Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 2 new columns ({'S3B_20190810T135525_20190810T135539.tif', '0200599_-70.25_-55.25'}) and 24 missing columns ({'cultivated and managed vegetation/agriculture', 'permanent water bodies', 'herbaceous wetland', 'closed forest (other)', 'open forest (evergreen needle leaf)', 'moss and lichen', 'oceans / seas', 'herbaceous vegetation', 'unknown', 'open forest (other)', 'closed forest (evergreen broad leaf)', 'shrubs', 'bare / sparse vegetation', 'closed forest (deciduous broad leaf)', 'urban / built-up', 'open forest (evergreen broad leaf)', 'open forest (deciduous broad leaf)', 'closed forest (evergreen needle leaf)', 'open forest (mixed)', 'open forest (deciduous needle leaf)', 'closed forest (deciduous needle leaf)', 'snow and ice', 'closed forest (mixed)', 'PID'}).

This happened while the csv dataset builder was generating data using

hf://datasets/isaaccorley/lc100-l/static_fnames-train.csv (at revision ab9bf7972885ab9b734055440b041d9928bc10ca)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 643, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              0200599_-70.25_-55.25: string
              S3B_20190810T135525_20190810T135539.tif: string
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 582
              to
              {'PID': Value(dtype='string', id=None), 'unknown': Value(dtype='int64', id=None), 'shrubs': Value(dtype='int64', id=None), 'herbaceous vegetation': Value(dtype='int64', id=None), 'cultivated and managed vegetation/agriculture': Value(dtype='int64', id=None), 'urban / built-up': Value(dtype='int64', id=None), 'bare / sparse vegetation': Value(dtype='int64', id=None), 'snow and ice': Value(dtype='int64', id=None), 'permanent water bodies': Value(dtype='int64', id=None), 'herbaceous wetland': Value(dtype='int64', id=None), 'moss and lichen': Value(dtype='int64', id=None), 'closed forest (evergreen needle leaf)': Value(dtype='int64', id=None), 'closed forest (evergreen broad leaf)': Value(dtype='int64', id=None), 'closed forest (deciduous needle leaf)': Value(dtype='int64', id=None), 'closed forest (deciduous broad leaf)': Value(dtype='int64', id=None), 'closed forest (mixed)': Value(dtype='int64', id=None), 'closed forest (other)': Value(dtype='int64', id=None), 'open forest (evergreen needle leaf)': Value(dtype='int64', id=None), 'open forest (evergreen broad leaf)': Value(dtype='int64', id=None), 'open forest (deciduous needle leaf)': Value(dtype='int64', id=None), 'open forest (deciduous broad leaf)': Value(dtype='int64', id=None), 'open forest (mixed)': Value(dtype='int64', id=None), 'open forest (other)': Value(dtype='int64', id=None), 'oceans / seas': Value(dtype='int64', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1428, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 989, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 2 new columns ({'S3B_20190810T135525_20190810T135539.tif', '0200599_-70.25_-55.25'}) and 24 missing columns ({'cultivated and managed vegetation/agriculture', 'permanent water bodies', 'herbaceous wetland', 'closed forest (other)', 'open forest (evergreen needle leaf)', 'moss and lichen', 'oceans / seas', 'herbaceous vegetation', 'unknown', 'open forest (other)', 'closed forest (evergreen broad leaf)', 'shrubs', 'bare / sparse vegetation', 'closed forest (deciduous broad leaf)', 'urban / built-up', 'open forest (evergreen broad leaf)', 'open forest (deciduous broad leaf)', 'closed forest (evergreen needle leaf)', 'open forest (mixed)', 'open forest (deciduous needle leaf)', 'closed forest (deciduous needle leaf)', 'snow and ice', 'closed forest (mixed)', 'PID'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/isaaccorley/lc100-l/static_fnames-train.csv (at revision ab9bf7972885ab9b734055440b041d9928bc10ca)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

PID
string
unknown
int64
shrubs
int64
herbaceous vegetation
int64
cultivated and managed vegetation/agriculture
int64
urban / built-up
int64
bare / sparse vegetation
int64
snow and ice
int64
permanent water bodies
int64
herbaceous wetland
