžçåŒã§ã¯çåŒãšåãããã«ãäž¡èŸºã«æŒç®ãããŠãäžçå·ã®é¢ä¿ãå€ãããªãããšããããäŸãã°ã䞡蟺ã«åãæ°ãè¶³ããŠãã䞡蟺ã®å€§å°é¢ä¿ã¯å€åããªãããã ãã䞡蟺ã«è² ã®æ°ãããããšãã«ã¯ãäžçå·ã®åããå€åããããšã«æ³šæãå¿
èŠã§ãããããã¯ãè² ã®æ°ãããããšäž¡èŸºã®å€ã¯ã0ãäžå¿ã«æ°çŽç·ãæãè¿ããå°ç¹ã«ç§»ãããããšã«ããã",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 141,
"tag": "p",
"text": "x > y {\\displaystyle x>y} ãæãç«ã€ãšãã«ã¯ã x + 3 > y + 3 {\\displaystyle x+3>y+3} ã 4 x > 4 y {\\displaystyle 4x>4y} ãæãç«ã€ããŸãã â x < â y {\\displaystyle -x<-y} ãæãç«ã€ã",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 142,
"tag": "p",
"text": "äžçåŒã®æ§è³ªã䜿ã£ãŠ",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 143,
"tag": "p",
"text": "ã®äž¡èŸºãã3ãåŒããš",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 144,
"tag": "p",
"text": "ãã£ãŠ",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 145,
"tag": "p",
"text": "ãšãªãã ãã®ããã«ãäžçåŒã§ãç§»é
ããããšãã§ããã",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 146,
"tag": "p",
"text": "ã°ã©ããçšããŠèãããšããäžçåŒã¯ã°ã©ãäžã®é åã衚ããé åã®å¢çã¯äžçå·ãçå·ã«çœ®ãæããéšåã察å¿ãããããã¯ãäžçå·ãæç«ãããã©ããããã®ç·äžã§å
¥ãæ¿ããããšã«ãã£ãŠããã(詳ããã¯æ°åŠII å³åœ¢ãšæ¹çšåŒã§åŠç¿ããã)",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 147,
"tag": "p",
"text": "y > x + 1 {\\displaystyle y>x+1} , y < 2 x + 1 {\\displaystyle y<2x+1} , x < 3 {\\displaystyle x<3} ã®ã°ã©ã(æ£ããã¯ãé åã)ãæãã",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 148,
"tag": "p",
"text": "y > x + 1 {\\displaystyle y>x+1} ã®ã°ã©ã(é å)ã¯æ¬¡ã®ããã«ãªãããã ããå¢çã¯å«ãŸãªãã",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 149,
"tag": "p",
"text": "y < 2 x + 1 {\\displaystyle y<2x+1} ã®ã°ã©ã(é å)ã¯æ¬¡ã®ããã«ãªãããã ããå¢çã¯å«ãŸãªãã",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 150,
"tag": "p",
"text": "x < 3 {\\displaystyle x<3} ã®ã°ã©ã(é å)ã¯æ¬¡ã®ããã«ãªãããã ããå¢çã¯å«ãŸãªãã",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 151,
"tag": "p",
"text": "",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 152,
"tag": "p",
"text": "次ã®äžçåŒãè§£ãã",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 153,
"tag": "p",
"text": "ããã€ãã®äžçåŒãçµã¿åããããã®ãé£ç«äžçåŒãšããããããã®äžçåŒãåæã«æºãã x {\\displaystyle x} ã®å€ã®ç¯å²ãæ±ããããšããé£ç«äžçåŒãè§£ããšããã",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 154,
"tag": "p",
"text": "次ã®é£ç«äžçåŒãè§£ãã (i)",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 155,
"tag": "p",
"text": "(ii)",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 156,
"tag": "p",
"text": "(i) x + 2 < 2 x + 4 {\\displaystyle x+2<2x+4} ãã â x < 2 {\\displaystyle -x<2}",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 157,
"tag": "p",
"text": "10 â x ⥠3 x â 6 {\\displaystyle 10-x\\geq 3x-6} ãã â 4 x ⥠â 16 {\\displaystyle -4x\\geq -16}",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 158,
"tag": "p",
"text": "(1),(2)ãåæã«æºãã x {\\displaystyle x} ã®å€ã®ç¯å²ã¯",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 159,
"tag": "p",
"text": "(ii) x ⥠1 â x {\\displaystyle x\\geq 1-x} ãã 2 x ⥠1 {\\displaystyle 2x\\geq 1}",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 160,
"tag": "p",
"text": "2 ( x + 1 ) > x â 2 {\\displaystyle 2(x+1)>x-2} ãã 2 x + 2 > x â 2 {\\displaystyle 2x+2>x-2}",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 161,
"tag": "p",
"text": "(1),(2)ãåæã«æºãã x {\\displaystyle x} ã®å€ã®ç¯å²ã¯",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 162,
"tag": "p",
"text": "",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 163,
"tag": "p",
"text": "絶察å€ãå«ãäžçåŒã«ã€ããŠèãããã çµ¶å¯Ÿå€ | x | {\\displaystyle |x|} ã¯ãæ°çŽç·äžã§ãåç¹ O {\\displaystyle \\mathrm {O} } ãšç¹ P ( x ) {\\displaystyle \\mathrm {P} (x)} ã®éã®è·é¢ã衚ããŠããã ãããã£ãŠã a > 0 {\\displaystyle a>0} ã®ãšã",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 164,
"tag": "p",
"text": "",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 165,
"tag": "p",
"text": "次ã®äžçåŒãè§£ãã (i)",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 166,
"tag": "p",
"text": "(ii)",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 167,
"tag": "p",
"text": "(iii)",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 168,
"tag": "p",
"text": "(iv)",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 169,
"tag": "p",
"text": "(i)",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 170,
"tag": "p",
"text": "(ii)",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 171,
"tag": "p",
"text": "(iii)",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 172,
"tag": "p",
"text": "(iv)",
"title": "äžæ¬¡äžçåŒ"
},
{
"paragraph_id": 173,
"tag": "p",
"text": "äžè¬ã®äºæ¬¡æ¹çšåŒ a x 2 + b x + c = 0 {\\displaystyle ax^{2}+bx+c=0} ( a {\\displaystyle a} , b {\\displaystyle b} , c {\\displaystyle c} ã¯å®æ°ã a â 0 {\\displaystyle a\\neq 0} )ã®è§£ x {\\displaystyle x} ãæ±ããå
¬åŒã«ã€ããŠèããã",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 174,
"tag": "p",
"text": "ããã§æçåŒ x 2 + 2 y x = ( x + y ) 2 â y 2 {\\displaystyle x^{2}+2yx=(x+y)^{2}-y^{2}} ãš (1) ã®å·ŠèŸºãä¿æ°æ¯èŒãããšã",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 175,
"tag": "p",
"text": "ã§ããããã(1) ã®åŒã¯æ¬¡ã®ããã«å€åœ¢ã§ãã(å¹³æ¹å®æ)ã",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 176,
"tag": "p",
"text": "b 2 â 4 a c ⥠0 {\\displaystyle b^{2}-4ac\\geq 0} ã®ãšã䞡蟺ã®å¹³æ¹æ ¹ããšããšã",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 177,
"tag": "p",
"text": "ãããäºæ¬¡æ¹çšåŒã®è§£ã®å
¬åŒ(ã«ãã»ããŠãããã®ããã®ãããããquadratic formula; äºæ¬¡å
¬åŒ)ã§ãããè§£ã®å
¬åŒãäºæ¬¡æ¹çšåŒã®äžè¬åœ¢ã«ä»£å
¥ãããšãå³èŸºã¯0ã«ãªãã¯ãã§ããã",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 178,
"tag": "p",
"text": "ã§ããããšãçšãããšã",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 179,
"tag": "p",
"text": "ãšãªãã確ãã«æ£ããããšããããã",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 180,
"tag": "p",
"text": "ãããããè§£ã®å
¬åŒãå æ°åè§£ãçšããŠè§£ããªããã",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 181,
"tag": "p",
"text": "çµæã®åŒã«æ ¹å·ãçŸããªãå Žåã«ã¯ãäœããã®ä»æ¹ã§å æ°åè§£ãã§ããããããããããã®æ¹æ³ã䜿ãã«ãããæ ¹å·ã¯ã§ããéãã®ä»æ¹ã§ç°¡ååããããšãéèŠã§ããã",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 182,
"tag": "p",
"text": "(i)ã¯ç°¡åã«å æ°åè§£ã§ããã®ã§ãè§£ã®å
¬åŒãçšããå¿
èŠã¯ãªãã",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 183,
"tag": "p",
"text": "ããã",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 184,
"tag": "p",
"text": "ãçããšãªãã(ii)ã§ã¯ãå æ°åè§£ãåºæ¥ãªãã®ã§ãè§£ã®å
¬åŒãçšãããå æ°åè§£ãã§ãããã©ããã¯å®éã«è©Šè¡é¯èª€ããŠèŠåãããããªãã",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 185,
"tag": "p",
"text": "ã«ãè§£ã®å
¬åŒãçšãããšãa=5, b= 2, c=-1ããã",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 186,
"tag": "p",
"text": "ãšãªãã(iii),(iv)ã§ããå æ°åè§£ã¯åºæ¥ãªãã®ã§ãè§£ã®å
¬åŒãçšãããçãã¯ã (iii)",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 187,
"tag": "p",
"text": "(iv)",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 188,
"tag": "p",
"text": "(v)",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 189,
"tag": "p",
"text": "ãšå æ°åè§£ã§ããã®ã§ãçãã¯",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 190,
"tag": "p",
"text": "ãšãªãã",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 191,
"tag": "p",
"text": "å
šåãéããŠãå æ°åè§£ãå¯èœãªæ¹çšåŒã«å¯ŸããŠããè§£ã®å
¬åŒã䜿çšããŠãæ§ããªãã",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 192,
"tag": "p",
"text": "",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 193,
"tag": "p",
"text": "äºæ¬¡æ¹çšåŒ a x 2 + 2 b â² x + c = 0 ( a â 0 ) {\\displaystyle ax^{2}+2b'x+c=0(a\\neq 0)} ã«ã€ããŠèããã è§£ã®å
¬åŒã« b= 2b' ã代å
¥ãããš",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 194,
"tag": "p",
"text": "ãã£ãŠãäºæ¬¡æ¹çšåŒ a x 2 + 2 b â² x + c = 0 {\\displaystyle ax^{2}+2b'x+c=0} ã®è§£ã¯",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 195,
"tag": "p",
"text": "ãšãªãã",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 196,
"tag": "p",
"text": "ãäžã®è§£ã®å
¬åŒãçšããŠè§£ããªããã",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 197,
"tag": "p",
"text": "äžã®è§£ã®å
¬åŒãçšãããšãa=3, b'= 3, c=-2ããã",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 198,
"tag": "p",
"text": "ãšãªãã",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 199,
"tag": "p",
"text": "",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 200,
"tag": "p",
"text": "2次æ¹çšåŒ a x 2 + b x + c = 0 {\\displaystyle ax^{2}+bx+c=0} ã®è§£ã¯ x = â b ± b 2 â 4 a c 2 a {\\displaystyle x={\\frac {-b\\pm {\\sqrt {b^{2}-4ac}}}{2a}}} ã§ããã ãã®åŒã®æ ¹å·ã®äžèº«ã ãåãåºãããã®ãå€å¥åŒãšåŒã³ã2次æ¹çšåŒã®è§£ã®åæ°ãç°¡åã«å€å¥ã§ããã",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 201,
"tag": "p",
"text": "D = b 2 â 4 a c {\\displaystyle D=b^{2}-4ac} ã®å€ã«ãã£ãŠæ¬¡ã®ããã«ãªãã",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 202,
"tag": "p",
"text": "(1) D > 0 {\\displaystyle D>0} ã®ãšããç°ãªã2ã€ã®è§£ x = â b + b 2 â 4 a c 2 a {\\displaystyle x={\\frac {-b+{\\sqrt {b^{2}-4ac}}}{2a}}} ãš x = â b â b 2 â 4 a c 2 a {\\displaystyle x={\\frac {-b-{\\sqrt {b^{2}-4ac}}}{2a}}} ãæã€ã (2) D = 0 {\\displaystyle D=0} ã®ãšãã ± b 2 â 4 a c = ± 0 {\\displaystyle \\pm {\\sqrt {b^{2}-4ac}}=\\pm 0} ã§ããã®ã§ã2ã€ã®è§£ã¯äžèŽããŠããã 1ã€ã®è§£ x = â b 2 a {\\displaystyle x=-{\\frac {b}{2a}}} ãæã€ãããã¯2ã€ã®è§£ãéãªã£ããã®ãšèããŠãéè§£ãšããã (3) D < 0 {\\displaystyle D<0} ã®ãšãã宿°ã®ç¯å²ã§ã¯è§£ã¯ãªãã",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 203,
"tag": "p",
"text": "2次æ¹çšåŒ a x 2 + b x + c = 0 {\\displaystyle ax^{2}+bx+c=0} ã®è§£ã®åæ°ã¯ D = b 2 â 4 a c {\\displaystyle D=b^{2}-4ac} ã®å€ã§å€å®ã§ããã",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 204,
"tag": "p",
"text": "次ã®2次æ¹çšåŒã®è§£ã®åæ°ãæ±ããã",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 205,
"tag": "p",
"text": "",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 206,
"tag": "p",
"text": "(I)",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 207,
"tag": "p",
"text": "ã ããã宿°è§£ã¯ãªãã (II)",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 208,
"tag": "p",
"text": "ã ãããéè§£ããã€ã (III)",
"title": "äºæ¬¡æ¹çšåŒ"
},
{
"paragraph_id": 209,
"tag": "p",
"text": "ã ãããç°ãªã2ã€ã®å®æ°ã®è§£ããã€ã",
"title": "äºæ¬¡æ¹çšåŒ"
}
] | null | == éåãšè«ç ==
[[æ§èª²çš(-2012幎床)é«çåŠæ ¡æ°åŠA/éåãšè«ç|ãã¡ã]]ãåç
§
== åŒã®å±éãšå æ°åè§£ ==
==== æŽåŒ ====
3ã12ãªã©ã®æ°ïŒå®æ°ïŒãã<math>x</math> ã <math>y</math> ãªã©ã®æåïŒå€æ°ïŒãæãããããŠã§ããåŒã'''é
'''ïŒãããtermïŒãšããã
次ã®ãããªãã®ãé
ã§ããã
* <math>3x</math>
* <math>12y</math>
* <math>0</math>
* <math>-x</math>
* <math>256xy^2</math>
ãã®ããã«äžã€ã®é
ã ãããã§ããŠããåŒã'''åé
åŒ'''ïŒãããããããmonomialïŒãšããã
:ïŒâ» è£è¶³: ãå€é
åŒããšã¯ïŒïŒãããã§ã¯ã'''å€é
åŒ'''ãïŒããããããpolynomialïŒãšã¯ãé
ã2ã€ä»¥äžã®åŒã ãšå®çŸ©ããããããå®ã¯ãé
ã1ã€ã®ãã®ãšè€æ°ã®ãã®ãåºå¥ããããããŸãšããŠæ±ã£ãæ¹ããæ§ã
ãªå®çãèšè¿°ããéã«äŸ¿å©ã«ãªãããã®ããã髿 ¡æ°åŠä»¥å€ã§ã¯ãé
ã1ã€ã®ãã®ãå«ããŠãå€é
åŒããšå®çŸ©ããå Žåãå€ãããšãããããå€é
åŒããšã¯æåãã¿ãã°ããé
ã®å€ãåŒããšããæå³ãªã®ã§ãé
ã1ã€ã§ããããšå®çŸ©ãããšãå®çŸ©ãšååãäžèŽããŠããããæ··ä¹±ã®åå ã«ããªããããã§æ¥æ¬ã®é«æ ¡æè²ã§ã¯ããé
ã1ã€ä»¥äžã®åŒããšããæŠå¿µã«ã€ããŠã¯æŽåŒïŒããããïŒãšããçšèªã䜿ã£ãŠãããããã§ãããæŽãåŒãšã¯ãæŽçãããåŒãšãããããªæå³ã§ããããã£ããŠãæŽæ°ã®åŒãšããæå³ã§ã¯ãªãããªã®ã§ãä¿æ°ãªã©ã¯å°æ°ãåæ°ã§ãããã
â» ãããããŠãæŽåŒããå®çŸ©ãããšã次ã®ãããªå®çŸ©ã«ãªãã
1ã€ä»¥äžã®åé
åŒãè¶³ãããããŠã§ããåŒã'''æŽåŒ'''ïŒããããïŒãšããã
以äžã¯æŽåŒã®äŸã§ããã
* <math>3x + 12y</math>
* <math>5 + a - 13x^2y</math>
* <math>a^2 + 2ab + b^2</math>
* <math>x - y</math>
* <math>2</math>
åé
åŒã§ããé
ã1ã€ãããªãæŽåŒã®äžã€ã§ãããšèããããšãã§ããã®ã§ããæŽåŒããšããæŠå¿µã䜿ãããšã«ãããå€é
åŒãšåé
åŒãšã®åºå¥ã®å¿
èŠããªããªãã
<math>x - y</math> ã®ããã«æžæ³ãå«ãåŒã¯ã <math>x - y = x + (-y) = -y + x</math> ãšæžæ³ãå æ³ã«çŽãããšãã§ããã®ã§ã<math>x, -y</math> ãé
ã«ãã€æŽåŒã§ãããšèãããããããªãã¡ãå€é
åŒã®é
ãšã¯ãå€é
åŒãè¶³ãç®ã®åœ¢ã«çŽãããšãã®ãäžã€äžã€ã®è¶³ããããã£ãŠããåŒã®ããšã§ãããããšãã° <math>5 + a - 13x^2y = 5 + a + (-13x^2y)</math> ã®é
㯠<math>5, a, -13x^2y</math> ã®3ã€ã§ããã
* åé¡
次ã®åŒã®ãã¡åé
åŒã§ãããã®ãçããã
:(1) ã<math>ax^2 \times bx \times c</math>
:(2)ã<math>-(x^3y^4)(z^5)</math>
:(3) ã<math>a^2 + b^2 + c^2 - ab - bc - ca</math>
* è§£ç
(1), (2) ãåé
åŒã (3) ã¯é
ã6ã€ããããåé
åŒã§ã¯ãªãã
* åè
äžã®å
šãŠã®åŒã¯æŽåŒã§ãããã
==== æŽåŒã®æŽç ====
<math>3x^2</math> + <math>5x^2+ 8x</math> ã® <math>3x^2</math> ãš <math>5x^2</math> ã®ããã«ãå€é
åŒã®æåãšææ°ããŸã£ããåãã§ããé
ãç·ç§°ããŠ'''åé¡é
'''ïŒã©ããããããlike termsïŒãšããã
åé¡é
ã¯åé
æ³å <math>ab + ac = a(b + c)</math> ã䜿ã£ãŠãŸãšããããšãã§ãããããšãã° <math>3x^2 + 5x^2 + 8x = (3 + 5)x^2 + 8x = 8x^2 + 8x </math>ã§ããã<math>8x^2</math> ãš <math>8x</math> ã¯æåã¯åãã§ãããææ°ãç°ãªãã®ã§ãåé¡é
ã§ã¯ãªãã
* åé¡
次ã®å€é
åŒã®åé¡é
ãæŽçããã
# ã<math>4x^3 - 3xy - 2 + 1 - 3x^3 + 4xy</math>
# ã<math>2a^2 - 4ab + 2a - 4ab^2 - 4a^2b</math>
# ã<math>9 x^2 y^3 z^4 - 8 z^2 y^3 x^4 + 7zyx - 6xyz + 5 x^2 yz - 4 y^2 x z + 3 z x^2 y - 2 x^4 y^3 z^2</math>
* è§£ç
# ã<math>x^3 + xy - 1</math>
# ã<math>2a^2 - 4ab + 2a - 4ab^2 - 4a^2b</math>
# ã<math>-10 x^4 y^3 z^2 + 9 x^2 y^3 z^4 + 8 x^2 yz - 4 x y^2 z + xyz</math>
==== æ¬¡æ° ====
<math>3x</math> ãšããåé
åŒã¯ã3ãšããæ°ãš <math>x</math> ãšããæåã«åããŠèããããšãã§ãããæ°ã®éšåãåé
åŒã®'''ä¿æ°'''ïŒãããããcoefficientïŒãšããã
ããšãã° <math>-x = (-1)x</math> ãšããåé
åŒã®ä¿æ°ã¯ -1 ã§ããã
<math>256xy^2</math> ãšããåé
åŒã¯ã256ãšããæ°ãš <math>x, y, y</math> ãšããæåã«åããŠèããããšãã§ããã®ã§ããã®åé
åŒã®ä¿æ°ã¯256ã§ãããäžæ¹ãæãããããæåã®æ°ãåé
åŒã®'''次æ°'''ïŒããããdegreeïŒãšããã<math>256xy^2</math> 㯠<math>x, y, y</math> ãšãã3ã€ã®æåãæãããããŠã§ããŠããã®ã§ããã®åé
åŒã®æ¬¡æ°ã¯3ã§ããã0ãšããåé
åŒã®æ¬¡æ°ã¯ <math>0 = 0x = 0x^2 = 0x^3 = \cdots </math>ãšäžã€ã«å®ãŸããªãã®ã§ãããã§ã¯èããªãã
åé
åŒã®ä¿æ°ã𿬡æ°ã¯ãåã«æ°ãšæåã«åããŠèããã®ã§ã¯ãªããããæåã倿°ãšããŠèŠããšãã«ãæ®ãã®æåã宿°ãšããŠæ°ãšåãããã«æ±ãããšãããã
ããšãã° <math>-5abcx^3</math>ãšããåé
åŒãã<math>x^3</math> ã ãã倿°ã§ãæ®ãã®æå <math>a, b, c</math> ã¯å®æ°ãšèããããšãã§ããã
ãã®ãšã<math>(-5abc)x^3</math> ãšåããããã®ã§ããã®åé
åŒã®ä¿æ°ã¯ <math>-5abc</math>ã倿°ã¯ <math>x^3</math> ã§ã次æ°ã¯3ã§ãããšãããã
ãã®ããšã <math>-5abcx^3</math> ãšããåé
åŒã¯ãã<math>x</math> ã«''çç®''ãããšãä¿æ°ã¯ <math>-5abc</math>ãæ¬¡æ°ã¯3ã§ããããªã©ãšããå Žåãããã
ããã㯠<math>-5abcx^3</math> ã® <math>a</math> ãš <math>b</math>ã«çç®ããã°ã<math>(-5cx^3)ab</math> ãšåãããã<math>a</math> ãš <math>b</math> ã«çç®ãããšãã®ãã®åé
åŒã®ä¿æ°ã¯ <math>-5cx^3</math>ã倿°ã¯ <math>ab</math> ã§ã次æ°ã¯2ã§ãããšãããã
æ
£ç¿çã«ã¯ <math>a, b, c, \cdots</math> ãªã©ã®ã¢ã«ãã¡ãããã®æåã®æ¹ã®æåã宿°ã衚ãã®ã«äœ¿ãã<math>\cdots , x, y, z</math> ãªã©ã®ã¢ã«ãã¡ãããã®æåŸã®æ¹ã®æåã倿°ã衚ãã®ã«çšããããäžè¬çã«ã¯ãã®éãã§ãªãã
å€é
åŒã®'''次æ°'''ãšã¯ãå€é
åŒã®åé¡é
ããŸãšãããšãã«ããã£ãšã次æ°ã®é«ãé
ã®æ¬¡æ°ããããããšãã° <math>x^3 + 3 x^2 y + 2y</math> ã§ã¯ããã£ãšã次æ°ã®é«ãé
㯠<math>x^3</math> ã§ããã®ã§ããã®å€é
åŒã®æ¬¡æ°ã¯3ã§ããããã <math>x^3 + 3 x^2 y + 2y</math>ïŒ<math>x</math> ã¯å®æ°ïŒã§ããã°ãããªãã¡å€é
åŒã® <math>y</math> ã«ã€ããŠçç®ãããšããã£ãšã次æ°ã®é«ãé
㯠<math>3 x^2 y</math> ãš <math>2y</math> ã§ããã®ã§ããã®å€é
åŒã®æ¬¡æ°ã¯1ã§ããããã®ãšãçç®ããæåãå«ãŸãªãé
<math>x^3</math> ã¯'''宿°é
'''ïŒãŠããããããconstant termïŒãšããŠæ°ãšåãããã«æ±ãããã
* åé¡
次ã®å€é
åŒã® <math>x</math> ãŸã㯠<math>y</math> ã«çç®ãããšãã®æ¬¡æ°ãšå®æ°é
ãããããããã
# <math>x^6 + 10xy^2 + 8x^4y + y^5 - 1</math>
# <math>-ad - bcx^2 - bc + 2 x^3 y^2 + y^{100}</math>
# <math>pxy + q^9 y^2 + pqxy - p^8 q^3 x^2 y + p x^4 y^3 + p q^2 x^3 y^4</math>
* è§£ç
# <math>x</math> ã«çç®ãããš6次åŒã宿°é
㯠<math>y^5 - 1</math>ã<math>y</math> ã«çç®ãããš5次åŒã宿°é
㯠<math>x^6 - 1</math>ã
# <math>x</math> ã«çç®ãããš3次åŒã宿°é
㯠<math>-ad - bc + y^{100}</math>ã<math>y</math> ã«çç®ãããš100次åŒã宿°é
㯠<math>-ad - bcx^2 - bc</math>ã
# <math>x</math> ã«çç®ãããš4次åŒã宿°é
㯠<math>q^9 y^2</math>ã<math>y</math> ã«çç®ãããš4次åŒã宿°é
ã¯ååšããªãã
==== éã¹ããšæã¹ã ====
ããšãã°ã
:<math>x^2 + 6x +7 </math>
ã®ããã«ã次æ°ã®é«ãé
ããå
ã«é
ããªãã¹ãããšãã'''éã¹ã'''ãïŒããã¹ãïŒãšããã
:â» ãªããæ¬¡æ°ã®å€§å°ã«ã€ããŠã¯ã次æ°ã倧ããããšããæ¬¡æ°ãé«ãããšèšã£ããããŠããããã€ãŸããæ¬¡æ°ã®å€§å°ã«ã€ããŠã¯ãé«äœã§èšãæããŠãããã
ããŠãåŒã䜿ãç®çã«ãã£ãŠã¯ã次æ°ã®ã²ããé
ããå
ã«æžããã»ãã䟿å©ãªå Žåãããã
ããšãã°ã<math>x</math>ã çŽ0.01 ã®ãããª1æªæºã®å°ããæ°ã®å ŽåãåŒ <math>x^2 + 6x +7 </math> ã®å€ãæ±ããããªããæå<math>x</math>ã®æ¬¡æ°ã®å°ããé
ã®ã»ãã圱é¿ãé«ãã
ãªã®ã§ã ç®çã«ãã£ãŠã¯
:<math>7 + 6x + x^2 </math>
ã®ããã«ã次æ°ã®ã²ããé
ããå
ã«æžãå Žåãããã
<math>7 + 6x + x^2 </math> ã®ããã«ã次æ°ã®äœãé
ããå
ã«é
ããªãã¹ãããšãã'''æã¹ã'''ãïŒãããã¹ãïŒãšããã
==== ç¹å®ã®æåãžã®çç® ====
å€é
åŒã«2ã€ä»¥äžã®æåããããšããç¹å®ã®1ã€ã®æåã«æ³šç®ããŠäžŠã³å€ãããšã䜿ãããããªãããšãããã
ããšãã°ã
:<math>x^3 - 5 + 2xy^3+ 7y^2 + 6x^2y </math>ããïŒäŸ1ïŒ
ã®é
ããxã®æ¬¡æ°ãå€ãé
ããå
ã«äžŠã³ãããåé¡é
ããŸãšãããš
:<math>x^3 + (6y)x^2 + (2 y^3 )x + (7y^2 - 5 ) </math>ããïŒäŸ2ïŒ
ãšãªãã
ãã®ïŒäŸ2ïŒã®ããã«ãç¹å®ã®æåã ãã«çç®ããŠããã®æåã®æ¬¡æ°ã®é«ãé ã«äžŠã³ããããšäŸ¿å©ãªããšããã°ãã°ããã
äŸ2ã¯ã<math>x</math>ã«ã€ã㊠éã¹ã ã®é ã«äžŠã³å€ããæŽåŒã§ããã
çç®ããŠãªãæåã«ã€ããŠã¯ãäžŠã³æãã®ãšãã¯å®æ°ã®ããã«æ±ãã
ãã£ãœãã<math>x</math>ã«ã€ããŠã次æ°ã®ã²ããé
ããé ã«äžŠã¹ããšã次ã®ãããªåŒã«ãªãã
:<math>(7y^2 - 5 ) + (2 y^3 )x + (6y)x^2 + x^3 </math>ããïŒäŸ3ïŒ
ãã®ããã«ãç¹å®ã®æåã®æ¬¡æ°ãäœããã®ããé ã«äžŠã³ããããšäŸ¿å©ãªããšããã°ãã°ããã
äŸ3ã¯ãxã«ã€ã㊠æã¹ã ã®é ã«äžŠã³å€ããæŽåŒã§ããã
==== ç¹å®ã®æåã«æ³šç®ããæ¬¡æ° ====
ããšãã°ãåŒ
:<math>y = ax + b </math>
ãšããåŒã®å³èŸº
:<math>ax+b </math>
ã®æ¬¡æ°ã¯ããããã§ããããã
aãšxãçããæåãšããŠæ±ãã®ã§ããã°ã<math>ax</math>ã®æ¬¡æ°ã¯
:<math>a^1 x^1 </math>
ãã 1ïŒ1 ïŒ2 ãªã®ã§ããã®åŒã®æ¬¡æ°ã¯2ã§ãããïŒé
bã¯æ¬¡æ°1ãªã®ã§ã<math>ax</math>ã®æ¬¡æ°2ãããäœãã®ã§ç¡èŠãããïŒ
ãããããããã®åŒãã宿°<math>a</math>ãä¿æ°ãšãã倿°<math>x</math>ã«ã€ããŠã®äžæ¬¡é¢æ°ãšã¿ãã®ã§ããã°ãäžæ¬¡åŒãšæãã®ãåççã ããã
ãã®ãããªå Žåãç¹å®ã®æåã ãã«æ³šç®ãããã®åŒã®æ¬¡æ°ãèãããšããã
ããšãã°ãæåxã ãã«æ³šç®ããŠãåŒ <math>ax + b </math> ã®æ¬¡æ°ã決ããŠã¿ããã
ãããšãæåxã«æ³šç®ããå Žåã®åŒ <math>ax + b </math> ã®æ¬¡æ°ã¯1ã«ãªãã
ãªããªã
:æå<math>x</math>ã«æ³šç®ããå Žåã®åŒ <math>a </math> ã®æ¬¡æ°ã¯0ã§ããã
:æå<math>x</math>ã«æ³šç®ããå Žåã®åŒ <math>b </math> ã®æ¬¡æ°ã¯0ã§ããã
:æå<math>x</math>ã«æ³šç®ããå Žåã®åŒ <math>x </math> ã®æ¬¡æ°ã¯1ã§ããã
ãã£ãŠãæå<math>x</math>ã«æ³šç®ããå Žåã®é
<math>ax</math> ã®æ¬¡æ°ã¯ã 0ïŒ1 ãªã®ã§ã1ã§ããã
ãã®ããã«èããå Žåãå¿
èŠã«å¿ããŠã©ã®æåã«æ³šç®ããããæèšããŠãæåâ¯â¯ã«æ³šç®ããæ¬¡æ°ãã®ããã«è¿°ã¹ããšããã
==== å€é
åŒã®èšç® ====
å€é
åŒã®ç©ã¯åé
æ³åã䜿ã£ãŠèšç®ããããšãã§ããã
:<math>
\begin{align}
(a + b)(c + d) &= (a + b)c + (a + b)d \\
&= (ac + bc) + (ad + bd) \\
&= ac + bc + ad + bd
\end{align}
</math>
ãã®ããã«å€é
åŒã®ç©ã§è¡šãããåŒãäžã€ã®å€é
åŒã«ç¹°ãåºããããšããå€é
åŒã'''å±é'''ïŒãŠããããexpandïŒãããšããã
====ææ°æ³å====
<math>a</math> ã <math>n</math> åæãããã®ã <math>a^n</math> ãšæžãã'''aã®nä¹'''ïŒ-ãããã''a'' to the ''n''-th powerïŒãšããããã ã <math>a^1 = a</math> ãšå®çŸ©ãããããšãã°ã
:<math>2^1 = 2</math>
:<math>2^2 = 2 \times 2 = 4</math>
:<math>2^3 = 2 \times 2 \times 2 = 8</math>
:<math>2^4 = 2 \times 2 \times 2 \times 2 = 16</math>
:<math>2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32</math>
:...
ã§ããã<math>a, a^2, a^3, a^4, a^5, \cdots, a^n</math> ãç·ç§°ã㊠<math>a</math> ã®'''环ä¹'''ïŒããããããexponentiationãåªä¹ãã¹ãããããåªãã¹ãïŒãšããã<math>a^n</math> ã® ''n'' ã'''ææ°'''ïŒããããexponentïŒãšããïŒ''a'' ã¯'''åº'''ïŒãŠããbaseïŒãšããïŒãããã§ã¯èªç¶æ°ãããªãã¡æ£ã®æŽæ°ã®ææ°ãèããã环ä¹ã¯æ¬¡ã®ããã«èããããšãã§ããã
:<math>2^1 = 2</math>
:<math>2^2 = 2^1 \times 2 = 2 \times 2 = 4</math>
:<math>2^3 = 2^2 \times 2 = 4 \times 2 = 8</math>
:<math>2^4 = 2^3 \times 2 = 8 \times 2 = 16</math>
:<math>2^5 = 2^4 \times 2 = 16 \times 2 = 32</math>
:<math>\cdots</math>
环ä¹ã©ãããæãããããç©ã¯ã次ã®ããã«èšç®ããããšãã§ããã
:<math>
\begin{align}
a^2 \times a^3 &= (a \times a) \times (a \times a \times a) \\
&= a^{2 + 3} \\
&= a^5
\end{align}
</math>
环ä¹ã©ãããå²ã£ãåã¯ã次ã®ããã«èšç®ããããšãã§ããã
:<math>
\begin{align}
a^3 \div a^2 &= \frac{ a \times a \times a }{ a \times a } \\
&= \frac{a}{1} \\
&= a
\end{align}
</math>
环ä¹ã®çޝä¹ã¯ã次ã®ããã«èšç®ããããšãã§ããã
:<math>
\begin{align}
(a^2)^3 &= a^2 \times a^2 \times a^2 \\
&= a^{2 + 2 + 2} \\
&= a^{2 \times 3} \\
&= a^6
\end{align}
</math>
ç©ã®çޝä¹ã¯ã次ã®ããã«èšç®ããããšãã§ããã
:<math>
\begin{align}
(ab)^2 &= a \times b \times a \times b \\
&= a \times a \times b \times b \\
&= a^2 b^2
\end{align}
</math>
ããããããããŠ'''ææ°æ³å'''ïŒãããã»ããããexponential lawïŒãšããã
{| style="border: 2px solid skyblue; width: 80%; " cellspacing=0
| style="background: skyblue;" | '''ææ°æ³å'''
|-
| style="padding: 5px;" |
''m'', ''n'' ãæ£ã®æŽæ°ãšãããšã
*<math>a^m \times a^n = a^{m + n}</math>
*<math>a^m \div a^n = a^{m - n}, m > n</math>
*<math>(a^m)^n = a^{mn}</math>
*<math>(ab)^n = a^n b^n</math>
|}
{{蚌æ|ææ°æ³åã®èšŒæ}}
环ä¹ã®å®çŸ©ããæããã
:<math>
\begin{align}
a^m \times a^n &= \overbrace{ \underbrace{ (a \times a \times \cdots \times a) }_m \times \underbrace{ (a \times a \times \cdots \times a) }_n }^{m + n} \\
&= a^{m + n}
\end{align}
</math>
:<math>
\begin{align}
a^m \div a^n &= \frac{ \overbrace{ a \times a \times \cdots \times a }^m }{ \underbrace{ a \times a \times \cdots \times a }_n } \\
&= \frac{ \overbrace{ a \times a \times \cdots \times a }^n \times \overbrace{ a \times a \times \cdots \times a }^{m - n} }{ \underbrace{ a \times a \times \cdots \times a }_n } \\
&= \frac{ \overbrace{ a \times a \times \cdots \times a }^{m - n} }{1} \\
&= \underbrace{ a \times a \times \cdots \times a }_{m - n} \\
&= a^{m - n}
\end{align}
</math>
:<math>
\begin{align}
(a^m)^n &= \underbrace{ a^m \times a^m \times \cdots \times a^m }_n \\
&= a^{ \overbrace{ m + m + \cdots + m }^n } \\
&= a^{mn}
\end{align}
</math>
:<math>
\begin{align}
(ab)^n &= \underbrace{ (a \times b) \times (a \times b) \times \cdots \times (a \times b) }_n \\
&= \underbrace{ (a \times a \times \cdots \times a) }_n \times \underbrace{ (b \times b \times \cdots \times b) }_n \\
&= a^n b^n
\end{align}
</math>
{{蚌æçµãã}}
*åé¡
次ã®åŒãèšç®ããªããã
# <math>x^4 \times x^3</math>
# <math>(a^3)^4</math>
# <math>(-a^2b)^3</math>
*è§£ç
# <math>x^4 \times x^3 = x^{4+3} = x^7</math>
# <math>(a^3)^4 = a^{3 \times 4} = a^{12}</math>
# <math>
(-a^2b)^3 = (-1)^3 (a^2)^3 b^3 = -a^{2 \times 3}b^3 = -a^6b^3
</math>
==== 乿³å
¬åŒ ====
* åé¡
次ã®åŒãå±éããã
# <math>(a + b)^2</math>
# <math>(a - b)^2</math>
# <math>(a + b)^3</math>
# <math>(a - b)^3</math>
# <math>(a + b + c)^2</math>
# <math>(a - b - c)^2</math>
* è§£ç
# <br> <math style="vertical-align: top;">\begin{align}
(a + b)^2 &= (a + b)(a + b) \\
&= a(a + b) + b(a + b) \\
&= (aa + ab) + (ba + bb) \\
&= aa + ab + ba + bb \\
&= a^2 + 2ab + b^2
\end{align}</math>
# <br> <math style="vertical-align: top;">\begin{align}
(a - b)^2 &= \{ a + (-b) \}^2 \\
&= a^2 + 2a(-b) + (-b)^2 \\
&= a^2 - 2ab + b^2
\end{align}</math>
# <br> <math style="vertical-align: top;">\begin{align}
(a + b)^3 &= (a + b)(a + b)^2 \\
&= (a + b)(a^2 + 2ab + b^2) \\
&= a(a^2 + 2ab + b^2) + b(a^2 + 2ab + b^2) \\
&= (a^3 + 2a^2b + ab^2) + (a^2b + 2ab^2 + b^3) \\
&= a^3 + (2a^2b + a^2b) + (ab^2 + 2ab^2) + b^3 \\
&= a^3 + 3a^2b + 3ab^2 + b^3
\end{align}</math>
# <br> <math style="vertical-align: top;">\begin{align}
(a - b)^3 &= \{ a + (-b) \}^3 \\
&= a^3 + 3a^2(-b) + 3a(-b)^2 + (-b)^3 \\
&= a^3 - 3a^2b + 3ab^2 - b^3
\end{align}</math>
# <br> <math style="vertical-align: top;">\begin{align}
(a + b + c)^2 &= \{ (a + b) + c \}^2 \\
&= (a + b)^2 + 2(a + b)c + c^2 \\
&= (a^2 + 2ab + b^2) + (2ac + 2bc) + c^2 \\
&= a^2 + 2ab + b^2 + 2ac + 2bc + c^2 \\
&= a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
\end{align}</math>
# <br> <math style="vertical-align: top;">\begin{align}
(a - b - c)^2 &= a^2 + (-b)^2 + (-c)^2 + 2a(-b) + 2(-b)(-c) + 2(-c)a \\
&= a^2 + b^2 + c^2 - 2ab + 2bc - 2ca
\end{align}</math>
ãŸãšãããšã次ã®ããã«ãªãã
{| style="border: 2px solid skyblue; width: 80%;" cellspacing=0
| style="background: skyblue;"| '''å±éã®å
¬åŒ'''
|-
| style="padding: 5px;" |
* <math>(a \pm b)^2 = a^2 \pm 2ab + b^2</math>
* <math>(a + b)(a - b) = a^2 - b^2</math>
* <math>(x + a)(x + b) = x^2 + (a + b)x + ab</math>
* <math>(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd</math>
* <math>(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3</math>
* <math>(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca</math>
* <math>(a \pm b)(a^2 \mp ab + b^2) = a^3 \pm b^3</math>
* <math>(a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca) = a^3 + b^3 + c^3 - 3abc</math>
|}
* åé¡
次ã®åŒãå±éããªããã
# <math>(a + 2b)^2</math>
# <math>(3x - 5y)^2</math>
# <math>(4x - 3y)(4x + 3y)</math>
# <math>(x + 1)(x - 5)</math>
# <math>(3x + 2y)(2x - y)</math>
# <math>(x + 3)(x^2 - 3x + 9)</math>
# <math>(a - 5)(a^2 + 5a + 25)</math>
# <math>(x + 4)^3</math>
# <math>(3a - 2b)^3</math>
*è§£ç
# <math>a^2+2 \times a \times 2b+(2 b)^2 = a^2+4ab+4 b^2 </math>
# <math> (3x)^2-2 \times 3x \times 5y+(5y)^2 = 9x^2-30xy+25y^2 </math>
# <math> (4x)^2-(3y)^2 = 16x^2-9y ^2 </math>
# <math> x^2+\{ 1+(-5) \}x+1 \times (-5) = x^2-4x-5 </math>
# <math> (3 \times 2)x^2+\{ 3 \times (-y) +2y \times 2 \}x+2y \times (-y) = 6x^2+xy-2y^2 </math>
# <math> \left(x+3\right)\,\left(x^2-x \times 3 +3^2 \right) = x^3+3^3 = x^3+27 </math>
# <math> \left(a-5\right)\,\left(a^2+a \times 5 +5^2 \right) = a^3-5^3 =a ^3-125 </math>
# <math> x^3+3 \times x^2 \times 4 +3 \times x \times 4^2 +4^3 = x^3+12x^2+48x+64 </math>
# <math> (3a)^3-3 \times (3a)^2 \times 2b +3 \times 3a \times (2b)^2 -(2b)^3 = 27a^3-54a^2b+36ab^2-8b^3 </math>
==== 乿³å
¬åŒã®å©çš ====
è€éãªåŒã®å±éã¯ãåŒã®äžéšåãäžã€ã®æåã«ãããŠå
¬åŒã䜿ããšããã
* åé¡
次ã®åŒãå±éããªããã
# <math> (a+3b-2c)^2 </math>
# <math> (x+y+4)(x-3y+4) </math>
# <math> \left(x^2-2x+3\right)\,\left(x^2+2x-3\right) </math>
* è§£ç
# <br> <math>a+3b=A</math>ãšãããš<br/><math>\begin{align}
(a+3b-2c)^2 & = (A-2c)^2 \\
& = A^2-4cA+4c^2\\
& = (a+3b)^2-4c(a+3b)+4c^2\\
& = a^2+6ab+9b^2-4ca-12bc+4c^2\\
& = a^2+9b^2+4c^2+6ab-12bc-4ca\\
\end{align}
</math>
# <br> <math>x+4=A</math>ãšãããš<br/><math>\begin{align}
(x+y+4)(x-3y+4) & = (A+y)(A-3y) \\
& = A^2-2yA-3y^2\\
& = (x+4)^2-2y(x+4)-3y^2\\
& = x^2+8x+16-2xy-8y-3y^2\\
& = x^2-3y^2-2xy+8x-8y+16\\
\end{align}
</math>
# <br> <math>2x-3=A</math>ãšãããš<br/><math>\begin{align}
\left(x^2-2x+3\right)\,\left(x^2+2x-3\right) & = \left\{x^2-(2x-3) \right\} \left\{x^2+(2x-3) \right\}\\
& = \left(x^2-A\right)\,\left(x^2+A\right)\\
& = x^4-A^2\\
& = x^4-(2x-3)^2\\
& = x^4-(4x^2-12x+9)\\
& = x^4-4x^2+12x-9\\
\end{align}
</math>
==== å æ°åè§£ ====
{| style="border:2px solid pink;width:80%" cellspacing=0
|style="background:pink"|'''å æ°åè§£ã®å
¬åŒ''' 1
|-
|style="padding:5px"|
* <math>a^2+2ab+b^2=(a+b)^2</math>
* <math>a^2-2ab+b^2=(a-b)^2</math>
* <math>a^2-b^2=(a+b)(a-b)</math>
* <math>x^2+(a+b)x+ab=(x+a)(x+b)</math>
* <math>acx^2+(ad+bc)x+bd=(ax+b)(cx+d)</math>
|}
* åé¡
次ã®åŒãå æ°åè§£ããªããã
# ã<math> 2abc-4ab^2 </math>
# ã<math> x^2+6x+9 </math>
# ã<math> 4a^2-4ab+b^2 </math>
# ã<math> 64x^2-9y^2 </math>
# ã<math> x^2-x-6 </math>
# ã<math> 3x^2+2x-5 </math>
# ã<math> 6x^2+xy-y^2 </math>
* è§£ç
# ã<math> {\color{red}2ab} \times c - {\color{red}2ab} \times 2b = {\color{red}2ab}(c-2b) </math>
# ã<math> x^2+2 \times x \times 3+3^2 = (x+3)^2 </math>
# ã<math> (2a)^2-2 \times 2a \times b+b^2 = (2a-b)^2 </math>
# ã<math> (8x)^2-(3y)^2 = (8x+3y)(8x-3y) </math>
# ã<math> x^2+\{ 2+(-3) \}x+2 \times (-3) = (x+2)(x-3) </math>
# ã<math> (1 \times 3)x^2+\{ 1 \times 5 + (-1) \times 3 \}x+(-1) \times 5 = (x-1)(3x+5) </math>
# ã<math> (2 \times 3)x^2+\{ 2 \times (-y) + y \times 3 \}x+y \times (-y) = (2x+y)(3x-y) </math>
==== çºå±ïŒ 3次åŒã®å æ°åè§£ ====
{| style="border:2px solid pink;width:80%" cellspacing=0
|style="background:pink"|'''å æ°åè§£ã®å
¬åŒ''' 2
|-
|style="padding:5px"|
* <math>a^3+b^3=(a+b)(a^2-ab+b^2)</math>
* <math>a^3-b^3=(a-b)(a^2+ab+b^2)</math>
* <math>a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)</math>
ïŒåèïŒ
* <math>a^n - b^n = (a - b)(a^{n - 1} + a^{n - 2}b + a^{n - 3}b^2 + \cdots + a^2b^{n - 3} + ab^{n - 2} + b^{n - 1})</math>
|}
* åé¡
次ã®åŒãå æ°åè§£ããªããã
# ã<math> x^3+8 </math>
# ã<math> 27a^3-64b^3 </math>
* è§£ç
# ã<math> x^3+2^3= \left(x+2\right)\,\left(x^2-x \times 2 +2^2 \right) = \left(x+2\right)\,\left(x^2-2x+4 \right) </math>
# ã<math> (3a)^3-(4b)^3= \left(3a-4b\right)\,\{(3a)^2+3a \times 4b +(4b)^2 \} = \left(3a-4b\right)\,\left(9a^2+12ab+16b^2 \right) </math>
==== ãããããªå æ°åè§£ ====
*åé¡
次ã®åŒãå æ°åè§£ããªããã
# ãã<math> 3xy^3+81x </math>
# ãã<math> (x-5)^2-9y^2 </math>
# ãã<math> x^2+xy+y-1 </math>
# ãã<math> x^2+xy-2y^2+2x+7y-3 </math>
* è§£ç
# <br> <math>\begin{align}
3xy^3+81x & = 3x(y^3+27) \\
& = 3x(y^3+3^3)\\
& = 3x \left(y+3\right)\,\left(y^2-y \times 3 +3^2 \right)\\
& = 3x \left(y+3\right)\,\left(y^2-3y+9 \right)\\
\end{align}
</math>
# ãã<math>x-5=A</math>ãšãããš<br/><math>\begin{align}
(x-5)^2-9y^2 & = A^2-9y^2\\
& = (A+3y)(A-3y)\\
& = \left\{(x-5)+3y \right\} \left\{(x-5)-3y \right\}\\
& = (x+3y-5)(x-3y-5)\\
\end{align}
</math>
# ããæã次æ°ã®äœã <math>y</math> ã«çç®ããŠæŽçãããš<br/><math>\begin{align}
x^2+xy+y-1 & = (x+1)y+ \left(x^2-1\right)\\
& = (x+1)y+(x+1)(x-1)\\
& = (x+1)\left\{y+(x-1) \right\}\\
& = (x+1)(x+y-1)\\
\end{align}
</math>
# ãã<math>x</math> ã«çç®ããŠæŽçãããš<br/><math>\begin{align}
x^2+xy-2y^2+2x+7y-3 & = x^2+(y+2)x-(2y^2-7y+3)\\
& = x^2+(y+2)x-(y-3)(2y-1)\\
& = \left\{x-(y-3) \right\} \left\{x+(2y-1) \right\}\\
& = (x-y+3)(x+2y-1)\\
\end{align}
</math>
{{ã³ã©ã | 察称åŒãšäº€ä»£åŒ |
;察称åŒ
ã<math> a^2 + b^2</math> ã¯ã<math>a</math> ãš <math>b</math> ãå
¥ãæ¿ã㊠<math> b^2 + a^2</math> ã«ããŠããå€ã¯ããšã®åŒãšåããŸãŸã§ããã
ãã®ããã«ãæåãå
¥ãæ¿ããŠãåããŸãŸã«ãªãåŒã®ããšã '''察称åŒ'''ïŒ ãããããããïŒãšããã
<math>a</math>,<math>b</math> ã®å¯Ÿç§°åŒã®ãã¡ãåŒ <math> a + b</math> ãš åŒ <math> ab</math> ã®2ã€ã '''åºæ¬å¯Ÿç§°åŒ''' ãšããã
åºæ¬å¯Ÿç§°åŒãããã®å¯Ÿç§°åŒã¯ãåºæ¬å¯Ÿç§°åŒã®å æžä¹é€ã§è¡šãããšãã§ãããããšãã°ã
:<math> a^2 + b^2 = (a+b)^2 -2ab</math>
ã§ããã
;亀代åŒ
ã<math> a^2 - b^2</math> ã¯ãæåãå
¥ãæ¿ãããšã<math> b^2 - a^2</math> ã«ãªãããããã¯ããšã®åŒã ãŒ1 åãããã®ã§ããããã®ããã«ãæåãå
¥ãæ¿ããããšã§ãããšã®åŒã ãŒ1 åãããã®ã«ãªãåŒã®ããšã '''亀代åŒ''' ïŒããããããïŒãšããã
}}
== 宿° ==
==== ç¡çæ°ãšæçæ° ====
a=b^2ãæãç«ã€ãšããa=2ãšãªããããªbãããªãã¡<math>\sqrt{2}</math>ã®å
·äœçãªå€ãã©ã®ãããªãã®ãã調ã¹ãŠã¿ããã
{|
|-
|b=1
|a=1
|b=2
|a=4
|-
|b=1.4
|a=1.96
|b=1.5
|a=2.25ã
|-
|b=1.41
|a=1.9881
|b=1.42
|a=2.0164ã
|-
|b=1.414
|a=1.999396
|b=1.415
|a=2.002225ã
|-
|b=1.4142ã
|a=1.99996164ã
|b=1.4143ã
|a=2.00024449ã
|}
ãã®ããã«ãbãæ§ã
ã«æ±ºããŠããaã¯ãªããªã2ã«ãªããªãã
å®ã¯<math>\sqrt{2}</math>ã¯ã忝ååå
±ã«æŽæ°ã®åæ°ã§è¡šãããšã¯ã§ããªãããã®ããã«æŽæ°ã忝ååã«æã€åæ°ã§è¡šããªããããªæ°ã'''ç¡çæ°'''ãšãããäŸãã°ãååšçπã¯ç¡çæ°ã§ãããããã«å¯ŸããŠãæŽæ°ã埪ç°å°æ°ãªã©ã忝ååå
±ã«æŽæ°ã®åæ°ã§è¡šãããšã®ã§ããæ°ã'''æçæ°'''ãšããã
æçæ°ãšç¡çæ°ãåãããŠ'''宿°'''ãšãããã©ããªå®æ°ã§ãæ°çŽç·äžã®ç¹ãšããŠè¡šããããŸããã©ããªå®æ°ããæéå°æ°ãããã¯ç¡éå°æ°ãšããŠè¡šããã
(äžèšã®ãç¡éå°æ°ãã®ç¯ãåç
§)
;<math>\sqrt{2}</math>ãç¡çæ°ã§ããããšã®èšŒæïŒçºå±ïŒ
<math>\sqrt{2}</math> ãæçæ°ã§ãããšä»®å®ãããšã[[w:äºãã«çŽ |äºãã«çŽ ]]ãªïŒ1以å€ã«å
¬çŽæ°ããããªãïŒæŽæ° ''m'', ''n'' ãçšããŠã
:<math>\sqrt{2} = \frac{m}{n}</math>
ãšè¡šããããšãã§ããããã®ãšãã䞡蟺ã2ä¹ããŠåæ¯ãæããšã
:<math>2n^2 = m^2</math> ⊠(1)
ãã£ãŠ ''m'' ã¯2ã®åæ°ã§ãããæŽæ° ''l'' ãçšã㊠<math>m = 2l</math> ãšè¡šãããšãã§ãããããã (1) ã®åŒã«ä»£å
¥ããŠæŽçãããšã
:<math>2l^2 = n^2</math>
ãã£ãŠ ''n'' ã2ã®åæ°ã§ãããããã㯠''m'', ''n'' ã2ãå
¬çŽæ°ã«ãã€ããšã«ãªããäºãã«çŽ ãšä»®å®ããããšã«ççŸããããããã£ãŠ <math>\sqrt{2}</math> ã¯ç¡çæ°ã§ããïŒ[[é«çåŠæ ¡æ°åŠA éåãšè«ç#èçæ³|èçæ³]]ïŒã
==== ç¡éå°æ° ====
[[File:Real number category japanese.svg|thumb|400px]]
0.1 ã 0.123456789 ã®ããã«ãããäœã§çµããå°æ°ã'''æéå°æ°'''ãšããã
äžæ¹ã<math>0.1234512345 \cdots</math> ã <math>3.1415926535 \cdots</math> ã®ããã«ç¡éã«ç¶ãå°æ°ã '''ç¡éå°æ°'''ïŒããã ãããããïŒãšããã
ç¡éå°æ°ã®ãã¡ãããäœããäžãããããé
åã®æ°åã®ç¹°ãè¿ãã«ãªã£ãŠãããã®ã '''埪ç°å°æ°'''ïŒãã
ããã ãããããïŒãšãããäŸãã° <math>0.3333333333 \cdots</math> ã <math>0.1428571428 \cdots</math>ã<math>0.1232323232 \cdots</math> ãªã©ã§ãããç¹°ãè¿ãã®æå°åäœã'''埪ç°ç¯'''ãšããã埪ç°å°æ°ã¯åŸªç°ç¯1ã€ãçšããŠ<math>0. \dot{3}</math>ã<math>0. \dot{1} 4285 \dot{7}</math>ã<math>0.1 \dot{2} \dot{3}</math>ã®ããã«åŸªç°ç¯ã®æåãšæåŸ(埪ç°ç¯ãäžæ¡ã®å Žåã¯ã²ãšã€ã ã)ã®äžã«ç¹ãã€ããŠè¡šãã
å
šãŠã®åŸªç°å°æ°ã¯åæ°ã«çŽããã
:<math>a = 0. \dot{3}</math>ãã(1)
ãšçœ®ããšã
:<math>10a = 3. \dot{3}</math>ãã(2)
ã§ããã(2)ãŒ(1) ãã <math>9a = 3</math>ããã£ãŠ <math>a = \frac{3}{9} = \frac{1}{3}</math> ã§ããã
;äŸé¡
* (äŸé¡1) <br/>
<math>\begin{align}
a &= 0. \dot{1} 4285 \dot{7}\\
1000000a &= 142857. \dot{1} 4285 \dot{7}\\
999999a &= 142857\\
a &= \frac{142857}{999999} \ = \frac{1}{7}
\end{align}
</math>
* (äŸé¡2)<br/>
<math>\begin{align}
a &= 0.1 \dot{2} \dot{3}\\
100a &= 12.3 \dot{2} \dot{3}\\
99a &= 12.2\\
a &= \frac{12.2}{99} \ = \frac{61}{495}
\end{align}
</math>
==== çµ¶å¯Ÿå€ ====
宿° ''a'' ã«ã€ããŠã''a'' ã®æ°çŽç·äžã§ã®åç¹ãšã®è·é¢ã ''a'' ã®çµ¶å¯Ÿå€ãšããã<math>|a|</math> ã§è¡šãã
{| style="border:2px solid green;width:80%" cellspacing=0
|style="background:lightgreen"| '''絶察å€'''
|-
|style="padding:5px"|
:<math>a \geqq 0</math> ã®ãšããã<math>|a|=a</math><br><br>
:<math>a < 0</math> ã®ãšããã<math>|a|=-a</math>
|}
ããšãã°
:<math>|2|=2</math>
:<math>| -3 | \ = \ -(-3) \ = \ 3</math>
ã§ããã
å®çŸ©ãã <math>|a|=|-a|</math> ããããããŸãã<math>a,b</math>ãä»»æã®å®æ°ãšãããšããããããã«å¯Ÿå¿ããæ°çŽç·äžã®ä»»æã®2ç¹ <math>\mathrm{P} (a) , \mathrm{Q} (b)</math> éã®è·é¢ã«ã€ããŠã¯ã次ã®ããšããããã
{| style="border:2px solid green;width:80%" cellspacing=0
|style="background:lightgreen"| '''2ç¹éã®è·é¢'''
|-
|style="padding:5px"|
æ°çŽç·äžã®2ç¹ <math>\mathrm{P} (a)</math> ãš <math>\mathrm{Q} (b)</math> ã®éã®è·é¢ <math>\mathrm{P} \mathrm{Q}</math> 㯠<math>|b-a|</math> ã§è¡šãããã
|}
* äŸé¡
:2ç¹ <math>\mathrm{P} (5)</math> ãš <math>\mathrm{Q} (-1)</math> ã®éã®è·é¢ãæ±ããã
* è§£ç
:<math>\mathrm{P} \mathrm{Q} = |5- (-1) | = 6</math> ãªã®ã§ããã£ãŠPQéã®è·é¢ã¯ 6 ã§ããã
<br>
==== å¹³æ¹æ ¹ ====
ä»ã2ä¹ããŠaã«ãªãæ°bãèããã
<math>a=1</math>ã®ãšãã<math>b=1</math>ãšããŠçµããã«ããŠã¯ãããªãã確ãã«<math>b=1</math>ãæ¡ä»¶ãæºããã<math>b=-1</math>ãæ¡ä»¶ãæºããããã£ãŠ<math>b= 1</math> ãŸã㯠<math>b= -1</math>ã§ããã
:â» ç¥åŒã®èšæ³ã§ã <math>b= 1</math> ãš <math>b= -1</math> ããŸãšã㊠<math>b = \pm 1</math> ãšæžãããšãããã
äžè¬ã«æ£ã®æ°aã«ã€ããŠa=b^2ãšãªãbã¯äºã€ããããã®äºã€ã¯çµ¶å¯Ÿå€ãçããããã®äºã€ã®bãaã®å¹³æ¹æ ¹ãšãããaã®å¹³æ¹æ ¹ã®ãã¡ãæ£ã§ãããã®ã<math>\sqrt{a}</math>ãè² ã§ãããã®ã<math>-\sqrt{a}</math>ãšæžãã<math>\sqrt{a}</math>ã¯ãã«ãŒãaããšèªãã
äžæ¹ãè² ã®æ°aã«ã€ããŠèããŠã¿ãŠãäžæãbãèŠã€ããããšã¯ã§ããªããå®éã®ãšãããè² ã®æ°ã®å¹³æ¹æ ¹ã¯å®æ°ã§è¡šãããšã¯ã§ããªãã
{| style="border:2px solid green;width:80%" cellspacing=0
|style="background:lightgreen"|'''å¹³æ¹æ ¹'''
|-
|style="padding:5px"|
*'''æ£ã®æ°aã®å¹³æ¹æ ¹ã¯ <math> \sqrt{a}</math> ãš<math>- \sqrt{a}</math> ã§ããã'''
*'''è² ã®æ°aã®å¹³æ¹æ ¹ã¯'''宿°ã®ç¯å²ã§ã¯'''ååšããªãã'''
|}
:<math> \sqrt{a}</math> ãš<math>- \sqrt{a}</math> ããŸãšã㊠<math>\pm \sqrt{a}</math> ãšæžãããšãããã
* åé¡
<math>2\ ,\ 4\ ,\ 9\ ,\ 12</math>ã®å¹³æ¹æ ¹ãæ±ããã
*è§£ç
<math>\pm \sqrt 2\ ,\ \pm 2\ ,\ \pm 3\ ,\ \pm 2\sqrt 3</math>
*解説
ããããã®ã«ãŒããèšç®ãã<math>\pm</math>ãã€ããã°ããããã ããå¹³æ¹æ ¹ã®ã«ãŒã«ã«åŸã£ãŠãç°¡ååã§ãããã®ã¯ç°¡ååããããšãèŠæ±ãããã
äŸãã°ã<math>2</math>ã«å¯ŸããŠã¯ã<math>\pm\sqrt 2 </math>ãšãªãã
äžè¬ã«ã<math>\sqrt{A^2} = |A|</math>ã§ããã
====å¹³æ¹æ ¹ãå«ãåŒã®èšç®====
æ ¹å·ã«ã€ããŠã次ã®å
¬åŒãæãç«ã€ã
{| style="border:2px solid green;width:80%" cellspacing=0
|style="background:lightgreen"|'''å¹³æ¹æ ¹ã®å
¬åŒ'''
|-
|style="padding:5px"|
<math> a>0, b>0 </math> ã®ãšã
::<math>\sqrt{a} \sqrt{b}= \sqrt{ab}</math> ãããïŒ1ïŒ
:: ã
::<math>\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}</math> ãããïŒ2ïŒ
|}
;å
¬åŒïŒ1ïŒã®èšŒæ
ãŸãã <math> \sqrt{ab}</math> ãšã¯ãå®çŸ©ã«ããšã¥ããŠèãããšã2ä¹ãããš ab ã«ãªãæ°ã®ãã¡ãæ£ã®ã»ãã®æ°ãšããæå³ã§ããã
ãªã®ã§ãå
¬åŒã <math>\sqrt{a} \sqrt{b}= \sqrt{ab}</math> ã ãã蚌æããã«ã¯ããã®ããšã蚌æããã°ããã
ãªã®ã§ããŸãã<math>\sqrt{a} \sqrt{b} </math> ã2ä¹ãããšã
::<math> (\sqrt{a} \sqrt{b} )^2 = (\sqrt{a})^2 (\sqrt{b})^2 = ab </math>
ãšãªãã
ããã«<math>\sqrt{a} \sqrt{b}</math>ã¯ããŸãæ¡ä»¶ã2ä¹ãããšabã«ãªãããæºããã
ãããŠãæ£ã®æ°ã®å¹³æ¹æ ¹ã¯æ£ãªã®ã§ã<math>\sqrt{a} \sqrt{b} </math> ãæ£ã§ããããã£ãŠ <math>\sqrt{a} \sqrt{b} </math> ã¯ãã2ä¹ãããšabã«ãªããæ°ã®ãã¡ã®æ£ã®ã»ãã§ããã
ïŒèšŒæãããïŒ
ããã«ãäžã®å
¬åŒ(1)ã«ãããæ¬¡ã®å
¬åŒãå°ãããã
{| style="border:2px solid green;width:80%" cellspacing=0
|style="background:lightgreen"|'''å
¬åŒ'''
|-
|style="padding:5px"|
<math> a>0, k>0 </math> ã®ãšã
::<math>\sqrt{k^2a} = k \sqrt{a}</math>
|}
* åé¡
èšç®ããã
# ã<math>\sqrt{8} \sqrt{14}</math>
# ã<math>2 \sqrt{18} + \sqrt{50}</math>
# ã<math>\left(\sqrt{3} - 2 \sqrt{6}\right)^2</math>
* è§£ç
# ã<math>\sqrt{8} \sqrt{14} \ = \ \sqrt{8 \times 14} \ = \ \sqrt{2^4 \times 7} \ = \ 2^2 \sqrt{7} \ = \ 4 \sqrt{7}</math>
# ã<math>2 \sqrt{18} + \sqrt{50} \ = \ 2 \times 3 \sqrt{2} + 5 \sqrt{2} \ = \ (6+5) \sqrt{2} \ = \ 11 \sqrt{2}</math>
# ããŸãã乿³å
¬åŒ <math>(a-b)^2 = a^2-2ab+b^2</math>ãå©çšããŠå±éããã詳现ã¯ã乿³å
¬åŒãã®ã»ã¯ã·ã§ã³ãåç
§ã®ããšã<br/><math>\begin{align}
\left(\sqrt{3} - 2 \sqrt{6}\right)^2 \ = \ \left(\sqrt{3}\right)^2 -2 \times \sqrt{3} \times 2 \sqrt{6} + \left(2 \sqrt{6}\right)^2 \ = \ 3-4 \sqrt{18} + 24 \ = \ 27-4 \times 3 \sqrt{2} \ = \ 27-12 \sqrt{2}
\end{align}</math>
åæ¯ã«æ ¹å·ãå«ãŸãªãåŒã«ããããšãã忝ã'''æçå'''ãããšãããæçåã¯ã忝ãšååã«åãæ°ããããŠãããããšãå©çšããŠè¡ãã
ããšãã°ã<math>\frac{1}{\sqrt{2}}</math>ãæçåãããšã<math>\frac{1}{\sqrt{2}} \ = \ \frac{1 \sqrt{2}}{\sqrt{2}\sqrt{2}} \ = \ \frac{\sqrt{2}}{2}</math>ãšãªãã
ãŸãããšãã«<math>\frac{a}{b+c}</math>ã«ã€ããŠã<math>b^2-c^2=1</math>ã®ãšãã<br/>
<math>\frac{a}{b+c} \ = \ \frac{a(b-c)}{(b+c)(b-c)} \ = \ \frac{a(b-c)}{b^2-c^2} \ = \ \frac{a(b-c)}{1} \ = \ a(b-c)</math>ã§ããã
ããšãã°ã<math>a=1, b=\sqrt{2}, c=1</math>ãšãããšã<math>\frac{1}{\sqrt{2}+1}=\sqrt{2}-1</math>ã§ããã
* åé¡
忝ãæçåããã
# ã<math>\frac{\sqrt{2}}{\sqrt{12}} </math> <br><br>
# ã<math>\frac{\sqrt{2} + 2 \sqrt{3}}{3 \sqrt{2} - \sqrt{3}} </math>
* è§£ç
# ã<math>\frac{\sqrt{2}}{\sqrt{12}} \ = \ \frac{\sqrt{2}}{2 \sqrt{3}} \ = \ \frac{\sqrt{2} \sqrt{3}}{2 \sqrt{3} \sqrt{3}} \ = \ \frac{\sqrt{6}}{6}</math> <br><br>
# ã<math>\frac{\sqrt{2} + 2 \sqrt{3}}{3 \sqrt{2} - \sqrt{3}} \ = \ \frac{(\sqrt{2} + 2 \sqrt{3})(3 \sqrt{2} + \sqrt{3})}{(3 \sqrt{2} - \sqrt{3})(3 \sqrt{2} + \sqrt{3})} \ = \ \frac{6+ \sqrt{6} + 6 \sqrt{6} +6}{(3 \sqrt{2})^2 - (\sqrt{3})^2} \ = \ \frac{12 + 7 \sqrt{6}}{18-3} \ = \ \frac{12 + 7 \sqrt{6}}{15}</math>
====äºéæ ¹å·ïŒçºå±ïŒ====
[[w:äºéæ ¹å·|äºéæ ¹å·]]ãšã¯ãæ ¹å·ã2éã«ãªã£ãŠããåŒã®ããšã§ãããäºéæ ¹å·ã¯åžžã«å€ããããã§ã¯ãªããæ ¹å·ã®äžã«å«ãŸããåŒã«ãã£ãŠç°¡åã«ã§ãããã©ãããæ±ºãŸããäžè¬ã«ãæ ¹å·å
ã®åŒãã<math>x^2</math>ã®åœ¢ã«å€åœ¢ã§ããå Žåã«ã¯ãå€åŽã®æ ¹å·ãå€ãããšãã§ããã
*åé¡
<math>\sqrt{3+2\sqrt 2}</math>ãç°¡åã«ããã
*è§£ç
<math>3+2\sqrt 2</math>ã<math>( \cdots )^2</math>ã®åœ¢ã«ã§ããããèããã
ä»®ã«ã<math>( \sqrt a + \sqrt b )^2</math>(a,bã¯æ£ã®æŽæ°)ã®åœ¢ã«ã§ãããšãããšã<math>3+2\sqrt 2 = a + b + 2\sqrt{ab}</math>ãšãªãã<br/>
:<math>\begin{cases}
a+b &= 3\\
ab &= 2\\
\end{cases}</math><br/>
ãæºããæŽæ°a,bãæ¢ãã°ããããã®é¢ä¿ã¯ãa=1,b=2(a,bãå
¥ãæããŠãå¯ã)ã«ãã£ãŠæºããããã®ã§ã<math>3+2\sqrt 2 \ = \ (\sqrt 2 + 1)^2</math>ãæãç«ã€ã
ãã£ãŠã<math>\sqrt{3+2\sqrt 2} \ = \ \sqrt{(\sqrt 2 + 1)^2} \ = \ \sqrt 2 + 1</math>ãšãªãã
{| style="border:2px solid green;width:80%" cellspacing=0
|style="background:lightgreen"|'''2éæ ¹å·'''
|-
|style="padding:5px"|
<math>a>0\ ,\ b>0</math> ã®ãšã
:<math>\sqrt{(a+b) +2 \sqrt {ab}}= \sqrt {a} + \sqrt {b}</math>
<math>a>b>0</math> ã®ãšã
:<math>\sqrt{(a+b) -2 \sqrt {ab}}= \sqrt {a} - \sqrt {b}</math>
|}
* åé¡
次ã®åŒãèšç®ããã
# <math>\sqrt{12-6 \sqrt {3}}</math>
# <math>\sqrt{3+ \sqrt {5}}</math>
* è§£ç
# <math>\sqrt{12-6 \sqrt {3}} \ = \ \sqrt{12-2 \sqrt {27}} \ = \ \sqrt{(9+3) -2 \sqrt {9 \times 3}} \ = \ \sqrt {9} - \sqrt {3} \ = \ 3- \sqrt {3}</math>
#<math>\sqrt{3+ \sqrt {5}} \ = \ \sqrt{\frac{6+ 2 \sqrt {5}}{2}} \ = \ \frac{\sqrt{(5+1) +2 \sqrt {5 \times 1}}}{\sqrt{2}} \ = \ \frac{\sqrt {5} + \sqrt {1}}{\sqrt {2}} \ = \ \frac{\sqrt {10} + \sqrt {2}}{2}</math>
==äžæ¬¡äžçåŒ==
===äžæ¬¡äžçåŒ===
åã倧ããã®éã=ã§çµãã åŒãæ¹çšåŒãšåŒã¶ããšãæ¢ã«åŠç¿ãããããã§ã¯ãç°ãªã£ãéã®å€§ããã®éãã衚ãèšå·ãå°å
¥ãããã®æ§è³ªã«ã€ããŠãŸãšããã
ããæ°A,BããããšããAãBãã倧ããããšã<math>A > B</math>ãšè¡šããAãBããå°ããããšã<math>A < B</math>ãšè¡šããããã§ã<ãš>ã®ããšã[[w:äžçå·|äžçå·]]ãšåŒã³ããã®ãããªåŒãäžçåŒãšåŒã¶ããŸãã<math>\le,\ge</math>ã䌌ãæå³ã®äžçåŒã§ããããããããAãšBãçããå€ã§ããå Žåãå«ããã®ã§ããã
ãªããæ¥æ¬ã®æè²ã«ãããŠã¯ã<math>\le,\ge</math>ã®ä»£ããã«ãäžçå·ã®äžã«çå·ãèšãã<math>\leqq,\geqq</math>ã䜿ãããšãå€ãã
*äŸ
<math>x>7</math>ãšããäžçåŒããããšããxã¯7ãã倧ãã宿°ã§ããããŸãã<math>x \ge 7</math>ã®æã«ã¯ãxã¯7以äžã®å®æ°ã§ããã
äžçåŒã§ã¯çåŒãšåãããã«ãäž¡èŸºã«æŒç®ãããŠãäžçå·ã®é¢ä¿ãå€ãããªãããšããããäŸãã°ã䞡蟺ã«åãæ°ãè¶³ããŠãã䞡蟺ã®å€§å°é¢ä¿ã¯å€åããªãããã ãã䞡蟺ã«è² ã®æ°ãããããšãã«ã¯ãäžçå·ã®åããå€åããããšã«æ³šæãå¿
èŠã§ãããããã¯ãè² ã®æ°ãããããšäž¡èŸºã®å€ã¯ã0ãäžå¿ã«æ°çŽç·ãæãè¿ããå°ç¹ã«ç§»ãããããšã«ããã
{| style="border:2px solid greenyellow;width:80%" cellspacing=0
|style="background:greenyellow"|'''äžçåŒã®æ§è³ª'''
|-
|style="padding:5px"|1. ãã<math> a<b </math> ãªãã°ã<math> a+c<b+c </math>ïŒ<math> a-c<b-c </math>
|-
|style="padding:5px"|2. ãã<math> a<b </math>ïŒ<math> c>0 </math> ãªãã°ã<math> ac<bc </math>ïŒ<math> \frac {a} {c} < \frac {b} {c}</math>
|-
|style="padding:5px"|3. ãã<math> a<b </math>ïŒ<math> c<0 </math> ãªãã°ã<math> ac>bc</math>ïŒ<math> \frac {a} {c} > \frac {b} {c}</math>
|}
* äŸ
<math>x > y</math>ãæãç«ã€ãšãã«ã¯ã<math>x+3>y+3</math>ã<math>4x > 4y</math>ãæãç«ã€ããŸãã<math> -x < -y</math>ãæãç«ã€ã
äžçåŒã®æ§è³ªã䜿ã£ãŠ
:<math> a {\color{red}+3}<b\; </math>
ã®äž¡èŸºãã3ãåŒããš
:<math> a+3-3<b-3\; </math>
ãã£ãŠ
:<math> a<b {\color{red}-3}\; </math>
ãšãªãã<br>
ãã®ããã«ã'''äžçåŒã§ãç§»é
ããããšãã§ãã'''ã
ã°ã©ããçšããŠèãããšããäžçåŒã¯ã°ã©ãäžã®é åã衚ããé åã®å¢çã¯äžçå·ãçå·ã«çœ®ãæããéšåã察å¿ãããããã¯ãäžçå·ãæç«ãããã©ããããã®ç·äžã§å
¥ãæ¿ããããšã«ãã£ãŠãããïŒè©³ããã¯[[é«çåŠæ ¡æ°åŠI å³åœ¢ãšæ¹çšåŒ|æ°åŠII å³åœ¢ãšæ¹çšåŒ]]ã§åŠç¿ãããïŒ
* åé¡
<math>y>x+1</math>,<math>y < 2x+1</math>,<math>x <3</math>ã®ã°ã©ã(æ£ããã¯ãé åã)ãæãã
* è§£ç
<math> y>x+1 </math> ã®ã°ã©ã(é å)ã¯æ¬¡ã®ããã«ãªãããã ããå¢çã¯å«ãŸãªãã
[[File:Linear Inequality Y GT Xplus1.png|thumb|none|360px|1次äžçåŒ y>x+1 ã衚ãã°ã©ãã]]
<math> y<2x+1 </math>ã®ã°ã©ã(é å)ã¯æ¬¡ã®ããã«ãªãããã ããå¢çã¯å«ãŸãªãã
[[File:Linear Inequality Y LT 2Xplus1.png|thumb|none|360px|1次äžçåŒ y<2x+1 ã衚ãã°ã©ãã]]
<math>x<3</math>ã®ã°ã©ã(é å)ã¯æ¬¡ã®ããã«ãªãããã ããå¢çã¯å«ãŸãªãã
[[File:Linear Inequality X LT 3.png|thumb|none|360px|1次äžçåŒ x<3 ã衚ãã°ã©ãã]]
* åé¡
次ã®äžçåŒãè§£ãã
# ãã<math>3x-1 \le 9x-7</math>
# ãã<math>3(x-2)>2(5x-3)</math>
# ãã<math>x+1 < \frac {x-1} {3}</math>
* è§£ç
# <br> <math>\begin{align} \quad
3x-1 & \le 9x-7\\
3x-9x & \le -7+1\\
-6x & \le -6\\
x & \ge 1
\end{align}
</math>
# <br> <math>\begin{align} \quad
3(x-2) & > 2(5x-3)\\
3x-6 & > 10x-6\\
3x-10x & > -6+6\\
-7x & > 0\\
x & < 0
\end{align}
</math>
# <br> <math>\begin{align} \quad
x+1 & < \frac {x-1} {3}\\
3x+3 & < x-1\\
3x-x & < -1-3\\
2x & < -4\\
x & < -2
\end{align}
</math>
===é£ç«äžçåŒ===
ããã€ãã®äžçåŒãçµã¿åããããã®ã'''é£ç«äžçåŒ'''ãšããããããã®äžçåŒãåæã«æºãã<math>x</math>ã®å€ã®ç¯å²ãæ±ããããšããé£ç«äžçåŒã'''è§£ã'''ãšããã
<br>
<br>
*åé¡äŸ
**åé¡
次ã®é£ç«äžçåŒãè§£ãã<br>
(i)
:<math>\left\{ \begin{matrix} x+2<2x+4 \\ 10-x \ge 3x-6 \end{matrix}\right.</math>
(ii)
:<math>\begin{cases}
x \ge 1-x\\
2(x+1)>x-2
\end{cases}</math>
**è§£ç
(i)<br>
<math>x+2<2x+4</math>ããã<math>-x<2</math><br>
:<math>x>-2</math>âŠâŠ(1)
<math>10-x \ge 3x-6</math>ããã<math>-4x \ge -16</math><br>
:<math>x \le 4</math>âŠâŠ(2)
(1),(2)ãåæã«æºãã<math>x</math>ã®å€ã®ç¯å²ã¯
:<math>-2<x \le 4</math>
(ii)<br>
<math>x \ge 1-x</math>ããã<math>2x \ge 1</math><br>
:<math>x \ge \frac {1} {2}</math>âŠâŠ(1)
<math>2(x+1)>x-2</math>ããã<math>2x+2>x-2</math><br>
:<math>x>-4</math>âŠâŠ(2)
(1),(2)ãåæã«æºãã<math>x</math>ã®å€ã®ç¯å²ã¯
:<math>x \ge \frac {1} {2}</math>
===絶察å€ãå«ãäžçåŒ===
絶察å€ãå«ãäžçåŒã«ã€ããŠèãããã<br>
絶察å€<math>|x|</math>ã¯ãæ°çŽç·äžã§ãåç¹<math>\mathrm{O}</math>ãšç¹<math>\mathrm{P} (x)</math>ã®éã®è·é¢ã衚ããŠããã
<br>ãããã£ãŠã<math>a>0</math>ã®ãšã
:<math>|x|<a \Leftrightarrow -a<x<a</math>
:<math>|x|>a \Leftrightarrow x<-a\ ,\ a<x</math>
<br>
<br>
*åé¡äŸ
**åé¡
次ã®äžçåŒãè§£ãã<br>
(i)
:<math>|x|<5</math>
(ii)
:<math>|x| \ge 4</math>
(iii)
:<math>|x-2| \le 3</math>
(iv)
:<math>|x+3|>1</math>
**è§£ç
(i)
:<math>|x|<5</math>
:<math>-5<x<5</math>
(ii)
:<math>|x| \ge 4</math>
:<math>x \le -4\ ,\ 4 \le x</math>
(iii)
:<math>|x-2| \le 3</math>
:<math>-3 \le x-2 \le 3</math>
:<math>-1 \le x \le 5</math>
(iv)
:<math>|x+3|>1</math>
:<math>x+3<-1\ ,\ 1<x+3</math>
:<math>x<-4\ ,\ -2<x</math>
==äºæ¬¡æ¹çšåŒ==
===è§£ã®å
¬åŒ===
äžè¬ã®äºæ¬¡æ¹çšåŒ <math>ax^2 + bx + c = 0</math>ïŒ<math>a</math>, <math>b</math>, <math>c</math> ã¯å®æ°ã<math>a\ne0</math>ïŒã®è§£ <math>x</math> ãæ±ããå
¬åŒã«ã€ããŠèããã
:<math>ax^2 + bx + c = 0</math>
:<math>ax^2 + bx = -c</math>
:<math>x^2 + \frac{b}{a}x = -\frac{c}{a}</math> ⊠(1)
ããã§æçåŒ <math>x^2 + 2yx = (x + y)^2 - y^2</math> ãš (1) ã®å·ŠèŸºãä¿æ°æ¯èŒãããšã
:<math>\begin{cases}
2y &= \frac{b}{a} \\
y &= \frac{b}{2a}
\end{cases}</math>
ã§ããããã(1) ã®åŒã¯æ¬¡ã®ããã«å€åœ¢ã§ããïŒå¹³æ¹å®æïŒã
:<math>\left( x + \frac{b}{2a} \right)^2 - \left( \frac{b}{2a} \right)^2 = -\frac{c}{a}</math>
:<math>\left( x + \frac{b}{2a} \right)^2 = \left( \frac{b}{2a} \right)^2 - \frac{c}{a}</math>
:<math>\left( x + \frac{b}{2a} \right)^2 = \frac{b^2 - 4ac}{4a^2}</math>
<math>b^2 - 4ac \ge 0</math> ã®ãšã䞡蟺ã®å¹³æ¹æ ¹ããšããšã
:<math>\sqrt{ \left( x + \frac{b}{2a} \right)^2 } = \sqrt{ \frac{b^2 - 4ac}{4a^2} }</math>
:<math>\left| x + \frac{b}{2a} \right| = \frac{ \sqrt{b^2 - 4ac} }{2a}</math>
:<math>x + \frac{b}{2a} = \pm \frac{ \sqrt{b^2 - 4ac} }{2a}</math>
:<math>x = \frac{ -b \pm \sqrt{b^2 - 4ac} }{2a}</math>
ããã'''äºæ¬¡æ¹çšåŒã®è§£ã®å
¬åŒ'''ïŒã«ãã»ããŠãããã®ããã®ãããããquadratic formula; äºæ¬¡å
¬åŒïŒã§ãããè§£ã®å
¬åŒãäºæ¬¡æ¹çšåŒã®äžè¬åœ¢ã«ä»£å
¥ãããšãå³èŸºã¯0ã«ãªãã¯ãã§ããã
:<math>
x^2 = \frac 1 {4a^2} (b^2 \mp 2b\sqrt{b^2-4ac} + b^2 -4ac)
</math>
ã§ããããšãçšãããšã
:<math>
ax^2+bx+c= \frac 1 {4a} (b^2 \mp 2b\sqrt{b^2-4ac} + b^2 -4ac) + \frac b {2a}(-b \pm \sqrt{b^2-4ac}) + c
</math>
:<math>
= \frac 1 {4a} (2b^2 \mp 2b\sqrt{b^2-4ac}) + \frac 1 {2a}(-b^2 \pm b\sqrt{b^2-4ac}) = 0
</math>
ãšãªãã確ãã«æ£ããããšããããã
*åé¡
:(i)<math>
x^2-1=0
</math>
:(ii)<math>
5\,x^2+2\,x-1=0
</math>
:(iii)<math>
x^2+3\,x-1=0
</math>
:(iv)<math>
2\,x^2+3\,x-1=0
</math>
:(v)<math>
2\,x^2+3\,x+1=0
</math>
<!--
:(vi)<math>
7\,x^2+16\,x+4=0
</math>
:(vii)<math>
12\,x^2-29\,x-8=0
</math>
:(viii)<math>
12\,x^2-27\,x-8=0
</math>
-->
ãããããè§£ã®å
¬åŒãå æ°åè§£ãçšããŠè§£ããªããã
*è§£ç
çµæã®åŒã«æ ¹å·ãçŸããªãå Žåã«ã¯ãäœããã®ä»æ¹ã§å æ°åè§£ãã§ããããããããããã®æ¹æ³ã䜿ãã«ãããæ ¹å·ã¯ã§ããéãã®ä»æ¹ã§ç°¡ååããããšãéèŠã§ããã
(i)ã¯ç°¡åã«å æ°åè§£ã§ããã®ã§ãè§£ã®å
¬åŒãçšããå¿
èŠã¯ãªãã
:<math>
x^2-1 = (x+1)(x-1) = 0
</math>
ããã
:<math>
x = \pm 1
</math>
ãçããšãªãã(ii)ã§ã¯ãå æ°åè§£ãåºæ¥ãªãã®ã§ãè§£ã®å
¬åŒãçšãããå æ°åè§£ãã§ãããã©ããã¯å®éã«è©Šè¡é¯èª€ããŠèŠåãããããªãã
:<math>
5\,x^2+2\,x-1=0
</math>
ã«ãè§£ã®å
¬åŒãçšãããšãa=5, b= 2, c=-1ããã
:<math>
x = \frac 1 {2 \cdot 5} (-2 \pm \sqrt{2^2 - 4 \cdot 5 \cdot (-1)})
</math>
:<math>
= \frac 1 {10} (-2 \pm \sqrt {24} )
</math>
:<math>
= \frac 1 {10} (-2 \pm 2 \sqrt 6 ) = \frac 1 5 (-1 \pm \sqrt 6)
</math>
ãšãªãã(iii),(iv)ã§ããå æ°åè§£ã¯åºæ¥ãªãã®ã§ãè§£ã®å
¬åŒãçšãããçãã¯ã
(iii)
:<math>
x = \frac 1 2 (-3 \pm \sqrt{13} )
</math>
(iv)
:<math>
x = \frac 1 4 (-3 \pm \sqrt{17} )
</math>
(v)
:<math>
(2x+1)(x+1) = 2\,x^2+3\,x+1
</math>
ãšå æ°åè§£ã§ããã®ã§ãçãã¯
:<math>
x=-{{1}\over{2}},x=-1
</math>
ãšãªãã
å
šåãéããŠãå æ°åè§£ãå¯èœãªæ¹çšåŒã«å¯ŸããŠããè§£ã®å
¬åŒã䜿çšããŠãæ§ããªãã
<!--
ããããã®è§£çã¯ã
:(i)<math>
\left[ x=-1,x=1 \right]
</math>
:(ii)<math>
\left[ x=-{{\sqrt{6}+1}\over{5}},x={{\sqrt{6}-1}\over{5}} \right]
</math>
:(iii)<math>
\left[ x=-{{\sqrt{13}+3}\over{2}},x={{\sqrt{13}-3}\over{2}} \right]
</math>
:(iv)<math>
\left[ x=-{{\sqrt{17}+3}\over{4}},x={{\sqrt{17}-3}\over{4}} \right]
</math>
:(v)<math>
\left[ x=-{{1}\over{2}},x=-1 \right]
</math>
:(vi)<math>
\left[ x=-2,x=-{{2}\over{7}} \right]
</math>
:(vii)<math>
\left[ x=-{{1}\over{4}},x={{8}\over{3}} \right]
</math>
:(viii)<math>
\left[ x=-{{\sqrt{1113}-27}\over{24}},x={{\sqrt{1113}+27}\over{24}} \right]
</math>
ãšãªãã
æåŸã®çµæã§
:<math>
1113
</math>
ã¯ã
:<math>
1113 = 3 \times 7 \times 53
</math>
ãšçŽ å æ°åè§£ãããããããã以äžç°¡åã«ãªããªãã
-->
===<math>ax^2 + 2b'x + c = 0</math> ã®è§£ã®å
¬åŒ===
äºæ¬¡æ¹çšåŒ<math>ax^2 + 2b'x + c = 0(a\ne0)</math>ã«ã€ããŠèããã
è§£ã®å
¬åŒã« b= 2b' ã代å
¥ãããš
:<math>
x = \frac{-2b' \pm \sqrt{(2b')^2-4ac}}{2a} = \frac{-2b' \pm \sqrt{4(b'^2-ac)}}{2a} = \frac{-2b' \pm 2\sqrt{b'^2-ac}}{2a}
</math>
ãã£ãŠãäºæ¬¡æ¹çšåŒ <math>ax^2 + 2b'x + c = 0</math> ã®è§£ã¯
:<math>
x = \frac{-b' \pm \sqrt{b'^2-ac}}{a}
</math>
ãšãªãã
*åé¡äŸ
**åé¡
:<math>
3\,x^2+6\,x-2=0
</math>
ãäžã®è§£ã®å
¬åŒãçšããŠè§£ããªããã
**è§£ç
äžã®è§£ã®å
¬åŒãçšãããšãa=3, b'= 3, c=-2ããã
:<math>
x = \frac {-3 \pm \sqrt{3^2 - 3 \cdot (-2)}} {3}
</math>
:<math>
= \frac {-3 \pm \sqrt {15}} {3}
</math>
ãšãªãã
===2次æ¹çšåŒã®è§£ã®åæ°===
2次æ¹çšåŒ <math>ax^2 + bx + c = 0</math> ã®è§£ã¯ <math>x = \frac{-b \pm \sqrt{b^2-4ac}}{2a} </math> ã§ããã<br>
ãã®åŒã®æ ¹å·ã®äžèº«ã ãåãåºãããã®ãå€å¥åŒãšåŒã³ã2次æ¹çšåŒã®è§£ã®åæ°ãç°¡åã«å€å¥ã§ããã
<math>D=b^2-4ac</math>ã®å€ã«ãã£ãŠæ¬¡ã®ããã«ãªãã<br>
(1)ã<math>D>0 </math>ã®ãšããç°ãªã2ã€ã®è§£ã<math>x = \frac{-b + \sqrt{b^2-4ac}}{2a} </math>ãš<math>x = \frac{-b - \sqrt{b^2-4ac}}{2a} </math>ãæã€ã<br>
(2)ã<math>D=0 </math>ã®ãšãã<math> \pm \sqrt{b^2-4ac} = \pm 0 </math> ã§ããã®ã§ã2ã€ã®è§£ã¯äžèŽããŠããã 1ã€ã®è§£<math>x = - \frac{b}{2a} </math>ãæã€ãããã¯2ã€ã®è§£ãéãªã£ããã®ãšèããŠã'''éè§£'''ãšããã<br>
(3)ã<math>D<0 </math>ã®ãšãã宿°ã®ç¯å²ã§ã¯è§£ã¯ãªãã<br>
2次æ¹çšåŒ <math>ax^2 + bx + c = 0</math> ã®è§£ã®åæ°ã¯<math>D=b^2-4ac</math>ã®å€ã§å€å®ã§ããã
{| style="border:2px solid red;width:80%" cellspacing=0
|style="background:lightred"|'''2次æ¹çšåŒã®è§£ã®åæ°'''
|-
|style="padding:5px"|
2次æ¹çšåŒ <math>ax^2 + bx + c = 0</math> ã®è§£ã¯ã<math>D=b^2-4ac</math>ãšãããšã
::<math>D>0 \Longleftrightarrow </math> ç°ãªã2ã€ã®å®æ°ã®è§£ããã€
::<math>D=0 \Longleftrightarrow </math> éè§£ããã€
::<math>D<0 \Longleftrightarrow </math> 宿°è§£ã¯ãªã
|}
* åé¡
次ã®2次æ¹çšåŒã®è§£ã®åæ°ãæ±ããã
:(I) ã<math> 3\,x^2-4\,x+2=0 </math>
:(II) ã<math> 25\,x^2+20\,x+4=0 </math>
:(III)ã<math> x^2+7\,x+1=0 </math>
* è§£ç
(I)
:<math> D=(-4)^2-4 \times 3 \times 2 =-8<0 </math>
ã ããã宿°è§£ã¯ãªãã<br>
(II)
:<math> D=20^2-4 \times 25 \times 4 =0 </math>
ã ãããéè§£ããã€ã<br>
(III)
:<math> D=7^2-4 \times 1 \times 1 =45>0 </math>
ã ãããç°ãªã2ã€ã®å®æ°ã®è§£ããã€ã
== æŒç¿åé¡ ==
{{DEFAULTSORT:ãããšãã}}
[[Category:é«çåŠæ ¡æ°åŠI]] | 2005-05-28T11:17:39Z | 2024-03-04T17:54:39Z | [
"ãã³ãã¬ãŒã:蚌æ",
"ãã³ãã¬ãŒã:蚌æçµãã",
"ãã³ãã¬ãŒã:ã³ã©ã "
] | https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E6%95%B0%E5%AD%A6I/%E6%95%B0%E3%81%A8%E5%BC%8F |
2,072 | äžåŠæ ¡åœèª | äžåŠæ ¡ã®åœèªã¯äž»ã«çŸä»£æãšå€æ(æ¥æ¬å€æã»æŒ¢æ)ãšææ³ã®3ã€ã«åãããŸããäžè¬ã®æç§æžãšã¯å
容ãè¥å¹²éãéšåããããŸãããå匷ã®åèã«ãªãã°å¹žãã§ãã
çŸä»£æ - 衚çŸ
çŸä»£æ(èäœæš©ã®éœåäžãææ²»æä»£~å€§æ£æä»£ã®äœåã®ã¿ãšãªããŸã)
倿
æ
äºæèª
ææ³
çŸä»£æ - 衚çŸ
çŸä»£æ
ææ³
æŒ¢æ æŒ¢æ (2014-10-17)
倿
çŸä»£ã®æ¬èª
çŸä»£æ
ãã®ä»
ææ³
挢æ
倿
çŸä»£æ :è¿ä»£æåŠãªã©
çŸä»£æ :èªè§£
ææ³
å€å
žåžžè
ãªã³ã¯ | [
{
"paragraph_id": 0,
"tag": "p",
"text": "äžåŠæ ¡ã®åœèªã¯äž»ã«çŸä»£æãšå€æ(æ¥æ¬å€æã»æŒ¢æ)ãšææ³ã®3ã€ã«åãããŸããäžè¬ã®æç§æžãšã¯å
容ãè¥å¹²éãéšåããããŸãããå匷ã®åèã«ãªãã°å¹žãã§ãã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "çŸä»£æ - 衚çŸ",
"title": "åå
"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "çŸä»£æ(èäœæš©ã®éœåäžãææ²»æä»£~å€§æ£æä»£ã®äœåã®ã¿ãšãªããŸã)",
"title": "åå
"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "倿",
"title": "åå
"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "æ
äºæèª",
"title": "åå
"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ææ³",
"title": "åå
"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "çŸä»£æ - 衚çŸ",
"title": "åå
"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "çŸä»£æ",
"title": "åå
"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ææ³",
"title": "åå
"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "æŒ¢æ æŒ¢æ (2014-10-17)",
"title": "åå
"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "倿",
"title": "åå
"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "çŸä»£ã®æ¬èª",
"title": "åå
"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "çŸä»£æ",
"title": "åå
"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãã®ä»",
"title": "åå
"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ææ³",
"title": "åå
"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "挢æ",
"title": "åå
"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "倿",
"title": "åå
"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "çŸä»£æ :è¿ä»£æåŠãªã©",
"title": "åå
"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "çŸä»£æ :èªè§£",
"title": "åå
"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ææ³",
"title": "åå
"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "å€å
žåžžè",
"title": "åå
"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ãªã³ã¯",
"title": "ãã®ä»"
}
] | äžåŠæ ¡ã®åœèªã¯äž»ã«çŸä»£æãšå€æ(æ¥æ¬å€æã»æŒ¢æ)ãšææ³ã®3ã€ã«åãããŸããäžè¬ã®æç§æžãšã¯å
容ãè¥å¹²éãéšåããããŸãããå匷ã®åèã«ãªãã°å¹žãã§ãã | {{Pathnav|ã¡ã€ã³ããŒãž|å°åŠæ ¡ã»äžåŠæ ¡ã»é«çåŠæ ¡ã®åŠç¿|äžåŠæ ¡ã®åŠç¿|äžåŠæ ¡åœèª|frame=1|hide=1}}{{é²æç¶æ³}}äžåŠæ ¡ã®åœèªã¯äž»ã«çŸä»£æãšå€æ(æ¥æ¬å€æã»æŒ¢æ)ãšææ³ã®3ã€ã«åãããŸããäžè¬ã®æç§æžãšã¯å
容ãè¥å¹²éãéšåããããŸãããå匷ã®åèã«ãªãã°å¹žãã§ãã
== åå
==
=== 1幎 ===
* [[äžåŠæ ¡åœèª/çŸä»£æ|çŸä»£æ]]
çŸä»£æ - 衚çŸ
:[[äžåŠæ ¡åœèª/çŸä»£æ/äœæ]]
:[[äžåŠæ ¡åœèª/çŸä»£æ/ææ³æ]]
:[[äžåŠæ ¡åœèª/çŸä»£æ/説æã®ããã]]
çŸä»£æ(èäœæš©ã®éœåäžãææ²»æä»£ïœå€§æ£æä»£ã®äœåã®ã¿ãšãªããŸã)
:[[äžåŠæ ¡åœèª/çŸä»£æ/åã£ã¡ãã]]ã (åäœ:{{ruby|å€ç®æŒ±ç³|ãªã€ããããã}}) {{鲿|25%|2022-12-25}}
:[[äžåŠæ ¡åœèª/çŸä»£æ/èèã®ç³ž]]ã (åäœ:{{ruby|è¥å·éŸä¹ä»|ããããããã
ãã®ãã}}) {{鲿|100%|2022-1-5}}
* [[äžåŠæ ¡åœèª 倿|倿]] {{鲿|25%|2014-10-17}}
倿
:[[äžåŠæ ¡åœèª 倿/竹åç©èª]] {{鲿|50%|2014-10-17}}
æ
äºæèª
:[[äžåŠæ ¡åœèª/æ
äºæèª 1幎|æ
äºæèª 1幎]] {{鲿|25%|2014-10-17}}
:[[äžåŠæ ¡åœèª 挢æ/ççŸ|{{ruby|ççŸ|ããã
ã}}]] {{鲿|25%|2014-10-17}}
:[[äžåŠæ ¡åœèª 挢æ/éã¯èããåºã§ãŠèãããéã|éã¯{{ruby|è|ãã}}ããåºã§ãŠèãããéã]] {{鲿|25%|2014-10-17}}
:[[äžåŠæ ¡åœèª 挢æ/æž©æ
ç¥æ°|æž©æ
ç¥æ°]] {{鲿|25%|2014-10-17}}
:[[äžåŠæ ¡åœèª 挢æ/äºåæ©çŸæ©|äºåæ©çŸæ©]] {{鲿|25%|2014-10-17}}
ææ³
:[[äžåŠæ ¡åœèª ææ³|ææ³]]
* è³æç·š(倿)
:[[äžåŠæ ¡åœèª 倿/äŒæŸä¿ç©èª|{{ruby|äŒæŸä¿|ããã»}}ç©èª]]
:[[äžåŠæ ¡åœèª 倿/åäœæ¥èš|{{ruby|åäœ|ãšã}}æ¥èš]] â»ããéèŠïŒ
:[[äžåŠæ ¡åœèª 倿/äŒå¢ç©èª|{{ruby|äŒå¢|ãã}}ç©èª]]
:[[äžåŠæ ¡åœèª 倿/åèšæ|{{ruby|åèšæ|ãã£ããããã}}]] â»ããéèŠïŒã{{ruby|å°åŒéšå
äŸ|ãããã¶ã®ãªãã}}
=== 2幎 ===
çŸä»£æ - 衚çŸ
:[[äžåŠæ ¡åœèª/çŸä»£æ/è°è«ã®ããã®æèŠãææ¡ã®ããã]]
:[[äžåŠæ ¡åœèª/çŸä»£æ/å ±åæžã®æžãæ¹]]
:[[äžåŠæ ¡åœèª/çŸä»£æ/æçŽã®æžãæ¹]]
çŸä»£æ
:[[äžåŠæ ¡åœèª/çŸä»£æ/èµ°ãã¡ãã¹]]ã (åäœ:{{ruby|倪宰治|ã ããããã}})ã{{鲿|100%|2014-10-17}}
ææ³
:[[äžåŠæ ¡åœèª ææ³|ææ³]] {{鲿|50%|2014-10-17}}
挢æ<br />
[[äžåŠæ ¡åœèª 挢æ|挢æ]] {{鲿|25%|2014-10-17}}
:[[äžåŠæ ¡åœèª 挢æ/æ¥æ|æ¥æ]] ({{ruby|æç«|ãšã»}}) {{鲿|25%|2014-10-17}}
:[[äžåŠæ ¡åœèª 挢æ/é»é¶Žæ¥Œã«ãŠå浩ç¶ã® åºéµã«ä¹ããéã|{{ruby|é»é¶Žæ¥Œ|ãããããã}}ã«ãŠ{{ruby|åæµ©ç¶|ãããããã}}ã® {{ruby|åºéµ|ããããã}}ã«{{ruby|ä¹|ã}}ããéã]] ({{ruby|æçœ|ãã¯ã}}) {{鲿|25%|2014-10-17}}
:[[äžåŠæ ¡åœèª 挢æ/çµ¶å¥|çµ¶å¥]] (æç«) {{鲿|25%|2014-10-17}}
:[[äžåŠæ ¡åœèª 挢æ/æ¥æ|{{ruby|æ¥æ|ãã
ãããã}}]] ({{ruby|åæµ©ç¶|ãããããã}}) {{鲿|25%|2014-10-17}}
:[[äžåŠæ ¡åœèª 挢æ/è«èª|è«èª]] ({{ruby|åå|ããã}})
倿
:[[äžåŠæ ¡åœèª 倿/平家ç©èª|{{ruby|平家|ãžãã}}ç©èª]] {{鲿|50%|2014-10-17}}
:[[äžåŠæ ¡åœèª 倿/åŸç¶è|{{ruby|åŸç¶è|ã€ãã¥ããã}}]] {{鲿|25%|2014-10-17}}
:[[äžåŠæ ¡åœèª 倿/æèå|{{ruby|æèå|ãŸããã®ããã}}]] {{鲿|25%|2014-10-17}}
çŸä»£ã®æ¬èª
:[[äžåŠæ ¡åœèª/æ¬èª]]
çŸä»£æ
:[[äžåŠæ ¡åœèª/çŸä»£æ/èµ°ãã¡ãã¹]] (åäœïŒ{{Ruby|[[d:Q317685|倪宰治]]|ã ãã ããã}}) {{鲿|25%|2014-10-17}}
ãã®ä»
:[[äžåŠæ ¡åœèª/çµµã³ã³ãã®èªã¿æ¹|çµµã³ã³ãã®èªã¿æ¹]]
ææ³
:[[äžåŠæ ¡åœèª ææ³|ææ³]]
----
=== 3幎 ===
挢æ
:[[äžåŠæ ¡åœèª 挢æ/å
