Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 22 new columns ({' Observation_Name', ' Actor', ' Other_Modifiers', ' Modifier_6', ' Time_Relative_hms', ' Notes', ' Coding_Scheme', ' Log_File_Name', ' Observer_ID', ' Duration_s', ' Modifier_2', ' Time_Lag_s', ' Time_Absolute_hms', ' Behavior', ' Modifier_4', ' Modifier_5', ' Modifier_1', ' Modifier_3', ' Event_Type', ' Receiver', 'Date_ymd', ' Time_Relative_s'}) and 5 missing columns ({'video_frame', 'time', 'behavior', 'focal_behavior', 'frame'}).

This happened while the csv dataset builder was generating data using

hf://datasets/imageomics/kabr-methodology/scanvsfocal/giraffe/Scan_giraffe_group_1.csv (at revision 151f1c6efe2172d478c9dbe681396382a2fac0fb)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 644, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              Date_ymd: string
               Time_Absolute_hms: string
               Time_Relative_hms: string
               Time_Relative_s: double
               Time_Lag_s: double
               Duration_s: double
               Observation_Name: string
               Log_File_Name: string
               Actor: string
               Behavior: string
               Receiver: double
               Modifier_1: double
               Modifier_2: double
               Modifier_3: double
               Modifier_4: double
               Modifier_5: double
               Modifier_6: double
               Other_Modifiers: double
               Event_Type: string
               Observer_ID: int64
               Notes: string
               Coding_Scheme: string
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 2992
              to
              {'frame': Value('int64'), 'behavior': Value('string'), 'video_frame': Value('int64'), 'time': Value('string'), 'focal_behavior': Value('string')}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1456, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1055, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 894, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 970, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 22 new columns ({' Observation_Name', ' Actor', ' Other_Modifiers', ' Modifier_6', ' Time_Relative_hms', ' Notes', ' Coding_Scheme', ' Log_File_Name', ' Observer_ID', ' Duration_s', ' Modifier_2', ' Time_Lag_s', ' Time_Absolute_hms', ' Behavior', ' Modifier_4', ' Modifier_5', ' Modifier_1', ' Modifier_3', ' Event_Type', ' Receiver', 'Date_ymd', ' Time_Relative_s'}) and 5 missing columns ({'video_frame', 'time', 'behavior', 'focal_behavior', 'frame'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/imageomics/kabr-methodology/scanvsfocal/giraffe/Scan_giraffe_group_1.csv (at revision 151f1c6efe2172d478c9dbe681396382a2fac0fb)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