int64
moss and lichen
int64
closed forest (evergreen needle leaf)
int64
closed forest (evergreen broad leaf)
int64
closed forest (deciduous needle leaf)
int64
closed forest (deciduous broad leaf)
int64
closed forest (mixed)
int64
closed forest (other)
int64
open forest (evergreen needle leaf)
int64
open forest (evergreen broad leaf)
int64
open forest (deciduous needle leaf)
int64
open forest (deciduous broad leaf)
int64
open forest (mixed)
int64
open forest (other)
int64
oceans / seas
int64
0200599_-70.25_-55.25
0
0
1
0
0
1
0
1
0
0
0
0
0
1
0
1
0
0
0
0
0
0
1
0203488_-68.00_-54.75
0
1
1
0
1
1
1
1
1
0
0
1
0
1
0
1
0
0
0
1
0
1
1
0207805_-68.75_-54.00
0
1
1
0
0
1
0
0
1
0
0
0
0
1
0
1
0
0
0
1
0
1
0
0209248_-68.00_-53.75
0
1
1
0
1
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0216431_-72.25_-52.50
0
1
1
0
0
1
1
1
1
0
0
1
0
1
0
1
0
0
0
1
0
1
1
0216437_-70.75_-52.50
0
1
1
0
0
1
0
1
1
0
0
0
0
1
0
0
0
0
0
1
0
1
0
0217921_-59.75_-52.25
0
1
1
0
0
1
0
1
1
0
0
0
0
1
0
1
0
0
0
1
0
1
1
0219308_-73.00_-52.00
0
1
1
0
0
1
1
1
1
0
0
1
0
1
0
1
0
0
0
1
0
1
1
0219355_-61.25_-52.00
0
1
1
0
0
1
0
1
1
0
0
0
0
1
0
1
0
0
0
0
0
0
1
0220764_-69.00_-51.75
0
1
1
0
0
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0220807_-58.25_-51.75
0
1
1
0
0
1
0
1
1
0
0
0
0
1
0
1
0
0
0
1
0
1
1
0222241_-59.75_-51.50
0
1
1
0
0
1
0
1
1
0
0
0
0
1
0
1
0
0
0
0
0
1
1
0222248_-58.00_-51.50
0
1
1
0
0
1
0
1
1
0
0
0
0
1
0
1
0
0
0
1
0
0
1
0225075_-71.25_-51.00
0
1
1
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0227959_-70.25_-50.50
0
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0229404_-69.00_-50.25
0
1
1
0
0
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0232269_-72.75_-49.75
0
1
1
0
0
1
0
1
1
0
0
0
0
1
0
1
0
0
0
1
0
1
0
0233719_-70.25_-49.50
0
1
1
0
0
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0236582_-74.50_-49.00
0
1
1
0
0
1
1
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
1
0238040_-70.00_-48.75
0
1
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0238050_-67.50_-48.75
0
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0242363_-69.25_-48.00
0
1
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0243793_-71.75_-47.75
0
1
1
0
0
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0246676_-71.00_-47.25
0
1
1
0
1
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0248096_-76.00_-47.00
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0248111_-72.25_-47.00
0
1
1
0
0
1
1
1
1
0
0
0
0
1
0
1
0
0
0
1
0
1
0
0249072_168.00_-47.00
0
1
1
0
0
0
0
1
1
0
0
1
0
0
1
1
0
1
0
0
1
1
1
0249569_-67.75_-46.75
0
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0251006_-68.50_-46.50
0
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0251958_169.50_-46.50
0
1
1
1
1
1
0
1
1
0
0
1
1
0
1
1
0
1
0
0
1
1
1
0253880_-70.00_-46.00
0
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0254831_167.75_-46.00
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
1
0
1
0
0
1
1
0
0255301_-74.75_-45.75
0
1
1
1
0
1
0
1
1
0
0
1
0
1
1
1
0
1
0
1
0
1
1
0255323_-69.25_-45.75
0
1
1
0
1
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0256744_-74.00_-45.50
0
1
1
0
0
0
0
1
1
0
0
1
0
1
1
1
0
1
0
0
0
1
1
0256763_-69.25_-45.50
0
1
1
0
0
1
0
1
1
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0258184_-74.00_-45.25
0
1
1
1
0
0
0
1
1
0
0
1
0
1
1
1
0
1
0
1
0
1
1
0258211_-67.25_-45.25
0
1
1
0
0
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0259635_-71.25_-45.00
0
1
1
1
0
1
0
1
1
0
0
0
0
1
0
1
0
0
0
1
0
1
0
0260603_170.75_-45.00
0
1
1
1
1
1
0
1
1
0
0
1
1
0
1
1
0
1
0
0
1
1
0
0261091_-67.25_-44.75
0
1
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0267808_172.00_-43.75
0
1
1
1
1
1
0
1
1
0
0
1
0
0
1
0
0
0
0
0
1
1
1
0268273_-71.75_-43.50
0
1
1
1
1
1
1
1
1
0
0
1
0
1
1
1
0
1
0
0
0
1
0
0268295_-66.25_-43.50
0
1
1
1
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0269723_-69.25_-43.25
0
1
1
0
1
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0269737_-65.75_-43.25
0
1
1
1
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0270685_171.25_-43.25
0
1
1
1
0
1
1
1
1
0
0
1
0
0
1
1
0
1
0
0
1
1
0
0270694_173.50_-43.25