äºã®å®è¥¿ã«äœ¿ã²ãããéã|å
äºã®å®è¥¿ã«äœ¿ã²ãããéã]] ({{ruby|çç¶|ããã}}) {{鲿|00%|2014-10-17}}
:[[äžåŠæ ¡åœèª 挢æ/é倿|é倿]] ({{ruby|æçœ|ãã¯ã}}) {{鲿|25%|2014-10-17}}
倿
:[[äžåŠæ ¡åœèª 倿/äžèéã»å€ä»åæéã»æ°å€ä»åæé]]
:[[äžåŠæ ¡åœèª 倿/ããã®ã»ãé]] {{鲿|50%|2014-10-17}}
çŸä»£æ :è¿ä»£æåŠãªã©
:[[äžåŠæ ¡åœèª/çŸä»£æ/é¯è¿
|äžåŠæ ¡åœèª/çŸä»£æ/æ
é·]] (åäœïŒ{{Ruby|[[d:Q23114|é¯è¿
]]|ããã}}ã»èš³ïŒ{{ruby|äºäžçŽ
æ¢
|ãã®ããããã°ã}}) (竹å
奜蚳ã¯èäœæš©ä¿è·æéäž) {{鲿|25%|2014-10-17}}
:[[äžåŠæ ¡åœèª/çŸä»£æ/é«ç¬è]] (åäœïŒ{{Ruby|[[d:Q356960|森éŽå€]]|ãããããã}}) {{鲿|25%|2014-10-17}}
:[[äžåŠæ ¡åœèª/çŸä»£æ/åæ]] (åäœïŒ{{ruby|å³¶åŽè€æ|ããŸãããšããã}}) {{鲿|25%|2014-10-17}}
:[[äžåŠæ ¡åœèª/çŸä»£æ/æåŸã®äžå¥]] (åäœïŒæ£®éŽå€)
çŸä»£æ :èªè§£
:[[äžåŠæ ¡åœèª/çŸä»£æ/説ææã»è©è«æ]]
ææ³
:[[äžåŠæ ¡åœèª ææ³|ææ³]]
å€å
žåžžè
:[[äžåŠæ ¡åœèª/å€å
žåžžè]]
== ãã®ä» ==
* [[äžåŠæ ¡åœèª ææ³|ææ³]]
* {{ruby|èªåœ|ãã}}
* æ
äºæèª
* [[äžåŠæ ¡åœèª/è¡šçŸææ³|è¡šçŸææ³]]
* èªåœ
::[[äžåŠæ ¡åœèª/æ
äºæèª 1幎|æ
äºæèª 1幎]]
::[[äžåŠæ ¡åœèª/æ
äºæèª 2幎|æ
äºæèª 2幎]]
::[[äžåŠæ ¡åœèª/æ
äºæèª 3幎|æ
äºæèª 3幎]]
:[[äžåŠæ ¡åœèª/æ
£çšå¥|æ
£çšå¥]]
:[[äžåŠæ ¡åœèª/é¡çŸ©èª|é¡çŸ©èª]]
:[[äžåŠæ ¡åœèª/察矩èª|察矩èª]]
:[[äžåŠæ ¡åœèª/çèª|çèª]]
:[[äžåŠæ ¡åœèª/ããšãã|ããšãã]]
* 挢å
:[[äžåŠæ ¡åœèª/挢å 1幎|挢å 1幎]]
:[[äžåŠæ ¡åœèª/挢å 2幎|挢å 2幎]]
:[[äžåŠæ ¡åœèª/挢å 3幎|挢å 3幎]]
:[[äžåŠæ ¡åœèª/äžåŠæ ¡ã§åŠç¿ããæŒ¢å|äžåŠæ ¡ã§åŠç¿ããæŒ¢å]]
----
* åŠç¿æ¹æ³
:[[åŠç¿æ¹æ³/髿 ¡åéš/åœèª]]
:[[åŠç¿æ¹æ³/äžåŠæ ¡åœèª]]
----
* [[äžçæè²åæã®åœèª]] {{鲿|00%|2018-12-08}}
----
* 髿 ¡åéš
ãªã³ã¯
: (2014幎9ææç¹ã§ã®èšäºå
容ã¯ããã«åºé¡åŸå)
:[[髿 ¡åéšçŸä»£æ]] {{鲿|00%|2013-12-05}}
:[[髿 ¡åéšå€æ]] {{鲿|00%|2010-03-28}}
:[[髿 ¡åéšæŒ¢æ]] {{鲿|00%|2014-01-05}}
:[[å
¥è©Šå¯Ÿçåé¡/äžåŠæ ¡åœèª]]
[[Category:äžåŠæ ¡åœèª|*]]
[[Category:äžåŠæ ¡æè²|ããã]]
[[Category:æ¥æ¬ã®åœèªç§æè²|*]]
[[Category:æ¥æ¬èª|ã¡ãããã€ããããã]] | 2005-05-29T11:22:17Z | 2023-07-12T04:49:58Z | [
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:é²æç¶æ³",
"ãã³ãã¬ãŒã:Ruby",
"ãã³ãã¬ãŒã:鲿"
] | https://ja.wikibooks.org/wiki/%E4%B8%AD%E5%AD%A6%E6%A0%A1%E5%9B%BD%E8%AA%9E |
2,074 | è§£æååŠ | æ¬é
ã¯ç©çåŠ è§£æååŠ ã®è§£èª¬ã§ãã
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ¬é
ã¯ç©çåŠ è§£æååŠ ã®è§£èª¬ã§ãã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "",
"title": ""
}
] | æ¬é
ã¯ç©çåŠ è§£æååŠ ã®è§£èª¬ã§ãã ã¯ããã«
éåæ¹çšåŒã®äžè¬å
ã©ã°ã©ã³ãžã¢ã³
æå°äœçšã®åç
éåéãããã«ããã¢ã³ã®å®çŸ©
ä¿ååã®å°åº
ãšãã«ã®ãŒä¿ååã®å°åº
éåéä¿ååã®å°åº | {{Pathnav|ã¡ã€ã³ããŒãž|èªç¶ç§åŠ|ç©çåŠ|frame=1|small=1}}
æ¬é
ã¯ç©çåŠ è§£æååŠ ã®è§£èª¬ã§ãã
* [[è§£æååŠ ã¯ããã«|ã¯ããã«]]
* [[è§£æååŠ éåæ¹çšåŒã®äžè¬å|éåæ¹çšåŒã®äžè¬å]]
** [[è§£æååŠ éåæ¹çšåŒã®äžè¬å#ã©ã°ã©ã³ãžã¢ã³|ã©ã°ã©ã³ãžã¢ã³]]
** [[è§£æååŠ éåæ¹çšåŒã®äžè¬å#æå°äœçšã®åç|æå°äœçšã®åç]]
** [[è§£æååŠ éåæ¹çšåŒã®äžè¬å#éåéãããã«ããã¢ã³ã®å®çŸ©|éåéãããã«ããã¢ã³ã®å®çŸ©]]
* [[è§£æååŠ ä¿ååã®å°åº|ä¿ååã®å°åº]]
** [[è§£æååŠ ä¿ååã®å°åº#ãšãã«ã®ãŒä¿ååã®å°åº|ãšãã«ã®ãŒä¿ååã®å°åº]]
** [[è§£æååŠ ä¿ååã®å°åº#éåéä¿ååã®å°åº|éåéä¿ååã®å°åº]]
{{stub}}
{{DEFAULTSORT:ãããããããã}}
[[Category:è§£æååŠ|*]]
{{NDC|423|ãããããããã}} | 2005-05-30T03:53:31Z | 2023-09-28T17:12:06Z | [
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:Stub",
"ãã³ãã¬ãŒã:NDC"
] | https://ja.wikibooks.org/wiki/%E8%A7%A3%E6%9E%90%E5%8A%9B%E5%AD%A6 |
2,075 | è§£æååŠ ã¯ããã« | è§£æååŠã¯ãã¥ãŒãã³ååŠã®å
容ãããæ±çšçã«äœ¿ãã圢ã«å®åŒåãçŽãããã®ã§ããã äŸãã°ãã«ã«ã座æšã§ã®ãã¥ãŒãã³ã®éåæ¹çšåŒã極座æšç³»ãžæžãçŽããšãšãŠãç
©éã«ãªãã ãã®å°é£ãããããããè§£æååŠã§ã¯ä»»æã®åº§æšç³»ã§ãããäžè¬çãªåœ¢ã§ã®ãã¥ãŒãã³ã®éåæ¹çšåŒãåŸãããšãã§ããã
ç¹ã«ç©çç³»ã®å¯Ÿç§°æ§ãèŠãå Žåã«ãããçšããããããšãå€ãã ãŸããå€ãã®ç©äœãé¢ããåé¡ã«å¯ŸããŠã䜿ãããããšãããã
ãŸãããã®éšåã§å®çŸ©ãããçšèªã¯éåååŠããé»ç£æ°åŠãªã©ä»ã®åéã§ãå€ã䜿ããããããã«ãªãã¥ã©ã ã®äžã§ã¯ãéèŠãªäœçœ®ãå ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "è§£æååŠã¯ãã¥ãŒãã³ååŠã®å
容ãããæ±çšçã«äœ¿ãã圢ã«å®åŒåãçŽãããã®ã§ããã äŸãã°ãã«ã«ã座æšã§ã®ãã¥ãŒãã³ã®éåæ¹çšåŒã極座æšç³»ãžæžãçŽããšãšãŠãç
©éã«ãªãã ãã®å°é£ãããããããè§£æååŠã§ã¯ä»»æã®åº§æšç³»ã§ãããäžè¬çãªåœ¢ã§ã®ãã¥ãŒãã³ã®éåæ¹çšåŒãåŸãããšãã§ããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ç¹ã«ç©çç³»ã®å¯Ÿç§°æ§ãèŠãå Žåã«ãããçšããããããšãå€ãã ãŸããå€ãã®ç©äœãé¢ããåé¡ã«å¯ŸããŠã䜿ãããããšãããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãŸãããã®éšåã§å®çŸ©ãããçšèªã¯éåååŠããé»ç£æ°åŠãªã©ä»ã®åéã§ãå€ã䜿ããããããã«ãªãã¥ã©ã ã®äžã§ã¯ãéèŠãªäœçœ®ãå ããã",
"title": "ã¯ããã«"
}
] | null | {{pathnav|ã¡ã€ã³ããŒãž|èªç¶ç§åŠ|ç©çåŠ|è§£æååŠ|frame=1}}
==ã¯ããã«==
è§£æååŠã¯ãã¥ãŒãã³ååŠã®å
容ãããæ±çšçã«äœ¿ãã圢ã«å®åŒåãçŽãããã®ã§ããã
äŸãã°ãã«ã«ã座æšã§ã®ãã¥ãŒãã³ã®éåæ¹çšåŒã極座æšç³»ãžæžãçŽããšãšãŠãç
©éã«ãªãã
ãã®å°é£ãããããããè§£æååŠã§ã¯ä»»æã®åº§æšç³»ã§ãããäžè¬çãªåœ¢ã§ã®ãã¥ãŒãã³ã®éåæ¹çšåŒãåŸãããšãã§ããã
ç¹ã«ç©çç³»ã®å¯Ÿç§°æ§ãèŠãå Žåã«ãããçšããããããšãå€ãã
ãŸããå€ãã®ç©äœãé¢ããåé¡ã«å¯ŸããŠã䜿ãããããšãããã
ãŸãããã®éšåã§å®çŸ©ãããçšèªã¯éåååŠããé»ç£æ°åŠãªã©ä»ã®åéã§ãå€ã䜿ããããããã«ãªãã¥ã©ã ã®äžã§ã¯ãéèŠãªäœçœ®ãå ããã
{{DEFAULTSORT:ãããããããã ã¯ããã«}}
[[Category:è§£æååŠ|* ã¯ããã«]] | null | 2015-04-17T15:27:40Z | [
"ãã³ãã¬ãŒã:Pathnav"
] | https://ja.wikibooks.org/wiki/%E8%A7%A3%E6%9E%90%E5%8A%9B%E5%AD%A6_%E3%81%AF%E3%81%98%E3%82%81%E3%81%AB |
2,076 | è§£æååŠ éåæ¹çšåŒã®äžè¬å | ãã颿° L ( q 1 , q 2 , ⯠, q K , q Ì 1 , q Ì 2 , ⯠, q Ì K ) {\displaystyle L(q_{1},q_{2},\cdots ,q_{K},{\dot {q}}_{1},{\dot {q}}_{2},\cdots ,{\dot {q}}_{K})} ããããšãã«ã
S = â« t 0 t 1 d t L ( q 1 ( t ) , q 2 ( t ) , ⯠, q K ( t ) , q Ì 1 ( t ) , q Ì 2 ( t ) , ⯠, q Ì K ( t ) ) {\displaystyle S=\int _{t_{0}}^{t_{1}}dt\,L(q_{1}(t),q_{2}(t),\cdots ,q_{K}(t),{\dot {q}}_{1}(t),{\dot {q}}_{2}(t),\cdots ,{\dot {q}}_{K}(t))}
ãæå°ã«ãã q i ( t ) {\displaystyle q_{i}(t)} ã¯ã©ã®ãããªãã®ã ãããã
ãŸãã¯ç°¡åãªäŸãšããŠã颿° f ( x ) {\displaystyle f(x)} ãæå°ã«ãã x {\displaystyle x} ã«ã€ããŠèãããã f ( x ) {\displaystyle f(x)} ãæå°å€ãåããšãã f â² ( x ) = 0 {\displaystyle f'(x)=0} ãšãªãã®ã ã£ãã f â² ( x ) = 0 {\displaystyle f'(x)=0} ãšãªãããšã¯ã x {\displaystyle x} ã埮å°é ÎŽ x {\displaystyle \delta x} ã ãå€åããããšãã f ( x ) {\displaystyle f(x)} ã®å€åé ÎŽ f := f ( x + ÎŽ x ) â f ( x ) {\displaystyle \delta f:=f(x+\delta x)-f(x)} 㯠Ύ f = 0 {\displaystyle \delta f=0} ã«ãªããšããããšã§ããã
ããããã®é¡æšã§ã S ( { q i } , { q Ì i } ) {\displaystyle S(\{q_{i}\},\{{\dot {q}}_{i}\})} ãæå°ã«ãã { q i ( t ) } {\displaystyle \{q_{i}(t)\}} ã«ã€ããŠã { q i ( t ) } {\displaystyle \{q_{i}(t)\}} ãå°ãã ãå€åãã㊠{ q i ( t ) + ÎŽ q i ( t ) } {\displaystyle \{q_{i}(t)+\delta q_{i}(t)\}} (ãã ããå¢çæ¡ä»¶ ÎŽ q i ( t 0 ) = ÎŽ q i ( t 1 ) = 0 {\displaystyle \delta q_{i}(t_{0})=\delta q_{i}(t_{1})=0} ã課ã)ãšãããšãã® S {\displaystyle S} ã®å€åé ÎŽ S = S ( { q i ( t ) + ÎŽ q i ( t ) } , { q Ì i ( t ) + ÎŽ q Ì i ( t ) } ) â S ( { q i } , { q Ì i } ) {\displaystyle \delta S=S(\{q_{i}(t)+\delta q_{i}(t)\},\{{\dot {q}}_{i}(t)+\delta {\dot {q}}_{i}(t)\})-S(\{q_{i}\},\{{\dot {q}}_{i}\})} 㯠Ύ S = 0 {\displaystyle \delta S=0} ãšãªããšèããããšãåºæ¥ãã
ÎŽ S = S ( { q i ( t ) + ÎŽ q i ( t ) } , { q Ì i ( t ) + ÎŽ q Ì i ( t ) } ) â S ( { q i } , { q Ì i } ) = â« t 0 t 1 d t L ( { q i ( t ) + ÎŽ q i ( t ) } , { q Ì i ( t ) + ÎŽ q Ì i ( t ) } ) â â« t 0 t 1 d t L ( { q i ( t ) } , { q Ì i ( t ) } ) = â« t 0 t 1 d t [ L ( { q i ( t ) + ÎŽ q i ( t ) } , { q Ì i ( t ) + ÎŽ q Ì i ( t ) } ) â L ( { q i ( t ) } , { q Ì i ( t ) } ) ] = â« t 0 t 1 d t â k = 1 K ( â L â q k ÎŽ q k + â L â q Ì k ÎŽ q Ì k ( t ) ) = â k = 1 K â« t 0 t 1 d t ( â L â q k ÎŽ q k + â L â q Ì k ÎŽ q Ì k ( t ) ) = â k = 1 K [ â L â q Ì k q k ( t ) | t 0 t 1 + â« t 0 t 1 d t ÎŽ q k ( t ) ( â L â q k â d d t â L â q Ì k ) ] = â k = 1 K â« t 0 t 1 d t ÎŽ q k ( t ) ( â L â q k â d d t â L â q Ì k ) = 0 {\displaystyle {\begin{aligned}\delta S&=S(\{q_{i}(t)+\delta q_{i}(t)\},\{{\dot {q}}_{i}(t)+\delta {\dot {q}}_{i}(t)\})-S(\{q_{i}\},\{{\dot {q}}_{i}\})\\&=\int _{t_{0}}^{t_{1}}dt\,L(\{q_{i}(t)+\delta q_{i}(t)\},\{{\dot {q}}_{i}(t)+\delta {\dot {q}}_{i}(t)\})-\int _{t_{0}}^{t_{1}}dt\,L(\{q_{i}(t)\},\{{\dot {q}}_{i}(t)\})\\&=\int _{t_{0}}^{t_{1}}dt\,[L(\{q_{i}(t)+\delta q_{i}(t)\},\{{\dot {q}}_{i}(t)+\delta {\dot {q}}_{i}(t)\})-L(\{q_{i}(t)\},\{{\dot {q}}_{i}(t)\})]\\&=\int _{t_{0}}^{t_{1}}dt\sum _{k=1}^{K}\left({\frac {\partial L}{\partial q_{k}}}\delta q_{k}+{\frac {\partial L}{\partial {\dot {q}}_{k}}}\delta {\dot {q}}_{k}(t)\right)\\&=\sum _{k=1}^{K}\int _{t_{0}}^{t_{1}}dt\left({\frac {\partial L}{\partial q_{k}}}\delta q_{k}+{\frac {\partial L}{\partial {\dot {q}}_{k}}}\delta {\dot {q}}_{k}(t)\right)\\&=\sum _{k=1}^{K}\left[{\frac {\partial L}{\partial {\dot {q}}_{k}}}q_{k}(t)|_{t_{0}}^{t_{1}}+\int _{t_{0}}^{t_{1}}dt\delta q_{k}(t)\left({\frac {\partial L}{\partial q_{k}}}-{\frac {d}{dt}}{\frac {\partial L}{\partial {\dot {q}}_{k}}}\right)\right]\\&=\sum _{k=1}^{K}\int _{t_{0}}^{t_{1}}dt\delta q_{k}(t)\left({\frac {\partial L}{\partial q_{k}}}-{\frac {d}{dt}}{\frac {\partial L}{\partial {\dot {q}}_{k}}}\right)\\&=0\end{aligned}}}
ããã§ã ÎŽ q k ( t ) {\displaystyle \delta q_{k}(t)} ã¯ä»»æã§ããã®ã§ããªã€ã©ãŒ=ã©ã°ã©ã³ãžã¥æ¹çšåŒ
d d t â L â q Ì k â â L â q k = 0 {\displaystyle {\frac {d}{dt}}{\frac {\partial L}{\partial {\dot {q}}_{k}}}-{\frac {\partial L}{\partial q_{k}}}=0}
ãåŸãã
ããŠãå€åæ³ãå©çšããããã€ãã®ç°¡åãªäŸã玹ä»ãããã
æ°Žå¹³ãª2ç¹ãããã®2ç¹éè·é¢ã ãããããé·ãã®ãã¢ã§çµãã å Žåãåœç¶ãããŒãã¯ããããã ãã®ããã«ãããŒããªã©ãåãããæã«ã§ããæ²ç·ã®ããšãæžåç·(ãããããã)ãšããã
èšç®äŸã®ããã«ãå°é¢æ°yâã§å埮åãããšããæäœãå¿
èŠã«ãªãã
ãå€åããšããèããçšããŠãéåæ¹çšåŒã®å®çŸ©ãæ°åŒã§æžãäºãããã®èšäºã§ã¯èããã以äžãååŠã«ãããå€åã®èšç®æ¹æ³ã説æããŠããã
ã§ã¯ãå€åãçšããŠãã¥ãŒãã³æ¹çšåŒãæžãæããããšãèããããŸãå€å
žååŠã§ã®ãã¥ãŒãã³æ¹çšåŒã¯
ã®åœ¢ã§æžãããã
å€åãããããã«ã©ã°ã©ã³ãžã¢ã³ãšããéãå°å
¥ããããŸã ãã©ã°ã©ã³ãžã¢ã³ã®å
·äœçãªåœ¢ã¯åãããªããã©ããã質ç¹ãªã©ã®åº§æšäœçœ®ã q {\displaystyle q} ãšããŠããã®äœçœ®ã®æé埮å(ã€ãŸãé床)ã q Ì {\displaystyle {\dot {q}}} ãšããã°ã
ãšãã圢ã«ãªãäºãåãã£ãŠãããå é床 q Ì {\displaystyle {\ddot {q}}} ã¯èããªããŠè¯ãäºãåãã£ãŠããããã倩äžãçã ãã q Ì {\displaystyle {\dot {q}}} ãéåéãšããã®ä¿æ°åã«çžåœããããã§ãããéåéã¯ãéåããŠãã質ç¹ãªã©ã®ä¿åéã§ããããã£ãœããå é床ã¯ãéåããŠãã質ç¹ã®ä¿åéã§ã¯ãªãããã§ããã(ãªããã©ã°ã©ã³ãžã¢ã³Lã¯ã¹ã«ã©ãŒé(ãã¯ãã«ã§ãªãæ°)ã§ããã)
ã©ã°ã©ã³ãžã¢ã³ãããæéã®ç¯å²ã§ç©åãããã®ãã
ãšæžããäœçšãšåŒã¶ãããã§éåæ¹çšåŒãåŸãããã®åçãšããŠã"éåæ¹çšåŒã¯ãå°ãã ã q , q Ì {\displaystyle q,{\dot {q}}} ãå€åããããšããŠããäœçšãå€åããªããããªå€ãåºã q , q Ì {\displaystyle q,{\dot {q}}} ã®é¢ä¿ã«ãã£ãŠäžããããã"ãšããããšãèŠæ±ããã
ãã®ãšãã q , q Ì {\displaystyle q,{\dot {q}}} ãå€åããããšãã®å®éã®äœçšã®å€å ÎŽS ãèšç®ãããš(ÎŽã¯ãã«ã¿ãšèªã)ã
垞埮å颿° q Ì {\displaystyle {\dot {q}}} ã§å埮åããããšã®æ°åŠçæ£åœæ§ãçè§£ãã¥ãããããããªãããã²ãšãŸããããèšç®ããŠãããããã詳现ã¯åŸè¿°ããã ããã§ã2è¡ç®ãã3è¡ç®ã§ã¯ãéšåç©åã«ãã£ãŠ
ãšãããå³èŸºã§éšåç©åã§åºãŠããé
ãæ¶ãããã«ã" q , q Ì {\displaystyle q,{\dot {q}}} ã¯ç©åç¯å²ã®äž¡ç«¯ã§ãã t = ti , tf ã§ã¯å€åããªã"ãšããèŠè«ãå ããã
æå°äœçšã®åçã«ãããšããã®ãšãã«ÎŽS = 0 ã§ãªããŠã¯ãªããªããÎŽq ã®å€ã«é¢ãããÎŽS = 0 ãæãç«ã€ããã«ã¯ã
ãæãç«ã€å¿
èŠãããããã£ãŠããã®åŒãéåæ¹çšåŒãšãªãã
ç¹ã«q ãéåžžã®åº§æšx ã§ããæã®ããšãèãããããã§ã
ãšãããšãåŒ(1)ã¯ã
ãšãªããéåžžã®èªç±ãªç²åã®éåæ¹çšåŒã«äžèŽãããããã§ã
ã¯ç²åã®éåãšãã«ã®ãŒã§ããã
ãŸããä¿ååã®äžã§ãç¹ã«ç©äœã®é床ã«ãããªãåãåããŠéåããŠããç²åã«å¯ŸããŠã¯ããã®åã«ãã£ãŠåŸãããäœçœ®ãšãã«ã®ãŒãV (q ) ãç©äœã®éåãšãã«ã®ãŒãT ãšè¡šããšãã
ãšãããšãåŒ(1)ã¯ã
ãšãªãããå³èŸºã¯ä¿ååã«å¯Ÿããåã衚ããã®ã§ãã®ãšãã®ã©ã°ã©ã³ãžã¢ã³ã¯
ã§äžããããããšãåããã
ãŸããèªç±ãªè§éåéã«å¯Ÿããã©ã°ã©ã³ãžã¢ã³ã¯
ã«ãã£ãŠäžããããããã¯åäœã®è§éåéãæã€(æ
£æ§ã¢ãŒã¡ã³ãã¯åäœä»¥å€æã€ããšãåºæ¥ãªãããšã«æ³šæ)ãšãã«ã®ãŒã衚ããã
ã©ã°ã©ã³ãžã¢ã³ã¯ãåã«ã髿 ¡ç©çã§ãç¿ããããªéåæ¹çšåŒã®å®çŸ©ããå€åãšããæ°åŠçææ³ã«ããšã¥ããŠãèšãæãããã®ã§ããã
ã©ã°ã©ã³ãžã¢ã³ã¯ãç©çåŠã«ãããŠå
¬åŒãå°ãããã®ãç©çã®(ã»ãŒå
šãŠã®åéã§ã®)å
±éã®æéã§ããã
ãšããã§ãè§éåéã«é¢ããæ¹çšåŒã¯
ãšæžããã(I ã¯æ
£æ§ã¢ãŒã¡ã³ãã Ï â {\displaystyle {\vec {\omega }}} ã¯è§é床ã N â {\displaystyle {\vec {N}}} ã¯ç©äœã«åãåã®ã¢ãŒã¡ã³ã)ã
è§éåéã®åŒã¯ããã¥ãŒãã³æ¹çšåŒã«äŒŒãŠããã
ãã¥ãŒãã³æ¹çšåŒ
ã©ã°ã©ã³ãžã¢ã³ã¯ããã®ãããªéåæ³åãçµ±äžçã«èšè¿°ã§ããã
çµ±äžçã«èšè¿°ã§ãããšãããå Žåã«ã¯éœåãè¯ãããã®ãããªåº§æšã®èšè¿°æ¹æ³ã®çµ±äžåã®ç®çã§ãããã©ã°ã©ã³ãžã¢ã³ãåŸè¿°ã®ããã«ããã¢ã³ãå©çšãããäºãããã
ã©ã°ã©ã³ãžã¢ã³ãçšãããšããéåép ã¯
ãšå®çŸ©ããããå®éãèªç±ãªç²åã«å¯ŸããŠã¯ã
ãåŸãããæ£ããããšãåãããé床ã«äŸåããåãèããå Žåãp ã¯å¿
ãããäžè¬çãªéåéãšäžèŽããªãã
ãã®ãšããããã§å®çŸ©ããéåéãäžè¬åãããéåéãšåŒãã§éåžžã®éåéãšåºå¥ããã
次ã«ããšãã«ã®ãŒã®èšè¿°ãäžè¬åããããšãèãããããããã説æããããã«ããã¢ã³ H ãããšãã«ã®ãŒãäžè¬åãããã®ã«çžåœããã
L 㯠q , q Ì {\displaystyle q,{\dot {q}}} ã倿°ãšããŠçšããéã§ããããããããããããq , p ã倿°ãšããŠçšããæ¹ã䟿å©ãªããšãããããã®ãããªéã p , q Ì {\displaystyle p,{\dot {q}}} ã®éã®ã«ãžã£ã³ãã«å€æã«ãã£ãŠäœãããšãåºæ¥ãããããããã«ããã¢ã³H ãšåŒã³ã
ã§å®çŸ©ãããç¹ã« L = T ( q Ì ) â V ( q ) {\displaystyle L=T({\dot {q}})-V(q)} ãæºããå Žåã
ãåŸãããH ã¯ç³»ã®å
šãšãã«ã®ãŒãšäžèŽããããã®çµæã¯ãšãã«ã®ãŒä¿ååã®å°åºã«çšããããã
ããã«ããã¢ã³ H ( { q i } , { p i } ) = T + V {\displaystyle H(\{q_{i}\},\{p_{i}\})\,=T+V} ã«ãããŠ
ãæãç«ã€ããããæ£æºæ¹çšåŒãšããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ãã颿° L ( q 1 , q 2 , ⯠, q K , q Ì 1 , q Ì 2 , ⯠, q Ì K ) {\\displaystyle L(q_{1},q_{2},\\cdots ,q_{K},{\\dot {q}}_{1},{\\dot {q}}_{2},\\cdots ,{\\dot {q}}_{K})} ããããšãã«ã",
"title": "å€åæ³"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "S = â« t 0 t 1 d t L ( q 1 ( t ) , q 2 ( t ) , ⯠, q K ( t ) , q Ì 1 ( t ) , q Ì 2 ( t ) , ⯠, q Ì K ( t ) ) {\\displaystyle S=\\int _{t_{0}}^{t_{1}}dt\\,L(q_{1}(t),q_{2}(t),\\cdots ,q_{K}(t),{\\dot {q}}_{1}(t),{\\dot {q}}_{2}(t),\\cdots ,{\\dot {q}}_{K}(t))}",
"title": "å€åæ³"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãæå°ã«ãã q i ( t ) {\\displaystyle q_{i}(t)} ã¯ã©ã®ãããªãã®ã ãããã",
"title": "å€åæ³"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãŸãã¯ç°¡åãªäŸãšããŠã颿° f ( x ) {\\displaystyle f(x)} ãæå°ã«ãã x {\\displaystyle x} ã«ã€ããŠèãããã f ( x ) {\\displaystyle f(x)} ãæå°å€ãåããšãã f â² ( x ) = 0 {\\displaystyle f'(x)=0} ãšãªãã®ã ã£ãã f â² ( x ) = 0 {\\displaystyle f'(x)=0} ãšãªãããšã¯ã x {\\displaystyle x} ã埮å°é ÎŽ x {\\displaystyle \\delta x} ã ãå€åããããšãã f ( x ) {\\displaystyle f(x)} ã®å€åé ÎŽ f := f ( x + ÎŽ x ) â f ( x ) {\\displaystyle \\delta f:=f(x+\\delta x)-f(x)} 㯠Ύ f = 0 {\\displaystyle \\delta f=0} ã«ãªããšããããšã§ããã",
"title": "å€åæ³"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ããããã®é¡æšã§ã S ( { q i } , { q Ì i } ) {\\displaystyle S(\\{q_{i}\\},\\{{\\dot {q}}_{i}\\})} ãæå°ã«ãã { q i ( t ) } {\\displaystyle \\{q_{i}(t)\\}} ã«ã€ããŠã { q i ( t ) } {\\displaystyle \\{q_{i}(t)\\}} ãå°ãã ãå€åãã㊠{ q i ( t ) + ÎŽ q i ( t ) } {\\displaystyle \\{q_{i}(t)+\\delta q_{i}(t)\\}} (ãã ããå¢çæ¡ä»¶ ÎŽ q i ( t 0 ) = ÎŽ q i ( t 1 ) = 0 {\\displaystyle \\delta q_{i}(t_{0})=\\delta q_{i}(t_{1})=0} ã課ã)ãšãããšãã® S {\\displaystyle S} ã®å€åé ÎŽ S = S ( { q i ( t ) + ÎŽ q i ( t ) } , { q Ì i ( t ) + ÎŽ q Ì i ( t ) } ) â S ( { q i } , { q Ì i } ) {\\displaystyle \\delta S=S(\\{q_{i}(t)+\\delta q_{i}(t)\\},\\{{\\dot {q}}_{i}(t)+\\delta {\\dot {q}}_{i}(t)\\})-S(\\{q_{i}\\},\\{{\\dot {q}}_{i}\\})} 㯠Ύ S = 0 {\\displaystyle \\delta S=0} ãšãªããšèããããšãåºæ¥ãã",
"title": "å€åæ³"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ÎŽ S = S ( { q i ( t ) + ÎŽ q i ( t ) } , { q Ì i ( t ) + ÎŽ q Ì i ( t ) } ) â S ( { q i } , { q Ì i } ) = â« t 0 t 1 d t L ( { q i ( t ) + ÎŽ q i ( t ) } , { q Ì i ( t ) + ÎŽ q Ì i ( t ) } ) â â« t 0 t 1 d t L ( { q i ( t ) } , { q Ì i ( t ) } ) = â« t 0 t 1 d t [ L ( { q i ( t ) + ÎŽ q i ( t ) } , { q Ì i ( t ) + ÎŽ q Ì i ( t ) } ) â L ( { q i ( t ) } , { q Ì i ( t ) } ) ] = â« t 0 t 1 d t â k = 1 K ( â L â q k ÎŽ q k + â L â q Ì k ÎŽ q Ì k ( t ) ) = â k = 1 K â« t 0 t 1 d t ( â L â q k ÎŽ q k + â L â q Ì k ÎŽ q Ì k ( t ) ) = â k = 1 K [ â L â q Ì k q k ( t ) | t 0 t 1 + â« t 0 t 1 d t ÎŽ q k ( t ) ( â L â q k â d d t â L â q Ì k ) ] = â k = 1 K â« t 0 t 1 d t ÎŽ q k ( t ) ( â L â q k â d d t â L â q Ì k ) = 0 {\\displaystyle {\\begin{aligned}\\delta S&=S(\\{q_{i}(t)+\\delta q_{i}(t)\\},\\{{\\dot {q}}_{i}(t)+\\delta {\\dot {q}}_{i}(t)\\})-S(\\{q_{i}\\},\\{{\\dot {q}}_{i}\\})\\\\&=\\int _{t_{0}}^{t_{1}}dt\\,L(\\{q_{i}(t)+\\delta q_{i}(t)\\},\\{{\\dot {q}}_{i}(t)+\\delta {\\dot {q}}_{i}(t)\\})-\\int _{t_{0}}^{t_{1}}dt\\,L(\\{q_{i}(t)\\},\\{{\\dot {q}}_{i}(t)\\})\\\\&=\\int _{t_{0}}^{t_{1}}dt\\,[L(\\{q_{i}(t)+\\delta q_{i}(t)\\},\\{{\\dot {q}}_{i}(t)+\\delta {\\dot {q}}_{i}(t)\\})-L(\\{q_{i}(t)\\},\\{{\\dot {q}}_{i}(t)\\})]\\\\&=\\int _{t_{0}}^{t_{1}}dt\\sum _{k=1}^{K}\\left({\\frac {\\partial L}{\\partial q_{k}}}\\delta q_{k}+{\\frac {\\partial L}{\\partial {\\dot {q}}_{k}}}\\delta {\\dot {q}}_{k}(t)\\right)\\\\&=\\sum _{k=1}^{K}\\int _{t_{0}}^{t_{1}}dt\\left({\\frac {\\partial L}{\\partial q_{k}}}\\delta q_{k}+{\\frac {\\partial L}{\\partial {\\dot {q}}_{k}}}\\delta {\\dot {q}}_{k}(t)\\right)\\\\&=\\sum _{k=1}^{K}\\left[{\\frac {\\partial L}{\\partial {\\dot {q}}_{k}}}q_{k}(t)|_{t_{0}}^{t_{1}}+\\int _{t_{0}}^{t_{1}}dt\\delta q_{k}(t)\\left({\\frac {\\partial L}{\\partial q_{k}}}-{\\frac {d}{dt}}{\\frac {\\partial L}{\\partial {\\dot {q}}_{k}}}\\right)\\right]\\\\&=\\sum _{k=1}^{K}\\int _{t_{0}}^{t_{1}}dt\\delta q_{k}(t)\\left({\\frac {\\partial L}{\\partial q_{k}}}-{\\frac {d}{dt}}{\\frac {\\partial L}{\\partial {\\dot {q}}_{k}}}\\right)\\\\&=0\\end{aligned}}}",
"title": "å€åæ³"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ããã§ã ÎŽ q k ( t ) {\\displaystyle \\delta q_{k}(t)} ã¯ä»»æã§ããã®ã§ããªã€ã©ãŒ=ã©ã°ã©ã³ãžã¥æ¹çšåŒ",
"title": "å€åæ³"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "d d t â L â q Ì k â â L â q k = 0 {\\displaystyle {\\frac {d}{dt}}{\\frac {\\partial L}{\\partial {\\dot {q}}_{k}}}-{\\frac {\\partial L}{\\partial q_{k}}}=0}",
"title": "å€åæ³"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãåŸãã",
"title": "å€åæ³"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ããŠãå€åæ³ãå©çšããããã€ãã®ç°¡åãªäŸã玹ä»ãããã",
"title": "å€åæ³"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "æ°Žå¹³ãª2ç¹ãããã®2ç¹éè·é¢ã ãããããé·ãã®ãã¢ã§çµãã å Žåãåœç¶ãããŒãã¯ããããã ãã®ããã«ãããŒããªã©ãåãããæã«ã§ããæ²ç·ã®ããšãæžåç·(ãããããã)ãšããã",
"title": "å€åæ³"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "èšç®äŸã®ããã«ãå°é¢æ°yâã§å埮åãããšããæäœãå¿
èŠã«ãªãã",
"title": "å€åæ³"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãå€åããšããèããçšããŠãéåæ¹çšåŒã®å®çŸ©ãæ°åŒã§æžãäºãããã®èšäºã§ã¯èããã以äžãååŠã«ãããå€åã®èšç®æ¹æ³ã説æããŠããã",
"title": "ã©ã°ã©ã³ãžã¢ã³ãšæå°äœçšã®åç"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ã§ã¯ãå€åãçšããŠãã¥ãŒãã³æ¹çšåŒãæžãæããããšãèããããŸãå€å
žååŠã§ã®ãã¥ãŒãã³æ¹çšåŒã¯",
"title": "ã©ã°ã©ã³ãžã¢ã³ãšæå°äœçšã®åç"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ã®åœ¢ã§æžãããã",
"title": "ã©ã°ã©ã³ãžã¢ã³ãšæå°äœçšã®åç"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "å€åãããããã«ã©ã°ã©ã³ãžã¢ã³ãšããéãå°å
¥ããããŸã ãã©ã°ã©ã³ãžã¢ã³ã®å
·äœçãªåœ¢ã¯åãããªããã©ããã質ç¹ãªã©ã®åº§æšäœçœ®ã q {\\displaystyle q} ãšããŠããã®äœçœ®ã®æé埮å(ã€ãŸãé床)ã q Ì {\\displaystyle {\\dot {q}}} ãšããã°ã",
"title": "ã©ã°ã©ã³ãžã¢ã³ãšæå°äœçšã®åç"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ãšãã圢ã«ãªãäºãåãã£ãŠãããå é床 q Ì {\\displaystyle {\\ddot {q}}} ã¯èããªããŠè¯ãäºãåãã£ãŠããããã倩äžãçã ãã q Ì {\\displaystyle {\\dot {q}}} ãéåéãšããã®ä¿æ°åã«çžåœããããã§ãããéåéã¯ãéåããŠãã質ç¹ãªã©ã®ä¿åéã§ããããã£ãœããå é床ã¯ãéåããŠãã質ç¹ã®ä¿åéã§ã¯ãªãããã§ããã(ãªããã©ã°ã©ã³ãžã¢ã³Lã¯ã¹ã«ã©ãŒé(ãã¯ãã«ã§ãªãæ°)ã§ããã)",
"title": "ã©ã°ã©ã³ãžã¢ã³ãšæå°äœçšã®åç"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ã©ã°ã©ã³ãžã¢ã³ãããæéã®ç¯å²ã§ç©åãããã®ãã",
"title": "ã©ã°ã©ã³ãžã¢ã³ãšæå°äœçšã®åç"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ãšæžããäœçšãšåŒã¶ãããã§éåæ¹çšåŒãåŸãããã®åçãšããŠã\"éåæ¹çšåŒã¯ãå°ãã ã q , q Ì {\\displaystyle q,{\\dot {q}}} ãå€åããããšããŠããäœçšãå€åããªããããªå€ãåºã q , q Ì {\\displaystyle q,{\\dot {q}}} ã®é¢ä¿ã«ãã£ãŠäžããããã\"ãšããããšãèŠæ±ããã",
"title": "ã©ã°ã©ã³ãžã¢ã³ãšæå°äœçšã®åç"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ãã®ãšãã q , q Ì {\\displaystyle q,{\\dot {q}}} ãå€åããããšãã®å®éã®äœçšã®å€å ÎŽS ãèšç®ãããš(ÎŽã¯ãã«ã¿ãšèªã)ã",
"title": "ã©ã°ã©ã³ãžã¢ã³ãšæå°äœçšã®åç"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "垞埮å颿° q Ì {\\displaystyle {\\dot {q}}} ã§å埮åããããšã®æ°åŠçæ£åœæ§ãçè§£ãã¥ãããããããªãããã²ãšãŸããããèšç®ããŠãããããã詳现ã¯åŸè¿°ããã ããã§ã2è¡ç®ãã3è¡ç®ã§ã¯ãéšåç©åã«ãã£ãŠ",
"title": "ã©ã°ã©ã³ãžã¢ã³ãšæå°äœçšã®åç"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ãšãããå³èŸºã§éšåç©åã§åºãŠããé
ãæ¶ãããã«ã\" q , q Ì {\\displaystyle q,{\\dot {q}}} ã¯ç©åç¯å²ã®äž¡ç«¯ã§ãã t = ti , tf ã§ã¯å€åããªã\"ãšããèŠè«ãå ããã",
"title": "ã©ã°ã©ã³ãžã¢ã³ãšæå°äœçšã®åç"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "æå°äœçšã®åçã«ãããšããã®ãšãã«ÎŽS = 0 ã§ãªããŠã¯ãªããªããÎŽq ã®å€ã«é¢ãããÎŽS = 0 ãæãç«ã€ããã«ã¯ã",
"title": "ã©ã°ã©ã³ãžã¢ã³ãšæå°äœçšã®åç"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ãæãç«ã€å¿
èŠãããããã£ãŠããã®åŒãéåæ¹çšåŒãšãªãã",
"title": "ã©ã°ã©ã³ãžã¢ã³ãšæå°äœçšã®åç"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ç¹ã«q ãéåžžã®åº§æšx ã§ããæã®ããšãèãããããã§ã",
"title": "ã©ã°ã©ã³ãžã¢ã³ãšæå°äœçšã®åç"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ãšãããšãåŒ(1)ã¯ã",
"title": "ã©ã°ã©ã³ãžã¢ã³ãšæå°äœçšã®åç"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ãšãªããéåžžã®èªç±ãªç²åã®éåæ¹çšåŒã«äžèŽãããããã§ã",
"title": "ã©ã°ã©ã³ãžã¢ã³ãšæå°äœçšã®åç"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ã¯ç²åã®éåãšãã«ã®ãŒã§ããã",
"title": "ã©ã°ã©ã³ãžã¢ã³ãšæå°äœçšã®åç"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ãŸããä¿ååã®äžã§ãç¹ã«ç©äœã®é床ã«ãããªãåãåããŠéåããŠããç²åã«å¯ŸããŠã¯ããã®åã«ãã£ãŠåŸãããäœçœ®ãšãã«ã®ãŒãV (q ) ãç©äœã®éåãšãã«ã®ãŒãT ãšè¡šããšãã",
"title": "ã©ã°ã©ã³ãžã¢ã³ãšæå°äœçšã®åç"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ãšãããšãåŒ(1)ã¯ã",
"title": "ã©ã°ã©ã³ãžã¢ã³ãšæå°äœçšã®åç"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ãšãªãããå³èŸºã¯ä¿ååã«å¯Ÿããåã衚ããã®ã§ãã®ãšãã®ã©ã°ã©ã³ãžã¢ã³ã¯",
"title": "ã©ã°ã©ã³ãžã¢ã³ãšæå°äœçšã®åç"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ã§äžããããããšãåããã",
"title": "ã©ã°ã©ã³ãžã¢ã³ãšæå°äœçšã®åç"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ãŸããèªç±ãªè§éåéã«å¯Ÿããã©ã°ã©ã³ãžã¢ã³ã¯",
"title": "ã©ã°ã©ã³ãžã¢ã³ãšæå°äœçšã®åç"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "ã«ãã£ãŠäžããããããã¯åäœã®è§éåéãæã€(æ
£æ§ã¢ãŒã¡ã³ãã¯åäœä»¥å€æã€ããšãåºæ¥ãªãããšã«æ³šæ)ãšãã«ã®ãŒã衚ããã",
"title": "ã©ã°ã©ã³ãžã¢ã³ãšæå°äœçšã®åç"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "",
"title": "ã©ã°ã©ã³ãžã¢ã³ãšæå°äœçšã®åç"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "ã©ã°ã©ã³ãžã¢ã³ã¯ãåã«ã髿 ¡ç©çã§ãç¿ããããªéåæ¹çšåŒã®å®çŸ©ããå€åãšããæ°åŠçææ³ã«ããšã¥ããŠãèšãæãããã®ã§ããã",
"title": "ã©ã°ã©ã³ãžã¢ã³ãšæå°äœçšã®åç"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "ã©ã°ã©ã³ãžã¢ã³ã¯ãç©çåŠã«ãããŠå
¬åŒãå°ãããã®ãç©çã®(ã»ãŒå
šãŠã®åéã§ã®)å
±éã®æéã§ããã",
"title": "ã©ã°ã©ã³ãžã¢ã³ãšæå°äœçšã®åç"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "ãšããã§ãè§éåéã«é¢ããæ¹çšåŒã¯",
"title": "äžè¬å座æš"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "ãšæžããã(I ã¯æ
£æ§ã¢ãŒã¡ã³ãã Ï â {\\displaystyle {\\vec {\\omega }}} ã¯è§é床ã N â {\\displaystyle {\\vec {N}}} ã¯ç©äœã«åãåã®ã¢ãŒã¡ã³ã)ã",
"title": "äžè¬å座æš"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "è§éåéã®åŒã¯ããã¥ãŒãã³æ¹çšåŒã«äŒŒãŠããã",
"title": "äžè¬å座æš"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "ãã¥ãŒãã³æ¹çšåŒ",
"title": "äžè¬å座æš"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "ã©ã°ã©ã³ãžã¢ã³ã¯ããã®ãããªéåæ³åãçµ±äžçã«èšè¿°ã§ããã",
"title": "äžè¬å座æš"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "çµ±äžçã«èšè¿°ã§ãããšãããå Žåã«ã¯éœåãè¯ãããã®ãããªåº§æšã®èšè¿°æ¹æ³ã®çµ±äžåã®ç®çã§ãããã©ã°ã©ã³ãžã¢ã³ãåŸè¿°ã®ããã«ããã¢ã³ãå©çšãããäºãããã",
"title": "äžè¬å座æš"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ã©ã°ã©ã³ãžã¢ã³ãçšãããšããéåép ã¯",
"title": "éåéãããã«ããã¢ã³ã®å®çŸ©"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "ãšå®çŸ©ããããå®éãèªç±ãªç²åã«å¯ŸããŠã¯ã",
"title": "éåéãããã«ããã¢ã³ã®å®çŸ©"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "ãåŸãããæ£ããããšãåãããé床ã«äŸåããåãèããå Žåãp ã¯å¿
ãããäžè¬çãªéåéãšäžèŽããªãã",
"title": "éåéãããã«ããã¢ã³ã®å®çŸ©"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "ãã®ãšããããã§å®çŸ©ããéåéãäžè¬åãããéåéãšåŒãã§éåžžã®éåéãšåºå¥ããã",
"title": "éåéãããã«ããã¢ã³ã®å®çŸ©"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "次ã«ããšãã«ã®ãŒã®èšè¿°ãäžè¬åããããšãèãããããããã説æããããã«ããã¢ã³ H ãããšãã«ã®ãŒãäžè¬åãããã®ã«çžåœããã",
"title": "éåéãããã«ããã¢ã³ã®å®çŸ©"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "L 㯠q , q Ì {\\displaystyle q,{\\dot {q}}} ã倿°ãšããŠçšããéã§ããããããããããããq , p ã倿°ãšããŠçšããæ¹ã䟿å©ãªããšãããããã®ãããªéã p , q Ì {\\displaystyle p,{\\dot {q}}} ã®éã®ã«ãžã£ã³ãã«å€æã«ãã£ãŠäœãããšãåºæ¥ãããããããã«ããã¢ã³H ãšåŒã³ã",
"title": "éåéãããã«ããã¢ã³ã®å®çŸ©"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "ã§å®çŸ©ãããç¹ã« L = T ( q Ì ) â V ( q ) {\\displaystyle L=T({\\dot {q}})-V(q)} ãæºããå Žåã",
"title": "éåéãããã«ããã¢ã³ã®å®çŸ©"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "ãåŸãããH ã¯ç³»ã®å
šãšãã«ã®ãŒãšäžèŽããããã®çµæã¯ãšãã«ã®ãŒä¿ååã®å°åºã«çšããããã",
"title": "éåéãããã«ããã¢ã³ã®å®çŸ©"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "ããã«ããã¢ã³ H ( { q i } , { p i } ) = T + V {\\displaystyle H(\\{q_{i}\\},\\{p_{i}\\})\\,=T+V} ã«ãããŠ",
"title": "æ£æºæ¹çšåŒ"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "ãæãç«ã€ããããæ£æºæ¹çšåŒãšããã",
"title": "æ£æºæ¹çšåŒ"
}
] | null | {{Pathnav|ã¡ã€ã³ããŒãž|èªç¶ç§åŠ|ç©çåŠ|è§£æååŠ|frame=1}}
== å€åæ³ ==
ãã颿° <math>L(q_1,q_2,\cdots,q_K,\dot q_1,\dot q_2,\cdots,\dot q_K)</math> ããããšãã«ã
<math>S = \int_{t_0}^{t_1} dt \, L(q_1(t),q_2(t),\cdots,q_K(t),\dot q_1(t),\dot q_2(t),\cdots,\dot q_K(t)) </math>
ãæå°ã«ãã <math>q_i(t) </math> ã¯ã©ã®ãããªãã®ã ãããã
ãŸãã¯ç°¡åãªäŸãšããŠã颿° <math>f(x) </math> ãæå°ã«ãã <math>x </math> ã«ã€ããŠèãããã<math>f(x) </math> ãæå°å€ãåããšãã<math>f'(x) = 0 </math> ãšãªãã®ã ã£ãã<math>f'(x) = 0 </math> ãšãªãããšã¯ã<math>x </math> ã埮å°é <math>\delta x </math> ã ãå€åããããšãã<math>f(x) </math> ã®å€åé <math>\delta f := f(x+\delta x) - f(x) </math> 㯠<math>\delta f = 0 </math> ã«ãªããšããããšã§ããã
ããããã®é¡æšã§ã<math>S(\{q_i\},\{\dot q_i\}) </math> ãæå°ã«ãã <math>\{q_i(t)\} </math> ã«ã€ããŠã<math>\{q_i(t)\} </math> ãå°ãã ãå€åãã㊠<math>\{q_i(t) + \delta q_i(t) \} </math> ïŒãã ããå¢çæ¡ä»¶ <math>\delta q_i(t_0) = \delta q_i(t_1) = 0 </math> ã課ãïŒãšãããšãã® <math>S </math> ã®å€åé <math>\delta S = S(\{q_i(t) + \delta q_i(t) \},\{\dot q_i(t) + \delta \dot q_i(t)\} ) - S(\{q_i\},\{\dot q_i\}) </math> 㯠<math>\delta S = 0 </math> ãšãªããšèããããšãåºæ¥ãã
<math>\begin{align} \delta S &= S(\{q_i(t) + \delta q_i(t) \},\{\dot q_i(t) + \delta \dot q_i(t)\} ) - S(\{q_i\},\{\dot q_i\})\\
&= \int_{t_0}^{t_1} dt \, L(\{q_i(t) + \delta q_i(t) \},\{\dot q_i(t) + \delta \dot q_i(t)\}) - \int_{t_0}^{t_1} dt \, L(\{q_i(t)\},\{\dot q_i(t)\}) \\
&= \int_{t_0}^{t_1} dt \, [L(\{q_i(t) + \delta q_i(t) \},\{\dot q_i(t) + \delta \dot q_i(t)\}) - L(\{q_i(t)\},\{\dot q_i(t)\})] \\
&= \int_{t_0}^{t_1} dt \sum_{k=1}^{K} \left(\frac{\partial L}{\partial q_k}\delta q_k + \frac{\partial L}{\partial \dot q_k}\delta \dot q_k(t)\right) \\
&= \sum_{k=1}^{K} \int_{t_0}^{t_1} dt \left(\frac{\partial L}{\partial q_k}\delta q_k + \frac{\partial L}{\partial \dot q_k}\delta \dot q_k(t)\right) \\
&= \sum_{k=1}^{K}\left[ \frac{\partial L}{\partial \dot q_k} q_k(t)|_{t_0}^{t_1} + \int_{t_0}^{t_1} dt \delta q_k(t)\left(\frac{\partial L}{\partial q_k}- \frac{d}{dt}\frac{\partial L}{\partial \dot q_k}\right)\right] \\
&= \sum_{k=1}^{K}\int_{t_0}^{t_1} dt \delta q_k(t)\left(\frac{\partial L}{\partial q_k}- \frac{d}{dt}\frac{\partial L}{\partial \dot q_k}\right) \\
&= 0
\end{align} </math>
ããã§ã <math>\delta q_k(t) </math> ã¯ä»»æã§ããã®ã§ããªã€ã©ãŒïŒã©ã°ã©ã³ãžã¥æ¹çšåŒ
<math>\frac{d}{dt}\frac{\partial L}{\partial \dot q_k} - \frac{\partial L}{\partial q_k} = 0 </math>
ãåŸãã
ããŠãå€åæ³ãå©çšããããã€ãã®ç°¡åãªäŸã玹ä»ãããã
=== çåšåé¡ ===
=== æžåç· ===
æ°Žå¹³ãª2ç¹ãããã®2ç¹éè·é¢ã ãããããé·ãã®ãã¢ã§çµãã å Žåãåœç¶ãããŒãã¯ããããã
ãã®ããã«ãããŒããªã©ãåãããæã«ã§ããæ²ç·ã®ããšãæžåç·ïŒããããããïŒãšããã
:ïŒâ»ãå³ã远å ããŠãã ãããïŒ
:ïŒâ»ãèšç®äŸãèšè¿°ããŠãã ããïŒ
èšç®äŸã®ããã«ãå°é¢æ°yâã§å埮åãããšããæäœãå¿
èŠã«ãªãã
=== æééäžç· ===
== ã©ã°ã©ã³ãžã¢ã³ãšæå°äœçšã®åç ==
ãå€åããšããèããçšããŠãéåæ¹çšåŒã®å®çŸ©ãæ°åŒã§æžãäºãããã®èšäºã§ã¯èããã以äžãååŠã«ãããå€åã®èšç®æ¹æ³ã説æããŠããã
===ã©ã°ã©ã³ãžã¢ã³===
ã§ã¯ãå€åãçšããŠãã¥ãŒãã³æ¹çšåŒãæžãæããããšãèããããŸãå€å
žååŠã§ã®ãã¥ãŒãã³æ¹çšåŒã¯
:<math>
m \ddot {\vec x} = \vec f
</math>
ã®åœ¢ã§æžãããã
å€åãããããã«'''ã©ã°ã©ã³ãžã¢ã³'''ãšããéãå°å
¥ããããŸã ãã©ã°ã©ã³ãžã¢ã³ã®å
·äœçãªåœ¢ã¯åãããªããã©ããã質ç¹ãªã©ã®åº§æšäœçœ®ã<math>q</math>ãšããŠããã®äœçœ®ã®æé埮åïŒã€ãŸãé床ïŒã<math>\dot q</math>ãšããã°ã
:<math>
L = L (q,\dot q)
</math>
ãšãã圢ã«ãªãäºãåãã£ãŠãããå é床<math>\ddot q</math>ã¯èããªããŠè¯ãäºãåãã£ãŠããããã倩äžãçã ãã<math>\dot q</math>ãéåéãšããã®ä¿æ°åã«çžåœããããã§ãããéåéã¯ãéåããŠãã質ç¹ãªã©ã®ä¿åéã§ããããã£ãœããå é床ã¯ãéåããŠãã質ç¹ã®ä¿åéã§ã¯ãªãããã§ãããïŒãªããã©ã°ã©ã³ãžã¢ã³Lã¯ã¹ã«ã©ãŒéïŒãã¯ãã«ã§ãªãæ°ïŒã§ãããïŒ
===æå°äœçšã®åç===
ã©ã°ã©ã³ãžã¢ã³ãããæéã®ç¯å²ã§ç©åãããã®ãã
:<math>
S= \int dt L
</math>
ãšæžãã'''äœçš'''ãšåŒã¶ãããã§éåæ¹çšåŒãåŸãããã®åçãšããŠã"éåæ¹çšåŒã¯ãå°ãã ã <math>q,\dot q</math> ãå€åããããšããŠããäœçšãå€åããªããããªå€ãåºã <math>q,\dot q</math> ã®é¢ä¿ã«ãã£ãŠäžããããã"ãšããããšãèŠæ±ããã
ãã®ãšãã<math>q, \dot q</math> ãå€åããããšãã®å®éã®äœçšã®å€å ÎŽS ãèšç®ãããšïŒÎŽã¯ãã«ã¿ãšèªãïŒã
:<math>
\begin{align}
\delta S &= \int dt \delta L\\
&= \int dt \frac {\partial L}{\partial q } \delta q+ \frac {\partial L}{\partial {\dot q} } \delta \dot q\\
&= \int dt \frac {\partial L}{\partial q } \delta q- \frac {\partial {}}{\partial t }\frac {\partial L}{\partial {\dot q} } \delta q\\
&= \int dt (\frac {\partial L}{\partial q } - \frac {\partial {}}{\partial t }\frac {\partial L}{\partial {\dot q} }) \delta q\\
\end{align}
</math>
垞埮å颿°<math>\dot q</math>ã§å埮åããããšã®æ°åŠçæ£åœæ§ãçè§£ãã¥ãããããããªãããã²ãšãŸããããèšç®ããŠãããããã詳现ã¯åŸè¿°ããã
ããã§ã2è¡ç®ãã3è¡ç®ã§ã¯ã<!-- magic variables !! -->éšåç©åã«ãã£ãŠ
:<math>
\begin{align}
\int \delta\dot q f(q) &= [\delta q f(q) ] _{t _i}^{t _f}- \int \delta q \frac {\partial {}}{\partial t } f(q)\\
&= - \int \delta q \frac {\partial {}}{\partial t } f(q)
\end{align}
</math>
ãšãããå³èŸºã§éšåç©åã§åºãŠããé
ãæ¶ãããã«ã"<math>q,\dot q</math> ã¯ç©åç¯å²ã®äž¡ç«¯ã§ãã ''t'' = ''t<sub>i</sub>'' , ''t<sub>f</sub>'' ã§ã¯å€åããªã"ãšããèŠè«ãå ãã<ref group="泚">ãã®èŠè«ãå€ããšå¥ã®å€ãåºãŠæ¥ãŠãããå Žåã«ã¯äŸ¿å©ã«ãªãããã§ããã<!-- 詳ããç¥ã£ãŠãã人ã§wikibooksã«æžãããšãã人ã¯ããã ãããã --><!-- é£ããåé¡ã ...ã --></ref>ã
æå°äœçšã®åçã«ãããšããã®ãšãã«δ''S'' = 0 ã§ãªããŠã¯ãªããªããδ''q'' ã®å€ã«é¢ãããδ''S'' = 0 ãæãç«ã€ããã«ã¯ã
:<math>
\frac {\partial L}{\partial q } - \frac {\partial {}}{\partial t }\frac {\partial L}{\partial {\dot q} }= 0 \qquad (1)
</math>
ãæãç«ã€å¿
èŠãããããã£ãŠããã®åŒãéåæ¹çšåŒãšãªãã
ç¹ã«''q'' ãéåžžã®åº§æš''x'' ã§ããæã®ããšãèãããããã§ã
:<math>
L = \frac 1 2 m \dot x^2
</math>
ãšãããšãåŒ(1)ã¯ã
:<math>
m \ddot x = 0
</math>
ãšãªããéåžžã®èªç±ãªç²åã®éåæ¹çšåŒã«äžèŽãããããã§ã
:<math>
\frac 1 2 m \dot x^2
</math>
ã¯ç²åã®éåãšãã«ã®ãŒã§ããã
ãŸããä¿ååã®äžã§ãç¹ã«ç©äœã®é床ã«ãããªãåãåããŠéåããŠããç²åã«å¯ŸããŠã¯ããã®åã«ãã£ãŠåŸãããäœçœ®ãšãã«ã®ãŒã''V'' (''q'' ) ãç©äœã®éåãšãã«ã®ãŒã''T'' ãšè¡šããšãã
:<math>
L = T(\dot q) - V(q)
</math>
ãšãããšãåŒ(1)ã¯ã
:<math>
m \ddot q = - \frac {\partial V}{\partial q }
</math>
ãšãªãããå³èŸºã¯ä¿ååã«å¯Ÿããåã衚ããã®ã§ãã®ãšãã®ã©ã°ã©ã³ãžã¢ã³ã¯
:<math>
L = T(\dot q) - V(q)
</math>
ã§äžããããããšãåããã
ãŸããèªç±ãªè§éåéã«å¯Ÿããã©ã°ã©ã³ãžã¢ã³ã¯
:<math>
L = \frac 1 2 I \omega^2
</math>
ã«ãã£ãŠäžããããããã¯åäœã®è§éåéãæã€ïŒæ
£æ§ã¢ãŒã¡ã³ãã¯åäœä»¥å€æã€ããšãåºæ¥ãªãããšã«æ³šæïŒãšãã«ã®ãŒã衚ããã
<!-- é»ç£æ°å㯠ç©äœã®é床ã«äŸåããåã§ããããã©ãã -->
<!-- ᅵe -->
<!-- L = T(\dot q) - V(q,\dot q) -->
<!-- \ee -->
<!-- ãšãªãããšã®èª¬æã ã©ãã ã£ãã... -->
ã©ã°ã©ã³ãžã¢ã³ã¯ãåã«ã髿 ¡ç©çã§ãç¿ããããªéåæ¹çšåŒã®å®çŸ©ããå€åãšããæ°åŠçææ³ã«ããšã¥ããŠãèšãæãããã®ã§ããã
ã©ã°ã©ã³ãžã¢ã³ã¯ãç©çåŠã«ãããŠå
¬åŒãå°ãããã®ãç©çã®ïŒã»ãŒå
šãŠã®åéã§ã®ïŒå
±éã®æéã§ããã
== äžè¬ååº§æš ==
ãšããã§ãè§éåéã«é¢ããæ¹çšåŒã¯
:<math>
I \vec \omega = \vec N
</math>
ãšæžãããïŒ''I'' ã¯æ
£æ§ã¢ãŒã¡ã³ãã<math>\vec \omega </math> ã¯è§é床ã<math>\vec N </math> ã¯ç©äœã«åãåã®ã¢ãŒã¡ã³ãïŒã
è§éåéã®åŒã¯ããã¥ãŒãã³æ¹çšåŒã«äŒŒãŠããã
ãã¥ãŒãã³æ¹çšåŒ
:<math>
m \ddot {\vec x} = \vec f
</math>ãšè¯ã䌌ã圢ã§ããã
ã©ã°ã©ã³ãžã¢ã³ã¯ããã®ãããªéåæ³åãçµ±äžçã«èšè¿°ã§ããã
çµ±äžçã«èšè¿°ã§ãããšãããå Žåã«ã¯éœåãè¯ãããã®ãããªåº§æšã®èšè¿°æ¹æ³ã®çµ±äžåã®ç®çã§ãããã©ã°ã©ã³ãžã¢ã³ãåŸè¿°ã®ããã«ããã¢ã³ãå©çšãããäºãããã
==éåéãããã«ããã¢ã³ã®å®çŸ©==
ã©ã°ã©ã³ãžã¢ã³ãçšãããšããéåé''p'' ã¯
:<math>
p \equiv \frac {\partial L}{\partial {\dot q} }
</math>
ãšå®çŸ©ããããå®éãèªç±ãªç²åã«å¯ŸããŠã¯ã
:<math>
p = m \dot q
</math>
ãåŸãããæ£ããããšãåãããé床ã«äŸåããåãèããå Žåã''p'' ã¯å¿
ãããäžè¬çãªéåéãšäžèŽããªãã
ãã®ãšããããã§å®çŸ©ããéåéãäžè¬åãããéåéãšåŒãã§éåžžã®éåéãšåºå¥ããã
次ã«ããšãã«ã®ãŒã®èšè¿°ãäžè¬åããããšãèãããããããã説æããããã«ããã¢ã³ H ãããšãã«ã®ãŒãäžè¬åãããã®ã«çžåœããã
<!-- ãŸããéåéãçšããŠ<math>\dot q</math>ãæ¶ãå»ã£ãéã -->''L'' ã¯<math>q,\dot q</math> ã倿°ãšããŠçšããéã§ãããããããããããã''q'' , ''p'' ã倿°ãšããŠçšããæ¹ã䟿å©ãªããšãããããã®ãããªéã<math>p,\dot q</math> ã®éã®ã«ãžã£ã³ãã«å€æã«ãã£ãŠäœãããšãåºæ¥ããããã'''ããã«ããã¢ã³'''''H'' ãšåŒã³ã
:<math>
H \equiv \dot q p -L
</math>
ã§å®çŸ©ãããç¹ã«<math>L=T(\dot q) - V(q)</math>ãæºããå Žåã
:<math>
H = T +V
</math>
ãåŸããã''H'' ã¯ç³»ã®å
šãšãã«ã®ãŒãšäžèŽããããã®çµæã¯ãšãã«ã®ãŒä¿ååã®å°åºã«çšããããã
==æ£æºæ¹çšåŒ==
ããã«ããã¢ã³<math> H(\{q_i\},\{p_i\}) \,= T + V</math>ã«ãããŠ
:<math> \dot{p}_i=-\frac{\partial{}H}{\partial{}q_i} </math>
:<math> \dot{q}_i=\frac{\partial{}H}{\partial{}p_i} </math>
ãæãç«ã€ãããã'''æ£æºæ¹çšåŒ'''ãšããã
==ãã¢ãœã³æ¬åŒ§==
{{stub}}
==èæ³š==
<references group="泚" />
{{DEFAULTSORT:ãããããããã ãããšãã»ããŠãããã®ãã€ã¯ãã}}
[[Category:è§£æååŠ|* ãããšãã»ããŠãããã®ãã€ã¯ãã]] | 2005-05-30T04:02:47Z | 2024-03-15T21:42:12Z | [
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:Stub"
] | https://ja.wikibooks.org/wiki/%E8%A7%A3%E6%9E%90%E5%8A%9B%E5%AD%A6_%E9%81%8B%E5%8B%95%E6%96%B9%E7%A8%8B%E5%BC%8F%E3%81%AE%E4%B8%80%E8%88%AC%E5%8C%96 |
2,077 | è§£æååŠ ä¿ååã®å°åº | ã©ã°ã©ã³ãžã¢ã³ã¯ç©çç³»ã®å
šãŠã®æ
å ±ãæ
ã£ãŠããã®ã§ããããçšããŠæ§ã
ãªä¿ååã瀺ãããšãåºæ¥ããäŸãã°ããšãã«ã®ãŒä¿ååãšéåéä¿ååãäŸãšããŠæããããã
ãšãã«ã®ãŒã
ã§å®çŸ©ããããã®è¡šåŒãšããã«ããã¢ã³
ãèŠæ¯ã¹ããšãããã«ããã¢ã³ã¯ç³»ã®å
šãšãã«ã®ãŒã«å¯Ÿå¿ããããšãåãããéåéã®ä¿ååã¯ãã®ãšãã
ãšãªãããšãã«ã®ãŒãæéçã«ä¿åããããšãåãããããã§ã4ãã5è¡ç®ã«ç§»ããšãéåæ¹çšåŒ
ãçšãããå®éã«ã¯ããšãã«ã®ãŒã®ä¿ååã¯æéã®åç¹ãåããããšã«å¯ŸããŠç©çç³»ãå€åããªãããšã«ãã ã
éåéä¿ååã¯ç©çç³»å
šäœãå¹³è¡ç§»åããããšã«ãã£ãŠãç©çç³»ã®éåãå€åããªãããšã«ããããã®ããšã空éçäžæ§æ§ãšåŒã¶ããã®ãšãã©ã°ã©ã³ãžã¢ã³ã«å«ãŸããå
šãŠã®ããq ã«ã€ããŠ
ãšãªã倿ãã»ã©ãããŠãã©ã°ã©ã³ãžã¢ã³ã¯äžå€ã§ãªããŠã¯ãªããªãããã®ãšãã
ãåŸãããããã®ãšãÎŽL = 0 ãšãªãããšãšèŠããã¹ããšã
ãšãªããéåéãæéçã«ä¿åããããšãåããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ã©ã°ã©ã³ãžã¢ã³ã¯ç©çç³»ã®å
šãŠã®æ
å ±ãæ
ã£ãŠããã®ã§ããããçšããŠæ§ã
ãªä¿ååã瀺ãããšãåºæ¥ããäŸãã°ããšãã«ã®ãŒä¿ååãšéåéä¿ååãäŸãšããŠæããããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãšãã«ã®ãŒã",
"title": "ãšãã«ã®ãŒä¿ååã®å°åº"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ã§å®çŸ©ããããã®è¡šåŒãšããã«ããã¢ã³",
"title": "ãšãã«ã®ãŒä¿ååã®å°åº"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãèŠæ¯ã¹ããšãããã«ããã¢ã³ã¯ç³»ã®å
šãšãã«ã®ãŒã«å¯Ÿå¿ããããšãåãããéåéã®ä¿ååã¯ãã®ãšãã",
"title": "ãšãã«ã®ãŒä¿ååã®å°åº"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãšãªãããšãã«ã®ãŒãæéçã«ä¿åããããšãåãããããã§ã4ãã5è¡ç®ã«ç§»ããšãéåæ¹çšåŒ",
"title": "ãšãã«ã®ãŒä¿ååã®å°åº"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãçšãããå®éã«ã¯ããšãã«ã®ãŒã®ä¿ååã¯æéã®åç¹ãåããããšã«å¯ŸããŠç©çç³»ãå€åããªãããšã«ãã ã",
"title": "ãšãã«ã®ãŒä¿ååã®å°åº"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "éåéä¿ååã¯ç©çç³»å
šäœãå¹³è¡ç§»åããããšã«ãã£ãŠãç©çç³»ã®éåãå€åããªãããšã«ããããã®ããšã空éçäžæ§æ§ãšåŒã¶ããã®ãšãã©ã°ã©ã³ãžã¢ã³ã«å«ãŸããå
šãŠã®ããq ã«ã€ããŠ",
"title": "éåéä¿ååã®å°åº"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãšãªã倿ãã»ã©ãããŠãã©ã°ã©ã³ãžã¢ã³ã¯äžå€ã§ãªããŠã¯ãªããªãããã®ãšãã",
"title": "éåéä¿ååã®å°åº"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãåŸãããããã®ãšãÎŽL = 0 ãšãªãããšãšèŠããã¹ããšã",
"title": "éåéä¿ååã®å°åº"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãšãªããéåéãæéçã«ä¿åããããšãåããã",
"title": "éåéä¿ååã®å°åº"
}
] | ã©ã°ã©ã³ãžã¢ã³ã¯ç©çç³»ã®å
šãŠã®æ
å ±ãæ
ã£ãŠããã®ã§ããããçšããŠæ§ã
ãªä¿ååã瀺ãããšãåºæ¥ããäŸãã°ããšãã«ã®ãŒä¿ååãšéåéä¿ååãäŸãšããŠæããããã | {{pathnav|ã¡ã€ã³ããŒãž|èªç¶ç§åŠ|ç©çåŠ|è§£æååŠ|frame=1}}
ã©ã°ã©ã³ãžã¢ã³ã¯ç©çç³»ã®å
šãŠã®æ
å ±ãæ
ã£ãŠããã®ã§ããããçšããŠæ§ã
ãªä¿ååã瀺ãããšãåºæ¥ããäŸãã°ããšãã«ã®ãŒä¿ååãšéåéä¿ååãäŸãšããŠæããããã
==ãšãã«ã®ãŒä¿ååã®å°åº==
ãšãã«ã®ãŒã
:<math>
E \equiv p \dot q - L
</math>
ã§å®çŸ©ããããã®è¡šåŒãšããã«ããã¢ã³
:<math>
H = p \dot q - L
</math>
ãèŠæ¯ã¹ããšãããã«ããã¢ã³ã¯ç³»ã®å
šãšãã«ã®ãŒã«å¯Ÿå¿ããããšãåãããéåéã®ä¿ååã¯ãã®ãšãã
:<math>
\begin{align}
\frac {\partial E}{\partial t } &= \frac {\partial {}}{\partial t }(p\dot q - L )\\
&=\frac {\partial {}}{\partial t } \left(\frac {\partial {L}}{\partial {\dot q} } \dot q\right) - \frac {\partial L}{\partial t }\\
&=\frac {\partial p}{\partial t } \dot q + p \frac {\partial {\dot q}}{\partial t } - \frac {\partial L}{\partial t }\\
&=\left(\frac {\partial {}}{\partial t } \frac {\partial {L}}{\partial {\dot q} } \right)\dot q
+\frac {\partial {L}}{\partial {\dot q} } \ddot q
- \frac {\partial L}{\partial t }\\
&= \left(\frac {\partial {L}}{\partial {q} } \dot q\right) +\frac {\partial {L}}{\partial {\dot q} } \ddot q - \frac {\partial L}{\partial t }\\
&= \frac {\partial L}{\partial t }- \frac {\partial L}{\partial t }\\
&= 0
\end{align}
</math>
ãšãªãããšãã«ã®ãŒãæéçã«ä¿åããããšãåãããããã§ã4ãã5è¡ç®ã«ç§»ããšãéåæ¹çšåŒ
:<math>
\frac {\partial L}{\partial q } - \frac {\partial {}}{\partial t }\frac {\partial L}{\partial {\dot q} }= 0
</math>
ãçšãããå®éã«ã¯ããšãã«ã®ãŒã®ä¿ååã¯æéã®åç¹ãåããããšã«å¯ŸããŠç©çç³»ãå€åããªãããšã«ãã<!-- ããšã®å°åº (?) -->
ã
==éåéä¿ååã®å°åº==
éåéä¿ååã¯ç©çç³»å
šäœãå¹³è¡ç§»åããããšã«ãã£ãŠãç©çç³»ã®éåãå€åããªãããšã«ããããã®ããšã空éçäžæ§æ§ãšåŒã¶ããã®ãšãã©ã°ã©ã³ãžã¢ã³ã«å«ãŸããå
šãŠã®ãã''q'' ã«ã€ããŠ
:<math>
q\rightarrow q+a ,\; \dot q \rightarrow \dot q
</math>
ãšãªã倿ãã»ã©ãããŠãã©ã°ã©ã³ãžã¢ã³ã¯äžå€ã§ãªããŠã¯ãªããªãããã®ãšãã
:<math>
\begin{align}
\delta L &= \delta q \frac {\partial L}{\partial q } + \delta \dot q \frac {\partial L}{\partial {\dot q} }\\
&= a \frac {\partial L}{\partial q }\\
&= a \frac {\partial {}}{\partial t } \frac {\partial {L }}{\partial {\dot q} } \\
&= a \frac {\partial p}{\partial t }
\end{align}
</math>
ãåŸãããããã®ãšãδ''L'' = 0 ãšãªãããšãšèŠããã¹ããšã
:<math>
\frac {\partial p}{\partial t } = 0
</math>
ãšãªããéåéãæéçã«ä¿åããããšãåããã
{{DEFAULTSORT:ãããããããã ã»ãããã}}
[[Category:è§£æååŠ|* ã»ãããã]] | null | 2015-04-17T15:27:49Z | [
"ãã³ãã¬ãŒã:Pathnav"
] | https://ja.wikibooks.org/wiki/%E8%A7%A3%E6%9E%90%E5%8A%9B%E5%AD%A6_%E4%BF%9D%E5%AD%98%E5%89%87%E3%81%AE%E5%B0%8E%E5%87%BA |
2,079 | é«çåŠæ ¡å°åŠ | æ°èª²çš
æ§èª²çš
æã
ã®åšãã«ã¯å®ã«å€ãã®èªç¶ãååšããŠãããäžãèŠãã°å°é¢ãããããäžãèŠãã°ç©ºãå®å®ãããããã®ãããªèªç¶ã¯ãã©ã®ããã«æ§æãããŠããã? ã©ã®ããã«ããŠã§ããã®ã? å°åŠã¯ãã®ãããªèªç¶ãååŠãç©çãçç©ã®åéããç·åçã«ç ç©¶ããåŠåã§ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ°èª²çš",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "æ§èª²çš",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "æã
ã®åšãã«ã¯å®ã«å€ãã®èªç¶ãååšããŠãããäžãèŠãã°å°é¢ãããããäžãèŠãã°ç©ºãå®å®ãããããã®ãããªèªç¶ã¯ãã©ã®ããã«æ§æãããŠããã? ã©ã®ããã«ããŠã§ããã®ã? å°åŠã¯ãã®ãããªèªç¶ãååŠãç©çãçç©ã®åéããç·åçã«ç ç©¶ããåŠåã§ããã",
"title": "å°åŠãšã¯"
}
] | æ°èª²çš æ§èª²çš | {{Pathnav|é«çåŠæ ¡ã®åŠç¿|é«çåŠæ ¡çç§|frame=1}}
{{Pathnav|èªç¶ç§åŠ|å°çç§åŠ|frame=1}}
{{é²æç¶æ³}}
æ°èª²çš
:[[é«çåŠæ ¡ãå°åŠåºç€|å°åŠåºç€]] {{鲿|00%|2015-06-05}}
:[[é«çåŠæ ¡ å°åŠ|å°åŠ]] {{鲿|25%|2022-10-26}}
æ§èª²çš
:[[é«çåŠæ ¡çç§åºç€å°åŠåé|çç§åºç€ å°åŠåé]] {{鲿|25%|2015-06-05}}
:[[çç§ç·åB å°åŠåé]] {{鲿|25%|2015-06-05}}
:[[å°åŠI|å°åŠI]] 3åäœ {{鲿|25%|2015-06-05}}
:[[å°åŠII]] 3åäœ {{鲿|25%|2015-06-05}}
==å°åŠãšã¯==
æã
ã®åšãã«ã¯å®ã«å€ãã®èªç¶ãååšããŠãããäžãèŠãã°å°é¢ãããããäžãèŠãã°ç©ºãå®å®ãããããã®ãããªèªç¶ã¯ãã©ã®ããã«æ§æãããŠãããïŒãã©ã®ããã«ããŠã§ããã®ãïŒãå°åŠã¯ãã®ãããªèªç¶ãååŠãç©çãçç©ã®åéããç·åçã«ç ç©¶ããåŠåã§ããã
== åè ==
*[[åŠç¿æ¹æ³/髿 ¡å°åŠ]]
*[[å°åŠæ ¡ã»äžåŠæ ¡ã»é«çåŠæ ¡ã®åŠç¿/æ€å®æç§æžã®è³Œå
¥æ¹æ³|æ€å®æç§æžã®è³Œå
¥æ¹æ³]]
[[en:High School Earth Science]]
[[Category:é«çåŠæ ¡æè²|å°*ã¡ãã]]
[[Category:çç§æè²|é«ã¡ãã]]
[[Category:å°çç§åŠ|é«*ã¡ãã]]
[[category:髿 ¡çç§|ã¡ãã]] | null | 2022-10-29T01:43:51Z | [
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:é²æç¶æ³",
"ãã³ãã¬ãŒã:鲿"
] | https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E5%9C%B0%E5%AD%A6 |
2,080 | ææ©ååŠ/ãšã¹ãã« | -CO-O-(ãšã¹ãã«çµå)ãæã€ååç©ããšã¹ãã«ãšãã(ãã ãR2ã¯æ°ŽçŽ ååHãé€ã)ã
ããããã·åºåã³ã«ã«ããã·åºã®éã§ã®è±æ°Žçž®åã
R1 -COOH + R2 -OH â R1-COO-R2 + H2O | [
{
"paragraph_id": 0,
"tag": "p",
"text": "-CO-O-(ãšã¹ãã«çµå)ãæã€ååç©ããšã¹ãã«ãšãã(ãã ãR2ã¯æ°ŽçŽ ååHãé€ã)ã",
"title": "ãšã¹ãã«ã®å®çŸ©"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "",
"title": "ãšã¹ãã«ã®å®çŸ©"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ããããã·åºåã³ã«ã«ããã·åºã®éã§ã®è±æ°Žçž®åã",
"title": "åææ¹æ³"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "R1 -COOH + R2 -OH â R1-COO-R2 + H2O",
"title": "åææ¹æ³"
}
] | null | ==ãšã¹ãã«ã®å®çŸ©==
-CO-O-ïŒãšã¹ãã«çµåïŒãæã€ååç©ããšã¹ãã«ãšããïŒãã ãR2ã¯æ°ŽçŽ ååHãé€ãïŒã
O-R2
/
R1-C
\\
O
==åææ¹æ³==
ããããã·åºåã³ã«ã«ããã·åºã®éã§ã®è±æ°Žçž®åã
R<sub>1</sub> -CO'''OH''' + R<sub>2</sub> -O'''H''' â R<sub>1</sub>-COO-R<sub>2</sub> + H<sub>2</sub>O
[[ã«ããŽãª:ææ©ååŠ]] | null | 2022-11-23T05:33:00Z | [] | https://ja.wikibooks.org/wiki/%E6%9C%89%E6%A9%9F%E5%8C%96%E5%AD%A6/%E3%82%A8%E3%82%B9%E3%83%86%E3%83%AB |
2,081 | é«çåŠæ ¡çç§ | ãã®ããŒãžã¯ã髿 ¡çç§ã®æç§æžã®æ¬æ£ã§ããæç§ãçç§ãã¯ä»¥äžã®ç§ç®ããæ§æãããŠããŸãã
é«çåŠæ ¡ã§ã¯ãç§åŠãšäººéçæŽ»ããšåºç€ç³»ç§ç®1ç§ç®ãããã¯ãåºç€ç³»ç§ç®3ç§ç®ãå¿
ä¿®ãšãªã£ãŠããŸãã ãã ãããç§åŠãšäººéçæŽ»ãã¯å€§åŠå
¥åŠå
±éãã¹ãã§ã¯åºé¡ãããªãããæ³šæãå¿
èŠã§ãã
é«çåŠæ ¡ã§ã¯ãçç§åºç€ãããçç§ç·åAãããçç§ç·åBãã®ãã¡1ç§ç®ãå«ã2ç§ç®ãå¿
ä¿®ã«ãªã£ãŠããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ãã®ããŒãžã¯ã髿 ¡çç§ã®æç§æžã®æ¬æ£ã§ããæç§ãçç§ãã¯ä»¥äžã®ç§ç®ããæ§æãããŠããŸãã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "é«çåŠæ ¡ã§ã¯ãç§åŠãšäººéçæŽ»ããšåºç€ç³»ç§ç®1ç§ç®ãããã¯ãåºç€ç³»ç§ç®3ç§ç®ãå¿
ä¿®ãšãªã£ãŠããŸãã ãã ãããç§åŠãšäººéçæŽ»ãã¯å€§åŠå
¥åŠå
±éãã¹ãã§ã¯åºé¡ãããªãããæ³šæãå¿
èŠã§ãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "é«çåŠæ ¡ã§ã¯ãçç§åºç€ãããçç§ç·åAãããçç§ç·åBãã®ãã¡1ç§ç®ãå«ã2ç§ç®ãå¿
ä¿®ã«ãªã£ãŠããŸãã",
"title": "æ§èª²çš"
}
] | ãã®ããŒãžã¯ã髿 ¡çç§ã®æç§æžã®æ¬æ£ã§ããæç§ãçç§ãã¯ä»¥äžã®ç§ç®ããæ§æãããŠããŸãã é«çåŠæ ¡ã§ã¯ãç§åŠãšäººéçæŽ»ããšåºç€ç³»ç§ç®1ç§ç®ãããã¯ãåºç€ç³»ç§ç®3ç§ç®ãå¿
ä¿®ãšãªã£ãŠããŸãã
ãã ãããç§åŠãšäººéçæŽ»ãã¯å€§åŠå
¥åŠå
±éãã¹ãã§ã¯åºé¡ãããªãããæ³šæãå¿
èŠã§ãã | {{pathnav|é«çåŠæ ¡ã®åŠç¿|frame=1|small=1}}
ãã®ããŒãžã¯ã髿 ¡çç§ã®æç§æžã®æ¬æ£ã§ããæç§ãçç§ãã¯ä»¥äžã®ç§ç®ããæ§æãããŠããŸãã
é«çåŠæ ¡ã§ã¯ãç§åŠãšäººéçæŽ»ããšåºç€ç³»ç§ç®1ç§ç®ãããã¯ãåºç€ç³»ç§ç®3ç§ç®ãå¿
ä¿®ãšãªã£ãŠããŸãã
ãã ãããç§åŠãšäººéçæŽ»ãã¯å€§åŠå
¥åŠå
±éãã¹ãã§ã¯åºé¡ãããªãããæ³šæãå¿
èŠã§ãã
== ç©ç ==
*[[é«çåŠæ ¡ç©ç]]
:*[[é«çåŠæ ¡ ç©çåºç€|ç©çåºç€]] 2åäœ
:*[[é«çåŠæ ¡ ç©ç|ç©ç]] 4åäœ
== ååŠ ==
*[[é«çåŠæ ¡ååŠ]]
:*[[é«çåŠæ ¡çç§ ååŠåºç€|ååŠåºç€]] 2åäœ {{鲿|25%|2015-08-14}}
:*[[é«çåŠæ ¡ ååŠ|ååŠ]] 4åäœ
== çç© ==
*[[é«çåŠæ ¡çç©]]
:*[[é«çåŠæ ¡ çç©åºç€|çç©åºç€]] 2åäœ
:*[[é«çåŠæ ¡ çç©|çç©]] 4åäœ
== å°åŠ ==
*[[é«çåŠæ ¡å°åŠ]]
:*[[é«çåŠæ ¡ å°åŠåºç€|å°åŠåºç€]] 2åäœ
:*[[é«çåŠæ ¡ å°åŠ|å°åŠ]] 4åäœ
== ãã®ä»ã®ç§ç® ==
*[[é«çåŠæ ¡ ç§åŠãšäººéçæŽ»|ç§åŠãšäººéçæŽ»]]
* [[é«çåŠæ ¡ çæ°æ¢ç©¶åºç€|çæ°æ¢ç©¶åºç€]] 1åäœ{{鲿|00%|2023-02-04}}<br />
== æ§èª²çš ==
é«çåŠæ ¡ã§ã¯ãçç§åºç€ãããçç§ç·åAãããçç§ç·åBãã®ãã¡1ç§ç®ãå«ã2ç§ç®ãå¿
ä¿®ã«ãªã£ãŠããŸãã
* [[é«çåŠæ ¡çç§åºç€|çç§åºç€]] 2åäœ {{鲿|00%|2015-08-14}}
* [[é«çåŠæ ¡çç§ç·åA|çç§ç·åA]] 2åäœ {{鲿|00%|2015-08-14}}
* [[é«çåŠæ ¡çç§ç·åB|çç§ç·åB]] 2åäœ {{鲿|25%|2015-08-14}}
* [[é«çåŠæ ¡ç©ç]] 3åäœ {{鲿|25%|2015-08-14}}
:* [[é«çåŠæ ¡ç©ç/ç©çI|ç©çI]] 3åäœ {{鲿|25%|2015-08-14}}
:* [[é«çåŠæ ¡ç©ç/ç©çII|ç©çII]] 3åäœ {{鲿|25%|2015-08-14}}
* [[é«çåŠæ ¡ååŠ]] {{鲿|25%|2015-08-14}}
:* [[é«çåŠæ ¡ååŠI|ååŠI]] 3åäœ {{鲿|25%|2015-08-14}}
:* [[é«çåŠæ ¡ååŠII|ååŠII]] 3åäœ {{鲿|25%|2015-08-14}}
* [[é«çåŠæ ¡çç©]] {{鲿|50%|2015-08-14}}
:* [[é«çåŠæ ¡çç©/çç©I|çç©I]] 3åäœ {{鲿|50%|2015-08-14}}
:* [[é«çåŠæ ¡çç©/çç©II|çç©II]] 3åäœ {{鲿|50%|2015-08-14}}
* [[é«çåŠæ ¡å°åŠ]] {{鲿|25%|2015-08-14}}
:* [[å°åŠI]] 3åäœ {{鲿|25%|2015-08-14}}
:* [[å°åŠII]] 3åäœ {{鲿|25%|2015-08-14}}
[[Category:é«çåŠæ ¡æè²|ç*]]
[[Category:çç§æè²|é«*]]
[[category:髿 ¡çç§|*]] | 2005-06-01T07:25:16Z | 2023-10-29T06:12:51Z | [
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:鲿"
] | https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E7%90%86%E7%A7%91 |
2,082 | ç ç® | æ°åŠ>ç ç®
倧åŠã®æç§æž èªç¶ç§åŠ: æ°åŠ - ç©çåŠ; å€å
žååŠ éåååŠ - ååŠ; ç¡æ©ååŠ ææ©ååŠ - çç©åŠ; æ€ç©åŠ ç ç©¶æè¡ - å°çç§åŠ - å»åŠ; è§£ååŠ èªåŠ: æ¥æ¬èª è±èª ãšã¹ãã©ã³ã æé®®èª ãã³ããŒã¯èª ãã€ãèª ãã©ã³ã¹èª ã©ãã³èª ã«ãŒããã¢èª 人æç§åŠ: æŽå²åŠ; æ¥æ¬å² äžåœå² äžçå² æŽå²èг - å¿çåŠ - å²åŠ - èžè¡; 鳿¥œ çŸè¡ - æåŠ; å€å
žæåŠ æŒ¢è©© 瀟äŒç§åŠ: æ³åŠ - çµæžåŠ - å°çåŠ - æè²åŠ; åŠæ ¡æè² æè²å² æ
å ±æè¡: æ
å ±å·¥åŠ; MS-DOS/PC DOS UNIX/Linux TeX/LaTeX CGI - ããã°ã©ãã³ã°; BASIC Cèšèª C++ Dèšèª HTML Java JavaScript Lisp Mizar Perl PHP Python Ruby Scheme SVG å°ã»äžã»é«æ ¡ã®æç§æž å°åŠ: åœèª ç€ŸäŒ ç®æ° çç§ è±èª äžåŠ: åœèª ç€ŸäŒ æ°åŠ çç§ è±èª 髿 ¡: åœèª - å°æŽ - å
¬æ° - æ°åŠ; å
¬åŒé - çç§; ç©ç ååŠ å°åŠ çç© - å€åœèª - æ
å ± 解説æžã»å®çšæžã»åèæž è¶£å³: æçæ¬ - ã¹ããŒã - ã²ãŒã 詊éš: è³æ Œè©Šéš - å
¥åŠè©Šéš ãã®ä»ã®æ¬: é²çœ - çæŽ»ãšé²è·¯ - ãŠã£ãããã£ã¢ã®æžãæ¹ - ãžã§ãŒã¯é
æãé»åããªãã£ãæä»£ãèšç®ã«ã¯ããã°ããçšããããŠããŸããããã®æç§æžã§ã¯ãããã°ããçšããèšç®æ³ãç ç®ãã«ã€ããŠè§£èª¬ããŸãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ°åŠ>ç ç®",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "倧åŠã®æç§æž èªç¶ç§åŠ: æ°åŠ - ç©çåŠ; å€å
žååŠ éåååŠ - ååŠ; ç¡æ©ååŠ ææ©ååŠ - çç©åŠ; æ€ç©åŠ ç ç©¶æè¡ - å°çç§åŠ - å»åŠ; è§£ååŠ èªåŠ: æ¥æ¬èª è±èª ãšã¹ãã©ã³ã æé®®èª ãã³ããŒã¯èª ãã€ãèª ãã©ã³ã¹èª ã©ãã³èª ã«ãŒããã¢èª 人æç§åŠ: æŽå²åŠ; æ¥æ¬å² äžåœå² äžçå² æŽå²èг - å¿çåŠ - å²åŠ - èžè¡; 鳿¥œ çŸè¡ - æåŠ; å€å
žæåŠ æŒ¢è©© 瀟äŒç§åŠ: æ³åŠ - çµæžåŠ - å°çåŠ - æè²åŠ; åŠæ ¡æè² æè²å² æ
å ±æè¡: æ
å ±å·¥åŠ; MS-DOS/PC DOS UNIX/Linux TeX/LaTeX CGI - ããã°ã©ãã³ã°; BASIC Cèšèª C++ Dèšèª HTML Java JavaScript Lisp Mizar Perl PHP Python Ruby Scheme SVG å°ã»äžã»é«æ ¡ã®æç§æž å°åŠ: åœèª ç€ŸäŒ ç®æ° çç§ è±èª äžåŠ: åœèª ç€ŸäŒ æ°åŠ çç§ è±èª 髿 ¡: åœèª - å°æŽ - å
¬æ° - æ°åŠ; å
¬åŒé - çç§; ç©ç ååŠ å°åŠ çç© - å€åœèª - æ
å ± 解説æžã»å®çšæžã»åèæž è¶£å³: æçæ¬ - ã¹ããŒã - ã²ãŒã 詊éš: è³æ Œè©Šéš - å
¥åŠè©Šéš ãã®ä»ã®æ¬: é²çœ - çæŽ»ãšé²è·¯ - ãŠã£ãããã£ã¢ã®æžãæ¹ - ãžã§ãŒã¯é",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "æãé»åããªãã£ãæä»£ãèšç®ã«ã¯ããã°ããçšããããŠããŸããããã®æç§æžã§ã¯ãããã°ããçšããèšç®æ³ãç ç®ãã«ã€ããŠè§£èª¬ããŸãã",
"title": ""
}
] | æ°åŠïŒç ç® æãé»åããªãã£ãæä»£ãèšç®ã«ã¯ããã°ããçšããããŠããŸããããã®æç§æžã§ã¯ãããã°ããçšããèšç®æ³ãç ç®ãã«ã€ããŠè§£èª¬ããŸãã ç ç®_åºç€ç¥è (2005-06-01)
ç ç®_å æžç® (2005-06-02)
ç ç®_ä¹ç® (2005-06-05)
ç ç®_é€ç® (2005-06-05)
ç ç®_èŠåç®ã»èªäžç®ã»äŒç¥šç® (2005-06-05)
ç ç®_éå¹³ã»éç«
ç ç®_æŒç¿ | [[æ°åŠ]]ïŒç ç®
{{é²æç¶æ³}}
{{èµæžäžèЧ}}
æãé»åããªãã£ãæä»£ãèšç®ã«ã¯ããã°ããçšããããŠããŸããããã®æç§æžã§ã¯ãããã°ããçšããèšç®æ³ãç ç®ãã«ã€ããŠè§£èª¬ããŸãã
*[[ç ç®_åºç€ç¥è]]{{鲿|75%|2005-06-01}}
*[[ç ç®_å æžç®]]{{鲿|75%|2005-06-02}}
*[[ç ç®_ä¹ç®]]{{鲿|75%|2005-06-05}}
*[[ç ç®_é€ç®]]{{鲿|75%|2005-06-05}}
*[[ç ç®_èŠåç®ã»èªäžç®ã»äŒç¥šç®]]{{鲿|25%|2005-06-05}}
*[[ç ç®_éå¹³ã»éç«]]
*[[ç ç®_æŒç¿]]
==é¢ä¿å
ãªã³ã¯==
*[http://www.syuzan.net/ æ¥æ¬ç ç®é£ç]
*[http://www.soroban.or.jp/ å
šåœç ç®æè²é£ç]
*[http://shuzan-gakko.com/ å
šåœç ç®åŠæ ¡é£ç]
[[Category:æžåº«|ãããã]]
[[Category:ç ç®|*]] | null | 2006-12-12T15:30:26Z | [
"ãã³ãã¬ãŒã:é²æç¶æ³",
"ãã³ãã¬ãŒã:èµæžäžèЧ"
] | https://ja.wikibooks.org/wiki/%E7%8F%A0%E7%AE%97 |
2,083 | ç ç® åºç€ç¥è | æ°åŠ>ç ç®>åºç€ç¥è
ç®ç€(ããã°ã)ã«ã¯ã1ã€ã®è»žã«çã5(=1+4)åãã4çç®ç€ãšã6(=1+5)åãã5çç®ç€ãããã äžè¬çã«ã¯4çç®ç€ã䜿ãããã5çç®ç€ã¯60鲿³ã®èšç®(äŸãã°æéãªã©)ãããã®ã«äŸ¿å©ã§ããã 以äžå
šãŠã4çç®ç€ã§èª¬æããã
çã1åã®æ¹ãäžã§ããã
ç®ç€ã«ã¯ã3æ¡ããšã«ç¹ãæ¯ã£ãŠãããæ®éãç¹ã®çäžã«äžã®äœããšããããããå·Šã«åã®äœãçŸã®äœ...ãšç¶ãã ç¹ã¯èªåã®äœ¿ãããããšããã§ããŸããªãããããŸãã«å·Šããããšèšç®ã§ããªããªãããšãããã®ã§æ³šæãããã
ç®ç€ã䜿ãåã«ãå
šãŠã®æ¡ã0ã«ãªã»ããããäœæ¥ãå¿
èŠã§ãããé»åã§èšãã°ãCãã§ããã
ããã§äžã®å³ã®ãããªç¶æ
ã«ãªã£ãŠããã¯ãã§ããã
ããŠã1ãã9ãŸã§ã®æ°ãå
¥ããŠã¿ãããå·Šæã§ç®ç€ãæã¡ã峿ã®èŠªæã§äžã®çãã人差ãæã§äžã®å
šãŠã®çãæ±ãã
äžäžã«äœæ¡ã«ãªã£ãŠãåãã§ãããäŸãã°ã1013.25ãªã
ã§ããã
次ã¯è¶³ãç®ãåŒãç®ããã£ãŠã¿ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ°åŠ>ç ç®>åºç€ç¥è",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ç®ç€(ããã°ã)ã«ã¯ã1ã€ã®è»žã«çã5(=1+4)åãã4çç®ç€ãšã6(=1+5)åãã5çç®ç€ãããã äžè¬çã«ã¯4çç®ç€ã䜿ãããã5çç®ç€ã¯60鲿³ã®èšç®(äŸãã°æéãªã©)ãããã®ã«äŸ¿å©ã§ããã 以äžå
šãŠã4çç®ç€ã§èª¬æããã",
"title": "ç®ç€ã®åºç€ç¥è"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "çã1åã®æ¹ãäžã§ããã",
"title": "æ°ã®å
¥ãæ¹"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ç®ç€ã«ã¯ã3æ¡ããšã«ç¹ãæ¯ã£ãŠãããæ®éãç¹ã®çäžã«äžã®äœããšããããããå·Šã«åã®äœãçŸã®äœ...ãšç¶ãã ç¹ã¯èªåã®äœ¿ãããããšããã§ããŸããªãããããŸãã«å·Šããããšèšç®ã§ããªããªãããšãããã®ã§æ³šæãããã",
"title": "æ°ã®å
¥ãæ¹"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ç®ç€ã䜿ãåã«ãå
šãŠã®æ¡ã0ã«ãªã»ããããäœæ¥ãå¿
èŠã§ãããé»åã§èšãã°ãCãã§ããã",
"title": "æ°ã®å
¥ãæ¹"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ããã§äžã®å³ã®ãããªç¶æ
ã«ãªã£ãŠããã¯ãã§ããã",
"title": "æ°ã®å
¥ãæ¹"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ããŠã1ãã9ãŸã§ã®æ°ãå
¥ããŠã¿ãããå·Šæã§ç®ç€ãæã¡ã峿ã®èŠªæã§äžã®çãã人差ãæã§äžã®å
šãŠã®çãæ±ãã",
"title": "æ°ã®å
¥ãæ¹"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "äžäžã«äœæ¡ã«ãªã£ãŠãåãã§ãããäŸãã°ã1013.25ãªã",
"title": "æ°ã®å
¥ãæ¹"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ã§ããã",
"title": "æ°ã®å
¥ãæ¹"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "次ã¯è¶³ãç®ãåŒãç®ããã£ãŠã¿ããã",
"title": "æ°ã®å
¥ãæ¹"
}
] | æ°åŠïŒç ç®ïŒåºç€ç¥è | [[æ°åŠ]]ïŒ[[ç ç®]]ïŒåºç€ç¥è
==ç®ç€ã®åºç€ç¥è==
ç®ç€(ããã°ã)ã«ã¯ã1ã€ã®è»žã«çã5(ïŒ1+4)åãã4çç®ç€ãšã6(ïŒ1+5)åãã5çç®ç€ãããã
äžè¬çã«ã¯4çç®ç€ã䜿ãããã5çç®ç€ã¯60鲿³ã®èšç®(äŸãã°æéãªã©)ãããã®ã«äŸ¿å©ã§ããã
以äžå
šãŠã4çç®ç€ã§èª¬æããã
==æ°ã®å
¥ãæ¹==
çã1åã®æ¹ãäžã§ããã
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
====*========*========*========*========*========*====
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
ç®ç€ã«ã¯ã3æ¡ããšã«ç¹ãæ¯ã£ãŠãããæ®éãç¹ã®çäžã«äžã®äœããšããããããå·Šã«åã®äœãçŸã®äœ...ãšç¶ãã
ç¹ã¯èªåã®äœ¿ãããããšããã§ããŸããªãããããŸãã«å·Šããããšèšç®ã§ããªããªãããšãããã®ã§æ³šæãããã
ç®ç€ã䜿ãåã«ãå
šãŠã®æ¡ã0ã«ãªã»ããããäœæ¥ãå¿
èŠã§ãããé»åã§èšãã°ãCãã§ããã
#å·Šæã§ç®ç€ã®å·Šé
ã®ã»ããæã¡ãäžã®æ¹ãæåã«åŸããã
#æºã®äžã«éãã«æ»ãã
#峿ã®äººå·®ãæãã巊端ããé çªã«ãäžã®çãäžç«¯ã«è¡ãããã«æšªã«ã¹ã©ã€ããããã
ããã§äžã®å³ã®ãããªç¶æ
ã«ãªã£ãŠããã¯ãã§ããã
ããŠã1ãã9ãŸã§ã®æ°ãå
¥ããŠã¿ãããå·Šæã§ç®ç€ãæã¡ã峿ã®èŠªæã§äžã®çãã人差ãæã§äžã®å
šãŠã®çãæ±ãã
< > < > < > < > < >
=== === === === ===
< > < > < > < >
< > < > < > < >
< > < > < > < >
< > < > < > < >
< > < > < > < >
0 1 2 3 4
< > < > < > < > < >
=== === === === ===
< > < > < > < >
< > < > < > < >
< > < > < > < >
< > < > < > < >
< > < > < > < >
5 6 7 8 9
äžäžã«äœæ¡ã«ãªã£ãŠãåãã§ãããäŸãã°ã1013.25ãªã
< >< >< >< >< >
< >
=*========*=======
< > < >< >< >
< > < >< >< >
< >< >< >< > < >
< >< >< > < >< >
< >< >< >< >< >< >
1 0 1 3 .2 5
ã§ããã
次ã¯[[ç ç®_å æžç®|è¶³ãç®ãåŒãç®]]ããã£ãŠã¿ããã
[[Category:ç ç®|ããã¡ãã]] | null | 2006-12-12T15:28:41Z | [] | https://ja.wikibooks.org/wiki/%E7%8F%A0%E7%AE%97_%E5%9F%BA%E7%A4%8E%E7%9F%A5%E8%AD%98 |
2,084 | ç ç® å æžç® | æ°åŠ>ç ç®>å æžç®
1+3ã2+6ãªã©ã®èšç®ã¯å
ã®æ°ãå
¥ããããã«å ããæ°ã®çãå
¥ããã
以äžãå ããæ°ãnãšããã
3+4ã9+2ã¯ãã®ãŸãŸã§ã¯åºæ¥ãªããããã§ãŸã5(10)-nãåŒãããããŠãã®åŸ5(10)ãè¶³ããšããæ¹æ³ããšãã
確ãã«nè¶³ããããšã«ãªãã
6+8ãªã©ã¯ä»ãŸã§ã®æ¹æ³ã§ã¯åºæ¥ãªãããããã®èšç®ãããã«ã¯ãŸãn-5ãè¶³ãããã®åŸã5ãåŒã10ãå ããã
ã§ã確ãã«nè¶³ããããšã«ãªãã
äžæ¡ã®è¶³ãç®ã®ãã¹ãŠã®ããæ¹ããŸãšããŠããã
åŒãç®ã¯è¶³ãç®ã®éãããã°è¯ãã ãã§ããã
å
·äœçã«ã¯ã
ç®ç€ã¯çç®ãšéã£ãŠäžã®äœããèšç®ããã ç¹°ãäžãããæ¡ééãã«ããæ³šæããã°ãäœæ¡ã«ãªã£ãŠãåºæ¬ã¯åãã§ããã
次ã®èšç®ãããŠã¿ãã
å æžç®ã®åºæ¬ãåºæ¥ãããèŠåç®ãªã©ã«ãææŠãããã ãããã¯æŽã«æãç®ãåŠãŒãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ°åŠ>ç ç®>å æžç®",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "1+3ã2+6ãªã©ã®èšç®ã¯å
ã®æ°ãå
¥ããããã«å ããæ°ã®çãå
¥ããã",
"title": "äžæ¡ã®è¶³ãç®"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "以äžãå ããæ°ãnãšããã",
"title": "äžæ¡ã®è¶³ãç®"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "3+4ã9+2ã¯ãã®ãŸãŸã§ã¯åºæ¥ãªããããã§ãŸã5(10)-nãåŒãããããŠãã®åŸ5(10)ãè¶³ããšããæ¹æ³ããšãã",
"title": "äžæ¡ã®è¶³ãç®"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "確ãã«nè¶³ããããšã«ãªãã",
"title": "äžæ¡ã®è¶³ãç®"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "6+8ãªã©ã¯ä»ãŸã§ã®æ¹æ³ã§ã¯åºæ¥ãªãããããã®èšç®ãããã«ã¯ãŸãn-5ãè¶³ãããã®åŸã5ãåŒã10ãå ããã",
"title": "äžæ¡ã®è¶³ãç®"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ã§ã確ãã«nè¶³ããããšã«ãªãã",
"title": "äžæ¡ã®è¶³ãç®"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "äžæ¡ã®è¶³ãç®ã®ãã¹ãŠã®ããæ¹ããŸãšããŠããã",
"title": "äžæ¡ã®è¶³ãç®"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "åŒãç®ã¯è¶³ãç®ã®éãããã°è¯ãã ãã§ããã",
"title": "äžæ¡ã®åŒãç®"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "å
·äœçã«ã¯ã",
"title": "äžæ¡ã®åŒãç®"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ç®ç€ã¯çç®ãšéã£ãŠäžã®äœããèšç®ããã ç¹°ãäžãããæ¡ééãã«ããæ³šæããã°ãäœæ¡ã«ãªã£ãŠãåºæ¬ã¯åãã§ããã",
"title": "è€æ°æ¡ã®å æžç®"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "次ã®èšç®ãããŠã¿ãã",
"title": "è€æ°æ¡ã®å æžç®"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "å æžç®ã®åºæ¬ãåºæ¥ãããèŠåç®ãªã©ã«ãææŠãããã ãããã¯æŽã«æãç®ãåŠãŒãã",
"title": "è€æ°æ¡ã®å æžç®"
}
] | æ°åŠïŒç ç®ïŒå æžç® | [[æ°åŠ]]ïŒ[[ç ç®]]ïŒå æžç®
==äžæ¡ã®è¶³ãç®==
===ãã®ãŸãŸå ãã===
1+3ã2+6ãªã©ã®èšç®ã¯å
ã®æ°ãå
¥ããããã«å ããæ°ã®çãå
¥ããã
< > < > < > < > |-< >
| < >
=== === === === | === ===
< > < > < > < > 6 < > < >
< > < > | < > < >
< > |-< > < > | < >
< > 3-< > < > < > |-< >
< > |-< > < > < > < >
1 + 3 = 4 2 + 6 = 8
===åŒããŠããå ãã===
以äžãå ããæ°ãnãšããã
3+4ã9+2ã¯ãã®ãŸãŸã§ã¯åºæ¥ãªããããã§ãŸã5(10)-nãåŒãããããŠãã®åŸ5(10)ãè¶³ããšããæ¹æ³ããšãã
*<math>-(5-n)+5 = +n</math>
*<math>-(10-n)+10 = +n</math>
確ãã«nè¶³ããããšã«ãªãã
< > < > 5-< > < > < > < >< > < >< >
< > < > < >-|
=== === === === ====*= ====*= | ====*= ====*=
< > < > < > < > < > < > | < > < >< >
< > < > < > < > < >< > < >-8 1-< >
< > 1-< > < >< > < >< >-| < >< > < >< >
< > < > < >< > < >< >-| < >< > < >< >
< > < > < > < > < > < > < >< > < >< >
3 (- 1 + 5) = 7 0 9 (- 0 8 + 1 0) = 1 1
| | | |
---- +4 ---- ã------- +2 --------
===è¶³ããŠåŒããŠè¶³ã===
6+8ãªã©ã¯ä»ãŸã§ã®æ¹æ³ã§ã¯åºæ¥ãªãããããã®èšç®ãããã«ã¯ãŸãn-5ãè¶³ãããã®åŸã5ãåŒã10ãå ããã
*<math>+(n-5)-5+10 = +n</math>
ã§ã確ãã«nè¶³ããããšã«ãªãã
< > < > < > < >< > < >< >
< > < > < >-5
====*= ====*= ====*= ====*= ====*=
< > < >< > < > < > < >< >
< > < > < >< > 1-< >< > < >
< >< > < >-| < >< > < >< > < >< >
< >< > < >< >-3 < >< > < >< > < >< >
< >< > < >< >-| < > < > < >
0 6 (+ 0 3 - 0 5 + 1 0) = 1 4
| |
----------- +8 ------------
===äžæ¡ã®è¶³ãç®ã®ãŸãšã===
äžæ¡ã®è¶³ãç®ã®ãã¹ãŠã®ããæ¹ããŸãšããŠããã
A:ãã®ãŸãŸè¶³ã
B:5-nåŒããŠ5è¶³ã
C:10-nåŒããŠ10è¶³ã
D:n-5è¶³ããŠ5åŒããŠ10è¶³ã
+| 1 2 3 4 5 6 7 8 9
---------------------
1| A A A B A A A A C
2| A A B B A A A C C
3| A B B B A A C C C
4| B B B B A C C C C
5| A A A A C D D D D
6| A A A C C D D D C
7| A A C C C D D C C
8| A C C C C D C C C
9| C C C C C C C C C
==äžæ¡ã®åŒãç®==
åŒãç®ã¯è¶³ãç®ã®éãããã°è¯ãã ãã§ããã
å
·äœçã«ã¯ã
*ãã®ãŸãŸåŒã
*5åŒããŠ5-nè¶³ã
*10åŒããŠ10-nè¶³ã
*10åŒããŠ5è¶³ããŠn-5åŒã
==è€æ°æ¡ã®å æžç®==
ç®ç€ã¯çç®ãšéã£ãŠäžã®äœããèšç®ããã
ç¹°ãäžãããæ¡ééãã«ããæ³šæããã°ãäœæ¡ã«ãªã£ãŠãåºæ¬ã¯åãã§ããã
次ã®èšç®ãããŠã¿ãã
*Q1.13579+8642=
*Q2.31415-27182=
A1.
< >< > < >< > < >< >< >
< >< >< > < >< >< > < >< >
====*========*= ====*========*= ====*========*=
< >< > < >< > < >< > < >< > < >< >< >< >< >
< >< >< >< > < > < >< >< > < >< > < >< >
< >< >< > < > < >< > < > < > < >
< > < >< >< > < >< >< >< >< > < >< >< >< >< >
< >< >< >< > < >< >< >< > < >< >< >< >
1 3 5 7 9 + 0 8 0 0 0 + 0 0 6 0 0
< >< >< >< > < >< >< >< >< > < >< >< >< >< >
< >
====*========*= ====*========*= ====*========*=
< >< >< >< >< > < >< >< >< >< > < >< >< >< >< >
< >< >< > < > < >< >< >< > < >< >< >< >
< >< > < > < >
< >< >< >< >< > < >< >< >< >< > < >< >< >< >< >
< >< >< >< > < >< >< >< >< > < >< >< >< >< >
+0 0 0 4 0 + 0 0 0 0 2 = 2 2 2 2 1
A2.
