tags:
- code-understanding
- semantic-analysis
- rust
- rust-analyzer
- compiler
- language-server
- ai
- dataset
license: agpl-3.0
size_categories:
- 100K<n<1M
task_categories:
- text-classification
- feature-extraction
- text-retrieval
language:
- en
Rust-Analyzer Semantic Analysis Dataset
This dataset contains comprehensive semantic analysis data extracted from the rust-analyzer codebase using our custom rust-analyzer integration. It captures the step-by-step processing phases that rust-analyzer performs when analyzing Rust code.
Dataset Overview
This dataset provides unprecedented insight into how rust-analyzer (the most advanced Rust language server) processes its own codebase. It contains 500K+ records across multiple semantic analysis phases.
What's Included
- Parsing Phase: Syntax tree generation, tokenization, and parse error handling
- Name Resolution Phase: Symbol binding, scope analysis, and import resolution
- Type Inference Phase: Type checking, inference decisions, and type error detection
Dataset Statistics
- Total Records: ~533,000 semantic analysis events
- Source Files: 1,307 Rust files from rust-analyzer codebase
- Data Size: ~450MB in efficient Parquet format
- Processing Phases: 3 major compiler phases captured
Dataset Structure
Each record contains:
id
: Unique identifier for the analysis eventfile_path
: Source file being analyzedline
,column
: Location in source codephase
: Processing phase (parsing, name_resolution, type_inference)element_type
: Type of code element (function, struct, variable, etc.)element_name
: Name of the element (if applicable)syntax_data
: JSON-serialized syntax tree informationsymbol_data
: JSON-serialized symbol resolution datatype_data
: JSON-serialized type inference informationsource_snippet
: The actual source code being analyzedcontext_before
/context_after
: Surrounding code contextprocessing_time_ms
: Time taken for analysisrust_version
,analyzer_version
: Tool versions used
Use Cases
Machine Learning Applications
- Code completion models: Train on parsing and name resolution patterns
- Type inference models: Learn from rust-analyzer's type inference decisions
- Bug detection models: Identify patterns in diagnostic data
- Code understanding models: Learn semantic analysis patterns
Research Applications
- Compiler optimization: Analyze compilation patterns across large codebases
- Language design: Study how developers use Rust language features
- IDE improvement: Understand common semantic analysis patterns
- Static analysis: Develop better code analysis tools
Educational Applications
- Rust learning: Understand how code is processed step-by-step
- Compiler education: Visualize semantic analysis phases
- Code analysis tutorials: Interactive examples of language server internals
Data Quality
- ✅ Schema validated: All records follow consistent structure
- ✅ Data integrity: No corrupted or malformed records
- ✅ Completeness: All processed files represented
- ✅ Self-referential: rust-analyzer analyzing its own codebase
Technical Details
- Format: Parquet files for efficient storage and fast loading
- Compression: Snappy compression for optimal performance
- Chunking: Files split to stay under 10MB for Git LFS compatibility
- Schema: Strongly typed with proper null handling
Source
This dataset was generated by analyzing the rust-analyzer codebase (version 0.3.2000) using our custom integration that captures semantic analysis at multiple processing phases.
Source Project: /home/mdupont/2025/06/27/rust-analyzer Generated: August 2025 Tool: Custom rust-analyzer semantic extractor
Citation
If you use this dataset in your research, please cite:
@dataset{rust_analyzer_semantic_2025,
title={Rust-Analyzer Semantic Analysis Dataset},
author={Dupont, J. Mike},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/datasets/introspector/rust-analyser}
}
License
This dataset is released under the AGPL-3.0 license, consistent with the rust-analyzer project.
Acknowledgments
- Built using the rust-analyzer project
- Generated with custom semantic analysis extraction tools
- Optimized for machine learning and research applications