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0274064_-64.00_-42.50
0
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0276919_-70.25_-42.00
0
1
1
1
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0277901_175.25_-42.00
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0278367_-68.25_-41.75
0
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0279338_174.50_-41.75
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0281260_-65.00_-41.25
0
1
1
1
0
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0282101_145.25_-41.25
0
1
1
0
0
0
0
0
1
0
0
1
0
0
0
1
0
1
0
0
0
1
0
0282670_-72.50_-41.00
0
1
1
1
0
1
1
1
1
0
0
1
0
1
1
1
0
1
0
1
0
1
0
0282684_-69.00_-41.00
0
1
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0282697_-65.75_-41.00
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0283646_171.50_-41.00
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0283653_173.25_-41.00
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0285089_172.25_-40.75
0
1
1
1
0
1
0
1
1
0
0
1
0
0
1
1
0
1
0
0
1
1
1
0285104_176.00_-40.75
0
1
1
1
1
0
0
0
0
0
0
1
1
0
1
1
0
1
0
0
1
1
0
0287000_-70.00_-40.25
0
1
1
0
1
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0287016_-66.00_-40.25
0
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0287981_175.25_-40.25
0
1
1
1
1
1
0
1
1
0
0
1
1
0
1
1
0
1
0
0
1
1
1
0288444_-69.00_-40.00
0
1
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0289866_-73.50_-39.75
0
1
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
1
0290855_173.75_-39.75
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0291308_-73.00_-39.50
0
1
1
1
1
1
0
1
1
0
0
1
0
1
1
1
0
1
0
1
0
1
0
0292752_-72.00_-39.25
0
1
1
1
1
1
0
1
1
0
0
1
0
1
1
1
0
1
0
1
0
1
0
0292759_-70.25_-39.25
0
1
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0292785_-63.75_-39.25
0
1
1
1
0
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0292787_-63.25_-39.25
0
1
1
1
1
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0292794_-61.50_-39.25
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0294207_-68.25_-39.00
0
1
1
1
1
1
0
1
1
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0295189_177.25_-39.00
0
1
1
1
0
1
0
1
1
0
0
1
1
0
1
1
0
1
0
0
1
1
1
0295649_-67.75_-38.75
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0296509_147.25_-38.75
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0297945_146.25_-38.50
0
1
1
1
1
0
0
1
1
0
0
1
0
1
1
1
0
1
0
1
1
1
0
0298531_-67.25_-38.25
0
1
1
0
1
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0298558_-60.50_-38.25
0
1
1
1
1
1
0
1
1
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0299509_177.25_-38.25
0
1
1
1
0
0
0
0
1
0
0
1
1
0
1
1
0
1
0
0
1
1
0
0299975_-66.25_-38.00
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0300009_-57.75_-38.00
0
1
1
1
1
1
0
1
1
0
0
0
0
1
0
1
0
0
0
0
0
1
0
0300809_142.25_-38.00
0
1
1
1
1
0
0
1
1
0
0
1
0
0
0
1
0
1
0
0
0
1
0
0300822_145.50_-38.00
0
1
1
1
1
0
0
1
1
0
0
1
0
0
0
1
0
1
0
1
1
1
0
0300824_146.00_-38.00
0
1
1
1
1
0
0
1
1
0
0
1
0
0
0
1
0
1
0
0
1
1
0
0300829_147.25_-38.00
0
1
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
1
1
0
0301419_-65.25_-37.75
0
1
1
1
0
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0302832_-72.00_-37.50
0
1
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
0302855_-66.25_-37.50
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0303687_141.75_-37.50
0
1
1
1
1
0
0
1
1
0
0
1
0
0
0
1
0
1
0
1
0
1
0
0303722_150.50_-37.50
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0304332_-57.00_-37.25
0
1
1
1
1
1
0
1
1
0
0
0
0
0
0
1
0
0
0
0
0
1
1
0305135_143.75_-37.25
0
1
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
0305157_149.25_-37.25
0
1
1
1
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
0305715_-71.25_-37.00
0
1
1
1
0
1
1
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
0305741_-64.75_-37.00
0
1
1
1
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0306594_148.50_-37.00
0
1
1
1
0
0
0
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
0307206_-58.50_-36.75
0
1
1
1
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
1
0
End of preview.
README.md exists but content is empty.
Downloads last month
73