< >< >< >< > < >< >< >< > < >< >< >< >
< > < > < >
====*========*= ====*========*= ====*========*=
< >< >< >< > < >< >< >< > < >< >< >
< > < > < > < > < > < >< >< > < >
< >< >< >< >< > < >< >< >< > < >< >< >< >< >
< >< >< >< > < >< >< >< >< > < >< >< >< >< >
< >< > < >< > < >< > < >< > < > < >< >
3 1 4 1 5 - 2 0 0 0 0 - 0 7 0 0 0
< >< >< >< > < >< >< >< > < >< >< >< >< >
< > < >
====*========*= ====*========*= ====*========*=
< >< >< > < >< >< > < >< >< >< >
< >< >< > < > < >< >< >< >< > < >< >< >< >< >
< >< >< >< >< > < >< > < >< > < >< > < >< >
< >< > < >< > < >< >< > < > < >< >< >
< > < >< >< > < > < >< >< > < > < >< >< >
-0 0 1 0 0 - 0 0 0 8 0 - 0 0 0 0 2
< >< >< >< >< >
====*========*=
< >< >< >< >
< >< >< >< >< >
< >< > < >< >
< >< >< >
< > < >< >< >
-0 4 2 3 3
å æžç®ã®åºæ¬ãåºæ¥ããã[[ç ç®_èŠåç®ã»èªäžç®ã»äŒç¥šç®|èŠåç®ãªã©]]ã«ãææŠãããã
ãããã¯æŽã«[[ç ç®_ä¹ç®|æãç®]]ãåŠãŒãã
[[Category:ç ç®|ããããã]] | null | 2016-07-10T14:08:48Z | [] | https://ja.wikibooks.org/wiki/%E7%8F%A0%E7%AE%97_%E5%8A%A0%E6%B8%9B%E7%AE%97 |
2,090 | ç¡æ©ååŠã®åºç€/ååã®æ§é | ç¡æ©ååŠ>ç¡æ©ååŠã®åºç€>ååã®æ§é
ååã¯ååæ žãšé»åããæãç«ã£ãŠãããååæ žã¯ããã«éœåãšäžæ§åãåºãŸã£ãŠã§ããŠããã é»åã¯ååæ žã®åšãããã¯ãŒãã³å(é黿°å)ãåå¿åãšããŠãè¡æã®ããã«åã£ãŠãããšå€å
žååŠçã«ã¯è§£éãããããªããé»åã¯éœåãäžæ§åã®ããã1800åã®1ã®è³ªéãããããªãããããã®ã¢ãã«ã§ã¯ã倪éœãšå°çã®é¢ä¿ã®ããã«ãååæ žãäžå¿ã«é»åãå
¬è»¢ããŠããŠååæ žã¯äžåã§ãããã®ãšã¿ãªãã
éœå㯠+ e {\displaystyle +e} ãé»å㯠â e {\displaystyle -e} ã®é»è·ã垯ã³ãŠãããããã§ e {\displaystyle e} ã¯é»æ°çŽ é( e = 1.6 à 10 â 19 {\displaystyle e=1.6\times 10^{-19}} C)ã§ããããã®ãããå®å®ã«ãªãããã«(ååå
šäœãšããŠé»æ°çã«äžæ§ãšãªãããã«)ååå
ã®éœåæ°ãšé»åæ°ã¯çãããéœåæ°ãååçªå·ãšãèšããããªãã¡ååã¯éœåã®æ°ã«ãã£ãŠç¹åŸŽã¥ããããåšæè¡šã¯éœåã®æ°ã®é ã«äžŠãã§ãããäŸãã°ãéœåæ°ã1ãªãæ°ŽçŽ ã2ãªãããªãŠã ã3ãªããªããŠã ãšãã£ãå
·åã§ããã äžæ§åã«ã¯é»æ°çã«äžæ§ã§ãããé»è·ã¯ç¡ããéœåãè€æ°ããå Žåãããªãã¡ååçªå·ã2以äžã®å Žåãéœåå士ã黿°çã«å€§ããªåçºåãæã€ããäžæ§åãç³ã®åœ¹å²ãæãããŠããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç¡æ©ååŠ>ç¡æ©ååŠã®åºç€>ååã®æ§é ",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ååã¯ååæ žãšé»åããæãç«ã£ãŠãããååæ žã¯ããã«éœåãšäžæ§åãåºãŸã£ãŠã§ããŠããã é»åã¯ååæ žã®åšãããã¯ãŒãã³å(é黿°å)ãåå¿åãšããŠãè¡æã®ããã«åã£ãŠãããšå€å
žååŠçã«ã¯è§£éãããããªããé»åã¯éœåãäžæ§åã®ããã1800åã®1ã®è³ªéãããããªãããããã®ã¢ãã«ã§ã¯ã倪éœãšå°çã®é¢ä¿ã®ããã«ãååæ žãäžå¿ã«é»åãå
¬è»¢ããŠããŠååæ žã¯äžåã§ãããã®ãšã¿ãªãã",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "éœå㯠+ e {\\displaystyle +e} ãé»å㯠â e {\\displaystyle -e} ã®é»è·ã垯ã³ãŠãããããã§ e {\\displaystyle e} ã¯é»æ°çŽ é( e = 1.6 à 10 â 19 {\\displaystyle e=1.6\\times 10^{-19}} C)ã§ããããã®ãããå®å®ã«ãªãããã«(ååå
šäœãšããŠé»æ°çã«äžæ§ãšãªãããã«)ååå
ã®éœåæ°ãšé»åæ°ã¯çãããéœåæ°ãååçªå·ãšãèšããããªãã¡ååã¯éœåã®æ°ã«ãã£ãŠç¹åŸŽã¥ããããåšæè¡šã¯éœåã®æ°ã®é ã«äžŠãã§ãããäŸãã°ãéœåæ°ã1ãªãæ°ŽçŽ ã2ãªãããªãŠã ã3ãªããªããŠã ãšãã£ãå
·åã§ããã äžæ§åã«ã¯é»æ°çã«äžæ§ã§ãããé»è·ã¯ç¡ããéœåãè€æ°ããå Žåãããªãã¡ååçªå·ã2以äžã®å Žåãéœåå士ã黿°çã«å€§ããªåçºåãæã€ããäžæ§åãç³ã®åœ¹å²ãæãããŠããã",
"title": ""
}
] | ç¡æ©ååŠïŒç¡æ©ååŠã®åºç€ïŒååã®æ§é ååã¯ååæ žãšé»åããæãç«ã£ãŠãããååæ žã¯ããã«éœåãšäžæ§åãåºãŸã£ãŠã§ããŠããã
é»åã¯ååæ žã®åšãããã¯ãŒãã³åïŒé黿°åïŒãåå¿åãšããŠãè¡æã®ããã«åã£ãŠãããšå€å
žååŠçã«ã¯è§£éãããããªããé»åã¯éœåãäžæ§åã®ããã1800åã®1ã®è³ªéãããããªãããããã®ã¢ãã«ã§ã¯ã倪éœãšå°çã®é¢ä¿ã®ããã«ãååæ žãäžå¿ã«é»åãå
¬è»¢ããŠããŠååæ žã¯äžåã§ãããã®ãšã¿ãªãã éœå㯠+ e ãé»å㯠â e ã®é»è·ã垯ã³ãŠãããããã§ e ã¯é»æ°çŽ éã§ããããã®ãããå®å®ã«ãªãããã«ïŒååå
šäœãšããŠé»æ°çã«äžæ§ãšãªãããã«ïŒååå
ã®éœåæ°ãšé»åæ°ã¯çãããéœåæ°ãååçªå·ãšãèšããããªãã¡ååã¯éœåã®æ°ã«ãã£ãŠç¹åŸŽã¥ããããåšæè¡šã¯éœåã®æ°ã®é ã«äžŠãã§ãããäŸãã°ãéœåæ°ã1ãªãæ°ŽçŽ ã2ãªãããªãŠã ã3ãªããªããŠã ãšãã£ãå
·åã§ããã
äžæ§åã«ã¯é»æ°çã«äžæ§ã§ãããé»è·ã¯ç¡ããéœåãè€æ°ããå Žåãããªãã¡ååçªå·ã2以äžã®å Žåãéœåå士ã黿°çã«å€§ããªåçºåãæã€ããäžæ§åãç³ã®åœ¹å²ãæãããŠããã | [[ç¡æ©ååŠ]]ïŒ[[ç¡æ©ååŠã®åºç€]]ïŒååã®æ§é
ååã¯'''ååæ ž'''ãš'''é»å'''ããæãç«ã£ãŠãããååæ žã¯ããã«'''éœå'''ãš'''äžæ§å'''ãåºãŸã£ãŠã§ããŠããã
é»åã¯ååæ žã®åšãããã¯ãŒãã³åïŒé黿°åïŒãåå¿åãšããŠãè¡æã®ããã«åã£ãŠãããšå€å
žååŠçã«ã¯è§£éãããããªããé»åã¯éœåãäžæ§åã®ããã1800åã®1ã®è³ªéãããããªãããããã®ã¢ãã«ã§ã¯ã倪éœãšå°çã®é¢ä¿ã®ããã«ãååæ žãäžå¿ã«é»åãå
¬è»¢ããŠããŠååæ žã¯äžåã§ãããã®ãšã¿ãªãã
éœåã¯<math>+e</math>ãé»åã¯<math>-e</math>ã®'''é»è·'''ã垯ã³ãŠãããããã§<math>e</math>ã¯é»æ°çŽ éïŒ<math>e=1.6 \times 10^{-19}</math>CïŒã§ããããã®ãããå®å®ã«ãªãããã«ïŒååå
šäœãšããŠé»æ°çã«äžæ§ãšãªãããã«ïŒååå
ã®éœåæ°ãšé»åæ°ã¯çãããéœåæ°ã'''ååçªå·'''ãšãèšããããªãã¡ååã¯éœåã®æ°ã«ãã£ãŠç¹åŸŽã¥ããããåšæè¡šã¯éœåã®æ°ã®é ã«äžŠãã§ãããäŸãã°ãéœåæ°ã1ãªãæ°ŽçŽ ã2ãªãããªãŠã ã3ãªããªããŠã ãšãã£ãå
·åã§ããã
äžæ§åã«ã¯é»æ°çã«äžæ§ã§ãããé»è·ã¯ç¡ããéœåãè€æ°ããå Žåãããªãã¡ååçªå·ã2以äžã®å Žåãéœåå士ã黿°çã«å€§ããªåçºåãæã€ããäžæ§åãç³ã®åœ¹å²ãæãããŠããã
[[ã«ããŽãª:ç¡æ©ååŠ|ãããããã®ãããããã®ãããã]] | null | 2022-11-23T12:40:16Z | [] | https://ja.wikibooks.org/wiki/%E7%84%A1%E6%A9%9F%E5%8C%96%E5%AD%A6%E3%81%AE%E5%9F%BA%E7%A4%8E/%E5%8E%9F%E5%AD%90%E3%81%AE%E6%A7%8B%E9%80%A0 |
2,095 | Maxima | æ¬é
ã¯æ°åŒåŠçãœãããŠã§ã¢ãŒMaximaã®å
¥éæžã§ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ¬é
ã¯æ°åŒåŠçãœãããŠã§ã¢ãŒMaximaã®å
¥éæžã§ãã",
"title": ""
}
] | æ¬é
ã¯æ°åŒåŠçãœãããŠã§ã¢ãŒMaximaã®å
¥éæžã§ãã | {{Pathnav|ã¡ã€ã³ããŒãž|æ
å ±æè¡|frame=1}}
æ¬é
ã¯æ°åŒåŠçãœãããŠã§ã¢ãŒMaximaã®å
¥éæžã§ãã
== ç®æ¬¡ ==
{| border="0" align=right width=250px cellpadding="4" cellspacing=0 class="noprint" style="clear: right; border: solid #aaa 1px; margin: 0 0 1em 1em; font-size: 90%; background: #f9f9f9"
|-
|[[ç»å:Wikipedia.png|50px|none|Wikipedia]]
|'''[[w:ã¡ã€ã³ããŒãž|ãŠã£ãããã£ã¢]]'''ã«'''[[w:{{{1|{{PAGENAME}}}}}|{{{2|{{{1|{{PAGENAME}}}}}}}}]]'''ã®èšäºããããŸãã
|}
<noinclude>
* [[Maxima ã¯ããã«|ã¯ããã«]]
** [[Maxima ã¯ããã«#Maximaãšã¯|Maximaãšã¯]]
** [[Maxima ã¯ããã«#Lispãšã¯|Lispãšã¯]]
* Maximaã®ã€ã³ã¹ããŒã«
** [[/Common LispåŠçç³»ã®éžæ|Common LispåŠçç³»ã®éžæ]]
** [[/Maximaã®ããã³ããšã³ã|Maximaã®ããã³ããšã³ã]]
** [[Maxima/ãªããã¯ã¹ã«ãããã€ã³ã¹ããŒã«ã®ä»æ¹| ãªããã¯ã¹ã«ãããã€ã³ã¹ããŒã«ã®ä»æ¹]]
*** [[Maxima/ãªããã¯ã¹ã«ãããã€ã³ã¹ããŒã«ã®ä»æ¹# rpmã®äœ¿ãæ¹| rpmã®äœ¿ãæ¹]]
*** [[Maxima/ãªããã¯ã¹ã«ãããã€ã³ã¹ããŒã«ã®ä»æ¹# å®éã®ã€ã³ã¹ããŒã«| å®éã®ã€ã³ã¹ããŒã«]]
** [[/FreeBSDã«ãããã€ã³ã¹ããŒã«ã®ä»æ¹|FreeBSDã«ãããã€ã³ã¹ããŒã«ã®ä»æ¹]]
** [[/Windowsã«ãããã€ã³ã¹ããŒã«ã®ä»æ¹|Windowsã«ãããã€ã³ã¹ããŒã«ã®ä»æ¹]]
** [[/MacOS Xã«ãããã€ã³ã¹ããŒã«ã®ä»æ¹|MacOS Xã«ãããã€ã³ã¹ããŒã«ã®ä»æ¹]]
* [[Maxima/å
·äœçãªäœ¿ãæ¹| å
·äœçãªäœ¿ãæ¹]]
** [[Maxima/å
·äœçãªäœ¿ãæ¹#ãœããã®äœ¿ãæ¹|ãœããã®äœ¿ãæ¹]]
** [[Maxima/å
·äœçãªäœ¿ãæ¹#åççãªæ°åŠã«å¯Ÿãã䜿çšäŸ|åççãªæ°åŠã«å¯Ÿãã䜿çšäŸ]]
** ææ³ã»èšå·ã»æ°åŠå®æ°
** [[/倿°ãšå®æ°|倿°ãšå®æ°]]
** çŽæ°ã»æå°å
¬åæ°
** [[/è€çŽ æ°|è€çŽ æ°]]
** ãã¯ãã«æäœ
** [[/è¡åæäœ|è¡åæäœ]]
** æ°å€èšç®æ³
** [[/å€é
åŒã»æçåŒ|å€é
åŒã»æçåŒ]]
** [[/æèãšäºå®|æèãšäºå®]]
** çåŒã»äžçåŒæäœ
** [[/颿°ãå®çŸ©ãã|颿°ãå®çŸ©ãã]]
** ã°ã©ããæžã
** [[/ãã¡ã€ã«æäœã»åºå圢åŒå€æ|ãã¡ã€ã«æäœã»åºå圢åŒå€æ]]
** 極é
** [[/埮åã»ç©å|埮åã»ç©å]]
** [[/ç·åã»ç·ç©ã»ãã€ã©ãŒå±é|ç·åã»ç·ç©ã»ãã€ã©ãŒå±é]]
** åŸ®åæ¹çšåŒæäœ
** ããŒãªãšå€æã»ã©ãã©ã¹å€æ
** [[/äžè§é¢æ°ã»åæ²ç·é¢æ°|äžè§é¢æ°ã»åæ²ç·é¢æ°]]
** ææ°é¢æ°ã»å¯Ÿæ°é¢æ°
** ããã»ã«é¢æ°
** ã«ãžã£ã³ãã«å€é
åŒã»ã«ãžã£ã³ãã«å¹é¢æ°ã»çé¢èª¿å颿°
** ãã®ä»ã®çŽäº€ç³»å€é
åŒ
** è¶
幟äœé¢æ°
** æ¥åç©åã»æ¥å颿°
** [[亀ç¹èšç® çŽç·ãšçŽç· çŽç·ãšå åãšå|亀ç¹èšç® çŽç·ãšçŽç· çŽç·ãšå åãšå]]
** [[åç·èšç® ç¹ãšçŽç· ç¹ãšå|åç·èšç® ç¹ãšçŽç· ç¹ãšå]]
** [[é¢ç©èšç® åº§æšæ³ åæšªè·æ³]]
** [[/芳枬æ¹çšåŒ æ£èŠæ¹çšåŒ|芳枬æ¹çšåŒ æ£èŠæ¹çšåŒ]]
** [[/ã·ã³ãã¬ãã¯ã¹æ³|ã·ã³ãã¬ãã¯ã¹æ³]]
** [[/æŒç¿åé¡è§£ç|æŒç¿åé¡è§£ç]]
* å€éšãªã³ã¯
** [http://maxima.sourceforge.net/docs/manual/en/maxima.html#SEC_Top|Maxima Manual] (è±æã®å
¬åŒããã¥ã¢ã«)
* [[/玢åŒ|玢åŒ]]
{{DEFAULTSORT:Maxima}}
[[Category:Maxima|*]]
[[Category:æ°åŒåŠçã·ã¹ãã ]]
[[Category:ãœãããŠã§ã¢ã®ããã¥ã¢ã«]]
{{NDC|007.63}}
{{stub}} | null | 2015-08-08T11:31:31Z | [
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:NDC",
"ãã³ãã¬ãŒã:Stub"
] | https://ja.wikibooks.org/wiki/Maxima |
2,096 | Maxima ã¯ããã« | Maxima > ã¯ããã«
Maximaã¯ãGnu Public License ã®å
ã§é
åžãããŠããæ°åŒåŠçã·ã¹ãã ã§ããã
ãã®ææžã¯ãMaxima ã䜿ãå§ããããšãã人éã®ããã«ãMaximaã®ã€ã³ã¹ããŒã«ããåºæ¬çãªäœ¿ãæ¹ãŸã§ã説æããããã«æžãããã
Maxima ã¯ãç¡æã§é
åžãããŠããã誰ã§ãå
¥æããããšãã§ãããããããç¡æã§ããããšã¯å¿
ãããåè³ªãæªãããšãæå³ããããã§ã¯ãªããåžè²©ã®æ°åŒåŠçã·ã¹ãã ãšæ¯èŒããŠæ©èœãå£ãããã§ããªãããŸããäžè¬çãªåžè²©ã®æ°åŒåŠçã·ã¹ãã ã倧å€é«äŸ¡ã§ããããšãèãããšãç¹ã«åäººã§æ°åŒåŠçã·ã¹ãã ã䜿ãããå Žåã«ã¯ãæåãªéžæè¢ãšèšããã ããã
ãªããMaxima ã®ã€ã³ã¹ããŒã«ã¯ãå©çšããç°å¢ã«ãã£ãŠã¯ããé£ãããããããªããããã¯ãMaxima ã LISP ã®äžæ¹èšã§ãã Common Lisp ãšããæ¯èŒçç¥å床ã®äœãèšèªã«ãã£ãŠæžãããŠããããã§ããããã®ãããMaxima ãã€ã³ã¹ããŒã«ããããã«ã¯ããŸã Common Lisp ã®åŠçç³»ãã€ã³ã¹ããŒã«ããããšããå§ããªããã°ãªããªãã
Maxima ã¯1968幎㫠MIT ã«ããã Mac ãããžã§ã¯ãã®äžã€ãšããŠéçºããå§ããŠã1982幎㫠DOE Maxima ãšã㊠MIT ã®ãšãã«ã®ãŒåŠéšã§ãããµã¹å€§åŠã® William F Schelter ææãã¡ã³ããã³ã¹ãããŠããã1998幎㫠Schelter ææã MIT ã®ãšãã«ã®ãŒåŠéšãã Gnu Public License ã®å
ã§é
åžããäºãèš±å¯ããã2000幎ãã sourceforge.net ã«ãŠ Maxima ãšããŠé
åžãšã¡ã³ããã³ã¹ããããŠããã
ãªããSchelter ææã¯2001å¹Žã«æ»å»ããããMaxima ãèµ·åããçŽåŸã«è¡šç€ºããããDedicated to the memory of William Schelter.ãã®äžæã¯ Schelter ææã®å瞟ãç§°ãããã®ã§ããã
LISP ãšã¯ã©ã ãèšç®ãå®çŸãã颿°åããã°ã©ãã³ã°èšèªã§ãCLOSã®ãããªåã蟌ã¿åã®ãªããžã§ã¯ãæåèšèªãå©çšåºæ¥ãäºããããããããã«ãã«ããã©ãã€ã èšèªãžãšé²åããŠããã1958幎ã«éçºãããäžçã§2çªç®ã«å€ãé«çŽèšèªãšããŠãç¥ãããŠãããçŸåšã¹ã¯ãªããèšèªã§æå㪠Perl ã PythonãRuby ãªã©ã®æºæµã«ãªã£ãŠãããã®ã§ãããæºæµã ãããšãã£ãŠã¹ã¯ãªããèšèªã§ã¯ãªããŠãåŠçç³»ã®äžã«ã³ã³ãã€ã«æ©èœãšã€ã³ã¿ããªã¿æ©èœãæ··åšãããŠãããåŠçé床ã¯ãã€ãã£ãã³ã³ãã€ã©ãæã£ãŠããåŠçç³»ãªãã°äžè¬çã« C++ ããå°ãé
ã Java ããã¯éããšãããããã«ãªã£ãŠãããäœ¿ãæ¹ã«ãã£ãŠã¯ C ããéããªãå Žåãããäºã¯ç¥ãããŠããããŸããMaximaã§çšããããŠããCommon Lispã¯èšèªä»æ§(ANSI)ã«ã³ã³ãã€ã©ã«é¢ããèšè¿°ãããå¯äžã®èšèªã§ãã(ã€ã³ã¿ããªã¿ã«é¢ããèšè¿°ã¯ãªã)ã
LISP ã®ç¹åŸŽãšããŠã以äžã®ãã®ãæããããã
åçœ®èšæ³ãšã¯ãäŸãã°ã
ã®æŒç®ã«çžåœããèšæ³ã
ã®ããã«æŒç®å(ããã§ã¯ +)ãåã«ã被æŒç®å(ããã§ã¯ 1 ãš 2)ãåŸã«èšãèšæ³ã§ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "Maxima > ã¯ããã«",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "Maximaã¯ãGnu Public License ã®å
ã§é
åžãããŠããæ°åŒåŠçã·ã¹ãã ã§ããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãã®ææžã¯ãMaxima ã䜿ãå§ããããšãã人éã®ããã«ãMaximaã®ã€ã³ã¹ããŒã«ããåºæ¬çãªäœ¿ãæ¹ãŸã§ã説æããããã«æžãããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "Maxima ã¯ãç¡æã§é
åžãããŠããã誰ã§ãå
¥æããããšãã§ãããããããç¡æã§ããããšã¯å¿
ãããåè³ªãæªãããšãæå³ããããã§ã¯ãªããåžè²©ã®æ°åŒåŠçã·ã¹ãã ãšæ¯èŒããŠæ©èœãå£ãããã§ããªãããŸããäžè¬çãªåžè²©ã®æ°åŒåŠçã·ã¹ãã ã倧å€é«äŸ¡ã§ããããšãèãããšãç¹ã«åäººã§æ°åŒåŠçã·ã¹ãã ã䜿ãããå Žåã«ã¯ãæåãªéžæè¢ãšèšããã ããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãªããMaxima ã®ã€ã³ã¹ããŒã«ã¯ãå©çšããç°å¢ã«ãã£ãŠã¯ããé£ãããããããªããããã¯ãMaxima ã LISP ã®äžæ¹èšã§ãã Common Lisp ãšããæ¯èŒçç¥å床ã®äœãèšèªã«ãã£ãŠæžãããŠããããã§ããããã®ãããMaxima ãã€ã³ã¹ããŒã«ããããã«ã¯ããŸã Common Lisp ã®åŠçç³»ãã€ã³ã¹ããŒã«ããããšããå§ããªããã°ãªããªãã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "Maxima ã¯1968幎㫠MIT ã«ããã Mac ãããžã§ã¯ãã®äžã€ãšããŠéçºããå§ããŠã1982幎㫠DOE Maxima ãšã㊠MIT ã®ãšãã«ã®ãŒåŠéšã§ãããµã¹å€§åŠã® William F Schelter ææãã¡ã³ããã³ã¹ãããŠããã1998幎㫠Schelter ææã MIT ã®ãšãã«ã®ãŒåŠéšãã Gnu Public License ã®å
ã§é
åžããäºãèš±å¯ããã2000幎ãã sourceforge.net ã«ãŠ Maxima ãšããŠé
åžãšã¡ã³ããã³ã¹ããããŠããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãªããSchelter ææã¯2001å¹Žã«æ»å»ããããMaxima ãèµ·åããçŽåŸã«è¡šç€ºããããDedicated to the memory of William Schelter.ãã®äžæã¯ Schelter ææã®å瞟ãç§°ãããã®ã§ããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "LISP ãšã¯ã©ã ãèšç®ãå®çŸãã颿°åããã°ã©ãã³ã°èšèªã§ãCLOSã®ãããªåã蟌ã¿åã®ãªããžã§ã¯ãæåèšèªãå©çšåºæ¥ãäºããããããããã«ãã«ããã©ãã€ã èšèªãžãšé²åããŠããã1958幎ã«éçºãããäžçã§2çªç®ã«å€ãé«çŽèšèªãšããŠãç¥ãããŠãããçŸåšã¹ã¯ãªããèšèªã§æå㪠Perl ã PythonãRuby ãªã©ã®æºæµã«ãªã£ãŠãããã®ã§ãããæºæµã ãããšãã£ãŠã¹ã¯ãªããèšèªã§ã¯ãªããŠãåŠçç³»ã®äžã«ã³ã³ãã€ã«æ©èœãšã€ã³ã¿ããªã¿æ©èœãæ··åšãããŠãããåŠçé床ã¯ãã€ãã£ãã³ã³ãã€ã©ãæã£ãŠããåŠçç³»ãªãã°äžè¬çã« C++ ããå°ãé
ã Java ããã¯éããšãããããã«ãªã£ãŠãããäœ¿ãæ¹ã«ãã£ãŠã¯ C ããéããªãå Žåãããäºã¯ç¥ãããŠããããŸããMaximaã§çšããããŠããCommon Lispã¯èšèªä»æ§(ANSI)ã«ã³ã³ãã€ã©ã«é¢ããèšè¿°ãããå¯äžã®èšèªã§ãã(ã€ã³ã¿ããªã¿ã«é¢ããèšè¿°ã¯ãªã)ã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "LISP ã®ç¹åŸŽãšããŠã以äžã®ãã®ãæããããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "åçœ®èšæ³ãšã¯ãäŸãã°ã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ã®æŒç®ã«çžåœããèšæ³ã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ã®ããã«æŒç®å(ããã§ã¯ +)ãåã«ã被æŒç®å(ããã§ã¯ 1 ãš 2)ãåŸã«èšãèšæ³ã§ããã",
"title": "ã¯ããã«"
}
] | Maxima > ã¯ããã« | <small> [[Maxima]] > ã¯ããã«</small>
----
== ã¯ããã« ==
=== Maxima ãšã¯ ===
[[w:Maxima|Maxima]]ã¯ãGnu Public License ã®å
ã§é
åžãããŠãã[[w:æ°åŒåŠçã·ã¹ãã |æ°åŒåŠçã·ã¹ãã ]]ã§ããã
ãã®ææžã¯ãMaxima ã䜿ãå§ããããšãã人éã®ããã«ãMaximaã®ã€ã³ã¹ããŒã«ããåºæ¬çãªäœ¿ãæ¹ãŸã§ã説æããããã«æžãããã
Maxima ã¯ãç¡æã§é
åžãããŠããã誰ã§ãå
¥æããããšãã§ãããããããç¡æã§ããããšã¯å¿
ãããåè³ªãæªãããšãæå³ããããã§ã¯ãªããåžè²©ã®æ°åŒåŠçã·ã¹ãã ãšæ¯èŒããŠæ©èœãå£ãããã§ããªãããŸããäžè¬çãªåžè²©ã®æ°åŒåŠçã·ã¹ãã ã倧å€é«äŸ¡ã§ããããšãèãããšãç¹ã«åäººã§æ°åŒåŠçã·ã¹ãã ã䜿ãããå Žåã«ã¯ãæåãªéžæè¢ãšèšããã ããã
ãªããMaxima ã®ã€ã³ã¹ããŒã«ã¯ãå©çšããç°å¢ã«ãã£ãŠã¯ããé£ãããããããªããããã¯ãMaxima ã [[Lisp|LISP]] ã®äžæ¹èšã§ãã [[w:Common Lisp|Common Lisp]] ãšããæ¯èŒçç¥å床ã®äœãèšèªã«ãã£ãŠæžãããŠããããã§ããããã®ãããMaxima ãã€ã³ã¹ããŒã«ããããã«ã¯ããŸã Common Lisp ã®åŠçç³»ãã€ã³ã¹ããŒã«ããããšããå§ããªããã°ãªããªãã
=== Maxima ã®æŽå² ===
Maxima ã¯1968幎㫠MIT ã«ããã Mac ãããžã§ã¯ã[http://ja.wikipedia.org/wiki/Project_MAC]ã®äžã€ãšããŠéçºããå§ããŠã1982幎㫠DOE Maxima ãšã㊠MIT ã®ãšãã«ã®ãŒåŠéšã§ãããµã¹å€§åŠã® William F Schelter ææãã¡ã³ããã³ã¹ãããŠããã1998幎㫠Schelter ææã MIT ã®ãšãã«ã®ãŒåŠéšãã Gnu Public License ã®å
ã§é
åžããäºãèš±å¯ããã2000幎ãã sourceforge.net ã«ãŠ Maxima ãšããŠé
åžãšã¡ã³ããã³ã¹ããããŠããã
ãªããSchelter ææã¯2001å¹Žã«æ»å»ããããMaxima ãèµ·åããçŽåŸã«è¡šç€ºããããDedicated to the memory of William Schelter.ãã®äžæã¯ Schelter ææã®å瞟ãç§°ãããã®ã§ããã
=== LISPãšã¯ ===
[[Lisp|LISP]] ãšã¯[[ã©ã ãèšç®]]ãå®çŸãã[[w:颿°åèšèª|颿°åããã°ã©ãã³ã°èšèª]]ã§ã<abbr title="Common Lisp Object System">CLOS</abbr>ã®ãããªåã蟌ã¿åã®ãªããžã§ã¯ãæåèšèªãå©çšåºæ¥ãäºããããããããã«ãã«ããã©ãã€ã èšèªãžãšé²åããŠããã1958幎ã«éçºãããäžçã§2çªç®ã«å€ãé«çŽèšèªãšããŠãç¥ãããŠãããçŸåšã¹ã¯ãªããèšèªã§æå㪠[[Perl]] ã [[Python]]ã[[Ruby]] ãªã©ã®æºæµã«ãªã£ãŠãããã®ã§ãããæºæµã ãããšãã£ãŠã¹ã¯ãªããèšèªã§ã¯ãªããŠãåŠçç³»ã®äžã«ã³ã³ãã€ã«æ©èœãšã€ã³ã¿ããªã¿æ©èœãæ··åšãããŠãããåŠçé床ã¯ãã€ãã£ãã³ã³ãã€ã©ãæã£ãŠããåŠçç³»ãªãã°äžè¬çã« [[C++]] ããå°ãé
ã [[Java]] ããã¯éããšãããããã«ãªã£ãŠãããäœ¿ãæ¹ã«ãã£ãŠã¯ [[Cèšèª|C]] ããéããªãå Žåãããäºã¯ç¥ãããŠããããŸããMaximaã§çšããããŠãã[[Common Lisp]]ã¯èšèªä»æ§(ANSI)ã«ã³ã³ãã€ã©ã«é¢ããèšè¿°ãããå¯äžã®èšèªã§ãã(ã€ã³ã¿ããªã¿ã«é¢ããèšè¿°ã¯ãªã)ã
LISP ã®ç¹åŸŽãšããŠã以äžã®ãã®ãæããããã
* [[w:ããŒã©ã³ãèšæ³|åçœ®èšæ³]]
* SåŒ
* èšèªä»æ§ãèªç±ã«æ¡åŒµåºæ¥ãæè»ã
* åçãªèšèª
* 匷åãªãã¯ãæ©èœ
åçœ®èšæ³ãšã¯ãäŸãã°ã
1 + 2
ã®æŒç®ã«çžåœããèšæ³ã
(+ 1 2)
ã®ããã«æŒç®åïŒããã§ã¯ +ïŒãåã«ã被æŒç®åïŒããã§ã¯ 1 ãš 2ïŒãåŸã«èšãèšæ³ã§ããã
==å€éšãªã³ã¯==
* [http://maxima.sourceforge.net/ å
¬åŒããŒã ããŒãž] (è±æ)
* [http://maxima.sourceforge.net/docs/manual/en/maxima.html#SEC_Top ããã¥ã¢ã«Maxima 5.9.1] (è±æ)
* [http://www.bekkoame.ne.jp/~ponpoko/Math/maxima/maxima.html æ¥æ¬èªã«ç¿»èš³äžã®ããã¥ã¢ã«]
æ¥æ¬èªã®è§£èª¬
* [http://phe.phyas.aichi-edu.ac.jp/~cyamauch/maxima/ æ°åŒåŠçã·ã¹ãã Maxima] - å
¥éçãªè§£èª¬ã
* [http://www.bekkoame.ne.jp/~ponpoko/Math/maxima/MaximaMAIN.html Maximaã§éãŒã] - ããã¥ã¢ã«ã®æ¥æ¬èªç¿»èš³è
ã«ãã解説ã
[[Category:Maxima|ã¯ããã«]] | null | 2021-10-19T00:19:55Z | [] | https://ja.wikibooks.org/wiki/Maxima_%E3%81%AF%E3%81%98%E3%82%81%E3%81%AB |
2,097 | Maxima/ãªããã¯ã¹ã«ãããã€ã³ã¹ããŒã«ã®ä»æ¹ | Maxima > ãªããã¯ã¹ã«ãããã€ã³ã¹ããŒã«ã®ä»æ¹
Linuxã«Maximaãã€ã³ã¹ããŒã«ããæ¹æ³ã¯ãéåžžãããã±ãŒãžãããŒãžã£ãŒã䜿çšããŠè¡ããŸãã
以äžã¯ãäžè¬çãªLinuxãã£ã¹ããªãã¥ãŒã·ã§ã³ãžã®ã€ã³ã¹ããŒã«æé ã®æŠèŠã§ãã
ãããã®æé ã«åŸããšãLinuxãã£ã¹ããªãã¥ãŒã·ã§ã³ã«Maximaãã€ã³ã¹ããŒã«ã§ããŸãã
Maximaãã€ã³ã¹ããŒã«ããéã®æ³šæç¹ã¯ããã€ããããŸãã以äžã«ããã€ãæããŠã¿ãŸã:
ãããã®æ³šæç¹ãèæ
®ããããšã§ãMaximaã®ã¹ã ãŒãºãªã€ã³ã¹ããŒã«ãšäœ¿çšãå¯èœã«ãªããŸãã
æ°å€æŒç®ãªã©ã®éããæåŸ
ãããªãã°ãæŒç®é床ã远æ±ããCMUCLãCMUCLããæåããããŠæŽ»çºã«ã¡ã³ããã³ã¹ãè¡ãããŠããSBCLã®å©çšã埡å§ãããã CLISPã¯ãäžéã³ãŒããã«ã³ã³ãã€ã«ãããããšã«å¯ŸããŠãCMUCLãSBCLã¯ããã€ãã£ãã³ãŒããã«ã³ã³ãã€ã«ããããããæ°åéããªãã Maximaã®ä»¥åã®ããŒãžã§ã³ã¯GCLãšCLISPãåæãšããŠäœãããŠããã®ã ããMaxima 5.9.*以åŸäž»æµãCMUCLãSBCLã«ç§»ã£ãããã§ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "Maxima > ãªããã¯ã¹ã«ãããã€ã³ã¹ããŒã«ã®ä»æ¹",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "Linuxã«Maximaãã€ã³ã¹ããŒã«ããæ¹æ³ã¯ãéåžžãããã±ãŒãžãããŒãžã£ãŒã䜿çšããŠè¡ããŸãã",
"title": "Maximaã®Linuxãã£ã¹ããªãã¥ãŒã·ã§ã³ãžã®ã€ã³ã¹ããŒã«"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "以äžã¯ãäžè¬çãªLinuxãã£ã¹ããªãã¥ãŒã·ã§ã³ãžã®ã€ã³ã¹ããŒã«æé ã®æŠèŠã§ãã",
"title": "Maximaã®Linuxãã£ã¹ããªãã¥ãŒã·ã§ã³ãžã®ã€ã³ã¹ããŒã«"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãããã®æé ã«åŸããšãLinuxãã£ã¹ããªãã¥ãŒã·ã§ã³ã«Maximaãã€ã³ã¹ããŒã«ã§ããŸãã",
"title": "Maximaã®Linuxãã£ã¹ããªãã¥ãŒã·ã§ã³ãžã®ã€ã³ã¹ããŒã«"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "Maximaãã€ã³ã¹ããŒã«ããéã®æ³šæç¹ã¯ããã€ããããŸãã以äžã«ããã€ãæããŠã¿ãŸã:",
"title": "Maximaã®Linuxãã£ã¹ããªãã¥ãŒã·ã§ã³ãžã®ã€ã³ã¹ããŒã«"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãããã®æ³šæç¹ãèæ
®ããããšã§ãMaximaã®ã¹ã ãŒãºãªã€ã³ã¹ããŒã«ãšäœ¿çšãå¯èœã«ãªããŸãã",
"title": "Maximaã®Linuxãã£ã¹ããªãã¥ãŒã·ã§ã³ãžã®ã€ã³ã¹ããŒã«"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "æ°å€æŒç®ãªã©ã®éããæåŸ
ãããªãã°ãæŒç®é床ã远æ±ããCMUCLãCMUCLããæåããããŠæŽ»çºã«ã¡ã³ããã³ã¹ãè¡ãããŠããSBCLã®å©çšã埡å§ãããã CLISPã¯ãäžéã³ãŒããã«ã³ã³ãã€ã«ãããããšã«å¯ŸããŠãCMUCLãSBCLã¯ããã€ãã£ãã³ãŒããã«ã³ã³ãã€ã«ããããããæ°åéããªãã Maximaã®ä»¥åã®ããŒãžã§ã³ã¯GCLãšCLISPãåæãšããŠäœãããŠããã®ã ããMaxima 5.9.*以åŸäž»æµãCMUCLãSBCLã«ç§»ã£ãããã§ããã",
"title": "Maximaã®Linuxãã£ã¹ããªãã¥ãŒã·ã§ã³ãžã®ã€ã³ã¹ããŒã«"
}
] | Maxima > ãªããã¯ã¹ã«ãããã€ã³ã¹ããŒã«ã®ä»æ¹ | <small> [[Maxima]] > ãªããã¯ã¹ã«ãããã€ã³ã¹ããŒã«ã®ä»æ¹</small>
----
== Maximaã®Linuxãã£ã¹ããªãã¥ãŒã·ã§ã³ãžã®ã€ã³ã¹ããŒã«==
Linuxã«Maximaãã€ã³ã¹ããŒã«ããæ¹æ³ã¯ãéåžžãããã±ãŒãžãããŒãžã£ãŒã䜿çšããŠè¡ããŸãã
以äžã¯ãäžè¬çãªLinuxãã£ã¹ããªãã¥ãŒã·ã§ã³ãžã®ã€ã³ã¹ããŒã«æé ã®æŠèŠã§ãã
;Debian/UbuntuããŒã¹ã®ãã£ã¹ããªãã¥ãŒã·ã§ã³
:ããã±ãŒãžãªã¹ããæŽæ°ããMaximaãã€ã³ã¹ããŒã«ããŸãïŒ
:<syntaxhighlight lang=shell>
sudo apt update
sudo apt install maxima
</syntaxhighlight>
;FedoraããŒã¹ã®ãã£ã¹ããªãã¥ãŒã·ã§ã³
:ããã±ãŒãžãªã¹ããæŽæ°ããMaximaãã€ã³ã¹ããŒã«ããŸãïŒ
:<syntaxhighlight lang=shell>
sudo dnf update
sudo dnf install maxima
</syntaxhighlight>
;Arch Linux
:ããã±ãŒãžãªã¹ããæŽæ°ããMaximaãã€ã³ã¹ããŒã«ããŸãïŒ
:<syntaxhighlight lang=shell>
sudo pacman -Syu
sudo pacman -S maxima
</syntaxhighlight>
;CentOS/RHEL
:CentOSãRHELã§ã¯ãEPELãªããžããªãæå¹ã«ãããã®åŸãMaximaãã€ã³ã¹ããŒã«ããŸãïŒ
:<syntaxhighlight lang=shell>
sudo yum install epel-release
sudo yum install maxima
</syntaxhighlight>
ãããã®æé ã«åŸããšãLinuxãã£ã¹ããªãã¥ãŒã·ã§ã³ã«Maximaãã€ã³ã¹ããŒã«ã§ããŸãã
=== Maximaã€ã³ã¹ããŒã«ã®æ³šæç¹ ===
Maximaãã€ã³ã¹ããŒã«ããéã®æ³šæç¹ã¯ããã€ããããŸãã以äžã«ããã€ãæããŠã¿ãŸãïŒ
;ããã±ãŒãžäŸåé¢ä¿ã®ç¢ºèª: ã€ã³ã¹ããŒã«ããåã«ãMaximaãäŸåããããã±ãŒãžãã·ã¹ãã ã«ã€ã³ã¹ããŒã«ãããŠããããšã確èªããŠãã ãããç¹ã«Linuxã·ã¹ãã ã§ã¯ãå¿
èŠãªã©ã€ãã©ãªãã©ã³ã¿ã€ã ãäžè¶³ããŠããå ŽåããããŸãã
;ããŒãžã§ã³ã®éžæ: ææ°ããŒãžã§ã³ãåžžã«å©çšããããšãæãŸããããã§ã¯ãããŸãããå®å®ããããŒãžã§ã³ããç¹å®ã®æ©èœãäºææ§ãå¿
èŠãªå Žåã¯ãé©åãªããŒãžã§ã³ãéžæããå¿
èŠããããŸãã
;ã·ã¹ãã èŠä»¶: Maximaãå®è¡ããããã«å¿
èŠãªããŒããŠã§ã¢èŠä»¶ãããµããŒããããŠãããªãã¬ãŒãã£ã³ã°ã·ã¹ãã ã確èªããŠãã ãããç¹ã«å€ãããŒããŠã§ã¢ãå€ãããŒãžã§ã³ã®ãªãã¬ãŒãã£ã³ã°ã·ã¹ãã ã§ã¯ãæ£åžžã«åäœããªãå ŽåããããŸãã
;ã»ãã¥ãªãã£: ã€ã³ã¹ããŒã«å
ã®ä¿¡é Œæ§ãéèŠã§ããå
¬åŒã®ãœãŒã¹ãä¿¡é Œã§ããããã±ãŒãžãããŒãžã£ãŒããã®ã€ã³ã¹ããŒã«ãæšå¥šããŸãããŸããäžæ£ãªãœãŒã¹ããã®ããŠã³ããŒãããä¿¡é Œã§ããªããªããžããªããã®ããã±ãŒãžã®ã€ã³ã¹ããŒã«ã¯é¿ããã¹ãã§ãã
;ã¢ã³ã€ã³ã¹ããŒã«æé ã®çè§£: ã€ã³ã¹ããŒã«åŸã«Maximaãã¢ã³ã€ã³ã¹ããŒã«ããå Žåãã·ã¹ãã ã«åœ±é¿ãäžããªãããã«ãæ£ããæé ãçè§£ããŠããããšãéèŠã§ããç¹ã«ãæåã§ã€ã³ã¹ããŒã«ããå Žåã¯ããã¡ã€ã«ãèšå®ãæ®ãå¯èœæ§ããããããããããé©åã«ã¯ãªãŒã³ã¢ããããå¿
èŠããããŸãã
ãããã®æ³šæç¹ãèæ
®ããããšã§ãMaximaã®ã¹ã ãŒãºãªã€ã³ã¹ããŒã«ãšäœ¿çšãå¯èœã«ãªããŸãã
==== Common LispåŠçç³»ã«ã€ããŠã®è£è¶³====
æ°å€æŒç®ãªã©ã®éããæåŸ
ãããªãã°ãæŒç®é床ã远æ±ããCMUCLãCMUCLããæåããããŠæŽ»çºã«ã¡ã³ããã³ã¹ãè¡ãããŠããSBCLã®å©çšã埡å§ãããã
CLISPã¯ãäžéã³ãŒããã«ã³ã³ãã€ã«ãããããšã«å¯ŸããŠãCMUCLãSBCLã¯ããã€ãã£ãã³ãŒããã«ã³ã³ãã€ã«ããããããæ°åéããªãã
Maximaã®ä»¥åã®ããŒãžã§ã³ã¯GCLãšCLISPãåæãšããŠäœãããŠããã®ã ããMaxima 5.9.*以åŸäž»æµãCMUCLãSBCLã«ç§»ã£ãããã§ããã
[[Category:Maxima|ããªã€ããã«ãããããããšããã®ããã]] | 2005-06-02T12:24:00Z | 2024-01-30T05:23:18Z | [] | https://ja.wikibooks.org/wiki/Maxima/%E3%83%AA%E3%83%8A%E3%83%83%E3%82%AF%E3%82%B9%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8B%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%BC%E3%83%AB%E3%81%AE%E4%BB%95%E6%96%B9 |
2,098 | Maxima/å
·äœçãªäœ¿ãæ¹ | Maxima > å
·äœçãªäœ¿ãæ¹
æ°åŒåŠçã·ã¹ãã ãªã®ã§ã èšç®ãããæ°åŒããªããšäœ¿ãéããªãã äŸãã°ãæ°åŠã®æç§æžãããã°ã èšç®ããããåŒãã¿ã€ããã ããã ãã¡ããå€äŒã¿ã®å®¿é¡ãç°¡åã ã:-) æç« é¡ããèªæžææ³æã¯ç¡çã ã...ã
äŸãã°ãåæ°ã®è¶³ãç® 1/2 + 1/3 ãèšç®ãããããšãããã maximaã¯ãcommand lineã¢ãŒããš batchã¢ãŒãã§äœ¿ãããšãåºæ¥ãã é·ãåŒãæžããšããªã©ã¯åŒã®æžãå€ããã§ããªã ãšæžãã®ã倧å€ã ãã command lineã¢ãŒãã®maximaã§ã¯ã å®éã«åŒã®æžãå€ããã§ããªãã ãã®ããå€ãã®å Žåã«batchã¢ãŒãã 䜿ãããšã«ãªããšæãã ãŸãcommand lineã¢ãŒãã§ã¯ã
ãšæã€ã ãããšãmaximaãèµ·åã
ãšè¡šç€ºãããã®ã§ã(iã¯inputã®ç¥)
ãšããã (æåŸã®;ãå¿ãããšããŸãããããããªãããšã èµ·ããã®ã§æ³šæããããš!) äžæãæžãããã°ã
ãšè¡šç€ºãããã(oã¯outputã®ç¥) ãã£ãŠãçã¯5/6ã ãšåãã
batchã¢ãŒãã§ã¯ããŸãèšç®ããããå
容ã ãã¡ã€ã«ã«æžãåºãã äŸãã°ãaaaãšãããã¡ã€ã«ã䜿ããšããã (Linuxã¯æ¡åŒµåãã€ããªããã¡ã€ã«ã 䜿ãããšããããå®éåé¡ãšã㊠maximaã¯æ¡åŒµåã䜿ã£ãŠãã¡ã€ã«ãå€å®ããã®ã§ã¯ ç¡ããããªã®ã§ãããã§ã¯äœãšã€ããŠãå·®ãæ¯ããªãã) ã€ãŸãã奜ããªãšãã£ã¿ã䜿ã£ãŠaaaãç·šéããã®ã§ããã ãããããã¡ãããã®ããã«æžãã®ã奜ããªäººéãããã ããã
äœã«ããaaaã®çšæãåºæ¥ããªãã
ãšæãŠã°ããã çµæã¯æšæºåºåã«è¡šç€ºãããã ããã çµæãé·ããªã£ãå Žåã«ã¯
ãšãããšãçµæã®åŒã bbbã«æžãããŸããã®ã§ãåŸãããã£ãã èªãããšãåºæ¥ãã
maximaã¯åæ°ã®è¶³ãç®ãè¡ãããšãã§ããã
maximaã¯ç°ãªã忝ã®èšç®ãæ£ããè¡ãªãããšãåºæ¥ãã
maximaã¯åæ°ã®ããç®ãè¡ãªãããšãåºæ¥ãã
maximaã¯åæ°ã®å²ãç®ãè¡ãªãããšãåºæ¥ãã
(ãã£ãã¯çç¥ã§ããªãã)
Maximaã¯æ£è² ã®æ°ãæ··ãã£ãååæŒç®ã è¡ãªãããšãåºæ¥ãã
Maximaã¯æååŒã®ååæŒç®ã è¡ãªãããšãåºæ¥ãã
maximaã¯æ¹çšåŒãæ±ããã
maximaã¯2å
æ¹çšåŒãæ±ããã
maximaã¯å¹³æ¹æ ¹ã®å€ãä»»æã®æ¡ãŸã§æ±ããããšãåºæ¥ãã
Maximaã¯åŒã®å±éãšå æ°åè§£ãè¡ãªãããšãåºæ¥ãã
maximaã¯äºæ¬¡æ¹çšåŒãæ±ãããšãã§ããã
maximaã¯è€çŽ æ°ããµããŒãããŠããã
Note:maximaã¯ææ°eã®å€ãç¥ã£ãŠããã (å®éã«ã¯éåžžã®ã³ã³ãã¥ãŒã¿ãŒã¯ ãã®å€ãèšç®ã§ããããã«ãªã£ãŠããã¯ãã§ããã )
maximaã¯ã埮ç©åããµããŒãããã
note: maxima ã¯åŸ®åæ³ããµããŒãããã
maximaã¯è¡åã®æŒç®ããµããŒãããã
| [
{
"paragraph_id": 0,
"tag": "p",
"text": "Maxima > å
·äœçãªäœ¿ãæ¹",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "æ°åŒåŠçã·ã¹ãã ãªã®ã§ã èšç®ãããæ°åŒããªããšäœ¿ãéããªãã äŸãã°ãæ°åŠã®æç§æžãããã°ã èšç®ããããåŒãã¿ã€ããã ããã ãã¡ããå€äŒã¿ã®å®¿é¡ãç°¡åã ã:-) æç« é¡ããèªæžææ³æã¯ç¡çã ã...ã",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "äŸãã°ãåæ°ã®è¶³ãç® 1/2 + 1/3 ãèšç®ãããããšãããã maximaã¯ãcommand lineã¢ãŒããš batchã¢ãŒãã§äœ¿ãããšãåºæ¥ãã é·ãåŒãæžããšããªã©ã¯åŒã®æžãå€ããã§ããªã ãšæžãã®ã倧å€ã ãã command lineã¢ãŒãã®maximaã§ã¯ã å®éã«åŒã®æžãå€ããã§ããªãã ãã®ããå€ãã®å Žåã«batchã¢ãŒãã 䜿ãããšã«ãªããšæãã ãŸãcommand lineã¢ãŒãã§ã¯ã",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãšæã€ã ãããšãmaximaãèµ·åã",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãšè¡šç€ºãããã®ã§ã(iã¯inputã®ç¥)",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãšããã (æåŸã®;ãå¿ãããšããŸãããããããªãããšã èµ·ããã®ã§æ³šæããããš!) äžæãæžãããã°ã",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãšè¡šç€ºãããã(oã¯outputã®ç¥) ãã£ãŠãçã¯5/6ã ãšåãã",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "batchã¢ãŒãã§ã¯ããŸãèšç®ããããå
容ã ãã¡ã€ã«ã«æžãåºãã äŸãã°ãaaaãšãããã¡ã€ã«ã䜿ããšããã (Linuxã¯æ¡åŒµåãã€ããªããã¡ã€ã«ã 䜿ãããšããããå®éåé¡ãšã㊠maximaã¯æ¡åŒµåã䜿ã£ãŠãã¡ã€ã«ãå€å®ããã®ã§ã¯ ç¡ããããªã®ã§ãããã§ã¯äœãšã€ããŠãå·®ãæ¯ããªãã) ã€ãŸãã奜ããªãšãã£ã¿ã䜿ã£ãŠaaaãç·šéããã®ã§ããã ãããããã¡ãããã®ããã«æžãã®ã奜ããªäººéãããã ããã",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "äœã«ããaaaã®çšæãåºæ¥ããªãã",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãšæãŠã°ããã çµæã¯æšæºåºåã«è¡šç€ºãããã ããã çµæãé·ããªã£ãå Žåã«ã¯",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãšãããšãçµæã®åŒã bbbã«æžãããŸããã®ã§ãåŸãããã£ãã èªãããšãåºæ¥ãã",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "maximaã¯åæ°ã®è¶³ãç®ãè¡ãããšãã§ããã",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "maximaã¯ç°ãªã忝ã®èšç®ãæ£ããè¡ãªãããšãåºæ¥ãã",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "maximaã¯åæ°ã®ããç®ãè¡ãªãããšãåºæ¥ãã",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "maximaã¯åæ°ã®å²ãç®ãè¡ãªãããšãåºæ¥ãã",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "(ãã£ãã¯çç¥ã§ããªãã)",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "Maximaã¯æ£è² ã®æ°ãæ··ãã£ãååæŒç®ã è¡ãªãããšãåºæ¥ãã",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "Maximaã¯æååŒã®ååæŒç®ã è¡ãªãããšãåºæ¥ãã",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "maximaã¯æ¹çšåŒãæ±ããã",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "maximaã¯2å
æ¹çšåŒãæ±ããã",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "maximaã¯å¹³æ¹æ ¹ã®å€ãä»»æã®æ¡ãŸã§æ±ããããšãåºæ¥ãã",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "Maximaã¯åŒã®å±éãšå æ°åè§£ãè¡ãªãããšãåºæ¥ãã",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "maximaã¯äºæ¬¡æ¹çšåŒãæ±ãããšãã§ããã",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "maximaã¯è€çŽ æ°ããµããŒãããŠããã",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "Note:maximaã¯ææ°eã®å€ãç¥ã£ãŠããã (å®éã«ã¯éåžžã®ã³ã³ãã¥ãŒã¿ãŒã¯ ãã®å€ãèšç®ã§ããããã«ãªã£ãŠããã¯ãã§ããã )",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "maximaã¯ã埮ç©åããµããŒãããã",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "note: maxima ã¯åŸ®åæ³ããµããŒãããã",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "maximaã¯è¡åã®æŒç®ããµããŒãããã",
"title": "å
·äœçãªäœ¿ãæ¹"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "",
"title": "å
·äœçãªäœ¿ãæ¹"
}
] | Maxima > å
·äœçãªäœ¿ãæ¹ | <small> [[Maxima]] > å
·äœçãªäœ¿ãæ¹</small>
----
== å
·äœçãªäœ¿ãæ¹==
===ãœããã®äœ¿ãæ¹===
æ°åŒåŠçã·ã¹ãã ãªã®ã§ã
èšç®ãããæ°åŒããªããšäœ¿ãéããªãã
äŸãã°ãæ°åŠã®æç§æžãããã°ã
èšç®ããããåŒãã¿ã€ããã ããã
<!--
ãã䜿ããã èšç®åŒã«å¯Ÿå¿ãã
maximaã®é¢æ°ã®ãã¡ã®å€ããã
ææžã®äžã«æžããã€ããã ã
ã©ãã ããã?
-->
ãã¡ããå€äŒã¿ã®å®¿é¡ãç°¡åã ã:-)
æç« é¡ããèªæžææ³æã¯ç¡çã ã...ã
äŸãã°ãåæ°ã®è¶³ãç®
1/2 + 1/3
ãèšç®ãããããšãããã
<!--
(ãããåºæ¥ãªã人éã¯
ãããããã£ãšå¢ããŠæ¥ããã ãã...)
-->
maximaã¯ãcommand lineã¢ãŒããš
batchã¢ãŒãã§äœ¿ãããšãåºæ¥ãã
é·ãåŒãæžããšããªã©ã¯åŒã®æžãå€ããã§ããªã
ãšæžãã®ã倧å€ã ãã
command lineã¢ãŒãã®maximaã§ã¯ã
å®éã«åŒã®æžãå€ããã§ããªãã
ãã®ããå€ãã®å Žåã«batchã¢ãŒãã
䜿ãããšã«ãªããšæãã
ãŸãcommand lineã¢ãŒãã§ã¯ã
$maxima
ãšæã€ã
ãããšãmaximaãèµ·åã
(%i1)
ãšè¡šç€ºãããã®ã§ã(iã¯inputã®ç¥)
(%i1) 1/2 + 1/3;
ãšããã
(æåŸã®;ãå¿ãããšããŸãããããããªãããšã
èµ·ããã®ã§æ³šæããããš!)
äžæãæžãããã°ã
(%o1)
5
-
6
ãšè¡šç€ºãããã(oã¯outputã®ç¥)
ãã£ãŠãçã¯5/6ã ãšåãã
batchã¢ãŒãã§ã¯ããŸãèšç®ããããå
容ã
ãã¡ã€ã«ã«æžãåºãã
äŸãã°ãaaaãšãããã¡ã€ã«ã䜿ããšããã
(Linuxã¯æ¡åŒµåãã€ããªããã¡ã€ã«ã
䜿ãããšããããå®éåé¡ãšããŠ
maximaã¯æ¡åŒµåã䜿ã£ãŠãã¡ã€ã«ãå€å®ããã®ã§ã¯
ç¡ããããªã®ã§ãããã§ã¯äœãšã€ããŠãå·®ãæ¯ããªãã)
ã€ãŸãã奜ããªãšãã£ã¿ã䜿ã£ãŠaaaãç·šéããã®ã§ããã
ãããããã¡ãããã®ããã«æžãã®ã奜ããªäººéãããã ããã
$cat >>aaa
1/2 + 1/3;
[Ctrl-d]
äœã«ããaaaã®çšæãåºæ¥ããªãã
$maxima -b aaa
ãšæãŠã°ããã
çµæã¯æšæºåºåã«è¡šç€ºãããã ããã
çµæãé·ããªã£ãå Žåã«ã¯
$maxima -b aaa > bbb
ãšãããšãçµæã®åŒã
bbbã«æžãããŸããã®ã§ãåŸãããã£ãã
èªãããšãåºæ¥ãã
===åççãªæ°åŠã«å¯Ÿãã䜿çšäŸ===
====å°åŠæ ¡====
maximaã¯åæ°ã®è¶³ãç®ãè¡ãããšãã§ããã
command: 3/5 + 1/5;
maximaã¯ç°ãªã忝ã®èšç®ãæ£ããè¡ãªãããšãåºæ¥ãã
command: 1/5 + 1/3;
maximaã¯åæ°ã®ããç®ãè¡ãªãããšãåºæ¥ãã
command: 1/5 * 2/3;
maximaã¯åæ°ã®å²ãç®ãè¡ãªãããšãåºæ¥ãã
command: 1 / (1/2);
command: 1 / (2/3);
(ãã£ãã¯çç¥ã§ããªãã)
====äžåŠæ ¡====
Maximaã¯æ£è² ã®æ°ãæ··ãã£ãååæŒç®ã
è¡ãªãããšãåºæ¥ãã
command: -3 + 4;
command: -3*4;
command: 1*(-1)*(-1);
Maximaã¯æååŒã®ååæŒç®ã
è¡ãªãããšãåºæ¥ãã
command: x+x;
command: x+y;
command: x+3*y+4*y;
command: 2*x * 3*y;
command: x * 2*x;
or command: x*2*x;
maximaã¯æ¹çšåŒãæ±ããã
command:solve([x+3=4],[x]);
command:solve([2*x=1],[x]);
maximaã¯2å
æ¹çšåŒãæ±ããã
command: solve([x+2*y = 1, 2*x+y = 3],[x,y]);
maximaã¯å¹³æ¹æ ¹ã®å€ãä»»æã®æ¡ãŸã§æ±ããããšãåºæ¥ãã
command:bfloat(sqrt(3));
Maximaã¯åŒã®å±éãšå æ°åè§£ãè¡ãªãããšãåºæ¥ãã
command:expand((a+b)*(c+d));
command:factor(a^2-b^2);
maximaã¯äºæ¬¡æ¹çšåŒãæ±ãããšãã§ããã
command:solve([x^2-1=0],[x]);
==== é«çåŠæ ¡ ====
maximaã¯è€çŽ æ°ããµããŒãããŠããã
command: %iãiã«å¯Ÿå¿ããã
Note:maximaã¯ææ°eã®å€ãç¥ã£ãŠããã
(å®éã«ã¯éåžžã®ã³ã³ãã¥ãŒã¿ãŒã¯
ãã®å€ãèšç®ã§ããããã«ãªã£ãŠããã¯ãã§ããã
)
command:bfloat(%e);
maximaã¯ã埮ç©åããµããŒãããã
command:diff(f(x),x);
command:integrate(f(x),x);
command:integrate(f(x),[x,a,b]);
note: maxima ã¯åŸ®åæ³ããµããŒãããã
command: diff(f(x)+g(x),x);
command: diff(af(x),x);
command: diff(f(x)*g(x),x);
command: diff(1/f(x),x);
maximaã¯è¡åã®æŒç®ããµããŒãããã
command: A:matrix([a,b],[c,d]);
command: B:matrix([e,f],[g,h]);
command: A + B
command: A.B (è¡åã®ç©)
command: A^^-1 (éè¡å)
[[Category:Maxima|ããããŠããªã€ãããã]] | null | 2015-08-08T11:27:56Z | [] | https://ja.wikibooks.org/wiki/Maxima/%E5%85%B7%E4%BD%93%E7%9A%84%E3%81%AA%E4%BD%BF%E3%81%84%E6%96%B9 |
2,102 | ç ç® ä¹ç® | æ°åŠ>ç ç®>ä¹ç®
äžæ¡ã®æãç®ã¯è¶³ãç®ãšä¹ä¹ããåºæ¥ãã°ã§ããã
äŸé¡.123456Ã7=
ãŸã123456ã眮ãã
次ã«1ãæã£ãŠ1Ã7=7ãäžæ¡é¢ããæã«çœ®ãã ããã§æãç®ã®çµæãäºæ¡ã«ãªã£ããšãã¯ãäžã®äœãäžæ¡é¢ãããšããã«çœ®ãã
次ã«2ãæã£ãŠ2Ã7=14ã眮ãããã®ãšãç¹°ãäžãããããããšã«æ³šæã
以äžåãäœæ¥ãç¹°ãè¿ãã
ããããŠåºã864192ãçãã§ãããæåã«äžæ¡é¢ããŠçœ®ããã®ã§äœãäºã€ãããŠããããšã«æ³šæãç¹ã«äžã®äœã0ã«ãªããšãã«ééããããã
ãŸãã¯9Ã123ããã£ãŠã¿ããã
æããããæ°ãäžæ¡ãªã®ã§äžæ¡é¢ããŠ9Ã1=9ã眮ãã
æåã®ãã¡ã¯æããæ°ã¯æ®ããŠããã»ããè¯ãã æ¬¡ã«9Ã2=18ã眮ãã
æåŸã«9Ã3=27ã眮ãã
ããã§çã1107ã ãšåããã
次ã«987Ã123ãããŠã¿ããã
ããã»ã©ãã£ãããã«9Ã123ãããã
次ã«ãã®äžãã8Ã123ãããã æ¬¡ã®èšç®ã§æ¡ãééããªãããã«ãäžæ¡é¢ããæãäžã®äœãªã®ã§ã1Ã8=8ã¯ä»0ãç«ã£ãŠããäœã§ããã
7Ã123ã¯çç¥ããã®ã§èªåã§ãã£ãŠã¿ããã
çãã¯121401ãšãªã£ãã
æ°åãé·ããªããšèªã¿ã¥ãããããã§äžæ¡ããšã«ã³ã³ããæã€ã
ã³ã³ããæã€ãšãã«ã¯ç®ç€äžã®ç¹ãç®å®ãšãªãã
次ã¯å²ãç®ããã£ãŠã¿ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ°åŠ>ç ç®>ä¹ç®",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "äžæ¡ã®æãç®ã¯è¶³ãç®ãšä¹ä¹ããåºæ¥ãã°ã§ããã",
"title": "äžæ¡ãæãã"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "äŸé¡.123456Ã7=",
"title": "äžæ¡ãæãã"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãŸã123456ã眮ãã",
"title": "äžæ¡ãæãã"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "次ã«1ãæã£ãŠ1Ã7=7ãäžæ¡é¢ããæã«çœ®ãã ããã§æãç®ã®çµæãäºæ¡ã«ãªã£ããšãã¯ãäžã®äœãäžæ¡é¢ãããšããã«çœ®ãã",
"title": "äžæ¡ãæãã"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "次ã«2ãæã£ãŠ2Ã7=14ã眮ãããã®ãšãç¹°ãäžãããããããšã«æ³šæã",
"title": "äžæ¡ãæãã"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "以äžåãäœæ¥ãç¹°ãè¿ãã",
"title": "äžæ¡ãæãã"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ããããŠåºã864192ãçãã§ãããæåã«äžæ¡é¢ããŠçœ®ããã®ã§äœãäºã€ãããŠããããšã«æ³šæãç¹ã«äžã®äœã0ã«ãªããšãã«ééããããã",
"title": "äžæ¡ãæãã"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãŸãã¯9Ã123ããã£ãŠã¿ããã",
"title": "è€æ°æ¡ãæãã"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "æããããæ°ãäžæ¡ãªã®ã§äžæ¡é¢ããŠ9Ã1=9ã眮ãã",
"title": "è€æ°æ¡ãæãã"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "æåã®ãã¡ã¯æããæ°ã¯æ®ããŠããã»ããè¯ãã æ¬¡ã«9Ã2=18ã眮ãã",
"title": "è€æ°æ¡ãæãã"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "æåŸã«9Ã3=27ã眮ãã",
"title": "è€æ°æ¡ãæãã"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ããã§çã1107ã ãšåããã",
"title": "è€æ°æ¡ãæãã"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "次ã«987Ã123ãããŠã¿ããã",
"title": "è€æ°æ¡ãæãã"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ããã»ã©ãã£ãããã«9Ã123ãããã",
"title": "è€æ°æ¡ãæãã"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "次ã«ãã®äžãã8Ã123ãããã æ¬¡ã®èšç®ã§æ¡ãééããªãããã«ãäžæ¡é¢ããæãäžã®äœãªã®ã§ã1Ã8=8ã¯ä»0ãç«ã£ãŠããäœã§ããã",
"title": "è€æ°æ¡ãæãã"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "7Ã123ã¯çç¥ããã®ã§èªåã§ãã£ãŠã¿ããã",
"title": "è€æ°æ¡ãæãã"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "çãã¯121401ãšãªã£ãã",
"title": "è€æ°æ¡ãæãã"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "æ°åãé·ããªããšèªã¿ã¥ãããããã§äžæ¡ããšã«ã³ã³ããæã€ã",
"title": "ã³ã³ããæã€"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ã³ã³ããæã€ãšãã«ã¯ç®ç€äžã®ç¹ãç®å®ãšãªãã",
"title": "ã³ã³ããæã€"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "次ã¯å²ãç®ããã£ãŠã¿ããã",
"title": "ã³ã³ããæã€"
}
] | æ°åŠïŒç ç®ïŒä¹ç® | [[æ°åŠ]]ïŒ[[ç ç®]]ïŒä¹ç®
==äžæ¡ãæãã==
äžæ¡ã®æãç®ã¯[[ç ç®_å æžç®|è¶³ãç®]]ãšä¹ä¹ããåºæ¥ãã°ã§ããã
äŸé¡.123456×7=
ãŸã123456ã眮ãã
< >< >< >< >< >< >< >< >< >< >< >< > < >< >< >< >
< >< >
====*========*========*========*========*========*====
< >< >< >< > < >
< >< >< >< >< >< >< >< > < >< >< >< > < >< >< >< >
< >< >< >< >< >< >< >< >< > < >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< >< > < >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< >< >< > < >< >< >< >< >< >
1 2 3 4 5 6
次ã«1ãæã£ãŠ1×7=7ãäžæ¡é¢ããæã«çœ®ãã
ããã§æãç®ã®çµæãäºæ¡ã«ãªã£ããšãã¯ãäžã®äœãäžæ¡é¢ãããšããã«çœ®ãã
< >< >< >< >< >< > < >< >< >< >< > < >< >< >< >
< > < >< >
====*========*========*========*========*========*====
< > < >< >< > < >
< >< >< >< >< >< >< >< >< >< >< >< >< > < >< >< >< >
< >< >< >< >< >< > < >< > < >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< >< > < >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< >< >< > < >< >< >< >< >< >
7 2 3 4 5 6
次ã«2ãæã£ãŠ2×7=14ã眮ãããã®ãšãç¹°ãäžãããããããšã«æ³šæã
< >< >< >< >< >< > < >< >< >< >< > < >< >< >< >
< > < >< >
====*========*========*========*========*========*====
< >< > < >< > < >
< >< >< >< >< >< >< >< >< >< >< >< >< > < >< >< >< >
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< > < >< >< > < >< >< >< >< >< >< >
< >< >< >< >< >< >< > < >< >< > < >< >< >< >< >< >
+1 4 3 4 5 6
以äžåãäœæ¥ãç¹°ãè¿ãã
< >< >< >< >< >< > < >< >< >< > < >< >< >< >
< >< > < >< >
====*========*========*========*========*========*====
< >< >< > < > < >
< >< >< >< >< >< >< > < >< >< >< > < >< >< >< >
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< > < >< >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< >< >< > < >< >< >< >< >< >
+2 1 4 5 6
< >< >< >< >< >< > < > < >< > < >< >< >< >
< >< > < > < >< >
====*========*========*========*========*========*====
< >< >< >< > < >
< >< >< >< >< >< >< > < >< >< >< >< > < >< >< >< >
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< > < > < >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
+2 8 5 6
< >< >< >< >< >< > < >< > < >< > < >< >< >< >
< >< > < > < >
====*========*========*========*========*========*====
< >< >< >< > < >
< >< >< >< >< >< >< > < > < >< >< > < >< >< >< >
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< > < >< >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< > < >< >< >< >< >< >< >< >< >
+3 5 6
< >< >< >< >< >< > < >< > < >< >< >< >< >< >< >
< >< > < >
====*========*========*========*========*========*====
< >< >< >< >< >< >
< >< >< >< >< >< >< > < > < >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< >< >< > < >< >< >< >< >< >
< >< >< >< >< >< > < >< >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< > < > < >< >< >< >< >< >< >
+4 2
ããããŠåºã864192ãçãã§ãããæåã«äžæ¡é¢ããŠçœ®ããã®ã§äœãäºã€ãããŠããããšã«æ³šæãç¹ã«äžã®äœã0ã«ãªããšãã«ééããããã
==è€æ°æ¡ãæãã==
===äžæ¡Ãè€æ°æ¡===
ãŸãã¯9×123ããã£ãŠã¿ããã
< >< >< >< >< > < >
< >
=======*========*====
< >
< >< >< >< >< >< >< >
< >< >< >< >< >< >< >
< >< >< >< >< >< >< >
< >< >< >< >< > < >
9
æããããæ°ãäžæ¡ãªã®ã§äžæ¡é¢ããŠ9×1=9ã眮ãã
< > < >< >< > < >
< > < >
=======*========*====
< > < >
< >< >< >< >< >< >< >
< >< >< >< >< >< >< >
< >< >< >< >< >< >< >
< > < >< >< > < >
9 9
æåã®ãã¡ã¯æããæ°ã¯æ®ããŠããã»ããè¯ãã
次ã«9×2=18ã眮ãã
< >< > < >< > < >
< > < >
=======*========*====
< > < > < >
< >< >< >< >< >< >
< >< >< >< >< >< >< >
< >< > < >< >< >< >
< >< >< >< >< > < >
+1 8 9
æåŸã«9×3=27ã眮ãã
< >< >< > < >< >< >
< >
=======*========*====
< >< > < >
< >< >< >< >< >
< >< >< > < >< >< >
< >< >< >< >< >< >< >
< >< >< >< >< >< >< >
+2 7
ããã§çã1107ã ãšåããã
===è€æ°æ¡Ãè€æ°æ¡===
次ã«987×123ãããŠã¿ããã
< >< >< >< >< >< >< >< >< >< >< > < >< >< >< >
< >< >< >
====*========*========*========*========*========*====
< >< >< >
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< >< >< >< >< > < >< >< >< >
< >< >< >< >< >< >< >< >< >< >< >< > < >< >< >< >< >
< >< >< >< >< >< >< >< >< >< >< > < >< >< >< >< >< >
9 8 7
ããã»ã©ãã£ãããã«9×123ãããã
< >< >< >< >< >< >< >< >< > < >< > < >< >< >< >
< > < >< >
====*========*========*========*========*========*====
< >< > < > < >< >
< >< >< >< >< >< > < >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< > < >< >< > < >< >< >< >
< >< >< >< >< >< >< >< >< >< >< >< > < >< >< >< >< >
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
1 1 0 7 8 7
次ã«ãã®äžãã8×123ãããã
次ã®èšç®ã§æ¡ãééããªãããã«ãäžæ¡é¢ããæãäžã®äœãªã®ã§ã1×8=8ã¯ä»0ãç«ã£ãŠããäœã§ããã
< >< >< >< >< >< >< >< > < >< > < >< >< >< >
< >< > < >< >
====*========*========*========*========*========*====
< >< >< >< > < >< >
< >< >< >< >< >< > < >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< > < >< >< > < >< >< >< >
< >< >< >< >< >< >< >< > < >< >< > < >< >< >< >< >
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
+8 8 7
< >< >< >< >< >< >< >< >< >< >< >< > < >< >< >< >
< >< >
====*========*========*========*========*========*====
< >< > < > < >< >
< >< >< >< >< >< > < >< >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< > < >< >< >< >< > < >< >< >< >
< >< >< >< >< >< >< >< >< > < >< > < >< >< >< >< >
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
+1 6 8 7
< >< >< >< >< >< >< >< >< > < >< >< > < >< >< >< >
< > < >
====*========*========*========*========*========*====
< >< > < > < >
< >< >< >< >< >< > < >< >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< > < >< >< >< >< > < >< >< >< >
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< >< > < >< >< >< >< >< >< >
+2 4 7
7×123ã¯çç¥ããã®ã§èªåã§ãã£ãŠã¿ããã
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
====*========*========*========*========*========*====
< >< >< >< > < >
< >< >< >< >< >< > < > < >< > < >< >< >< >< >< >
< >< >< >< >< >< >< > < >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< > < >< >< >< >< >< >< >< >
çãã¯121401ãšãªã£ãã
==ã³ã³ããæã€==
æ°åãé·ããªããšèªã¿ã¥ãããããã§äžæ¡ããšã«ã³ã³ããæã€ã
*123456789â123,456,789
*1099511627776â1,099,511,627,776
ã³ã³ããæã€ãšãã«ã¯ç®ç€äžã®ç¹ãç®å®ãšãªãã
次ã¯[[ç ç®_é€ç®|å²ãç®]]ããã£ãŠã¿ããã
[[Category:ç ç®|ããããã]] | null | 2006-12-12T15:27:40Z | [] | https://ja.wikibooks.org/wiki/%E7%8F%A0%E7%AE%97_%E4%B9%97%E7%AE%97 |
2,103 | ç ç® é€ç® | æ°åŠ>ç ç®>é€ç®
789÷3ããã£ãŠã¿ããã
7÷3=2ããŸã1ã§ããããããŠéã«3Ã2ãããŠ6ãåºãã
å2ãäžæ¡é¢ããå
ã«ç«ãŠã3Ã2=6ãæãã
次ã«18÷3=6ã§ã¡ããã©å²ãåãããå6ãäžæ¡é¢ããå
ã«ç«ãŠ18ãæãã
æåŸã«9÷3=3ã§ã¡ããã©å²ãåããã®ã§å3ãäžæ¡é¢ããå
ã«ç«ãŠ9ãæãã
äœãããªããªã£ãã®ã§ããã§çµããã§ãããäœããåºããããªãå°æ°ç¹ä»¥äžãç¶ããŠããŸããªãã
次ã«5535÷45ããã£ãŠã¿ããã
ãŸã55÷45=1ããŸã10ã§ãããå1ãç«ãŠã45Ã1=45ãæãã
次ã«103÷45=2ããŸã13ã§ãããå2ãç«ãŠã45ÃÃ2=90ãæãã
æåŸã«135÷45=3ã§å²ãåãããå3ãç«ãŠã45Ã3=135ãæãã
ããã§åã¯123ãšåããã
å²ãç®ã¯å°ãæç®ãåãåãããããšãå¿
èŠã«ãªãã®ã§ãæåã®ãã¡ã¯ééããå€ãã
ããã§ãèªä¿¡ã®ç¡ãåãåºããåã³æãçŽãããšããå§ãããã
ãã¡ããa÷b=cãªãcÃb=aã§ããã
å²ãç®ãã§ãããéå¹³ããã£ãŠã¿ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ°åŠ>ç ç®>é€ç®",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "789÷3ããã£ãŠã¿ããã",
"title": "äžæ¡ã®å²ãç®"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "7÷3=2ããŸã1ã§ããããããŠéã«3Ã2ãããŠ6ãåºãã",
"title": "äžæ¡ã®å²ãç®"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "å2ãäžæ¡é¢ããå
ã«ç«ãŠã3Ã2=6ãæãã",
"title": "äžæ¡ã®å²ãç®"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "次ã«18÷3=6ã§ã¡ããã©å²ãåãããå6ãäžæ¡é¢ããå
ã«ç«ãŠ18ãæãã",
"title": "äžæ¡ã®å²ãç®"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "æåŸã«9÷3=3ã§ã¡ããã©å²ãåããã®ã§å3ãäžæ¡é¢ããå
ã«ç«ãŠ9ãæãã",
"title": "äžæ¡ã®å²ãç®"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "äœãããªããªã£ãã®ã§ããã§çµããã§ãããäœããåºããããªãå°æ°ç¹ä»¥äžãç¶ããŠããŸããªãã",
"title": "äžæ¡ã®å²ãç®"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "次ã«5535÷45ããã£ãŠã¿ããã",
"title": "è€æ°æ¡ã§å²ã"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ãŸã55÷45=1ããŸã10ã§ãããå1ãç«ãŠã45Ã1=45ãæãã",
"title": "è€æ°æ¡ã§å²ã"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "次ã«103÷45=2ããŸã13ã§ãããå2ãç«ãŠã45ÃÃ2=90ãæãã",
"title": "è€æ°æ¡ã§å²ã"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "æåŸã«135÷45=3ã§å²ãåãããå3ãç«ãŠã45Ã3=135ãæãã",
"title": "è€æ°æ¡ã§å²ã"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ããã§åã¯123ãšåããã",
"title": "è€æ°æ¡ã§å²ã"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "å²ãç®ã¯å°ãæç®ãåãåãããããšãå¿
èŠã«ãªãã®ã§ãæåã®ãã¡ã¯ééããå€ãã",
"title": "æ€ç®"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ããã§ãèªä¿¡ã®ç¡ãåãåºããåã³æãçŽãããšããå§ãããã",
"title": "æ€ç®"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãã¡ããa÷b=cãªãcÃb=aã§ããã",
"title": "æ€ç®"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "å²ãç®ãã§ãããéå¹³ããã£ãŠã¿ããã",
"title": "æ€ç®"
}
] | æ°åŠïŒç ç®ïŒé€ç® | [[æ°åŠ]]ïŒ[[ç ç®]]ïŒé€ç®
==äžæ¡ã®å²ãç®==
789÷3ããã£ãŠã¿ããã
< >< >< >< >< >< >< >< > < >< >< >< >< >< >< >
< >< >< >
====*========*========*========*========*========*====
< >< >< >
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< > < >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< > < >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< >< > < >< >< >< >< >< >< >
7 8 9
7÷3=2ããŸã1ã§ããããããŠéã«3×2ãããŠ6ãåºãã
å2ãäžæ¡é¢ããå
ã«ç«ãŠã3×2=6ãæãã
< >< >< >< >< >< >< >< >< > < >< >< >< >< >< >< >
< >< >
====*========*========*========*========*========*====
< > < >< >< >
< >< >< >< >< >< >< >< > < >< >< >< >< >< >< >< >< >
< >< >< >< >< >< > < >< >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< > < >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< >< > < >< >< >< >< >< >< >
2 -6
次ã«18÷3=6ã§ã¡ããã©å²ãåãããå6ãäžæ¡é¢ããå
ã«ç«ãŠ18ãæãã
< >< >< >< >< >< >< > < >< > < >< >< >< >< >< >< >
< > < >
====*========*========*========*========*========*====
< >< > < >
< >< >< >< >< >< >< > < >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< > < >< >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< >< > < >< >< >< >< >< >< >
2 6 -1 8
æåŸã«9÷3=3ã§ã¡ããã©å²ãåããã®ã§å3ãäžæ¡é¢ããå
ã«ç«ãŠ9ãæãã
< >< >< >< >< >< >< > < >< >< >< >< >< >< >< >< >< >
< >
====*========*========*========*========*========*====
< >< >< >
< >< >< >< >< >< >< > < >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< > < >< >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< > < >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
2 6 3
äœãããªããªã£ãã®ã§ããã§çµããã§ãããäœããåºããããªãå°æ°ç¹ä»¥äžãç¶ããŠããŸããªãã
==è€æ°æ¡ã§å²ã==
次ã«5535÷45ããã£ãŠã¿ããã
< >< >< >< >< >< >< > < >< >< >< >< >< >< >
< >< > < >
====*========*========*========*========*========*====
< >
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< > < >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
5 5 3 5
ãŸã55÷45=1ããŸã10ã§ãããå1ãç«ãŠã45×1=45ãæãã
< >< >< >< >< >< >< >< >< > < >< >< >< >< >< >< >
< >
====*========*========*========*========*========*====
< > < > < >
< >< >< >< >< > < > < >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< > < >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
1 -4 5
次ã«103÷45=2ããŸã13ã§ãããå2ãç«ãŠã45×Ã2=90ãæãã
< >< >< >< >< >< >< >< >< > < >< >< >< >< >< >< >
< >
====*========*========*========*========*========*====
< >< > < >< >
< >< >< >< >< > < >< > < >< >< >< >< >< >< >< >< >
< >< >< >< >< >< > < >< >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< > < >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
1 2 -9 0
æåŸã«135÷45=3ã§å²ãåãããå3ãç«ãŠã45×3=135ãæãã
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
====*========*========*========*========*========*====
< >< >< >
< >< >< >< >< > < >< >< >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< > < >< >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< > < >< >< >< >< >< >< >< >< >< >
< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >< >
1 2 3 -1 3 5
ããã§åã¯123ãšåããã
==æ€ç®==
å²ãç®ã¯å°ãæç®ãåãåãããããšãå¿
èŠã«ãªãã®ã§ãæåã®ãã¡ã¯ééããå€ãã
ããã§ãèªä¿¡ã®ç¡ãåãåºããåã³æãçŽãããšããå§ãããã
ãã¡ããa÷b=cãªãc×b=aã§ããã
å²ãç®ãã§ããã[[ç ç®_éå¹³ã»éç«|éå¹³]]ããã£ãŠã¿ããã
[[Category:ç ç®|ãããã]] | null | 2006-12-12T15:27:12Z | [] | https://ja.wikibooks.org/wiki/%E7%8F%A0%E7%AE%97_%E9%99%A4%E7%AE%97 |
2,105 | æ¯åãšæ³¢å | æ¬é
ã¯ç©çåŠ æ¯åãšæ³¢å ã®è§£èª¬ã§ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ¬é
ã¯ç©çåŠ æ¯åãšæ³¢å ã®è§£èª¬ã§ãã",
"title": ""
}
] | æ¬é
ã¯ç©çåŠ æ¯åãšæ³¢å ã®è§£èª¬ã§ãã ã¯ããã«
1ç²åã®æ¯å
忝å
éåºŠã«æ¯äŸããæµæåãããå Žåã®åæ¯å
åŒ·å¶æ¯å
è€æ°ç²åã®æ¯å
2ç²åã®å Žå
è€æ°ç²åã®å Žå
å€ç²åã®å Žå
é£ç¶æ¥µéãžã®ç§»è¡
æ³¢åæ¹çšåŒã®æ§è³ª
1次å
ã®æ³¢åæ¹çšåŒ
2次å
å¹³é¢äžã®æ³¢
3次å
空éäžã®æ³¢ | {{Pathnav|ã¡ã€ã³ããŒãž|èªç¶ç§åŠ|ç©çåŠ|frame=1|small=1}}
æ¬é
ã¯ç©çåŠ æ¯åãšæ³¢å ã®è§£èª¬ã§ãã
* [[æ¯åãšæ³¢å/ã¯ããã«|ã¯ããã«]]
* [[æ¯åãšæ³¢å/1ç²åã®æ¯å|1ç²åã®æ¯å]]
** [[æ¯åãšæ³¢å/1ç²åã®æ¯å#忝å|忝å]]
** [[æ¯åãšæ³¢å/1ç²åã®æ¯å#éåºŠã«æ¯äŸããæµæåãããå Žåã®åæ¯å|éåºŠã«æ¯äŸããæµæåãããå Žåã®åæ¯å]]
** [[æ¯åãšæ³¢å/1ç²åã®æ¯å#åŒ·å¶æ¯å|åŒ·å¶æ¯å]]
* [[æ¯åãšæ³¢å/è€æ°ç²åã®æ¯å|è€æ°ç²åã®æ¯å]]
** [[æ¯åãšæ³¢å/è€æ°ç²åã®æ¯å#2ç²åã®å Žå|2ç²åã®å Žå]]
** [[æ¯åãšæ³¢å/è€æ°ç²åã®æ¯å#è€æ°ç²åã®å Žå|è€æ°ç²åã®å Žå]]
** [[æ¯åãšæ³¢å/è€æ°ç²åã®æ¯å#å€ç²åã®å Žå|å€ç²åã®å Žå]]
** [[æ¯åãšæ³¢å/è€æ°ç²åã®æ¯å#é£ç¶æ¥µéãžã®ç§»è¡|é£ç¶æ¥µéãžã®ç§»è¡]]
* [[æ¯åãšæ³¢å/æ³¢åæ¹çšåŒã®æ§è³ª|æ³¢åæ¹çšåŒã®æ§è³ª]]
** [[æ¯åãšæ³¢å/æ³¢åæ¹çšåŒã®æ§è³ª#1次å
ã®æ³¢åæ¹çšåŒ|1次å
ã®æ³¢åæ¹çšåŒ]]
** [[æ¯åãšæ³¢å/æ³¢åæ¹çšåŒã®æ§è³ª#2次å
å¹³é¢äžã®æ³¢|2次å
å¹³é¢äžã®æ³¢]]
** [[æ¯åãšæ³¢å/æ³¢åæ¹çšåŒã®æ§è³ª#3次å
空éäžã®æ³¢|3次å
空éäžã®æ³¢]]
{{DEFAULTSORT:ãããšããšã¯ãšã}}
[[Category:æ¯åãšæ³¢å|*]]
{{NDC|424}} | 2005-06-04T09:17:34Z | 2024-03-16T02:55:36Z | [
"ãã³ãã¬ãŒã:Pathnav",
"ãã³ãã¬ãŒã:NDC"
] | https://ja.wikibooks.org/wiki/%E6%8C%AF%E5%8B%95%E3%81%A8%E6%B3%A2%E5%8B%95 |
2,106 | æ¯åãšæ³¢å/ã¯ããã« | æ¯åãšæ³¢å > ã¯ããã«
ãã®é
ã§ã¯æ³¢åçŸè±¡ã衚ããæ¹æ³ãåŠã¶ã
æ³¢åçŸè±¡ã®å°å
¥ã®ããã«ååŠçãªæ¯åãçšããããæ¯åãšããçŸè±¡ã¯ååŠçãªãã®ã«éãããä»åéã§ãçŸããããç¹ã«ã黿°åè·¯ã«ãããæ¯å(ã³ã³ãã³ãµãšã³ã€ã«ãªã©ãçšãã)ã¯éèŠãªå¿çšã§ããã
ãŸãããã®åéã¯é«çæè²ã®æ³¢åã«åœãããååŠè
ã¯è©²åœæç§æžãçè§£ã®å©ããšãªãããåŠç¿ã«è¡ãè©°ãŸã£ããåç
§ããé¡ããããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ¯åãšæ³¢å > ã¯ããã«",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãã®é
ã§ã¯æ³¢åçŸè±¡ã衚ããæ¹æ³ãåŠã¶ã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "æ³¢åçŸè±¡ã®å°å
¥ã®ããã«ååŠçãªæ¯åãçšããããæ¯åãšããçŸè±¡ã¯ååŠçãªãã®ã«éãããä»åéã§ãçŸããããç¹ã«ã黿°åè·¯ã«ãããæ¯å(ã³ã³ãã³ãµãšã³ã€ã«ãªã©ãçšãã)ã¯éèŠãªå¿çšã§ããã",
"title": "ã¯ããã«"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãŸãããã®åéã¯é«çæè²ã®æ³¢åã«åœãããååŠè
ã¯è©²åœæç§æžãçè§£ã®å©ããšãªãããåŠç¿ã«è¡ãè©°ãŸã£ããåç
§ããé¡ããããã",
"title": "ã¯ããã«"
}
] | æ¯åãšæ³¢å > ã¯ããã« | <small> [[æ¯åãšæ³¢å]] > ã¯ããã«</small>
----
==ã¯ããã«==
ãã®é
ã§ã¯æ³¢åçŸè±¡ã衚ããæ¹æ³ãåŠã¶ã
æ³¢åçŸè±¡ã®å°å
¥ã®ããã«ååŠçãªæ¯åãçšããããæ¯åãšããçŸè±¡ã¯ååŠçãªãã®ã«éãããä»åéã§ãçŸããããç¹ã«ã黿°åè·¯ã«ãããæ¯å(ã³ã³ãã³ãµãšã³ã€ã«ãªã©ãçšãã)ã¯éèŠãªå¿çšã§ããã
<!-- ãšã¯ããããããã¯ç©çåŠãšãããã㯠-->
<!-- å·¥åŠ _黿°åè·¯" çã§æ±ãããã ããã -->
ãŸãããã®åéã¯é«çæè²ã®[[é«çåŠæ ¡_ç©ç#æ³¢å|æ³¢å]]ã«åœãããååŠè
ã¯è©²åœæç§æžãçè§£ã®å©ããšãªãããåŠç¿ã«è¡ãè©°ãŸã£ããåç
§ããé¡ããããã
{{DEFAULTSORT:ãããšããšã¯ãšãã¯ããã«}}
[[Category:æ¯åãšæ³¢å|0]] | 2005-06-05T02:47:26Z | 2024-03-16T02:56:33Z | [] | https://ja.wikibooks.org/wiki/%E6%8C%AF%E5%8B%95%E3%81%A8%E6%B3%A2%E5%8B%95/%E3%81%AF%E3%81%98%E3%82%81%E3%81%AB |
2,107 | æ¯åãšæ³¢å/1ç²åã®æ¯å | ç©äœãå
ãåãããšãã®éåãèããããã®ãšãéåæ¹çšåŒã¯ã
ã§è¡šãããã倿°k ããk = m Ï ã®é¢ä¿ã䜿ã£ãŠÏã«çœ®ãæãããšã
ãåŸãããããã®åŒã¯ã宿°ä¿æ°ç·åœ¢2éåŸ®åæ¹çšåŒã§ããã®ã§ç°¡åã«è§£ãããšãã§ããè§£ã¯ã
ãšãªããããã§A , B ã¯ä»»æå®æ°ã§ãããããããæ±ºããããã«ã¯2ã€ã®åææ¡ä»¶ãå¿
èŠã ããããã§ã¯ç¹ã«ãt = 0 ã§ã
ãšãããš
ã§è¡šãããããã£ãŠããã®åŒã®è§£ã¯
ãšãªãããã®éåã忝åãÏãåºæè§æ¯åæ°ãšåŒã¶ã
次ã«åã
ã§äžããããå Žåãèããã第2é
ã¯ãéåºŠã«æ¯äŸããåã§ããããã®æ§ãªåã¯ç©ºæ°æµæãªã©ã«èŠãããããã®å Žåã®éåæ¹çšåŒã¯
ãšãªãã ããã宿°ä¿æ°ã®2éåŸ®åæ¹çšåŒãªã®ã§è§£ããã®ã ããããã§ã¯å
·äœçã«èšç®ããããŸãã
ãšä»®å®ããããããéåæ¹çšåŒã«ä»£å
¥ãããš
ãåŸãããa ã¯
ã§äžããããããšãåãããããã§ãæµæåã®ä¿æ°ã§ããγãå°ããæ°ã§ãããšãããªããæ ¹å·ã®äžèº«ã¯è² ã«ãªãããã®è§£ã¯è€çŽ æ°ã«ãã£ãŠäžãããããå®éšããšããšäžè¬è§£ã¯
ãšãªã(A , B , α, βã¯ä»»æä¿æ°)ããã®è§£ã§ãä¿æ° exp(-γt /2) ã¯ç²åã®éåãæµæåãåããŠæéçã«æžè¡°ããŠããæ§åã瀺ããŠãããäžæ¹
ã®é
ã¯ããã®ç©äœãÏã«è¿ãè§æ¯åæ°ã§æ¯åããŠããããšã瀺ããŠããããã®æ¯åãæžè¡°æ¯åãšåŒã¶ã
ç©äœã忝åã®åã«å ããŠãåšæçãªå€åãåããŠããå Žåãèããããã®ãšãã
ãšãªã(å€åã®å€§ããã衚ããã©ã¡ãŒã¿ãšããŠãããã§ã¯ãåŸã®èšç®ãç°¡åã«ããããã«ããã©ã¡ãŒã¿ãml ãšãã圢ã«çœ®ãã)ã
ãã®ãšãéåæ¹çšåŒã¯ã
ãšãªãããã®åŒã¯ã宿°ä¿æ°2éåžžåŸ®åæ¹çšåŒã«å ããŠãå³èŸºã«é¢æ°é
ãå ãã£ã圢ãããŠããããã®ãšãç¹å¥ãªè§£ã®åœ¢ãäºæž¬ããŠããã®æ¹çšåŒã®ç¹è§£ãæ±ããããšãåºæ¥ããããã§ã¯ãè§£ã
ãšä»®å®ããããããéåæ¹çšåŒã«ä»£å
¥ãããš
ãåŸãããããã£ãŠã
ã¯ããã®æ¹çšåŒã®ç¹è§£ãšãªãã巊蟺ã®ç·åœ¢æ¹çšåŒã«å¯Ÿããäžè¬è§£ãå ãããšããã®æ¹çšåŒå
šäœã«å¯Ÿããè§£ã¯ã
ãšè¡šãããã
ãã®åŒã¯ã2ã€ã®éšåã«åãããŠããããŸãåŸåã®
ã®éšåã¯ãç©äœãå€åãåããŠããŠãã忝åãšåãè§æ¯åæ°ã®éåãç¹°ããããããšã衚ããŠãããæ¬¡ã«ååã®
ã®éšåã¯ãå€åãšåãè§æ¯åæ° Ï 0 {\displaystyle \omega _{0}} ã®åšæçãªéåãåŒãèµ·ããããããšã衚ããŠããã
ãã®åŒãèŠããšãÏ = Ï0 ã®ãšããx (t ) ã®å€ãç¡é倧ã«ãªãããã«èŠãããå®éãç³»ã®åºæè§æ¯åæ°Ïãšå€åã®è§æ¯åæ°Ï0 ãè¿ããšããç©äœã«ããããŠå€§ããªæ¯åãåŒãèµ·ããããããšãç¥ãããŠããããã®çŸè±¡ãå
±é³ŽãšåŒã¶ã
å
±é³Žã®å Žåã«x ãç¡é倧ã«ãªããšããçµæãã§ãã®ã¯ããã¡ããç©ççã«ãããããšã§ã¯ãªããäžã®è§£æ³(ç¹ã«ç¹è§£ãšããŠä»®å®ãã圢)ãäžååã ã£ãããšãæå³ãããæ£ããè§£ãæ±ããã«ã¯è§£ãšããŠä»®å®ãã圢ãããåºããªããã°ãªããªããããããšã¯å¥ã«ç©ççã«ããããããããæ¹æ³ããããã¢ã€ãã¢ã¯ãäžã®è§£æ³ã§åŸãè§£ã¯ÏãšÏ0 ãå°ãã§ãéãã°ããŸããããäžæ¹ããã©ã¡ãŒã¿ãé£ç¶çã«å€ãããšçŸè±¡ã(å€å)é£ç¶çã«å€ããã¯ãã ãããÏ = Ï0 ã®å Žåãšããã®ã¯ãÏ0âÏ ã®æ¥µéãšããŠåŸãããã¯ãã§ãããã ããäžã®è§£ã§ãã®æ¥µéãåãã°å
±é³Žã®å Žåã®æ£ããè§£ãåŸããããããšããããšã§ãããäœããäžã®è§£ã§åçŽã«ãã®æ¥µéããšã£ãŠããã¡ããããŸããããªããä¿æ°A , B ãæå³ã倱ãããã§ãããããã§A , B ã®ä»£ãã«åžžã«ã¯ã£ããããç©ççæå³ãæã€éãããªãã¡åææ¡ä»¶(t = 0 ã§ã®x , dx /dt ã®å€)ã䜿ã£ãŠäžã®è§£ãæžãçŽãããã®äžã§Ï0âÏ ã®æ¥µéãåããt = 0 ã§x (0) = X , dx (0)/dt = V ãšãããš
ã«ãªãã®ã§è§£ã¯
ãšãªããããããäžã§Ï0âÏ ã®æ¥µéãåããšã極éã¯ç¢ºãã«ååšããŠæ¬¡ã®ããã«ãªã:
ç¹ã«éèŠãªã®ã¯ç¬¬2é
ã§ãcosã«t ãæãã£ãŠããç¹ã§ãããæ¯åã®æ¯å¹
ãæéã«æ¯äŸããŠå¢å€§ããŠããã®ã§ããããã®çµæããå
±é³Žã®æ¬è³ªãåãããã€ãŸãå
±é³Žã§ã¯å€åããäžãããããšãã«ã®ãŒãèç©ãããŠãããšããã®ãæ¬è³ªã§ããã®ããæ¯å¹
ãæéãšãšãã«æãŠããç¡ã倧ãããªã£ãŠããã®ã§ãã(äžäŒããã®æåãªãšããœãŒãã§ãã寺ã®éãæäžæ¬ã§å€§ããåãããšããã®ããããæ£ç¢ºãªåšæã§æã§æŒãããšãç¶ãããšå
±é³Žã«ããå°ãã¥ã€ãšãã«ã®ãŒãèç©ãããŠæåŸã«ã¯å€§ããªæ¯åã«ãªã)ã
ãªããäžã®è§£æ³ã§ã¯çŸè±¡ã®ãã©ã¡ãŒã¿å€åã«å¯Ÿããé£ç¶æ§ãåæãšããŠããããã®åæã¯ãããŠãæãç«ã€ããã©ããªå Žåã§ããšãŸã§ã¯ãããªããä»ã®å Žåã«ã©ããã確èªããã«ã¯åŸãããè§£ãå
ã®åŸ®åæ¹çšåŒ(ã§Ï0 = Ïãšãããã®)ã«ä»£å
¥ããã°ããã確ãã«è§£ã«ãªã£ãŠããããšãåããããŸããÏ0 ãÏã«è¿ã¥ãã«ã€ãæ¯åã®ã°ã©ããã©ãå€ãã£ãŠè¡ãããèŠãã®ãè峿·±ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç©äœãå",
"title": "忝å"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãåãããšãã®éåãèããããã®ãšãéåæ¹çšåŒã¯ã",
"title": "忝å"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ã§è¡šãããã倿°k ããk = m Ï ã®é¢ä¿ã䜿ã£ãŠÏã«çœ®ãæãããšã",
"title": "忝å"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãåŸãããããã®åŒã¯ã宿°ä¿æ°ç·åœ¢2éåŸ®åæ¹çšåŒã§ããã®ã§ç°¡åã«è§£ãããšãã§ããè§£ã¯ã",
"title": "忝å"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãšãªããããã§A , B ã¯ä»»æå®æ°ã§ãããããããæ±ºããããã«ã¯2ã€ã®åææ¡ä»¶ãå¿
èŠã ããããã§ã¯ç¹ã«ãt = 0 ã§ã",
"title": "忝å"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãšãããš",
"title": "忝å"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ã§è¡šãããããã£ãŠããã®åŒã®è§£ã¯",
"title": "忝å"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãšãªãããã®éåã忝åãÏãåºæè§æ¯åæ°ãšåŒã¶ã",
"title": "忝å"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "次ã«åã",
"title": "éåºŠã«æ¯äŸããæµæåãããå Žåã®åæ¯å"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ã§äžããããå Žåãèããã第2é
ã¯ãéåºŠã«æ¯äŸããåã§ããããã®æ§ãªåã¯ç©ºæ°æµæãªã©ã«èŠãããããã®å Žåã®éåæ¹çšåŒã¯",
"title": "éåºŠã«æ¯äŸããæµæåãããå Žåã®åæ¯å"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãšãªãã ããã宿°ä¿æ°ã®2éåŸ®åæ¹çšåŒãªã®ã§è§£ããã®ã ããããã§ã¯å
·äœçã«èšç®ããããŸãã",
"title": "éåºŠã«æ¯äŸããæµæåãããå Žåã®åæ¯å"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãšä»®å®ããããããéåæ¹çšåŒã«ä»£å
¥ãããš",
"title": "éåºŠã«æ¯äŸããæµæåãããå Žåã®åæ¯å"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãåŸãããa ã¯",
"title": "éåºŠã«æ¯äŸããæµæåãããå Žåã®åæ¯å"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ã§äžããããããšãåãããããã§ãæµæåã®ä¿æ°ã§ããγãå°ããæ°ã§ãããšãããªããæ ¹å·ã®äžèº«ã¯è² ã«ãªãããã®è§£ã¯è€çŽ æ°ã«ãã£ãŠäžãããããå®éšããšããšäžè¬è§£ã¯",
"title": "éåºŠã«æ¯äŸããæµæåãããå Žåã®åæ¯å"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãšãªã(A , B , α, βã¯ä»»æä¿æ°)ããã®è§£ã§ãä¿æ° exp(-γt /2) ã¯ç²åã®éåãæµæåãåããŠæéçã«æžè¡°ããŠããæ§åã瀺ããŠãããäžæ¹",
"title": "éåºŠã«æ¯äŸããæµæåãããå Žåã®åæ¯å"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ã®é
ã¯ããã®ç©äœãÏã«è¿ãè§æ¯åæ°ã§æ¯åããŠããããšã瀺ããŠããããã®æ¯åãæžè¡°æ¯åãšåŒã¶ã",
"title": "éåºŠã«æ¯äŸããæµæåãããå Žåã®åæ¯å"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ç©äœã忝åã®åã«å ããŠãåšæçãªå€åãåããŠããå Žåãèããããã®ãšãã",
"title": "åŒ·å¶æ¯å"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ãšãªã(å€åã®å€§ããã衚ããã©ã¡ãŒã¿ãšããŠãããã§ã¯ãåŸã®èšç®ãç°¡åã«ããããã«ããã©ã¡ãŒã¿ãml ãšãã圢ã«çœ®ãã)ã",
"title": "åŒ·å¶æ¯å"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ãã®ãšãéåæ¹çšåŒã¯ã",
"title": "åŒ·å¶æ¯å"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ãšãªãããã®åŒã¯ã宿°ä¿æ°2éåžžåŸ®åæ¹çšåŒã«å ããŠãå³èŸºã«é¢æ°é
ãå ãã£ã圢ãããŠããããã®ãšãç¹å¥ãªè§£ã®åœ¢ãäºæž¬ããŠããã®æ¹çšåŒã®ç¹è§£ãæ±ããããšãåºæ¥ããããã§ã¯ãè§£ã",
"title": "åŒ·å¶æ¯å"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ãšä»®å®ããããããéåæ¹çšåŒã«ä»£å
¥ãããš",
"title": "åŒ·å¶æ¯å"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ãåŸãããããã£ãŠã",
"title": "åŒ·å¶æ¯å"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ã¯ããã®æ¹çšåŒã®ç¹è§£ãšãªãã巊蟺ã®ç·åœ¢æ¹çšåŒã«å¯Ÿããäžè¬è§£ãå ãããšããã®æ¹çšåŒå
šäœã«å¯Ÿããè§£ã¯ã",
"title": "åŒ·å¶æ¯å"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ãšè¡šãããã",
"title": "åŒ·å¶æ¯å"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ãã®åŒã¯ã2ã€ã®éšåã«åãããŠããããŸãåŸåã®",
"title": "åŒ·å¶æ¯å"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ã®éšåã¯ãç©äœãå€åãåããŠããŠãã忝åãšåãè§æ¯åæ°ã®éåãç¹°ããããããšã衚ããŠãããæ¬¡ã«ååã®",
"title": "åŒ·å¶æ¯å"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ã®éšåã¯ãå€åãšåãè§æ¯åæ° Ï 0 {\\displaystyle \\omega _{0}} ã®åšæçãªéåãåŒãèµ·ããããããšã衚ããŠããã",
"title": "åŒ·å¶æ¯å"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ãã®åŒãèŠããšãÏ = Ï0 ã®ãšããx (t ) ã®å€ãç¡é倧ã«ãªãããã«èŠãããå®éãç³»ã®åºæè§æ¯åæ°Ïãšå€åã®è§æ¯åæ°Ï0 ãè¿ããšããç©äœã«ããããŠå€§ããªæ¯åãåŒãèµ·ããããããšãç¥ãããŠããããã®çŸè±¡ãå
±é³ŽãšåŒã¶ã",
"title": "åŒ·å¶æ¯å"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "å
±é³Žã®å Žåã«x ãç¡é倧ã«ãªããšããçµæãã§ãã®ã¯ããã¡ããç©ççã«ãããããšã§ã¯ãªããäžã®è§£æ³(ç¹ã«ç¹è§£ãšããŠä»®å®ãã圢)ãäžååã ã£ãããšãæå³ãããæ£ããè§£ãæ±ããã«ã¯è§£ãšããŠä»®å®ãã圢ãããåºããªããã°ãªããªããããããšã¯å¥ã«ç©ççã«ããããããããæ¹æ³ããããã¢ã€ãã¢ã¯ãäžã®è§£æ³ã§åŸãè§£ã¯ÏãšÏ0 ãå°ãã§ãéãã°ããŸããããäžæ¹ããã©ã¡ãŒã¿ãé£ç¶çã«å€ãããšçŸè±¡ã(å€å)é£ç¶çã«å€ããã¯ãã ãããÏ = Ï0 ã®å Žåãšããã®ã¯ãÏ0âÏ ã®æ¥µéãšããŠåŸãããã¯ãã§ãããã ããäžã®è§£ã§ãã®æ¥µéãåãã°å
±é³Žã®å Žåã®æ£ããè§£ãåŸããããããšããããšã§ãããäœããäžã®è§£ã§åçŽã«ãã®æ¥µéããšã£ãŠããã¡ããããŸããããªããä¿æ°A , B ãæå³ã倱ãããã§ãããããã§A , B ã®ä»£ãã«åžžã«ã¯ã£ããããç©ççæå³ãæã€éãããªãã¡åææ¡ä»¶(t = 0 ã§ã®x , dx /dt ã®å€)ã䜿ã£ãŠäžã®è§£ãæžãçŽãããã®äžã§Ï0âÏ ã®æ¥µéãåããt = 0 ã§x (0) = X , dx (0)/dt = V ãšãããš",
"title": "åŒ·å¶æ¯å"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ã«ãªãã®ã§è§£ã¯",
"title": "åŒ·å¶æ¯å"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ãšãªããããããäžã§Ï0âÏ ã®æ¥µéãåããšã極éã¯ç¢ºãã«ååšããŠæ¬¡ã®ããã«ãªã:",
"title": "åŒ·å¶æ¯å"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ç¹ã«éèŠãªã®ã¯ç¬¬2é
ã§ãcosã«t ãæãã£ãŠããç¹ã§ãããæ¯åã®æ¯å¹
ãæéã«æ¯äŸããŠå¢å€§ããŠããã®ã§ããããã®çµæããå
±é³Žã®æ¬è³ªãåãããã€ãŸãå
±é³Žã§ã¯å€åããäžãããããšãã«ã®ãŒãèç©ãããŠãããšããã®ãæ¬è³ªã§ããã®ããæ¯å¹
ãæéãšãšãã«æãŠããç¡ã倧ãããªã£ãŠããã®ã§ãã(äžäŒããã®æåãªãšããœãŒãã§ãã寺ã®éãæäžæ¬ã§å€§ããåãããšããã®ããããæ£ç¢ºãªåšæã§æã§æŒãããšãç¶ãããšå
±é³Žã«ããå°ãã¥ã€ãšãã«ã®ãŒãèç©ãããŠæåŸã«ã¯å€§ããªæ¯åã«ãªã)ã",
"title": "åŒ·å¶æ¯å"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ãªããäžã®è§£æ³ã§ã¯çŸè±¡ã®ãã©ã¡ãŒã¿å€åã«å¯Ÿããé£ç¶æ§ãåæãšããŠããããã®åæã¯ãããŠãæãç«ã€ããã©ããªå Žåã§ããšãŸã§ã¯ãããªããä»ã®å Žåã«ã©ããã確èªããã«ã¯åŸãããè§£ãå
ã®åŸ®åæ¹çšåŒ(ã§Ï0 = Ïãšãããã®)ã«ä»£å
¥ããã°ããã確ãã«è§£ã«ãªã£ãŠããããšãåããããŸããÏ0 ãÏã«è¿ã¥ãã«ã€ãæ¯åã®ã°ã©ããã©ãå€ãã£ãŠè¡ãããèŠãã®ãè峿·±ãã",
"title": "åŒ·å¶æ¯å"
}
] | null | {{Pathnav|ã¡ã€ã³ããŒãž|èªç¶ç§åŠ|ç©çåŠ|æ¯åãšæ³¢å|frame=1}}
==忝å==
ç©äœãå
:<math>
f(x) = -kx
</math>
ãåãããšãã®éåãèããããã®ãšãéåæ¹çšåŒã¯ã
:<math>
m\ddot x(t) + kx(t) =0
</math>
ã§è¡šãããã倿°''k'' ãã''k'' = ''m'' ω<sup>2</sup> ã®é¢ä¿ã䜿ã£ãŠωã«çœ®ãæãããšã
:<math>
\ddot x(t) + \omega^2x(t) =0
</math>
ãåŸãããããã®åŒã¯ã宿°ä¿æ°ç·åœ¢2éåŸ®åæ¹çšåŒã§ããã®ã§ç°¡åã«è§£ãããšãã§ããè§£ã¯ã
:<math>
x(t) = A \cos \omega t + B \sin\omega t
</math>
ãšãªããããã§''A'' , ''B'' ã¯ä»»æå®æ°ã§ãããããããæ±ºããããã«ã¯2ã€ã®åææ¡ä»¶ãå¿
èŠã ããããã§ã¯ç¹ã«ã''t'' = 0 ã§ã
:<math>
x(0)=x _0,\quad v(0)\equiv \dot{x}(t) = v _0
</math>
ãšãããš
:<math>
A = x _0,\quad
B = \frac {v _0} \omega
</math>
ã§è¡šãããããã£ãŠããã®åŒã®è§£ã¯
:<math>\begin{align}
x(t) &= x _0 \cos \omega t + \frac {v _0} \omega \sin\omega t \\
&=\sqrt{x_0^2+\left(\frac{v_0}{\omega}\right)^2}\cos(\omega t-\theta),\quad \tan\theta=\frac{v_0}{x_0\omega}
\end{align}</math>
ãšãªãããã®éåã'''忝å'''ãωã'''åºæè§æ¯åæ°'''ãšåŒã¶ã
==éåºŠã«æ¯äŸããæµæåãããå Žåã®åæ¯å==
次ã«åã
:<math>
f(x,\dot{x}) = -kx - m\gamma \dot x
</math>
ã§äžããããå Žåãèããã第2é
ã¯ãéåºŠã«æ¯äŸããåã§ããããã®æ§ãªåã¯ç©ºæ°æµæãªã©ã«èŠãããããã®å Žåã®éåæ¹çšåŒã¯
:<math>
\begin{align}
m\ddot x(t) + m\gamma \dot x(t) + kx(t) &=0\\
\therefore\quad\ddot x(t) + \gamma \dot x(t) + \omega^2 x(t) &=0
\end{align}
</math>
ãšãªãã
ããã宿°ä¿æ°ã®2éåŸ®åæ¹çšåŒãªã®ã§è§£ããã®ã ãã<!--çµæãç¬ç¹ãªã®ã§ã-->ããã§ã¯å
·äœçã«èšç®ããããŸãã
:<math>
x(t) = e ^{at}
</math>
ãšä»®å®ããããããéåæ¹çšåŒã«ä»£å
¥ãããš
:<math>
a^2 + \gamma a + \omega^2 = 0
</math>
ãåŸããã''a'' ã¯
:<math>
a _\pm = \frac 1 2 ( -\gamma \pm \sqrt{\gamma ^2 - 4 \omega^2} )
</math>
ã§äžããããããšãåãããããã§ãæµæåã®ä¿æ°ã§ããγãå°ããæ°ã§ãããšãããªã<!-- ããã§ãªããšãã®èšç® -->ãæ ¹å·ã®äžèº«ã¯è² ã«ãªãããã®è§£ã¯è€çŽ æ°ã«ãã£ãŠäžãããããå®éšããšããšäžè¬è§£ã¯
:<math>
\begin{align}
x(t) &= A e^{i a _+ t} + B e^{i a _- t}\\
&= e^{-\gamma t/2 } \{\alpha \sin (t\sqrt { \omega^2 - \gamma^2 / 4} ) +
\beta \cos (t\sqrt {\omega^2 - \gamma^2 / 4} ) \}
\end{align}
</math>
ãšãªãïŒ''A'' , ''B'' , α, βã¯ä»»æä¿æ°ïŒããã®è§£ã§ãä¿æ° exp(-γ''t'' /2) ã¯ç²åã®éåãæµæåãåããŠæéçã«æžè¡°ããŠããæ§åã瀺ããŠãããäžæ¹
:<math>
\alpha \sin (t\sqrt { \omega^2 - \gamma^2 / 4} ) + \beta \cos (t\sqrt {\omega^2 - \gamma^2 / 4} )
</math>
ã®é
ã¯ããã®ç©äœãωã«è¿ãè§æ¯åæ°ã§æ¯åããŠããããšã瀺ããŠããããã®æ¯åã'''æžè¡°æ¯å'''ãšåŒã¶ã
==åŒ·å¶æ¯å==
ç©äœã忝åã®åã«å ããŠãåšæçãªå€åãåããŠããå Žåãèããããã®ãšãã
:<math>
f(x,t) = -kx + m l\sin \omega _0 t
</math>
ãšãªãïŒå€åã®å€§ããã衚ããã©ã¡ãŒã¿ãšããŠãããã§ã¯ãåŸã®èšç®ãç°¡åã«ããããã«ããã©ã¡ãŒã¿ã''ml'' ãšãã圢ã«çœ®ããïŒã
ãã®ãšãéåæ¹çšåŒã¯ã
:<math>
\begin{align}
m\ddot x(t)+ m \omega ^2 x(t) &= ml \sin \omega _0 t\\
\therefore \quad \ddot x(t)+ \omega ^2 x(t) &= l \sin \omega _0 t
\end{align}
</math>
ãšãªãããã®åŒã¯ã宿°ä¿æ°2éåžžåŸ®åæ¹çšåŒã«å ããŠãå³èŸºã«é¢æ°é
ãå ãã£ã圢ãããŠããããã®ãšãç¹å¥ãªè§£ã®åœ¢ãäºæž¬ããŠããã®æ¹çšåŒã®ç¹è§£ãæ±ããããšãåºæ¥ããããã§ã¯ãè§£ã
:<math>
x(t) = C \sin \omega _0 t
</math>
ãšä»®å®ããããããéåæ¹çšåŒã«ä»£å
¥ãããš
:<math>
\begin{align}
& (- C \omega _0 ^2 + \omega^2 C )\sin \omega _0 t = l \sin \omega _0 t\\
& \therefore \quad C = \frac l {\omega^2 - \omega_0^2 }
\end{align}
</math>
ãåŸãããããã£ãŠã
:<math>
x(t) = \frac l {\omega^2 - \omega_0^2)}\sin \omega _0 t
</math>
ã¯ããã®æ¹çšåŒã®ç¹è§£ãšãªãã巊蟺ã®ç·åœ¢æ¹çšåŒã«å¯Ÿããäžè¬è§£ãå ãããšããã®æ¹çšåŒå
šäœã«å¯Ÿããè§£ã¯ã
:<math>
x(t) = \frac l {\omega^2 - \omega_0 ^2}\sin \omega _0 t
+ A \sin \omega t + B \cos \omega t
</math>
ãšè¡šãããã
ãã®åŒã¯ã2ã€ã®éšåã«åãããŠããããŸãåŸåã®
:<math>
A \sin \omega t + B \cos \omega t
</math>
ã®éšåã¯ãç©äœãå€åãåããŠããŠãã忝åãšåãè§æ¯åæ°ã®éåãç¹°ããããããšã衚ããŠãããæ¬¡ã«ååã®
:<math>
\frac l {- \omega _0 ^2 + \omega^2 }\sin \omega _0 t
</math>
ã®éšåã¯ãå€åãšåãè§æ¯åæ°<math>\omega _0</math>ã®åšæçãªéåãåŒãèµ·ããããããšã衚ããŠããã
ãã®åŒãèŠããšãω = ω<sub>0</sub> ã®ãšãã''x'' (''t'' ) ã®å€ãç¡é倧ã«ãªãããã«èŠãããå®éãç³»ã®åºæè§æ¯åæ°ωãšå€åã®è§æ¯åæ°ω<sub>0</sub> ãè¿ããšããç©äœã«ããããŠå€§ããªæ¯åãåŒãèµ·ããããããšãç¥ãããŠããããã®çŸè±¡ã'''å
±é³Ž'''ãšåŒã¶ã
å
±é³Žã®å Žåã«''x'' ãç¡é倧ã«ãªããšããçµæãã§ãã®ã¯ããã¡ããç©ççã«ãããããšã§ã¯ãªããäžã®è§£æ³ïŒç¹ã«ç¹è§£ãšããŠä»®å®ãã圢ïŒãäžååã ã£ãããšãæå³ãããæ£ããè§£ãæ±ããã«ã¯è§£ãšããŠä»®å®ãã圢ãããåºããªããã°ãªããªããããããšã¯å¥ã«ç©ççã«ããããããããæ¹æ³ããããã¢ã€ãã¢ã¯ãäžã®è§£æ³ã§åŸãè§£ã¯ωãšω<sub>0</sub> ãå°ãã§ãéãã°ããŸããããäžæ¹ããã©ã¡ãŒã¿ãé£ç¶çã«å€ãããšçŸè±¡ãïŒå€åïŒé£ç¶çã«å€ããã¯ãã ãããω = ω<sub>0</sub> ã®å Žåãšããã®ã¯ãω<sub>0</sub>→ω ã®æ¥µéãšããŠåŸãããã¯ãã§ãããã ããäžã®è§£ã§ãã®æ¥µéãåãã°å