frame
int64
behavior
string
video_frame
int64
time
string
focal_behavior
string
0
Walk
675
1900-01-01 12:15:44.297000
Walk
1
Walk
676
1900-01-01 12:15:44.330333
Walk
2
Walk
677
1900-01-01 12:15:44.363667
Walk
3
Walk
678
1900-01-01 12:15:44.397000
Walk
4
Walk
679
1900-01-01 12:15:44.430333
Walk
5
Walk
680
1900-01-01 12:15:44.463667
Walk
6
Walk
681
1900-01-01 12:15:44.497000
Walk
7
Walk
682
1900-01-01 12:15:44.530333
Walk
8
Walk
683
1900-01-01 12:15:44.563667
Walk
9
Walk
684
1900-01-01 12:15:44.597000
Walk
10
Walk
685
1900-01-01 12:15:44.630333
Walk
11
Walk
686
1900-01-01 12:15:44.663667
Walk
12
Walk
687
1900-01-01 12:15:44.697000
Walk
13
Walk
688
1900-01-01 12:15:44.730333
Walk
14
Walk
689
1900-01-01 12:15:44.763667
Walk
15
Walk
690
1900-01-01 12:15:44.797000
Walk
16
Walk
691
1900-01-01 12:15:44.830333
Walk
17
Walk
692
1900-01-01 12:15:44.863667
Walk
18
Walk
693
1900-01-01 12:15:44.897000
Walk
19
Walk
694
1900-01-01 12:15:44.930333
Walk
20
Walk
695
1900-01-01 12:15:44.963667
Walk
21
Walk
696
1900-01-01 12:15:44.997000
Walk
22
Walk
697
1900-01-01 12:15:45.030333
Walk
23
Walk
698
1900-01-01 12:15:45.063667
Walk
24
Walk
699
1900-01-01 12:15:45.097000
Walk
25
Walk
700
1900-01-01 12:15:45.130333
Walk
26
Walk
701
1900-01-01 12:15:45.163667
Walk
27
Walk
702
1900-01-01 12:15:45.197000
Walk
28
Walk
703
1900-01-01 12:15:45.230333
Walk
29
Walk
704
1900-01-01 12:15:45.263667
Walk
30
Walk
705
1900-01-01 12:15:45.297000
Walk
31
Walk
706
1900-01-01 12:15:45.330333
Walk
32
Walk
707
1900-01-01 12:15:45.363667
Walk
33
Walk
708
1900-01-01 12:15:45.397000
Walk
34
Walk
709
1900-01-01 12:15:45.430333
Walk
35
Walk
710
1900-01-01 12:15:45.463667
Walk
36
Walk
711
1900-01-01 12:15:45.497000
Walk
37
Walk
712
1900-01-01 12:15:45.530333
Walk
38
Walk
713
1900-01-01 12:15:45.563667
Walk
39
Walk
714
1900-01-01 12:15:45.597000
Walk
40
Walk
715
1900-01-01 12:15:45.630333
Walk
41
Walk
716
1900-01-01 12:15:45.663667
Walk
42
Walk
717
1900-01-01 12:15:45.697000
Walk
43
Walk
718
1900-01-01 12:15:45.730333
Walk
44
Walk
719
1900-01-01 12:15:45.763667
Walk
45
Walk
720
1900-01-01 12:15:45.797000
Walk
46
Walk
721
1900-01-01 12:15:45.830333
Walk
47
Walk
722
1900-01-01 12:15:45.863667
Walk
48
Walk
723
1900-01-01 12:15:45.897000
Walk
49
Walk
724
1900-01-01 12:15:45.930333
Walk
50
Walk
725
1900-01-01 12:15:45.963667
Walk
51
Walk
726
1900-01-01 12:15:45.997000
Walk
52
Walk
727
1900-01-01 12:15:46.030333
Walk
53
Walk
728
1900-01-01 12:15:46.063667
Walk
54
Walk
729
1900-01-01 12:15:46.097000
Walk
55
Walk
730
1900-01-01 12:15:46.130333
Walk
56
Walk
731
1900-01-01 12:15:46.163667
Walk
57
Walk
732
1900-01-01 12:15:46.197000
Walk
58
Walk
733
1900-01-01 12:15:46.230333
Walk
59
Walk
734
1900-01-01 12:15:46.263667
Walk
60
Walk
735
1900-01-01 12:15:46.297000
Walk
61
Walk
736
1900-01-01 12:15:46.330333
Walk
62
Walk
737
1900-01-01 12:15:46.363667
Walk
63
Walk
738
1900-01-01 12:15:46.397000
Walk
64
Walk
739
1900-01-01 12:15:46.430333
Walk
65
Walk
740
1900-01-01 12:15:46.463667
Walk
66
Walk
741
1900-01-01 12:15:46.497000
Walk
67
Walk
742
1900-01-01 12:15:46.530333
Walk
68
Walk
743
1900-01-01 12:15:46.563667
Walk
69
Walk
744
1900-01-01 12:15:46.597000
Walk
70
Walk
745
1900-01-01 12:15:46.630333
Walk
71
Walk
746
1900-01-01 12:15:46.663667
Walk
72
Walk
747
1900-01-01 12:15:46.697000
Walk
73
Walk
748
1900-01-01 12:15:46.730333
Walk
74
Walk
749
1900-01-01 12:15:46.763667
Walk
75
Walk
750
1900-01-01 12:15:46.797000
Walk
76
Walk
751
1900-01-01 12:15:46.830333
Walk
77
Walk
752
1900-01-01 12:15:46.863667
Walk
78
Walk
753
1900-01-01 12:15:46.897000
Walk
79
Walk
754
1900-01-01 12:15:46.930333
Walk
80
Walk
755
1900-01-01 12:15:46.963667
Walk
81
Walk
756
1900-01-01 12:15:46.997000
Walk
82
Walk
757
1900-01-01 12:15:47.030333
Walk
83
Walk
758
1900-01-01 12:15:47.063667
Walk
84
Walk
759
1900-01-01 12:15:47.097000
Walk
85
Walk
760
1900-01-01 12:15:47.130333
Walk
86
Walk
761
1900-01-01 12:15:47.163667
Walk
87
Walk
762
1900-01-01 12:15:47.197000
Walk
88
Walk
763
1900-01-01 12:15:47.230333
Walk
89
Walk
764
1900-01-01 12:15:47.263667
Walk
90
Walk
765
1900-01-01 12:15:47.297000
Walk
91
Walk
766
1900-01-01 12:15:47.330333
Walk
92
Walk
767
1900-01-01 12:15:47.363667
Walk
93
Walk
768
1900-01-01 12:15:47.397000
Walk
94
Walk
769
1900-01-01 12:15:47.430333
Walk
95
Walk
770
1900-01-01 12:15:47.463667
Walk
96
Walk
771
1900-01-01 12:15:47.497000
Walk
97
Walk
772
1900-01-01 12:15:47.530333
Walk
98
Walk
773
1900-01-01 12:15:47.563667
Walk
99
Walk
774
1900-01-01 12:15:47.597000
Walk
End of preview.

