rust-analyser / DEPLOYMENT_SUMMARY.md
mike dupont
Add deployment summary and technical documentation
2fa3a17

Rust-Analyzer Semantic Analysis Dataset - Deployment Summary

πŸŽ‰ Successfully Created HuggingFace Dataset!

Dataset Statistics

  • Total Records: 532,821 semantic analysis events
  • Source Files: 1,307 Rust files from rust-analyzer codebase
  • Dataset Size: 29MB (compressed Parquet format)
  • Processing Phases: 3 major compiler phases captured

Phase Breakdown

  1. Parsing Phase: 440,096 records (9 Parquet files, 24MB)

    • Syntax tree generation and tokenization
    • Parse error handling and recovery
    • Token-level analysis of every line of code
  2. Name Resolution Phase: 43,696 records (1 Parquet file, 2.2MB)

    • Symbol binding and scope analysis
    • Import resolution patterns
    • Function and struct definitions
  3. Type Inference Phase: 49,029 records (1 Parquet file, 2.0MB)

    • Type checking and inference decisions
    • Variable type assignments
    • Return type analysis

Technical Implementation

  • Format: Parquet files with Snappy compression
  • Git LFS: All files under 10MB for optimal Git LFS performance
  • Schema: Strongly typed with 20 columns per record
  • Chunking: Large files automatically split for size limits

Repository Structure

rust-analyser-hf-dataset/
β”œβ”€β”€ README.md                           # Comprehensive documentation
β”œβ”€β”€ .gitattributes                      # Git LFS configuration
β”œβ”€β”€ .gitignore                          # Standard ignore patterns
β”œβ”€β”€ parsing-phase/
β”‚   β”œβ”€β”€ data-00000-of-00009.parquet    # 3.1MB, 50,589 records
β”‚   β”œβ”€β”€ data-00001-of-00009.parquet    # 3.0MB, 50,589 records
β”‚   β”œβ”€β”€ data-00002-of-00009.parquet    # 2.6MB, 50,589 records
β”‚   β”œβ”€β”€ data-00003-of-00009.parquet    # 2.4MB, 50,589 records
β”‚   β”œβ”€β”€ data-00004-of-00009.parquet    # 3.1MB, 50,589 records
β”‚   β”œβ”€β”€ data-00005-of-00009.parquet    # 2.2MB, 50,589 records
β”‚   β”œβ”€β”€ data-00006-of-00009.parquet    # 2.6MB, 50,589 records
β”‚   β”œβ”€β”€ data-00007-of-00009.parquet    # 3.4MB, 50,589 records
β”‚   └── data-00008-of-00009.parquet    # 2.1MB, 35,384 records
β”œβ”€β”€ name_resolution-phase/
β”‚   └── data.parquet                    # 2.2MB, 43,696 records
└── type_inference-phase/
    └── data.parquet                    # 2.0MB, 49,029 records

Data Schema

Each record contains:

  • Identification: id, file_path, line, column
  • Phase Info: phase, processing_order
  • Element Info: element_type, element_name, element_signature
  • Semantic Data: syntax_data, symbol_data, type_data, diagnostic_data
  • Metadata: processing_time_ms, timestamp, rust_version, analyzer_version
  • Context: source_snippet, context_before, context_after

Deployment Readiness

βœ… Git Repository: Initialized with proper LFS configuration βœ… File Sizes: All files under 10MB for Git LFS compatibility βœ… Documentation: Comprehensive README with usage examples βœ… Metadata: Proper HuggingFace dataset tags and structure βœ… License: AGPL-3.0 consistent with rust-analyzer βœ… Quality: All records validated and properly formatted

Next Steps for HuggingFace Hub Deployment

  1. Create Repository: https://huggingface.co/datasets/introspector/rust-analyser
  2. Add Remote: git remote add origin https://huggingface.co/datasets/introspector/rust-analyser
  3. Push with LFS: git push origin main
  4. Verify Upload: Check that all Parquet files are properly uploaded via LFS

Unique Value Proposition

This dataset is unprecedented in the ML/AI space:

  • Self-referential: rust-analyzer analyzing its own codebase
  • Multi-phase: Captures 3 distinct compiler processing phases
  • Comprehensive: Every line of code analyzed with rich context
  • Production-ready: Generated by the most advanced Rust language server
  • Research-grade: Suitable for training code understanding models

Use Cases

  • AI Model Training: Code completion, type inference, bug detection
  • Compiler Research: Understanding semantic analysis patterns
  • Educational Tools: Teaching compiler internals and language servers
  • Benchmarking: Evaluating code analysis tools and techniques

πŸš€ Ready for Deployment!

The dataset is now ready to be pushed to the HuggingFace Hub at: https://huggingface.co/datasets/introspector/rust-analyser

This represents a significant contribution to the open-source ML/AI community, providing unprecedented insight into how advanced language servers process code.