±é³Žã®å Žåã®æ£ããè§£ãåŸããããããšããããšã§ãããäœããäžã®è§£ã§åçŽã«ãã®æ¥µéããšã£ãŠããã¡ããããŸããããªããä¿æ°''A'' , ''B'' ãæå³ã倱ãããã§ãããããã§''A'' , ''B'' ã®ä»£ãã«åžžã«ã¯ã£ããããç©ççæå³ãæã€éãããªãã¡åææ¡ä»¶ïŒ''t'' = 0 ã§ã®''x'' , ''dx'' /''dt'' ã®å€ïŒã䜿ã£ãŠäžã®è§£ãæžãçŽãããã®äžã§ω<sub>0</sub>→ω ã®æ¥µéãåãã''t'' = 0 ã§''x'' (0) = ''X'' , ''dx'' (0)/''dt'' = ''V'' ãšãããš
:<math>A=\frac{1}{\omega}\left(V+\frac{l\omega_0}{\omega_0^2-\omega^2}\right),\quad B=X</math>
ã«ãªãã®ã§è§£ã¯
:<math>\begin{align}
x(t) &= \frac l {- \omega _0 ^2 + \omega^2 }\sin \omega _0 t + \frac{1}{\omega}\left(V+\frac{l\omega_0}{\omega_0^2-\omega^2}\right)\sin \omega t+X \cos \omega t \\
&= \frac{l}{\omega(\omega_0+\omega)}\frac{\omega\sin \omega_0t-\omega_0\sin\omega t}{-\omega_0+\omega}+ \frac{V}{\omega}\sin \omega t+X \cos \omega t
\end{align}</math>
ãšãªããããããäžã§ω<sub>0</sub>→ω ã®æ¥µéãåããšã極éã¯ç¢ºãã«ååšããŠæ¬¡ã®ããã«ãªãïŒ
:<math>
x(t) = \frac{l}{2\omega^2}(\sin \omega t-\omega t\cos\omega t)+ \frac{V}{\omega}\sin \omega t+X \cos \omega t
</math>
ç¹ã«éèŠãªã®ã¯ç¬¬2é
ã§ãcosã«''t'' ãæãã£ãŠããç¹ã§ãããæ¯åã®æ¯å¹
ãæéã«æ¯äŸããŠå¢å€§ããŠããã®ã§ããããã®çµæããå
±é³Žã®æ¬è³ªãåãããã€ãŸãå
±é³Žã§ã¯å€åããäžãããããšãã«ã®ãŒãèç©ãããŠãããšããã®ãæ¬è³ªã§ããã®ããæ¯å¹
ãæéãšãšãã«æãŠããç¡ã倧ãããªã£ãŠããã®ã§ããïŒäžäŒããã®æåãªãšããœãŒãã§ãã寺ã®éãæäžæ¬ã§å€§ããåãããšããã®ããããæ£ç¢ºãªåšæã§æã§æŒãããšãç¶ãããšå
±é³Žã«ããå°ãã¥ã€ãšãã«ã®ãŒãèç©ãããŠæåŸã«ã¯å€§ããªæ¯åã«ãªãïŒã
ãªããäžã®è§£æ³ã§ã¯çŸè±¡ã®ãã©ã¡ãŒã¿å€åã«å¯Ÿããé£ç¶æ§ãåæãšããŠããããã®åæã¯ãããŠãæãç«ã€ããã©ããªå Žåã§ããšãŸã§ã¯ãããªããä»ã®å Žåã«ã©ããã確èªããã«ã¯åŸãããè§£ãå
ã®åŸ®åæ¹çšåŒïŒã§ω<sub>0</sub> = ωãšãããã®ïŒã«ä»£å
¥ããã°ããã確ãã«è§£ã«ãªã£ãŠããããšãåããããŸããω<sub>0</sub> ãωã«è¿ã¥ãã«ã€ãæ¯åã®ã°ã©ããã©ãå€ãã£ãŠè¡ãããèŠãã®ãè峿·±ãã
<!-- TODO -->
<!--\gamma ã®å€ããããŠèšç®ãçŽããå Žå -->
<!-- ç¹è§£ã®èšç®ãããããé¢åãã...ã -->
<!-- æµæåãå
¥ããå Žåã®èšç® -->
<!-- ä»åã¯ç¹è§£ãæ±ããããã« -->
<!-- A sin \w _0 t + B cos \w _0 t -->
<!-- ãšçœ®ãå¿
èŠãããã -->
{{DEFAULTSORT:ãããšããšã¯ãšããã¡ããããã®ãããšã}}
[[Category:æ¯åãšæ³¢å|ãã¡ããããã®ãããšã]] | 2005-06-05T02:52:08Z | 2024-03-16T02:57:39Z | [
"ãã³ãã¬ãŒã:Pathnav"
] | https://ja.wikibooks.org/wiki/%E6%8C%AF%E5%8B%95%E3%81%A8%E6%B3%A2%E5%8B%95/1%E7%B2%92%E5%AD%90%E3%81%AE%E6%8C%AF%E5%8B%95 |
2,109 | æ¯åãšæ³¢å/è€æ°ç²åã®æ¯å | 質ém1 , m2 ã®2ã€ã®è³ªç¹ãããã宿°k ã®ããã«ãã£ãŠã€ãªãããŠãã2èªç±åºŠç³»ãèããããã®ãšããããã®æ¹åã«x 軞ãåãããããåããªãç¶æ³ã«ãªã£ãŠãããšãã®è³ªç¹m1 ã®åº§æšãx1 ã質ç¹m2 ã®åº§æšãx2 ãšãããšãéåæ¹çšåŒ
ãåŸãããã座æš
ãå°å
¥ãããåŒ(1.1)ãm2 åãããã®ãããåŒ(1.2)ãm1 åãããã®ãåŒããšã
ãåŸããããããã§ã
ãšçœ®ãããåŒ(2)ã¯åæ¯åã®æ¹çšåŒã§ãããv1 , v2 ããããã質ç¹m1 ã質ç¹m2 ã®é床ãšãããšããã®è§£ã¯v1 = -v2 ã®ããã«åæ¯åãè¡ãªãããã®è§æ¯åæ°ã¯ã
ã§äžããããããšãåããã
ãŸããéåæ¹çšåŒ(1.1), (1.2)ãè¶³ãåããããšã
ãåŸããããããã§ã
ã§ãããããããã2ç©äœã®éåãx , X ã䜿ã£ã座æšã§è¡šãããX ã«ã€ããŠã¯èªç±ãªè³ªç¹ãšåãéåãããããšãåããã
ãã®ãšã2ç©äœã®å Žåã«ãããŠãäžã§å®çŸ©ãããX ãéå¿åº§æšãx ãçžå¯Ÿåº§æšãšåŒã¶ã
åãåé¡ãæŽã«å€ãã®ç²åãæ±ããšãã®ããæ¹ã§æžãããšãåºæ¥ãã åŒ(1.1), (1.2)ã§äžããããéåæ¹çšåŒã¯ã宿°ä¿æ°é£ç«2éåžžåŸ®åæ¹çšåŒã§ããã®ã§éåžžã®ä»æ¹ã§è§£ãããšãåºæ¥ãããã®æ¹éã«ãããã£ãŠã
(a1 , a2 ã¯å®æ°)ãšããããã®ãšãéåæ¹çšåŒã¯ã
ãããã¯ã
ãšæžãããšãåºæ¥ããããã§a1 = a2 = 0 ã¯ãã®æ¹çšåŒã®è§£ã§ãããããã以å€ã®è§£ããããšã
ãæãç«ã€ããšãå¿
èŠã§ãã(ç·å代æ°ã§ã¯ããã®ãããªæ¹çšåŒãåºææ¹çšåŒãšåŒã¶)ããããè§£ããšã
ãã£ãŠã
ãã
ãšãªããããã¯ãäžã§æ±ããå€ãšäžèŽããŠãããçµå±2ç©äœã®å Žåã§ã¯ãç·å代æ°ã®åºææ¹çšåŒã容æã«æ±ãããããšããããšãèšããã
ç²åã®æ°ãããã«å€ãå€èªç±åºŠç³»ã®å Žåããäžã§æ±ããæ¹æ³ãçšããããšãåºæ¥ããç¹ã«éèŠãªã®ã¯ãå
šãŠã®è³ªç¹ãåã質ém ãæã£ãŠããããã宿°k ã®ããã§ã€ãªãããŠããå Žåã§ããã
質ç¹ãN åããN èªç±åºŠç³»ãèãããn çªç®ã®è³ªç¹ã®åº§æšãun ãšãããšãéåæ¹çšåŒã¯ã
ãšãªããããã¯ãN å
é£ç«å®æ°ä¿æ°2éåžžåŸ®åæ¹çšåŒã§ããã®ã§ããã¯ãè§£ãããšãåºæ¥ãã
(an ã¯å®æ°)ãšãããšã
ãåŸãããããããè¡åã®åœ¢ã§æžããšã
ãšãªãããã®æ¹çšåŒãè§£ãã«ã¯äžè¬ã«ã¯ãã®è¡åã®åºææ¹çšåŒãè§£ããã°ãªããªãã幞ãã«ããã®å Žåã«ã¯åºæãã¯ãã«ã®åœ¢ãç¥ãããŠãããããã¯ã
(dã¯ä»»æã®å®æ°)ãšãªãã å®é
ãèšç®ãããšã第k è¡ç®ã«ã€ããŠ
ãšãªãè¡åããããåŸã®å€ããsin kd Ã(宿°) ã®åœ¢ãããŠããããšããããã 確ãã«ãã®ãã¯ãã«ã¯ãäžããããè¡åã®åºæãã¯ãã«ãšãªãã
åç¯ã§N è¡N åã®å€§ããªè¡åã®åºæãã¯ãã«ãç°¡åã«æ±ããããããšãèŠããå®éã«ã¯ãã®ããšã¯äžã§èŠãè¡åã®æ§è³ªã«ãã£ãŠããããã®æ§è³ªãå
·äœçã«èŠãããã«ãç²åã®æ°ãããããŠå€ããç²åãé£ç¶çã«ååžããŠãããšèŠãå Žåãèããã
2é埮å
ã颿£çãªéã«çŽãããšãèãããx ã颿£åããŠxi - 1 , xi , xi + 1 ãªã©ãšãããšããè¿äŒŒçã«
ãšæžããããšã«æ³šç®ãããšã
ãšãªããååã® ui + 1 - 2ui + ui - 1 ã¯éåæ¹çšåŒ(3)ã®å³èŸºã«ãçŸããŠãããããã2é埮åã衚ããŠããããšãåããã åŒ(3)ã«ä»£å
¥ãããšãv ããã宿°ãšããŠ
ãåŸãããããã®æ¹çšåŒãæ³¢åæ¹çšåŒãšåŒã¶ã åŸã«åããããšã ããæ³¢åæ¹çšåŒã¯ç©äœã®éåãéããŠãšãã«ã®ãŒãäŒæ¬ããŠè¡ãæ§åãè¡šãæ¹çšåŒãšãªã£ãŠãããããããå
ã¯ããã®æ¹çšåŒã®æ§è³ªãèŠãŠè¡ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "質ém1 , m2 ã®2ã€ã®è³ªç¹ãããã宿°k ã®ããã«ãã£ãŠã€ãªãããŠãã2èªç±åºŠç³»ãèããããã®ãšããããã®æ¹åã«x 軞ãåãããããåããªãç¶æ³ã«ãªã£ãŠãããšãã®è³ªç¹m1 ã®åº§æšãx1 ã質ç¹m2 ã®åº§æšãx2 ãšãããšãéåæ¹çšåŒ",
"title": "2ç²åã®å Žå"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãåŸãããã座æš",
"title": "2ç²åã®å Žå"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãå°å
¥ãããåŒ(1.1)ãm2 åãããã®ãããåŒ(1.2)ãm1 åãããã®ãåŒããšã",
"title": "2ç²åã®å Žå"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ãåŸããããããã§ã",
"title": "2ç²åã®å Žå"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãšçœ®ãããåŒ(2)ã¯åæ¯åã®æ¹çšåŒã§ãããv1 , v2 ããããã質ç¹m1 ã質ç¹m2 ã®é床ãšãããšããã®è§£ã¯v1 = -v2 ã®ããã«åæ¯åãè¡ãªãããã®è§æ¯åæ°ã¯ã",
"title": "2ç²åã®å Žå"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ã§äžããããããšãåããã",
"title": "2ç²åã®å Žå"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãŸããéåæ¹çšåŒ(1.1), (1.2)ãè¶³ãåããããšã",
"title": "2ç²åã®å Žå"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãåŸããããããã§ã",
"title": "2ç²åã®å Žå"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ã§ãããããããã2ç©äœã®éåãx , X ã䜿ã£ã座æšã§è¡šãããX ã«ã€ããŠã¯èªç±ãªè³ªç¹ãšåãéåãããããšãåããã",
"title": "2ç²åã®å Žå"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãã®ãšã2ç©äœã®å Žåã«ãããŠãäžã§å®çŸ©ãããX ãéå¿åº§æšãx ãçžå¯Ÿåº§æšãšåŒã¶ã",
"title": "2ç²åã®å Žå"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "",
"title": "2ç²åã®å Žå"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "åãåé¡ãæŽã«å€ãã®ç²åãæ±ããšãã®ããæ¹ã§æžãããšãåºæ¥ãã åŒ(1.1), (1.2)ã§äžããããéåæ¹çšåŒã¯ã宿°ä¿æ°é£ç«2éåžžåŸ®åæ¹çšåŒã§ããã®ã§éåžžã®ä»æ¹ã§è§£ãããšãåºæ¥ãããã®æ¹éã«ãããã£ãŠã",
"title": "2ç²åã®å Žå"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "(a1 , a2 ã¯å®æ°)ãšããããã®ãšãéåæ¹çšåŒã¯ã",
"title": "2ç²åã®å Žå"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãããã¯ã",
"title": "2ç²åã®å Žå"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãšæžãããšãåºæ¥ããããã§a1 = a2 = 0 ã¯ãã®æ¹çšåŒã®è§£ã§ãããããã以å€ã®è§£ããããšã",
"title": "2ç²åã®å Žå"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ãæãç«ã€ããšãå¿
èŠã§ãã(ç·å代æ°ã§ã¯ããã®ãããªæ¹çšåŒãåºææ¹çšåŒãšåŒã¶)ããããè§£ããšã",
"title": "2ç²åã®å Žå"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ãã£ãŠã",
"title": "2ç²åã®å Žå"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ãã",
"title": "2ç²åã®å Žå"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ãšãªããããã¯ãäžã§æ±ããå€ãšäžèŽããŠãããçµå±2ç©äœã®å Žåã§ã¯ãç·å代æ°ã®åºææ¹çšåŒã容æã«æ±ãããããšããããšãèšããã",
"title": "2ç²åã®å Žå"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ç²åã®æ°ãããã«å€ãå€èªç±åºŠç³»ã®å Žåããäžã§æ±ããæ¹æ³ãçšããããšãåºæ¥ããç¹ã«éèŠãªã®ã¯ãå
šãŠã®è³ªç¹ãåã質ém ãæã£ãŠããããã宿°k ã®ããã§ã€ãªãããŠããå Žåã§ããã",
"title": "å€ç²åã®å Žå"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "質ç¹ãN åããN èªç±åºŠç³»ãèãããn çªç®ã®è³ªç¹ã®åº§æšãun ãšãããšãéåæ¹çšåŒã¯ã",
"title": "å€ç²åã®å Žå"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ãšãªããããã¯ãN å
é£ç«å®æ°ä¿æ°2éåžžåŸ®åæ¹çšåŒã§ããã®ã§ããã¯ãè§£ãããšãåºæ¥ãã",
"title": "å€ç²åã®å Žå"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "(an ã¯å®æ°)ãšãããšã",
"title": "å€ç²åã®å Žå"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ãåŸãããããããè¡åã®åœ¢ã§æžããšã",
"title": "å€ç²åã®å Žå"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ãšãªãããã®æ¹çšåŒãè§£ãã«ã¯äžè¬ã«ã¯ãã®è¡åã®åºææ¹çšåŒãè§£ããã°ãªããªãã幞ãã«ããã®å Žåã«ã¯åºæãã¯ãã«ã®åœ¢ãç¥ãããŠãããããã¯ã",
"title": "å€ç²åã®å Žå"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "(dã¯ä»»æã®å®æ°)ãšãªãã å®é",
"title": "å€ç²åã®å Žå"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ãèšç®ãããšã第k è¡ç®ã«ã€ããŠ",
"title": "å€ç²åã®å Žå"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ãšãªãè¡åããããåŸã®å€ããsin kd Ã(宿°) ã®åœ¢ãããŠããããšããããã 確ãã«ãã®ãã¯ãã«ã¯ãäžããããè¡åã®åºæãã¯ãã«ãšãªãã",
"title": "å€ç²åã®å Žå"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "åç¯ã§N è¡N åã®å€§ããªè¡åã®åºæãã¯ãã«ãç°¡åã«æ±ããããããšãèŠããå®éã«ã¯ãã®ããšã¯äžã§èŠãè¡åã®æ§è³ªã«ãã£ãŠããããã®æ§è³ªãå
·äœçã«èŠãããã«ãç²åã®æ°ãããããŠå€ããç²åãé£ç¶çã«ååžããŠãããšèŠãå Žåãèããã",
"title": "é£ç¶æ¥µéãžã®ç§»è¡"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "2é埮å",
"title": "é£ç¶æ¥µéãžã®ç§»è¡"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ã颿£çãªéã«çŽãããšãèãããx ã颿£åããŠxi - 1 , xi , xi + 1 ãªã©ãšãããšããè¿äŒŒçã«",
"title": "é£ç¶æ¥µéãžã®ç§»è¡"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ãšæžããããšã«æ³šç®ãããšã",
"title": "é£ç¶æ¥µéãžã®ç§»è¡"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ãšãªããååã® ui + 1 - 2ui + ui - 1 ã¯éåæ¹çšåŒ(3)ã®å³èŸºã«ãçŸããŠãããããã2é埮åã衚ããŠããããšãåããã åŒ(3)ã«ä»£å
¥ãããšãv ããã宿°ãšããŠ",
"title": "é£ç¶æ¥µéãžã®ç§»è¡"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "ãåŸãããããã®æ¹çšåŒãæ³¢åæ¹çšåŒãšåŒã¶ã åŸã«åããããšã ããæ³¢åæ¹çšåŒã¯ç©äœã®éåãéããŠãšãã«ã®ãŒãäŒæ¬ããŠè¡ãæ§åãè¡šãæ¹çšåŒãšãªã£ãŠãããããããå
ã¯ããã®æ¹çšåŒã®æ§è³ªãèŠãŠè¡ãã",
"title": "é£ç¶æ¥µéãžã®ç§»è¡"
}
] | null | {{Pathnav|ã¡ã€ã³ããŒãž|èªç¶ç§åŠ|ç©çåŠ|æ¯åãšæ³¢å|frame=1}}
==2ç²åã®å Žå==
質é''m''<sub>1</sub> , ''m''<sub>2</sub> ã®2ã€ã®è³ªç¹ãããã宿°''k'' ã®ããã«ãã£ãŠã€ãªãããŠãã2èªç±åºŠç³»ãèããããã®ãšããããã®æ¹åã«''x'' 軞ãåãããããåããªãç¶æ³ã«ãªã£ãŠãããšãã®è³ªç¹''m''<sub>1</sub> ã®åº§æšã''x''<sub>1</sub> ã質ç¹''m''<sub>2</sub> ã®åº§æšã''x''<sub>2</sub> ãšãããšãéåæ¹çšåŒ
:<math>\begin{align}
m _1 \ddot x _1 =& -k (x _1 - x _2)\qquad (1.1)\\
m _2 \ddot x _2 =& k (x _1 - x _2) \qquad (1.2)
\end{align}</math>
ãåŸãããã座æš
:<math>\begin{align}
X &:= \frac{m _1 x _1+m _2 x _2}{m _1 + m _2}\\
x &:= x _1 - x _2
\end{align}</math>
ãå°å
¥ãããåŒ(1.1)ã''m''<sub>2</sub> åãããã®ãããåŒ(1.2)ã''m''<sub>1</sub> åãããã®ãåŒããšã
:<math>
\begin{align}
&m _1 m _2 (\ddot x _1 - \ddot x _2 ) = -k (x _1-x _2) ( m _2 + m _1)\\
&m _1 m _2 \ddot x = -k x ( m _2 + m _1)\\
&\therefore \quad \mu \ddot x = -k x \qquad (2)
\end{align}
</math>
ãåŸããããããã§ã
:<math>
\mu := \frac {m _1 m _2}{m _1 + m _2 }
</math>
ãšçœ®ãããåŒ(2)ã¯åæ¯åã®æ¹çšåŒã§ããã''v''<sub>1</sub> , ''v''<sub>2</sub> ããããã質ç¹''m''<sub>1</sub> ã質ç¹''m''<sub>2</sub> ã®é床ãšãããšããã®è§£ã¯''v''<sub>1</sub> = -''v''<sub>2</sub> ã®ããã«åæ¯åãè¡ãªãããã®è§æ¯åæ°ã¯ã
:<math>\omega_0=
\sqrt {\frac k \mu}
</math>
ã§äžããããããšãåããã
ãŸããéåæ¹çšåŒ(1.1), (1.2)ãè¶³ãåããããšã
:<math>\begin{align}
& m _1 \ddot x _1 +m _2 \ddot x _2 = 0\\
& (m _1 + m _2 )\frac {m _1 \ddot x _1 +m _2 \ddot x _2}{m _1+m _2} = 0\\
&\therefore \quad M \ddot X = 0
\end{align}</math>
ãåŸããããããã§ã
:<math>M := m _1+m _2</math>
ã§ãããããããã2ç©äœã®éåã''x'' , ''X'' ã䜿ã£ã座æšã§è¡šããã''X'' ã«ã€ããŠã¯èªç±ãªè³ªç¹ãšåãéåãããããšãåããã
ãã®ãšã2ç©äœã®å Žåã«ãããŠãäžã§å®çŸ©ããã''X'' ãéå¿åº§æšã''x'' ãçžå¯Ÿåº§æšãšåŒã¶ã
<!-- ãã®éšåã¯"å€å
žååŠ"ã«å
¥ããã¹ãããç¥ããŸããã -->
<!-- Xã¯nåã®ç©äœã«å¯ŸããŠå®çŸ©ã§ããã -->
<!-- å®çŸ©ã¯ã -->
<!-- X = \frac { \sum _ i m _i x _i } {\sum _i m _i} -->
<!-- ãšãªãã -->
<!-- *åè -->
<!-- 2ã€ã®ç©äœã®éåã¯ãã®æ§ã«éå¿åº§æš -->
<!-- ã©ã°ã©ã³ãžã¢ã³ã2座æšã§åé¢ã§ããããšã¯ -->
<!-- å¿
èŠã ããã? -->
åãåé¡ãæŽã«å€ãã®ç²åãæ±ããšãã®ããæ¹ã§æžãããšãåºæ¥ãã åŒ(1.1), (1.2)ã§äžããããéåæ¹çšåŒã¯ã宿°ä¿æ°é£ç«2éåžžåŸ®åæ¹çšåŒã§ããã®ã§éåžžã®ä»æ¹ã§è§£ãããšãåºæ¥ãããã®æ¹éã«ãããã£ãŠã
:<math>\begin{align}
x _1(t) &= a _1 e^{i\omega t}\\
x _2(t) &= a _2 e^{i\omega t}
\end{align}</math>
ïŒ''a''<sub>1</sub> , ''a''<sub>2</sub> ã¯å®æ°ïŒãšããã<!--(èæ°åäœiãå ããã®ãæ
£çšçã§ããã)-->ãã®ãšãéåæ¹çšåŒã¯ã
:<math>\begin{align}
- m _1\omega^2 a _1 =& -k (a _1 - a _2)\\
- m _2 \omega^2 a _2 =& k (a _1 - a _2)
\end{align}</math>
ãããã¯ã
:<math>\begin{align}
(- m _1 \omega^2 + k) a _1 - k a _2 =& 0\\
-k a _1 + (k - m _2 \omega^2) a _2 =& 0
\end{align}</math>
ãšæžãããšãåºæ¥ããããã§''a''<sub>1</sub> = ''a''<sub>2</sub> = 0 ã¯ãã®æ¹çšåŒã®è§£ã§ãããããã以å€ã®è§£ããããšã
:<math>
\begin{vmatrix}
- m _1 \omega^2 + k& - k \\
-k & k - m _2 \omega^2
\end{vmatrix}
= 0
</math>
ãæãç«ã€ããšãå¿
èŠã§ããïŒç·å代æ°ã§ã¯ããã®ãããªæ¹çšåŒãåºææ¹çšåŒãšåŒã¶ïŒããããè§£ããšã
:<math>\begin{align}
m _1 m _2 \omega^4 + k ( -m _1 -m _2) \omega^2 &= 0\\
\omega^2 ( m _1 m _2 \omega^2 - (m _1 + m _2)k ) &=0
\end{align}</math>
ãã£ãŠã
:<math>
\omega^2 = 0, \frac k \mu
</math>
ãã
:<math>
\omega = 0, \pm \sqrt{ \frac k \mu}
</math>
ãšãªããããã¯ãäžã§æ±ããå€ãšäžèŽããŠãããçµå±2ç©äœã®å Žåã§ã¯ãç·å代æ°ã®åºææ¹çšåŒã容æã«æ±ãããããšããããšãèšããã
==è€æ°ç²åã®å Žå==
<!-- 3ã€ã®ç²åã䜿ã£ãå ŽåãäŸã«åã£ãŠåºæºåº§æšã®å°å
¥ã -->
==å€ç²åã®å Žå==
ç²åã®æ°ãããã«å€ãå€èªç±åºŠç³»ã®å Žåããäžã§æ±ããæ¹æ³ãçšããããšãåºæ¥ããç¹ã«éèŠãªã®ã¯ãå
šãŠã®è³ªç¹ãåã質é''m'' ãæã£ãŠããããã宿°''k'' ã®ããã§ã€ãªãããŠããå Žåã§ããã
* å³
質ç¹ã''N'' åãã''N'' èªç±åºŠç³»ãèããã''n'' çªç®ã®è³ªç¹ã®åº§æšã''u<sub>n</sub>'' ãšãããšãéåæ¹çšåŒã¯ã
:<math>\begin{align}
m \ddot u _n &= - k( u _n - u _{n-1} ) + k( u _{n+1} -u _n ) \\
&= k( u _{n+1} -2u _n + u _{n-1} ), \\
\ddot u _n &= \omega _0^2( u _{n+1} -2u _n + u _{n-1} ) \qquad (3)
\end{align}</math>
ãšãªããããã¯ã''N'' å
é£ç«å®æ°ä¿æ°2éåžžåŸ®åæ¹çšåŒã§ããã®ã§ããã¯ãè§£ãããšãåºæ¥ãã
:<math>
u _n = a _n e^{i\omega t}
</math>
ïŒ''a<sub>n</sub>'' ã¯å®æ°ïŒãšãããšã
:<math>
-\omega^2 u _n = \omega _0^2( u _{n+1} -2u _n + u _{n-1} )
</math>
ãåŸãããããããè¡åã®åœ¢ã§æžããšã
:<math>
\begin{pmatrix}
-2 + \frac{\omega^2}{ \omega _0^2} &1 & & & 0 \\
1 &-2 + \frac{\omega^2}{ \omega _0^2} &1 \\
&1 &-2 + \frac{\omega^2}{ \omega _0^2} & \ddots\\
&& \ddots & \ddots & 1\\
0&&&1 &-2 + \frac{\omega^2}{ \omega _0^2} \\
\end{pmatrix}
\begin{pmatrix} u_1^2 \\ u_2^2 \\ u_3^2 \\ \vdots \\ u_N^2 \end{pmatrix}
= \boldsymbol{0}
</math>
ãšãªãããã®æ¹çšåŒãè§£ãã«ã¯äžè¬ã«ã¯ãã®è¡åã®åºææ¹çšåŒãè§£ããã°ãªããªãã幞ãã«ããã®å Žåã«ã¯åºæãã¯ãã«ã®åœ¢ãç¥ãããŠãããããã¯ã
:<math>
\begin{pmatrix} u_1^2 \\ u_2^2 \\ u_3^2 \\ \vdots \\ u_N^2 \end{pmatrix}
=
\begin{pmatrix}
\sin d \\
\sin 2 d \\
\sin 3 d \\
\vdots \\
\sin N d \\
\end{pmatrix}
</math>
ïŒ''d''ã¯ä»»æã®å®æ°ïŒãšãªãã
<!-- TODO -->
<!-- åºå®ç«¯ãšèªç±ç«¯ãšçœ®ãããšãã® dã®å€ã -->
<!-- (åŸã«ãé£ç¶æ¥µéãåã£ããšã -->
<!-- (ᅵrac 1 {v^2}\frac {\partial^2 {}}{\partial^2 t } - \frac {\partial^2 {}}{\partial^2 x } )u(x,t) = 0 -->
<!-- ã®å®åžžè§£ãã\sin ᅵrac x l ãªã©ã§äžããããããšã«ããã -->
å®é
:<math>
\begin{pmatrix}
-2 + \frac{\omega^2}{ \omega _0^2} &1 & & & 0 \\
1 &-2 + \frac{\omega^2}{ \omega _0^2} &1 \\
&1 &-2 + \frac{\omega^2}{ \omega _0^2} & \ddots\\
&& \ddots & \ddots & 1\\
0&&&1 &-2 + \frac{\omega^2}{ \omega _0^2} \\
\end{pmatrix}\begin{pmatrix}
\sin d \\
\sin 2 d \\
\sin 3 d \\
\vdots \\
\sin N d \\
\end{pmatrix}
</math>
ãèšç®ãããšã第''k'' è¡ç®ã«ã€ããŠ
:<math>
\sin (k-1) d + \left(-2+ \frac {\omega^2} {\omega _0^2}\right) \sin kd + \sin (k+1) d
= 2 \sin kd \left(2\cos d - 2 + \frac {\omega^2} {\omega _0^2}\right)
</math>
ãšãªãè¡åããããåŸã®å€ããsin ''kd'' ×(宿°) ã®åœ¢ãããŠããããšããããã
<!-- ãã£ãŠã -->
<!-- ᅵegin{align} -->
<!-- ᅵrac {\omega^2} {\omega _0^2}& = 2 - 2\cos d \ -->
<!-- & = 4 \sin ^2 ᅵrac d 2 -->
<!-- \end{align} -->
<!-- ãã£ãŠã -->
<!-- ᅵe -->
<!-- \omega^2 = 4 \omega _0^2 \sin ^2 ᅵrac d 2 -->
<!-- \ee (?) -->
確ãã«ãã®ãã¯ãã«ã¯ãäžããããè¡åã®åºæãã¯ãã«ãšãªãã
==é£ç¶æ¥µéãžã®ç§»è¡==
åç¯ã§''N'' è¡''N'' åã®å€§ããªè¡åã®åºæãã¯ãã«ãç°¡åã«æ±ããããããšãèŠããå®éã«ã¯ãã®ããšã¯äžã§èŠãè¡åã®æ§è³ªã«ãã£ãŠããããã®æ§è³ªãå
·äœçã«èŠãããã«ãç²åã®æ°ãããããŠå€ããç²åãé£ç¶çã«ååžããŠãããšèŠãå Žåãèããã
2é埮å
:<math>
\frac {\partial^2 {u}}{\partial^2 x } (x)
</math>
ã颿£çãªéã«çŽãããšãèããã''x'' ã颿£åããŠ''x''<sub>''i'' - 1</sub> , ''x<sub>i</sub>'' , ''x''<sub>''i'' + 1</sub> ãªã©ãšãããšããè¿äŒŒçã«
:<math>\begin{align}
u'(x+h) &\sim \frac {u(x _{i+1)}-u(x _{i})} h\\
u'(x) &\sim \frac {u(x _{i})-u(x _{i-1})} h
\end{align}</math>
ãšæžããããšã«æ³šç®ãããšã
:<math>\begin{align}
u''(x) &\sim \frac {u'(x+h) -u'(x) } h\\
&\sim \frac 1 h \left( \frac {u(x _{i+1)}-u(x _{i})} h-\frac {u(x _{i})-u(x _{i-1})} h \right) \\
&= \frac {u(x_{i+1}) - 2u(x_i) + u(x_{i-1})} {h^2}
\end{align}</math>
ãšãªããååã® ''u''<sub>''i'' + 1</sub> - 2''u<sub>i</sub>'' + ''u''<sub>''i'' - 1</sub> ã¯éåæ¹çšåŒ(3)ã®å³èŸºã«ãçŸããŠãããããã2é埮åã衚ããŠããããšãåããã
<!-- 埮å°ãªç¯å²ã¯ã©ããã? -->
<!-- mã質éå¯åºŠã«ãããšhã¯1ã€æ¶ããããã©ããš1ã€ã¯? -->
<!-- k to ã€ã³ã°çã®å®çŸ©? -->
åŒ(3)ã«ä»£å
¥ãããšã''v'' ããã宿°ãšããŠ
:<math>
\left(\frac 1 {v^2} \frac {\partial^2 {}}{\partial^2 t } - \frac {\partial^2 {}}{\partial^2 x } \right) u(x,t) = 0
</math>
ãåŸãããããã®æ¹çšåŒãæ³¢åæ¹çšåŒãšåŒã¶ã
<!-- ããã§ã¯ãååŠçãªç©äœã®éåãéã㊠-->
<!-- ãã®æ¹çšåŒãåŸããããã以å€ã«ãæ³¢åæ¹çšåŒã -->
<!-- åŸãããã€ãã®æ¹æ³ãç¥ãããŠããã -->
<!-- (ãšã¯ããæµäœååŠãå
ã蟿ãã°å€å
žååŠã...ã) -->
åŸã«åããããšã ããæ³¢åæ¹çšåŒã¯ç©äœã®éåãéããŠãšãã«ã®ãŒãäŒæ¬ããŠè¡ãæ§åãè¡šãæ¹çšåŒãšãªã£ãŠãããããããå
ã¯ããã®æ¹çšåŒã®æ§è³ªãèŠãŠè¡ãã
{{DEFAULTSORT:ãããšããšã¯ãšããµããããããã}}
[[Category:æ¯åãšæ³¢å|ãµãããããããã®ãããšã]] | 2005-06-05T03:06:21Z | 2024-03-16T02:58:43Z | [
"ãã³ãã¬ãŒã:Pathnav"
] | https://ja.wikibooks.org/wiki/%E6%8C%AF%E5%8B%95%E3%81%A8%E6%B3%A2%E5%8B%95/%E8%A4%87%E6%95%B0%E7%B2%92%E5%AD%90%E3%81%AE%E6%8C%AF%E5%8B%95 |
2,110 | ç ç® èŠåç®ã»èªäžç®ã»äŒç¥šç® | æ°åŠ>ç ç®>èŠåç®ã»èªäžç®ã»äŒç¥šç®
èŠåç®ãšã¯ãå æžç®ãçç®ã®ãããªåœ¢ã§äžŠã¹ãã
ã®ãããªãã®ã§èšç®ããçš®ç®ã§ããã ããããå·Šã«äœãæžããŠããªãæ°åã¯è¶³ããã-ããæžããŠããæ°åã¯åŒããåèšãåºãã
èªäžç®ãšã¯ãèŠåç®ã詊éšå®ãèªäžãããããèšç®ããçš®ç®ã§ããã ãã®æãç¬ç¹ã®çšèªã䜿ãããã
ãé¡ããŸããŠã¯xxxåä¹ãxxxåä¹ãã»ã»ã»xxxåã§ã¯ãã
ãšããå
·åã§ããã
åŒãç®ãããå Žåã¯ããåŒããŠã¯xxxåä¹ããšèšãã
ãã®å Žåãæ¬¡ã«ãå ããŠxxxåä¹ããšèšããŸã§ã¯å
šãŠåŒãç¶ããã
7æ¡(äœçŸäž)ã®èšç®ãããŠãããšãã«æ¥ã«3æ¡(äœçŸ)ã«ãªããšããèªäžç®ãªãã§ã¯ã®åŒã£æããããã
ããããçŸäžãšçŸã®ãããªçŽããããæ°ã®åºå¥ãã€ããããã«ã倧ããæ¹(ãã®å Žåã¯çŸäž)ã®æ°ãèšãåã«ã倧ãããçãä»ããããšãããã
ãçŸäžåäºåä¹ã倧ããçŸå
«åäžåäžåäºåä¹ã
ãšããå
·åã§ããã
äŒç¥šç®ãšã¯ãäžèŸºã ãçããŠããæšª13cm瞊8cmã®åå(ãããäŒç¥šãšãã)ã䜿ã£ãŠèšç®ããçš®ç®ã§ããã äŒç¥šã«ã¯1æã«ã€ã5ã€ã®æ°åãæžãããŠãããè£ã¯çœçŽã§ããããããã1ææ¯ã«è¶³ãã®ã§ã¯ãªãã1æã®ãã¡1ã€ç®ãªã1ã€ç®ã3ã€ç®ãªã3ã€ç®ã®æ°åå士ãè¶³ãã
äžã®å³ã§åããã ããããå®éã«ã¯ç¶Žã£ãŠããã®ã§å·Šæã§ãããã峿ã§èšç®ããªããã°ãªããªãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ°åŠ>ç ç®>èŠåç®ã»èªäžç®ã»äŒç¥šç®",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "èŠåç®ãšã¯ãå æžç®ãçç®ã®ãããªåœ¢ã§äžŠã¹ãã",
"title": "èŠåç®"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ã®ãããªãã®ã§èšç®ããçš®ç®ã§ããã ããããå·Šã«äœãæžããŠããªãæ°åã¯è¶³ããã-ããæžããŠããæ°åã¯åŒããåèšãåºãã",
"title": "èŠåç®"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "èªäžç®ãšã¯ãèŠåç®ã詊éšå®ãèªäžãããããèšç®ããçš®ç®ã§ããã ãã®æãç¬ç¹ã®çšèªã䜿ãããã",
"title": "èªäžç®"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãé¡ããŸããŠã¯xxxåä¹ãxxxåä¹ãã»ã»ã»xxxåã§ã¯ãã",
"title": "èªäžç®"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãšããå
·åã§ããã",
"title": "èªäžç®"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "åŒãç®ãããå Žåã¯ããåŒããŠã¯xxxåä¹ããšèšãã",
"title": "èªäžç®"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãã®å Žåãæ¬¡ã«ãå ããŠxxxåä¹ããšèšããŸã§ã¯å
šãŠåŒãç¶ããã",
"title": "èªäžç®"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "7æ¡(äœçŸäž)ã®èšç®ãããŠãããšãã«æ¥ã«3æ¡(äœçŸ)ã«ãªããšããèªäžç®ãªãã§ã¯ã®åŒã£æããããã",
"title": "èªäžç®"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ããããçŸäžãšçŸã®ãããªçŽããããæ°ã®åºå¥ãã€ããããã«ã倧ããæ¹(ãã®å Žåã¯çŸäž)ã®æ°ãèšãåã«ã倧ãããçãä»ããããšãããã",
"title": "èªäžç®"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãçŸäžåäºåä¹ã倧ããçŸå
«åäžåäžåäºåä¹ã",
"title": "èªäžç®"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãšããå
·åã§ããã",
"title": "èªäžç®"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "äŒç¥šç®ãšã¯ãäžèŸºã ãçããŠããæšª13cm瞊8cmã®åå(ãããäŒç¥šãšãã)ã䜿ã£ãŠèšç®ããçš®ç®ã§ããã äŒç¥šã«ã¯1æã«ã€ã5ã€ã®æ°åãæžãããŠãããè£ã¯çœçŽã§ããããããã1ææ¯ã«è¶³ãã®ã§ã¯ãªãã1æã®ãã¡1ã€ç®ãªã1ã€ç®ã3ã€ç®ãªã3ã€ç®ã®æ°åå士ãè¶³ãã",
"title": "äŒç¥šç®"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "äžã®å³ã§åããã ããããå®éã«ã¯ç¶Žã£ãŠããã®ã§å·Šæã§ãããã峿ã§èšç®ããªããã°ãªããªãã",
"title": "äŒç¥šç®"
}
] | æ°åŠïŒç ç®ïŒèŠåç®ã»èªäžç®ã»äŒç¥šç® | [[æ°åŠ]]ïŒ[[ç ç®]]ïŒèŠåç®ã»èªäžç®ã»äŒç¥šç®
==èŠåç®==
èŠåç®ãšã¯ãå æžç®ãçç®ã®ãããªåœ¢ã§äžŠã¹ãã
45
23
-62
-81
59
74
-18
36
97
---
ã®ãããªãã®ã§èšç®ããçš®ç®ã§ããã
ããããå·Šã«äœãæžããŠããªãæ°åã¯è¶³ããã-ããæžããŠããæ°åã¯åŒããåèšãåºãã
==èªäžç®==
èªäžç®ãšã¯ãèŠåç®ã詊éšå®ãèªäžãããããèšç®ããçš®ç®ã§ããã
ãã®æãç¬ç¹ã®çšèªã䜿ãããã
ãé¡ããŸããŠã¯xxxåä¹ãxxxåä¹ãã»ã»ã»xxxåã§ã¯ãã
ãšããå
·åã§ããã
åŒãç®ãããå Žåã¯ããåŒããŠã¯xxxåä¹ããšèšãã
ãã®å Žåã'''次ã«ãå ããŠxxxåä¹ããšèšããŸã§ã¯å
šãŠåŒãç¶ããã'''
7æ¡(äœçŸäž)ã®èšç®ãããŠãããšãã«æ¥ã«3æ¡(äœçŸ)ã«ãªããšããèªäžç®ãªãã§ã¯ã®åŒã£æããããã
ããããçŸäžãšçŸã®ãããªçŽããããæ°ã®åºå¥ãã€ããããã«ã倧ããæ¹ïŒãã®å Žåã¯çŸäžïŒã®æ°ãèšãåã«ã倧ãããçãä»ããããšãããã
ãçŸäžåäºåä¹ã倧ããçŸå
«åäžåäžåäºåä¹ã
ãšããå
·åã§ããã
==äŒç¥šç®==
äŒç¥šç®ãšã¯ãäžèŸºã ãçããŠããæšª13cm瞊8cmã®åå(ãããäŒç¥šãšãã)ã䜿ã£ãŠèšç®ããçš®ç®ã§ããã
äŒç¥šã«ã¯1æã«ã€ã5ã€ã®æ°åãæžãããŠãããè£ã¯çœçŽã§ããããããã1ææ¯ã«è¶³ãã®ã§ã¯ãªãã1æã®ãã¡1ã€ç®ãªã1ã€ç®ã3ã€ç®ãªã3ã€ç®ã®æ°åå士ãè¶³ãã
------- ------- ------- ------- -------
| 123 |->| 678 |->| 135 |->| 246 |->| 111 | =1,293
| 234 |->| 789 |->| 357 |->| 468 |->| 222 | =2,070
| 345 |->| 890 |->| 579 |->| 680 |->| 333 | =2,827
| 456 |->| 901 |->| 791 |->| 802 |->| 444 | =3,394
| 567 |->| 12 |->| 913 |->| 24 |->| 555 | =2,071
------- ------- ------- ------- -------
1æç® 2æç® 3æç® 4æç® 5æç® çã
äžã®å³ã§åããã ããããå®éã«ã¯ç¶Žã£ãŠããã®ã§å·Šæã§ãããã峿ã§èšç®ããªããã°ãªããªãã
[[Category:ç ç®|ã¿ãšããããã¿ãããããŠãã²ãããã]] | 2005-06-05T08:13:44Z | 2024-03-18T17:49:02Z | [] | https://ja.wikibooks.org/wiki/%E7%8F%A0%E7%AE%97_%E8%A6%8B%E5%8F%96%E7%AE%97%E3%83%BB%E8%AA%AD%E4%B8%8A%E7%AE%97%E3%83%BB%E4%BC%9D%E7%A5%A8%E7%AE%97 |
2,114 | æ¯åãšæ³¢å/æ³¢åæ¹çšåŒã®æ§è³ª | æ³¢åæ¹çšåŒã¯ååŸ®åæ¹çšåŒã§ããã®ã§ããããè§£ãããã«å¢çæ¡ä»¶ãå®ããã°ãªããªãã1次å
ã®æ³¢åæ¹çšåŒ
ãèãããšã Ο = x + v t , η = x â v t {\displaystyle \xi =x+vt,\eta =x-vt} ãšãããšãã
ãçšãããšã
ããã
ãšãªãããã®è§£ã¯ã
ã§äžãããã(f , g ã¯ä»»æã®é¢æ°)ããã®è§£ã®ãã¡ãx + v t ã«äŸåãã颿°ã¯é床v ã§ -x æ¹åã«ç§»åããæ³¢ã«å¯Ÿå¿ããx - v t ã«äŸåãã颿°ã¯é床v ã§x æ¹åã«ç§»åããæ³¢ã«å¯Ÿå¿ããã
ãã®é¢æ°ãå®å
šã«æ±ºããã«ã¯äŸãã°ãæ³¢ãã€ãããç©äœã®t = 0 ã§ã®äœçœ®ãšé床ãå
šãŠã®ç¹x ã§ç¥ãããŠããã°ãããäŸãã°ã
ãã€ãé床ã¯t = 0 ãã€å
šãŠã®x ã§0ãšããããšãã
ã«ä»£å
¥ãããšã
ãåŸãããæå»t ã§ã®é¢æ°u ã®å€ã¯ã
ãšãªãã
æéäŸåæ§ãäœçœ®ã«ãããã«æ±ºãŸãæ³¢ããå®åšæ³¢ãšåŒã¶ã(?)ãã®ãšãã
ã®ããã«ãè§£ã®x , t ã«å¯ŸããäŸåæ§ãåé¢ã§ããããããæ³¢åæ¹çšåŒã«ä»£å
¥ãããšã
ãšå€åœ¢ã§ãããããã§ãæåŸã®åŒã®å·ŠèŸºã¯t ã ãã®é¢æ°ã§ãããå³èŸºã®åŒã¯x ã ãã®é¢æ°ã§ããã®ã§ãã©ã¡ãã®å€ã宿°ã«çããã¯ãã§ããããã®å®æ°ãã-Ï /v ãšãããšã
ãšãªããè§£
ãåŸã(A , B ã¯ä»»æå®æ°)ãäžæ¹ãX ã«ã€ããŠãåæ§ã«
ãåŸãããšãã§ããè§£
ãåŸã(A , B ã¯ä»»æå®æ°)ã
ç¹ã«ãx = 0, x = l ã§u (t , x ) = 0 ãšãªãå Žåãèãããããã¯ãç©äœã®ç«¯ãåºå®ãããŠããå Žåã«å¯Ÿå¿ããã®ã§åºå®ç«¯ãšåŒã°ããããã®ãšããx = 0 ã§u = 0 ããB = 0 ãåŸãããããŸãã
ããã
(n ã¯æŽæ°)ãšãªãã
ãåŸããããn = 0 ã¯å
šãæ³¢ãèµ·ããŠããªãç¶æ³ã«å¯Ÿå¿ããn = 1 ã¯ç¯ã1ã€ã ãã®æ³¢ãèµ·ããŠããç¶æ³ã«å¯Ÿå¿ãããn > 1 ã¯ãç¯ãn åã®æ³¢ã«å¯Ÿå¿ããã
å
šãŠã®ç¹ã®æéäŸåæ§ãåäžãªã®ã§T (t ) ãæ±ºããã«ã¯ããäžç¹ã§ã®æ¯åã®ããæå»ã§ã®äœçœ®ãšé床ãäžããã°ãã(å®éã«ã¯ããæå»ã§äž¡æ¹ãäžããå¿
èŠã¯ãªããéãæå»ã§1ã€ãã€äžããŠããã)ãäŸãã°ãt = 0, x = l /2 ã§ãu = 0, â u â t = a {\displaystyle {\frac {\partial {u}}{\partial {t}}}=a} (a ã¯å®æ°)ãäžãããããšãããšã
ã«ã€ããŠãB = 0, ÏA = aãŸãã¯A = a /ÏãåŸãããããã£ãŠããã®æ¹çšåŒã®è§£ã¯
ãšãªãã
2次å
å¹³é¢äžã§ãããæ¹åãx æ¹åãšåãããããšåçŽãªæ¹åãy 軞ãšåããx 軞ãšy 軞ãã€ããããŠãæ¹çšåŒãå€ãããªãããšã«æ³šç®ãããšãæ³¢åæ¹çšåŒã¯
ãšãªãã
2次å
å¹³é¢äžã§ã®åºå®ç«¯ã®å®åšæ³¢ã¯ã2ã€ã®æŽæ°ã䜿ã£ãŠè¡šããããããš(倿°åé¢)ã2ã€ã®æŽæ°ãm,nãšãããšãã®m = 1,n=1ã®æãªã©ã®å³ã
3次å
å¹³é¢äžã§ãããæ¹åã«x 軞ãããããšåçŽãªæ¹åã«y 軞ãåããããããé ã«å³æã®èŠªæã人差ãæãäžæã«å¯Ÿå¿ããããã«z 軞ãåããããããã®è»žãã€ããããŠãæ¹çšåŒãå€ãããªãããšã«æ³šç®ãããšãæ³¢åæ¹çšåŒã¯
ãšãªãã
(f ã¯r , t ã ãã®é¢æ°ãÎ ã¯ã©ãã©ã·ã¢ã³ã)(?)ãã®ãšããäžããããæ³¢åæ¹çšåŒã¯ã
ãšãªãããããã§ r f (r , t ) ã«ã€ããŠã¯ãã®åŒã¯éåžžã®1次å
ã®æ³¢åæ¹çšåŒã«å¯Ÿå¿ããããã£ãŠãã®æ¹çšåŒã®è§£ãšããŠ
(u , v ã¯ä»»æã®é¢æ°)ãåŸãããããã¯çå¯Ÿç§°ãªæ³¢ã衚ããããšãããç颿³¢ãšåŒã°ããã
å
ã®å Žåã§èãããšåããããããå
ã®é床cã¯ãè§é床ãåšæ³¢æ°ãšã¯ç¡é¢ä¿ã§ããã
ãªãããã®ãæ³¢ã«ãããé床AÏããäœçžé床ãšãããäœçžé床ã¯ãæ
å ±ãäŒããé床ã§ã¯ãªãã
å®éã«æ
å ±ãäŒããããé床ã®ããšã矀é床ãšããã
ãªãããŸããããæ³¢åããè€æ°åã®æ£åŒŠæ³¢ããè¶³ãåããããåŒãç®ãããããªããšãæ°åŒã§è¡šçŸã§ãªããšå Žåããã®ãããªæ³¢åãã忣ã®ãããæ³¢åãšããã
ã€ãŸãã忣ã®ããæ³¢åã®ãæ
å ±ãäŒããããé床ã®ããšãã矀é床ãšããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ³¢åæ¹çšåŒã¯ååŸ®åæ¹çšåŒã§ããã®ã§ããããè§£ãããã«å¢çæ¡ä»¶ãå®ããã°ãªããªãã1次å
ã®æ³¢åæ¹çšåŒ",
"title": "1次å
ã®æ³¢åæ¹çšåŒ"
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ãèãããšã Ο = x + v t , η = x â v t {\\displaystyle \\xi =x+vt,\\eta =x-vt} ãšãããšãã",
"title": "1次å
ã®æ³¢åæ¹çšåŒ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ãçšãããšã",
"title": "1次å
ã®æ³¢åæ¹çšåŒ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "ããã",
"title": "1次å
ã®æ³¢åæ¹çšåŒ"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãšãªãããã®è§£ã¯ã",
"title": "1次å
ã®æ³¢åæ¹çšåŒ"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ã§äžãããã(f , g ã¯ä»»æã®é¢æ°)ããã®è§£ã®ãã¡ãx + v t ã«äŸåãã颿°ã¯é床v ã§ -x æ¹åã«ç§»åããæ³¢ã«å¯Ÿå¿ããx - v t ã«äŸåãã颿°ã¯é床v ã§x æ¹åã«ç§»åããæ³¢ã«å¯Ÿå¿ããã",
"title": "1次å
ã®æ³¢åæ¹çšåŒ"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãã®é¢æ°ãå®å
šã«æ±ºããã«ã¯äŸãã°ãæ³¢ãã€ãããç©äœã®t = 0 ã§ã®äœçœ®ãšé床ãå
šãŠã®ç¹x ã§ç¥ãããŠããã°ãããäŸãã°ã",
"title": "1次å
ã®æ³¢åæ¹çšåŒ"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãã€ãé床ã¯t = 0 ãã€å
šãŠã®x ã§0ãšããããšãã",
"title": "1次å
ã®æ³¢åæ¹çšåŒ"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ã«ä»£å
¥ãããšã",
"title": "1次å
ã®æ³¢åæ¹çšåŒ"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "ãåŸãããæå»t ã§ã®é¢æ°u ã®å€ã¯ã",
"title": "1次å
ã®æ³¢åæ¹çšåŒ"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "ãšãªãã",
"title": "1次å
ã®æ³¢åæ¹çšåŒ"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "æéäŸåæ§ãäœçœ®ã«ãããã«æ±ºãŸãæ³¢ããå®åšæ³¢ãšåŒã¶ã(?)ãã®ãšãã",
"title": "1次å
ã®æ³¢åæ¹çšåŒ"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ã®ããã«ãè§£ã®x , t ã«å¯ŸããäŸåæ§ãåé¢ã§ããããããæ³¢åæ¹çšåŒã«ä»£å
¥ãããšã",
"title": "1次å
ã®æ³¢åæ¹çšåŒ"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãšå€åœ¢ã§ãããããã§ãæåŸã®åŒã®å·ŠèŸºã¯t ã ãã®é¢æ°ã§ãããå³èŸºã®åŒã¯x ã ãã®é¢æ°ã§ããã®ã§ãã©ã¡ãã®å€ã宿°ã«çããã¯ãã§ããããã®å®æ°ãã-Ï /v ãšãããšã",
"title": "1次å
ã®æ³¢åæ¹çšåŒ"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãšãªããè§£",
"title": "1次å
ã®æ³¢åæ¹çšåŒ"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ãåŸã(A , B ã¯ä»»æå®æ°)ãäžæ¹ãX ã«ã€ããŠãåæ§ã«",
"title": "1次å
ã®æ³¢åæ¹çšåŒ"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ãåŸãããšãã§ããè§£",
"title": "1次å
ã®æ³¢åæ¹çšåŒ"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ãåŸã(A , B ã¯ä»»æå®æ°)ã",
"title": "1次å
ã®æ³¢åæ¹çšåŒ"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ç¹ã«ãx = 0, x = l ã§u (t , x ) = 0 ãšãªãå Žåãèãããããã¯ãç©äœã®ç«¯ãåºå®ãããŠããå Žåã«å¯Ÿå¿ããã®ã§åºå®ç«¯ãšåŒã°ããããã®ãšããx = 0 ã§u = 0 ããB = 0 ãåŸãããããŸãã",
"title": "1次å
ã®æ³¢åæ¹çšåŒ"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ããã",
"title": "1次å
ã®æ³¢åæ¹çšåŒ"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "(n ã¯æŽæ°)ãšãªãã",
"title": "1次å
ã®æ³¢åæ¹çšåŒ"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ãåŸããããn = 0 ã¯å
šãæ³¢ãèµ·ããŠããªãç¶æ³ã«å¯Ÿå¿ããn = 1 ã¯ç¯ã1ã€ã ãã®æ³¢ãèµ·ããŠããç¶æ³ã«å¯Ÿå¿ãããn > 1 ã¯ãç¯ãn åã®æ³¢ã«å¯Ÿå¿ããã",
"title": "1次å
ã®æ³¢åæ¹çšåŒ"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "å
šãŠã®ç¹ã®æéäŸåæ§ãåäžãªã®ã§T (t ) ãæ±ºããã«ã¯ããäžç¹ã§ã®æ¯åã®ããæå»ã§ã®äœçœ®ãšé床ãäžããã°ãã(å®éã«ã¯ããæå»ã§äž¡æ¹ãäžããå¿
èŠã¯ãªããéãæå»ã§1ã€ãã€äžããŠããã)ãäŸãã°ãt = 0, x = l /2 ã§ãu = 0, â u â t = a {\\displaystyle {\\frac {\\partial {u}}{\\partial {t}}}=a} (a ã¯å®æ°)ãäžãããããšãããšã",
"title": "1次å
ã®æ³¢åæ¹çšåŒ"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ã«ã€ããŠãB = 0, ÏA = aãŸãã¯A = a /ÏãåŸãããããã£ãŠããã®æ¹çšåŒã®è§£ã¯",
"title": "1次å
ã®æ³¢åæ¹çšåŒ"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ãšãªãã",
"title": "1次å
ã®æ³¢åæ¹çšåŒ"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "2次å
å¹³é¢äžã§ãããæ¹åãx æ¹åãšåãããããšåçŽãªæ¹åãy 軞ãšåããx 軞ãšy 軞ãã€ããããŠãæ¹çšåŒãå€ãããªãããšã«æ³šç®ãããšãæ³¢åæ¹çšåŒã¯",
"title": "2次å
å¹³é¢äžã®æ³¢"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ãšãªãã",
"title": "2次å
å¹³é¢äžã®æ³¢"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "2次å
å¹³é¢äžã§ã®åºå®ç«¯ã®å®åšæ³¢ã¯ã2ã€ã®æŽæ°ã䜿ã£ãŠè¡šããããããš(倿°åé¢)ã2ã€ã®æŽæ°ãm,nãšãããšãã®m = 1,n=1ã®æãªã©ã®å³ã",
"title": "2次å
å¹³é¢äžã®æ³¢"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "3次å
å¹³é¢äžã§ãããæ¹åã«x 軞ãããããšåçŽãªæ¹åã«y 軞ãåããããããé ã«å³æã®èŠªæã人差ãæãäžæã«å¯Ÿå¿ããããã«z 軞ãåããããããã®è»žãã€ããããŠãæ¹çšåŒãå€ãããªãããšã«æ³šç®ãããšãæ³¢åæ¹çšåŒã¯",
"title": "3次å
空éäžã®æ³¢"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ãšãªãã",
"title": "3次å
空éäžã®æ³¢"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "(f ã¯r , t ã ãã®é¢æ°ãÎ ã¯ã©ãã©ã·ã¢ã³ã)(?)ãã®ãšããäžããããæ³¢åæ¹çšåŒã¯ã",
"title": "3次å
空éäžã®æ³¢"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ãšãªãããããã§ r f (r , t ) ã«ã€ããŠã¯ãã®åŒã¯éåžžã®1次å
ã®æ³¢åæ¹çšåŒã«å¯Ÿå¿ããããã£ãŠãã®æ¹çšåŒã®è§£ãšããŠ",
"title": "3次å
空éäžã®æ³¢"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "(u , v ã¯ä»»æã®é¢æ°)ãåŸãããããã¯çå¯Ÿç§°ãªæ³¢ã衚ããããšãããç颿³¢ãšåŒã°ããã",
"title": "3次å
空éäžã®æ³¢"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "",
"title": "3次å
空éäžã®æ³¢"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "å
ã®å Žåã§èãããšåããããããå
ã®é床cã¯ãè§é床ãåšæ³¢æ°ãšã¯ç¡é¢ä¿ã§ããã",
"title": "äœçžé床ãšçŸ€é床"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "ãªãããã®ãæ³¢ã«ãããé床AÏããäœçžé床ãšãããäœçžé床ã¯ãæ
å ±ãäŒããé床ã§ã¯ãªãã",
"title": "äœçžé床ãšçŸ€é床"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "å®éã«æ
å ±ãäŒããããé床ã®ããšã矀é床ãšããã",
"title": "äœçžé床ãšçŸ€é床"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "ãªãããŸããããæ³¢åããè€æ°åã®æ£åŒŠæ³¢ããè¶³ãåããããåŒãç®ãããããªããšãæ°åŒã§è¡šçŸã§ãªããšå Žåããã®ãããªæ³¢åãã忣ã®ãããæ³¢åãšããã",
"title": "äœçžé床ãšçŸ€é床"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "ã€ãŸãã忣ã®ããæ³¢åã®ãæ
å ±ãäŒããããé床ã®ããšãã矀é床ãšããã",
"title": "äœçžé床ãšçŸ€é床"
}
] | null | {{Pathnav|ã¡ã€ã³ããŒãž|èªç¶ç§åŠ|ç©çåŠ|æ¯åãšæ³¢å|frame=1}}
== 1次å
ã®æ³¢åæ¹çšåŒ ==
=== æ³¢åæ¹çšåŒã®äžè¬è§£ ===
æ³¢åæ¹çšåŒã¯ååŸ®åæ¹çšåŒã§ããã®ã§ããããè§£ãããã«å¢çæ¡ä»¶ãå®ããã°ãªããªãã1次å
ã®æ³¢åæ¹çšåŒ
:<math>
\left(\frac 1 {v^2} \frac{\partial^2{{}}}{\partial{t}^2} - \frac{\partial^2{{}}}{\partial{x}^2} \right) u(x,t) = 0
</math>
ãèãããšã<math>\xi = x + vt, \eta = x -vt</math> ãšãããšãã
:<math>
\begin{align}
\frac{\partial{{}}}{\partial{x}} &= \frac{\partial{\xi}}{\partial{x}} \frac{\partial{{}}}{\partial{\xi}} + \frac{\partial{\eta}}{\partial{x}} \frac{\partial{{}}}{\partial{\eta}}\\
&= \frac{\partial{{}}}{\partial{\xi}} + \frac{\partial{{}}}{\partial{\eta}},\\
\frac{\partial{{}}}{\partial{t}} &= \frac{\partial{\xi}}{\partial{t}} \frac{\partial{{}}}{\partial{\xi}} + \frac{\partial{\eta}}{\partial{t}} \frac{\partial{{}}}{\partial{\eta}}\\
&= v\left(\frac{\partial{{}}}{\partial{\xi}} - \frac{\partial{{}}}{\partial{\eta}}\right)
\end{align}
</math>
ãçšãããšã
:<math>
\begin{align}
\frac 1 {v^2} \frac{\partial^2{{}}}{\partial{t}^2} - \frac{\partial^2{{}}}{\partial{x}^2}
&=\frac 1 {v^2} v^2 \left(\frac{\partial{{}}}{\partial{\xi}} - \frac{\partial{{}}}{\partial{\eta}}\right)^2
- \left(\frac{\partial{{}}}{\partial{\xi}} + \frac{\partial{{}}}{\partial{\eta}}\right)^2\\
&= \left(\frac{\partial{{}}}{\partial{\xi}} - \frac{\partial{{}}}{\partial{\eta}}\right)^2 - \left(\frac{\partial{{}}}{\partial{\xi}} + \frac{\partial{{}}}{\partial{\eta}}\right)^2\\
&= -4 \frac{\partial{{}}}{\partial{\xi}} \frac{\partial{{}}}{\partial{\eta}}
\end{align}
</math>
ããã
:<math>
-4 \frac{\partial{{}}}{\partial{\xi}} \frac{\partial{{}}}{\partial{\eta}} u(x,t) = 0
</math>
ãšãªãããã®è§£ã¯ã
:<math>
\begin{align}
u(x,t) &= f(\xi ) + g(\eta)\\
& = f(x+vt ) + g(x-vt)\\
\end{align}
</math>
ã§äžããããïŒ''f'' , ''g'' ã¯ä»»æã®é¢æ°ïŒããã®è§£ã®ãã¡ã''x'' + ''v t'' ã«äŸåãã颿°ã¯é床''v'' ã§ -''x'' æ¹åã«ç§»åããæ³¢ã«å¯Ÿå¿ãã''x'' - ''v t'' ã«äŸåãã颿°ã¯é床''v'' ã§''x'' æ¹åã«ç§»åããæ³¢ã«å¯Ÿå¿ããã
ãã®é¢æ°ãå®å
šã«æ±ºããã«ã¯äŸãã°ãæ³¢ãã€ãããç©äœã®''t'' = 0 ã§ã®äœçœ®ãšé床ãå
šãŠã®ç¹''x'' ã§ç¥ãããŠããã°ãããäŸãã°ã
:<math>u(x,0) = a(x) = \begin{cases}1&-l<x<l \\ 0 & \text{otherwise}\end{cases}</math>
ãã€ãé床ã¯''t'' = 0 ãã€å
šãŠã®''x'' ã§0ãšããããšãã
:<math>
u (x,0) = f(x)+g(x),\qquad
\frac{\partial{{}}}{\partial{t}} u(x,0) = v (f(x) - g(x) )
</math>
ã«ä»£å
¥ãããšã
:<math>
f(x) = g(x) = \frac 12 u(x,0) = \frac 12 a(x)
</math>
ãåŸãããæå»''t'' ã§ã®é¢æ°''u'' ã®å€ã¯ã
:<math>
u = \frac 12 ( a(x+vt) + a(x-vt) )
</math>
ãšãªãã
*å³
=== å®åšæ³¢ ===
æéäŸåæ§ãäœçœ®ã«ãããã«æ±ºãŸãæ³¢ããå®åšæ³¢ãšåŒã¶ã(?)ãã®ãšãã
:<math>
u(x,t) = X(x) T(t)
</math>
ã®ããã«ãè§£ã®''x'' , ''t'' ã«å¯ŸããäŸåæ§ãåé¢ã§ããããããæ³¢åæ¹çšåŒã«ä»£å
¥ãããšã
:<math>
\begin{align}
\left(\frac 1 {v^2} \frac{\partial^2{{}}}{\partial{t}^2} - \frac{\partial^2{{}}}{\partial{x}^2} \right) u(x,t) &= 0\\
X\frac 1 {v^2} \frac{\partial^2{{}}}{\partial{t}^2} T - T \frac{\partial^2{{}}}{\partial{x}^2} X &= 0\\
\frac 1 T \frac 1 {v^2} \frac{\partial^2{{}}}{\partial{t}^2} T - \frac 1 X \frac{\partial^2{{}}}{\partial{x}^2} X &= 0\\
\frac 1 T \frac 1 {v^2} \frac{\partial^2{{}}}{\partial{t}^2} T &= \frac 1 X \frac{\partial^2{{}}}{\partial{x}^2} X
\end{align}
</math>
ãšå€åœ¢ã§ãããããã§ãæåŸã®åŒã®å·ŠèŸºã¯''t'' ã ãã®é¢æ°ã§ãããå³èŸºã®åŒã¯''x'' ã ãã®é¢æ°ã§ããã®ã§ãã©ã¡ãã®å€ã宿°ã«çããã¯ãã§ããããã®å®æ°ãã-ω<sup>2</sup> /''v''<sup>2</sup> ãšãããšã
:<math>
\begin{align}
\frac 1 T \frac{\partial^2{{}}}{\partial{t}^2} T &= -\omega^2\\
\frac{\partial^2{{}}}{\partial{t}^2} T + \omega^2 T&= 0\\
\end{align}
</math>
ãšãªããè§£
:<math>
T(t) = A \sin (\omega t ) + B \cos (\omega t)
</math>
ãåŸãïŒ''A'' , ''B'' ã¯ä»»æå®æ°ïŒãäžæ¹ã''X'' ã«ã€ããŠãåæ§ã«
:<math>
\frac{\partial^2{{}}}{\partial{x}^2} X + \frac 1 {v^2} \omega^2 X= 0
</math>
ãåŸãããšãã§ããè§£
:<math>
X(x) = A \sin \left(\frac \omega v x \right) + B \cos \left(\frac \omega v x\right)
</math>
ãåŸãïŒ''A'' , ''B'' ã¯ä»»æå®æ°ïŒã
ç¹ã«ã''x'' = 0, ''x'' = ''l'' ã§''u'' (''t'' , ''x'' ) = 0 ãšãªãå Žåãèãããããã¯ãç©äœã®ç«¯ãåºå®ãããŠããå Žåã«å¯Ÿå¿ããã®ã§åºå®ç«¯ãšåŒã°ããã<!-- (note: åŸ®åæ¹çšåŒã§å¢çæ¡ä»¶ãäžããããåé¡ããåºæå€åé¡ãšåŒã¶ã)(?) -->ãã®ãšãã''x'' = 0 ã§''u'' = 0 ãã''B'' = 0 ãåŸãããããŸãã
:<math>
X(l) = A \sin \left(\frac \omega v l \right)
</math>
ããã
:<math>
\frac\omega v l = \pi n
</math>
ïŒ''n'' ã¯æŽæ°ïŒãšãªãã
:<math>
\omega = \frac {\pi nv} {l }
</math>
ãåŸãããã''n'' = 0 ã¯å
šãæ³¢ãèµ·ããŠããªãç¶æ³ã«å¯Ÿå¿ãã''n'' = 1 ã¯ç¯ã1ã€ã ãã®æ³¢ãèµ·ããŠããç¶æ³ã«å¯Ÿå¿ããã''n'' > 1 ã¯ãç¯ã''n'' åã®æ³¢ã«å¯Ÿå¿ããã
*å³
å
šãŠã®ç¹ã®æéäŸåæ§ãåäžãªã®ã§''T'' (''t'' ) ãæ±ºããã«ã¯ããäžç¹ã§ã®æ¯åã®ããæå»ã§ã®äœçœ®ãšé床ãäžããã°ããïŒå®éã«ã¯ããæå»ã§äž¡æ¹ãäžããå¿
èŠã¯ãªããéãæå»ã§1ã€ãã€äžããŠãããïŒãäŸãã°ã''t'' = 0, ''x'' = ''l'' /2 ã§ã''u'' = 0,
<math>
\frac{\partial{u}}{\partial{t}} = a
</math>
ïŒ''a'' ã¯å®æ°ïŒãäžãããããšãããšã
:<math>
T(t) = A \sin (\omega t ) + B \cos (\omega t)
</math>
ã«ã€ããŠã''B'' = 0, ω''A'' = ''a''ãŸãã¯''A'' = ''a'' /ωãåŸãããããã£ãŠããã®æ¹çšåŒã®è§£ã¯
:<math>
u(t,x) = \frac a \omega \sin (\omega t) \sin \left(\frac {\omega _n} v x \right) ,\qquad \omega _n = \frac {\pi v n} {l }
</math>
ãšãªãã
==2次å
å¹³é¢äžã®æ³¢==
===2次å
空éäžã®æ³¢åæ¹çšåŒ===
2次å
å¹³é¢äžã§ãããæ¹åã''x'' æ¹åãšåãããããšåçŽãªæ¹åã''y'' 軞ãšåãã''x'' 軞ãš''y'' 軞ãã€ããããŠãæ¹çšåŒãå€ãããªãããšã«æ³šç®ãããšãæ³¢åæ¹çšåŒã¯
:<math>
\frac 1 {v^2}\frac{\partial^2{{}}}{\partial{t}^2} - \frac{\partial^2{{}}}{\partial{x}^2} - \frac{\partial^2{{}}}{\partial{y}^2} = 0
</math>
ãšãªãã
*TODO
2次å
å¹³é¢äžã§ã®åºå®ç«¯ã®å®åšæ³¢ã¯ã2ã€ã®æŽæ°ã䜿ã£ãŠè¡šããããããšïŒå€æ°åé¢ïŒã2ã€ã®æŽæ°ãm,nãšãããšãã®m = 1,n=1ã®æãªã©ã®å³ã
== 3次å
空éäžã®æ³¢ ==
=== 3次å
空éäžã®æ³¢åæ¹çšåŒ ===
3次å
å¹³é¢äžã§ãããæ¹åã«''x'' 軞ãããããšåçŽãªæ¹åã«''y'' 軞ãåããããããé ã«å³æã®èŠªæã人差ãæãäžæã«å¯Ÿå¿ããããã«''z'' 軞ãåããããããã®è»žãã€ããããŠãæ¹çšåŒãå€ãããªãããšã«æ³šç®ãããšãæ³¢åæ¹çšåŒã¯
:<math>
\frac 1 {v^2}\frac{\partial^2{{}}}{\partial{t}^2} - \frac{\partial^2{{}}}{\partial{x}^2} - \frac{\partial^2{{}}}{\partial{y}^2} - \frac{\partial^2{{}}}{\partial{z}^2} = 0
</math>
ãšãªãã
=== ç颿³¢ ===
:<math>
\Delta r = \frac 1 r \frac{\partial^2{{}}}{\partial{r}^2} (rf )
</math>
ïŒ''f'' ã¯''r'' , ''t'' ã ãã®é¢æ°ãΔ ã¯ã©ãã©ã·ã¢ã³ãïŒ(?)ãã®ãšããäžããããæ³¢åæ¹çšåŒã¯ã
:<math>
\frac 1 {v^2}\frac{\partial^2{{f }}}{\partial{t}^2} - \frac 1 r \frac{\partial^2{{}}}{\partial{r}^2} (rf ) = 0
</math>
ãšãªãããããã§ ''r f'' (''r'' , ''t'' ) ã«ã€ããŠã¯ãã®åŒã¯éåžžã®1次å
ã®æ³¢åæ¹çšåŒã«å¯Ÿå¿ããããã£ãŠãã®æ¹çšåŒã®è§£ãšããŠ
:<math>
f(r,t) = \frac 1 r u(r+ vt ) + \frac 1 r v(r-vt)
</math>
ïŒ''u'' , ''v'' ã¯ä»»æã®é¢æ°ïŒãåŸãããããã¯çå¯Ÿç§°ãªæ³¢ã衚ããããšãããç颿³¢ãšåŒã°ããã<!-- å€ã«åºãŠè¡ãæ³¢ãšäžã«ã¯ãã£ãŠæ¥ãæ³¢ã«ããããååããã£ããããª...ã -->
== äœçžé床ãšçŸ€é床 ==
[[ãã¡ã€ã«:Wave group.gif|thumb|400px|æ°Žæ·±ãæ·±ãæ°Žã®è¡šé¢ã®æ°Žé¢æ³¢ã«ããããåšæ³¢æ°åæ£ãæã€æ³¢æïŒæ³¢çŸ€ïŒã衚ãããã®ã<span style="border-bottom:solid 2px red;">èµ€ç¹ã¯'''äœçžé床'''</span>ã§åãã<span style="border-bottom:solid 2px lime;">ç·ç¹ã¯'''矀é床'''</span>ã§åããŠããããã®ããã«æ°Žæ·±ãæ·±ãå Žåã«ã¯ãæ°Žé¢ã§ã¯äœçžé床ã¯çŸ€é床ã®äºåã«ãªããå³ã®å·Šããå³ã«åãéãèµ€ç¹ã¯ç·ç¹ãäºå远ãè¶ãã<br>æ³¢æã®åŸæ¹(ã®ç·ç¹)ã§æ°ããæ³¢ãåºçŸããæ³¢æã®äžå¿ã«åãã£ãŠæ¯å¹
ã倧ãããªããæ³¢æã®åæ¹(ã®ç·ç¹)ã§æ¶ããŠããããã«èŠãããæ°Žé¢ã®éåæ³¢ã«ãããŠã¯ãã»ãšãã©ã®å Žåãæ°Žç²åã®é床ã¯äœçžé床ããããã£ãšå°ããã]]
å
ã®å Žåã§èãããšåããããããå
ã®é床cã¯ãè§é床ãåšæ³¢æ°ãšã¯ç¡é¢ä¿ã§ããã
ãªãããã®ãæ³¢ã«ãããé床AÏãã'''äœçžé床'''ãšãããäœçžé床ã¯ãæ
å ±ãäŒããé床ã§ã¯ãªãã
å®éã«æ
å ±ãäŒããããé床ã®ããšã'''矀é床'''ãšããã
ãªãããŸããããæ³¢åããè€æ°åã®æ£åŒŠæ³¢ããè¶³ãåããããåŒãç®ãããããªããšãæ°åŒã§è¡šçŸã§ãªããšå Žåããã®ãããªæ³¢åãã忣ã®ãããæ³¢åãšããã
ã€ãŸãã忣ã®ããæ³¢åã®ãæ
å ±ãäŒããããé床ã®ããšãã矀é床ãšããã
{{DEFAULTSORT:ãããšããšã¯ãšãã¯ãšãã»ããŠãããã®ãããã€}}
[[Category:æ¯åãšæ³¢å|ã¯ãšãã»ããŠãããã®ãããã€]]
[[ã«ããŽãª:åŸ®åæ¹çšåŒ]] | 2005-06-08T11:10:02Z | 2024-03-16T02:59:26Z | [
"ãã³ãã¬ãŒã:Pathnav"
] | https://ja.wikibooks.org/wiki/%E6%8C%AF%E5%8B%95%E3%81%A8%E6%B3%A2%E5%8B%95/%E6%B3%A2%E5%8B%95%E6%96%B9%E7%A8%8B%E5%BC%8F%E3%81%AE%E6%80%A7%E8%B3%AA |
2,115 | ç©çæ°åŠI | æ¬é
ã¯ç©çåŠ ç©çæ°åŠI ã®è§£èª¬ã§ãã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "æ¬é
ã¯ç©çåŠ ç©çæ°åŠI ã®è§£èª¬ã§ãã",
"title": ""
}
] | æ¬é
ã¯ç©çåŠ ç©çæ°åŠI ã®è§£èª¬ã§ãã è§£æåŠ
1倿°ã®èšç®
å€å€æ°é¢æ°ã®åŸ®ç©å
æ°åã®åæ
ç·åœ¢ä»£æ°
è¡åã®å®çŸ©ãšç¹å¥ãªè¡å
éè¡åã®äžè¬åœ¢
2次圢åŒ
è¡åã®å¯Ÿè§å
åŸ®åæ¹çšåŒ
åŸ®åæ¹çšåŒã®å®çŸ©
åŸ®åæ¹çšåŒã®è§£æ³
è§£ã®äžææ§
ç·åœ¢åŸ®åæ¹çšåŒ
ãã¯ãã«è§£æ
ãã¯ãã«é¢æ°ã®å®çŸ©
ãã³ãœã«ä»£æ°
å€å€æ°é¢æ°ã®ç©å
çŽäº€åº§æšç³»ã§ãªããšãã®èšç® è€çŽ è§£æã®åãŸã§ãç©çæ°åŠIã®ç¯å²ãšããã | {{Pathnav|ã¡ã€ã³ããŒãž|èªç¶ç§åŠ|ç©çåŠ|frame=1|small=1}}
æ¬é
ã¯ç©çåŠ ç©çæ°åŠI ã®è§£èª¬ã§ãã
* [[ç©çæ°åŠI è§£æåŠ|è§£æåŠ]]
** [[ç©çæ°åŠI è§£æåŠ#1倿°ã®èšç®|1倿°ã®èšç®]]
** [[ç©çæ°åŠI è§£æåŠ#å€å€æ°é¢æ°ã®åŸ®ç©å|å€å€æ°é¢æ°ã®åŸ®ç©å]]
** [[ç©çæ°åŠI è§£æåŠ#æ°åã®åæ|æ°åã®åæ]]
* [[ç©çæ°åŠI ç·åœ¢ä»£æ°|ç·åœ¢ä»£æ°]]
** [[ç©çæ°åŠI ç·åœ¢ä»£æ°#è¡åã®å®çŸ©ãšç¹å¥ãªè¡å|è¡åã®å®çŸ©ãšç¹å¥ãªè¡å]]
** [[ç©çæ°åŠI ç·åœ¢ä»£æ°#éè¡åã®äžè¬åœ¢|éè¡åã®äžè¬åœ¢]]
** [[ç©çæ°åŠI ç·åœ¢ä»£æ°#2次圢åŒ|2次圢åŒ]]
** [[ç©çæ°åŠI ç·åœ¢ä»£æ°#è¡åã®å¯Ÿè§å|è¡åã®å¯Ÿè§å]]
* [[ç©çæ°åŠI åŸ®åæ¹çšåŒ|åŸ®åæ¹çšåŒ]]
** [[ç©çæ°åŠI åŸ®åæ¹çšåŒ#åŸ®åæ¹çšåŒã®å®çŸ©|åŸ®åæ¹çšåŒã®å®çŸ©]]
** [[ç©çæ°åŠI åŸ®åæ¹çšåŒ#åŸ®åæ¹çšåŒã®è§£æ³|åŸ®åæ¹çšåŒã®è§£æ³]]
** [[ç©çæ°åŠI åŸ®åæ¹çšåŒ#è§£ã®äžææ§|è§£ã®äžææ§]]
** [[ç©çæ°åŠI åŸ®åæ¹çšåŒ#ç·åœ¢åŸ®åæ¹çšåŒ|ç·åœ¢åŸ®åæ¹çšåŒ]]
* [[ç©çæ°åŠI ãã¯ãã«è§£æ|ãã¯ãã«è§£æ]]
** [[ç©çæ°åŠI ãã¯ãã«è§£æ#ãã¯ãã«é¢æ°ã®å®çŸ©|ãã¯ãã«é¢æ°ã®å®çŸ©]]
** [[ç©çæ°åŠI ãã¯ãã«è§£æ#ãã³ãœã«ä»£æ°|ãã³ãœã«ä»£æ°]]
** [[ç©çæ°åŠI ãã¯ãã«è§£æ#å€å€æ°é¢æ°ã®ç©å|å€å€æ°é¢æ°ã®ç©å]]
** [[ç©çæ°åŠI ãã¯ãã«è§£æ#çŽäº€åº§æšç³»ã§ãªããšãã®èšç®|çŽäº€åº§æšç³»ã§ãªããšãã®èšç®]]
*è€çŽ è§£æã®åãŸã§ã[[ç©çæ°åŠI]]ã®ç¯å²ãšããã
==é¢é£æç§æž==
*[[ç©çæ°åŠII]]
[[Category:ç©çåŠ|ãµã€ããããã1]]
[[Category:æ°åŠ|ãµã€ããããã1]] | 2005-06-09T12:57:32Z | 2024-03-16T06:15:11Z | [
"ãã³ãã¬ãŒã:Pathnav"
] | https://ja.wikibooks.org/wiki/%E7%89%A9%E7%90%86%E6%95%B0%E5%AD%A6I |
2,116 | ç©çæ°åŠI è§£æåŠ | ç©çæ°åŠI > è§£æåŠ
è§£æåŠã¯é«æ ¡ãŸã§ã®æ°åŠã®å»¶é·ãšããŠãšãããããšãåºæ¥ããã髿 ¡ãŸã§ã®æ°åŠãå³å¯ã«åºç€ã¥ããç§ç®ãšãšãããããšãåºæ¥ããäŸãã°ã髿 ¡ãŸã§ã®ç¯å²ã§ã¯æ°åã®æ¥µéã颿°ã®é£ç¶ã¯å³å¯ã«ã¯å®çŸ©ãããŠããªãã£ããè§£æåŠã§ã¯ãã®ãããªæ¥µéãåãææ³ãæ±ãããŸãã埮åãç©åã«é¢ããããé²ãã èšç®ãæ±ããããã§åŠãã ææ³ã¯ç·åœ¢ä»£æ°ãšäžŠãã§ãããé²ãã èšç®ãè¡ãªãããã®åºç€ãšãªãã®ã§ãããã§åŠã¶ææ³ã«ã¯ååç¿çããå¿
èŠãããã
ããã§ã¯ã1ã€ã®å€æ°ãæ±ã颿°ãçšããŠåæãé£ç¶æ§ã®å®çŸ©ãæ±ãããŸããããããçšããŠå³å¯ã«å®çŸ©ãããææ³ãçšããŠãã€ã©ãŒå±éãããè€éãªç©åãå°å
¥ããã
æåã«ãç¡çæ°ãå®çŸ©ããææ³ãèããã髿 ¡ãŸã§ã®ç¯å²ã§ã¯ã宿°ã®ãã¡ã§æçæ°ã§ãªããã®ãç¡çæ°ãšå®çŸ©ãããããã§æçæ°ãšã¯ã2ã€ã®äºãã«çŽ ã®æŽæ°n,mãçšããŠã
ãšãããããã®å
šäœãæãããããããã®æ§æã§ã¯ãããã宿°ãäœãªã®ãã瀺ãããŠããªããããç¡çæ°ãšãããã®ããšããã«ãããšããé£ç¹ãããã ããã§ã宿°ã®æ§è³ªã«ã€ããŠ1ã€ã®ä»®å®ãããã
ãã®å®çŸ©ã¯ãããã³ãã®åæ(w:en:Dedekind cut)ãšåŒã°ããããã®ãšãããã宿°ããã®æ°ããå°ããæçæ°ã®éåã«ãã£ãŠå®çŸ©ããããã®å®çŸ©ã¯æçæ°ãšç¡çæ°ã®äž¡æ¹ã«å¯ŸããŠé©çšã§ããããªããªããåæã§éžã°ããç¹ãæçæ°ã ã£ããšãã«ã¯ããã®ç¹èªèº«ãŸã§ã®æçæ°ã®éåãéžãã æçæ°ã衚ããæçæ°ã®éåãšããŠæ±ãã°ãããäžæ¹ãåæã«ãã£ãŠéžã°ããç¹ãç¡çæ°ã ã£ããšãã«ã¯ããã®åæã¯å¿
ããã®è¿ãã«ããå¥ã®æ°ã衚ããåæãšã¯åºå¥ãããããªããªããããæ°ãéžãã ãšããã®æ°ãšå¥ã®æ°ã®éã«ã¯å¿
ãããæçæ°ãååšããããã§ãããæçæ°ã®ãã®æ§è³ªã¯æçæ°ã®w:çš å¯æ§ãšåŒã°ããæçæ°ã®éèŠãªæ§è³ªã§ãããããã¯ãã©ããªæ°ã§ãæ°å€ãšããŠæžããªããã®å€ã¯ã©ããªå Žåã§ãç¡éå°æ°ã§æžãããšãåºæ¥ãç¡éå°æ°ã¯ã©ãã»ã©å°ããæ°ã§ãæçæ°ã§æžãã埪ç°å°æ°ãå«ãã§ããããšãã確ãã«æç«ããã®ã§ããããã®ããã«ããŠãç¡çæ°ã¯ãã®æ°ããå°ããæçæ°å
šäœã®éåã«ãã£ãŠãšãããããã
ããããã¯ãäžã§è¿°ã¹ã宿°ã®é£ç¶æ§ãçšããŠãæ°åã®åæãå®çŸ©ããããŸãã¯ãåæã®å®çŸ©ãè¿°ã¹ããä»»æã®(å°ãã)ããæ° ε {\displaystyle \epsilon } ããšã£ããšããããNãååšããŠn >= {\displaystyle >=} N ãæºããå
šãŠã®nã«ã€ããŠ
ãæãç«ã€ãšãæ°å a n {\displaystyle a_{n}} ã¯ã宿°aã«åæãããšããã
ããã§ã宿°ã®é£ç¶æ§ã¯ç¡éã«ãã宿°aã«è¿ãæ°ããã 1ã€ãããªããšããããšãèŠãããã«çšããããŠãããããã¯ããã宿°aãšç°ãªã£ãç¹bã¯ã宿°aãšã®éã«äœããã®æçæ°ãæã€ããã宿°aãšç¡éã«è¿ãã«ããããšã¯åºæ¥ãªãããã®ãããæ°å | a n â a | {\displaystyle |a_{n}-a|} ãã宿°aãšéžãã ç¹bã®è·é¢ãããå°ãã ε {\displaystyle \epsilon } ãããå°ãããšããæ¡ä»¶ãæºãããšãã a n {\displaystyle a_{n}} ãåæããç¹ã¯ç¢ºãã«ç¹bã§ã¯ãªããç¹aã§ããããšã ä¿èšŒãããã®ã§ãããäžã®å®çŸ©ã¯é«æ ¡ãŸã§ã«è¡ãªã£ã極éã®å®çŸ©ã«é©åããŠããã¯ããªã®ã§ãå®éã«æ¥µéã®èšç®ãè¡ãªããšãã«ã¯ããããŸã§ã«çšããçµæããã®ãŸãŸçšããŠãããããã®å®çŸ©ãçšãããšãã以äžãæãç«ã€ã
宿°a,bã«åæããæ°å a n {\displaystyle a_{n}} , b n {\displaystyle b_{n}} ã«å¯ŸããŠã
(I)
(II)
ãæãç«ã€ã
(I)ã«ã€ããŠãæ°å a n {\displaystyle a_{n}} ãaã«åæããããšããããã宿° ε 1 {\displaystyle \epsilon _{1}} ãåã£ããšãããã宿° N 1 {\displaystyle N_{1}} ãååšãã N 1 < n {\displaystyle N_{1}<n} ãæºããå
šãŠã®nã«ã€ããŠã
ãæç«ãããåæ§ã«æ°å b n {\displaystyle b_{n}} ãbã«åæããããšããããã宿° ε 2 {\displaystyle \epsilon _{2}} ãåã£ããšãããã宿° N 2 {\displaystyle N_{2}} ãååšãã N 2 < n {\displaystyle N_{2}<n} ãæºããå
šãŠã®nã«ã€ããŠã
ãååšããã
ããã§ã
ã«ã€ããŠã
ãšãããšããå
šãŠã® n > N {\displaystyle n>N} ãæºããæŽæ°nã«å¯ŸããŠ
ãèšç®ãããšããã®éã¯äžè§äžçåŒãçšããããšã§ã
ãæãç«ã€ããããã ε 1 {\displaystyle \epsilon _{1}} , ε 2 {\displaystyle \epsilon _{2}} ã¯Nã倧ããåãããšã§ãããã§ãå°ããã§ãããããå
šãŠã® ε {\displaystyle \epsilon } ã«å¯ŸããŠ
ãšãªããããªæŽæ°Nãååšããããã£ãŠã
ã瀺ãããã
(II)
åæ§ã«
ã«ã€ããŠã
ã¯ã
ãšãªããããã§ã n > N {\displaystyle n>N} ã«å¯ŸããŠã¯
ãæãç«ã€ããšã«æ³šç®ãããšã
ãåŸããããããã§ã ε 1 {\displaystyle \epsilon _{1}} , ε 2 {\displaystyle \epsilon _{2}} ã¯Nã倧ããåãããšã§ãããã§ãå°ããã§ãããããa,bãæéã®ãšãa,bã®å€ã«é¢ãããäžã®å€ã¯éããªãå°ãããªãããã£ãŠã
ã瀺ãããã
æ¬¡ã®æ°å
ã®æ¥µéå€ãæ±ããã
(I)
(II)
äžã®çµæã§ãã
(I)
(II)
ãçšããã°ããããã ãã宿°ã¯å
šãŠã®nã«å¯ŸããŠåãæ°ãåãæ°åãšããŠæ±ãã
(I)
ã¯ã1ã¯æ¥µéå€1ããšã
ã¯ã極éå€0ãåãããšããã
ãšãªãã
(II)
ã«ã€ããŠã2ã¯ã極éå€2ãåãã
ã¯æ¥µéå€0ãåãããšããã
ãæãç«ã€ãäžè¬ã«å®æ°åã宿°ã®è¶³ãç®ã¯ã極éå€ã«å®æ°åã宿°ã®è¶³ãç®ãããã°ããã
æ¬¡ã«æ°åã®çºæ£ã®å®çŸ©ããããããã§ãäžã®å Žåãšåæ§ç¡éåã®æ°åã®å€ãããå€ãã倧ãããªãããšãéèŠã§ãããããNãååšããŠn ⥠{\displaystyle \geq } N ãæºãããã¹ãŠã®nã«ã€ããŠä»»æã«åã£ã(倧ãã)Rã«å¯ŸããŠã
ãæãç«ã€ãšãã a n {\displaystyle a_{n}} ã¯nç¡éå€§ã§æ£ã®ç¡é倧ã«çºæ£ãããšããããã®ããšã
ãšæžãããã
æ°å
ã®å Žåã«ã€ããŠãã®æ°åãäžã®å®çŸ©ãçšãããšãã«æ£ã®ç¡é倧ã«çºæ£ããããšã瀺ãã
ããã§ããNã®éžã³æ¹ãéèŠã§ãããããã§ã¯ãããRã«å¯ŸããŠ
ãšéžã¹ã°ããããã®å Žåãã©ã®ãããª(倧ãã)Rãåã£ããšããŠã
ãæºãããããªæŽæ°Nãéžã¶ãšããã以éã®å
šãŠã®nã«ã€ããŠ
ãæãç«ã€ãå€Rã¯ãããã§ã倧ããã§ããã®ã§ããã®ããšã¯æ°åã®çºæ£ã®æ¡ä»¶ãæºãããŠããããã£ãŠãæ°å
ã¯nç¡éå€§ã§æ£ã®ç¡é倧ãžãšçºæ£ããã
åãæ§ã«ããŠã ããNãååšããŠn ⥠{\displaystyle \geq } N ãæºãããã¹ãŠã®nã«ã€ããŠä»»æã«åã£ã(å°ãã)Rã«å¯ŸããŠã
ãæãç«ã€ãšãã a n {\displaystyle a_{n}} ã¯nç¡é倧ã§è² ã®ç¡é倧ã«çºæ£ãããšããããã®ããšã¯
ãšæžãããã
ãã®ãã¡ã®ãããã«ãåœãŠã¯ãŸããªãå ŽåããããäŸãã°ã次ã®å Žåã¯æ°åã¯ã©ã®å€ã«åæããããšããªããããæ°åã¯æ¥µéå€ãæããªãã
ãäžã®å®çŸ©ã®ããããæºãããªãããšã瀺ãããã®æ°åãåæãçºæ£ãããªãããšãå°åºããã
ãã®ãšããéåžžã«å€§ããªNãåã£ããšããŠãããã®Nããå
ã®å
šãŠã®nã«ã€ã㊠a n {\displaystyle a_{n}} ãããããŠaã«è¿ãå€ã«çãŸããããªaã¯ååšããªããäŸãã°ãa = 1ãšåã£ããšãããšãããå€kã«ãããŠ
ãšãªããäž¡è
ã¯éåžžã«è¿ããªããããããn=k+1ã«ãããŠã¯æ¢ã«ããã®å€ã¯-1ãšãªãã
ãšãªããä»»æã«å°ããæ° ε {\displaystyle \epsilon } ã«å¯ŸããŠããå°ããæ°ã§ããç¶ããããšã¯ã§ããªããããã¯ã©ãã»ã©å€§ããªkããšã£ãŠãããããã¯a = -1 ãããã¯ãã以å€ã®éãéžãã§ãåãã§ããããã£ãŠããã®æ°åã¯nç¡é倧ã§ããå€ã«åæããããšã¯ç¡ããäžæ¹ããã®æ°åã¯1ãš-1ããå€ãåããªããããã©ã®ãããªæ°ããã倧ãããªããããªæ°åã§ã¯ãªãããã£ãŠããã®æ°åã¯æ£è² ã®ç¡é倧ã«çºæ£ããããšããªãããã£ãŠããã®æ°åã¯åæãçºæ£ãããªãããšã瀺ãããã
ããåºé I {\displaystyle I} ã«ãããŠå®çŸ©ããã颿° f {\displaystyle f} ã a â I {\displaystyle a\in I} ã§é£ç¶ãšã¯ã ã©ã㪠ε > 0 {\displaystyle \epsilon >0} ã«ã€ããŠã,ãã ÎŽ > 0 {\displaystyle \delta >0} ãååšã㊠| x â a | < ÎŽ {\displaystyle |x-a|<\delta } ãæºããå
šãŠã® x ( â I ) {\displaystyle x(\in I)} ã«ã€ããŠ
ãæãç«ã€ããšã§ããã åºéIã®å
šãŠã®ç¹ã§é£ç¶ã®ãšãã颿°fã¯Iäžã§é£ç¶ã§ãããšåŒã¶ã
nå埮åã f ( n ) = ( f ( n â 1 ) ) â² {\displaystyle f^{(n)}=(f^{(n-1)})'} ã§å®çŸ©ããã
ãã颿° f(x)ã«ã€ããŠãfãå®çŸ©ãããå
šãŠã®å®æ°ã«ã€ããŠ
ãæãç«ã€ã( Ο {\displaystyle \xi } ã¯aãšxã®éã«ãã,ãã宿°ã)ãããçºèŠè
ã«ã¡ãªãã§w:ãã€ã©ãŒçŽæ°ãšåŒã¶ãããã¯è€éãªé¢æ°ãã¹ãçŽæ°ãšããæ¯èŒçåããæã颿°ã§è¿äŒŒããããšãåºæ¥ããšããããšã衚ããå®çã§ããã
äžã§è¿°ã¹ããã€ã©ãŒçŽæ°ã¯n次ãŸã§ã®ã¹ãçŽæ°ã«ãã£ãŠå±éããããããæ§è³ªã®ãã颿°ã«ã€ããŠã¯æåŸã®ãããããé
ããã®å¯äžãç¡éã«å°ãããªããåã«ãã®é
ãããããããããç¡éåã§çœ®ãæããããšãåºæ¥ãããã®ãšããã€ã©ãŒçŽæ°ã¯
ãšæžãæãããããããããw:ãã€ã©ãŒå±éãšåŒã¶ããã€ã©ãŒå±éã¯çã
ãšæžãããšãåºæ¥ãã
ã«å¯ŸããŠx=0ã®ãŸããã§ã®ãã€ã©ãŒå±éãå°åºããã
ã§ããããšãçšãããšããã€ã©ãŒå±éã®å®çŸ©ã®åŒã§
ãåŸãããã ãã£ãŠã e x {\displaystyle e^{x}} ã®x=0ã®ãŸããã§ã®ãã€ã©ãŒå±éã¯ã
ãšãªãã
ã«ã€ããŠãã€ã©ãŒå±éãèãããå®éã«ã¯ãaãæŽæ°ã®å Žåã«ã¯ãã®å€ã¯éåžžã®ã¹ãçŽæ°å±éã«äžèŽãããäŸãã°ã
ãx=0ã®ãŸããã§ãã€ã©ãŒå±éãããšã
ãšãªãã 2次ã®ä»£æ°åŒã§ããã®ã§3é以éã®åŸ®åã¯0ã«ãªãããšãèæ
®ãããšããã®ãã€ã©ãŒå±éã¯ã
ãšãªãã確ãã«éåžžã®å±éãšäžèŽããã
aãæŽæ°ã§ãªãå Žåã«ã¯ãã®å±éã¯ç¡éã«ç¶ãããã®å±éã®ä¿æ°ãaãæŽæ°ã®å Žåã®2é
å®çã®æ¡åŒµãšããŠã
ãšå®çŸ©ãã2é
宿°ãšåŒã¶å Žåããããããã§a㯠( 1 + x ) a {\displaystyle (1+x)^{a}} ã®aã§ãããnã¯xã«ã€ããŠã®n次ã®é
ã衚ããããã®ä¿æ°ãçšãããšããã®ãã€ã©ãŒå±éã¯ã
ãšæžãããšãåºæ¥ããäŸãã°ãa= 1/2ã§ã¯ãx=0ã®ãŸããã®å±éã«ã€ããŠ
ã«ã€ããŠã
ãåŸãããããšããã2é
ç®ãŸã§ã®ãã€ã©ãŒå±éãšããŠã
ãåŸãããããã¡ããæ ¹æ°ãããã°ã©ããŸã§ã§ãå€ãåŸãããšãåºæ¥ãããã£ãŠã
ãåŸãããã
sin x {\displaystyle \sin x} ãš cos x {\displaystyle \cos x} ã¯åŸ®åã«ãã£ãŠäºãã«ç§»ãå€ããã®ã§ãã®ãã€ã©ãŒå±éã¯åæã«æ±ãããšãåºæ¥ãã詳ããèšç®ãããšãx = 0ã®ãŸããã§ã®å±éã¯
ãåŸãããšãåºæ¥ãããã®ãšãããã®å€ãšã
ã®ãã€ã©ãŒå±éã®å€ãæ¯èŒããå Žåã
ã®é¢ä¿ã瀺åãããããã®é¢ä¿ã¯çºèŠè
ã®åã«ã¡ãªãã§w:ãªã€ã©ãŒã®å
¬åŒãšåŒã°ããããã®å
¬åŒã®æ£åœåã¯è€çŽ é¢æ°è«ã䜿ããªããšããŸããããªããããªã®ã§ãã®çš¿ã®ç¯å²ãè¶
ããããç©çæ°åŠII以éã§æ±ãããäºå®ã§ããããªã€ã©ãŒã®å
¬åŒãçšãããšãäžè§é¢æ°ãææ°é¢æ°ãçšããŠè¡šãããšãã§ãããå
·äœçã«ã¯ã
ãæãç«ã€ã
ãã€ã©ãŒå±éãçšããŠæ¥µéãæ±ããããšãåºæ¥ãããšããããäŸãã°ã x â 0 {\displaystyle x\rightarrow 0} ã§ã
ãšãªãã
aã宿°ãŸã㯠± â {\displaystyle \pm \infty } ãšããŠ
lim x â a f ( x ) = lim x â a g ( x ) = 0 {\displaystyle \lim _{x\rightarrow a}f(x)=\lim _{x\rightarrow a}g(x)=0}
ãŸãã¯
lim x â a f ( x ) = lim x â a g ( x ) = â {\displaystyle \lim _{x\rightarrow a}f(x)=\lim _{x\rightarrow a}g(x)=\infty }
ãšãªã埮åå¯èœãªé¢æ°ã«ã€ããŠ
lim x â a f ( x ) g ( x ) = lim x â a f â² ( x ) g â² ( x ) {\displaystyle \lim _{x\rightarrow a}{\frac {f(x)}{g(x)}}=\lim _{x\rightarrow a}{\frac {f'(x)}{g'(x)}}} äŸãã°ã lim x â 0 sin x x = lim x â 0 cos x 1 = 1 {\displaystyle \lim _{x\rightarrow 0}{\frac {\sin x}{x}}=\lim _{x\rightarrow 0}{\frac {\cos x}{1}}=1} ãšãªãã
ããåºéãèããåºéã现ããåå²ãããããã§ããã颿°fã«å¯ŸããŠãåããããåºéã§ãã£ãšã倧ããéšåããšããåºéã®åºãããããŠãè¶³ãåããããã®ããã®é¢æ°ã®äžç©åãšåŒã¶ãåæ§ã«ãã£ãšãå°ããéšåãåãè¶³ãåããããã®ã颿°ã®äžç©åãšåŒã¶ãäžç©åãšäžç©åãäžèŽãããšããããããã®é¢æ°ã®ç©åãšåŒã³ãfãç©åå¯èœãšåŒã¶ã
Note:é£ç¶ãªé¢æ°ã¯ç©åå¯èœã§ããã
äŸãã°é¢æ° f ( x ) = { 1 (xisrational) 0 (xisirrational) {\displaystyle f(x)={\begin{cases}1~{\textrm {(xisrational)}}\\0~{\textrm {(xisirrational)}}\end{cases}}} ã«ã€ããŠåºé 0 < x < 1 {\displaystyle 0<x<1} ã§èãããšããã©ããªå°ããåºéã䜿ã£ãŠ 0 < x < 1 {\displaystyle 0<x<1} ãåå²ãããšããŠãæçæ°ã®çš 坿§ã«ãããäžç©åã¯1,äžç©åã¯0ãšãªãããã£ãŠfã¯ç©åå¯èœã§ãªãã
w:åæ²ç·é¢æ°ã¯äžè§é¢æ°ãšé¢ä¿ã®æ·±ãäžé£ã®é¢æ°çŸ€ã§ããããããã¯ç©åãè¡ãããã®å€æ°å€æã§äœ¿ãããšãããã®ã§ãããã§å°å
¥ãããåæ²ç·é¢æ°ã¯æ¬¡ã®3ã€ã®é¢æ°ã§ããã
ãåæ²ç·é¢æ°ãšåŒã¶ã
ãããã¯é¢ä¿åŒ
ãæºãããã x 2 â y 2 = 1 {\displaystyle x^{2}-y^{2}=1} ãåæ²ç·ã®é¢æ°è¡šç€ºã§ããããšããããã®é¢æ°ã¯åæ²ç·é¢æ°ãšåŒã°ãããäžã®åŒã¯äžè§é¢æ°ã®å¯Ÿå¿ç©ã§ãã cos 2 x + sin 2 x = 1 {\displaystyle \cos ^{2}x+\sin ^{2}x=1} ã«é¡äŒŒããŠãããããã®çµæã¯å¶ç¶ã§ã¯ãªããäžã®ãªã€ã©ãŒå
¬åŒã䜿ã£ãäžè§é¢æ°ã®åŒãèŠããšã sin i x = i sinh x , cos i x = cosh x , tan i x = i tanh x {\displaystyle \sin ix=i\sinh x,\cos ix=\cosh x,\tan ix=i\tanh x} ãåŸãããããã®åŒã cos 2 x + sin 2 x = 1 {\displaystyle \cos ^{2}x+\sin ^{2}x=1} ã§x=izãšãããã®ã«ä»£å
¥ãããšã cosh 2 x â sinh 2 x = 1 {\displaystyle \cosh ^{2}x-\sinh ^{2}x=1} ã®é¢ä¿ãåŸãããã
sin â 1 x {\displaystyle \sin ^{-1}x} ã sin x {\displaystyle \sin x} ã®é颿°ãšãããããã¯å€äŸ¡é¢æ°ã§ããã®ã§éåžž â Ï < y < Ï {\displaystyle -\pi <y<\pi } ã®ç¯å²ãéžãã§çšããã åæ§ã« tan â 1 x {\displaystyle \tan ^{-1}x} ã â Ï < y < Ï {\displaystyle -\pi <y<\pi } ã®ç¯å²ãéžãã§çšãããäžæ¹ cos â 1 x {\displaystyle \cos ^{-1}x} 㯠0 < y < 2 Ï {\displaystyle 0<y<2\pi } ã®ç¯å²ãéžãã§çšããã
ãåŸãããã
ãŸãã
ãå°åºããã y = sin x {\displaystyle y=\sin x} ãšããããã®ãšãã
ãã£ãŠã
ãšåããããšã
ãšãªãã2çªç®ã®åŒãšã3çªç®ã®åŒãyã§ç©åããããšã§æ±ããåŒãåŸãã
y = tan x {\displaystyle y=\tan x} ãšããã
ããã
ãšãªãããã£ãŠã
ãåŸãããããã®åŒã®2çªç®ã®åŒãšã3çªç®ã®åŒãyã§ç©åããããšã§æ±ããåŒãåŸãã
w:æç颿°ã®ç©å
æç颿°ã¯å¿
ãw:åç颿°ãçšããŠç©åã§ããã
æç颿°ã®ç©åã¯
ã®åœ¢ã«æžãããšãåºæ¥ãã(P,Qã¯xã®æŽåŒã)ããã§ã次ã®ãããªæé ãå®è¡ããã
ãã®ããšã«ãã£ãŠã被ç©å颿°ã®åæ¯ã®æ¬¡æ°ã¯ãäžã®åŒã®ååã®æ¬¡æ°ããäœããªããå²ãããšã§ããŸã£ãéšåã¯å¿
ããåæ°ã§ãªã圢ã«ãªãã®ã§(æ®éã®æ°ãx, x 2 {\displaystyle x^{2}} ãªã©ã«ãªãã)ç©åã§ããã
代æ°åŒã¯å¿
ãè€çŽ æ°ã®ç¯å²ã§å æ°åè§£ã§ããããšãç¥ãããŠããã®ã§ã(w:代æ°åŠã®åºæ¬å®ç) 忝ã¯å¿
ã(x-a)ã®ç©ã®åœ¢ã«æžãããããã§ãå
ã
ã®è¢«ç©å颿°ã宿°ã ã£ããšãããšãå æ°åè§£ãããåŒã¯ãå¿
ãã ( x â a ) ( x â a â ) {\displaystyle (x-a)(x-a^{*})} ã®åœ¢ã«ãªã£ãŠããã¯ãã§ããã(*ã¯è€çŽ å
±åœ¹)ãããã®2å æ°ãããåãããããšã«ãããšãçµå±ãããã®åŒã®åæ¯ã¯ã1次åŒã2次åŒã®ç©ã§æžããã
ã«ã€ããŠã¯ã
ãåŸãããã
ãã
ãåŸãããããšãåããããããã¯å
±ã«åç颿°ã®ç¯å²ã§ç©åå¯èœã§ãããå®éãäžã®åŒã¯
ãæºããããšãåãããäžã®åŒã«ã€ããŠã¯ããŸãã忝ãå¹³æ¹å®æãããšã忝ã¯ã
ã®åœ¢ã«ãªãããããã§
ã®çœ®ãæãããããšãå
ã
ã®ç©åã¯ã
ãšãªããããã§ããã®ãã¡ã®ç¬¬1é
ã¯ã
ãåŸãããç©åã§ããããšãåãããæ¬¡ã«ã第2é
ã«ã€ããŠã¯
ã®çœ®ãæãããããšã宿°å åãé€ããŠã
ãšãªããããã®ç©åã®çµæã¯ãã®ããŒãžã®äžã®æ¹ã§èŠãéãã
ãšãªãã
ãã£ãŠãå
šãŠã®æç颿°ã¯ãåç颿°ã®ç¯å²ã§ç©åã§ããããšãåãã£ãã
èšç®äŸãšããŠã
ãå®éã«èšç®ããŠã¿ãã èšç®ãè¡ãªããšãã«ã¯ãŸããååã®æ¬¡æ°ãåæ¯ã®æ¬¡æ°ãããäœãããšã確èªãããæ¬¡ã«ãéšååæ°åè§£ãè¡ãªããããã®ãšãã«ã¯ã
ãšãããŠèšç®ããã°ãããããã§ã忝ãéåãããšãååã¯ã
ãåŸãããããããã¯å
ã
ã®åŒã®ååã§ãã
ãšäžèŽããŠããªããŠã¯ãªããªãããã£ãŠã
ãåŸãããããããè§£ããšã
ãåŸããããå
ã®ç©åã¯
ã«åž°çãããããããã®é
ã¯ã¯ããããåç颿°ã®ç¯å²ã§ç©åã§ãããå®éã«ç©åãè¡ãªããšã
ãåŸãããäžã§åŸãå€ãšäžèŽããã
颿°ãæçæ°ã ãã§æžãããªãå Žåããã®åŒã¯ãã¯ãç©åãåºæ¥ããšã¯éããªããç°¡åã«ç©åãå®è¡ã§ããå Žåãæãããããã«ç©åã®ä»æ¹ãèŠåœãããªãå Žåããããå®ç©åã§ãã£ãããæ°å€çã«æ±ããããšãèããããšãå¿
èŠã§ããã
ã§æžãããç¡çåŒãå«ãŸãããã以å€ã®ç¡çåŒãå«ãŸããªãå Žåã«ã¯ã
ã®çœ®ãæããããããšã§ããã®åŒãäžè§é¢æ°ã®ç©åã«çœ®ãæããããšãåºæ¥ããäžè§é¢æ°ã®ç©åã¯ãåŸã«è¿°ã¹ãéãæç颿°ã®ç©åã«åž°çãããããšãåºæ¥ãã®ã§ããã®ç©åã¯è§£æçã«å®è¡ã§ããã
ã§æžãããç¡çåŒãå«ãŸãããã以å€ã®ç¡çåŒãå«ãŸããªãå Žåã«ã¯ã
ã®çœ®ãæããããããšã§ããã®åŒãäžè§é¢æ°ã®ç©åã«çœ®ãæããããšãåºæ¥ãã (
ã®é¢ä¿ãçšããŠãæ ¹å·ãæ¶ãããšãåºæ¥ãã )
äžè§é¢æ°
ã ããå«ãã ç©åã«ã€ããŠã¯ã
ã®çœ®ãæããããããšã§ããããæç颿°ã®ç©åã«åž°çãããããšãã§ãããå®éã
ããã«ã
ãšãªãã確ãã«tã«ã€ããŠã®æç颿°ã«åž°çããããšãåããããã£ãŠãäžè§é¢æ°ã ãã®é¢æ°ã¯åç颿°ã®ç¯å²ã§ç©åããåŸãããšãåãã£ãã
(I)
(II)
(III)
(IV)
ãããããç©åããã
(I)
ããã§ããã®åŒã
ã«çãããšãããšã
䞡蟺ãçããããšããã
ãšãªãã
ãåŸãããããã£ãŠå§ãã®åŒã«ã€ããŠã
ãåŸãããããã®é¢æ°ãxã§ç©åãããš
ãåŸãããã (II)
ããã§ããã®åŒã
ã«çãããšä»®å®ãããšã䞡蟺ã®åæ¯ãæ¯èŒããããšã§ã
ãšãªãã
ãåŸãããããããè§£ããšã
ãåŸãããããã£ãŠå
ã®åŒã¯ã
ãšãªããæŽã«ãã®åŒã®ç¬¬2é
ã«ã€ããŠãé
ã®ååã
ãšæžãæããããäºã«æ³šç®ãããšãå
ã®åŒã¯
ãšãªããããã§ããã®åŒã®1, 2é
ã«ã€ããŠã¯ãç°¡åã«ç©åã§ããŠã
ãåŸããããæåŸã«ç¬¬3é
ã«ã€ããŠã¯ã
ãæãç«ã€ããšã«æ³šç®ãããšã t = 2 x â 1 , d t = 2 d x {\displaystyle t=2x-1,dt=2dx} ã®çœ®ãæããããŠã
ãåŸãããããã£ãŠãå
šäœããŸãšãããšç©åå€ãšããŠ
ãåŸãããã
(III)
(IV)
ãšãããšãã
ãšãªãããšãèæ
®ãããšã
ãšãªããå¥ã®æ¹æ³ãšããŠã
ãšãªãã®ã§ã䞡蟺ãç©åããŠçµæãåŸãŠãããã
å€å€æ°ã§å®çŸ©ããã颿°fããããšãã®ãã倿°ã®ã¿ã察象ã«ãã埮åãäŸãã° lim h â 0 f ( x 1 + h , . . . , x n ) â f ( x 1 , . . . , x n ) h {\displaystyle \lim _{h\rightarrow 0}{\frac {f(x_{1}+h,...,x_{n})-f(x_{1},...,x_{n})}{h}}} ã f x {\displaystyle f_{x}} ã â f â x 1 {\displaystyle {\frac {\partial {f}}{\partial {x_{1}}}}} ã ( â f â x 1 ) x 2 , x 3 . . . {\displaystyle ({\frac {\partial {f}}{\partial {x_{1}}}})_{x_{2},x_{3}...}} ãšæžãå埮åãšåŒã¶ã
å€å€æ°é¢æ°ã§ã¯ããããç¬ç«å€æ°ã«ããå埮åããã¹ãŠ0ã«ãªãç¹ã§ã颿°ãæå€§å€ãŸãã¯æå°å€ãåãããšãæåŸ
ãããã
äŸãã° f = x 2 + y 2 {\displaystyle f=x^{2}+y^{2}} ã§ã¯ã â f â x = 2 x {\displaystyle {\frac {\partial {f}}{\partial {x}}}=2x} â f â y = 2 y {\displaystyle {\frac {\partial {f}}{\partial {y}}}=2y} ã§ããã®ã§ã x = 0 , y = 0 {\displaystyle x=0,y=0} ã§ã極倧å€ãŸãã¯æ¥µå°å€ãåãããšãæåŸ
ãããã
2倿°é¢æ° f ( x , y ) {\displaystyle f(x,y)} ã«ãããŠãç¹ ( a , b ) {\displaystyle (a,b)} ã§ f x ( a , b ) = f y ( a , b ) = 0 {\displaystyle f_{x}(a,b)=f_{y}(a,b)=0} ãšãããå€å¥åŒDã
ãšå®çŸ©ããã
D > 0 {\displaystyle D>0} ã®ãšã
D < 0 {\displaystyle D<0} ã®ãšãã¯ã極å€ã¯ãšããªãã
2倿°é¢æ° f ( x , y ) {\displaystyle f(x,y)} ã«ãããå
šåŸ®åã¯
ãšå®çŸ©ããããäŸãã° f ( x , y ) = x 2 + y 2 {\displaystyle f(x,y)=x^{2}+y^{2}} ã«ãããå
šåŸ®åã¯
ãšãªããåæ§ã«n倿°é¢æ° f ( x 1 , x 2 , ⯠, x n ) {\displaystyle f(x_{1},x_{2},\cdots ,x_{n})} ã«ãããå
šåŸ®åã¯
ãšå®çŸ©ãããã
ããã»è¡åã¯2éå埮åã«ãã£ãŠäœãããè¡å H = [ â 2 f â x i x j ( P ) ] {\displaystyle H=\left[{\frac {\partial ^{2}{f}}{\partial x_{i}x_{j}}}(P)\right]} ã§ããã
ç¹Pãã â f â x 1 ( P ) = â f â x 2 ( P ) = ⯠â f â x n ( P ) = 0 {\displaystyle {\frac {\partial f}{\partial x_{1}}}(P)={\frac {\partial f}{\partial x_{2}}}(P)=\cdots {\frac {\partial f}{\partial x_{n}}}(P)=0} ãªãç¹(w:èšçç¹)ãšãããããã»è¡åã®Pã«ãããåºæå€ãå
šãŠæ£ã§ããã°ã颿°ã¯ç¹Pã§æ¥µå°å€ãæã¡ãå
šãŠè² ã§ããã°ãç¹Pã§æ¥µå€§å€ãæã€ãã©ã¡ãã§ããªããªãç¹Pã¯w:éç¹ã§ããã
äŸãã°ã f = x 2 + y 2 {\displaystyle f=x^{2}+y^{2}} ã«ã€ããŠãèšçç¹(0,0)ã«ãããããã»è¡åã¯ã H = ( â 2 f â x 2 â 2 f â x â y â 2 f â y â x â 2 f â y 2 ) {\displaystyle H={\begin{pmatrix}{\frac {\partial ^{2}{f}}{\partial {x}^{2}}}&{\frac {\partial ^{2}f}{\partial x\partial y}}\\{\frac {\partial ^{2}f}{\partial y\partial x}}&{\frac {\partial ^{2}{f}}{\partial {y}^{2}}}\end{pmatrix}}} = ( 2 0 0 2 ) {\displaystyle ={\begin{pmatrix}2&0\\0&2\end{pmatrix}}} ãšãªããåºæå€ã¯2ã§ããã®ã§ãç¹(0,0)ã¯fã®æ¥µå°å€ã§ããã
ã®åœ¢ã§è¡šãããã颿°ããããšãã
ãååšãããšãããšããã®é¢æ°ã¯
ã®åœ¢ã«(屿çã«ã¯)衚ããããšãåºæ¥ãããã®ãšãã
ãæãç«ã€ã
å³èŸºã®åœ¢ã¯å°ãåŠã«èŠããããç¥ããªããäŸãã°ã
(a,bã¯å®æ°)ã«ã€ããŠèããŠã¿ããšãäžã®åŒã¯ã
ãšãªã£ãŠãããéåžžã®ä»æ¹ã§èŠãyã®åŸããšäžèŽããŠããã
ãã®å®çã¯çµå±ã®ãšããã©ããªè€éãªæ²ç·ã§ããããç¹ã®ããè¿ãã«éãã°ãããã¯ã»ãšãã©çŽç·ãšåãæ§ã«ãªã£ãŠãããšããããšãè¿°ã¹ãŠããã
F(x,y) = 0ã®åœ¢ã®æ¡ä»¶ã課ããããäžã§ã
ã®æå€§å€ãæ±ããåé¡ãèããããã®ãšã
ã§æ°ãã颿°gãå®çŸ©ãã ( λ {\displaystyle \lambda } ã¯ãã宿°)
ã§äžãããã x , y , λ {\displaystyle x,y,\lambda } ãèšç®ãããåŸãããç¹ãæ¥µå€§ãæ¥µå°å€ãåãç¹ã§ããã
ãšããŠããã®æ¹æ³ãé©çšããŠã¿ããæ¥µå€ã¯ã(å³ãæžããŠã¿ããš)
ã§çŸããããšæåŸ
ãããã ãã®åŒã®å Žåã¯ã
ã代å
¥ããããšã§çãåŸãããšãã§ãããå¹³æ¹å®æãã圢ã¯
ã§ããã確ãã«
ã§æ¥µå€ãåãããšãåãããæªå®å®æ°æ³ãçšãããš
ãåŸãããã ããã§ã
ãåŸãããããããã¯x,y, λ {\displaystyle \lambda } ã«ã€ããŠã®é£ç«1次æ¹çšåŒãšãªã£ãŠããããããè§£ããšãçã¯ã
ãšãªãã確ãã«æ£ç¢ºãªå€ãšäžèŽããã
è€æ°ã®æåã«ã€ããŠç©åãè¡ãªããšããããå€éç©åãšåŒã¶ãäŸãã°ã â«â« f ( x , y ) d x d y {\displaystyle \iint f(x,y)dxdy}
â«â« f ( x , y ) d x d y {\displaystyle \iint f(x,y)dxdy} ã¯ã â«â« f ( x , y ) d x d y {\displaystyle \iint f(x,y)dxdy} = â« d y ( â« f d x ) = â« d x ( â« f d y ) {\displaystyle =\int dy(\int fdx)=\int dx(\int fdy)} ã§æžãå€ããããã
ã¬ãŠã¹ç©å â« â â â e â x 2 d x = Ï {\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}}dx={\sqrt {\pi }}} ã®å°åºã
ãŸã: â« â â â e â a x 2 d x {\displaystyle \int _{-\infty }^{\infty }e^{-ax^{2}}dx} ã®ç©åã¯
ãšãªãã
ã¬ã³ã颿°ã¯ Î ( t ) = â« 0 â x t â 1 e â x d x {\displaystyle \Gamma (t)=\int _{0}^{\infty }x^{t-1}e^{-x}dx} ã§å®çŸ©ããã颿°ã§ããã
ããŒã¿é¢æ°ã¯ B ( p , q ) = â« 0 1 x p â 1 ( 1 â x ) q â 1 d x {\displaystyle \mathrm {B} (p,q)=\int _{0}^{1}x^{p-1}(1-x)^{q-1}dx} ã§å®çŸ©ããã颿°ã§ããã
â n = 1 â 1 n α {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{\alpha }}}} ã¯ã α =< 1 {\displaystyle \alpha =<1} ã®ãšãçºæ£ãã α > 1 {\displaystyle \alpha >1} ã®ãšãåæããã
TODO | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç©çæ°åŠI > è§£æåŠ",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "è§£æåŠã¯é«æ ¡ãŸã§ã®æ°åŠã®å»¶é·ãšããŠãšãããããšãåºæ¥ããã髿 ¡ãŸã§ã®æ°åŠãå³å¯ã«åºç€ã¥ããç§ç®ãšãšãããããšãåºæ¥ããäŸãã°ã髿 ¡ãŸã§ã®ç¯å²ã§ã¯æ°åã®æ¥µéã颿°ã®é£ç¶ã¯å³å¯ã«ã¯å®çŸ©ãããŠããªãã£ããè§£æåŠã§ã¯ãã®ãããªæ¥µéãåãææ³ãæ±ãããŸãã埮åãç©åã«é¢ããããé²ãã èšç®ãæ±ããããã§åŠãã ææ³ã¯ç·åœ¢ä»£æ°ãšäžŠãã§ãããé²ãã èšç®ãè¡ãªãããã®åºç€ãšãªãã®ã§ãããã§åŠã¶ææ³ã«ã¯ååç¿çããå¿
èŠãããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ããã§ã¯ã1ã€ã®å€æ°ãæ±ã颿°ãçšããŠåæãé£ç¶æ§ã®å®çŸ©ãæ±ãããŸããããããçšããŠå³å¯ã«å®çŸ©ãããææ³ãçšããŠãã€ã©ãŒå±éãããè€éãªç©åãå°å
¥ããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "æåã«ãç¡çæ°ãå®çŸ©ããææ³ãèããã髿 ¡ãŸã§ã®ç¯å²ã§ã¯ã宿°ã®ãã¡ã§æçæ°ã§ãªããã®ãç¡çæ°ãšå®çŸ©ãããããã§æçæ°ãšã¯ã2ã€ã®äºãã«çŽ ã®æŽæ°n,mãçšããŠã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ãšãããããã®å
šäœãæãããããããã®æ§æã§ã¯ãããã宿°ãäœãªã®ãã瀺ãããŠããªããããç¡çæ°ãšãããã®ããšããã«ãããšããé£ç¹ãããã ããã§ã宿°ã®æ§è³ªã«ã€ããŠ1ã€ã®ä»®å®ãããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãã®å®çŸ©ã¯ãããã³ãã®åæ(w:en:Dedekind cut)ãšåŒã°ããããã®ãšãããã宿°ããã®æ°ããå°ããæçæ°ã®éåã«ãã£ãŠå®çŸ©ããããã®å®çŸ©ã¯æçæ°ãšç¡çæ°ã®äž¡æ¹ã«å¯ŸããŠé©çšã§ããããªããªããåæã§éžã°ããç¹ãæçæ°ã ã£ããšãã«ã¯ããã®ç¹èªèº«ãŸã§ã®æçæ°ã®éåãéžãã æçæ°ã衚ããæçæ°ã®éåãšããŠæ±ãã°ãããäžæ¹ãåæã«ãã£ãŠéžã°ããç¹ãç¡çæ°ã ã£ããšãã«ã¯ããã®åæã¯å¿
ããã®è¿ãã«ããå¥ã®æ°ã衚ããåæãšã¯åºå¥ãããããªããªããããæ°ãéžãã ãšããã®æ°ãšå¥ã®æ°ã®éã«ã¯å¿
ãããæçæ°ãååšããããã§ãããæçæ°ã®ãã®æ§è³ªã¯æçæ°ã®w:çš å¯æ§ãšåŒã°ããæçæ°ã®éèŠãªæ§è³ªã§ãããããã¯ãã©ããªæ°ã§ãæ°å€ãšããŠæžããªããã®å€ã¯ã©ããªå Žåã§ãç¡éå°æ°ã§æžãããšãåºæ¥ãç¡éå°æ°ã¯ã©ãã»ã©å°ããæ°ã§ãæçæ°ã§æžãã埪ç°å°æ°ãå«ãã§ããããšãã確ãã«æç«ããã®ã§ããããã®ããã«ããŠãç¡çæ°ã¯ãã®æ°ããå°ããæçæ°å
šäœã®éåã«ãã£ãŠãšãããããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ããããã¯ãäžã§è¿°ã¹ã宿°ã®é£ç¶æ§ãçšããŠãæ°åã®åæãå®çŸ©ããããŸãã¯ãåæã®å®çŸ©ãè¿°ã¹ããä»»æã®(å°ãã)ããæ° ε {\\displaystyle \\epsilon } ããšã£ããšããããNãååšããŠn >= {\\displaystyle >=} N ãæºããå
šãŠã®nã«ã€ããŠ",
"title": "è§£æåŠ"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãæãç«ã€ãšãæ°å a n {\\displaystyle a_{n}} ã¯ã宿°aã«åæãããšããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "ããã§ã宿°ã®é£ç¶æ§ã¯ç¡éã«ãã宿°aã«è¿ãæ°ããã 1ã€ãããªããšããããšãèŠãããã«çšããããŠãããããã¯ããã宿°aãšç°ãªã£ãç¹bã¯ã宿°aãšã®éã«äœããã®æçæ°ãæã€ããã宿°aãšç¡éã«è¿ãã«ããããšã¯åºæ¥ãªãããã®ãããæ°å | a n â a | {\\displaystyle |a_{n}-a|} ãã宿°aãšéžãã ç¹bã®è·é¢ãããå°ãã ε {\\displaystyle \\epsilon } ãããå°ãããšããæ¡ä»¶ãæºãããšãã a n {\\displaystyle a_{n}} ãåæããç¹ã¯ç¢ºãã«ç¹bã§ã¯ãªããç¹aã§ããããšã ä¿èšŒãããã®ã§ãããäžã®å®çŸ©ã¯é«æ ¡ãŸã§ã«è¡ãªã£ã極éã®å®çŸ©ã«é©åããŠããã¯ããªã®ã§ãå®éã«æ¥µéã®èšç®ãè¡ãªããšãã«ã¯ããããŸã§ã«çšããçµæããã®ãŸãŸçšããŠãããããã®å®çŸ©ãçšãããšãã以äžãæãç«ã€ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "宿°a,bã«åæããæ°å a n {\\displaystyle a_{n}} , b n {\\displaystyle b_{n}} ã«å¯ŸããŠã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "(I)",
"title": "è§£æåŠ"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "(II)",
"title": "è§£æåŠ"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãæãç«ã€ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "(I)ã«ã€ããŠãæ°å a n {\\displaystyle a_{n}} ãaã«åæããããšããããã宿° ε 1 {\\displaystyle \\epsilon _{1}} ãåã£ããšãããã宿° N 1 {\\displaystyle N_{1}} ãååšãã N 1 < n {\\displaystyle N_{1}<n} ãæºããå
šãŠã®nã«ã€ããŠã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãæç«ãããåæ§ã«æ°å b n {\\displaystyle b_{n}} ãbã«åæããããšããããã宿° ε 2 {\\displaystyle \\epsilon _{2}} ãåã£ããšãããã宿° N 2 {\\displaystyle N_{2}} ãååšãã N 2 < n {\\displaystyle N_{2}<n} ãæºããå