Dataset Card for kabr-tools Methodology Dataset

Dataset Details

A curated collection of CSV and XML files describing time-budget data, focal observations, scan samples, and object-detection annotations for African ungulatesβ€”including Grevy’s zebras, plains zebras, and giraffesβ€”recorded both from the ground and from drones. This dataset complements the original KABR Mini-Scene Dataset, providing ground-based sampling to correspond with a subset of the published mini-scenes. Specifically designed to compare Kenyan animal behavior observation methods, this dataset supports:

  • Object detection benchmarks (PASCAL-VOC XML).
  • Behavior classification and time-budget analyses from per-individual CSV logs.
  • Methodological comparisons between focal, scan, and drone-based sampling.
graph displaying the time budget comparison between drone-based behavior classification and manual field focal observations, demonstrates how drones allow for observations of more behaviors
Figure 1. Time budget comparison between drone-based behavior classification (bottom) and manual field focal observations (top).

Dataset Structure

kabr-methodology
β”œβ”€β”€ focalvsdrone/
β”‚   β”œβ”€β”€ focal_drone_df_12_01_23_female_grevy.csv
β”‚   β”œβ”€β”€ focal_drone_df_16_01_23_thick_neck_stripes.csv
β”‚   β”œβ”€β”€ focal_drone_df_16_01_23_white_female.csv
β”‚   β”œβ”€β”€ focal_drone_df_17_01_23_scar_cleaned.csv
β”‚   └── readme.txt
└── scanvsfocal/
    β”œβ”€β”€ giraffe/
    β”‚   β”œβ”€β”€ giraffe_focal1-female.csv
    β”‚   β”œβ”€β”€ giraffe_focal1-male.csv
    β”‚   β”œβ”€β”€ giraffe_focal2-white_neck_male.csv
    β”‚   β”œβ”€β”€ Scan_giraffe_group_1.csv
    β”‚   β”œβ”€β”€ Scan_giraffe_group_2.csv
    β”œβ”€β”€ grevys/
    β”‚   β”œβ”€β”€ Focal_grevys_group_1_morning_01_11.csv
    β”‚   β”œβ”€β”€ Focal_grevys_group_2_a_01_11.csv
    β”‚   β”œβ”€β”€ Focal_grevys_group_2_b_01_11.csv
    β”‚   β”œβ”€β”€ Focal_grevys_group_2_c_01_11.csv
    β”‚   β”œβ”€β”€ Scan_grevys_group_1_morning_01_11.csv
    β”‚   β”œβ”€β”€ Scan_grevys_group_2_a_01_11.csv
    β”‚   β”œβ”€β”€ Scan_grevys_group_2_b_01_11.csv
    β”‚   β”œβ”€β”€ Scan_grevys_group_2_c_01_11.csv
    └── plain/
        β”œβ”€β”€ plain_Focal_group_1.csv
        β”œβ”€β”€ plain_Focal_group_2.csv
        β”œβ”€β”€ plain_Scan_group_1.csv
        └── plain_Scan_group_2.csv