šãŠã®nã«ã€ããŠã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ãååšããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ããã§ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ã«ã€ããŠã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ãšãããšããå
šãŠã® n > N {\\displaystyle n>N} ãæºããæŽæ°nã«å¯ŸããŠ",
"title": "è§£æåŠ"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ãèšç®ãããšããã®éã¯äžè§äžçåŒãçšããããšã§ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ãæãç«ã€ããããã ε 1 {\\displaystyle \\epsilon _{1}} , ε 2 {\\displaystyle \\epsilon _{2}} ã¯Nã倧ããåãããšã§ãããã§ãå°ããã§ãããããå
šãŠã® ε {\\displaystyle \\epsilon } ã«å¯ŸããŠ",
"title": "è§£æåŠ"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "ãšãªããããªæŽæ°Nãååšããããã£ãŠã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ã瀺ãããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "(II)",
"title": "è§£æåŠ"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "åæ§ã«",
"title": "è§£æåŠ"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ã«ã€ããŠã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ã¯ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ãšãªããããã§ã n > N {\\displaystyle n>N} ã«å¯ŸããŠã¯",
"title": "è§£æåŠ"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "ãæãç«ã€ããšã«æ³šç®ãããšã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ãåŸããããããã§ã ε 1 {\\displaystyle \\epsilon _{1}} , ε 2 {\\displaystyle \\epsilon _{2}} ã¯Nã倧ããåãããšã§ãããã§ãå°ããã§ãããããa,bãæéã®ãšãa,bã®å€ã«é¢ãããäžã®å€ã¯éããªãå°ãããªãããã£ãŠã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ã瀺ãããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "æ¬¡ã®æ°å",
"title": "è§£æåŠ"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ã®æ¥µéå€ãæ±ããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "(I)",
"title": "è§£æåŠ"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "(II)",
"title": "è§£æåŠ"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "äžã®çµæã§ãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "(I)",
"title": "è§£æåŠ"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "(II)",
"title": "è§£æåŠ"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "ãçšããã°ããããã ãã宿°ã¯å
šãŠã®nã«å¯ŸããŠåãæ°ãåãæ°åãšããŠæ±ãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "(I)",
"title": "è§£æåŠ"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "ã¯ã1ã¯æ¥µéå€1ããšã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "ã¯ã極éå€0ãåãããšããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "ãšãªãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "(II)",
"title": "è§£æåŠ"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "ã«ã€ããŠã2ã¯ã極éå€2ãåãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "ã¯æ¥µéå€0ãåãããšããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "ãæãç«ã€ãäžè¬ã«å®æ°åã宿°ã®è¶³ãç®ã¯ã極éå€ã«å®æ°åã宿°ã®è¶³ãç®ãããã°ããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "æ¬¡ã«æ°åã®çºæ£ã®å®çŸ©ããããããã§ãäžã®å Žåãšåæ§ç¡éåã®æ°åã®å€ãããå€ãã倧ãããªãããšãéèŠã§ãããããNãååšããŠn ⥠{\\displaystyle \\geq } N ãæºãããã¹ãŠã®nã«ã€ããŠä»»æã«åã£ã(倧ãã)Rã«å¯ŸããŠã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "ãæãç«ã€ãšãã a n {\\displaystyle a_{n}} ã¯nç¡éå€§ã§æ£ã®ç¡é倧ã«çºæ£ãããšããããã®ããšã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "ãšæžãããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "æ°å",
"title": "è§£æåŠ"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "ã®å Žåã«ã€ããŠãã®æ°åãäžã®å®çŸ©ãçšãããšãã«æ£ã®ç¡é倧ã«çºæ£ããããšã瀺ãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "ããã§ããNã®éžã³æ¹ãéèŠã§ãããããã§ã¯ãããRã«å¯ŸããŠ",
"title": "è§£æåŠ"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "ãšéžã¹ã°ããããã®å Žåãã©ã®ãããª(倧ãã)Rãåã£ããšããŠã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "ãæºãããããªæŽæ°Nãéžã¶ãšããã以éã®å
šãŠã®nã«ã€ããŠ",
"title": "è§£æåŠ"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ãæãç«ã€ãå€Rã¯ãããã§ã倧ããã§ããã®ã§ããã®ããšã¯æ°åã®çºæ£ã®æ¡ä»¶ãæºãããŠããããã£ãŠãæ°å",
"title": "è§£æåŠ"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ã¯nç¡éå€§ã§æ£ã®ç¡é倧ãžãšçºæ£ããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "åãæ§ã«ããŠã ããNãååšããŠn ⥠{\\displaystyle \\geq } N ãæºãããã¹ãŠã®nã«ã€ããŠä»»æã«åã£ã(å°ãã)Rã«å¯ŸããŠã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "ãæãç«ã€ãšãã a n {\\displaystyle a_{n}} ã¯nç¡é倧ã§è² ã®ç¡é倧ã«çºæ£ãããšããããã®ããšã¯",
"title": "è§£æåŠ"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "ãšæžãããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "ãã®ãã¡ã®ãããã«ãåœãŠã¯ãŸããªãå ŽåããããäŸãã°ã次ã®å Žåã¯æ°åã¯ã©ã®å€ã«åæããããšããªããããæ°åã¯æ¥µéå€ãæããªãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "",
"title": "è§£æåŠ"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "ãäžã®å®çŸ©ã®ããããæºãããªãããšã瀺ãããã®æ°åãåæãçºæ£ãããªãããšãå°åºããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "",
"title": "è§£æåŠ"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "ãã®ãšããéåžžã«å€§ããªNãåã£ããšããŠãããã®Nããå
ã®å
šãŠã®nã«ã€ã㊠a n {\\displaystyle a_{n}} ãããããŠaã«è¿ãå€ã«çãŸããããªaã¯ååšããªããäŸãã°ãa = 1ãšåã£ããšãããšãããå€kã«ãããŠ",
"title": "è§£æåŠ"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "ãšãªããäž¡è
ã¯éåžžã«è¿ããªããããããn=k+1ã«ãããŠã¯æ¢ã«ããã®å€ã¯-1ãšãªãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "ãšãªããä»»æã«å°ããæ° ε {\\displaystyle \\epsilon } ã«å¯ŸããŠããå°ããæ°ã§ããç¶ããããšã¯ã§ããªããããã¯ã©ãã»ã©å€§ããªkããšã£ãŠãããããã¯a = -1 ãããã¯ãã以å€ã®éãéžãã§ãåãã§ããããã£ãŠããã®æ°åã¯nç¡é倧ã§ããå€ã«åæããããšã¯ç¡ããäžæ¹ããã®æ°åã¯1ãš-1ããå€ãåããªããããã©ã®ãããªæ°ããã倧ãããªããããªæ°åã§ã¯ãªãããã£ãŠããã®æ°åã¯æ£è² ã®ç¡é倧ã«çºæ£ããããšããªãããã£ãŠããã®æ°åã¯åæãçºæ£ãããªãããšã瀺ãããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "ããåºé I {\\displaystyle I} ã«ãããŠå®çŸ©ããã颿° f {\\displaystyle f} ã a â I {\\displaystyle a\\in I} ã§é£ç¶ãšã¯ã ã©ã㪠ε > 0 {\\displaystyle \\epsilon >0} ã«ã€ããŠã,ãã ÎŽ > 0 {\\displaystyle \\delta >0} ãååšã㊠| x â a | < ÎŽ {\\displaystyle |x-a|<\\delta } ãæºããå
šãŠã® x ( â I ) {\\displaystyle x(\\in I)} ã«ã€ããŠ",
"title": "è§£æåŠ"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "ãæãç«ã€ããšã§ããã åºéIã®å
šãŠã®ç¹ã§é£ç¶ã®ãšãã颿°fã¯Iäžã§é£ç¶ã§ãããšåŒã¶ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "nå埮åã f ( n ) = ( f ( n â 1 ) ) â² {\\displaystyle f^{(n)}=(f^{(n-1)})'} ã§å®çŸ©ããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "",
"title": "è§£æåŠ"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "ãã颿° f(x)ã«ã€ããŠãfãå®çŸ©ãããå
šãŠã®å®æ°ã«ã€ããŠ",
"title": "è§£æåŠ"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "ãæãç«ã€ã( Ο {\\displaystyle \\xi } ã¯aãšxã®éã«ãã,ãã宿°ã)ãããçºèŠè
ã«ã¡ãªãã§w:ãã€ã©ãŒçŽæ°ãšåŒã¶ãããã¯è€éãªé¢æ°ãã¹ãçŽæ°ãšããæ¯èŒçåããæã颿°ã§è¿äŒŒããããšãåºæ¥ããšããããšã衚ããå®çã§ããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "äžã§è¿°ã¹ããã€ã©ãŒçŽæ°ã¯n次ãŸã§ã®ã¹ãçŽæ°ã«ãã£ãŠå±éããããããæ§è³ªã®ãã颿°ã«ã€ããŠã¯æåŸã®ãããããé
ããã®å¯äžãç¡éã«å°ãããªããåã«ãã®é
ãããããããããç¡éåã§çœ®ãæããããšãåºæ¥ãããã®ãšããã€ã©ãŒçŽæ°ã¯",
"title": "è§£æåŠ"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "ãšæžãæãããããããããw:ãã€ã©ãŒå±éãšåŒã¶ããã€ã©ãŒå±éã¯çã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "ãšæžãããšãåºæ¥ãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "ã«å¯ŸããŠx=0ã®ãŸããã§ã®ãã€ã©ãŒå±éãå°åºããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "ã§ããããšãçšãããšããã€ã©ãŒå±éã®å®çŸ©ã®åŒã§",
"title": "è§£æåŠ"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "ãåŸãããã ãã£ãŠã e x {\\displaystyle e^{x}} ã®x=0ã®ãŸããã§ã®ãã€ã©ãŒå±éã¯ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "ãšãªãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "ã«ã€ããŠãã€ã©ãŒå±éãèãããå®éã«ã¯ãaãæŽæ°ã®å Žåã«ã¯ãã®å€ã¯éåžžã®ã¹ãçŽæ°å±éã«äžèŽãããäŸãã°ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "ãx=0ã®ãŸããã§ãã€ã©ãŒå±éãããšã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "ãšãªãã 2次ã®ä»£æ°åŒã§ããã®ã§3é以éã®åŸ®åã¯0ã«ãªãããšãèæ
®ãããšããã®ãã€ã©ãŒå±éã¯ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "ãšãªãã確ãã«éåžžã®å±éãšäžèŽããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "aãæŽæ°ã§ãªãå Žåã«ã¯ãã®å±éã¯ç¡éã«ç¶ãããã®å±éã®ä¿æ°ãaãæŽæ°ã®å Žåã®2é
å®çã®æ¡åŒµãšããŠã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "ãšå®çŸ©ãã2é
宿°ãšåŒã¶å Žåããããããã§a㯠( 1 + x ) a {\\displaystyle (1+x)^{a}} ã®aã§ãããnã¯xã«ã€ããŠã®n次ã®é
ã衚ããããã®ä¿æ°ãçšãããšããã®ãã€ã©ãŒå±éã¯ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "ãšæžãããšãåºæ¥ããäŸãã°ãa= 1/2ã§ã¯ãx=0ã®ãŸããã®å±éã«ã€ããŠ",
"title": "è§£æåŠ"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "ã«ã€ããŠã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "ãåŸãããããšããã2é
ç®ãŸã§ã®ãã€ã©ãŒå±éãšããŠã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "ãåŸãããããã¡ããæ ¹æ°ãããã°ã©ããŸã§ã§ãå€ãåŸãããšãåºæ¥ãããã£ãŠã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "ãåŸãããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "",
"title": "è§£æåŠ"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "sin x {\\displaystyle \\sin x} ãš cos x {\\displaystyle \\cos x} ã¯åŸ®åã«ãã£ãŠäºãã«ç§»ãå€ããã®ã§ãã®ãã€ã©ãŒå±éã¯åæã«æ±ãããšãåºæ¥ãã詳ããèšç®ãããšãx = 0ã®ãŸããã§ã®å±éã¯",
"title": "è§£æåŠ"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "ãåŸãããšãåºæ¥ãããã®ãšãããã®å€ãšã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "ã®ãã€ã©ãŒå±éã®å€ãæ¯èŒããå Žåã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "ã®é¢ä¿ã瀺åãããããã®é¢ä¿ã¯çºèŠè
ã®åã«ã¡ãªãã§w:ãªã€ã©ãŒã®å
¬åŒãšåŒã°ããããã®å
¬åŒã®æ£åœåã¯è€çŽ é¢æ°è«ã䜿ããªããšããŸããããªããããªã®ã§ãã®çš¿ã®ç¯å²ãè¶
ããããç©çæ°åŠII以éã§æ±ãããäºå®ã§ããããªã€ã©ãŒã®å
¬åŒãçšãããšãäžè§é¢æ°ãææ°é¢æ°ãçšããŠè¡šãããšãã§ãããå
·äœçã«ã¯ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "ãæãç«ã€ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "ãã€ã©ãŒå±éãçšããŠæ¥µéãæ±ããããšãåºæ¥ãããšããããäŸãã°ã x â 0 {\\displaystyle x\\rightarrow 0} ã§ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "ãšãªãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "aã宿°ãŸã㯠± â {\\displaystyle \\pm \\infty } ãšããŠ",
"title": "è§£æåŠ"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "lim x â a f ( x ) = lim x â a g ( x ) = 0 {\\displaystyle \\lim _{x\\rightarrow a}f(x)=\\lim _{x\\rightarrow a}g(x)=0}",
"title": "è§£æåŠ"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "ãŸãã¯",
"title": "è§£æåŠ"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "lim x â a f ( x ) = lim x â a g ( x ) = â {\\displaystyle \\lim _{x\\rightarrow a}f(x)=\\lim _{x\\rightarrow a}g(x)=\\infty }",
"title": "è§£æåŠ"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "ãšãªã埮åå¯èœãªé¢æ°ã«ã€ããŠ",
"title": "è§£æåŠ"
},
{
"paragraph_id": 104,
"tag": "p",
"text": "lim x â a f ( x ) g ( x ) = lim x â a f â² ( x ) g â² ( x ) {\\displaystyle \\lim _{x\\rightarrow a}{\\frac {f(x)}{g(x)}}=\\lim _{x\\rightarrow a}{\\frac {f'(x)}{g'(x)}}} äŸãã°ã lim x â 0 sin x x = lim x â 0 cos x 1 = 1 {\\displaystyle \\lim _{x\\rightarrow 0}{\\frac {\\sin x}{x}}=\\lim _{x\\rightarrow 0}{\\frac {\\cos x}{1}}=1} ãšãªãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 105,
"tag": "p",
"text": "ããåºéãèããåºéã现ããåå²ãããããã§ããã颿°fã«å¯ŸããŠãåããããåºéã§ãã£ãšã倧ããéšåããšããåºéã®åºãããããŠãè¶³ãåããããã®ããã®é¢æ°ã®äžç©åãšåŒã¶ãåæ§ã«ãã£ãšãå°ããéšåãåãè¶³ãåããããã®ã颿°ã®äžç©åãšåŒã¶ãäžç©åãšäžç©åãäžèŽãããšããããããã®é¢æ°ã®ç©åãšåŒã³ãfãç©åå¯èœãšåŒã¶ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 106,
"tag": "p",
"text": "Note:é£ç¶ãªé¢æ°ã¯ç©åå¯èœã§ããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 107,
"tag": "p",
"text": "äŸãã°é¢æ° f ( x ) = { 1 (xisrational) 0 (xisirrational) {\\displaystyle f(x)={\\begin{cases}1~{\\textrm {(xisrational)}}\\\\0~{\\textrm {(xisirrational)}}\\end{cases}}} ã«ã€ããŠåºé 0 < x < 1 {\\displaystyle 0<x<1} ã§èãããšããã©ããªå°ããåºéã䜿ã£ãŠ 0 < x < 1 {\\displaystyle 0<x<1} ãåå²ãããšããŠãæçæ°ã®çš 坿§ã«ãããäžç©åã¯1,äžç©åã¯0ãšãªãããã£ãŠfã¯ç©åå¯èœã§ãªãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 108,
"tag": "p",
"text": "w:åæ²ç·é¢æ°ã¯äžè§é¢æ°ãšé¢ä¿ã®æ·±ãäžé£ã®é¢æ°çŸ€ã§ããããããã¯ç©åãè¡ãããã®å€æ°å€æã§äœ¿ãããšãããã®ã§ãããã§å°å
¥ãããåæ²ç·é¢æ°ã¯æ¬¡ã®3ã€ã®é¢æ°ã§ããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 109,
"tag": "p",
"text": "ãåæ²ç·é¢æ°ãšåŒã¶ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 110,
"tag": "p",
"text": "ãããã¯é¢ä¿åŒ",
"title": "è§£æåŠ"
},
{
"paragraph_id": 111,
"tag": "p",
"text": "ãæºãããã x 2 â y 2 = 1 {\\displaystyle x^{2}-y^{2}=1} ãåæ²ç·ã®é¢æ°è¡šç€ºã§ããããšããããã®é¢æ°ã¯åæ²ç·é¢æ°ãšåŒã°ãããäžã®åŒã¯äžè§é¢æ°ã®å¯Ÿå¿ç©ã§ãã cos 2 x + sin 2 x = 1 {\\displaystyle \\cos ^{2}x+\\sin ^{2}x=1} ã«é¡äŒŒããŠãããããã®çµæã¯å¶ç¶ã§ã¯ãªããäžã®ãªã€ã©ãŒå
¬åŒã䜿ã£ãäžè§é¢æ°ã®åŒãèŠããšã sin i x = i sinh x , cos i x = cosh x , tan i x = i tanh x {\\displaystyle \\sin ix=i\\sinh x,\\cos ix=\\cosh x,\\tan ix=i\\tanh x} ãåŸãããããã®åŒã cos 2 x + sin 2 x = 1 {\\displaystyle \\cos ^{2}x+\\sin ^{2}x=1} ã§x=izãšãããã®ã«ä»£å
¥ãããšã cosh 2 x â sinh 2 x = 1 {\\displaystyle \\cosh ^{2}x-\\sinh ^{2}x=1} ã®é¢ä¿ãåŸãããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 112,
"tag": "p",
"text": "sin â 1 x {\\displaystyle \\sin ^{-1}x} ã sin x {\\displaystyle \\sin x} ã®é颿°ãšãããããã¯å€äŸ¡é¢æ°ã§ããã®ã§éåžž â Ï < y < Ï {\\displaystyle -\\pi <y<\\pi } ã®ç¯å²ãéžãã§çšããã åæ§ã« tan â 1 x {\\displaystyle \\tan ^{-1}x} ã â Ï < y < Ï {\\displaystyle -\\pi <y<\\pi } ã®ç¯å²ãéžãã§çšãããäžæ¹ cos â 1 x {\\displaystyle \\cos ^{-1}x} 㯠0 < y < 2 Ï {\\displaystyle 0<y<2\\pi } ã®ç¯å²ãéžãã§çšããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 113,
"tag": "p",
"text": "ãåŸãããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 114,
"tag": "p",
"text": "ãŸãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 115,
"tag": "p",
"text": "ãå°åºããã y = sin x {\\displaystyle y=\\sin x} ãšããããã®ãšãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 116,
"tag": "p",
"text": "ãã£ãŠã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 117,
"tag": "p",
"text": "ãšåããããšã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 118,
"tag": "p",
"text": "ãšãªãã2çªç®ã®åŒãšã3çªç®ã®åŒãyã§ç©åããããšã§æ±ããåŒãåŸãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 119,
"tag": "p",
"text": "y = tan x {\\displaystyle y=\\tan x} ãšããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 120,
"tag": "p",
"text": "ããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 121,
"tag": "p",
"text": "ãšãªãããã£ãŠã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 122,
"tag": "p",
"text": "ãåŸãããããã®åŒã®2çªç®ã®åŒãšã3çªç®ã®åŒãyã§ç©åããããšã§æ±ããåŒãåŸãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 123,
"tag": "p",
"text": "w:æç颿°ã®ç©å",
"title": "è§£æåŠ"
},
{
"paragraph_id": 124,
"tag": "p",
"text": "æç颿°ã¯å¿
ãw:åç颿°ãçšããŠç©åã§ããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 125,
"tag": "p",
"text": "",
"title": "è§£æåŠ"
},
{
"paragraph_id": 126,
"tag": "p",
"text": "æç颿°ã®ç©åã¯",
"title": "è§£æåŠ"
},
{
"paragraph_id": 127,
"tag": "p",
"text": "ã®åœ¢ã«æžãããšãåºæ¥ãã(P,Qã¯xã®æŽåŒã)ããã§ã次ã®ãããªæé ãå®è¡ããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 128,
"tag": "p",
"text": "ãã®ããšã«ãã£ãŠã被ç©å颿°ã®åæ¯ã®æ¬¡æ°ã¯ãäžã®åŒã®ååã®æ¬¡æ°ããäœããªããå²ãããšã§ããŸã£ãéšåã¯å¿
ããåæ°ã§ãªã圢ã«ãªãã®ã§(æ®éã®æ°ãx, x 2 {\\displaystyle x^{2}} ãªã©ã«ãªãã)ç©åã§ããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 129,
"tag": "p",
"text": "代æ°åŒã¯å¿
ãè€çŽ æ°ã®ç¯å²ã§å æ°åè§£ã§ããããšãç¥ãããŠããã®ã§ã(w:代æ°åŠã®åºæ¬å®ç) 忝ã¯å¿
ã(x-a)ã®ç©ã®åœ¢ã«æžãããããã§ãå
ã
ã®è¢«ç©å颿°ã宿°ã ã£ããšãããšãå æ°åè§£ãããåŒã¯ãå¿
ãã ( x â a ) ( x â a â ) {\\displaystyle (x-a)(x-a^{*})} ã®åœ¢ã«ãªã£ãŠããã¯ãã§ããã(*ã¯è€çŽ å
±åœ¹)ãããã®2å æ°ãããåãããããšã«ãããšãçµå±ãããã®åŒã®åæ¯ã¯ã1次åŒã2次åŒã®ç©ã§æžããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 130,
"tag": "p",
"text": "ã«ã€ããŠã¯ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 131,
"tag": "p",
"text": "ãåŸãããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 132,
"tag": "p",
"text": "ãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 133,
"tag": "p",
"text": "ãåŸãããããšãåããããããã¯å
±ã«åç颿°ã®ç¯å²ã§ç©åå¯èœã§ãããå®éãäžã®åŒã¯",
"title": "è§£æåŠ"
},
{
"paragraph_id": 134,
"tag": "p",
"text": "ãæºããããšãåãããäžã®åŒã«ã€ããŠã¯ããŸãã忝ãå¹³æ¹å®æãããšã忝ã¯ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 135,
"tag": "p",
"text": "ã®åœ¢ã«ãªãããããã§",
"title": "è§£æåŠ"
},
{
"paragraph_id": 136,
"tag": "p",
"text": "ã®çœ®ãæãããããšãå
ã
ã®ç©åã¯ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 137,
"tag": "p",
"text": "ãšãªããããã§ããã®ãã¡ã®ç¬¬1é
ã¯ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 138,
"tag": "p",
"text": "ãåŸãããç©åã§ããããšãåãããæ¬¡ã«ã第2é
ã«ã€ããŠã¯",
"title": "è§£æåŠ"
},
{
"paragraph_id": 139,
"tag": "p",
"text": "ã®çœ®ãæãããããšã宿°å åãé€ããŠã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 140,
"tag": "p",
"text": "ãšãªããããã®ç©åã®çµæã¯ãã®ããŒãžã®äžã®æ¹ã§èŠãéãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 141,
"tag": "p",
"text": "ãšãªãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 142,
"tag": "p",
"text": "ãã£ãŠãå
šãŠã®æç颿°ã¯ãåç颿°ã®ç¯å²ã§ç©åã§ããããšãåãã£ãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 143,
"tag": "p",
"text": "",
"title": "è§£æåŠ"
},
{
"paragraph_id": 144,
"tag": "p",
"text": "èšç®äŸãšããŠã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 145,
"tag": "p",
"text": "ãå®éã«èšç®ããŠã¿ãã èšç®ãè¡ãªããšãã«ã¯ãŸããååã®æ¬¡æ°ãåæ¯ã®æ¬¡æ°ãããäœãããšã確èªãããæ¬¡ã«ãéšååæ°åè§£ãè¡ãªããããã®ãšãã«ã¯ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 146,
"tag": "p",
"text": "ãšãããŠèšç®ããã°ãããããã§ã忝ãéåãããšãååã¯ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 147,
"tag": "p",
"text": "ãåŸãããããããã¯å
ã
ã®åŒã®ååã§ãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 148,
"tag": "p",
"text": "ãšäžèŽããŠããªããŠã¯ãªããªãããã£ãŠã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 149,
"tag": "p",
"text": "ãåŸãããããããè§£ããšã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 150,
"tag": "p",
"text": "ãåŸããããå
ã®ç©åã¯",
"title": "è§£æåŠ"
},
{
"paragraph_id": 151,
"tag": "p",
"text": "ã«åž°çãããããããã®é
ã¯ã¯ããããåç颿°ã®ç¯å²ã§ç©åã§ãããå®éã«ç©åãè¡ãªããšã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 152,
"tag": "p",
"text": "ãåŸãããäžã§åŸãå€ãšäžèŽããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 153,
"tag": "p",
"text": "颿°ãæçæ°ã ãã§æžãããªãå Žåããã®åŒã¯ãã¯ãç©åãåºæ¥ããšã¯éããªããç°¡åã«ç©åãå®è¡ã§ããå Žåãæãããããã«ç©åã®ä»æ¹ãèŠåœãããªãå Žåããããå®ç©åã§ãã£ãããæ°å€çã«æ±ããããšãèããããšãå¿
èŠã§ããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 154,
"tag": "p",
"text": "ã§æžãããç¡çåŒãå«ãŸãããã以å€ã®ç¡çåŒãå«ãŸããªãå Žåã«ã¯ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 155,
"tag": "p",
"text": "ã®çœ®ãæããããããšã§ããã®åŒãäžè§é¢æ°ã®ç©åã«çœ®ãæããããšãåºæ¥ããäžè§é¢æ°ã®ç©åã¯ãåŸã«è¿°ã¹ãéãæç颿°ã®ç©åã«åž°çãããããšãåºæ¥ãã®ã§ããã®ç©åã¯è§£æçã«å®è¡ã§ããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 156,
"tag": "p",
"text": "ã§æžãããç¡çåŒãå«ãŸãããã以å€ã®ç¡çåŒãå«ãŸããªãå Žåã«ã¯ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 157,
"tag": "p",
"text": "ã®çœ®ãæããããããšã§ããã®åŒãäžè§é¢æ°ã®ç©åã«çœ®ãæããããšãåºæ¥ãã (",
"title": "è§£æåŠ"
},
{
"paragraph_id": 158,
"tag": "p",
"text": "ã®é¢ä¿ãçšããŠãæ ¹å·ãæ¶ãããšãåºæ¥ãã )",
"title": "è§£æåŠ"
},
{
"paragraph_id": 159,
"tag": "p",
"text": "äžè§é¢æ°",
"title": "è§£æåŠ"
},
{
"paragraph_id": 160,
"tag": "p",
"text": "ã ããå«ãã ç©åã«ã€ããŠã¯ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 161,
"tag": "p",
"text": "ã®çœ®ãæããããããšã§ããããæç颿°ã®ç©åã«åž°çãããããšãã§ãããå®éã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 162,
"tag": "p",
"text": "ããã«ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 163,
"tag": "p",
"text": "ãšãªãã確ãã«tã«ã€ããŠã®æç颿°ã«åž°çããããšãåããããã£ãŠãäžè§é¢æ°ã ãã®é¢æ°ã¯åç颿°ã®ç¯å²ã§ç©åããåŸãããšãåãã£ãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 164,
"tag": "p",
"text": "",
"title": "è§£æåŠ"
},
{
"paragraph_id": 165,
"tag": "p",
"text": "(I)",
"title": "è§£æåŠ"
},
{
"paragraph_id": 166,
"tag": "p",
"text": "(II)",
"title": "è§£æåŠ"
},
{
"paragraph_id": 167,
"tag": "p",
"text": "(III)",
"title": "è§£æåŠ"
},
{
"paragraph_id": 168,
"tag": "p",
"text": "(IV)",
"title": "è§£æåŠ"
},
{
"paragraph_id": 169,
"tag": "p",
"text": "ãããããç©åããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 170,
"tag": "p",
"text": "(I)",
"title": "è§£æåŠ"
},
{
"paragraph_id": 171,
"tag": "p",
"text": "ããã§ããã®åŒã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 172,
"tag": "p",
"text": "ã«çãããšãããšã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 173,
"tag": "p",
"text": "䞡蟺ãçããããšããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 174,
"tag": "p",
"text": "ãšãªãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 175,
"tag": "p",
"text": "ãåŸãããããã£ãŠå§ãã®åŒã«ã€ããŠã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 176,
"tag": "p",
"text": "ãåŸãããããã®é¢æ°ãxã§ç©åãããš",
"title": "è§£æåŠ"
},
{
"paragraph_id": 177,
"tag": "p",
"text": "ãåŸãããã (II)",
"title": "è§£æåŠ"
},
{
"paragraph_id": 178,
"tag": "p",
"text": "ããã§ããã®åŒã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 179,
"tag": "p",
"text": "ã«çãããšä»®å®ãããšã䞡蟺ã®åæ¯ãæ¯èŒããããšã§ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 180,
"tag": "p",
"text": "ãšãªãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 181,
"tag": "p",
"text": "ãåŸãããããããè§£ããšã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 182,
"tag": "p",
"text": "ãåŸãããããã£ãŠå
ã®åŒã¯ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 183,
"tag": "p",
"text": "ãšãªããæŽã«ãã®åŒã®ç¬¬2é
ã«ã€ããŠãé
ã®ååã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 184,
"tag": "p",
"text": "ãšæžãæããããäºã«æ³šç®ãããšãå
ã®åŒã¯",
"title": "è§£æåŠ"
},
{
"paragraph_id": 185,
"tag": "p",
"text": "ãšãªããããã§ããã®åŒã®1, 2é
ã«ã€ããŠã¯ãç°¡åã«ç©åã§ããŠã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 186,
"tag": "p",
"text": "ãåŸããããæåŸã«ç¬¬3é
ã«ã€ããŠã¯ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 187,
"tag": "p",
"text": "ãæãç«ã€ããšã«æ³šç®ãããšã t = 2 x â 1 , d t = 2 d x {\\displaystyle t=2x-1,dt=2dx} ã®çœ®ãæããããŠã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 188,
"tag": "p",
"text": "ãåŸãããããã£ãŠãå
šäœããŸãšãããšç©åå€ãšããŠ",
"title": "è§£æåŠ"
},
{
"paragraph_id": 189,
"tag": "p",
"text": "ãåŸãããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 190,
"tag": "p",
"text": "(III)",
"title": "è§£æåŠ"
},
{
"paragraph_id": 191,
"tag": "p",
"text": "(IV)",
"title": "è§£æåŠ"
},
{
"paragraph_id": 192,
"tag": "p",
"text": "ãšãããšãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 193,
"tag": "p",
"text": "ãšãªãããšãèæ
®ãããšã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 194,
"tag": "p",
"text": "ãšãªããå¥ã®æ¹æ³ãšããŠã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 195,
"tag": "p",
"text": "ãšãªãã®ã§ã䞡蟺ãç©åããŠçµæãåŸãŠãããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 196,
"tag": "p",
"text": "å€å€æ°ã§å®çŸ©ããã颿°fããããšãã®ãã倿°ã®ã¿ã察象ã«ãã埮åãäŸãã° lim h â 0 f ( x 1 + h , . . . , x n ) â f ( x 1 , . . . , x n ) h {\\displaystyle \\lim _{h\\rightarrow 0}{\\frac {f(x_{1}+h,...,x_{n})-f(x_{1},...,x_{n})}{h}}} ã f x {\\displaystyle f_{x}} ã â f â x 1 {\\displaystyle {\\frac {\\partial {f}}{\\partial {x_{1}}}}} ã ( â f â x 1 ) x 2 , x 3 . . . {\\displaystyle ({\\frac {\\partial {f}}{\\partial {x_{1}}}})_{x_{2},x_{3}...}} ãšæžãå埮åãšåŒã¶ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 197,
"tag": "p",
"text": "å€å€æ°é¢æ°ã§ã¯ããããç¬ç«å€æ°ã«ããå埮åããã¹ãŠ0ã«ãªãç¹ã§ã颿°ãæå€§å€ãŸãã¯æå°å€ãåãããšãæåŸ
ãããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 198,
"tag": "p",
"text": "äŸãã° f = x 2 + y 2 {\\displaystyle f=x^{2}+y^{2}} ã§ã¯ã â f â x = 2 x {\\displaystyle {\\frac {\\partial {f}}{\\partial {x}}}=2x} â f â y = 2 y {\\displaystyle {\\frac {\\partial {f}}{\\partial {y}}}=2y} ã§ããã®ã§ã x = 0 , y = 0 {\\displaystyle x=0,y=0} ã§ã極倧å€ãŸãã¯æ¥µå°å€ãåãããšãæåŸ
ãããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 199,
"tag": "p",
"text": "2倿°é¢æ° f ( x , y ) {\\displaystyle f(x,y)} ã«ãããŠãç¹ ( a , b ) {\\displaystyle (a,b)} ã§ f x ( a , b ) = f y ( a , b ) = 0 {\\displaystyle f_{x}(a,b)=f_{y}(a,b)=0} ãšãããå€å¥åŒDã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 200,
"tag": "p",
"text": "ãšå®çŸ©ããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 201,
"tag": "p",
"text": "D > 0 {\\displaystyle D>0} ã®ãšã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 202,
"tag": "p",
"text": "D < 0 {\\displaystyle D<0} ã®ãšãã¯ã極å€ã¯ãšããªãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 203,
"tag": "p",
"text": "2倿°é¢æ° f ( x , y ) {\\displaystyle f(x,y)} ã«ãããå
šåŸ®åã¯",
"title": "è§£æåŠ"
},
{
"paragraph_id": 204,
"tag": "p",
"text": "ãšå®çŸ©ããããäŸãã° f ( x , y ) = x 2 + y 2 {\\displaystyle f(x,y)=x^{2}+y^{2}} ã«ãããå
šåŸ®åã¯",
"title": "è§£æåŠ"
},
{
"paragraph_id": 205,
"tag": "p",
"text": "ãšãªããåæ§ã«n倿°é¢æ° f ( x 1 , x 2 , ⯠, x n ) {\\displaystyle f(x_{1},x_{2},\\cdots ,x_{n})} ã«ãããå
šåŸ®åã¯",
"title": "è§£æåŠ"
},
{
"paragraph_id": 206,
"tag": "p",
"text": "ãšå®çŸ©ãããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 207,
"tag": "p",
"text": "ããã»è¡åã¯2éå埮åã«ãã£ãŠäœãããè¡å H = [ â 2 f â x i x j ( P ) ] {\\displaystyle H=\\left[{\\frac {\\partial ^{2}{f}}{\\partial x_{i}x_{j}}}(P)\\right]} ã§ããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 208,
"tag": "p",
"text": "ç¹Pãã â f â x 1 ( P ) = â f â x 2 ( P ) = ⯠â f â x n ( P ) = 0 {\\displaystyle {\\frac {\\partial f}{\\partial x_{1}}}(P)={\\frac {\\partial f}{\\partial x_{2}}}(P)=\\cdots {\\frac {\\partial f}{\\partial x_{n}}}(P)=0} ãªãç¹(w:èšçç¹)ãšãããããã»è¡åã®Pã«ãããåºæå€ãå
šãŠæ£ã§ããã°ã颿°ã¯ç¹Pã§æ¥µå°å€ãæã¡ãå
šãŠè² ã§ããã°ãç¹Pã§æ¥µå€§å€ãæã€ãã©ã¡ãã§ããªããªãç¹Pã¯w:éç¹ã§ããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 209,
"tag": "p",
"text": "äŸãã°ã f = x 2 + y 2 {\\displaystyle f=x^{2}+y^{2}} ã«ã€ããŠãèšçç¹(0,0)ã«ãããããã»è¡åã¯ã H = ( â 2 f â x 2 â 2 f â x â y â 2 f â y â x â 2 f â y 2 ) {\\displaystyle H={\\begin{pmatrix}{\\frac {\\partial ^{2}{f}}{\\partial {x}^{2}}}&{\\frac {\\partial ^{2}f}{\\partial x\\partial y}}\\\\{\\frac {\\partial ^{2}f}{\\partial y\\partial x}}&{\\frac {\\partial ^{2}{f}}{\\partial {y}^{2}}}\\end{pmatrix}}} = ( 2 0 0 2 ) {\\displaystyle ={\\begin{pmatrix}2&0\\\\0&2\\end{pmatrix}}} ãšãªããåºæå€ã¯2ã§ããã®ã§ãç¹(0,0)ã¯fã®æ¥µå°å€ã§ããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 210,
"tag": "p",
"text": "",
"title": "è§£æåŠ"
},
{
"paragraph_id": 211,
"tag": "p",
"text": "ã®åœ¢ã§è¡šãããã颿°ããããšãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 212,
"tag": "p",
"text": "ãååšãããšãããšããã®é¢æ°ã¯",
"title": "è§£æåŠ"
},
{
"paragraph_id": 213,
"tag": "p",
"text": "ã®åœ¢ã«(屿çã«ã¯)衚ããããšãåºæ¥ãããã®ãšãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 214,
"tag": "p",
"text": "ãæãç«ã€ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 215,
"tag": "p",
"text": "å³èŸºã®åœ¢ã¯å°ãåŠã«èŠããããç¥ããªããäŸãã°ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 216,
"tag": "p",
"text": "(a,bã¯å®æ°)ã«ã€ããŠèããŠã¿ããšãäžã®åŒã¯ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 217,
"tag": "p",
"text": "ãšãªã£ãŠãããéåžžã®ä»æ¹ã§èŠãyã®åŸããšäžèŽããŠããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 218,
"tag": "p",
"text": "ãã®å®çã¯çµå±ã®ãšããã©ããªè€éãªæ²ç·ã§ããããç¹ã®ããè¿ãã«éãã°ãããã¯ã»ãšãã©çŽç·ãšåãæ§ã«ãªã£ãŠãããšããããšãè¿°ã¹ãŠããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 219,
"tag": "p",
"text": "F(x,y) = 0ã®åœ¢ã®æ¡ä»¶ã課ããããäžã§ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 220,
"tag": "p",
"text": "ã®æå€§å€ãæ±ããåé¡ãèããããã®ãšã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 221,
"tag": "p",
"text": "ã§æ°ãã颿°gãå®çŸ©ãã ( λ {\\displaystyle \\lambda } ã¯ãã宿°)",
"title": "è§£æåŠ"
},
{
"paragraph_id": 222,
"tag": "p",
"text": "ã§äžãããã x , y , λ {\\displaystyle x,y,\\lambda } ãèšç®ãããåŸãããç¹ãæ¥µå€§ãæ¥µå°å€ãåãç¹ã§ããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 223,
"tag": "p",
"text": "ãšããŠããã®æ¹æ³ãé©çšããŠã¿ããæ¥µå€ã¯ã(å³ãæžããŠã¿ããš)",
"title": "è§£æåŠ"
},
{
"paragraph_id": 224,
"tag": "p",
"text": "ã§çŸããããšæåŸ
ãããã ãã®åŒã®å Žåã¯ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 225,
"tag": "p",
"text": "ã代å
¥ããããšã§çãåŸãããšãã§ãããå¹³æ¹å®æãã圢ã¯",
"title": "è§£æåŠ"
},
{
"paragraph_id": 226,
"tag": "p",
"text": "ã§ããã確ãã«",
"title": "è§£æåŠ"
},
{
"paragraph_id": 227,
"tag": "p",
"text": "ã§æ¥µå€ãåãããšãåãããæªå®å®æ°æ³ãçšãããš",
"title": "è§£æåŠ"
},
{
"paragraph_id": 228,
"tag": "p",
"text": "ãåŸãããã ããã§ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 229,
"tag": "p",
"text": "ãåŸãããããããã¯x,y, λ {\\displaystyle \\lambda } ã«ã€ããŠã®é£ç«1次æ¹çšåŒãšãªã£ãŠããããããè§£ããšãçã¯ã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 230,
"tag": "p",
"text": "ãšãªãã確ãã«æ£ç¢ºãªå€ãšäžèŽããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 231,
"tag": "p",
"text": "è€æ°ã®æåã«ã€ããŠç©åãè¡ãªããšããããå€éç©åãšåŒã¶ãäŸãã°ã â«â« f ( x , y ) d x d y {\\displaystyle \\iint f(x,y)dxdy}",
"title": "è§£æåŠ"
},
{
"paragraph_id": 232,
"tag": "p",
"text": "â«â« f ( x , y ) d x d y {\\displaystyle \\iint f(x,y)dxdy} ã¯ã â«â« f ( x , y ) d x d y {\\displaystyle \\iint f(x,y)dxdy} = â« d y ( â« f d x ) = â« d x ( â« f d y ) {\\displaystyle =\\int dy(\\int fdx)=\\int dx(\\int fdy)} ã§æžãå€ããããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 233,
"tag": "p",
"text": "ã¬ãŠã¹ç©å â« â â â e â x 2 d x = Ï {\\displaystyle \\int _{-\\infty }^{\\infty }e^{-x^{2}}dx={\\sqrt {\\pi }}} ã®å°åºã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 234,
"tag": "p",
"text": "ãŸã: â« â â â e â a x 2 d x {\\displaystyle \\int _{-\\infty }^{\\infty }e^{-ax^{2}}dx} ã®ç©åã¯",
"title": "è§£æåŠ"
},
{
"paragraph_id": 235,
"tag": "p",
"text": "ãšãªãã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 236,
"tag": "p",
"text": "ã¬ã³ã颿°ã¯ Î ( t ) = â« 0 â x t â 1 e â x d x {\\displaystyle \\Gamma (t)=\\int _{0}^{\\infty }x^{t-1}e^{-x}dx} ã§å®çŸ©ããã颿°ã§ããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 237,
"tag": "p",
"text": "ããŒã¿é¢æ°ã¯ B ( p , q ) = â« 0 1 x p â 1 ( 1 â x ) q â 1 d x {\\displaystyle \\mathrm {B} (p,q)=\\int _{0}^{1}x^{p-1}(1-x)^{q-1}dx} ã§å®çŸ©ããã颿°ã§ããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 238,
"tag": "p",
"text": "",
"title": "è§£æåŠ"
},
{
"paragraph_id": 239,
"tag": "p",
"text": "â n = 1 â 1 n α {\\displaystyle \\sum _{n=1}^{\\infty }{\\frac {1}{n^{\\alpha }}}} ã¯ã α =< 1 {\\displaystyle \\alpha =<1} ã®ãšãçºæ£ãã α > 1 {\\displaystyle \\alpha >1} ã®ãšãåæããã",
"title": "è§£æåŠ"
},
{
"paragraph_id": 240,
"tag": "p",
"text": "TODO",
"title": "è§£æåŠ"
}
] | ç©çæ°åŠI > è§£æåŠ | <small> [[ç©çæ°åŠI]] > è§£æåŠ</small>
----
==è§£æåŠ==
è§£æåŠã¯é«æ ¡ãŸã§ã®æ°åŠã®å»¶é·ãšããŠãšãããããšãåºæ¥ããã髿 ¡ãŸã§ã®æ°åŠãå³å¯ã«åºç€ã¥ããç§ç®ãšãšãããããšãåºæ¥ããäŸãã°ã髿 ¡ãŸã§ã®ç¯å²ã§ã¯æ°åã®æ¥µéã颿°ã®é£ç¶ã¯å³å¯ã«ã¯å®çŸ©ãããŠããªãã£ããè§£æåŠã§ã¯ãã®ãããªæ¥µéãåãææ³ãæ±ãããŸãã埮åãç©åã«é¢ããããé²ãã èšç®ãæ±ããããã§åŠãã ææ³ã¯ç·åœ¢ä»£æ°ãšäžŠãã§ãããé²ãã èšç®ãè¡ãªãããã®åºç€ãšãªãã®ã§ãããã§åŠã¶ææ³ã«ã¯ååç¿çããå¿
èŠãããã
===1倿°ã®èšç®===
ããã§ã¯ã1ã€ã®å€æ°ãæ±ã颿°ãçšããŠåæãé£ç¶æ§ã®å®çŸ©ãæ±ãããŸããããããçšããŠå³å¯ã«å®çŸ©ãããææ³ãçšããŠãã€ã©ãŒå±éãããè€éãªç©åãå°å
¥ããã
====宿°ã®é£ç¶æ§====
æåã«ãç¡çæ°ãå®çŸ©ããææ³ãèããã髿 ¡ãŸã§ã®ç¯å²ã§ã¯ã宿°ã®ãã¡ã§æçæ°ã§ãªããã®ãç¡çæ°ãšå®çŸ©ãããããã§æçæ°ãšã¯ã2ã€ã®äºãã«çŽ ã®æŽæ°n,mãçšããŠã
:<math>
\frac n m
</math>
ãšãããããã®å
šäœãæãããããããã®æ§æã§ã¯ãããã宿°ãäœãªã®ãã瀺ãããŠããªããããç¡çæ°ãšãããã®ããšããã«ãããšããé£ç¹ãããã
ããã§ã宿°ã®æ§è³ªã«ã€ããŠ1ã€ã®ä»®å®ãããã
:宿°ãå
šãŠæžãããçŽç·ãæ°çŽç·ãšããããã®æ°çŽç·äžã§ãã 1ç¹ã«å¯Ÿããåæãèãããšãããã®ç¹ã¯ãã®ç¹ããå°ããæ°ã®éåãšå€§ããæ°ã®éåãäœãã ãããã®ãšãããã®æ°èªèº«ã¯å°ããæ°ã®éåã«å«ãŸããŠã倧ããæ°ã®éåã«ã¯å«ãŸããªããã®ãšããã
ãã®å®çŸ©ã¯ãããã³ãã®åæ([[w:en:Dedekind cut]])ãšåŒã°ããããã®ãšãããã宿°ããã®æ°ããå°ããæçæ°ã®éåã«ãã£ãŠå®çŸ©ããããã®å®çŸ©ã¯æçæ°ãšç¡çæ°ã®äž¡æ¹ã«å¯ŸããŠé©çšã§ããããªããªããåæã§éžã°ããç¹ãæçæ°ã ã£ããšãã«ã¯ããã®ç¹èªèº«ãŸã§ã®æçæ°ã®éåãéžãã æçæ°ã衚ããæçæ°ã®éåãšããŠæ±ãã°ãããäžæ¹ãåæã«ãã£ãŠéžã°ããç¹ãç¡çæ°ã ã£ããšãã«ã¯ããã®åæã¯å¿
ããã®è¿ãã«ããå¥ã®æ°ã衚ããåæãšã¯åºå¥ãããããªããªããããæ°ãéžãã ãšããã®æ°ãšå¥ã®æ°ã®éã«ã¯å¿
ãããæçæ°ãååšããããã§ãããæçæ°ã®ãã®æ§è³ªã¯æçæ°ã®[[w:çš å¯]]æ§ãšåŒã°ããæçæ°ã®éèŠãªæ§è³ªã§ãããããã¯ãã©ããªæ°ã§ãæ°å€ãšããŠæžããªããã®å€ã¯ã©ããªå Žåã§ãç¡éå°æ°ã§æžãããšãåºæ¥ãç¡éå°æ°ã¯ã©ãã»ã©å°ããæ°ã§ãæçæ°ã§æžãã埪ç°å°æ°ãå«ãã§ããããšãã確ãã«æç«ããã®ã§ããããã®ããã«ããŠãç¡çæ°ã¯ãã®æ°ããå°ããæçæ°å
šäœã®éåã«ãã£ãŠãšãããããã
====æ°åã®åæã®å®çŸ©====
ããããã¯ãäžã§è¿°ã¹ã宿°ã®é£ç¶æ§ãçšããŠãæ°åã®åæãå®çŸ©ããããŸãã¯ãåæã®å®çŸ©ãè¿°ã¹ããä»»æã®(å°ãã)ããæ°<math>\epsilon</math>ããšã£ããšããããNãååšããŠn <math>>=</math> N ãæºããå
šãŠã®nã«ã€ããŠ
:<math>
|a _n - a| < \epsilon
</math>
ãæãç«ã€ãšãæ°å<math>a _n</math>ã¯ã宿°aã«åæãããšããã
ããã§ã宿°ã®é£ç¶æ§ã¯ç¡éã«ãã宿°aã«è¿ãæ°ããã 1ã€ãããªããšããããšãèŠãããã«çšããããŠãããããã¯ããã宿°aãšç°ãªã£ãç¹bã¯ã宿°aãšã®éã«äœããã®æçæ°ãæã€ããã宿°aãšç¡éã«è¿ãã«ããããšã¯åºæ¥ãªãããã®ãããæ°å<math>|a _n-a|</math>ãã宿°aãšéžãã ç¹bã®è·é¢ãããå°ãã<math>\epsilon</math>ãããå°ãããšããæ¡ä»¶ãæºãããšãã<math>a _n</math>ãåæããç¹ã¯ç¢ºãã«ç¹bã§ã¯ãªããç¹aã§ããããšã
ä¿èšŒãããã®ã§ãããäžã®å®çŸ©ã¯é«æ ¡ãŸã§ã«è¡ãªã£ã極éã®å®çŸ©ã«é©åããŠããã¯ããªã®ã§ãå®éã«æ¥µéã®èšç®ãè¡ãªããšãã«ã¯ããããŸã§ã«çšããçµæããã®ãŸãŸçšããŠãããã<!-- ãã ãããã®å®çŸ©ã«ãããšåæããæ°åã®åããç©ã«é¢ããçµæã¯ããã®å®çŸ©ããçŽæ¥å°åºããããšãã§ããããã以åãããå°ãªãä»®å®ã§èšç®ãé²ãããããšãããã-->ãã®å®çŸ©ãçšãããšãã以äžãæãç«ã€ã
宿°a,bã«åæããæ°å<math>a _n</math>,<math>b _n</math>ã«å¯ŸããŠã
(I)
:<math>
\lim (a _n + b _n) = a + b
</math>
(II)
:<math>
\lim (a _n \times b _n) = a b
</math>
ãæãç«ã€ã
*å°åº
(I)ã«ã€ããŠãæ°å<math>a _n</math>ãaã«åæããããšããããã宿°<math>\epsilon _1</math>ãåã£ããšãããã宿°<math>N _1</math>ãååšãã<math>N _1 < n</math>ãæºããå
šãŠã®nã«ã€ããŠã
:<math>
|a _n - a | < \epsilon _1
</math>
ãæç«ãããåæ§ã«æ°å<math>b _n</math>ãbã«åæããããšããããã宿°<math>\epsilon _2</math>ãåã£ããšãããã宿°<math>N _2</math>ãååšãã<math>N _2 < n</math>ãæºããå
šãŠã®nã«ã€ããŠã
:<math>
|b _n -b | < \epsilon _2
</math>
ãååšããã
ããã§ã
:<math>
a _n + b _n
</math>
ã«ã€ããŠã
:<math>
N = \textrm{max} (N _1,N _2)
</math>
ãšãããšããå
šãŠã®<math>n>N</math>ãæºããæŽæ°nã«å¯ŸããŠ
:<math>
| a _n + b _n - ( a+b)|
</math>
ãèšç®ãããšããã®éã¯äžè§äžçåŒãçšããããšã§ã
:<math>
< | a _n - a | + |b _n - b|
</math>
:<math>
< \epsilon _1 + \epsilon _ 2
</math>
ãæãç«ã€ããããã<math>\epsilon _1</math>,<math>\epsilon _2</math>ã¯Nã倧ããåãããšã§ãããã§ãå°ããã§ãããããå
šãŠã®<math>\epsilon</math>ã«å¯ŸããŠ
:<math>
\epsilon _1 + \epsilon _ 2 < \epsilon
</math>
ãšãªããããªæŽæ°Nãååšããããã£ãŠã
:<math>
\lim ( a _n + b _n) = a+b
</math>
ã瀺ãããã
(II)
åæ§ã«
:<math>
a _n b _n
</math>
ã«ã€ããŠã
:<math>
| a _n b _n - ab|
</math>
ã¯ã
:<math>
= | a _n ( b _n - b) + b (a _n - a) |
</math>
:<math>
\le |a _n ( b _n - b) | + |b| |a _n - a |
</math>
ãšãªããããã§ã<math>n>N</math>ã«å¯ŸããŠã¯
:<math>
a - \epsilon _1< a _n < a + \epsilon _1
</math>
ãæãç«ã€ããšã«æ³šç®ãããšã
:<math>
< ( a + \epsilon _ 1 ) \epsilon _2 + |b| \epsilon _1
</math>
ãåŸããããããã§ã<math>\epsilon _1</math>,<math>\epsilon _2</math>ã¯Nã倧ããåãããšã§ãããã§ãå°ããã§ãããããa,bãæéã®ãšãa,bã®å€ã«é¢ãããäžã®å€ã¯éããªãå°ãããªãããã£ãŠã
:<math>
\lim (a _n \times b _n) = a b
</math>
ã瀺ãããã
**åé¡
æ¬¡ã®æ°å
:<math>
n \rightarrow \infty
</math>
ã®æ¥µéå€ãæ±ããã
(I)
:<math>
\lim ( 1 + \frac 1 n)
</math>
(II)
:<math>
\lim ( 2 \times \frac 1 n)
</math>
**è§£ç
äžã®çµæã§ãã
(I)
:<math>
\lim (a _n + b _n) = a + b
</math>
(II)
:<math>
\lim (a _n b _n) = a b
</math>
ãçšããã°ããããã ãã宿°ã¯å
šãŠã®nã«å¯ŸããŠåãæ°ãåãæ°åãšããŠæ±ãã
(I)
:<math>
\lim ( 1 + \frac 1 n)
</math>
ã¯ã1ã¯æ¥µéå€1ããšã
:<math>
\frac 1 n
</math>
ã¯ã極éå€0ãåãããšããã
:<math>
\lim ( 1 + \frac 1 n) = 1 +0 =1
</math>
ãšãªãã
(II)
:<math>
\lim ( 2 \times \frac 1 n)
</math>
ã«ã€ããŠã2ã¯ã極éå€2ãåãã
:<math>
\frac 1 n
</math>
ã¯æ¥µéå€0ãåãããšããã
:<math>
\lim ( 2 \times \frac 1 n) = 2 \times 0 = 0
</math>
ãæãç«ã€ãäžè¬ã«å®æ°åã宿°ã®è¶³ãç®ã¯ã極éå€ã«å®æ°åã宿°ã®è¶³ãç®ãããã°ããã
æ¬¡ã«æ°åã®çºæ£ã®å®çŸ©ããããããã§ãäžã®å Žåãšåæ§ç¡éåã®æ°åã®å€ãããå€ãã倧ãããªãããšãéèŠã§ãããããNãååšããŠn <math>\ge</math> N ãæºãããã¹ãŠã®nã«ã€ããŠä»»æã«åã£ã(倧ãã)Rã«å¯ŸããŠã
:<math>
a _n > R
</math>
ãæãç«ã€ãšãã<math>a _n</math>ã¯nç¡éå€§ã§æ£ã®ç¡é倧ã«çºæ£ãããšããããã®ããšã
:<math>
\lim a _n = \infty
</math>
ãšæžãããã
*åé¡äŸ
**åé¡
:æ£ã®ç¡é倧ã«çºæ£ããäŸ
æ°å
:<math>
a _n = n
</math>
ã®å Žåã«ã€ããŠãã®æ°åãäžã®å®çŸ©ãçšãããšãã«æ£ã®ç¡é倧ã«çºæ£ããããšã瀺ãã
**è§£ç
ããã§ããNã®éžã³æ¹ãéèŠã§ãããããã§ã¯ãããRã«å¯ŸããŠ
:<math>
N \ge R
</math>
ãšéžã¹ã°ããããã®å Žåãã©ã®ãããª(倧ãã)Rãåã£ããšããŠã
:<math>
N \ge R
</math>
ãæºãããããªæŽæ°Nãéžã¶ãšããã以éã®å
šãŠã®nã«ã€ããŠ
:<math>
a _n = n \ge R = N
</math>
ãæãç«ã€ãå€Rã¯ãããã§ã倧ããã§ããã®ã§ããã®ããšã¯æ°åã®çºæ£ã®æ¡ä»¶ãæºãããŠããããã£ãŠãæ°å
:<math>
a _n = n
</math>
ã¯nç¡éå€§ã§æ£ã®ç¡é倧ãžãšçºæ£ããã
åãæ§ã«ããŠã ããNãååšããŠn <math>\ge</math> N ãæºãããã¹ãŠã®nã«ã€ããŠä»»æã«åã£ã(å°ãã)Rã«å¯ŸããŠã
:<math>
a _n < R
</math>
ãæãç«ã€ãšãã<math>a _n</math>ã¯nç¡é倧ã§è² ã®ç¡é倧ã«çºæ£ãããšããããã®ããšã¯
:<math>
\lim a _n = - \infty
</math>
ãšæžãããã
ãã®ãã¡ã®ãããã«ãåœãŠã¯ãŸããªãå ŽåããããäŸãã°ã次ã®å Žåã¯æ°åã¯ã©ã®å€ã«åæããããšããªããããæ°åã¯æ¥µéå€ãæããªãã
*åé¡äŸ
**åé¡
:ããæéå€ã«åæããªãå Žå
:<math>
a _n = (-1)^n
</math>
ãäžã®å®çŸ©ã®ããããæºãããªãããšã瀺ãããã®æ°åãåæãçºæ£ãããªãããšãå°åºããã
**è§£ç
ãã®ãšããéåžžã«å€§ããªNãåã£ããšããŠãããã®Nããå
ã®å
šãŠã®nã«ã€ããŠ<math>a _n</math>ãããããŠaã«è¿ãå€ã«çãŸããããªaã¯ååšããªããäŸãã°ãa = 1ãšåã£ããšãããšãããå€kã«ãããŠ
:<math>
a _n - a = 0
</math>
ãšãªããäž¡è
ã¯éåžžã«è¿ããªããããããn=k+1ã«ãããŠã¯æ¢ã«ããã®å€ã¯-1ãšãªãã
:<math>
|a _n - a| = 2
</math>
ãšãªããä»»æã«å°ããæ°<math>\epsilon</math>ã«å¯ŸããŠããå°ããæ°ã§ããç¶ããããšã¯ã§ããªããããã¯ã©ãã»ã©å€§ããªkããšã£ãŠãããããã¯a = -1 ãããã¯ãã以å€ã®éãéžãã§ãåãã§ããããã£ãŠããã®æ°åã¯nç¡é倧ã§ããå€ã«åæããããšã¯ç¡ããäžæ¹ããã®æ°åã¯1ãš-1ããå€ãåããªããããã©ã®ãããªæ°ããã倧ãããªããããªæ°åã§ã¯ãªãããã£ãŠããã®æ°åã¯æ£è² ã®ç¡é倧ã«çºæ£ããããšããªãããã£ãŠããã®æ°åã¯åæãçºæ£ãããªãããšã瀺ãããã
====é£ç¶ã®å®çŸ©====
ããåºé<math>I</math>ã«ãããŠå®çŸ©ããã颿°<math>f</math>ã<math>a \in I</math>ã§é£ç¶ãšã¯ã<br/>
ã©ããª<math>\epsilon >0</math>ã«ã€ããŠã,ãã<math>\delta>0</math>ãååšããŠ<br/>
<math>|x - a| <\delta</math>ãæºããå
šãŠã®<math>x(\in I)</math> ã«ã€ããŠ
:<math>
| f (x) - f(a)| < \epsilon
</math>
ãæãç«ã€ããšã§ããã<br/>
åºéã®å
šãŠã®ç¹ã§é£ç¶ã®ãšãã颿°fã¯ïŒ©äžã§é£ç¶ã§ãããšåŒã¶ã
====è€æ°å埮åã®å®çŸ©====
nå埮åã
<math>
f^{(n)} = (f^{(n-1)})'
</math>
ã§å®çŸ©ããã
====ãã€ã©ãŒå±é====
=====ãã€ã©ãŒçŽæ°ã®å®çŸ©=====
ãã颿°
f(x)ã«ã€ããŠãfãå®çŸ©ãããå
šãŠã®å®æ°ã«ã€ããŠ
:<math>
f(x) = f(a) + f'(a)(x -a ) + \frac 1 2 f''(a) (x - a)^2 + ... +
\frac 1 {n!} f ^{(n)} (\xi ) (x -a)^n
</math>
ãæãç«ã€ã(<math>\xi</math>ã¯aãšxã®éã«ãã,ãã宿°ã)ãããçºèŠè
ã«ã¡ãªãã§[[w:ãã€ã©ãŒçŽæ°]]ãšåŒã¶ãããã¯è€éãªé¢æ°ãã¹ãçŽæ°ãšããæ¯èŒçåããæã颿°ã§è¿äŒŒããããšãåºæ¥ããšããããšã衚ããå®çã§ããã
=====ãã€ã©ãŒå±éã®å®çŸ©=====
äžã§è¿°ã¹ããã€ã©ãŒçŽæ°ã¯n次ãŸã§ã®ã¹ãçŽæ°ã«ãã£ãŠå±éããããããæ§è³ªã®ãã颿°ã«ã€ããŠã¯æåŸã®ãããããé
ããã®å¯äžãç¡éã«å°ãããªããåã«ãã®é
ãããããããããç¡éåã§çœ®ãæããããšãåºæ¥ãããã®ãšããã€ã©ãŒçŽæ°ã¯
:<math>
f(x) = f(a) + f'(a)(x -a ) + \frac 1 2 f''(a) (x - a)^2 + \cdots +
\frac 1 {n!} f ^{(n)} (a ) (x -a)^n + \cdots
</math>
ãšæžãæããããããããã[[w:ãã€ã©ãŒå±é]]ãšåŒã¶ããã€ã©ãŒå±éã¯çã
:<math>
f(x) = \sum _ {n=0} ^{\infty} \frac 1 {n!} f^{(n)} (a) (x-a) ^n
</math>
ãšæžãããšãåºæ¥ãã
=====éèŠãªãã€ã©ãŒå±éã®äŸ=====
======eã®xä¹ã®äŸ======
:<math>
f(x) = e^x
</math>
ã«å¯ŸããŠx=0ã®ãŸããã§ã®ãã€ã©ãŒå±éãå°åºããã
:<math>
f(x) = f'(x)=f''(x)= \cdots = f^{(n)}(x) = \cdots = e^x
</math>
ã§ããããšãçšãããšããã€ã©ãŒå±éã®å®çŸ©ã®åŒã§
:<math>
f^{(n)}(a)= f^{(n)}(0)=1
</math>
ãåŸãããã
ãã£ãŠã<math>e^x</math>ã®x=0ã®ãŸããã§ã®ãã€ã©ãŒå±éã¯ã
:<math>
e^x = \sum _n \frac 1 {n!} x^n
</math>
ãšãªãã
======1+xã®aä¹ã®äŸ (aã¯å®æ°)======
:<math>
(1+x)^a
</math>
ã«ã€ããŠãã€ã©ãŒå±éãèãããå®éã«ã¯ãaãæŽæ°ã®å Žåã«ã¯ãã®å€ã¯éåžžã®ã¹ãçŽæ°å±éã«äžèŽãããäŸãã°ã
:<math>
(1+x)^2
</math>
ãx=0ã®ãŸããã§ãã€ã©ãŒå±éãããšã
:<math>
f(0) = 1
</math>
:<math>
f'(0) = 2
</math>
:<math>
f''(0) = 2
</math>
ãšãªãã
2次ã®ä»£æ°åŒã§ããã®ã§3é以éã®åŸ®åã¯0ã«ãªãããšãèæ
®ãããšããã®ãã€ã©ãŒå±éã¯ã
:<math>
\begin{matrix}
(1+x)^2 &= 1 + \frac 1 {1!} + 2 \cdot x + \frac 1 {2!} 2 x^2\\
&= 1 + 2x + x^2
\end{matrix}
</math>
ãšãªãã確ãã«éåžžã®å±éãšäžèŽããã
aãæŽæ°ã§ãªãå Žåã«ã¯ãã®å±éã¯ç¡éã«ç¶ãããã®å±éã®ä¿æ°ãaãæŽæ°ã®å Žåã®2é
å®çã®æ¡åŒµãšããŠã
:<math>
\begin{pmatrix}
a\\
n
\end{pmatrix}
</math>
ãšå®çŸ©ãã2é
宿°ãšåŒã¶å Žåããããããã§aã¯<math>(1+x)^a</math>ã®aã§ãããnã¯xã«ã€ããŠã®n次ã®é
ã衚ããããã®ä¿æ°ãçšãããšããã®ãã€ã©ãŒå±éã¯ã
:<math>
(1+x)^a = \sum _{n=0}^{\infty}
\begin{pmatrix}
a\\
n
\end{pmatrix}
x^n
</math>
ãšæžãããšãåºæ¥ããäŸãã°ãa= 1/2ã§ã¯ãx=0ã®ãŸããã®å±éã«ã€ããŠ
:<math>
(1+x)^{1/2}
</math>
ã«ã€ããŠã
:<math>
f(0) = 1
</math>
:<math>
f'(0) =\frac 1 2
</math>
:<math>
f''(0) = -\frac 1 4
</math>
ãåŸãããããšããã2é
ç®ãŸã§ã®ãã€ã©ãŒå±éãšããŠã
:<math>
\begin{matrix}
(1+x)^{1/2}&= 1 + \frac 1 2 x + \frac 1 2 \cdot ( - \frac 1 4 ) x^2 + \cdots\\
&= 1 + \frac 1 2 x - \frac 1 8 x^2 + \cdots
\end{matrix}
</math>
ãåŸãããããã¡ããæ ¹æ°ãããã°ã©ããŸã§ã§ãå€ãåŸãããšãåºæ¥ãããã£ãŠã
:<math>
\begin{pmatrix}
1/2\\
0
\end{pmatrix}
=1
</math>
:<math>
\begin{pmatrix}
1/2\\
1
\end{pmatrix}
=1/2
</math>
:<math>
\begin{pmatrix}
1/2\\
2
\end{pmatrix}
=-1/8
</math>
ãåŸãããã
======sin x, cos xã®ãã€ã©ãŒå±é======
<math>\sin x</math>ãš<math>\cos x</math>ã¯åŸ®åã«ãã£ãŠäºãã«ç§»ãå€ããã®ã§ãã®ãã€ã©ãŒå±éã¯åæã«æ±ãããšãåºæ¥ãã詳ããèšç®ãããšãx = 0ã®ãŸããã§ã®å±éã¯
:<math>
\sin x = \sum _{n=1} ^{\infty} (-1)^n\frac 1 {(2n-1)!} x^{2n-1}
</math>
:<math>
\cos x = \sum _{n=0} ^{\infty} (-1)^n\frac 1 {(2n)!} x^{2n}
</math>
ãåŸãããšãåºæ¥ãããã®ãšãããã®å€ãšã
:<math>
e^{ix}
</math>
ã®ãã€ã©ãŒå±éã®å€ãæ¯èŒããå Žåã
:<math>
e^{ix} = \cos x + i\sin x
</math>
ã®é¢ä¿ã瀺åãããããã®é¢ä¿ã¯çºèŠè
ã®åã«ã¡ãªãã§[[w:ãªã€ã©ãŒã®å
¬åŒ]]ãšåŒã°ããããã®å
¬åŒã®æ£åœåã¯è€çŽ é¢æ°è«ã䜿ããªããšããŸããããªããããªã®ã§ãã®çš¿ã®ç¯å²ãè¶
ãããã[[ç©çæ°åŠII]]以éã§æ±ãããäºå®ã§ããã<!-- ããããä»åŸã¯ãã®é¢ä¿ãæããç¡ã䜿ãããšãããã®ã§æ³šæããŠæ¬²ããã
å®éããã®é¢ä¿ãç¡ããšå€å
žååŠã§ãã忝åã®æ¹çšåŒã
ãããªãè§£ããªããªãã®ã§ãã®é¢ä¿ã¯éåžžã«éèŠã§ããã-->ãªã€ã©ãŒã®å
¬åŒãçšãããšãäžè§é¢æ°ãææ°é¢æ°ãçšããŠè¡šãããšãã§ãããå
·äœçã«ã¯ã
:<math>
\cos x = \frac {e^{ix} + e^{-ix}}2, \sin x = \frac{e^{ix} - e^{-ix}}{2i}, \tan x =\frac 1 i \frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}}
</math>
ãæãç«ã€ã
*åé¡äŸ
*:äžã®çµæã確ãããã
*ã³ãŒããŒãã¬ã€ã¯
*:'''[[2ã®iä¹ã®æ±ãæ¹]]'''
======ãã€ã©ãŒå±éãçšãã颿°ã®æ¥µéã®èšç®======
ãã€ã©ãŒå±éãçšããŠæ¥µéãæ±ããããšãåºæ¥ãããšããããäŸãã°ã
<math>x
\rightarrow 0</math>ã§ã
:<math>
\frac {e^x -1} x = \frac {x + x^2/2 + \cdots } x = 1 + x/2 \rightarrow 1
</math>
ãšãªãã
====ããã¿ã«ã®å®ç====
aã宿°ãŸãã¯<math>\plusmn \infin</math>ãšããŠ
<math>
\lim _{x \rightarrow a}f(x) = \lim _{x \rightarrow a}g(x) = 0
</math>
ãŸãã¯
<math>
\lim _{x \rightarrow a}f(x) = \lim _{x \rightarrow a}g(x) = \infin
</math>
ãšãªã埮åå¯èœãªé¢æ°ã«ã€ããŠ
<math>
\lim _{x \rightarrow a} \frac { f(x)}{g(x)} = \lim _{x \rightarrow a} \frac { f'(x)}{g'(x)}
</math>
äŸãã°ã
<math>
\lim _{x\rightarrow 0} \frac {\sin x} x = \lim _{x\rightarrow 0} \frac {\cos x} 1 = 1
</math>
ãšãªãã
====ç©åã®å®çŸ©====
ããåºéãèããåºéã现ããåå²ãããããã§ããã颿°fã«å¯ŸããŠãåããããåºéã§ãã£ãšã倧ããéšåããšããåºéã®åºãããããŠãè¶³ãåããããã®ããã®é¢æ°ã®äžç©åãšåŒã¶ãåæ§ã«ãã£ãšãå°ããéšåãåãè¶³ãåããããã®ã颿°ã®äžç©åãšåŒã¶ãäžç©åãšäžç©åãäžèŽãããšããããããã®é¢æ°ã®ç©åãšåŒã³ãfãç©åå¯èœãšåŒã¶ã
Note:é£ç¶ãªé¢æ°ã¯ç©åå¯èœã§ããã
*äžç©åãšäžç©åãäžèŽããªãäŸ
äŸãã°é¢æ°
<math>
f (x) =
\begin{cases}
1 ~ \textrm{(x is rational)} \\
0 ~ \textrm{(x is irrational)}
\end{cases}
</math>
ã«ã€ããŠåºé<math>0<x<1</math>ã§èãããšããã©ããªå°ããåºéã䜿ã£ãŠ<math>0<x<1</math>ãåå²ãããšããŠãæçæ°ã®çš 坿§ã«ãããäžç©åã¯1,äžç©åã¯0ãšãªãããã£ãŠfã¯ç©åå¯èœã§ãªãã
====åæ²ç·é¢æ°====
[[w:åæ²ç·é¢æ°]]ã¯äžè§é¢æ°ãšé¢ä¿ã®æ·±ãäžé£ã®é¢æ°çŸ€ã§ããããããã¯ç©åãè¡ãããã®å€æ°å€æã§äœ¿ãããšãããã®ã§ãããã§å°å
¥ãããåæ²ç·é¢æ°ã¯æ¬¡ã®3ã€ã®é¢æ°ã§ããã
:<math>
\sinh x = \frac {e^x - e^{-x}} 2
</math>
:<math>
\cosh x = \frac {e^x + e^{-x}} 2
</math>
:<math>
\tanh x = \frac {\sinh x} {\cosh x}
</math>
ãåæ²ç·é¢æ°ãšåŒã¶ã
:ããããã®ã°ã©ã
ãããã¯é¢ä¿åŒ
:<math>
\cosh ^2 x - \sinh ^2 x = 1
</math>
ãæºãããã<math>x^2 -y^2 = 1</math>ãåæ²ç·ã®é¢æ°è¡šç€ºã§ããããšããããã®é¢æ°ã¯åæ²ç·é¢æ°ãšåŒã°ãããäžã®åŒã¯äžè§é¢æ°ã®å¯Ÿå¿ç©ã§ãã<math>
\cos ^2 x + \sin ^2 x = 1</math>ã«é¡äŒŒããŠãããããã®çµæã¯å¶ç¶ã§ã¯ãªããäžã®ãªã€ã©ãŒå
¬åŒã䜿ã£ãäžè§é¢æ°ã®åŒãèŠããšã
<!--
æŽã«
<math>
e ^{ix} = \cos x + i \sin x
</math>
ãçšãããšã
<math>e^{x}</math> ããè§£ææ¥ç¶? -->
<math>
\sin ix = i\sinh x, \cos ix = \cosh x, \tan ix = i\tanh x
</math>
ãåŸãããããã®åŒã<math>\cos ^2 x + \sin ^2 x = 1</math>ã§x=izãšãããã®ã«ä»£å
¥ãããšã<math>\cosh ^2 x - \sinh ^2 x = 1</math>ã®é¢ä¿ãåŸãããã
====äžè§é¢æ°ã®é颿°====
<math>
\sin^{-1} x
</math>
ã<math>\sin x</math>ã®é颿°ãšãããããã¯å€äŸ¡é¢æ°ã§ããã®ã§éåžž
<math>
-\pi < y < \pi
</math>
ã®ç¯å²ãéžãã§çšããã
<!-- è€çŽ è§£æã«ãããšç¡éå€äŸ¡ã¯\ln ããæ¥ãã -->
åæ§ã«
<math>
\tan ^{-1} x
</math>
ã
<math>
-\pi < y < \pi
</math>
ã®ç¯å²ãéžãã§çšãããäžæ¹
<math>
\cos ^{-1} x
</math>
ã¯
<math>
0 < y < 2\pi
</math>
ã®ç¯å²ãéžãã§çšããã
====æ§ã
ãªç©å====
:<math>
\int dx \frac 1 {\sqrt{1-x^2}} = \textrm{Arcsin} x
</math>
:<math>
\int dx \frac 1 { 1+x^2} = \textrm{Arctan} x
</math>
ãåŸãããã
*å°åº
ãŸãã
:<math>
\int dx \frac 1 {\sqrt{1-x^2}} = \textrm{Arcsin} x
</math>
ãå°åºããã<math>y= \sin x</math>ãšããããã®ãšãã
:<math>
\frac{d{y}}{d{x}} = \cos x
</math>
:<math>
\begin{matrix}
\frac{d{x}}{d{y}} &= \frac 1 {\cos x }\\
&= \frac 1 {\sqrt { 1 - (\sin x)^2} }\\
&= \frac 1 {\sqrt { 1 - y^2} }\\
\end{matrix}
</math>
ãã£ãŠã
:<math>
x = \sin ^{-1} y
</math>
ãšåããããšã
:<math>
\frac{d{x}}{d{y}} = \frac{d(\sin ^{-1} y)}{dy} = \frac 1 {\sqrt { 1 - y^2} }
</math>
ãšãªãã2çªç®ã®åŒãšã3çªç®ã®åŒãyã§ç©åããããšã§æ±ããåŒãåŸãã
<math>y = \tan x </math>ãšããã
:<math>
\frac{d{y}}{d{x}} = \frac 1 {\cos ^2 x}
</math>
ããã
:<math>
\begin{matrix}
\frac{d{x}}{d{y}} &= \cos ^2 x\\
&= \frac 1 {1+\tan^2 x } \\
&= \frac 1 {1+y^2 } \\
\end{matrix}
</math>
ãšãªãããã£ãŠã
:<math>
\frac{d{x}}{d{y}} = \frac{d(\tan^{-1}y)}{dy} = \frac 1 {1+y^2}
</math>
ãåŸãããããã®åŒã®2çªç®ã®åŒãšã3çªç®ã®åŒãyã§ç©åããããšã§æ±ããåŒãåŸãã
====æç颿°ã®ç©å====
[[w:æç颿°]]ã®ç©å
æç颿°ã¯å¿
ã[[w:åç颿°]]ãçšããŠç©åã§ããã
<!-- (
*TODO
åç颿°ã®å®çŸ©
) -->
*説æ
æç颿°ã®ç©åã¯
:<math>
\int dx \frac {P(x)}{Q(x)}
</math>
ã®åœ¢ã«æžãããšãåºæ¥ãã(P,Qã¯xã®æŽåŒã)ããã§ã次ã®ãããªæé ãå®è¡ããã
**äžã®åŒã®æ¬¡æ°ãäžã®åŒã®æ¬¡æ°ããé«ãã£ãããäžã®åŒãäžã®åŒã§å²ãã
ãã®ããšã«ãã£ãŠã被ç©å颿°ã®åæ¯ã®æ¬¡æ°ã¯ãäžã®åŒã®ååã®æ¬¡æ°ããäœããªããå²ãããšã§ããŸã£ãéšåã¯å¿
ããåæ°ã§ãªã圢ã«ãªãã®ã§(æ®éã®æ°ãx,<math>x^2</math>ãªã©ã«ãªãã)ç©åã§ããã
**次ã«ã忝ãå æ°åè§£ããã
代æ°åŒã¯å¿
ãè€çŽ æ°ã®ç¯å²ã§å æ°åè§£ã§ããããšãç¥ãããŠããã®ã§ã([[w:代æ°åŠã®åºæ¬å®ç]])
忝ã¯å¿
ã(x-a)ã®ç©ã®åœ¢ã«æžãããããã§ãå
ã
ã®è¢«ç©å颿°ã宿°ã ã£ããšãããšã<!-- (ãã®å Žåã¯ãã®ããã«ããŠãããè€çŽ æ°ã ã£ãå Žåã¯ç©çæ°åŠIIã®ç¯å²ãšãªãã) -->å æ°åè§£ãããåŒã¯ãå¿
ãã<math>(x-a)(x-a^*)</math>ã®åœ¢ã«ãªã£ãŠããã¯ãã§ããã(*ã¯è€çŽ å
±åœ¹)ãããã®2å æ°ãããåãããããšã«ãããšãçµå±ãããã®åŒã®åæ¯ã¯ã1次åŒã2次åŒã®ç©ã§æžããã
**次ã«ãåŸããã忝ã䜿ã£ãŠ[[w:éšååæ°åè§£]]ãè¡ãªããäŸãã°ã
:<math>
\frac 1 {(x^2-1) }
</math>
ã«ã€ããŠã¯ã
:<math>
\begin{matrix}
=&\frac 1 {(x-1)(x+1) } \\
=&\frac {1} 2 (\frac 1 {x-1 }- \frac 1 {x+1})
\end{matrix}
</math>
ãåŸãããã
**ãããŸã§ã®æé ãçµãçµæãåŸãããåŒã®åœ¢ã¯ã
:<math>
\int \frac 1 {x-a}
</math>
ãã
:<math>
\int \frac {x-b} {cx^2 + dx +e}
</math>
ãåŸãããããšãåããããããã¯å
±ã«åç颿°ã®ç¯å²ã§ç©åå¯èœã§ãããå®éãäžã®åŒã¯
:<math>
\int \frac 1 {x-a}
</math>
:<math>
= \ln |x-a|
</math>
ãæºããããšãåãããäžã®åŒã«ã€ããŠã¯ããŸãã忝ãå¹³æ¹å®æãããšã忝ã¯ã
:<math>
c(x-\alpha) ^2 + \beta
</math>
ã®åœ¢ã«ãªãããããã§
:<math>
y=x-\alpha
</math>
ã®çœ®ãæãããããšãå
ã
ã®ç©åã¯ã
:<math>
\int \frac {y+f} {y^2 +g}
</math>
ãšãªããããã§ããã®ãã¡ã®ç¬¬1é
ã¯ã
:<math>
\begin{matrix}
\int \frac y {y^2+g} dy\\
=& \int \frac 1 2 \frac 1 {y^2+g} dy^2\\
=& \frac 1 2 \ln (y^2 +g ) \\
\end{matrix}
</math>
ãåŸãããç©åã§ããããšãåãããæ¬¡ã«ã第2é
ã«ã€ããŠã¯
:<math>
z = \sqrt {g} y
</math>
ã®çœ®ãæãããããšã宿°å åãé€ããŠã
<!-- (
*TODO
宿°å åã®èšç®
) -->
:<math>
\int \frac {1} {z^2 +1}
</math>
ãšãªããããã®ç©åã®çµæã¯ãã®ããŒãžã®äžã®æ¹ã§èŠãéãã
:<math>
= \tan^{-1} z
</math>
ãšãªãã
ãã£ãŠãå
šãŠã®æç颿°ã¯ãåç颿°ã®ç¯å²ã§ç©åã§ããããšãåãã£ãã
*èšç®äŸ
èšç®äŸãšããŠã
:<math>
\int dx \frac {x+3} {(x+2) (x^2+1) }
</math>
ãå®éã«èšç®ããŠã¿ãã
<!-- ãããããã[[Maxima]]ã䜿ã£ãŠãèšç®ããŠã¿ãã
integrate((x+3)/((x^2+1)*(x+2)),x);
çã¯ã
3 + x
(%i2) INTEGRATE(----------------, x)
2
(1 + x ) (2 + x)
2
LOG(x + 1) LOG(x + 2) 7 ATAN(x)
(%o2) - ----------- + ---------- + ---------
10 5 5
èªã¿ã¥ããããç¥ããªããããããããèšç®å€ã¯ããããã®ãšæåŸ
ããã
-->
èšç®ãè¡ãªããšãã«ã¯ãŸããååã®æ¬¡æ°ãåæ¯ã®æ¬¡æ°ãããäœãããšã確èªãããæ¬¡ã«ãéšååæ°åè§£ãè¡ãªããããã®ãšãã«ã¯ã
:<math>
\frac A {x+2} + \frac {Bx+C} { x^2+1}
</math>
ãšãããŠèšç®ããã°ãããããã§ã忝ãéåãããšãååã¯ã
:<math>
(A+B) x^2 + (2B+C) x + A+2C
</math>
ãåŸãããããããã¯å
ã
ã®åŒã®ååã§ãã
:<math>
x+3
</math>
ãšäžèŽããŠããªããŠã¯ãªããªãããã£ãŠã
:<math>
\begin{matrix}
A+B = 0\\
A+2C = 3\\
2B+C = 1
\end{matrix}
</math>
ãåŸãããããããè§£ããšã
:<math>
A= \frac 1 5, B = - \frac 1 5, C = \frac 7 5
</math>
ãåŸããããå
ã®ç©åã¯
:<math>
\int dx (\frac 1 5 \cdot \frac 1 {x+2} + \frac {\frac{-1}5 x + \frac 7 5 }{x^2 +1} )
</math>
ã«åž°çãããããããã®é
ã¯ã¯ããããåç颿°ã®ç¯å²ã§ç©åã§ãããå®éã«ç©åãè¡ãªããšã
:<math>
\int dx (\frac 1 5 \cdot \frac 1 {x+2} + \frac {\frac{-1}5 x + \frac 7 5 }{x^2 +1} )
</math>
:<math>
= \frac 1 5 \ln (x+2) -\frac 1 {10} \ln (x^2+1) + \frac 7 5 \tan^{-1} x
</math>
ãåŸãããäžã§åŸãå€ãšäžèŽããã
====ç¡çæ°ãå«ãã ç©å====
颿°ãæçæ°ã ãã§æžãããªãå Žåããã®åŒã¯ãã¯ãç©åãåºæ¥ããšã¯éããªããç°¡åã«ç©åãå®è¡ã§ããå Žåãæãããããã«ç©åã®ä»æ¹ãèŠåœãããªãå Žåããããå®ç©åã§ãã£ãããæ°å€çã«æ±ããããšãèããããšãå¿
èŠã§ããã
*<math>
\sqrt{1-x^2}
</math> ã®å Žåã
:<math>
\sqrt{1-x^2}
</math>
ã§æžãããç¡çåŒãå«ãŸãããã以å€ã®ç¡çåŒãå«ãŸããªãå Žåã«ã¯ã
:<math>
x = \sin t ~\textrm{or}~ x = \cos t
</math>
ã®çœ®ãæããããããšã§ããã®åŒãäžè§é¢æ°ã®ç©åã«çœ®ãæããããšãåºæ¥ããäžè§é¢æ°ã®ç©åã¯ãåŸã«è¿°ã¹ãéãæç颿°ã®ç©åã«åž°çãããããšãåºæ¥ãã®ã§ããã®ç©åã¯è§£æçã«å®è¡ã§ããã
*<math>
\sqrt{1+x^2}
</math> ã®å Žåã
:<math>
\sqrt{1+x^2}
</math>
ã§æžãããç¡çåŒãå«ãŸãããã以å€ã®ç¡çåŒãå«ãŸããªãå Žåã«ã¯ã
:<math>
x = \sinh t
</math>
ã®çœ®ãæããããããšã§ããã®åŒãäžè§é¢æ°ã®ç©åã«çœ®ãæããããšãåºæ¥ãã
(
:<math>
\cosh ^2 x = 1+ \sinh^2 x
</math>
ã®é¢ä¿ãçšããŠãæ ¹å·ãæ¶ãããšãåºæ¥ãã
)
====äžè§é¢æ°ãå«ãã ç©å====
äžè§é¢æ°
:<math>
\sin x, \cos x, \tan x
</math>
ã ããå«ãã ç©åã«ã€ããŠã¯ã
:<math>
\tan (x/2) = t
</math>
ã®çœ®ãæããããããšã§ããããæç颿°ã®ç©åã«åž°çãããããšãã§ãããå®éã
:<math>
\begin{matrix}
\sin x =& 2 \sin \frac x 2 \cos \frac x 2\\
=& 2 \tan \frac x 2 \cos^2 \frac x 2\\
=& \frac {2 \tan \frac x 2} {1+\tan ^2 \frac x 2}\\
=& \frac {2 t} {1+t^2}
\end{matrix}
</math>
:<math>
\begin{matrix}
\cos x &= 2 \cos^2 \frac x 2 - 1\\
&= 2 \frac 1 {1+t^2} - 1\\
&= 2 \frac {1-t^2} {1+t^2}
\end{matrix}
</math>
:<math>
\begin{matrix}
\tan x &= \frac {\sin x} {\cos x }\\
&= \frac {2t} {1-t^2}
\end{matrix}
</math>
ããã«ã
:<math>
dx = d(2\tan^{-1} t) = 2 \frac {dt} {1+t^2}
</math>
ãšãªãã確ãã«tã«ã€ããŠã®æç颿°ã«åž°çããããšãåããããã£ãŠãäžè§é¢æ°ã ãã®é¢æ°ã¯åç颿°ã®ç¯å²ã§ç©åããåŸãããšãåãã£ãã
<!--
*TODO åšæã<math>\pi</math>ã§ãããšã
-->
*åé¡äŸ
**åé¡
(I)
:<math>{{x+2}\over{x^2+5\,x+4}}</math>
(II)
:<math>{{x^2+3\,x+3}\over{2\,x^3-x+1}}</math>
(III)
:<math>{{\sin x}\over{\cos ^2x}}</math>
(IV)
:<math>
\int dx \frac 1 {1+\sin x}
</math>
ãããããç©åããã
**è§£ç
(I)
:<math>
\frac {x+2} {x^2+5x+4}
</math>
:<math>
=\frac {x+2} {(x+4)(x+1)}
</math>
ããã§ããã®åŒã
:<math>
\frac A{x+4} + \frac B {x+1}
</math>
ã«çãããšãããšã
:<math>
\frac {x+2} {(x+4)(x+1)}
=\frac 1 {(x+4)(x+1)} (A(x+1) + B(x+4))
</math>
䞡蟺ãçããããšããã
:<math>
A + B = 1, A+4B = 2
</math>
ãšãªãã
:<math>
B = \frac13, A = \frac23
</math>
ãåŸãããããã£ãŠå§ãã®åŒã«ã€ããŠã
:<math>
\frac {x+2} {x^2+5x+4}
</math>
:<math>
= \frac 13 \frac 1 {x+1} + \frac 23 \frac 1{x+4}
</math>
ãåŸãããããã®é¢æ°ãxã§ç©åãããš
:<math>
\frac 13 \ln (x+1) + \frac 23 \ln (x+4)
</math>
ãåŸãããã
(II)
:<math>
\frac {x^2 + 3x+3}{2x^3 - x +1}
</math>
:<math>
=\frac{x^2 + 3x+3}{(x+1)(2x^2 -2x +1)}
</math>
ããã§ããã®åŒã
:<math>
\frac A {x+1} + \frac {Bx +C }{2x^2 -2x + 1}
</math>
ã«çãããšä»®å®ãããšã䞡蟺ã®åæ¯ãæ¯èŒããããšã§ã
:<math>
x^2 + 3x +3 = A(2x^2 -2x +1)+ (Bx+c)(x+1)
</math>
ãšãªãã
:<math>
2A+B = 1, -2A + B + C = 3, A+C = 3
</math>
ãåŸãããããããè§£ããšã
:<math>
A= \frac 15, B = \frac 3 5, C = \frac {14}5
</math>
ãåŸãããããã£ãŠå
ã®åŒã¯ã
:<math>
\frac 15 \frac 1 {x+1}+ \frac {\frac 3 5x + \frac {14}5}{2x^2-2x+1}
</math>
ãšãªããæŽã«ãã®åŒã®ç¬¬2é
ã«ã€ããŠãé
ã®ååã
:<math>
\frac 35(2x^2-2x+1)' \frac 14 + \frac 3 {20} \cdot 2 + \frac {14}5
</math>
:<math>
= \frac 3{20}(2x^2-2x+1)' + \frac {31} {10}
</math>
ãšæžãæããããäºã«æ³šç®ãããšãå
ã®åŒã¯
:<math>
\frac 15 \frac 1 {x+1}+ \frac {\frac 3 {20}(2x^2-2x+1)' }{2x^2-2x+1}
+ \frac {31}{10} \frac 1{2x^2-2x+1}
</math>
ãšãªããããã§ããã®åŒã®1, 2é
ã«ã€ããŠã¯ãç°¡åã«ç©åã§ããŠã
:<math>
\frac 15 \ln(x+1) + \frac 3{20} \ln (2x^2-2x+1)
</math>
ãåŸããããæåŸã«ç¬¬3é
ã«ã€ããŠã¯ã
:<math>
\frac 1{2x^2-2x+1} = \frac 2 {(2x-1)^2 + 1}
</math>
ãæãç«ã€ããšã«æ³šç®ãããšã<math>t = 2x -1, dt = 2dx</math>ã®çœ®ãæããããŠã
:<math>
\int dx
\frac 2 {(2x-1)^2 + 1}
</math>
:<math>
= \int dt \frac 1{t^2 +1}
</math>
:<math>
= \textrm{Arctan} t = \textrm{Arctan} (2x-1)
</math>
ãåŸãããããã£ãŠãå
šäœããŸãšãããšç©åå€ãšããŠ
:<math>
\frac 15 \ln(x+1) + \frac 3{20} \ln (2x^2-2x+1)+\frac{31}{10}\textrm{Arctan} (2x-1)
</math>
ãåŸãããã
(III)
:<math>
\int \frac {\sin x}{\cos^2 x} dx
</math>
:<math>
= - \int
\frac {1}{\cos^2 x} d(\cos x)
</math>
:<math>
= \frac 1 {\cos x}
</math>
(IV)
:<math>
t = \tan (\frac x 2)
</math>
ãšãããšãã
:<math>
dx = \frac {2dt}{1+t^2}, \sin x = \frac {2t}{1+t^2}
</math>
ãšãªãããšãèæ
®ãããšã
:<math>
\int dx \frac 1 {1+\sin x}
</math>
:<math>
= \int \frac 1 {1+ \frac {2t}{1+t^2}}\frac {2dt}{1+t^2}
</math>
:<math>
= \int dt \frac 2 {(1+t)^2}
</math>
:<math>
= - \frac 2 {1+t} = \frac {-2}{1+\tan (\frac x 2)}
</math>
ãšãªããå¥ã®æ¹æ³ãšããŠã<!-- çµæããéç®ããã®ã ã ... ã -->
:<math>
\frac 1 {1+\sin x} = \frac 1 {1+2\sin \frac x 2 \cos \frac x 2}
</math>
:<math>
= \frac 1 {(\sin \frac x 2 + \cos \frac x 2)^2}
</math>
:<math>
= \frac 1{1+\tan \frac x 2}\frac 1 {\cos ^2 \frac x 2}
</math>
:<math>
= \frac d {dx}(\frac 1 {1 + \tan \frac x 2}) (-2)
</math>
ãšãªãã®ã§ã䞡蟺ãç©åããŠçµæãåŸãŠãããã
===å€å€æ°é¢æ°ã®åŸ®ç©å===
====å埮å====
å€å€æ°ã§å®çŸ©ããã颿°fããããšãã®ãã倿°ã®ã¿ã察象ã«ãã埮åãäŸãã°
<math>
\lim_{h\rightarrow 0} \frac {f(x _1 + h, ... ,x _n) - f(x _1, ...,x _n) } h
</math>
ã
<math>
f_x
</math>
ã
<math>
\frac{\partial{f}}{\partial{{x _1}}}
</math>
ã
<math>
(\frac{\partial{f}}{\partial{{x _1}}})_{x_2, x_3...}
</math>
ãšæžã{{Ruby|å埮å|ãžãã³ã¶ã}}ãšåŒã¶ã
====å€å€æ°é¢æ°ã®æå€§æå°å€====
====å埮åã«ããèšç®====
å€å€æ°é¢æ°ã§ã¯ããããç¬ç«å€æ°ã«ããå埮åããã¹ãŠ0ã«ãªãç¹ã§ã颿°ãæå€§å€ãŸãã¯æå°å€ãåãããšãæåŸ
ãããã
äŸãã°
<math>
f = x^2 + y^2
</math>
ã§ã¯ã
<math>
\frac{\partial{f}}{\partial{x}} = 2x
</math>
<math>
\frac{\partial{f}}{\partial{y}} = 2y
</math>
ã§ããã®ã§ã
<math>
x = 0 , y = 0
</math>
ã§ã極倧å€ãŸãã¯æ¥µå°å€ãåãããšãæåŸ
ãããã
====2倿°é¢æ°ã®æ¥µå€====
2倿°é¢æ°<math>f(x,y)</math>ã«ãããŠãç¹<math>(a,b)</math>ã§<math>f_x(a,b)=f_y(a,b)=0</math>ãšãããå€å¥åŒ'''D'''ã
:<math>D=f_{xx}(a,b)f_{yy}(a,b)-f_{xy}(a,b)^2</math>
ãšå®çŸ©ããã
<math>D>0</math>ã®ãšã
:<math>f_{xx}(a,b)>0</math>ãªãã°ã颿°<math>f(x,y)</math>ã¯ç¹<math>(a,b)</math>ã§æ¥µå°å€ããšã
:<math>f_{xx}(a,b)<0</math>ãªãã°ã颿°<math>f(x,y)</math>ã¯ç¹<math>(a,b)</math>ã§æ¥µå€§å€ããšãã
<math>D<0</math>ã®ãšãã¯ã極å€ã¯ãšããªãã
====å
šåŸ®å====
2倿°é¢æ°<math>f(x,y)</math>ã«ãããå
šåŸ®åã¯
:<math>df=\frac{\partial{f}}{\partial{x}}dx+\frac{\partial{f}}{\partial{y}} dy </math>
ãšå®çŸ©ããããäŸãã°<math>f(x,y)=x^2+y^2</math>ã«ãããå
šåŸ®åã¯
:<math>df=2xdx+2ydy</math>
ãšãªããåæ§ã«''n''倿°é¢æ°<math>f(x_1,x_2,\cdots,x_n)</math>ã«ãããå
šåŸ®åã¯
:<math>df=\frac{\partial{f}}{\partial{x_1}}dx_1+\frac{\partial{f}}{\partial{x_2}} dx_2 + \cdots + \frac{\partial{f}}{\partial{x_n}}dx_n</math>
ãšå®çŸ©ãããã
====ããã»è¡å====
ããã»è¡åã¯2éå埮åã«ãã£ãŠäœãããè¡å
<math>
H = \left[
\frac{\partial^2{f}}{\partial x_ix_j}(P)
\right]
</math>ã§ããã
ç¹Pãã
<math>
\frac{\partial f}{\partial x_1}(P)=
\frac{\partial f}{\partial x_2}(P)=
\cdots
\frac{\partial f}{\partial x_n}(P)=0
</math>
ãªãç¹([[w:èšçç¹]])ãšãããããã»è¡åã®Pã«ãããåºæå€ãå
šãŠæ£ã§ããã°ã颿°ã¯ç¹Pã§æ¥µå°å€ãæã¡ãå
šãŠè² ã§ããã°ãç¹Pã§æ¥µå€§å€ãæã€ãã©ã¡ãã§ããªããªãç¹Pã¯[[w:éç¹]]ã§ããã
äŸãã°ã
<math>
f = x^2 + y^2
</math>
ã«ã€ããŠãèšçç¹(0,0)ã«ãããããã»è¡åã¯ã
<math>
H =
\begin{pmatrix}
\frac{\partial^2{f}}{\partial{x}^2} & \frac {\partial^2 f}{\partial x\partial y}\\
\frac {\partial^2 f}{\partial y\partial x} & \frac{\partial^2{f}}{\partial{y}^2}
\end{pmatrix}
</math>
<math>
=
\begin{pmatrix}
2 & 0\\
0&2
\end{pmatrix}
</math>
ãšãªããåºæå€ã¯2ã§ããã®ã§ãç¹(0,0)ã¯fã®æ¥µå°å€ã§ããã
====é°é¢æ°å®ç====
:<math>
F(x,y) = 0
</math>
ã®åœ¢ã§è¡šãããã颿°ããããšãã
:<math>
\frac{\partial{F}}{\partial{y}}
</math>
ãååšãããšãããšããã®é¢æ°ã¯
:<math>
y = y(x)
</math>
ã®åœ¢ã«(屿çã«ã¯)衚ããããšãåºæ¥ãããã®ãšãã
:<math>
y' = - \frac { \frac{\partial{F}}{\partial{x}}}{\frac{\partial{F}}{\partial{y}}}
</math>
ãæãç«ã€ã
å³èŸºã®åœ¢ã¯å°ãåŠã«èŠããããç¥ããªããäŸãã°ã
:<math>
F(x,y) = ax+by
</math>
(a,bã¯å®æ°)ã«ã€ããŠèããŠã¿ããšãäžã®åŒã¯ã
:<math>
y' = - \frac a b
</math>
ãšãªã£ãŠãããéåžžã®ä»æ¹ã§èŠãyã®åŸããšäžèŽããŠããã
ãã®å®çã¯çµå±ã®ãšããã©ããªè€éãªæ²ç·ã§ããããç¹ã®ããè¿ãã«éãã°ãããã¯ã»ãšãã©çŽç·ãšåãæ§ã«ãªã£ãŠãããšããããšãè¿°ã¹ãŠããã
====Lagrangeã®æªå®å®æ°æ³====
F(x,y) = 0ã®åœ¢ã®æ¡ä»¶ã課ããããäžã§ã
:<math>
z = f(x,y)
</math>
ã®æå€§å€ãæ±ããåé¡ãèããããã®ãšã
:<math>
g = f + \lambda F
</math>
ã§æ°ãã颿°gãå®çŸ©ãã
(<math>\lambda</math>ã¯ãã宿°)
:<math>
\frac{\partial{g}}{\partial{x}} = \frac{\partial{g}}{\partial{y}} = \frac{\partial{g}}{\partial{{\lambda}}} = 0
</math>
ã§äžãããã<math>x,y,\lambda</math>ãèšç®ãããåŸãããç¹ãæ¥µå€§ãæ¥µå°å€ãåãç¹ã§ããã
*èšç®äŸ
:<math>
z = x^2+y^2, F= x+y-1
</math>
ãšããŠããã®æ¹æ³ãé©çšããŠã¿ããæ¥µå€ã¯ã(å³ãæžããŠã¿ããš)
:<math>
x= y = \frac 1 2
</math>
ã§çŸããããšæåŸ
ãããã
<!-- (å®éã«ã¯ã°ã©ãäžã®æå°å€ã?) -->
ãã®åŒã®å Žåã¯ã
:<math>
y= -x +1
</math>
ã代å
¥ããããšã§çãåŸãããšãã§ãããå¹³æ¹å®æãã圢ã¯
:<math>
z = 2(x-\frac 1 2)^2 + \frac 1 2
</math>
ã§ããã確ãã«
:<math>
x= y = \frac 1 2
</math>
ã§æ¥µå€ãåãããšãåãããæªå®å®æ°æ³ãçšãããš
:<math>
g= f +\lambda F = x^2+y^2 + \lambda (x+y-1)
</math>
ãåŸãããã
ããã§ã
:<math>
\frac{\partial{g}}{\partial{\lambda}} = x+y-1 = 0
</math>
:<math>
\frac{\partial{g}}{\partial{x}} = 2x +\lambda = 0
</math>
:<math>
\frac{\partial{g}}{\partial{y}} = 2y +\lambda = 0
</math>
ãåŸãããããããã¯x,y,<math>\lambda</math>ã«ã€ããŠã®é£ç«1次æ¹çšåŒãšãªã£ãŠããããããè§£ããšãçã¯ã
:<math>
\lambda = 1, x = y = \frac 1 2
</math>
ãšãªãã確ãã«æ£ç¢ºãªå€ãšäžèŽããã
====å€éç©å====
è€æ°ã®æåã«ã€ããŠç©åãè¡ãªããšããããå€éç©åãšåŒã¶ãäŸãã°ã
<math>
\iint f(x,y) dx dy
</math>
====环次ç©å====
<math>
\iint f(x,y) dx dy
</math>
ã¯ã
<math>
\iint f(x,y) dx dy
</math>
<math>
= \int dy (\int f dx ) = \int dx (\int f dy )
</math>
ã§æžãå€ããããã
====ã¬ãŠã¹ç©å====
ã¬ãŠã¹ç©å<math>\int_{-\infty}^{\infty} e^{-x^2}dx=\sqrt{\pi}</math>ã®å°åºã
:<math>I=\int_{-\infty}^{\infty} e^{-x^2}dx=\int_{-\infty}^{\infty} e^{-y^2}dy</math>ãšãããšã
:<math>I^2=\int_{-\infty}^{\infty} e^{-x^2}dx \int_{-\infty}^{\infty} e^{-y^2}dy</math>
::<math>=\iint_{D} e^{-x^2-y^2}dxdy</math>ïŒ<math>D=\left\{(x,y)|-\infty<x<\infty,-\infty<y<\infty \right\}</math>ïŒ
::<math>=\iint_{D'} e^{-r^2} r dr d\theta</math> ïŒçŽäº€åº§æšããæ¥µåº§æšã«å€æã<math>x=r\cos \theta,y=r\sin\theta,dxdy\to rdrd\theta</math>ã<math>D'=\left\{(r,\theta)|0\le r <\infty,0\le\theta\le 2\pi\right\}</math>ïŒ
::<math>=\int_{0}^{\infty}re^{-r^2}dr \int_{0}^{2\pi}d\theta</math>
::<math>=\frac{1}{2}\times 2\pi</math>
::<math>=\pi</math>
:<math>I=\int_{-\infty}^{\infty} e^{-x^2}dx=\sqrt{\pi}</math>
ãŸã:<math>\int_{-\infty}^{\infty} e^{-ax^2}dx</math>ã®ç©åã¯
:<math>\int_{-\infty}^{\infty} e^{-ax^2}dx=\int_{-\infty}^{\infty} e^{-t^2}\frac{1}{\sqrt{a}}dt</math>ïŒ<math>\sqrt{a}x=t</math>ãšçœ®ããŠçœ®æç©åïŒ
::<math>=\frac{1}{\sqrt{a}}\int_{-\infty}^{\infty} e^{-t^2}dt</math>
::<math>=\sqrt{\frac{\pi}{a}}</math>
ãšãªãã
====ã¬ã³ã颿°====
ã¬ã³ã颿°ã¯<math>\Gamma(t)=\int_{0}^{\infty}x^{t-1}e^{-x}dx </math>ã§å®çŸ©ããã颿°ã§ããã
;ã¬ã³ã颿°ã®åºæ¬å
¬åŒ
:<math>\Gamma(t+1)=t\Gamma(t)</math>
:<math>\Gamma(n+1)=n!</math>ïŒ''n''ã¯èªç¶æ°ïŒ
:<math>\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}</math>
====ããŒã¿é¢æ°====
ããŒã¿é¢æ°ã¯<math>\Beta(p,q)=\int_{0}^{1} x^{p-1}(1-x)^{q-1}dx</math>ã§å®çŸ©ããã颿°ã§ããã
;ããŒã¿é¢æ°ã®åºæ¬å
¬åŒ
:<math>\Beta(q,p)=\Beta(p,q)</math>
:<math>\Beta(p+1,q)=\frac{p}{q}\Beta(p,q+1)</math>
:<math>\Beta(p,q+1)=\frac{q}{p}\Beta(p+1,q)</math>
:<math>\Beta(p+1,q)=\frac{p}{p+q}\Beta(p,q)</math>
:<math>\Beta(p,q+1)=\frac{q}{p+q}\Beta(p,q)</math>
:<math>\Beta(p,q)=2\int_{0}^{\frac{\pi}{2}} \sin^{2p-1} \theta \cos^{2q-1} \theta d\theta</math>
:<math>\int_{0}^{\frac{\pi}{2}} \sin^a \theta \cos^b \theta d\theta = \frac{1}{2}\Beta\left(\frac{a+1}{2},\frac{b+1}{2}\right)</math>
:<math>\Beta(p,q)=\frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}</math>
===æ°åã®åæ===
====ãã©ã³ããŒã«ã®åæå€å®æ³====
<!--
<math>
\frac {a _{n}}{ a _{n-1} } < 1
</math>
ãæºããæ°åã¯åæããã(ãã©ã³ããŒã«ã®åæå€å®æ³)
(?)
-->
====Σ{1/(n^α)}ã®åæçºæ£====
<math>
\sum _{n=1}^{\infty} \frac 1 {n^{\alpha}}
</math>
ã¯ã<math>\alpha =< 1</math>ã®ãšãçºæ£ãã<math>\alpha > 1</math>ã®ãšãåæããã
TODO
* 宿°ã®é£ç¶æ§
* è€éãªç©å
* æ°åã®åæ
* å埮åã¯äº€æå¯èœ
[[ã«ããŽãª:è§£æåŠ|ãµã€ããããããã¡ ãããããã]] | 2005-06-09T13:07:19Z | 2024-03-15T18:07:39Z | [
"ãã³ãã¬ãŒã:Ruby"
] | https://ja.wikibooks.org/wiki/%E7%89%A9%E7%90%86%E6%95%B0%E5%AD%A6I_%E8%A7%A3%E6%9E%90%E5%AD%A6 |
2,117 | ç©çæ°åŠI åŸ®åæ¹çšåŒ | ç©çæ°åŠI > åŸ®åæ¹çšåŒ
ç©çæ°åŠI > åŸ®åæ¹çšåŒ
ããã§ã¯ãåžžåŸ®åæ¹çšåŒãæ±ããå
容ãšããŠã¯ç°¡åãªæ±ç©ã®ä»æ¹ãã ç·åœ¢åŸ®åæ¹çšåŒã®è§£æ³ãè§£ã®äžææ§ã®èª¬æãã»ãšãã©ã® åŸ®åæ¹çšåŒã¯è§£æçã«è§£ããªãããšããæ°å€çãªæ±ãã éèŠã«ãªãããšã®èª¬æãªã©ãäºå®ããŠããã
ã®åœ¢ã§äžããããæ¹çšåŒãåŸ®åæ¹çšåŒãšåŒã¶ãããã§ã y ( n ) {\displaystyle y^{(n)}\,} ãªã©ã§äžãããã衚åŒã¯ãyã®né埮åã衚ããã
ãªã©ã代æ°çãªåŒãã
ãªã©æ°å€çã«ããè§£ãæ±ããããªããããªäŸãæ¹çšåŒã®äŸãšããŠæããããããä»åã¯ã埮åããŸãããŠäœãããæ¹çšåŒãèããŠãã®è§£æ³ãèå¯ããŠè¡ãããšã«ãªãã
ãŸããäžã§äžããæ¹çšåŒã¯yãxã®é¢æ°ãšããŠèŠãäžã§ã®åŒãšãªã£ãŠããã ä»®ã«ãäžã®åŸ®åæ¹çšåŒã«xã®é¢æ°ãšããŠä»£å
¥ããããšãã ãã®æ¹çšåŒãæºãããããªãããã®yããã®åŸ®åæ¹çšåŒã®xã«å¯Ÿãã è§£ãšåŒã¶ãã€ãŸããyãšããŠããã®ãããªxã®é¢æ°ãæ±ããããšã åºæ¥ããã©ããããã®ç« ã®äž»é¡ãšãªãããã§ããã
äžã®æ°å€çã«ããè§£ããªãæ¹çšåŒãæ±ããæ¹æ³ã¯çŸåšã§ã¯é«çåŠæ ¡æ°åŠBã§æ±ãããããšã«ãªã£ãŠãããå®éã«ã¯ãããã§ã¯w:äºåæ³ãæ±ãããw:ãã¥ãŒãã³æ³ã¯ããçºå±çãªå
容ãšããŠæ±ãããã
äŸãã°ã
ãšããæ¹çšåŒã¯åŸ®åæ¹çšåŒã§ããã ããã§ã¯ããã®æ¹çšåŒãæ°å€çã«ç©åããæ¹æ³ãèå¯ããŠã¿ãã 埮åãšã¯ãããããã颿°f(x)ã«ã€ã㊠ããç¹xã§ã®å€ãšãxãšã¯ç°ãªã£ãŠãããããã«æ¥µè¿ãç¹ x + ε {\displaystyle x+\epsilon } ã§ã®å€ã é¢ä¿ã¥ããå€ã§ããããã®ãããå
šãŠã®ç¹ã§ã®åŸ®åãšããäžç¹ã§ã®f(x)ã® å€ãåãã£ãŠãããªããå
šãŠã®ç¹ã§ã®xã®å€ãèšç®ã§ããããšãæåŸ
ãããã å®éäžã®åŒã§ã¯ãå
šãŠã®ç¹ã§ã®åŸ®åã宿°1ã§ããããšãç¥ãããŠããã®ã§ã ãã®å€ãçšããŠãç°ãªã£ãxã®å€ã«å¯Ÿããyã®å€ãèšç®ããããšãåºæ¥ãã
ããã§ã¯ãç¹ã«y(x)ã¯ã x = 0 {\displaystyle x=0} ã§ã0ãšãªããšããæ¡ä»¶ãæºããããšã ä»®å®ããããã®ãããªæ¡ä»¶ãåææ¡ä»¶ãšåŒã¶ããã®çšèªèªäœã¯ ç©ççã®èª²ç®ã«ã€ããŠãæµçšãããããšãããã
ããŠãããç¹xã§ã®å€ãf(x)ãšãããšããw:ãã€ã©ãŒå±éã®å
¬åŒãçšãããšã
ãšãªãããšãç¥ãããŠããããããããã㧠ε {\displaystyle \epsilon } ãããããŠå°ããã£ããšãã«ã¯ ãã®åŒã®å³èŸºã¯æåã®2é
ã ãã§è¿äŒŒããŠããããšãæåŸ
ãããã ãã®ãšãã
ãåŸãããããã®åŒã¯ãããç¹xã§ã®f(x)ã®å€ãšããã®è¿ãã§ã®å€ ãç¹xã§ã®fã®åŸ®åãçšããŠçµã³ã€ããåŒã§ããã
ããã§ãäžããããæ¡ä»¶
ãçšããŠãä»»æã®xã«å¯ŸããŠy(x)ã®å€ãèšç®ããŠã¿ãã ãŸããæ¡ä»¶ããy(0) = 0ãšãªãã æ¬¡ã«ãéåžžã«å°ããæ° ε {\displaystyle \epsilon } ãçšãããšãäžã®ãã€ã©ãŒå±éã®åŒã 䜿ããã®ã§ã
ãšãªãããããã§ã¯æ¡ä»¶ããã
ãç¥ãããŠããã®ã§ã y(0) =0ãšåããããšãçµå±
ãåŸãããããã®ãããªæäœãäœåºŠãç¹°ãããããŠããã®ã§ããã
次ã®è¡çšãšããŠã x = 2 ε {\displaystyle x=2\epsilon } ã§ã®å€ãèšç®ããã ãã¡ããã x = 3 / 2 â
ε {\displaystyle x=3/2\cdot \epsilon } ãªã©ã®å€ãåãæ§ã«ããŠèšç®ããããšãåºæ¥ãã æŽæ°ã§èšç®ãããŠãããã ããã åãæ§ãªæç¶ããçšãããšã
ãšãªããããã§ãfã®åŸ®åã1ã§ããããšãçšãããšã å
ã»ã©ã®çµæãšåãããŠã
ãåŸãããã x = 3 / 2 â
ε {\displaystyle x=3/2\cdot \epsilon } ãã x = 3 ε {\displaystyle x=3\epsilon } ãã x = 4 ε {\displaystyle x=4\epsilon } ã§ã®å€ãåãæ§ãªèšç®ã§åŸããã ãã®çµæãã
ã瀺åãããããšãåããã ããã§ããã®ãããªè§£ãå®éã«è§£æçãªæå³ã§ äžããããåŸ®åæ¹çšåŒã®è§£ãšãªã£ãŠããããšã瀺ãã ã€ãŸããå®éã«ã¯ãã®ç¢ºèªã¯éåžžã«ç°¡åã§ã
ãšãªã£ãŠããããšã確ãããã®ã ãã xã®xã«ãã埮åã¯1ãªã®ã§ç¢ºãã«ãã®ããã«ãªã£ãŠããã ããããŠããã®åŸ®åæ¹çšåŒã¯è§£ãããããã§ããã ããã«ã
ã¯y(0) = 0ã®æ¡ä»¶ãæºãããŠããã ãã®ããã«åææ¡ä»¶ãæºããè§£ã""åææ¡ä»¶ãæºããè§£"" ãšåŒã¶ã
ãŸãããã®ããã«1é埮åã®ã¿ãçšããŠé ã
ã«y(x)ã®å€ãæ°å€çã« å®ããŠè¡ãæ¹æ³ãçºèŠè
ã«ã¡ãªãã§w:ãªã€ã©ãŒæ³ãšåŒã¶ããšã ããã ç¹ã«ããã®æ¹æ³ã¯å®éã«è§£æçã«çµæãæ±ããããªãåŒã«å¯ŸããŠã çšããããšãåºæ¥ãã®ã§ãå¿çšäžéåžžã«éèŠã§ããã
å®éã«ã¯ãå®çšçãªæ°å€èšç®ã«ãããŠã¯ ãã髿¬¡ã®åŸ®åé
ãŸã§ã®å¯äžãåãå
¥ããw:ã«ã³ã²ã¯ãã¿æ³ãš åŒã°ããæ¹æ³ãçšããããšãå€ãã ãã®æ¹æ³ã¯è§£ã®ç²ŸåºŠãé«ãããšã§ç¥ãããŠãããã ããèšç®æ³ãè€éã§ãããããç°¡åãªèšç®ã«ã¯ ãªã€ã©ãŒæ³ãçšããããããšãããã
ããã§ã¯ãåŸ®åæ¹çšåŒãè§£æçã«è§£ãæ¹æ³ãæ±ããæ°å€çã«è§£ãæ±ããããšãåºæ¥ããšã¯ããçµæãšããŠæ±ãããã颿°ãè¯ãç¥ããããã®ã§ãã£ãå Žåãäœããã®ç°¡åãªè§£æçãªè§£ãæ±ããæ¹æ³ãããããšãçãã®ã¯èªç¶ãªããšã§ãããšæããããäŸãã°ãå
ã»ã©ã®äŸã§ã¯
ãæããããããã§y=xããã®æ¹çšåŒã®è§£ã«ãªãããšã«æ°ã¥ãããšã¯ããã»ã©é£ããããšã§ã¯ãªããšæãããã
ãŸããããã«æãã倿°åé¢ã®æ¹æ³ãçšãããšãã®æ¹çšåŒã¯ç°¡åãªç©åã«åž°çããã®ã§ããã«ãã£ãŠãã®è§£ãåŸãããšãåºæ¥ãããã®ãããªåŸ®åæ¹çšåŒã®è§£ãæ±ããæ¹æ³ã¯éåžžã«å€ãã®ãã®ãç¥ãããŠããããããã§ã¯ãã£ãšãç°¡åã§å¿çšäžéèŠãªãã®ãæ±ãããšã«ããã
ããã§ã¯ããŸããã£ãšãç°¡åã§éèŠãªæ¹æ³ãã æããã
ã§æžããåŒã§ã¯ã
ãšãã䞡蟺ãããããã®æåã§ç©åããããšã§ è§£ãåŸãããããã®æ¹æ³ã倿°åé¢ã®æ¹æ³ãšåŒã¶ã å®éã«ã¯ãyãšããã®ã¯ãããŸã§xã®é¢æ°ã§ããã®ã§ã yã§ç©åãè¡ãªãããšã¯åºæ¥ãªãããã«æãããå®éã ãã®ãšããã§ããããã®åŒã¯ã
ãçãããããã®ã§ããã ããã§ãå³èŸºã¯xã«ã€ããŠç©åããŠããã倿°å€æã«ãã£ãŠ
ã®ããã«ç©å倿°ãxããyã«å€æããããšãåºæ¥ãã ããã«ãã£ãŠãäžã®ãããªè¡šåŒã«ãªãããã§ããã
ã倿°åé¢ã®æ¹æ³ã§è§£ãããšãåºæ¥ãã 䞡蟺ãxã§ç©åãããšã
ãåŸããããããã§Cã¯ç©å宿°ã§ãããä»»æã®å®æ°ãšãªã£ãŠããã ãã®åŒã¯å
ã®åŸ®åæ¹çšåŒãæºããããšãæåŸ
ããããã å®éã
ã§ããã®ã§ããã®åŒã¯ç¢ºãã«äžããããæ¹çšåŒãæºãããŠããã
å¥ã®äŸãšããŠã
ãæ±ãã ããã§ã¯äž¡èŸºãyã§å²ã£ãäžã§ãxã«ã€ããŠç©åãããšã
ãåŸãããã (Aã¯ã C = e A {\displaystyle C=e^{A}} ãæºããä»»æå®æ°ã§ããã) å®éãã®åŒã
ã«ä»£å
¥ãããšäž¡èŸºå
±ã«
ã«çãããªãããšã ãããããã®åŒãæ£ããè§£æçãªå€ãåŸãŠããããšãåããã
åŸ®åæ¹çšåŒã®äžã§ã ç¹ã«
ã®åœ¢ã§ãããåŸ®åæ¹çšåŒããç·åœ¢åŸ®åæ¹çšåŒãšåŒã¶ã ããã以å€ã®åœ¢ãããŠããæ¹çšåŒãäŸãã° y 2 {\displaystyle y^{2}} ãå«ãã§ããåŸ®åæ¹çšåŒ ãéç·åœ¢åŸ®åæ¹çšåŒãšåŒã¶ã
ãããã®åŸ®åæ¹çšåŒã¯ãéç·åœ¢åŸ®åæ¹çšåŒãããåãæ±ããç°¡åã§ããããšã å€ããè¯ã調ã¹ãããŠãããç¹ã«ãããã§æ±ãããã« 1éã®ç·åœ¢åŸ®åæ¹çšåŒã¯ããããä¿æ°é¢æ°p(x)ã«ã€ããŠãè§£æçãª è§£ãæ±ããããšãåºæ¥ãããšãç¥ãããŠããã
ç¹ã«ãç·åœ¢1æ¬¡åŸ®åæ¹çšåŒã
ãšæžãã ãã®ãšãããã®è§£ã¯ã
ã§äžããããã ããã§ãCã¯ãä»»æã®ç©å宿°ã§ããã
å®éãäžã®è¡šåŒã埮åãããšã
ã埮åããéšåããã¯
ãåŸãããã æ¬¡ã«ãããçæ¹ã®
ã埮åããæ¹ããã¯ã
ãåŸãããã
ã®ãã¡ã¯ã¿ãŒã¯åã®ãã¡ã¯ã¿ãŒãšæã¡æ¶ãåãããšã«æ³šæã ãã£ãŠã
ãšãªãããããã¯ç¢ºãã«æ±ããããšããŠããåŸ®åæ¹çšåŒãšäžèŽããŠãã ããšãåããã
å®éã«ã¯ãã®æ¹æ³ã¯å®æ°å€åæ³ãšåŒã°ããæ¹æ³ãçšããŠå°åºãããããšãå€ãã
宿°å€åæ³ã®èª¬æãšäžã®å
¬åŒã®å°åº
åžžåŸ®åæ¹çšåŒãèšç®ãããšããäžã®äŸã§ã¯åžžã« å®å
šãªè§£ãåŸãããã ãããããã®ãããªè§£ãå¯äžã§ãããšãããã㯠è°è«ã®å¯Ÿè±¡ã«ãªãã
å
ã»ã©ã®äŸã§ããã°ã
ã§ã¯ãããåæå€ãåã£ãŠããã«æ¬¡ãã§ããã§äžãããã埮åã®å€ãçšããŠã yèªèº«ã®å€ãèšç®ããŠããããšãåºæ¥ãã åæ§ã«
ã®ããã«å³èŸºãxãšyã®ä»»æã®é¢æ°ã«ãªã£ãŠããŠãã y'èªèº«ã®å€ãåç¹ã§å®å
šã«æ±ºãŸã£ãŠããã°ã ç©åããã颿°ã¯åœç¶1ã€ããç¡ãããã«æããã
å®éã«ã¯ãã®çŽèгã¯å®å
šã«æ£ããããã§ã¯ãªãã äŸãã°ãf(x,y)ãããx,yã«å¯ŸããŠç¡éã«çºæ£ãããããª å Žåã«ã¯ãããã«å¯Ÿå¿ããy'ãå®ããããšãåºæ¥ãªãããã ãã以äžã«è§£ãåŸãããšãåºæ¥ãªããªãã ãŸãã颿°fã®ããããã®å€æ°ã«å¯ŸãããµããŸãã ããäžå®ä»¥äžã«æ¿ããå Žåã«ã¯ããã®ãšãã«ã ããã«å¯Ÿå¿ããy'ã®å€ãçšããŠåŸãããè¿ãã®é¢æ°å€ãã æ£ããå€ã«è¿ããªããªãããšãäºæ³ãããã
ãããããã®ãããªç¹å¥ãªæ
åµããªãå Žåã åžžåŸ®åæ¹çšåŒã®è§£ã¯äžæçã§ããããšãããããŠããã ãã ããäžã®äŸã§ãèŠãéããäžè¬ã« åžžåŸ®åæ¹çšåŒã¯ããç¹ã§ã®è§£ã®å€ãšãã®ãŸããã®ç¹ã§ã®è§£ã®å€ã é¢ä¿ã¥ããæ¹çšåŒãªã®ã§ããŸãæåã®äžç¹ã®å€ãäžããããšã ããªããšãè§£ãæ§æã§ããªãããšãåããã ãã£ãŠãè§£ãå³å¯ãªæå³ã§äžæçã«å®ããã«ã¯ãã®è§£ã«å¯Ÿãã åæå€ãå®ããå¿
èŠãããã
ä»ãŸã§ã¯1é埮åã®äŸããæ±ããªãã£ããã以éã§ã¯ 2é埮å以äžã®äŸãæ±ãããã®ãšããné埮åã®æ¹çšåŒã§ã¯ã nåã®åæå€ãå®ããªããšãè§£ãäžæçã«å®ãŸããªãããšãç¥ãããŠããã
ããã¯ãnéã®åŸ®åæ¹çšåŒããnåã®å€æ°ãå«ã1次ã®é£ç«åŸ®åæ¹çšåŒã« 察å¿ããããšã«ããã ããã§ãé£ç«æ¹çšåŒãšã¯ã
ã®ããã«(i,jã¯æŽæ°ã)ãè€æ°åã®åŸ®åæ¹çšåŒã§ è€æ°åã®é¢æ°ãå®ããããŠãããšããåŸ®åæ¹çšåŒã§ããã ããã¯ã代æ°åŒã®é£ç«æ¹çšåŒã®æ¡åŒµãšããããšãåºæ¥ãã ã€ãŸããäžã§è¿°ã¹ãŠããããšã¯ãnéã®1倿°ã®åŸ®åæ¹çšåŒã¯ã æ¬è³ªçã«nåã®å€æ°ãå®ããããã®ã1次ã®åŸ®åæ¹çšåŒãšçãããšããããš ã§ããã ãããŠãnåã®å€æ°ã決ããªããŠã¯ãããªãã®ã ããã åæå€ãnåå¿
èŠã«ãªãããšã¯äºæ³ãããããšã§ããã
ç©ççã«ã¯ãã¥ãŒãã³æ¹çšåŒãæéã«ã€ããŠ2éã®åŸ®åæ¹çšåŒã§ããã®ã§ã éåãæ±ºå®ããããã«ç©äœã®åæäœçœ®ãšåæé床ã®2ã€ã®ãã©ã¡ãŒã¿ãå®ãã å¿
èŠãããããšãšå¯Ÿå¿ããŠããã
ããã§néã®åŸ®åæ¹çšåŒãšãnåã®å€æ°ãå«ã1次ã®é£ç«åŸ®åæ¹çšåŒã® 察å¿ãèŠãã
ãŸãããxãåã£ãŠããã®äœçœ®ããé«éã®åŸ®åæ¹çšåŒã çšããŠè§£ãå®ããŠè¡ãæ¹æ³ãèããã ããã§ã¯ãåŸ®åæ¹çšåŒãnéãšããã ãã®ãšãã æ¹çšåŒã¯ã
ãšæžãæããããããšãæåŸ
ãããã ãã®åŒã¯ã y ( n â 1 ) {\displaystyle y^{(n-1)}} ã®xè¿ãã§ã®å€ãå®ããããã«ã¯ã xã«ããã y , ⯠, y ( n â 1 ) {\displaystyle y,\cdots ,y^{(n-1)}} ã®nåã®å€ãå®ããªããŠã¯ ãªããªãããšã瀺ããŠããã æ¬¡ã«ã y ( n â 2 ) {\displaystyle y^{(n-2)}} ãå®ããããšãèããã ãã®ãšãã y ( n â 2 ) {\displaystyle y^{(n-2)}} ã¯ã
ãæºããã®ã§ãæ¢ã«äžã§å®ãã y ( n â 2 ) {\displaystyle y^{(n-2)}} ãšã y ( n â 3 ) {\displaystyle y^{(n-3)}} ã®xã§ã®å€ã ããçšããŠèšç®ããããšãåºæ¥ãã åæ§ãªæé ãçšããŠã ãã以å€ã®ããäœã次æ°ã®åŸ®åãå®ããããšãã§ããã çµå±yãã y ( n â 1 ) {\displaystyle y^{(}{n-1})} ãŸã§ã®nåã®å€ã«ã€ããŠåæå€ãå®ããããšã¯ã ãã®æ¹çšåŒã®è§£ãæ±ããããã«ååã ã£ããšããããšãåºæ¥ãã
ãããã®ããšã¯è¡šåŒçã«
ãšæžãããšãåºæ¥ãã ããã§ãy'ãã y ( n â 1 ) {\displaystyle y^{(n-1)}} ãŸã§ã ããããã v 1 ⯠v n â 1 {\displaystyle v_{1}\cdots v_{n-1}} ã§çœ®ãæãããš ãã®è¡šåŒã¯ ã¡ããã© y , v 1 ⯠v n â 1 {\displaystyle y,v_{1}\cdots v_{n-1}} ã®nåã®å€æ°ãçšãã1æ¬¡åŸ®åæ¹çšåŒã®è¡šåŒã«çãããªãã ãã£ãŠããããã®éã®å¯Ÿå¿ãããããšã åãã£ãããã§ããã
ãã®å¯Ÿå¿ã¯ç¹ã«ã宿°ä¿æ°ç·åæ¹çšåŒã®äŸã§ããçšããããã ãã®ãšãã«ã¯æåŸã®fãã y , y Ⲡ⯠y ( n â 1 ) {\displaystyle y,y'\cdots y^{(n-1)}} ã«é¢ããç·åçµåã«ãªãããã 巊蟺ã®åŸ®åæŒç®åãããè¡åã«å¯Ÿå¿ããããã«èŠãªãããšãåºæ¥ãã ãã®ããšã¯è¡šåŒçã«
ãšãããã ããã§ãDã¯n*nã®è¡åã§ããã yã¯n次å
ã®ãã¯ãã«ãšãªã£ãŠããã ãã®åŒã®åœ¢ã¯ã ãã®åŒã®è§£ã«ã€ããŠã
ã®ãããªæžãæ¹ãåºæ¥ãããšãäºæ³ãããã ãã ããããã§ã¯ææ°é¢æ°ã®ææ°ãšããŠãã ã®æ°ã§ã¯ãªãè¡åãçšããŠããã å®éãã®ãããªè¡šåŒã¯ååšããäžè¬ã«è¡åã®ææ°é¢æ°ãšåŒã°ããŠããã ã€ãŸãã宿°ä¿æ°ã®ç·åœ¢åŸ®åæ¹çšåŒã®èšç®ã¯ è¡åã®ææ°é¢æ°ã®èšç®ãè¡ãªãããšã«åž°çããããã§ããã
äžã§è¿°ã¹ãéãã
ã§æžãããåŸ®åæ¹çšåŒãç·åœ¢åŸ®åæ¹çšåŒãšåŒã¶ã ãããã®è§£ã¯éç·åœ¢æ¹çšåŒãšæ¯ã¹ãŠè¯ãç¥ãããŠããã 1éã®ç·åœ¢åŸ®åæ¹çšåŒã¯äžã§åŸãããéããå®å
šãªç©åãå¯èœ ãšãªã£ãŠããã 2éã®ç·åœ¢åŸ®åæ¹çšåŒãç¹æ®é¢æ°ãªã©ãçšãããšããªãã® çš®é¡ã系統çã«æ±ããããšãç¥ãããŠãããããããã¯ãã®é
ã® ç¯å²ãè¶
ããã®ã§æ±ãããšã¯åºæ¥ãªãã ããã§ã¯ç¹ã«ãå®çšäžéèŠãªå®æ°ä¿æ°ç·åœ¢åŸ®åæ¹çšåŒã äž»ã«æ±ãã
äŸãã°ãèªç±ç©ºéå
ã§ã®ãã¥ãŒãã³æ¹çšåŒ
ã忝åã®æ¹çšåŒ
ã¯ãã®äŸã§ããã ããã§ã¯2éãŸã§ã®æ¹çšåŒãæ±ã£ãŠãããã ããã§æ±ãè§£æ³èªäœã¯ãã©ã®æ¬¡æ°ã®æ¹çšåŒã«ãçšããããšãåºæ¥ãã
ç·åœ¢æ¹çšåŒã¯ãåŒã®åœ¢ããè§£ã«éèŠãªæ§è³ªãããããšãåããã
ããç·åœ¢åŸ®åæ¹çšåŒã«ã€ããŠãã2ã€ã®è§£ y 1 {\displaystyle y_{1}} , y 2 {\displaystyle y_{2}} ãåŸããããšããããã®ãšãã y = a y 1 + b y 2 {\displaystyle y=ay_{1}+by_{2}} ãè§£ãšãªãããšããããã ããã§ãa,bã¯ä»»æã®æ°ã§ãããã€ãŸãã2ã€ã®è§£ãåŸããããšãã ãããã®ç·åœ¢çµåããã®è§£ãšãªãããšãç¥ãããã®ã§ããã
å®éã
ã®å·ŠèŸºã«ä»£å
¥ãããšã
ãåŸããããã y 1 {\displaystyle y_{1}} , y 2 {\displaystyle y_{2}} ã¯äºãã«ç¬ç«ã«ãã®æ¹çšåŒã®è§£ãšãªã£ãŠããã®ã§ã ãã®å€ã¯
ãæºããã確ãã« y = a y 1 + b y 2 {\displaystyle y=ay_{1}+by_{2}} ã ãã®æ¹çšåŒã®è§£ã«ãªã£ãŠããããšããããã
ããnéåŸ®åæ¹çšåŒã«ã€ããŠnåã®ç·åœ¢ç¬ç«ãªåŸ®åæ¹çšåŒã®è§£ãåŸããããšããã ç·åœ¢ç¬ç«ãšããããšã¯ãäºãã®ç·åœ¢çµåãçšããŠãã®ãã¡ã®ã©ãããäœãã ãããšã åºæ¥ãªããšããæ¡ä»¶ã§ããã ç·åœ¢ç¬ç«ãšããæ§è³ªã¯ãå®éã«ã¯ãã³ã¹ããŒè¡ååŒãšãããã®ã çšããŠå€æãããããšãå€ããããã³ã¹ããŒè¡ååŒãš ç·åœ¢çµåã§äºããäœãããšãåºæ¥ãªããšããæ§è³ªã®ã€ãªãã㯠ããã»ã©ç°¡åã§ã¯ãªãã ããããç¹ã«2éåŸ®åæ¹çšåŒãæ±ããšãã«ã¯ã ãã®æ¡ä»¶ã¯åã«ã2ã€ã®è§£ããäºãã«ãäºãã®å®æ°åã§ãªã ãšããããšãè¿°ã¹ãŠããã 以åŸã¯2éåŸ®åæ¹çšåŒãå€ãæ±ãã
ãã®ãšãããã®nåã®è§£ã
ãšãããšã
( c 1 , ⯠c n {\displaystyle c_{1},\cdots c_{n}} ã¯ãä»»æå®æ°ã)
ãããã®æ¹çšåŒã®è§£ã§ããããšãåããã å®éããã§ã¯næ¬¡ã®æ¹çšåŒãèããŠããããã ãã®è§£ã決å®ããã«ã¯ãnåã®åæå€ãå¿
èŠãšãããŠããã ããã§ããã®åŒã¯nåã®ä»»æå®æ°ãæã£ãŠããã®ã§ã ãããã®å®æ°ãåããããšã§ã ãã®è§£ã¯ã©ã®ãããªåæå€ã«å¯Ÿå¿ããè§£ãäœãããããšã æåŸ
ãããããã®ãããªè§£ããã®æ¹çšåŒã®äžè¬è§£ãšåŒã¶ã å€ãã®åççãªåŸ®åæ¹çšåŒã®åé¡ã§ã¯ãæ¹çšåŒã®äžè¬è§£ãåŸãããšãã ç®çãšãããã
æ¢ã«è¿°ã¹ãéãã宿°ä¿æ°åŸ®åæ¹çšåŒã«ãããŠã¯ã æ¹çšåŒã¯
ãšæžããããããã§ãAã¯å®æ°ã®è¡åã§ããã ãããè§£ãã衚åŒãšããŠè¡åã®ææ°é¢æ°ã®è¡šåŒã åŸãããããšãåã«è¿°ã¹ãã話ã®é åºãšããŠã¯ 次ã«è¡åã®ææ°é¢æ°ã®ããšãæžãã®ãé©åœããç¥ããªããã ããã§ã¯ããã®åã«ãã®çµæãéåžžã«ç°¡åã«ãªãããšã 䜿ã£ãŠãå®éã®èšç®ãè¡ãªã£ãŠã¿ãããšã«ããã
äŸãã°ã
ã®è§£ãæ±ããããšãèããã å®ã¯ãäžã®è°è«ããã¡ããšè¡ãªããšã ãã®ãããªå®æ°ä¿æ°ç·åœ¢åŸ®åæ¹çšåŒã®è§£ã¯ã éåžžã«å€ãã®å Žåã y = e a t {\displaystyle y=e^{at}} ãšãã圢ã§äžããããããšãåããã ããã§ãaã¯ãäœããã®è€çŽ æ°ã§ããã å®éã«ã¯å°ãéã£ã圢ã®è§£ãåŸãããããšããããã ããã§ããŸãã¯ããããã®ãããããšãç¥ãããã
ãã®ããããŸãã¯ãã®ããã«è§£ã®åœ¢ãä»®å®ããã ãã®ãšãäžã®æ¹çšåŒã¯ã
ã«åž°çãããããã¯ã2é埮åã®é
ã¯aã«ã€ããŠ2次ã®é
ã 1é埮åã®é
ã¯aã«ã€ããŠ1次ã®é
ã«ãããåçŽãªçœ®ãæããã㊠åŸãããä»£æ°æ¹çšåŒã§ããã ãã®æ¹çšåŒã¯ãã°ãã°å
ã®åŸ®åæ¹çšåŒã®ç¹ææ¹çšåŒãšåŒã°ããã ããšããšaã®å€ãæ±ããŠããŸãã°ãããã«å¯Ÿå¿ããè§£ãå®ãŸãããšã å
ã»ã©ã®ä»®å®ã«ãã£ãŠæåŸ
ãããŠãããããã§ãŸãã«ããã®aãå®ãã æ¹çšåŒãåŸãããŠãããã€ãŸããã®ããšã¯ã宿°ä¿æ°ã® ç·åœ¢åŸ®åæ¹çšåŒãè§£ãããšã¯ããã«å¯Ÿå¿ããä»£æ°æ¹çšåŒã è§£ãããšã«åž°çããããšãåããã®ã§ããã
äžã®æ¹çšåŒãè§£ããšã
ãåŸãããã äžã®ä»®å®ããè§£ã®åœ¢ã«ä»£å
¥ãããšã ãã®æ¹çšåŒã®è§£ãšããŠ
ã®2ã€ãåŸãããããããã¯äºãã«ä»ã®å®æ°åã§ãªãã®ã§ äºãã«ç·åœ¢ç¬ç«ã§ããã ãã£ãŠãä»»æå®æ°A,Bãçšãããšã
ãè§£ãšããŠäœãããšãåºæ¥ãããããã¯2åã®ä»»æå®æ°ãå«ãã§ããããšããã ãã®æ¹çšåŒã®äžè¬è§£ã§ããã ãããã®è°è«ããããã®çš®ã®æ¹çšåŒã§ã¯ãå²åç°¡åã«å
šãŠã®è§£ãæ±ããã ãããšããããã
çµè«ãšããŠã¯ã ãã®ããã« å®æ°ä¿æ°ã®åŸ®åæ¹çšåŒãè§£ãã«ã¯ã
ã®çœ®ãæããããŠã aã«ã€ããŠã®ä»£æ°æ¹çšåŒãè§£ãã°ãããšãããã
ãã ããä»åã¯ããã§ãªãã£ããç¹ææ¹çšåŒã®è§£ã èæ°ã§ãã£ããéæ ¹ã§ãããšãã«ã¯å¥ã®æ³šæãå¿
èŠã§ããã å®éã«ã¯èæ°ã§ãããšãã«ã¯ãåã«ãã®èæ°ãå
ã®è¡šåŒã« 代å
¥ããã°è¯ãããããããããã®åŒã¯ãªã€ã©ãŒã®å
¬åŒãçšã㊠sin {\displaystyle \sin } ãšã cos {\displaystyle \cos } ã®åŒã«çŽãããšãåºæ¥ãã ãã®ããããã®æ§ãªçœ®ãæããããããšãæ
£çšçã«ãªãããããšã å€ãã
éæ ¹ã®å Žåã¯äžã§ããaã«ã€ããŠå
ã®æ¹çšåŒã®æ¬¡æ°ããå°ãªãæ°ã® è§£ãåŸãããã®ã§ããã®ãŸãŸã§ã¯äžè¬è§£ãäœããªãããã«æããã ãããããã®å Žåã«ãè¡åã®ææ°é¢æ°ã詳ãã調ã¹ããšã ããã«å¯Ÿå¿ããäžè¬è§£ãåŸãããããšãç¥ãããã 衚åŒçã«ã¯ãaãnéè§£ã®ãšãã«ã¯ e a t , t e a t , ⯠, t n â 1 e a t {\displaystyle e^{at},te^{at},\cdots ,t^{n-1}e^{at}} ãçšããããã«ããã°ããã
ãããã®åŸ®åæ¹çšåŒã®è§£ãèšç®ããã ãã ããåææ¡ä»¶ã¯
ãšããã åŸ®åæ¹çšåŒã®ããäžã®åŒã察å¿ããåŸ®åæ¹çšåŒã®è§£ã§ããã
e A = â n = 0 â A n n ! {\displaystyle e^{A}=\sum _{n=0}^{\infty }{\frac {A^{n}}{n!}}}
1234 | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ç©çæ°åŠI > åŸ®åæ¹çšåŒ",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ç©çæ°åŠI > åŸ®åæ¹çšåŒ",
"title": ""
},
{
"paragraph_id": 2,
"tag": "p",
"text": "ããã§ã¯ãåžžåŸ®åæ¹çšåŒãæ±ããå
容ãšããŠã¯ç°¡åãªæ±ç©ã®ä»æ¹ãã ç·åœ¢åŸ®åæ¹çšåŒã®è§£æ³ãè§£ã®äžææ§ã®èª¬æãã»ãšãã©ã® åŸ®åæ¹çšåŒã¯è§£æçã«è§£ããªãããšããæ°å€çãªæ±ãã éèŠã«ãªãããšã®èª¬æãªã©ãäºå®ããŠããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "ã®åœ¢ã§äžããããæ¹çšåŒãåŸ®åæ¹çšåŒãšåŒã¶ãããã§ã y ( n ) {\\displaystyle y^{(n)}\\,} ãªã©ã§äžãããã衚åŒã¯ãyã®né埮åã衚ããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "ãªã©ã代æ°çãªåŒãã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "ãªã©æ°å€çã«ããè§£ãæ±ããããªããããªäŸãæ¹çšåŒã®äŸãšããŠæããããããä»åã¯ã埮åããŸãããŠäœãããæ¹çšåŒãèããŠãã®è§£æ³ãèå¯ããŠè¡ãããšã«ãªãã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "ãŸããäžã§äžããæ¹çšåŒã¯yãxã®é¢æ°ãšããŠèŠãäžã§ã®åŒãšãªã£ãŠããã ä»®ã«ãäžã®åŸ®åæ¹çšåŒã«xã®é¢æ°ãšããŠä»£å
¥ããããšãã ãã®æ¹çšåŒãæºãããããªãããã®yããã®åŸ®åæ¹çšåŒã®xã«å¯Ÿãã è§£ãšåŒã¶ãã€ãŸããyãšããŠããã®ãããªxã®é¢æ°ãæ±ããããšã åºæ¥ããã©ããããã®ç« ã®äž»é¡ãšãªãããã§ããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "äžã®æ°å€çã«ããè§£ããªãæ¹çšåŒãæ±ããæ¹æ³ã¯çŸåšã§ã¯é«çåŠæ ¡æ°åŠBã§æ±ãããããšã«ãªã£ãŠãããå®éã«ã¯ãããã§ã¯w:äºåæ³ãæ±ãããw:ãã¥ãŒãã³æ³ã¯ããçºå±çãªå
容ãšããŠæ±ãããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "äŸãã°ã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "ãšããæ¹çšåŒã¯åŸ®åæ¹çšåŒã§ããã ããã§ã¯ããã®æ¹çšåŒãæ°å€çã«ç©åããæ¹æ³ãèå¯ããŠã¿ãã 埮åãšã¯ãããããã颿°f(x)ã«ã€ã㊠ããç¹xã§ã®å€ãšãxãšã¯ç°ãªã£ãŠãããããã«æ¥µè¿ãç¹ x + ε {\\displaystyle x+\\epsilon } ã§ã®å€ã é¢ä¿ã¥ããå€ã§ããããã®ãããå
šãŠã®ç¹ã§ã®åŸ®åãšããäžç¹ã§ã®f(x)ã® å€ãåãã£ãŠãããªããå
šãŠã®ç¹ã§ã®xã®å€ãèšç®ã§ããããšãæåŸ
ãããã å®éäžã®åŒã§ã¯ãå
šãŠã®ç¹ã§ã®åŸ®åã宿°1ã§ããããšãç¥ãããŠããã®ã§ã ãã®å€ãçšããŠãç°ãªã£ãxã®å€ã«å¯Ÿããyã®å€ãèšç®ããããšãåºæ¥ãã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ããã§ã¯ãç¹ã«y(x)ã¯ã x = 0 {\\displaystyle x=0} ã§ã0ãšãªããšããæ¡ä»¶ãæºããããšã ä»®å®ããããã®ãããªæ¡ä»¶ãåææ¡ä»¶ãšåŒã¶ããã®çšèªèªäœã¯ ç©ççã®èª²ç®ã«ã€ããŠãæµçšãããããšãããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ããŠãããç¹xã§ã®å€ãf(x)ãšãããšããw:ãã€ã©ãŒå±éã®å
¬åŒãçšãããšã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ãšãªãããšãç¥ãããŠããããããããã㧠ε {\\displaystyle \\epsilon } ãããããŠå°ããã£ããšãã«ã¯ ãã®åŒã®å³èŸºã¯æåã®2é
ã ãã§è¿äŒŒããŠããããšãæåŸ
ãããã ãã®ãšãã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ãåŸãããããã®åŒã¯ãããç¹xã§ã®f(x)ã®å€ãšããã®è¿ãã§ã®å€ ãç¹xã§ã®fã®åŸ®åãçšããŠçµã³ã€ããåŒã§ããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ããã§ãäžããããæ¡ä»¶",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ãçšããŠãä»»æã®xã«å¯ŸããŠy(x)ã®å€ãèšç®ããŠã¿ãã ãŸããæ¡ä»¶ããy(0) = 0ãšãªãã æ¬¡ã«ãéåžžã«å°ããæ° ε {\\displaystyle \\epsilon } ãçšãããšãäžã®ãã€ã©ãŒå±éã®åŒã 䜿ããã®ã§ã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ãšãªãããããã§ã¯æ¡ä»¶ããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "ãç¥ãããŠããã®ã§ã y(0) =0ãšåããããšãçµå±",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "ãåŸãããããã®ãããªæäœãäœåºŠãç¹°ãããããŠããã®ã§ããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "次ã®è¡çšãšããŠã x = 2 ε {\\displaystyle x=2\\epsilon } ã§ã®å€ãèšç®ããã ãã¡ããã x = 3 / 2 â
ε {\\displaystyle x=3/2\\cdot \\epsilon } ãªã©ã®å€ãåãæ§ã«ããŠèšç®ããããšãåºæ¥ãã æŽæ°ã§èšç®ãããŠãããã ããã åãæ§ãªæç¶ããçšãããšã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ãšãªããããã§ãfã®åŸ®åã1ã§ããããšãçšãããšã å
ã»ã©ã®çµæãšåãããŠã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ãåŸãããã x = 3 / 2 â
ε {\\displaystyle x=3/2\\cdot \\epsilon } ãã x = 3 ε {\\displaystyle x=3\\epsilon } ãã x = 4 ε {\\displaystyle x=4\\epsilon } ã§ã®å€ãåãæ§ãªèšç®ã§åŸããã ãã®çµæãã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ã瀺åãããããšãåããã ããã§ããã®ãããªè§£ãå®éã«è§£æçãªæå³ã§ äžããããåŸ®åæ¹çšåŒã®è§£ãšãªã£ãŠããããšã瀺ãã ã€ãŸããå®éã«ã¯ãã®ç¢ºèªã¯éåžžã«ç°¡åã§ã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "ãšãªã£ãŠããããšã確ãããã®ã ãã xã®xã«ãã埮åã¯1ãªã®ã§ç¢ºãã«ãã®ããã«ãªã£ãŠããã ããããŠããã®åŸ®åæ¹çšåŒã¯è§£ãããããã§ããã ããã«ã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "ã¯y(0) = 0ã®æ¡ä»¶ãæºãããŠããã ãã®ããã«åææ¡ä»¶ãæºããè§£ã\"\"åææ¡ä»¶ãæºããè§£\"\" ãšåŒã¶ã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "ãŸãããã®ããã«1é埮åã®ã¿ãçšããŠé ã
ã«y(x)ã®å€ãæ°å€çã« å®ããŠè¡ãæ¹æ³ãçºèŠè
ã«ã¡ãªãã§w:ãªã€ã©ãŒæ³ãšåŒã¶ããšã ããã ç¹ã«ããã®æ¹æ³ã¯å®éã«è§£æçã«çµæãæ±ããããªãåŒã«å¯ŸããŠã çšããããšãåºæ¥ãã®ã§ãå¿çšäžéåžžã«éèŠã§ããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "å®éã«ã¯ãå®çšçãªæ°å€èšç®ã«ãããŠã¯ ãã髿¬¡ã®åŸ®åé
ãŸã§ã®å¯äžãåãå
¥ããw:ã«ã³ã²ã¯ãã¿æ³ãš åŒã°ããæ¹æ³ãçšããããšãå€ãã ãã®æ¹æ³ã¯è§£ã®ç²ŸåºŠãé«ãããšã§ç¥ãããŠãããã ããèšç®æ³ãè€éã§ãããããç°¡åãªèšç®ã«ã¯ ãªã€ã©ãŒæ³ãçšããããããšãããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "ããã§ã¯ãåŸ®åæ¹çšåŒãè§£æçã«è§£ãæ¹æ³ãæ±ããæ°å€çã«è§£ãæ±ããããšãåºæ¥ããšã¯ããçµæãšããŠæ±ãããã颿°ãè¯ãç¥ããããã®ã§ãã£ãå Žåãäœããã®ç°¡åãªè§£æçãªè§£ãæ±ããæ¹æ³ãããããšãçãã®ã¯èªç¶ãªããšã§ãããšæããããäŸãã°ãå
ã»ã©ã®äŸã§ã¯",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "ãæããããããã§y=xããã®æ¹çšåŒã®è§£ã«ãªãããšã«æ°ã¥ãããšã¯ããã»ã©é£ããããšã§ã¯ãªããšæãããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "ãŸããããã«æãã倿°åé¢ã®æ¹æ³ãçšãããšãã®æ¹çšåŒã¯ç°¡åãªç©åã«åž°çããã®ã§ããã«ãã£ãŠãã®è§£ãåŸãããšãåºæ¥ãããã®ãããªåŸ®åæ¹çšåŒã®è§£ãæ±ããæ¹æ³ã¯éåžžã«å€ãã®ãã®ãç¥ãããŠããããããã§ã¯ãã£ãšãç°¡åã§å¿çšäžéèŠãªãã®ãæ±ãããšã«ããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "ããã§ã¯ããŸããã£ãšãç°¡åã§éèŠãªæ¹æ³ãã æããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "ã§æžããåŒã§ã¯ã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "ãšãã䞡蟺ãããããã®æåã§ç©åããããšã§ è§£ãåŸãããããã®æ¹æ³ã倿°åé¢ã®æ¹æ³ãšåŒã¶ã å®éã«ã¯ãyãšããã®ã¯ãããŸã§xã®é¢æ°ã§ããã®ã§ã yã§ç©åãè¡ãªãããšã¯åºæ¥ãªãããã«æãããå®éã ãã®ãšããã§ããããã®åŒã¯ã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "ãçãããããã®ã§ããã ããã§ãå³èŸºã¯xã«ã€ããŠç©åããŠããã倿°å€æã«ãã£ãŠ",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "ã®ããã«ç©å倿°ãxããyã«å€æããããšãåºæ¥ãã ããã«ãã£ãŠãäžã®ãããªè¡šåŒã«ãªãããã§ããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "ã倿°åé¢ã®æ¹æ³ã§è§£ãããšãåºæ¥ãã 䞡蟺ãxã§ç©åãããšã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "ãåŸããããããã§Cã¯ç©å宿°ã§ãããä»»æã®å®æ°ãšãªã£ãŠããã ãã®åŒã¯å
ã®åŸ®åæ¹çšåŒãæºããããšãæåŸ
ããããã å®éã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "ã§ããã®ã§ããã®åŒã¯ç¢ºãã«äžããããæ¹çšåŒãæºãããŠããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "å¥ã®äŸãšããŠã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "ãæ±ãã ããã§ã¯äž¡èŸºãyã§å²ã£ãäžã§ãxã«ã€ããŠç©åãããšã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "ãåŸãããã (Aã¯ã C = e A {\\displaystyle C=e^{A}} ãæºããä»»æå®æ°ã§ããã) å®éãã®åŒã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "ã«ä»£å
¥ãããšäž¡èŸºå
±ã«",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "ã«çãããªãããšã ãããããã®åŒãæ£ããè§£æçãªå€ãåŸãŠããããšãåããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "åŸ®åæ¹çšåŒã®äžã§ã ç¹ã«",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "ã®åœ¢ã§ãããåŸ®åæ¹çšåŒããç·åœ¢åŸ®åæ¹çšåŒãšåŒã¶ã ããã以å€ã®åœ¢ãããŠããæ¹çšåŒãäŸãã° y 2 {\\displaystyle y^{2}} ãå«ãã§ããåŸ®åæ¹çšåŒ ãéç·åœ¢åŸ®åæ¹çšåŒãšåŒã¶ã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "ãããã®åŸ®åæ¹çšåŒã¯ãéç·åœ¢åŸ®åæ¹çšåŒãããåãæ±ããç°¡åã§ããããšã å€ããè¯ã調ã¹ãããŠãããç¹ã«ãããã§æ±ãããã« 1éã®ç·åœ¢åŸ®åæ¹çšåŒã¯ããããä¿æ°é¢æ°p(x)ã«ã€ããŠãè§£æçãª è§£ãæ±ããããšãåºæ¥ãããšãç¥ãããŠããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "ç¹ã«ãç·åœ¢1æ¬¡åŸ®åæ¹çšåŒã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "ãšæžãã ãã®ãšãããã®è§£ã¯ã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "ã§äžããããã ããã§ãCã¯ãä»»æã®ç©å宿°ã§ããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "å®éãäžã®è¡šåŒã埮åãããšã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "ã埮åããéšåããã¯",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "ãåŸãããã æ¬¡ã«ãããçæ¹ã®",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "ã埮åããæ¹ããã¯ã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "ãåŸãããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "ã®ãã¡ã¯ã¿ãŒã¯åã®ãã¡ã¯ã¿ãŒãšæã¡æ¶ãåãããšã«æ³šæã ãã£ãŠã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "ãšãªãããããã¯ç¢ºãã«æ±ããããšããŠããåŸ®åæ¹çšåŒãšäžèŽããŠãã ããšãåããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "å®éã«ã¯ãã®æ¹æ³ã¯å®æ°å€åæ³ãšåŒã°ããæ¹æ³ãçšããŠå°åºãããããšãå€ãã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "宿°å€åæ³ã®èª¬æãšäžã®å
¬åŒã®å°åº",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "åžžåŸ®åæ¹çšåŒãèšç®ãããšããäžã®äŸã§ã¯åžžã« å®å
šãªè§£ãåŸãããã ãããããã®ãããªè§£ãå¯äžã§ãããšãããã㯠è°è«ã®å¯Ÿè±¡ã«ãªãã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "å
ã»ã©ã®äŸã§ããã°ã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "ã§ã¯ãããåæå€ãåã£ãŠããã«æ¬¡ãã§ããã§äžãããã埮åã®å€ãçšããŠã yèªèº«ã®å€ãèšç®ããŠããããšãåºæ¥ãã åæ§ã«",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "ã®ããã«å³èŸºãxãšyã®ä»»æã®é¢æ°ã«ãªã£ãŠããŠãã y'èªèº«ã®å€ãåç¹ã§å®å
šã«æ±ºãŸã£ãŠããã°ã ç©åããã颿°ã¯åœç¶1ã€ããç¡ãããã«æããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "å®éã«ã¯ãã®çŽèгã¯å®å
šã«æ£ããããã§ã¯ãªãã äŸãã°ãf(x,y)ãããx,yã«å¯ŸããŠç¡éã«çºæ£ãããããª å Žåã«ã¯ãããã«å¯Ÿå¿ããy'ãå®ããããšãåºæ¥ãªãããã ãã以äžã«è§£ãåŸãããšãåºæ¥ãªããªãã ãŸãã颿°fã®ããããã®å€æ°ã«å¯ŸãããµããŸãã ããäžå®ä»¥äžã«æ¿ããå Žåã«ã¯ããã®ãšãã«ã ããã«å¯Ÿå¿ããy'ã®å€ãçšããŠåŸãããè¿ãã®é¢æ°å€ãã æ£ããå€ã«è¿ããªããªãããšãäºæ³ãããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "ãããããã®ãããªç¹å¥ãªæ
åµããªãå Žåã åžžåŸ®åæ¹çšåŒã®è§£ã¯äžæçã§ããããšãããããŠããã ãã ããäžã®äŸã§ãèŠãéããäžè¬ã« åžžåŸ®åæ¹çšåŒã¯ããç¹ã§ã®è§£ã®å€ãšãã®ãŸããã®ç¹ã§ã®è§£ã®å€ã é¢ä¿ã¥ããæ¹çšåŒãªã®ã§ããŸãæåã®äžç¹ã®å€ãäžããããšã ããªããšãè§£ãæ§æã§ããªãããšãåããã ãã£ãŠãè§£ãå³å¯ãªæå³ã§äžæçã«å®ããã«ã¯ãã®è§£ã«å¯Ÿãã åæå€ãå®ããå¿
èŠãããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "ä»ãŸã§ã¯1é埮åã®äŸããæ±ããªãã£ããã以éã§ã¯ 2é埮å以äžã®äŸãæ±ãããã®ãšããné埮åã®æ¹çšåŒã§ã¯ã nåã®åæå€ãå®ããªããšãè§£ãäžæçã«å®ãŸããªãããšãç¥ãããŠããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "ããã¯ãnéã®åŸ®åæ¹çšåŒããnåã®å€æ°ãå«ã1次ã®é£ç«åŸ®åæ¹çšåŒã« 察å¿ããããšã«ããã ããã§ãé£ç«æ¹çšåŒãšã¯ã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "ã®ããã«(i,jã¯æŽæ°ã)ãè€æ°åã®åŸ®åæ¹çšåŒã§ è€æ°åã®é¢æ°ãå®ããããŠãããšããåŸ®åæ¹çšåŒã§ããã ããã¯ã代æ°åŒã®é£ç«æ¹çšåŒã®æ¡åŒµãšããããšãåºæ¥ãã ã€ãŸããäžã§è¿°ã¹ãŠããããšã¯ãnéã®1倿°ã®åŸ®åæ¹çšåŒã¯ã æ¬è³ªçã«nåã®å€æ°ãå®ããããã®ã1次ã®åŸ®åæ¹çšåŒãšçãããšããããš ã§ããã ãããŠãnåã®å€æ°ã決ããªããŠã¯ãããªãã®ã ããã åæå€ãnåå¿
èŠã«ãªãããšã¯äºæ³ãããããšã§ããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "ç©ççã«ã¯ãã¥ãŒãã³æ¹çšåŒãæéã«ã€ããŠ2éã®åŸ®åæ¹çšåŒã§ããã®ã§ã éåãæ±ºå®ããããã«ç©äœã®åæäœçœ®ãšåæé床ã®2ã€ã®ãã©ã¡ãŒã¿ãå®ãã å¿
èŠãããããšãšå¯Ÿå¿ããŠããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "ããã§néã®åŸ®åæ¹çšåŒãšãnåã®å€æ°ãå«ã1次ã®é£ç«åŸ®åæ¹çšåŒã® 察å¿ãèŠãã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "ãŸãããxãåã£ãŠããã®äœçœ®ããé«éã®åŸ®åæ¹çšåŒã çšããŠè§£ãå®ããŠè¡ãæ¹æ³ãèããã ããã§ã¯ãåŸ®åæ¹çšåŒãnéãšããã ãã®ãšãã æ¹çšåŒã¯ã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "ãšæžãæããããããšãæåŸ
ãããã ãã®åŒã¯ã y ( n â 1 ) {\\displaystyle y^{(n-1)}} ã®xè¿ãã§ã®å€ãå®ããããã«ã¯ã xã«ããã y , ⯠, y ( n â 1 ) {\\displaystyle y,\\cdots ,y^{(n-1)}} ã®nåã®å€ãå®ããªããŠã¯ ãªããªãããšã瀺ããŠããã æ¬¡ã«ã y ( n â 2 ) {\\displaystyle y^{(n-2)}} ãå®ããããšãèããã ãã®ãšãã y ( n â 2 ) {\\displaystyle y^{(n-2)}} ã¯ã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "ãæºããã®ã§ãæ¢ã«äžã§å®ãã y ( n â 2 ) {\\displaystyle y^{(n-2)}} ãšã y ( n â 3 ) {\\displaystyle y^{(n-3)}} ã®xã§ã®å€ã ããçšããŠèšç®ããããšãåºæ¥ãã åæ§ãªæé ãçšããŠã ãã以å€ã®ããäœã次æ°ã®åŸ®åãå®ããããšãã§ããã çµå±yãã y ( n â 1 ) {\\displaystyle y^{(}{n-1})} ãŸã§ã®nåã®å€ã«ã€ããŠåæå€ãå®ããããšã¯ã ãã®æ¹çšåŒã®è§£ãæ±ããããã«ååã ã£ããšããããšãåºæ¥ãã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "ãããã®ããšã¯è¡šåŒçã«",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "ãšæžãããšãåºæ¥ãã ããã§ãy'ãã y ( n â 1 ) {\\displaystyle y^{(n-1)}} ãŸã§ã ããããã v 1 ⯠v n â 1 {\\displaystyle v_{1}\\cdots v_{n-1}} ã§çœ®ãæãããš ãã®è¡šåŒã¯ ã¡ããã© y , v 1 ⯠v n â 1 {\\displaystyle y,v_{1}\\cdots v_{n-1}} ã®nåã®å€æ°ãçšãã1æ¬¡åŸ®åæ¹çšåŒã®è¡šåŒã«çãããªãã ãã£ãŠããããã®éã®å¯Ÿå¿ãããããšã åãã£ãããã§ããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "ãã®å¯Ÿå¿ã¯ç¹ã«ã宿°ä¿æ°ç·åæ¹çšåŒã®äŸã§ããçšããããã ãã®ãšãã«ã¯æåŸã®fãã y , y Ⲡ⯠y ( n â 1 ) {\\displaystyle y,y'\\cdots y^{(n-1)}} ã«é¢ããç·åçµåã«ãªãããã 巊蟺ã®åŸ®åæŒç®åãããè¡åã«å¯Ÿå¿ããããã«èŠãªãããšãåºæ¥ãã ãã®ããšã¯è¡šåŒçã«",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "ãšãããã ããã§ãDã¯n*nã®è¡åã§ããã yã¯n次å
ã®ãã¯ãã«ãšãªã£ãŠããã ãã®åŒã®åœ¢ã¯ã ãã®åŒã®è§£ã«ã€ããŠã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "ã®ãããªæžãæ¹ãåºæ¥ãããšãäºæ³ãããã ãã ããããã§ã¯ææ°é¢æ°ã®ææ°ãšããŠãã ã®æ°ã§ã¯ãªãè¡åãçšããŠããã å®éãã®ãããªè¡šåŒã¯ååšããäžè¬ã«è¡åã®ææ°é¢æ°ãšåŒã°ããŠããã ã€ãŸãã宿°ä¿æ°ã®ç·åœ¢åŸ®åæ¹çšåŒã®èšç®ã¯ è¡åã®ææ°é¢æ°ã®èšç®ãè¡ãªãããšã«åž°çããããã§ããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "äžã§è¿°ã¹ãéãã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "ã§æžãããåŸ®åæ¹çšåŒãç·åœ¢åŸ®åæ¹çšåŒãšåŒã¶ã ãããã®è§£ã¯éç·åœ¢æ¹çšåŒãšæ¯ã¹ãŠè¯ãç¥ãããŠããã 1éã®ç·åœ¢åŸ®åæ¹çšåŒã¯äžã§åŸãããéããå®å
šãªç©åãå¯èœ ãšãªã£ãŠããã 2éã®ç·åœ¢åŸ®åæ¹çšåŒãç¹æ®é¢æ°ãªã©ãçšãããšããªãã® çš®é¡ã系統çã«æ±ããããšãç¥ãããŠãããããããã¯ãã®é
ã® ç¯å²ãè¶
ããã®ã§æ±ãããšã¯åºæ¥ãªãã ããã§ã¯ç¹ã«ãå®çšäžéèŠãªå®æ°ä¿æ°ç·åœ¢åŸ®åæ¹çšåŒã äž»ã«æ±ãã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "äŸãã°ãèªç±ç©ºéå
ã§ã®ãã¥ãŒãã³æ¹çšåŒ",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "ã忝åã®æ¹çšåŒ",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "ã¯ãã®äŸã§ããã ããã§ã¯2éãŸã§ã®æ¹çšåŒãæ±ã£ãŠãããã ããã§æ±ãè§£æ³èªäœã¯ãã©ã®æ¬¡æ°ã®æ¹çšåŒã«ãçšããããšãåºæ¥ãã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "ç·åœ¢æ¹çšåŒã¯ãåŒã®åœ¢ããè§£ã«éèŠãªæ§è³ªãããããšãåããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "ããç·åœ¢åŸ®åæ¹çšåŒã«ã€ããŠãã2ã€ã®è§£ y 1 {\\displaystyle y_{1}} , y 2 {\\displaystyle y_{2}} ãåŸããããšããããã®ãšãã y = a y 1 + b y 2 {\\displaystyle y=ay_{1}+by_{2}} ãè§£ãšãªãããšããããã ããã§ãa,bã¯ä»»æã®æ°ã§ãããã€ãŸãã2ã€ã®è§£ãåŸããããšãã ãããã®ç·åœ¢çµåããã®è§£ãšãªãããšãç¥ãããã®ã§ããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "å®éã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "ã®å·ŠèŸºã«ä»£å
¥ãããšã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "ãåŸããããã y 1 {\\displaystyle y_{1}} , y 2 {\\displaystyle y_{2}} ã¯äºãã«ç¬ç«ã«ãã®æ¹çšåŒã®è§£ãšãªã£ãŠããã®ã§ã ãã®å€ã¯",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "ãæºããã確ãã« y = a y 1 + b y 2 {\\displaystyle y=ay_{1}+by_{2}} ã ãã®æ¹çšåŒã®è§£ã«ãªã£ãŠããããšããããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "ããnéåŸ®åæ¹çšåŒã«ã€ããŠnåã®ç·åœ¢ç¬ç«ãªåŸ®åæ¹çšåŒã®è§£ãåŸããããšããã ç·åœ¢ç¬ç«ãšããããšã¯ãäºãã®ç·åœ¢çµåãçšããŠãã®ãã¡ã®ã©ãããäœãã ãããšã åºæ¥ãªããšããæ¡ä»¶ã§ããã ç·åœ¢ç¬ç«ãšããæ§è³ªã¯ãå®éã«ã¯ãã³ã¹ããŒè¡ååŒãšãããã®ã çšããŠå€æãããããšãå€ããããã³ã¹ããŒè¡ååŒãš ç·åœ¢çµåã§äºããäœãããšãåºæ¥ãªããšããæ§è³ªã®ã€ãªãã㯠ããã»ã©ç°¡åã§ã¯ãªãã ããããç¹ã«2éåŸ®åæ¹çšåŒãæ±ããšãã«ã¯ã ãã®æ¡ä»¶ã¯åã«ã2ã€ã®è§£ããäºãã«ãäºãã®å®æ°åã§ãªã ãšããããšãè¿°ã¹ãŠããã 以åŸã¯2éåŸ®åæ¹çšåŒãå€ãæ±ãã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "ãã®ãšãããã®nåã®è§£ã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "ãšãããšã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "( c 1 , ⯠c n {\\displaystyle c_{1},\\cdots c_{n}} ã¯ãä»»æå®æ°ã)",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "ãããã®æ¹çšåŒã®è§£ã§ããããšãåããã å®éããã§ã¯næ¬¡ã®æ¹çšåŒãèããŠããããã ãã®è§£ã決å®ããã«ã¯ãnåã®åæå€ãå¿
èŠãšãããŠããã ããã§ããã®åŒã¯nåã®ä»»æå®æ°ãæã£ãŠããã®ã§ã ãããã®å®æ°ãåããããšã§ã ãã®è§£ã¯ã©ã®ãããªåæå€ã«å¯Ÿå¿ããè§£ãäœãããããšã æåŸ
ãããããã®ãããªè§£ããã®æ¹çšåŒã®äžè¬è§£ãšåŒã¶ã å€ãã®åççãªåŸ®åæ¹çšåŒã®åé¡ã§ã¯ãæ¹çšåŒã®äžè¬è§£ãåŸãããšãã ç®çãšãããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "æ¢ã«è¿°ã¹ãéãã宿°ä¿æ°åŸ®åæ¹çšåŒã«ãããŠã¯ã æ¹çšåŒã¯",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "ãšæžããããããã§ãAã¯å®æ°ã®è¡åã§ããã ãããè§£ãã衚åŒãšããŠè¡åã®ææ°é¢æ°ã®è¡šåŒã åŸãããããšãåã«è¿°ã¹ãã話ã®é åºãšããŠã¯ 次ã«è¡åã®ææ°é¢æ°ã®ããšãæžãã®ãé©åœããç¥ããªããã ããã§ã¯ããã®åã«ãã®çµæãéåžžã«ç°¡åã«ãªãããšã 䜿ã£ãŠãå®éã®èšç®ãè¡ãªã£ãŠã¿ãããšã«ããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "äŸãã°ã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "ã®è§£ãæ±ããããšãèããã å®ã¯ãäžã®è°è«ããã¡ããšè¡ãªããšã ãã®ãããªå®æ°ä¿æ°ç·åœ¢åŸ®åæ¹çšåŒã®è§£ã¯ã éåžžã«å€ãã®å Žåã y = e a t {\\displaystyle y=e^{at}} ãšãã圢ã§äžããããããšãåããã ããã§ãaã¯ãäœããã®è€çŽ æ°ã§ããã å®éã«ã¯å°ãéã£ã圢ã®è§£ãåŸãããããšããããã ããã§ããŸãã¯ããããã®ãããããšãç¥ãããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "ãã®ããããŸãã¯ãã®ããã«è§£ã®åœ¢ãä»®å®ããã ãã®ãšãäžã®æ¹çšåŒã¯ã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "ã«åž°çãããããã¯ã2é埮åã®é
ã¯aã«ã€ããŠ2次ã®é
ã 1é埮åã®é
ã¯aã«ã€ããŠ1次ã®é
ã«ãããåçŽãªçœ®ãæããã㊠åŸãããä»£æ°æ¹çšåŒã§ããã ãã®æ¹çšåŒã¯ãã°ãã°å
ã®åŸ®åæ¹çšåŒã®ç¹ææ¹çšåŒãšåŒã°ããã ããšããšaã®å€ãæ±ããŠããŸãã°ãããã«å¯Ÿå¿ããè§£ãå®ãŸãããšã å
ã»ã©ã®ä»®å®ã«ãã£ãŠæåŸ
ãããŠãããããã§ãŸãã«ããã®aãå®ãã æ¹çšåŒãåŸãããŠãããã€ãŸããã®ããšã¯ã宿°ä¿æ°ã® ç·åœ¢åŸ®åæ¹çšåŒãè§£ãããšã¯ããã«å¯Ÿå¿ããä»£æ°æ¹çšåŒã è§£ãããšã«åž°çããããšãåããã®ã§ããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "äžã®æ¹çšåŒãè§£ããšã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 104,
"tag": "p",
"text": "ãåŸãããã äžã®ä»®å®ããè§£ã®åœ¢ã«ä»£å
¥ãããšã ãã®æ¹çšåŒã®è§£ãšããŠ",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 105,
"tag": "p",
"text": "ã®2ã€ãåŸãããããããã¯äºãã«ä»ã®å®æ°åã§ãªãã®ã§ äºãã«ç·åœ¢ç¬ç«ã§ããã ãã£ãŠãä»»æå®æ°A,Bãçšãããšã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 106,
"tag": "p",
"text": "ãè§£ãšããŠäœãããšãåºæ¥ãããããã¯2åã®ä»»æå®æ°ãå«ãã§ããããšããã ãã®æ¹çšåŒã®äžè¬è§£ã§ããã ãããã®è°è«ããããã®çš®ã®æ¹çšåŒã§ã¯ãå²åç°¡åã«å
šãŠã®è§£ãæ±ããã ãããšããããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 107,
"tag": "p",
"text": "çµè«ãšããŠã¯ã ãã®ããã« å®æ°ä¿æ°ã®åŸ®åæ¹çšåŒãè§£ãã«ã¯ã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 108,
"tag": "p",
"text": "ã®çœ®ãæããããŠã aã«ã€ããŠã®ä»£æ°æ¹çšåŒãè§£ãã°ãããšãããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 109,
"tag": "p",
"text": "ãã ããä»åã¯ããã§ãªãã£ããç¹ææ¹çšåŒã®è§£ã èæ°ã§ãã£ããéæ ¹ã§ãããšãã«ã¯å¥ã®æ³šæãå¿
èŠã§ããã å®éã«ã¯èæ°ã§ãããšãã«ã¯ãåã«ãã®èæ°ãå
ã®è¡šåŒã« 代å
¥ããã°è¯ãããããããããã®åŒã¯ãªã€ã©ãŒã®å
¬åŒãçšã㊠sin {\\displaystyle \\sin } ãšã cos {\\displaystyle \\cos } ã®åŒã«çŽãããšãåºæ¥ãã ãã®ããããã®æ§ãªçœ®ãæããããããšãæ
£çšçã«ãªãããããšã å€ãã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 110,
"tag": "p",
"text": "éæ ¹ã®å Žåã¯äžã§ããaã«ã€ããŠå
ã®æ¹çšåŒã®æ¬¡æ°ããå°ãªãæ°ã® è§£ãåŸãããã®ã§ããã®ãŸãŸã§ã¯äžè¬è§£ãäœããªãããã«æããã ãããããã®å Žåã«ãè¡åã®ææ°é¢æ°ã詳ãã調ã¹ããšã ããã«å¯Ÿå¿ããäžè¬è§£ãåŸãããããšãç¥ãããã 衚åŒçã«ã¯ãaãnéè§£ã®ãšãã«ã¯ e a t , t e a t , ⯠, t n â 1 e a t {\\displaystyle e^{at},te^{at},\\cdots ,t^{n-1}e^{at}} ãçšããããã«ããã°ããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 111,
"tag": "p",
"text": "",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 112,
"tag": "p",
"text": "ãããã®åŸ®åæ¹çšåŒã®è§£ãèšç®ããã ãã ããåææ¡ä»¶ã¯",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 113,
"tag": "p",
"text": "ãšããã åŸ®åæ¹çšåŒã®ããäžã®åŒã察å¿ããåŸ®åæ¹çšåŒã®è§£ã§ããã",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 114,
"tag": "p",
"text": "",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 115,
"tag": "p",
"text": "e A = â n = 0 â A n n ! {\\displaystyle e^{A}=\\sum _{n=0}^{\\infty }{\\frac {A^{n}}{n!}}}",
"title": "åŸ®åæ¹çšåŒ"
},
{
"paragraph_id": 116,
"tag": "p",
"text": "1234",
"title": "åŸ®åæ¹çšåŒ"
}
] | ç©çæ°åŠI > åŸ®åæ¹çšåŒ ç©çæ°åŠI > åŸ®åæ¹çšåŒ | <small> [[ç©çæ°åŠI]] > åŸ®åæ¹çšåŒ</small>
----
<small> [[ç©çæ°åŠI]] > åŸ®åæ¹çšåŒ</small>
----
==åŸ®åæ¹çšåŒ==
ããã§ã¯ãåžžåŸ®åæ¹çšåŒãæ±ããå
容ãšããŠã¯ç°¡åãªæ±ç©ã®ä»æ¹ãã
ç·åœ¢åŸ®åæ¹çšåŒã®è§£æ³ãè§£ã®äžææ§ã®èª¬æãã»ãšãã©ã®
åŸ®åæ¹çšåŒã¯è§£æçã«è§£ããªãããšããæ°å€çãªæ±ãã
éèŠã«ãªãããšã®èª¬æãªã©ãäºå®ããŠããã
===ç°¡åãªåŸ®åæ¹çšåŒ===
====åŸ®åæ¹çšåŒã®å®çŸ©====
:<math>
F(x,y,y', \cdots , y^{(n)}) = 0
</math>
ã®åœ¢ã§äžããããæ¹çšåŒãåŸ®åæ¹çšåŒãšåŒã¶ãããã§ã<math>y^{(n)}\,</math>ãªã©ã§äžãããã衚åŒã¯ãyã®né埮åã衚ããã
:<math>
x + x^2 = 0\,
</math>
ãªã©ã代æ°çãªåŒãã
:<math>
x^2- \sin x = 0\,
</math>
ãªã©æ°å€çã«ããè§£ãæ±ããããªããããªäŸãæ¹çšåŒã®äŸãšããŠæããããããä»åã¯ã埮åããŸãããŠäœãããæ¹çšåŒãèããŠãã®è§£æ³ãèå¯ããŠè¡ãããšã«ãªãã
ãŸããäžã§äžããæ¹çšåŒã¯yãxã®é¢æ°ãšããŠèŠãäžã§ã®åŒãšãªã£ãŠããã
ä»®ã«ãäžã®åŸ®åæ¹çšåŒã«xã®é¢æ°ãšããŠä»£å
¥ããããšãã
ãã®æ¹çšåŒãæºãããããªãããã®yããã®åŸ®åæ¹çšåŒã®xã«å¯Ÿãã
è§£ãšåŒã¶ãã€ãŸããyãšããŠããã®ãããªxã®é¢æ°ãæ±ããããšã
åºæ¥ããã©ããããã®ç« ã®äž»é¡ãšãªãããã§ããã
*åè
äžã®æ°å€çã«ããè§£ããªãæ¹çšåŒãæ±ããæ¹æ³ã¯çŸåšã§ã¯[[é«çåŠæ ¡æ°åŠB]]ã§æ±ãããããšã«ãªã£ãŠãããå®éã«ã¯ãããã§ã¯[[w:äºåæ³]]ãæ±ããã[[w:ãã¥ãŒãã³æ³]]ã¯ããçºå±çãªå
容ãšããŠæ±ãããã
====æ°å€çãªæ¹æ³====
äŸãã°ã
:<math>
y' =1\,
</math>
ãšããæ¹çšåŒã¯åŸ®åæ¹çšåŒã§ããã
ããã§ã¯ããã®æ¹çšåŒãæ°å€çã«ç©åããæ¹æ³ãèå¯ããŠã¿ãã
埮åãšã¯ãããããã颿°f(x)ã«ã€ããŠ
ããç¹xã§ã®å€ãšãxãšã¯ç°ãªã£ãŠãããããã«æ¥µè¿ãç¹<math>x+\epsilon</math>ã§ã®å€ã
é¢ä¿ã¥ããå€ã§ããããã®ãããå
šãŠã®ç¹ã§ã®åŸ®åãšããäžç¹ã§ã®f(x)ã®
å€ãåãã£ãŠãããªããå
šãŠã®ç¹ã§ã®xã®å€ãèšç®ã§ããããšãæåŸ
ãããã
å®éäžã®åŒã§ã¯ãå
šãŠã®ç¹ã§ã®åŸ®åã宿°1ã§ããããšãç¥ãããŠããã®ã§ã
ãã®å€ãçšããŠãç°ãªã£ãxã®å€ã«å¯Ÿããyã®å€ãèšç®ããããšãåºæ¥ãã
ããã§ã¯ãç¹ã«y(x)ã¯ã<math>x= 0</math>ã§ã0ãšãªããšããæ¡ä»¶ãæºããããšã
ä»®å®ããããã®ãããªæ¡ä»¶ãåææ¡ä»¶ãšåŒã¶ããã®çšèªèªäœã¯
ç©ççã®èª²ç®ã«ã€ããŠãæµçšãããããšãããã
ããŠãããç¹xã§ã®å€ãf(x)ãšãããšãã[[w:ãã€ã©ãŒå±é]]ã®å
¬åŒãçšãããšã
:<math>
f(x+ \epsilon) = f(x) + \epsilon \frac {df(x)} {dx } + \cdots
</math>
ãšãªãããšãç¥ãããŠãããããããããã§<math>\epsilon</math>ãããããŠå°ããã£ããšãã«ã¯
ãã®åŒã®å³èŸºã¯æåã®2é
ã ãã§è¿äŒŒããŠããããšãæåŸ
ãããã
ãã®ãšãã
:<math>
f(x+ \epsilon) = f(x) + \epsilon \frac {d f(x)} {dx }
</math>
ãåŸãããããã®åŒã¯ãããç¹xã§ã®f(x)ã®å€ãšããã®è¿ãã§ã®å€
ãç¹xã§ã®fã®åŸ®åãçšããŠçµã³ã€ããåŒã§ããã
ããã§ãäžããããæ¡ä»¶
:<math>
y' =1 , ~ y(0) =0\,
</math>
ãçšããŠãä»»æã®xã«å¯ŸããŠy(x)ã®å€ãèšç®ããŠã¿ãã
ãŸããæ¡ä»¶ããy(0) = 0ãšãªãã
次ã«ãéåžžã«å°ããæ°<math>\epsilon</math>ãçšãããšãäžã®ãã€ã©ãŒå±éã®åŒã
䜿ããã®ã§ã
:<math>
y(\epsilon) = y(0) +\epsilon \frac {f(0) }{dx }
</math>
ãšãªãããããã§ã¯æ¡ä»¶ããã
:<math>
\frac{d} {dx} f(0) = \frac {f(x)}{dx }| _{x\rightarrow 0}= 1
</math>
ãç¥ãããŠããã®ã§ã
y(0) =0ãšåããããšãçµå±
:<math>
y(\epsilon) = 0+ \epsilon \cdot 1 = \epsilon
</math>
ãåŸãããããã®ãããªæäœãäœåºŠãç¹°ãããããŠããã®ã§ããã
次ã®è¡çšãšããŠã<math>x=2\epsilon</math>ã§ã®å€ãèšç®ããã
ãã¡ããã<math>x=3/2 \cdot \epsilon</math>ãªã©ã®å€ãåãæ§ã«ããŠèšç®ããããšãåºæ¥ãã
æŽæ°ã§èšç®ãããŠãããã ããã
åãæ§ãªæç¶ããçšãããšã
:<math>
y(2\epsilon ) = f(\epsilon) + \epsilon \frac{d f(x)}{dx} | _{x\rightarrow \epsilon}
</math>
ãšãªããããã§ãfã®åŸ®åã1ã§ããããšãçšãããšã
å
ã»ã©ã®çµæãšåãããŠã
:<math>
y(2\epsilon) = 2\epsilon
</math>
ãåŸãããã
<math>x = 3/2 \cdot \epsilon</math> ãã
<math>x = 3\epsilon</math>ãã
<math>x = 4\epsilon</math>ã§ã®å€ãåãæ§ãªèšç®ã§åŸããã
ãã®çµæãã
:<math>
f(x) =^{?} x\,
</math>
ã瀺åãããããšãåããã
ããã§ããã®ãããªè§£ãå®éã«è§£æçãªæå³ã§
äžããããåŸ®åæ¹çšåŒã®è§£ãšãªã£ãŠããããšã瀺ãã
ã€ãŸããå®éã«ã¯ãã®ç¢ºèªã¯éåžžã«ç°¡åã§ã
:<math>
y' = 1\,
</math>
ãšãªã£ãŠããããšã確ãããã®ã ãã
xã®xã«ãã埮åã¯1ãªã®ã§ç¢ºãã«ãã®ããã«ãªã£ãŠããã
ããããŠããã®åŸ®åæ¹çšåŒã¯è§£ãããããã§ããã
ããã«ã
:<math>
y=x\,
</math>
ã¯y(0) = 0ã®æ¡ä»¶ãæºãããŠããã
ãã®ããã«åææ¡ä»¶ãæºããè§£ã""åææ¡ä»¶ãæºããè§£""
ãšåŒã¶ã
ãŸãããã®ããã«1é埮åã®ã¿ãçšããŠé ã
ã«y(x)ã®å€ãæ°å€çã«
å®ããŠè¡ãæ¹æ³ãçºèŠè
ã«ã¡ãªãã§[[w:ãªã€ã©ãŒæ³]]ãšåŒã¶ããšã
ããã
ç¹ã«ããã®æ¹æ³ã¯å®éã«è§£æçã«çµæãæ±ããããªãåŒã«å¯ŸããŠã
çšããããšãåºæ¥ãã®ã§ãå¿çšäžéåžžã«éèŠã§ããã
* åè
å®éã«ã¯ãå®çšçãªæ°å€èšç®ã«ãããŠã¯
ãã髿¬¡ã®åŸ®åé
ãŸã§ã®å¯äžãåãå
¥ãã[[w:ã«ã³ã²ã¯ãã¿æ³]]ãš
åŒã°ããæ¹æ³ãçšããããšãå€ãã
ãã®æ¹æ³ã¯è§£ã®ç²ŸåºŠãé«ãããšã§ç¥ãããŠãããã
ããèšç®æ³ãè€éã§ãããããç°¡åãªèšç®ã«ã¯
ãªã€ã©ãŒæ³ãçšããããããšãããã
====åŸ®åæ¹çšåŒã®è§£æ³====
ããã§ã¯ãåŸ®åæ¹çšåŒãè§£æçã«è§£ãæ¹æ³ãæ±ããæ°å€çã«è§£ãæ±ããããšãåºæ¥ããšã¯ããçµæãšããŠæ±ãããã颿°ãè¯ãç¥ããããã®ã§ãã£ãå Žåãäœããã®ç°¡åãªè§£æçãªè§£ãæ±ããæ¹æ³ãããããšãçãã®ã¯èªç¶ãªããšã§ãããšæããããäŸãã°ãå
ã»ã©ã®äŸã§ã¯
:<math>
y' = 1
</math>
ãæããããããã§y=xããã®æ¹çšåŒã®è§£ã«ãªãããšã«æ°ã¥ãããšã¯ããã»ã©é£ããããšã§ã¯ãªããšæãããã
ãŸããããã«æãã倿°åé¢ã®æ¹æ³ãçšãããšãã®æ¹çšåŒã¯ç°¡åãªç©åã«åž°çããã®ã§ããã«ãã£ãŠãã®è§£ãåŸãããšãåºæ¥ãããã®ãããªåŸ®åæ¹çšåŒã®è§£ãæ±ããæ¹æ³ã¯éåžžã«å€ãã®ãã®ãç¥ãããŠããããããã§ã¯ãã£ãšãç°¡åã§å¿çšäžéèŠãªãã®ãæ±ãããšã«ããã
==== 倿°åé¢ ====
ããã§ã¯ããŸããã£ãšãç°¡åã§éèŠãªæ¹æ³ãã
æããã
:<math>
\frac {f(x)}{g(y)} = \frac{dy}{dx}
</math>
ã§æžããåŒã§ã¯ã
:<math>
f dx = g dy\,
</math>
ãšãã䞡蟺ãããããã®æåã§ç©åããããšã§
è§£ãåŸãããããã®æ¹æ³ã倿°åé¢ã®æ¹æ³ãšåŒã¶ã
å®éã«ã¯ãyãšããã®ã¯ãããŸã§xã®é¢æ°ã§ããã®ã§ã
yã§ç©åãè¡ãªãããšã¯åºæ¥ãªãããã«æãããå®éã
ãã®ãšããã§ããããã®åŒã¯ã
:<math>
\int f dx = g \int \frac {dy} {dx} dx
</math>
ãçãããããã®ã§ããã
ããã§ãå³èŸºã¯xã«ã€ããŠç©åããŠããã倿°å€æã«ãã£ãŠ
:<math>
\frac {dy}{dx }dx = dy
</math>
ã®ããã«ç©å倿°ãxããyã«å€æããããšãåºæ¥ãã
ããã«ãã£ãŠãäžã®ãããªè¡šåŒã«ãªãããã§ããã
*èšç®äŸ
:<math>
y' =1\,
</math>
ã倿°åé¢ã®æ¹æ³ã§è§£ãããšãåºæ¥ãã
䞡蟺ãxã§ç©åãããšã
:<math>
\int dx \frac {dy} {dx} = \int dx
</math>
:<math>
\int dy = \int dx
</math>
:<math>
y = x + C\,
</math>
ãåŸããããããã§Cã¯ç©å宿°ã§ãããä»»æã®å®æ°ãšãªã£ãŠããã
ãã®åŒã¯å
ã®åŸ®åæ¹çšåŒãæºããããšãæåŸ
ããããã
å®éã
:<math>
\frac{\partial{{}}}{\partial{x}} ({x+C}) = 1
</math>
ã§ããã®ã§ããã®åŒã¯ç¢ºãã«äžããããæ¹çšåŒãæºãããŠããã
å¥ã®äŸãšããŠã
:<math>
\frac{dy }{dx} = \frac y x
</math>
ãæ±ãã
ããã§ã¯äž¡èŸºãyã§å²ã£ãäžã§ãxã«ã€ããŠç©åãããšã
:<math>
\frac 1 y dy = \frac 1 x dx
</math>
:<math>
\ln y = \ln x + C \,
</math>
:<math>
y = Ax\,
</math>
ãåŸãããã
(Aã¯ã<math>C =e^A</math>ãæºããä»»æå®æ°ã§ããã)
å®éãã®åŒã
:<math>
\frac{dy }{dx} = \frac y x
</math>
ã«ä»£å
¥ãããšäž¡èŸºå
±ã«
:<math>
A\,
</math>
ã«çãããªãããšã
ãããããã®åŒãæ£ããè§£æçãªå€ãåŸãŠããããšãåããã
==== ç·åœ¢1æ¬¡åŸ®åæ¹çšåŒ ====
åŸ®åæ¹çšåŒã®äžã§ã
ç¹ã«
:<math>
\sum _{i =0} ^n p _i (x) y^{(n)} (x) = 0
</math>
ã®åœ¢ã§ãããåŸ®åæ¹çšåŒããç·åœ¢åŸ®åæ¹çšåŒãšåŒã¶ã
ããã以å€ã®åœ¢ãããŠããæ¹çšåŒãäŸãã°<math>y^2</math>ãå«ãã§ããåŸ®åæ¹çšåŒ
ãéç·åœ¢åŸ®åæ¹çšåŒãšåŒã¶ã
ãããã®åŸ®åæ¹çšåŒã¯ãéç·åœ¢åŸ®åæ¹çšåŒãããåãæ±ããç°¡åã§ããããšã
å€ããè¯ã調ã¹ãããŠãããç¹ã«ãããã§æ±ãããã«
1éã®ç·åœ¢åŸ®åæ¹çšåŒã¯ããããä¿æ°é¢æ°p(x)ã«ã€ããŠãè§£æçãª
è§£ãæ±ããããšãåºæ¥ãããšãç¥ãããŠããã
ç¹ã«ãç·åœ¢1æ¬¡åŸ®åæ¹çšåŒã
:<math>
y' + p(x)y = q(x)
</math>
ãšæžãã
ãã®ãšãããã®è§£ã¯ã
:<math>
y = e^{- \int p dx } (\int dx e^{\int dx p} q + C )
</math>
ã§äžããããã
ããã§ãCã¯ãä»»æã®ç©å宿°ã§ããã
å®éãäžã®è¡šåŒã埮åãããšã
:<math>
e^{- \int p dx }
</math>
ã埮åããéšåããã¯
:<math>
-p (x)y
</math>
ãåŸãããã
次ã«ãããçæ¹ã®
:<math>
(\int dx e^{\int dx p} q + C )
</math>
ã埮åããæ¹ããã¯ã
:<math>
q(x)
</math>
ãåŸãããã
:<math>
e^{\int dx p}
</math>
ã®ãã¡ã¯ã¿ãŒã¯åã®ãã¡ã¯ã¿ãŒãšæã¡æ¶ãåãããšã«æ³šæã
ãã£ãŠã
:<math>
y' = -p(x) y + q(x)
</math>
ãšãªãããããã¯ç¢ºãã«æ±ããããšããŠããåŸ®åæ¹çšåŒãšäžèŽããŠãã
ããšãåããã
å®éã«ã¯ãã®æ¹æ³ã¯å®æ°å€åæ³ãšåŒã°ããæ¹æ³ãçšããŠå°åºãããããšãå€ãã
*TODO
宿°å€åæ³ã®èª¬æãšäžã®å
¬åŒã®å°åº
===è§£ã®äžææ§===
åžžåŸ®åæ¹çšåŒãèšç®ãããšããäžã®äŸã§ã¯åžžã«
å®å
šãªè§£ãåŸãããã
ãããããã®ãããªè§£ãå¯äžã§ãããšããããã¯
è°è«ã®å¯Ÿè±¡ã«ãªãã
å
ã»ã©ã®äŸã§ããã°ã
:<math>
y' = 1
</math>
ã§ã¯ãããåæå€ãåã£ãŠããã«æ¬¡ãã§ããã§äžãããã埮åã®å€ãçšããŠã
yèªèº«ã®å€ãèšç®ããŠããããšãåºæ¥ãã
åæ§ã«
:<math>
y' = f(x,y)
</math>
ã®ããã«å³èŸºãxãšyã®ä»»æã®é¢æ°ã«ãªã£ãŠããŠãã
y'èªèº«ã®å€ãåç¹ã§å®å
šã«æ±ºãŸã£ãŠããã°ã
ç©åããã颿°ã¯åœç¶1ã€ããç¡ãããã«æããã
å®éã«ã¯ãã®çŽèгã¯å®å
šã«æ£ããããã§ã¯ãªãã
äŸãã°ãf(x,y)ãããx,yã«å¯ŸããŠç¡éã«çºæ£ãããããª
å Žåã«ã¯ãããã«å¯Ÿå¿ããy'ãå®ããããšãåºæ¥ãªãããã
ãã以äžã«è§£ãåŸãããšãåºæ¥ãªããªãã
ãŸãã颿°fã®ããããã®å€æ°ã«å¯ŸãããµããŸãã
ããäžå®ä»¥äžã«æ¿ããå Žåã«ã¯ããã®ãšãã«ã
ããã«å¯Ÿå¿ããy'ã®å€ãçšããŠåŸãããè¿ãã®é¢æ°å€ãã
æ£ããå€ã«è¿ããªããªãããšãäºæ³ãããã
ãããããã®ãããªç¹å¥ãªæ
åµããªãå Žåã
åžžåŸ®åæ¹çšåŒã®è§£ã¯äžæçã§ããããšãããããŠããã
ãã ããäžã®äŸã§ãèŠãéããäžè¬ã«
åžžåŸ®åæ¹çšåŒã¯ããç¹ã§ã®è§£ã®å€ãšãã®ãŸããã®ç¹ã§ã®è§£ã®å€ã
é¢ä¿ã¥ããæ¹çšåŒãªã®ã§ããŸãæåã®äžç¹ã®å€ãäžããããšã
ããªããšãè§£ãæ§æã§ããªãããšãåããã
ãã£ãŠãè§£ãå³å¯ãªæå³ã§äžæçã«å®ããã«ã¯ãã®è§£ã«å¯Ÿãã
åæå€ãå®ããå¿
èŠãããã
ä»ãŸã§ã¯1é埮åã®äŸããæ±ããªãã£ããã以éã§ã¯
2é埮å以äžã®äŸãæ±ãããã®ãšããné埮åã®æ¹çšåŒã§ã¯ã
nåã®åæå€ãå®ããªããšãè§£ãäžæçã«å®ãŸããªãããšãç¥ãããŠããã
ããã¯ãnéã®åŸ®åæ¹çšåŒããnåã®å€æ°ãå«ã1次ã®é£ç«åŸ®åæ¹çšåŒã«
察å¿ããããšã«ããã
ããã§ãé£ç«æ¹çšåŒãšã¯ã
:<math>
F _j(x,y _i,y' _i, \cdots , y^{(n _i)} _i ) = 0
</math>
ã®ããã«(i,jã¯æŽæ°ã)ãè€æ°åã®åŸ®åæ¹çšåŒã§
è€æ°åã®é¢æ°ãå®ããããŠãããšããåŸ®åæ¹çšåŒã§ããã
ããã¯ã代æ°åŒã®é£ç«æ¹çšåŒã®æ¡åŒµãšããããšãåºæ¥ãã
ã€ãŸããäžã§è¿°ã¹ãŠããããšã¯ãnéã®1倿°ã®åŸ®åæ¹çšåŒã¯ã
æ¬è³ªçã«nåã®å€æ°ãå®ããããã®ã1次ã®åŸ®åæ¹çšåŒãšçãããšããããš
ã§ããã
ãããŠãnåã®å€æ°ã決ããªããŠã¯ãããªãã®ã ããã
åæå€ãnåå¿
èŠã«ãªãããšã¯äºæ³ãããããšã§ããã
ç©ççã«ã¯ãã¥ãŒãã³æ¹çšåŒãæéã«ã€ããŠ2éã®åŸ®åæ¹çšåŒã§ããã®ã§ã
éåãæ±ºå®ããããã«ç©äœã®åæäœçœ®ãšåæé床ã®2ã€ã®ãã©ã¡ãŒã¿ãå®ãã
å¿
èŠãããããšãšå¯Ÿå¿ããŠããã
ããã§néã®åŸ®åæ¹çšåŒãšãnåã®å€æ°ãå«ã1次ã®é£ç«åŸ®åæ¹çšåŒã®
察å¿ãèŠãã
ãŸãããxãåã£ãŠããã®äœçœ®ããé«éã®åŸ®åæ¹çšåŒã
çšããŠè§£ãå®ããŠè¡ãæ¹æ³ãèããã
ããã§ã¯ãåŸ®åæ¹çšåŒãnéãšããã
ãã®ãšãã
æ¹çšåŒã¯ã
:<math>
y^{(n)} = f(y, \cdots , y^{(n-1)})
</math>
ãšæžãæããããããšãæåŸ
ãããã
ãã®åŒã¯ã
<math>y^{(n-1)}</math>ã®xè¿ãã§ã®å€ãå®ããããã«ã¯ã
xã«ããã<math>y, \cdots , y^{(n-1)}</math>ã®nåã®å€ãå®ããªããŠã¯
ãªããªãããšã瀺ããŠããã
次ã«ã<math>y^{(n-2)}</math>ãå®ããããšãèããã
ãã®ãšãã<math>y^{(n-2)}</math>ã¯ã
:<math>
(y^{(n-2)})' =y^{(n-3)}
</math>
ãæºããã®ã§ãæ¢ã«äžã§å®ãã<math>y^{(n-2)}</math>ãšã
<math>y^{(n-3)}</math>ã®xã§ã®å€ã ããçšããŠèšç®ããããšãåºæ¥ãã
åæ§ãªæé ãçšããŠã
ãã以å€ã®ããäœã次æ°ã®åŸ®åãå®ããããšãã§ããã
çµå±yãã<math>y^({n-1})</math>ãŸã§ã®nåã®å€ã«ã€ããŠåæå€ãå®ããããšã¯ã
ãã®æ¹çšåŒã®è§£ãæ±ããããã«ååã ã£ããšããããšãåºæ¥ãã
ãããã®ããšã¯è¡šåŒçã«
:<math>
\frac {d} { dx}
\begin{pmatrix}
y\\
\cdots\\
y^{(n-2)}\\
y^{(n-1)}
\end{pmatrix}
=
\begin{pmatrix}
y'\\
\cdots\\
y^{(n-1)}\\
f(y, \cdots , y^{(n-1)})
\end{pmatrix}
</math>
ãšæžãããšãåºæ¥ãã
ããã§ãy'ãã<math>y^{(n-1)} </math>ãŸã§ã
ããããã<math>v _1 \cdots v _{n-1}</math>ã§çœ®ãæãããš
ãã®è¡šåŒã¯
ã¡ããã©<math>y,v _1 \cdots v _{n-1}</math>
ã®nåã®å€æ°ãçšãã1æ¬¡åŸ®åæ¹çšåŒã®è¡šåŒã«çãããªãã
ãã£ãŠããããã®éã®å¯Ÿå¿ãããããšã
åãã£ãããã§ããã
ãã®å¯Ÿå¿ã¯ç¹ã«ã宿°ä¿æ°ç·åæ¹çšåŒã®äŸã§ããçšããããã
ãã®ãšãã«ã¯æåŸã®fãã
<math>y,y'\cdots y^{(n-1)} </math>ã«é¢ããç·åçµåã«ãªãããã
巊蟺ã®åŸ®åæŒç®åãããè¡åã«å¯Ÿå¿ããããã«èŠãªãããšãåºæ¥ãã
ãã®ããšã¯è¡šåŒçã«
:<math>
\frac{d}{dx} \vec y = D \vec y
</math>
ãšãããã
ããã§ãDã¯n*nã®è¡åã§ããã
yã¯n次å
ã®ãã¯ãã«ãšãªã£ãŠããã
ãã®åŒã®åœ¢ã¯ã
ãã®åŒã®è§£ã«ã€ããŠã
:<math>
\vec y = \exp \{D (x-x _0)\} \vec y _0
</math>
ã®ãããªæžãæ¹ãåºæ¥ãããšãäºæ³ãããã
ãã ããããã§ã¯ææ°é¢æ°ã®ææ°ãšããŠãã ã®æ°ã§ã¯ãªãè¡åãçšããŠããã
å®éãã®ãããªè¡šåŒã¯ååšããäžè¬ã«è¡åã®ææ°é¢æ°ãšåŒã°ããŠããã
ã€ãŸãã宿°ä¿æ°ã®ç·åœ¢åŸ®åæ¹çšåŒã®èšç®ã¯
è¡åã®ææ°é¢æ°ã®èšç®ãè¡ãªãããšã«åž°çããããã§ããã
===ç·åœ¢åŸ®åæ¹çšåŒ===
äžã§è¿°ã¹ãéãã
:<math>
\sum _{i =0} ^n p _i (x) y^{(n)} (x) = 0
</math>
ã§æžãããåŸ®åæ¹çšåŒãç·åœ¢åŸ®åæ¹çšåŒãšåŒã¶ã
ãããã®è§£ã¯éç·åœ¢æ¹çšåŒãšæ¯ã¹ãŠè¯ãç¥ãããŠããã
1éã®ç·åœ¢åŸ®åæ¹çšåŒã¯äžã§åŸãããéããå®å
šãªç©åãå¯èœ
ãšãªã£ãŠããã
2éã®ç·åœ¢åŸ®åæ¹çšåŒãç¹æ®é¢æ°ãªã©ãçšãããšããªãã®
çš®é¡ã系統çã«æ±ããããšãç¥ãããŠãããããããã¯ãã®é
ã®
ç¯å²ãè¶
ããã®ã§æ±ãããšã¯åºæ¥ãªãã
ããã§ã¯ç¹ã«ãå®çšäžéèŠãªå®æ°ä¿æ°ç·åœ¢åŸ®åæ¹çšåŒã
äž»ã«æ±ãã
äŸãã°ãèªç±ç©ºéå
ã§ã®ãã¥ãŒãã³æ¹çšåŒ
:<math>
\ddot x = 0
</math>
ã忝åã®æ¹çšåŒ
:<math>
\ddot x + \omega ^2 x = 0
</math>
ã¯ãã®äŸã§ããã
ããã§ã¯2éãŸã§ã®æ¹çšåŒãæ±ã£ãŠãããã
ããã§æ±ãè§£æ³èªäœã¯ãã©ã®æ¬¡æ°ã®æ¹çšåŒã«ãçšããããšãåºæ¥ãã
====ç·åœ¢åŸ®åæ¹çšåŒã®æ§è³ª====
ç·åœ¢æ¹çšåŒã¯ãåŒã®åœ¢ããè§£ã«éèŠãªæ§è³ªãããããšãåããã
ããç·åœ¢åŸ®åæ¹çšåŒã«ã€ããŠãã2ã€ã®è§£
<math>y _1</math>,<math>y _2</math>ãåŸããããšããããã®ãšãã
<math>y = a y _1 + b y _2</math>ãè§£ãšãªãããšããããã
ããã§ãa,bã¯ä»»æã®æ°ã§ãããã€ãŸãã2ã€ã®è§£ãåŸããããšãã
ãããã®ç·åœ¢çµåããã®è§£ãšãªãããšãç¥ãããã®ã§ããã
å®éã
:<math>
\sum _{i =0} ^n p _i (x) y^{(n)} (x) = 0
</math>
ã®å·ŠèŸºã«ä»£å
¥ãããšã
:<math>
\sum _{i =0} ^n p _i (x) (a y _1+b y _2)^{(n)} (x)
</math>
ãåŸããããã<math>y _1</math>,<math>y _2</math>ã¯äºãã«ç¬ç«ã«ãã®æ¹çšåŒã®è§£ãšãªã£ãŠããã®ã§ã
ãã®å€ã¯
:<math>
= 0
</math>
ãæºããã確ãã«<math>y = a y _1 + b y _2</math>ã
ãã®æ¹çšåŒã®è§£ã«ãªã£ãŠããããšããããã
ããnéåŸ®åæ¹çšåŒã«ã€ããŠnåã®ç·åœ¢ç¬ç«ãªåŸ®åæ¹çšåŒã®è§£ãåŸããããšããã
ç·åœ¢ç¬ç«ãšããããšã¯ãäºãã®ç·åœ¢çµåãçšããŠãã®ãã¡ã®ã©ãããäœãã ãããšã
åºæ¥ãªããšããæ¡ä»¶ã§ããã
ç·åœ¢ç¬ç«ãšããæ§è³ªã¯ãå®éã«ã¯ãã³ã¹ããŒè¡ååŒãšãããã®ã
çšããŠå€æãããããšãå€ããããã³ã¹ããŒè¡ååŒãš
ç·åœ¢çµåã§äºããäœãããšãåºæ¥ãªããšããæ§è³ªã®ã€ãªããã¯
ããã»ã©ç°¡åã§ã¯ãªãã
ããããç¹ã«2éåŸ®åæ¹çšåŒãæ±ããšãã«ã¯ã
ãã®æ¡ä»¶ã¯åã«ã2ã€ã®è§£ããäºãã«ãäºãã®å®æ°åã§ãªã
ãšããããšãè¿°ã¹ãŠããã
以åŸã¯2éåŸ®åæ¹çšåŒãå€ãæ±ãã
ãã®ãšãããã®nåã®è§£ã
:<math>
y _1, \cdots y _n
</math>
ãšãããšã
:<math>
y = c _1 y _1 + \cdots + c _n y _n
</math>
(<math>c _1, \cdots c _n</math>ã¯ãä»»æå®æ°ã)
ãããã®æ¹çšåŒã®è§£ã§ããããšãåããã
å®éããã§ã¯næ¬¡ã®æ¹çšåŒãèããŠããããã
ãã®è§£ã決å®ããã«ã¯ãnåã®åæå€ãå¿
èŠãšãããŠããã
ããã§ããã®åŒã¯nåã®ä»»æå®æ°ãæã£ãŠããã®ã§ã
ãããã®å®æ°ãåããããšã§ã
ãã®è§£ã¯ã©ã®ãããªåæå€ã«å¯Ÿå¿ããè§£ãäœãããããšã
æåŸ
ãããããã®ãããªè§£ããã®æ¹çšåŒã®äžè¬è§£ãšåŒã¶ã
å€ãã®åççãªåŸ®åæ¹çšåŒã®åé¡ã§ã¯ãæ¹çšåŒã®äžè¬è§£ãåŸãããšãã
ç®çãšãããã
====宿°ä¿æ°ç·åœ¢åŸ®åæ¹çšåŒ====
æ¢ã«è¿°ã¹ãéãã宿°ä¿æ°åŸ®åæ¹çšåŒã«ãããŠã¯ã
æ¹çšåŒã¯
:<math>
\frac {d} {dx} \vec y = A \vec y
</math>
ãšæžããããããã§ãAã¯å®æ°ã®è¡åã§ããã
ãããè§£ãã衚åŒãšããŠè¡åã®ææ°é¢æ°ã®è¡šåŒã
åŸãããããšãåã«è¿°ã¹ãã話ã®é åºãšããŠã¯
次ã«è¡åã®ææ°é¢æ°ã®ããšãæžãã®ãé©åœããç¥ããªããã
ããã§ã¯ããã®åã«ãã®çµæãéåžžã«ç°¡åã«ãªãããšã
䜿ã£ãŠãå®éã®èšç®ãè¡ãªã£ãŠã¿ãããšã«ããã
äŸãã°ã
:<math>
y'' - 3y' +2y = 0
</math>
ã®è§£ãæ±ããããšãèããã
å®ã¯ãäžã®è°è«ããã¡ããšè¡ãªããšã
ãã®ãããªå®æ°ä¿æ°ç·åœ¢åŸ®åæ¹çšåŒã®è§£ã¯ã
éåžžã«å€ãã®å Žåã
<math>y = e^{at}</math>ãšãã圢ã§äžããããããšãåããã
ããã§ãaã¯ãäœããã®è€çŽ æ°ã§ããã
å®éã«ã¯å°ãéã£ã圢ã®è§£ãåŸãããããšããããã
ããã§ããŸãã¯ããããã®ãããããšãç¥ãããã
ãã®ããããŸãã¯ãã®ããã«è§£ã®åœ¢ãä»®å®ããã
ãã®ãšãäžã®æ¹çšåŒã¯ã
:<math>
a^2 - 3a +2 = 0
</math>
ã«åž°çãããããã¯ã2é埮åã®é
ã¯aã«ã€ããŠ2次ã®é
ã
1é埮åã®é
ã¯aã«ã€ããŠ1次ã®é
ã«ãããåçŽãªçœ®ãæããããŠ
åŸãããä»£æ°æ¹çšåŒã§ããã
ãã®æ¹çšåŒã¯ãã°ãã°å
ã®åŸ®åæ¹çšåŒã®ç¹ææ¹çšåŒãšåŒã°ããã
ããšããšaã®å€ãæ±ããŠããŸãã°ãããã«å¯Ÿå¿ããè§£ãå®ãŸãããšã
å
ã»ã©ã®ä»®å®ã«ãã£ãŠæåŸ
ãããŠãããããã§ãŸãã«ããã®aãå®ãã
æ¹çšåŒãåŸãããŠãããã€ãŸããã®ããšã¯ã宿°ä¿æ°ã®
ç·åœ¢åŸ®åæ¹çšåŒãè§£ãããšã¯ããã«å¯Ÿå¿ããä»£æ°æ¹çšåŒã
è§£ãããšã«åž°çããããšãåããã®ã§ããã
äžã®æ¹çšåŒãè§£ããšã
:<math>
a = 1 ~ \textrm{or} ~ 2
</math>
ãåŸãããã
äžã®ä»®å®ããè§£ã®åœ¢ã«ä»£å
¥ãããšã
ãã®æ¹çšåŒã®è§£ãšããŠ
:<math>
y = e^t , e^{2t}
</math>
ã®2ã€ãåŸãããããããã¯äºãã«ä»ã®å®æ°åã§ãªãã®ã§
äºãã«ç·åœ¢ç¬ç«ã§ããã
ãã£ãŠãä»»æå®æ°A,Bãçšãããšã
:<math>
y = Ae^t + B e^{2t}
</math>
ãè§£ãšããŠäœãããšãåºæ¥ãããããã¯2åã®ä»»æå®æ°ãå«ãã§ããããšããã
ãã®æ¹çšåŒã®äžè¬è§£ã§ããã
ãããã®è°è«ããããã®çš®ã®æ¹çšåŒã§ã¯ãå²åç°¡åã«å
šãŠã®è§£ãæ±ããã
ãããšããããã
çµè«ãšããŠã¯ã
ãã®ããã«
宿°ä¿æ°ã®åŸ®åæ¹çšåŒãè§£ãã«ã¯ã
:<math>
y = e^{at}
</math>
ã®çœ®ãæããããŠã
aã«ã€ããŠã®ä»£æ°æ¹çšåŒãè§£ãã°ãããšãããã
ãã ããä»åã¯ããã§ãªãã£ããç¹ææ¹çšåŒã®è§£ã
èæ°ã§ãã£ããéæ ¹ã§ãããšãã«ã¯å¥ã®æ³šæãå¿
èŠã§ããã
å®éã«ã¯èæ°ã§ãããšãã«ã¯ãåã«ãã®èæ°ãå
ã®è¡šåŒã«
代å
¥ããã°è¯ãããããããããã®åŒã¯ãªã€ã©ãŒã®å
¬åŒãçšããŠ
<math>\sin </math>ãšã<math>\cos</math>ã®åŒã«çŽãããšãåºæ¥ãã
ãã®ããããã®æ§ãªçœ®ãæããããããšãæ
£çšçã«ãªãããããšã
å€ãã
éæ ¹ã®å Žåã¯äžã§ããaã«ã€ããŠå
ã®æ¹çšåŒã®æ¬¡æ°ããå°ãªãæ°ã®
è§£ãåŸãããã®ã§ããã®ãŸãŸã§ã¯äžè¬è§£ãäœããªãããã«æããã
ãããããã®å Žåã«ãè¡åã®ææ°é¢æ°ã詳ãã調ã¹ããšã
ããã«å¯Ÿå¿ããäžè¬è§£ãåŸãããããšãç¥ãããã
衚åŒçã«ã¯ãaãnéè§£ã®ãšãã«ã¯
<math>e^{at},te^{at},\cdots
,t^{n-1}e^{at}</math>ãçšããããã«ããã°ããã
*åé¡äŸ
**åé¡
**è§£ç
ãããã®åŸ®åæ¹çšåŒã®è§£ãèšç®ããã
ãã ããåææ¡ä»¶ã¯
:<math>
y(x=0) = 0
</math>
:<math>
\frac{dy}{dx} = 1
</math>
ãšããã
åŸ®åæ¹çšåŒã®ããäžã®åŒã察å¿ããåŸ®åæ¹çšåŒã®è§£ã§ããã
:<math>
{{d}\over{d\,x}}\,y\left(x\right)=1
</math>
:<math>
y\left(x\right)=x
</math>
:<math>
{{d}\over{d\,x}}\,y\left(x\right)+y\left(x\right)=x^2
</math>
:<math>
y\left(x\right)=-2\,e^ {- x }+x^2-2\,x+2
</math>
:<math>
{{d}\over{d\,x}}\,y\left(x\right)+2\,y\left(x\right)=x^2
</math>
:<math>
y\left(x\right)=-{{e^ {- 2\,x }}\over{4}}+{{x^2}\over{2}}-{{x
}\over{2}}+{{1}\over{4}}
</math>
:<math>
{{d^2}\over{d\,x^2}}\,y\left(x\right)+{{d}\over{d\,x}}\,y\left(x
\right)+3\,y\left(x\right)=0
</math>
:<math>
y\left(x\right)={{2\,e^ {- {{x}\over{2}} }\,\sin \left({{\sqrt{11}
\,x}\over{2}}\right)}\over{\sqrt{11}}}
</math>
:<math>
{{d^2}\over{d\,x^2}}\,y\left(x\right)+4\,\left({{d}\over{d\,x}}\,y
\left(x\right)\right)+3\,y\left(x\right)=0
</math>
:<math>
y\left(x\right)={{e^ {- x }}\over{2}}-{{e^ {- 3\,x }}\over{2}}
</math>
:<math>
{{d^2}\over{d\,x^2}}\,y\left(x\right)+4\,\left({{d}\over{d\,x}}\,y
\left(x\right)\right)+3\,y\left(x\right)=5\,x
</math>
:<math>
y\left(x\right)=3\,e^ {- x }-{{7\,e^ {- 3\,x }}\over{9}}+{{5\,x
}\over{3}}-{{20}\over{9}}
</math>
:<math>
{{d^2}\over{d\,x^2}}\,y\left(x\right)+4\,\left({{d}\over{d\,x}}\,y
\left(x\right)\right)+3\,y\left(x\right)=1
</math>
:<math>
y\left(x\right)={{1}\over{3}}-{{e^ {- 3\,x }}\over{3}}
</math>
:<math>
{{d^2}\over{d\,x^2}}\,y\left(x\right)+4\,\left({{d}\over{d\,x}}\,y
\left(x\right)\right)+3\,y\left(x\right)=5\,x+1
</math>
:<math>
y\left(x\right)={{5\,e^ {- x }}\over{2}}-{{11\,e^ {- 3\,x }}\over{
18}}+{{5\,x}\over{3}}-{{17}\over{9}}
</math>
:<math>
{{d^2}\over{d\,x^2}}\,y\left(x\right)+4\,\left({{d}\over{d\,x}}\,y
\left(x\right)\right)+3\,y\left(x\right)=e^{2\,x}+x
</math>
:<math>
y\left(x\right)={{e^{2\,x}}\over{15}}+{{5\,e^ {- x }}\over{6}}-{{41
\,e^ {- 3\,x }}\over{90}}+{{x}\over{3}}-{{4}\over{9}}
</math>
:<math>
{{d^2}\over{d\,x^2}}\,y\left(x\right)+4\,\left({{d}\over{d\,x}}\,y
\left(x\right)\right)+3\,y\left(x\right)=e^ {- x }
</math>
:<math>
y\left(x\right)={{x\,e^ {- x }}\over{2}}+{{e^ {- x }}\over{4}}-{{e
^ {- 3\,x }}\over{4}}
</math>
:<math>
{{d^2}\over{d\,x^2}}\,y\left(x\right)+4\,\left({{d}\over{d\,x}}\,y
\left(x\right)\right)+3\,y\left(x\right)=e^ {- x }+x^2+x
</math>
:<math>
y\left(x\right)={{x\,e^ {- x }}\over{2}}-{{e^ {- x }}\over{4}}-{{29
\,e^ {- 3\,x }}\over{108}}+{{x^2}\over{3}}-{{5\,x}\over{9}}+{{14
}\over{27}}
</math>
:<math>
{{d^2}\over{d\,x^2}}\,y\left(x\right)+4\,\left({{d}\over{d\,x}}\,y
\left(x\right)\right)+3\,y\left(x\right)=\sin x
</math>
:<math>
y\left(x\right)={{\sin x}\over{10}}-{{\cos x}\over{5}}+{{3\,e^ {- x
}}\over{4}}-{{11\,e^ {- 3\,x }}\over{20}}
</math>
:<math>
{{d^2}\over{d\,x^2}}\,y\left(x\right)+4\,\left({{d}\over{d\,x}}\,y
\left(x\right)\right)+3\,y\left(x\right)=\sin x+\cos x
</math>
:<math>
y\left(x\right)={{3\,\sin x}\over{10}}-{{\cos x}\over{10}}+{{e^ {-
x }}\over{2}}-{{2\,e^ {- 3\,x }}\over{5}}
</math>
:<math>
{{d^2}\over{d\,x^2}}\,y\left(x\right)+4\,\left({{d}\over{d\,x}}\,y
\left(x\right)\right)+3\,y\left(x\right)=e^{i\,x}
</math>
:<math>
y\left(x\right)={{e^{i\,x}}\over{4\,i+2}}+{{i\,e^ {- x }}\over{2\,i
+2}}-{{\left(i+2\right)\,e^ {- 3\,x }}\over{2\,i+6}}
</math>
====è¡åã®ææ°é¢æ°====
<math> e^A=\sum_{n=0}^{\infty}\frac{A^n}{n!}</math>
*TODO
1234
[[ã«ããŽãª:åŸ®åæ¹çšåŒ]] | null | 2022-11-23T12:08:14Z | [] | https://ja.wikibooks.org/wiki/%E7%89%A9%E7%90%86%E6%95%B0%E5%AD%A6I_%E5%BE%AE%E5%88%86%E6%96%B9%E7%A8%8B%E5%BC%8F |
2,118 | ååŠ | ã¡ã€ã³ããŒãž > èªç¶ç§åŠ > ååŠ
ååŠã«é¢ããææžã»è³æã»æç§æžãåããããæžåº«ã§ããåé²å
容ã¯ä»¥äžãã芧ãã ããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ã¡ã€ã³ããŒãž > èªç¶ç§åŠ > ååŠ",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ååŠã«é¢ããææžã»è³æã»æç§æžãåããããæžåº«ã§ããåé²å
容ã¯ä»¥äžãã芧ãã ããã",
"title": ""
}
] | ã¡ã€ã³ããŒãž > èªç¶ç§åŠ > ååŠ ååŠã«é¢ããææžã»è³æã»æç§æžãåããããæžåº«ã§ããåé²å
容ã¯ä»¥äžãã芧ãã ããã | [[ã¡ã€ã³ããŒãž]] > [[èªç¶ç§åŠ]] > ååŠ
{{NDC|430|ããã}}
{| style="float:right"
|-
|{{Wikipedia|ååŠ|ååŠ}}
|-
|{{Wiktionary|Category:ååŠ|ååŠ}}
|-
|{{Commons|Category:Chemistry}}
|-
|{{wikiversity|School:ååŠ|ååŠ}}
|-
|{{èµæžäžèЧ}}
|-
|{{é²æç¶æ³}}
|}
ååŠã«é¢ããææžã»è³æã»æç§æžãåããããæžåº«ã§ããåé²å
容ã¯ä»¥äžãã芧ãã ããã
== åçæè²çšæç§æž ==
* [[å°åŠæ ¡çç§]]
* [[äžåŠæ ¡çç§]]
* [[é«çåŠæ ¡ååŠ]]
== äžè¬æç§æž ==
* [[åæååŠ]]
* [[ç¡æ©ååŠ]]
* [[ææ©ååŠ]]
* [[ç©çååŠ]]
* [[é¯äœååŠ]]
* [[éåååŠ]]
* [[çé¢ååŠ]]
* [[å®éšååŠ]]
[[Category:èªç¶ç§åŠ|ããã]]
[[Category:ååŠ|ããã]]
[[Category:æžåº«|ããã]] | 2005-06-10T14:03:49Z | 2023-09-28T17:03:25Z | [
"ãã³ãã¬ãŒã:Commons",
"ãã³ãã¬ãŒã:Wikiversity",
"ãã³ãã¬ãŒã:èµæžäžèЧ",
"ãã³ãã¬ãŒã:é²æç¶æ³",
"ãã³ãã¬ãŒã:NDC",
"ãã³ãã¬ãŒã:Wikipedia",
"ãã³ãã¬ãŒã:Wiktionary"
] | https://ja.wikibooks.org/wiki/%E5%8C%96%E5%AD%A6 |
2,119 | å€å
žæåŠ/ããã¯æ | ããã¯æ(ããã¯ãã)ã¯47é³ããæãè©©ã§ããæã¯ãä»ã§èšãã²ãããªã»ã«ã¿ã«ãã®50é³é ã«åœãããã®ãšããŠå©çšãããŠããŸããã
ããã¯æã®æŽå²ã¯ãå€ããæ¶
æ§çµããšèšã仿ã«é¢ããæ¬ã®æåãªäžæ®µã®åå¥ãåèš³ãããã®ãšãããŠããã ããããå§ãã¡ã®æã«ãã£ãŠå¹³å®æä»£äžæã«ã¯ç¢ºç«ããã ãã®åŸãæç¿ãæãšããŠç¿åãªã©ã§ããªãç¿ãéã«ãã®æãçšããããã | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ããã¯æ(ããã¯ãã)ã¯47é³ããæãè©©ã§ããæã¯ãä»ã§èšãã²ãããªã»ã«ã¿ã«ãã®50é³é ã«åœãããã®ãšããŠå©çšãããŠããŸããã",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "ããã¯æã®æŽå²ã¯ãå€ããæ¶
æ§çµããšèšã仿ã«é¢ããæ¬ã®æåãªäžæ®µã®åå¥ãåèš³ãããã®ãšãããŠããã ããããå§ãã¡ã®æã«ãã£ãŠå¹³å®æä»£äžæã«ã¯ç¢ºç«ããã ãã®åŸãæç¿ãæãšããŠç¿åãªã©ã§ããªãç¿ãéã«ãã®æãçšããããã",
"title": "æŽå²"
}
] | ããã¯æïŒããã¯ããïŒã¯47é³ããæãè©©ã§ããæã¯ãä»ã§èšãã²ãããªã»ã«ã¿ã«ãã®50é³é ã«åœãããã®ãšããŠå©çšãããŠããŸããã | '''ããã¯æ'''ïŒããã¯ããïŒã¯47é³ããæãè©©ã§ããæã¯ãä»ã§èšã[[ã²ãããªã»ã«ã¿ã«ã]]ã®50é³é ã«åœãããã®ãšããŠå©çšãããŠããŸããã
==æŽå²==
ããã¯æã®æŽå²ã¯ãå€ãæ¶
æ§çµïœ£ãšèšã仿ã«é¢ããæ¬ã®æåãªäžæ®µã®åå¥ãåèš³ãããã®ãšãããŠããã
ããããå§ãã¡ã®æã«ãã£ãŠå¹³å®æä»£äžæã«ã¯ç¢ºç«ããã
ãã®åŸãæç¿ãæãšããŠç¿åãªã©ã§ããªãç¿ãéã«ãã®æãçšããããã
== ããã¯æã®å
容 ==
{| class="wikitable"
! 平仮åã®ã¿ !! è¡šèš !! æå³
|-
|ããã¯ã«ã»ãžãšãã¡ãã¬ãã||è²ã¯åãžã©ãæ£ãã¬ãã||æ¡ã®è±ã®è²ã¯çŸããç
§ãæ ããããã©ãããã«æ£ã£ãŠããŸãã
|-
|ãããããããã€ããªãã||æãäžèª°ããåžžãªãã||ïŒãããšåæ§ã«ïŒæã
人éã®äžããã ãããã€ãå€ãããã«ãããããïŒããããã€ãç§»ãå€ããç¡åžžã ãïŒ
|-
|ããã®ããããŸãããµãããŠ||æçºã®å¥¥å±±ã仿¥è¶ããŠ||ç¡åžžã®äžã®ãããªå¥¥å±±ã仿¥è¶
ããŠè¡ããããªäººçã§ã
|-
|ãããããã¿ãããã²ããã||æµ
ã倢èŠããé
ã²ããã||æµ
ã倢ãèŠãããã«çŒåã®äºè±¡ã«æãããããäžã®åºæ¥äºã«é
ããããªãããã«ãããã
|}
{{DEFAULTSORT:ããã¯ãã}}
[[Category:å€å
žæåŠ]]
[[Category:æ¥æ¬èª]] | null | 2021-03-01T17:02:18Z | [] | https://ja.wikibooks.org/wiki/%E5%8F%A4%E5%85%B8%E6%96%87%E5%AD%A6/%E3%81%84%E3%82%8D%E3%81%AF%E6%AD%8C |
2,120 | Perl/颿° | ããã°ã©ãã³ã° > Perl > Perl/颿°
Perlã®ã颿°ãã¯ãäžããããå€ã«åºã¥ããŠå®çŸ©ãããç¬èªã®åŠçãå®è¡ãããã®çµæãè¿ãäžå¡ã®ã³ãŒãã®ããšã§ãã è±èªã§ã¯é¢æ°ã®ããšã function ãšåŒã³ããæ©èœããšèš³ãããšãã§ããŸãã Perlã®ã颿°ãã«ã¯ãèšèªã³ã¢ã§å®çŸ©æžã¿ã®ãçµèŸŒã¿é¢æ°ããšãŠãŒã¶ãŒãå®çŸ©ããããµãã«ãŒãã³ããšããããŸãã ãµãã«ãŒãã³ãã€ããå Žåã«ããæçµçã«ã¯ãããã°ã©ããŒã®æã«ãããçµèŸŒã¿é¢æ°ããåŒãããæãããã¿ããããŠäœæããããšã«ãªããŸãã åç¯ã§ç޹ä»ãã print 颿°ã¯ãçµèŸŒã¿é¢æ°ã§ãã ãã®ããã«ãçµèŸŒã¿é¢æ°ã¯ãååã䜿ã£ãŠåŒåºãã ãã§äœ¿ããŸãã ãã£ãœãããµãã«ãŒãã³ã¯ãååã䜿ã£ãŠåŒã³åºã以åã«ãåŠçã®å
容ãããã°ã©ããŒãäœæãã(ãµãã«ãŒããå®çŸ©ãã)å¿
èŠããããŸãã
Perlã®èšèªã³ã¢ã§å®çŸ©æžã¿ã®é¢æ°ã®ããšããçµèŸŒã¿é¢æ°ããšèšããŸãã
äžã«ã¯ my, use ã do ã®æ§ã«ãèŠãããã«æ§æèŠçŽ ãªãã®ããçµèŸŒã¿é¢æ°ãã«åé¡ãããŠããŸãã
Perl 5.10 ããå°å
¥ãããsay 颿°ã¯ãè¡æ«ã§æ¹è¡ãè¡ããŸããããã§ãéœåºŠ \n ãæååæ«ã«èšè¿°ããæéãçããŸãã
Perlã§ã¯ãæååã®äžã«å€æ°ãåŒãåã蟌ãããšãã§ãããã³ãã¬ãŒãèšèªã§ãããã®ãããªäœ¿ããããåºæ¥ãŸãã
å¹³æ¹æ ¹ãªã©ã®æ°åŠèšç®ããã颿°ãçšæãããŠããŸãã
æ¡ããµã察çãšå¯å€åŒæ°ã«å¯Ÿå¿ããPerlçhypotã®äŸã
sin,cos ã¯çµèŸŒã¿é¢æ°ã«ãããŸãããtan, acos ãªã©ä»ã®äžè§é¢æ°ãååšç(pi)ã䜿çšããã«ã¯ãuse宣èšã䜿ã£ãŠ Math::Trigã¢ãžã¥ãŒã«ããå°å
¥ããŸãã
çŸåšã®æ¥æãæå»ãªã©ã衚ãã«ã¯ãtime颿°ããã³localtime颿°ã䜿ããŸãã
split颿°ã«ã¯ãäžãããããã¿ãŒã³ã§æååãåºåãããªã¹ãã§è¿ããŸãã
Perlã§ã¯ããŠãŒã¶ãŒãå®çŸ©ãã颿°ã®ããšããµãã«ãŒãã³( subroutine )ãšåŒã³ãããŒã¯ãŒãsubã䜿ãå®çŸ©ããŸãã
ãµãã«ãŒãã³ã®å®çŸ©ãšåŒåºãã¯ã説æããããšãã»ãšãã©ãªãã»ã©ç°¡åã§ãã
ãµãã«ãŒãã³ã®å®çŸ©ããå
ã«ãµãã«ãŒãã³ãåŒåºãå¿
èŠãããããšããããŸã(å
žåçã«ã¯ããäºãã«åŒã³åã颿°)ã ãã®å Žåã¯ãåŒåºããšã« & ãå眮ãããããµãã«ãŒãã³å®£èšããµãã«ãŒãã³åŒåºã®åã«ããŸãã
ååºã®äŸã¯ãã»ãšãã©åãå
容ã®ãµãã«ãŒãã³ã2ã€çšæããŸãããã1ã€ã«ãŸãšããŠã¿ãŸãããã
ååºã®äŸã¯ãã°ããŒãã«å€æ°ã䜿ã£ãŠããŸããããã°ããŒãã«å€æ°ã¯ããŒã¿ãŒãããŒçãªã¹ãã²ãã£ãŒã³ãŒãã«çŽçµããã®ã§ãåŒæ°ã䜿ã£ãŠã¹ããŒãã«å®è£
ããŠã¿ãŸãããã
ãã® @_ ã«ããåŒæ°ã®åæž¡ãã¯ãPerlã§ã¯çŽ20å¹Žã«æž¡ã£ãŠäœ¿ãããŠããŸããããä»ã®ããã°ã©ãã³ã°èšèªã®ããã«ååä»ãã®ä»®åŒæ°ã欲ãããšã®èŠæã¯æ ¹åŒ·ããã·ã°ããã£ãŒãšããŠv5.20.0ããå®éšçãªæ©èœãšããŠå®è£
ãããŠããŸãã
ãããŸã§ã§ãåŒæ°ãååããµãã«ãŒãã³ã®æ¯èããå€ããããšãã§ããããã«ãªããŸããã æ¬¡ã«ããå€ãè¿ãææ®µããåé¡ã«ãªããŸãã ã°ããŒãã«å€æ°ã䜿ã£ãŠå€ãè¿ãããã§ãããããŒã¿ãŒãããŒçãªã¹ãã²ãã£ãŒã³ãŒããã«ãªãã®ã§ãµãã«ãŒãã³ã®ãæ»å€ãã䜿ã£ãŠã¿ãŸãããã
ããŸãŸã§ã®ãµãã«ãŒãã³ã¯å€ãè¿ããŸããã§ããããPerlã®ãµãã«ãŒãã³ã¯å€ã1ã€è¿ãããšãã§ããŸãã
åŒæ°ãšæ»å€ãæã«å
¥ã£ãã®ã§ãååž°çåŒåºããè¡ããµãã«ãŒãã³ãæžããŠã¿ãŸãã
æŽæ°ã®çޝä¹ãè¿ããµãã«ãŒãã³ pow ãæžããŠã¿ãŸããã
æŽæ°ã3æ¡ããšã«ã«ã³ãã§åºåã£ãŠè¡šç€ºãããµãã«ãŒãã³ comma3 ãæžããŠã¿ãŸããã
ååž°ã§å¿
ãåäžãããããã£ããããæ°åãšã¡ã¢åã顿ã«ããã³ãããŒã¯ãã¹ããè¡ã£ãŠã¿ãããšæããŸãã
ãµãã«ãŒãã³èªèº«ãžã®ãªãã¡ã¬ã³ã¹ __SUB__ ã䜿ããšç¡å颿°ã®ååž°ãã§ããŸãã
ååºã®äŸã§ãåŒæ°ã䜿ã£ãŠãµãã«ãŒãã³ã®æ¯ãèããå€ããããšãã§ããŸããã
æ©èœçã«ã¯å
è¶³ããŠããã®ã§ãããååä»ãã®ä»®åŒæ°ãæã声ã¯ä»¥åãããããPerl 5.20.0 ãããå®éšçã( experimental )ãªã·ã°ããã£ãŒã®å®è£
ãè¡ãªãããPerl 5.26.0 ããã³ã¢æ©èœã®1ã€ãšãªããŸããã
sort ã®ããã«ãã³ãŒããããã¯ãåŒæ°ãšãããµãã«ãŒãã³ãèããŠã¿ãŸãããã
çµèŸŒã¿é¢æ° map ãæš¡å£ãããµãã«ãŒãã³ mapx ãå®è£
ããŸãã
çµèŸŒã¿é¢æ°ã« reduce ããªãã£ãã®ã§å®è£
ããŸããã
çµèŸŒã¿é¢æ°ã« grep ã¯ãå€ãã®èšèªã§ filter ã®ååã§ç¥ããã颿°ã§ãã
[TODO:ã¹ã³ãŒãã«ãŒã«ã«é¢ããç°¡çŽ ãªèª¬æ]
[TODO:ã³ã³ããã¹ãã«é¢ããäŸããµãã ãã«äœ¿ã£ã解説]
my ã§å®£èšãã倿°(ã¬ãã·ã«ã«å€æ°)ã¯ãµãã«ãŒãã³ãæãããšåŸ¡ç Žç®ã«ãªããŸãããstate ã§å®£èšãã倿°ã¯ã¬ãã·ã«ã«ã¹ã³ãŒãã§ãããã®ã®æ¬¡ã«ãµãã«ãŒãã³ãåŒã°ãããšããå€ãæ¶ããŠããŸãã
åããµãã«ãŒãã³ãåŒåºããŠããã¹ã«ã©ãŒãæ»ãããšãæåŸ
ããŠããæè(ã¹ã«ã©ãŒã³ã³ããã¹ã)ãšããªã¹ããæ»ãããšãæåŸ
ããŠããæè(ãªã¹ãã³ã³ããã¹ã)ã®2éãããããŸãã ãã®2ã€ã®ã±ãŒã¹ãå€å¥ããããã« wantarray 颿°ãçšæãããŠããŸãã
chomp chop chr crypt fc hex index lc lcfirst length oct ord pack q/STRING/ qq/STRING/ reverse rindex sprintf substr tr/// uc ucfirst y///
ããã¹ãã®ãšã³ã³ãŒãã£ã³ã°ã¯ãPerlã䜿ã£ãŠãããšåºŠã
ãã©ãã«ã®ããšã«ãªãã®ã§ãåé¿æ¹æ³ã幟ã€ãããäºãç¥ã£ãŠãããšãä»äººã®æžããã³ãŒããèªããšããªã©ã«åœ¹ã«ç«ã¡ãŸãã ããã§ç޹ä»ããæ¹æ³ã®ä»ã«ãæä»£ããã®jcode.plãªã©ãããã®ã§ãããæšæºã¢ãžã¥ãŒã«ã®ç¯å²ã®èª¬æã«çããŸããã
æåå EXPR ãããOFFSET ç®ä»¥éã®ãã€ãåãè¿ããŸããåãåºãé·ã LENGTH ããã€ãåäœã§æå®ã§ããŸãããçç¥ããå Žåã¯æååã®æåŸãŸã§åãåºããŸãããªããutf8ãã©ã°ããæå¹ãªå Žåã¯ããã€ãåäœã§ã¯ãªãæååäœã§åãåºãããšãã§ããŸãã
äœçœ®æ
å ± OFFSET ã¯äžè¿°ã®ãšãã 0 ããå§ãŸããŸãããLENGTH ã¯å®¹éãªã®ã§é垞㯠1 以äžã®å€ãæå®ããŸãã
æåå REPLACEMENT ãæå®ãããšãåãåºãããéšåã REPLACEMENT ã§çœ®æããŸãã
ã·ã³ã°ã«ã¯ã©ãŒããããã«ã¯ã©ãŒããæ£èŠè¡šçŸãããã¯ã¯ã©ãŒããåèªã¯ã©ãŒããè©³çŽ°ã¯æŒç®åã®ç« ãåç
§ã
each keys pop push shift splice unshift values
retrieve the next key/value pair from a hash
retrieve list of indices from a hash
remove the last element from an array and return it
append one or more elements to an array
remove the first element of an array, and return it
add or remove elements anywhere in an array
prepend more elements to the beginning of a list
return a list of the values in a hash
pack read syscall sysread sysseek syswrite unpack vec
convert a list into a binary representation
fixed-length buffered input from a filehandle
execute an arbitrary system call
fixed-length unbuffered input from a filehandle
position I/O pointer on handle used with sysread and syswrite
fixed-length unbuffered output to a filehandle
convert binary structure into normal perl variables
test or set particular bits in a string
-X chdir chmod chown chroot fcntl glob ioctl link lstat mkdir open opendir readlink rename rmdir select stat symlink sysopen umask unlink utime
a file test (-r, -x, etc)
change your current working directory
changes the permissions on a list of files
change the ownership on a list of files
make directory new root for path lookups
file control system call
expand filenames using wildcards
system-dependent device control system call
create a hard link in the filesystem
stat a symbolic link
create a directory
open a file, pipe, or descriptor
open a directory
determine where a symbolic link is pointing
change a filename
remove a directory
reset default output or do I/O multiplexing
get a file's status information
create a symbolic link to a file
open a file, pipe, or descriptor
set file creation mode mask
remove one link to a file
set a file's last access and modify times
break caller continue die do dump eval evalbytes exit __FILE__ goto last __LINE__ next __PACKAGE__ redo return sub __SUB__ wantarray
break out of a C<given> block
get context of the current subroutine call
optional trailing block in a while or foreach
raise an exception or bail out
turn a BLOCK into a TERM
create an immediate core dump
catch exceptions or compile and run code
similar to string eval, but intend to parse a bytestream
terminate this program
the name of the current source file
create spaghetti code
exit a block prematurely
the current source line number
iterate a block prematurely
the current package
start this loop iteration over again
get out of a function early
declare a subroutine, possibly anonymously
the current subroutine, or C<undef> if not in a subroutine
get void vs scalar vs list context of current subroutine call
delete each exists keys values
deletes a value from a hash
retrieve the next key/value pair from a hash
test whether a hash key is present
retrieve list of indices from a hash
return a list of the values in a hash
binmode close closedir dbmclose dbmopen die eof fileno flock format getc print printf read readdir readline rewinddir say seek seekdir select syscall sysread sysseek syswrite tell telldir truncate warn write
prepare binary files for I/O
close file (or pipe or socket) handle
close directory handle
breaks binding on a tied dbm file
create binding on a tied dbm file
raise an exception or bail out
test a filehandle for its end
return file descriptor from filehandle
lock an entire file with an advisory lock
declare a picture format with use by the write() function
get the next character from the filehandle
output a list to a filehandle
output a formatted list to a filehandle
fixed-length buffered input from a filehandle
get a directory from a directory handle
fetch a record from a file
reset directory handle
output a list to a filehandle, appending a newline
reposition file pointer for random-access I/O
reposition directory pointer
reset default output or do I/O multiplexing
execute an arbitrary system call
fixed-length unbuffered input from a filehandle
position I/O pointer on handle used with sysread and syswrite
fixed-length unbuffered output to a filehandle
get current seekpointer on a filehandle
get current seekpointer on a directory handle
shorten a file
print debugging info
print a picture record
grep join map qw/STRING/ reverse sort unpack
locate elements in a list test true against a given criterion
join a list into a string using a separator
apply a change to a list to get back a new list with the changes
quote a list of words
flip a string or a list
sort a list of values
convert binary structure into normal perl variables
abs atan2 cos exp hex int log oct rand sin sqrt srand
absolute value function
arctangent of Y/X in the range -PI to PI
cosine function
raise I<e> to a power
convert a hexadecimal string to a number
get the integer portion of a number
retrieve the natural logarithm for a number
convert a string to an octal number
retrieve the next pseudorandom number
return the sine of a number
square root function
seed the random number generator
defined formline lock prototype reset scalar undef
test whether a value, variable, or function is defined
internal function used for formats
get a thread lock on a variable, subroutine, or method
get the prototype (if any) of a subroutine
clear all variables of a given name
force a scalar context
remove a variable or function definition
do import no package require use
turn a BLOCK into a TERM
patch a module's namespace into your own
unimport some module symbols or semantics at compile time
declare a separate global namespace
load in external functions from a library at runtime
load in a module at compile time and import its namespace
caller import local my our package state use
get context of the current subroutine call
patch a module's namespace into your own
create a temporary value for a global variable (dynamic scoping)
declare and assign a local variable (lexical scoping)
declare and assign a package variable (lexical scoping)
declare a separate global namespace
declare and assign a persistent lexical variable
load in a module at compile time and import its namespace
endprotoent endservent gethostbyaddr gethostbyname gethostent getnetbyaddr getnetbyname getnetent getprotobyname getprotobynumber getprotoent getservbyname getservbyport getservent sethostent setnetent setprotoent setservent
be done using protocols file
be done using services file
get host record given its address
get host record given name
get next hosts record
get network record given its address
get networks record given name
get next networks record
get protocol record given name
get protocol record numeric protocol
get next protocols record
get services record given its name
get services record given numeric port
get next services record
prepare hosts file for use
prepare networks file for use
prepare protocols file for use
prepare services file for use
bless dbmclose dbmopen package ref tie tied untie use
create an object
breaks binding on a tied dbm file
create binding on a tied dbm file
declare a separate global namespace
find out the type of thing being referenced
bind a variable to an object class
get a reference to the object underlying a tied variable
break a tie binding to a variable
load in a module at compile time and import its namespace