Data Instances and Files (by Folder/Task)

focalvsdrone/

Description:

Paired focal observation and synchronized drone log for four individual zebras. Each CSV contains time-aligned behavior states from ground focal sampling and drone footage, enabling direct comparison of behavioral data collected via the two methods. Note that the zebras in these files are given descriptive nicknames to distinguish them.

Files (CSVs):

  • focal_drone_df_12_01_23_female_grevy.csv β€” Paired focal observation and synchronized drone log for a female Grevy's zebra on 12-01-2023.
    • 'Zebra A': This zebra is found in video DJI_0997, miniscenes 12, 20, 33, 39, 62, and DJI_0998, miniscene 1.
  • focal_drone_df_16_01_23_thick_neck_stripes.csv β€” Paired focal vs drone for ID "thick_neck_stripes" on 16-01-2023.
    • 'Zebra B': This zebra is found in DJI_0001, mini-scene 47 and DJI_0002, mini-scene 5 and 9.
  • focal_drone_df_16_01_23_white_female.csv β€” Paired focal vs drone for "white_female" on 16-01-2023.
    • 'Zebra C': This zebra is found in DJI_0001, miniscene 8,9,11,31,44.
  • focal_drone_df_17_01_23_scar_cleaned.csv β€” Cleaned paired focal vs drone trace for "scar" on 17-01-2023.
    • 'Zebra D':This zebra is found in DJI_0008, mini-scene 40 and 41, and DJI_010 mini-scene 5.

CSV Contents:

Column Description
frame Sequential frame number in the processed dataset
behavior Behavior label from drone video annotation in CVAT
video_frame Original frame number from the source video file
time-date Timestamp (YYYY-MM-DD HH:MM:SS in local time)
focal_behavior Behavior recorded from focal animal observation

kabr-methodology/scanvsfocal/

Description:

Paired scan sample and focal observation logs for groups of giraffes, Grevy’s zebras, and plains zebras. Each CSV contains time-aligned behavior states from group-level scan sampling and individual focal sessions, enabling direct comparison of behavioral data collected via the two methods, exported from the AnimalBehaviourPro app.

Files (CSVs):

Giraffes:

  • giraffe_focal1-female.csv β€” Giraffe focal log (behavior states over time).
  • giraffe_focal1-male.csv β€” Giraffe focal log (behavior states over time).
  • giraffe_focal2-white_neck_male.csv β€” Giraffe focal log (behavior states over time).
  • Scan_giraffe_group_1.csv β€” Group-level scan sample for giraffes (group 1).
  • Scan_giraffe_group_2.csv β€” Group-level scan sample for giraffes (group 2).