alarm exec fork getpgrp getppid getpriority kill pipe qx/STRING/ readpipe setpgrp setpriority sleep system times wait waitpid
schedule a SIGALRM
abandon this program to run another
create a new process just like this one
get process group
get parent process ID
get current nice value
send a signal to a process or process group
open a pair of connected filehandles
backquote quote a string
execute a system command and collect standard output
set the process group of a process
set a process's nice value
block for some number of seconds
run a separate program
return elapsed time for self and child processes
wait for any child process to die
wait for a particular child process to die
m// pos qr/STRING/ quotemeta s/// split study
match a string with a regular expression pattern
find or set the offset for the last/next m//g search
compile pattern
quote regular expression magic characters
replace a pattern with a string
split up a string using a regexp delimiter
no-op, formerly optimized input data for repeated searches
accept bind connect getpeername getsockname getsockopt listen recv send setsockopt shutdown socket socketpair
accept an incoming socket connect
binds an address to a socket
connect to a remote socket
find the other end of a socket connection
retrieve the sockaddr for a given socket
get socket options on a given socket
register your socket as a server
receive a message over a Socket
send a message over a socket
set some socket options
close down just half of a socket connection
create a socket
create a pair of sockets
chomp chop chr crypt fc hex index lc lcfirst length oct ord pack q/STRING/ qq/STRING/ reverse rindex sprintf substr tr/// uc ucfirst y///
remove a trailing record separator from a string
remove the last character from a string
get character this number represents
one-way passwd-style encryption
return casefolded version of a string
convert a hexadecimal string to a number
find a substring within a string
return lower-case version of a string
return a string with just the next letter in lower case
return the number of characters in a string
convert a string to an octal number
find a character's numeric representation
convert a list into a binary representation
singly quote a string
doubly quote a string
flip a string or a list
right-to-left substring search
formatted print into a string
get or alter a portion of a string
transliterate a string
return upper-case version of a string
return a string with just the next letter in upper case
transliterate a string
msgctl msgget msgrcv msgsnd semctl semget semop shmctl shmget shmread shmwrite
SysV IPC message control operations
get SysV IPC message queue
receive a SysV IPC message from a message queue
send a SysV IPC message to a message queue
SysV semaphore control operations
get set of SysV semaphores
SysV semaphore operations
SysV shared memory operations
get SysV shared memory segment identifier
read SysV shared memory
write SysV shared memory
gmtime localtime time times
convert UNIX time into record or string using Greenwich time
convert UNIX time into record or string using local time
return number of seconds since 1970
return elapsed time for self and child processes
endgrent endhostent endnetent endpwent getgrent getgrgid getgrnam getlogin getpwent getpwnam getpwuid setgrent setpwent
be done using group file
be done using hosts file
be done using networks file
be done using passwd file
get next group record
get group record given group user ID
get group record given group name
return who logged in at this tty
get next passwd record
get passwd record given user login name
get passwd record given user ID
prepare group file for use
prepare passwd file for use | [
{
"paragraph_id": 0,
"tag": "p",
"text": "ããã°ã©ãã³ã° > Perl > Perl/颿°",
"title": ""
},
{
"paragraph_id": 1,
"tag": "p",
"text": "Perlã®ã颿°ãã¯ãäžããããå€ã«åºã¥ããŠå®çŸ©ãããç¬èªã®åŠçãå®è¡ãããã®çµæãè¿ãäžå¡ã®ã³ãŒãã®ããšã§ãã è±èªã§ã¯é¢æ°ã®ããšã function ãšåŒã³ããæ©èœããšèš³ãããšãã§ããŸãã Perlã®ã颿°ãã«ã¯ãèšèªã³ã¢ã§å®çŸ©æžã¿ã®ãçµèŸŒã¿é¢æ°ããšãŠãŒã¶ãŒãå®çŸ©ããããµãã«ãŒãã³ããšããããŸãã ãµãã«ãŒãã³ãã€ããå Žåã«ããæçµçã«ã¯ãããã°ã©ããŒã®æã«ãããçµèŸŒã¿é¢æ°ããåŒãããæãããã¿ããããŠäœæããããšã«ãªããŸãã åç¯ã§ç޹ä»ãã print 颿°ã¯ãçµèŸŒã¿é¢æ°ã§ãã ãã®ããã«ãçµèŸŒã¿é¢æ°ã¯ãååã䜿ã£ãŠåŒåºãã ãã§äœ¿ããŸãã ãã£ãœãããµãã«ãŒãã³ã¯ãååã䜿ã£ãŠåŒã³åºã以åã«ãåŠçã®å
容ãããã°ã©ããŒãäœæãã(ãµãã«ãŒããå®çŸ©ãã)å¿
èŠããããŸãã",
"title": "颿°ãšã¯"
},
{
"paragraph_id": 2,
"tag": "p",
"text": "Perlã®èšèªã³ã¢ã§å®çŸ©æžã¿ã®é¢æ°ã®ããšããçµèŸŒã¿é¢æ°ããšèšããŸãã",
"title": "çµèŸŒã¿é¢æ°"
},
{
"paragraph_id": 3,
"tag": "p",
"text": "äžã«ã¯ my, use ã do ã®æ§ã«ãèŠãããã«æ§æèŠçŽ ãªãã®ããçµèŸŒã¿é¢æ°ãã«åé¡ãããŠããŸãã",
"title": "çµèŸŒã¿é¢æ°"
},
{
"paragraph_id": 4,
"tag": "p",
"text": "Perl 5.10 ããå°å
¥ãããsay 颿°ã¯ãè¡æ«ã§æ¹è¡ãè¡ããŸããããã§ãéœåºŠ \\n ãæååæ«ã«èšè¿°ããæéãçããŸãã",
"title": "çµèŸŒã¿é¢æ°"
},
{
"paragraph_id": 5,
"tag": "p",
"text": "Perlã§ã¯ãæååã®äžã«å€æ°ãåŒãåã蟌ãããšãã§ãããã³ãã¬ãŒãèšèªã§ãããã®ãããªäœ¿ããããåºæ¥ãŸãã",
"title": "çµèŸŒã¿é¢æ°"
},
{
"paragraph_id": 6,
"tag": "p",
"text": "å¹³æ¹æ ¹ãªã©ã®æ°åŠèšç®ããã颿°ãçšæãããŠããŸãã",
"title": "çµèŸŒã¿é¢æ°"
},
{
"paragraph_id": 7,
"tag": "p",
"text": "æ¡ããµã察çãšå¯å€åŒæ°ã«å¯Ÿå¿ããPerlçhypotã®äŸã",
"title": "çµèŸŒã¿é¢æ°"
},
{
"paragraph_id": 8,
"tag": "p",
"text": "sin,cos ã¯çµèŸŒã¿é¢æ°ã«ãããŸãããtan, acos ãªã©ä»ã®äžè§é¢æ°ãååšç(pi)ã䜿çšããã«ã¯ãuse宣èšã䜿ã£ãŠ Math::Trigã¢ãžã¥ãŒã«ããå°å
¥ããŸãã",
"title": "çµèŸŒã¿é¢æ°"
},
{
"paragraph_id": 9,
"tag": "p",
"text": "çŸåšã®æ¥æãæå»ãªã©ã衚ãã«ã¯ãtime颿°ããã³localtime颿°ã䜿ããŸãã",
"title": "çµèŸŒã¿é¢æ°"
},
{
"paragraph_id": 10,
"tag": "p",
"text": "split颿°ã«ã¯ãäžãããããã¿ãŒã³ã§æååãåºåãããªã¹ãã§è¿ããŸãã",
"title": "çµèŸŒã¿é¢æ°"
},
{
"paragraph_id": 11,
"tag": "p",
"text": "Perlã§ã¯ããŠãŒã¶ãŒãå®çŸ©ãã颿°ã®ããšããµãã«ãŒãã³( subroutine )ãšåŒã³ãããŒã¯ãŒãsubã䜿ãå®çŸ©ããŸãã",
"title": "ãµãã«ãŒãã³"
},
{
"paragraph_id": 12,
"tag": "p",
"text": "ãµãã«ãŒãã³ã®å®çŸ©ãšåŒåºãã¯ã説æããããšãã»ãšãã©ãªãã»ã©ç°¡åã§ãã",
"title": "ãµãã«ãŒãã³"
},
{
"paragraph_id": 13,
"tag": "p",
"text": "ãµãã«ãŒãã³ã®å®çŸ©ããå
ã«ãµãã«ãŒãã³ãåŒåºãå¿
èŠãããããšããããŸã(å
žåçã«ã¯ããäºãã«åŒã³åã颿°)ã ãã®å Žåã¯ãåŒåºããšã« & ãå眮ãããããµãã«ãŒãã³å®£èšããµãã«ãŒãã³åŒåºã®åã«ããŸãã",
"title": "ãµãã«ãŒãã³"
},
{
"paragraph_id": 14,
"tag": "p",
"text": "ååºã®äŸã¯ãã»ãšãã©åãå
容ã®ãµãã«ãŒãã³ã2ã€çšæããŸãããã1ã€ã«ãŸãšããŠã¿ãŸãããã",
"title": "ãµãã«ãŒãã³"
},
{
"paragraph_id": 15,
"tag": "p",
"text": "ååºã®äŸã¯ãã°ããŒãã«å€æ°ã䜿ã£ãŠããŸããããã°ããŒãã«å€æ°ã¯ããŒã¿ãŒãããŒçãªã¹ãã²ãã£ãŒã³ãŒãã«çŽçµããã®ã§ãåŒæ°ã䜿ã£ãŠã¹ããŒãã«å®è£
ããŠã¿ãŸãããã",
"title": "ãµãã«ãŒãã³"
},
{
"paragraph_id": 16,
"tag": "p",
"text": "ãã® @_ ã«ããåŒæ°ã®åæž¡ãã¯ãPerlã§ã¯çŽ20å¹Žã«æž¡ã£ãŠäœ¿ãããŠããŸããããä»ã®ããã°ã©ãã³ã°èšèªã®ããã«ååä»ãã®ä»®åŒæ°ã欲ãããšã®èŠæã¯æ ¹åŒ·ããã·ã°ããã£ãŒãšããŠv5.20.0ããå®éšçãªæ©èœãšããŠå®è£
ãããŠããŸãã",
"title": "ãµãã«ãŒãã³"
},
{
"paragraph_id": 17,
"tag": "p",
"text": "ãããŸã§ã§ãåŒæ°ãååããµãã«ãŒãã³ã®æ¯èããå€ããããšãã§ããããã«ãªããŸããã æ¬¡ã«ããå€ãè¿ãææ®µããåé¡ã«ãªããŸãã ã°ããŒãã«å€æ°ã䜿ã£ãŠå€ãè¿ãããã§ãããããŒã¿ãŒãããŒçãªã¹ãã²ãã£ãŒã³ãŒããã«ãªãã®ã§ãµãã«ãŒãã³ã®ãæ»å€ãã䜿ã£ãŠã¿ãŸãããã",
"title": "ãµãã«ãŒãã³"
},
{
"paragraph_id": 18,
"tag": "p",
"text": "ããŸãŸã§ã®ãµãã«ãŒãã³ã¯å€ãè¿ããŸããã§ããããPerlã®ãµãã«ãŒãã³ã¯å€ã1ã€è¿ãããšãã§ããŸãã",
"title": "ãµãã«ãŒãã³"
},
{
"paragraph_id": 19,
"tag": "p",
"text": "åŒæ°ãšæ»å€ãæã«å
¥ã£ãã®ã§ãååž°çåŒåºããè¡ããµãã«ãŒãã³ãæžããŠã¿ãŸãã",
"title": "ãµãã«ãŒãã³"
},
{
"paragraph_id": 20,
"tag": "p",
"text": "æŽæ°ã®çޝä¹ãè¿ããµãã«ãŒãã³ pow ãæžããŠã¿ãŸããã",
"title": "ãµãã«ãŒãã³"
},
{
"paragraph_id": 21,
"tag": "p",
"text": "æŽæ°ã3æ¡ããšã«ã«ã³ãã§åºåã£ãŠè¡šç€ºãããµãã«ãŒãã³ comma3 ãæžããŠã¿ãŸããã",
"title": "ãµãã«ãŒãã³"
},
{
"paragraph_id": 22,
"tag": "p",
"text": "ååž°ã§å¿
ãåäžãããããã£ããããæ°åãšã¡ã¢åã顿ã«ããã³ãããŒã¯ãã¹ããè¡ã£ãŠã¿ãããšæããŸãã",
"title": "ãµãã«ãŒãã³"
},
{
"paragraph_id": 23,
"tag": "p",
"text": "ãµãã«ãŒãã³èªèº«ãžã®ãªãã¡ã¬ã³ã¹ __SUB__ ã䜿ããšç¡å颿°ã®ååž°ãã§ããŸãã",
"title": "ãµãã«ãŒãã³"
},
{
"paragraph_id": 24,
"tag": "p",
"text": "ååºã®äŸã§ãåŒæ°ã䜿ã£ãŠãµãã«ãŒãã³ã®æ¯ãèããå€ããããšãã§ããŸããã",
"title": "ãµãã«ãŒãã³"
},
{
"paragraph_id": 25,
"tag": "p",
"text": "æ©èœçã«ã¯å
è¶³ããŠããã®ã§ãããååä»ãã®ä»®åŒæ°ãæã声ã¯ä»¥åãããããPerl 5.20.0 ãããå®éšçã( experimental )ãªã·ã°ããã£ãŒã®å®è£
ãè¡ãªãããPerl 5.26.0 ããã³ã¢æ©èœã®1ã€ãšãªããŸããã",
"title": "ãµãã«ãŒãã³"
},
{
"paragraph_id": 26,
"tag": "p",
"text": "sort ã®ããã«ãã³ãŒããããã¯ãåŒæ°ãšãããµãã«ãŒãã³ãèããŠã¿ãŸãããã",
"title": "ãµãã«ãŒãã³"
},
{
"paragraph_id": 27,
"tag": "p",
"text": "çµèŸŒã¿é¢æ° map ãæš¡å£ãããµãã«ãŒãã³ mapx ãå®è£
ããŸãã",
"title": "ãµãã«ãŒãã³"
},
{
"paragraph_id": 28,
"tag": "p",
"text": "çµèŸŒã¿é¢æ°ã« reduce ããªãã£ãã®ã§å®è£
ããŸããã",
"title": "ãµãã«ãŒãã³"
},
{
"paragraph_id": 29,
"tag": "p",
"text": "çµèŸŒã¿é¢æ°ã« grep ã¯ãå€ãã®èšèªã§ filter ã®ååã§ç¥ããã颿°ã§ãã",
"title": "ãµãã«ãŒãã³"
},
{
"paragraph_id": 30,
"tag": "p",
"text": "[TODO:ã¹ã³ãŒãã«ãŒã«ã«é¢ããç°¡çŽ ãªèª¬æ]",
"title": "ãµãã«ãŒãã³"
},
{
"paragraph_id": 31,
"tag": "p",
"text": "[TODO:ã³ã³ããã¹ãã«é¢ããäŸããµãã ãã«äœ¿ã£ã解説]",
"title": "ãµãã«ãŒãã³"
},
{
"paragraph_id": 32,
"tag": "p",
"text": "my ã§å®£èšãã倿°(ã¬ãã·ã«ã«å€æ°)ã¯ãµãã«ãŒãã³ãæãããšåŸ¡ç Žç®ã«ãªããŸãããstate ã§å®£èšãã倿°ã¯ã¬ãã·ã«ã«ã¹ã³ãŒãã§ãããã®ã®æ¬¡ã«ãµãã«ãŒãã³ãåŒã°ãããšããå€ãæ¶ããŠããŸãã",
"title": "æ°žç¶çã¹ã³ãŒãã®ã¬ãã·ã«ã«å€æ°"
},
{
"paragraph_id": 33,
"tag": "p",
"text": "åããµãã«ãŒãã³ãåŒåºããŠããã¹ã«ã©ãŒãæ»ãããšãæåŸ
ããŠããæè(ã¹ã«ã©ãŒã³ã³ããã¹ã)ãšããªã¹ããæ»ãããšãæåŸ
ããŠããæè(ãªã¹ãã³ã³ããã¹ã)ã®2éãããããŸãã ãã®2ã€ã®ã±ãŒã¹ãå€å¥ããããã« wantarray 颿°ãçšæãããŠããŸãã",
"title": "ã³ã³ããã¹ããšwantarray颿°"
},
{
"paragraph_id": 34,
"tag": "p",
"text": "chomp chop chr crypt fc hex index lc lcfirst length oct ord pack q/STRING/ qq/STRING/ reverse rindex sprintf substr tr/// uc ucfirst y///",
"title": "çµèŸŒã¿é¢æ°ã®äžèЧ"
},
{
"paragraph_id": 35,
"tag": "p",
"text": "ããã¹ãã®ãšã³ã³ãŒãã£ã³ã°ã¯ãPerlã䜿ã£ãŠãããšåºŠã
ãã©ãã«ã®ããšã«ãªãã®ã§ãåé¿æ¹æ³ã幟ã€ãããäºãç¥ã£ãŠãããšãä»äººã®æžããã³ãŒããèªããšããªã©ã«åœ¹ã«ç«ã¡ãŸãã ããã§ç޹ä»ããæ¹æ³ã®ä»ã«ãæä»£ããã®jcode.plãªã©ãããã®ã§ãããæšæºã¢ãžã¥ãŒã«ã®ç¯å²ã®èª¬æã«çããŸããã",
"title": "çµèŸŒã¿é¢æ°ã®äžèЧ"
},
{
"paragraph_id": 36,
"tag": "p",
"text": "æåå EXPR ãããOFFSET ç®ä»¥éã®ãã€ãåãè¿ããŸããåãåºãé·ã LENGTH ããã€ãåäœã§æå®ã§ããŸãããçç¥ããå Žåã¯æååã®æåŸãŸã§åãåºããŸãããªããutf8ãã©ã°ããæå¹ãªå Žåã¯ããã€ãåäœã§ã¯ãªãæååäœã§åãåºãããšãã§ããŸãã",
"title": "çµèŸŒã¿é¢æ°ã®äžèЧ"
},
{
"paragraph_id": 37,
"tag": "p",
"text": "äœçœ®æ
å ± OFFSET ã¯äžè¿°ã®ãšãã 0 ããå§ãŸããŸãããLENGTH ã¯å®¹éãªã®ã§é垞㯠1 以äžã®å€ãæå®ããŸãã",
"title": "çµèŸŒã¿é¢æ°ã®äžèЧ"
},
{
"paragraph_id": 38,
"tag": "p",
"text": "æåå REPLACEMENT ãæå®ãããšãåãåºãããéšåã REPLACEMENT ã§çœ®æããŸãã",
"title": "çµèŸŒã¿é¢æ°ã®äžèЧ"
},
{
"paragraph_id": 39,
"tag": "p",
"text": "ã·ã³ã°ã«ã¯ã©ãŒããããã«ã¯ã©ãŒããæ£èŠè¡šçŸãããã¯ã¯ã©ãŒããåèªã¯ã©ãŒããè©³çŽ°ã¯æŒç®åã®ç« ãåç
§ã",
"title": "çµèŸŒã¿é¢æ°ã®äžèЧ"
},
{
"paragraph_id": 40,
"tag": "p",
"text": "",
"title": "çµèŸŒã¿é¢æ°ã®äžèЧ"
},
{
"paragraph_id": 41,
"tag": "p",
"text": "",
"title": "çµèŸŒã¿é¢æ°ã®äžèЧ"
},
{
"paragraph_id": 42,
"tag": "p",
"text": "each keys pop push shift splice unshift values",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 43,
"tag": "p",
"text": "retrieve the next key/value pair from a hash",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 44,
"tag": "p",
"text": "retrieve list of indices from a hash",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 45,
"tag": "p",
"text": "remove the last element from an array and return it",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 46,
"tag": "p",
"text": "append one or more elements to an array",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 47,
"tag": "p",
"text": "remove the first element of an array, and return it",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 48,
"tag": "p",
"text": "add or remove elements anywhere in an array",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 49,
"tag": "p",
"text": "prepend more elements to the beginning of a list",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 50,
"tag": "p",
"text": "return a list of the values in a hash",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 51,
"tag": "p",
"text": "pack read syscall sysread sysseek syswrite unpack vec",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 52,
"tag": "p",
"text": "convert a list into a binary representation",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 53,
"tag": "p",
"text": "fixed-length buffered input from a filehandle",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 54,
"tag": "p",
"text": "execute an arbitrary system call",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 55,
"tag": "p",
"text": "fixed-length unbuffered input from a filehandle",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 56,
"tag": "p",
"text": "position I/O pointer on handle used with sysread and syswrite",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 57,
"tag": "p",
"text": "fixed-length unbuffered output to a filehandle",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 58,
"tag": "p",
"text": "convert binary structure into normal perl variables",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 59,
"tag": "p",
"text": "test or set particular bits in a string",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 60,
"tag": "p",
"text": "-X chdir chmod chown chroot fcntl glob ioctl link lstat mkdir open opendir readlink rename rmdir select stat symlink sysopen umask unlink utime",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 61,
"tag": "p",
"text": "a file test (-r, -x, etc)",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 62,
"tag": "p",
"text": "change your current working directory",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 63,
"tag": "p",
"text": "changes the permissions on a list of files",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 64,
"tag": "p",
"text": "change the ownership on a list of files",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 65,
"tag": "p",
"text": "make directory new root for path lookups",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 66,
"tag": "p",
"text": "file control system call",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 67,
"tag": "p",
"text": "expand filenames using wildcards",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 68,
"tag": "p",
"text": "system-dependent device control system call",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 69,
"tag": "p",
"text": "create a hard link in the filesystem",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 70,
"tag": "p",
"text": "stat a symbolic link",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 71,
"tag": "p",
"text": "create a directory",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 72,
"tag": "p",
"text": "open a file, pipe, or descriptor",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 73,
"tag": "p",
"text": "open a directory",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 74,
"tag": "p",
"text": "determine where a symbolic link is pointing",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 75,
"tag": "p",
"text": "change a filename",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 76,
"tag": "p",
"text": "remove a directory",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 77,
"tag": "p",
"text": "reset default output or do I/O multiplexing",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 78,
"tag": "p",
"text": "get a file's status information",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 79,
"tag": "p",
"text": "create a symbolic link to a file",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 80,
"tag": "p",
"text": "open a file, pipe, or descriptor",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 81,
"tag": "p",
"text": "set file creation mode mask",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 82,
"tag": "p",
"text": "remove one link to a file",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 83,
"tag": "p",
"text": "set a file's last access and modify times",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 84,
"tag": "p",
"text": "break caller continue die do dump eval evalbytes exit __FILE__ goto last __LINE__ next __PACKAGE__ redo return sub __SUB__ wantarray",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 85,
"tag": "p",
"text": "break out of a C<given> block",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 86,
"tag": "p",
"text": "get context of the current subroutine call",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 87,
"tag": "p",
"text": "optional trailing block in a while or foreach",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 88,
"tag": "p",
"text": "raise an exception or bail out",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 89,
"tag": "p",
"text": "turn a BLOCK into a TERM",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 90,
"tag": "p",
"text": "create an immediate core dump",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 91,
"tag": "p",
"text": "catch exceptions or compile and run code",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 92,
"tag": "p",
"text": "similar to string eval, but intend to parse a bytestream",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 93,
"tag": "p",
"text": "terminate this program",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 94,
"tag": "p",
"text": "the name of the current source file",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 95,
"tag": "p",
"text": "create spaghetti code",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 96,
"tag": "p",
"text": "exit a block prematurely",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 97,
"tag": "p",
"text": "the current source line number",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 98,
"tag": "p",
"text": "iterate a block prematurely",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 99,
"tag": "p",
"text": "the current package",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 100,
"tag": "p",
"text": "start this loop iteration over again",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 101,
"tag": "p",
"text": "get out of a function early",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 102,
"tag": "p",
"text": "declare a subroutine, possibly anonymously",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 103,
"tag": "p",
"text": "the current subroutine, or C<undef> if not in a subroutine",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 104,
"tag": "p",
"text": "get void vs scalar vs list context of current subroutine call",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 105,
"tag": "p",
"text": "delete each exists keys values",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 106,
"tag": "p",
"text": "deletes a value from a hash",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 107,
"tag": "p",
"text": "retrieve the next key/value pair from a hash",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 108,
"tag": "p",
"text": "test whether a hash key is present",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 109,
"tag": "p",
"text": "retrieve list of indices from a hash",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 110,
"tag": "p",
"text": "return a list of the values in a hash",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 111,
"tag": "p",
"text": "binmode close closedir dbmclose dbmopen die eof fileno flock format getc print printf read readdir readline rewinddir say seek seekdir select syscall sysread sysseek syswrite tell telldir truncate warn write",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 112,
"tag": "p",
"text": "prepare binary files for I/O",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 113,
"tag": "p",
"text": "close file (or pipe or socket) handle",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 114,
"tag": "p",
"text": "close directory handle",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 115,
"tag": "p",
"text": "breaks binding on a tied dbm file",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 116,
"tag": "p",
"text": "create binding on a tied dbm file",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 117,
"tag": "p",
"text": "raise an exception or bail out",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 118,
"tag": "p",
"text": "test a filehandle for its end",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 119,
"tag": "p",
"text": "return file descriptor from filehandle",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 120,
"tag": "p",
"text": "lock an entire file with an advisory lock",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 121,
"tag": "p",
"text": "declare a picture format with use by the write() function",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 122,
"tag": "p",
"text": "get the next character from the filehandle",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 123,
"tag": "p",
"text": "output a list to a filehandle",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 124,
"tag": "p",
"text": "output a formatted list to a filehandle",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 125,
"tag": "p",
"text": "fixed-length buffered input from a filehandle",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 126,
"tag": "p",
"text": "get a directory from a directory handle",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 127,
"tag": "p",
"text": "fetch a record from a file",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 128,
"tag": "p",
"text": "reset directory handle",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 129,
"tag": "p",
"text": "output a list to a filehandle, appending a newline",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 130,
"tag": "p",
"text": "reposition file pointer for random-access I/O",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 131,
"tag": "p",
"text": "reposition directory pointer",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 132,
"tag": "p",
"text": "reset default output or do I/O multiplexing",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 133,
"tag": "p",
"text": "execute an arbitrary system call",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 134,
"tag": "p",
"text": "fixed-length unbuffered input from a filehandle",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 135,
"tag": "p",
"text": "position I/O pointer on handle used with sysread and syswrite",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 136,
"tag": "p",
"text": "fixed-length unbuffered output to a filehandle",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 137,
"tag": "p",
"text": "get current seekpointer on a filehandle",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 138,
"tag": "p",
"text": "get current seekpointer on a directory handle",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 139,
"tag": "p",
"text": "shorten a file",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 140,
"tag": "p",
"text": "print debugging info",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 141,
"tag": "p",
"text": "print a picture record",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 142,
"tag": "p",
"text": "grep join map qw/STRING/ reverse sort unpack",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 143,
"tag": "p",
"text": "locate elements in a list test true against a given criterion",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 144,
"tag": "p",
"text": "join a list into a string using a separator",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 145,
"tag": "p",
"text": "apply a change to a list to get back a new list with the changes",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 146,
"tag": "p",
"text": "quote a list of words",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 147,
"tag": "p",
"text": "flip a string or a list",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 148,
"tag": "p",
"text": "sort a list of values",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 149,
"tag": "p",
"text": "convert binary structure into normal perl variables",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 150,
"tag": "p",
"text": "abs atan2 cos exp hex int log oct rand sin sqrt srand",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 151,
"tag": "p",
"text": "absolute value function",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 152,
"tag": "p",
"text": "arctangent of Y/X in the range -PI to PI",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 153,
"tag": "p",
"text": "cosine function",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 154,
"tag": "p",
"text": "raise I<e> to a power",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 155,
"tag": "p",
"text": "convert a hexadecimal string to a number",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 156,
"tag": "p",
"text": "get the integer portion of a number",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 157,
"tag": "p",
"text": "retrieve the natural logarithm for a number",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 158,
"tag": "p",
"text": "convert a string to an octal number",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 159,
"tag": "p",
"text": "retrieve the next pseudorandom number",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 160,
"tag": "p",
"text": "return the sine of a number",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 161,
"tag": "p",
"text": "square root function",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 162,
"tag": "p",
"text": "seed the random number generator",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 163,
"tag": "p",
"text": "defined formline lock prototype reset scalar undef",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 164,
"tag": "p",
"text": "test whether a value, variable, or function is defined",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 165,
"tag": "p",
"text": "internal function used for formats",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 166,
"tag": "p",
"text": "get a thread lock on a variable, subroutine, or method",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 167,
"tag": "p",
"text": "get the prototype (if any) of a subroutine",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 168,
"tag": "p",
"text": "clear all variables of a given name",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 169,
"tag": "p",
"text": "force a scalar context",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 170,
"tag": "p",
"text": "remove a variable or function definition",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 171,
"tag": "p",
"text": "do import no package require use",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 172,
"tag": "p",
"text": "turn a BLOCK into a TERM",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 173,
"tag": "p",
"text": "patch a module's namespace into your own",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 174,
"tag": "p",
"text": "unimport some module symbols or semantics at compile time",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 175,
"tag": "p",
"text": "declare a separate global namespace",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 176,
"tag": "p",
"text": "load in external functions from a library at runtime",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 177,
"tag": "p",
"text": "load in a module at compile time and import its namespace",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 178,
"tag": "p",
"text": "caller import local my our package state use",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 179,
"tag": "p",
"text": "get context of the current subroutine call",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 180,
"tag": "p",
"text": "patch a module's namespace into your own",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 181,
"tag": "p",
"text": "create a temporary value for a global variable (dynamic scoping)",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 182,
"tag": "p",
"text": "declare and assign a local variable (lexical scoping)",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 183,
"tag": "p",
"text": "declare and assign a package variable (lexical scoping)",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 184,
"tag": "p",
"text": "declare a separate global namespace",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 185,
"tag": "p",
"text": "declare and assign a persistent lexical variable",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 186,
"tag": "p",
"text": "load in a module at compile time and import its namespace",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 187,
"tag": "p",
"text": "endprotoent endservent gethostbyaddr gethostbyname gethostent getnetbyaddr getnetbyname getnetent getprotobyname getprotobynumber getprotoent getservbyname getservbyport getservent sethostent setnetent setprotoent setservent",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 188,
"tag": "p",
"text": "be done using protocols file",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 189,
"tag": "p",
"text": "be done using services file",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 190,
"tag": "p",
"text": "get host record given its address",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 191,
"tag": "p",
"text": "get host record given name",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 192,
"tag": "p",
"text": "get next hosts record",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 193,
"tag": "p",
"text": "get network record given its address",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 194,
"tag": "p",
"text": "get networks record given name",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 195,
"tag": "p",
"text": "get next networks record",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 196,
"tag": "p",
"text": "get protocol record given name",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 197,
"tag": "p",
"text": "get protocol record numeric protocol",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 198,
"tag": "p",
"text": "get next protocols record",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 199,
"tag": "p",
"text": "get services record given its name",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 200,
"tag": "p",
"text": "get services record given numeric port",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 201,
"tag": "p",
"text": "get next services record",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 202,
"tag": "p",
"text": "prepare hosts file for use",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 203,
"tag": "p",
"text": "prepare networks file for use",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 204,
"tag": "p",
"text": "prepare protocols file for use",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 205,
"tag": "p",
"text": "prepare services file for use",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 206,
"tag": "p",
"text": "bless dbmclose dbmopen package ref tie tied untie use",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 207,
"tag": "p",
"text": "create an object",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 208,
"tag": "p",
"text": "breaks binding on a tied dbm file",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 209,
"tag": "p",
"text": "create binding on a tied dbm file",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 210,
"tag": "p",
"text": "declare a separate global namespace",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 211,
"tag": "p",
"text": "find out the type of thing being referenced",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 212,
"tag": "p",
"text": "bind a variable to an object class",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 213,
"tag": "p",
"text": "get a reference to the object underlying a tied variable",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 214,
"tag": "p",
"text": "break a tie binding to a variable",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 215,
"tag": "p",
"text": "load in a module at compile time and import its namespace",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 216,
"tag": "p",
"text": "alarm exec fork getpgrp getppid getpriority kill pipe qx/STRING/ readpipe setpgrp setpriority sleep system times wait waitpid",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 217,
"tag": "p",
"text": "schedule a SIGALRM",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 218,
"tag": "p",
"text": "abandon this program to run another",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 219,
"tag": "p",
"text": "create a new process just like this one",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 220,
"tag": "p",
"text": "get process group",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 221,
"tag": "p",
"text": "get parent process ID",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 222,
"tag": "p",
"text": "get current nice value",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 223,
"tag": "p",
"text": "send a signal to a process or process group",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 224,
"tag": "p",
"text": "open a pair of connected filehandles",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 225,
"tag": "p",
"text": "backquote quote a string",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 226,
"tag": "p",
"text": "execute a system command and collect standard output",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 227,
"tag": "p",
"text": "set the process group of a process",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 228,
"tag": "p",
"text": "set a process's nice value",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 229,
"tag": "p",
"text": "block for some number of seconds",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 230,
"tag": "p",
"text": "run a separate program",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 231,
"tag": "p",
"text": "return elapsed time for self and child processes",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 232,
"tag": "p",
"text": "wait for any child process to die",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 233,
"tag": "p",
"text": "wait for a particular child process to die",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 234,
"tag": "p",
"text": "m// pos qr/STRING/ quotemeta s/// split study",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 235,
"tag": "p",
"text": "match a string with a regular expression pattern",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 236,
"tag": "p",
"text": "find or set the offset for the last/next m//g search",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 237,
"tag": "p",
"text": "compile pattern",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 238,
"tag": "p",
"text": "quote regular expression magic characters",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 239,
"tag": "p",
"text": "replace a pattern with a string",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 240,
"tag": "p",
"text": "split up a string using a regexp delimiter",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 241,
"tag": "p",
"text": "no-op, formerly optimized input data for repeated searches",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 242,
"tag": "p",
"text": "accept bind connect getpeername getsockname getsockopt listen recv send setsockopt shutdown socket socketpair",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 243,
"tag": "p",
"text": "accept an incoming socket connect",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 244,
"tag": "p",
"text": "binds an address to a socket",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 245,
"tag": "p",
"text": "connect to a remote socket",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 246,
"tag": "p",
"text": "find the other end of a socket connection",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 247,
"tag": "p",
"text": "retrieve the sockaddr for a given socket",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 248,
"tag": "p",
"text": "get socket options on a given socket",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 249,
"tag": "p",
"text": "register your socket as a server",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 250,
"tag": "p",
"text": "receive a message over a Socket",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 251,
"tag": "p",
"text": "send a message over a socket",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 252,
"tag": "p",
"text": "set some socket options",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 253,
"tag": "p",
"text": "close down just half of a socket connection",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 254,
"tag": "p",
"text": "create a socket",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 255,
"tag": "p",
"text": "create a pair of sockets",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 256,
"tag": "p",
"text": "chomp chop chr crypt fc hex index lc lcfirst length oct ord pack q/STRING/ qq/STRING/ reverse rindex sprintf substr tr/// uc ucfirst y///",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 257,
"tag": "p",
"text": "remove a trailing record separator from a string",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 258,
"tag": "p",
"text": "remove the last character from a string",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 259,
"tag": "p",
"text": "get character this number represents",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 260,
"tag": "p",
"text": "one-way passwd-style encryption",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 261,
"tag": "p",
"text": "return casefolded version of a string",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 262,
"tag": "p",
"text": "convert a hexadecimal string to a number",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 263,
"tag": "p",
"text": "find a substring within a string",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 264,
"tag": "p",
"text": "return lower-case version of a string",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 265,
"tag": "p",
"text": "return a string with just the next letter in lower case",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 266,
"tag": "p",
"text": "return the number of characters in a string",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 267,
"tag": "p",
"text": "convert a string to an octal number",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 268,
"tag": "p",
"text": "find a character's numeric representation",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 269,
"tag": "p",
"text": "convert a list into a binary representation",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 270,
"tag": "p",
"text": "singly quote a string",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 271,
"tag": "p",
"text": "doubly quote a string",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 272,
"tag": "p",
"text": "flip a string or a list",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 273,
"tag": "p",
"text": "right-to-left substring search",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 274,
"tag": "p",
"text": "formatted print into a string",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 275,
"tag": "p",
"text": "get or alter a portion of a string",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 276,
"tag": "p",
"text": "transliterate a string",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 277,
"tag": "p",
"text": "return upper-case version of a string",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 278,
"tag": "p",
"text": "return a string with just the next letter in upper case",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 279,
"tag": "p",
"text": "transliterate a string",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 280,
"tag": "p",
"text": "msgctl msgget msgrcv msgsnd semctl semget semop shmctl shmget shmread shmwrite",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 281,
"tag": "p",
"text": "SysV IPC message control operations",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 282,
"tag": "p",
"text": "get SysV IPC message queue",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 283,
"tag": "p",
"text": "receive a SysV IPC message from a message queue",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 284,
"tag": "p",
"text": "send a SysV IPC message to a message queue",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 285,
"tag": "p",
"text": "SysV semaphore control operations",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 286,
"tag": "p",
"text": "get set of SysV semaphores",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 287,
"tag": "p",
"text": "SysV semaphore operations",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 288,
"tag": "p",
"text": "SysV shared memory operations",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 289,
"tag": "p",
"text": "get SysV shared memory segment identifier",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 290,
"tag": "p",
"text": "read SysV shared memory",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 291,
"tag": "p",
"text": "write SysV shared memory",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 292,
"tag": "p",
"text": "gmtime localtime time times",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 293,
"tag": "p",
"text": "convert UNIX time into record or string using Greenwich time",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 294,
"tag": "p",
"text": "convert UNIX time into record or string using local time",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 295,
"tag": "p",
"text": "return number of seconds since 1970",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 296,
"tag": "p",
"text": "return elapsed time for self and child processes",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 297,
"tag": "p",
"text": "endgrent endhostent endnetent endpwent getgrent getgrgid getgrnam getlogin getpwent getpwnam getpwuid setgrent setpwent",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 298,
"tag": "p",
"text": "be done using group file",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 299,
"tag": "p",
"text": "be done using hosts file",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 300,
"tag": "p",
"text": "be done using networks file",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 301,
"tag": "p",
"text": "be done using passwd file",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 302,
"tag": "p",
"text": "get next group record",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 303,
"tag": "p",
"text": "get group record given group user ID",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 304,
"tag": "p",
"text": "get group record given group name",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 305,
"tag": "p",
"text": "return who logged in at this tty",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 306,
"tag": "p",
"text": "get next passwd record",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 307,
"tag": "p",
"text": "get passwd record given user login name",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 308,
"tag": "p",
"text": "get passwd record given user ID",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 309,
"tag": "p",
"text": "prepare group file for use",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
},
{
"paragraph_id": 310,
"tag": "p",
"text": "prepare passwd file for use",
"title": "çµèŸŒã¿é¢æ°äžèЧ"
}
] | ããã°ã©ãã³ã°Â > Perl > Perl/颿°
| <noinclude>
{{Nav}}
{{Pathnav|ããã°ã©ãã³ã°|Perl}}
</noinclude>
<includeonly>
=颿°=
{{å
é ã«æ»ã}}
</includeonly>
== 颿°ãšã¯ ==
Perlã®ã颿°ãã¯ãäžããããå€ã«åºã¥ããŠå®çŸ©ãããç¬èªã®åŠçãå®è¡ãããã®çµæãè¿ãäžå¡ã®ã³ãŒãã®ããšã§ãã
è±èªã§ã¯é¢æ°ã®ããšã ''function'' ãšåŒã³ããæ©èœããšèš³ãããšãã§ããŸãã
Perlã®ã颿°ãã«ã¯ãèšèªã³ã¢ã§å®çŸ©æžã¿ã®ã[[#çµèŸŒã¿é¢æ°|çµèŸŒã¿é¢æ°]]ããšãŠãŒã¶ãŒãå®çŸ©ããã[[#ãµãã«ãŒãã³|ãµãã«ãŒãã³]]ããšããããŸãã
ãµãã«ãŒãã³ãã€ããå Žåã«ããæçµçã«ã¯ãããã°ã©ããŒã®æã«ãããçµèŸŒã¿é¢æ°ããåŒãããæãããã¿ããããŠäœæããããšã«ãªããŸãã
åç¯ã§ç޹ä»ãã <code>print</code> 颿°ã¯ãçµèŸŒã¿é¢æ°ã§ãã
ãã®ããã«ãçµèŸŒã¿é¢æ°ã¯ãååã䜿ã£ãŠåŒåºãã ãã§äœ¿ããŸãã
ãã£ãœãããµãã«ãŒãã³ã¯ãååã䜿ã£ãŠåŒã³åºã以åã«ãåŠçã®å
容ãããã°ã©ããŒãäœæããïŒãµãã«ãŒããå®çŸ©ããïŒå¿
èŠããããŸãã
== çµèŸŒã¿é¢æ° ==
Perlã®èšèªã³ã¢ã§å®çŸ©æžã¿ã®é¢æ°ã®ããšããçµèŸŒã¿é¢æ°ããšèšããŸãã
äžã«ã¯ [[#my|my]], [[#use|use]] ã [[#do|do]] ã®æ§ã«ãèŠãããã«æ§æèŠçŽ ãªãã®ããçµèŸŒã¿é¢æ°ãã«åé¡ãããŠããŸãã
=== åºæ¬çãªé¢æ° ===
==== print颿° ====
;æ©èœ:print颿°ã¯ãåŒæ°ã§äžããããæååãæååã®ãªã¹ããæšæºåºåã«åºåããŸããåŒæ°ãäžããããªãã£ããšã㯠<code>$_</code> ãåºåãããŸãã
;[https://paiza.io/projects/Isiw6BqruLhVNGQFCFCSQQ?language=perl äŸ]:<syntaxhighlight lang=perl>
use v5.30.0;
use warnings;
print "Hello, World\n";
print "Hello, Perl\n"
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Hello, World
Hello, Perl
</syntaxhighlight>
:print颿°ã¯ãè¡æ«ã§æ¹è¡ããªãã®ã§ãããæ¹è¡ããããå Žåã«ã¯æç€ºçã«ãšã¹ã±ãŒãã·ãŒã±ã³ã¹ <code>\n</code> ãæååã®æ«å°Ÿã«å ããŸãã
==== say颿° ====
Perl 5.10 ããå°å
¥ãããsay 颿°ã¯ãè¡æ«ã§æ¹è¡ãè¡ããŸããããã§ãéœåºŠ <code>\n</code> ãæååæ«ã«èšè¿°ããæéãçããŸãã
;[https://paiza.io/projects/kCCvuvfgVSM9IGX84QE1cg?language=perl çµèŸŒã¿é¢æ° say]:<syntaxhighlight lang=perl highlight="6-8">
use strict;
use warnings;
use utf8;
binmode STDOUT,":encoding(UTF-8)";
use feature "say";
use feature ':5.10';
use v5.10;
say "Hello";
say "Yes!";
say "Boodbye";
my $message = "ããã«ã¡ã¯";
say $message;
</syntaxhighlight>
: say ã䜿ãã«ã¯ã6-8 è¡ç®ã® use 宣èšã®ããããïŒã€ãå¿
èŠã§ãã
::<syntaxhighlight lang=perl>
use feature "say";
use feature ':5.10';
use v5.10;
</syntaxhighlight>
:#<syntaxhighlight lang=perl>
use feature "say";
</syntaxhighlight>
:#:say ãåæãã§æå¹åããŠããŸãããå§ãã§ãã
:##<syntaxhighlight lang=perl>
use feature qw(say switch);
</syntaxhighlight>
:##: ã®æ§ã«ïŒã€ä»¥äžãåæããããšãã§ããŸãã
:#<syntaxhighlight lang=perl>
use feature ':5.10';
</syntaxhighlight>
:#: ããŒãžã§ã³ 5.10 以éã®æ©èœãå
šãŠæå¹ã«ããŸããææ©ãåããããã«ã¯ããã®ã§ããéå°ã§ãã
:#<syntaxhighlight lang=perl>
use v5.10;
</syntaxhighlight>
:#: æå³çã«ã¯äžãšåãã§ãããããç°¡çŽ ã§ããå€åäžçªå€ã䜿ãããŠããŸãã
;CORE<nowiki>::</nowiki>say:<syntaxhighlight lang=perl highlight="6-8">
#!/usr/bin/perl
use strict;
use warnings;
CORE::say "Hello world!";
</syntaxhighlight>
: CORE<nowiki>::</nowiki>ãå眮ãããšãã©ã°ãã䜿ããã« say颿°ã䜿ãããšãã§ããŸãã
: ã¯ã³ã©ã€ããŒãæžãæšãŠã®ã¹ã¯ãªããã«åããŠããŸãã
: CORE ã¯Perlã³ã¢ã«ãŒãã³ã®åå空éã§ãã
==== æååã«å€æ°ãåŒãå蟌ã ====
Perlã§ã¯ãæååã®äžã«å€æ°ãåŒãåã蟌ãããšãã§ãããã³ãã¬ãŒãèšèªã§ãããã®ãããªäœ¿ããããåºæ¥ãŸãã
:length ã¯æååã®é·ããè¿ããŸãã
;[https://paiza.io/projects/dTI0m8Arb3XFoZUXcGo4kA?language=perl æååã«å€æ°ãåŒãå蟌ã]:<syntaxhighlight lang=perl>
use v5.30.0;
use warnings;
my $x = "aeiou";
my $tmp = length $x;
say "length \"$x\" -> $tmp";
say "length \"aeiou\" -> @{[length 'aeiou']}";
say qq(length "aeiou" -> @{[length 'aeiou']});
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
length "aeiou" -> 5
length "aeiou" -> 5
length "aeiou" -> 5
</syntaxhighlight>
:ãã®æ§ã«ã<code>â</code>ïŒããã«ã¯ã©ãŒããŒã·ã§ã³ããŒã¯ïŒã«å²ãŸããæååã®äžã§ã¯ <code>$倿°</code> ã§åŒã®å€ãã<code>@{[åŒ]}</code> ã§åŒã®å€ãæååã«å蟌ãŸããŸãã
::å³å¯ã«è§£èª¬ããã«ã¯ãã¹ã«ã©ãŒã³ã³ããã¹ããšãªã¹ãã³ã³ããã¹ãã®èª¬æãå¿
èŠãªã®ã§ããããªãã¡ã¬ã³ã¹ãªã©ã®èª¬æãå¿
é ãªã®ã§ãæ©äŒãèŠãŠäžæ¬ããŠè§£èª¬ããŸãã
: qw// æŒç®åã䜿ããšã倿°ãåŒãå±éããæååã®äžã§
:<code>â</code>ïŒããã«ã¯ã©ãŒããŒã·ã§ã³ããŒã¯ïŒã§ã¯ãªãã<code>â</code>ïŒã·ã³ã°ã«ã¯ã©ãŒããŒã·ã§ã³ããŒã¯ïŒã§å²ãŸããæååã§ã¯ã倿°ãåŒã¯å±éãããŸããã
==== æ°åŠé¢æ° ====
===== åºæ¬çãªæ°åŠé¢æ° =====
å¹³æ¹æ ¹ãªã©ã®æ°åŠèšç®ããã颿°ãçšæãããŠããŸãã
;[https://paiza.io/projects/AjzHuhdjMmEhQSMbw_Ufsg?language=perl æå°ã®ãã¿ãŽã©ã¹æ°]:<syntaxhighlight lang=perl>
use v5.20.0;
use warnings;
say "sqrt(3**2 + 4**2) --> @{[sqrt(3**2 + 4**2)]}";
use POSIX "hypot";
say "hypot(3, 4) --> @{[ hypot(3, 4) ]}"
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
sqrt(3**2 + 4**2) --> 5
hypot(3, 4) --> 5
</syntaxhighlight>
: Perlã®çµèŸŒã¿é¢æ° sqrt ã䜿ã£ãŠèªä¹åã®å¹³æ¹æ ¹ãæ±ããŠããŸãã
: èªä¹ã¯çµæããªãŒããŒãããŒãããã¯ã¢ã³ããŒãããŒãèµ·ããå¯èœæ§ãããã®ã§ã察çããã hypot ã䜿ãã®ãå®ç³ã§ãã
: ã§ãããPerlã®çµèŸŒã¿é¢æ°ã«ãMathã¢ãžã¥ãŒã«ã«ã hypot ã¯ãªããPOSIXã¢ãžã¥ãŒã«ã«ãããŸãã
: ãã®å Žåã<code>use POSIX "hypot";</code>ã§ã¯ãªã<code>use POSIX;</code>ã§å
åãªã®ã§ãããPOSIXããhypotãæã£ãŠããŠããæå€æ§ãäŒããããæç€ºããŸããã
: åŒåºãåŽã§ã<code>POSIX::hypot(3, 4)</code> ãšããã®ãåºæ¿çã§ãããè€æ°ç®æãããšé¬±é¶ããã®ã§ use åŽã§å¯ŸåŠããŸããã
====== hypot.pl ======
æ¡ããµã察çãšå¯å€åŒæ°ã«å¯Ÿå¿ããPerlçhypotã®äŸã
;[https://paiza.io/projects/kwxdBFQhFJD82gYMtbA0Vw?language=perl hypot.pl]:<syntaxhighlight lang=perl>
use v5.30.0;
use warnings;
use POSIX;
sub hypot {
my ( $max, $s ) = ( 0, 0 );
foreach my $n (@_) {
next if $n == 0;
return $n if $n != $n; # for NaN
my $arg = abs($n);
return $n if $n == "Inf"; # for Inf
if ( $arg > $max ) {
$s *= ( $max / $arg ) * ( $max / $arg ) if $max != 0;
$max = $arg;
}
$s += ( $arg / $max ) * ( $arg / $max );
}
return $max * sqrt($s);
}
if ( $0 eq __FILE__ ) {
foreach my $i ( -1075 .. -1073, -540 .. -538, 0 .. 2, 508 .. 511, 1021 .. 1024 ) {
my $j = 2**$i;
my ( $n, $m ) = ( 3 * $j, 4 * $j );
say "$i: @{[ 5 * $j ]} @{[ sqrt($n*$n + $m*$m) ]} @{[ ::hypot($n, $m) ]} @{[ POSIX::hypot($n, $m) ]}";
}
}
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
-1075: 0 0 0 0
-1074: 2.47032822920623e-323 0 2.47032822920623e-323 2.47032822920623e-323
-1073: 4.94065645841247e-323 0 4.94065645841247e-323 4.94065645841247e-323
-540: 1.38922421842817e-162 0 1.38922421842817e-162 1.38922421842817e-162
-539: 2.77844843685635e-162 3.14345556940526e-162 2.77844843685635e-162 2.77844843685635e-162
-538: 5.55689687371269e-162 5.44462475754526e-162 5.55689687371269e-162 5.55689687371269e-162
0: 5 5 5 5
1: 10 10 10 10
2: 20 20 20 20
508: 4.18993997810706e+153 4.18993997810706e+153 4.18993997810706e+153 4.18993997810706e+153
509: 8.37987995621412e+153 8.37987995621412e+153 8.37987995621412e+153 8.37987995621412e+153
510: 1.67597599124282e+154 Inf 1.67597599124282e+154 1.67597599124282e+154
511: 3.35195198248565e+154 Inf 3.35195198248565e+154 3.35195198248565e+154
1021: 1.12355820928895e+308 Inf 1.12355820928895e+308 1.12355820928895e+308
1022: Inf Inf Inf Inf
1023: Inf Inf Inf Inf
1024: Inf Inf Inf Inf
</syntaxhighlight>
: Perlã«ã¯ãCã® isnan() ã isfinite() ã«çžåœãã颿°ããªãã®ã§ããããã <code>$n != $n</code> ãš <code>abs($n) == "Inf"</code> ãšããŸããã
:: POSIXã¢ãžã¥ãŒã«ã«ã¯isfinite颿°ãããã®ã§ãããã䜿ãã°ããã®ã§ãããPOSIX::hypotã®ä»£æ¿å®è£
ãªã®ã§å©çšãèŠéããŸããã
===== äžè§é¢æ°ãªã© =====
sin,cos ã¯çµèŸŒã¿é¢æ°ã«ãããŸãããtan, acos ãªã©ä»ã®äžè§é¢æ°ãååšçïŒpiïŒã䜿çšããã«ã¯ãuse宣èšã䜿ã£ãŠ Math::Trigã¢ãžã¥ãŒã«ããå°å
¥ããŸãã
;[https://paiza.io/projects/GyO8xRXjKsGkXzuvl2L9wQ?language=perl äœåŒŠé¢æ°ãšéäœåŒŠé¢æ°]:<syntaxhighlight lang=perl highlight=4>
use 5.30.0;
use warnings;
use Math::Trig qw(pi acos);
say "cos(pi) -> cos(@{[pi]}) -> @{[cos(pi)]}";
say "acos(-1) -> @{[acos(-1)]}"
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
cos(pi) -> cos(3.14159265358979) -> -1
acos(-1) -> 3.14159265358979
</syntaxhighlight>
:ååšçã¯ãMath::Trigã¢ãžã¥ãŒã«ãå°å
¥ãããšäœ¿ããããã«ãªããŸããã<code>$pi</code>ã§ã¯ãªã <code>pi</code>ã§ãã
:: æååäžã§åç
§ããå Žå㯠<code>"@{[pi]}"</code> ãšãªããŸãã
: Perlã®äžè§é¢æ°ã®è§åºŠã®åäœã¯å€ãã®ããã°ã©ãã³ã°èšèªåæ§ã©ãžã¢ã³ïŒåŒ§åºŠæ³ïŒã§ãã
: æ£åŒŠsinãšäœåŒŠcosã¯Perlã®èšèªã³ã¢ã§å®çŸ©ãããŠããŸãããæ£æ¥tanã¯Math::Trigã¢ãžã¥ãŒã«ã§å®çŸ©ãããŠããŸãã
:: Math::Trigã¢ãžã¥ãŒã«ã§ã¯ãpiãªã©ã®å®æ°ãä»ã®äžè§é¢æ°é¢é£ã®è«žé¢æ°ãå®çŸ©ãããŠããŸãã
{{See also|[https://perldoc.perl.org/Math::Trig perldoc Math::Trig]}}
==== æ¥ä»æå»é¢ä¿ã®é¢æ° ====
çŸåšã®æ¥æãæå»ãªã©ã衚ãã«ã¯ãtime颿°ããã³localtime颿°ã䜿ããŸãã
;[https://paiza.io/projects/4-FKQ--QuCFTcHN321xcsA?language=perl ãšããã¯ããã®ç§æ°ãšãããŒã«ã«æå»]:<syntaxhighlight lang=perl highlight=4>
use v5.30;
use warnings;
use utf8;
binmode STDOUT,":encoding(UTF-8)";
my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = localtime(time());
say "time() -> @{[time()]}";
say "ããŸã¯ã@{[1900 + $year]} 幎 @{[1 + $mon]} æ $mday æ¥ $hour æ $min å $sec ç§ã§ãã";
use POSIX "strftime";
say strftime "%Y/%m/%d %H:%M:%S", localtime();
say strftime "%c", localtime();
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
time() -> 1668851859
ããŸã¯ã2022 幎 11 æ 19 æ¥ 9 æ 57 å 39 ç§ã§ãã
2022/11/19 09:57:39
Sat 19 Nov 2022 09:57:39 AM UTC
</syntaxhighlight>
;説æ
:time颿°ã¯ããšããã¯ïŒ1970幎1æ1æ¥0æ0å0ç§(UTC) ïŒããã®éç®ç§ãè¿ããŸãã
:localtime颿°ã¯ããšããã¯ããã®éç®ç§åœ¢åŒã®åŒæ°ããå¹Žææ¥æåç§ã®èŠçŽ ã«åè§£ããªã¹ãã§è¿ããŸãã
::localtime颿°ã¯ãåŒæ°ãçç¥ãããš time()ãä»®å®ãããã®ã§ããã®äŸã§ã®åŒæ°ã¯åé·ã§ãã
: localtimeãè¿ããªã¹ããæäœããã«ã¯1900ãè¶³ãããææ°ã®è£æ£ããããé¢åã§ãïŒããééããŸãïŒã
: POSIXã¢ãžã¥ãŒã«ã® strftime ã䜿ããšãCã®strftime()ãšåãïŒæ£ç¢ºã«ã¯POSIXãšåãïŒæžåŒåæååãã€ããå¯èªæ§ãåäžããŸãã䜿ããŸãããã
: DateTimeã¢ãžã¥ãŒã«ãããã®ã§ãããPerlæµã®ãªããžã§ã¯ãæåã®æ§æã§æžãããŠããã®ã§ãçŽæçãšã¯èšãé£ãã³ãŒãã«ãªããŸãã䜿ããªãšãŸã§ã¯èšããŸããã
==== split颿° ====
split颿°ã«ã¯ãäžãããããã¿ãŒã³ã§æååãåºåãããªã¹ãã§è¿ããŸãã
;[https://paiza.io/projects/8JO5ecVl3w4IKNg0tncUmg?language=perl split]:<syntaxhighlight lang=perl highlight=6>
use v5.30;
use warnings;
use utf8;
binmode STDOUT,":encoding(UTF-8)";
my @list = split(/ /, 'çŠæ åŠæ 匥ç 坿 çæ æ°Žç¡æ ææ èæ é·æ ç¥ç¡æ é§æ 垫走');
for (my $i = 0; $i <= $#list; $i++){
say qq(@{[$i+1]}æ: $list[$i]);
}
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
1æ: çŠæ
2æ: åŠæ
3æ: 匥ç
4æ: 坿
5æ: çæ
6æ: æ°Žç¡æ
7æ: ææ
8æ: èæ
9æ: é·æ
10æ: ç¥ç¡æ
11æ: é§æ
12æ: 垫走
</syntaxhighlight>
== ãµãã«ãŒãã³ ==
{{Main|[https://perldoc.perl.org/5.36.0/perlsub perlsub(en)]|[https://perldoc.jp/docs/perl/5.36.0/perlsub.pod perlsub(ja)]}}
Perlã§ã¯ããŠãŒã¶ãŒãå®çŸ©ãã颿°ã®ããšããµãã«ãŒãã³( ''subroutine'' )ãšåŒã³ãããŒã¯ãŒã<code>sub</code>ã䜿ãå®çŸ©ããŸãã
=== ã·ã³ãã«ãªãµãã«ãŒãã³ã®å®çŸ©ãšåŒåºã ===
ãµãã«ãŒãã³ã®å®çŸ©ãšåŒåºãã¯ã説æããããšãã»ãšãã©ãªãã»ã©ç°¡åã§ãã
;[https://paiza.io/projects/ahyDWYUS_WdFUG1H1TAKbw?language=perl ã·ã³ãã«ãªãµãã«ãŒãã³ã®å®çŸ©ãšåŒåºã]:<syntaxhighlight lang=perl line highlight="4-6,8-10,12,13,15,16">
use v5.30.0;
use warnings;
sub world {
say "Hello, World";
}
sub perl {
say "Hello, Perl";
}
&world;
&perl;
world;
perl;
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Hello, World
Hello, Perl
</syntaxhighlight>
: 4-6ã颿°worldã®å®çŸ©
: 8-10ã颿°perlã®å®çŸ©
:: èŠããŸãŸã§ã
: 12,15 ã颿°worldã®åŒåºã
: 13,16 ã颿°perlã®åŒåºã
:: èŠããŸãŸã§ããã<code>&</code>ãå眮ãããŠããªããŠãããããŠããŠãåããšããã®ã¯éç¶ãšããŸããã
:: ãã® <code>&</code> ã¯ãçµèŸŒã¿é¢æ°ã§ã¯å眮ã§ããŸããã
:: ãšããããã§ã<code>&</code> ã颿°åŒåºãã§å眮ããã®ã¯ããçµèŸŒã¿é¢æ°ã§ã¯ãªããµãã«ãŒãã³ãåŒãã§ããŸãããšããæå³ã«ãªããŸãã
:: ãŸãã<code>&</code> ãçç¥ãããš[[#ãµãã«ãŒãã³ã®å®£èš|ãµãã«ãŒãã³ã®å®£èš]]ããåã«ããµãã«ãŒãã³ãåŒåºãããšã¯ã§ããŸããã
=== ãµãã«ãŒãã³å®£èš ===
ãµãã«ãŒãã³ã®å®çŸ©ããå
ã«ãµãã«ãŒãã³ãåŒåºãå¿
èŠãããããšããããŸãïŒå
žåçã«ã¯ããäºãã«åŒã³åã颿°ïŒã
ãã®å Žåã¯ãåŒåºããšã« <code>&</code> ãå眮ãããããµãã«ãŒãã³å®£èšããµãã«ãŒãã³åŒåºã®åã«ããŸãã
;[https://paiza.io/projects/YCbleN8uFaa1BNzXrHB9mQ?language=perl ãµãã«ãŒãã³å®£èš]:<syntaxhighlight lang=perl line highlight="4,5,7,10">
use v5.30.0;
use warnings;
&world;
&perl;
sub world;
world;
sub perl;
perl;
sub world {
say "Hello, World";
}
sub perl {
say "Hello, Perl";
}
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Hello, World
Hello, Perl
Hello, World
Hello, Perl
</syntaxhighlight>
: 4,5㯠& ãå眮ããŠããã®ã§ã宣èšããªããŠããµãã«ãŒãã³ãšãããã
: 7,10ããµãã«ãŒãã³å®£èšã§ããµãã«ãŒãã³å®çŸ©ã®åæ¹åç
§ã解決ããŸãã
=== ã°ããŒãã«å€æ°ã䜿ã£ããµãã«ãŒãã³ã®æ¯ãèãã®å€æŽ ===
ååºã®äŸã¯ãã»ãšãã©åãå
容ã®ãµãã«ãŒãã³ãïŒã€çšæããŸããããïŒã€ã«ãŸãšããŠã¿ãŸãããã
;[https://paiza.io/projects/MBw8XjvoxM7yMMXkbd1CdQ?language=perl ã°ããŒãã«å€æ°ã䜿ã£ããµãã«ãŒãã³ã®æ¯ãèãã®å€æŽ]:<syntaxhighlight lang=perl line highlight="5,8,12,14">
use v5.30.0;
no strict;
use warnings;
$who = "WHO!";
sub hello {
say "Hello, $who";
}
&hello;
$who = "world";
&hello;
$who = "Perl";
&hello;</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Hello, WHO!
Hello, world
Hello, Perl
</syntaxhighlight>
: ã°ããŒãã«å€æ° <var>$who</var> ã䜿ã£ãŠã¡ãã»ãŒãžã®åŸåãå€ããŠããŸãã
: ãã®æ¹æ³ã¯ãã®æ¹æ³ã§åããŸããããã€ãŠã®FORTRANãBASICã¯ããŸãã«ãã®ããã«ã°ããŒãã«å€æ°ã§ãµãã«ãŒãã³ãã³ã³ãããŒã«ããŠããŸããã
: ããããïŒè¡ç®ã®<code>no strict;</code>ã§æç€ºçã« strict ãç¡å¹ã«ããªããã°ãšã©ãŒãåºãã»ã©ãã°ããŒãã«å€æ°ã®äœ¿çšã¯'''æšå¥šãããªã'''æ¹æ³ã§ãã
=== åŒæ°ã䜿ã£ããµãã«ãŒãã³ã®æ¯ãèãã®å€æŽ ===
ååºã®äŸã¯ãã°ããŒãã«å€æ°ã䜿ã£ãŠããŸããããã°ããŒãã«å€æ°ã¯ããŒã¿ãŒãããŒçãªã¹ãã²ãã£ãŒã³ãŒãã«çŽçµããã®ã§ãåŒæ°ã䜿ã£ãŠã¹ããŒãã«å®è£
ããŠã¿ãŸãããã
;[https://paiza.io/projects/NvuWuRBObB3oqD2kq1iFnQ?language=perl åŒæ°ã䜿ã£ããµãã«ãŒãã³ã®æ¯ãèãã®å€æŽ]:<syntaxhighlight lang=perl line highlight="5,6">
use v5.30.0;
use warnings;
sub hello {
my $who = shift;
$who //= "WHO?!";
say "Hello, $who";
}
&hello();
&hello("world");
&hello("Perl");
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Hello, WHO?!
Hello, world
Hello, Perl
</syntaxhighlight>
:;åŒæ°ã®åãåã:<syntaxhighlight lang=perl line start=4>
my $who = shift;
</syntaxhighlight>
::Perlã®ãµãã«ãŒãã³ã®åŒæ°ã¯ãååãæã£ãä»®åŒæ°ã§ã¯ãªãç¹æ®å€æ° <var>@_</var> ã«é
åãšããŠæž¡ãããŸãã
:: 第äžåŒæ°ã <code>$_[0]</code> ãšãªããŸãã
:: åã°å®åæãªã®ã§ãããåŒæ°ãå·Šããé ã«èªãåäœã <code>shift</code>ïŒshift @_ ã®æå³ïŒ ãšç¬Šåããã®ã§ããããããååïŒãã®å Žå㯠<var>$who</var>ïŒã®å€æ°ã宣èšã <code>shift</code> ã§åæåããã³ãŒããè¯ãèŠãããŸãã
:: ããŒã¯ãŒã <code>my</code> ãå眮ããŠå®£èšãã倿°ã¯ãã'''ã¬ãã·ã«ã«å€æ°'''ããšãªãããµãã«ãŒãã³ïŒãã®å Žå㯠helloïŒãæãããšåç
§ã§ããªããªããããäžåºŠåããµãã«ãŒãã³ãåŒãã§ããããéãå€ã«ãªã£ãŠãŸãïŒéæ°žç¶çãªã¬ãã·ã«ã«ã¹ã³ãŒãïŒã
:;ãã£ãã©ã«ãåŒæ°:<syntaxhighlight lang=perl line start=5>
$who //= "WHO?!";
</syntaxhighlight>
::Perlã«ã¯ããã£ãã©ã«ãåŒæ°ã®æ§æã¯ãªãã£ãã®ã§ãåŒæ°ãæž¡ãããªãã£ãå Žåã®æ¢å®å€ïŒãã£ãã©ã«ãïŒãæå®ããã«ã¯ããã®ãããªã€ãã£ãªã ã«ãªããŸãã
ãã® @_ ã«ããåŒæ°ã®åæž¡ãã¯ãPerlã§ã¯çŽïŒïŒå¹Žã«æž¡ã£ãŠäœ¿ãããŠããŸããããä»ã®ããã°ã©ãã³ã°èšèªã®ããã«ååä»ãã®ä»®åŒæ°ã欲ãããšã®èŠæã¯æ ¹åŒ·ããã·ã°ããã£ãŒãšããŠv5.20.0ãã'''å®éšç'''ãªæ©èœãšããŠå®è£
ãããŠããŸãã
{{See also|[[#ã·ã°ããã£ãŒ]]}}
=== æ»å€ãšååž° ===
ãããŸã§ã§ãåŒæ°ãååããµãã«ãŒãã³ã®æ¯èããå€ããããšãã§ããããã«ãªããŸããã
次ã«ããå€ãè¿ãææ®µããåé¡ã«ãªããŸãã
ã°ããŒãã«å€æ°ã䜿ã£ãŠå€ãè¿ãããã§ãããããŒã¿ãŒãããŒçãªã¹ãã²ãã£ãŒã³ãŒããã«ãªãã®ã§ãµãã«ãŒãã³ã®ãæ»å€ãã䜿ã£ãŠã¿ãŸãããã
==== æ»å€ãè¿ããµãã«ãŒãã³ ====
ããŸãŸã§ã®ãµãã«ãŒãã³ã¯å€ãè¿ããŸããã§ããããPerlã®ãµãã«ãŒãã³ã¯å€ãïŒã€è¿ãããšãã§ããŸãã
;[https://paiza.io/projects/NBXcY50TNs_cU1xGQcEOmg?language=perl æ»å€ãè¿ããµãã«ãŒãã³]:<syntaxhighlight lang=perl line highlight="6,11">
use strict;
use warnings;
sub add {
my ($x, $y) = @_;
return $x + $y;
}
print("add(12, 9) -> @{[add(12, 9)]}\n");
print("add(1.2, 0.9) -> @{[add(1.2, 0.9)]}\n");
print("add(123, '89') -> @{[add(123, '89')]}\n");
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
add(12, 9) -> 21
add(1.2, 0.9) -> 2.1
add(123, '89') -> 212
</syntaxhighlight>
:;æ»å€ãè¿ãæ:<syntaxhighlight lang=perl line start=6>
return $x + $y;
</syntaxhighlight>
::Perlã®ãµãã«ãŒãã³ã®æ»å€ãè¿ãå Žåã¯
:;return:<syntaxhighlight lang=perl>
return åŒ ;
</syntaxhighlight>
::ã§ã®ãåŒãã®å€ãè¿ããŸãã
:ãã return ã®ãªããµãã«ãŒãã³ã®æ»å€ãåç
§ãããšããµãã«ãŒãã³ã§æåŸã«è©äŸ¡ããåŒã®å€ãããããŸãããã®ãã
::<syntaxhighlight lang=perl line start=6>
return $x + $y;
</syntaxhighlight>
::ã¯
::<syntaxhighlight lang=perl line start=6>
$x + $y;
</syntaxhighlight>
::ãšåãã§ãã
::: Perl ã® <code>;</code> ã¯ãCã®ããã«åŒãæã«ããã®ã§ã¯ãªããåŒãšåŒãåºåãããªãã¿ãŒãªã®ã§æåŸã®åŒã®åŸã« <code>;</code> ã¯äžèŠã§ãã
:æ»å€ãšã¯é¢ä¿ãããŸãããã
:;æååãæ°å€ã«èªå倿ããã:<syntaxhighlight lang=perl line start=11>
print("add(123, '89') -> @{[add(123, '89')]}\n");
</syntaxhighlight>
::ããäœäºããªãã£ããã®ããã«
:::<syntaxhighlight lang=text>
add(123, '89') -> 212
</syntaxhighlight>
::ãšãªãããã«ãæ°å€ãæåŸ
ãããæèã«æ°å€ã«å€æã§ããæååãæ¥ããšãèªåçã«æ°å€ã«å€æããæŒç®ãããŸãã
:::Perlã®ãã®æé»ã®å€æã¯ããšããã¯ããã®éç®ç§ãæ¡äžããããšããªã©ã«çºçŸããå¶æªãªãã°ã®åå ã«ãªã£ãŠããŸããã
==== ååž°çåŒåºã ====
åŒæ°ãšæ»å€ãæã«å
¥ã£ãã®ã§ãååž°çåŒåºããè¡ããµãã«ãŒãã³ãæžããŠã¿ãŸãã
===== æŽæ°ã®åªä¹ =====
æŽæ°ã®çޝä¹ãè¿ããµãã«ãŒãã³ pow ãæžããŠã¿ãŸããã
;[https://paiza.io/projects/it2hilVOZ9TGu_lmM68elw?language=perl æŽæ°ã®åªä¹]:<syntaxhighlight lang=perl line highlight="9">
use v5.30.0;
use warnings;
sub pow {
my ($n, $m) = @_;
return "Domain error" if $m < 0;
return 1 if $m == 0;
return $n if $m == 1;
return $n * &pow($n, $m - 1);
}
say "pow(2, $_) -> @{[ pow(2, $_) ]}" foreach -1..3;
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
pow(2, -1) -> Domain error
pow(2, 0) -> 1
pow(2, 1) -> 2
pow(2, 2) -> 4
pow(2, 3) -> 8
</syntaxhighlight>
: 9 ã§ãpowèªèº«ãææ°ãïŒæžãããŠåŒãã§ããŸãã
: <code>$n, $m</code> ãéè€äœ¿çšãããŠããããã«èŠããŸããã<code>my</code>ãã€ããŠããã®ã§ãååž°ã¬ãã«ãïŒã€äžãããšã«å¥ã®ã€ã³ã¹ã¿ã³ã¹ãçæãããŠããŸãã
===== æŽæ°ã3æ¡ããšã«ã«ã³ãã§åºåã£ãŠè¡šç€ºãã =====
æŽæ°ã3æ¡ããšã«ã«ã³ãã§åºåã£ãŠè¡šç€ºãããµãã«ãŒãã³ comma3 ãæžããŠã¿ãŸããã
;[https://paiza.io/projects/urtCz3eFlaG7tRvYLm1Qfw?language=perl æŽæ°ã3æ¡ããšã«ã«ã³ãã§åºåã£ãŠè¡šç€ºãã]:<syntaxhighlight lang=perl line highlight="6,8">
use v5.30.0;
use warnings;
sub comma3 {
my $n = shift;
return "-" . comma3(-$n) if $n < 0;
my ($num, $rem) = (int($n / 1000), $n % 1000);
return comma3($num) . sprintf ",%3d", $rem if $num;
return sprintf "%d", $rem
}
say comma3 $_ foreach qw(
123456789
-999999
0
1
12
123
1234
)
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
123,456,789
-999,999
0
1
12
123
1,234
</syntaxhighlight>
===== ãã£ããããæ°åãšã¡ã¢åãšãã³ãããŒã¯ =====
ååž°ã§å¿
ãåäžãããã[[W:ãã£ããããæ°å|ãã£ããããæ°å]]ãšã¡ã¢åã顿ã«ããã³ãããŒã¯ãã¹ããè¡ã£ãŠã¿ãããšæããŸãã
;[https://paiza.io/projects/tndgcBdq34woengCngWc0w?language=perl ãã£ããããæ°åãšã¡ã¢åãšãã³ãããŒã¯]:<syntaxhighlight lang=perl line highlight="20">
use v5.30.0;
use warnings;
sub fibonacci {
my $n = shift;
return $n if $n == 0;
return $n if $n == 1;
return fibonacci($n - 2) + fibonacci($n - 1)
}
sub fibonacci_norec {
my $n = shift;
my ($x, $y) = (1, 0);
($x, $y) = ($y, $x + $y) foreach 1..$n;
return $y
}
sub fibonacci_memorization {
my $n = shift;
state @table = (0, 1);
return $table[$n] if defined $table[$n];
return $table[$n] = fibonacci($n - 2) + fibonacci($n - 1)
}
use Benchmark qw/timethese cmpthese/;
my $i = 16;
cmpthese timethese(2 ** 10, {
"ååž°" => sub { fibonacci($_) foreach 1..$i },
"éååž°" => sub { fibonacci_norec($_) foreach 1..$i },
"ã¡ã¢å" => sub { fibonacci_memorization($_) foreach 1..$i },
});
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Benchmark: timing 1024 iterations of ã¡ã¢å, ååž°, éååž°...
ã¡ã¢å: 0 wallclock secs ( 0.00 usr + 0.00 sys = 0.00 CPU)
(warning: too few iterations for a reliable count)
ååž°: 2 wallclock secs ( 1.58 usr + 0.00 sys = 1.58 CPU) @ 648.10/s (n=1024)
éååž°: 0 wallclock secs ( 0.01 usr + 0.00 sys = 0.01 CPU) @ 102400.00/s (n=1024)
(warning: too few iterations for a reliable count)
Rate ååž° éååž° ã¡ã¢å
ååž° 648/s -- -99% -100%
éååž° 102400/s 15700% -- -100%
ã¡ã¢å 1023999999999999872/s 157999999999999968% 1000000000000001% --
</syntaxhighlight>
: fibonacci ã¯ãçŽ æŽãªååž°çã®ãã£ããããæ°åã§ãã
: fibonacci_norec ã¯ãéååž°çã®ãã£ããããæ°åã§ãã
: fibonacci_memorization ã¯ãã¡ã¢åãæœããååž°çã®ãã£ããããæ°åã§ãã
:: 20è¡ç®ã® <code>state @table = (0, 1);</code>ã¯ãéæ®çºæ§ã®ã¬ãã·ã«ã«ã¹ã³ãŒã倿°ã®å®£èšã§ã my ãšéãæåããåæåããããåã³åããµãã«ãŒãã³ãåŒã°ãããšãã«ã¯åã®å€ãæ¶ããŠããŸãããŸããµãã«ãŒãã³ã®å€ããåç
§ããæ¹æ³ã¯ãããŸããã
: ã¡ã¢åã¯ãäžåºŠèšç®ããçããèšæ¶ããŠæ¬¡ããã¯èšæ¶ããçããæŠç¥ãªã®ã§ããã³ãããŒã¯ã«æå©ã§ãã
:: ã¡ã¢åãè¡ãã¢ã«ãŽãªãºã ãšè¡ãªããªãã¢ã«ãŽãªãºã ã§ã¯ããã³ãããŒã¯ã®ãããªç¹°ãè¿ãã«é¢ããæåæ§ãéããŸããç¹°è¿ãåæ°ã«å¯Ÿãç·åœ¢ã«æéãå¢ããªãã¢ã«ãŽãªãºã ã¯ã¡ã¢åãè¡ã£ãŠããå¯èœæ§ãããã®ã§ãã«ãŒãã®åºã§äœ¿ãããã®ã«ã¯é©ããŠããŸãããé »åºŠã®äœãäœ¿ãæ¹ã®å Žåãæ§èœãäºæ³ããæªãå¯èœæ§ããããŸãã
::: ãã®ããšãããå®éã®ããã°ã©ã ã®ãããã¡ã€ã«çµæãšãã³ãããŒã¯ã®çµæã®åŸåã®æ¯èŒãéèŠã«ãªããŸãã
===== ç¡åååž° =====
ãµãã«ãŒãã³èªèº«ãžã®ãªãã¡ã¬ã³ã¹ __SUB__ ã䜿ããšç¡å颿°ã®ååž°ãã§ããŸãã
;[https://paiza.io/projects/it2hilVOZ9TGu_lmM68elw?language=perl æŽæ°ã®åªä¹]:<syntaxhighlight lang=perl line>
use v5.30.0;
# éä¹ n!
say (sub {
my $n = shift;
return $n == 0 ? $n
: $n == 1 ? $n
: $n * __SUB__->( $n - 1 );
}->(7));
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
5040
</syntaxhighlight>
=== ã·ã°ããã£ãŒ ===
ååºã®äŸã§ãåŒæ°ã䜿ã£ãŠãµãã«ãŒãã³ã®æ¯ãèããå€ããããšãã§ããŸããã
æ©èœçã«ã¯å
è¶³ããŠããã®ã§ããã<u>ååä»ãã®ä»®åŒæ°</u>ãæã声ã¯ä»¥åãããããPerl 5.20.0 ãããå®éšçã( ''experimental'' )ãªã·ã°ããã£ãŒã®å®è£
ãè¡ãªãããPerl 5.26.0 ããã³ã¢æ©èœã®ïŒã€ãšãªããŸããã
;[https://paiza.io/projects/9iJ8toU2PS78IlvlqtcFow?language=perl ã·ã°ããã£ãŒ]:<syntaxhighlight lang=perl line highlight="3,4,6">
# !/usr/bin/perl
use v5.30;
use feature 'signatures';
no warnings "experimental::signatures";
sub hello($who = "WHO?!") {
say "Hello, $who";
}
&hello();
&hello("world");
&hello("Perl");
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Hello, WHO?!
Hello, world
Hello, Perl
</syntaxhighlight>
:;ã·ã°ããã£ãŒ:<syntaxhighlight lang=perl line start=6>
sub hello($who = "WHO?!") {
</syntaxhighlight>
::ååãæã£ãä»®åŒæ°ã䜿ããããã«ãªããŸããã
::'''ãã£ãã©ã«ãåŒæ°'''ã«ã察å¿ããŠããŸãã
:Perl 5.36.0 ããã¯ãsignatures 㯠experimental ã忥ããã®ã§
::<syntaxhighlight lang=perl line>
use v5.30;
use feature 'signatures';
no warnings "experimental::signatures";
</syntaxhighlight>
:ã¯
::<syntaxhighlight lang=perl line highlight="3,4,6">
use v5.36.0;
</syntaxhighlight>
: ãšã§ããŸãïŒäœ¿çšããŠããåŠçç³»ããv5.30.0以éã®å Žåã«éããŸãïŒã
=== ãããã¿ã€ã ===
==== ã©ã ãæœè±¡ ====
sort ã®ããã«ãã³ãŒããããã¯ãåŒæ°ãšãããµãã«ãŒãã³ãèããŠã¿ãŸãããã
;[https://paiza.io/projects/OtxUGCrI2TXyqXxZsWWHDw?language=perl äŸ]:<syntaxhighlight lang=perl line highlight="3,8,11">
use v5.30.0;
sub bis(&) {
my $cbr = shift;
$cbr->();
$cbr->()
}
bis { say 'Hello, world!' };
my $i = 0;
bis { $i++ };
say $i;</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
Hello, world!
Hello, world!
2
</syntaxhighlight>
: äžããããã³ãŒããããã¯ãïŒåå®è¡ãããµãã«ãŒãã³ã§ãã
: 3è¡ç®ã®<code>sub bis(&)</code>ã®<code>&</code>ã¯ã©ã ãæœè±¡ã§ãã
==== map ãæš¡å£ ====
çµèŸŒã¿é¢æ° map ãæš¡å£ãããµãã«ãŒãã³ mapx ãå®è£
ããŸãã
;[https://paiza.io/projects/GWnq66NY0nfz5jDrvjP3pQ?language=perl äŸ]:<syntaxhighlight lang=perl line>
use v5.30.0;
sub map(&@) {
my ( $cbr, @ary ) = @_;
my @result;
push @result, $cbr->( local $a = $_ ) foreach @ary;
return @result;
}
say main::map { 2 * $_ } ( 1, 2, 3 );
say main::map { 2 * $a } ( 1, 2, 3 );
say CORE::map { 2 * $_ } ( 1, 2, 3 );
say main::map { $_ x 2 } qw(a b c);
say main::map { $a x 2 } qw(a b c);
say CORE::map { $_ x 2 } qw(a b c);
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
246
246
246
aabbcc
aabbcc
aabbcc
</syntaxhighlight>
: çµèŸŒã¿é¢æ° sort ã®æ§ã«ã<var>$a</var> ã§ã³ãŒããããã¯ã«åŒæ°ãæž¡ãããšãã§ããããã«ããŸããã
:: local ã§å®£èšããŠããã®ã§ãã¹ã³ãŒã㯠foreach åŒã®äžã ãã§ãæãããšã°ããŒãã«ãª $a ã¯åæ»ãããŸãã
==== reduce ====
çµèŸŒã¿é¢æ°ã« reduce ããªãã£ãã®ã§å®è£
ããŸããã
;[https://paiza.io/projects/Oow9-sgUyfHJ2HcPcyoH2w?language=perl äŸ]:<syntaxhighlight lang=perl line>
use v5.30.0;
use warnings;
sub reduce(&@) {
my ( $cbr, @ary ) = @_;
my $init = shift @ary;
$init = $cbr->( local $a = $init, local $b = $_ ) foreach @ary;
return $init;
}
say reduce { $_[0] + $_[1] } 1 .. 10;
say reduce { $_[0] . $_[1] } "A" .. "Z";
say reduce { $a + $b } 1 .. 10;
say reduce { $a . $b } "A" .. "Z";
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
55
ABCDEFGHIJKLMNOPQRSTUVWXYZ
55
ABCDEFGHIJKLMNOPQRSTUVWXYZ
</syntaxhighlight>
: çµèŸŒã¿é¢æ° sort ã®æ§ã«ã<var>$a</var> ãš <var>$b</var> ã§ã³ãŒããããã¯ã«åŒæ°ãæž¡ãããšãã§ããããã«ããŸããã
==== filter ====
çµèŸŒã¿é¢æ°ã« grep ã¯ãå€ãã®èšèªã§ filter ã®ååã§ç¥ããã颿°ã§ãã
;[https://paiza.io/projects/Zm4tMKt5pp0--A61grEvGg?language=perl äŸ]:<syntaxhighlight lang=perl line>
use v5.30.0;
sub filter(&@) {
my ( $cbr, @ary ) = @_;
my @result = ();
$cbr->( local $a = $_ ) ? push( @result, $_ ) : 0 foreach @ary;
return @result;
}
say filter { $_ % 2 == 1; } 1 .. 10;
say filter { $a % 2 == 1; } 1 .. 10;
say grep { $_ % 2 == 1; } 1 .. 10;
say filter { index( "Hello world", $_ ) >= 0 } ( "A" .. "Z", "a" .. "z" );
say filter { index( "Hello world", $a ) >= 0 } ( "A" .. "Z", "a" .. "z" );
say grep { index( "Hello world", $_ ) >= 0 } ( "A" .. "Z", "a" .. "z" );
say "@{[ map { $_ * 2 } filter { $_ % 2 == 1; } 1..10]}";
say "@{[ map { $_ * 2 } filter { $a % 2 == 1; } 1..10]}";
say "@{[ map { $_ * 2 } grep { $_ % 2 == 1; } 1..10]}";
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
13579
13579
13579
Hdelorw
Hdelorw
Hdelorw
2 6 10 14 18
2 6 10 14 18
2 6 10 14 18
</syntaxhighlight>
: çµèŸŒã¿é¢æ° sort ã®æ§ã«ã<var>$a</var> ã§ã³ãŒããããã¯ã«åŒæ°ãæž¡ãããšãã§ããããã«ããŸããã
[TODO:ã¹ã³ãŒãã«ãŒã«ã«é¢ããç°¡çŽ ãªèª¬æ]
[TODO:ã³ã³ããã¹ãã«é¢ããäŸããµãã ãã«äœ¿ã£ã解説]
== æ°žç¶çã¹ã³ãŒãã®ã¬ãã·ã«ã«å€æ° ==
my ã§å®£èšãã倿°ïŒã¬ãã·ã«ã«å€æ°ïŒã¯ãµãã«ãŒãã³ãæãããšåŸ¡ç Žç®ã«ãªããŸãããstate ã§å®£èšãã倿°ã¯ã¬ãã·ã«ã«ã¹ã³ãŒãã§ãããã®ã®æ¬¡ã«ãµãã«ãŒãã³ãåŒã°ãããšããå€ãæ¶ããŠããŸãã
;[https://paiza.io/projects/BUEgIyXqdobwwm9p3VsmKw?language=perl state $var]:<syntaxhighlight lang=perl line highlight="6">
#!/usr/bin/perl
use v5.10;
sub func {
my $myVar = 0;
state $stateVar = 0;
$myVar++;
$stateVar++;
CORE::say "\$myVar = $myVar, \$stateVar = $stateVar";
}
&func for 1..5
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
$myVar = 1, $stateVar = 1
$myVar = 1, $stateVar = 2
$myVar = 1, $stateVar = 3
$myVar = 1, $stateVar = 4
$myVar = 1, $stateVar = 5
</syntaxhighlight>
: state $var ã¯ãPerl 5.10 以éã§ãµããŒããããŠããŸãã
== ã³ã³ããã¹ããšwantarray颿° ==
åããµãã«ãŒãã³ãåŒåºããŠããã¹ã«ã©ãŒãæ»ãããšãæåŸ
ããŠããæèïŒã¹ã«ã©ãŒã³ã³ããã¹ãïŒãšããªã¹ããæ»ãããšãæåŸ
ããŠããæèïŒãªã¹ãã³ã³ããã¹ãïŒã®ïŒéãããããŸãã
ãã®ïŒã€ã®ã±ãŒã¹ãå€å¥ããããã« wantarray 颿°ãçšæãããŠããŸãã
;[https://paiza.io/projects/wjGlO4nNueGJHx_A17Zh-g?language=perl ã³ã³ããã¹ããšwantarray颿°]:<syntaxhighlight lang=perl line highlight=6>
#!/usr/bin/perl
use strict;
use warnings;
sub func {
return map { $_ * 2 } @_ if wantarray();
my $sum = 0;
$sum += $_ for @_;
return $sum;
}
my @x = func(0, 1, 2);
my $y = func(0, 1, 2);
print <<EOS;
my \@x = func(0, 1, 2); \@x -> @x
my \$y = func(0, 1, 2); \$y -> $y
@{[ func(1,2,3) ]}
@{[ scalar func(1,2,3)]}
@{[ ~~ func(1,2,3)]}
EOS
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
my @x = func(0, 1, 2); @x -> 0 2 4
my $y = func(0, 1, 2); $y -> 3
2 4 6
6
6
</syntaxhighlight>
:wantarray 颿°ã¯ããµãã«ãŒãã³ãåŒåºããã³ã³ããã¹ãã§æ»å€ãšããŠãªã¹ããèŠæ±ãããŠãããªãçããã¹ã«ã©ãŒãèŠæ±ãããŠãããªãåœãè¿ããŸãã
:颿° func ã¯ããªã¹ãã³ã³ããã¹ãã§ã¯å
šãŠã®èŠçŽ ãäºåã«ãããªã¹ãããã¹ã«ã©ãŒã³ã³ããã¹ãã§ã¯å
šãŠã®èŠçŽ ã®åèšãè¿ããŸãã
== çµèŸŒã¿é¢æ°ã®äžèЧ ==
{{Main|[https://perldoc.perl.org/5.36.0/perlfunc perlfunc(en)]|[https://perldoc.jp/docs/perl/5.36.0/perlfunc.pod perlfunc(ja)]}}
=== æååïŒString ===
[[#chomp|chomp]] [[#chop|chop]] [[#chr|chr]] [[#crypt|crypt]] [[#fc|fc]] [[#hex|hex]] [[#index|index]] [[#lc|lc]] [[#lcfirst|lcfirst]] [[#length|length]] [[#oct|oct]] [[#ord|ord]] [[#pack|pack]] [[#q/STRING/|q/STRING/]] [[#qq/STRING/|qq/STRING/]] [[#reverse|reverse]] [[#rindex|rindex]] [[#sprintf|sprintf]] [[#substr|substr]] [[#tr///|tr///]] [[#uc|uc]] [[#ucfirst|ucfirst]] [[#y///|y///]]
==== index ====
;æžåŒ:<syntaxhighlight lang=perl>index STR, SUBSTR [, POSITION]</syntaxhighlight>
;æ©èœ:<syntaxhighlight lang=text>æååSTRã®äžã§ãéšåæååSUBSTRãæåã«åºçŸããäœçœ®ãè¿ããŸãã</syntaxhighlight>
;[https://paiza.io/projects/PYUKqfDhk7sSi9l1Sdwsxg?language=perl çµèŸŒã¿é¢æ° index]:<syntaxhighlight lang=perl>
#!/usr/bin/env perl
use v5.30.0;
use warnings;
my $str = "This is a pen.";
my $substr = "pen";
say qq(index "$str", "$substr" -> @{[index $str, $substr]});
$str = "ããã¯ããã³ã§ãã";
$substr = "ãã³";
say qq(index "$str", "$substr" -> @{[index $str, $substr]});
use Encode qw(encode decode);
$str = decode('utf-8', "ããã¯ããã³ã§ãã");
$substr = decode('utf-8', "ãã³");
say encode('utf-8', qq(index "$str", "$substr" -> @{[index $str, $substr]}));
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
index "This is a pen.", "pen" -> 10
index "ããã¯ããã³ã§ãã", "ãã³" -> 12
index "ããã¯ããã³ã§ãã", "ãã³" -> 4
</syntaxhighlight>
:<code>pen</code> ã®åã«ãã <code>This is a </code> ã¯ç©ºçœãå«ããŠåèšã§10æåãªã®ã§ã<code>10</code> ã衚瀺ãããŸãã
::{| class=wikitable
|+ æååãšã€ã³ããã¯ã¹ã®å¯Ÿå¿
!0!!1!!2!!3!!4!!5!!6!!7!!8!!9!!10!!11!!12!!13
|- style="text-align: center"
|T||h||i||s|| ||i||s|| ||a|| ||p||e||n||.
|}
;解説
:indexã¯ãæåå STR ã®äžãããæ€çŽ¢æåå SUBSTR ãæ¢ãã'''æå'''ã«èŠã€ãã£ãäœçœ®ãè¿ããŸããæ€çŽ¢æåãèŠã€ãããªãå Žåã«ã¯ã-1 ãè¿ããŸãã
:çç¥å¯èœãªåŒæ°ãPOSITION ã«ã¯ãæ€çŽ¢éå§äœçœ®ãæå®ããŸãïŒãã£ãã©ã«ãã¯0ïŒã
::POSITION ã䜿ããšéšåæååãïŒåã以éã«åºçŸããäœçœ®ã確ãããããšãåºæ¥ãéšåæååã®é·ãã«æ³šæããã°éšåæååã®åºçŸåæ°ãæ°ããããšãªã©ã容æã«ãªããŸãã
:äœçœ®ã 0 ããå§ãŸãããšã«çæããŸãããã 0 ã¯æååã®å·Šç«¯ã衚ããŸãã
:äœçœ®ã¯æååäœã§ã¯ãªããã€ãæ°ãªã®ã§ããœãŒã¹ã³ãŒããšã³ã³ãŒãã£ã³ã°ã UTF-8 ã§å€ãã€ãæåã亀ãããšãæåæ°ãšãã€ãæ°ã«é£ãéããçããŸãã
:ãã®ãããªå Žå㯠Encode ã¢ãžã¥ãŒã«ã䜿ãå
éšåœ¢åŒ( ''internal format'' )ã«å€æããŸãã
:å
éšåœ¢åŒã§ããã°ããµãã²ãŒããã¢ã«ã察å¿ã§ããŸãããåææåã¯ä¿®é£Ÿã³ãŒããšåºåºæåã¯ããããïŒæåã«æ°ããããŸãã
===== utf8ãã©ã°ãã䜿ã =====
;[https://paiza.io/projects/cp_epUyDzcstlfbqp6Z82A?language=perl å¥è§£ïŒutf8ãã©ã°ãã䜿ãïŒ]:<syntaxhighlight lang=perl>
#!/usr/bin/perl
use v5.30.0;
use warnings;
use utf8;
my $str = "This is a pen.";
my $substr = "pen";
say qq(index "$str", "$substr" -> @{[index $str, $substr]});
use Encode qw(encode);
$str = "ããã¯ããã³ã§ãã";
$substr = "ãã³";
say encode('utf-8', qq(index "$str", "$substr" -> @{[index $str, $substr]}));
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
index "This is a pen.", "pen" -> 10
index "ããã¯ããã³ã§ãã", "ãã³" -> 4
</syntaxhighlight>
: utf8ãã©ã°ãã䜿ãããœãŒã¹ã³ãŒããšã³ã³ãŒãã£ã³ã°ã UTF-8 ã§ããããšãæç€ºãããšãæåãªãã©ã«ã¯å
éšåœ¢åŒã«å€æãã index ã length ã§åŠçãããŸãã
: ãã®å Žåã§ããåºåãããšãã«å
éšåœ¢åŒãã UTF-8 ã«ãšã³ã³ãŒãããå¿
èŠããããŸãã
===== binmodeã䜿ã =====
;[https://paiza.io/projects/cp_epUyDzcstlfbqp6Z82A?language=perl å¥è§£ïŒbinmodeã䜿ãïŒ]:<syntaxhighlight lang=perl highlight=5>
#!/usr/bin/perl
use v5.30.0;
use warnings;
use utf8;
binmode STDOUT,":encoding(UTF-8)";
my $str = "This is a pen.";
my $substr = "pen";
say qq(index "$str", "$substr" -> @{[index $str, $substr]});
$str = "ããã¯ããã³ã§ãã";
$substr = "ãã³";
say qq(index "$str", "$substr" -> @{[index $str, $substr]});
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
index "This is a pen.", "pen" -> 10
index "ããã¯ããã³ã§ãã", "ãã³" -> 4
</syntaxhighlight>
: æ¯åãšã³ã³ãŒããããSTDOUT ã®ãã£ãã©ã«ããšã³ã³ãŒãã£ã³ã°ã UTF-8 ã«ãããŸããã
: <code>binmode STDIN,":encoding(UTF-8)";</code>ãš<code>binmode STDERR,":encoding(UTF-8)";</code>ãåæã«æå®ããã»ãããããããããŸããã
ããã¹ãã®ãšã³ã³ãŒãã£ã³ã°ã¯ãPerlã䜿ã£ãŠãããšåºŠã
ãã©ãã«ã®ããšã«ãªãã®ã§ãåé¿æ¹æ³ã幟ã€ãããäºãç¥ã£ãŠãããšãä»äººã®æžããã³ãŒããèªããšããªã©ã«åœ¹ã«ç«ã¡ãŸãã
ããã§ç޹ä»ããæ¹æ³ã®ä»ã«ãæä»£ããã®jcode.plãªã©ãããã®ã§ãããæšæºã¢ãžã¥ãŒã«ã®ç¯å²ã®èª¬æã«çããŸããã
==== rindex ====
;æžåŒ:<syntaxhighlight lang=perl>rindex (STR, SUBSTR, [POSITION])</syntaxhighlight>
;æ©èœ:æååSTRã®äžã§ãéšåæååSUBSTRã'''æåŸ'''ã«åºçŸããäœçœ®ãè¿ããŸãã
;[https://paiza.io/projects/BcE2R3K_lHUDlhNTQWwY3Q?language=perl çµèŸŒã¿é¢æ° rindex]:<syntaxhighlight lang=perl>
#!/usr/bin/perl
use v5.30.0;
use warnings;
use utf8;
binmode STDOUT,":encoding(UTF-8)";
my $str = "I like pens and pencils.";
my $substr = "pen";
say qq(rindex "$str", "$substr" -> @{[rindex $str, $substr]});
$str = "ç§ã¯çãšéçã奜ãã§ãã";
$substr = "ç";
say qq(rindex "$str", "$substr" -> @{[rindex $str, $substr]});
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
rindex "I like pens and pencils.", "pen" -> 16
rindex "ç§ã¯çãšéçã奜ãã§ãã", "ç" -> 5
</syntaxhighlight>
;解説
:rindexã¯ãæåå STR ã®äžãããæ€çŽ¢æåå SUBSTR ãæ¢ãã'''æåŸ'''ã«èŠã€ãã£ãäœçœ®ãè¿ããŸãïŒãæ«å°Ÿããã®äœçœ®ãè¿ãããšã®ç·šéãéå»ã«ãããŸããããééãã§ãïŒãæ€çŽ¢æåãèŠã€ãããªãå Žåã«ã¯ã-1 ãè¿ããŸãã
:çç¥å¯èœãªåŒæ°ãPOSITION ã«ã¯ãæ€çŽ¢éå§äœçœ®ãæå®ããŸãïŒãã£ãã©ã«ãã¯0ïŒã
{{See also|#index}}
==== substr ====
;æžåŒ:<syntaxhighlight lang=perl>substr (EXPR, OFFSET, [LENGTH], [REPLACEMENT])</syntaxhighlight>
æåå EXPR ãããOFFSET ç®ä»¥éã®ãã€ãåãè¿ããŸããåãåºãé·ã LENGTH ããã€ãåäœã§æå®ã§ããŸãããçç¥ããå Žåã¯æååã®æåŸãŸã§åãåºããŸãããªããutf8ãã©ã°ããæå¹ãªå Žåã¯ããã€ãåäœã§ã¯ãªãæååäœã§åãåºãããšãã§ããŸãã
äœçœ®æ
å ± OFFSET ã¯äžè¿°ã®ãšãã 0 ããå§ãŸããŸãããLENGTH ã¯å®¹éãªã®ã§é垞㯠1 以äžã®å€ãæå®ããŸãã
æåå REPLACEMENT ãæå®ãããšãåãåºãããéšåã REPLACEMENT ã§çœ®æããŸãã
;[https://paiza.io/projects/BcE2R3K_lHUDlhNTQWwY3Q?language=perl çµèŸŒã¿é¢æ° rindex]:<syntaxhighlight lang=perl>
#!/usr/bin/perl
use v5.30.0;
use warnings;
use utf8;
binmode STDOUT,":encoding(UTF-8)";
my $str = "Hello, world!";
say substr($str, index($str, "world"), length("world"), "Japan");
say $str;
$str = "ããã«ã¡ã¯ãäžçïŒ";
say substr($str, index($str, "äžç"), length("äžç"), "ð");
say $str;
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
world
Hello, Japan!
äžç
ããã«ã¡ã¯ãðïŒ
</syntaxhighlight>
==== uc ====
;æžåŒ:<syntaxhighlight lang=perl>uc ([EXPR])</syntaxhighlight>
:æåå EXPR ã倧æåã«ããŠè¿ããŸããEXPR ãçç¥ãããšã$_ ã䜿ãããŸãã
==== ucfirst ====
;æžåŒ:<syntaxhighlight lang=perl>ucfirst ([EXPR])</syntaxhighlight>
:uc ãšåãã§ãããå
é 1æåã倧æåã«ããŠè¿ããŸãã
==== lc ====
;æžåŒ:<syntaxhighlight lang=perl>lc ([EXPR])</syntaxhighlight>
:uc ãšåãã§ãããå°æåã«ããŠè¿ããŸãã
==== lcfirst ====
;æžåŒ:<syntaxhighlight lang=perl>lcfirst ([EXPR])</syntaxhighlight>
:ucfirst ãšåãã§ãããå°æåã«ããŠè¿ããŸãã
==== chop ====
;æžåŒ:<syntaxhighlight lang=perl>
chop VARIABLE
chop (LIST)
</syntaxhighlight>
: 倿° VARIABLE ã®æ«å°Ÿã®æ«å°Ÿ1æåãåé€ããŸãã
: 倿°ã®ãªã¹ããæž¡ãããå Žåã¯ãå倿°ã«ã€ããŠåãåŠçãè¡ããŸãã
: VARIABLE ãçç¥ãããš $_ ã䜿ãããŸãã
;[https://paiza.io/projects/Fva3C8fhvsNLFSY7C4WNTw?language=perl chopãšchomp]:<syntaxhighlight lang=perl>
#!/usr/bin/perl
use v5.30.0;
use warnings;
use utf8;
binmode STDOUT,":encoding(UTF-8)";
my $str = "Hello, world!\n";
chop $str;
say "chop: $str(@{[length $str]})";
chop $str;
say "chop: $str(@{[length $str]})";
chop $str;
say "chop: $str(@{[length $str]})";
chop $str;
say "chop: $str(@{[length $str]})";
$str = "Hello, world!\n";
chomp $str;
say "chomp: $str(@{[length $str]})";
chomp $str;
say "chomp: $str(@{[length $str]})";
chomp $str;
say "chomp: $str(@{[length $str]})";
chomp $str;
say "chomp: $str(@{[length $str]})";
$str = "Hello, world!\n";
$str = substr($str, 0, length($str) - 1);
say "substr(): $str(@{[length $str]})";
$str = substr($str, 0, length($str) - 1);
say "substr(): $str(@{[length $str]})";
$str = substr($str, 0, length($str) - 1);
say "substr(): $str(@{[length $str]})";
sub chop(\$) {
my $strr = shift;
$$strr = substr($$strr, 0, length($$strr) - 1);
undef
}
$str = "Hello, world!\n";
::chop $str;
say "::chop: $str(@{[length $str]})";
::chop $str;
say "::chop: $str(@{[length $str]})";
::chop $str;
say "::chop: $str(@{[length $str]})";
sub chomp(\$) {
my $strr = shift;
$$strr = substr($$strr, 0, length($$strr) - 1) if substr($$strr, length($$strr) - 1, 1) eq "\n";
undef
}
$str = "Hello, world!\n";
::chomp $str;
say "::chomp: $str(@{[length $str]})";
::chomp $str;
say "::chomp: $str(@{[length $str]})";
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
chop: Hello, world!(13)
chop: Hello, world(12)
chop: Hello, worl(11)
chop: Hello, wor(10)
chomp: Hello, world!(13)
chomp: Hello, world!(13)
chomp: Hello, world!(13)
chomp: Hello, world!(13)
substr(): Hello, world!(13)
substr(): Hello, world(12)
substr(): Hello, worl(11)
::chop: Hello, world!(13)
::chop: Hello, world(12)
::chop: Hello, worl(11)
::chomp: Hello, world!(13)
::chomp: Hello, world!(13)
</syntaxhighlight>
: chop ã¯ãæååãæ«å°Ÿããå°ããŸãïŒç Žå£çïŒ
: chomp ã¯ãæååã®æ«å°Ÿã®æ¹è¡ãå°ããŸãïŒç Žå£çïŒ
==== chomp ====
;æžåŒ:<syntaxhighlight lang=perl>
chomp VARIABLE
chomp (LIST)
</syntaxhighlight>
: 倿° VARIABLE ã®æ«å°Ÿã® $/ïŒããã©ã«ã㯠"\n"ïŒãåé€ããŸãã
: 倿°ã®ãªã¹ããæž¡ãããå Žåã¯ãå倿°ã«ã€ããŠåãåŠçãè¡ããŸãã
: VARIABLE ãçç¥ãããš $_ ã䜿ãããŸãã
==== chr ====
; æžåŒ:<syntaxhighlight lang=perl>chr [NUMBER]</syntaxhighlight>
: æåã»ããã§ NUMBER çªç®ã«å²ãåœãŠãããŠããæåãè¿ããŸãã
: NUMBER ãçç¥ãããš $_ ã䜿ãããŸãã
: éã®æäœãè¡ãã«ã¯ ord ã䜿ããŸãã
==== crypt ====
;æžåŒ:<syntaxhighlight lang=perl>crypt PLAINTEXT, SALT</syntaxhighlight>
:C ã©ã€ãã©ãªã® crypt(3) ããšãã¥ã¬ãŒãããŸãã
==== hex ====
;æžåŒ:<syntaxhighlight lang=perl>hex [EXPR]</syntaxhighlight>
: åå
鲿° EXPR ãå鲿°ã«å€æããŠè¿ããŸããEXPR ãçç¥ãããš $_ ã䜿ãããŸãã
==== length ====
;æžåŒ:<syntaxhighlight lang=perl>length [EXPR]</syntaxhighlight>
: æåå EXPR ã®é·ããè¿ããŸããbytes ãã©ã°ããæå¹ãªå ŽåïŒããã©ã«ãïŒã¯ãã€ãæ°ããutf8 ãã©ã°ããæå¹ãªå Žåã¯æåæ°ãè¿ããŸããEXPR ãçç¥ãããš $_ ã䜿ãããŸãã
==== oct ====
;æžåŒ:<syntaxhighlight lang=perl>oct [EXPR]</syntaxhighlight>
: å
«é²æ° EXPR ãå鲿°ã«å€æããŠè¿ããŸããEXPR ãçç¥ãããš $_ ã䜿ãããŸãã
==== ord ====
;æžåŒ:<syntaxhighlight lang=perl>ord [EXPR]</syntaxhighlight>
: æåå EXPR ã®æåã»ããäžã§ã®ã³ãŒãäœçœ®ãè¿ããŸããEXPR ãçç¥ãããš $_ ã䜿ãããŸããéã®æäœãè¡ãã«ã¯ chr ã䜿ããŸãã
==== pack ====
;æžåŒ:<syntaxhighlight lang=perl>pack TEMPLATE, LIST</syntaxhighlight>
:LIST ã TEMPLATE ã«åŸã£ãŠãã€ããªããŒã¿ã«å€æããŸãã
==== q ====
<pre>
q/STRING/
qq/STRING/
qr/STRING/
qx/STRING/
qw/STRING/
</pre>
ã·ã³ã°ã«ã¯ã©ãŒããããã«ã¯ã©ãŒããæ£èŠè¡šçŸãããã¯ã¯ã©ãŒããåèªã¯ã©ãŒãã詳现ã¯[[Perl/æŒç®å|æŒç®å]]ã®ç« ãåç
§ã
==== reverse ====
;æžåŒ:<syntaxhighlight lang=perl>reverse LIST</syntaxhighlight>
:ãªã¹ãã³ã³ããã¹ãã§ã¯ LIST ã®é çªãéé ã«ãããªã¹ããè¿ããŸããã¹ã«ã©ãŒã³ã³ããã¹ãã§ã¯ LIST ã®èŠçŽ ãçµåããåŸã«éé ã«ããæååãè¿ããŸãã
;[https://paiza.io/projects/m274vBmTsDDTfyB1yKQy3g?language=perl äŸ]:<syntaxhighlight lang=perl>
use v5.30.0;
use warnings;
my @array = qw(ãã ããã ããããã ð);
say "@{[ reverse @array ]}";
say "@{[ scalar reverse @array ]}";
use utf8;
binmode STDOUT,":encoding(UTF-8)";
@array = qw(ãã ããã ããããã ð);
say "@{[ reverse @array ]}";
say "@{[ scalar reverse @array ]}";
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=perl>
ð ããããã ããã ãã
ᅵᅵᅵᅵãããããããããᅵ
ð ããããã ããã ãã
ðãããããããããã
</syntaxhighlight>
: Perlã®æååã¯ãã£ãã©ã«ãã§ã¯ãã€ãã·ãŒã±ã³ã¹ãªã®ã§ãã€ãéé ã«ãããšå€ãã€ãæåã¯ç Žç¶»ããäžèšã®ããã«æååãããŸãã
: use utf8;ã§ããã€ãã·ãŒã±ã³ã¹ããå
éšãšã³ã³ãŒãã£ã³ã°( ''Wide character'' )ã«åæ¿ããããšãã§ããŸããããã®ãŸãŸ say ãããšå
éšãšã³ã³ãŒãã£ã³ã°ã®ãŸãŸãªã®ã§ãæšæºåºåã®ã¬ã€ã€ãŒã ":encoding(UTF-8)" ã«å€æŽããŸãã
==== sprintf ====
;æžåŒ:<syntaxhighlight lang=perl>sprintf FORMAT, LIST</syntaxhighlight>
:LIST ã FORMAT ã«åŸã£ãŠæŽåœ¢ããŠè¿ããŸãã
==== tr ====
;æžåŒ:<syntaxhighlight lang=perl>tr///</syntaxhighlight>
:1æåã察å¿ãã1æåã«çœ®æããŸãã詳现ã¯[[Perl/æŒç®å|æŒç®å]]ã®ç« ãåç
§ã
==== y ====
;æžåŒ:<syntaxhighlight lang=perl>y///</syntaxhighlight>
:tr///ãšå矩ã
=== æ£èŠè¡šçŸãšãã¿ãŒã³ããã ===
; m//, pos, qr//, quotemeta, s///, split, study
=== æ°å€æŒç®é¢æ° ===
; abs, atan2, cos, exp, hex, int, log, oct, rand, sin, sqrt, srand
=== é
åæäœ ===
; each, keys, pop, push, shift, splice, unshift, values
=== ãªã¹ãæäœ ===
; grep, join, map, qw//, reverse, sort, unpack
=== ããã·ã¥æäœ ===
; delete, each, exists, keys, values
=== I/O ===
; binmode, close, closedir, dbmclose, dbmopen, die, eof, fileno, flock, format, getc, print, printf, read, readdir, readline, rewinddir, say, seek, seekdir, select, syscall, sysread, sysseek, syswrite, tell, telldir, truncate, warn, write
=== åºå®é·ããŒã¿ãšã¬ã³ãŒã ===
; pack, read, syscall, sysread, sysseek, syswrite, unpack, vec
=== ãã¡ã€ã«ãã³ãã«ã»ãã¡ã€ã«ãšãã£ã¬ã¯ã㪠===
; -X, chdir, chmod, chown, chroot, fcntl, glob, ioctl, link, lstat, mkdir, open, opendir, readlink, rename, rmdir, select, stat, symlink, sysopen, umask, unlink, utime
=== å¶åŸ¡æ§é ===
; break, caller, continue, die, do, dump, eval, evalbytes, exit, __FILE__, goto, last, __LINE__, next, __PACKAGE__, redo, return, sub, __SUB__, wantarray
=== ã¹ã³ãŒã ===
; caller, import, local, my, our, package, state, use
=== Misc. ===
; defined, formline, lock, prototype, reset, scalar, undef
=== ããã»ã¹ ===
; alarm, exec, fork, getpgrp, getppid, getpriority, kill, pipe, qx//, readpipe, setpgrp, setpriority, sleep, system, times, wait, waitpid
=== ã¢ãžã¥ãŒã« ===
; do, import, no, package, require, use
=== ãªããžã§ã¯ãæå ===
; bless, dbmclose, dbmopen, package, ref, tie, tied, untie, use
=== Socket ===
; accept, bind, connect, getpeername, getsockname, getsockopt, listen, recv, send, setsockopt, shutdown, socket, socketpair
=== System V IPC ===
; msgctl, msgget, msgrcv, msgsnd, semctl, semget, semop, shmctl, shmget, shmread, shmwrite
=== ãŠãŒã¶ãŒãšã°ã«ãŒã ===
; endgrent, endhostent, endnetent, endpwent, getgrent, getgrgid, getgrnam, getlogin, getpwent, getpwnam, getpwuid, setgrent, setpwent
=== ãããã¯ãŒã¯æ
å ± ===
; endprotoent, endservent, gethostbyaddr, gethostbyname, gethostent, getnetbyaddr, getnetbyname, getnetent, getprotobyname, getprotobynumber, getprotoent, getservbyname, getservbyport, getservent, sethostent, setnetent, setprotoent, setservent
=== æ¥ä»æå» ===
; gmtime, localtime, time, times
=== 颿°ä»¥å€ã®ããŒã¯ãŒã ===
; and, AUTOLOAD, BEGIN, catch, CHECK, cmp, CORE, __DATA__, default, defer, DESTROY, else, elseif, elsif, END, __END__, eq, finally, for, foreach, ge, given, gt, if, INIT, isa, le, lt, ne, not, or, try, UNITCHECK, unless, until, when, while, x, xor
<!--
== çµèŸŒã¿é¢æ°ã®è«žå
衚 ==
ã¢ãžã¥ãŒã« Pod::Functions ã䜿ããšçµèŸŒã¿é¢æ°ã®è«žå
ã«ã¢ã¯ã»ã¹ã§ããŸãã
;[https://paiza.io/projects/laNg3WdoIiKX8kqnvfsXgQ?language=perl çµèŸŒã¿é¢æ°ã®äžèЧãåŸãã³ãŒã]:<syntaxhighlight lang=perl>
use strict;
use warnings;
use Pod::Functions;
print join ' ', sort keys %Type
</syntaxhighlight>
;å®è¡çµæ:<syntaxhighlight lang=text>
-X __FILE__ __LINE__ __PACKAGE__ __SUB__ abs accept alarm atan2 bind binmode bless break caller chdir chmod chomp chop chown chr chroot close closedir connect continue cos crypt dbmclose dbmopen defined delete die do dump each endgrent endhostent endnetent endprotoent endpwent endservent eof eval evalbytes exec exists exit exp fc fcntl fileno flock fork format formline getc getgrent getgrgid getgrnam gethostbyaddr gethostbyname gethostent getlogin getnetbyaddr getnetbyname getnetent getpeername getpgrp getppid getpriority getprotobyname getprotobynumber getprotoent getpwent getpwnam getpwuid getservbyname getservbyport getservent getsockname getsockopt glob gmtime goto grep hex import index int ioctl join keys kill last lc lcfirst length link listen local localtime lock log lstat m// map mkdir msgctl msgget msgrcv msgsnd my next no oct open opendir ord our pack package pipe pop pos print printf prototype push q/STRING/ qq/STRING/ qr/STRING/ quotemeta qw/STRING/ qx/STRING/ rand read readdir readline readlink readpipe recv redo ref rename require reset return reverse rewinddir rindex rmdir s/// say scalar seek seekdir select semctl semget semop send setgrent sethostent setnetent setpgrp setpriority setprotoent setpwent setservent setsockopt shift shmctl shmget shmread shmwrite shutdown sin sleep socket socketpair sort splice split sprintf sqrt srand stat state study sub substr symlink syscall sysopen sysread sysseek system syswrite tell telldir tie tied time times tr/// truncate uc ucfirst umask undef unlink unpack unshift untie use utime values vec wait waitpid wantarray warn write y///
</syntaxhighlight>
;[https://paiza.io/projects/ky9-H1JH3jc2wLnFpPMFVA?language=perl Wikitableãçæããã³ãŒã]:<syntaxhighlight lang=perl>
use v5.30.0;
use Pod::Functions;
# epilogue
print <<EOS;
:{| class="sortable wikitable"
|+ çµèŸŒã¿é¢æ°ã®è«žå
|-
! kind !! function !! flaver
EOS
# Kind -> Function -> Flavor
my @kkeys = sort keys %Kinds;
foreach my $kkey(@kkeys) {
my ($kind, $functions) = %Kinds{$kkey};
foreach my $function(@$functions) {
my ($null, $flaver) = %Flavor{$function};
print <<EOS
|-
| $kind || [[#$function|$function]] || $flaver
EOS
}
}
# prologue
print <<EOS;
|}
EOS
</syntaxhighlight>
:{| class="sortable wikitable"
|+ çµèŸŒã¿é¢æ°ã®è«žå
|-
! kind !! function !! flaver
|-
| ARRAY || [[#each|each]] || retrieve the next key/value pair from a hash
|-
| ARRAY || [[#keys|keys]] || retrieve list of indices from a hash
|-
| ARRAY || [[#pop|pop]] || remove the last element from an array and return it
|-
| ARRAY || [[#push|push]] || append one or more elements to an array
|-
| ARRAY || [[#shift|shift]] || remove the first element of an array, and return it
|-
| ARRAY || [[#splice|splice]] || add or remove elements anywhere in an array
|-
| ARRAY || [[#unshift|unshift]] || prepend more elements to the beginning of a list
|-
| ARRAY || [[#values|values]] || return a list of the values in a hash
|-
| Binary || [[#pack|pack]] || convert a list into a binary representation
|-
| Binary || [[#read|read]] || fixed-length buffered input from a filehandle
|-
| Binary || [[#syscall|syscall]] || execute an arbitrary system call
|-
| Binary || [[#sysread|sysread]] || fixed-length unbuffered input from a filehandle
|-
| Binary || [[#sysseek|sysseek]] || position I/O pointer on handle used with sysread and syswrite
|-
| Binary || [[#syswrite|syswrite]] || fixed-length unbuffered output to a filehandle
|-
| Binary || [[#unpack|unpack]] || convert binary structure into normal perl variables
|-
| Binary || [[#vec|vec]] || test or set particular bits in a string
|-
| File || [[#-X|-X]] || a file test (-r, -x, etc)
|-
| File || [[#chdir|chdir]] || change your current working directory
|-
| File || [[#chmod|chmod]] || changes the permissions on a list of files
|-
| File || [[#chown|chown]] || change the ownership on a list of files
|-
| File || [[#chroot|chroot]] || make directory new root for path lookups
|-
| File || [[#fcntl|fcntl]] || file control system call
|-
| File || [[#glob|glob]] || expand filenames using wildcards
|-
| File || [[#ioctl|ioctl]] || system-dependent device control system call
|-
| File || [[#link|link]] || create a hard link in the filesystem
|-
| File || [[#lstat|lstat]] || stat a symbolic link
|-
| File || [[#mkdir|mkdir]] || create a directory
|-
| File || [[#open|open]] || open a file, pipe, or descriptor
|-
| File || [[#opendir|opendir]] || open a directory
|-
| File || [[#readlink|readlink]] || determine where a symbolic link is pointing
|-
| File || [[#rename|rename]] || change a filename
|-
| File || [[#rmdir|rmdir]] || remove a directory
|-
| File || [[#select|select]] || reset default output or do I/O multiplexing
|-
| File || [[#stat|stat]] || get a file's status information
|-
| File || [[#symlink|symlink]] || create a symbolic link to a file
|-
| File || [[#sysopen|sysopen]] || open a file, pipe, or descriptor
|-
| File || [[#umask|umask]] || set file creation mode mask
|-
| File || [[#unlink|unlink]] || remove one link to a file
|-
| File || [[#utime|utime]] || set a file's last access and modify times
|-
| Flow || [[#break|break]] || break out of a C<given> block
|-
| Flow || [[#caller|caller]] || get context of the current subroutine call
|-
| Flow || [[#continue|continue]] || optional trailing block in a while or foreach
|-
| Flow || [[#die|die]] || raise an exception or bail out
|-
| Flow || [[#do|do]] || turn a BLOCK into a TERM
|-
| Flow || [[#dump|dump]] || create an immediate core dump
|-
| Flow || [[#eval|eval]] || catch exceptions or compile and run code
|-
| Flow || [[#evalbytes|evalbytes]] || similar to string eval, but intend to parse a bytestream
|-
| Flow || [[#exit|exit]] || terminate this program
|-
| Flow || [[#__FILE__|__FILE__]] || the name of the current source file
|-
| Flow || [[#goto|goto]] || create spaghetti code
|-
| Flow || [[#last|last]] || exit a block prematurely
|-
| Flow || [[#__LINE__|__LINE__]] || the current source line number
|-
| Flow || [[#next|next]] || iterate a block prematurely
|-
| Flow || [[#__PACKAGE__|__PACKAGE__]] || the current package
|-
| Flow || [[#redo|redo]] || start this loop iteration over again
|-
| Flow || [[#return|return]] || get out of a function early
|-
| Flow || [[#sub|sub]] || declare a subroutine, possibly anonymously
|-
| Flow || [[#__SUB__|__SUB__]] || the current subroutine, or C<undef> if not in a subroutine
|-
| Flow || [[#wantarray|wantarray]] || get void vs scalar vs list context of current subroutine call
|-
| HASH || [[#delete|delete]] || deletes a value from a hash
|-
| HASH || [[#each|each]] || retrieve the next key/value pair from a hash
|-
| HASH || [[#exists|exists]] || test whether a hash key is present
|-
| HASH || [[#keys|keys]] || retrieve list of indices from a hash
|-
| HASH || [[#values|values]] || return a list of the values in a hash
|-
| I/O || [[#binmode|binmode]] || prepare binary files for I/O
|-
| I/O || [[#close|close]] || close file (or pipe or socket) handle
|-
| I/O || [[#closedir|closedir]] || close directory handle
|-
| I/O || [[#dbmclose|dbmclose]] || breaks binding on a tied dbm file
|-
| I/O || [[#dbmopen|dbmopen]] || create binding on a tied dbm file
|-
| I/O || [[#die|die]] || raise an exception or bail out
|-
| I/O || [[#eof|eof]] || test a filehandle for its end
|-
| I/O || [[#fileno|fileno]] || return file descriptor from filehandle
|-
| I/O || [[#flock|flock]] || lock an entire file with an advisory lock
|-
| I/O || [[#format|format]] || declare a picture format with use by the write() function
|-
| I/O || [[#getc|getc]] || get the next character from the filehandle
|-
| I/O || [[#print|print]] || output a list to a filehandle
|-
| I/O || [[#printf|printf]] || output a formatted list to a filehandle
|-
| I/O || [[#read|read]] || fixed-length buffered input from a filehandle
|-
| I/O || [[#readdir|readdir]] || get a directory from a directory handle
|-
| I/O || [[#readline|readline]] || fetch a record from a file
|-
| I/O || [[#rewinddir|rewinddir]] || reset directory handle
|-
| I/O || [[#say|say]] || output a list to a filehandle, appending a newline
|-
| I/O || [[#seek|seek]] || reposition file pointer for random-access I/O
|-
| I/O || [[#seekdir|seekdir]] || reposition directory pointer
|-
| I/O || [[#select|select]] || reset default output or do I/O multiplexing
|-
| I/O || [[#syscall|syscall]] || execute an arbitrary system call
|-
| I/O || [[#sysread|sysread]] || fixed-length unbuffered input from a filehandle
|-
| I/O || [[#sysseek|sysseek]] || position I/O pointer on handle used with sysread and syswrite
|-
| I/O || [[#syswrite|syswrite]] || fixed-length unbuffered output to a filehandle
|-
| I/O || [[#tell|tell]] || get current seekpointer on a filehandle
|-
| I/O || [[#telldir|telldir]] || get current seekpointer on a directory handle
|-
| I/O || [[#truncate|truncate]] || shorten a file
|-
| I/O || [[#warn|warn]] || print debugging info
|-
| I/O || [[#write|write]] || print a picture record
|-
| LIST || [[#grep|grep]] || locate elements in a list test true against a given criterion
|-
| LIST || [[#join|join]] || join a list into a string using a separator
|-
| LIST || [[#map|map]] || apply a change to a list to get back a new list with the changes
|-
| LIST || [[#qw/STRING/|qw/STRING/]] || quote a list of words
|-
| LIST || [[#reverse|reverse]] || flip a string or a list
|-
| LIST || [[#sort|sort]] || sort a list of values
|-
| LIST || [[#unpack|unpack]] || convert binary structure into normal perl variables
|-
| Math || [[#abs|abs]] || absolute value function
|-
| Math || [[#atan2|atan2]] || arctangent of Y/X in the range -PI to PI
|-
| Math || [[#cos|cos]] || cosine function
|-
| Math || [[#exp|exp]] || raise I<e> to a power
|-
| Math || [[#hex|hex]] || convert a hexadecimal string to a number
|-
| Math || [[#int|int]] || get the integer portion of a number
|-
| Math || [[#log|log]] || retrieve the natural logarithm for a number
|-
| Math || [[#oct|oct]] || convert a string to an octal number
|-
| Math || [[#rand|rand]] || retrieve the next pseudorandom number
|-
| Math || [[#sin|sin]] || return the sine of a number
|-
| Math || [[#sqrt|sqrt]] || square root function
|-
| Math || [[#srand|srand]] || seed the random number generator
|-
| Misc || [[#defined|defined]] || test whether a value, variable, or function is defined
|-
| Misc || [[#formline|formline]] || internal function used for formats
|-
| Misc || [[#lock|lock]] || get a thread lock on a variable, subroutine, or method
|-
| Misc || [[#prototype|prototype]] || get the prototype (if any) of a subroutine
|-
| Misc || [[#reset|reset]] || clear all variables of a given name
|-
| Misc || [[#scalar|scalar]] || force a scalar context
|-
| Misc || [[#undef|undef]] || remove a variable or function definition
|-
| Modules || [[#do|do]] || turn a BLOCK into a TERM
|-
| Modules || [[#import|import]] || patch a module's namespace into your own
|-
| Modules || [[#no|no]] || unimport some module symbols or semantics at compile time
|-
| Modules || [[#package|package]] || declare a separate global namespace
|-
| Modules || [[#require|require]] || load in external functions from a library at runtime
|-
| Modules || [[#use|use]] || load in a module at compile time and import its namespace
|-
| Namespace || [[#caller|caller]] || get context of the current subroutine call
|-
| Namespace || [[#import|import]] || patch a module's namespace into your own
|-
| Namespace || [[#local|local]] || create a temporary value for a global variable (dynamic scoping)
|-
| Namespace || [[#my|my]] || declare and assign a local variable (lexical scoping)
|-
| Namespace || [[#our|our]] || declare and assign a package variable (lexical scoping)
|-
| Namespace || [[#package|package]] || declare a separate global namespace
|-
| Namespace || [[#state|state]] || declare and assign a persistent lexical variable
|-
| Namespace || [[#use|use]] || load in a module at compile time and import its namespace
|-
| Network || [[#endprotoent|endprotoent]] || be done using protocols file
|-
| Network || [[#endservent|endservent]] || be done using services file
|-
| Network || [[#gethostbyaddr|gethostbyaddr]] || get host record given its address
|-
| Network || [[#gethostbyname|gethostbyname]] || get host record given name
|-
| Network || [[#gethostent|gethostent]] || get next hosts record
|-
| Network || [[#getnetbyaddr|getnetbyaddr]] || get network record given its address
|-
| Network || [[#getnetbyname|getnetbyname]] || get networks record given name
|-
| Network || [[#getnetent|getnetent]] || get next networks record
|-
| Network || [[#getprotobyname|getprotobyname]] || get protocol record given name
|-
| Network || [[#getprotobynumber|getprotobynumber]] || get protocol record numeric protocol
|-
| Network || [[#getprotoent|getprotoent]] || get next protocols record
|-
| Network || [[#getservbyname|getservbyname]] || get services record given its name
|-
| Network || [[#getservbyport|getservbyport]] || get services record given numeric port
|-
| Network || [[#getservent|getservent]] || get next services record
|-
| Network || [[#sethostent|sethostent]] || prepare hosts file for use
|-
| Network || [[#setnetent|setnetent]] || prepare networks file for use
|-
| Network || [[#setprotoent|setprotoent]] || prepare protocols file for use
|-
| Network || [[#setservent|setservent]] || prepare services file for use
|-
| Objects || [[#bless|bless]] || create an object
|-
| Objects || [[#dbmclose|dbmclose]] || breaks binding on a tied dbm file
|-
| Objects || [[#dbmopen|dbmopen]] || create binding on a tied dbm file
|-
| Objects || [[#package|package]] || declare a separate global namespace
|-
| Objects || [[#ref|ref]] || find out the type of thing being referenced
|-
| Objects || [[#tie|tie]] || bind a variable to an object class
|-
| Objects || [[#tied|tied]] || get a reference to the object underlying a tied variable
|-
| Objects || [[#untie|untie]] || break a tie binding to a variable
|-
| Objects || [[#use|use]] || load in a module at compile time and import its namespace
|-
| Process || [[#alarm|alarm]] || schedule a SIGALRM
|-
| Process || [[#exec|exec]] || abandon this program to run another
|-
| Process || [[#fork|fork]] || create a new process just like this one
|-
| Process || [[#getpgrp|getpgrp]] || get process group
|-
| Process || [[#getppid|getppid]] || get parent process ID
|-
| Process || [[#getpriority|getpriority]] || get current nice value
|-
| Process || [[#kill|kill]] || send a signal to a process or process group
|-
| Process || [[#pipe|pipe]] || open a pair of connected filehandles
|-
| Process || [[#qx/STRING/|qx/STRING/]] || backquote quote a string
|-
| Process || [[#readpipe|readpipe]] || execute a system command and collect standard output
|-
| Process || [[#setpgrp|setpgrp]] || set the process group of a process
|-
| Process || [[#setpriority|setpriority]] || set a process's nice value
|-
| Process || [[#sleep|sleep]] || block for some number of seconds
|-
| Process || [[#system|system]] || run a separate program
|-
| Process || [[#times|times]] || return elapsed time for self and child processes
|-
| Process || [[#wait|wait]] || wait for any child process to die
|-
| Process || [[#waitpid|waitpid]] || wait for a particular child process to die
|-
| Regexp || [[#m//|m//]] || match a string with a regular expression pattern
|-
| Regexp || [[#pos|pos]] || find or set the offset for the last/next m//g search
|-
| Regexp || [[#qr/STRING/|qr/STRING/]] || compile pattern
|-
| Regexp || [[#quotemeta|quotemeta]] || quote regular expression magic characters
|-
| Regexp || [[#s///|s///]] || replace a pattern with a string
|-
| Regexp || [[#split|split]] || split up a string using a regexp delimiter
|-
| Regexp || [[#study|study]] || no-op, formerly optimized input data for repeated searches
|-
| Socket || [[#accept|accept]] || accept an incoming socket connect
|-
| Socket || [[#bind|bind]] || binds an address to a socket
|-
| Socket || [[#connect|connect]] || connect to a remote socket
|-
| Socket || [[#getpeername|getpeername]] || find the other end of a socket connection
|-
| Socket || [[#getsockname|getsockname]] || retrieve the sockaddr for a given socket
|-
| Socket || [[#getsockopt|getsockopt]] || get socket options on a given socket
|-
| Socket || [[#listen|listen]] || register your socket as a server
|-
| Socket || [[#recv|recv]] || receive a message over a Socket
|-
| Socket || [[#send|send]] || send a message over a socket
|-
| Socket || [[#setsockopt|setsockopt]] || set some socket options
|-
| Socket || [[#shutdown|shutdown]] || close down just half of a socket connection
|-
| Socket || [[#socket|socket]] || create a socket
|-
| Socket || [[#socketpair|socketpair]] || create a pair of sockets
|-
| String || [[#chomp|chomp]] || remove a trailing record separator from a string
|-
| String || [[#chop|chop]] || remove the last character from a string
|-
| String || [[#chr|chr]] || get character this number represents
|-
| String || [[#crypt|crypt]] || one-way passwd-style encryption
|-
| String || [[#fc|fc]] || return casefolded version of a string
|-
| String || [[#hex|hex]] || convert a hexadecimal string to a number
|-
| String || [[#index|index]] || find a substring within a string
|-
| String || [[#lc|lc]] || return lower-case version of a string
|-
| String || [[#lcfirst|lcfirst]] || return a string with just the next letter in lower case
|-
| String || [[#length|length]] || return the number of characters in a string
|-
| String || [[#oct|oct]] || convert a string to an octal number
|-
| String || [[#ord|ord]] || find a character's numeric representation
|-
| String || [[#pack|pack]] || convert a list into a binary representation
|-
| String || [[#q/STRING/|q/STRING/]] || singly quote a string
|-
| String || [[#qq/STRING/|qq/STRING/]] || doubly quote a string
|-
| String || [[#reverse|reverse]] || flip a string or a list
|-
| String || [[#rindex|rindex]] || right-to-left substring search
|-
| String || [[#sprintf|sprintf]] || formatted print into a string
|-
| String || [[#substr|substr]] || get or alter a portion of a string
|-
| String || [[#tr///|tr///]] || transliterate a string
|-
| String || [[#uc|uc]] || return upper-case version of a string
|-
| String || [[#ucfirst|ucfirst]] || return a string with just the next letter in upper case
|-
| String || [[#y///|y///]] || transliterate a string
|-
| SysV || [[#msgctl|msgctl]] || SysV IPC message control operations
|-
| SysV || [[#msgget|msgget]] || get SysV IPC message queue
|-
| SysV || [[#msgrcv|msgrcv]] || receive a SysV IPC message from a message queue
|-
| SysV || [[#msgsnd|msgsnd]] || send a SysV IPC message to a message queue
|-
| SysV || [[#semctl|semctl]] || SysV semaphore control operations
|-
| SysV || [[#semget|semget]] || get set of SysV semaphores
|-
| SysV || [[#semop|semop]] || SysV semaphore operations
|-
| SysV || [[#shmctl|shmctl]] || SysV shared memory operations
|-
| SysV || [[#shmget|shmget]] || get SysV shared memory segment identifier
|-
| SysV || [[#shmread|shmread]] || read SysV shared memory
|-
| SysV || [[#shmwrite|shmwrite]] || write SysV shared memory
|-
| Time || [[#gmtime|gmtime]] || convert UNIX time into record or string using Greenwich time
|-
| Time || [[#localtime|localtime]] || convert UNIX time into record or string using local time
|-
| Time || [[#time|time]] || return number of seconds since 1970
|-
| Time || [[#times|times]] || return elapsed time for self and child processes
|-
| User || [[#endgrent|endgrent]] || be done using group file
|-
| User || [[#endhostent|endhostent]] || be done using hosts file
|-
| User || [[#endnetent|endnetent]] || be done using networks file
|-
| User || [[#endpwent|endpwent]] || be done using passwd file
|-
| User || [[#getgrent|getgrent]] || get next group record
|-
| User || [[#getgrgid|getgrgid]] || get group record given group user ID
|-
| User || [[#getgrnam|getgrnam]] || get group record given group name
|-
| User || [[#getlogin|getlogin]] || return who logged in at this tty
|-
| User || [[#getpwent|getpwent]] || get next passwd record
|-
| User || [[#getpwnam|getpwnam]] || get passwd record given user login name
|-
| User || [[#getpwuid|getpwuid]] || get passwd record given user ID
|-
| User || [[#setgrent|setgrent]] || prepare group file for use
|-
| User || [[#setpwent|setpwent]] || prepare passwd file for use
|}
-->
== çµèŸŒã¿é¢æ°äžèЧ ==
{{Main|[https://perldoc.perl.org/perlfunc perlfunc(en)]|[https://perldoc.jp/docs/perl/perlfunc.pod perldoc(ja)]}}
<!--
<syntaxhighlight lang=perl>
use v5.30.0;
use Pod::Functions;
# Kind -> Function -> Flavor
my @kkeys = sort keys %Kinds;
foreach my $kkey(@kkeys) {
my ($kind, $functions) = %Kinds{$kkey};
print <<EOS;
=== $kind ===
@{[ map { "[[#$_|$_]]" } @$functions ]}
EOS
foreach my $function(@$functions) {
my ($null, $flaver) = %Flavor{$function};
print <<EOS;
==== $function ====
@{[ $flaver ]}
{{See also|[https://perldoc.perl.org/functions/$function $function(en)]|[https://perldoc.jp/func/$function $function(ja)]}}
EOS
}
}
</syntaxhighlight>
-->
=== ARRAY ===
[[#each|each]] [[#keys|keys]] [[#pop|pop]] [[#push|push]] [[#shift|shift]] [[#splice|splice]] [[#unshift|unshift]] [[#values|values]]
==== each ====
retrieve the next key/value pair from a hash
{{See also|[https://perldoc.perl.org/functions/each each(en)]|[https://perldoc.jp/func/each each(ja)]}}
==== keys ====
retrieve list of indices from a hash
{{See also|[https://perldoc.perl.org/functions/keys keys(en)]|[https://perldoc.jp/func/keys keys(ja)]}}
==== pop ====
remove the last element from an array and return it
{{See also|[https://perldoc.perl.org/functions/pop pop(en)]|[https://perldoc.jp/func/pop pop(ja)]}}
==== push ====
append one or more elements to an array
{{See also|[https://perldoc.perl.org/functions/push push(en)]|[https://perldoc.jp/func/push push(ja)]}}
==== shift ====
remove the first element of an array, and return it
{{See also|[https://perldoc.perl.org/functions/shift shift(en)]|[https://perldoc.jp/func/shift shift(ja)]}}
==== splice ====
add or remove elements anywhere in an array
{{See also|[https://perldoc.perl.org/functions/splice splice(en)]|[https://perldoc.jp/func/splice splice(ja)]}}
==== unshift ====
prepend more elements to the beginning of a list
{{See also|[https://perldoc.perl.org/functions/unshift unshift(en)]|[https://perldoc.jp/func/unshift unshift(ja)]}}
==== values ====
return a list of the values in a hash
{{See also|[https://perldoc.perl.org/functions/values values(en)]|[https://perldoc.jp/func/values values(ja)]}}
=== Binary ===
[[#pack|pack]] [[#read|read]] [[#syscall|syscall]] [[#sysread|sysread]] [[#sysseek|sysseek]] [[#syswrite|syswrite]] [[#unpack|unpack]] [[#vec|vec]]
==== pack ====
convert a list into a binary representation
{{See also|[https://perldoc.perl.org/functions/pack pack(en)]|[https://perldoc.jp/func/pack pack(ja)]}}
==== read ====
fixed-length buffered input from a filehandle
{{See also|[https://perldoc.perl.org/functions/read read(en)]|[https://perldoc.jp/func/read read(ja)]}}
==== syscall ====
execute an arbitrary system call
{{See also|[https://perldoc.perl.org/functions/syscall syscall(en)]|[https://perldoc.jp/func/syscall syscall(ja)]}}
==== sysread ====
fixed-length unbuffered input from a filehandle
{{See also|[https://perldoc.perl.org/functions/sysread sysread(en)]|[https://perldoc.jp/func/sysread sysread(ja)]}}
==== sysseek ====
position I/O pointer on handle used with sysread and syswrite
{{See also|[https://perldoc.perl.org/functions/sysseek sysseek(en)]|[https://perldoc.jp/func/sysseek sysseek(ja)]}}
==== syswrite ====
fixed-length unbuffered output to a filehandle
{{See also|[https://perldoc.perl.org/functions/syswrite syswrite(en)]|[https://perldoc.jp/func/syswrite syswrite(ja)]}}
==== unpack ====
convert binary structure into normal perl variables
{{See also|[https://perldoc.perl.org/functions/unpack unpack(en)]|[https://perldoc.jp/func/unpack unpack(ja)]}}
==== vec ====
test or set particular bits in a string
{{See also|[https://perldoc.perl.org/functions/vec vec(en)]|[https://perldoc.jp/func/vec vec(ja)]}}
=== File ===
[[#-X|-X]] [[#chdir|chdir]] [[#chmod|chmod]] [[#chown|chown]] [[#chroot|chroot]] [[#fcntl|fcntl]] [[#glob|glob]] [[#ioctl|ioctl]] [[#link|link]] [[#lstat|lstat]] [[#mkdir|mkdir]] [[#open|open]] [[#opendir|opendir]] [[#readlink|readlink]] [[#rename|rename]] [[#rmdir|rmdir]] [[#select|select]] [[#stat|stat]] [[#symlink|symlink]] [[#sysopen|sysopen]] [[#umask|umask]] [[#unlink|unlink]] [[#utime|utime]]
==== -X ====
a file test (-r, -x, etc)
{{See also|[https://perldoc.perl.org/functions/-X -X(en)]|[https://perldoc.jp/func/-X -X(ja)]}}
==== chdir ====
change your current working directory
{{See also|[https://perldoc.perl.org/functions/chdir chdir(en)]|[https://perldoc.jp/func/chdir chdir(ja)]}}
==== chmod ====
changes the permissions on a list of files
{{See also|[https://perldoc.perl.org/functions/chmod chmod(en)]|[https://perldoc.jp/func/chmod chmod(ja)]}}
==== chown ====
change the ownership on a list of files
{{See also|[https://perldoc.perl.org/functions/chown chown(en)]|[https://perldoc.jp/func/chown chown(ja)]}}
==== chroot ====
make directory new root for path lookups
{{See also|[https://perldoc.perl.org/functions/chroot chroot(en)]|[https://perldoc.jp/func/chroot chroot(ja)]}}
==== fcntl ====
file control system call
{{See also|[https://perldoc.perl.org/functions/fcntl fcntl(en)]|[https://perldoc.jp/func/fcntl fcntl(ja)]}}
==== glob ====
expand filenames using wildcards
{{See also|[https://perldoc.perl.org/functions/glob glob(en)]|[https://perldoc.jp/func/glob glob(ja)]}}
==== ioctl ====
system-dependent device control system call
{{See also|[https://perldoc.perl.org/functions/ioctl ioctl(en)]|[https://perldoc.jp/func/ioctl ioctl(ja)]}}
==== link ====
create a hard link in the filesystem
{{See also|[https://perldoc.perl.org/functions/link link(en)]|[https://perldoc.jp/func/link link(ja)]}}
==== lstat ====
stat a symbolic link
{{See also|[https://perldoc.perl.org/functions/lstat lstat(en)]|[https://perldoc.jp/func/lstat lstat(ja)]}}
==== mkdir ====
create a directory
{{See also|[https://perldoc.perl.org/functions/mkdir mkdir(en)]|[https://perldoc.jp/func/mkdir mkdir(ja)]}}
==== open ====
open a file, pipe, or descriptor
{{See also|[https://perldoc.perl.org/functions/open open(en)]|[https://perldoc.jp/func/open open(ja)]}}
==== opendir ====
open a directory
{{See also|[https://perldoc.perl.org/functions/opendir opendir(en)]|[https://perldoc.jp/func/opendir opendir(ja)]}}
==== readlink ====
determine where a symbolic link is pointing
{{See also|[https://perldoc.perl.org/functions/readlink readlink(en)]|[https://perldoc.jp/func/readlink readlink(ja)]}}
==== rename ====
change a filename
{{See also|[https://perldoc.perl.org/functions/rename rename(en)]|[https://perldoc.jp/func/rename rename(ja)]}}
==== rmdir ====
remove a directory
{{See also|[https://perldoc.perl.org/functions/rmdir rmdir(en)]|[https://perldoc.jp/func/rmdir rmdir(ja)]}}
==== select ====
reset default output or do I/O multiplexing
{{See also|[https://perldoc.perl.org/functions/select select(en)]|[https://perldoc.jp/func/select select(ja)]}}
==== stat ====
get a file's status information
{{See also|[https://perldoc.perl.org/functions/stat stat(en)]|[https://perldoc.jp/func/stat stat(ja)]}}
==== symlink ====
create a symbolic link to a file
{{See also|[https://perldoc.perl.org/functions/symlink symlink(en)]|[https://perldoc.jp/func/symlink symlink(ja)]}}
==== sysopen ====
open a file, pipe, or descriptor
{{See also|[https://perldoc.perl.org/functions/sysopen sysopen(en)]|[https://perldoc.jp/func/sysopen sysopen(ja)]}}
==== umask ====
set file creation mode mask
{{See also|[https://perldoc.perl.org/functions/umask umask(en)]|[https://perldoc.jp/func/umask umask(ja)]}}
==== unlink ====
remove one link to a file
{{See also|[https://perldoc.perl.org/functions/unlink unlink(en)]|[https://perldoc.jp/func/unlink unlink(ja)]}}
==== utime ====
set a file's last access and modify times
{{See also|[https://perldoc.perl.org/functions/utime utime(en)]|[https://perldoc.jp/func/utime utime(ja)]}}
=== Flow ===
[[#break|break]] [[#caller|caller]] [[#continue|continue]] [[#die|die]] [[#do|do]] [[#dump|dump]] [[#eval|eval]] [[#evalbytes|evalbytes]] [[#exit|exit]] [[#__FILE__|__FILE__]] [[#goto|goto]] [[#last|last]] [[#__LINE__|__LINE__]] [[#next|next]] [[#__PACKAGE__|__PACKAGE__]] [[#redo|redo]] [[#return|return]] [[#sub|sub]] [[#__SUB__|__SUB__]] [[#wantarray|wantarray]]
==== break ====
break out of a C<given> block
{{See also|[https://perldoc.perl.org/functions/break break(en)]|[https://perldoc.jp/func/break break(ja)]}}
==== caller ====
get context of the current subroutine call
{{See also|[https://perldoc.perl.org/functions/caller caller(en)]|[https://perldoc.jp/func/caller caller(ja)]}}
==== continue ====
optional trailing block in a while or foreach
{{See also|[https://perldoc.perl.org/functions/continue continue(en)]|[https://perldoc.jp/func/continue continue(ja)]}}
==== die ====
raise an exception or bail out
{{See also|[https://perldoc.perl.org/functions/die die(en)]|[https://perldoc.jp/func/die die(ja)]}}
==== do ====
turn a BLOCK into a TERM
{{See also|[https://perldoc.perl.org/functions/do do(en)]|[https://perldoc.jp/func/do do(ja)]}}
==== dump ====
create an immediate core dump
{{See also|[https://perldoc.perl.org/functions/dump dump(en)]|[https://perldoc.jp/func/dump dump(ja)]}}
==== eval ====
catch exceptions or compile and run code
{{See also|[https://perldoc.perl.org/functions/eval eval(en)]|[https://perldoc.jp/func/eval eval(ja)]}}
==== evalbytes ====
similar to string eval, but intend to parse a bytestream
{{See also|[https://perldoc.perl.org/functions/evalbytes evalbytes(en)]|[https://perldoc.jp/func/evalbytes evalbytes(ja)]}}
==== exit ====
terminate this program
{{See also|[https://perldoc.perl.org/functions/exit exit(en)]|[https://perldoc.jp/func/exit exit(ja)]}}
==== __FILE__ ====
the name of the current source file
{{See also|[https://perldoc.perl.org/functions/__FILE__ __FILE__(en)]|[https://perldoc.jp/func/__FILE__ __FILE__(ja)]}}
==== goto ====
create spaghetti code
{{See also|[https://perldoc.perl.org/functions/goto goto(en)]|[https://perldoc.jp/func/goto goto(ja)]}}
==== last ====
exit a block prematurely
{{See also|[https://perldoc.perl.org/functions/last last(en)]|[https://perldoc.jp/func/last last(ja)]}}
==== __LINE__ ====
the current source line number
{{See also|[https://perldoc.perl.org/functions/__LINE__ __LINE__(en)]|[https://perldoc.jp/func/__LINE__ __LINE__(ja)]}}
==== next ====
iterate a block prematurely
{{See also|[https://perldoc.perl.org/functions/next next(en)]|[https://perldoc.jp/func/next next(ja)]}}
==== __PACKAGE__ ====
the current package
{{See also|[https://perldoc.perl.org/functions/__PACKAGE__ __PACKAGE__(en)]|[https://perldoc.jp/func/__PACKAGE__ __PACKAGE__(ja)]}}
==== redo ====
start this loop iteration over again
{{See also|[https://perldoc.perl.org/functions/redo redo(en)]|[https://perldoc.jp/func/redo redo(ja)]}}
==== return ====
get out of a function early
{{See also|[https://perldoc.perl.org/functions/return return(en)]|[https://perldoc.jp/func/return return(ja)]}}
==== sub ====
declare a subroutine, possibly anonymously
{{See also|[https://perldoc.perl.org/functions/sub sub(en)]|[https://perldoc.jp/func/sub sub(ja)]}}
==== __SUB__ ====
the current subroutine, or C<undef> if not in a subroutine
{{See also|[https://perldoc.perl.org/functions/__SUB__ __SUB__(en)]|[https://perldoc.jp/func/__SUB__ __SUB__(ja)]}}
==== wantarray ====
get void vs scalar vs list context of current subroutine call
{{See also|[https://perldoc.perl.org/functions/wantarray wantarray(en)]|[https://perldoc.jp/func/wantarray wantarray(ja)]}}
=== HASH ===
[[#delete|delete]] [[#each|each]] [[#exists|exists]] [[#keys|keys]] [[#values|values]]
==== delete ====
deletes a value from a hash
{{See also|[https://perldoc.perl.org/functions/delete delete(en)]|[https://perldoc.jp/func/delete delete(ja)]}}
==== each ====
retrieve the next key/value pair from a hash
{{See also|[https://perldoc.perl.org/functions/each each(en)]|[https://perldoc.jp/func/each each(ja)]}}
==== exists ====
test whether a hash key is present
{{See also|[https://perldoc.perl.org/functions/exists exists(en)]|[https://perldoc.jp/func/exists exists(ja)]}}
==== keys ====
retrieve list of indices from a hash
{{See also|[https://perldoc.perl.org/functions/keys keys(en)]|[https://perldoc.jp/func/keys keys(ja)]}}
==== values ====
return a list of the values in a hash
{{See also|[https://perldoc.perl.org/functions/values values(en)]|[https://perldoc.jp/func/values values(ja)]}}
=== I/O ===
[[#binmode|binmode]] [[#close|close]] [[#closedir|closedir]] [[#dbmclose|dbmclose]] [[#dbmopen|dbmopen]] [[#die|die]] [[#eof|eof]] [[#fileno|fileno]] [[#flock|flock]] [[#format|format]] [[#getc|getc]] [[#print|print]] [[#printf|printf]] [[#read|read]] [[#readdir|readdir]] [[#readline|readline]] [[#rewinddir|rewinddir]] [[#say|say]] [[#seek|seek]] [[#seekdir|seekdir]] [[#select|select]] [[#syscall|syscall]] [[#sysread|sysread]] [[#sysseek|sysseek]] [[#syswrite|syswrite]] [[#tell|tell]] [[#telldir|telldir]] [[#truncate|truncate]] [[#warn|warn]] [[#write|write]]
==== binmode ====
prepare binary files for I/O
{{See also|[https://perldoc.perl.org/functions/binmode binmode(en)]|[https://perldoc.jp/func/binmode binmode(ja)]}}
==== close ====
close file (or pipe or socket) handle
{{See also|[https://perldoc.perl.org/functions/close close(en)]|[https://perldoc.jp/func/close close(ja)]}}
==== closedir ====
close directory handle
{{See also|[https://perldoc.perl.org/functions/closedir closedir(en)]|[https://perldoc.jp/func/closedir closedir(ja)]}}
==== dbmclose ====
breaks binding on a tied dbm file
{{See also|[https://perldoc.perl.org/functions/dbmclose dbmclose(en)]|[https://perldoc.jp/func/dbmclose dbmclose(ja)]}}
==== dbmopen ====
create binding on a tied dbm file
{{See also|[https://perldoc.perl.org/functions/dbmopen dbmopen(en)]|[https://perldoc.jp/func/dbmopen dbmopen(ja)]}}
==== die ====
raise an exception or bail out
{{See also|[https://perldoc.perl.org/functions/die die(en)]|[https://perldoc.jp/func/die die(ja)]}}
==== eof ====
test a filehandle for its end
{{See also|[https://perldoc.perl.org/functions/eof eof(en)]|[https://perldoc.jp/func/eof eof(ja)]}}
==== fileno ====
return file descriptor from filehandle
{{See also|[https://perldoc.perl.org/functions/fileno fileno(en)]|[https://perldoc.jp/func/fileno fileno(ja)]}}
==== flock ====
lock an entire file with an advisory lock
{{See also|[https://perldoc.perl.org/functions/flock flock(en)]|[https://perldoc.jp/func/flock flock(ja)]}}
==== format ====
declare a picture format with use by the write() function
{{See also|[https://perldoc.perl.org/functions/format format(en)]|[https://perldoc.jp/func/format format(ja)]}}
==== getc ====
get the next character from the filehandle
{{See also|[https://perldoc.perl.org/functions/getc getc(en)]|[https://perldoc.jp/func/getc getc(ja)]}}
==== print ====
output a list to a filehandle
{{See also|[https://perldoc.perl.org/functions/print print(en)]|[https://perldoc.jp/func/print print(ja)]}}
==== printf ====
output a formatted list to a filehandle
{{See also|[https://perldoc.perl.org/functions/printf printf(en)]|[https://perldoc.jp/func/printf printf(ja)]}}
==== read ====
fixed-length buffered input from a filehandle
{{See also|[https://perldoc.perl.org/functions/read read(en)]|[https://perldoc.jp/func/read read(ja)]}}
==== readdir ====
get a directory from a directory handle
{{See also|[https://perldoc.perl.org/functions/readdir readdir(en)]|[https://perldoc.jp/func/readdir readdir(ja)]}}
==== readline ====
fetch a record from a file
{{See also|[https://perldoc.perl.org/functions/readline readline(en)]|[https://perldoc.jp/func/readline readline(ja)]}}
==== rewinddir ====
reset directory handle
{{See also|[https://perldoc.perl.org/functions/rewinddir rewinddir(en)]|[https://perldoc.jp/func/rewinddir rewinddir(ja)]}}
==== say ====
output a list to a filehandle, appending a newline
{{See also|[https://perldoc.perl.org/functions/say say(en)]|[https://perldoc.jp/func/say say(ja)]}}
==== seek ====
reposition file pointer for random-access I/O
{{See also|[https://perldoc.perl.org/functions/seek seek(en)]|[https://perldoc.jp/func/seek seek(ja)]}}
==== seekdir ====
reposition directory pointer
{{See also|[https://perldoc.perl.org/functions/seekdir seekdir(en)]|[https://perldoc.jp/func/seekdir seekdir(ja)]}}
==== select ====
reset default output or do I/O multiplexing
{{See also|[https://perldoc.perl.org/functions/select select(en)]|[https://perldoc.jp/func/select select(ja)]}}
==== syscall ====
execute an arbitrary system call
{{See also|[https://perldoc.perl.org/functions/syscall syscall(en)]|[https://perldoc.jp/func/syscall syscall(ja)]}}
==== sysread ====
fixed-length unbuffered input from a filehandle
{{See also|[https://perldoc.perl.org/functions/sysread sysread(en)]|[https://perldoc.jp/func/sysread sysread(ja)]}}
==== sysseek ====
position I/O pointer on handle used with sysread and syswrite
{{See also|[https://perldoc.perl.org/functions/sysseek sysseek(en)]|[https://perldoc.jp/func/sysseek sysseek(ja)]}}
==== syswrite ====
fixed-length unbuffered output to a filehandle
{{See also|[https://perldoc.perl.org/functions/syswrite syswrite(en)]|[https://perldoc.jp/func/syswrite syswrite(ja)]}}
==== tell ====
get current seekpointer on a filehandle
{{See also|[https://perldoc.perl.org/functions/tell tell(en)]|[https://perldoc.jp/func/tell tell(ja)]}}
==== telldir ====
get current seekpointer on a directory handle
{{See also|[https://perldoc.perl.org/functions/telldir telldir(en)]|[https://perldoc.jp/func/telldir telldir(ja)]}}
==== truncate ====
shorten a file
{{See also|[https://perldoc.perl.org/functions/truncate truncate(en)]|[https://perldoc.jp/func/truncate truncate(ja)]}}
==== warn ====
print debugging info
{{See also|[https://perldoc.perl.org/functions/warn warn(en)]|[https://perldoc.jp/func/warn warn(ja)]}}
==== write ====
print a picture record
{{See also|[https://perldoc.perl.org/functions/write write(en)]|[https://perldoc.jp/func/write write(ja)]}}
=== LIST ===
[[#grep|grep]] [[#join|join]] [[#map|map]] [[#qw/STRING/|qw/STRING/]] [[#reverse|reverse]] [[#sort|sort]] [[#unpack|unpack]]
==== grep ====
locate elements in a list test true against a given criterion
{{See also|[https://perldoc.perl.org/functions/grep grep(en)]|[https://perldoc.jp/func/grep grep(ja)]}}
==== join ====
join a list into a string using a separator
{{See also|[https://perldoc.perl.org/functions/join join(en)]|[https://perldoc.jp/func/join join(ja)]}}
==== map ====
apply a change to a list to get back a new list with the changes
{{See also|[https://perldoc.perl.org/functions/map map(en)]|[https://perldoc.jp/func/map map(ja)]}}
==== qw/STRING/ ====
quote a list of words
{{See also|[https://perldoc.perl.org/functions/qw/STRING/ qw/STRING/(en)]|[https://perldoc.jp/func/qw/STRING/ qw/STRING/(ja)]}}
==== reverse ====
flip a string or a list
{{See also|[https://perldoc.perl.org/functions/reverse reverse(en)]|[https://perldoc.jp/func/reverse reverse(ja)]}}
==== sort ====
sort a list of values
{{See also|[https://perldoc.perl.org/functions/sort sort(en)]|[https://perldoc.jp/func/sort sort(ja)]}}
==== unpack ====
convert binary structure into normal perl variables
{{See also|[https://perldoc.perl.org/functions/unpack unpack(en)]|[https://perldoc.jp/func/unpack unpack(ja)]}}
=== Math ===
[[#abs|abs]] [[#atan2|atan2]] [[#cos|cos]] [[#exp|exp]] [[#hex|hex]] [[#int|int]] [[#log|log]] [[#oct|oct]] [[#rand|rand]] [[#sin|sin]] [[#sqrt|sqrt]] [[#srand|srand]]
==== abs ====
absolute value function
{{See also|[https://perldoc.perl.org/functions/abs abs(en)]|[https://perldoc.jp/func/abs abs(ja)]}}
==== atan2 ====
arctangent of Y/X in the range -PI to PI
{{See also|[https://perldoc.perl.org/functions/atan2 atan2(en)]|[https://perldoc.jp/func/atan2 atan2(ja)]}}
==== cos ====
cosine function
{{See also|[https://perldoc.perl.org/functions/cos cos(en)]|[https://perldoc.jp/func/cos cos(ja)]}}
==== exp ====
raise I<e> to a power
{{See also|[https://perldoc.perl.org/functions/exp exp(en)]|[https://perldoc.jp/func/exp exp(ja)]}}
==== hex ====
convert a hexadecimal string to a number
{{See also|[https://perldoc.perl.org/functions/hex hex(en)]|[https://perldoc.jp/func/hex hex(ja)]}}
==== int ====
get the integer portion of a number
{{See also|[https://perldoc.perl.org/functions/int int(en)]|[https://perldoc.jp/func/int int(ja)]}}
==== log ====
retrieve the natural logarithm for a number
{{See also|[https://perldoc.perl.org/functions/log log(en)]|[https://perldoc.jp/func/log log(ja)]}}
==== oct ====
convert a string to an octal number
{{See also|[https://perldoc.perl.org/functions/oct oct(en)]|[https://perldoc.jp/func/oct oct(ja)]}}
==== rand ====
retrieve the next pseudorandom number
{{See also|[https://perldoc.perl.org/functions/rand rand(en)]|[https://perldoc.jp/func/rand rand(ja)]}}
==== sin ====
return the sine of a number
{{See also|[https://perldoc.perl.org/functions/sin sin(en)]|[https://perldoc.jp/func/sin sin(ja)]}}
==== sqrt ====
square root function
{{See also|[https://perldoc.perl.org/functions/sqrt sqrt(en)]|[https://perldoc.jp/func/sqrt sqrt(ja)]}}
==== srand ====
seed the random number generator
{{See also|[https://perldoc.perl.org/functions/srand srand(en)]|[https://perldoc.jp/func/srand srand(ja)]}}
=== Misc ===
[[#defined|defined]] [[#formline|formline]] [[#lock|lock]] [[#prototype|prototype]] [[#reset|reset]] [[#scalar|scalar]] [[#undef|undef]]
==== defined ====
test whether a value, variable, or function is defined
{{See also|[https://perldoc.perl.org/functions/defined defined(en)]|[https://perldoc.jp/func/defined defined(ja)]}}
==== formline ====
internal function used for formats
{{See also|[https://perldoc.perl.org/functions/formline formline(en)]|[https://perldoc.jp/func/formline formline(ja)]}}
==== lock ====
get a thread lock on a variable, subroutine, or method
{{See also|[https://perldoc.perl.org/functions/lock lock(en)]|[https://perldoc.jp/func/lock lock(ja)]}}
==== prototype ====
get the prototype (if any) of a subroutine
{{See also|[https://perldoc.perl.org/functions/prototype prototype(en)]|[https://perldoc.jp/func/prototype prototype(ja)]}}
==== reset ====
clear all variables of a given name
{{See also|[https://perldoc.perl.org/functions/reset reset(en)]|[https://perldoc.jp/func/reset reset(ja)]}}
==== scalar ====
force a scalar context
{{See also|[https://perldoc.perl.org/functions/scalar scalar(en)]|[https://perldoc.jp/func/scalar scalar(ja)]}}
==== undef ====
remove a variable or function definition
{{See also|[https://perldoc.perl.org/functions/undef undef(en)]|[https://perldoc.jp/func/undef undef(ja)]}}
=== Modules ===
[[#do|do]] [[#import|import]] [[#no|no]] [[#package|package]] [[#require|require]] [[#use|use]]
==== do ====
turn a BLOCK into a TERM
{{See also|[https://perldoc.perl.org/functions/do do(en)]|[https://perldoc.jp/func/do do(ja)]}}
==== import ====
patch a module's namespace into your own
{{See also|[https://perldoc.perl.org/functions/import import(en)]|[https://perldoc.jp/func/import import(ja)]}}
==== no ====
unimport some module symbols or semantics at compile time
{{See also|[https://perldoc.perl.org/functions/no no(en)]|[https://perldoc.jp/func/no no(ja)]}}
==== package ====
declare a separate global namespace
{{See also|[https://perldoc.perl.org/functions/package package(en)]|[https://perldoc.jp/func/package package(ja)]}}
==== require ====
load in external functions from a library at runtime
{{See also|[https://perldoc.perl.org/functions/require require(en)]|[https://perldoc.jp/func/require require(ja)]}}
==== use ====
load in a module at compile time and import its namespace
{{See also|[https://perldoc.perl.org/functions/use use(en)]|[https://perldoc.jp/func/use use(ja)]}}
=== Namespace ===
[[#caller|caller]] [[#import|import]] [[#local|local]] [[#my|my]] [[#our|our]] [[#package|package]] [[#state|state]] [[#use|use]]
==== caller ====
get context of the current subroutine call
{{See also|[https://perldoc.perl.org/functions/caller caller(en)]|[https://perldoc.jp/func/caller caller(ja)]}}
==== import ====
patch a module's namespace into your own
{{See also|[https://perldoc.perl.org/functions/import import(en)]|[https://perldoc.jp/func/import import(ja)]}}
==== local ====
create a temporary value for a global variable (dynamic scoping)
{{See also|[https://perldoc.perl.org/functions/local local(en)]|[https://perldoc.jp/func/local local(ja)]}}
==== my ====
declare and assign a local variable (lexical scoping)
{{See also|[https://perldoc.perl.org/functions/my my(en)]|[https://perldoc.jp/func/my my(ja)]}}
==== our ====
declare and assign a package variable (lexical scoping)
{{See also|[https://perldoc.perl.org/functions/our our(en)]|[https://perldoc.jp/func/our our(ja)]}}
==== package ====
declare a separate global namespace
{{See also|[https://perldoc.perl.org/functions/package package(en)]|[https://perldoc.jp/func/package package(ja)]}}
==== state ====
declare and assign a persistent lexical variable
{{See also|[https://perldoc.perl.org/functions/state state(en)]|[https://perldoc.jp/func/state state(ja)]}}
==== use ====
load in a module at compile time and import its namespace
{{See also|[https://perldoc.perl.org/functions/use use(en)]|[https://perldoc.jp/func/use use(ja)]}}
=== Network ===
[[#endprotoent|endprotoent]] [[#endservent|endservent]] [[#gethostbyaddr|gethostbyaddr]] [[#gethostbyname|gethostbyname]] [[#gethostent|gethostent]] [[#getnetbyaddr|getnetbyaddr]] [[#getnetbyname|getnetbyname]] [[#getnetent|getnetent]] [[#getprotobyname|getprotobyname]] [[#getprotobynumber|getprotobynumber]] [[#getprotoent|getprotoent]] [[#getservbyname|getservbyname]] [[#getservbyport|getservbyport]] [[#getservent|getservent]] [[#sethostent|sethostent]] [[#setnetent|setnetent]] [[#setprotoent|setprotoent]] [[#setservent|setservent]]
==== endprotoent ====
be done using protocols file
{{See also|[https://perldoc.perl.org/functions/endprotoent endprotoent(en)]|[https://perldoc.jp/func/endprotoent endprotoent(ja)]}}
==== endservent ====
be done using services file
{{See also|[https://perldoc.perl.org/functions/endservent endservent(en)]|[https://perldoc.jp/func/endservent endservent(ja)]}}
==== gethostbyaddr ====
get host record given its address
{{See also|[https://perldoc.perl.org/functions/gethostbyaddr gethostbyaddr(en)]|[https://perldoc.jp/func/gethostbyaddr gethostbyaddr(ja)]}}
==== gethostbyname ====
get host record given name
{{See also|[https://perldoc.perl.org/functions/gethostbyname gethostbyname(en)]|[https://perldoc.jp/func/gethostbyname gethostbyname(ja)]}}
==== gethostent ====
get next hosts record
{{See also|[https://perldoc.perl.org/functions/gethostent gethostent(en)]|[https://perldoc.jp/func/gethostent gethostent(ja)]}}
==== getnetbyaddr ====
get network record given its address
{{See also|[https://perldoc.perl.org/functions/getnetbyaddr getnetbyaddr(en)]|[https://perldoc.jp/func/getnetbyaddr getnetbyaddr(ja)]}}
==== getnetbyname ====
get networks record given name
{{See also|[https://perldoc.perl.org/functions/getnetbyname getnetbyname(en)]|[https://perldoc.jp/func/getnetbyname getnetbyname(ja)]}}
==== getnetent ====
get next networks record
{{See also|[https://perldoc.perl.org/functions/getnetent getnetent(en)]|[https://perldoc.jp/func/getnetent getnetent(ja)]}}
==== getprotobyname ====
get protocol record given name
{{See also|[https://perldoc.perl.org/functions/getprotobyname getprotobyname(en)]|[https://perldoc.jp/func/getprotobyname getprotobyname(ja)]}}
==== getprotobynumber ====
get protocol record numeric protocol
{{See also|[https://perldoc.perl.org/functions/getprotobynumber getprotobynumber(en)]|[https://perldoc.jp/func/getprotobynumber getprotobynumber(ja)]}}
==== getprotoent ====
get next protocols record
{{See also|[https://perldoc.perl.org/functions/getprotoent getprotoent(en)]|[https://perldoc.jp/func/getprotoent getprotoent(ja)]}}
==== getservbyname ====
get services record given its name
{{See also|[https://perldoc.perl.org/functions/getservbyname getservbyname(en)]|[https://perldoc.jp/func/getservbyname getservbyname(ja)]}}
==== getservbyport ====
get services record given numeric port
{{See also|[https://perldoc.perl.org/functions/getservbyport getservbyport(en)]|[https://perldoc.jp/func/getservbyport getservbyport(ja)]}}
==== getservent ====
get next services record
{{See also|[https://perldoc.perl.org/functions/getservent getservent(en)]|[https://perldoc.jp/func/getservent getservent(ja)]}}
==== sethostent ====
prepare hosts file for use
{{See also|[https://perldoc.perl.org/functions/sethostent sethostent(en)]|[https://perldoc.jp/func/sethostent sethostent(ja)]}}
==== setnetent ====
prepare networks file for use
{{See also|[https://perldoc.perl.org/functions/setnetent setnetent(en)]|[https://perldoc.jp/func/setnetent setnetent(ja)]}}
==== setprotoent ====
prepare protocols file for use
{{See also|[https://perldoc.perl.org/functions/setprotoent setprotoent(en)]|[https://perldoc.jp/func/setprotoent setprotoent(ja)]}}
==== setservent ====
prepare services file for use
{{See also|[https://perldoc.perl.org/functions/setservent setservent(en)]|[https://perldoc.jp/func/setservent setservent(ja)]}}
=== Objects ===
[[#bless|bless]] [[#dbmclose|dbmclose]] [[#dbmopen|dbmopen]] [[#package|package]] [[#ref|ref]] [[#tie|tie]] [[#tied|tied]] [[#untie|untie]] [[#use|use]]
==== bless ====
create an object
{{See also|[https://perldoc.perl.org/functions/bless bless(en)]|[https://perldoc.jp/func/bless bless(ja)]}}
==== dbmclose ====
breaks binding on a tied dbm file
{{See also|[https://perldoc.perl.org/functions/dbmclose dbmclose(en)]|[https://perldoc.jp/func/dbmclose dbmclose(ja)]}}
==== dbmopen ====
create binding on a tied dbm file
{{See also|[https://perldoc.perl.org/functions/dbmopen dbmopen(en)]|[https://perldoc.jp/func/dbmopen dbmopen(ja)]}}
==== package ====
declare a separate global namespace
{{See also|[https://perldoc.perl.org/functions/package package(en)]|[https://perldoc.jp/func/package package(ja)]}}
==== ref ====
find out the type of thing being referenced
{{See also|[https://perldoc.perl.org/functions/ref ref(en)]|[https://perldoc.jp/func/ref ref(ja)]}}
==== tie ====
bind a variable to an object class
{{See also|[https://perldoc.perl.org/functions/tie tie(en)]|[https://perldoc.jp/func/tie tie(ja)]}}
==== tied ====
get a reference to the object underlying a tied variable
{{See also|[https://perldoc.perl.org/functions/tied tied(en)]|[https://perldoc.jp/func/tied tied(ja)]}}
==== untie ====
break a tie binding to a variable
{{See also|[https://perldoc.perl.org/functions/untie untie(en)]|[https://perldoc.jp/func/untie untie(ja)]}}
==== use ====
load in a module at compile time and import its namespace
{{See also|[https://perldoc.perl.org/functions/use use(en)]|[https://perldoc.jp/func/use use(ja)]}}
=== Process ===
[[#alarm|alarm]] [[#exec|exec]] [[#fork|fork]] [[#getpgrp|getpgrp]] [[#getppid|getppid]] [[#getpriority|getpriority]] [[#kill|kill]] [[#pipe|pipe]] [[#qx/STRING/|qx/STRING/]] [[#readpipe|readpipe]] [[#setpgrp|setpgrp]] [[#setpriority|setpriority]] [[#sleep|sleep]] [[#system|system]] [[#times|times]] [[#wait|wait]] [[#waitpid|waitpid]]
==== alarm ====
schedule a SIGALRM
{{See also|[https://perldoc.perl.org/functions/alarm alarm(en)]|[https://perldoc.jp/func/alarm alarm(ja)]}}
==== exec ====
abandon this program to run another
{{See also|[https://perldoc.perl.org/functions/exec exec(en)]|[https://perldoc.jp/func/exec exec(ja)]}}
==== fork ====
create a new process just like this one
{{See also|[https://perldoc.perl.org/functions/fork fork(en)]|[https://perldoc.jp/func/fork fork(ja)]}}
==== getpgrp ====
get process group
{{See also|[https://perldoc.perl.org/functions/getpgrp getpgrp(en)]|[https://perldoc.jp/func/getpgrp getpgrp(ja)]}}
==== getppid ====
get parent process ID
{{See also|[https://perldoc.perl.org/functions/getppid getppid(en)]|[https://perldoc.jp/func/getppid getppid(ja)]}}
==== getpriority ====
get current nice value
{{See also|[https://perldoc.perl.org/functions/getpriority getpriority(en)]|[https://perldoc.jp/func/getpriority getpriority(ja)]}}
==== kill ====
send a signal to a process or process group
{{See also|[https://perldoc.perl.org/functions/kill kill(en)]|[https://perldoc.jp/func/kill kill(ja)]}}
==== pipe ====
open a pair of connected filehandles
{{See also|[https://perldoc.perl.org/functions/pipe pipe(en)]|[https://perldoc.jp/func/pipe pipe(ja)]}}
==== qx/STRING/ ====
backquote quote a string
{{See also|[https://perldoc.perl.org/functions/qx/STRING/ qx/STRING/(en)]|[https://perldoc.jp/func/qx/STRING/ qx/STRING/(ja)]}}
==== readpipe ====
execute a system command and collect standard output
{{See also|[https://perldoc.perl.org/functions/readpipe readpipe(en)]|[https://perldoc.jp/func/readpipe readpipe(ja)]}}
==== setpgrp ====
set the process group of a process
{{See also|[https://perldoc.perl.org/functions/setpgrp setpgrp(en)]|[https://perldoc.jp/func/setpgrp setpgrp(ja)]}}
==== setpriority ====
set a process's nice value
{{See also|[https://perldoc.perl.org/functions/setpriority setpriority(en)]|[https://perldoc.jp/func/setpriority setpriority(ja)]}}
==== sleep ====
block for some number of seconds
{{See also|[https://perldoc.perl.org/functions/sleep sleep(en)]|[https://perldoc.jp/func/sleep sleep(ja)]}}
==== system ====
run a separate program
{{See also|[https://perldoc.perl.org/functions/system system(en)]|[https://perldoc.jp/func/system system(ja)]}}
==== times ====
return elapsed time for self and child processes
{{See also|[https://perldoc.perl.org/functions/times times(en)]|[https://perldoc.jp/func/times times(ja)]}}
==== wait ====
wait for any child process to die
{{See also|[https://perldoc.perl.org/functions/wait wait(en)]|[https://perldoc.jp/func/wait wait(ja)]}}
==== waitpid ====
wait for a particular child process to die
{{See also|[https://perldoc.perl.org/functions/waitpid waitpid(en)]|[https://perldoc.jp/func/waitpid waitpid(ja)]}}
=== Regexp ===
[[#m//|m//]] [[#pos|pos]] [[#qr/STRING/|qr/STRING/]] [[#quotemeta|quotemeta]] [[#s///|s///]] [[#split|split]] [[#study|study]]
==== m// ====
match a string with a regular expression pattern
{{See also|[https://perldoc.perl.org/functions/m// m//(en)]|[https://perldoc.jp/func/m// m//(ja)]}}
==== pos ====
find or set the offset for the last/next m//g search
{{See also|[https://perldoc.perl.org/functions/pos pos(en)]|[https://perldoc.jp/func/pos pos(ja)]}}
==== qr/STRING/ ====
compile pattern
{{See also|[https://perldoc.perl.org/functions/qr/STRING/ qr/STRING/(en)]|[https://perldoc.jp/func/qr/STRING/ qr/STRING/(ja)]}}
==== quotemeta ====
quote regular expression magic characters
{{See also|[https://perldoc.perl.org/functions/quotemeta quotemeta(en)]|[https://perldoc.jp/func/quotemeta quotemeta(ja)]}}
==== s/// ====
replace a pattern with a string
{{See also|[https://perldoc.perl.org/functions/s/// s///(en)]|[https://perldoc.jp/func/s/// s///(ja)]}}
==== split ====
split up a string using a regexp delimiter
{{See also|[https://perldoc.perl.org/functions/split split(en)]|[https://perldoc.jp/func/split split(ja)]}}
==== study ====
no-op, formerly optimized input data for repeated searches
{{See also|[https://perldoc.perl.org/functions/study study(en)]|[https://perldoc.jp/func/study study(ja)]}}
=== Socket ===
[[#accept|accept]] [[#bind|bind]] [[#connect|connect]] [[#getpeername|getpeername]] [[#getsockname|getsockname]] [[#getsockopt|getsockopt]] [[#listen|listen]] [[#recv|recv]] [[#send|send]] [[#setsockopt|setsockopt]] [[#shutdown|shutdown]] [[#socket|socket]] [[#socketpair|socketpair]]
==== accept ====
accept an incoming socket connect
{{See also|[https://perldoc.perl.org/functions/accept accept(en)]|[https://perldoc.jp/func/accept accept(ja)]}}
==== bind ====
binds an address to a socket
{{See also|[https://perldoc.perl.org/functions/bind bind(en)]|[https://perldoc.jp/func/bind bind(ja)]}}
==== connect ====
connect to a remote socket
{{See also|[https://perldoc.perl.org/functions/connect connect(en)]|[https://perldoc.jp/func/connect connect(ja)]}}
==== getpeername ====
find the other end of a socket connection
{{See also|[https://perldoc.perl.org/functions/getpeername getpeername(en)]|[https://perldoc.jp/func/getpeername getpeername(ja)]}}
==== getsockname ====
retrieve the sockaddr for a given socket
{{See also|[https://perldoc.perl.org/functions/getsockname getsockname(en)]|[https://perldoc.jp/func/getsockname getsockname(ja)]}}
==== getsockopt ====
get socket options on a given socket
{{See also|[https://perldoc.perl.org/functions/getsockopt getsockopt(en)]|[https://perldoc.jp/func/getsockopt getsockopt(ja)]}}
==== listen ====
register your socket as a server
{{See also|[https://perldoc.perl.org/functions/listen listen(en)]|[https://perldoc.jp/func/listen listen(ja)]}}
==== recv ====
receive a message over a Socket
{{See also|[https://perldoc.perl.org/functions/recv recv(en)]|[https://perldoc.jp/func/recv recv(ja)]}}
==== send ====
send a message over a socket
{{See also|[https://perldoc.perl.org/functions/send send(en)]|[https://perldoc.jp/func/send send(ja)]}}
==== setsockopt ====
set some socket options
{{See also|[https://perldoc.perl.org/functions/setsockopt setsockopt(en)]|[https://perldoc.jp/func/setsockopt setsockopt(ja)]}}
==== shutdown ====
close down just half of a socket connection
{{See also|[https://perldoc.perl.org/functions/shutdown shutdown(en)]|[https://perldoc.jp/func/shutdown shutdown(ja)]}}
==== socket ====
create a socket
{{See also|[https://perldoc.perl.org/functions/socket socket(en)]|[https://perldoc.jp/func/socket socket(ja)]}}
==== socketpair ====
create a pair of sockets
{{See also|[https://perldoc.perl.org/functions/socketpair socketpair(en)]|[https://perldoc.jp/func/socketpair socketpair(ja)]}}
=== String ===
[[#chomp|chomp]] [[#chop|chop]] [[#chr|chr]] [[#crypt|crypt]] [[#fc|fc]] [[#hex|hex]] [[#index|index]] [[#lc|lc]] [[#lcfirst|lcfirst]] [[#length|length]] [[#oct|oct]] [[#ord|ord]] [[#pack|pack]] [[#q/STRING/|q/STRING/]] [[#qq/STRING/|qq/STRING/]] [[#reverse|reverse]] [[#rindex|rindex]] [[#sprintf|sprintf]] [[#substr|substr]] [[#tr///|tr///]] [[#uc|uc]] [[#ucfirst|ucfirst]] [[#y///|y///]]
==== chomp ====
remove a trailing record separator from a string
{{See also|[https://perldoc.perl.org/functions/chomp chomp(en)]|[https://perldoc.jp/func/chomp chomp(ja)]}}
==== chop ====
remove the last character from a string
{{See also|[https://perldoc.perl.org/functions/chop chop(en)]|[https://perldoc.jp/func/chop chop(ja)]}}
==== chr ====
get character this number represents
{{See also|[https://perldoc.perl.org/functions/chr chr(en)]|[https://perldoc.jp/func/chr chr(ja)]}}
==== crypt ====
one-way passwd-style encryption
{{See also|[https://perldoc.perl.org/functions/crypt crypt(en)]|[https://perldoc.jp/func/crypt crypt(ja)]}}
==== fc ====
return casefolded version of a string
{{See also|[https://perldoc.perl.org/functions/fc fc(en)]|[https://perldoc.jp/func/fc fc(ja)]}}
==== hex ====
convert a hexadecimal string to a number
{{See also|[https://perldoc.perl.org/functions/hex hex(en)]|[https://perldoc.jp/func/hex hex(ja)]}}
==== index ====
find a substring within a string
{{See also|[https://perldoc.perl.org/functions/index index(en)]|[https://perldoc.jp/func/index index(ja)]}}
==== lc ====
return lower-case version of a string
{{See also|[https://perldoc.perl.org/functions/lc lc(en)]|[https://perldoc.jp/func/lc lc(ja)]}}
==== lcfirst ====
return a string with just the next letter in lower case
{{See also|[https://perldoc.perl.org/functions/lcfirst lcfirst(en)]|[https://perldoc.jp/func/lcfirst lcfirst(ja)]}}
==== length ====
return the number of characters in a string
{{See also|[https://perldoc.perl.org/functions/length length(en)]|[https://perldoc.jp/func/length length(ja)]}}
==== oct ====
convert a string to an octal number
{{See also|[https://perldoc.perl.org/functions/oct oct(en)]|[https://perldoc.jp/func/oct oct(ja)]}}
==== ord ====
find a character's numeric representation
{{See also|[https://perldoc.perl.org/functions/ord ord(en)]|[https://perldoc.jp/func/ord ord(ja)]}}
==== pack ====
convert a list into a binary representation
{{See also|[https://perldoc.perl.org/functions/pack pack(en)]|[https://perldoc.jp/func/pack pack(ja)]}}
==== q/STRING/ ====
singly quote a string
{{See also|[https://perldoc.perl.org/functions/q/STRING/ q/STRING/(en)]|[https://perldoc.jp/func/q/STRING/ q/STRING/(ja)]}}
==== qq/STRING/ ====
doubly quote a string
{{See also|[https://perldoc.perl.org/functions/qq/STRING/ qq/STRING/(en)]|[https://perldoc.jp/func/qq/STRING/ qq/STRING/(ja)]}}
==== reverse ====
flip a string or a list
{{See also|[https://perldoc.perl.org/functions/reverse reverse(en)]|[https://perldoc.jp/func/reverse reverse(ja)]}}
==== rindex ====
right-to-left substring search
{{See also|[https://perldoc.perl.org/functions/rindex rindex(en)]|[https://perldoc.jp/func/rindex rindex(ja)]}}
==== sprintf ====
formatted print into a string
{{See also|[https://perldoc.perl.org/functions/sprintf sprintf(en)]|[https://perldoc.jp/func/sprintf sprintf(ja)]}}
==== substr ====
get or alter a portion of a string
{{See also|[https://perldoc.perl.org/functions/substr substr(en)]|[https://perldoc.jp/func/substr substr(ja)]}}
==== tr/// ====
transliterate a string
{{See also|[https://perldoc.perl.org/functions/tr/// tr///(en)]|[https://perldoc.jp/func/tr/// tr///(ja)]}}
==== uc ====
return upper-case version of a string
{{See also|[https://perldoc.perl.org/functions/uc uc(en)]|[https://perldoc.jp/func/uc uc(ja)]}}
==== ucfirst ====
return a string with just the next letter in upper case
{{See also|[https://perldoc.perl.org/functions/ucfirst ucfirst(en)]|[https://perldoc.jp/func/ucfirst ucfirst(ja)]}}
==== y/// ====
transliterate a string
{{See also|[https://perldoc.perl.org/functions/y/// y///(en)]|[https://perldoc.jp/func/y/// y///(ja)]}}
=== SysV ===
[[#msgctl|msgctl]] [[#msgget|msgget]] [[#msgrcv|msgrcv]] [[#msgsnd|msgsnd]] [[#semctl|semctl]] [[#semget|semget]] [[#semop|semop]] [[#shmctl|shmctl]] [[#shmget|shmget]] [[#shmread|shmread]] [[#shmwrite|shmwrite]]
==== msgctl ====
SysV IPC message control operations
{{See also|[https://perldoc.perl.org/functions/msgctl msgctl(en)]|[https://perldoc.jp/func/msgctl msgctl(ja)]}}
==== msgget ====
get SysV IPC message queue
{{See also|[https://perldoc.perl.org/functions/msgget msgget(en)]|[https://perldoc.jp/func/msgget msgget(ja)]}}
==== msgrcv ====
receive a SysV IPC message from a message queue
{{See also|[https://perldoc.perl.org/functions/msgrcv msgrcv(en)]|[https://perldoc.jp/func/msgrcv msgrcv(ja)]}}
==== msgsnd ====
send a SysV IPC message to a message queue
{{See also|[https://perldoc.perl.org/functions/msgsnd msgsnd(en)]|[https://perldoc.jp/func/msgsnd msgsnd(ja)]}}
==== semctl ====
SysV semaphore control operations
{{See also|[https://perldoc.perl.org/functions/semctl semctl(en)]|[https://perldoc.jp/func/semctl semctl(ja)]}}
==== semget ====
get set of SysV semaphores
{{See also|[https://perldoc.perl.org/functions/semget semget(en)]|[https://perldoc.jp/func/semget semget(ja)]}}
==== semop ====
SysV semaphore operations
{{See also|[https://perldoc.perl.org/functions/semop semop(en)]|[https://perldoc.jp/func/semop semop(ja)]}}
==== shmctl ====
SysV shared memory operations
{{See also|[https://perldoc.perl.org/functions/shmctl shmctl(en)]|[https://perldoc.jp/func/shmctl shmctl(ja)]}}
==== shmget ====
get SysV shared memory segment identifier
{{See also|[https://perldoc.perl.org/functions/shmget shmget(en)]|[https://perldoc.jp/func/shmget shmget(ja)]}}
==== shmread ====
read SysV shared memory
{{See also|[https://perldoc.perl.org/functions/shmread shmread(en)]|[https://perldoc.jp/func/shmread shmread(ja)]}}
==== shmwrite ====
write SysV shared memory
{{See also|[https://perldoc.perl.org/functions/shmwrite shmwrite(en)]|[https://perldoc.jp/func/shmwrite shmwrite(ja)]}}
=== Time ===
[[#gmtime|gmtime]] [[#localtime|localtime]] [[#time|time]] [[#times|times]]
==== gmtime ====
convert UNIX time into record or string using Greenwich time
{{See also|[https://perldoc.perl.org/functions/gmtime gmtime(en)]|[https://perldoc.jp/func/gmtime gmtime(ja)]}}
==== localtime ====
convert UNIX time into record or string using local time
{{See also|[https://perldoc.perl.org/functions/localtime localtime(en)]|[https://perldoc.jp/func/localtime localtime(ja)]}}
==== time ====
return number of seconds since 1970
{{See also|[https://perldoc.perl.org/functions/time time(en)]|[https://perldoc.jp/func/time time(ja)]}}
==== times ====
return elapsed time for self and child processes
{{See also|[https://perldoc.perl.org/functions/times times(en)]|[https://perldoc.jp/func/times times(ja)]}}
=== User ===
[[#endgrent|endgrent]] [[#endhostent|endhostent]] [[#endnetent|endnetent]] [[#endpwent|endpwent]] [[#getgrent|getgrent]] [[#getgrgid|getgrgid]] [[#getgrnam|getgrnam]] [[#getlogin|getlogin]] [[#getpwent|getpwent]] [[#getpwnam|getpwnam]] [[#getpwuid|getpwuid]] [[#setgrent|setgrent]] [[#setpwent|setpwent]]
==== endgrent ====
be done using group file
{{See also|[https://perldoc.perl.org/functions/endgrent endgrent(en)]|[https://perldoc.jp/func/endgrent endgrent(ja)]}}
==== endhostent ====
be done using hosts file
{{See also|[https://perldoc.perl.org/functions/endhostent endhostent(en)]|[https://perldoc.jp/func/endhostent endhostent(ja)]}}
==== endnetent ====
be done using networks file
{{See also|[https://perldoc.perl.org/functions/endnetent endnetent(en)]|[https://perldoc.jp/func/endnetent endnetent(ja)]}}
==== endpwent ====
be done using passwd file
{{See also|[https://perldoc.perl.org/functions/endpwent endpwent(en)]|[https://perldoc.jp/func/endpwent endpwent(ja)]}}
==== getgrent ====
get next group record
{{See also|[https://perldoc.perl.org/functions/getgrent getgrent(en)]|[https://perldoc.jp/func/getgrent getgrent(ja)]}}
==== getgrgid ====
get group record given group user ID
{{See also|[https://perldoc.perl.org/functions/getgrgid getgrgid(en)]|[https://perldoc.jp/func/getgrgid getgrgid(ja)]}}
==== getgrnam ====
get group record given group name
{{See also|[https://perldoc.perl.org/functions/getgrnam getgrnam(en)]|[https://perldoc.jp/func/getgrnam getgrnam(ja)]}}
==== getlogin ====
return who logged in at this tty
{{See also|[https://perldoc.perl.org/functions/getlogin getlogin(en)]|[https://perldoc.jp/func/getlogin getlogin(ja)]}}
==== getpwent ====
get next passwd record
{{See also|[https://perldoc.perl.org/functions/getpwent getpwent(en)]|[https://perldoc.jp/func/getpwent getpwent(ja)]}}
==== getpwnam ====
get passwd record given user login name
{{See also|[https://perldoc.perl.org/functions/getpwnam getpwnam(en)]|[https://perldoc.jp/func/getpwnam getpwnam(ja)]}}
==== getpwuid ====
get passwd record given user ID
{{See also|[https://perldoc.perl.org/functions/getpwuid getpwuid(en)]|[https://perldoc.jp/func/getpwuid getpwuid(ja)]}}
==== setgrent ====
prepare group file for use
{{See also|[https://perldoc.perl.org/functions/setgrent setgrent(en)]|[https://perldoc.jp/func/setgrent setgrent(ja)]}}
==== setpwent ====
prepare passwd file for use
{{See also|[https://perldoc.perl.org/functions/setpwent setpwent(en)]|[https://perldoc.jp/func/setpwent setpwent(ja)]}}
<noinclude>
{{Nav}}
{{DEFAULTSORT:Perl ãããã}}
[[Category:Perl|ãããã]]
</noinclude> | null | 2022-11-20T01:41:39Z | [
"ãã³ãã¬ãŒã:Main",
"ãã³ãã¬ãŒã:Nav",
"ãã³ãã¬ãŒã:See also"
] | https://ja.wikibooks.org/wiki/Perl/%E9%96%A2%E6%95%B0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.