Grevy's Zebras:

  • Focal_grevys_group 1 morning 01_11.csv β€” Group 1 focal session (AM), 01-11.
  • Focal_grevys_group 2_a 01_11.csv β€” Group 2 focal session (individual a), 01-11.
  • Focal_grevys_group 2_b 01_11.csv β€” Group 2 focal session (individual b), 01-11.
  • Focal_grevys_group 2_c 01_11.csv β€” Group 2 focal session (individual c), 01-11.
  • Scan_grevys_group 1 morning 01_11.csv β€” Group 1 scan sample (AM), 01-11.
  • Scan_grevys_group 2_a 01_11.csv β€” Group 2 scan sample (individual a), 01-11.
  • Scan_grevys_group 2_b 01_11.csv β€” Group 2 scan sample (individual b), 01-11.
  • Scan_grevys_group 2_c 01_11.csv β€” Group 2 scan sample (individual c), 01-11.

Plains Zebras:

  • plain_Focal-group_1.csv β€” Plains zebra focal log (group 1).
  • plain_Focal-group_2.csv β€” Plains zebra focal log (group 2).
  • plain_Scan-group_1.csv β€” Plains zebra group scan (group 1).
  • plain_Scan-group_2.csv β€” Plains zebra group scan (group 2).

CSV Contents:

Each of the above listed CSVs has the columns indicated below, where each row indicates a new behavior observation for a single individual. The one exception is Scan_giraffe_group_2.csv, which resulted from testing a different observation type; differences with that CSV are described in Scan all behavior type, after the table.

Column Description
Date_ymd Date of observation (YYYY-MM-DD format)
Time_Absolute_hms Absolute time of day (local) when behavior was recorded (HH:MM:SS)
Time_Relative_hms Time relative to start of observation session (HH:MM:SS)
Time_Relative_s Time relative to start of observation session in seconds
Time_Lag_s Time lag between current and previous event in seconds (i.e., time to log behavior in app)
Duration_s Duration of the behavioral state in seconds
Observation_Name Type of observation method ("AdLib" for ad libitum sampling, most observations)
Log_File_Name Source log file name -- original name of this file
Actor Individual animal being observed (e.g., "Male w/ scar on neck")
Behavior Observed behavior (e.g., "Stand", "Walk")
Receiver Target of social behaviors (empty for non-social behaviors)
Modifier_1 through Modifier_6 Additional behavioral modifiers (mostly empty)
Other_Modifiers Additional modifiers not captured in numbered fields (mostly empty)
Event_Type Whether this marks the start or stop of a behavioral state ("State start" or "State stop")
Observer_ID Unique identifier for the observer (e.g., "1234")
Notes Additional notes about the observation (empty in this dataset)
Coding_Scheme Behavioral coding scheme used ("Zebra")

Scan all behavior type

Scan_giraffe_group_2.csv is a product of the "Scan all behavior" observation method. Instead of producing one line per behavior per subject, this observation method produced one line per observation for all individuals and their behaviors (at a particular time). As a result, the Actor, Behavior, Receiver, Modifier_1, through Modifier_6, Other_Modifiers, and Event_Type columns are replaced by Group_Size, Activity, Subjects, Brown male_Behaviour, Brown male_Receiver, Brown male_Modifiers, White male_Behaviour, White male_Receiver, and White male_Modifiers, where "White" and "Brown" males are the two giraffes being observed. The Activity column is filled in when both are performing the same behavior (e.g., "Walking"), in which case their individual behaviors are also both filled in. Note that in this CSV behavior is indicated "Behaviour", but the others have the column "Behavior".

Data Splits

The dataset ships as a single corpus. Create custom splits by video ID, individual ID, or survey date to control cross-view generalization (e.g., ground vs drone).

Dataset Creation

Curation Rationale

This dataset was curated for the purposes of

(i) quantifying the strengths and weaknesses of ground- vs drone-based behavioral sampling;

(ii) providing detection and coarse behavior benchmarks in the wild.

Collection & Processing

Ground focal/scan samples recorded by trained observers; DJI drone footage (~30 m AGL); CVAT for bounding boxes; custom scripts for ethogram coding; standardized CSV/XML exports. Field scan and focal sampling collected with AnimalBehaviourPro App.

Source Data Producers

Field teams at Mpala Research Centre, Laikipia (Kenya), worked with this group to collect the animal behavior observations.

Considerations for Using the Data

Bias β€’ Risks β€’ Limitations

  • Class imbalance (Grevy’s zebras dominate) may bias detectors/behavior models.
  • Daytime-only footage and observations limit potential for generalization to low-light/night conditions.
  • Coarse behavior labels omit fine motor actions.
  • Recommendations: Use stratified sampling or class weighting; evaluate with cross-view splits (ground vs drone).

Licensing

This compilation is dedicated to the public domain (released under CC0 1.0) for the benefit of scientific pursuits.

Citation

If you make use of this dataset for your research, please cite both it and the original KABR mini-scene as below:

Datasets:

@misc{kline2025kabr-tools-methodology,
  author    = {Jenna Kline and Maksim Kholiavchenko and Michelle Ramirez and Sam Stevens and
               Reshma Ramesh Babu and Namrata Banerji and Elizabeth Campolongo and Nina Van Tiel and 
               Jackson Miliko and Isla Duporge and Neil Rosser and Tanya Berger-Wolf and Daniel Rubenstein},
  title     = {kabr-tools Methodology Dataset},
  year      = {2025},
  url       = {https://huggingface.co/datasets/imageomics/kabr-methodology},
  publisher = {Hugging Face},
  doi       = {}
}
@misc{KABR_Data,
  author = {Kholiavchenko, Maksim and Kline, Jenna and Ramirez, Michelle and Stevens, Sam and Sheets, Alec and Babu, Reshma and Banerji, Namrata and Campolongo, Elizabeth and Thompson, Matthew and Van Tiel, Nina and Miliko, Jackson and Bessa, Eduardo and Duporge, Isla and Berger-Wolf, Tanya and Rubenstein, Daniel and Stewart, Charles},
  title = {KABR: In-Situ Dataset for Kenyan Animal Behavior Recognition from Drone Videos},
  year = {2023},
  url = {https://huggingface.co/datasets/imageomics/KABR},
  doi = {10.57967/hf/1010},
  publisher = {Hugging Face}
}

KABR mini-scene Paper:

@inproceedings{kholiavchenko2024kabr,
  title={KABR: In-Situ Dataset for Kenyan Animal Behavior Recognition from Drone Videos},
  author={Kholiavchenko, Maksim and Kline, Jenna and Ramirez, Michelle and Stevens, Sam and Sheets, Alec and Babu, Reshma and Banerji, Namrata and Campolongo, Elizabeth and Thompson, Matthew and Van Tiel, Nina and Miliko, Jackson and Bessa, Eduardo and Duporge, Isla and Berger-Wolf, Tanya and Rubenstein, Daniel and Stewart, Charles},
  booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
  pages={31-40},
  year={2024}
}

Acknowledgements

This work was supported by the Imageomics Institute, which is funded by the US National Science Foundation's Harnessing the Data Revolution (HDR) program under Award #2118240 (Imageomics: A New Frontier of Biological Information Powered by Knowledge-Guided Machine Learning). Additional support was also provided by the AI Institute for Intelligent Cyberinfrastructure with Computational Learning in the Environment (ICICLE), which is funded by the US National Science Foundation under Award #2112606. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

We thank the field experts at Mpala Research Centre for their support with data collection and logistics.

The data was gathered at the Mpala Research Centre in Kenya, in accordance with Research License No. NACOSTI/P/22/18214. The data collection protocol adhered strictly to the guidelines set forth by the Institutional Animal Care and Use Committee under permission No. IACUC 1835F.

Dataset Card Authors

Jenna Kline and Elizabeth Campolongo

Contact

Questions or benchmark submissions? Open an issue on the GitHub repo: https://github.com/Imageomics/kabr-tools

Dataset Card Contact

kline dot 377 at osu dot edu

Downloads last month
4

Collection including imageomics/kabr-methodology